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Abstract

A novel and important unitary space-time modulation (USTM) scheme for the non-

coherent multi-input multi-output (MIMO) system where the channel state infor-

mation is not known both at the transmitter and the receiver, has drawn increased

attention for its potential in achieving high spectrum efficiency in data communication

without the overhead of channel estimation. Therefore combined with channel cod-

ing, USTM will be a promising technique for future wireless applications. However,

so far research on coded USTM is quite limited and is only in its early stage.

The aim of this thesis is to investigate and propose a large class of bandwidth

efficient trellis coding schemes for the USTM in the non-coherent MIMO system. We

first proposed trellis-coded USTM (TC-USTM), and performed the error performance

analysis to obtain the design rules for a good trellis coding scheme. Then by exploiting

the dissimilarities between distinct signal points in a constellation, we proposed and

developed a systematic and universal “mapping by set partitioning” strategy for the

TC-USTM. Using theoretical analysis and computer simulations, we demonstrated

that TC-USTM produces significant coding gain over the uncoded USTM. We also

proposed another important trellis coding scheme, namely, the multiple trellis-coded

USTM (MTC-USTM), where each trellis branch is assigned multiple (k > 2) USTM

ix



signal points. A systematic set partitioning scheme is developed for the k-fold Carte-

sian product of the USTM signals. We concluded that given the same information

rates and number of trellis states, the MTC-USTM outperforms the TC-USTM, espe-

cially at high signal-to-noise ratio. We also extended the above trellis coding schemes

to the differential USTM (DUSTM) constellations, which operate in a slow Rayleigh

flat fading channel. Using similar analysis and manipulation, we demonstrated that

the resulting TC-DUSTM has superior error performance compared to its uncoded

counterparts.
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Chapter 1

Introduction

1.1 Multiple Antenna Channels

Wireless communication systems, including the cellular mobile system, wireless local

area network, etc., have been undergoing rapid development in the past few years. The

first and second generations of the wireless systems focus on voice communications,

while the new generation (3G) focuses mainly on providing both voice and data access.

The ever increasing quality and data rate provided by the wireless systems, together

with its flexibility, made it possible to develop a rich collection of new wireless data

applications, which promise to have great impact on people’s daily life.

There are many challenges facing the realization of wireless communications,

among which the limitation of the spectrum resource is the hardest to overcome.

As data applications require much higher data rates and the spectrum for new data

application is limited, one should maximize the data rate within a given bandwidth.

Accordingly the spectrum efficiency should be maximized.

One way to meet this end is the use of spread spectrum (SS), code division multiple

access (CDMA). However in a multi-user wireless network, strong signals transmitted

by one user acts as strong interference to other users. Therefore it is of interest to

1
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develop other approaches to increase the spectrum efficiency.

Multiple-antenna diversity is an important means to meet this challenge. In a

wireless system with multiple transmit and receive antennas (also known as multi-

input multi-output (MIMO) system), the spectrum efficiency can be greatly increased

from that of the conventional single antenna system, with the same total transmis-

sion power. Research shows that the performance of MIMO systems can be greatly

increased in terms of improving the reliability at a given data rate and in terms of

supporting a much higher data rate. Several practical systems have demonstrated

this performance gain in MIMO systems, such as the celebrated Bell Laboratories

layered space-time (BLAST) system [1, 5].

Fading in the wireless environment is considered as a source of uncertainty that

makes wireless links unreliable. When the channel coefficients is atypically small,

i.e., when deep fades happen, the transmitted signal is buried in the noise and is

lost. Hence one needs to compensate against signal fluctuations in fading channels to

have a steady signal strength. Multiple antennas provide independent signal paths

on so-called space diversity. Each pair of transmit and receive antennas provides a

signal path from the transmitter to the receiver. By sending signals that carry the

same information through a number of different paths, multiple independently faded

replicas of the data symbol can be obtained at the receiver end; by averaging over

these replicas, more reliable reception is achieved. In a system with M transmit and

N receive antennas, we define the maximal diversity gain (order) as MN .
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1.2 Channel State Information

Channel state information (CSI) for the MIMO system is characterized by a M ×N

random matrix H. Hi,j, 1 6 i 6 M, 1 6 j 6 N are the fading coefficients between

transmit-receive antenna pairs. Depending on the availability of H, the MIMO system

can be categorized into coherent and non-coherent MIMO system. For the former,

H is perfectly known at the receiver while for the latter, H is unknown both at the

transmitter and the receiver. Channel capacity and channel coding techniques for the

coherent MIMO system have been well studied in the past several years. In contrast,

information-theoretic study on the channel capacity, as well as the channel coding

techniques for the non-coherent MIMO system, are still in the early stages.

1.2.1 Coherent MIMO System

Channel capacity for coherent MIMO system has been treated in [1], [2], [3] and

is shown to have been greatly increased, compared with that for the single-antenna

system. For independent and identically distributed (i.i.d.) Rayleigh fading between

all antenna pairs, the capacity gain is min{M,N}, i.e., the channel capacity increases

linearly with the minimum of the number of transmitter and receiver antennas.

To approach channel capacity, space-time coding for the coherent MIMO system

has been proposed. Space-time codes can mainly be categorized into space-time

trellis codes (STTC) [17] and space-time block codes (STBC) [18], [19], [21]. A big

fraction of channel capacity can be achieved by following the design criteria to increase

the diversity gain (order) and the coding gain (advantage) for good codes. Various

concatenated space-time codes also appeared to achieve more spectrum efficiency
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at the expense of the increased decoding complexity. For example, in [26], space-

time block codes are assigned to the trellis branch, resulting in the so-called super

orthogonal space-time trellis codes. In [27], a similar method to that in [26] was

proposed independently. Turbo codes and the iterative decoding process were also

combined with the space-time codes, which approach the capacity bound, even at low

SNR [24, 65].

The decoding of the aforementioned space-time codes requires perfect knowledge

of the CSI, which is usually obtained through channel estimation and tracking. In a

fixed wireless communication environment, the fading coefficients vary slowly, so the

transmitter can periodically send pilot signals to allow the receiver to estimate the

coefficiens accurately. In mobile environments, however, the fading coefficients can

change quite rapidly and the estimation of the channel parameters becomes difficult,

particularly in a system with a large number of antennas. In this case, there may not

be enough time to estimate the parameters accurately enough. Also, the time one

spends on sending pilot signals is not negligible, and the tradeoff between sending

more pilot signals to estimate the channel more accurately and using more time to

get more data through becomes an important factor affecting performance. In such

situations, one may also be interested in exploring schemes that do not need explicit

estimates of the fading coefficients. It is therefore of interest to understand the

fundamental limits of non-coherent MIMO channels.

1.2.2 Non-Coherent MIMO System

A line of work was initiated by Marzetta and Hochwald [4], [9] to study the capacity

of multiple-antenna channels when neither the receiver nor the transmitter knows

the fading coefficients of the channel. They used a block fading channel model [15]
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or the piecewise constant Rayleigh flat-fading channel [4] where the fading gains are

i.i.d. complex Gaussian distributed and remain constant for T symbol periods before

changing to a new independent realization, where T is the coherence time of the

channel. Under this assumption, they reached the conclusion that further increasing

the number of transmit antennas M beyond T cannot increase the capacity. They

also characterized certain structure of the optimal input distribution, and computed

explicitly the capacity of the one transmit and receive antenna case at high SNR.

Lizhong and Tse used a geometric interpretation, the sphere packing in Grassmann

manifold to calculate the capacity for the non-coherent MIMO system [6]. They

derived that the capacity gain is M∗(1−M∗/T ) bits per second per hertz for every 3-

dB increase in SNR, where M∗ = min{M, N, bT/2c}. Hassibi and Martezza continues

the work in [4] and find a closed form expression for the probability density function

of the received signal.

