

EVOLUTIONARY ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION:
COOPERATIVE COEVOLUTION AND NEW FEATURES

YANG YINGJIE
(B. Eng, Tsinghua University)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgements

I would like to express my most sincere appreciation to my supervisor, Dr. Tan Kay

Chen, for his good guidance, support and encouragement. His stimulating advice is of

great benefit to me in overcoming obstacles on my research path.

Deep thanks go to my friends and fellows Khor Eik Fun, Cai Ji, Goh Chi Keong, who

have made contributions in various ways to my research work.

I am also grateful to all the individuals in the Center for Intelligent Control (CIC), as

well as the Control and Simulation Lab, Department of Electrical and Computer

Engineering, National University of Singapore, which provides the research facilities

to conduct the research work.

Finally, I wish to acknowledge National University of Singapore (NUS) for the

financial support provided throughout my research work.

ii

Table of Contents

Acknowledgements.. i

Table of Contents.. ii

Summary ... v

List of Abbreviations ..vii

List of Figures .. ix

List of Tables ... xi

Chapter 1 Introduction .. 1

1.1 Statement of the Multiobjective Optimization Problem 1

1.2 Background on Multiobjective Evolutionary Algorithms 6

1.3 Thesis Outline ... 9

Chapter 2 Multiobjective Evolutionary Algorithms ... 10

2.1 Conceptual Framework... 10

2.2 Individual Assessment for Multiobjective Optimization................................ 11

2.3. Elitism.. 14

2.4. Density Assessment ... 16

2.5 Overview of Some Existing MOEAs.. 18

2.5.1 Pareto Archived Evolution Strategy .. 18

2.5.2 Pareto Envelope Based Selection Algorithm....................................... 19

2.5.3 Non-dominated Sorting Genetic Algorithm II 21

2.5.4 Strength Pareto Evolutionary Algorithm 2 .. 22

2.5.5 Incrementing Multiobjective Evolutionary Algorithm 23

iii

Chapter 3 Cooperative Coevolution for Multiobjective Optimization 25

3.1 Introduction... 25

3.2 Cooperative Coevolution for Multiobjective Optimization............................ 27

3.2.1 Coevolution Mechanism .. 27

3.2.2 Adaptation of Cooperative Coevolution for Multiobjective

Optimization ... 29

3.2.3 Extending Operator .. 32

3.2.4 Panorama of CCEA.. 34

3.3 Distributed Cooperative Coevolutionary Algorithm 35

3.3.1 Distributed Evolutionary Computing... 35

3.3.2 The Distributed CCEA (DCCEA) ... 37

3.3.3 The Implementation of DCCEA .. 38

3.3.4 Workload Balancing .. 42

3.4 Case study ... 43

3.4.1 Performance Metrics .. 43

3.4.2 The Test Problems ... 45

3.4.3 Simulation Results of CCEA ... 51

3.4.4 Simulation Results of DCCEA .. 63

3.5. Conclusions.. 68

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization... 69

4.1. Introduction.. 69

4.2. Two New Features for Multiobjective Evolutionary Algorithms.................. 71

4.2.1 Adaptive Mutation Operator (AMO) ... 71

4.2.2 Enhanced Exploration Strategy (EES)... 75

4.3. Comparative Study... 78

iv

4.3.1. Performance Metrics ... 79

4.3.2. The Test Problems .. 79

4.3.3. Effects of AMO... 79

4.3.4. Effects of EES... 84

4.3.5. Effects of both AMO and EES.. 87

4.4. Conclusions.. 94

Chapter 5 Conclusions and Future Works .. 95

5.1 Conclusions... 95

5.2 Future works ... 96

References... 98

List of Publications ... 106

v

Summary

This work seeks to explore and improve the evolutionary techniques for multi-

objective optimization. First, an introduction of multiobjective optimization is given

and key concepts of multiobjective evolutionary optimization are discussed. Then a

cooperative coevolution mechanism is applied in the multiobjective optimization.

Exploiting the inherent parallelism in cooperative coevolution, the algorithm is

formulated into a distributed computing structure to reduce the runtime. To improve

the performance of multiobjective evolutionary algorithms, an adaptive mutation

operator and an enhanced exploration strategy are proposed. Finally, the direction of

future research is pointed out.

The cooperative coevolutionary algorithm (CCEA) evolves multiple solutions in the

form of cooperative subpopulations and uses an archive to store non-dominated

solutions and evaluate individuals in the subpopulations based on Pareto dominance.

The dynamic sharing is applied to maintain the diversity of solutions in the archive.

Moreover, an extending operator is designed to mine information on solution

distribution from the archive and guide the search to regions that are not well explored

so that CCEA can distribute the non-dominated solutions in the archive evenly and

endow the solution set with a wide spread. The extensive quantitative comparisons

show that CCEA has excellent performance in finding the non-dominated solution set

with good convergence and uniform distribution.

vi

Exploiting the inherent parallelism in cooperative coevolution, a distributed CCEA

(DCCEA) is developed by formulating the algorithm into a computing structure

suitable for parallel processing where computers over the network share the

computational workload. The computational results show that DCCEA can

dramatically reduce the runtime without sacrificing the performance as the number of

peer computers increases.

The adaptive mutation operator (AMO) adapts the mutation rate to maintain a balance

between the introduction of diversity and local fine-tuning. It uses a new approach to

strike a compromise between the preservation and disruption of genetic information.

The enhanced exploration strategy (EES) maintains diversity and non-dominated

solutions in the evolving population while encouraging the exploration towards less

populated areas. It achieves better discovery of gaps in the discovered Pareto front as

well as better convergence. Simulations are carried out to examine the effects of AMO

and EES with respect to selected mutation and diversity operators respectively. AMO

and EES have shown to be competitive if not better than their counterparts and have

their own specific contribution. Simulation results also show that the algorithm

incorporated with AMO and EES is capable of discovering and distributing non-

dominated solutions along the Pareto front.

vii

List of Abbreviations

AMO Adaptive mutation operator

CCEA Cooperative coevolutionary algorithm

DCCEA Distributed cooperative coevolutionary algorithm

DEC Distributed evolutionary computing

EA Evolutionary algorithm

EES Enhanced exploration strategy

GA Genetic algorithm

GD Generational distance

HLGA Hajela and Lin’s genetic algorithm

HV Hyper-Volume

HVR Hyper-Volume ratio

IMOEA Incrementing multiobjective evolutionary algorithm

MIMOGA Murata and Ishibuchi’s multiobjective genetic algorithm

MO Multiobjective

MOEA Multiobjective evolutionary algorithm

MOGA Multiobjective genetic algorithm

MS Maximum spread

NPGA Niched Pareto genetic algorithm

NSGA II Non-Dominated sorting genetic algorithm II

PAES Pareto archived evolutionary strategy

PESA Pareto envelope based selection algorithm

viii

S Spacing

SPEA Strength Pareto evolutionary algorithm

SPEA 2 Strength Pareto evolutionary algorithm 2

VEGA Vector evaluated genetic algorithm

ix

List of Figures

Fig. 1.1. Trade-off curve in the objective domain .. 5

Fig. 2.1. The framework of multiobjective evolutionary algorithms.................... 11

Fig. 2.2. The improvement pressures from multiobjective evaluations................ 12

Fig. 2.3. Generalized multiobjective evaluation techniques 14

Fig. 2.4. Two modes of pruning process for MO elitism...................................... 15

Fig. 2.5. Algorithm flowchart of PAES .. 19

Fig. 2.6. Algorithm flowchart of PESA .. 20

Fig. 2.7. Algorithm flowchart of NSGA II ... 22

Fig. 2.8. Algorithm flowchart of SPEA 2 ... 23

Fig. 2.9. Algorithm flowchart of IMOEA... 24

Fig. 3.1. Cooperation and rank assignment in CCEA... 30

Fig. 3.2. The process of archive updating... 32

Fig. 3.3. The program flowchart of CCEA ... 34

Fig. 3.4. The model of DCCEA .. 37

Fig. 3.5. Schematic framework of Paladin-DEC software.................................... 40

Fig. 3.6. The workflow of a peer .. 41

Fig. 3.7. The Pareto fronts of the test problems.. 47

Fig. 3.8. Box plots for the metrics of GD, S, MS, and HVR 59

Fig. 3.9. Dynamic behaviors of the CCEA in multiobjective optimization.......... 60

Fig. 3.10. Median runtime of DCCEA with respect to the number of peers 66

Fig. 3.11. Median metrics of DCCEA with respect to the number of peers 67

x

Fig. 4.1. AMO operation... 73

Fig. 4.2. Adaptive mutation rate in AMO... 75

Fig. 4.3. The flow chart of EES .. 78

Fig. 4.4. Simulation results for ZDT4... 91

Fig. 4.5. Simulation results for ZDT6... 92

Fig. 4.6. Simulation results for FON... 93

xi

List of Tables

Table 3.1. Features of the test problems ... 46

Table 3.2. Definitions of 1, ,f g h in ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 48

Table 3.3. The configurations of the MOEAs... 52

Table 3.4. Median GD of CCEA with/without the extending operator 62

Table 3.5. Median S of CCEA with/without the extending operator.................... 62

Table 3.6. Median MS of CCEA with/without the extending operator 63

Table 3.7. The running environment of DCCEA.. 64

Table 3.8. The parameters of DCCEA.. 64

Table 3.9. Median runtime of DCCEA with respect to the number of peers 66

Table 4.1. Parameter setting for the mutation operators 81

Table 4.2. Different cases for the AMO evaluation... 81

Table 4.3. Median values of GD, S and MS for different mutation operators...... 82

Table 4.4. Median values of GD, S and MS for different AMO parameter prob . 83

Table 4.5. Description of different diversity operators... 84

Table 4.6. Parameter setting of different diversity operators................................ 85

Table 4.7. Median values of GD, S and MS for different diversity operators...... 86

Table 4.8. Median values of GD, S and MS for different EES parameter d......... 87

Table 4.9. Indices of the different MOEAs... 88

Table 4.10. Parameter setting of different algorithms .. 88

Chapter 1

Introduction

1.1 Statement of the Multiobjective Optimization Problem

Many real-world optimization problems inherently involve optimizing multiple non-

commensurable and often competing criteria that reflect various design specifications

and constraints. For such a multiobjective optimization problem, it is highly

improbable that all the conflicting criteria would be optimized by a single design, and

hence trade-off among the conflicting design objectives is often inevitable.

The phrase “multiobjective (MO) optimization” is synonymous with “multivector

optimization”, “multicriteria optimization” or “multiperformance optimization”

(Coello Coello 1998). Osyczka (1985) defined multiobjective optimization as a

problem of finding:

 “a vector of decision variables which satisfies constraints and optimizes a vector

function whose elements represent the objective functions. These functions form a

mathematical description of performance criteria which are usually in conflict with

each other. Hence, the term ‘optimize’ means finding such a solution which would

give the values of all the objective functions acceptable to the designer.”

Chapter 1 Introduction

2

In mathematical notation, considering the minimization problem, it tends to find a

parameter set P for

Min (), n

Φ∈
∈

P
F P P R , (1.1)

where P = {p1, p2,…, pn} is a n-dimensional individual vector having n decision

variables or parameters while Φ defines a feasible set of P. F = {f1, f2,…, fm} is an

objective vector with m objective components to be minimized, which may be

competing and non-commensurable to each other.

The contradiction and possible incommensurability of the objective functions make it

impossible to find a single solution that would be optimal for all the objectives

simultaneously. For the above multiobjective optimization problem, there exist a

family of solutions known as Pareto-optimal set, where each objective component of

any solution can only be improved by degrading at least one of its other objective

components (Goldberg and Richardson 1987; Horn and Nafpliotis 1993; Srinivas and

Deb 1994). Following are some useful terms in multiobjective optimization:

Pareto Dominance

When there is no information for preferences of the objectives, Pareto dominance is an

appropriate approach to compare the relative strength between two solutions in MO

optimization (Steuer 1986; Fonseca and Fleming 1993). It was initially formulated by

Pareto (1896) and constituted by itself the origin of research in multiobjective

optimization. Without loss of generality, an objective vector Fa in a minimization

problem is said to dominate another objective vector Fb, denoted by Fa ≺ Fb, iff

Chapter 1 Introduction

3

, , {1,2,..., } a i b if f i m≤ ∀ ∈ and , , {1,2,..., }a j b jf f j m< ∃ ∈ (1.2)

Local Pareto-optimal Set

If no solution in a set ψ dominates any member in a set Ω, where Ω ⊆ ψ ⊆ Φ, then Ω

denotes local Pareto-optimal set. The Ω usually refers to a Pareto-optimal set found in

each iteration of the optimization or at the end of optimization in a single run. “Pareto-

optimal” solutions are also termed “non-inferior”, “admissible”, or “efficient”

solutions (Van Veldhuizen and Lamont 1999).

Global Pareto-optimal Set

If no solution in the feasible set Φ dominates any member in a set Γ, where Γ ⊆ Φ,

then Γ denotes the global Pareto-optimal set. It is always true that there is no solution

in local Pareto-optimal set Ω dominating any solution in Γ. The Γ usually refers to

actual Pareto-optimal set in a MO optimization problem, which can be obtained via the

solutions of objective functions concerning the space of Φ or approximated through

many repeated optimization runs.

Pareto Front

Given the MO optimization function F(P) and Pareto optimal set Ω, Van Veldhuizen

and Lamont (2000) defined the Pareto front PF* as:

*
1 2{ () ((), (), , ()) | }mf f f Ω= = ∈"PF F P P P P P (1.3)

Horn and Nafpliotis (1993) stated that the Pareto front is a (m-1) dimensional surface

in a m-objective optimization problem. Van Veldhuizen and Lamont (1999) later

Chapter 1 Introduction

4

pointed out that the Pareto front of MO optimization with m = 2 objectives is at most a

(restricted) curve, and is at most a (restricted) (m-1) dimensional surface when m ≥ 3.

Totally Conflicting, Non-conflicting and Partially Conflicting Objective Functions

The objective functions of a MO optimization problem can be categorized as totally

conflicting, non-conflicting or partially conflicting. Given a solution set Φ, a vector of

objective functions F = {f1, f2, …, fm} is said to be totally-conflicting if there exist no

two solutions Pa and Pb in set Φ such that (Fa ≺ Fb) or (Fb ≺ Fa). MO problems with

totally conflicting objective functions needs no optimization process because the whole

solution set in Φ are global Pareto-optimal. On the other hand, the objective functions

are said to be non-conflicting if any two selected solutions Pa and Pb in set Φ always

satisfy (Fa ≺ Fb) or (Fb ≺ Fa). MO problems with non-conflicting objective functions

can be easily transformed into single-objective problems by arbitrarily considering one

of the objective components throughout the optimization process or combining the

objective vector into a scalar function. This is because improving one objective

component will always lead to improving the rest of the objective components, and

vice versa. The size of global or local Pareto-optimal set is one for this class of MO

problems. If a MO optimization problem belongs to neither the first class nor the

second, it belongs to the third class of partially conflicting objective functions. Most

MO optimization problems belong to the third class, where a family of Pareto-optimal

solutions is desired.

Chapter 1 Introduction

5

Example

Consider the Fonseca and Fleming’s two-objective minimization problem (Fonseca

and Fleming 1993). The two objective functions, f1 and f2, to be minimized are given

as:

28

1 1 8
1

1(,...,) 1
8i

i
f x x exp x

=

  
= − − −     

∑ (1.4a)

28

2 1 8
1

1(,...,) 1
8i

i
f x x exp x

=

  
= − − +     

∑ (1.4b)

where 2 2, 1,2,...,8ix i− ≤ < ∀ = . According to (1.4), there are 8 parameters (x1,…, x8)

to be optimized so that f1 and f2 are minimized.

0.8

0.20

0.2

0.4

0.6

1

0.4 0.6 0.8
0

1

f 2

f1

0.30.1 0.5 0.7 0.9

0.9

0.3

0.5

0.7

0.1

Infeasible region

Fig. 1.1. Trade-off curve in the objective domain

The trade-off curve of Eq. (1.4) is shown by the curve in Fig. 1.1, where the shaded

region represents the infeasible area in objective domains. One cannot say whether A is

better than B or vice-versa because one solution is better than the other on one-

objective and worse in the other. However C is worse than B because solution B is

Chapter 1 Introduction

6

better than C in both of the objective functions. A, B ... constitute the non-dominated

solutions while C is a dominated solution.

1.2 Background on Multiobjective Evolutionary Algorithms

Evolutionary algorithms (EAs) are stochastic search methods that simulate the process

of evolution, incorporating ideas such as reproduction, mutation and the Darwinian

principle of “survival of the fittest”. Since the 1970s several evolutionary

methodologies have been proposed, including genetic algorithms, evolutionary

programming, and evolution strategies. All of these approaches operate on a set of

candidate solutions. Although the underlying principles are simple, these algorithms

have proven themselves as general, robust and powerful search mechanisms. Unlike

traditional gradient-guided search techniques, EAs require no derivative information of

the search points, and thus require no stringent conditions on the objective function,

such as to be well-behaved or differentiable.

