INTEGRATED AIRCRAFT ROUTING AND CREW PAIRING PROBLEM

BY BENDERS DECOMPOSITION

LIANG ZHE

(B.Eng.(Hons.) NUS)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF ENGINEERING
DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE

2003

https://core.ac.uk/display/48626425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

I would like to thank Prof. Huei-Chuen Huang, my supervisor, for her many suggestions
and constant support during this research. Without her, I will not understand linear and
integer programming as today. Also, I learn the attitude of doing research from her, which
will benefit me even more.

I am also thankful to Dr. Li Rongheng and Dr. Alexander David Morton for their help
when I was struggling in understanding Benders decomposition and paper writing.

I had the pleasure of meeting Li Dong, Ivy Mok and Leong Chun How. They are wonderful
people. When we together study linear and integer programming and CPLEX, we shared
our knowledge and help each other. Mr Leong Chun How also shared with me his knowledge
on Airline planning and operations and provided many useful references when I first join the
AirCargo team. Also, I feel so lucky that I can study in ISE together with Li Dong, who
becomes one of my best friends.

Of course, I am grateful to my parents for their patience and love. Without them this

work would never have come into existence.

Finally, I wish to thank the following: Li Rujing (for her cookies); Lin Wei, Zhang
Jun (for playing badminton together); Huang Peng, Sun Hainan, Gao Fei, Liu Bin and Xu
Zhiyong (for taking lunch together).

Liang Zhe
November , 2003

i

Contents

Acknowledgments ii
Summary viii
1 Introduction 1
1.1 Traditional Airline Schedule Planning 1
1.2 Integrated Planning 3
1.3 Research Contribution 3
1.4 Organization of This Thesis 4

2 Literature Review 5
2.1 Aircraft Maintenance Routing Problem 5
2.2 Crew Pairing Problem 9
221 Dutyo 10

222 Pairing 11

2.2.3 Selected Issues 11

2.3 Integrated Planning for Maintenance Routing and Crew Pairing Problems . . 14
2.3.1 Klabjan et al. (2002) Lo 14

1l

2.3.2 Cordeau et al. (2001) 15

2.3.3 Cohn and Barnhart (2003) L. 17

3 Solving the Integrated Model by Benders Decomposition 20
3.1 Benders Decomposition Review 20
3.1.1 Benders Reformulation 21
3.1.2 Benders Decomposition Algorithm 23

3.2 Benders Reformulation for Integrated Model 24
3.3 A Feasibility Cut for the Integrated Model 26
3.4 Amended Benders Subproblem and a New Cut 27
3.5 Solving Benders Subproblem and Generating Cuts 28
3.5.1 Checking Feasibility of a Short Connect Set 28
3.5.2 Generating CUT1. 29
3.5.3 Generating MIS —CUT 29
3.5.4 Generating More UM Sets 30

3.6 Description of the Solution Procedure 33
4 Computational Issues 35
4.1 The Test Problems 35
4.2 String and Pairing Generationo 36
4.2.1 String Generation 36
4.2.2 Pairing Generation Lo 37

4.3 Issuesin Using CPLEX oo 38
4.3.1 Memory Problems in Using CPLEX 39

iv

4.3.2 Branch On Follow-ons

4.3.3 Comparison Between Different Data Types

5 Computational Result

A Small Flight Schedule For Testing

43

46

List of Tables

4.1 Parameters for duty and pairing construction

5.1 Comparison between CUT1 and MIS-CUT

A.1 Small Test Case Flight Schedule

vi

List of Figures

2.1 Time Space Network . .

2.2 Short Connect Example

vii

Summary

The traditional airline planning is usually divided in several stages and solved sequen-
tially, due to its size and complexity. The early stage results are inputs to the subsequent
stage problems. Therefore, this sequential method may result in sub-optimality in planning.
However, a fully integrated model is not tractable because of its enormous size. Nonetheless,
benefits can be gained by partially integrating elements of the planning process. This pa-
per uses the Benders decomposition to solve the integrated aircraft routing and crew pairing
problem. Reversing the conventional approach, the crew pairing is formulated as the Benders
master problem while a linear program on the selection of an aircraft maintenance routing is
considered as the subproblem. We exploit the structure of the subproblem and identify two
types of feasibility cuts. Test cases are generated to compare these two types of cuts. One of

them is found to be stronger while the other is found to be computationally more efficient.

viil

Chapter 1

Introduction

1.1 Traditional Airline Schedule Planning

The airline planning is usually divided in several stages and solved sequentially, due to its
size and complexity. Airline schedule planning consists of four major steps, which are flight
schedule design, fleet assignment, aircraft maintenance routing and crew scheduling.

The flight schedule (Phillips et al., 1991) is usually determined based on a few factors
like traffic forecasts, airline network analysis and profitability analysis. The schedule is often
built by the airline marketing department and once it is publised it will last for a number of
months.

Given a flight schedule and a set of aircrafts, the fleet assignment problem (Hane et al.,
1995) is to decide which type of aircrafts to fly the flight segments. A fleet type prescribed
by the manufacture is a particular class of aircrafts which has a given seating capacity and
fuel consumption. An airline usually has a variety of fleets. Considering factors such as

passenger demands (both point-to-point and continuing services), revenues, operation costs

etc, the fleet assignment faced by the airline is to assign a fleet to each flight of the schedule
so as to maximize the total profit.

Given a fleet assignment solution, a maintenance routing problem (Clarke et al., 1997) is
then solved to determine the individual aircraft rotation, so that enough maintenance oppor-
tunities are provided for each aircraft. There are different types of maintenance checks. The
checks differ by the amount of work to be done. For example, Federal Aviation Administra-
tion (FAA) requires A, B, C and D checks (FAA, 2002). Type A checks inspect all the major
systems and are performed frequently (every 65 flight hours). B checks entail a thorough
visual inspection plus lubrication of all moving parts, and are performed every 300 to 600
flight hours. C and D checks require taking the aircraft out of service for up to a month
at a time and are done about once every one to four years. Also, different airlines operate
slightly different maintenance regulations. The maintenance routing problem is to schedule
the most frequent maintenances, e.g. A type maintenance, whereas the less frequent, e.g. B,
C and D type of maintenances, can be incorporated into the fleet assignment problem.

The planning process of crew scheduling consists of two steps: crew pairing and crew
rostering. The crew pairing problem (Barnhart et al., 1999) is to determine the best set of
crew pairings to cover the flights. A crew pairing is a crew trip spanning one or more work
days separated by periods of rest. Each cockpit crew is qualified to fly a set of closely related
fleet types, known as a fleet family. Therefore, a crew pairing problem is solved for those
flights assigned to the corresponding fleet family.

The next step, called a rostering problem (Gamache and Soumis, 1998), is to construct
personalized monthly schedules (rosters) for crew members by assigning them pairings and

rest periods.

1.2 Integrated Planning

As we can see, the solutions of early stage problems are inputs to the subsequent stages.
Therefore, solving these planning problems sequentially can lead to sub-optimality. How-
ever a fully integrated approach to the airline planning process is not tractable, due to its
enormous size and complexity. Nonetheless, benefits can be gained by partially integrating
elements of the planning process. For example, a fleet assignment problem can be solved
incorporating with aircraft routing, crew scheduling or passenger flow considerations.
Particularly in this thesis, we consider the aircraft routing problem together with the
crew pairing problem. One restriction on a valid pairing is that two sequential flights cannot
be assigned to the same crew unless the time between the flights is sufficient (known as
minimum sit time). This minimum sit time can be shortened if the crew follows the plane
turn, which is called a short connect. Even though the difference between the minimum
turn time and the minimum sit time is small, using more short connects in planning can
significantly improve the robustness of the crew scheduling. This is because during the
aircraft disruption, it is possible to absorb the delay in the crew assignment if initially the

crew is assigned to follow the aircraft turn.