The capacity-attaining input signal is the product of an isotropically random uni-

tary matrix, and an independent nonnegative real diagonal matrix. In certain limiting

regions [4], [6], the diagonal matrix is constant, and the message is carried entirely

by the unitary matrix: a type of modulation called unitary space-time modulation

(USTM) [9]. A number of practical considerations make USTM attractive for general

usage.

Extensive work has been done to construct good unitary space-time (UST) con-

stellations with reasonable complexity. A systematic design approach was proposed

[10] and is widely used in the literature for its efficiency and the group structure

of the constellations. In this approach, one begins with a T × M complex matrix

whose columns are orthonormal to each other, and then rotates this signal matrix
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successively in the high-dimensional complex space to generate other signals. In [13],

Agrawal et al. related UST signal design to the problem of finding packings with

larger minimum distance in the complex Grassmann space and reported a numerical

optimization procedure for finding good packings in the complex Grassmann space.

Based on the discovery of the space-time autocoding [11] where the space-time signals

act as their own channel codes, a structured space-time autocoding constellation was

proposed in [12] following the line of construction of the codes in [10].

For the continuously changing Rayleigh flat-fading channel, differential USTM was

investigated in [14] and [16]. Both schemes employ M ×M unitary complex matrices

as the signals, however the former constructs the signals following the systematic

approach in [10] while the latter is based on the design of group codes.

1.3 Bandwidth Efficient Coding for Unitary Space-

Time Modulation

In single antenna communication system, trellis coded modulation (TCM) [32, 33]

has been hailed over the past two decades as an important finding for its capability

in realizing high data rate transmission without bandwidth expansion compared with

its uncoded counterparts. TCM combines modulation and coding into one step by

applying Ungerboeck’s “mapping by set partitioning” to the two dimensional (2D)

signal set, e.g., M-ary phase-shift-keying (MPSK) and quadrature amplitude modula-

tion (QAM). For its high spectrum efficiency, TCM has seen its many applications in

the wide area of wired and wireless communication. As a big step forward, multiple

trellis coded modulation (MTCM) [35, 36] and multi-dimensional trellis coded mod-

ulation [33, 57, 58] have been reported to achieve an even higher spectrum efficiency
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over the TCM, where each trellis branch is assigned multiple and multi-dimensional

(MD) symbols, respectively.

Naturally one would ask whether these bandwidth-efficient trellis coding tech-

niques can be applied to the constellations for the non-coherent MIMO system, such

as USTM. In this thesis, we have made efforts to address this problem and have

come up with an affirmative answer. Intuitively, we can first consider a conventional

modulation scheme (MPSK or QAM) operated in the additive white Gaussian noise

(AWGN) channel. It is well known that the minimum Euclidean distance (dE,min)

in the 2D signal set determines the overall error performance for the uncoded trans-

mission. The larger is this metric, the smaller is the error probability. In TCM one

achieves a coding gain by increasing the dE,min through the trellis encoder. From

the description of the signaling scheme for the non-coherent MIMO system in Sec-

tion 1.2.2, one can also observe that each UST signal spans a distinct M -dimensional

subspace in the T -dimensional vector space, where the dissimilarity between different

subspaces determines the pairwise signal error probability. The larger is the dissimi-

larity, the lower is the pairwise error probability for mistaking one signal for another,

and therefore a lower average bit error probability. Evidently, one can conjecture

that through trellis coding for these UST signals, the minimum dissimilarity of a

constellation can be effectively increased. This analogy between the conventional and

the UST signaling schemes paves the way to a trellis coding scheme for the USTM.

Hence one can apply a similar “mapping by set partitioning” strategy as that in [32]

to the UST signal set to obtain a trellis coded USTM scheme, which possesses a much

higher spectrum efficiency than its uncoded counterpart.

We will demonstrate by theoretical analysis in this thesis that through trellis
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coding, one can observe that the diversity gain MN of the MIMO system can be

increased to MN`min, where `min is the length of the shortest error event. This

observation suggests that through trellis coding, one can effectively obtain a MIMO

system, whose number of transmit or receive antennas is `min times greater than

that of the real system. Hence the spatial complexity, in terms of the number of

antennas, can now be transformed to temporal complexity, in terms of the encoding

and decoding overhead, for a MIMO system.

Another advantage of trellis coding comes from the so-called coding gain, which

further improves the error rate performance of the non-coherent MIMO system.

Through careful design of the trellis encoder, one can make the largest dissimilarity in

the UST signal set to be the minimum one (the effective minimum dissimilarity), and

hence, the pairwise error probability can be reduced significantly. With the increase

in `min, the coding gain increases accordingly.

1.4 Contributions

In this thesis, we have contributed mainly in the following areas.

• We proposed and investigated a bandwidth efficient trellis coding scheme, namely,

the trellis coded USTM (TC-USTM), for the non-coherent MIMO system op-

erated in the so-called piecewise constant Rayleigh flat-fading or rapid fading

blockwise independent channel . Specifically, we focus on the systematically

designed UST signal set and examine its dissimilarity structure. We derive

the pairwise error event probability (PEP) as well as the bit error probability

(BEP) for this trellis coding scheme, which leads to the optimal design criteria
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for the TC-USTM. We also propose a systematic and universal “set partition-

ing” approach which applies to any UST signal set. This approach guarantees

that all the design criteria can be satisfied and that a minimum BEP can be

achieved by the resulting TC-USTM. We demonstrate that the coding gain is

significant over the uncoded USTM. We also provide analytical PEP and BEP

lower bounds for this trellis coding scheme, which agrees well with the computer

simulation results.

• From our performance analysis of the TC-USTM, we are led to propose and

investigate the multiple trellis-coded USTM (MTC-USTM) operated in the

piecewise constant Rayleigh flat-fading channel, by assigning each trellis branch

k > 2 UST signals. For this purpose, we propose an efficient set partitioning

scheme for the k-fold Cartesian product of the UST signal set and formulate

a systematic subset mapping strategy. Given the same information rate and

number of trellis states, we demonstrate that MTC-USTM produces significant

coding gain over the TC-USTM, especially at high SNR.

• We also address the trellis coding scheme for the non-coherent MIMO system,

which operates in the continuously changing Rayleigh flat-fading channel. In

this scheme, trellis coding is combined with the differential unitary space-time

modulation, leading to the trellis coded differential USTM (TC-DUSTM). We

employ a block interleaver to make the continuously changing channel to ap-

proximate the piecewise constant Rayleigh fading channel. We have derived the

PEP and BEP formula, as well as the design criteria for the TC-DUSTM. We

also apply Ungerboeck’s “mapping by set partitioning” to the differential UST

signal set. We also provide analytical lower bound and computer simulations,
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which demonstrate that the TC-DUSTM can offer a much higher spectrum

efficiency than the uncoded differential USTM.

1.5 Summary of Thesis

We first briefly introduce the concepts for a non-coherent MIMO system in Chapter 2.

Then we divide the rest of this thesis into three major parts. In Chapter 3, we intro-

duce the trellis coded USTM, which covers the performance analysis, design criteria

and numerical results. In Chapter 4, we propose and investigate the MTC-USTM,

including the performance analysis and the set partitioning scheme and numerical re-

sults. TC-DUSTM is introduced and investigated in Chapter 5. Chapter 6 contains

our conclusion.



Chapter 2

Uncoded Unitary Space-Time
Modulation

2.1 System Model

We consider a wireless communication system with M transmitter antennas and N

receiver antennas, which operates in a Rayleigh flat-fading environment. Each receiver

antenna responds to each transmitter antenna through a statistically independent

fading coefficient that is constant for T symbol periods. The fading coefficients are

not known by either the transmitter or the receiver. The received signals are corrupted

by additive noise that is statistically independent among the N receivers and the T

symbols periods.