Because the set of solutions are often conflicting in the multiple objective functions,

specific compromised decision must be made from the available alternatives. The final

solution results from both optimization and decision-making and this process is more

formally declared as follows (Hwang and Masud 1979): (1) Priori preference

articulation. This method transforms a multiobjective problem into a single objective

problem prior to optimization. (2) Progressive preference articulation. Decision and

optimization are intertwined where partial preference information is provided upon

which optimization occurs. (3) Posteriori preference articulation. A set of efficient

candidate solutions is found by some method before decision is made to choose the

best solution.

Chapter 1 Introduction

7

The priori preference articulation transforms a multiobjective problem into a single

objective problem, which is different from the original one to be solved. To employ

such technique, one must have some knowledge of the problem in hand. Moreover, the

optimization process is often sensitive to the importance factors of objectives.

Single objective optimization algorithms provide in the ideal case only one Pareto-

optimal solution in one optimization run. A representative convex part of the Pareto

front can be sampled by running a single objective optimization algorithm each time

with a different vector of importance factors (Lahanas et al. 2003). However, many

runs are burdensome in computation effort and are not efficient to find good

approximation to the Pareto front. Moreover there is a great drawback that the single-

objective optimization cannot reach the non-convex parts of the Pareto front. For two

objectives, the weighted sum is given by 1 1 2 2() ()y w f x w f x= + , i.e.

2 1 2 1 2() (/) () /f x w w f x y w= − + (Lahanas et al. 2003). The minimization of the

weighted sum can be interpreted as finding the value of y for which the line with

slope 1 2/w w− just touches the Pareto front as it proceeds outwards from the origin. It is

therefore not possible to obtain solutions on non-convex parts of the Pareto front with

this approach.

Making use of multiobjective evolutionary algorithms in the posteriori preference

articulation is currently gaining significant attentions from researchers in various fields

as more and more researchers discover the advantages of their adaptive search to find a

set of trade-off solutions. Corne et al. (2003) argued that “single-objective approaches

are almost invariably unwise simplifications of the real-problem”, “fast and effective

techniques are now available, capable of finding a well-distributed set of diverse trade-

Chapter 1 Introduction

8

off solutions, with little or no more effort than sophisticated single-objective

optimizers would have taken to find a single one”, and “the resulting diversity of ideas

available via a multiobjective approach gives the problem solver a better view of the

space of possible solutions, and consequently a better final solution to the problem at

hand” .

Indeed, the objective function in EAs is permitted to return a vector value, not just a

scalar value and evolutionary algorithms have the ability of capturing multiple

solutions in a single run (Corne et al. 2003). These reasons make evolutionary

algorithms suitable for multiobjective optimization. Pareto-based multiobjective

evolutionary algorithms have the highest growth rate compared to other multiobjective

evolutionary algorithms since Goldberg and Richardson first proposed them in 1987

and it is believed that this trend will continue in the near future. This growing interest

can be reflected by the significantly increasing number of different evolutionary-based

approaches and the variations of existing techniques published in technical literatures.

As a consequence, there have been many survey studies on evolutionary techniques for

MO optimization (Fonseca and Fleming 1995a; Coello Coello 1996; Bentley and

Wakefield 1997; Horn 1997; Coello Coello 1998; Van Veldhuizen and Lamont 2000,

Tan et al. 2002a).

Deb (2001) pointed out two important issues in MO optimization: (1) to find a set of

solutions as close as possible to the true Pareto front; (2) to find a set of solutions as

diverse as possible. As pointed by Zitzler and Thiele (1999), to maximize the spread of

the obtained front, i.e. for each objective a wide range should be covered, is also an

important issue in multiobjective optimization.

Chapter 1 Introduction

9

1.3 Thesis Outline

This thesis tries to develop advanced and reliable evolutionary techniques for MO

optimization. It introduces a cooperative coevolution mechanism into MO optimization

and develops two new features for multiobjective evolutionary algorithms. The thesis

consists of five chapters.

Chapter 2 presents a framework of multiobjective evolutionary algorithms, discusses

the key concepts of evolutionary multiobjective optimization in decision-making, and

gives a brief overview of some well-known MOEA implementations.

Chapter 3 presents a cooperative coevolutionary algorithm (CCEA) for multiobjective

optimization. Exploiting the inherent parallelism in cooperative co-evolution, a

distributed CCEA (DCCEA) is developed to formulate the algorithm into a computing

structure suitable for parallel processing where computers over the network share the

computational workload.

In Chapter 4, two features are proposed to enhance the ability of multiobjective

evolutionary algorithms. The first feature is the adaptive mutation operator that adapts

the mutation rate to maintain a balance between the introduction of diversity and local

fine-tuning. The second feature is the enhanced exploration strategy that encourages

the exploration towards less populated areas and hence distributes the generated

solutions evenly along the discovered Pareto front.

Chapter 5 concludes the whole thesis and points out the direction of future research.

Chapter 2

Multiobjective Evolutionary Algorithms

2.1 Conceptual Framework

Many evolutionary techniques for MO optimization have been proposed and

implemented in different ways. VEGA (Schaffer 1985), MOGA (Fonseca and Fleming

1993), HLGA (Hajela and Lin 1992), NPGA (Horn and Nafpliotis 1993), IMOEA

(Tan et al. 2001) and NSGA-II (Deb et al. 2002a) work on single population. SPEA

(Zitzler and Thiele 1999), SPEA2 (Zitzler et al. 2001), PAES (Knowles and Corne

2000) and PESA (Corne et al. 2000) use an external population/memory to preserve

the best individuals found so far besides the main evolved population. Although each

MO evolutionary technique may have its own specific features, most MO evolutionary

techniques exhibit common characteristics and can be represented in a framework as

shown in Fig. 2.1.

MOEAs originated from SOEAs (Goldberg 1989a) in the sense that both techniques

involve the iterative updating/evolving of a set of individuals until a predefined

optimization goal/stopping criterion is met. At each generation, individual assessment,

genetic selection and evolution (e.g. crossover and mutation), are performed to

transform the population from current generation to the next generation with the aim to

improve the adaptability of the population in the given test environment. In some

Chapter 2 Multiobjective Evolutionary Algorithms

11

evolutionary approaches, the elitism is also applied to avoid losing the best-found

individuals in the mating pool to speed up the convergence. Generally speaking,

MOEAs differ from SOEAs mainly in the process of individual assessment and

elitism/archiving. The individual assessment and elitism will be further discussed in

the following subsections.

Individual assessment

Creating New Individuals

Individual assessment

Stopping
criterion is met?

Yes

No

Individual initialization

End

Elitism

Fig. 2.1. The framework of multiobjective evolutionary algorithms

2.2 Individual Assessment for Multiobjective Optimization

In MO optimization, the individuals should be pushed toward the global Pareto front as

well as be distributed uniformly along the global Pareto front. Therefore the individual

assessment in MOEA should simultaneously exert a pressure (denoted as nP
L

 in Fig.

2.2) to promote the individuals in a direction normal to the trade-off region and a

pressure (denoted as tP
L

 in Fig. 2.2) tangentially to that region. These two pressures,

Chapter 2 Multiobjective Evolutionary Algorithms

12

which are normally orthogonal to each other, give the unified pressure (denoted as uP
L

in Fig. 2.2) and direct the evolutionary search in the MO optimization context.

f1

f2

Infeasible
area

Pt

Pt

Pn

Pu

Pu

Fig. 2.2. The improvement pressures from multiobjective evaluations

Some MOEAs, such as MIMOGA (Murata and Ishibuchi 1995), MSGA (Lis and

Eiben 1997) and VEGA (Schaffer 1985), implement uP
L

 through a single-step approach

in the assessment. For example, MIMOGA applies the random assignment of weights

on each individual to exert uP
L

, where weights are not constant for each individual.

However this simple technique do not have good control on the direction of the exerted

uP
L

. For other MOEAs, the nP
L

 and tP
L

 are implemented explicitly in different

operational elements.

Pareto dominance is a widely used MO assessment technique to exert nP
L

. It has shown

its effectiveness in attainting the tradeoffs (Goldberg and Richardson 1987; Fonseca

and Fleming 1993; Horn and Nafpliotis 1993; Srinivas and Deb 1994). However it is

weak in diversifying the population along the tradeoff surface, which has been shown

Chapter 2 Multiobjective Evolutionary Algorithms

13

in (Fonseca 1995b) that the individuals will converge to arbitrary portions of the

discovered trade-off surface, instead of covering the whole surface. Thus the MO

assessment alone is insufficient to maintain the population distribution because it does

not induce tP
L

 for tangential effect in the evolution. To address this issue, a density

assessment has to be added to induce sufficient tP
L

. The general working principle of

density assessment is to assess the distribution density of solutions in the feature space

and then made decision to balance up the distribution density among the sub-divisions

of feature space. As MO assessment, density assessment is also considered as a

fundamental element in MOEAs, which maintains individual diversity along the trade-

off surface.

Many methods for individual assessment have been proposed and integrated into

various MOEAs in different ways. They can be categorized into the aggregated

approach and comparative approach. As shown in Fig. 2.3, the two approaches are

different in the hybridization of MO and density assessment to generate the unified

pressure uP
L

. In the aggregated approach, the results from the MO and density

assessment are aggregated for the individual assessment decision. The aggregation

function applied can be either linear, as implemented in non-generational GA

(Valenzuela-Rendón and Uresti-Charre 1997), or non-linear, as in MOGA (Fonseca

and Fleming 1993) and non-generational GA (Borges and Barbosa 2000). In this case,

the effect of nP
L

 and tP
L

 on the resulting uP
L

 is mainly based on the aggregation function

used. Thus the aggregation function must be carefully constructed so as to keep the

balance between nP
L

 and tP
L

.

Chapter 2 Multiobjective Evolutionary Algorithms

14

In the comparative approach, only the individuals that are equally fit in MO

assessment will be further compared through the density assessment. This approach

assigns a higher priority level to MO assessment than density assessment. At the initial

stage of the evolution, the effect of nP
L

 is larger than that of uP
L

 because the candidate

individuals are comparable via MO assessment when the opportunity to move closer to

the global trade-offs is high. When the population begins to converge to the discovered

trade-offs, most individuals are equally fit in MO assessment and the density

assessment will exert the major effect to disperse the individuals. Some of the existing

MO evolutionary techniques adopting the comparative approaches are (Horn and

Nafpliotis 1993; Srinivas and Deb 1994; Deb et al. 2002a; Knowles and Corne 2000;

Khor et al. 2001).

Density
 assessment

MO
assessment

Unevaluated solutions

Evaluated solutions

Aggregation

Density
 assessment

MO
assessment

Equally fit?

Unevaluated Solutions

YesNo

Evaluated solutions

(a) Aggregated approach (b) Comparative approach

Fig. 2.3. Generalized multiobjective evaluation techniques

2.3. Elitism

The basic idea of elitism in MOEAs is to keep record of a family of the best-found

non-dominated individuals (elitist individuals) that can be assessed later in the MO

evolution process. Among the existing literatures that have reported the successful

Chapter 2 Multiobjective Evolutionary Algorithms

15

work of elitism for evolutionary MO techniques are (Zitzler and Thiele 1999; Tan et al.

2001; Deb et al. 2002a; Coello Coello and Pulido 2001; Khor et al. 2001). For the sake

of limited computing and memory resources in implementation, the set of elitist

individuals often has a fixed size and pruning process is needed when the size of the

elitist individuals exceeds the limit. Fig. 2.4 gives two different implementations of

pruning process, batch and recurrence mode.

Solution set X

Pruned solution set X'

MO evaluation on X

Pruning X to X', X' X.⊆

Initializing X = X'

Is size(X') OK?

Solution set X

Pruned solution set X'

Yes

No

MO evaluation on X'

Pruning X to X', X' X.⊆

(a) Batch mode (b) Recurrence mode

Fig. 2.4. Two modes of pruning process for MO elitism

Let X denote an individual set consisting of the current elitist individuals and the

promising individuals from the genetic evolution, which exceeds the allowable size

(size(X’)) of elitist individuals X’. In the batch mode of pruning process, all individuals

from X are undergone the assessment and the results are applied to prune X to X’.

While in the recurrence mode, a group of the least promising individuals is removed

from a given population X to complete a cycle. This cycling process repeats to further

Chapter 2 Multiobjective Evolutionary Algorithms

16

remove another set of the least promising individuals from the remaining individuals

until a desired size is achieved.

The recurrence-mode of pruning process is likely to avoid the extinction of local

individuals, which somehow leads to the discontinuity of the discovered Pareto front.

But it often requires more computational effort compared to the batch-mode pruning

process due to the fact that the individual assessment in recurrence mode has to be

performed on the remaining individuals in each cycle of pruning.

After the elitism, the elitist set X’ can be either stored externally, which is often

identified as the second/external population (Zitzler and Thiele 1999; Borges and

Barbosa 2000; Knowles and Corne 2000; Coello Coello and Pulido 2001), or given a

surviving probability of one in the next generation. If the former case is employed, the

elitist set X’ can optionally take part in the mating process to increase the convergence

rate. However, it should be carefully implemented to avoid too much influence from

the elitist set in the mating, which may subsequently lead to pre-mature convergence.

2.4. Density Assessment

Density assessments in MOEAs encourage the divergence in the tangential direction of

the currently found trade-off surface by giving high selection probability in the less

crowded region. The density assessment techniques reported along the development of

evolutionary techniques for multiobjective optimization include Sharing (Goldberg

1989a), Grid Mapping (Knowles and Corne 2000; Coello Coello and Pulido 2001),

Density Estimation (Zitzler et al. 2001) and Crowding (Deb et al. 2002a).

Chapter 2 Multiobjective Evolutionary Algorithms

17

i) Sharing

Sharing was originally proposed by Goldberg (1989a) to promote the population

distribution and prevent genetic drift as well as to search for possible multiple peaks in

single objective optimization. Fonseca and Fleming (1993) later employed it in

multiobjective optimization. Sharing is achieved through a sharing function. Let d be

the Euclidean distance between individuals x and y. The neighborhood size is defined

in term of d and specified by the so-called niche radius shareσ . The sharing function is

defined as follows:

1 (/) if d<
()

0 otherwise
share shared

sh d
ασ σ −

= 


(2.1)

And the niche count function is defined with the help of sharing function:

() ((,))
y

nc x sh dist x y=∑ (2.2)

The niche radius shareσ is a key parameter in sharing.

ii) Grid Mapping

To keep track of the degree of crowding in different regions of the space, an m-

dimensional grid is used to partition the feature space, where m is the dimensions of

the objective space. When each individual is generated, its grid location is found and a

map of the grid is maintained to indicate for each grid location how many and which

individuals in the population reside there. To maintain the uniformity of the

distribution, individuals with higher grid-location count should be given less sampling

probability than those with lower grid-location count in the selection process. This

approach has been proposed and applied in at least Pareto Archived Evolutionary

strategy (PAES) (Knowles and Corne 2000), Pareto Envelope Based Selection

Chapter 2 Multiobjective Evolutionary Algorithms

18

Algorithm (Corne et al. 2000) and Micro-Genetic Algorithm (Coello Coello and Pulido

2001).

iii) Crowding

Crowding was proposed by Deb et al. (2002a) in their Non-dominated Sorting Genetic

Algorithm II (NSGA-II). The crowding distance is an estimate of the size of the largest

cube enclosing a single solution without any other point in the population and indicates

the density of solutions surrounding a particular individual. This measure is defined as

the average distance of two points on either side of the selected solution along each of

the objectives. During the selection process, the crowding distance will be used to

break a tie between two solutions with the same rank.

iv) Density Estimation

Density estimation was proposed in the strength Pareto evolutionary algorithm 2

(SPEA2) (Zitzler et al. 2001). It is adapted from k th⋅ nearest neighbor method and it

is given by the inverse of the distance to the k th⋅ nearest neighbor. The density

estimation is used both in the selection and in the archive truncation process.

2.5 Overview of Some Existing MOEAs

Five well-known algorithms are selected for the comparison studies in following

chapters. These algorithms have been applied or taken as references in many

literatures.

2.5.1 Pareto Archived Evolution Strategy

The Pareto archived evolution strategy (PAES) (Knowles and Corne 2000) is unique

from other MOEAs in that it is a non-population based local search algorithm.

Chapter 2 Multiobjective Evolutionary Algorithms

19

However, PAES does maintain an archive to preserve non-dominated solution and

utilizes the archive information in the selection process. PAES uses only the mutation

operator to implement a hill climbing strategy. The grid mapping is applied to keep

track of the degree of crowding. The algorithm flow of PAES is shown in Fig. 2.5.

_Arc size (Archive size)

genNum (Maximum number of generation)

Step1: Set n = 0

Step2: Initialization: Generate single initial solution C(n), empty the archive Arc.

Step3: Evaluation: Evaluate the current solution C(n).

Step4: Updating archive: Add the current solution C(n) into the archive Arc if it

is non-dominated. If the size of Arc is more than _Arc size , grid mapping

is employed for archive truncation.

Step5: Mutation: Mutate the current solution C(n) to create a new potential

solution M(n).

Step6: Evaluation: Evaluate the potential solution M(n).

