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Summary 

This work seeks to explore and improve the evolutionary techniques for multi-

objective optimization. First, an introduction of multiobjective optimization is given 

and key concepts of multiobjective evolutionary optimization are discussed. Then a 

cooperative coevolution mechanism is applied in the multiobjective optimization. 

Exploiting the inherent parallelism in cooperative coevolution, the algorithm is 

formulated into a distributed computing structure to reduce the runtime. To improve 

the performance of multiobjective evolutionary algorithms, an adaptive mutation 

operator and an enhanced exploration strategy are proposed. Finally, the direction of 

future research is pointed out. 

 

The cooperative coevolutionary algorithm (CCEA) evolves multiple solutions in the 

form of cooperative subpopulations and uses an archive to store non-dominated 

solutions and evaluate individuals in the subpopulations based on Pareto dominance. 

The dynamic sharing is applied to maintain the diversity of solutions in the archive. 

Moreover, an extending operator is designed to mine information on solution 

distribution from the archive and guide the search to regions that are not well explored 

so that CCEA can distribute the non-dominated solutions in the archive evenly and 

endow the solution set with a wide spread.  The extensive quantitative comparisons 

show that CCEA has excellent performance in finding the non-dominated solution set 

with good convergence and uniform distribution. 

 



 

 

vi

Exploiting the inherent parallelism in cooperative coevolution, a distributed CCEA 

(DCCEA) is developed by formulating the algorithm into a computing structure 

suitable for parallel processing where computers over the network share the 

computational workload. The computational results show that DCCEA can 

dramatically reduce the runtime without sacrificing the performance as the number of 

peer computers increases. 

 

The adaptive mutation operator (AMO) adapts the mutation rate to maintain a balance 

between the introduction of diversity and local fine-tuning. It uses a new approach to 

strike a compromise between the preservation and disruption of genetic information. 

The enhanced exploration strategy (EES) maintains diversity and non-dominated 

solutions in the evolving population while encouraging the exploration towards less 

populated areas. It achieves better discovery of gaps in the discovered Pareto front as 

well as better convergence. Simulations are carried out to examine the effects of AMO 

and EES with respect to selected mutation and diversity operators respectively. AMO 

and EES have shown to be competitive if not better than their counterparts and have 

their own specific contribution. Simulation results also show that the algorithm 

incorporated with AMO and EES is capable of discovering and distributing non-

dominated solutions along the Pareto front. 
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Chapter 1 

Introduction 

1.1 Statement of the Multiobjective Optimization Problem 

Many real-world optimization problems inherently involve optimizing multiple non-

commensurable and often competing criteria that reflect various design specifications 

and constraints. For such a multiobjective optimization problem, it is highly 

improbable that all the conflicting criteria would be optimized by a single design, and 

hence trade-off among the conflicting design objectives is often inevitable.  

 

The phrase “multiobjective (MO) optimization” is synonymous with “multivector 

optimization”, “multicriteria optimization” or “multiperformance optimization” 

(Coello Coello 1998). Osyczka (1985) defined multiobjective optimization as a 

problem of finding: 

 “a vector of decision variables which satisfies constraints and optimizes a vector 

function whose elements represent the objective functions. These functions form a 

mathematical description of performance criteria which are usually in conflict with 

each other. Hence, the term ‘optimize’ means finding such a solution which would 

give the values of all the objective functions acceptable to the designer.” 
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In mathematical notation, considering the minimization problem, it tends to find a 

parameter set P for 

Min ( ), n

Φ∈
∈

P
F P P R , (1.1) 

where P = {p1, p2,…, pn} is a n-dimensional individual vector having n decision 

variables or parameters while Φ defines a feasible set of P. F = {f1, f2,…, fm} is an  

objective vector with m objective components to be minimized, which may be 

competing and non-commensurable to each other.  

 

The contradiction and possible incommensurability of the objective functions make it 

impossible to find a single solution that would be optimal for all the objectives 

simultaneously. For the above multiobjective optimization problem, there exist a 

family of solutions known as Pareto-optimal set, where each objective component of 

any solution can only be improved by degrading at least one of its other objective 

components (Goldberg and Richardson 1987; Horn and Nafpliotis 1993; Srinivas and 

Deb 1994). Following are some useful terms in multiobjective optimization:  

Pareto Dominance 

When there is no information for preferences of the objectives, Pareto dominance is an 

appropriate approach to compare the relative strength between two solutions in MO 

optimization (Steuer 1986; Fonseca and Fleming 1993). It was initially formulated by 

Pareto (1896) and constituted by itself the origin of research in multiobjective 

optimization. Without loss of generality, an objective vector Fa in a minimization 

problem is said to dominate another objective vector Fb, denoted by Fa ≺  Fb, iff 
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, , {1,2,..., } a i b if f i m≤ ∀ ∈ and , ,  {1,2,..., }a j b jf f j m< ∃ ∈  (1.2) 

Local Pareto-optimal Set 

If no solution in a set ψ dominates any member in a set Ω, where Ω ⊆ ψ ⊆ Φ, then Ω 

denotes local Pareto-optimal set. The Ω usually refers to a Pareto-optimal set found in 

each iteration of the optimization or at the end of optimization in a single run. “Pareto-

optimal” solutions are also termed “non-inferior”, “admissible”, or “efficient” 

solutions (Van Veldhuizen and Lamont 1999).  

Global Pareto-optimal Set 

If no solution in the feasible set Φ dominates any member in a set Γ, where Γ ⊆ Φ, 

then Γ denotes the global Pareto-optimal set. It is always true that there is no solution 

in local Pareto-optimal set Ω dominating any solution in Γ. The Γ usually refers to 

actual Pareto-optimal set in a MO optimization problem, which can be obtained via the 

solutions of objective functions concerning the space of Φ or approximated through 

many repeated optimization runs. 

Pareto Front  

Given the MO optimization function F(P) and Pareto optimal set Ω, Van Veldhuizen 

and Lamont (2000) defined the Pareto front PF* as: 

*
1 2{ ( ) ( ( ), ( ), , ( )) | }mf f f Ω= = ∈PF F P P P P P  (1.3) 

Horn and Nafpliotis (1993) stated that the Pareto front is a (m-1) dimensional surface 

in a m-objective optimization problem. Van Veldhuizen and Lamont (1999) later 
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pointed out that the Pareto front of MO optimization with m = 2 objectives is at most a 

(restricted) curve, and is at most a (restricted) (m-1) dimensional surface when m ≥ 3. 

Totally Conflicting, Non-conflicting and Partially Conflicting Objective Functions 

The objective functions of a MO optimization problem can be categorized as totally 

conflicting, non-conflicting or partially conflicting. Given a solution set Φ, a vector of 

objective functions F = {f1, f2, …, fm} is said to be totally-conflicting if there exist no 

two solutions Pa and Pb in set Φ such that (Fa ≺  Fb) or (Fb ≺  Fa). MO problems with 

totally conflicting objective functions needs no optimization process because the whole 

solution set in Φ are global Pareto-optimal. On the other hand, the objective functions 

are said to be non-conflicting if any two selected solutions Pa and Pb in set Φ always 

satisfy (Fa ≺  Fb) or (Fb ≺  Fa). MO problems with non-conflicting objective functions 

can be easily transformed into single-objective problems by arbitrarily considering one 

of the objective components throughout the optimization process or combining the 

objective vector into a scalar function. This is because improving one objective 

component will always lead to improving the rest of the objective components, and 

vice versa. The size of global or local Pareto-optimal set is one for this class of MO 

problems. If a MO optimization problem belongs to neither the first class nor the 

second, it belongs to the third class of partially conflicting objective functions. Most 

MO optimization problems belong to the third class, where a family of Pareto-optimal 

solutions is desired. 



Chapter 1  Introduction  

 

5

Example 

Consider the Fonseca and Fleming’s two-objective minimization problem (Fonseca 

and Fleming 1993). The two objective functions, f1 and f2, to be minimized are given 

as: 

28

1 1 8
1

1( ,..., ) 1
8i

i
f x x exp x

=

  
= − − −     

∑  (1.4a) 

28

2 1 8
1

1( ,..., ) 1
8i

i
f x x exp x

=

  
= − − +     

∑  (1.4b) 

where 2 2, 1,2,...,8ix i− ≤ < ∀ = . According to (1.4), there are 8 parameters (x1,…, x8) 

to be optimized so that  f1 and  f2 are minimized.  
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Fig. 1.1. Trade-off curve in the objective domain 

 

The trade-off curve of Eq. (1.4) is shown by the curve in Fig. 1.1, where the shaded 

region represents the infeasible area in objective domains. One cannot say whether A is 

better than B or vice-versa because one solution is better than the other on one-

objective and worse in the other. However C is worse than B because solution B is 
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better than C in both of the objective functions. A, B ... constitute the non-dominated 

solutions while C is a dominated solution. 

1.2 Background on Multiobjective Evolutionary Algorithms 

Evolutionary algorithms (EAs) are stochastic search methods that simulate the process 

of evolution, incorporating ideas such as reproduction, mutation and the Darwinian 

principle of “survival of the fittest”. Since the 1970s several evolutionary 

methodologies have been proposed, including genetic algorithms, evolutionary 

programming, and evolution strategies. All of these approaches operate on a set of 

candidate solutions. Although the underlying principles are simple, these algorithms 

have proven themselves as general, robust and powerful search mechanisms. Unlike 

traditional gradient-guided search techniques, EAs require no derivative information of 

the search points, and thus require no stringent conditions on the objective function, 

such as to be well-behaved or differentiable.  

 

Because the set of solutions are often conflicting in the multiple objective functions, 

specific compromised decision must be made from the available alternatives. The final 

solution results from both optimization and decision-making and this process is more 

formally declared as follows (Hwang and Masud 1979): (1) Priori preference 

articulation. This method transforms a multiobjective problem into a single objective 

problem prior to optimization. (2) Progressive preference articulation. Decision and 

optimization are intertwined where partial preference information is provided upon 

which optimization occurs. (3) Posteriori preference articulation. A set of efficient 

candidate solutions is found by some method before decision is made to choose the 

best solution.  
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The priori preference articulation transforms a multiobjective problem into a single 

objective problem, which is different from the original one to be solved. To employ 

such technique, one must have some knowledge of the problem in hand. Moreover, the 

optimization process is often sensitive to the importance factors of objectives.  

 

Single objective optimization algorithms provide in the ideal case only one Pareto-

optimal solution in one optimization run. A representative convex part of the Pareto 

front can be sampled by running a single objective optimization algorithm each time 

with a different vector of importance factors (Lahanas et al. 2003). However, many 

runs are burdensome in computation effort and are not efficient to find good 

approximation to the Pareto front. Moreover there is a great drawback that the single-

objective optimization cannot reach the non-convex parts of the Pareto front. For two 

objectives, the weighted sum is given by 1 1 2 2( ) ( )y w f x w f x= + , i.e. 

2 1 2 1 2( ) ( / ) ( ) /f x w w f x y w= − +  (Lahanas et al. 2003). The minimization of the 

weighted sum can be interpreted as finding the value of y for which the line with 

slope 1 2/w w−  just touches the Pareto front as it proceeds outwards from the origin. It is 

therefore not possible to obtain solutions on non-convex parts of the Pareto front with 

this approach.  

 

Making use of multiobjective evolutionary algorithms in the posteriori preference 

articulation is currently gaining significant attentions from researchers in various fields 

as more and more researchers discover the advantages of their adaptive search to find a 

set of trade-off solutions. Corne et al. (2003) argued that “single-objective approaches 

are almost invariably unwise simplifications of the real-problem”, “fast and effective 

techniques are now available, capable of finding a well-distributed set of diverse trade-
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off solutions, with little or no more effort than sophisticated single-objective 

optimizers would have taken to find a single one”, and “the resulting diversity of ideas 

available via a multiobjective approach gives the problem solver a better view of the 

space of possible solutions, and consequently a better final solution to the problem at 

hand” .  

 

Indeed, the objective function in EAs is permitted to return a vector value, not just a 

scalar value and evolutionary algorithms have the ability of capturing multiple 

solutions in a single run (Corne et al. 2003). These reasons make evolutionary 

algorithms suitable for multiobjective optimization. Pareto-based multiobjective 

evolutionary algorithms have the highest growth rate compared to other multiobjective 

evolutionary algorithms since Goldberg and Richardson first proposed them in 1987 

and it is believed that this trend will continue in the near future. This growing interest 

can be reflected by the significantly increasing number of different evolutionary-based 

approaches and the variations of existing techniques published in technical literatures. 

As a consequence, there have been many survey studies on evolutionary techniques for 

MO optimization (Fonseca and Fleming 1995a; Coello Coello 1996; Bentley and 

Wakefield 1997; Horn 1997; Coello Coello 1998; Van Veldhuizen and Lamont 2000, 

Tan et al. 2002a).  

 

Deb (2001) pointed out two important issues in MO optimization: (1) to find a set of 

solutions as close as possible to the true Pareto front; (2) to find a set of solutions as 

diverse as possible. As pointed by Zitzler and Thiele (1999), to maximize the spread of 

the obtained front, i.e. for each objective a wide range should be covered, is also an 

important issue in multiobjective optimization. 
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1.3 Thesis Outline 

This thesis tries to develop advanced and reliable evolutionary techniques for MO 

optimization. It introduces a cooperative coevolution mechanism into MO optimization 

and develops two new features for multiobjective evolutionary algorithms. The thesis 

consists of five chapters.  

 

Chapter 2 presents a framework of multiobjective evolutionary algorithms, discusses 

the key concepts of evolutionary multiobjective optimization in decision-making, and 

gives a brief overview of some well-known MOEA implementations.  