1.3 Research Contribution

In this thesis we solve the integrated planning problem by adopting the extended crew
pairing model and approach it by the Benders decomposition. The crew pairing problem is
considered as the master problem while the selection of a maintenance routing out of the

collection of all maintenance routing solutions, which can be treated as a linear program, is

solved as a subproblem. We provide insights into the subproblem and identify two types of
feasibility cuts. One of them is a cut generated from a minimally infeasible short connect
set, proposed by Cohn and Barnhart (2003). The other is a cut generated by a maximal
short connect set. The first type of cuts is found to be stronger. However, in solving the

integrated problem it is found to be less efficient computationally.

1.4 Organization of This Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we give a literature
review on the related airline planning problems. Also related models are presented in this
chapter, e.g. the crew pairing problem model, the string model for the aircraft maintenance
routing problem and the extended crew pairing model. In Chapter 3, we give the framework
for the Benders decomposition and identify two types of feasibility cuts. Computational
and implemental issues are addressed in Chapter 4. Chapter 5 concludes the thesis with a
comparison study on the effectiveness and efficiency of solving the integrated problem by the

two types of feasibility cuts.

Chapter 2

Literature Review

In this chapter, we first list the previous work done on aircraft maintenance routing and crew
pairing problems. Then we briefly describe three previous research works on the integrated

planning of aircraft maintenance routing and crew pairing problems.

2.1 Aircraft Maintenance Routing Problem

In Figures 2.1, a simple time space network is shown. The schedule contains 2 cities and 12
flights everyday.

In this network, the two horizontal lines represent the time at stations. The vertices of
the network are the flight events on the stations (arrivals and departures of aircraft). The
edge of the network comprised of the flight arcs and the ground arcs. A flight arc represents
a flight between two stations. The ground arcs connect two subsequent flight events on an
airport. We need to make time line a cycle so that the schedule can be circulated (represented

by the dash line).

End of Day

Figure 2.1: Time Space Network

After a fleet assignment problem is solved, the time space network for each fleet type is an
FEulerian digraph, i.e. each node has its indegree equal to its outdegree and it is connected.
Clarke et al. (1997) proposed to solve the aircraft maintenance routing problem by forming
an Fuler tour in this network, in which all the service violation paths are eliminated. An
Euler tour is a cycle that includes all the arcs exactly once. A service violation path is a
path with length in time longer than the specified service period. By excluding the service
violation path in the Euler tour, the maintenance constraints are satisfied. The objective is
to maximize the benefit derived from making specific connections, which referred as through
value. The problem is solved using the Lagrangian relaxation and subgradient optimization.

Boland et al. (2000) and Mak and Boland (2000) proposed to solve the aircraft main-
tenance routing problem by modelling it as an Asymmetric Travelling Salesman Problem
with Replenishment arcs (RATSP). A network is built for solving the aircraft maintenance
routing problem by RATSP, where nodes represent flights, arcs represent pairs of flights that
may be connected in sequence and replenishment arcs represent maintenance connections.
In Boland et al. (2000), authors solved the RATSP using a branch-and-bound algorithm.

Mak and Boland (2000) solved the problem using three different types of heuristics. One is a

simulated annealing algorithm and the other two are based on the Lagrangian relaxation of
different constraints (subtour constraints and weight limit violation constraints). The result
shows that the algorithm based on simulated annealing performs well overall.

In Barnhart et al. (1998), authors proposed a string model to solve the aircraft main-
tenance routing problem. A string is a sequence of connected flights that begins and ends
at maintenance stations, satisfies flow balance and is maintenance feasible. The string may
begin and end at different maintenance stations. The model formulates the problem as a set

partitioning problem with side constraints. Formally, the model is given as below.

(MR) mianTzr (2.1)
reR
subject to
 apzm =1 VfeF (2.2)
reR
Z z+ g, — Z z—gr=0 VYneN (2.3)
r ends at n r starts at n
Y vt Y gf <K (2.4)
reRM nezM
d.€{0,1} VreR (2.5)
gr,g. >0 VneN (2.6)
where

F': the set of flights

R: the set of feasible route strings

¢t the cost of route string r

ayp: assuming value 1 if route string r covers flight f and 0 otherwise

z+ decision variables, assuming value 1 if route string r is included in the solution and 0

otherwise

N: the set of nodes representing points in space and time at which route strings begin or

end

g, and g': the ground arc variables capturing the number of aircrafts on the ground at
station s immediately prior to and immediately following time ¢, given a node n that

represents time ¢ at station s

RM: the set of route strings spanning time M, which is an arbitrary time known as the

countline

v-: the number of times string r crosses the countline M

ZM: the set of nodes with corresponding ground arcs g spanning the countline

K: the total number of available aircrafts

The objective function (2.1) minimizes the cost of the chosen route strings. The constraints
set (2.2) are covering constraints, which state that each flight must be included in exactly
one chosen route string. The constraints set (2.3) are balance constraints. Constraint (2.4)
makes sure that the total number of aircrafts in use at time M does not exceed the number
of aircrafts in the fleet. Consequently, the number of aircrafts does not exceed the fleet size
at any time because of constraints (2.3). Constraints (2.5) ensure that the string decision
variable are binary. Thus the integrality of the ground arc variables can be relaxed as denoted

in (2.6).

This problem is solved using a branch-and-price algorithm. It is noticed that the time
between any two sequential flights in the string can not be less than the minimum turn time.

This time is used for aircrafts to change gate, clean up and so on.

2.2 Crew Pairing Problem

The airline crew pairing problem is well studied and is often modelled as a set partitioning

problem (Anbil et al., 1992, Barnhart et al., 1999). The model is formulated as follows

(CP) minz CpYp (2.7)
peP
subject to
Y Spyp=1 VfEF (2.8)
peEP
y, € {0,1} VpeP (2.9)
where

P: the set of feasible pairings

cp: the cost of pairing p

dfp: assuming value 1 if flight f is included in pairing p and 0 otherwise

Yp: assuming value 1 if pairing p is included in the solution and 0 otherwise

The objective function (2.7) minimizes the cost of the chosen set of pairing. The constraints
(2.8) are the covering constraints and (2.9) are the integrality requirement.
The payment structure and the working rules for the airline cockpit crew is complex. In

US airlines, crews are mainly paid for the time they spend in flying; whereas in some other

airlines, the crew pay structure may not be exactly the same. In this thesis, we follow closely

with the US pay structure as it is readily available from the journal articles.

2.2.1 Duty

A pairing consists of several duties. A duty is a sequence of flights that can be flown by a
single crew over the course of a work day. There are several constraints to be satisfied when
a duty is constructed. The most obvious constraint is that flights must be sequential in space
and time. The time between any two sequential flights can not be less than a constant time
duration, which is known as minimum sit time. Also, there is a mazimum duty time (also
know as mazimum duty elapsed time) limitation for a duty. The total elapsed time of a duty
cannot be more than the maximum duty time. Another strict regulation governs the total
number of flying hours (known as block time) that a crew can fly in a single duty period.
The cost of a duty is usually the maximum of three quantities. The first quantity is the
block time. The second is a fraction of the duty elapsed time. The third one is a minimum

guaranteed cost. Formally, the cost of a duty d, denoted as ¢4, can be expressed as follow:

cq = max{7y x elapse, fly, mg} (2.10)

where 74 X elapse is a fraction of the elapsed time, fly is the block time of the duty, and mg
is the minimum guarantee cost. It should be noticed that the start time of a duty is usually
one hour before the departure time of the first flight (this one hour duration is known as
briefing time) and the end time of a duty is usually 15 minutes after the arrival time of
the last flight (15 minutes is known as debriefing time). The duty elapsed time is the time

duration between the duty start time and the duty end time.

