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Summary

In this dissertation, we develop the optimal control policies for make-to-stock

production systems under different operating conditions. First, we consider a make-

to-stock production system with a single demand class and two production rates.

With the assumptions of Poisson demands and exponential production times, it is

found that the optimal control policy, denoted later as (S1, S2) policy, is character-

ized by two critical inventory levels S1 and S2. Then, under the (S1, S2) policy, an

M/M/1/S queueing model with state-dependent arrival rates is developed to com-

pute the expected total cost per unit time. To show the benefits of employing the

emergency rate, numerical studies are carried out to compare the expected total costs

per unit time between the production system with two rates and the one with a single

rate. Moreover, the developed model is extended to consider N production rates and

the optimal control policy with certain conditions satisfied is shown to be character-

ized by N critical inventory levels. Second, we consider a make-to-stock production

system with N demand classes and two production rates for a lost-sale case. It is

found that the optimal control policy is a combination of the (S1, S2) policy and

the so-called stock reservation policy. Similarly, under this optimal control policy,

an M/M/1/S queueing model with state-dependent arrival rates and service rates

is developed to compute the expected total cost per unit time. Then, the results of

numerical studies are provided to show the benefits of employing the emergency pro-

duction rate. Finally, we study a make-to-stock production system with two demand

iv



classes and two production rates for a backorder case. The optimal control policy is

shown to be characterized by three monotone curves.

(Normal/Emergency Production Rates; Make-to-Stock Production System; Dy-

namic Programming; Inventory Control)
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Chapter 1

Introduction and Literature

Review

Inventory systems with two replenishment modes are becoming increasingly com-

mon in practice nowadays [25]. For such inventory systems, a slower replenishment

mode is normally used except when the stock supply needs to be expedited where

the emergency production mode is employed. In this dissertation, we first consider a

make-to-stock production system with two production rates: normal and emergency.

The normal production rate is the main resource for the stock supply. However,

when the inventory level becomes difficult to satisfy the anticipated demands, the

emergency production rate is employed to prevent costly stock-outs. The normal

production rate incurs lower production cost but with lower throughput while the

emergency production rate increases throughput at the expense of higher produc-

tion cost. This production system can be considered as an inventory system with

two replenishment modes, which can be met in the real life. For example, for the

remanufacturable-products, such as some parts of automobiles, the remanufactured-
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items are normally used to satisfy the incoming demands. However, when there are

not enough remanufactured items, newly manufactured items may be used to avoid

costly stock-outs. The most important operational decision, which significantly af-

fects the total system cost, is to determine the optimal production rate given the

inventory levels. Such decisions must be carefully made to minimize the system cost.

This problem is referred to as the production control problem. Despite its impor-

tance, the production control problem for the production system with two production

rates has yet received its due attention in the literature.

This dissertation is closely related to the literature of inventory systems with two

replenishment modes, which were discussed as early as in 1960s. Since then, many

articles in this area have been published. Inventory systems studied in these articles

can be divided into two groups: those with continuous-review control policies and

those with periodic-review control policies. Almost all the earlier papers studied in-

ventory systems with periodic-review control policies. In a seminal paper, Barankin

[1] developed a single-period inventory model with normal and emergency replenish-

ments whose lead-times are one period and zero, respectively. Daniel [7] and Neuts

[23] extended Barankin’s for multiple periods and obtained an optimal control policy

with similar forms. Fukuda [10] further generalized Daniel’s model by considering

fixed order costs and allowing normal and emergency replenishments to be placed

simultaneously. However, still the assumptions that lead-time of normal replenish-

ments is one period and that of emergency replenishments is zero are not relaxed.

Whittmore and Saunders [28] obtained the optimal control policy for a multiple plan-

ning period model where lead-times for normal and emergency replenishments can

take any multiple of the review period. However, the policy developed is too complex
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to be implemented in practice. The explicit results are able to be obtained only for

the case where two replenishment lead-times differ by one period only.

Chiang and Gutierrez [3] developed a model where lead times of normal and emer-

gency replenishments can be shorter than the review period. At any review epoch,

either normal or emergency replenishments can be placed to raise the inventory level

to an order-up-to level. Unit purchasing costs are same for normal and emergency

replenishments, but emergency replenishments have fixed order costs which normal

replenishments do not have. It is found that for any given non-negative order-up-

to level, either only normal replenishments are used all the time, or there exists an

indifference inventory level such that if the inventory level at the review epoch is be-

low the indifference inventory level, emergency replenishments are placed and normal

replenishments are placed otherwise. In a subsequent paper, Chiang and Gutierrez

[4] allowed emergency replenishments to be placed at any time within a review pe-

riod while normal replenishments may be placed only at review epochs. In addition,

the order-up-to level of emergency replenishments depends on the time remaining

until the next normal replenishment arrives. They analyzed the problem within the

framework of a stochastic dynamic programming and derive an optimal control pol-

icy. However, this control policy is quite complex, especially if lead-times of normal

replenishments and emergency replenishments differ by more than one time unit.

Tagaras and Vlachos [25] also studied an inventory system where lead times can

be shorter than the review period. Normal replenishments may be placed only at

review epochs based on an order-up-to level policy. Emergency replenishments are

placed at most once per cycle and are expected to arrive just before the arrival of the

normal replenishment placed in this cycle when the likelihood of stock-outs is highest.
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For the case where lead-times of emergency replenishments are only one unit time,

an approximate total cost is obtained.

Inventory systems with continuous-review control policies have been studied only

in recent years. Moinzadeh and Nahmias [20] proposed a heuristic control policy for

an inventory model with two replenishment modes. This control policy, which is a

natural extension of the standard (Q,R) policy, can be specified by (Q1, R1, Q2, R2)

where Q1 > Q2 and R1 > R2. A normal replenishment with lot size Q1 is placed

when the inventory level reaches R1 and an emergency replenishment of lot size Q2

is placed when the inventory level falls below R2. An approximate expected total

cost per unit time is derived with the assumptions that there is never more than a

single outstanding replenishment of each type and that an emergency replenishment

is placed only if it will arrive before the scheduled arrival of the outstanding normal

replenishment. Fixed order costs for normal and emergency replenishments are con-

sidered. However, the backorder cost only consists of fixed shortage cost per unit

backlogged. Essentially, this is equal to the lost sale problem because there is no in-

centive to satisfy the backorders once they occur. The parameters Q1, R1, Q2 and R2

are obtained numerically by applying simple search procedures. At last, simulation

is employed to check the validity of the control policy. The results obtained shows

that for certain parameters combinations, the cost saving might be 10–30%, in some

cases even larger.

Johansen and Thorstenson [11] developed a similar model to Moinzadeh and Nah-

mias [20] where instead Q2 and R2 vary with the time remaining until the outstanding

normal replenishment arrives, i.e., Q2 and R2 are state-dependent. The backorder

cost now consists of both fixed shortage cost per unit backlogged and backordering
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cost per unit backlogged per unit time. A tailor-made policy-iteration algorithm is

developed and implemented to minimize the approximate expected total cost per unit

time. In addition, a simplified control policy is considered for comparative purposes

where Q2 and R2 are constant instead of varied. The results of numerical studies

show that there is only a small extra gain from using the state-dependent Q2 and R2.

Moinzadeh and Schmidt [19] considered an inventory system with Poisson de-

mands and two replenishment modes. The control policy implemented is an extension

of the standard (S − 1, S) policy. When a demand occurs, a replenishment is placed

immediately no matter whether the demand is satisfied or backlogged. However,

what kind of replenishment to be placed depends on the ages of all the outstanding

replenishments and the inventory level at the time of the demand arrival. If the

inventory level is above a critical level, normal replenishments are placed. If the

inventory level is less than the critical level but enough outstanding replenishments

will arrive within the lead time of normal replenishments to increase the inventory

level beyond the critical level, normal replenishments are still employed; emergency

replenishments are employed otherwise. Under this control policy, they obtain several

optimality properties for the steady-state behavior and provide some computational

results.

Kalpakam and Sapna [15] considered a lost sale inventory model with renewal

demands and state-dependent lead times based on an extension of the (Q,R) policy.

When the inventory level reaches R from above and no order is outstanding, an order

of size Q is placed. Moreover, whenever the inventory level drops to zero, an order of

size R (or size Q ) is placed if an order of size Q (or size R ) is outstanding. The lead

times of the two replenishments modes depend on the order size and the number of
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outstanding orders. Simulation is employed to check the validity of their model.

This dissertation also has a close relationship with the literature of inventory

systems with rationing. Veinott [27] considered a periodic-review, nonstationary,

multiperiod inventory model in which there are N classes of demand for a single

product. He is the first one who introduces the concept of a critical level policy, i.e.,

demand from a particular class is satisfied only if the inventory level is above the

critical level associated with this demand class. In a model formulated similar to

Veinott’s, Topkis [26] broke down the review period into a finite number of intervals

and assumes that all demands are observed before making any rationing decision. He

proves the optimality of the critical level policy for an interval for both backordering

case and lost sale case. Evans [9] and Kaplan [16] derived essentially the same results,

but for two demand classes. Nahmias and Demmy [22] considered a single period

inventory model with two demand classes. With the assumptions that demand occurs

at the end of the review period and high priority demands are filled first, they develop

an approximate expression of the expected backorder rate for each demand class under

the critical level policy. They also generalized the results to an infinite horizon, multi-

period inventory model, where stock is replenished under (s, S) policy and lead time

is zero. Later, Moon and Kang [21] generalized Nahmias and Demmy’s results for

multiple demand classes. Cohen et al. [6] considered a periodic review (s, S) inventory

model in which there are two priority demand classes. However, the critical level

policy is not employed in the model. In each period, inventory is issued to meet

high-priority demand first and the remaining is then available to satisfy low-priority

demand.

Nahmias and Demmy [22] is the first to consider continuous-review inventory



Chapter 1 Introduction and Literature Review 7

model with inventory rationing. They analyzed a (Q,R) inventory model with two

demand classes and positive deterministic leadtime. Assuming that there is never

more than a single replenishment outstanding, an approximate expected backordering

rate for each demand class is obtained. Dekker et al. [8] considered a (S − 1, S)

inventory model with two demand classes, Poisson demand and fixed lead time. The

main result is the approximate expressions for the service levels of the two demand

classes.

Ha [12] considered a make-to-stock production system for the lost sale case in

which there are N demand classes for a single item. With the assumptions of Poisson

demand and exponential production time, it is found that the optimal control policy

is essentially a combination of the base-stock policy controlling the production process

and the critical level policy controlling the inventory rationing. Based on M/M/1/S

queueing system, the expected total cost per unit time is computed for a case with

two demand classes. The results of numerical studies show that remarkable benefits

can be generated by the critical level policy relative to the first-come-first-served

policy.

Ha [14] considered a make-to-stock production system for the backordering case

with two demand classes, Poisson demand and exponential production time. He

proves that the critical level policy is still optimal for inventory rationing. The

critical level decreases as the number of backorders of low-priority demand increases.

In Chapter 2, we first consider a make-to-stock production system with two pro-

duction rates, one demand class and backorders. The two production rates are char-

acterized by different production times and unit production costs, i.e., the faster the

production is, the larger the unit production cost is. With the assumptions of Poisson
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demand and exponential production time, it is found that the optimal control policy

is characterized by two critical levels S1 and S2. We refer to this control policy later

as the (S1, S2) policy. If the inventory level reaches S1, production is stopped. If

the inventory level is between S1 and S2, production is performed by employing the

smaller production rate. If the inventory level is less than S2, production is performed

by employing the larger production rate. In addition, we extend the production sys-

tem for considering N production rates. From the foregoing literature review, all the

previous works considering inventory systems with alternative replenishment modes

focus on the situation where lead times of normal and emergency replenishments are

constant. Moreover, supply processes of those works are of an infinite capacity. But

in this chapter, lead times of the normal and emergency production rate, which are

exponentially distributed, are stochastic. Meanwhile, supply process of the produc-

tion system is capacitated. Therefore, our model is different from the models in the

literature.

In Chapter 3, we consider a make-to-stock production system with two production

rates, N demand classes and lost sales. It is found that the optimal control policy is a

combination of the (S1, S2) policy controlling the production process and the critical

level policy controlling inventory allocation. There is a critical level associated with

each demand class. An incoming demand of this particular class will be satisfied if

the inventory level is above the critical level, and is rejected otherwise.

In Chapter 4, we consider a make-to-stock production system with two production

rates, two demand classes and backorders. The optimal control policy is characterized

by three monotone switch curves, which partition the state space of the system into

four areas each of which corresponds to a different production decision.
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As shown above, exponential production times are assumed throughout this thesis

to make our problems tractable. While this assumption may not be realistic in most

production systems, we believe that the insights of our results are still useful when

it is relaxed. Without this assumption, the properties of Markov process, on which

our analysis mainly depends on, are lost. This will make our problem much more

complex.



Chapter 2

A Make-to-Stock Production

System with Multiple Production

Rates, One Demand Class and

Backorders

2.1. The Stochastic Model and Optimal Control

In this chapter, we consider a single-item, make-to-stock production facility with

two production rates: normal and emergency. Production times for the normal and

emergency rates are independent and exponentially distributed with means 1/µ1 and

1/µ2, respectively. The unit production cost for the normal rate is c1 and that for

the emergency rate is c2. For notational convenience, let µ0 = 0 and c0 = 0 be the

parameters for the case when there is no production. Naturally, we assumed that

µ0 < µ1 < µ2 and c0 < c1 < c2. Customer demands arise as a Poisson process with
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mean rate λ and unsatisfied demands are backlogged with penalty costs incurred.

At an arbitrary point of time, we have three possible production decisions to make

given the current inventory level: i) not to produce, ii) to produce normally, and iii)

to produce urgently. Due to the exponential production times and Poisson demands

assumptions, the current inventory level possesses all the necessary information for

decision-making (Memoryless Property). Thus, although we allow the production

rate to be varied at any time, the optimal production rate is reviewed only when the

inventory level changes, i.e., when demand arrives or production completes. A control

policy specifies the production rate at any time given the current inventory level. We

develop an optimal control policy for the objective of minimizing the expected total

discounted cost over an infinite time horizon. This expected total discounted cost is

computed by the following cost components: the inventory holding cost h per unit

per unit time, the normal production cost c1 per unit, the emergency production cost

c2 per unit, and the backorder cost b per unit backordered per unit time.

In the next subsection, the optimality equation is obtained which is satisfied by

the minimal expected total discounted cost and the optimal control policy is identified

by analyzing this optimality equation.