The complex-valued signal xt,n that is measured at receiver antenna n, and discrete

time t, is given by

xt,n =
√

ρ

M∑
m=1

hm,nst,m + wt,n, t = 1, · · · , T, n = 1, · · · , N. (2.1)

Here hm,n is the complex-valued fading coefficient between the mth transmitter an-

tenna and the nth receiver antenna. The fading coefficients are i.i.d. Gaussian ran-

dom variables with zero mean and 0.5 variance in each real dimension, denoted as

11
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CN (0, 1), and are constant for t = 1, · · · , T . The probability density function (pdf)

is

p(hm,n) =
1

π
exp

{−|hm,n|2
}

. (2.2)

The complex-valued signal fed into transmitter antenna m at time t is denoted as

st,m, and its average (over the M antennas) power is equal to one, i.e.,

M∑
m=1

E |st,m|2 = 1, t = 1, · · · , T (2.3)

where E denotes expectation. wt,n is the additive white Gaussian noise at time t and

receiver antenna n, and is also i.i.d. as CN (0, 1). Due to the normalization in (2.3),

ρ in (2.1) represents the expected SNR at each receiver antenna.

In matrix form, (2.1) can be re-written as

X =
√

ρSH + W. (2.4)

where S = [st,m] is the T × M transmitted signal matrix, X = [xt,n] is the T × N

received signal matrix, H = [hm,n] is the M × N channel matrix and W = [wt,n] is

the T ×N matrix of additive noise. H therefore has independent realizations for each

CN (0, 1) distributed entry every T -symbol period and remains constant during that

interval. H is termed as piecewise constant Rayleigh fading channel in [4] or block

fading channel in [15]. This channel model is an accurate representation of many

TDMA, frequency hopping, or block-interleaved systems.

It is clear that E{X|S}=0 and each column in X has an identical covariance

matrix Λ = IT + ρSS†, where † denotes conjugate transpose and IT denotes the

T × T identity matrix. The received signal has a conditional probability density

p(X|S) =
exp

(−tr
{
Λ−1XX†})

πTNdetNΛ
(2.5)

where tr, det denote trace and determinant, respectively.



13

2.2 Unitary Space-Time Modulation

In [4], the capacity-attaining random signal matrix S may be constructed as a product

S = ΦV, where Φ is an isotropically distributed T ×M matrix whose columns are

orthonormal, i.e., Φ†Φ = IM , and V = diag(v1, · · · , vM) is an independent M ×M

real, nonnegative, diagonal matrix. When ρ À 0 or T À M , setting v1 = · · · =

vM =
√

T/M attains capacity. Therefore in [9] a unitary space-time modulation is

defined as S =
√

T/MΦ, where Φ†Φ = IM . Notice that it is the M -dimensional

subspace spanned by the M columns of S in the T -dimensional vector space that

delivers the information and distinguishes different signals. One can see that only

Φ in S contains information and therefore the signal set for USTM can be denoted

simply by ΦL, where the subscript L denotes the dimension (size) of the signal set.

Given the information rate R in bits per channel use (symbol), L = 2RT .

Suppose two unitary space-time (UST) signals Φl 6= Φl′ ∈ ΦL are transmitted

with equal probability and demodulated with a maximum likelihood (ML) algorithm,

the pairwise block error probability (PBEP) of mistaking Φl for Φl′ , or vice versa, is

[9]

Pe = p(Φl → Φl′|Φl transmitted)

= p(Φl′ → Φl|Φl′ transmitted)

=
1

4π

∫ ∞

−∞

dω

ω2 + 1/4

M∏
m=1

[
1 +

(ρT/M)2(1− d2
m)(ω2 + 1/4)

1 + ρT/M

]−N

, (2.6)

where dm is the mth singular value of the correlation matrix Φ†
l Φl′ . A Chernoff upper

bound for the PBEP is [9]

Pe 6 1

2

M∏
m=1

[
1 +

(ρT/M)2(1− d2
m)

4(1 + ρT/M)

]−N

. (2.7)
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For a good design of ΦL, we should minimize the PBEP given in (2.6) or its upper

bound in (2.7) for simplicity. At high SNR (as ρ →∞), the upper bound in inequality

(2.7) is dictated by
∏M

m=1(1−d2
m), whose geometric mean is defined as the dissimilarity

between signal Φl and Φl′

d(Φl, Φ
′
l) =

M∏

m=1,dl,l′,m<1

(1− d2
l,l′,m)

1
2M . (2.8)

where dl,l′,m is the mth singular value of the correlation matrix Φ†
l Φl′ . From the

inequality in (2.7), we can see that the greater is the dissimilarity, the smaller is the

PBEP. As the average block error probability of a signal set is determined by the

minimum PBEP, we should construct ΦL such that for all l 6= l′, 0 6 l, l′ 6 L − 1,

the minimum dissimilarity

dmin = min
06l 6=l′6L−1

d(Φl, Φ
′
l) (2.9)

is maximized.

A heuristic design method for ΦL was suggested in [9] through a random search to

maximize dmin. Later in [13], the search problem is recast into the problem of finding

packings with the largest minimum dissimilarity in the complex Grassmann space.

In [10] a systematic construction approach for ΦL was proposed. The signals are

formed by specifying a T × M unitary matrix, then rotated successively in the T -

dimensional vector space to form the other L − 1 signal matrices (subspaces). The

initial matrix Φ0 is usually formed by any M 6 T columns in a T × T DFT matrix,

scaled by a factor 1√
T
. Then signals can be systematically formed by

Φl = ΘlΦ0, l = 0, · · · , L− 1. (2.10)

Here Θ = diag(ej2πu1/L, · · · , ej2πu
T

/L), with ui ∈ ZL = {0, · · · , L− 1}, 1 6 i 6 T . Let

u = [u1, · · · , uT ]. Then u can be searched by maximizing dmin. Taking into account
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equation (2.9), the optimal u, denoted as uopt should be searched by

uopt = arg max
u

min
06l 6=l′6L−1

d(Φl, Φ
′
l). (2.11)

The systematically formed ΦL is attractive in the following aspects:

1) The design process is much simplified compared with that in [9] and [13].

2) All the signals form a group code that was initiated by Slepian for single-antenna

communication in [31]. The group structure will reduce the memory needed

both at the transmitter and the receiver for storing the alphabet. Only Φ0 and

Θ need to be stored while other signals can be formed through rotation.

3) The resulting signals have a regular dissimilarity structure which will be further

investigated in the following chapters. The dissimilarity structure can be uti-

lized for set partitioning of ΦL, which plays an important role in trellis coding

for the USTM.

2.3 Differential Unitary Space-Time Modulation

USTM is suitable for the piecewise constant Rayleigh fading channel, while for the

continuously changing mobile radio Rayleigh flat fading channel, which is more realis-

tic in a mobile environment, differential transmission and detection of the UST signals

is a more natural choice. The differential USTM (DUSTM) constellation follows di-

rectly from the construction of UST signals in the previous section. The canonical

representation of a differential UST signal is

Φl =
1√
2

[
IM

Vl

]
, (2.12)
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where Vl denotes a M ×M unitary matrix, l ∈ ZL. In (2.12) it can be seen that only

Vl delivers the information. The channel is used in blocks of M = T
2

symbols and

L = 2RM . The signal set is denoted as VL = {Vl | l ∈ ZL}.
Let t denote the time index for each signal and zt ∈ ZL denote the information data

to be transmitted at time t. Usually a reference signal S0 = IM is first transmitted,

followed by a signal S1 = Vz1 . In general the signal sequence transmitted is given as

follows

St = VztSt−1, t = 1, 2, · · · (2.13)

At the receiver the received signal is

Xt =
√

ρStH + Wt. (2.14)

where H takes the continuously changing Rayleigh fading channel model, such as the

Clarke’s model [61]. The ML demodulator is

(ẑt) = arg max
l∈ZL

∥∥∥Xt−1 + V †
l Xt

∥∥∥ (2.15)

where ‖·‖ denotes the Frobenius norm, i.e., ‖A‖2 = tr(AA†) for a matrix A. Sub-

stituting (2.12) into (2.8), one can obtain the dissimilarity between signals Vl and

Vl′ , l 6= l′, denoted as

ζ(Vl, Vl′) =
1

2

M∏
m=1

σm(Vl − Vl′)
1/M

=
1

2
|det(Vl − Vl′)|1/M . (2.16)

Here σm(Vl − Vl′) denotes the m-th singular value of the difference matrix Vl − Vl′ .