10

2.2.2 Pairing

A pairing consists of a sequence of duties and it starts and ends at the same crewbase. In
general, crews spend one to several days away from their homebase. A few constraints have
to be considered when a pairing is built. First, a pairing’s first duty must begin from one
of the crewbases, hence it must end at the same crewbase. Also each duty must begin at
the same airport where the previous duty ends. Similar with the duty, a pairing cannot last
longer than a mazimum elapsed time, also known as time-away-from-base (TAFB). Another
very complicated rule is the 8-in-24 rule, which is imposed by the FAA (FAA, 2002). The
basic idea of this rule is if a pairing contains more than 8 flying hours in any 24 hours period,
then extra rest is required.

Similar with the duty cost, the cost of a pairing is the maximum of three values. The
first value is a fraction of the total elapsed time of a pairing. The second value is the sum
of the costs of the duties and the third one is called minimum guaranteed cost per pairing.
The pairing cost is formally expressed as below:

¢, = max{71, x TAF B, Z ca,ndp x mg}

dep

where ndp is the minimal number of duties per pairing, 7, is the fraction constant, and

TAFB is the elapsed time of a pairing.

2.2.3 Selected Issues

In this section we discuss a few implemental issues.

11

Pairing Enumeration

Since the cost structure and the constraints are very complicated, pairings are often enumer-
ated before a model is solved. Two different networks are commonly used in enumerating
the crew pairings.

The first network is called duty network (Vance et al., 1997). Duties are first generated
based on the daily schedule. Then a duty network is constructed. Within this network,
nodes represent duties; arcs represent the possible connections between duties. Each duty is
repeated as many times as the number of maximal calender days allowed in a pairing. Two
duties can be connected only when the arrival airport of the first duty is the same as the
departure airport of the second duty and the time in between is a legal overnight rest. It
should be noted that no repeated flight can appear in a pairing in a daily problem. This
can be partially done by ensuring no connects between any two duties if they contain a
common flight. Also, a source and a sink node are included in the network. The source node
is connected to duties that originate at a crewbase. The duties that end at a crewbase is
connected with the sink node.

The second network is known as flight network. Each flight is duplicated as many as the
maximal days allowed in a pairing. In this network, nodes represent the flights and arcs
represent the possible connections between flights. Similar to the duty network, a source
node and a sink node are included in the flight network and connected with flights which
start and end at the same crewbase. Different from the duty network, no duty rules and over
night rests information can be inherited in the flight network. However, the flight network is

good for a large schedule when constructing pairings. This is because the number of duties

12

increases exponentially with the number of flights in the schedule. Consequently, the duty
network is much more complicated than the flight network for a large schedule.

The pairing is constructed by a depth-first search on the duty or flight network. The
search is to extend partial pairings or backtrack. However, when using a flight network, more

checks are needed to ensure that both duty rules and pairing rules are satisfied.

Branching Rules

The number of pairings grows exponentially with the number of flights. Therefore, for
some large flight schedule, we cannot list out all the pairings and branch-and-price is often
employed to get a good crew pairing solution. In the cases even though we can list down all
pairings, it is still critical to engage good branching rule in the branch-and-bound solving
procedure. When branching in solving the crew pairing problem, a useful technique referred
as branching on follow-ons is often employed. This branching rule is motivated by a general
rule for set partitioning problems developed by Ryan and Foster (1981). It is based on
the observation that given a fractional solution to the LP relaxation of a set partitioning
problem, there must exist two columns whose associated variables are fractional such that
they both contain coefficients of one in a common row r and there exists another row s where
one column has a coefficient of one and the other has a coefficient of zero. This fact leads to
a general branching rule where a pair of rows r and s are required to be covered by the same
column on one branch and by different columns on the other. Specifically, when solving the
crew pairing problem, we can branch by requiring that two flights appear consecutively in
pairings at one branch; in the other branch, these two flights cannot appear consecutively in

any pairings. Here, we refer flight pair r, s as a follow-on.

13

2.3 Integrated Planning for Maintenance Routing and

Crew Pairing Problems

Three papers were found to solve the integrated planning for the maintenance routing and
crew pairing problems, which address the effect of short connects. They are discussed below

in more details.

2.3.1 Klabjan et al. (2002)

Klabjan et al. (2002) are the first to address the impact of short connects on the crew
pairing problem. They demonstrate that by considering the short connects in solving the
crew pairing problem, the cost is significantly reduced from the traditional sequential model.

For example, in figures 2.2, there are 4 flights events in a station. If a minimal sit time
is 45 minutes and not short connects are allowed, we can only have a crew connect A — D.
Therefore, we need another crew ready before 8:37 for flight C. However, if we allow short
connects in the crew schedule, we could have crew connects A — C and B — D. This could
save the cost potentially.

In Klabjan et al. (2002), the planning problems are solved in reverse order. They first
solve the crew pairing problem assuming all the short connects are valid. A set of constraints
are added to the original crew pairing model to ensure that the number of the aircrafts
used at any short connection period is not more than the fleet size. Then they solve a
maintenance routing problem to incorporate the short connects selected in the crew pairing
solution. This approach can lead to maintenance infeasibility. However, in practice they

find feasible solutions for some hub-and-spoke flight networks using this approach. As long

14

8.00 820

v

837 9.00

Figure 2.2: Short Connect Example

as the maintenance routing problem is feasible, the solution for the crew pairing problem
is optimal for the integrated problem. This method requires no more computational effort
than the traditional sequential method.

Here, the aircraft maintenance routing problem is considered to be a feasibility problem,
since no costs are involved. This is reasonable because the running cost of aircraft is more
or less determined at this planning stage, which takes place after the schedule design and

fleet assignment stages.

2.3.2 Cordeau et al. (2001)

Cordeau et al. (2001) present a basic integrated model for the maintenance routing and crew
pairing problems, which guarantees the maintenance feasibility. The maintenance routing
cost is explicitly considered in this model. The authors assume a dated planning horizon in

which the set of flights may vary from day to day. Here, we modify their model slightly to

15

cater for daily problems. The basic integrated model is formulated as below.

(BIM) mianpyp+Zcrzr (2.11)

peP reER
subject to
Y Spyp=1 VfEF (2.12)
peP
Y apzm =1 VfeF (2.13)
reR
Z 2+ g, — Z z—gr=0 VYneN (2.14)
r ends at n r starts at n
+
S ovmt+ Y g <K (2.15)
reRM nezM
> Dz =Y npyp, >0 VteT (2.16)
reR peP
d, €{0,1} VreR (2.17)
g ,97>0 YneN (2.18)
yp €{0,1} VpeP (2.19)

where besides the notations defined in section 2.1 and 2.2,

T: the set of all possible short connects

U4+ assuming value 1 if string r contains short connect ¢ and 0 otherwise

Nips assuming value 1 if pairing p contains short connect ¢ and 0 otherwise

Objective function (2.11) minimizes the cost of chosen pairings and strings. Constraints
sets (2.12) and (2.19) are the same as in CP model. Constraints sets (2.13)-(2.15), (2.17) and
(2.18) are the same as in MR model. The two models are linked by constraints set (2.16),
which ensure that a short connect is selected in a crew pairing only when it appears in the

maintenance routing solution.

16

Here, crew pairings are constructed with all potential short connects allowed. This model
results in a large-scale integer program. The model is solved using a Benders decomposition
approach coupled with a heuristic branching strategy, in which the maintenance routing is

considered as the master problem while the crew pairing as the subproblem.