Step7: If M(n) dominates C(n), C(n+1) = M(n). Else C(n+1) = C(n).

Step8: Termination: n = n + 1. If n = genNum, stop. Else if M(n-1) dominates

C(n-1), go to Step 4. Else go to Step 5.

Fig. 2.5. Algorithm flowchart of PAES

2.5.2 Pareto Envelope Based Selection Algorithm

The Pareto envelope based selection algorithm (PESA) (Corne et al. 2000) draws its

motivation from the strength Pareto evolutionary algorithm (SPEA) (Zitzler and Thiele,

1999) and PAES. It uses an external population to store the current approximate Pareto

front and an internal population to evolve new candidate solutions. PESA uses the grid

Chapter 2 Multiobjective Evolutionary Algorithms

20

mapping to perform online tracking of the degree of crowding in different regions of

the archive. Tournament selection in PESA is based on the grid-location count to guide

the search towards the less populated areas. The algorithm flow of PESA is shown in

Fig. 2.6.

_Pop size (Internal population size)

_Arc size (Archive size)

genNum (Maximum number of generation)

Step1: Set n = 0

Step2: Initialization: Generate an initial internal population Pop(n) and empty

the archive Arc.

Step3: Evaluation: Evaluate the individuals in the internal population Pop(n).

Step4: Updating archive: Copy all non-dominated individuals in Pop(n) into the

archive Arc. If the size of Arc is more than _Arc size , grid mapping is

employed for archive truncation.

Step5: Empty the internal population Pop(n+1) = ∅ .

Step6: Crossover: With cp , select two parents from archive the Arc and

crossover them to create a child. Add this child to the internal population

Pop(n+1).

Step7: Mutation: With 1 cp− , select one parent from the archive Arc and mutate

it to create a child. Add this child to the internal population Pop(n+1).

Step8: Go to Step 6 until the internal population Pop(n+1) is full.

Step9: Evaluation: Evaluate the individuals in the internal population Pop(n+1).

Step10: Termination: n = n + 1. If n = genNum, stop. Else go to Step 4.

Fig. 2.6. Algorithm flowchart of PESA

Chapter 2 Multiobjective Evolutionary Algorithms

21

2.5.3 Non-dominated Sorting Genetic Algorithm II

The non-dominated sorting genetic algorithm II (NSGA II) (Deb et al. 2002a) is the

improved version of its predecessor NSGA (Srinivas and Deb 1994). It employs a fast

non-dominated approach to assign rank to individuals and a crowding distance

assignment to estimate the crowding. In case of a tie in rank during the selection

process, the individual with a smaller crowding distance wins. Together with an elitism

scheme, the NSGA II claims to produce better results than NSGA. The algorithm flow

of NSGAII is shown in Fig. 2.7.

_Pop size (Parent population size)

_Chd size (Child population size)

genNum (Maximum number of generation)

Step1: Set n = 0.

Step2: Initialization: Generate an initial parent population Pop(n) and empty the

child population Chd(n).

Step3: Evaluation: Evaluate the initial parent population Pop(n).

Step4: Mating selection: Select individuals from Pop(n) to create the mating

pool.

Step5: Variation: Apply the crossover and mutation operators to the mating pool

to create the child population Chd(n).

Step6: Evaluation: Evaluate the child population Chd(n).

Step7: Elitism selection: Combine the parent and child population. Sort this

combined population Pop(n) ∪ Chd(n) according to Pareto dominance

and assign crowding distance for Pop(n) ∪ Chd(n). Finally

_Pop size solutions are selected from Pop(n) ∪ Chd(n) based on the

Chapter 2 Multiobjective Evolutionary Algorithms

22

crowded comparison operator and copied into the next population

Pop(n+1).

Step8: Termination: n = n + 1. If n = genNum, stop. Else go to Step 4.

Fig. 2.7. Algorithm flowchart of NSGA II

2.5.4 Strength Pareto Evolutionary Algorithm 2

The strength Pareto evolutionary algorithm 2 (SPEA 2) (Zitzler et al, 2001) is the

improved version of its predecessor SPEA. In SPEA 2, both archive and population are

assigned fitness based on strength and density estimation. The strength of an individual

is defined as the number of individuals that dominates it. The density estimation

mechanism has been described in Section 2.4. A truncation method based on the

density estimation is employed to keep the fixed size of archive. The elitism is

implemented using an internal and an external population. All The algorithm flow of

SPEA 2 is shown in Fig. 2.8.

_Pop size (Internal population size)

_Arc size (Archive population size)

genNum (Maximum number of generation)

Step1: Set n = 0

Step2: Initialization: Generate an initial internal population Pop(n) and empty

the archive Arc(n) =∅ .

Step3: Evaluation: Evaluate the individuals in Pop(n).

Step4: Environmental selection: Copy the non-dominated solutions in the Pop(n)

and Arc(n) to the new archive Arc(n+1). If the size of Arc(n+1)

exceeds _Arc size , then truncation is performed based on density

Chapter 2 Multiobjective Evolutionary Algorithms

23

estimation. If the size of Arc(n+1) is less than _Arc size , the Arc(n+1) is

filled with the best dominated solutions in Arc(n).

Step5: Mating selection: Select individuals from Arc(n+1) to create the mating

pool.

Step6: Variation: Apply the crossover and mutation operators to the mating pool

to create new population Pop(n+1).

Step7: Termination: n = n + 1. If n = genNum, stop. Else go to Step3.

Fig. 2.8. Algorithm flowchart of SPEA 2

2.5.5 Incrementing Multiobjective Evolutionary Algorithm

The incrementing multiobjective evolutionary algorithm (IMOEA) (Tan et al. 2001) is

an MOEA with dynamic population size that is computed online according to the

discovered approximate Pareto front and desired population density. It employs the

method of fuzzy boundary local perturbation with interactive local fine-tuning to

achieve broad neighbourhood exploration and create the desired number of individuals.

Elitism is implemented in the form of the switching preserved strategy. The algorithm

flow is shown in Fig. 2.9.

dps (Dynamic population size)

_Arc size (Archive population size)

genNum (Maximum number of generation)

Step1: Set n = 0.

Step2: Initialization: Generate an initial population pop(n).

Step3: Evaluation: Evaluate the individuals in the population pop(n).

Step4: Calculate the dynamic population size dps(n), number of perturbations

Chapter 2 Multiobjective Evolutionary Algorithms

24

np(n) and number of tournament selected individuals nsi(n).

Step5: Mating selection: Tournament select nsi(n) individuals from pop(n)

according to their niche cost to create selpop(n).

Step6: Crossover: Perform crossover with crossover probability Pc on selpop(n)

to create crosspop(n)..

Step7: Mutation: Perform FBLP with np(n) perturbations for each individuals in

crosspop(n) to create evolpop(n).

Step8: Switching preservation: pop(n+1) = pop(n)∪ evolpop(n). If the number of

non-dominated solution in pop(n+1) is less than dps(n), truncate pop(n+1)

based on Pareto dominance. Else truncate pop(n+1) based on niche cost.

Step9: Termination: n = n + 1. If n = genNum, stop. Else go to Step3.

Fig. 2.9. Algorithm flowchart of IMOEA

Chapter 3

Cooperative Coevolution for Multiobjective

Optimization

3.1 Introduction

Although the MOEAs are capable of approximating the optimal Pareto front in

multiobjective optimization with varying success (Knowles and Corne 2000; Corne et

al. 2000; Deb et al. 2002a; Zitzler et al. 2001; Tan et al. 2001), the computational cost

involved in terms of time and hardware for evolving the complete set of trade-off

solutions often become insurmountable as the size or complexity of the problem

increases. Meanwhile, studies have shown that coevolutionary mechanism can increase

the efficiency of the optimization process significantly (Potter and De Jong 1994,

2000; Moriarty 1997; Liu et al. 2001). Therefore, one promising approach to overcome

the limitation in MOEAs is to incorporate the coevolutionary mechanism by co-

evolving the solution set with a number of subpopulations in a cooperative way.

Neef et al. (1999) introduced the concept of coevolutionary sharing and niching into

multiobjective genetic algorithms, which adapted the niche radius through competitive

coevolution. Parmee et al. (1999) used multiple populations where each population

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

26

optimized one objective related to the problem. The individual fitness in each

population was adjusted by comparing the variable values of identified solutions

related to a single objective with solutions of other populations. Lohn et al. (2002)

embodied the model of competitive coevolution in multiobjective optimization, which

contained the population of candidate solutions and the target population consisting of

target objective vectors. Keerativuttiumrong et al. (2002) extended the cooperative

coevolutionary genetic algorithm (Potter and De Jong 1994, 2000) to MO optimization

by evolving each species with a multiobjective genetic algorithm (Fonseca and

Fleming 1993) in a rather elementary way.

This chapter presents a cooperative coevolutionary algorithm (CCEA) to evolve

multiple solutions in the form of cooperative subpopulations for MO optimization.

Incorporated with various features like archiving, dynamic sharing and extending

operator, the CCEA is capable of maintaining search diversity in the evolution and

distributing the solutions uniformly along the Pareto front. Exploiting the inherent

parallelism in cooperative coevolution, the CCEA is formulated into a computing

structure suitable for concurrent processing that allows inter-communications among

subpopulations residing in multiple computers over the Internet. This distributed

CCEA (DCCEA) DCCEA can reduce the runtime effectively without sacrificing the

performance of CCEA.

The remainder of this chapter is organized as follows: Section 3.2 describes the

principle of the proposed CCEA for multiobjective optimization. Section 3.3 presents a

distributed version of CCEA and its implementation that uses resources of networked

computers. Section 3.4 examines the different features of CCEA and provides a

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

27

comprehensive comparison of CCEA with other well-known MOEAs. The

performance improvement of the distributed CCEA running on multiple networked

computers is also shown in Section 3.4. Conclusions are drawn in Section 3.5.

3.2 Cooperative Coevolution for Multiobjective Optimization

3.2.1 Coevolution Mechanism

Recent advances in evolutionary algorithms show that the introduction of ecological

models and the use of coevolutionary architectures are effective ways to broaden the

use of traditional evolutionary algorithms (Rosin and Belew 1997; Potter and De Jong

2000). Coevolution can be classified into competitive coevolution and cooperative

coevolution. While competitive coevolution tries to get individuals that are more

competitive through evolution, the goal of cooperative coevolution is to find

individuals from which better systems can be constructed. Many studies (Angeline and

Pollack 1993; Rosin and Belew 1997) show that competitive coevolution leads to an

“arms race” where two populations reciprocally drive one another to increase levels of

performance and complexity. The model of competitive coevolution is often compared

to predator-prey or host-parasite interactions, where preys (or hosts) implement the

potential solutions to the optimization problem while the predators (or parasites)

implement individual “fitness-cases”. In a competitive coevolutionary algorithm, the

fitness of an individual is based on direct competition with individuals of other species

that evolve separately in their own populations. Increased fitness of one of the species

implies a diminution in the fitness of the other species. This evolutionary pressure

tends to produce new strategies in the populations involved to maintain their chances

of survival.

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

28

The basic idea of cooperative coevolution is to divide-and-conquer (Potter and De

Jong 2000): divide a large system into many modules, evolve the modules separately,

and then combine them together again to form the whole system. The cooperative

coevolutionary algorithms involve a number of independently evolving species that

together form complex structures for solving difficult problems. The fitness of an

individual depends on its ability to collaborate with individuals from other species. In

this way, the evolutionary pressure stemming from the difficulty of the problem favors

the development of cooperative strategies and individuals. Potter and De Jong (1994)

presented a cooperative coevolutionary genetic algorithm that improved the

performance of GAs on many benchmark functions significantly. It could lead to faster

convergence as compared to conventional GAs for low-level to moderate-level of

variable interdependencies. This approach was discussed in more details by Potter and

De Jong (2000) and applied successfully to string matching task and neural network

designs.

Moriarty (1997) used a cooperative coevolutionary approach to evolve neural networks

where each individual in one species corresponds to a single hidden neuron of a neural

network and its connections with the input and output layers. This population

coevolved alongside a second one whose individuals encode sets of hidden neurons

(i.e., individuals from the first population) forming a neural network. Liu et al. (2001)

used cooperative coevolution to speed up convergence rates of fast evolutionary

programming on large-scale problems whose dimension ranged from 100 to 1000. This

cooperative coevolutionary approach performed as good as (and sometimes better than)

single population evolutionary algorithms, required less computation than single-

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

29

population evolution as the populations involved are smaller, and converged faster in

term of number of generations.

3.2.2 Adaptation of Cooperative Coevolution for Multiobjective Optimization

3.2.2.1 Cooperative Cooperation and Rank Assignment

Given a single objective optimization problem with n parameters, each parameter is

assigned a subpopulation, and these n subpopulations coevolve the individuals in each

of them (Potter and De Jong 1994, 2000; Liu et al. 2001). The proposed CCEA for MO

optimization adopts the idea of assigning one subpopulation to each parameter and

applies this idea to MO optimization where multiple non-dominated solutions are

targeted. Fig. 3.1 depicts the principle of cooperation and rank assignment in CCEA,

which shows that individuals in subpopulation i cooperate with representatives of other

subpopulations to form the complete solutions.

Each subpopulation only optimizes one parameter and an individual in a subpopulation

is just a component of a complete solution. Here, the best r individuals in a

subpopulation are defined as the representative set of the subpopulation. To evaluate

an individual in a subpopulation, a representative is randomly selected from the

representative set of every other subpopulation and these representatives are combined

with the individual under evaluation to form a complete solution. Then this complete

solution is mapped into an objective vector by the objective functions. The objective

vector can be used to evaluate how well the selected individual cooperates with other

subpopulations to produce good solutions. Since the objective vector cannot be used as

fitness in the selection of evolutionary algorithms directly, a Pareto based rank

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

30

assignment scheme is applied to give each individual a scalar rank value. The rank of

an individual partially reflects the distance between the objective vector of this

individual and the current Pareto front.

Subpop 1
for

variable 1

Subpop i
for

variable i

Subpop k
for

variable k

Subpop n
for

variable n

Collaborate

Evaluate

Update archive

Rank

Representative

Representative

Representative

Complete solution

Complete solution
and its objective

Archive

Individuals in
subpop i

Assign rank

Fig. 3.1. Cooperation and rank assignment in CCEA

By incorporating an archive into the algorithm to store the set of non-dominated

solutions, multiple solutions for MO optimization can be achieved by CCEA. This

archive is updated in every generation and outputted as the optimal solution set when

the evolutionary process is accomplished. Preserving the best solutions found so far,

the archive works as an elitism mechanism, which not only results in continuous

improvement for the quality of the archive but also ensures the convergence of CCEA.

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

31

Moreover, the archive is served as the comparison set in the rank assignment of

individuals from subpopulations after these individuals obtain their objective vectors

through collaboration. A canonical Pareto ranking scheme (Fonseca and Fleming

1995b) is applied in CCEA, which ranks individuals according to how many members

in the archive dominating them.

3.2.2.2 Archive Updating

The archive size is given by a predefined number archive_size, which can be adjusted

according to the required number of solutions. As illustrated in Fig. 3.2, once a

complete solution is evaluated using the objective functions, it will update the archive

according to its objective vector. If the solution is not dominated by any archive

member, it will be added to the archive and the archive members dominated by it will

be discarded. When the maximum archive size is reached, a truncation method based

on niche count will be activated to replace the most crowded archive member with the

new non-dominated solution in order to maintain the diversity of the archive. To

distribute the non-dominated solutions evenly along the Pareto front, the dynamic

sharing approach proposed by Tan et al. (2003b) is implemented in CCEA. While used

in the archive updating, niche count is also involved in the tournament selection to

generate the mating pool in CCEA. A partial order is applied to compare two

individuals in the tournament selection: For two individuals i and j, ni j≥ , if (i

dominates j), or (() ()rank i rank j<), or { () ()rank i rank j== and () ()nc i nc j< }.

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

32

Solution

Empty?

Archive

Dominate any
archive member?

Dominated by any
archive member?

Full?

Archive

Replace the archive
member with the greatest

niche count

Delete

Archive

Delete dominated members

Add

Archive

Y

N

N

Y

Y

Add the solution

End

N

N

Y

N

Fig. 3.2. The process of archive updating

3.2.3 Extending Operator

A new feature of extending operator is proposed in CCEA to improve the smoothness

and spread of non-dominated solutions. Ordinarily, the under-populated regions are the

gaps or boundaries of the archive, which should be given more attention if the Pareto

front should be covered by the archive as much as possible. To make these unobvious

regions outstanding, the role of extending operator in CCEA is to guide the

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

33

evolutionary search into these areas. The archiving scheme plays a critical role in the

realization of the extending operation. Firstly, since complete solutions are all stored in

the archive, the subpopulations have no pressure to keep the diversity of their own

individuals so that they can adaptively focus their search in the regions that are not

explored thoroughly. Secondly, by extracting the information of the solution

distribution from the archive, archive members in the most under-populated regions

will be found and copied to the subpopulations. Hence, these members will have a

higher chance to be selected into the mating pool. Detailed description of the extending

operator is as follows:

The Extending Operator for CCEA:

Let n be the number of clones.