 

Chapter 3 presents a cooperative coevolutionary algorithm (CCEA) for multiobjective 

optimization. Exploiting the inherent parallelism in cooperative co-evolution, a 

distributed CCEA (DCCEA) is developed to formulate the algorithm into a computing 

structure suitable for parallel processing where computers over the network share the 

computational workload. 

 

In Chapter 4, two features are proposed to enhance the ability of multiobjective 

evolutionary algorithms. The first feature is the adaptive mutation operator that adapts 

the mutation rate to maintain a balance between the introduction of diversity and local 

fine-tuning. The second feature is the enhanced exploration strategy that encourages 

the exploration towards less populated areas and hence distributes the generated 

solutions evenly along the discovered Pareto front. 

 

Chapter 5 concludes the whole thesis and points out the direction of future research. 



Chapter 2 

Multiobjective Evolutionary Algorithms 

2.1 Conceptual Framework 

Many evolutionary techniques for MO optimization have been proposed and 

implemented in different ways. VEGA (Schaffer 1985), MOGA (Fonseca and Fleming 

1993), HLGA (Hajela and Lin 1992), NPGA (Horn and Nafpliotis 1993), IMOEA 

(Tan et al. 2001) and NSGA-II (Deb et al. 2002a) work on single population. SPEA 

(Zitzler and Thiele 1999), SPEA2 (Zitzler et al. 2001), PAES (Knowles and Corne 

2000) and PESA (Corne et al. 2000) use an external population/memory to preserve 

the best individuals found so far besides the main evolved population. Although each 

MO evolutionary technique may have its own specific features, most MO evolutionary 

techniques exhibit common characteristics and can be represented in a framework as 

shown in Fig. 2.1. 

 

MOEAs originated from SOEAs (Goldberg 1989a) in the sense that both techniques 

involve the iterative updating/evolving of a set of individuals until a predefined 

optimization goal/stopping criterion is met. At each generation, individual assessment, 

genetic selection and evolution (e.g. crossover and mutation), are performed to 

transform the population from current generation to the next generation with the aim to 

improve the adaptability of the population in the given test environment. In some 
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evolutionary approaches, the elitism is also applied to avoid losing the best-found 

individuals in the mating pool to speed up the convergence. Generally speaking, 

MOEAs differ from SOEAs mainly in the process of individual assessment and 

elitism/archiving. The individual assessment and elitism will be further discussed in 

the following subsections.  

 

Individual assessment

Creating New Individuals

Individual assessment

Stopping
criterion is met?

Yes

No

Individual initialization

End

Elitism

 

Fig. 2.1. The framework of multiobjective evolutionary algorithms 

2.2 Individual Assessment for Multiobjective Optimization 

In MO optimization, the individuals should be pushed toward the global Pareto front as 

well as be distributed uniformly along the global Pareto front. Therefore the individual 

assessment in MOEA should simultaneously exert a pressure (denoted as nP  in Fig. 

2.2) to promote the individuals in a direction normal to the trade-off region and a 

pressure (denoted as tP  in Fig. 2.2) tangentially to that region. These two pressures, 
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which are normally orthogonal to each other, give the unified pressure (denoted as uP  

in Fig. 2.2) and direct the evolutionary search in the MO optimization context. 

 

 

f1 

f2 

Infeasible 
area 

Pt 

Pt 

Pn

Pu

Pu

 

Fig. 2.2. The improvement pressures from multiobjective evaluations 

 

Some MOEAs, such as MIMOGA (Murata and Ishibuchi 1995), MSGA (Lis and 

Eiben 1997) and VEGA (Schaffer 1985), implement uP  through a single-step approach 

in the assessment. For example, MIMOGA applies the random assignment of weights 

on each individual to exert uP , where weights are not constant for each individual. 

However this simple technique do not have good control on the direction of the exerted 

uP . For other MOEAs, the nP  and tP  are implemented explicitly in different 

operational elements.  

 

Pareto dominance is a widely used MO assessment technique to exert nP . It has shown 

its effectiveness in attainting the tradeoffs (Goldberg and Richardson 1987; Fonseca 

and Fleming 1993; Horn and Nafpliotis 1993; Srinivas and Deb 1994). However it is 

weak in diversifying the population along the tradeoff surface, which has been shown 
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in (Fonseca 1995b) that the individuals will converge to arbitrary portions of the 

discovered trade-off surface, instead of covering the whole surface. Thus the MO 

assessment alone is insufficient to maintain the population distribution because it does 

not induce tP  for tangential effect in the evolution. To address this issue, a density 

assessment has to be added to induce sufficient tP . The general working principle of 

density assessment is to assess the distribution density of solutions in the feature space 

and then made decision to balance up the distribution density among the sub-divisions 

of feature space. As MO assessment, density assessment is also considered as a 

fundamental element in MOEAs, which maintains individual diversity along the trade-

off surface.  

 

Many methods for individual assessment have been proposed and integrated into 

various MOEAs in different ways. They can be categorized into the aggregated 

approach and comparative approach. As shown in Fig. 2.3, the two approaches are 

different in the hybridization of MO and density assessment to generate the unified 

pressure uP . In the aggregated approach, the results from the MO and density 

assessment are aggregated for the individual assessment decision. The aggregation 

function applied can be either linear, as implemented in non-generational GA 

(Valenzuela-Rendón and Uresti-Charre 1997), or non-linear, as in MOGA (Fonseca 

and Fleming 1993) and non-generational GA (Borges and Barbosa 2000). In this case, 

the effect of nP  and tP  on the resulting uP  is mainly based on the aggregation function 

used. Thus the aggregation function must be carefully constructed so as to keep the 

balance between nP  and tP .  
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In the comparative approach, only the individuals that are equally fit in MO 

assessment will be further compared through the density assessment. This approach 

assigns a higher priority level to MO assessment than density assessment. At the initial 

stage of the evolution, the effect of nP  is larger than that of uP  because the candidate 

individuals are comparable via MO assessment when the opportunity to move closer to 

the global trade-offs is high. When the population begins to converge to the discovered 

trade-offs, most individuals are equally fit in MO assessment and the density 

assessment will exert the major effect to disperse the individuals. Some of the existing 

MO evolutionary techniques adopting the comparative approaches are (Horn and 

Nafpliotis 1993; Srinivas and Deb 1994; Deb et al. 2002a; Knowles and Corne 2000; 

Khor et al. 2001). 

Density
 assessment

MO
assessment

Unevaluated solutions

Evaluated solutions

Aggregation

 

Density
 assessment

MO
assessment

Equally fit?

Unevaluated Solutions

YesNo

Evaluated solutions
 

(a) Aggregated approach (b) Comparative approach 

Fig. 2.3. Generalized multiobjective evaluation techniques 

2.3. Elitism 

The basic idea of elitism in MOEAs is to keep record of a family of the best-found 

non-dominated individuals (elitist individuals) that can be assessed later in the MO 

evolution process. Among the existing literatures that have reported the successful 
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work of elitism for evolutionary MO techniques are (Zitzler and Thiele 1999; Tan et al. 

2001; Deb et al. 2002a; Coello Coello and Pulido 2001; Khor et al. 2001). For the sake 

of limited computing and memory resources in implementation, the set of elitist 

individuals often has a fixed size and pruning process is needed when the size of the 

elitist individuals exceeds the limit. Fig. 2.4 gives two different implementations of 

pruning process, batch and recurrence mode. 

 

 

Solution set X

Pruned solution set X'

MO evaluation on X

Pruning X to X', X'    X.⊆

 

Initializing X = X'

Is size(X') OK?

Solution set X

Pruned solution set X'

Yes

No

MO evaluation on X'

Pruning X to X', X'    X.⊆

 

(a) Batch mode (b) Recurrence mode 

Fig. 2.4. Two modes of pruning process for MO elitism 

 

Let X denote an individual set consisting of the current elitist individuals and the 

promising individuals from the genetic evolution, which exceeds the allowable size 

(size(X’)) of elitist individuals X’. In the batch mode of pruning process, all individuals 

from X are undergone the assessment and the results are applied to prune X to X’. 

While in the recurrence mode, a group of the least promising individuals is removed 

from a given population X to complete a cycle. This cycling process repeats to further 
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remove another set of the least promising individuals from the remaining individuals 

until a desired size is achieved. 

 

The recurrence-mode of pruning process is likely to avoid the extinction of local 

individuals, which somehow leads to the discontinuity of the discovered Pareto front. 

But it often requires more computational effort compared to the batch-mode pruning 

process due to the fact that the individual assessment in recurrence mode has to be 

performed on the remaining individuals in each cycle of pruning.  

 

After the elitism, the elitist set X’ can be either stored externally, which is often 

identified as the second/external population (Zitzler and Thiele 1999; Borges and 

Barbosa 2000; Knowles and Corne 2000; Coello Coello and Pulido 2001), or given a 

surviving probability of one in the next generation. If the former case is employed, the 

elitist set X’ can optionally take part in the mating process to increase the convergence 

rate. However, it should be carefully implemented to avoid too much influence from 

the elitist set in the mating, which may subsequently lead to pre-mature convergence. 

 

2.4. Density Assessment 

Density assessments in MOEAs encourage the divergence in the tangential direction of 

the currently found trade-off surface by giving high selection probability in the less 

crowded region. The density assessment techniques reported along the development of 

evolutionary techniques for multiobjective optimization include Sharing (Goldberg 

1989a), Grid Mapping (Knowles and Corne 2000; Coello Coello and Pulido 2001), 

Density Estimation (Zitzler et al. 2001) and Crowding (Deb et al. 2002a). 
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i) Sharing 

Sharing was originally proposed by Goldberg (1989a) to promote the population 

distribution and prevent genetic drift as well as to search for possible multiple peaks in 

single objective optimization. Fonseca and Fleming (1993) later employed it in 

multiobjective optimization. Sharing is achieved through a sharing function. Let d be 

the Euclidean distance between individuals x and y. The neighborhood size is defined 

in term of d and specified by the so-called niche radius shareσ . The sharing function is 

defined as follows:  

1 ( / )   if d<
( )

0                        otherwise
share shared

sh d
ασ σ −

= 


 
(2.1) 

And the niche count function is defined with the help of sharing function: 

( ) ( ( , ))
y

nc x sh dist x y=∑  (2.2) 

The niche radius shareσ  is a key parameter in sharing. 

ii) Grid Mapping 

To keep track of the degree of crowding in different regions of the space, an m-

dimensional grid is used to partition the feature space, where m is the dimensions of 

the objective space. When each individual is generated, its grid location is found and a 

map of the grid is maintained to indicate for each grid location how many and which 

individuals in the population reside there. To maintain the uniformity of the 

distribution, individuals with higher grid-location count should be given less sampling 

probability than those with lower grid-location count in the selection process. This 

approach has been proposed and applied in at least Pareto Archived Evolutionary 

strategy (PAES) (Knowles and Corne 2000), Pareto Envelope Based Selection 
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Algorithm (Corne et al. 2000) and Micro-Genetic Algorithm (Coello Coello and Pulido 

2001). 

iii) Crowding 

Crowding was proposed by Deb et al. (2002a) in their Non-dominated Sorting Genetic 

Algorithm II (NSGA-II). The crowding distance is an estimate of the size of the largest 

cube enclosing a single solution without any other point in the population and indicates 

the density of solutions surrounding a particular individual. This measure is defined as 

the average distance of two points on either side of the selected solution along each of 

the objectives. During the selection process, the crowding distance will be used to 

break a tie between two solutions with the same rank.  

iv) Density Estimation 

Density estimation was proposed in the strength Pareto evolutionary algorithm 2 

(SPEA2) (Zitzler et al. 2001). It is adapted from k th⋅  nearest neighbor method and it 

is given by the inverse of the distance to the k th⋅  nearest neighbor. The density 

estimation is used both in the selection and in the archive truncation process. 

2.5 Overview of Some Existing MOEAs 

Five well-known algorithms are selected for the comparison studies in following 

chapters. These algorithms have been applied or taken as references in many 

literatures. 

2.5.1 Pareto Archived Evolution Strategy 

The Pareto archived evolution strategy (PAES) (Knowles and Corne 2000) is unique 

from other MOEAs in that it is a non-population based local search algorithm. 



Chapter 2  Multiobjective Evolutionary Algorithms  

 

19

However, PAES does maintain an archive to preserve non-dominated solution and 

utilizes the archive information in the selection process. PAES uses only the mutation 

operator to implement a hill climbing strategy. The grid mapping is applied to keep 

track of the degree of crowding. The algorithm flow of PAES is shown in Fig. 2.5. 

_Arc size  (Archive size) 

genNum (Maximum number of generation) 

Step1:  Set n = 0 

Step2: Initialization: Generate single initial solution C(n), empty the archive Arc. 

Step3: Evaluation:  Evaluate the current solution C(n). 

Step4: Updating archive: Add the current solution C(n) into the archive Arc if it 

is non-dominated. If the size of Arc is more than _Arc size , grid mapping 

is employed for archive truncation. 

Step5: Mutation: Mutate the current solution C(n) to create a new potential 

solution M(n). 

Step6: Evaluation: Evaluate the potential solution M(n). 

Step7: If M(n) dominates C(n), C(n+1) = M(n). Else C(n+1) = C(n). 

Step8: Termination: n = n + 1.  If n = genNum, stop. Else if M(n-1) dominates 

C(n-1), go to Step 4. Else go to Step 5. 