2.1.1. Dynamic Programming Formulation

Let X1(t) be the net inventory level at time t. For any given Markovian control policy

u, X1 = {X1u(t) : t ≥ 0} is a continuous-time Markov process with the state space

Z, where Z represents integers. For the Markov process X1, transitions occur when

demand arrives or production completes. Denote P (i, j) as the transition probability

from state i to j. Given the current state x and the production rate employed at
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this stage µk, k = 0, 1, 2, the transition probabilities of the Markov process X1 are

P (x, x + 1) = µk/(µk + λ) and P (x, x − 1) = λ/(µk + λ). It can be seen that the

transition probabilities take different values for different production rates employed

upon jumping into state x. Especially, the transition probabilities are P (x, x+1) = 0

and P (x, x− 1) = 1 when there is no production employed. For the Markov process

X1, the time between successive transitions is influenced by both the exponential

production process and the Poisson demand process. It follows that the time be-

tween successive transitions follows an exponential distribution with mean 1/(µk +λ)

(see Çinlar [5]). The mean 1/(µk + λ) is variable and dependent on control policies

employed. This will significantly increase the complexity of computing the expected

total discounted cost, from which the optimal control policy will be identified.

µk /Λ

(µ2 - µk)/Λ

λ/Λ

x+1

x

x−1

x

Stage j

Stage j +1

Figure 2.1: Transition process for the Markov process X ′
1

To simplify the problem, we follow the procedure proposed by Lippman [18] to

convert the Markov process X1 to X ′
1 where the transition rate Λ is defined by λ+µ2.

Accordingly, the transition probabilities of the converted Markov process X ′
1 becomes

P ′(x, x) = (µ2−µk)/Λ, P ′(x, x+1) = µk/Λ and P ′(x, x− 1) = λ/Λ, i.e., a transition

taking place at the end of the stage turns out to be no event with the probability

(µ2−µk)/Λ, to be a production completion with the probability of µk/Λ, and to be a
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demand arrival with the probability of λ/Λ. Figure 2.1 shows the transition process

for the Markov process X ′
1. With the newly defined transition rate and transition

probabilities, the underlying stochastic processes of the Markov processes X1 and X ′
1

are essentially the same, which will be shown next.

For the Markov process X1, transitions occur with mean rate µk + λ. When a

transition occurs, the system will definitely jump out from the current state . Thus,

the transition rates matrix A of the Markov process X1 are as follows:

A(x, x + 1) = (µk + λ) P (x, x + 1) = µk (2.1)

A(x, x− 1) = (µk + λ) P (x, x− 1) = λ (2.2)

A(x, x) = − [A(x, x + 1) + A(x, x− 1)] = −µk − λ (2.3)

For the Markov process X ′
1, transitions occur with mean rate Λ. When a transition

occurs, the system jumps out from the current state x with the probability of 1 −

P ′(x, x) and stays in state x with the probability of P ′(x, x). Thus, the mean rate of

jumping out of state x is Λ [1− P ′(x, x)] and that of staying in state x is ΛP ′(x, x).

Moreover, if the system jumps out of state x, the probability of entering state x+1 is

P ′(x, x+1)/ [1− P ′(x, x)] and that of entering state x−1 is P ′(x, x−1)/ [1− P ′(x, x)].

Therefore, the Markov process X ′
1 has the transition rates matrix A′ as follows:

A′(x, x + 1) = Λ [1− P ′(x, x)] P ′(x, x + 1)/ [1− P ′(x, x)] = µk (2.4)

A′(x, x− 1) = Λ [1− P ′(x, x)] P ′(x, x− 1)/ [1− P ′(x, x)] = λ (2.5)
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A′(x, x) = − [A′(x, x + 1) + A′(x, x− 1)] = −µk − λ (2.6)

It can be seen that the Markov processes X1 and X ′
1 have the same transition

rates matrices (see Çinlar [5]). Given a transition rates matrix, one continuous-time

Markov process can be uniquely determined. Therefore, the underlying stochastic

processes of the Markov processes X1 and X ′
1 are the same and thus X ′

1 has the same

optimal control policy and then the same optimal return function to that of X1; see

Lippman [18]. For the Markov process X ′
1, the mean time length between successive

transitions Λ is constant and independent of states and control policies employed.

Henceforth, we analyze X ′
1 to identify the optimal control policy.

Denote α as the interest rate. First, we compute as follows the expected dis-

counted cost incurred during one-stage transition of the Markov process X ′
1 where

the current state is x and the current production rate employed is µk, k = 0, 1, 2.

∫ ∞

0

∫ T

0
e−αt(h[x]+ + b[x]−)Λe−ΛT dtdT +

µk

Λ

∫ ∞

0

(
e−αT ck

)
Λe−ΛT dT

= (h[x]+ + b[x]−)
∫ ∞

0
Λe−ΛT dT

∫ T

0
e−αtdt + µkck

∫ ∞

0
e−(α+Λ)T dT

=
(h[x]+ + b[x]−)

α

∫ ∞

0
Λe−ΛT (1− e−αT )dT +

µkck

α + Λ

=
(h[x]+ + b[x]−)

α

(∫ ∞

0
Λe−ΛT dT −

∫ ∞

0
Λe−(α+Λ)T dT

)
+

µkck

α + Λ

=
(h[x]+ + b[x]−)

α

(
1− Λ

Λ + α

)
+

µkck

α + Λ

=
h[x]+ + b[x]− + µkck

Λ + α
(2.7)

where [x]+ = max { 0, x }, [x]− = max { 0,−x }.
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Now, we consider the first n stages of the infinite horizon problem by truncation.

Denote fn
j (x) as, evaluated at the beginning of stage j with 1 ≤ j ≤ n, the minimal

expected total discounted cost in stages j through n given that the starting state is x.

Let fn
n+1(x) be the terminal value function applied at the end of stage n if the ending

state is x. Given that the state at stage j is x and the production rate employed is

µk, the expected total discounted cost in stages j + 1 through n is given by

λ

Λ

∫ ∞

0
fn

j+1(x− 1)e−αT Λe−ΛT dT +
µk

Λ

∫ ∞

0
fn

j+1(x + 1)e−αT Λe−ΛT dT

+
µ2 − µk

Λ

∫ ∞

0
fn

j+1(x)e−αT Λe−ΛT dT

= λfn
j+1(x− 1)

∫ ∞

0
e−(α+Λ)T dT + µkf

n
j+1(x + 1)

∫ ∞

0
e−(α+Λ)T dT

+ (µ2 − µk)f
n
j+1(x)

∫ ∞

0
e−(α+Λ)T dT

=
λ

α + Λ
fn

j+1(x− 1) +
µk

α + Λ
fn

j+1(x + 1) +
µ2 − µk

α + Λ
fn

j+1(x)

Because we can always re-scale the time unit, without loss of generality, it is assumed

that Λ + α = 1. To minimize the expected total discounted cost at stage j, fn
j (x) is

computed recursively as follows.

fn
j (x) = min

k=0,1,2

{
h[x]+ + b[x]− + µkck + λfn

j+1(x− 1)

+ µkf
n
j+1(x + 1) + (µ2 − µk)f

n
j+1(x)

}

= h[x]+ + b[x]− + λfn
j+1(x− 1)

+ µ2f
n
j+1(x) + min





µ1

[
fn

j+1(x + 1)− fn
j+1(x) + c1

]

µ2

[
fn

j+1(x + 1)− fn
j+1(x) + c2

]

0





(2.8)
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Let f(x) be the minimal expected total discounted cost over an infinite hori-

zon with the starting state x. According to Theorem 11.3 of Porteus [24], f(x) =

limn→∞ fn
j (x) and f(x) satisfies the following optimality equation.

f(x) = h[x]+ + b[x]− + λf(x− 1)

+ µ2f(x) + min





µ1 [f(x + 1)− f(x) + c1]

µ2 [f(x + 1)− f(x) + c2]

0





(2.9)

It is easy to see that the optimal control decision is to select the production

rate that minimizes Equation 2.9. By analyzing the last term of this equation, the

following lemma is obtained.

Lemma 2.1 The optimal control decision is

1. not to produce if f(x)− f(x + 1) ≤ c1,

2. to produce normally if c1 ≤ f(x)− f(x + 1) ≤ (µ2c2 − µ1c1)/(µ2 − µ1), and

3. to produce urgently if f(x)− f(x + 1 ≥ (µ2c2 − µ1c1)/(µ2 − µ1).

Proof. Since µ2c2 − µ1c1 > µ2c2 − µ1c2, it follows that (µ2c2 − µ1c1)/(µ2 − µ1) >

c2 > c1. By analyzing the last term of Equation 2.9, it is optimal not to produce if 0

is the minimum item, which is equivalent to f(x) − f(x + 1) ≤ c1. It is optimal to

produce normally if µ1 [f(x + 1)− f(x) + c1] is the minimum one instead, which is



Chapter 2 Multiple Production Rates and One Demand Class 17

equivalent to c1 ≤ f(x)−f(x+1) ≤ (µ2c2−µ1c1)/(µ2−µ1). Similarly, it is optimal to

produce urgently if µ2 [f(x + 1)− f(x) + c2] is the minimum one, which is equivalent

to f(x)− f(x + 1) ≥ (µ2c2 − µ1c1)/(µ2 − µ1). 2

The emergency production rate µ2 can be viewed as a combination of the normal

rate µ1 and an additional rate µ2 − µ1. Due to the lower unit production cost c1,

the normal rate is always employed to produce. However, if needed, an additional

production rate µ2 − µ1 can be added in with a higher unit production cost (µ2c2 −

µ1c1)/(µ2−µ1) to expedite stock replenishment. In Lemma 2.1, the difference f(x)−

f(x+1) is the cost saving when the net inventory level is increased by one. If the cost

saving does not justify the unit normal production cost c1, we should not produce at

all; otherwise, the system cost would not be minimized. If the cost saving exceeds

the unit normal production cost c1, we should produce either normally or urgently.

If the cost saving is smaller than (µ2c2 − µ1c1)/(µ2 − µ1), i.e., the cost saving can

not justify the higher production cost for an additional production rate, we should

produce normally. If the cost saving is greater than (µ2c2 − µ1c1)/(µ2 − µ1), the

emergency production rate should be employed to expedite inventory replenishment.

2.1.2. The Optimal Control Policy

Let V be the collection of the real-valued convex functions defined on Z. Define H

as the operator applied on v ∈ V such that

Hv(x) = h[x]+ + b[x]− + λv(x− 1)
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+ µ2v(x) + min





µ1 [v(x + 1)− v(x) + c1]

µ2 [v(x + 1)− v(x) + c2]

0





(2.10)

Lemma 2.2 shows that the operator H preserves the convexity of the function v.

Lemma 2.2 If v is convex, then Hv is also convex.

Proof. First, h[x]+ + b[x]− + λv(x − 1) is convex since v is assumed to be convex.

Then, we only need to show that µ2v(x) + min
k=0,1,2

{µk [v(x + 1)− v(x) + ck]}, defined

as F (x), is convex. Let

k̄ = arg min
k=0,1,2

{µk [v(x + 3)− v(x + 2) + ck]}

k = arg min
k=0,1,2

{µk [v(x + 1)− v(x) + ck]}

Then,

F (x + 2)− F (x + 1)

= µ2v(x + 2) + µk̄ [v(x + 3)− v(x + 2) + ck̄]

− µ2v(x + 1)− min
k=0,1,2

{µk [v(x + 2)− v(x + 1) + ck]}

≥ µ2v(x + 2) + µk̄ [v(x + 3)− v(x + 2) + ck̄]

− µ2v(x + 1)− µk̄ [v(x + 2)− v(x + 1) + ck̄]

= µ2 [v(x + 2)− v(x + 1)]

+ µk̄ {[v(x + 3)− v(x + 2)]− [v(x + 2)− v(x + 1)]}
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and

F (x + 1)− F (x)

= µ2v(x + 1) + min
k=0,1,2

{µk [v(x + 2)− v(x + 1) + ck]}

− µ2v(x)− µk

[
v(x + 1)− v(x) + ck

]

≤ µ2v(x + 1) + µk

[
v(x + 2)− v(x + 1) + ck

]

− µ2v(x)− µk

[
v(x + 1)− v(x) + ck

]

= µ2 [v(x + 1)− v(x)] + µk {[v(x + 2)− v(x + 1)]− [v(x + 1)− v(x)]}

Thus,

[F (x + 2)− F (x + 1)]− [F (x + 1)− F (x)]

≥ µ2 [v(x + 2)− v(x + 1)] + µk̄ {[v(x + 3)− v(x + 2)]− [v(x + 2)− v(x + 1)]}

− µ2 [v(x + 1)− v(x)]− µk {[v(x + 2)− v(x + 1)]− [v(x + 1)− v(x)]}

=
(
µ2 − µk

)
{[v(x + 2)− v(x + 1)]− [v(x + 1)− v(x)]}

+ µk {[v(x + 3)− v(x + 2)]− [v(x + 2)− v(x + 1)]}

≥ 0

The last inequality comes from µ2 − µk ≥ 0 and the convexity of v. Hence, F (x)

is convex, and it follows that Hv is also convex. 2

Based on Lemmas 2.1 and 2.2, we have the following theorem:

Theorem 2.1 1. The minimal expected total discounted cost function f(x) is con-

vex with respect to the net inventory level x.

2. Define
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S1 = min {x : f(x)− f(x + 1) ≤ c1 }

S2 = min {x : f(x)− f(x + 1) ≤ (µ2c2 − µ1c1)/(µ2 − µ1) }

There exists a stationary optimal policy, denoted as (S1, S2) policy, such that it

is optimal not to produce if the net inventory level is at or above S1, to produce

normally if the net inventory level is below S1 and at or above S2, and to produce

urgently if the net inventory level is below S2.

Proof. We prove this theorem based on Theorem 11.5 of Porteus [24]. Define the

set of structured decision rules as all the decision rules with the form given by part

2 of the theorem while S1 and S2 can take any integers. Define the set of structured

value functions as all the convex functions, which essentially is the set V . Because

the limit of any convergent sequence of functions in V will be in V as well, the set V

is complete. Moreover, from Lemma 2.2, the operator H preserves the structure of

V . Therefore, the optimal return function f must be structured, i.e., it is convex as

well. From the optimality equation 2.9, it can be seen that the structured decision

rule with S1 and S2 defined in the theorem is optimal for the one-stage minimization

problem. Thus, the control policy developed in the theorem is optimal. Because the

production system is stationary, i.e., the system equation, the cost per stage, the

demand process, and the production process do not change from one stage to the

next, the optimal control policy is stationary. 2

Figure 2.2 illustrates the (S1, S2) control policy. Due to the convexity of f(x),

f(x)−f(x+1) is non-increasing with respect to x. The state space Z of the production

system is partitioned into three areas by the pair (S1, S2), each of which corresponds
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f(x) − f(x + 1)

x  (integers)

c1

S2                         S1 

(µ2c2−µ1c1)/(µ2-µ1)

Figure 2.2: The illustration of the (S1, S2) policy

to a different production decision respectively: not to produce, to produce normally

and to produce urgently.