Step (1) If the archive is not full, exit.

Step (2) Calculate the niche count of each member in the archive. Then find the

member with the smallest niche count. This member resides in the most

under-populated region.

Step (3) Clone n copies of this archive member to the subpopulations. Here, each

part of this member is cloned into its corresponding subpopulation.

In the initial stage of CCEA, the algorithm should concentrate on the search of non-

dominated solutions to fill up the archive and achieve a good approximation of the

Pareto front. Moreover, a small number of members in the archive are not sufficient to

approximate the Pareto front well and give accurate information of solution

distribution. Therefore, the extending operator will be activated only when the archive

is full. The solution with the smallest niche count is then selected and cloned to the

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

34

subpopulations. Such an operation forces the algorithm to pay more attention to the

under-populated regions, as desired.

3.2.4 Panorama of CCEA

Terminate ?

Generate n subpopulations
for the n variables

End

i > the number of
subpopulations?

N

Evaluate individuals in subpopulation i
and update the archive

Genetic operations on subpopulation i

i = 1

i = i + 1

cycle

Assign rank to individuals in subpopulation i

Extending
operator

Calculate the niche count in the normalized
objective space for individuals in subpopulation i

Y

N

Y

Fig. 3.3. The program flowchart of CCEA

As depicted in the flowchart of CCEA in Fig. 3.3, n subpopulations are randomly

initialized and each of them optimizes one variable for a n-variable problem. In the

evolution cycle, as marked by the dash box, the n subpopulations will be evolved in a

sequential way. To evaluate an individual in the currently evolving subpopulation, a

complete solution should be constructed by combining the currently evaluated

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

35

individual with the representatives of other subpopulations. The archive will be

updated based on the evaluation result of the complete solutions and the ranges of the

objective space will be estimated from the updated archive. Based on the objective

vector, each individual will be assigned a rank and its respective niche count will be

obtained in the dynamic objective space. The genetic operations during the evolution

process consist of tournament selection, uniform crossover and bit-flip mutation. Once

an evolution cycle is finished, the extending operator finds the archive member

residing in the region that is not explored thoroughly, and copies it to subpopulations.

With the extending operator, CCEA gives a wide spread and uniform distribution to

the non-dominated solution set.

3.3 Distributed Cooperative Coevolutionary Algorithm

3.3.1 Distributed Evolutionary Computing

Although evolutionary algorithm (EA) is a powerful tool, the computational cost

involved in terms of time and hardware increases as the size and complexity of the

problem increases, since it often needs to perform a large number of function

evaluations in the evolution process. One promising approach to overcome the

limitation is to exploit the inherent parallel nature of EA by formulating the problem

into a distributed computing structure suitable for parallel processing, i.e., to divide a

task into subtasks and to solve the subtasks simultaneously using multiple processors.

This divide-and-conquer approach has been applied to EA in different ways and many

parallel EA implementations have been reported in literatures (Cantú-Paz 1998;

Goldberg 1989b; Rivera 2001).

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

36

As categorized by Rivera (2001), there are four possible strategies to parallelize EAs,

i.e., global parallelization, fine-grained parallelization, coarse-grained parallelization,

and hybrid parallelization. In global parallelization, only the fitness evaluations of

individuals are parallelized by assigning a fraction of the population to each processor.

The genetic operators are often performed in the same manner as traditional EAs since

these operators are not as time-consuming as the fitness evaluation. This strategy

preserves the behavior of traditional EA and is particularly effective for problems with

complicated fitness evaluations. The fine-grained parallelization is often implemented

on massively parallel machines, which assigns one individual to each processor and

the interactions between individuals are restricted into some neighborhoods. In coarse-

grained parallelization, the entire population is partitioned into subpopulations. This

strategy is complex since it consists of multiple subpopulations and different

subpopulations may exchange individuals occasionally (migration). In hybrid

parallelization, several parallelization approaches are combined, and the complexity of

these hybrid parallel EAs depends on the level of hybridization.

The availability of powerful-networked computers presents a wealth of computing

resources to solve problems with large computational effort. Because the

communication amount in coarse-grained parallelization is small compared with other

parallelization strategies, it is a suitable computing model for distributed computer

network where the communication speed is limited. This parallelization approach is

considered here where large problems are divided into many smaller subtasks and

mapped into the computers available in a distributed system.

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

37

3.3.2 The Distributed CCEA (DCCEA)

Peer 1

Peer 2

Peer 3

ServerServer

Subpopulations
Peers

Central server

1

32

5

4

6

1

2

3

4

5

6

Fig. 3.4. The model of DCCEA

The proposed distributed CCEA adopts the coarse-grained parallelization strategy of

EAs. To make the original CCEA fit into a distributed scenario, the design of DCCEA

should consider several features of distributed computing such as variant

communication overhead, different computation speed and network restrictions. A toy

model with six subpopulations and three peers is given in Fig. 3.4 to illustrate the

design concept of DCCEA. As shown in Fig. 3.4, each parameter of the problem is

assigned a subpopulation as in CCEA. In a distributed scenario, these subpopulations

are further partitioned into a number of groups, which is determined by the available

number of peers. In Fig. 3.4, the 6 subpopulations are divided into 3 groups and each

of them is assigned to a peer computer. Each peer has its own archive and

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

38

representatives, and evolves its subpopulations sequentially in the similar way as in

CCEA.

Inside a peer computer, the complete solution generated through collaboration will

continuously update the peer archive. The subpopulations in the peer update the

corresponding peer representatives once every cycle. The cooperation among peers is

indirectly achieved through the exchanges of archive and representatives between

peers and a central server. In the distributed scenario, the communication time among

peers is a conspicuous part of the whole run time. To reduce the communication

overhead, the exchange of archive and representatives between one peer and the

central server occurs once every several generations. The number of generations

between two exchanges is called the exchange interval. Generally the peers are not

identical and the cooperation among peers becomes ineffective if there are big

differences in the evolution progresses of peers. In such case, the bad cooperation

among peers will deteriorate the performance of DCCEA. To keep the peers cooperate

well in the evolution, these peers should be synchronized every few generations. Here,

the synchronization interval is defined as the number of generations between two

synchronizations. The exchange and synchronization intervals can be fixed or

adaptively determined along the evolution.

3.3.3 The Implementation of DCCEA

The implementation of DCCEA is embedded into the distributed computing

framework named Paladin-DEC (Tan et al. 2002b, 2003a), which is built upon the

foundation of Java technology offered by Sun Microsystems and is equipped with

application programming interfaces (APIs) and technologies from J2EE. The J2EE is a

component-based technology provided by Sun for the design, development, assembly,

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

39

and deployment of enterprise applications. Enterprise Java Bean (EJB) is the middle-

tier component by which data are presented and business logics are performed.

Different tiers are independent from each other and can be changed easily, e.g., such as

changing the database or adding/removing some business logics. Furthermore, the

unique advantages of Java programming language, such as platform independence and

reusability, make this approach attractive.

As shown in Fig. 3.5, the Paladin-DEC software consists of two main blocks, i.e., the

servant block and workshop block that are connected by RMI-IIOP (Remote Method

Invocation over Internet Inter-ORB Protocol). The servant functions as an information

center and backup station through which peers can check their identifications or restore

their working status. The workshop is a place where peers (free or occupied) work

together in groups, e.g., the working peers are grouped together to perform the

specified task, while the free ones wait for the new jobs to be assigned. The servant

contains three different servers, i.e., logon server, dispatcher server, and database

server. The logon server assigns identification to any registered peers. It also removes

the information and identification of a peer when it is logged off as well as

synchronizes the peer’s information to the dispatcher server. The dispatcher server is

responsible for choosing the tasks to be executed, the group of peers to perform the

execution, and to transfer the peers’ information to/from the database server. The

dispatcher server also synchronizes the information, updates the peer’s list, and

informs the database server for any modification. Whenever there is a task available,

the dispatcher server will transfer the task to a group of selected peers.

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

40

Logon server Dispatch server

Synchronize
peer data

Database
server

Store and extract
peer data

Peer

Peer

Peer

Peer

PeerPeer

Peer
agent

Servant

Workshop

RMI - IIOP

Fig. 3.5. Schematic framework of Paladin-DEC software

The working process of a peer begins once the peer (or client) is started and logons to

the server, which is realized by sending a valid email address to the server. The peer

computer will then be pooled and waiting for the task to be assigned by the server.

Once a peer detects that a task is assigned, it will extract the information from the

server, such as class name and path, as well as the http server address before loading

the class remotely from the server. If the class loaded is consistent with the Paladin-

DEC system, it will be allowed to initiate the computation procedure. Fig. 3.6 depicts

the entire working process of a peer, where the detail description of the box

“Compute” is shown in the right part of the figure.

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

41

Begin

Logon

Check Peer Status

Assigned
Job?

Y

Load class remotely

Compute

Read class name and http
server address from server

Set parameters

Start

Create subpopulations

Finished?

Submit result and
update the peer status

Y

Stop

Exchange archive and
representive?

Evolve the subpopulations
in the peer sequentially

(a cycle)

Exchange archive and
representive

Synchronization?

Do synchronization

Y

Y

N

N

N

Sleep
N

Fig. 3.6. The workflow of a peer

When a peer starts the computation procedure, it first initializes the parameters, such as

generation number, subpopulation groups, subpopulation size, crossover rate, and

mutation rate. Then the peer creates the subpopulations assigned to it. Synchronization

is crucial to DCCEA in order to achieve a good cooperation among peers. When a peer

reaches a synchronization point, it suspends its evolution until the server signals that

all the peers have reached the synchronization point. At each generation, the peer will

check whether it is time to exchange the archive and representatives between the peer

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

42

and the server. If the conditions of exchange are satisfied, the peer will initiate a

session in the server that retrieves the archive and representatives of the peer, then

updates the server archive with the peer archive and updates the server representatives

corresponding to the peer. For the peer, it will obtain the new server archive and server

representatives, and replaces its current archive and representatives. After these steps,

the peer evolves its subpopulations sequentially for one generation. If the peer meets

the termination conditions, it will initiate a session to submit the results and then

restore itself to the ready status. If the user cancels a running job, those peers involved

in the job will stop the computation and set themselves to the ready status.

3.3.4 Workload Balancing

As the processing power and specification for various computers in a network may be

different, the feature of work balancing that ensures the peers are processed in a similar

pace is required in DCCEA. This is important since the total computation time is

decided by the peer that finished the work last, and if the peer with the least

computational capacity is assigned with the heaviest workload, not only would longer

time be required but also the bad cooperation among nodes will deteriorate the

performance of DCCEA. Intuitively, work balancing for a distributed system could be

difficult because the working environment in a network is often complex and

uncertain. The DCCEA resorts to a simple work balancing strategy by assigning the

workload to the peers according to their respective computational capabilities. As

stated in Section 3.3.3, when a peer is first launched, it uploads its configuration

information, which could be accessed by the servant. The hardware configuration of

the peer is recorded in the information file, such as the CPU speed, RAM size, etc.

After reading the information file, the dispatch server performs a simple task

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

43

scheduling and assigns different tasks to the respective peers according to their

computational capabilities.

3.4 Case study

In this section, four performance metrics for multiobjective optimization are described.

Then some benchmark problems are described, which will be used in the comparison

of CCEA with PAES, PESA, NSGAII, SPEA2, and IMOEA. In this section, the

extensive simulations of the algorithms are performed based upon the benchmark

problems and simulations of DCCEA are presented to verify its performance.

3.4.1 Performance Metrics

Four different quantitative performance measures for MO optimization are used, which

are referred from other studies in MO optimization, such as Van Veldhuizen and

Lamont (1999), Deb (2001), and Zitzler et al. (2000). These measures are chosen here

since they have been widely used for performance comparisons in MO optimization,

and can evaluate the non-dominated solutions in several nontrivial aspects.

1) Generational Distance (GD)

The metric of generational distance is a value representing how “far” the knownPF is

from truePF and is defined as,

2 1/ 2

1

1()
n

i
i

GD d
n =

= ∑
(3.1)

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

44

where n is the number of members in knownPF , id is the Euclidean distance (in

objective space) between the member i in knownPF and its nearest member of truePF .

The smaller the generational distance is, the closer the knownPF is to the truePF .

2) Spacing (S)

The metric of spacing measures how “evenly” members in knownPF distribute. It is

defined as,

2 1/ 2

1 1

1 1[()] / ,
n n

i i
i i

S d d d where d d
n n= =

= − =∑ ∑
(3.2)

where n is the number of members in knownPF , id is the Euclidean distance (in

objective space) between the member i in knownPF and its nearest member of knownPF .

The smaller the spacing is, the more evenly the members in knownPF distribute.

3) Maximum Spread (MS)

Zitzler et al. (2000) defined a metric measuring how well the truePF is covered by the

knownPF through the hyper-boxes formed by the extreme function values observed in

truePF and knownPF . In order to normalize the metric, this metric is modified as,

max max min min max min 2

1

1 {[(min(,) max(,)] /()]}
M

m m m m m m
m

D f F f F F F
M =

= − −∑
(3.3)

where n is the number of members in knownPF ; max
mf , min

mf are the maximum and

minimum of the m th⋅ objective in the knownPF ; max
mF , min

mF are the maximum and

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

45

minimum of the m th⋅ objective in the truePF . The greater the maximum spread is, the

more area of truePF is covered by the knownPF .

4) Hyper-Volume (HV) and Hyper-Volume Ratio (HVR)

The metric of hyper-volume calculates the volume (in the objective space) covered by

the members of a non-dominated set for multiobjective minimization problems (Van

Veldhuizen and Lamont 1999; Zitzler and Thiele 1999). It is defined as,

1()n
i iHV volume v== ∪ (3.4)

Mathematically, for each member i in the non-dominated set, a hypercube iv is

constructed with a reference point W and the member i as the diagonal corners of the

hypercube. The reference point can simply be found by constructing a vector of the

worst objective function values. To eliminate the bias to some extent and to be able to

calculate a normalized value of this metric of hyper-volume, Van Veldhuizen and

Lamont (1999) used the metric of hyper-volume ratio that is the ratio of the hyper-

volume of knownPF and the hyper-volume of truePF ,

() / ()known trueHVR HV PF HV PF= (3.5)

It measures the evenness and range of knownPF with respect to truePF at the same time.

The greater the hyper-volume ratio is, the better the knownPF covers the truePF .

3.4.2 The Test Problems

Nine test problems are used here to validate the performance of CCEA. Table 3.1

summarizes features of these test problems and Fig. 3.7 illustrates the respective Pareto

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

46

fronts. These problems include important characteristics that are suitable for validating

the effectiveness of MO optimization methods in maintaining the population diversity

as well as converging to the final Pareto front. Many researchers including Knowles

and Corne (2000), Corne et al. (2000), Deb (2002a), Tan et al. (2001), and Zitzler et al.

(1999, 2000, 2001), have used these problems in the validation of their algorithms.

Table 3.1. Features of the test problems

 Test problem Features

1 ZDT1 The Pareto front is convex

2 ZDT2 The Pareto front is non-convex

3 ZDT3 The Pareto front consists of several noncontiguous convex parts

4 ZDT4 The Pareto front is highly multi-modal and there are 21^9 local

Pareto fronts

5 ZDT6 The Pareto-optimal solutions are non-uniformly distributed along

the global Pareto front. The density of the solutions is the lowest

near the Pareto-optimal front and the highest away from the front

6 FON The Pareto front is non-convex

7 KUR The Pareto front consists of several noncontiguous convex parts

8 TLK Noisy landscape

9 DTL2 High dimension of the objective space

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

47

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ZDT1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ZDT2

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

ZDT3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ZDT4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ZDT6 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

FON

-20 -19 -18 -17 -16 -15 -14
-12

-10

-8

-6

-4

-2

0

2

KUR

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

TLK

Fig. 3.7. The Pareto fronts of the test problems

1) Test Problem ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6

These problems were designed using Deb's scheme by Zitzler et al. (2000) and were

used in a performance comparison of eight well-known MOEAs. Each of these test

problems is structured in the same manner and is consists of three functions (Deb

1999). The definitions of the three functions 1, ,f g h in ZDT1, ZDT2, ZDT3, ZDT4

and ZDT6 are listed in Table 3.2.