2.3.3 Cohn and Barnhart (2003)

Cohn and Barnhart (2003) proposed an extended crew pairing model integrating crew pairing
and maintenance routing decisions. As in Cordeau et al. (2001), to ensure the maintenance
feasibility, the two decisions are linked by short connect constraints. The same constraint
appears in Klabjan et al. (2002), but their model does not consider the maintenance routing
cost explicitly. The decision on the maintenance routing is captured as a problem of choosing

one out of all the feasible maintenance routing solutions. Formally, the model is formulated

below.
(ECP) mianpyp (2.20)
peEP
subject to
Y bpyp=1 VfEF (2.21)
peEP
> Buwi— Y Yy =0 VteT (2.22)
seS peEP
d a=1 (2.23)
seS
zs€{0,1} VseS (2.24)
vy, €{0,1} VpeP (2.25)

where the additional notations are

17

S: the set of feasible maintenance routing solutions

Bist assuming value 1 if short connect ¢ is included in maintenance routing solution s and 0

otherwise

Ts: assuming value 1, if maintenance routing solution s is chosen and 0 otherwise

Without constraint sets (2.22)-(2.24), this problem is simply the crew pairing model. Con-
straints (2.23) and (2.24) ensure that exactly one maintenance routing solution is chosen.
Constraints (2.22) ensure that a short connect is used in a pairing only when it is included in
the selected maintenance routing solution. It is observed that the binary constraints (2.24)
can be relaxed and replaced by a set of non-negative constraints. Hence the model becomes
a mixed integer program and requires fewer integer variables than the basic integrated model
used by Cordeau et al. (2001). In addition, its linear programming relaxation is tighter.
They further observe that the collection of all the maintenance routing solutions can be
reduced to a much smaller set containing only those distinct maintenance routing solutions
that represent the unique maximal short connect sets (UMs). Given a set of maintenance
solutions which contain the same set of short connects, it is observed that these maintenance
solutions have the same impact on the crew pairing decisions. Hence, all the maintenance
solutions which contain the same short connect set can be represented by the associated
short connect set. This is referred to as uniqueness. If a maintenance solution has a short
connect set A and another maintenance solution has a short connect set B, where B C A,
then the choice of short connects to be used in crew pairings provided by A is more than B.
Thus, it suffices to include only the first maintenance solution A. In other words, it suffices

to include maintenance solutions representing only mazimal short connect sets.

18

Cohn and Barnhart (2003) proposed two approaches to solve the integrated problem. The
first approach solves a modified string model for the aircraft maintenance routing problem in
order to get a set of UMs (may not be the complete set of all the UMs). Then the extended
crew pairing model is solved by including these UM sets as the maintenance solutions.
This can be viewed as a restricted version of the complete problem, since only a subset
of the maintenance solution variables are involved. In fact, the traditional way of airline
schedule planning can be viewed as a special case, where only one maintenance solution is
provided which may or may not represent a UM. Thus, a feasible solution by this approach
is guaranteed to be at least as good as that found using the traditional sequential approach.

For the second approach, the problem is solved as a constrained crew pairing model.
First, a crew pairing problem is solved with all potential short connects permitted. If the
short connects used in the pairing solution are maintenance feasible, the optimal solution
for the integrated model is obtained. Otherwise, a cut is added to eliminate the current
infeasible crew pairing solution and the solution procedure continues. This cut is generated
by identifying a minimally infeasible short connect set (MIS) of the current pairing solution.
Formally, given a crew pairing solution P with the associated short connect set 7', for a set
T’ to be minimally infeasible, it must satisfy that 7" C T and any proper subset of T" is
maintenance feasible while itself is not. The cut is written as below.

(MIS—CUT) Y > mpyp < |T'| -1 (2.26)

pEP T’

This cut prohibits the crew pairing solution containing 7”. Here, Cohn and Barnhart want
maintenance infeasible short connect sets of 7' to be as small as possible, so that a minimal

number of cuts are needed in solving the constrained crew pairing problem.

19

Chapter 3

Solving the Integrated Model by

Benders Decomposition

The ECP model can be viewed naturally as a two-stage decision problem to be solved by the
Benders decomposition (Benders, 1962). In this chapter, we first review the Benders decom-
position, then different cuts are proposed for the ECP model. We detail the methodology of

solving the Benders subproblem and lastly a Benders algorithm is given.

3.1 Benders Decomposition Review

Consider the following mixed integer program.

z = maxcx + hy (3.1)

20

subject to

Ar+ Gy <b (3.2)

reXCZl,ye R, (3.3)

3.1.1 Benders Reformulation

Here, we view the integer variables x as complicating variables. Suppose = have been fixed,

denoted as Z, the original problem becomes a linear program listed below.

LP(z) Zpp(z) =max{hy: Gy <b— Az,y € R} (3.4)

The dual problem is

min{u(b — Az) : uG > h,u € R} (3.5)

We can characterize whether LP(Z) is infeasible or has a bounded optimal value or has
an unbounded optimal value by looking its dual polyhedron (Nemhauser and Wolsey, 1988).
Define {u* € R : k € K} to be the set of extreme points of @ = {u € R : uG > h} and
let {07 € R : j € J} be the set of extreme rays of {u € R : uG > 0}. If Q # 0, then
{v/ € R : j € J} is in fact also the set of extreme rays of Q. It is noted that the extreme

points set {u} and extreme rays set {v7} are independent of value Z.

e When @ # (), the dual problem (3.5) can have an optimal objective value or be un-

bounded.

— If (3.5) has a finite optimal objective value, v/ (b— Az) > 0 for all j € J. Therefore,

Z1p(Z) = mingex u*(b— AZ) < oo, which means LP(Z) has and optimal solution;

21

it also can be written as

Zip(Z) < uF(b— Az) for all k € K

Furthermore, the above constraint is valid for any feasible z, therefore, we can

have cuts

Zrp(x) < uF(b— Azx) for all k € K

— if (3.5) is unbounded, v/ (b — Az) < 0 for some j € J, therefore, Z;p(z) = —oc0.
This means the original LP(Z) is infeasible. Hence, we need to have cuts as below

to cut away this infeasibility.

v/(b— Az) >0 forall j € J

e When @ = (), the dual problem (3.5) is infeasible. Consequently, LP(Z) can be either

infeasible or unbounded.
— When v/ (b — Az) > 0 for all j € J, Zyp(Z) = co. LP(Z) is unbounded in this
case. Therefore, the original problem is unbounded.
— Otherwise, Z;p(Z) = —oo. LP(Z) is infeasible in this case, which is discussed

before.

Formally, the original MIP can be stated as follows when @ # 0.

z = max(cz + minu* (b — Az)) (3.6)
x keK

v(b— Az) >0 forall j€J (3.7)

reX (3.8)

22

The original MIP can be reformulated as following.

Z = maxn (3.9)
n<cr+u(b—Ax) forkec K (3.10)
v/(b—Az) >0 forjeJ (3.11)
r€X,neR (3.12)

We call (3.9)-(3.12) the Benders master problem; fixed the value of z, (3.4) and (3.5) are
the primal and dual form of the Benders subproblem respectively. Here (3.10) refers to
optimality cuts and (3.11) refers to feasibility cuts. In general, there are enormous number
of constraints, but only a small number of constraints are active in the optimal solution.

Therefore, it is natural to generate constraints on an as needed basis.

3.1.2 Benders Decomposition Algorithm

The Benders relaxed master problem is defined by (3.9)-(3.12) with only a subset of the

constraints included. The Benders decomposition algorithm is as below.

Step 1. Find an initial g € X. Set the lower bound LB < —oo and upper bound UB «+

—+00

Step 2. For current z;, solve the dual of the Benders subproblem.

2.1 If the dual subproblem has an optimal solution, we find a feasible solution to the
primal subproblem. Update the lower bound with the current solution if needed.
If UB — LB < ¢, stop. Otherwise, add a new constraint n < cz + u*(b — Ax) to

the relaxed master problem. Go to Step 3.