2.2. Stationary Analysis of the Production System

In this section, the expected total cost per unit time is computed for the production

system developed in the previous section. Under the (S1, S2) policy, this production

system can be considered as an M/M/1/S queueing system with state-dependent

arrival rates. In this queueing system, the net inventory level is considered as the

number of customers waiting for service except that it may take on negative integers.

Production completion is represented as arrival to the queueing system and customer

demand is modelled as service of the system. The service rate is equivalent to the

customer demand rate. The arrival rate to the queueing system corresponds to the

production rate, which varies with the net inventory level, i.e., the arrival rate is 0

if the net inventory level is greater than or equal to S1, µ1 if the net inventory level

drops below S1 but greater than or equal to S2, and µ2 if the net inventory level drops

below S2. Figure 2.3 shows the rate diagram of this M/M/1/S queue.
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S2−1 S2 S1−1 S1
… …

µ1

λ1

−1… 0 1

µ2 µ2 µ1

λ1 λ1

Figure 2.3: Rate diagram for the M/M/1/S queueing system

Let ρ1 = λ/µ1 and ρ2 = λ/µ2 be the utilizations for the normal and emergency

production rate, respectively. We assume that ρ2 < 1 to guarantee the existence of

steady states. Define π(n) as the steady-state probability where the net inventory

level is n. It can be obtained that π(n) is given by

π(n) =





ρS1−n
1 π(S1), for S2 ≤ n < S1

ρS2−n
2 ρS1−S2

1 π(S1), for n < S2

(2.11)

where

π(S1) =
(1− ρ1)(1− ρ2)

1− ρ2 + ρS1−S2
1 (ρ2 − ρ1)

(2.12)

To compute the expected total cost per unit time, the performance measures of

the queueing model are needed. Under the (S1, S2) policy, define

I(S1, S2) =
∑S1

n=1 nπ(n) as the expected on-hand inventory level,

B(S1, S2) =
∑∞

n=1 nπ(−n) as the expected number of backorders,

P1(S1, S2) =
∑S1−1

n=S2
π(n) as the probability of the normal rate employed, and

P2(S1, S2) =
∑S2−1

n=−∞ π(n) as the probability of the emergency rate employed.

Now we compute the expected on-hand inventory level I(S1, S2). Because S2 can

be negative, there are two cases to be considered next.
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1. If S2 < 0, then

I(S1, S2) = π(1) + 2π(2) + · · ·+ (S1 − 1)π(S1 − 1) + S1π(S1)

= ρS1−1
1 π(S1) + 2ρS−2

1 π(S1) + · · ·+ (S1 − 1)ρ1π(S1) + S1π(S1)

and

ρ1I(S1, S2) = ρS1
1 π(S1) + 2ρS1−1

1 π(S1) + · · ·+ (S1 − 1)ρ2
1π(S1) + S1ρ1π(S1)

Thus,

I(S1, S2) = π(S1)
[
S1 −

(
ρS1

1 + ρS1−1
1 + · · ·+ ρ1

)]
/(1− ρ1)

= π(S1)


 S1

1− ρ1

−
ρ1

(
1− ρS1

1

)

(1− ρ1)2




2. If S2 ≥ 0, then I(S1, S2) =
∑S2−1

n=1 nπ(n) +
∑S1

n=S2
nπ(n). Let G1 =

∑S2−1
n=1 nπ(n)

and G2 =
∑S1

n=S2
nπ(n) .

G1 = π(1) + 2π(2) + · · ·+ (S2 − 1)π(S2 − 1)

= ρS2−1
2 ρS1−S2

1 π(S1) + 2ρS2−2
2 ρS1−S2

1 π(S1) + · · ·+ (S2 − 1)ρ2ρ
S1−S2
1 π(S1)

Then,

ρ2G1 = ρS2
2 ρS1−S2

1 π(S1) + 2ρS2−1
2 ρS1−S2

1 π(S1) + · · ·+ (S2 − 1)ρ2
2ρ

S1−S2
1 π(S1)

Thus,

G1 = ρ2ρ
S1−S2
1 π(S1)

[
S2 −

(
ρS2−1

2 + · · ·+ ρ2 + 1
)]

/(1− ρ2)

=
S2(1− ρ2)−

(
1− ρS2

2

)

(1− ρ2)
2 ρ2ρ

S1−S2
1 π(S1)

Similarly,

G2 = S2π(S2) + (S2 + 1)π(S2 + 1) + · · ·+ S1π(S1)

= S2ρ
S1−S2
1 π(S1) + (S2 + 1)ρS1−S2−1

1 π(S1) + · · ·+ S1π(S1)
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Then,

ρ1G2 = S2ρ
S1−S2+1
1 π(S1) + (S2 + 1)ρS1−S2

1 π(S1) + · · ·+ S1ρ1π(S1)

Thus,

G2 = π(S1)
[
S1 − S2ρ

S1−S2+1
1 −

(
ρS1−S2

1 + · · ·+ ρ1

)]
/(1− ρ1)

=
S1(1− ρ1)− S2ρ

S1−S2+1
1 (1− ρ1)− ρ1

(
1− ρS1−S2

1

)

(1− ρ1)2
π(S1)

So,

I(S1, S2) =
S2(1− ρ2)− (1− ρS2

2 )

(1− ρ2)2
ρ2ρ

S1−S2
1 π(S1)

+

(
S1 − S2ρ

S1−S2+1
1

)
(1− ρ1)− ρ1

(
1− ρS1−S2

1

)

(1− ρ1)
2 π(S1)

Therefore, combining the two cases together, it is obtained that

I(S1, S2) =








[S2(1−ρ2)−(1−ρ
S2
2 )]ρ2ρ

S1−S2
1

(1−ρ2)2
+

(S1−S2ρ
S1−S2+1
1 )(1−ρ1)−ρ1(1−ρ

S1−S2
1 )

(1−ρ1)
2


 π(S1), if S2 ≥ 0

[
S1

1−ρ1
− ρ1(1−ρ

S1
1 )

(1−ρ1)2

]
π(S1), if S2 < 0

(2.13)

Next, we compute the expected number of backorders B(S1, S2). Similarly, two

cases are to be considered:

1. If S2 < 0, then B(S1, S2) =
∑−1

n=S2
(−n)π(n) +

∑S2−1
n=−∞ (−n)π(n). Let G3 =

∑−1
n=S2

(−n)π(n) and G4 =
∑S2−1

n=−∞ (−n)π(n).

G3 = (−S2)π(S2) + (−S2 − 1)π(S2 + 1) + · · ·+ π(−1)

= (−S2)ρ
S1−S2
1 π(S1) + (−S2 − 1)ρS1−S2−1

1 π(S1) + · · ·+ ρS1+1
1 π(S1)

Then,

ρ1G3 = (−S2)ρ
S1−S2+1
1 π(S1) + (−S2 − 1)ρS1−S2

1 π(S1) + · · ·+ ρS1+2
1 π(S1)



Chapter 2 Multiple Production Rates and One Demand Class 25

Thus,

G3 = ρS1+1
1 π(S1)

[
S2ρ

−S2
1 + ρ−S2−1

1 + · · ·+ 1
]
/(1− ρ1)

= π(S1)ρ
S1+1
1

[
S2ρ

−S2
1

1− ρ1

+
1− ρ−S2

1

(1− ρ1)2

]

Similarly,

G4 = (−S2 + 1)π(S2 − 1) + (−S2 + 2)π(S2 − 2) + · · ·

= (−S2 + 1)ρ2ρ
S1−S2
1 π(S1) + (−S2 + 2)ρ2

2ρ
S1−S2
1 π(S1) + · · ·

Then,

ρ2G4 = (−S2 + 1)ρ2
2ρ

S1−S2
1 π(S1) + (−S2 + 2)ρ3

2ρ
S1−S2
1 π(S1) + · · ·

Thus,

G4 = ρ2ρ
S1−S2
1 π(S1)

[
−S2 + 1 + ρ2 + ρ2

2 + · · ·
]
/((1− ρ2))

= π(S1)ρ2ρ
S1−S2
1

[ −S2

1− ρ2

+
1

(1− ρ2)2

]

Therefore,

B(S1, S2) = π(S1)

[
S2ρ

S1−S2+1
1

1− ρ1

+
ρS1+1

1 − ρS1−S2+1
1

(1− ρ1)2
− S2ρ

S1−S2
1 ρ2

1− ρ2

+
ρS1−S2

1 ρ2

(1− ρ2)2

]

2. If S2 ≥ 0, then

B(S1, S2) = π(−1) + 2π(−2) + 3π(−3) + · · ·

= ρS2+1
2 ρS1−S2

1 π(S1) + 2ρS2+2
2 ρS1−S2

1 π(S1) + 3ρS2+3
2 ρS1−S2

1 π(S1) + · · ·

and

ρ2B(S1, S2) = ρS2+2
2 ρS1−S2

1 π(S1) + 2ρS2+3
2 ρS1−S2

1 π(S1) + 3ρS2+4
2 ρS1−S2

1 π(S1) + · · ·
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Thus,

B(S1, S2) = ρS2+1
2 ρS1−S2

1 π(S1)
[
1 + ρ2 + ρ2

2 + · · ·
]
/(1− ρ2)

=
ρS2+1

2 ρS1−S2
1

(1− ρ2)
2 π(S1)

Therefore, combining the two cases together, it can be obtained that

B(S1, S2) =





ρ
S2+1
2 ρ

S1−S2
1

(1−ρ2)2
π(S1), if S2 ≥ 0




S2ρ
S1−S2+1
1

1−ρ1
+

ρ
S1+1
1 −ρ

S1−S2+1
1

(1−ρ1)2

−S2ρ
S1−S2
1 ρ2

1−ρ2
+

ρ
S1−S2
1 ρ2

(1−ρ2)2


 π(S1), if S2 < 0

(2.14)

Finally, the probabilities of the normal and emergency rate employed P1(S1, S2)

and P2(S1, S2) are computed as follows:

P1(S1, S2) = π(S1)
(
ρ1 + ρ2

1 + · · ·+ ρS1−S2
1

)
=

ρ1

(
1− ρS1−S2

1

)

1− ρ1

π(S1) (2.15)

P2(S1, S2) = π(S1)ρ
S1−S2
1 ρ2

(
1 + ρ2 + ρ2

2 + · · ·
)

=
ρS1−S2

1 ρ2

1− ρ2

π(S1) (2.16)

It can be seen that µ1P1(S1, S2) and µ2P2(S1, S2) are the expected numbers per

unit time of the normal production and the emergency production, respectively.

Therefore, the expected total cost per unit time is computed as follows:

C (S1, S2) = h I (S1, S2) + bB (S1, S2) + c1µ1P1 (S1, S2) + c2µ2P2 (S1, S2) (2.17)



Chapter 2 Multiple Production Rates and One Demand Class 27

2.3. Numerical Study

In this section, we investigate the benefit of the production system with two rates

over the one with a single rate under different operating conditions. In this study, we

set the normal rate of the production system with two rates equal to the rate of the

production system with a single rate. That is, the benefit can be viewed as a cost

saving of providing the single rate production system with an emergency production

rate.

The cost formula for the production system with two rates is obtained in the

previous section. For the production system with a single rate, it is well known

that the base-stock policy is optimal; see Li [17]. Let S be the base-stock level for

the production system with a single rate, the expected total cost per unit time can

be computed in a straightforward manner through M/M/1/S. To guarantee the

existence of steady states, it is assumed that ρ1 = λ/µ1 < 1. Define I(S) and B(S)

as the expected on-hand inventory level and the expected number of backorders with

the base-stock level S, respectively. Then,

I(S) = S − ρ1 − ρS+1
1

1− ρ1

(2.18)

B(S) =
ρS+1

1

1− ρ1

(2.19)

Therefore, the expected total cost is

C(S) = h I(S) + bB(S) + c1λ (2.20)
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It is easy to show that C(S) is convex with respect to the base-stock level S.

Define c = c2 − c1 as the difference of unit production costs between the normal

and emergency production rate. For the backordering case, all demands must be

satisfied; thus, µ1P1(S1, S2) + µ2P2(S1, S2) = λ. Therefore, Equation 2.17 becomes

C (S1, S2) = h I (S1, S2) + bB (S1, S2) + c1λ + cµ2P2 (S1, S2) (2.21)

By dropping the cost components c1λ from Equations 2.20 and 2.21, the corre-

sponding total relevant costs TRC affected by control policies are as follows.

TRC (S1, S2) = h I (S1, S2) + bB (S1, S2) + cµ2P2 (S1, S2) (2.22)

TRC(S) = h I(S) + bB(S) (2.23)

For a given set of parameters, let S∗1 and S∗2 be the optimal critical inventory

levels for the production system with two rates, and let S∗ be the optimal base-stock

level for the production system with a single rate. Define the relative cost saving,

CS, as the following percentage:

CS =
TRC (S∗)− TRC (S∗1 , S

∗
2)

TRC (S∗)
× 100% (2.24)

which is a function of the parameters µ1, µ2, λ, h, b and c. The larger CS is, the more

beneficial it is to employ the emergency production rate. After some manipulations,

CS can also be expressed in terms of µ1, ρ1, µ2/µ1, h, b and c. Without loss of
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Figure 2.4: The effect of ρ1 over cost saving

generality, it is assumed that µ1 = 1. We seek to find how the parameters ρ1, µ2/µ1,

h, b and c affect CS and try to identify those having significant influences on CS

under different operating conditions.

For a given problem instance, the optimal solutions (S∗1 , S
∗
2) and S∗ can be found

by exhaustive search over a large range of S1, S2, and S. However, TRC(S1, S2)

appears to be convex in the three-dimension graphs plotted although we can not

prove its convexity analytically. To make the search simpler and more efficient, the

solver function in Microsoft Excel is employed, which uses the Generalized Reduced

Gradient method. It is found that results can be obtained very quickly on a personal

computer. Initially, we set that ρ1 = 0.95, µ2/µ1 = 1.8, h = 1, b = 2 and c = 4.

Based on the initial setting, we compute CS over a range of 20 values of each of the

five parameters for three different values of another parameter, while the other three

parameters remain unchanged. The results are shown in Figures 2.4 to 2.8.