Fig. 2.5. Algorithm flowchart of PAES 

2.5.2 Pareto Envelope Based Selection Algorithm 

The Pareto envelope based selection algorithm (PESA) (Corne et al. 2000) draws its 

motivation from the strength Pareto evolutionary algorithm (SPEA) (Zitzler and Thiele, 

1999) and PAES. It uses an external population to store the current approximate Pareto 

front and an internal population to evolve new candidate solutions. PESA uses the grid 
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mapping to perform online tracking of the degree of crowding in different regions of 

the archive. Tournament selection in PESA is based on the grid-location count to guide 

the search towards the less populated areas. The algorithm flow of PESA is shown in 

Fig. 2.6. 

_Pop size (Internal population size) 

_Arc size  (Archive size) 

genNum (Maximum number of generation) 

Step1:  Set n = 0 

Step2: Initialization: Generate an initial internal population Pop(n) and empty 

the archive Arc.  

Step3: Evaluation:  Evaluate the individuals in the internal population Pop(n). 

Step4: Updating archive:  Copy all non-dominated individuals in Pop(n) into the 

archive Arc. If the size of Arc is more than _Arc size , grid mapping is 

employed for archive truncation. 

Step5:  Empty the internal population Pop(n+1) = ∅ .  

Step6: Crossover: With cp , select two parents from archive the Arc and 

crossover them to create a child. Add this child to the internal population 

Pop(n+1). 

Step7: Mutation: With 1 cp− , select one parent from the archive Arc and mutate 

it to create a child.  Add this child to the internal population Pop(n+1). 

Step8: Go to Step 6 until the internal population Pop(n+1) is full. 

Step9: Evaluation:  Evaluate the individuals in the internal population Pop(n+1). 

Step10: Termination: n = n + 1.  If n = genNum, stop. Else go to Step 4. 

Fig. 2.6. Algorithm flowchart of PESA 
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2.5.3 Non-dominated Sorting Genetic Algorithm II 

The non-dominated sorting genetic algorithm II (NSGA II) (Deb et al. 2002a) is the 

improved version of its predecessor NSGA (Srinivas and Deb 1994). It employs a fast 

non-dominated approach to assign rank to individuals and a crowding distance 

assignment to estimate the crowding. In case of a tie in rank during the selection 

process, the individual with a smaller crowding distance wins. Together with an elitism 

scheme, the NSGA II claims to produce better results than NSGA. The algorithm flow 

of NSGAII is shown in Fig. 2.7. 

_Pop size (Parent population size) 

_Chd size  (Child population size) 

genNum (Maximum number of generation) 

Step1: Set n = 0. 

Step2: Initialization: Generate an initial parent population Pop(n) and empty the 

child population Chd(n). 

Step3: Evaluation: Evaluate the initial parent population Pop(n). 

Step4: Mating selection:  Select individuals from Pop(n) to create the mating 

pool.  

Step5: Variation: Apply the crossover and mutation operators to the mating pool 

to create the child population Chd(n).  

Step6: Evaluation: Evaluate the child population Chd(n). 

Step7: Elitism selection: Combine the parent and child population. Sort this 

combined population Pop(n) ∪  Chd(n) according to Pareto dominance 

and assign crowding distance for Pop(n) ∪ Chd(n). Finally 

_Pop size solutions are selected from Pop(n) ∪  Chd(n) based on the 
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crowded comparison operator and copied into the next population 

Pop(n+1). 

Step8: Termination: n = n + 1. If n  =  genNum, stop. Else go to Step 4. 

Fig. 2.7. Algorithm flowchart of NSGA II 

2.5.4 Strength Pareto Evolutionary Algorithm 2 

The strength Pareto evolutionary algorithm 2 (SPEA 2) (Zitzler et al, 2001) is the 

improved version of its predecessor SPEA. In SPEA 2, both archive and population are 

assigned fitness based on strength and density estimation. The strength of an individual 

is defined as the number of individuals that dominates it. The density estimation 

mechanism has been described in Section 2.4. A truncation method based on the 

density estimation is employed to keep the fixed size of archive. The elitism is 

implemented using an internal and an external population. All The algorithm flow of 

SPEA 2 is shown in Fig. 2.8. 

_Pop size (Internal population size) 

_Arc size  (Archive population size) 

genNum (Maximum number of generation) 

Step1: Set n = 0 

Step2: Initialization: Generate an initial internal population Pop(n) and empty 

the archive Arc(n) =∅ .  

Step3: Evaluation: Evaluate the individuals in Pop(n). 

Step4: Environmental selection: Copy the non-dominated solutions in the Pop(n) 

and Arc(n) to the new archive Arc(n+1). If the size of Arc(n+1) 

exceeds _Arc size , then truncation is performed based on density 
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estimation. If the size of Arc(n+1) is less than _Arc size ,  the Arc(n+1) is 

filled with the best dominated solutions in Arc(n).   

Step5: Mating selection: Select individuals from Arc(n+1) to create the mating 

pool.  

Step6: Variation: Apply the crossover and mutation operators to the mating pool 

to create new population Pop(n+1).  

Step7: Termination: n = n + 1. If n = genNum, stop. Else go to Step3. 

Fig. 2.8. Algorithm flowchart of SPEA 2 

2.5.5 Incrementing Multiobjective Evolutionary Algorithm 

The incrementing multiobjective evolutionary algorithm (IMOEA) (Tan et al. 2001) is 

an MOEA with dynamic population size that is computed online according to the 

discovered approximate Pareto front and desired population density. It employs the 

method of fuzzy boundary local perturbation with interactive local fine-tuning to 

achieve broad neighbourhood exploration and create the desired number of individuals. 

Elitism is implemented in the form of the switching preserved strategy. The algorithm 

flow is shown in Fig. 2.9. 

dps   (Dynamic population size) 

_Arc size  (Archive population size) 

genNum (Maximum number of generation) 

Step1: Set n = 0. 

Step2: Initialization: Generate an initial population pop(n).  

Step3: Evaluation: Evaluate the individuals in the population pop(n). 

Step4: Calculate the dynamic population size dps(n), number of perturbations 
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np(n) and number of tournament selected individuals nsi(n).   

Step5: Mating selection: Tournament select nsi(n) individuals from pop(n) 

according to their niche cost to create selpop(n). 

Step6: Crossover: Perform crossover with crossover probability Pc on selpop(n) 

to create crosspop(n).. 

Step7: Mutation: Perform FBLP with np(n)  perturbations for each individuals in 

crosspop(n)  to create evolpop(n). 

Step8: Switching preservation: pop(n+1) = pop(n)∪ evolpop(n). If the number of 

non-dominated solution in pop(n+1) is less than dps(n), truncate pop(n+1) 

based on Pareto dominance. Else truncate pop(n+1) based on niche cost. 

Step9: Termination: n = n + 1.  If n = genNum, stop. Else go to Step3. 

Fig. 2.9. Algorithm flowchart of IMOEA 



Chapter 3 

Cooperative Coevolution for Multiobjective 

Optimization 

3.1 Introduction 

Although the MOEAs are capable of approximating the optimal Pareto front in 

multiobjective optimization with varying success (Knowles and Corne 2000; Corne et 

al. 2000; Deb et al. 2002a; Zitzler et al. 2001; Tan et al. 2001), the computational cost 

involved in terms of time and hardware for evolving the complete set of trade-off 

solutions often become insurmountable as the size or complexity of the problem 

increases. Meanwhile, studies have shown that coevolutionary mechanism can increase 

the efficiency of the optimization process significantly (Potter and De Jong 1994, 

2000; Moriarty 1997; Liu et al. 2001). Therefore, one promising approach to overcome 

the limitation in MOEAs is to incorporate the coevolutionary mechanism by co-

evolving the solution set with a number of subpopulations in a cooperative way.  

 

Neef et al. (1999) introduced the concept of coevolutionary sharing and niching into 

multiobjective genetic algorithms, which adapted the niche radius through competitive 

coevolution. Parmee et al. (1999) used multiple populations where each population 
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optimized one objective related to the problem. The individual fitness in each 

population was adjusted by comparing the variable values of identified solutions 

related to a single objective with solutions of other populations. Lohn et al. (2002) 

embodied the model of competitive coevolution in multiobjective optimization, which 

contained the population of candidate solutions and the target population consisting of 

target objective vectors. Keerativuttiumrong et al. (2002) extended the cooperative 

coevolutionary genetic algorithm (Potter and De Jong 1994, 2000) to MO optimization 

by evolving each species with a multiobjective genetic algorithm (Fonseca and 

Fleming 1993) in a rather elementary way. 

 

This chapter presents a cooperative coevolutionary algorithm (CCEA) to evolve 

multiple solutions in the form of cooperative subpopulations for MO optimization. 

Incorporated with various features like archiving, dynamic sharing and extending 

operator, the CCEA is capable of maintaining search diversity in the evolution and 

distributing the solutions uniformly along the Pareto front. Exploiting the inherent 

parallelism in cooperative coevolution, the CCEA is formulated into a computing 

structure suitable for concurrent processing that allows inter-communications among 

subpopulations residing in multiple computers over the Internet. This distributed 

CCEA (DCCEA) DCCEA can reduce the runtime effectively without sacrificing the 

performance of CCEA. 

 

The remainder of this chapter is organized as follows: Section 3.2 describes the 

principle of the proposed CCEA for multiobjective optimization. Section 3.3 presents a 

distributed version of CCEA and its implementation that uses resources of networked 

computers. Section 3.4 examines the different features of CCEA and provides a 



Chapter 3  The Cooperative Coevolution for Multiobjective Optimization  

 

27

comprehensive comparison of CCEA with other well-known MOEAs. The 

performance improvement of the distributed CCEA running on multiple networked 

computers is also shown in Section 3.4. Conclusions are drawn in Section 3.5. 

3.2 Cooperative Coevolution for Multiobjective Optimization  

3.2.1 Coevolution Mechanism 

Recent advances in evolutionary algorithms show that the introduction of ecological 

models and the use of coevolutionary architectures are effective ways to broaden the 

use of traditional evolutionary algorithms (Rosin and Belew 1997; Potter and De Jong 

2000). Coevolution can be classified into competitive coevolution and cooperative 

coevolution. While competitive coevolution tries to get individuals that are more 

competitive through evolution, the goal of cooperative coevolution is to find 

individuals from which better systems can be constructed. Many studies (Angeline and 

Pollack 1993; Rosin and Belew 1997) show that competitive coevolution leads to an 

“arms race” where two populations reciprocally drive one another to increase levels of 

performance and complexity. The model of competitive coevolution is often compared 

to predator-prey or host-parasite interactions, where preys (or hosts) implement the 

potential solutions to the optimization problem while the predators (or parasites) 

implement individual “fitness-cases”. In a competitive coevolutionary algorithm, the 

fitness of an individual is based on direct competition with individuals of other species 

that evolve separately in their own populations. Increased fitness of one of the species 

implies a diminution in the fitness of the other species. This evolutionary pressure 

tends to produce new strategies in the populations involved to maintain their chances 

of survival. 
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The basic idea of cooperative coevolution is to divide-and-conquer (Potter and De 

Jong 2000): divide a large system into many modules, evolve the modules separately, 

and then combine them together again to form the whole system. The cooperative 

coevolutionary algorithms involve a number of independently evolving species that 

together form complex structures for solving difficult problems. The fitness of an 

individual depends on its ability to collaborate with individuals from other species. In 

this way, the evolutionary pressure stemming from the difficulty of the problem favors 

the development of cooperative strategies and individuals. Potter and De Jong (1994) 

presented a cooperative coevolutionary genetic algorithm that improved the 

performance of GAs on many benchmark functions significantly. It could lead to faster 

convergence as compared to conventional GAs for low-level to moderate-level of 

variable interdependencies. This approach was discussed in more details by Potter and 

De Jong (2000) and applied successfully to string matching task and neural network 

designs. 

 

Moriarty (1997) used a cooperative coevolutionary approach to evolve neural networks 

where each individual in one species corresponds to a single hidden neuron of a neural 

network and its connections with the input and output layers. This population 

coevolved alongside a second one whose individuals encode sets of hidden neurons 

(i.e., individuals from the first population) forming a neural network. Liu et al. (2001) 

used cooperative coevolution to speed up convergence rates of fast evolutionary 

programming on large-scale problems whose dimension ranged from 100 to 1000. This 

cooperative coevolutionary approach performed as good as (and sometimes better than) 

single population evolutionary algorithms, required less computation than single-
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population evolution as the populations involved are smaller, and converged faster in 

term of number of generations. 

 

3.2.2 Adaptation of Cooperative Coevolution for Multiobjective Optimization 

3.2.2.1 Cooperative Cooperation and Rank Assignment 

Given a single objective optimization problem with n parameters, each parameter is 

assigned a subpopulation, and these n subpopulations coevolve the individuals in each 

of them (Potter and De Jong 1994, 2000; Liu et al. 2001). The proposed CCEA for MO 

optimization adopts the idea of assigning one subpopulation to each parameter and 

applies this idea to MO optimization where multiple non-dominated solutions are 

targeted. Fig. 3.1 depicts the principle of cooperation and rank assignment in CCEA, 

which shows that individuals in subpopulation i cooperate with representatives of other 

subpopulations to form the complete solutions. 

 

Each subpopulation only optimizes one parameter and an individual in a subpopulation 

is just a component of a complete solution. Here, the best r  individuals in a 

subpopulation are defined as the representative set of the subpopulation. To evaluate 

an individual in a subpopulation, a representative is randomly selected from the 

representative set of every other subpopulation and these representatives are combined 

with the individual under evaluation to form a complete solution. Then this complete 

solution is mapped into an objective vector by the objective functions. The objective 

vector can be used to evaluate how well the selected individual cooperates with other 

subpopulations to produce good solutions. Since the objective vector cannot be used as 

fitness in the selection of evolutionary algorithms directly, a Pareto based rank 
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assignment scheme is applied to give each individual a scalar rank value. The rank of 

an individual partially reflects the distance between the objective vector of this 

individual and the current Pareto front. 