23

2.2 If the dual subproblem is infeasible, the primal subproblem can be unbounded
or infeasible. If the primal subproblem is unbounded, the original problem is
unbounded, and the algorithm terminates. If the primal subproblem is infeasible,

go to Step 2.3.

2.3 If the primal subproblem is infeasible for current z;, add the feasibility cut v/ (b —

Az) <0 to the relaxed master problem. Go to Step 3.

Step 3. Reoptimize the relaxed master problem. If there is no feasible solution, stop. The
original problem is infeasible. If a new solution x; is obtained, set the optimal value

to be the new upper bound. If UB — LB < ¢, stop; otherwise, go to Step 2.

By using this algorithm, we add a constraint to the Benders relaxed master problem for
each iteration. Hence the upper bound provided by the relaxed master problem (Step 3)
decreased monotonically; whereas the value of the feasible solution at each iteration (lower

bound procedure in Step 2.1) may not increase monotonically.

3.2 Benders Reformulation for Integrated Model

Now, let’s consider the integrated model (2.20)-(2.25). We view the crew pairing problem
as the first-stage problem, which involves only variables y,. The selection of a maintenance
routing solution is viewed as the second-stage problem and can be expressed as a linear
program which involves only variables x. It is interesting to note that this approach reverses
the traditional airline planning order.

Given a first-stage pairing solution P with the associated short connect set 7', the Benders

24

subproblem (BS) becomes a feasibility problem as follows.

(BS) min0 (3.13)
subject to

Y Burs>1 VteT (3.14)

seS
> Bz, >0 YteT\T (3.15)

seS
> =1 (3.16)

ses

s >0 VseS (3.17)

It is note that we can removed the redundant constraints (3.15), since they are always

feasible. The dual of this subproblem (DBS) can be expressed as

(DBS) maxz e — w (3.18)
teT
subject to
Zﬁts:ut + Z Brspu <w Vs€S (3.19)
teT teT\T
>0 VteT (3.20)
w unrestricted (3.21)

Since gy e\ 7 18 the dual constraints for redundant constraints (3.15), piy g = 0 is always
feasible. It is not difficult to see that solution (y; = 0,w = 0),c7 satisfies the dual constraints
(3.19). Given a first-stage crew pairing solution P, if its Benders subproblem is feasible, an
optimal solution for the integrated problem is found. Failing this, an extreme ray for the
dual subproblem can be generated to feed back to the first stage to add in a feasibility cut

to cut away the current first-stage solution.

25

The Benders master problem for ECP can be described as follows.

min Z ColYp (3.22)

peEP
subject to
> Spyp=1 VfEF (3.23)
peEP
Z,ui Zntpyp <w' Viel (3.24)
teT peP
y, € {0,1} VpeP (3.25)

Here, (1%, w")ser is an extreme ray of the polyhedron defined by (3.18)-(3.21) and I is the

index set of the extreme rays.

3.3 A Feasibility Cut for the Integrated Model

If the BS is infeasible, then a solution defined by a minimally infeasible subset 7" of T' can
induce an extreme ray of the DBS. As mentioned in Section 2.3.3, a minimally infeasible
set is a minimal set of short connects such that removing any of its elements makes the set
maintenance feasible. The induced extreme ray from 7" is given by (u, = 1, for t € T",
pe =0, fort € T\T', @ =|T"| —1). The feasibility cut generated from this extreme ray is

(MIS—CUT) Y > mpy, < |T'| -1

pEP teT’

This is exactly the cut (2.26) proposed in Cohn and Barnhart (2003).

26

3.4 Amended Benders Subproblem and a New Cut

With artificial variables {a;},c7 added in constraints (3.14), the Benders subproblem can be

reformulated as

(SP) minz a (3.26)

teT
subject to
> Burita,>1 VteT (3.27)
seS
> =1 (3.28)
seS
s >0 VseS§ (3.29)
>0 VteT (3.30)

Define T} as the short connect set contained in maintenance routing solution s. The objective

here is to minimize the [T\ T,|. The corresponding dual is

(DP) max) ju—w (3.31)
teT
subject to

Zﬁts,ut S w Vse S (332)

teT
w>0 VteT (3.33)
w<l VvteT (3.34)
w unrestricted (3.35)

Finding the optimal value of SP is equivalent to finding a maintenance routing solution s

such that it has the maximal number of short connects from 7. A cut generated from this

27

solution can be captured as

Ccury) > gy, < TN T (3.36)

pEP teT

Clearly when the BS is infeasible, |[Ts N T| < |T] — 1 < |T|. the above constraint gives a
feasibility cut to cut away the current first-stage solution. Also, we know C'UT'1 is stronger

than the cut

Zzntpyp <|T| -1

pEP teT

which is a weaker cut proposed in Cohn and Barnhart (2003).

3.5 Solving Benders Subproblem and Generating Cuts

In order to solve the integrated model, we need to solve two types of problems repeatedly.
One problem is to ascertain whether a set of short connects is maintenance feasible. The

other is to identify a feasibility cut in the form of CUT1 or MI1S — CUT.

3.5.1 Checking Feasibility of a Short Connect Set

To ascertain whether a short connect set 7' is maintenance feasible, we can solve MR (defined
by (2.1)-(2.6)) by assigning each route string r with a cost —c,, where ¢, = |T,, N T|. Here,
T, is the short connect set contained in the routing string . Then the short connect set is

maintenance feasible if MR has an optimal value of —|T|.

28

3.5.2 Generating CUT'1

To generate a CUT1, we have to find a maintenance routing solution 5 so that [T N T is
as big as possible. At the same time we would like § to represent a unique maximal short
connect set so that it is non-redundant in S. This can be achieved by solving an MR with a
modified route string cost defined by —cl, x V —¢2,., where cl, = [T, NT| and 2, = |T;.\ T|.
V is a constant penalty value such that V' > |T|. Let us call this modified problem as MMR.

It is interesting to note that checking the maintenance feasibility can be viewed as a
special case of MMR. That is, a short connect set is maintenance feasible only when its
associated MMR has a value less than or equal to —|T'| x V. Hence we can enlarge the scope

of checking the feasibility to obatin a CUT'1 by solving an MMR only once.

3.5.3 Generating MIS — CUT

Assume that the short connect set T is not maintenance feasible. Denote by U the set of
the maintenance routing solutions we have found up to the current iteration. Here, U is a
subset of S and each maintenance routing solution in U represents a unique maximal short
connect set. As T is maintenance infeasible, it has a subset which is minimally infeasible.

To identify it, we perform the following steps:

Step 1. Find a subset of 7', denoted by 7", that is not contained in any of the maintenance

routing solutions in U.

Let)\, be a vector representing 77, i.e., A, = 1 when t € T" and A\, = 0 when t € T\ T".

29

Then T” can be found by solving the following program (Cohn and Barnhart 2003):

min Z At (3.37)

teT
subject to:
Y AM=1VseU (3.38)
te(T\Ts)
N €{0,1} VteT (3.39)

Step 2. Check whether 7" is maintenance infeasible by solving an MMR. If T” is found to
be maintenance infeasible, we have found a minimally infeasible set and the steps stop.
Otherwise, follow the approach described in the following section to generate a new
UM not in U and we can add this new solution to U and return to Step 1 to repeat

the searching.

3.5.4 Generating More UM Sets

The quality of UM sets as well as the speed of the generation procedure are critical in solving
ECP using MIS cuts. We are interested in finding those UM sets which can cover the T as
much as possible, so that we can identify the MIS of T quickly. Thus, we want to generate
UM sets such that short connects of it appearing in T as many as possible. Then we attend
to generate UM containing short connects in 7'\ T as many as possible. In particular, we
exploit two approaches to generate UM sets for identifying MIS. In the first approach we
generate new UM sets by changing the string cost of MMR. In the second approach we add

side constraints to MMR in order to produce new UM sets.