Figure 2.4 shows that the cost saving increases as the parameter ρ1 increases. At

a large ρ1, the production system with only normal rate keeps high inventory, i.e. the

base-stock level is high. Even with a high base-stock level, the expected number of
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backorders is large because demands backordered can not be satisfied quickly due to

the limited production capacity. After the introduction of the emergency production

rate, the production system reduces both the base-stock level and the expected num-

ber of backorders significantly. Consequently, the total cost is greatly reduced. For

example, with ρ1 = 0.95 and c = 8, the base-stock level and the expected number

of backorders of the production system with a single rate are 21 and 6.47 compared

to 4 and 0.56 of the production system with two rates. This results in a cost saving

of 78.1%. At a small ρ1, the production system with only normal rate maintains

low inventory and the expected number of backorders is small. Although the emer-

gency production rate is available, it is barely used. Thus, introducing an emergency

production does not reduce the base-stock level and expected number of backorders

significantly. Therefore, the cost saving is insignificant. For example, with ρ1 = 0.5

and c = 8, the base-stock level and the expected number of backorders of the pro-

duction system with a single rate are 1 and 0.5 compared to 1 and 0.44 which results

in a cost saving of 1.5%.

It is intuitive that the cost saving increases as the production rates ratio µ2/µ1

increases (see Figure 2.5). The cost saving can be significant even for small values of

µ2/µ1. For example, when µ2/µ1 = 1.05, the cost saving is 39% for the case where

ρ1 = 0.95. It can be seen from the figure that once the ratio µ2/µ1 is large enough

beyond a certain threshold, there is only a small improvement in the cost saving as

we continue to increase the emergency production rate. This threshold is useful for

selecting an appropriate emergency production rate in the real life.

Figure 2.6 shows that the cost saving decreases as the unit production costs differ-

ence c increases. This is because the emergency production rate is used less frequently
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because of the higher production cost. Interestingly, even at a high value of c, the

cost saving can be significant. For example, with c = 30 and µ2/µ1 = 1.2, the cost

saving is as high as 43%. This is because the emergency production rate still can

reduce the base-stock level and expected number of backorders greatly from 21 and

6.47 to 12 and 1.82.

Finally, Figures 2.7 and 2.8 show that the cost saving increases as the inventory

holding cost rate h or the backordering cost rate b increases. When h is large, the

system with a single rate try to avoid the high holding cost with the expense of back-

ordering cost. The system with two rate can reduce the number of backordered more

efficiently. As a result, the base-stock level and the expected number of backorders
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are reduced. Thus, the cost saving achieved is substantial. For example, with h = 2

and ρ1 = 0.95, the base-stock level and the expected number of backorders of the

system with a single rate are 13 and 9.75 compared to 2 and 0.82 which results in

a cost saving of 83.75%. According to the experiment, the cost saving can be sig-

nificant even with a small value of h. On the other hand, if b is large, the system

with a single rate try to avoid a costly backordering cost by holding a high amount

of inventory. The system with two rate can significantly reduce the base-stock level

because it can reduce the number of backorders more quickly. Thus, the cost saving

achieved is substantial as well.

To summarize, we find that providing the production system with a higher pro-
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duction rate can always reduce the expected number of backorders because backorders

can be satisfied more quickly. Consequently, it also brings down the base-stock level.

The magnitude of the cost saving depends on how much the expected number of

backorders and the base-stock level can be reduced. In this numerical study, the

average cost saving over all problems tested is more than 60%.

2.4. Production System with Multiple Production

Rates

In this section, the optimal control policy for the production system with N pro-

duction rates is studied. Suppose that the production time of the kth production

rate is exponentially distributed with mean 1/µk and the corresponding unit produc-

tion cost is ck, k = 0, 1, 2, . . . , N . Without loss of generalization, it is assumed that

µ0 = 0 < µ1 < µ2 < · · · < µN and c0 = 0 < c1 < c2 < · · · < cN .

For any given Markovian control policy u, X2 = {X2u(t) : t ≥ 0} is a continuous-

time Markov process with the state space Z. Similarly, we convert the Markov process

X2 into X ′
2 where the transition rate Λ is defined by λ+µN . Without loss of generality,

it is assumed that Λ+α = 1. Let f(x) be the minimal expected total discounted cost

over an infinite horizon with the starting net inventory level x. Similarly to Section

2.1, f(x) exists and satisfies the following optimality equation.

f(x) = h[x]+ + b[x]− + µNf(x) + λf(x− 1)

+ min
k=0,1,2,...,N

{µk [f(x + 1)− f(x) + ck]}
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We are not able to characterize the optimal production decision completely for

the basic model. Henceforth, we will consider a special case in which (µk+1ck+1 −

µkck)/(µk+1 − µk) increases in k, that is, (µk+1ck+1 − µkck)/(µk+1 − µk) > (µkck −

µk−1ck−1)/(µk − µk−1), k = 1, 2, . . . , N − 1. Similarly to Subsection 2.1.1, the pro-

duction rate µk+1 can be viewed as a combination of µk and µk+1 − µk and then

(µk+1ck+1 − µkck)/(µk+1 − µk) is the unit production cost for the additional produc-

tion rate µk+1 − µk. It is obvious that the assumption introduced here is intuitive.

The following lemma shows the optimal production decision for the production sys-

tem with N production rates.

Lemma 2.3 The optimal control decision is

1. not to produce if f(x)− f(x + 1) ≤ c1,

2. to produce with the kth rate if (µkck−µk−1ck−1)/(µk−µk−1) ≤ f(x)−f(x+1) ≤

(µk+1ck+1 − µkck)/(µk+1 − µk), k = 1, 2, . . . , N − 1, and

3. to produce with the N th rate if f(x)− f(x + 1) ≥ (µNcN − µN−1cN−1)/(µN −

µN−1).

Proof. The optimal production rate is the one which minimizes the right side of

Equation 2.25. Then, it is optimal to employ the kth production rate if

µk[f(x + 1)− f(x) + ck] ≤ µm[f(x + 1)− f(x) + cm], for all m 6= k

which is equivalent to

f(x)− f(x + 1) ≥ (µkck − µmcm)/(µk − µm),m = 0, 1, . . . , k − 1
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f(x)− f(x + 1) ≤ (µmcm − µkck)/(µm − µk),m = k + 1, k + 2, . . . , N

Because

µm+1cm+1 − µmcm

µm+1 − µm

>
µmcm − µm−1cm−1

µm − µm−1

,m = 1, 2, 3, . . . , N − 1

It is easy to show that

µkck − µk−1ck−1

µk − µk−1

>
µkck − µmcm

µk − µm

,m = 0, 1, . . . , k − 2

and

µk+1ck+1 − µkck

µk+1 − µk

<
µmcm − µkck

µm − µk

,m = k + 2, . . . , N

Thus, it is optimal to employ the kth production rate if

µkck − µk−1ck−1

µk − µk−1

≤ f(x)− f(x + 1) ≤ µk+1ck+1 − µkck

µk+1 − µk

, k = 1, 2, . . . , N − 1

It can be checked that it is optimal not to produce if f(x) − f(x + 1) ≤ (µ1c1 −

µ0c0)/(µ1 − µ0) = c1. Similarly, it is optimal to produce with N th production rate

if f(x)− f(x + 1) ≥ (µNcN − µN−1cN−1)/(µN − µN−1). 2

Based on Lemma 2.3, the following theorem can be easily obtained in a similar

fashion to that of Theorem 2.1.

Theorem 2.2 1. The minimal expected total discounted cost function f(x) is con-

vex with respect to the net inventory level x.

2. Define

S1 = min {x : f(x)− f(x + 1) ≤ c1 }

Sk = min {x : f(x)− f(x + 1) ≤ (µkck − µk−1ck−1)/(µk − µk−1)} , k = 2, . . . , N
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There exists a stationary optimal policy such that it is optimal not to produce

if the net inventory level is greater than or equal to S1, to produce with kth

production rate if the net inventory level is below Sk and greater than or equal

to Sk+1, k = 1, 2, . . . , N − 1, and to production with the N th production rate if

the net inventory level is below SN .

Theorem 2.2 shows that the optimal control policy is characterized by N critical

inventory levels S1, S2, . . . , SN , denoted as (S1, S2, . . . , SN) policy. This control policy

is also stationary, i.e., all the critical inventory levels S1, S2, . . . , SN do not change

with time. It is easy to see that this control policy is a direct extension of the (S1, S2)

control policy.

2.5. Conclusions

In this chapter, we first consider a make-to-stock production system with two pro-

duction rates. With the assumptions of Poisson demand and exponential production

time, it is found that the (S1, S2) policy is optimal for production control. Under

this policy, it is optimal to stop production if the inventory level reaches S1, to pro-

duce normally if the inventory level falls between S1 and S2, and to produce urgently

if the inventory level drops below S2. Later on, we consider a production system

with N production rates for which the optimal control policy is shown to be the

(S1, S2, . . . , SN) policy. The numerical study shows that a significant cost saving can

be achieved by employing an emergency production rate.



Chapter 3

A Make-to-Stock Production

System with Two Production

Rates, N Demand Classes and Lost

Sales

3.1. The Stochastic Model and Optimal Control

In this chapter, we consider a single-item, make-to-stock production facility with

two production rates: normal and emergency. Production times for the normal and

emergency rate are independent and exponentially distributed with means 1/µ1 and

1/µ2, respectively. The unit production cost for the normal rate is c1 and that for

the emergency rate is c2. Naturally, it is assumed that 0 < µ1 < µ2 and 0 < c1 < c2.

Demands that can not be satisfied immediately are lost forever and lost-sale costs are

incurred. There are N demand classes which are characterized by different lost-sale
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costs pi with p1 > p2 > . . . > pN . Demand from class i follows an independent Poisson

process with mean λi. We assume that c1 < pN , i.e., the unit normal production cost

is less than the lowest lost-sale cost. This assumption is intuitive and demand from

class N will never be satisfied otherwise.

At any arbitrary point of time, we have two types of operational decisions to

make for this production system: production decision and inventory allocation deci-

sion. Production decision is to choose the optimal production rate given the on-hand

inventory level. There are three choices available for production decision: i) not

to produce, ii) to produce normally and iii) to produce urgently. Inventory alloca-

tion decision is to decide how to allocate limited inventory among different demand

classes. Specifically, if there is on-hand inventory, we may choose either to satisfy

an incoming demand of class i or to reject it. This is intuitive since demand classes

have different lost-sale costs and thus different fulfillment priorities. To minimize the

total cost, when the inventory level is low, a certain amount of on-hand inventory

may be reserved for demand of classes with higher priorities by rejecting those with

lower priorities. A control policy is to specify the production and inventory alloca-

tion decisions at any time given the on-hand inventory level. We develop an optimal

control policy for the objective of minimizing the expected total discounted cost over

an infinite horizon. This expected total discounted cost is computed by the following

cost components: the inventory holding cost h per unit per unit time, the production

cost of the normal rate c1 per unit, the production cost of the emergency rate c2 per

unit, and the lost-sale cost pi per lost demand from class i.

In the next subsection, the optimality equation is obtained which is satisfied by

the minimal expected total discounted cost and the optimal control policy is identified
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Figure 3.1: Transition process for the Markov process X ′
3

by analyzing this optimality equation.

3.1.1. Dynamic Programming Formulation

Let X3(t) be the on-hand inventory level at time t. Given any Markovian control

policy u, X3 = {X3u(t) : t ≥ 0} is a continuous-time Markov process with the state

space Z+, where Z+ represents nonnegative integers. Because the sum of Poisson

processes is a Poisson process as well, the aggregate demand from all demand classes

follows a Poisson process with an aggregate mean λ =
∑N

i=1 λi. Similarly to Subsec-

tion 2.1.1, we convert the Markov process X3 to X ′
3 where the transition rate Λ is

defined by λ + µ2. Figure 3.1 shows the transition process for the converted Markov

process X ′
3. Given that the current state is x and the production rate taken at the

stage is µk=0,1,2, the transition occurring at the next stage turns out to be no event

at all with the probability of (µ2 − µk)/Λ, to be a production completion with the

probability of µk/Λ, and to be an arrival from class-i demand with the probability of

λi/Λ, which is the product of λ/Λ and λi/λ.

Let α be the interest rate. Because we can always re-scale the time unit, without
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loss of generality, it is assumed that Λ + α = 1. Now, we consider the first n stages

of the infinite horizon problem by truncation. Denote fn
j (x) as, evaluated at the

beginning of stage j with 1 ≤ j ≤ n, the minimal expected total discounted cost in

stages j through n given that the starting state is x. Let fn
n+1(x) be the terminal

value function applied at the end of stage n if the ending state is x. Thus, fn
j (x) can

be computed recursively as follows.

fn
j (x) = min

{
hx + µkck + µkf

n
j+1(x + 1) + (µ2 − µk)f

n
j+1(x)

}

+
N∑

i=1

λi min
{
fn

j+1(x) + pi, Hif
n
j+1(x)

}

= hx + µ2f
n
j+1(x) +

N∑

i=1

λi min
{
fn

j+1(x) + pi, Hif
n
j+1(x)

}

+ min
k=0,1,2

{
µk

[
fn

j+1(x + 1)− fn
j+1(x) + ck

]}
(3.1)

where Hi is the operator defined by

Hif
n
j+1(x) =





fn
j+1(x) + pi, if x = 0

fn
j+1(x− 1), Otherwise

Let f(x) be the minimal expected total discounted cost over an infinite horizon

with the initial on-hand inventory level x. Based on Theorem 11.3 of Porteus [24], it

follows that f(x) = limn→∞ fn
j (x) and f(x) satisfies the following optimality equation.

f(x) = hx + µ2f(x) +
N∑

i=1

λi min {f(x) + pi, Hif(x)}

+ min
k=0,1,2

{µk [f(x + 1)− f(x) + ck]} (3.2)
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The decision process of this production system is as follows. Upon entering a

new stage, production decision is made immediately based on the current on-hand

inventory level. Since occurrence of transitions follows a Poisson process with mean

Λ, only one event will take place at the end of this stage, i.e., production completion

and demand arrival can not be happening simultaneously. Thus, we can consider sep-

arately production completion and demand arrival. If production completion occurs

at the end of the stage, then the on-hand inventory level will definitely be increased

by one. If demand arrival occurs instead, the inventory allocation decision is made

and the on-hand inventory level changes accordingly. The optimal production and

inventory allocation decision is to minimize the right side of Equation 3.3. The first

minimization term corresponds to the inventory allocation decision. When there is

no inventory held on hand, i.e., x = 0, any incoming demand has to be rejected and

lost-sale cost is incurred. When there is on-hand inventory available, it is optimal to

satisfy an incoming demand of class i if f(x−1) ≤ f(x)+pi, i.e., the incremental cost

incurred f(x − 1) − f(x) is less than or equal to the corresponding lost-sale cost pi,

and reject it otherwise. The second minimization term corresponds to the production

decision. It can be seen that Lemma 2.1 applies here, i.e., it is optimal not to produce

if the cost saving f(x)− f(x + 1) is less than or equal to the unit production cost of

the normal rate c1, to produce normally if f(x)− f(x + 1) is greater than c1 and less

than or equal to (µ2c2 − µ1c1)/(µ2 − µ1), and to produce urgently if f(x)− f(x + 1)

is greater than (µ2c2 − µ1c1)/(µ2 − µ1).
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3.1.2. The Optimal Control Policy

Let V be the set of all the real-valued convex functions defined on Z+ (the set of all

non-negative integers) with the first difference bounded below by −p1. Define H as

the operator applied on v ∈ V such that

Hv(x) = hx + µ2v(x) +
N∑

i=1

λi min [v(x) + pi, Hiv(x)]

+ min
k=0,1,2

{µk [v(x + 1)− v(x) + ck]} (3.3)

Lemma 3.1 shows that the operator H preserves the properties of the function v.