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

48

1 1 2

2 2 1 1 2

1

 () ((), ())
 () (, ,) ((), (, ,))

 (, ,)
m m

m

Minimize T x f x f x
subject to f x g x x h f x g x x
where x x x

=
=

=

(3.6)

Table 3.2. Definitions of 1, ,f g h in ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6

ZDT1 1 1 1

2
2

1 1

 ()

(, ,) 1 9 /(1)

(,) 1 /
 30, [0,1].

m

m i
i

i

f x x

g x x x m

h f g f g
where m and x

=

=

= + ⋅ −

= −

= ∈

∑

(3.7)

ZDT2 1 1 1

2
2

2
1 1

 ()

(, ,) 1 9 /(1)

(,) 1 (/)
 30, [0,1].

m

m i
i

i

f x x

g x x x m

h f g f g
where m and x

=

=

= + ⋅ −

= −
= ∈

∑

(3.8)

ZDT3 1 1 1

2
2

1 1 1 1

 ()

(, ,) 1 9 /(1)

(,) 1 / (/)sin(10)
 30, [0,1].

m

m i
i

i

f x x

g x x x m

h f g f g f g f
where m and x

π
=

=

= + ⋅ −

= − −

= ∈

∑

(3.9)

ZDT4 1 1 1

2
2

2

1 1

1 2

 ()

(, ,) 1 10(1) (10cos(4))

(,) 1 /
 10, [0,1] , , [5,5].

m

m i i
i

m

f x x

g x x m x x

h f g f g
where m x and x x

π
=

=

= + − + −

= −

= ∈ ∈ −

∑

(3.10)

ZDT6 6
1 1 1 1

0.25
2

2

2
1 1

 () 1 exp(4)sin (6)

(, ,) 1 9(() /(1))

(,) 1 (/)
 10, [0,1]

m

m i
i

i

f x x x

g x x x m

h f g f g
where m x

π

=

= − −

= + −

= −
= ∈

∑

(3.11)

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

49

2) Test Problem FON

Test problem FON is Fonseca’s two-objective minimization problem that has been

widely studied (Fonseca and Fleming 1993; Tan et al. 2001, 2003b; Van Veldhuizen

and Lamont 1999). Besides its non-convex Pareto front, this test problem has a large

and nonlinear trade-off curve that is suitable to challenge the algorithm’s ability in

finding and maintaining the entire Pareto front uniformly. In addition, the performance

of algorithms can easily be compared via visualization of the Pareto front for this

problem. This two-objective minimization problem is given by

1 2

8 2
1 1 8 1

8 2
2 1 8 1

(,)

(,...,) 1 exp[(1/ 8)]

(,...,) 1 exp[(1/ 8)]

 2 2, 1, 2, ,8

ii

ii

i

Minimize f f

f x x x

f x x x

where x i

=

+
=

 = − − −


= − −
− ≤ < ∀ =

∑
∑

(3.12)

There are eight parameters 1 8(, ,)x x to be optimized so that 1f and 2f are minimal.

Due to the symmetry and trade-offs of these two functions, the Pareto-optimal sets are

points on the curve defined as (Fonseca and Fleming 1993),

1 2 8 1
1 1,
8 8

x x x x−
= = = ≤ ≤

(3.13)

3) Test Problem KUR

Kursawe (1990) used a two-objective optimization problem that is very complicated.

The Pareto front is non-convex as well as disconnected. There are three distinct

disconnected regions in the Pareto front. The decision variable values corresponding to

the Pareto front are also disconnected in the decision variable space and difficult to

know as given below,

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

50

1 2

2 2 2
1 11

0.83 3
2 1

(,)

() [10exp(0.2)]

() [5sin()]

 5 5, 1,2,3

i ii

i ii

i

Minimize f f

f x x x

f x x x

where x i

+=

=

 = − − +

 = +

− ≤ < ∀ =

∑
∑

(3.14)

4) Test Problem TLK

Tan et al. (2002a) constructed this test problem to evaluate search algorithms in a noisy

environment to test their robustness in the sense that the disappearance of important

individuals from the population has little effect on the global evolution behavior,

() ()(){ }
1 2

1 1

0.25 0.12 2 2 2 2
2 2 3 2 3

1

(,)

1 1 sin 50 1.0

Minimize f f
f x

f x x x x
x

=

 ′ ′ ′ ′= + + + +  

(3.15)

Instead of performing the optimization on the 'real' parameters, xi, the optimization is

performed on the 'corrupted' parameters with additive noise elements,

(,)i ix x N σ µ′ = + (3.16)

where 10.1 1x≤ ≤ ; 100 100 2,3ix i− ≤ ≤ ∀ = and N(σ,µ) is a white noise. The

distribution density of the noise is given as normal distribution,

()2

22

1(| (,)) exp
22

x
P x N

µ
σ µ

σπσ

 −
 = −
 
 

(3.17)

where µ and σ are the mean and variance of the probability density distribution. In the

normal curve, approximately 68% of the scores of the distribution lie between µ ± σ.

On this test problem, both µ and σ are given as 0.0 and 0.1, respectively. Note that the

noisy search environment is modeled with the corrupted parameters. This is to provide

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

51

noisy global optimum points in the parameter domain, while maintaining the global

Pareto front in the objective domain for easy comparison or illustration.

5) Test Problem DTL2

This problem was designed by Deb et al. (2002b) to test the MOEAs’ ability to solve

problems with a large number of objectives. It is scalable, easy to construct and

understand,

1 2

1 1 1

2 1 1

1
2

M 9

(, , ,)

() (1 ()) cos(/ 2) cos(/ 2)
() (1 ()) cos(/ 2) sin(/ 2)

() (1 ())sin(/ 2)

() (0.5)

5, { , , }, [0,1], 1, 2, , 9

M

M M

M M

M M

M i

M M i

i Mx

Minimize f f f

f x g x x
f x g x x

f x g x

g x

where M x x x i M

π π
π π

π

−

−

+

∈

 = +
 = +


 = +
 = −


= = ∈ ∀ = +

∑ x

x
x

x

x

x

(3.18)

All the points on the Pareto front satisfy the equation below,

2

1
1

M

i
i

f
=

=∑
(3.19)

3.4.3 Simulation Results of CCEA

In this section, simulations are carried out to validate the performance of CCEA in

several aspects, which include the discovery and distribution of non-dominated

solutions along the entire Pareto front uniformly, the escape from harmful local optima

and the minimization of the effect of noise induced from the environment (robustness).

The performance is compared between CCEA and various multiobjective optimization

methods based on the nine test problems described in Section 3.4.1. Besides CCEA,

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

52

other evolutionary multiobjective optimization methods used for the study include

PAES, PESA, NSGAII, SPEA2 and IMOEA. In order to guarantee a fair comparison,

all the algorithms considered are implemented with the same binary coding scheme of

30-digit per decision variable, tournament selection, uniform crossover, and bit-flip

mutation. The number of evaluations in each run is fixed and the configurations of the

algorithms are shown in Table 3.3.

Table 3.3. The configurations of the MOEAs

Populations Subpopulation size 20 in CCEA; population size 100 in

PESA, NSGAII, SPEA2; population size 1 in PAES;

initial population size 20, maximum population size 100

in IMOEA. Archive (or secondary population) size 100 in

all the algorithms

Chromosome length 30 bits for each variable

Selection Binary tournament selection

Crossover rate 0.8

Crossover method Uniform crossover

Mutation rate 2/L, where L is the chromosome length, for ZDT1, ZDT2,

ZDT3, ZDT4, ZDT6, TLK, and DTL2; 1/30, where 30 is

the bit number of one variable, for FON, and KUR

Mutation method Bit-flip mutation

Hyper-grid size 32 per dimension for DTL2; 52 per dimension for other

problems

Representative number 2 for FON and KUR; 1 for other problems

Number of evaluations 120,000

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

53

3.4.3.1 Performance Comparisons

In the simulations, 30 independent runs (with random initial populations) of CCEA,

PAES, PESA, NSGAII, SPEA2 and IMOEA are performed on each of the nine test

functions in order to study the statistical performance, such as consistency and

robustness of the methods. Fig. 3.8(a-d) summarizes the simulation results of the

algorithms for the problems ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, FON, KUR and TLK.

The distribution of simulation data for 30 independent runs is represented in the box

plot format (Chambers et al. 1983). Each box plot represents the distribution of a

sample set where a horizontal line within the box encodes the median, while the upper

and lower ends of the box are the upper and lower quartiles. The appendages illustrate

the spread and shape of distribution, and dots represent the outside values.

Maybe PAES is the simplest possible multiobjective evolutionary algorithm while

providing competitive results. For almost all the test problems and all the metrics, the

performance of PAES is the worst and the variance is large compared to other

MOEAs. A possible reason is that PAES is a non-population based local search

algorithm where the mutation acts as local search method. It seems that a population of

candidate solutions is helpful to improve the result consistency.

With respect to the generational distance, the results show that PESA gives the best

good performance for problems of ZDT1, ZDT2, ZDT3 and KUR. CCEA is found to

be very competitive for all the problems and it outperforms other MOEAs for the

problems of ZDT4 and ZDT6, FON and DTL2. The problem ZDT4 has many local

Pareto fronts that challenge the ability of algorithms to escape from harmful local

optima. As can be seen from Fig. 3.8(b), only CCEA has the chance to find the global

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

54

Pareto front while other MOEAs are trapped by the local Pareto fronts. It shows that

CCEA has a strong ability to escape from the local optima. The non-uniform

distribution of solutions makes ZDT6 difficult to be tackled by MOEAs. Once again,

CCEA is clearly better than other MOEAs. All the results prove that the cooperative

coevolution can work well in MO optimization and can effectively push solutions to

the global Pareto front.

Concerning the metric of spacing, CCEA shows distinct advantage over other MOEAs.

For all the test problems except TLK, CCEA performs the best in maintaining the

diversity of solutions and distributing solutions uniformly along the discovered Pareto

front. Even for the problem TLK with noise on parameters, CCEA is comparable with

other MOEAs. These successes are attributed to the extending operator that guides the

search to gaps and boundaries and fills the under-populated regions with new

generated solutions. Such idea is general and can be used in other MOEAs.

For the metrics of maximum spread and hyper-volume ratio, the CCEA is competitive

in exploring the spread of non-dominated solutions for all cases. This is consistent with

the excellent performance of CCEA in the metrics of generational distance and spacing.

For the problem ZDT4, the maximum spread and hyper-volume ratio of CCEA are

much higher than other algorithms. The reason is that the PAES, PESA, NSGA II,

SPEA 2, and IMOEA stop at the local Pareto fronts and their solution set cannot

approximate the true Pareto front nicely.

The problem DTL2 has a large number of objectives, which bring the difficulty for

MOEAs to produce enough pressure to push solutions to the Pareto front. Fig. 3.8(e)

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

55

shows that CCEA scales well with PAES and PESA, while NSGAII, SPEA2 and

IMOEA suffered in converging to the optimal Pareto front.

CCEA PAES PESA NSGAII SPEA2 IMOEA
0

1

2

3

4

5

6

7

8

x 10-3 Generational Distance

G
D

CCEA PAES PESA NSGAII SPEA2 IMOEA

0

1

2

3

4

5

6

7

8

x 10-3 Generational Distance

G
D

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.2

0.4

0.6

0.8

1

1.2

Spacing

S

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.2

0.4

0.6

0.8

1

1.2

Spacing

S

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Maximum Spread

M
S

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.98

0.985

0.99

0.995

1

Maximum Spread

M
S

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.985

0.99

0.995
Hypervolume Ratio

HV
R

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.97

0.975

0.98

0.985

0.99
Hypervolume Ratio

HV
R

ZDT1 ZDT2

(a)

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

56

CCEA PAES PESA NSGAII SPEA2 IMOEA

0

0.005

0.01

0.015

0.02

Generational Distance

G
D

CCEA PAES PESA NSGAII SPEA2 IMOEA

0

0.5

1

1.5

2

Generational Distance

G
D

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Spacing

S

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Spacing

S

CCEA PAES PESA NSGAII SPEA2 IMOEA
0.9

0.92

0.94

0.96

0.98

1

Maximum Spread

M
S

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.7

0.75

0.8

0.85

0.9

0.95

1

Maximum Spread

M
S

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.9

0.92

0.94

0.96

0.98

1

Hypervolume Ratio

H
V

R

CCEA PAES PESA NSGAII SPEA2 IMOEA

0

0.2

0.4

0.6

0.8

1

Hypervolume Ratio

H
V

R

ZDT3 ZDT4

(b)

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

57

CCEA PAES PESA NSGAII SPEA2 IMOEA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generational Distance

G
D

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.01

0.02

0.03

0.04

0.05

Generational Distance

G
D

CCEA PAES PESA NSGAII SPEA2 IMOEA
0

0.5

1

1.5

2

2.5

3

3.5

Spacing

S

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.2

0.4

0.6

0.8

1

1.2

Spacing

S

CCEA PAES PESA NSGAII SPEA2 IMOEA
0.993

0.994

0.995

0.996

0.997

0.998

0.999

Maximum Spread

M
S

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.5

0.6

0.7

0.8

0.9

1
Maximum Spread

M
S

CCEA PAES PESA NSGAII SPEA2 IMOEA
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Hypervolume Ratio

H
V

R

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Hypervolume Ratio

H
V

R

ZDT6 FON

(c)

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

58

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.01

0.015

0.02

0.025

Generational Distance

G
D

CCEA PAES PESA NSGAII SPEA2 IMOEA

0

0.2

0.4

0.6

0.8

1

Generational Distance

G
D

CCEA PAES PESA NSGAII SPEA2 IMOEA
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Spacing

S

CCEA PAES PESA NSGAII SPEA2 IMOEA

1

1.5

2

2.5

3

3.5

Spacing

S

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Maximum Spread

M
S

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.75

0.8

0.85

0.9

0.95

1

Maximum Spread

M
S

CCEA PAES PESA NSGAII SPEA2 IMOEA
0.965

0.97

0.975

0.98

0.985

0.99

Hypervolume Ratio

HV
R

CCEA PAES PESA NSGAII SPEA2 IMOEA

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Hypervolume Ratio

H
V

R

KUR TLK

(d)

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

59

CCEA PAES PESA NSGAII SPEA2 IMOEA

0

0.5

1

1.5

2

Generational Distance

G
D

CCEA PAES PESA NSGAII SPEA2 IMOEA
0

0.5

1

1.5

2

2.5

Spacing

S

CCEA PAES PESA NSGAII SPEA2 IMOEA
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Maximum Spread

M
S

DTL2

(e)

Fig. 3.8. Box plots for the metrics of GD, S, MS, and HVR

The dynamic characteristics of CCEA on four metrics for test problems ZDT4 and

ZDT6 are illustrated in Fig. 3.9. These graphs describe the evolution of various metric

values along the number of function evaluations. As shown in the figure of GD, there

are four steps along the evolution for ZDT4. Each step means that CCEA jumps out of

a local Pareto front. Through these jumps, CCEA reaches the global Pareto front at the

end of the evolution. Corresponding to the jumps of GD, pulses of spacing can be

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

60

found for ZDT4. With Fig. 3.9, the evolution process of CCEA can be observed in

detail, which gives us a better understanding of how CCEA works.

0 2 4 6 8 10 12

x 104

0

0.2

0.4

0.6

0.8

1

number of evaluations

G
D

0 2 4 6 8 10 12

x 104

0

0.2

0.4

0.6

0.8

1

number of evaluations

G
D

0 2 4 6 8 10 12

x 104

0

0.5

1

1.5

2

2.5

3

number of evaluations

sp
ac

in
g

0 2 4 6 8 10 12

x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

number of evaluations

sp
ac

in
g

0 2 4 6 8 10 12

x 104

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of evaluations

M
S

0 2 4 6 8 10 12

x 104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of evaluations

M
S

0 2 4 6 8 10 12

x 104

0

0.2

0.4

0.6

0.8

1

number of evaluations

H
V

R

0 2 4 6 8 10 12

x 104

0

0.2

0.4

0.6

0.8

1

number of evaluations

H
V

R

ZDT4 ZDT6

Fig. 3.9. Dynamic behaviors of the CCEA in multiobjective optimization

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

61

3.4.3.2 Effect of Extending Operator

To further verify effectiveness of the extending operator, CCEA without extending

operator, CCEA with extending operator (clone number n = 1) and CCEA with

extending operator (n = 2) were run for 30 times respectively for all the test problems.

Table 3.4 lists the median generational distance for the 30 runs. Although the

motivation of extending operator is not to reduce the generational distance, it is

beneficial to the reduction of generational distance. It seems that the spacing and

spread of the non-dominated solutions are correlated to the generational distance and

their improvements are helpful for the convergence to the Pareto front.

Table 3.5 and Table 3.6 list the median spacing and median maximum spread

respectively for 30 simulation runs. In most cases, the extending operator can improve

the performance metrics of spacing and spread. Although the extending operator has

resulted negative effects in some cases, such as ZDT1 and ZDT4, these effects are

small. The tables show that the results for extending operator with n = 1 are better than

n = 2. Here, the subpopulation size is only set at 20 and is relatively small for a

population-based algorithm, which suggests that one clone is enough to guide the

search as more clones may reduce the solution diversity. For test problem ZDT3 with

discontinuous Pareto front, the extending operator is able to reduce the spacing greatly.

Besides, the extending operator is capable of reducing the spacing and improving the

maximum spread of the non-dominated solutions for the problem FON. The results for

other problems also illustrate that the extending operator is effective in improving

smoothness and maximum spread of the non-dominated solutions.