30

Generating New UM sets By Changing String Cost

We can generate new UM sets by changing the value of ¢, which is similar to what we do is
Section 3.5.2. This problem can be viewed as a multiple objective problem. The objectives

are listed below.

1. The first objective is to maximize the number of short connects in 7' but not in any

UM sets yet;

2. The second objective is to maximize the number of short connects in T’

3. The third objective is to maximize the number of short connects not appearing in any

UM sets yet.

4. The last objective is to use as many short connects as possible, thus a UM set is

generated.

The importance of the objectives decreases sequentially. Therefore, we set the value
¢ = —cl, x V3 — 2, x V? — 3, x V — c4,, where cl,, ¢2,, ¢3, and c4, are the number
of the short connects contained in r for the 4 categories listed above respectively. The cost
coefficients of case 1 and 2 dominiating the cost coefficients of cases 3 and 4. Hence, this
MMR tends to search UM of T intensively. The cost of 1 and 3 drive this MMR to use new
short connects, in other words, it assures diversity of short connects used in the maintenance

solution. The cost of case 4 makes sure the solution is UM.

31

Generating New UM sets By Adding Constraints

We can also generate new UM sets by solving an MMR with a constraint forcing a mainte-
nance solution to contain at least one short connect ¢ such that t € T\ Ts. Formally, the

constraint is listed below.

(MC1) Y Y by >1 VseS

tGT\Tg reR

On the other hand, we want to search UM over T diversly so that each short connect has the
potential to be included in S. This is done by solving MMR and forcing the maintenance
solution to contain at least one short connect ¢ such that t € T\ (T \ Ts). Formally, the

constraint is listed below.

(MC2) > D> Oyzn>1 VseS

teT\(TNTs) TER

Since |T \ (T \ Ts)| can be large, the possible MC2 can be much more than MC1. We can
eliminate the number of MC2 without losing diversity of the short connects by modifying it

as below:

(MC?2) ZHtrzr >1 VseS

teT\(,eg TNTs) TER

Constraints set MC1 ensure that for every new solution s’, Ty N T is a different UM over T
MC2 (MC2’) ensures that Ty is a different UM of 7. By adding these side constraints, it is
possible to generate n UM sets in at most the amount of time it takes to solve n MMR. In
fact, it may take significantly less time, because at each iteration we can use the previous
iteration’s maintenance routing solution as an advanced start.

In order to get a MIS from T, we keep on adding constraints MC1 and MC2 (MC2’) to

MMR until we find one. If we get a new 7" which is maintenance infeasible, we need to delete

32

the previous constraints and then add a different set of constraints based on 7" in order to
get another MIS. This is more complicated comparing with changing the cost of strings,
since in the later we do not change the problem matrix when 7' changes to 7'. Hence, in
the real implementation, we use the later approache to generate more UM sets. In fact, we
dramatically reduce the number of the UM sets required to produce the MIS comparing with
the approach used in Cohn and Barnhart (2003). In an example, we reduced the number of
the UM sets required for generating a MIS of size 3 from 9 to 3. In another example, the

number of UM sets needed for a MIS of size 5 is reduced from over 100 to only 7.

3.6 Description of the Solution Procedure

The solution procedure for the integrated problem is summarized below.

Step 1. Initialize the relaxed master problem, defined by (3.21)-(3.23), with I = (). In other

words, all short connects are assumed to be feasible crew connections.

Step 2. Solve the current version of the relaxed master problem. The optimal objective
value provides an updated lower bound on the integrated problem. Let T be the set

of short connects used in this solution.

Step 3. Test the maintenance feasibility of T by solving an MMR. If T is maintenance
feasible, an optimal solution is found and the procedure stops. Otherwise, proceed to

the next step.

Step 4. Use the result from MMR solved in Step 3 to generate a CUT1. Alternatively an

MIS-CUT can be generated by following the steps described in Section 3.5.4.

33

Step 5. Add the newly found cut to the relaxed master problem and return to Step 2.

If needed, the algorithm can always provide a feasible solution to the ECP model at
any iteration by solving a restricted ECP model using the current known UM sets as the
maintenance routing variables. In order to get a good solution quickly, we can generate more
UM sets by applying techniques introduced in Section 3.5.4 after we solve the relaxed master

problem in the first iteration.

34

Chapter 4

Computational Issues

In this chapter we discuss several issues when we solve the ECP model.

4.1 The Test Problems

Experiences seem to suggest that it is laborious to identify a minimally infeasible short
connect set (Cohn and Barnhart, 2003). At the other extremes, sometimes the initial crew
pairing solution may turn out to be maintenance feasible (Klabjan et al., 2002). The solving
time is generally quite long even for a medium size problem. Thus, we need an efficient way
in order to test the performance of the different cuts.

We generate a few test cases. The design of these test cases highlights several factors
that can affect the structure of the optimal solutions and the efficiency of the algorithms.
These factors include: schedule network structure; pairing cost and the problem size.

These data are based on schedules from a commercial airline. Every set of the test cases

is extracted from a real airline schedule and contains a single hub and a few spokes. However,

35

since the number of the short connects in the real schedule is small, we manually create more
short connects so that more MIS are contained in the schedule. We first aggregate the nodes
on the schedule (Hane et al., 1995). The departure and arrival times at the aggregated nodes
are then adjusted so that more short connects are produced. Therefore, the same set of test
cases contain the same time-space network for both crew and aircraft. As an example, a
small schedule for the testing purpose is listed in Appendix A.

For each flight schedule, we generate 20 different test cases by perturb every pairing cost
randomly (2.5%) using different sequences of seed numbers. Therefore, the optimal solutions

may be different for each of the test cases although they share the same network.

4.2 String and Pairing Generation

Since the schedule we are dealing with is small, we generate all the strings and pairings and

store them in the memory during the computer solving procedure.

4.2.1 String Generation

Before the string generation, we need to build up the flight network. We first duplicate the
flights as many times as the maximal number of calender days allowed for a feasible string.
In this flight network, nodes represent the flights, arcs represents the possible connections

between flights. Two flights are connected if the following constraints are satisfied.
e Previous flight’s arrival station = Next flight’s departure station

e Previous flight’s arrival time + minimal turn time < Next flight’s departure time

36

e Previous flight’s arrival time + one day > Next flight’s depature time

Also, we introduce a source node and a sink node into the network. The source node connects
with those flights departing from the maintenance stations. The sink node connects with
those flights arrival at the maintenance stations.

In order to generate strings, we perform a depth first search on the flight network. A few
constraints are considered when searching the network, e.g, a string must start and end at
maintenance stations; the duration of a string must be no longer than the maximal duration

between two maintenances; no flights are allowed to appear more than once in a string.

4.2.2 Pairing Generation

As we discussed in Section 2.2.3, there are two different approaches to generate pairings,
in particular, by the flight network or by the duty network. The advantage of the duty
network is that some rules can be inherited in duties. Consequently, during the depth first
search on the duty network, less constraints need to be considered. Whereas more rules have
to be satisfied when searching through the flight network, which requires more computer
programming efforts. The advantage about using the flight network is that it can handle a
much larger schedule. Since our schedule is small, we choose to use the duty network.

We first generate all the duties with duty rules considered, e.g. maximal duty duration
regulation (FAA, 2002). Duties are stored in the memory. The cost of a duty is computed
on the fly. After the duty generation, we duplicate all the duties as many as the maximal
number of calender days allowed in a pairing. Before constructing pairings, we build a duty

network. In this network, nodes represent duties, arcs represent the possible connection

37

between duties. Two duties are connected in the duty network if the following constraints

are satisfied.

e Previous duty end station = Next duty begin station
e Enough rest time is given between duties

e No common leg is included in both duties

Also, a source node and a sink node are introduced into the network. A set of arcs connect
the source node with all the duties starting from crewbases. The other set of arcs connect
the sink node with all the duties ending at crewbases.