Lemma 3.1 If v ∈ V , then Hv ∈ V .

Proof. It is assumed that v ∈ V , then v(x) is convex and its first difference is

bounded below by −p1. Define F (x) = µ2v(x)+mink=0,1,2 {µk [v(x + 1)− v(x) + ck]}

and then F (x+1) = µ2v(x+1)+mink=0,1,2 {µk [v(x + 2)− v(x + 1) + ck]}. In Lemma

2.2, we have proved the convexity of F (x). Now we need to develop the lower bound

of the first difference of F (x). Let k∗ = arg mink=0,1,2 {µk [v(x + 2)− v(x + 1) + ck]}.

Then,

F (x + 1)− F (x)

= µ2v(x + 1) + min
k=0,1,2

{µk [v(x + 2)− v(x + 1) + ck]}

− µ2v(x)− min
k=0,1,2

{µk [v(x + 1)− v(x) + ck]}

= µ2v(x + 1) + µk∗ [v(x + 2)− v(x + 1) + ck∗ ]
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− µ2v(x)− min
k=0,1,2

{µk [v(x + 1)− v(x) + ck]}

≥ µ2v(x + 1) + µk∗ [v(x + 2)− v(x + 1) + ck∗ ]

− µ2v(x)− µk∗ [v(x + 1)− v(x) + ck∗ ]

= µ2 [v(x + 1)− v(x)] + µk∗ {[v(x + 2)− v(x + 1)]− [v(x + 1)− v(x)]}

≥ −µ2p1 + µk∗ {[v(x + 2)− v(x + 1)]− [v(x + 1)− v(x)]}

≥ −µ2p1

The first inequality follows from the definition of k∗, the second from the bound of

the first different of v and the last from the convexity of v.

Let mi(x) = min [v(x) + pi, Hiv(x)], 1 ≤ i ≤ N . Ha [12] has proved that mi(x) is

convex and its first difference is bounded below by −p1. As Hv(x) is just the sum of

convex functions, it is also convex. Moreover,

Hv(x + 1)−Hv(x)

= h + F (x + 1) +
N∑

i=1

λimi(x + 1)− F (x)−
N∑

i=1

λimi(x)

≥ h + [F (x + 1)− F (x)] +
N∑

i=1

λi [mi(x + 1)−mi(x)]

≥ h− µ2p1 −
N∑

i=1

λip1

≥ −p1

(
µ2 +

N∑

i=1

λi

)

≥ −p1

Hence, we get the results. 2

Based on Lemma 3.1, we have the following theorem:

Theorem 3.1 1. The minimal expected total discounted cost function f(x) is con-

vex with respect to the on-hand inventory level x and its first difference is
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bounded below by −p1.

2. The (S1, S2) policy is optimal for production control where

S1 = min { x : f(x)− f(x + 1) ≤ c1 }

S2 = min { x : f(x)− f(x + 1) ≤ (µ2c2 − µ1c1)/(µ2 − µ1) }.

Specifically, it is optimal not to produce if the on-hand inventory level reaches

S1, to produce normally if the on-hand inventory level is below S1 and at or

above S2, and to produce urgently if the on-hand inventory level is below S2.

3. The stock-reservation policy proposed by Ha [12] is optimal for inventory alloca-

tion where there exits rationing levels R1, R2, . . . , RN defined by Ri = max { x :

f(x− 1)− f(x) > pi, i = 1, 2, . . . , N } such that it is optimal to satisfy an in-

coming demand of class i if the on-hand inventory level is above Ri, and reject

it otherwise. Moreover, S1 ≥ RN ≥ · · · ≥ R1 = 0.

4. There exits an optimal stationary policy.

Proof. We prove this theorem based on Theorem 11.5 of Porteus [24]. Define the set

of structured decision rules as all the decision rules with the form given by part 2 and

part 3 while S1, S2, R1, . . . , RN can take any integers. Define the set of structured

value functions as all the convex functions whose first difference is bounded below

by −p1. Essentially, the set of structured value functions is the set V . Because the

limit of any convergent sequence of functions in V will be in V as well, the set V is

complete. Moreover, from Lemma 3.1, the operator H preserves the structure of V .

Therefore, the optimal return function f must be structured, i.e., it is convex and its
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first difference is bounded below by −p1. From the optimality equation 3.3, it can be

seen that the structured decision rule with S1, S2, R1, . . . , RN defined in the theorem

is optimal for the one-stage minimization problem. Thus, the control policy devel-

oped in the theorem is optimal. Because the production system is stationary, i.e., the

system equation, the cost per stage, the demand process, and the production process

do not change from one stage to the next, the optimal control policy is stationary. 2

The optimal policy shown in Theorem 3.1 is referred to as the (S1, S2, R1, . . . , RN)

policy, which essentially is the combination of the (S1, S2) policy and the so-called

stock-reservation policy also known as the (R1, R2, . . . , RN) policy. The (S1, S2) policy

controls the production process, where S1 acts like a base-stock level and S2 decides

the switch between the normal rate and the emergency rate. The stock-reservation

policy controls the inventory allocation, which is actually the critical level policy, the

terminology normally used in the literature. When a demand of class i arrives, it is

optimal to satisfy it if the on-hand inventory level is above Ri, i.e., the incremental

cost of reducing the on-hand inventory by one is less than the lost-sale cost of demand

class i, and reject it otherwise. Because the first difference of f(x) is bounded below

by −p1, it is always optimal to satisfy the incoming demand of class 1 if the on-hand

inventory is available.

3.2. Stationary Analysis of the Production System

In this section, the expected total cost per unit time is computed for the production

system with two production rates and two demand classes under the optimal control
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policy of the form proposed in the previous section. For this production system, the

optimal control policy can be specified completely by the critical inventory levels S1,

S2 and R2 since R1 is always equal to zero. Similarly to Section 2.2, the production

system can be considered as an M/M/1/S queueing system with state-dependent

arrival rates and service rates. In this queueing system, the on-hand inventory level

is considered as the number of customers waiting for service. Production completion

is represented as arrival to the queueing system and customer demand is modelled

as service of the system. The service rate of the queueing system is equivalent to

the customer demand arrival rate, which varies with the on-hand inventory level, i.e.,

the service rate is λ1 + λ2 if the on-hand inventory level is above R2 and is λ1 if the

on-hand inventory level is at or below R2. The arrival rate of the queueing system

is equivalent to the production rate, which also varies with the on-hand inventory

level, i.e., the arrival rate is 0 if the on-hand inventory level is at or above S1, µ1 if

the on-hand inventory level is below S1 but at or above S2, and µ2 if the on-hand

inventory level drops below S2.

To compute the expected total cost per unit time, the following performance

measures are needed. Under the (S1, S2, R2) policy, define

I(S1, S2, R2) =
∑S1

n=0 nπ(n) as the expected on-hand inventory level,

P1(S1, S2, R2) =
∑S1−1

n=S2
π(n) as the probability of the normal rate employed,

P2(S1, S2, R2) =
∑S2−1

n=0 π(n) as the probability of the emergency rate employed,

L1(S1, S2, R2) = π(0) as the probability of stock-outs of demand class 1, and

L2(S1, S2, R2) =
∑R2

n=0 π(n) as the probability of stock-outs of demand class 2.

Define π(n) as the steady-state probability that the on-hand inventory level is n.
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0 1 R2−1 R2 S2−1 S2 S1−1 S1
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Figure 3.2: Rate diagram for the M/M/1/S queueing system if S2 ≥ R2

Let ρ1 = (λ1 + λ2)/µ1, ρ2 = (λ1 + λ2)/µ2, ρ11 = λ1/µ1 and ρ12 = λ1/µ2. To compute

the above-defined performance measures, two cases are to be considered next.

1. For S2 ≥ R2, Figure 3.2 shows the rate diagram of the M/M/1/S queue. It can

be obtained that

π1(n) =





ρS1−n
1 π1(S1), for S2 ≤ n < S1

ρS2−n
2 ρS1−S2

1 π1(S1), for R2 ≤ n < S2

ρR2−n
12 ρS2−R2

2 ρS1−S2
1 π1(S1), for n < R2

(3.4)

where

π1(S1) =

[
1− ρS1−S2

1

1− ρ1

+ ρS1−S2
1

1− ρS2−R2
2

1− ρ2

+ ρS2−R2
2 ρS1−S2

1

1− ρR2+1
12

1− ρ12

]−1

(3.5)

Now we compute the expected on hand inventory level I(S1, S2, R2). It is easy to

see that I(S1, S2, R2) =
∑R2

n=0 nπ1(n) +
∑S2−1

n=R2+1 nπ1(n) +
∑S1

n=S2
nπ1(n). Let G5 =

∑R2
n=0 nπ1(n), G6 =

∑S2−1
n=R2+1 nπ1(n) and G7 =

∑S1
n=S2

nπ1(n). First, G5 is computed,

which is

G5 = π1(1) + 2π1(2) + · · ·+ R2π1(R2)

= ρS2−R2
2 ρS1−S2

1 π1(S1)
[
ρR2−1

12 + 2ρR2−2
12 + · · ·+ (R2 − 1)ρ12 + R2

]
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Then,

ρ12G5 = ρS2−R2
2 ρS1−S2

1 π1(S1)
[
ρR2

12 + 2ρR2−1
12 + · · ·+ (R2 − 1)ρ2

12 + R2ρ12

]

Thus,

G5 = ρS2−R2
2 ρS1−S2

1 π1(S1)
[
R2 −

(
ρR2

12 + ρR2−1
12 + · · ·+ ρ2

12 + ρ12

)]
/(1− ρ12)

= ρS2−R2
2 ρS1−S2

1 π1(S1)

[
R2

1− ρ12

− ρ12(1− ρR2
12 )

(1− ρ12)2

]

Now we compute G6, which is

G6 = (R2 + 1)π1(R2 + 1) + R2π1(R2 + 2) + · · ·+ (S2 − 1)π1(S2 − 1)

= ρS1−S2
1 π1(S1)

[
(R2 + 1)ρS2−R2−1

2 + (R2 + 2)ρS2−R2−2
2 + · · ·+ (S2 − 1)ρ2

]

Then,

ρ2G6 = ρS1−S2
1 π1(S1)

[
(R2 + 1)ρS2−R2

2 + (R2 + 2)ρS2−R2−1
2 + · · ·+ (S2 − 1)ρ2

2

]

Thus,

G6 = ρS1−S2
1 π1(S1)

[
S2ρ2 −R2ρ

S2−R2
2 −

(
ρS2−R2

2 + ρS2−R2−1
2 + · · ·+ ρ2

)]
/(1− ρ2)

= ρS1−S2
1 π1(S1)

[
S2ρ2 −R2ρ

S2−R2
2

1− ρ2

− ρ2(1− ρS2−R2
2 )

(1− ρ2)2

]

Finally, we compute G7, which is

G7 = S2π1(S2) + (S2 + 1)π1(S2 + 1) + · · ·+ S1π1(S1)

= π1(S1)
[
S2ρ

S1−S2
1 + (S2 + 1)ρS1−S2−1

1 + · · ·+ S1

]

Then,

ρ1G7 = π1(S1)
[
S2ρ

S1−S2+1
1 + (S2 + 1)ρS1−S2

1 + · · ·+ S1ρ1

]
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Thus,

G7 = π1(S1)
[
S1 − S2ρ

S1−S2+1
1 −

(
ρS1−S2

1 + ρS1−S2−1
1 + · · ·+ ρ1

)]
/(1− ρ1)

= π1(S1)

[
S1 − S2ρ

S1−S2+1
1

1− ρ1

− ρ1(1− ρS1−S2
1 )

(1− ρ1)2

]

Therefore,

I(S1, S2, R2) = π1(S1)


S1 − S2ρ

S1−S2+1
1

1− ρ1

−
ρ1

(
1− ρS1−S2

1

)

(1− ρ1)
2




+ ρS1−S2
1 π1(S1)


S2ρ2 −R2ρ

S2−R2
2

1− ρ2

−
ρ2

(
1− ρS2−R2

2

)

(1− ρ2)
2




+ ρS2−R2
2 ρS1−S2

1 π1(S1)


 R2

1− ρ12

−
ρ12

(
1− ρR2

12

)

(1− ρ12)2


 (3.6)

Now we compute P1(S1, S2, R2), P2(S1, S2, R2), L1(S1, S2, R2) and L2(S1, S2, R2),

respectively.