VL should be designed to maximize the minimum dissimilarity ζmin = minl 6=l′∈ZL

ζ(Vl, Vl′) in VL, such that the average block error probability in VL can be minimized.
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Also VL can be formed as a group under matrix multiplication as

Vl = V l
1 , l = 0, · · · , L− 1 (2.17)

where the initial matrix V1 is an Lth root of unity. It is also desired that the signal

matrices form an Abelian group, that is, the product of any two matrices commutes.

For this purpose, V1 should be a diagonal matrix V1 = diag(ei(2π/L)u1 , · · · , ei(2π/L)u
M ),

um ∈ ZL, m = 1, · · · ,M . Similar to (2.11), for DUSTM, the optimal set of um,

denoted as uopt, can be derived as [14]

uopt = arg max
u

min
l=1,··· ,L−1

∣∣∣∣∣
M∏

m=1

sin(πuml/L)

∣∣∣∣∣

1
M

. (2.18)

Signal sets formed by equation (2.17) and (2.18) are referred to as the systematically

designed DUSTM.

2.4 Summary

In this chapter, we have briefly reviewed the system and the signal model for the non-

coherent MIMO systems: the USTM and the DUSTM. These systems are consider-

ably superior in error performance compared to the uncoded single antenna signaling

scheme. However to achieve the promised MIMO channel capacity, coding techniques

have to be combined with these modulations, which will be addressed in the following

chapters.



Chapter 3

Trellis-Coded Unitary Space-Time
Modulation

3.1 Background

In TCM [32], [33], we combine a convolutional encoder and a signal mapper. In one

coding interval, the r information bits are divided into two parts: m 6 r information

bits are encoded with a rate m
m+1

convolutional encoder, with the output m + 1

bits selecting a subset from a size-2r+1 constellation set, while the remaining r −m

information bits select the signal from the subset. The rate r
r+1

TCM combines coding

and modulation into one step and coding gain is obtained by introducing redundancy

into the subset selection procedure.

Let C denote the 2D size-2r+1 signal constellation, such as MPSK or QAM. Set

partitioning of C plays an important role in TCM. Ungerboeck’s “mapping by set

partitioning” [32] presented a generic realization of the partitioning for C in a heuristic

manner. Group theory and lattice theory are powerful tools for the partitioning of C

of large size [53, 54, 63, 64]. There are two guidelines for the partitioning procedure:

1) The minimum Euclidean distance dE,min in subsets of the same layer in the

18
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partitioning tree is maximized and dE,min increases as rapidly as possible after

each partitioning of the subsets;

2) The distance structures in the subsets of the same layer are identical.

Rules for mapping the information bits to the signals are also given [32] which guar-

antee that the bit errors are minimized when signal errors occur at high SNR.

One can find similarities between the UST signal set ΦL and the 2D signal set C,

by making a comparison between the dissimilarity d(Φl, Φl′) for signals Φl, Φl′ ∈ ΦL

and the Euclidean distance dE(sl, sl′) for signals sl, sl′ ∈ C, l 6= l′. It is well known that

a greater dE,min gives rise to a smaller pairwise error probability of mistaking sl for sl′

and vice versa. Correspondingly, in Section 2.2, one also observes that a greater dmin

leads to a smaller pairwise error probability of mistaking Φl for Φl′ and vice versa. In

most cases dmin in a subset of ΦL is greater than that in ΦL. Hence one can partition

ΦL successively into a series of subsets and obtain a series of dmin, which increases after

each partitioning of the subset. Accordingly, the average block error probability in the

resulting subsets reduces. Therefore, intuitively, the aforementioned two guidelines

for a 2D signal set C also applies to ΦL, and “mapping by set partitioning” similar

to that in [32] can be applied to these UST signal sets, leading to the bandwidth

efficient trellis-coded USTM (TC-USTM).

In the following sections, we first introduce the properties of the systematically

designed UST signal sets, then derive the PEP and BEP of the TC-USTM, which

in turn leads to the design criteria for TC-USTM. To form the set partitioning of

ΦL, we propose a novel systematic approach through subset-pairing, which can be

realized recursively. Through computer simulations as well as theoretical analysis,

we demonstrate that the proposed TC-USTM produces significant coding gains over
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its uncoded counterpart. And we also find that the derived lower bounds provide

accurate estimates of the BEP error curves, especially at high SNR.

3.2 Properties of the UST Constellations

The systematically designed UST constellation [10] received much attention for its

attractive properties explored in the following. Let the subscript l of Φl ∈ ΦL be the

index for the corresponding signal block Φl. Thus the signal index difference between

signal Φl, Φl′ ∈ ΦL, Φl 6= Φl′ can be defined as

∆l,l′ = (l′ − l) moduloL = l′ ⊕ (−l) (3.1)

where ⊕ denotes addition modulo-L. The set of the signal indices in ΦL form the

integer set ZL, which is an integer group under ⊕. Equation (2.8) indicates that the

metric d(Φl, Φl′) is a function of the singular values of the correlation matrix Φ†
l Φl′ ,

and based on equation (2.10),

Φ†
l Φl′ = Φ†

0Θ
l′⊕(−l)Φ0, (3.2)

we have

Property 1. d(Φl, Φl′) between distinct pair Φl, Φl′ ∈ ΦL, l 6= l′ is completely

determined by ∆l,l′ .

As a result, the dissimilarity can be expressed as d(Φl, Φl′) = d∆l,l′ . It follows that

any two signal pairs having the same index difference have the same dissimilarity.

The dissimilarity profile for a UST signal set ΦL is defined as the set PΦL
(l) =

{d∆l,l′ | l′, l ∈ ZL, l′ 6= l} with respect to a reference signal Φl. Note that the set of

∆l,l′ for ΦL with any reference l ∈ ZL is {1, · · · , L − 1}, which is identical for any
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Figure 3.1: Dissimilarity profiles PΦL
for four UST signal sets. (a) Φ8(T = 2,M =

1, R = 1.5) (b) Φ8(T = 3,M = 1, R = 1) (c) Φ16(T = 3,M = 1, R = 1.33) (d)
Φ16(T = 4,M = 2, R = 1).

reference l under ⊕ and can be denoted as ∆ZL
. Therefore the dissimilarity profile

for the whole UST signal set is not a function of the reference signal, and can be

simply denoted as PΦL
. As examples, the dissimilarity profiles for four UST signal

sets 1 are illustrated in Fig. 3.1. Recalling inequality (2.7) and (2.8), we note that at

high SNR, the PBEP between Φl and Φl′ is determined by the index difference ∆l,l′ .

Therefore we have the following property.

Property 2. The PBEP between Φl and Φl′ is determined by the signal index

1The initial signal Φ0 for signal set Φ16 (T = 4, M = 2, R = 1) is formed by the first and third
columns of the 4 × 4 DFT matrix scaled by 1

2 , otherwise the dissimilarity profile will be different
from the one illustrated in Fig. 3.1 (d).
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difference ∆l,l′ .

As a result, the PBEP between Φl and Φl′ and that between Φl⊕∆ and Φl′⊕∆ are

the same for any ∆ ∈ ZL.

Fig. 3.1 also exhibits another property of ΦL as follows.

Property 3. The dissimilarity profile PΦL
are symmetrical about the center point

∆l,l′ = L
2
, i.e., d∆l,l′ = d∆l′,l .