A depth first search algorithm is used to generate pairings. A few constraints have to be

considered during the search, which are listed below:

e The pairing must start and end at the same crewbase;
e 8-in-24 must be satisfied in the pairing (FAA, 2002);
e The maximal pairing elapsed time limitation is satisfied;

e No flight appears more than once in a pairing

The pairing cost is also computed on the fly when generating pairings. Table 4.1 lists the
parameters which we used to generate duties and pairings as well as the duty and pairing

cost.

4.3 Issues in Using CPLEX

We use the CPLEX callable library to solve the IP and LP in our research. There are a few

issues in using CPLEX to solve the IP, which are discussed below.

38

Parameter Value

mg 3 hrs

Td 4 \ 7

T 2\ 7

npd 3

Briefing Time 1 hrs
Debriefing Time 15 mins
Maximum Duty Period 12 hrs

Minimum Rest Period 8 hrs
Maximum Pairing Period 4 days
Maximum Maintenance Date | 4 days
Minimum Turn Time 30 mins
Minimum Sit Time 45 mins

Table 4.1: Parameters for duty and pairing construction

4.3.1 Memory Problems in Using CPLEX

The ILOG CPLEX Mixed Integer Optimizer solves MIP models using a very general and
robust branch-and-bound algorithm (ILOG, 2002b). It is quite often that the branch-and-
bound tree becomes so large that insufficient memory is left for the remaining LP subprob-
lems. There are a few ways to avoid this memory failure.

First, we can set the working memory parameter (WorkMem) to a size which is much
smaller than the system available memory. Typically, a tree size is also specified to make
sure that the CPLEX branch-and-bound tree operates in a safe memory limit. This is done
by setting parameter TreLim. Because CPLEX needs to store all the nodes in the memory,
it is quite often that the tree size grows over the system available memory. To overcome
this difficulty, CPLEX provides some features which can store some parts of the branch-
and-bound tree in files so that more nodes are explored and hopefully a desired solution is
found. In particular, this is done by setting the NodeF'ileInd. 1f the NodeF'ileInd is set to

1 (default value), then nodes are compressed to conserve the memory, but are still stored in

39

the memory. If it is set to 2, node files are written to the disk without compression. If the
parameter is set to 3, nodes are both compressed (as in option 1) and written to disk (as in
option 2). In our research, we use option 2 since our problem is not too big and the node

file size is small comparing with the available disk space.

4.3.2 Branch On Follow-ons

When solving a problem with covering constraints, we can use branch on follow-ons as a
branching rule to find an IP solution. Given a fractional solution to the LP relaxation of the
original problem (the crew pairing problem or the string model for the maintenance routing
problem), there must exist two pairings/strings whose associated variables are fractional
such that they both contain a common flight r and there exists another flight s where one
pairing contains it and the other does not. Branch on follow-ons requires two flights (r and
s) appearing consecutively in pairing/string in one branch; in the other branch, two flights
are not allowed to appear consecutively in any pairings/strings.

In order to implement such a branching rule, we have to use the CPLEX MIP call-
back routings (ILOG, 2002a). In particular, we use C'PX setbranchcallback func to set and
modify the user-written callback routine to be called. This callback routine is called after
CPLEX selects a branch, but before the branch is carried out during the MIP optimization.
Hence, the branch that CPLEX selected is replaced by a user-selected branch. Then we use
C P X setnodecallback func to set and modify the user-written function to be called during
the MIP optimization after CPLEX has selected a node to explore, but before this explo-
ration is carried out. Thus, this callback routine changes the node to be explored from the

CPLEX selection to a user preference.

40

Before writing the branching rules, we set CPX_PARAM _MIPCBREDLP to 0 first.
This ensures that the user can manipulate the original problem in the specified branch-
ing routine, rather than the presolved problem. Presolve is a process to reduce the user
input problem by examining the logical reduction opportunities. During the presolve pro-
cess, CPLEX builds an entirely new problem and stores enough information to translate a
solution to this problem back to a solution to the original problem. However, during branch-
ing, we are trying to branching on the original variables (pairings or strings). There are
two ways to deal with the mismatching between presolved problem variables and original
problem variables. CPLEX provides Advanced Presolve Interface, which allows the user to
map between original variables and presolved variables. Therefore, the user can translate
pairing decision variables to presolved variables and manipulate it. However, more com-
puter programming effort is required to implement this option. The other option is to set
CPX_PARAM _MIPCBREDLP to CPX_OFF(0), which tells CPLEX to translate auto-
matically between the original data and presolved data. In this research, we implement the
second option.

We use C'PXbranchcallbackbranchbds() to set the branching rule in the callback routine.
By calling C'P X getcallbacknodex function, we are able to get the solution for the subproblem
at the current node of the branch-and-bound tree. Hence, we are able to find two flights
which satisfy the branch on follow-ons condition when no feasible integer solution is available.
For each of the pairing, if it contains both flights consecutively, we set the lower bound of
the pairing decision variable to be 1 (thus x, = 1) and put it to the first branch; otherwise,
we set the upper bound to be 0 (therefore x, = 0) and put it to the second branch. Lastly

by setting parameter useraction to CPX_CALLBACK_SET, CPLEX knows that it is a

41

user specified branching rule and implements it.
By default, CPLEX explores the branch which is specified first. In our case, the branch

which two flights (m,n) appear consecutively is explored first.

4.3.3 Comparison Between Different Data Types

When CPLEX returns a double type variable or parameter value, it is quite often that we
need to compare this value, denoted as m, with an integer n. For example, when searching
the two flights which satisfy the branch on follow-ons condition, we need to identify whether
a double type variable is 0 or 1. However, since the ways to represent an integer or a double
type are different in computer, we normally do not use a statement like m == n to make
the comparison between different data types. Instead, we can define a very small positive

number €, eg. € = 0.0001. If |m — n| < €, we consider these two values are equal.

42

Chapter 5

Computational Result

In order to study the effectiveness and efficiency of the two types of feasibility cuts, we carry
out some computational experiments.

The computational results for solving the 20 integrated problems based on the schedule
in Table A.1 are presented in Table 5.1. The leftmost column indicates the names of the test
problems. The next three and the last three columns give the statistics for the procedures
using CUT1 and MIS-CUT respectively. Columns CUT1-M and MIS-M give the numbers
of master problems and their CPU times required. Columns CUT1-S and MIS-S list the
numbers of MMRs and their CPU times required. The fourth and the last columns display
the total CPU times required to solve the integrated problems. It is note that column 4 is
greater than the sum of column 2 and 3, and column 7 is greater than the sum of column 5
and 6. This is because column 4 and column 7 contains the processing time for generating
CUT1/MIS-CUT and initializing the LP and IP. All CPU times are counted in seconds. The
last row of the table lists the test problems (8 out of 20) that require no feasibility cuts.

The algorithms are coded in C4++. CPLEX 8.1 is used to solve LPs and IPs. All
the experiments are performed on an Intel Pentium IV 1.9G PC with 512M memory and

Windows XP installed. In solving the problem, all crew pairings and maintenance strings

43

were enumerated first and stored in the memory. Altogether there are 103268 pairings and
645499 strings. To solve IPs with branch-and-bound, we use branchings on follow-ons which
are executed from the CPLEX MIP callback interface.