 

Subpop 1
for

variable 1

Subpop i
for

variable i

Subpop k
for

variable k

Subpop n
for

variable n

Collaborate

Evaluate

Update archive

Rank

Representative

Representative

Representative

Complete solution

Complete solution
and its objective

Archive

Individuals in
subpop i

Assign rank

 

Fig. 3.1. Cooperation and rank assignment in CCEA 

 

By incorporating an archive into the algorithm to store the set of non-dominated 

solutions, multiple solutions for MO optimization can be achieved by CCEA. This 

archive is updated in every generation and outputted as the optimal solution set when 

the evolutionary process is accomplished. Preserving the best solutions found so far, 

the archive works as an elitism mechanism, which not only results in continuous 

improvement for the quality of the archive but also ensures the convergence of CCEA. 
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Moreover, the archive is served as the comparison set in the rank assignment of 

individuals from subpopulations after these individuals obtain their objective vectors 

through collaboration. A canonical Pareto ranking scheme (Fonseca and Fleming 

1995b) is applied in CCEA, which ranks individuals according to how many members 

in the archive dominating them. 

3.2.2.2 Archive Updating 

The archive size is given by a predefined number archive_size, which can be adjusted 

according to the required number of solutions. As illustrated in Fig. 3.2, once a 

complete solution is evaluated using the objective functions, it will update the archive 

according to its objective vector. If the solution is not dominated by any archive 

member, it will be added to the archive and the archive members dominated by it will 

be discarded. When the maximum archive size is reached, a truncation method based 

on niche count will be activated to replace the most crowded archive member with the 

new non-dominated solution in order to maintain the diversity of the archive. To 

distribute the non-dominated solutions evenly along the Pareto front, the dynamic 

sharing approach proposed by Tan et al. (2003b) is implemented in CCEA. While used 

in the archive updating, niche count is also involved in the tournament selection to 

generate the mating pool in CCEA.  A partial order is applied to compare two 

individuals in the tournament selection: For two individuals i and j, ni j≥ , if (i 

dominates j), or ( ( ) ( )rank i rank j< ), or { ( ) ( )rank i rank j==  and ( ) ( )nc i nc j< }. 
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Fig. 3.2. The process of archive updating 

3.2.3 Extending Operator 

A new feature of extending operator is proposed in CCEA to improve the smoothness 

and spread of non-dominated solutions. Ordinarily, the under-populated regions are the 

gaps or boundaries of the archive, which should be given more attention if the Pareto 

front should be covered by the archive as much as possible. To make these unobvious 

regions outstanding, the role of extending operator in CCEA is to guide the 
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evolutionary search into these areas. The archiving scheme plays a critical role in the 

realization of the extending operation. Firstly, since complete solutions are all stored in 

the archive, the subpopulations have no pressure to keep the diversity of their own 

individuals so that they can adaptively focus their search in the regions that are not 

explored thoroughly. Secondly, by extracting the information of the solution 

distribution from the archive, archive members in the most under-populated regions 

will be found and copied to the subpopulations. Hence, these members will have a 

higher chance to be selected into the mating pool. Detailed description of the extending 

operator is as follows: 

The Extending Operator for CCEA: 

Let  n  be the number of clones. 

Step  (1)  If the archive is not full, exit. 

Step (2)  Calculate the niche count of each member in the archive. Then find the 

member with the smallest niche count. This member resides in the most 

under-populated region. 

Step (3)  Clone n copies of this archive member to the subpopulations. Here, each 

part of this member is cloned into its corresponding subpopulation. 

 

In the initial stage of CCEA, the algorithm should concentrate on the search of non-

dominated solutions to fill up the archive and achieve a good approximation of the 

Pareto front. Moreover, a small number of members in the archive are not sufficient to 

approximate the Pareto front well and give accurate information of solution 

distribution. Therefore, the extending operator will be activated only when the archive 

is full. The solution with the smallest niche count is then selected and cloned to the 
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subpopulations. Such an operation forces the algorithm to pay more attention to the 

under-populated regions, as desired. 

3.2.4 Panorama of CCEA 

Terminate ?

Generate n subpopulations
for the n variables

End

i > the number of
subpopulations?

N

Evaluate individuals in subpopulation i
and update the archive

Genetic operations on subpopulation i

i = 1

i = i + 1

cycle

Assign rank to individuals in subpopulation i

Extending
operator

Calculate the niche count in the normalized
objective space for individuals in subpopulation  i

Y

N

Y

 

Fig. 3.3. The program flowchart of CCEA 

 

As depicted in the flowchart of CCEA in Fig. 3.3, n subpopulations are randomly 

initialized and each of them optimizes one variable for a n-variable problem. In the 

evolution cycle, as marked by the dash box, the n subpopulations will be evolved in a 

sequential way. To evaluate an individual in the currently evolving subpopulation, a 

complete solution should be constructed by combining the currently evaluated 
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individual with the representatives of other subpopulations. The archive will be 

updated based on the evaluation result of the complete solutions and the ranges of the 

objective space will be estimated from the updated archive. Based on the objective 

vector, each individual will be assigned a rank and its respective niche count will be 

obtained in the dynamic objective space. The genetic operations during the evolution 

process consist of tournament selection, uniform crossover and bit-flip mutation. Once 

an evolution cycle is finished, the extending operator finds the archive member 

residing in the region that is not explored thoroughly, and copies it to subpopulations. 

With the extending operator, CCEA gives a wide spread and uniform distribution to 

the non-dominated solution set. 

3.3 Distributed Cooperative Coevolutionary Algorithm 

3.3.1 Distributed Evolutionary Computing 

Although evolutionary algorithm (EA) is a powerful tool, the computational cost 

involved in terms of time and hardware increases as the size and complexity of the 

problem increases, since it often needs to perform a large number of function 

evaluations in the evolution process. One promising approach to overcome the 

limitation is to exploit the inherent parallel nature of EA by formulating the problem 

into a distributed computing structure suitable for parallel processing, i.e., to divide a 

task into subtasks and to solve the subtasks simultaneously using multiple processors. 

This divide-and-conquer approach has been applied to EA in different ways and many 

parallel EA implementations have been reported in literatures (Cantú-Paz 1998; 

Goldberg 1989b; Rivera 2001). 
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As categorized by Rivera (2001), there are four possible strategies to parallelize EAs, 

i.e., global parallelization, fine-grained parallelization, coarse-grained parallelization, 

and hybrid parallelization. In global parallelization, only the fitness evaluations of 

individuals are parallelized by assigning a fraction of the population to each processor. 

The genetic operators are often performed in the same manner as traditional EAs since 

these operators are not as time-consuming as the fitness evaluation. This strategy 

preserves the behavior of traditional EA and is particularly effective for problems with 

complicated fitness evaluations. The fine-grained parallelization is often implemented 

on massively parallel machines, which assigns one individual to each processor and 

the interactions between individuals are restricted into some neighborhoods. In coarse-

grained parallelization, the entire population is partitioned into subpopulations. This 

strategy is complex since it consists of multiple subpopulations and different 

subpopulations may exchange individuals occasionally (migration). In hybrid 

parallelization, several parallelization approaches are combined, and the complexity of 

these hybrid parallel EAs depends on the level of hybridization. 

 

The availability of powerful-networked computers presents a wealth of computing 

resources to solve problems with large computational effort. Because the 

communication amount in coarse-grained parallelization is small compared with other 

parallelization strategies, it is a suitable computing model for distributed computer 

network where the communication speed is limited. This parallelization approach is 

considered here where large problems are divided into many smaller subtasks and 

mapped into the computers available in a distributed system. 
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3.3.2 The Distributed CCEA (DCCEA) 
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Fig. 3.4. The model of DCCEA 

 

The proposed distributed CCEA adopts the coarse-grained parallelization strategy of 

EAs. To make the original CCEA fit into a distributed scenario, the design of DCCEA 

should consider several features of distributed computing such as variant 

communication overhead, different computation speed and network restrictions. A toy 

model with six subpopulations and three peers is given in Fig. 3.4 to illustrate the 

design concept of DCCEA. As shown in Fig. 3.4, each parameter of the problem is 

assigned a subpopulation as in CCEA. In a distributed scenario, these subpopulations 

are further partitioned into a number of groups, which is determined by the available 

number of peers. In Fig. 3.4, the 6 subpopulations are divided into 3 groups and each 

of them is assigned to a peer computer. Each peer has its own archive and 
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representatives, and evolves its subpopulations sequentially in the similar way as in 

CCEA. 

 

Inside a peer computer, the complete solution generated through collaboration will 

continuously update the peer archive. The subpopulations in the peer update the 

corresponding peer representatives once every cycle. The cooperation among peers is 

indirectly achieved through the exchanges of archive and representatives between 

peers and a central server. In the distributed scenario, the communication time among 

peers is a conspicuous part of the whole run time. To reduce the communication 

overhead, the exchange of archive and representatives between one peer and the 

central server occurs once every several generations. The number of generations 

between two exchanges is called the exchange interval. Generally the peers are not 

identical and the cooperation among peers becomes ineffective if there are big 

differences in the evolution progresses of peers. In such case, the bad cooperation 

among peers will deteriorate the performance of DCCEA. To keep the peers cooperate 

well in the evolution, these peers should be synchronized every few generations. Here, 

the synchronization interval is defined as the number of generations between two 

synchronizations. The exchange and synchronization intervals can be fixed or 

adaptively determined along the evolution. 

3.3.3 The Implementation of DCCEA 

The implementation of DCCEA is embedded into the distributed computing 

framework named Paladin-DEC (Tan et al. 2002b, 2003a), which is built upon the 

foundation of Java technology offered by Sun Microsystems and is equipped with 

application programming interfaces (APIs) and technologies from J2EE. The J2EE is a 

component-based technology provided by Sun for the design, development, assembly, 
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and deployment of enterprise applications. Enterprise Java Bean (EJB) is the middle-

tier component by which data are presented and business logics are performed. 

Different tiers are independent from each other and can be changed easily, e.g., such as 

changing the database or adding/removing some business logics. Furthermore, the 

unique advantages of Java programming language, such as platform independence and 

reusability, make this approach attractive. 

 

As shown in Fig. 3.5, the Paladin-DEC software consists of two main blocks, i.e., the 

servant block and workshop block that are connected by RMI-IIOP (Remote Method 

Invocation over Internet Inter-ORB Protocol). The servant functions as an information 

center and backup station through which peers can check their identifications or restore 

their working status. The workshop is a place where peers (free or occupied) work 

together in groups, e.g., the working peers are grouped together to perform the 

specified task, while the free ones wait for the new jobs to be assigned. The servant 

contains three different servers, i.e., logon server, dispatcher server, and database 

server. The logon server assigns identification to any registered peers. It also removes 

the information and identification of a peer when it is logged off as well as 

synchronizes the peer’s information to the dispatcher server. The dispatcher server is 

responsible for choosing the tasks to be executed, the group of peers to perform the 

execution, and to transfer the peers’ information to/from the database server. The 

dispatcher server also synchronizes the information, updates the peer’s list, and 

informs the database server for any modification. Whenever there is a task available, 

the dispatcher server will transfer the task to a group of selected peers. 
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Fig. 3.5. Schematic framework of Paladin-DEC software 

 

The working process of a peer begins once the peer (or client) is started and logons to 

the server, which is realized by sending a valid email address to the server. The peer 

computer will then be pooled and waiting for the task to be assigned by the server. 

Once a peer detects that a task is assigned, it will extract the information from the 

server, such as class name and path, as well as the http server address before loading 

the class remotely from the server. If the class loaded is consistent with the Paladin-

DEC system, it will be allowed to initiate the computation procedure. Fig. 3.6 depicts 

the entire working process of a peer, where the detail description of the box 

“Compute” is shown in the right part of the figure. 
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Fig. 3.6. The workflow of a peer 

 

When a peer starts the computation procedure, it first initializes the parameters, such as 

generation number, subpopulation groups, subpopulation size, crossover rate, and 

mutation rate. Then the peer creates the subpopulations assigned to it. Synchronization 

is crucial to DCCEA in order to achieve a good cooperation among peers. When a peer 

reaches a synchronization point, it suspends its evolution until the server signals that 

all the peers have reached the synchronization point. At each generation, the peer will 

check whether it is time to exchange the archive and representatives between the peer 
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and the server. If the conditions of exchange are satisfied, the peer will initiate a 

session in the server that retrieves the archive and representatives of the peer, then 

updates the server archive with the peer archive and updates the server representatives 

corresponding to the peer. For the peer, it will obtain the new server archive and server 

representatives, and replaces its current archive and representatives. After these steps, 

the peer evolves its subpopulations sequentially for one generation. If the peer meets 

the termination conditions, it will initiate a session to submit the results and then 

restore itself to the ready status. If the user cancels a running job, those peers involved 

in the job will stop the computation and set themselves to the ready status. 

3.3.4 Workload Balancing 

As the processing power and specification for various computers in a network may be 

different, the feature of work balancing that ensures the peers are processed in a similar 

pace is required in DCCEA. This is important since the total computation time is 

decided by the peer that finished the work last, and if the peer with the least 

computational capacity is assigned with the heaviest workload, not only would longer 

time be required but also the bad cooperation among nodes will deteriorate the 

performance of DCCEA. Intuitively, work balancing for a distributed system could be 

difficult because the working environment in a network is often complex and 

uncertain. The DCCEA resorts to a simple work balancing strategy by assigning the 

workload to the peers according to their respective computational capabilities. As 

stated in Section 3.3.3, when a peer is first launched, it uploads its configuration 

information, which could be accessed by the servant. The hardware configuration of 

the peer is recorded in the information file, such as the CPU speed, RAM size, etc. 