In fact, the correlation matrices Φ†
l Φl′ and Φ†

l′Φl are complex conjugate of each

other, and have the same set of singular values. Then based on equation (2.8), we

have d∆l,l′ = d∆l′,l .

One also can observe from Fig. 3.1 that the maximum d∆l,l′ corresponds to an

even ∆l,l′ as in Fig. 3.1 (a), (b), (d) or an odd ∆l,l′ as in Fig. 3.1 (c). Let the

maximum dissimilarity in PΦL
be denoted as dmax and the corresponding ∆l,l′ be

denoted as ∆max. Then we have the following property, which is an important fact

and will influence our proposed set partitioning scheme for the UST signal set in

Section 3.5.

Property 4. dmax corresponds to an arbitrary (odd or even) ∆max ∈ ∆ZL
in distinct

UST signal set ΦL.

With Property 4, it is required that a good set partitioning scheme should be

applicable to an arbitrary ΦL, which may have distinct ∆max.

These above properties will be exploited in Section 3.3, 3.4 and 3.5.
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3.3 Performance Analysis for Trellis-Coded Uni-

tary Space-Time Modulation

To propose a good trellis coding scheme for the USTM, it is necessary to find the

key parameters that affect the BEP performance of the TC-USTM. Therefore in this

section, we formulate the PEP as well as the BEP expression for TC-USTM.

Suppose a trellis coded sequence ΦK = {Φlt , 1 6 t 6 K} of length K is transmit-

ted, where t is the time index of each signal block and lt ∈ ZL is the data (in decimal

form) transmitted at t. Each signal in the received sequence XK = {Xt, 1 6 t 6 K}
is

Xt =
√

ρT/MΦltHt + Wt, (3.3)

where the channel matrix Ht has independent realizations in every other T -symbol

period and remains constant during that time interval. This piecewise constant fading

process mimics the behavior of a continuously changing fading process in a tractable

manner. Furthermore, it is a very accurate representation of many TDMA, frequency

hopping or fully block-interleaved systems [29, 30]. Entries in Ht are i.i.d as CN (0, 1).

Wt denotes the noise matrix and each entry in Wt is also CN (0, 1) distributed. ρ is

the SNR at each receiver antenna. Due to the independent realizations of Ht every T -

symbol period, the received signals Xt are also statistically independent for different

t’s. Therefore based on (2.5), the conditional probability of the sequence XK given

the sequence ΦK is

p
(
XK |ΦK

)
=

K∏
t=1

p (Xt|Φlt)

=
K∏

t=1

exp
(
−tr

{
Λ−1

t XtX
†
t

})

πTNdetNΛt

, (3.4)
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where Λt = IT + ρT
M

ΦltΦ
†
lt
. Hence the ML sequence decoder can be formulated as

ΦK
ml = arg max

ΦK
p
(
XK |ΦK

)

= arg max
Φlt

∈ΦL,16t6K

K∏
t=1

exp
(
−tr

{
Λ−1

t XtX
†
t

})

πTNdetNΛt

= arg max
Φlt

∈ΦL,16t6K

K∑
t=1

tr
{

X†
t ΦltΦ

†
lt
Xt

}

= arg max
Φlt

∈ΦL,16t6K

K∑
t=1

∥∥∥X†
t Φlt

∥∥∥
2

. (3.5)

The third equation in (3.5) takes into account the fact that the exponential function

is monotonically increasing and omits the constant terms that do not affect the result.

A Viterbi algorithm can efficiently implement the ML decoding procedure [59, 60].

Suppose the output of the ML decoder (3.5) at the receiver is another sequence

Φ̂K = {Φl̂t
, 1 6 t 6 K}, l̂t ∈ ZL, in place of ΦK . In this thesis, we define Φ̂K as

an error event to the true signal sequence ΦK for Φ̂K 6= ΦK . This definition is also

adopted, for example, in [37]. The length of the error event is defined as the number of

places for which the two coded sequences differ, i.e., the Hamming distance between

ΦK and Φ̂K .

To design a TC-USTM which produces the minimal BEP performance, one should

first find the BEP expression or its union bound, then reduce the BEP or its union

bound. For this purpose, we set out to find the pairwise error-event probability

(PEP) by considering two coded sequence ΦK and Φ̂K which are transmitted with

equal probability at the transmitter. The expression for BEP will be straightforward

based on the PEP expression.

Based on equation (3.5), the PEP of mistaking ΦK for Φ̂K , or vice versa can be
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derived in a integral form as

Pevent =
1

2π

∫ ∞

ω=−∞

dω

ω2 + 1/4





∏
t∈η

M∏

m=1,dm,t<1

[
1 +

(ρT/M)2(1− d2
m,t)(ω

2 + 1/4)

1 + ρT/M

]−N


 .

(3.6)

where dm,t denotes the mth singular value of the correlation matrix Φ†
lt
Φl̂t

and η is

the set of t for which Φlt 6= Φl̂t
. The detailed derivation of equation (3.6) can be

found in Appendix A. By setting ω in the bracket in (3.6) to be zero, we obtain an

upper bound of the PEP as

Pevent 6
∏
t∈η

Γt, (3.7)

where

Γt =
1

2

M∏

m=1,dm,t<1

[
1 +

(ρT/M)2(1− d2
m,t)

4(1 + ρT/M)

]−N

(3.8)

is the Chernoff upper bound of the PBEP between Φlt and Φl̂t
in [9]. Suppose the size

of η, i.e., the length of the error event is `. Then the inequality (3.7) suggests that

the error events with a long length ` can be neglected while the error events with the

shortest length `min play the main role when evaluating the PEP. When only taking

the shortest error event into account, at sufficiently high SNR (as ρ approaches ∞),

the PEP is upper bounded by

Pevent 6
(

1

2`min

(
ρT

4M

)−MN`min

)
·

 ∏

t∈ηmin

M∏

m=1,dm,t<1

(1− d2
m,t)

−N


 , (3.9)

where ηmin denotes the set of t for which Φlt 6= Φl̂t
along the path of the shortest error

event. The factor inside the first bracket of (3.9) suggests that the error curve of the

PEP will vary as ρ−MN`min . Thus not only a diversity gain (order) of MN results

from the employed multiple antennas, but also a coding gain of `min from the trellis-

coding design ais obtained 2. Alternatively, one can interpret it as that the maximum

2We can also view MN`min as the total diversity gain. As `min is introduced as well as controlled
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Figure 3.2: PEP and its upper bound. Φ8 (T = 2,M = 1, R = 1.5) is employed. Case
1: (Φ0, Φ0) and (Φ2, Φ6), `min = 2; Case 2: (Φ0, Φ0, Φ0) and (Φ1, Φ3, Φ6), `min = 3.

diversity gain of this non-coherent MIMO system has been increased to MN`min.

Hence, the number of the transmit or receive antennas is effectively increased to

M`min or N`min. Therefore one can conclude that given the required diversity gain,

the spatial complexity in terms of the number of antennas can be reduced, at the

expense of temporal complexity in terms of the coding and decoding overhead from

trellis coding. It suggests that one should choose a TC-USTM scheme with as large a

by trellis coding, in this thesis, we refer to it as coding gain.
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value of `min as computational complexity allows, as the decoding complexity usually

increases exponentially with `min.

The PEP upper bound in inequality (3.9) and the exact PEP in equation (3.6)

approach each other as SNR grows. This can be illustrated in Fig. 3.2. We use UST

signal set Φ8(T = 2,M = 1, R = 1.5), and illustrate the PEP between (Φ0, Φ0) and

(Φ2, Φ6), where `min = 2 and the PEP between (Φ0, Φ0, Φ0) and (Φ1, Φ3, Φ6) where

`min = 3. Hence for simplicity, one can investigate the PEP upper bound in (3.9) for

minimization of the PEP, instead of the exact PEP expression in (3.6) directly.