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

62

Table 3.4. Median generational distance of CCEA with/without the extending operator

Problem CCEA without

extending operator

CCEA with extending

operator (n=1)

CCEA with extending

operator (n=2)

ZDT1 1.80E-04 1.32E-04 1.76E-04

ZDT2 2.52E-04 2.15E-04 1.44E-04

ZDT3 7.01E-04 4.05E-04 4.29E-04

ZDT4 1.87E-01 1.85E-01 1.85E-01

ZDT6 5.28E-07 4.92E-07 4.95E-07

FON 2.66E-02 1.47E-02 1.34E-02

KUR 1.37E-02 1.24E-02 1.49E-02

TLK 2.69E-01 2.69E-01 2.68E-01

DTL2 1.15E-03 8.57E-04 1.03E-03

Table 3.5. Median spacing of CCEA with/without the extending operator

Problem CCEA without

extending operator

CCEA with extending

operator (n=1)

CCEA with extending

operator (n=2)

ZDT1 0.1299 0.1376 0.1354

ZDT2 0.1312 0.1274 0.1376

ZDT3 0.2469 0.2140 0.2129

ZDT4 0.1267 0.1339 0.1358

ZDT6 0.1373 0.1246 0.1307

FON 0.8289 0.1901 0.1544

KUR 0.6542 0.6589 0.6703

TLK 1.1074 1.1074 1.1125

DTL2 0.1255 0.1214 0.1208

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

63

Table 3.6. Median maximum spread of CCEA with/without the extending operator

Problem CCEA without

extending operator

CCEA with extending

operator (n=1)

CCEA with extending

operator (n=2)

ZDT1 0.9931 0.9935 0.9947

ZDT2 0.9989 0.9988 0.9990

ZDT3 0.9973 0.9981 0.9978

ZDT4 0.9358 0.9355 0.9352

ZDT6 0.9992 0.9992 0.9992

FON 0.7202 0.7742 0.8577

KUR 0.9975 0.9981 0.9964

TLK 0.9826 0.9830 0.9830

DTL2 0.9957 0.9971 0.9977

3.4.4 Simulation Results of DCCEA

The test environment for DCCEA consists of 11 PCs in a campus LAN. Table 3.7

gives the configuration of the 11 PCs, e.g., the server of the system runs on the PIV

1600/512 while the peers are run on other PCs. Since the test problems of ZDT1,

ZDT2, ZDT3, ZDT4 and ZDT6 have a large number of decision variables, they are

used here to test the capability of DCCEA in accelerating the executions in

multiobjective optimization. The parameters configuration of the DCCEA is listed in

Table 3.8.

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

64

Table 3.7. The running environment of DCCEA

PC Configuration CPU (MHz)/RAM (MB)

1 PIV 1600/512

2 PIII 800/ 512

3 PIII 800/ 512

4 PIII 800/ 256

5 PIII 933/384

6 PIII 933/128

7 PIV 1300/ 128

8 PIV 1300/ 128

9 PIII 933/ 512

10 PIII 933/ 512

11 PIII 933/256

Table 3.8. The parameters of DCCEA

Populations Subpopulation size 20; archive size 100

Chromosome length 30 bits for each variable

Selection Binary tournament selection

Crossover method Uniform crossover

Crossover rate 0.8

Mutation method Bit-flip mutation

Mutation rate 2/L, where L is the chromosome length

Number of evaluations 120,000

Exchange interval 5 generations

Synchronization interval 10 generations

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

65

To minimize bias in the simulations, 30 independent runs are performed with random

initial populations. The median runtime of the 30 runs is listed in Table 3.9 and is

visualized in Fig. 3.10. It can be seen that the median runtime goes down as the

number of peers is increased. In the case of ZDT1, the median runtime for 5 peers

(each peer with 6 subpopulations) is 109 seconds, which is about one third of the 270

seconds used by 1 peer (each peer with 30 subpopulations). The results also show that

5 peers are enough for the acceleration of runtime in these problems. When there are

more than 5 peers, the increment of communication cost counteracts the reduction of

computational cost for each peer and the saturation of acceleration is nearly achieved.

The four median metrics of the 30 simulation runs are summarized in Fig. 3.11. It can

be seen that the median metrics have no distinct change in spite of some small

fluctuations on the curve for the five test problems as the number of peers is increased.

This shows that the DCCEA can effectively reduce the runtime while achieving similar

performances as the number of peers is increased.

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

66

Table 3.9. Median runtime of DCCEA with respect to the number of peers (second)

Number of peers ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

1 270 242 189.5 209 138

2 177.5 142.5 128.5 170 137

3 134 121.5 101 142 124

4 120 109.5 97 139 121

5 109 90 88 134 121

6 96 80 67 123 108

7 94 73 68.5 111 110

8 80 74 65 115 109.5

9 78 72 64 114 109.5

10 78 76 68 115 110.5

Fig. 3.10. Median runtime of DCCEA with respect to the number of peers

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

67

(a)

(b)

(c)

(d)

Fig. 3.11. Median metrics of DCCEA with respect to the number of peers

Chapter 3 The Cooperative Coevolution for Multiobjective Optimization

68

3.5. Conclusions

This chapter has proposed a cooperative coevolutionary algorithm that incorporates the

coevolutionary mechanism by co-evolving the solution set with a number of

subpopulations in a cooperative way. Incorporated with various features like archiving,

dynamic sharing and extending operator, the CCEA is capable of maintaining search

diversity in the evolution and uniformly distributing the solutions along the Pareto

front. The extensive quantitative comparisons of various MOEAs on test problems

show that CCEA has the best overall performance in endowing the non-dominated

solutions with good convergence and uniform distribution. Numerous simulations have

been performed to illustrate effectiveness of the proposed extending operator in

improving the smoothness and maximum spread of the non-dominated solutions.

Exploiting the inherent parallelism in cooperative coevolution, a distributed CCEA

paradigm has been implemented on a Java-based distributed system named Paladin-

DEC to reduce the runtime by sharing the computational workload among various

networked computers. The computational results show that DCCEA can dramatically

reduce the runtime without sacrificing the performance of CCEA as the number of

peers increases.

Chapter 4

Enhanced Distribution and Exploration for

Multiobjective Optimization

4.1. Introduction

The performance of MOEAs is greatly affected by the parameters. Evolutionary

algorithms are intrinsically dynamic and adaptive. The adaptation of parameters during

the runtime is more consistent to the general evolutionary idea and has shown better

performances over constant parameters (Bäck 1993, 1996; Fogarty 1989; Ochoa 1999;

Thierens 2002). Eiben et al. (1999) classified the types of adaptation into dynamic

parameter control, adaptive parameter control, and self-adaptive parameter control.

The dynamic parameter control typically alters the parameters based on a

deterministically rule without any feedback. Fogarty (1989) experimentally studied a

dynamical mutation rate control for genetic algorithms and proposed to use a schedule

that decreases exponentially over the number of generations. The adaptive parameter

control modifies the parameter values when there is some form of feedback from the

search that is used to determine the direction and/or magnitude of the change to the

parameters. The assignment of the value of the parameters may involve credit

assignment, and the action of the EA may determine whether or not the new value

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

70

persists or propagates throughout the population. The self-adaptive parameter control

encodes the parameters in the chromosome and evolves these parameters during the

run. The better values of these encoded parameters lead to better individuals and in

turn are more likely to survive and propagate. Self-adaptation has been successfully

applied in evolutionary strategy and evolutionary programming. Bäck and Schütz

(1996) designed a self-adaptive scheme for binary strings following the principles from

the continuous domain.

To maintain the diversity of solutions, many researchers put much effort on this issue

and several approaches were proposed. The technique of niche sharing by means of a

sharing function is often implemented in MOEAs (Goldberg 1989a; Fonseca and

Fleming 1993, 1995b). The niche sharing sums the crowding effects of individuals in a

neighborhood. Knowles and Corne (2000) used a hyper grid scheme in the Pareto

archived evolution strategy (PAES). The hyper grid divides the normalized objective

space into hyper boxes and every individual is given an attribute that indicates the

number of solutions sharing the same box. Deb et al. (2002a) proposed the crowding

distance in the non-dominated sorting genetic algorithm II (NSGA II). The crowding

distance is an estimate of the size of the largest cube enclosing a single solution

without any other point in the population and this is used to estimate the density of

solutions surrounding a particular individual. This measure is given as the average

distance of two points on either side of the selected solution along each of the

objectives. Zitzler et al. (2001) used the density mechanism in the strength Pareto

evolutionary algorithm 2 (SPEA2). The density estimation is adapted from k th⋅

nearest neighbor method and it is given by the inverse of the k th⋅ distance.

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

71

This chapter presents two features to address the objectives of MOPs, (1) minimizing

the distance between the solution set and true Pareto front, (2) distributing the

solutions evenly, and (3) maximizing the spread of solution set. The first feature is an

adaptive mutation operator (AMO). The mutation rate of AMO is adapted with time

along the entire evolution process to adjust the exploration and exploitation effects of

mutation operator. The second is an enhanced exploration strategy (EES) which

maintains diversity and preserves good solutions in the evolving population and

extends more attention to the growth of solutions in less populated areas.

Section 4.2 describes the AMO and EES. The comparative studies are performed with

some well-known mutation operators, diversity operators, and MOEAs in section 4.3.

Conclusions are drawn in section 4.4.

4.2. Two New Features for Multiobjective Evolutionary Algorithms

4.2.1 Adaptive Mutation Operator (AMO)

In this section, an adaptive mutation operator (AMO) is introduced. The AMO is a

variant of the simple bit-flip mutation operator and unique in two aspects. Firstly, the

manner in which the mutation operation is carried out on the chromosome is different.

This will be elaborated later in the section. Secondly, the mutation rate of AMO is

adapted with time along the entire evolution process. In brief, the AMO is

implemented for three objectives.

i. Providing the possibility of exploration to produce new structures not

previously tested

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

72

ii. Providing the probability of re-introducing binary bit values lost through the

selection process

iii. Performing local fine-tuning in the later stage of evolution and to achieve better

convergence.

For the first objective, consider a minimization problem where m decision variables

must be optimized. By using a thirty bit binary representation for potential solutions,

there is a total of 302 m possible binary structures or chromosomes! Hence, it is difficult

if not impossible, for any MOEA with fixed population size to maintain all possible

binary bit combinations at any one time. By changing the bit values according to some

mutation probability, the mutation operator acts as a potential source of producing the

missing structures so that the evolution process is not trapped in any local minimal.

With small mutation rates, the individuals produced by mutation will not vary much

from the parent in terms of the chromosome structure. Intuitively, it will be very

difficult to escape local traps. However, simply increasing the mutation rate cannot

solve this problem. With increased mutation rates, the probability of disrupting sub-

structures within the chromosome that are responsible for good candidate solutions, is

increased.

A simple and effective way to perform exploration while minimizing the disruption of

good substructures within the chromosome is to mutate a specific part of the

chromosome rather than the entire binary structure. More specifically, each of the

decision variable encoded in the chromosome is allocated equal probability of

undergoing the mutation operation. During this mutation operation, the bits of selected

decision variable will be subjected to bit-flip with probability, _ ()am rate n . AMO

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

73

operation for a single chromosome is shown in Fig. 4.1 where prob is probability of

the decision variable being selected and _ ()am rate n is the probability of the bit-flip

operation. If prob is set as 1/ var_ num where var_ num is the number of decision

variables encoded in a single chromosome, on average, the AMO will perform the bit-

flip operation on one decision variable for every chromosome. Thus, the AMO allows

mutated individual retaining most of the substructures contributing to the

chromosomes fitness.

Before AMO Chromosome

Decision variable 1 Decision variable n

1010011011 0010010000 1001101011

Decision variable k

After AMO Variant

for every decision variable
 if rand() < prob
 perform mutation with am_ rate
 else
 do not mutate
 end if
end for

Decision variable k is selected

1010011011 0010010000 1001101011

1010011011 10011010111111001100

Fig. 4.1. AMO operation

Holland had presented the idea of applying the mutation operator with a time-

dependent and deterministic rate schedule that reduces the mutation rate toward zero in

(Holland, 1992). Some researchers had observed that by varying mutation rate, the

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

74

performance of the algorithm could be improved. Fogarty (1989) used a varying

mutation rate, demonstrating that a mutation rate that decreases exponentially over

generations has superior performance. Davis (1989) adapted the operator application

probability based in the performance of offspring, i.e. the operators that create and

cause generation of better offspring are allotted higher probabilities. Bäck and Schütz

(1996) had also shown the usefulness of a time-varying mutation rate. Despite these

reported success, most recent well-known MOEAs such as SPEA2, PESA, PAES,

NSGAII still employ static mutation operators.

The AMO adapts the mutation rate to maintain a balance between the introduction of

diversity and local fine-tuning. The mutation rate will start off with a high value to

produce a diverse set of solutions for an effective genetic exploration search. This

value will then decrease as a function of time or generation number to meet the

exploitation requirement of local fine-tuning. The mutation rate for this operation is

given by

2

2

1 0

_ ()

0.1

na b n
genNum

am rate n
n genNuma b n genNum

genNum

α

α

    − + ≤ ≤  
     = 

   −
+ ≤ ≤   

    

(4.1)

where n is the current generation number of the evolution process, genNum is the

maximal generation number. Fig. 4.2 shows the adaptation of mutation rate along the

evolution when a is 0.8, and b is 1/(10*30). Two distinct regions can be observed, the

exploration region between 0.8~0.753 and the exploitation region between

0.048~0.003. Different from many other adaptive mutation operators where mutation

rate decreases gradually along the evolution, AMO pays its attention to searching new

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

75

strings in the initial stage and then quickly to improving them in the later stage. No

time is spent in exploring the immediate region between the exploration and

exploitation region while AMO adapts the mutation rate according to a smooth curve

inside each region.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n/genNum

m
ut

at
io

n
ra

te

Fig. 4.2. Adaptive mutation rate in AMO

4.2.2 Enhanced Exploration Strategy (EES)

In this section, the enhanced exploration strategy (EES) is presented. The EES is an

online population distribution scheme that maintains diversity and preserves non-

dominated solutions together in the mating population. In addition, it improves

distribution of solutions by encouraging the growth of individuals in less populated

areas.

The approximation of the Pareto optimal front requires the MOEA to perform a multi-

directional search simultaneously to discover multiple, widely different solutions and

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

76

this requires a substantial amount of diversity in the evolving population. According to

Mahfoud (1995), simple elitist EA tends to converge towards a single solution and

often loses solutions due to the effects of selections pressure, selection noise, drifting,

and operator disruption. Many methods such as, sharing (Goldberg and Richardson

1987), restricted mating (Deb and Goldberg 1989) and crowding (De Jong 1975), have

been proposed over the years to deal with this problem.

In this chapter, the niche sharing discussed in Section 2.4 is used to maintain the

diversity where the objective space is normalized and the sharing distance is set as

shareσ = 1/archive_size. The niche count will be used in the selection and archive

updating.

The flow chart of EES is shown in Fig. 4.3. At every generation, a certain number of

individuals will be tournament selected from the archive to form the population called

_ exp pop and the selection criterion is based purely on the niche count. Simple bit-

flip mutation is performed on _ exp pop with mutation probability expP and the

purpose of the entire process is to promote the growth of solutions in less populated

areas. expP is set either as 1/ _chromosome length or 1/ _ _ _ varbit number per iable

depending on the test problem. The number of individuals selected for _ exp pop is

dynamic and it is given by,

2_ (1)Num Explore c epr d= − + (4.2)

where ()epr n is the evolution progress rate. Evolution progress rate is developed from

progress ratio, a performance metric defined as the ratio between the number of non-

dominated individuals at generation n dominated any non-dominated individuals at

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

77

generation (1)n − and the total number of non-dominated individuals at generation n

(Tan et al. 2001). The evolution progress rate, ()epr n , is defined as the ratio of the

number of new non-dominated solutions discovered in generation n,

_ ()new nondomSol n , to the total number of non-dominated solutions in generation n,

_ ()total nondomSol n .

 _ ()()
 _ ()

number of new nondomSol nepr n
number of total nondomSol n

=
(4.3)

The set of new non-dominated individuals discovered at each generation is basically

composed of individuals that dominate the non-dominated individuals of the previous

generation and individuals that contribute to the diversity of the solution set. The

rationale behind the use an adaptive number of individuals selected for the exploration

process is intuitive. When ()epr n is low, it means that either the generated Pareto

front is approaching the true front or the evolution process is not discovering new

solutions and more resources are required to perform exploration in the less populated

areas. When ()epr n is high, it means that the new solutions are being discovered and

requirement for resources to perform exploration can be reduced.

At the same time, individuals are being selected to a mating pool named

_ mat pop through the tournament selection of the combination of archive and

()population n where ()population n is the evolving population. The selection criterion

in this case is based on Pareto based rank and the niche count will be used in the event

of a tie. The population size of _ mat pop is dynamic and given by _Pop size -

_Num Explore where _Pop size is the population size of the evolving population.

The _ mat pop will then be subjected to genetic operations such as crossover and

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

78

mutation. After the genetic operations are carried out, _ exp pop and _ mat pop will

be combined to form (1)population n + . The settings of c and d adopted in this

chapter is 10 and 20 respectively.

Calculate the Num_Explore

Archive update

Mutation

Tournament select
Pop_size - Num_Explore

individuals from the
archive and population(n)

Tournament select
Num_Explore individuals

from the archive

Genetic operations

Combine individuals to
form population(n+1)

Stop

Fig. 4.3. The flow chart of EES

4.3. Comparative Study

This section will start with the Section 4.3.1 that describes three performance metrics

used in the comparisons. Then the test problems are introduced in the Section 4.3.2.