After reading the information file, the dispatch server performs a simple task 
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scheduling and assigns different tasks to the respective peers according to their 

computational capabilities. 

3.4 Case study 

In this section, four performance metrics for multiobjective optimization are described. 

Then some benchmark problems are described, which will be used in the comparison 

of CCEA with PAES, PESA, NSGAII, SPEA2, and IMOEA. In this section, the 

extensive simulations of the algorithms are performed based upon the benchmark 

problems and simulations of DCCEA are presented to verify its performance. 

3.4.1 Performance Metrics 

Four different quantitative performance measures for MO optimization are used, which 

are referred from other studies in MO optimization, such as Van Veldhuizen and 

Lamont (1999), Deb (2001), and Zitzler et al. (2000). These measures are chosen here 

since they have been widely used for performance comparisons in MO optimization, 

and can evaluate the non-dominated solutions in several nontrivial aspects. 

 

1)  Generational Distance (GD) 

The metric of generational distance is a value representing how “far” the knownPF  is 

from truePF  and is defined as, 

2 1/ 2

1

1( )
n

i
i

GD d
n =

= ∑  
(3.1) 
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where n is the number of members in knownPF , id  is the Euclidean distance (in 

objective space) between the member i  in knownPF  and its nearest member of truePF . 

The smaller the generational distance is, the closer the knownPF  is to the truePF . 

 

2) Spacing (S) 

The metric of spacing measures how “evenly” members in knownPF  distribute. It is 

defined as, 

2 1/ 2

1 1

1 1[ ( ) ] / ,   
n n

i i
i i

S d d d where d d
n n= =

= − =∑ ∑  
(3.2) 

 

where n is the number of members in knownPF , id  is the Euclidean distance (in 

objective space) between the member i  in knownPF  and its nearest member of knownPF . 

The smaller the spacing is, the more evenly the members in knownPF  distribute. 

 

3)  Maximum Spread (MS) 

Zitzler et al. (2000) defined a metric measuring how well the truePF  is covered by the 

knownPF  through the hyper-boxes formed by the extreme function values observed in 

truePF  and knownPF . In order to normalize the metric, this metric is modified as, 

max max min min max min 2

1

1 {[(min( , ) max( , )] /( )]}
M

m m m m m m
m

D f F f F F F
M =

= − −∑  
(3.3) 

where n is the number of members in knownPF ; max
mf , min

mf  are the maximum and 

minimum of the m th⋅ objective in the knownPF ; max
mF , min

mF  are the maximum and 
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minimum of the m th⋅ objective in the truePF . The greater the maximum spread is, the 

more area of truePF  is covered by the knownPF . 

 

4)  Hyper-Volume (HV) and Hyper-Volume Ratio (HVR) 

The metric of hyper-volume calculates the volume (in the objective space) covered by 

the members of a non-dominated set for multiobjective minimization problems (Van 

Veldhuizen and Lamont 1999; Zitzler and Thiele 1999). It is defined as, 

1( )n
i iHV volume v== ∪  (3.4) 

Mathematically, for each member i  in the non-dominated set, a hypercube iv  is 

constructed with a reference point W and the member i  as the diagonal corners of the 

hypercube. The reference point can simply be found by constructing a vector of the 

worst objective function values. To eliminate the bias to some extent and to be able to 

calculate a normalized value of this metric of hyper-volume, Van Veldhuizen and 

Lamont (1999) used the metric of hyper-volume ratio that is the ratio of the hyper-

volume of knownPF  and the hyper-volume of truePF , 

( ) / ( )known trueHVR HV PF HV PF=  (3.5) 

 

It measures the evenness and range of knownPF  with respect to truePF  at the same time. 

The greater the hyper-volume ratio is, the better the knownPF  covers the truePF . 

3.4.2 The Test Problems 

Nine test problems are used here to validate the performance of CCEA. Table 3.1 

summarizes features of these test problems and Fig. 3.7 illustrates the respective Pareto 
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fronts. These problems include important characteristics that are suitable for validating 

the effectiveness of MO optimization methods in maintaining the population diversity 

as well as converging to the final Pareto front. Many researchers including Knowles 

and Corne (2000), Corne et al. (2000), Deb (2002a), Tan et al. (2001), and Zitzler et al. 

(1999, 2000, 2001), have used these problems in the validation of their algorithms. 

 

Table 3.1. Features of the test problems 

 

 

 

 Test problem Features 

1 ZDT1 The Pareto front is convex 

2 ZDT2 The Pareto front is non-convex 

3 ZDT3 The Pareto front consists of several noncontiguous convex parts 

4 ZDT4 The Pareto front is highly multi-modal and there are 21^9 local 

Pareto fronts 

5 ZDT6 The Pareto-optimal solutions are non-uniformly distributed along 

the global Pareto front. The density of the solutions is the lowest 

near the Pareto-optimal front and the highest away from the front 

6 FON The Pareto front is non-convex 

7 KUR The Pareto front consists of several noncontiguous convex parts 

8 TLK Noisy landscape 

9 DTL2 High dimension of the objective space 
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Fig. 3.7. The Pareto fronts of the test problems 

1) Test Problem ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 

These problems were designed using Deb's scheme by Zitzler et al. (2000) and were 

used in a performance comparison of eight well-known MOEAs. Each of these test 

problems is structured in the same manner and is consists of three functions (Deb 

1999). The definitions of the three functions 1, ,f g h  in ZDT1, ZDT2, ZDT3, ZDT4 

and ZDT6 are listed in Table 3.2. 
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Table 3.2. Definitions of 1, ,f g h  in ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 
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2) Test Problem FON 

Test problem FON is Fonseca’s two-objective minimization problem that has been 

widely studied (Fonseca and Fleming 1993; Tan et al. 2001, 2003b; Van Veldhuizen 

and Lamont 1999). Besides its non-convex Pareto front, this test problem has a large 

and nonlinear trade-off curve that is suitable to challenge the algorithm’s ability in 

finding and maintaining the entire Pareto front uniformly. In addition, the performance 

of algorithms can easily be compared via visualization of the Pareto front for this 

problem. This two-objective minimization problem is given by 

1 2

8 2
1 1 8 1

8 2
2 1 8 1

( , )

( ,..., ) 1 exp[ ( 1/ 8) ]

( ,..., ) 1 exp[ ( 1/ 8) ]

 2 2, 1, 2, ,8

ii

ii

i

Minimize f f

f x x x

f x x x

where x i

=

+
=

 = − − −


= − −
− ≤ < ∀ =

∑
∑

 

(3.12) 

There are eight parameters 1 8( , , )x x  to be optimized so that 1f  and 2f  are minimal. 

Due to the symmetry and trade-offs of these two functions, the Pareto-optimal sets are 

points on the curve defined as (Fonseca and Fleming 1993), 

1 2 8 1
1 1,
8 8

x x x x−
= = = ≤ ≤  

(3.13) 

 

3) Test Problem KUR 

Kursawe (1990) used a two-objective optimization problem that is very complicated. 

The Pareto front is non-convex as well as disconnected. There are three distinct 

disconnected regions in the Pareto front. The decision variable values corresponding to 

the Pareto front are also disconnected in the decision variable space and difficult to 

know as given below, 
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4) Test Problem TLK 

Tan et al. (2002a) constructed this test problem to evaluate search algorithms in a noisy 

environment to test their robustness in the sense that the disappearance of important 

individuals from the population has little effect on the global evolution behavior, 
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(3.15) 

Instead of performing the optimization on the 'real' parameters, xi, the optimization is 

performed on the 'corrupted' parameters with additive noise elements, 

( , )i ix x N σ µ′ = +  (3.16) 

where 10.1 1x≤ ≤ ; 100 100 2,3ix i− ≤ ≤ ∀ =  and N(σ,µ) is a white noise. The 

distribution density of the noise is given as normal distribution, 
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 −
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(3.17) 

where µ and σ are the mean and variance of the probability density distribution. In the 

normal curve, approximately 68% of the scores of the distribution lie between µ ± σ. 

On this test problem, both µ and σ are given as 0.0 and 0.1, respectively. Note that the 

noisy search environment is modeled with the corrupted parameters. This is to provide 
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noisy global optimum points in the parameter domain, while maintaining the global 

Pareto front in the objective domain for easy comparison or illustration. 

 

5) Test Problem DTL2 

This problem was designed by Deb et al. (2002b) to test the MOEAs’ ability to solve 

problems with a large number of objectives. It is scalable, easy to construct and 

understand, 
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(3.18) 

All the points on the Pareto front satisfy the equation below, 
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3.4.3 Simulation Results of CCEA 

In this section, simulations are carried out to validate the performance of CCEA in 

several aspects, which include the discovery and distribution of non-dominated 

solutions along the entire Pareto front uniformly, the escape from harmful local optima 

and the minimization of the effect of noise induced from the environment (robustness). 

The performance is compared between CCEA and various multiobjective optimization 

methods based on the nine test problems described in Section 3.4.1. Besides CCEA, 
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other evolutionary multiobjective optimization methods used for the study include 

PAES, PESA, NSGAII, SPEA2 and IMOEA. In order to guarantee a fair comparison, 

all the algorithms considered are implemented with the same binary coding scheme of 

30-digit per decision variable, tournament selection, uniform crossover, and bit-flip 

mutation. The number of evaluations in each run is fixed and the configurations of the 

algorithms are shown in Table 3.3. 

Table 3.3. The configurations of the MOEAs 

Populations Subpopulation size 20 in CCEA; population size 100 in 

PESA, NSGAII, SPEA2; population size 1 in PAES; 

initial population size 20, maximum population size 100 

in IMOEA. Archive (or secondary population) size 100 in 

all the algorithms 

Chromosome length 30 bits for each variable 

Selection Binary tournament selection 

Crossover rate 0.8 

Crossover method Uniform crossover 

Mutation rate 2/L, where L is the chromosome length, for ZDT1, ZDT2, 

ZDT3, ZDT4, ZDT6, TLK, and DTL2; 1/30, where 30 is 

the bit number of one variable, for FON, and KUR 

Mutation method Bit-flip mutation 

Hyper-grid size 32  per dimension for DTL2; 52  per dimension for other 

problems 

Representative number 2 for FON and KUR; 1 for other problems 

Number of evaluations 120,000 
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3.4.3.1 Performance Comparisons 

In the simulations, 30 independent runs (with random initial populations) of CCEA, 

PAES, PESA, NSGAII, SPEA2 and IMOEA are performed on each of the nine test 

functions in order to study the statistical performance, such as consistency and 

robustness of the methods. Fig. 3.8(a-d) summarizes the simulation results of the 

algorithms for the problems ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, FON, KUR and TLK. 

The distribution of simulation data for 30 independent runs is represented in the box 

plot format (Chambers et al. 1983). Each box plot represents the distribution of a 

sample set where a horizontal line within the box encodes the median, while the upper 

and lower ends of the box are the upper and lower quartiles. The appendages illustrate 

the spread and shape of distribution, and dots represent the outside values. 

 

Maybe PAES is the simplest possible multiobjective evolutionary algorithm while 

providing competitive results. For almost all the test problems and all the metrics, the 

performance of PAES is the worst and the variance is large compared to other 

MOEAs. A possible reason is that PAES is a non-population based local search 

algorithm where the mutation acts as local search method. It seems that a population of 

candidate solutions is helpful to improve the result consistency.  

 

With respect to the generational distance, the results show that PESA gives the best 

good performance for problems of ZDT1, ZDT2, ZDT3 and KUR. CCEA is found to 

be very competitive for all the problems and it outperforms other MOEAs for the 

problems of ZDT4 and ZDT6, FON and DTL2. The problem ZDT4 has many local 

Pareto fronts that challenge the ability of algorithms to escape from harmful local 

optima. As can be seen from Fig. 3.8(b), only CCEA has the chance to find the global 
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Pareto front while other MOEAs are trapped by the local Pareto fronts. It shows that 

CCEA has a strong ability to escape from the local optima. The non-uniform 

distribution of solutions makes ZDT6 difficult to be tackled by MOEAs. Once again, 

CCEA is clearly better than other MOEAs. All the results prove that the cooperative 

coevolution can work well in MO optimization and can effectively push solutions to 

the global Pareto front. 

 

Concerning the metric of spacing, CCEA shows distinct advantage over other MOEAs. 

For all the test problems except TLK, CCEA performs the best in maintaining the 

diversity of solutions and distributing solutions uniformly along the discovered Pareto 

front. Even for the problem TLK with noise on parameters, CCEA is comparable with 

other MOEAs. These successes are attributed to the extending operator that guides the 

search to gaps and boundaries and fills the under-populated regions with new 

generated solutions. Such idea is general and can be used in other MOEAs.  

 

For the metrics of maximum spread and hyper-volume ratio, the CCEA is competitive 

in exploring the spread of non-dominated solutions for all cases. This is consistent with 

the excellent performance of CCEA in the metrics of generational distance and spacing. 

For the problem ZDT4, the maximum spread and hyper-volume ratio of CCEA are 

much higher than other algorithms. The reason is that the PAES, PESA, NSGA II, 

SPEA 2, and IMOEA stop at the local Pareto fronts and their solution set cannot 

approximate the true Pareto front nicely. 