Additional coding gain comes from the factor inside the second bracket of (3.9).

Recalling (2.8), we have

∏
t∈ηmin

M∏

m=1,dm,t<1

(1− d2
m,t)

−N =
∏

t∈ηmin

d(Φlt , Φl̂t
)−2MN , (3.10)

which suggests that the product of the dissimilarities along the path of the shortest

error event should be maximized to minimize the upper bound in (3.9).

We note that these performance analysis are similar to those in [34] and [37]

for TCM operated in the Rayleigh flat-fading channel for a single antenna system,

where it is derived that the length of the shortest error event and the product of

the Euclidean distance along the associated path determine the error performance.

However, in this thesis it has now been generalized to a non-coherent MIMO system

and it is the dissimilarity d(Φl, Φl′), instead of the Euclidean distance that is used as

an index to evaluate the error rate performance.

Usually the BEP is a more useful performance measure. As the PEP has been

derived in (3.6), an asymptotic BEP formula can be expressed as

Pb ≈ 1

b

`′∑

`=`min

J(`)∑
j=1

m`,jp(ΦK
`,j → Φ̂K

`,j), (3.11)
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where b = RT is the number of input information bits per signal block interval, J(`) is

the number of the possible error events having the same length `. J(`) is often referred

to as the multiplicity of the error events of length `. The metric m`,j is the number

of bit errors associated with the jth error event of length ` and p(ΦK
`,j → Φ̂K

`,j) is

the PEP associated with this error event and can be explicitly evaluated by equation

(3.6). `′ is chosen so that most of the dominant error events are included. A BEP

lower bound at sufficiently high SNR can be obtained by only taking the shortest

error event into account, i.e., by setting `′ = `min in (3.11), we have

Pb & 1

b

J(`min)∑
j=1

m`min,jp(ΦK
`min,j → Φ̂K

`min,j). (3.12)

At sufficiently high SNR, the bound in (3.12) will give an accurate estimate of the

BEP. As b and m`min,j are constant once the trellis coding scheme is determined,

the PEP’s in (3.12) will determine the BEP curve. This lower bound can also be

considered as a linear combination of the PEP’s. Therefore one can conclude that

the minimization of the PEP also leads to a lower BEP for TC-USTM.

3.4 Design Criteria for Set Partitioning

Through the inequality (3.9), one can see that M, N, `min and the dissimilarity prod-

uct
∏

t∈η d(Φlt , Φl̂t
) are four important factors that determine the upper bound of

the PEP, among which, M and N are fixed once the MIMO channel model is de-

termined, while `min and
∏

t∈η d(Φlt , Φl̂t
) can be manipulated through designing the

trellis encoder and the mapping strategy for TC-USTM.

There are two approaches known to us to increase the `min:

1) Avoid parallel paths between consecutive states in the trellis by increasing the
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number of states 2ν , where ν > 1 is the constraint length in the trellis encoder.

If every branch is assigned a single signal block, the `min can be at least 2. More

larger `min is obtainable by introducing more memory ν, with the state number

increasing exponentially.

2) Accommodate parallel branches between consecutive states in the trellis, how-

ever, every branch is assigned multiple, i.e., k > 2 signal blocks, which is defined

as the k-tuple. `min can then be increased by designing the k-tuples whose Ham-

ming distance is k. In this way, the state number 2ν remains unchanged while

`min increases.

The second approach involves a set partitioning of the k-fold Cartesian product of

ΦL, which will be addressed in Chapter 4. The first approach involves a set partition-

ing of the UST signal set ΦL, following Ungerboeck’s “mapping by set partitioning”

for the 2D signal set C in [32]. This topic will be treated in detail in this chapter.

Usually increasing `min can be realized by using more encoder memory ν. How-

ever, to derive the design criteria for TC-USTM, we proceed with a smaller `min, i.e.,

there are parallel paths between consecutive states. One reason is that for certain

applications, we want to save the buffer size and to reduce the computational com-

plexity and at the same time to achieve the required BEP performance. Therefore

trellis coding with parallel paths is a tradeoff between decoding complexity and the

coding gains. Another reason that we set out from trellis coding with parallel paths

is that the coding gains obtained from the set partitioning of a signal set ΦL can be

easily seen and demonstrated in the following.
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Figure 3.3: Set partitioning tree for Φ8 (T = 2,M = 1, R = 1.5).

3.4.1 Set Partitioning Tree

Since the signal size L = 2b, ΦL can be two-branch partitioned until in the end the

size-1 subsets (single signals) are obtained. Thus the partitioning tree has altogether

b+1 layers, with ΦL in layer-1 and the single signals in layer-(b+1). In layer-j, 1 6 j 6

b+1, there are 2j−1 subsets, denoted as G(j)
i , 0 6 i 6 2j−1−1, and each contains 2b−j+1

signals. For these subsets, we have
⋃2j−1−1

i=0 G(j)
i = ΦL and

⋂2j−1−1
i=0 G(j)

i = Ø, where Ø

denotes the empty set. Let Z
(j)
i = {l | Φl ∈ G(j)

i } denote the signal index set for G(j)
i

and ∆
(j)
i (l) = {∆l,l′ | l′, l ∈ Z

(j)
i , l′ 6= l} the signal index difference set of Z

(j)
i with

respect to any reference index l ∈ Z
(j)
i . We define dmin(G(j)

i ) = min
l,l′∈Z

(j)
i ,l 6=l′ d(Φl, Φl′)

as the minimum dissimilarity in G(j)
i . If for distinct i, dmin(G(j)

i ) are all the same, then

dmin(G(j)
i ) can be denoted as d

(j)
min. For example, we illustrate a set partitioning tree for

Φ8 (T = 2,M = 1, R = 1) in Fig. 3.3. We can see that in layer-2, Z
(2)
0 = {0, 2, 4, 6}

and ∆
(2)
0 = {2, 4, 6}, regardless of the reference index l ∈ Z

(2)
0 .
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3.4.2 Design Criteria

Consider the case where there are 2q, 1 6 q 6 b parallel paths between two consecutive

states in a TC-USTM trellis diagram (`min = 1). These parallel paths should be

assigned signals from the same G(j)
i . We also require that 2q = 2b−j+1, i.e., subsets

in layer-(b − q + 1) of the set partitioning tree should be used. Minimization of the

dissimilarity product in equation (3.10) is equivalent to maximizing dmin(G(j)
i ) for each

i. Then we have the following design criterion :

Criterion 1. For subsets G(j)
i , 0 6 i 6 2j−1 − 1 in ΦL, dmin(G(j)

i ) should be

maximized.

When a signal Φl ∈ G(j)
i is transmitted, it is most likely that Φl is decoded to be

one of other 2b−j+1−1 signals in G(j)
i if an error event happens. The error performance

can be evaluated by the average block error probability (ABEP) in G(j)
i . It is desirable

that the ABEP is identical for signal subsets formed by the 2b−j+1 signals assigned

to the parallel paths emanating from or merging at distinct states, i.e., the ABEP in

each signal subset G(j)
i , 0 6 i 6 2j−1 − 1 is the same. This is because now the ABEP

can be simply evaluated by only considering any one of the subsets G(j)
i . It is well

known that at high SNR, the shortest error events dominate the error performance.