P1(S1, S2, R2) = π1(S2) + π1(S2 + 1) + · · ·+ π1(S1 − 1)

= ρS1−S2
1 π1(S1) + ρS1−S2−1

1 π1(S1) + · · ·+ ρ1π1(S1)

=
ρ1(1− ρS1−S2

1 )

1− ρ1

π1(S1) (3.7)

P2(S1, S2, R2) = 1− P1(S1, S2, R2)− π1(S1)

= 1− π1(S1)− ρ1(1− ρS1−S2
1 )

1− ρ1

π1(S1) (3.8)

L1(S1, S2, R2) = π(0) = ρR2
12 ρS2−R2

2 ρS1−S2
1 π1(S1) (3.9)
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λ1 λ2+λ1
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Figure 3.3: Rate diagram for the M/M/1/S queueing system if S2 < R2

L2(S1, S2, R2) = π1(0) + π1(1) + · · ·+ π1(R2)

= ρS2−R2
2 ρS1−S2

1 π1(S1)
[
ρR2

12 + ρR2−1
12 + · · ·+ 1

]

= ρS2−R2
2 ρS1−S2

1 π1(S1)
1− ρR2+1

12

1− ρ12

(3.10)

2. For S2 < R2, Figure 3.3 shows the transition process of the Markov process X ′
3.

It can be obtained that

π2(n) =





ρS1−n
1 π2(S1), for R2 ≤ n < S1

ρR2−n
11 ρS1−R2

1 π2(S1), for S2 ≤ n < R2

ρS2−n
12 ρR2−S2

11 ρS1−R2
1 π2(S1), for n < S2

(3.11)

where

π2(S1) =

[
1− ρS1−R2

1

1− ρ1

+ ρS1−R2
1

1− ρR2−S2
11

1− ρ11

+ ρR2−S2
11 ρS1−R2

1

1− ρS2+1
12

1− ρ12

]−1

(3.12)

Now we compute I(S1, S2, R2). It can be seen that I(S1, S2, R2) =
∑S2−1

n=0 nπ(n) +

∑R2
n=S2

nπ(n)+
∑S1

n=R2+1 nπ(n). Let G8 =
∑S2−1

n=0 nπ(n), G9 =
∑R2

n=S2
nπ(n) and G10 =

∑S1
n=R2+1 nπ(n). First, we compute G8, which is

G8 = π2(1) + 2π2(2) + · · ·+ (S2 − 1)π2(S2 − 1)

= ρR2−S2
11 ρS1−R2

1 π2(S1)
[
ρS2−1

12 + 2ρS2−2
12 + · · ·+ (S2 − 1)ρ12

]
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Then,

ρ12G8 = ρR2−S2
11 ρS1−R2

1 π2(S1)
[
ρS2

12 + 2ρS2−1
12 + · · ·+ (S2 − 1)ρ2

12

]

Thus,

G8 = ρR2−S2
11 ρS1−R2

1 π2(S1)
[
S2ρ12 − ρ12 − · · · − ρS2−1

12 − ρS2
12

]
/ [1− ρ12]

= ρR2−S2
11 ρS1−R2

1 π2(S1)


 S2ρ12

1− ρ12

−
ρ12

(
1− ρS2

12

)

(1− ρ12)2




Now we compute G9, which is

G9 = S2π2(S2) + (S2 + 1)π2(S2) + · · ·+ R2π2(R2)

= ρS1−R2
1 π2(S1)

[
S2ρ

R2−S2
11 + (S2 + 1)ρR2−S2−1

11 + · · ·+ R2

]

Then,

ρ11G9 = ρS1−R2
1 π2(S1)

[
S2ρ

R2−S2+1
11 + (S2 + 1)ρR2−S2

11 + · · ·+ R2ρ11

]

Thus,

G9 = ρS1−R2
1 π2(S1)

[
R2 − S2ρ

R2−S2+1
11 − ρ11 − · · · − ρR2−S2

11

]
/(1− ρ11)

= ρS1−R2
1 π2(S1)

[
R2 − S2ρ

R2−S2+1
11

1− ρ11

− ρ11(1− ρR2−S2
11 )

(1− ρ11)2

]

Finally, we compute G10, which is

G10 = (R2 + 1)π(R2 + 1) + (R2 + 2)π(R2 + 2) + · · ·+ S1π(S1)

= π2(S1)
[
(R2 + 1)ρS1−R2−1

1 + (R2 + 2)ρS1−R2−2
1 + · · ·+ S1

]

Then,

ρ1G10 = π2(S1)
[
(R2 + 1)ρS1−R2

1 + (R2 + 2)ρS1−R2−1
1 + · · ·+ S1ρ1

]
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Thus,

G10 = π2(S1)
[
S1 −R2ρ

S1−R2
1 − ρ1 − · · · − ρS1−R2

1

]
/(1− ρ1)

= π2(S1)

[
S1 −R2ρ

S1−R2
1

1− ρ1

− ρ1(1− ρS1−R2
1 )

(1− ρ1)2

]

Therefore,

I(S1, S2, R2) = ρR2−S2
11 ρS1−R2

1 π2(S1)


 S2ρ12

1− ρ12

−
ρ12

(
1− ρS2

12

)

(1− ρ12)
2




+ ρS1−R2
1 π2(S1)


R2 − S2ρ

R2−S2+1
11

1− ρ11

−
ρ11

(
1− ρR2−S2

11

)

(1− ρ11)
2




+ π2(S1)


S1 −R2ρ

S1−R2
1

1− ρ1

−
ρ1

(
1− ρS1−R2

1

)

(1− ρ1)
2


 (3.13)

Now, we compute P1(S1, S2, R2), P2(S1, S2, R2), L1(S1, S2, R2) and L2(S1, S2, R2),

respectively.

P1(S1, S2, R2) = 1− π2(S1)− P2(S1, S2, R2)

= 1− π2(S1)− ρR2−S2
11 ρS1−R2

1 π2(S1)
ρ12(1− ρS2

12)

1− ρ12

(3.14)

P2(S1, S2, R2) = π2(0) + π(1) + · · ·+ π(S2 − 1)

= ρR2−S2
11 ρS1−R2

1 π2(S1)
[
ρS2

12 + · · ·+ ρ12

]

= ρR2−S2
11 ρS1−R2

1 π2(S1)
ρ12(1− ρS2

12)

1− ρ12

(3.15)

L1(S1, S2, R2) = ρS2
12ρ

R2−S2
11 ρS1−R2

1 π2(S1) (3.16)
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L2(S1, S2, R2) = π2(0) + π2(1) + · · ·+ π2(S2 − 1) + π2(S2) + · · ·+ π2(R2)

= ρR2−S2
11 ρS1−R2

1 π2(S1)
[
ρS2

12 + ρS2−1
12 + · · ·+ ρ12

]

+ ρS1−R2
1 π2(S1)

[
ρR2−S2

11 + · · ·+ 1
]

= ρS1−R2
1 π2(S1)

[
ρR2−S2

11

ρ12(1− ρS2
12)

1− ρ12

+
1− ρR2−S2+1

11

1− ρ11

]
(3.17)

It can be seen that µ1P1(S1, S2, R2) and µ2P2(S1, S2, R2) are the numbers per

unit time of the normal production and the emergency production, respectively, and

λ1L1(S1, S2, R2) and λ2L2(S1, S2, R2) are the numbers per unit time of stock-outs of

demand class 1 and class 2, respectively. Therefore, the expected total cost per unit

time is

C(S1, S2, R2) = hI(S1, S2, R2) + c1µ1P1(S1, S2, R2) + c2µ2P2(S1, S2, R2)

+ p1λ1L1(S1, S2, R2) + p2λ2L2(S1, S2, R2) (3.18)

3.3. Numerical Study

In this section, we investigate the benefit of the production system with two produc-

tion rates and two demand classes over the one with a single production rate and two

demand classes. We set the normal rate of the former production system equal to the

production rate of the latter one. Thus, the benefit can be viewed as a cost saving

of providing with an emergency production rate the production system with a single

production rate and two demand classes. The cost formula for the production system

with two production rates and two demand classes has been obtained in the previous
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section. For the production system with a single rate and two demand classes, (S, R)

policy proposed by Ha [12] is optimal. Under (S, R) policy, define

I(S, R) as the expected on-hand inventory level,

P (S, R) as the probability of production,

L1(S, R) as the probability of stock-outs of demand class 1, and

L2(S, R) as the probability of stock-outs of demand class 2

Thus, the expected total cost per unit time is given by

C(S,R) = hI(S, R) + c1µ1P (S,R) + p1λ1L1(S, R) + p2λ2L2(S, R) (3.19)

where

I(S, R) = S − π3(S)
ρ1

(1− ρ1)2

[
1− ρS−R

1 − (1− ρ1) (S −R) ρS−R−1
1

]

− π3(S)
ρ11

(1− ρ11)2

(
ρ1

ρ11

)S−R (
ρS−R

11 − ρS+1
11

)

− π3(S)
ρS−R

11

1− ρ11

(
ρ1

ρ11

)S−R
[
S −R− (S + 1) ρR+1

11

]
(3.20)

P (S,R) = 1− π3(S) (3.21)

L1(S, R) = ρS−R
1 ρR

11π3(S) (3.22)

L2(S, R) =

(
1− ρR+1

11

)
ρS−R

1

1− ρ11

π3(S) (3.23)

where

π3(S) =
(1− ρ1) (1− ρ11)

(1− ρ11)
(
1− ρS−R

1

)
+ (1− ρ1) ρS−R

1

(
1− ρR+1

11

) (3.24)
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Figure 3.4: Cost saving versus µ2/µ1

For any given set of parameters, let S∗1 , S∗2 and R∗
2 be the optimal critical inventory

levels of the production system with two rates and two demand classes, and S∗ and

R∗ be the optimal critical inventory levels of the production system with a single rate

and two demand classes. Define the cost saving, CS, as the following percentage:

CS =
C(S∗, R∗)− C(S∗1 , S

∗
2 , R

∗
2)

C(S∗, R∗)
× 100% (3.25)

For each problem instance, we utilize the solver function in Microsoft Excel to search

for the optimal solutions (S∗1 , S
∗
2 , R

∗
2) and (S∗, R∗). Initially, we set that c1 = 1,

µ1 = 1, p2 = 2, µ2/µ1 = 1.5, ρ1 = 1.4, λ2/λ1 = 1/1.8, h = 0.01, c2/c1 = 1.2 and

p1/p2 = 5. Based on the initial settings, we seek to find how the parameters µ2/µ1,

ρ1, λ2/λ1, h, c2/c1 and p1/p2 affect the cost saving achieved.

Figure 3.4 shows that the cost saving increases as the production rates ratio µ2/µ1

increases. This result is quite intuitive since the purpose of employing the emergency

production rate is to reduce the probability of stock-outs and then the penalty cost

rendered. The more capacity the emergency production rate can provide, the more

significant the probability of stock-outs can be reduced and then the larger cost saving
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Figure 3.5: Cost saving versus ρ1

can be achieved. In addition, it is found that once the ratio µ2/µ1 is larger enough

beyond a certain threshold, there is only a small improvement in the cost saving as

we continue to increase the emergency production rate. This threshold is useful for

selecting an appropriate emergency production rate in the real life.
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Figure 3.6: Cost saving versus λ2/λ1

Figure 3.5 shows that the cost saving due to the emergency production rate has a

nonmonotone relationship with the traffic intensity ρ1. When the normal rate has an

excessive capacity to meet demand, i.e., ρ1 is small, the emergency rate is seldom used

and thus do not provide significant benefit. When capacity provided by the normal

rate becomes small relative to demand, i.e., ρ1 is large, stockouts becomes more
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frequently. The emergency production rate can reduce stockouts significantly. Thus,

the cost saving achieved becomes significant. When the traffic intensity ρ1 reaches a

certain value, there is a maximum cost saving achieved. As the traffic intensity ρ1

continues to drop, even capacity provided by the emergency rate is small relative to

demand. Stockouts reduced by the emergency rate is less significant relative to the

large stockouts produced. Thus, the benefit incurred becomes less significant.
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Figure 3.7: Cost saving versus h

Figure 3.6 shows that the demand rates ratio λ2/λ1 also has a nonmonotone

relationship with the cost saving achieved. When the ratio λ2/λ1 is large, demand of

class 1 is rare relative to that of class 2. Although stockouts of demand class 2 can

be reduced significantly by employing the emergency rate, the cost saving is not so

large due to the lower lost-sale cost of demand class 2. As the ratio λ2/λ1 decreases,

demand of class 1 becomes more and more. Then, the emergency rate can reduce

stockouts of both class 1 and class 2. Thus, the cost saving achieved becomes larger.

However, as the ratio λ2/λ1 continues to decrease, demand of class 2 is dominated

by that of class 1. Thus, the cost saving achieved decreases slightly.

Again, the cost saving achieved has a nonmonotone relationship with the inventory
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Figure 3.8: Cost saving versus c2/c1

hold cost rate h, as shown in Figure 3.7. When the rate h is large, the inventory

holding cost plays an important role in the total cost. Although the emergency

production rate provided can reduce stockouts, the inventory level is already low and

can not be reduced substantially. Thus, the cost saving achieved is less significant.

As the rate h decreases, the emergency production rate can reduce both stockouts

and the inventory level substantially. Thus, the cost saving achieved becomes more

significant. However, if the rate h continues to increase, both production systems can

hold a larger number of inventory and stockouts become less. Then, the cost saving

begins to decrease slightly.

Figure 3.8 shows that the cost saving decreases as the unit production costs ratio

c2/c1 increases. When the ratio c2/c1 is small, the emergency production rate can

be employed as frequently as possible to reduce stockouts without incurring a larger

extra production cost. Thus, the cost saving achieved is significant. However, as the

ratio c2/c1 increases, stockouts are reduced by the emergency rate at the expense of

a higher production cost. Then, the cost saving achieved becomes less significant.

Figure 3.9 shows that the cost saving increases as the lost sale costs ratio p1/p2
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Figure 3.9: Cost saving versus p1/p2

increases. When the ratio p1/p2 is large, the emergency production rate is employed

mainly to reduce stockouts of demand class 1 while that of demand class 2 remain

non-increased. The cost saving achieved is significant due to the larger lost sale cost

of class-1 demand. As the ratio p1/p2 decreases, i.e., the lost sale cost of demand class

1 decreases, it is intuitive to see that the cost saving achieved becomes less significant.

However, even if the ratio p1/p2 is very small, we still have certain amount of benefits

achieved.

To summarize, we find that the emergency production rate can produce remark-

able benefits in most cases studied. The magnitude of the cost saving is affected sig-

nificantly by the parameters µ2/µ1, ρ1, λ2/λ1, h, c2/c1 and p1/p2. Specifically, larger

values of µ2/µ1 and p1/p2 and small values of c2/c1 and h can produce a larger cost

saving. In addition, ρ1 and λ2/λ1 affect the achieved cost saving non-monotonically.

3.4. Conclusions

In this chapter, a make-to-stock production system is considered with two production

rates, N demand classes and lost sales. It is found that the optimal control policy is
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the (S1, S2, R1, . . . , RN) policy, which is a combination of the (S1, S2) policy and the

so-called stock reservation policy. The (S1, S2) policy is optimal for production control

while the stock-reservation policy is used to control inventory allocation among N

demand classes. Demand of class i is satisfied when the inventory level is above Ri

and rejected otherwise. The numerical study shows that a significant cost saving can

be achieved by employing an emergency production rate.



Chapter 4

A Make-to-Stock Production

System with Two Production

Rates, Two Demand Classes and

Backorders

4.1. The Stochastic Model and Optimal Control

In this chapter, we consider a make-to-stock production system similar to the one

studied in chapter 3. The difference is that the production system considered here

has two demand classes only and demand that can not be satisfied immediately is

backordered. The two demand classes, referred to as class 1 and class 2, incur differ-

ent backordering cost b1 and b2, respectively and demands of the two classes arrive

following independent Poisson processes with mean rates λ1 and λ2, respectively.