 

The problem DTL2 has a large number of objectives, which bring the difficulty for 

MOEAs to produce enough pressure to push solutions to the Pareto front. Fig. 3.8(e) 
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shows that CCEA scales well with PAES and PESA, while NSGAII, SPEA2 and 

IMOEA suffered in converging to the optimal Pareto front. 
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Fig. 3.8. Box plots for the metrics of GD, S, MS, and HVR 

The dynamic characteristics of CCEA on four metrics for test problems ZDT4 and 

ZDT6 are illustrated in Fig. 3.9. These graphs describe the evolution of various metric 

values along the number of function evaluations. As shown in the figure of GD, there 

are four steps along the evolution for ZDT4. Each step means that CCEA jumps out of 

a local Pareto front. Through these jumps, CCEA reaches the global Pareto front at the 

end of the evolution. Corresponding to the jumps of GD, pulses of spacing can be 
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found for ZDT4. With Fig. 3.9, the evolution process of CCEA can be observed in 

detail, which gives us a better understanding of how CCEA works. 
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Fig. 3.9. Dynamic behaviors of the CCEA in multiobjective optimization 
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3.4.3.2 Effect of Extending Operator 

To further verify effectiveness of the extending operator, CCEA without extending 

operator, CCEA with extending operator (clone number n = 1) and CCEA with 

extending operator (n = 2) were run for 30 times respectively for all the test problems. 

Table 3.4 lists the median generational distance for the 30 runs. Although the 

motivation of extending operator is not to reduce the generational distance, it is 

beneficial to the reduction of generational distance. It seems that the spacing and 

spread of the non-dominated solutions are correlated to the generational distance and 

their improvements are helpful for the convergence to the Pareto front. 

 

Table 3.5 and Table 3.6 list the median spacing and median maximum spread 

respectively for 30 simulation runs. In most cases, the extending operator can improve 

the performance metrics of spacing and spread. Although the extending operator has 

resulted negative effects in some cases, such as ZDT1 and ZDT4, these effects are 

small. The tables show that the results for extending operator with n = 1 are better than 

n = 2. Here, the subpopulation size is only set at 20 and is relatively small for a 

population-based algorithm, which suggests that one clone is enough to guide the 

search as more clones may reduce the solution diversity. For test problem ZDT3 with 

discontinuous Pareto front, the extending operator is able to reduce the spacing greatly. 

Besides, the extending operator is capable of reducing the spacing and improving the 

maximum spread of the non-dominated solutions for the problem FON. The results for 

other problems also illustrate that the extending operator is effective in improving 

smoothness and maximum spread of the non-dominated solutions. 
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Table 3.4. Median generational distance of CCEA with/without the extending operator 

Problem CCEA without 

extending operator 

CCEA with extending 

operator (n=1) 

CCEA with extending 

operator (n=2) 

ZDT1 1.80E-04 1.32E-04 1.76E-04 

ZDT2 2.52E-04 2.15E-04 1.44E-04 

ZDT3 7.01E-04 4.05E-04 4.29E-04 

ZDT4 1.87E-01 1.85E-01 1.85E-01 

ZDT6 5.28E-07 4.92E-07 4.95E-07 

FON 2.66E-02 1.47E-02 1.34E-02 

KUR 1.37E-02 1.24E-02 1.49E-02 

TLK 2.69E-01 2.69E-01 2.68E-01 

DTL2 1.15E-03 8.57E-04 1.03E-03 

 

Table 3.5. Median spacing of CCEA with/without the extending operator 

Problem CCEA without 

extending operator 

CCEA with extending 

operator (n=1) 

CCEA with extending 

operator (n=2) 

ZDT1 0.1299 0.1376 0.1354 

ZDT2 0.1312 0.1274 0.1376 

ZDT3 0.2469 0.2140 0.2129 

ZDT4 0.1267 0.1339 0.1358 

ZDT6 0.1373 0.1246 0.1307 

FON 0.8289 0.1901 0.1544 

KUR 0.6542 0.6589 0.6703 

TLK 1.1074 1.1074 1.1125 

DTL2 0.1255 0.1214 0.1208 
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Table 3.6. Median maximum spread of CCEA with/without the extending operator 

Problem CCEA without 

extending operator 

CCEA with extending 

operator (n=1) 

CCEA with extending 

operator (n=2) 

ZDT1 0.9931 0.9935 0.9947 

ZDT2 0.9989 0.9988 0.9990 

ZDT3 0.9973 0.9981 0.9978 

ZDT4 0.9358 0.9355 0.9352 

ZDT6 0.9992 0.9992 0.9992 

FON 0.7202 0.7742 0.8577 

KUR 0.9975 0.9981 0.9964 

TLK 0.9826 0.9830 0.9830 

DTL2 0.9957 0.9971 0.9977 

 

3.4.4 Simulation Results of DCCEA 

The test environment for DCCEA consists of 11 PCs in a campus LAN. Table 3.7 

gives the configuration of the 11 PCs, e.g., the server of the system runs on the PIV 

1600/512 while the peers are run on other PCs. Since the test problems of ZDT1, 

ZDT2, ZDT3, ZDT4 and ZDT6 have a large number of decision variables, they are 

used here to test the capability of DCCEA in accelerating the executions in 

multiobjective optimization. The parameters configuration of the DCCEA is listed in 

Table 3.8. 
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Table 3.7. The running environment of DCCEA 

PC Configuration CPU (MHz)/RAM (MB) 

1 PIV 1600/512 

2 PIII 800/ 512 

3 PIII 800/ 512 

4 PIII 800/ 256 

5 PIII 933/384 

6 PIII 933/128 

7 PIV 1300/ 128 

8 PIV 1300/ 128 

9 PIII 933/ 512 

10 PIII 933/ 512 

11 PIII 933/256 

 

Table 3.8. The parameters of DCCEA 

Populations Subpopulation size 20; archive size 100 

Chromosome length 30 bits for each variable 

Selection Binary tournament selection 

Crossover method Uniform crossover 

Crossover rate 0.8 

Mutation method Bit-flip mutation 

Mutation rate 2/L, where L is the chromosome length 

Number of evaluations 120,000 

Exchange interval 5 generations 

Synchronization interval 10 generations 
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To minimize bias in the simulations, 30 independent runs are performed with random 

initial populations. The median runtime of the 30 runs is listed in Table 3.9 and is 

visualized in Fig. 3.10. It can be seen that the median runtime goes down as the 

number of peers is increased. In the case of ZDT1, the median runtime for 5 peers 

(each peer with 6 subpopulations) is 109 seconds, which is about one third of the 270 

seconds used by 1 peer (each peer with 30 subpopulations). The results also show that 

5 peers are enough for the acceleration of runtime in these problems. When there are 

more than 5 peers, the increment of communication cost counteracts the reduction of 

computational cost for each peer and the saturation of acceleration is nearly achieved.  

 

The four median metrics of the 30 simulation runs are summarized in Fig. 3.11. It can 

be seen that the median metrics have no distinct change in spite of some small 

fluctuations on the curve for the five test problems as the number of peers is increased. 

This shows that the DCCEA can effectively reduce the runtime while achieving similar 

performances as the number of peers is increased. 
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Table 3.9. Median runtime of DCCEA with respect to the number of peers (second) 

Number of peers ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

1 270 242 189.5 209 138 

2 177.5 142.5 128.5 170 137 

3 134 121.5 101 142 124 

4 120 109.5 97 139 121 

5 109 90 88 134 121 

6 96 80 67 123 108 

7 94 73 68.5 111 110 

8 80 74 65 115 109.5 

9 78 72 64 114 109.5 

10 78 76 68 115 110.5 

 

 

 

Fig. 3.10. Median runtime of DCCEA with respect to the number of peers 
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(a) 

 
(b) 

 
(c) 
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Fig. 3.11. Median metrics of DCCEA with respect to the number of peers 
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3.5. Conclusions 

This chapter has proposed a cooperative coevolutionary algorithm that incorporates the 

coevolutionary mechanism by co-evolving the solution set with a number of 

subpopulations in a cooperative way. Incorporated with various features like archiving, 

dynamic sharing and extending operator, the CCEA is capable of maintaining search 

diversity in the evolution and uniformly distributing the solutions along the Pareto 

front. The extensive quantitative comparisons of various MOEAs on test problems 

show that CCEA has the best overall performance in endowing the non-dominated 

solutions with good convergence and uniform distribution. Numerous simulations have 

been performed to illustrate effectiveness of the proposed extending operator in 

improving the smoothness and maximum spread of the non-dominated solutions.  

 

Exploiting the inherent parallelism in cooperative coevolution, a distributed CCEA 

paradigm has been implemented on a Java-based distributed system named Paladin-

DEC to reduce the runtime by sharing the computational workload among various 

networked computers. The computational results show that DCCEA can dramatically 

reduce the runtime without sacrificing the performance of CCEA as the number of 

peers increases. 



Chapter 4 

Enhanced Distribution and Exploration for 

Multiobjective Optimization 

4.1. Introduction 

The performance of MOEAs is greatly affected by the parameters. Evolutionary 

algorithms are intrinsically dynamic and adaptive. The adaptation of parameters during 

the runtime is more consistent to the general evolutionary idea and has shown better 

performances over constant parameters (Bäck 1993, 1996; Fogarty 1989; Ochoa 1999; 

Thierens 2002). Eiben et al. (1999) classified the types of adaptation into dynamic 

parameter control, adaptive parameter control, and self-adaptive parameter control. 

The dynamic parameter control typically alters the parameters based on a 

deterministically rule without any feedback. Fogarty (1989) experimentally studied a 

dynamical mutation rate control for genetic algorithms and proposed to use a schedule 

that decreases exponentially over the number of generations. The adaptive parameter 

control modifies the parameter values when there is some form of feedback from the 

search that is used to determine the direction and/or magnitude of the change to the 

parameters. The assignment of the value of the parameters may involve credit 

assignment, and the action of the EA may determine whether or not the new value 



Chapter 4  Enhanced Distribution and Exploration for Multiobjective Optimization  

 

70

persists or propagates throughout the population. The self-adaptive parameter control 

encodes the parameters in the chromosome and evolves these parameters during the 

run. The better values of these encoded parameters lead to better individuals and in 

turn are more likely to survive and propagate. Self-adaptation has been successfully 

applied in evolutionary strategy and evolutionary programming. Bäck and Schütz 

(1996) designed a self-adaptive scheme for binary strings following the principles from 

the continuous domain. 

 

To maintain the diversity of solutions, many researchers put much effort on this issue 

and several approaches were proposed. The technique of niche sharing by means of a 

sharing function is often implemented in MOEAs (Goldberg 1989a; Fonseca and 

Fleming 1993, 1995b). The niche sharing sums the crowding effects of individuals in a 

neighborhood. Knowles and Corne (2000) used a hyper grid scheme in the Pareto 

archived evolution strategy (PAES).  The hyper grid divides the normalized objective 

space into hyper boxes and every individual is given an attribute that indicates the 

number of solutions sharing the same box. Deb et al. (2002a) proposed the crowding 

distance in the non-dominated sorting genetic algorithm II (NSGA II). The crowding 

distance is an estimate of the size of the largest cube enclosing a single solution 

without any other point in the population and this is used to estimate the density of 

solutions surrounding a particular individual. This measure is given as the average 

distance of two points on either side of the selected solution along each of the 

objectives. Zitzler et al. (2001) used the density mechanism in the strength Pareto 

evolutionary algorithm 2 (SPEA2). The density estimation is adapted from k th⋅  

nearest neighbor method and it is given by the inverse of the k th⋅  distance.  
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This chapter presents two features to address the objectives of MOPs, (1) minimizing 

the distance between the solution set and true Pareto front, (2) distributing the 

solutions evenly, and (3) maximizing the spread of solution set. The first feature is an 

adaptive mutation operator (AMO). The mutation rate of AMO is adapted with time 

along the entire evolution process to adjust the exploration and exploitation effects of 

mutation operator. The second is an enhanced exploration strategy (EES) which 

maintains diversity and preserves good solutions in the evolving population and 

extends more attention to the growth of solutions in less populated areas.  

 

Section 4.2 describes the AMO and EES. The comparative studies are performed with 

some well-known mutation operators, diversity operators, and MOEAs in section 4.3. 

Conclusions are drawn in section 4.4. 

4.2. Two New Features for Multiobjective Evolutionary Algorithms 

4.2.1 Adaptive Mutation Operator (AMO) 

In this section, an adaptive mutation operator (AMO) is introduced. The AMO is a 

variant of the simple bit-flip mutation operator and unique in two aspects. Firstly, the 

manner in which the mutation operation is carried out on the chromosome is different. 

This will be elaborated later in the section. Secondly, the mutation rate of AMO is 

adapted with time along the entire evolution process. In brief, the AMO is 

implemented for three objectives. 

i. Providing the possibility of exploration to produce new structures not 

previously tested 
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ii. Providing the probability of re-introducing binary bit values lost through the 

selection process 

iii. Performing local fine-tuning in the later stage of evolution and to achieve better 

convergence. 

 

For the first objective, consider a minimization problem where m  decision variables 

must be optimized. By using a thirty bit binary representation for potential solutions, 

there is a total of 302 m  possible binary structures or chromosomes! Hence, it is difficult 

if not impossible, for any MOEA with fixed population size to maintain all possible 

binary bit combinations at any one time. By changing the bit values according to some 

mutation probability, the mutation operator acts as a potential source of producing the 

missing structures so that the evolution process is not trapped in any local minimal. 

With small mutation rates, the individuals produced by mutation will not vary much 

from the parent in terms of the chromosome structure. Intuitively, it will be very 

difficult to escape local traps. However, simply increasing the mutation rate cannot 

solve this problem. With increased mutation rates, the probability of disrupting sub-

structures within the chromosome that are responsible for good candidate solutions, is 

increased. 