So the overall block error probability of the TC-USTM can be approximated well

by the ABEP. Therefore the error rate performance analysis for TC-USTM can be

greatly simplified by assuming an all Φ0’s sequence is transmitted. For this purpose,

the 2j−1 subsets should have the same “dissimilarity profile” such that the ABEP in
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each size-2b−j+1 subset G(j)
i ⊆ ΦL, i = 0, · · · , 2j−1 − 1

Pblock(i) =
∑

l∈Z
(j)
i

∑

l′∈Z
(j)
i ,l 6=l′

p(Φl)p (Φl → Φl′ | Φl)

=
1

2b−j+1

∑

l∈Z
(j)
i

∑

l′∈Z
(j)
i ,l 6=l′

p(Φl → Φl′ | Φl)

=
1

2b−j+1

∑

l∈Z
(j)
i

∑

∆l,l′∈∆
Z

(j)
i

(l)

p(Φl → Φl⊕∆l,l′ | Φl)

=
1

2b−j+1





∑

∆l,l′∈∆
Z

(j)
i

(l)

p(Φl → Φl⊕∆l,l′ | Φl) +

∑

∆
l,l
′′∈∆

Z
(j)
i

(l)

∑

∆l,l′∈∆
Z

(j)
i

(l)

p(Φl⊕∆
l,l
′′ → Φl⊕∆l,l′ | Φl)





(3.13)

are identical for distinct i’s. From equation (3.13), we can see that any signal Φl ∈ G(j)
i

and its associated signal index difference set ∆
Z

(j)
i

(l) fully characterize the subset G(j)
i

and determine the Pblock(i) in G(j)
i . In fact, we can reconstruct G(j)

i from ∆
Z

(j)
i

(l). For

example, suppose ∆
Z

(j)
i

(2) = {1, 3, 6}, then G(j)
i = {Φ2, Φ2⊕1=3, Φ2⊕3=5, Φ2⊕6=0} ⊆

Φ8. The second step of (3.13) also assumes that every signal in G(j)
i is transmitted

with equal probability.

To ensure Pblock(i) = Pblock(i
′), i 6= i′, from (3.13) and recalling that the PBEP

is a function of the index difference at high SNR (Property 2), i.e., p(Φl → Φl⊕∆) =

p(Φl′ → Φl′⊕∆) for l 6= l′ and ∆ ∈ {1, · · · , L − 1}, we require that there exist

l ∈ Z
(j)
i and l′ ∈ Z

(j)
i′ such that ∆

Z
(j)
i

(l) = ∆
Z

(j)

i′
(l′). G(j)

i and G(j)
i′ satisfying this

requirement are defined as congruent subsets, denoted as G(j)
i
∼= G(j)

i′ . Correspondingly,

the associated index subsets Z
(j)
i and Z

(j)
j are also defined as congruent integer subsets,

denoted as Z
(j)
i
∼= Z

(j)
i′ .
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Accordingly, we have the following criterion:

Criterion 2. In layer-j, 1 6 j 6 b+1 of the set partitioning tree, all subsets should

be congruent, i.e., G(j)
0
∼= · · · ∼= G(j)

2j−1−1
.

Equivalently, Criterion 2 requires that in each layer, Z
(j)
0
∼= · · · ∼= Z

(j)

2j−1−1
. There-

fore only the integer subsets Z
(j)
i in ZL need to be considered to satisfy Criterion

2.

Based on Criterion 2, the dmin(G(j)
i ) in Criterion 1 are identical for i = 0, · · · , 2j−1−

1 and can be simply denoted as d
(j)
min.

In this thesis, set partitioning of ΦL is defined as optimal set partitioning if both

Criterion 1 and Criterion 2 are satisfied. In the following sections of this chapter we

have formulated a universal optimal set partitioning approach, in the sense that the

it is applicable for an arbitrary UST signal set ΦL. This approach should also be

systematic in the sense that every step in the set partitioning is given explicitly, and

optimal set partitioning can be obtained following these steps. Thus a systematic

partitioning renders the set partitioning for large-size signal set realizable.

3.5 A Systematic and Universal Set Partitioning

for UST Signal Sets

In this section we shall formulate a systematic and universal set partitioning scheme

for ΦL. Instead of making successive set partitioning of a UST signal set as that

in [32, 33], we employ successive subset-pairing in forming the set partitioning tree.

That is, subsets in the same layer of the partitioning tree are paired to form a larger

subset in the immediately higher layer. Therefore one should start with the single

signals from the bottom layer (layer-(b+1)). We first present a framework to produce
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all the possible realizations of the set partitioning tree which guarantees congruent

subsets in each layer to satisfy Criterion 2. Then from these candidate partitioning

trees, we select the one which satisfies Criterion 1 as the optimal set partitioning.

To form congruent subsets, from arguments in Section 3.4, we only need to consider

the integer subsets Z
(j)
i , 0 6 i 6 2j−1− 1 in ZL. Therefore we proceed with congruent

set partitioning in ZL.

3.5.1 Congruent Partitioning in An Integer Group S

By congruent partitioning, we mean that the partitioned subsets are all congruent. We

first consider a generic integer group, defined as S = {0, 2p, 2p ·2, · · · , 2p ·(2B−p−1)} =

2pZ2B−p , where the integers p and B are constrained to satisfy 0 6 p 6 B − 1. By

choosing an appropriate set of p and B, any integer group with a size given as a power

of 2 can be expressed as S. The group operation is addition modulo-2B, denoted as

⊕
B
. The integer difference set for S can be denoted as ∆S = {2p, · · · , 2p ·(2B−p−1)},

regardless of the reference integer s ∈ S. For example, the integer group {0, 2, 4, 6}
can be expressed by S = 2Z4, with p = 1, B = 3 and ∆S = {2, 4, 6}. We now present

a systematic approach to form the size-2 congruent subsets in S, with an arbitrary

integer ∆ ∈ ∆S as the identical difference for these size-2 subsets. We stress the

arbitrariness of ∆ in our optimal set partitioning, to be elaborated later in Section

3.5.4. Let δ = ∆
2p ∈ Z2B−p be the normalized difference, in the sense that δ is an

element in the continuous integer group Z2B−p .

Lemma 1.1 For an odd integer δ, {2p+1i, 2p+1i ⊕
B

∆}, i ∈ Z2B−p−1 forms the con-

gruent size-2 subsets in S;
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Lemma 1.2 For an even integer δ, {2p+p′+1i ⊕
B

m, 2p+p′+1i ⊕
B

∆ ⊕
B

m}, i ∈
Z2B−p−p′−1 ,m ∈ 2pZ2p′ forms the congruent size-2 subsets in S, where p′, 1 6 p′ 6

B − p− 1, is chosen such that δ
2p′ is an odd integer.

Lemma 1.1 and Lemma 1.2 can be easily proved from the definition of congruent

subsets. When δ is an odd integer, ∀s ∈ S, we define a one-to-one and onto mapping

function f : s → s
2p , then S is isomorphic to Z2B−p , denoted as S ∼ Z2B−p . As

{2i | i ∈ Z2B−p−1} is the even integer set in Z2B−p and {2i ⊕
B−p

δ | i ∈ Z2B−p−1} is

the complementary odd integer set, the pairing of the corresponding elements in each

set forms the congruent size-2 subsets {2i, 2i ⊕
B−p

δ}, i ∈ Z2B−p−1 in Z2B−p . This is

because the difference sets {δ} are identical with references 2i. Now using the inverse

mapping function f−1, that is, by multiplying 2p back to the congruent size-2 subsets

in Z2B−p , 2p{2i, 2i⊕
B−p

δ} = {2p+1i, 2p+1i⊕
B
∆}, i ∈ Z2B−p−1 , we form congruent size-2

subsets in S. The difference sets {∆} are now identical with references 2p+1i. We

define R = {2p+1i | i ∈ Z2B−p−1} = 2p+1Z2B−p−1 as the reference set. Each reference

r ∈ R represents the size-2 subset {r, r ⊕
B

∆} that it belongs to. The operation

involved in forming R from S in Lemma 1.1 is defined as Operation I, by which

elements in S are directly paired to form R. For example, we illustrate the procedure

of Operation I in Fig. 3.4, where S = 2Z8 is denoted by a set of elements evenly

distributed on a circle. Given a ∆ = 2, the corresponding δ = ∆
2p = 1 is an odd

integer, hence Operation I can be used and as a result we have R = 4Z4. The solid

lines in Fig. 3.4 denote that the two connected integers form the size-2 subsets.