In this production system, we have three types of operational decisions to make.
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First, there are three production modes to choose: i) not to produce at all, ii) to

produce normally and iii) to produce urgently. Second, when a production completes,

we first use this product to satisfy class-1 backorder if it exits. If there is no class-1

backorder, we have two choices for using the product: i) to increase the on-hand

inventory level and ii) to satisfy class-2 backorder if available. Finally, we consider

the incoming demand. If there is no on-hand inventory at all, demand from any class

will be backordered. If on-hand inventory is available and class-1 demand arrives, we

should satisfy it immediately. When class-2 demand arrives, we may either satisfy

or backorder it even if there is on-hand inventory in order to minimize the total

cost. By backordering the incoming class-2 demand when the on-hand inventory

level is low, some inventory can be reserved in anticipation of the future class-1

demand. The optimal control policy must provide these operational decisions for

the objective of minimizing the expected total discounted cost. In this chapter,

we develop a stochastic model for this production system and the optimal control

policy is identified. The expected total discounted cost includes the following cost

components: the inventory holding cost h per unit per unit time, the additional

production cost incurred by the emergency rate c = c2 − c1, the backordering cost b1

per class-1 backorder per unit time, and the backordering cost b2 per class-2 backorder

per unit time. To simplify the problem, it is assumed that c1 = 0.

4.1.1. Dynamic Programming Formulation

Define the following variables X(t) and Y (t):

X(t) ≥ 0: the on-hand inventory level at time t,
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X(t) < 0: the number of class-1 backorders at time t, and

Y (t): the number of class-2 backorders at time t, Y (t) ≥ 0

For any given Markovian control policy u, X4 = {Xu(t), Yu(t) : t ≥ 0} is a continuous-

time Markov process with the state space Z × Z+. Similarly to Subsection 2.1.1,

we convert the Markov process X4 to X ′
4 where the transition rate Λ is defined as

λ1 + λ2 + µ2. After the conversion, the mean time between successive transitions is

constant and independent of system states and control policies employed. Because

the underlying stochastic process remains unchanged, the Markov process X ′
4 has the

same optimal control policy and then the same optimal return function to those of

X4. Henceforth, we analyze X ′
4 to characterize the optimal control policy. Figure

4.1 shows the transition process for the Markov process X ′
4. Let x and y be the

particular values of X(t) and Y (t), respectively. Given the current state (x, y) and

the production rate employed at the stage µk, k = 0, 1, 2, a transition taking place

at the end of the stage is a production completion with the probability of µk/Λ, an

arrival of class-1 demand with the probability of λ1/Λ, an arrival of class-2 demand

with the probability of λ2/Λ, and finally to be no event at all with the probability

of (µ2− µk)/Λ. All the decisions regarding inventory allocation are made just before

the end of the stage and the system state changes accordingly.

Define f(x, y) as the minimal expected total discounted cost over an infinite hori-

zon with the starting state (x, y). Without loss of generality, it is assumed that

Λ + α = 1. Similarly to Subsection 2.1.1, the optimal cost function f(x, y) must

satisfy the following optimality equation:

f(x, y) = c(x, y) + H1f(x, y) + λ1f(x− 1, y) + λ2H2f(x, y) (4.1)
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µk /Λ

(µ2 − µk)/Λ

λ1/Λ(x, y)

(x + 1, y):   Produce to increase x

(x, y):        Nothing happens

(x − 1, y):   Satisfied or backlogged

λ2/Λ (x − 1, y):   Satisfied

(x, y − 1):   Produce to reduce y

(x, y + 1):   Backlogged 

Figure 4.1: Transition process for the Markov process X ′
4

where H1 and H2 are the operators applied on f(x, y) and c(x, y) is the expected

discounted inventory holding and backordering cost for this stage.

c(x, y) = h[x]+ + b1[x]− + b2y (4.2)

H1f(x, y) = µ2f(x, y) +





min





µ1 [f(x + 1, y)− f(x, y)]

µ2 [f(x + 1, y)− f(x, y) + c]

µ1 [f(x, y − 1)− f(x, y)]

µ2 [f(x, y − 1)− f(x, y) + c]

0





, if y > 0

min





µ1 [f(x + 1, y)− f(x, y)]

µ2 [f(x + 1, y)− f(x, y) + c]

0





, if y = 0

(4.3)

H2f(x, y) =





min {f(x− 1, y), f(x, y + 1)} , if x > 0

f(x, y + 1), if x ≤ 0

(4.4)

In H1f(x, y), f(x+1, y)−f(x, y) (resp. f(x+1, y)−f(x, y)+c) is the incremental

cost incurred when the normal rate (resp. the emergency rate) is employed to increase
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x by one. Similarly, f(x, y− 1)− f(x, y) (resp. f(x, y− 1)− f(x, y) + c) is the incre-

mental cost incurred when the normal rate (resp. the emergency rate) is employed

to reduce y. The optimal production decision is to minimize the incremental cost at

any time. In H2f(x, y), f(x − 1, y) and f(x, y + 1) corresponds to the decisions of

satisfying and backordering an incoming class-2 demand, respectively. The optimal

allocation decision is to choose the minimum one between f(x− 1, y) and f(x, y + 1)

at any time.

4.1.2. The Optimal Control Policy

To characterize the optimal control policy, we need to prove that the structural prop-

erties of the optimal return function f(x, y) is preserved in the optimality equation

4.1. However, with the boundary y = 0 on the state space Z × Z+, it is difficult

to make such a proof. For simplification, we follow an approach used by Ha [14] to

extend f(x, y) into an unconstrained function f ′(x, y) which is defined on the state

space Z × Z and satisfies the following Equation 4.5.

f ′(x, y) = c′(x, y) + H ′
1f
′(x, y) + λ1f

′(x− 1, y) + λ2H2f
′(x, y) (4.5)

where

c′(x, y) =





h[x]+ + b1[x]− + b2y, if y ≥ 0

+∞, if y < 0

(4.6)
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H ′
1f
′(x, y) = µ2f

′(x, y) + min





µ1 [f ′(x + 1, y)− f ′(x, y)]

µ2 [f ′(x + 1, y)− f ′(x, y) + c]

µ1 [f ′(x, y − 1)− f ′(x, y)]

µ2 [f ′(x, y − 1)− f ′(x, y) + c]

0





(4.7)

In Equation 4.5, c′(x, y) defined on the state space Z×Z is developed from c(x, y)

by imposing an infinite penalty cost on infeasible states y < 0. In addition, H1 is

modified into H ′
1 to make possible the transitions into the infeasible region y < 0.

Essentially, f ′(x, y) = f(x, y) for y ≥ 0 and f ′(x, y) = +∞ for y < 0. It is easy to

see that an optimal control policy for the unconstrained problem will never allow the

transitions into the infeasible region y < 0, and thus provides the same optimal control

policy and the same optimal return function to the original, constraint problem.

Define V as the set of all the real-valued functions defined on Z × Z such that

any v ∈ V must satisfy the following four properties.

1. For x < 0,

v(x + 1, y) ≤ v(x, y − 1) and v(x + 1, y) ≤ v(x, y) (4.8)

2. For y > 0,

v(x, y − 1) ≤ v(x, y) (4.9)

3. Convexity

v(x + 2, y)− v(x + 1, y) ≥ v(x + 1, y)− v(x, y) (4.10)
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v(x, y + 2)− v(x, y + 1) ≥ v(x, y + 1)− v(x, y) (4.11)

4. Submodularity/supermodularity

v(x + 1, y + 1)− v(x, y + 1) ≤ v(x + 1, y)− v(x, y) (4.12)

v(x + 2, y)− v(x + 1, y − 1) ≥ v(x + 1, y)− v(x, y − 1) (4.13)

v(x + 1, y + 1)− v(x, y) ≥ v(x + 1, y)− v(x, y − 1) (4.14)

Let H be the operator applied on any function v ∈ V such that

Hv(x, y) = c′(x, y) + H ′
1v(x, y) + λ1v(x− 1, y) + λ2H2v(x, y) (4.15)

Lemmas 4.1– 4.3 show that the structure of the functions in V is preserved by

H ′
1, H2 and c′(x, y).

Lemma 4.1 If v ∈ V , then H ′
1v ∈ V .

Proof. First, we prove H ′
1v satisfying Equation 4.8. For any (x, y) with x < 0, we

have v(x + 1, y) ≤ v(x, y − 1) and v(x + 1, y) ≤ v(x, y). Therefore, we can get that

H ′
1v(x, y) = µ2v(x, y) + min





µ1 [v(x + 1, y)− v(x, y)]

µ2 [v(x + 1, y)− v(x, y) + c]




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H ′
1v(x + 1, y) = µ2v(x + 1, y) + min





µ1 [v(x + 2, y)− v(x + 1, y)]

µ2 [v(x + 2, y)− v(x + 1, y) + c]

µ1 [v(x + 1, y − 1)− v(x + 1, y)]

µ2 [v(x + 1, y − 1)− v(x + 1, y) + c]

0





1. If 0 < v(x, y)− v(x + 1, y) ≤ µ2c/(µ2 − µ1), then

H ′
1v(x + 1, y)−H ′

1v(x, y)

≤ µ2v(x + 1, y)− µ2v(x, y)− µ1 [v(x + 1, y)− v(x, y)]

= (µ2 − µ1)[v(x + 1, y)− v(x, y)] ≤ 0

2. If v(x, y)− v(x + 1, y) ≥ µ2c/(µ2 − µ1), then

H ′
1v(x + 1, y)−H ′

1v(x, y)

≤ µ2v(x + 1, y)− µ2v(x, y)− µ2 [v(x + 1, y)− v(x, y) + c]

= −µ2c < 0

Thus, H ′
1v(x + 1, y) ≤ H ′

1v(x, y).

For any (x, y) with x < 0, we have v(x+1, y−1) ≤ v(x, y−2) and v(x+1, y−1) ≤

v(x, y − 1). Therefore, we can get that

H ′
1v(x, y − 1) = µ2v(x, y − 1) + min





µ1 [v(x + 1, y − 1)− v(x, y − 1)]

µ2 [v(x + 1, y − 1)− v(x, y − 1) + c]





1. If 0 < v(x, y − 1)− v(x + 1, y − 1) ≤ µ2c/(µ2 − µ1), then

H ′
1v(x + 1, y)−H ′

1v(x, y − 1)
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≤ µ2v(x + 1, y) + µ1 [v(x + 1, y − 1)− v(x + 1, y)]

−µ2v(x, y − 1)− µ1 [v(x + 1, y − 1)− v(x, y − 1)]

= µ2[v(x + 1, y)− v(x, y − 1)]− µ1[v(x + 1, y)− v(x, y − 1)]

= (µ2 − µ1)[v(x + 1, y)− v(x, y − 1)] ≤ 0

2. If v(x, y − 1)− v(x + 1, y − 1) > µ2c/(µ2 − µ1), then

H ′
1v(x + 1, y)−H ′

1v(x, y − 1)

≤ µ2v(x + 1, y) + µ2 [v(x + 1, y − 1)− v(x + 1, y) + c]

−µ2v(x, y − 1)− µ2 [v(x + 1, y − 1)− v(x, y − 1) + c]

= 0

Thus, H ′
1v(x + 1, y) ≤ H ′

1v(x, y − 1).

Second, we prove that H ′
1v satisfies Equation 4.9. For any (x, y) with y > 0, we

have v(x, y − 1) ≤ v(x, y) and v(x + 1, y − 1) ≤ v(x + 1, y). Then, we can get that

H ′
1v(x, y) = µ2v(x, y) + min





µ1 [v(x + 1, y)− v(x, y)]

µ2 [v(x + 1, y)− v(x, y) + c]

µ1 [v(x, y − 1)− v(x, y)]

µ2 [v(x, y − 1)− v(x, y) + c]





and

H ′
1v(x, y − 1) = µ2v(x, y − 1) + min





µ1 [v(x + 1, y − 1)− v(x, y − 1)]

µ2 [v(x + 1, y − 1)− v(x, y − 1) + c]

µ1 [v(x, y − 2)− v(x, y − 1)]

µ2 [v(x, y − 2)− v(x, y − 1) + c]

0




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1. If H ′
1v(x, y) = µ2v(x, y) + µ1 [v(x + 1, y)− v(x, y)], then

H ′
1v(x, y − 1)−H ′

1v(x, y)

≤ µ2v(x, y − 1) + µ1 [v(x + 1, y − 1)− v(x, y − 1)]

−µ2v(x, y)− µ1 [v(x + 1, y)− v(x, y)]

≤ µ2v(x, y − 1) + µ1 [v(x + 1, y)− v(x, y − 1)]

−µ2v(x, y)− µ1 [v(x + 1, y)− v(x, y)]

= (µ2 − µ1)[v(x, y − 1)− v(x, y)] ≤ 0

2. If H ′
1v(x, y) = µ2v(x, y) + µ2 [v(x + 1, y)− v(x, y) + c], then

H ′
1v(x, y − 1)−H ′

1v(x, y)

≤ µ2v(x, y − 1) + µ2 [v(x + 1, y − 1)− v(x, y − 1) + c]

−µ2v(x, y)− µ2 [v(x + 1, y)− v(x, y) + c]

= µ2 [v(x + 1, y − 1)− v(x + 1, y)] ≤ 0

3. If H ′
1v(x, y) = µ2v(x, y) + µ1 [v(x, y − 1)− v(x, y)], then

H ′
1v(x, y − 1)−H ′

1v(x, y)

≤ µ2v(x, y − 1)− µ2v(x, y)− µ1 [v(x, y − 1)− v(x, y)]

= (µ2 − µ1)[v(x, y − 1)− v(x, y)] ≤ 0

4. If H ′
1v(x, y) = µ2v(x, y) + µ2 [v(x, y − 1)− v(x, y) + c], then

H ′
1v(x, y − 1)−H ′

1v(x, y)

≤ µ2v(x, y − 1)− µ2v(x, y)− µ2 [v(x, y − 1)− v(x, y) + c]

= −µ2c < 0

Thus, H ′
1v satisfies Equation 4.9, i.e., H ′

1v(x, y − 1) ≤ H ′
1v(x, y) with y > 0.
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It can be checked that convexity is implied by submodularity/supermodularity.