 

A simple and effective way to perform exploration while minimizing the disruption of 

good substructures within the chromosome is to mutate a specific part of the 

chromosome rather than the entire binary structure. More specifically, each of the 

decision variable encoded in the chromosome is allocated equal probability of 

undergoing the mutation operation. During this mutation operation, the bits of selected 

decision variable will be subjected to bit-flip with probability, _ ( )am rate n .  AMO 
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operation for a single chromosome is shown in Fig. 4.1 where prob is probability of 

the decision variable being selected and _ ( )am rate n  is the probability of the bit-flip 

operation. If prob is set as 1/ var_ num  where var_ num  is the number of decision 

variables encoded in a single chromosome, on average, the AMO will perform the bit-

flip operation on one decision variable for every chromosome. Thus, the AMO allows 

mutated individual retaining most of the substructures contributing to the 

chromosomes fitness. 

 

Before AMO Chromosome

Decision variable 1 Decision variable n

1010011011 0010010000 1001101011

Decision variable k

After AMO Variant

for every decision variable
     if rand() < prob
             perform mutation with am_ rate
     else
             do not mutate
     end if
end for

Decision variable k is selected

1010011011 0010010000 1001101011

1010011011 10011010111111001100

 

Fig. 4.1. AMO operation 

 

Holland had presented the idea of applying the mutation operator with a time-

dependent and deterministic rate schedule that reduces the mutation rate toward zero in 

(Holland, 1992). Some researchers had observed that by varying mutation rate, the 
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performance of the algorithm could be improved. Fogarty (1989) used a varying 

mutation rate, demonstrating that a mutation rate that decreases exponentially over 

generations has superior performance. Davis (1989) adapted the operator application 

probability based in the performance of offspring, i.e. the operators that create and 

cause generation of better offspring are allotted higher probabilities. Bäck and Schütz 

(1996) had also shown the usefulness of a time-varying mutation rate. Despite these 

reported success, most recent well-known MOEAs such as SPEA2, PESA, PAES, 

NSGAII still employ static mutation operators.  

 

The AMO adapts the mutation rate to maintain a balance between the introduction of 

diversity and local fine-tuning. The mutation rate will start off with a high value to 

produce a diverse set of solutions for an effective genetic exploration search. This 

value will then decrease as a function of time or generation number to meet the 

exploitation requirement of local fine-tuning. The mutation rate for this operation is 

given by 
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(4.1) 

where n is the current generation number of the evolution process, genNum is the 

maximal generation number. Fig. 4.2 shows the adaptation of mutation rate along the 

evolution when a is 0.8, and b is 1/(10*30). Two distinct regions can be observed, the 

exploration region between 0.8~0.753 and the exploitation region between 

0.048~0.003. Different from many other adaptive mutation operators where mutation 

rate decreases gradually along the evolution, AMO pays its attention to searching new 



Chapter 4  Enhanced Distribution and Exploration for Multiobjective Optimization  

 

75

strings in the initial stage and then quickly to improving them in the later stage. No 

time is spent in exploring the immediate region between the exploration and 

exploitation region while AMO adapts the mutation rate according to a smooth curve 

inside each region. 
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Fig. 4.2. Adaptive mutation rate in AMO 

4.2.2 Enhanced Exploration Strategy (EES) 

In this section, the enhanced exploration strategy (EES) is presented. The EES is an 

online population distribution scheme that maintains diversity and preserves non-

dominated solutions together in the mating population. In addition, it improves 

distribution of solutions by encouraging the growth of individuals in less populated 

areas.  

 

The approximation of the Pareto optimal front requires the MOEA to perform a multi-

directional search simultaneously to discover multiple, widely different solutions and 
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this requires a substantial amount of diversity in the evolving population. According to 

Mahfoud (1995), simple elitist EA tends to converge towards a single solution and 

often loses solutions due to the effects of selections pressure, selection noise, drifting, 

and operator disruption. Many methods such as, sharing (Goldberg and Richardson 

1987), restricted mating (Deb and Goldberg 1989) and crowding (De Jong 1975), have 

been proposed over the years to deal with this problem.  

 

In this chapter, the niche sharing discussed in Section 2.4 is used to maintain the 

diversity where the objective space is normalized and the sharing distance is set as 

shareσ = 1/archive_size. The niche count will be used in the selection and archive 

updating.  

 

The flow chart of EES is shown in Fig. 4.3. At every generation, a certain number of 

individuals will be tournament selected from the archive to form the population called 

_  exp pop  and the selection criterion is based purely on the niche count. Simple bit-

flip mutation is performed on _  exp pop with mutation probability expP  and the 

purpose of the entire process is to promote the growth of solutions in less populated 

areas. expP  is set either as 1/ _chromosome length  or 1/ _ _ _ varbit number per iable  

depending on the test problem. The number of individuals selected for _  exp pop  is 

dynamic and it is given by,  

2_ (1 )Num Explore c epr d= − +  (4.2) 

where ( )epr n  is the evolution progress rate. Evolution progress rate is developed from 

progress ratio, a performance metric defined as the ratio between the number of non-

dominated individuals at generation n dominated any non-dominated individuals at 
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generation ( 1)n −  and the total number of non-dominated individuals at generation n  

(Tan et al. 2001). The evolution progress rate, ( )epr n , is defined as the ratio of the 

number of new non-dominated solutions discovered in generation n, 

_ ( )new nondomSol n , to the total number of non-dominated solutions in generation n, 

_ ( )total nondomSol n . 

 _ ( )( )
 _ ( )

number of new nondomSol nepr n
number of total nondomSol n

=  
(4.3) 

The set of new non-dominated individuals discovered at each generation is basically 

composed of individuals that dominate the non-dominated individuals of the previous 

generation and individuals that contribute to the diversity of the solution set. The 

rationale behind the use an adaptive number of individuals selected for the exploration 

process is intuitive. When ( )epr n  is low, it means that either the generated Pareto 

front is approaching the true front or the evolution process is not discovering new 

solutions and more resources are required to perform exploration in the less populated 

areas. When ( )epr n  is high, it means that the new solutions are being discovered and 

requirement for resources to perform exploration can be reduced. 

 

At the same time, individuals are being selected to a mating pool named 

_  mat pop through the tournament selection of the combination of archive and 

( )population n where ( )population n is the evolving population. The selection criterion 

in this case is based on Pareto based rank and the niche count will be used in the event 

of a tie. The population size of _  mat pop is dynamic and given by _Pop size  - 

_Num Explore  where _Pop size  is the population size of the evolving population. 

The _  mat pop will then be subjected to genetic operations such as crossover and 
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mutation. After the genetic operations are carried out, _  exp pop and _  mat pop will 

be combined to form ( 1)population n + . The settings of c and d  adopted in this 

chapter is 10 and 20 respectively.  

 

Calculate the Num_Explore

Archive update

Mutation

Tournament select
Pop_size - Num_Explore

individuals from the
archive and population(n)

Tournament select
Num_Explore individuals

from the archive

Genetic operations

Combine individuals to
form population(n+1)

Stop
 

Fig. 4.3. The flow chart of EES 

4.3. Comparative Study 

This section will start with the Section 4.3.1 that describes three performance metrics 

used in the comparisons. Then the test problems are introduced in the Section 4.3.2. 

Three comparisons will be performed to evaluate the performance of the proposed 

features. The various mutation operators are surveyed and AMO is compared against 

the selected mutation operators in the Section 4.3.3. The diversity operators are 

overviewed and EES is compared against these diversity operators in the Section 4.3.4. 
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In Section 4.3.5, the performance comparison among a common MOEA incorporating 

AMO and EES and various well-known algorithms will be made.  

4.3.1. Performance Metrics 

Three different quantitative performance measures for MO optimization are used. The 

first metric is the generational distance (GD), which measures how “far” the solution 

set is from the true Pareto front. The metric of spacing (S) measures how “evenly” 

members in the solution set distribute. Zitzler (2000) defined a metric of maximum 

spread (MS) to measure how well the true Pareto front is covered by the solution set. 

For the definition of these metrics, please refer to Section 3.4.1. 

4.3.2. The Test Problems 

Three test problems are used in the case study.  The problems, ZDT4, ZDT6 and FON, 

can be referred to Section 3.4.2. 

4.3.3. Effects of AMO 

In this Section, the performance of AMO and the influence of parameter variations are 

investigated. This section will start with a short discussion on the bit-flip mutation and 

fuzzy boundary local perturbation. 

 4.3.3.1. Mutation operators 

There are different opinions on the motivation behind its use in EA. Some researchers 

think that the mutation operator plays the role of ensuring that the crossover operator 

has a full range of genetic materials (Holland 1992), while some used it as a hill-

climbing mechanism (Knowles and Corne 2000). Two mutation operators are 

discussed below. 
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1) Bit-flip mutation: Bit-flip mutation simply means the flipping of the 

chromosome bits. For every bit, the probability of being mutation is given by a 

predetermined value, the mutation rate. This mutation rate remains constant 

throughout the evolution process. 

2) Fuzzy boundary local perturbation (FBLP): Tan et al. (2001) used the FBLP in 

place of simple bit-flip mutation to produce the required number of individuals 

in IMOEA with dynamic population sizing. Unlike bit flip mutation, the 

perturbation rate for FBLP varies according to the significance of the genes in 

the chromosome. Consider n genes concatenated in a chromosome to represent 

an optimizing parameter. A probability set { | 1, }iP p i n= = that indicates the 

perturbation probability for each gene, can be defined  

2
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(4.4) 

The perturbation rate decreases with the increasing significance of the 

encoded bit. Hence the perturbed child is very likely to lie within the 

immediate neighborhood of the parent. FBLP is thus capable of local fine-

tuning. 

4.3.3.2. Comparison of AMO 

The AMO is compared against FBLP and three bit-flip mutation operators with 

different settings. The parameter configurations in the different mutation operators and 

the different cases are shown in Table 4.1 and Table 4.2 respectively. 
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Table 4.1. Parameter setting for the mutation operators 

Chromosome Binary coding. 30 bits per decision variable.  

Populations Population size 100; Archive (or secondary population) 

size 100. 

Selection Binary tournament selection 

Crossover operator Uniform crossover  

Crossover rate 0.8 

Ranking scheme Scheme of Fonseca and Fleming  

Diversity operator Niche count with radius 0.01 in the normalized objective 

space 

Generation number 1000 

 

Table 4.2.  Different cases for the AMO evaluation 

Index Case  Description 

1 AMO AMO with b = PM  

2 N1 Bit-flip with mutation rate PM /2 

3 N2 Bit-flip with mutation rate PM  

4 N3 Bit-flip with mutation rate 2 PM⋅  

5 FBLP / 2, , _ _ _ var / 2ab PM b PM bit num per iableβ= = =  

 

PM is defined as 1/ _chromosome length for ZDT4 and ZDT6 and 

1/ _ _ _ varbit number per iable  for FON.  
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Table 4.3. Median values of GD, S and MS for different mutation operators 

  Mutation operator 

  AMO FBLP N1 N2 N3 

 GD 0.7681 0.8778 0.7868 0.8142 1.4601 

ZDT4 S 0.6481 0.3541 0.2595 0.7463 0.7831 

 MS 0.7444 0.7533 0.7572 0.7408 0.4207 

 GD 4.87e-7 0.8657 0.5471 1.5886 2.8208 

ZDT6 S 2.3443 1.3399 1.7457 1.1108 1.1910 

 MS 0.9992 0.7042 0.7545 0.7060 0.7047 

 GD 0.0030 0.0031 0.0031 0.0146 0.0492 

FON S 2.4625 1.3672 0.9318 0.8072 0.7589 

 MS 0.5858 0.4845 0.4791 0.5620 0.6773 

 

In the experiment, 30 runs are performed for each case on each test problem so as to 

study the statistical performance. The median of 30 runs on the three performance 

metrics is listed in Table 4.3. AMO displays the best generational distance for this 

problem. AMO is the only operator that enables the algorithm to converge upon the 

Pareto front of ZDT6. In addition, AMO is competitive in the spread. However, it 

seemed that the good performances of AMO in the spread and generation distance are 

achieved at the expense of spacing. This is probably due to AMO’s emphasis on 

exploitation in the later stage of evolution. As a result, the AMO is unable to bridge the 

gaps between the extreme end solutions discovered during the initial exploratory 

phase. 
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4.3.3.3. Effects of Parameter prob 

The effects of various prob settings are examined in Table 4.4. The purpose is to prove 

that the underlying idea of AMO to maintain a balance between preservation and 

disruption of chromosomes by selective mutation of decision variables can improve 

the performance of the algorithm. Similarly, 30 runs are performed for each setting on 

each test problem. 

Table 4.4. Median values of GD, S and MS for different AMO parameter prob 

  Parameter Settings: prob 

  1/ var_ num  0.25 0.5 0.75 

 GD 0.7681 0.7996 0.8080 0.7927 

ZDT4 S 0.6481 0.6627 0.7194 0.7129 

 MS 0.7444 0.7158 0.7180 0.7384 

 GD 4.87e-7 4.91e-7 5.02e-7 1.0609 

ZDT6 S 2.3443 2.5039 3.1710 0.9033 

 MS 0.9992 0.9992 0.9992 0.7047 

 GD 0.0030 0.0034 0.0208 0.0415 

FON S 2.4625 2.3488 0.8112 0.7131 

 MS 0.5858 0.6064 0.6638 0.6999 

 

Note that as prob is increased, the behavior of AMO will approach that of bit-flip 

mutation operator albeit the changing mutation rate. It can be observed from table 6 

that the metric of generation distance increases with increasing prob. This is most 

probably due to the fact that increasing prob would correspond to the disruption of 

more genes. 
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4.3.4. Effects of EES 

In this section, the individual effects of EES are investigated in a fashion similar to that 

in Section 4.3.3. A short review of four diversity mechanisms, sharing, hyper grid, 

crowding and density estimation is given in this section. These diversity operators 

have been implemented in MOEA and together with the method of sharing. They will 

be references for comparing EES. 