The number of feasibility cuts generated for each problem is one less than the number of
relaxed master problems solved. From Columns 2 and 5 it is evident that the cut generated
by the minimally infeasible set (MIS-CUT) is stronger and more effective than the cut
generated by the maximal short connect set (CUT1). However to obtain it, many MMRs
need to be solved as indicated in Columns 3 and 6. As a result, this intensively computational
requirement completely offsets its effective advantage and the approach by generating CUT1
becomes computationally more efficient for all the tested problems that require feasibility
cuts. This can be seen very clearly from Columns 4 and 7. In general the approach using
feasibility cuts generated by CUT1 requires merely a fraction of the computational time

required by the approach using feasibility cuts generated by MIS-CUT.

44

Case CUT1-M | CUT1-S | Total | MIS-M | MIS-S | Total
S1 2 2 2 8
time 37 485 632 42 2351 3088
S2 4 4 2 7
time 136 967 1407 43 7523 8758
S3 14 14 3 22
time 1469 3212 6405 80 44646 | 47325
S7 13 13 3 20
time 869 4128 6452 76 43259 | 45561
S10 5 5 4 30
time 422 870 1706 107 8165 10441
S12 3 3 2 8
time 142 604 965 64 1583 2314
S13 15 15 4 22
time 853 3451 4816 121 50137 | 53960
S14 2 2 2 9
time 60 542 727 39 3530 4272
S15 4 4 3 15
time 208 819 1369 87 2684 3983
S17 2 2 2 9
time 59 1112 1281 49 3337 4074
S18 9 9 3 13
time 561 2065 3651 81 3964 5233
S20 2 2 2 7
time 82 485 673 61 1477 2017
Total 75 75 32 170
Time 4898 18740 30084 850 172656 | 191026
S4-S6, S8
S9, S11,
S16, S19 1 1 1 1
time — — — — — —

Table 5.1: Comparison between CUT1 and MIS-CUT

45

Appendix A
Small Flight Schedule For Testing

Given the schedule in Table A.1, we need some extra information to solve the integrated

problem, which is listed below.

e Crewbase: DFW ATL BHM COS

e Maintenance Station: DAL DFW BJX

46

Flight | Origin | Departure | Destination | Arrival
1064 DFW 0625 ATL 0936
1093 ATL 0706 DFW 0724
0526 AMA 0620 DFW 0724
1219 BHM 0622 DFW 0724
1031 DAY 0640 DFW 0724
1422 DFW 0754 CVG 1231
2055 DFW 0754 COS 1014
0715 DFW 0754 AMA 1041
0563 DFW 0754 BJX 1207
0571 CVG 0919 DFW 1127
1930 COS 0902 DFW 1127
0542 BJX 0905 DFW 1127
0410 CLT 0945 DFW 1127
1905 ATL 1006 DFW 1127
1196 DFW 1157 BHM 1431
1100 DFW 1157 CLT 1620
1354 DFW 1157 BHM 1329
2052 AMA 1111 DFW 1334
1480 COS 1044 DFW 1334
1546 DFW 1404 ATL 1710
0376 DFW 1404 CVG 1742
1332 DFW 1404 DAY 1751
0692 DFW 1404 ATL 1710
1153 DFW 1404 COS 1525
1371 CVG 1301 DFW 1503
0440 BJX 1137 DFW 1503
1955 BHM 1259 DFW 1503
1956 DFW 1533 AMA 1719
0515 DFW 1533 COS 1707
1996 DFW 1533 CVG 1844
1131 BHM 1501 DFW 1816
1116 DFW 1846 CLT 2222
1067 DFW 1846 AMA 2028
0457 DFW 1846 BJX 2147
1099 CLT 1650 DFW 1935
1302 COS 1555 DFW 1935
1500 AMA 1749 DFW 1935
1189 ATL 1740 DFW 1935
1848 DFW 2005 BHM 2300
0517 ATL 1840 DFW 2100
1501 CVG 1812 DFW 2100
2051 DAY 1821 DFW 2100
1824 COS 1737 DFW 2100
2051 DFW 2130 COS 2313
1652 DFW 2130 DAY 0105
1730 DFW 2130 ATL 0124

Table A.1: Small Test Case Flight Schedule

47

Bibliography

Anbil, R. , Tanga, R. , and Johnson, E. . A global approach to crew-pairing optimization.

IBM Systems Journal, Vol 31, No 1, pages 7T1-78, 1992.

Barnhart, C. , Boland, N. , Clarke, L. , Johnson, E. , Nemhauser, G. , and Shenoi, R. .
Flight string models for aircraft fleeting and routing. Transportation Science, 32, No.3,

pages 208-220, 1998.

Barnhart, C. , Johnson, E. ; Nemhauser, G. , and Vance, P. . Crew scheduling. Handbook of

Transportation Science. R.W. Hall, ed. Kluwer Scientific Publishers, pages 493-521, 1999.

Benders, J. F. . Partitioning procedures for solving mixed-variables programming problems.

Numerische Methamatik, 4, pages 238-252, 1962.

Boland, N. , Clarke, L. , and Nemhauser, G. . The asymmetric traveling salesman problem
with replenishment arcs. Furopean Journal of Operational Research, 123, pages 408427,

2000.

Clarke, L. , Johnson, E. , Nemhauser, G. , and Zhu, Z. . The aircraft rotation problem. Annals
of OR: Mathematics of Industrial Systems II. R.E. Burkard, T.Ibaraki, and M.Queyranne,

eds. Baltzer Science Publishers, pages 33-46, 1997.

48

Cohn, A. and Barnhart, C. . Improving crew scheduling by incorporating key maintenance

routing decisions. Operations Research, 51, No. 3, pages 387-396, 2003.

Cordeau, J. , Stojkoviac, G. , Soumis, F. , and Desrosiers, J. . Benders decomposition
for simultaneous aircraft routing and crew scheduling. Transportation Science, 35, No.4,

pages 375-388, 2001.

FAA, . Federal Aviation Regulations. URL: http://www.faa.gov/avr/afs, 2002.

Gamache, M. and Soumis, F. . A method for optimally solving the rostering problem.
Operations Research in the Airline Industry. G.Yu, ed. Kluwer Academic Publishers, pages

124-157, 1998.

Hane, C. | Barnhart, C. , Johnson, E. , Marsten, R. , Nemhauser, G. , and Sigismondi, G. .
The fleet assignment problem: Solving a large-scale integer program. Math. Programming,

70, pages 211-232, 1995.

ILOG, . ILOG CPLEX 8.1 Advanced Reference Manual. ILOG, 2002a.

ILOG, . ILOG CPLEX 8.1 User’s Manual. ILOG, 2002b.

Klabjan, D. , Johnson, E. , Nemhauser, G. , Gelman, E. , and Ramaswamy, S. . Airline

crew scheduling with time windows and plane count constraints. Transportation Science,

36, No.3, pages 337-348, 2002.

Mak, V. and Boland, N. . Heuristic approaches to the asymmetric travelling salesman
problem with replenishment arcs. International Transactions in Operational Research, 7,

pages 431-447, 2000.

49

Nemhauser, G. and Wolsey, L. . Integer and Combinatorial Optimization. Wiley, 1988.

Phillips, R. L. , Boyd, D.W. , and Grossman, T.A. . An algorithm for calculating consistent

itinerary flows. Transportation Science, 25, pages 225-239, 1991.

Ryan, D. and Foster, B. . An integer programming approach to scheduling. Wren, A. | editor,
Computer Schedule of Public Transport Urban Passenger Vehicle and Crew Scheduling,

pages 269-280. Elsevier Science B. V., 1981.

Vance, P. , Atamturk, A. , Barnhart, C. , Gelman, E. , Johnson, E. ; Krishna, A. , Mahidhara,
D. , and Nemhauser, G. . A heuristic branch-and-price approach for the airline crew pairing
problem. Technical Report Technical Report LEC-97-06, Georgia Institute of Technology,

1997.

20