Thus, it remains to prove that H ′
1v(x, y) satisfies Equation 4.12–4.14. First we

prove that H ′
1v satisfies Equation 4.12. Define w(u, x, y) as a function defined on

{0, 1, 2, 3, 4} × Z × Z such that

w(u, x, y)

=
1

4
× 1

3
× 1

2
(1− u)(2− u)(3− u)(4− u)µ2v(x, y)

+
1

3
× 1

2
u(2− u)(3− u)(4− u) [µ1v(x + 1, y) + (µ2 − µ1)v(x, y)]

+
1

2
× 1

2
u(u− 1)(3− u)(4− u) [µ2v(x + 1, y) + cµ2]

+
1

3
× 1

2
u(u− 1)(u− 2)(4− u) [µ1v(x, y − 1) + (µ2 − µ1)v(x, y)]

+
1

4
× 1

3
× 1

2
u(u− 1)(u− 2)(u− 3) [µ2v(x, y − 1) + cµ2]

=





µ2v(x, y), if u = 0

µ1v(x + 1, y) + (µ2 − µ1)v(x, y), if u = 1

µ2v(x + 1, y) + cµ2, if u = 2

µ1v(x, y − 1) + (µ2 − µ1)v(x, y), if u = 3

µ2v(x, y − 1) + cµ2, if u = 4

Then, H ′
1v(x, y) = min

u∈{0,1,2,3,4}
w(u, x, y).

It can be seen that w(u, x, y) is submodular in (x, y) for any given u. In addition,

w(u, x, y + 1)−w(u, x, y) is decreasing as u increases and then w is submodular with

respect to (u, y). Let u∗1 and u∗2 be the minimizers of H ′
1v at (x, y + 1) and (x + 1, y),

respectively. If u∗1 ≤ u∗2, then

H ′
1v(x, y + 1) + H ′

1v(x + 1, y) = w(u∗1, x, y + 1) + w(u∗2, x + 1, y)

= w(u∗1, x, y + 1) + w(u∗1, x + 1, y) + w(u∗2, x + 1, y)− w(u∗1, x + 1, y)
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≥ w(u∗1, x + 1, y + 1) + w(u∗1, x, y) + w(u∗2, x + 1, y)− w(u∗1, x + 1, y)

≥ w(u∗1, x + 1, y) + w(u∗1, x, y) + w(u∗2, x + 1, y + 1)− w(u∗1, x + 1, y)

= w(u∗1, x, y) + w(u∗2, x + 1, y + 1)

≥ H ′
1v(x + 1, y + 1) + H ′

1v(x, y)

The first inequality comes from the submodularity of w in (x, y), the second comes

from the submodularity of w in (u, y) and the last comes from the definition of H ′
1.

If u∗1 > u∗2, there are 10 possible cases for the ordered pair (u∗1, u
∗
2): (4, 3), (4, 2),

(4, 1), (4, 0), (3, 2), (3, 1), (3, 0), (2, 1), (2, 0) and (1, 0). It can be checked that

H ′
1v satisfies Equation 4.12 for each case. For example, if (u∗1, u

∗
2) takes (4, 3), then

H ′
1v(x, y + 1) + H ′

1(x + 1, y)

= µ2v(x, y) + cµ2 + µ1v(x + 1, y − 1) + (µ2 − µ1)v(x + 1, y)

= µ2 [v(x, y) + v(x + 1, y)] + µ1 [v(x + 1, y − 1)− v(x + 1, y)] + cµ2

and

H ′
1(x, y) + H ′

1(x + 1, y + 1)

≤ µ2v(x, y) + µ1 [v(x, y − 1)− v(x, y)] + µ2v(x + 1, y) + cµ2

= µ2 [v(x + 1, y) + v(x, y)] + µ1 [v(x, y − 1)− v(x, y)] + cµ2

≤ H ′
1v(x, y + 1) + H ′

1(x + 1, y)

By employing the similar method, we can prove that H ′
1v also satisfies Equations

4.13 and 4.14. Thus, Lemma 4.1 is obtained. 2

Lemma 4.2 If v ∈ V , then H2v ∈ V .
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Proof. See Ha [14]. 2

Lemma 4.3 c′ ∈ V .

Proof. See Ha [14]. 2

From Lemmas 4.1– 4.3, we can obtain the following Lemma 4.4 and then Theorem

4.1.

Lemma 4.4 f ′ ∈ V and f ∈ V .

Proof. See Ha [14].

Theorem 4.1 1. Define

R(y) =





min {x : f(x + 1, y) > f(x, y − 1)} , if y > 0

min {x : f(x + 1, y) > f(x, y)} , if y = 0

S(y) = max {x : f(x, y)− f(x + 1, y) > µ2c/(µ2 − µ1)}

B(x) = min {y : f(x, y)− f(x, y − 1) > µ2c/(µ2 − µ1)}

(a) R(y) ≥ 0 and R(y) is non-increasing as y increases.

(b) S(y) is non-decreasing as y increases.

(c) B(x) is non-decreasing as x increases.

2. Production Control Policy

(a) When there are class-1 backorders, it is always optimal to produce either

normally if x > S(y) or urgently if x ≤ S(y) to satisfy class-1 backorders.
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(b) When there are only class-2 backorders, it is optimal to produce to stock if

the on-hand inventory level is below R(y) and to satisfy class-2 backorders

otherwise.

i. If producing to stock, it is optimal to produce normally if the on-hand

inventory level is above S(y), and to produce urgently otherwise.

ii. If satisfying class-2 backorders, it is optimal to produce normally if the

number of class-2 backorders is below B(x), and to produce urgently

otherwise.

(c) When there is no any backorder, it is optimal to produce urgently to in-

crease the on-hand inventory level if x ≤ S(0) and produce normally to

increase the on-hand inventory level up to R(0) if x > S(0).

3. Inventory Allocation Policy

It is optimal to satisfy an incoming class-2 demand from on-hand inventory if

the on-hand inventory level is above R(y + 1) and to backorder this demand

otherwise.

Proof. For part 1a, please refer to Ha [14]. For part 1b, we need to show S(y +

1) ≥ S(y). Suppose the contrary that S(y + 1) < S(y). By the definition of

S(y + 1), f (S(y), y + 1)− f (S(y) + 1, y + 1) ≤ µ2c/(µ2 − µ1). Similarly, by the def-

inition of S(y), f (S(y), y)− f (S(y) + 1, y) > µ2c/(µ2− µ1). Then, f (S(y), y + 1)−

f (S(y) + 1, y + 1) < f (S(y), y) − f (S(y) + 1, y). However, by Equation 4.12, it is

shown that f (S(y), y + 1)− f (S(y) + 1, y + 1) ≥ f (S(y), y)− f (S(y) + 1, y), which

is a contradiction. Therefore we must have S(y + 1) ≥ S(y).
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For part 1c, we need to show that B(x) ≥ B(x − 1). Suppose the contrary that

B(x) < B(x−1). By the definition of B(x−1), f (x− 1, B(x))−f (x− 1, B(x)− 1) ≤

µ2c/(µ2−µ1). And by the definition of B(x), f (x,B(x))−f (x,B(x)− 1) > µ2c/(µ2−

µ1). Then, f (x− 1, B(x))− f (x− 1, B(x)− 1) < f (x,B(x))− f (x,B(x)− 1). By

Equation 4.12, f (x− 1, B(x))− f (x− 1, B(x)− 1) ≥ f (x,B(x))− f (x,B(x)− 1),

which is a contradiction. Therefore, we must have B(x) ≥ B(x− 1).

Consider part 2a. From Equation 4.8, it follows that f(x + 1, y) − f(x, y) ≤

f(x, y − 1)− f(x, y) and f(x + 1, y)− f(x, y) ≤ 0. Thus, H1f(x, y) becomes

H1f(x, y) = µ2f(x, y) + min





µ1 [f(x + 1, y)− f(x, y)]

µ2 [f(x + 1, y)− f(x, y) + c]





It is obvious that we should always produce for increasing x if x < 0. In addition, it

is optimal to produce normally if f(x, y)−f(x+1, y) ≤ µ2c/(µ2−µ1) and to produce

urgently otherwise. Because of the definition of S(y) and convexity of f(x, y) with

respect to x, x ≥ S(y) can guarantee that f(x, y)− f(x + 1, y) ≤ µ2c/(µ2 − µ1) and

then it is optimal to produce normally and produce urgently otherwise.

Now we consider part 2b. From Equation 4.9, if y > 0, f(x, y − 1) ≤ f(x, y),

i.e., we never stop production if there are class-2 backorders. From the definition

of R(y) and Equation 4.13, f(x + 1, y) > f(x, y − 1) for all x ≥ R(y). Then,

f(x + 1, y)− f(x, y) > f(x, y − 1)− f(x, y) and H1f(x, y) becomes

H1f(x, y) = µ2f(x, y) + min





µ1 [f(x, y − 1)− f(x, y)]

µ2 [f(x, y − 1)− f(x, y) + c]




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Thus, it is optimal to produce to reduce y if x ≥ R(y). By analyzing the last term

of the above equation, it can be shown that it is optimal to produce normally if

f(x, y) − f(x, y − 1) ≤ µ2c/(µ2 − µ1) and to produce urgently otherwise. Because

of the definition of B(x) and convexity of f(x, y) with respect to y, y < B(x) can

guarantee that f(x, y)−f(x, y−1) ≤ µ2c/(µ2−µ1) and thus it is optimal to produce

normally and produce urgently otherwise.

From the definition of R(y) and Equation 4.13, f(x+1, y) ≤ f(x, y−1) if x < R(y).

Then, f(x + 1, y)− f(x, y) ≤ f(x, y − 1)− f(x, y) and H1f(x, y) becomes

H1f(x, y) = µ2f(x, y) + min





µ1 [f(x + 1, y)− f(x, y)]

µ2 [f(x + 1, y)− f(x, y) + c]





Thus, it is optimal to produce to increase x if x < R(y). By analyzing the last

term of the above equation, we can get that it is optimal to produce normally if

f(x, y)− f(x + 1, y) ≤ µ2c/(µ2 − µ1) and to produce urgently otherwise.

Consider part 2c. If there is no any backorder, we can only produce to stock.

Then, H1f(x, y) becomes

H1f(x, y) = min





µ1 [f(x + 1, y)− f(x, y)]

µ2 [f(x + 1, y)− f(x, y) + c]

0





Thus, it is optimal not to produce if f(x, y)− f(x + 1, y) ≤ 0, to produce normally if

0 < f(x, y)− f(x + 1, y) ≤ µ2c/(µ2 − µ1) and to produce urgently if f(x, y)− f(x +

1, y) > µ2c/(µ2−µ1). From the definitions of R(y) and S(y) and convexity of f(x, y)
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with respect to x, x ≥ R(y) guarantees that f(x, y)− f(x + 1, y) ≤ 0 and then it is

optimal not to produce, S(y) < x < R(y) guarantees that 0 < f(x, y)− f(x+1, y) ≤

µ2c/(µ2 − µ1) and then it is optimal to produce normally and x < S(y) guarantees

that f(x, y)− f(x + 1, y) > µ2c/(µ2−µ1) and then it is optimal to produce urgently.

For part 3, please see Ha [14]. 2

R(y)y

xR(0)S(0)

S(y)
1

2
4

3

B(x)

Figure 4.2: The optimal policy characterized by R(y), S(y) and B(x)

The form of the optimal control policy is illustrated in Figure 4.2. The state

space Z × Z+ is partitioned into four areas, namely area 1, 2, 3 and 4, by the three

critical inventory levels, R(y), S(y) and B(x). If (x, y) falls in area 1, it is optimal

to produce normally to increase x. If (x, y) falls in area 2, it is optimal to produce

urgently to increase x. If (x, y) falls in area 3, it is optimal to produce normally to

reduce y. If (x, y) falls in area 4, it is optimal to produce urgently to reduce y. For

an incoming class-2 demand, it is optimal to satisfy it from on-hand inventory if the

on-hand inventory level is above R(y + 1) and to backorder this demand otherwise.
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4.2. Conclusions

In this chapter, we consider a make-to-stock production system with two production

rates, two demand classes and backorders. The optimal control policy is shown to be

characterized by three monotone switch curves R(y), S(y) and B(x). The state space

of the production system is partitioned by the three curves into four areas, each of

which corresponds to a different production decision.



Chapter 5

Conclusions and Future Study

In this dissertation, optimal control policies are developed for make-to-stock produc-

tion systems under different operating conditions. First, a make-to-stock production

system with two production rates, one demand class, Poisson demand, exponential

production time and backorders are considered. It is found the (S1, S2) control policy

is optimal for the production system, where S1 acts like a base-stock level and S2

controls the switch between the normal and emergency production rate. Specifically,

it is optimal not to produce if the net inventory level is at or above S1, to produce

normally if the net inventory level is below S1 and at or above S2 and to produce

urgently if the net inventory level is below S2. Later on, the developed model is

generalized to consider N production rates, where the optimal control policy is the

(S1, S2, . . . , SN) policy. Specifically, it is optimal not to produce if the net inventory

level is at or above S1, to produce with kth production rate if the net inventory level

is below Sk and at or above Sk+1, k = 1, 2, . . . , N − 1, and to production with the

N th production rate if the net inventory level is below SN . An M/M/1/S queueing

model is developed as well to compute the expected total cost per unit time for the



Chapter 5 Conclusion 80

production system with two rates under the (S1, S2) policy. To show the benefits

of employing the emergency rate, numerical studies are carried out to compare the

expected total cost per unit time between the production system with two rates and

the one with a single rate. The result obtained shows that the emergency production

rate can generate a significant cost saving under most cases studied.

Second, a make-to-stock production system with two production rates, N demand

classes, Poisson demand, exponential production time and lost sales are considered.

It is found that the optimal control policy is the (S1, S2, R1, . . . , RN) policy, which

is a combination of the (S1, S2) policy and the so-called stock reservation policy.

The (S1, S2) policy is employed to control the production process while the stock-

reservation policy is used to control inventory allocation among N demand classes.

Demand of class i is satisfied when the inventory level is above Ri and rejected

otherwise. An M/M/1/S queueing model is also developed to compute the expected

total cost per unit time for the production system with two production rates and two

demand classes.

Finally, a make-to-stock production system with two production rates, two de-

mand classes, Poisson demand, exponential production time and backorders are stud-

ied. The optimal control policy is shown to be characterized by three monotone switch

curves R(y), S(y) and B(x). The state space of the production system is partitioned

by the three curves into four areas, each of which corresponds to a different production

decision.

The main limitation of our models is the assumption of exponential production

times, which might be difficult to be realized in reality. However, this assumption is

important to make our problem tractable, without which the memoryless property
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is missing and the problems studied become much more complex. Nevertheless, one

direction of the future research is to relax this assumption and allow production time

to be of any kind of distribution. Another possible direction for the future research

is to consider both backorders and lost sales simultaneously for a production system

with multiple production rates and demand classes. For such a production system,

when a demand arrives, we can satisfy, backorder or reject it. This must be making

the problem much complicated.
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