4.3.4.1. Diversity Operators 

Diversity needs to be maintained in the evolving population in order for the MOEAs to 

discover multiple, widely different solutions. The diversity operators used in the case 

study include niche sharing, grid mapping, crowding, and density estimation described 

in Section 2.4.  

4.3.4.2. Comparison of EES 

The three performance measures introduced in Section 4.3.1 are used to provide a 

quantitative evaluation of the performance of the various operators. The three 

problems introduced in Section 4.3.2 are used to compare the performance of EES 

against the selected diversity mechanisms. The indices of the diversity operators are 

shown in Table 4.5. The parameters for these diversity operators are shown in Table 

4.6. 

Table 4.5. Description of different diversity operators 

Index Diversity operator Description 

1 ESS Niche radius 0.01 in the normalized objective space 

2 Niche sharing Niche radius 0.01 in the normalized objective space 
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3 Grid mapping Using normalized objective space  

4 Crowding  Using normalized objective space 

5 Density estimation Using normalized objective space 

 

Table 4.6. Parameter setting of different diversity operators 

Chromosome Binary coding. 30 bits per decision variable.  

Populations Population size 100; Archive (or secondary population) size 

100. 

Selection Binary tournament selection 

Crossover operator Uniform crossover  

Crossover rate 0.8 

Mutation operator Bit-flip mutation 

Mutation rate PM 

Ranking scheme Fonseca and Fleming Pareto Dominance Ranking Scheme 

Hyper-grid size 32  per dimension for DTL2. 52  per dimension for other 

problems. 

Generation number  1000 

 

The median of 30 runs on the three metrics is listed in Table 4.7. With respect to the 

metric of generation distance, the algorithm incorporated with EES is clearly the best 

in the test problems. This is particularly evident in the test problem of ZDT6 and FON. 

ZDT4 proved to be the most difficult problem for all algorithms. However, EES still 

produces good performance in all three metrics with respect to the other diversity 

operators on this problem.  
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Table 4.7. Median values of GD, S and MS for different diversity operators 

  Diversity operator 

  EES Niche Grid Crowd Density  

 GD 0.7652 0.8142 1.0008 0.7832 0.7993 

ZDT4 S 0.3173 0.7463 0.6567 0.2506 1.3513 

 MS 0.7610 0.7408 0.7235 0.7366 0.7403 

 GD 5.05e-7 1.5886 1.5984 1.6012 1.6222 

ZDT6 S 0.1734 1.1108 1.1051 1.1444 1.1119 

 MS 0.9992 0.7060 0.7051 0.7061 0.7043 

 GD 0.0022 0.0146 0.0141 0.0146 0.0142 

FON S 0.2252 0.8072 0.9006 0.8077 0.8541 

 MS 0.7732 0.7060 0.7051 0.7061 0.7043 

 

It is also obvious that the incorporation of EES improves greatly the distribution and 

spread of solution along the Pareto front for all test problems. EES is particularly 

outstanding in the metric of spacing in test problem of ZDT6 and FON. In addition, 

EES has the best performance in the area of maximum spread for all test problems. 

 

Table 4.8 shows that the performance of EES with different d settings does not vary a 

lot over the test problems. This observation implies that the EES will be able to 

perform well against the various diversity operators despite the different settings. More 

importantly, it also shows that the EES is insensitive to parameter changes. 
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Table 4.8. Median values of GD, S and MS for different EES parameter d 

  EES Parameter Settings: d 

  20 25 30 40 

 GD 0.7652 0.7712 0.7688 0.7804 

ZDT4 S 0.3173 0.3185 0.3224 0.3167 

 MS 0.7610 0.7590 0.7590 0.7557 

 GD 5.05e-7 5.10e-7 5.13e-7 4.94e-7 

ZDT6 S 0.1734 1.4231 0.1660 0.1770 

 MS 0.9992 0.9992 0.9992 0.9992 

 GD 0.0022 0.0020 0.0021 0.0021 

FON S 0.2252 0.2273 0.2379 0.2211 

 MS 0.7732 0.8053 0.7857 0.7947 

 

4.3.5. Effects of both AMO and EES 

The AMO and EES are incorporated into a general MOEA paradigm that uses binary 

coding, binary tournament selection, uniform crossover, and Fonseca and Fleming’s 

ranking scheme. This algorithm is called ALG in this chapter and will be compared 

with five recent well-known algorithms to validate the effectiveness of AMO and EES. 

The five algorithms are PAES, PESA, NSGAII, SPEA2 and IMOEA that have been 

overviewed in Section 2.5. The indices of the different algorithms are listed in Table 

4.9. The parameter settings in each algorithm are listed in Table 4.10.  
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Table 4.9. Indices of the different MOEAs 

Index 1 2 3 4 5 6 

Algorithm ALG 

(AMO+EES) 

PAES PESA NSGA II SPEA 2 IMOEA 

 

Table 4.10. Parameter setting of different algorithms 

Chromosome length Binary coding, 30 bits for each variable.  

Populations Population size 1 in PAES; population size 100 in ALG, 

PESA, NSGAII, SPEA2; initial population size 20, 

maximum population size 100 in IMOEA. 

Archive (or secondary population) size is 100 for all 

algorithms. 

Selection Binary tournament  

Crossover operator Uniform crossover  

Crossover rate 0.8  

Mutation operator AMO in ALG; FBLP in IMOEA; bit-flip mutation in 

others. 

Mutation rate PM 

Ranking Scheme of Fonseca and Fleming 

Hyper-grid size 52  per dimension. 

Niche radius 1/ _Archive Size for ALG; Dynamic sharing in IMOEA 

Generation number 1000 
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Thirty independent runs are performed on each of the test functions so as to obtain 

statistical information such as consistency and robustness of the algorithms. Figs 4.4-

4.6 visualize the simulation results of the algorithms with respect to the various metrics 

in the box plot format. Although the previous investigation of AMO and EES in 

Section 4.3.3 and Section 4.3.4 show that the individual effects of either feature are not 

enough to allow the algorithm overcome the local traps of ZDT4 and the large spread 

of FONs’ tradeoff, each have showed their own distinct advantage over their 

counterpart operators. While AMO have the ability drive the evolution towards the 

Pareto front and to find points in unexplored regions, it lacks some form of mechanism 

to guide its operation. This results in the subsequent gaps observed in the discovered 

Pareto front. The mechanism to guide the exploration of AMO comes in the form of 

EES. Likewise EES may have shown the ability to locate these gaps, it is unable to 

escape the local optimum trap of ZDT4 or maintain a diverse solution set in FON. 

Thus it is not surprising that the ALG produces better performance when these two 

features are incorporated together. 

 

ZDT4 proves to be the most difficult problem faced by the algorithms since no 

algorithm, except ALG, is able to deal with multi-modality effectively. This is 

reflected in the performance metric of generation distance. In addition, the ALG also 

chalked up outstanding results in the metric of spread and distribution. The biased 

search space of ZDT6 is designed to make it difficult for the algorithms to evolve a 

well-distributed front. In this respect, ALG is still able to give outstanding results in 

terms of the distribution of results. This is probably because of EES. Otherwise, ALG 

performance in the aspects of generation distance and spread is well matched by 

SPEA2 and NSGAII. The challenge of test function FON is to find and maintain the 
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entire Pareto front uniformly. With the exception of the ALG, the algorithms found it 

difficult to find a good spread and distribution. 

 

For all test problems, ALG responds well to the challenges of the different difficulties. 

The ALG performs consistently well in the distribution of solutions along the Pareto 

front. This is even so for the test problems of ZDT6 and FON that are designed to 

challenge the algorithm’s ability to maintain the Pareto front. The performance of ALG 

with respect to generational distance is also outstanding in all problems. This 

demonstrates the ALG’s ability to converge upon the Pareto front regardless of 

problems such as discontinuities, convexities and non-uniformities. It also shows no 

problems in coping with local traps and this is reflected by its performance in the test 

problem ZDT4. The ALG ability to discover a diverse solution set on the Pareto 

frontier is demonstrated and this is most evident in the test problem of FON. 
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Fig. 4.4. Simulation results for ZDT4 

 



Chapter 4  Enhanced Distribution and Exploration for Multiobjective Optimization  

 

92

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Generational Distance

G
D

 

1 2 3 4 5 6
0

2

4

6

8

Spacing

S

 

1 2 3 4 5 6

0.985

0.99

0.995

1
Maximum Spread

M
S

 
ZDT6 

Fig. 4.5. Simulation results for ZDT6 
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Fig. 4.6. Simulation results for FON 
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4.4. Conclusions 

This chapter presents the enhanced exploration strategy that maintains diversity and 

non-dominated solutions in the evolving population while encouraging the exploration 

towards the direction of less populated areas. This achieves better discovery of gaps in 

the discovered frontier as well as better convergence. An adaptive mutation operator 

that plays the role of producing new genetic structures is also presented. This AMO 

adapts the mutation rate to maintain a balance between the introduction of diversity 

and local fine-tuning.  

 

A comparative study between the proposed features and various mutation operators, 

diversity operators, existing multiobjective evolutionary algorithms and are carried out 

on three test problems. Simulations are carried out to examine the effects of AMO and 

EES with respect to selected mutation and diversity operators respectively. AMO and 

EES have showed to be competitive if not better than their counterparts and have their 

own specific contribution. Simulations results also show that the algorithm 

incorporated with AMO and EES is capable of discovering and distributing non-

dominated solutions along the Pareto front. The combined effects of AMO and EES 

enabled the algorithm to perform well in breaking out of local traps and maintaining 

diversity in the solution set. The combined effects of these two features allow the 

algorithm to find a good, well-distributed and diverse solution set along the Pareto 

front. 



Chapter 5 

Conclusions and Future Works 

5.1 Conclusions 

In this thesis, a cooperative co-evolution mechanism is applied in the multiobjective 

optimization. Exploiting the inherent parallelism in cooperative co-evolution, the 

algorithm is formulated into a distributed computing structure to reduce the runtime by 

sharing the computational workload among various networked computers. To improve 

the performance of multiobjective evolutionary algorithms, an adaptive mutation 

operator and an enhanced exploration strategy are proposed.  

 

The cooperative co-evolutionary algorithm adopts the mechanism of coevolution by 

decomposing a complex MO optimization problem via a number of subpopulations co-

evolving for the set of Pareto-optimal solutions in a cooperative way. Incorporated 

with various features like archiving, dynamic sharing and extending operator, the 

CCEA is capable of maintaining solution diversity and distributing the solutions 

uniformly along the Pareto front. The extensive quantitative comparisons of various 

MOEAs on nine benchmark problems show that CCEA has the best overall 

performance in endowing the non-dominated solution set with good convergence and 

uniform distribution. Many simulations have been performed to illustrate the 

effectiveness of the proposed extending operator in improving the smoothness and 
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maximum spread of the non-dominated solution set. Exploiting the inherent 

parallelism in cooperative co-evolution, a distributed CCEA paradigm has been 

implemented on a Java-based distributed system named Paladin-DEC to reduce the 

runtime by sharing the computational workload among various networked computers. 

The computational results show that DCCEA can reduce the runtime effectively 

without sacrificing the performance as the number of peer computers increases. 

 

The adaptive mutation operator adapts the mutation rate to maintain a balance between 

the introduction of diversity and local fine-tuning. The enhanced exploration strategy 

maintains solution diversity and preserves non-dominated solutions in the evolving 

population while encouraging the exploration towards less populated areas. This 

achieves better discovery of gaps in the discovered Pareto front as well as better 

convergence. A comparative study is carried out to examine the effects of AMO and 

EES with respect to selected mutation and diversity operators respectively. AMO and 

EES have shown to be competitive if not better than their counterparts and have their 

own specific contribution. Simulations results also show that the algorithm 

incorporated with AMO and EES performs well in breaking out of local traps and 

finding a good, well-distributed and diverse solution set along the Pareto front.  

5.2 Future works 

Eiben et al. (1999) classified the types of adaptation in evolutionary algorithms into 

dynamic parameter control, adaptive parameter control, and self-adaptive parameter 

control. The dynamic parameter control has been considered to adjust the mutation rate 

in Chapter 4. The adaptive parameter control and self-adaptive parameter control could 

also be explored for the adjustment of mutation rate in MOEAs. These two types of 



Chapter 5  Conclusions and Future Works  

 

97

parameter control require less a-prior knowledge and could have better performance. 

Moreover, the adaptation mechanism may be studied for switching among several 

mutation and crossover operators to achieve better performance in MOEAs. 

 

In the aspect of multiobjective search strategy, ways of identifying appropriate MO 

optimization methods for different problems and different types of decision making are 

needed. For multiobjective optimization, it is important not only to develop general 

methods, but also to create algorithms that work well for certain problem types or 

application areas. Besides, research work in theoretical aspect of MOEAs, such as 

convergence properties to the global Pareto front and the efficiency in reaching the 

acceptable optimization goals, are still insufficient. Further research in this area is 

essential and important. 

      

Most existing MOEAs assume that the vector of exact objective functions can be built 

accurately to measure all possible solutions in the search space. However, a wide range 

of uncertainties has to be considered in many real-world optimization problems.  

Generally, uncertainties in evolutionary optimization can be categorized into three 

classes: the fitness function is uncertain or noisy; the design variables or the 

environmental parameters are subject to perturbations or deterministic changes and this 

issue is often known as the search for robust optimal solutions; the fitness function is 

time-variant where the optimum of the system is changing with time, which requires a 

repeated re-optimization or even continuous tracking of the optimum. Handling 

uncertainties in evolutionary optimization is a very important problem and receiving an 

increasing interest. 
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