Three comparisons will be performed to evaluate the performance of the proposed

features. The various mutation operators are surveyed and AMO is compared against

the selected mutation operators in the Section 4.3.3. The diversity operators are

overviewed and EES is compared against these diversity operators in the Section 4.3.4.

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

79

In Section 4.3.5, the performance comparison among a common MOEA incorporating

AMO and EES and various well-known algorithms will be made.

4.3.1. Performance Metrics

Three different quantitative performance measures for MO optimization are used. The

first metric is the generational distance (GD), which measures how “far” the solution

set is from the true Pareto front. The metric of spacing (S) measures how “evenly”

members in the solution set distribute. Zitzler (2000) defined a metric of maximum

spread (MS) to measure how well the true Pareto front is covered by the solution set.

For the definition of these metrics, please refer to Section 3.4.1.

4.3.2. The Test Problems

Three test problems are used in the case study. The problems, ZDT4, ZDT6 and FON,

can be referred to Section 3.4.2.

4.3.3. Effects of AMO

In this Section, the performance of AMO and the influence of parameter variations are

investigated. This section will start with a short discussion on the bit-flip mutation and

fuzzy boundary local perturbation.

 4.3.3.1. Mutation operators

There are different opinions on the motivation behind its use in EA. Some researchers

think that the mutation operator plays the role of ensuring that the crossover operator

has a full range of genetic materials (Holland 1992), while some used it as a hill-

climbing mechanism (Knowles and Corne 2000). Two mutation operators are

discussed below.

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

80

1) Bit-flip mutation: Bit-flip mutation simply means the flipping of the

chromosome bits. For every bit, the probability of being mutation is given by a

predetermined value, the mutation rate. This mutation rate remains constant

throughout the evolution process.

2) Fuzzy boundary local perturbation (FBLP): Tan et al. (2001) used the FBLP in

place of simple bit-flip mutation to produce the required number of individuals

in IMOEA with dynamic population sizing. Unlike bit flip mutation, the

perturbation rate for FBLP varies according to the significance of the genes in

the chromosome. Consider n genes concatenated in a chromosome to represent

an optimizing parameter. A probability set { | 1, }iP p i n= = that indicates the

perturbation probability for each gene, can be defined

2

2

12 , 1
1

1 2 ,
1

i

ib a i
n

p
i nb a i n
n

β

β

  −  + ≤ ≤   −     = 
  − − + < ≤   −    

(4.4)

The perturbation rate decreases with the increasing significance of the

encoded bit. Hence the perturbed child is very likely to lie within the

immediate neighborhood of the parent. FBLP is thus capable of local fine-

tuning.

4.3.3.2. Comparison of AMO

The AMO is compared against FBLP and three bit-flip mutation operators with

different settings. The parameter configurations in the different mutation operators and

the different cases are shown in Table 4.1 and Table 4.2 respectively.

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

81

Table 4.1. Parameter setting for the mutation operators

Chromosome Binary coding. 30 bits per decision variable.

Populations Population size 100; Archive (or secondary population)

size 100.

Selection Binary tournament selection

Crossover operator Uniform crossover

Crossover rate 0.8

Ranking scheme Scheme of Fonseca and Fleming

Diversity operator Niche count with radius 0.01 in the normalized objective

space

Generation number 1000

Table 4.2. Different cases for the AMO evaluation

Index Case Description

1 AMO AMO with b = PM

2 N1 Bit-flip with mutation rate PM /2

3 N2 Bit-flip with mutation rate PM

4 N3 Bit-flip with mutation rate 2 PM⋅

5 FBLP / 2, , _ _ _ var / 2ab PM b PM bit num per iableβ= = =

PM is defined as 1/ _chromosome length for ZDT4 and ZDT6 and

1/ _ _ _ varbit number per iable for FON.

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

82

Table 4.3. Median values of GD, S and MS for different mutation operators

 Mutation operator

 AMO FBLP N1 N2 N3

 GD 0.7681 0.8778 0.7868 0.8142 1.4601

ZDT4 S 0.6481 0.3541 0.2595 0.7463 0.7831

 MS 0.7444 0.7533 0.7572 0.7408 0.4207

 GD 4.87e-7 0.8657 0.5471 1.5886 2.8208

ZDT6 S 2.3443 1.3399 1.7457 1.1108 1.1910

 MS 0.9992 0.7042 0.7545 0.7060 0.7047

 GD 0.0030 0.0031 0.0031 0.0146 0.0492

FON S 2.4625 1.3672 0.9318 0.8072 0.7589

 MS 0.5858 0.4845 0.4791 0.5620 0.6773

In the experiment, 30 runs are performed for each case on each test problem so as to

study the statistical performance. The median of 30 runs on the three performance

metrics is listed in Table 4.3. AMO displays the best generational distance for this

problem. AMO is the only operator that enables the algorithm to converge upon the

Pareto front of ZDT6. In addition, AMO is competitive in the spread. However, it

seemed that the good performances of AMO in the spread and generation distance are

achieved at the expense of spacing. This is probably due to AMO’s emphasis on

exploitation in the later stage of evolution. As a result, the AMO is unable to bridge the

gaps between the extreme end solutions discovered during the initial exploratory

phase.

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

83

4.3.3.3. Effects of Parameter prob

The effects of various prob settings are examined in Table 4.4. The purpose is to prove

that the underlying idea of AMO to maintain a balance between preservation and

disruption of chromosomes by selective mutation of decision variables can improve

the performance of the algorithm. Similarly, 30 runs are performed for each setting on

each test problem.

Table 4.4. Median values of GD, S and MS for different AMO parameter prob

 Parameter Settings: prob

 1/ var_ num 0.25 0.5 0.75

 GD 0.7681 0.7996 0.8080 0.7927

ZDT4 S 0.6481 0.6627 0.7194 0.7129

 MS 0.7444 0.7158 0.7180 0.7384

 GD 4.87e-7 4.91e-7 5.02e-7 1.0609

ZDT6 S 2.3443 2.5039 3.1710 0.9033

 MS 0.9992 0.9992 0.9992 0.7047

 GD 0.0030 0.0034 0.0208 0.0415

FON S 2.4625 2.3488 0.8112 0.7131

 MS 0.5858 0.6064 0.6638 0.6999

Note that as prob is increased, the behavior of AMO will approach that of bit-flip

mutation operator albeit the changing mutation rate. It can be observed from table 6

that the metric of generation distance increases with increasing prob. This is most

probably due to the fact that increasing prob would correspond to the disruption of

more genes.

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

84

4.3.4. Effects of EES

In this section, the individual effects of EES are investigated in a fashion similar to that

in Section 4.3.3. A short review of four diversity mechanisms, sharing, hyper grid,

crowding and density estimation is given in this section. These diversity operators

have been implemented in MOEA and together with the method of sharing. They will

be references for comparing EES.

4.3.4.1. Diversity Operators

Diversity needs to be maintained in the evolving population in order for the MOEAs to

discover multiple, widely different solutions. The diversity operators used in the case

study include niche sharing, grid mapping, crowding, and density estimation described

in Section 2.4.

4.3.4.2. Comparison of EES

The three performance measures introduced in Section 4.3.1 are used to provide a

quantitative evaluation of the performance of the various operators. The three

problems introduced in Section 4.3.2 are used to compare the performance of EES

against the selected diversity mechanisms. The indices of the diversity operators are

shown in Table 4.5. The parameters for these diversity operators are shown in Table

4.6.

Table 4.5. Description of different diversity operators

Index Diversity operator Description

1 ESS Niche radius 0.01 in the normalized objective space

2 Niche sharing Niche radius 0.01 in the normalized objective space

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

85

3 Grid mapping Using normalized objective space

4 Crowding Using normalized objective space

5 Density estimation Using normalized objective space

Table 4.6. Parameter setting of different diversity operators

Chromosome Binary coding. 30 bits per decision variable.

Populations Population size 100; Archive (or secondary population) size

100.

Selection Binary tournament selection

Crossover operator Uniform crossover

Crossover rate 0.8

Mutation operator Bit-flip mutation

Mutation rate PM

Ranking scheme Fonseca and Fleming Pareto Dominance Ranking Scheme

Hyper-grid size 32 per dimension for DTL2. 52 per dimension for other

problems.

Generation number 1000

The median of 30 runs on the three metrics is listed in Table 4.7. With respect to the

metric of generation distance, the algorithm incorporated with EES is clearly the best

in the test problems. This is particularly evident in the test problem of ZDT6 and FON.

ZDT4 proved to be the most difficult problem for all algorithms. However, EES still

produces good performance in all three metrics with respect to the other diversity

operators on this problem.

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

86

Table 4.7. Median values of GD, S and MS for different diversity operators

 Diversity operator

 EES Niche Grid Crowd Density

 GD 0.7652 0.8142 1.0008 0.7832 0.7993

ZDT4 S 0.3173 0.7463 0.6567 0.2506 1.3513

 MS 0.7610 0.7408 0.7235 0.7366 0.7403

 GD 5.05e-7 1.5886 1.5984 1.6012 1.6222

ZDT6 S 0.1734 1.1108 1.1051 1.1444 1.1119

 MS 0.9992 0.7060 0.7051 0.7061 0.7043

 GD 0.0022 0.0146 0.0141 0.0146 0.0142

FON S 0.2252 0.8072 0.9006 0.8077 0.8541

 MS 0.7732 0.7060 0.7051 0.7061 0.7043

It is also obvious that the incorporation of EES improves greatly the distribution and

spread of solution along the Pareto front for all test problems. EES is particularly

outstanding in the metric of spacing in test problem of ZDT6 and FON. In addition,

EES has the best performance in the area of maximum spread for all test problems.

Table 4.8 shows that the performance of EES with different d settings does not vary a

lot over the test problems. This observation implies that the EES will be able to

perform well against the various diversity operators despite the different settings. More

importantly, it also shows that the EES is insensitive to parameter changes.

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

87

Table 4.8. Median values of GD, S and MS for different EES parameter d

 EES Parameter Settings: d

 20 25 30 40

 GD 0.7652 0.7712 0.7688 0.7804

ZDT4 S 0.3173 0.3185 0.3224 0.3167

 MS 0.7610 0.7590 0.7590 0.7557

 GD 5.05e-7 5.10e-7 5.13e-7 4.94e-7

ZDT6 S 0.1734 1.4231 0.1660 0.1770

 MS 0.9992 0.9992 0.9992 0.9992

 GD 0.0022 0.0020 0.0021 0.0021

FON S 0.2252 0.2273 0.2379 0.2211

 MS 0.7732 0.8053 0.7857 0.7947

4.3.5. Effects of both AMO and EES

The AMO and EES are incorporated into a general MOEA paradigm that uses binary

coding, binary tournament selection, uniform crossover, and Fonseca and Fleming’s

ranking scheme. This algorithm is called ALG in this chapter and will be compared

with five recent well-known algorithms to validate the effectiveness of AMO and EES.

The five algorithms are PAES, PESA, NSGAII, SPEA2 and IMOEA that have been

overviewed in Section 2.5. The indices of the different algorithms are listed in Table

4.9. The parameter settings in each algorithm are listed in Table 4.10.

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

88

Table 4.9. Indices of the different MOEAs

Index 1 2 3 4 5 6

Algorithm ALG

(AMO+EES)

PAES PESA NSGA II SPEA 2 IMOEA

Table 4.10. Parameter setting of different algorithms

Chromosome length Binary coding, 30 bits for each variable.

Populations Population size 1 in PAES; population size 100 in ALG,

PESA, NSGAII, SPEA2; initial population size 20,

maximum population size 100 in IMOEA.

Archive (or secondary population) size is 100 for all

algorithms.

Selection Binary tournament

Crossover operator Uniform crossover

Crossover rate 0.8

Mutation operator AMO in ALG; FBLP in IMOEA; bit-flip mutation in

others.

Mutation rate PM

Ranking Scheme of Fonseca and Fleming

Hyper-grid size 52 per dimension.

Niche radius 1/ _Archive Size for ALG; Dynamic sharing in IMOEA

Generation number 1000

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

89

Thirty independent runs are performed on each of the test functions so as to obtain

statistical information such as consistency and robustness of the algorithms. Figs 4.4-

4.6 visualize the simulation results of the algorithms with respect to the various metrics

in the box plot format. Although the previous investigation of AMO and EES in

Section 4.3.3 and Section 4.3.4 show that the individual effects of either feature are not

enough to allow the algorithm overcome the local traps of ZDT4 and the large spread

of FONs’ tradeoff, each have showed their own distinct advantage over their

counterpart operators. While AMO have the ability drive the evolution towards the

Pareto front and to find points in unexplored regions, it lacks some form of mechanism

to guide its operation. This results in the subsequent gaps observed in the discovered

Pareto front. The mechanism to guide the exploration of AMO comes in the form of

EES. Likewise EES may have shown the ability to locate these gaps, it is unable to

escape the local optimum trap of ZDT4 or maintain a diverse solution set in FON.

Thus it is not surprising that the ALG produces better performance when these two

features are incorporated together.

ZDT4 proves to be the most difficult problem faced by the algorithms since no

algorithm, except ALG, is able to deal with multi-modality effectively. This is

reflected in the performance metric of generation distance. In addition, the ALG also

chalked up outstanding results in the metric of spread and distribution. The biased

search space of ZDT6 is designed to make it difficult for the algorithms to evolve a

well-distributed front. In this respect, ALG is still able to give outstanding results in

terms of the distribution of results. This is probably because of EES. Otherwise, ALG

performance in the aspects of generation distance and spread is well matched by

SPEA2 and NSGAII. The challenge of test function FON is to find and maintain the

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

90

entire Pareto front uniformly. With the exception of the ALG, the algorithms found it

difficult to find a good spread and distribution.

For all test problems, ALG responds well to the challenges of the different difficulties.

The ALG performs consistently well in the distribution of solutions along the Pareto

front. This is even so for the test problems of ZDT6 and FON that are designed to

challenge the algorithm’s ability to maintain the Pareto front. The performance of ALG

with respect to generational distance is also outstanding in all problems. This

demonstrates the ALG’s ability to converge upon the Pareto front regardless of

problems such as discontinuities, convexities and non-uniformities. It also shows no

problems in coping with local traps and this is reflected by its performance in the test

problem ZDT4. The ALG ability to discover a diverse solution set on the Pareto

frontier is demonstrated and this is most evident in the test problem of FON.

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

91

1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

Generational Distance

G
D

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Spacing

S

1 2 3 4 5 6

0.7

0.75

0.8

0.85

0.9

0.95

1

Maximum Spread

M
S

ZDT4

Fig. 4.4. Simulation results for ZDT4

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

92

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Generational Distance

G
D

1 2 3 4 5 6
0

2

4

6

8

Spacing

S

1 2 3 4 5 6

0.985

0.99

0.995

1
Maximum Spread

M
S

ZDT6

Fig. 4.5. Simulation results for ZDT6

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

93

1 2 3 4 5 6

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Generational Distance

G
D

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Spacing

S

1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1

Maximum Spread

M
S

FON

Fig. 4.6. Simulation results for FON

Chapter 4 Enhanced Distribution and Exploration for Multiobjective Optimization

94

4.4. Conclusions

This chapter presents the enhanced exploration strategy that maintains diversity and

non-dominated solutions in the evolving population while encouraging the exploration

towards the direction of less populated areas. This achieves better discovery of gaps in

the discovered frontier as well as better convergence. An adaptive mutation operator

that plays the role of producing new genetic structures is also presented. This AMO

adapts the mutation rate to maintain a balance between the introduction of diversity

and local fine-tuning.

A comparative study between the proposed features and various mutation operators,

diversity operators, existing multiobjective evolutionary algorithms and are carried out

on three test problems. Simulations are carried out to examine the effects of AMO and

EES with respect to selected mutation and diversity operators respectively. AMO and

EES have showed to be competitive if not better than their counterparts and have their

own specific contribution. Simulations results also show that the algorithm

incorporated with AMO and EES is capable of discovering and distributing non-

dominated solutions along the Pareto front. The combined effects of AMO and EES

enabled the algorithm to perform well in breaking out of local traps and maintaining

diversity in the solution set. The combined effects of these two features allow the

algorithm to find a good, well-distributed and diverse solution set along the Pareto

front.

Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, a cooperative co-evolution mechanism is applied in the multiobjective

optimization. Exploiting the inherent parallelism in cooperative co-evolution, the

algorithm is formulated into a distributed computing structure to reduce the runtime by

sharing the computational workload among various networked computers. To improve

the performance of multiobjective evolutionary algorithms, an adaptive mutation

operator and an enhanced exploration strategy are proposed.

The cooperative co-evolutionary algorithm adopts the mechanism of coevolution by

decomposing a complex MO optimization problem via a number of subpopulations co-

evolving for the set of Pareto-optimal solutions in a cooperative way. Incorporated

with various features like archiving, dynamic sharing and extending operator, the

CCEA is capable of maintaining solution diversity and distributing the solutions

uniformly along the Pareto front. The extensive quantitative comparisons of various

MOEAs on nine benchmark problems show that CCEA has the best overall

performance in endowing the non-dominated solution set with good convergence and

uniform distribution. Many simulations have been performed to illustrate the

effectiveness of the proposed extending operator in improving the smoothness and

Chapter 5 Conclusions and Future Works

96

maximum spread of the non-dominated solution set. Exploiting the inherent

parallelism in cooperative co-evolution, a distributed CCEA paradigm has been

implemented on a Java-based distributed system named Paladin-DEC to reduce the

runtime by sharing the computational workload among various networked computers.

The computational results show that DCCEA can reduce the runtime effectively

without sacrificing the performance as the number of peer computers increases.

The adaptive mutation operator adapts the mutation rate to maintain a balance between

the introduction of diversity and local fine-tuning. The enhanced exploration strategy

maintains solution diversity and preserves non-dominated solutions in the evolving

population while encouraging the exploration towards less populated areas. This

achieves better discovery of gaps in the discovered Pareto front as well as better

convergence. A comparative study is carried out to examine the effects of AMO and

EES with respect to selected mutation and diversity operators respectively. AMO and

EES have shown to be competitive if not better than their counterparts and have their

own specific contribution. Simulations results also show that the algorithm

incorporated with AMO and EES performs well in breaking out of local traps and

finding a good, well-distributed and diverse solution set along the Pareto front.

5.2 Future works

Eiben et al. (1999) classified the types of adaptation in evolutionary algorithms into

dynamic parameter control, adaptive parameter control, and self-adaptive parameter

control. The dynamic parameter control has been considered to adjust the mutation rate

in Chapter 4. The adaptive parameter control and self-adaptive parameter control could

also be explored for the adjustment of mutation rate in MOEAs. These two types of

Chapter 5 Conclusions and Future Works

97

parameter control require less a-prior knowledge and could have better performance.

Moreover, the adaptation mechanism may be studied for switching among several

mutation and crossover operators to achieve better performance in MOEAs.

In the aspect of multiobjective search strategy, ways of identifying appropriate MO

optimization methods for different problems and different types of decision making are

needed. For multiobjective optimization, it is important not only to develop general

methods, but also to create algorithms that work well for certain problem types or

application areas. Besides, research work in theoretical aspect of MOEAs, such as

convergence properties to the global Pareto front and the efficiency in reaching the

acceptable optimization goals, are still insufficient. Further research in this area is

essential and important.

Most existing MOEAs assume that the vector of exact objective functions can be built

accurately to measure all possible solutions in the search space. However, a wide range

of uncertainties has to be considered in many real-world optimization problems.

Generally, uncertainties in evolutionary optimization can be categorized into three

classes: the fitness function is uncertain or noisy; the design variables or the

environmental parameters are subject to perturbations or deterministic changes and this

issue is often known as the search for robust optimal solutions; the fitness function is

time-variant where the optimum of the system is changing with time, which requires a

repeated re-optimization or even continuous tracking of the optimum. Handling

uncertainties in evolutionary optimization is a very important problem and receiving an

increasing interest.

References

1. Angeline, P.J. and J.B. Pollack. Competitive Environments Evolve Better

Solutions for Complex Tasks. In Proceedings of the Fifth International Conference

on Genetic Algorithms, pp 264-270. 1993.

2. Bäck, T. Optimal Mutation Rates in Genetic Search. In Proceedings of the Fifth

International Conference on Genetic Algorithms, pp. 2-8. Morgan Kaufmann,

1993.

3. Bäck, T. and M. Schütz. Intelligent Mutation Rate Control in Canonical Genetic

Algorithms. In Proceedings of the International Symposium on Methodologies for

Intelligent Systems, pp. 158-167. 1996.

4. Bentley, P.J. and J.P. Wakefield. Finding Acceptable Solutions in the Pareto-

Optimal Range Using Multiobjective Genetic Algorithms. In Proceedings of 2nd

On-Line World Conference on Soft Computing in Engineering Design and

Manufacturing (WSC2). 1997.

5. Borges, C.C.H. and H.J.C. Barbosa. A Non-Generational Genetic Algorithm for

Multiobjective Optimization. In IEEE Congress on Evolutionary Computation

2000, pp 172-179. 2000.

6. Cantú-Paz, E. A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles,

Reseaux et Systems Repartis 10(2), pp. 141-171. 1998.

7. Chambers, J.M., W.S. Cleveland, B. Kleiner, and P.A. Turkey. Graphical Methods

for Data Analysis. Wadsworth & Brooks/Cole, Pacific CA, 1983.

References

99

8. Coello Coello, C.A. An Empirical Study of Evolutionary Techniques for

Multiobjective Optimization in Engineering Design. Ph.D. Thesis, Department of

Computer Science, Tulane University, USA. 1996.

9. Coello Coello, C.A. An Updated Survey of GA-Based Multiobjective Optimization

Techniques. Report No. Lania-RD-98-08, Laboratorio Nacional de Informatica

Avanzada (LANIA), Mexico. 1998.

10. Coello Coello, C.A. and G.T. Pulido. A Micro-Genetic Algorithm for

Multiobjective Optimization. In First International Conference on Evolutionary

Multi-Criterion Optimization, pp. 126-140. Springer-Verlag. 2001.

11. Corne, D.W., J.D. Knowles and M.J. Oates. The Pareto Envelope-Based Selection

Algorithm for Multiobjective Optimization. In Proceedings of the Parallel Problem

Solving from Nature VI Conference, pp, 839-848. Springer-Verlag. 2000.

12. Corne, D.W., K. Deb, P.J. Fleming and J.D. Knowles. The Good of the Many

Outweighs the Good of the One: Evolutionary Multi-Objective Optimization. The

Newsletter of the IEEE Neural Networks Society 1(1), pp. 9-13. 2003.

13. De Jong, K.A. An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. Ph.D thesis, University of Michigan. 1975.

14. Deb, K. Multi-Objective Genetic Algorithms: Problem Difficulties and

Construction of Test Problems. Journal of Evolutionary Computation 7(3), pp.

205-230. 1999.

15. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms. New York:

John Wiley & Sons. 2001.

16. Deb, K. and D. E. Goldberg. An Investigation of Niche and Species Formation in

Genetic Function Optimization. In Proceedings of the Third International

Conference on Genetic Algorithms, pp. 42–50. 1989.

References

100

17. Deb, K., A. Pratap, S. Agarwal and T. Meyarivan. A Fast and Elitist Multiobjective

Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation

6(2), pp. 182-197. 2002a.

18. Deb, K., L. Thiele, M. Laumanns and E. Zitzler. Scalable Multiobjective

Optimization Test Problems. In Proceedings of the 2002 Congress on Evolutionary

Computation, pp. 825-830. 2002b

19. Eiben, A.E., R. Hinterding and Z. Michalewicz. Parameter Control in Evolutionary

Algorithms. IEEE Transactions on Evolutionary Computation 3(2), pp. 124-141.

1999.

20. Fogarty, T. Varying the Probability of Mutation in the Genetic Algorithm. In

Proceedings of the Third International Conference on Genetic Algorithms, pp. 104-

109. Morgan Kaufmann. 1989.

21. Fonseca, C.M. and P.J. Fleming. Genetic Algorithm for Multiobjective

Optimization: Formulation, Discussion and Generalization. In Proceeding of the

Fifth International Conference on Genetic Algorithms, pp 416-423. Morgan

Kaufmann. 1993.

22. Fonseca, C.M. and P.J. Fleming. An Overview of Evolutionary Algorithms in

Multiobjective Optimization. Journal of Evolutionary Computation 3(1), pp. 1-16.

1995a.

23. Fonseca, C.M. and P.J. Fleming. Multiobjective Genetic Algorithm Made Easy:

Selection, Sharing and Mating Restriction. In International Conference on Genetic

Algorithm in Engineering Systems: Innovations and Application, pp, 12-14. 1995b.

24. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine

Learning. Massachusetts: Addison Wesley. 1989a.

References

101

25. Goldberg, D.E. Sizing Populations for Serial and Parallel Genetic Algorithms. In

Proceedings of the Third International Conference on Genetic Algorithms, pp. 70-

79. Morgan Kaufmann. 1989b.

26. Goldberg, D.E. and J. Richardson. Genetic Algorithms with Sharing for Multi-

Modal Function Optimization. In Proceedings of the 2nd International Conference

on Genetic Algorithms, pp. 41-49. 1987.

27. Hajela, P. and C.Y. Lin. Genetic Search Strategies in Multicriterion Optimal

Design. Journal of Structural Optimization 4, pp. 99-107. 1992.

28. Holland, J. H. Adaptation in Natural and Artificial Systems. The MIT Press. 1992.

29. Horn, J. Multicriterion Decision Making. In T. Bäck, D. Fogel, Z. Michalewicz

(eds) Handbook of Evolutionary Computation vol. 1, pp. F1.9:1-F1.9:15. IOP

Publishing Ltd and Oxford University Press. 1997.

30. Horn, J. and N. Nafpliotis. Multiobjective Optimization Using the Niched Pareto

Genetic Algorithm. Technical Report IlliGAl Report 93005, University of Illinois

at Urbana-Champaign, USA. 1993.

31. Hwang, C.L. and A.S.M. Masud. Multiple Objective Decision Making - Methods

and Applications. Springer-Verlag. 1979.

32. Keerativuttiumrong, N., N. Chaiyaratana and V. Varavithya. Multi-objective

Cooperative Coevolutionary Genetic Algorithm. In Parallel Problem Solving from

Nature-PPSN VII, pp. 288-297. Springer-Verlag. 2002

33. Knowles, J.D., D.W. Corne. Approximating the Nondominated Front Using Pareto

Archived Evolutionary Strategy. Evolutionary Computation 8(2), pp. 149-172.

2000.

References

102

34. Khor, E.F., K.C. Tan and T.H. Lee. Tabu-Based Exploratory Evolutionary

Algorithm for Effective Multiobjective Optimization. In First Conference on

Evolutionary Multi-Criterion Optimization (EMO’01), pp. 344-358. 2001.

35. Kursawe, F. A Variant of Evolution Strategies for Vector Optimization. In

Proceedings of the First Conference on Parallel Problem Solving from Nature, pp.

193-197. 1990.

36. Lahanas, M., D. Baltas and N. Zamboglou. A Hybrid Evolutionary Algorithm for

Multiobjective Anatomy-Based Dose Optimization in High-dose-rate

Brachytherapy. Physics in Medicine and Biology 48, pp.399-415. 2003

37. Lis, J. and A.E. Eiben. A Multi-Sexual Genetic Algorithm for Multiobjective

Optimization. In IEEE International Conference on Evolutionary Computation, pp

59-64. 1997.

38. Liu, Y. et al. Scaling Up Fast Evolutionary Programming with Cooperative

Coevolution. In Proceedings of the 2001 Congress on Evolutionary Computation,

vol. 2, pp. 1101-1108. 2001.

39. Lohn, J.D., W.F. Krausand and G.L. Haith. Comparing a Coevolutionary Genetic

Algorithm for Multiobjective Optimization. In Proceedings of the 2002 Congress

on Evolutionary Computation, vol. 2, pp. 1157-1162. 2002.

40. Moriarty, D.E. Symbiotic Evolution of Neural Networks in Sequential Decision

Tasks. Ph.D. thesis, The University of Texas at Austin. 1997.

41. Murata, T. and H. Ishibuchi. MOGA: Multi-Objective Genetic Algorithms. In

IEEE International Conference on Evolutionary Computation, vol. 1, pp. 289-294.

1995.

References

103

42. Neef, M., D. Thierens and H. Arciszewski. A Case Study of a Multiobjective

Recombinative Genetic Algorithm with Coevolutionary Sharing. In Proceedings of

the 1999 Congress on Evolutionary Computation, pp. 796-803. 1999.

43. Ochoa, G., I. Harvey and H. Buxton. On Recombination and Optimal Mutation

Rates. In Proceedings of the Genetic and Evolutionary Computation Conference,

pp. 13-17. Morgan Kaufmann. 1999.

44. Osyczka, A. Multicriteria Optimization for Engineering Design. In J.S. Gero (ed)

Design Optimization, pp, 193-227. Academic Press. 1985

45. Pareto, V. Cours D’Economie Plitique, vol. 1 and 2. Lausanne: F. Rouge. 1896.

46. Parmee, I.C. and A.H. Watson. Preliminary Airframe Design Using Co-

evolutionary Multiobjective Genetic Algorithms. In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO'99), vol. 2, pp. 1657-1665. 1999.

47. Potter, M.A. and K.A. De Jong. A Cooperative Coevolutionary Approach to

Function Optimization. In Proceedings of the Parallel Problem Solving from

Nature III Conference (PPSN III), pp. 249–257. 1994.

48. Potter, M.A. and K.A. De Jong. Cooperative Coevolution: An Architecture for

Evolving Coadapted Subcomponents. Evolutionary Computation 8(1), pp. 1-29.

2000.

49. Rivera, W. Scalable Parallel Genetic Algorithms. Artificial Intelligence Review 16,

pp.153-168. 2001.

50. Rosin, C.D. and R.K. Belew. New Methods for Competitive Coevolution.

Evolutionary Computation 5(1), pp.1-29. 1997.

51. Schaffer, J.D. Multiple Objective Optimization with Vector Evaluated Genetic

Algorithms. In Proceedings of the first International Conference on Genetic

Algorithms: Genetic Algorithms and their Applications, pp. 93-100. 1985.

References

104

52. Srinivas, N. and K. Deb. Multiobjective Optimization Using Nondominated

Sorting in Genetic Algorithms. Journal of Evolutionary Computation 2(3), pp. 221-

248. 1994.

53. Steuer, J. Multi Criteria Optimization: Theory, Computation, and Application. New

York: John Wiley. 1986.

54. Tan, KC, T.H. Lee and E.F. Khor. Evolutionary Algorithm with Dynamic

Population Size and Local Exploration for Multiobjective Optimization. IEEE

Transactions on Evolutionary Computation 5(6), pp. 565-588. 2001

55. Tan, KC, T.H. Lee and E.F. Khor. Evolutionary Algorithms for Multiobjective

Optimization: Performance Assessments and Comparisons. Artificial Intelligence

Review 17(4), pp. 251-290. 2002a

56. Tan, K.C., E.F. Khor, J. Cai, C.M. Heng and T.H. Lee. Automating the Drug

Scheduling of Cancer Chemotherapy via Evolutionary Computation. Artificial

Intelligence in Medicine 25, pp. 169-185. 2002b.

57. Tan, K.C., A. Tay and J. Cai. Design and Implementation of a Distributed

Evolutionary Computing Software. IEEE Transactions on Systems, Man and

Cybernetics: Part C 33(3), pp. 325-338. 2003a.

58. Tan, K.C., E.F. Khor, T.H. Lee and R. Sathikannan. An Evolutionary Algorithm

with Advanced Goal and Priority Specification for Multiobjective Optimization.

Journal of Artificial Intelligence Research 18, pp.183-215. 2003b.

59. Thierens, D. Adaptive Mutation Rate Control Schemes in Genetic Algorithms. In

IEEE Congress on Evolutionary Computation 2002, pp. 980-985. 2002.

60. Valenzuela-Rendón, M. and E. Uresti-Charre. A Non-Generational Genetic

Algorithm for Multiobjective Optimization. In Proceedings of the Seventh

References

105

International Conference on Genetic Algorithms, pp. 658-665. Morgan Kauffmann.

1997.

61. Van Veldhuizen, D.A. and G.B. Lamont. Multiobjective Evolutionary Algorithm

Test Suites. In Symposium on Applied Computing, pp. 351-357. Texas. 1999.

62. Van Veldhuizen, D.A. and G.B. Lamont. Multiobjective Evolutionary Algorithms:

Analyzing the State-of-the-art. Journal of Evolutionary Computation 8(2), pp. 125-

147. 2000.

63. Zitzler, E. and L. Thiele. Multiobjective evolutionary algorithms: A comparative

case study and the strength Pareto approach. IEEE Transactions on Evolutionary

Computation 3(4), pp. 257-271. 1999.

64. Zitzler, E., K. Deb and L. Thiele. Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results. Evolutionary Computation 8(2), pp. 173-195. 2000.

65. Zitzler, E., M. Laumanns and L. Thiele. SPEA2: Improving the Strength Pareto

Evolutionary Algorithm. Technical Report 103, Computer Engineering and

Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich.

2001.

List of Publications

The author has contributed to the following publications:

Tan, K.C., Y.J. Yang, and T.H. Lee. Designing a Distributed Cooperative

Coevolutionary Algorithm for Multiobjective Optimization. IEEE Congress on

Evolutionary Computation, pp. 2513-2520. Australia. 2003.

Tan, K.C., Y.J. Yang, C.K. Goh, and T.H. Lee. Enhanced Distribution and Exploration

for Multiobjective Evolutionary Algorithms. IEEE Congress on Evolutionary

Computation, pp. 2521-2528. Australia. 2003.

Tan, K.C., E.F. Khor, T.H. Lee, and Y.J. Yang. A Tabu-based Exploratory

Evolutionary Algorithm for Multiobjective Optimization. Artificial Intelligence

Review 19(3), pp. 231-260. 2003.