In Lemma 1.2 where δ is an even integer, we need to introduce an intermediate

step to form a subgroup Sin = 2p+p′Z2B−p−p′ ⊂ S such that δ
2p′ is an odd integer for

p′ > 1. The integer p′ is always available. In fact, any even integer δ can be factored
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Figure 3.4: Illustration for Operation I. S = 2Z8,∆ = 2 (δ = ∆
2

= 1 is an odd integer)
and R = 4Z4.

into the product of the powers of prime numbers as

δ = 2n13n25n3 · · · , n1 > 1, nk > 0, k = 2, 3, · · · (3.14)

In (3.14), we see that 2n1 is an even integer and the remaining factor 3n25n3 · · · is

an odd integer. We can cancel the even integer by dividing δ by 2n1 . Therefore we

always have p′ = n1. As δ
2p′ > 1 and δ 6 2B−p − 2, we have p′ 6 log2(2

B−p − 2) <

log2(2
B−p) = B − p, i.e., p′ 6 B − p− 1.

The cosets3 of Sin in S can be expressed as Sin ⊕B
m,m ∈ 2pZ2p′ . As δ

2p′ is now

an odd integer and Sin ∼ Z2B−p−p′ , from Lemma 1.1, the congruent size-2 subsets in

Sin are {2p+p′+1i, 2p+p′+1i⊕
B

∆}, i ∈ Z2B−p−p′−1 . Then the congruent size-2 subsets in

Sin ⊕B
m are

{
2p+p′+1i⊕

B
m, 2p+p′+1i⊕

B
∆⊕

B
m

}
.

This shows that by rotating the congruent size-2 subsets in Sin by an integer m, we

can form congruent size-2 subsets in its cosets. Therefore it suffices to only consider

3Here the term coset has the standard meaning as in an additive group.
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Figure 3.5: Illustration for Operation II. S = 2Z8,∆ = 4 (δ = ∆
2

= 2 is an even
integer), Sin = 4Z4,R = 8Z2.

Sin when partitioning S with an even δ. Accordingly the reference set should be

defined over Sin as R = {2p+p′+1i | i ∈ Z2B−p−p′−1} = 2p+p′+1Z2B−p−p′−1 . We define the

operation involved in Lemma 1.2 in forming R from S as Operation II. This process

is illustrated in Fig. 3.5. Given S = 2Z8 and ∆ = 4, as ∆
2p = 2 is an even integer, we

select p′ = 1 such that δ
2p′ = 1 is an odd integer. Therefore we have an intermediate

group Sin = 4Z4 (denoted in the figure by the shaded circles) and its coset Sin ⊕4 2.

Accordingly, R = 8Z2.

3.5.2 Recursive Subset-Pairing in S

Note that the reference setR = 2p+1Z2B−p−1 resulting from Lemma 1.1 or 2p+p′+1Z2B−p−p′−1

resulting from Lemma 1.2 is still in the generic form. Therefore we can set S(1) ←R,

i.e., set p ← p + 1 or p ← p + p′ + 1. The superscript in S(1) simply distinguish S(1)

from the original S, which may also be denoted as S(0). Then Operation I and II

designed to partition S can be used to partition S(1) into congruent size-2 subsets

with an arbitrary ∆ ∈ ∆S(1) . To distinguish from the previously defined R (which

may also be denoted as R(0)), we denote the reference set for these new size-2 subsets
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by R(1). By setting S(2) ← R(1), we can use Operation I or II to partition R(1). As

this process continues, we have recursively formed a new reference set R(k+1) from

the preceding R(k), k > 1 by setting S(k+1) ← R(k) and a chain of reference sets

R(0),R(1), · · · ,R(k+1) is generated.

For example, given S = 2Z8 and R = 4Z4 (the outcome of Operation I on S,

see Fig. 3.4), we can set S(1) ← R for the purpose of partitioning R. Suppose that

the ∆ ∈ ∆S(1) is 4. Then as the normalized δ = 4
4

= 1 is an odd integer, we use

Operation I on S(1), giving rise to R(1) = 8Z2. Note that the reference integers 0 and

8 represent the size-4 subsets {0, 2, 4, 6} and {8, 10, 12, 14}, respectively. To further

pair 0 and 8, as a trivial step, we set S(2) ← R(1) = {0, 8}. Now the only possible

∆ ∈ ∆S(2) is 8, and the normalized integer difference δ = 8
8

= 1 is an odd integer.

So applying Operation I on S(2) once again, we pair 0 and 8 (correspondingly, their

associated size-4 subsets) to obtain a new R(2) = {0}. Thus, we have formed a chain

of the reference sets as 4Z4, 8Z2, {0}.
From the above example, we can see that when we achieve R(k) = {0} for k > 1,

subset pairing in S is completed. However, this statement is valid only for the case

where Operation I is used all along. If Operation II is applied once, the situation will

be different and a procedure called redefinition of reference set, to be elaborated in

the following, must be carried out.

Suppose Operation II is applied on S, giving rise to the cosets Sin⊕B
m,m ∈ 2pZ2p′

and the reference set R = 2p+p′+1Z2B−p−p′−1 . Assume Operation I is used all along

to partition this R and all its successive reference sets. In this process, we need to

set S(k) ← R(k−1) for 1 6 k 6 K where K = B − p − p′ − 1 and apply Operation

I individually. When we obtain R(K) = {0}, we know that the subset-pairing in
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Sin is completed. At this stage, however, we find that the cosets themselves, i.e.,

Sin,Sin⊕B
2p, · · · ,Sin⊕B

(2p+p′−2p), need to be paired further for a complete subset-

pairing in S. For this purpose, R(K) = {0}must be redefined to represent these cosets.

A natural way is to let m to be the reference for Sin⊕B
m, because the difference set

of Sin ⊕B
m with respect to m, ∆Sin⊕B

m, is identical for distinct m. Then R(K) is

redefined to beR(K) = 2pZ2p′ = 2pZ2B′−p where B′ = p+p′. We find that the redefined

R(K) is still in the generic form. Therefore if we set S(K+1) ← R(K), Operation I or II

is still applicable, with addition ⊕
B′ instead of ⊕

B
. By induction, one can conclude

that every time Operation II is applied, an accompanying redefinition of the reference

set is necessary. For example, we still consider subset-pairing in S = 2Z8. We can see

from Fig. 3.5 that given ∆ = 4, we can obtain Sin = 4Z4 and R = 8Z2 by applying

Operation II. Then we set S(1) ←R. Now ∆ has only one value 8 and δ = 8
8

= 1 is an

odd integer, hence we use Operation I on S(1) and obtain R(1) = {0}. At this stage,

R(1) = {0} only means that subset-pairing in Sin = 4Z4 is completed. However, Sin

and Sin ⊕4 2 need to be paired further for a complete subset-pairing in S. Therefore

we redefine R(1) as R(1) = 2Z2, which is shown in Fig. 3.6. Then we set S(2) ← R(1)

and employ Operation I (as the only possible ∆ is 2 and δ = 2
2

= 1 is and odd integer)

to form integer-pairing in S(2), leading to R(2) = {0}. Then subset-pairing in S is

completed.

To justify the above proposed subset-pairing strategy in S, it is critical to prove

that congruent integer-subsets in S(k), k > 1 will lead to congruent integer subsets in

S. For this purpose, we first present the following two lemmas.

Lemma 2. Given S(k), k > 0 and the resulting R(k) by Operation I, with a

∆ ∈ ∆S(k) . Set S(k+1) ←R(k). Then the congruent size-2n ( generally n > 1) subsets
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Figure 3.6: Illustration for Redefinition. R(1) = {0} is redefined to be R(1) = 2Z2.

in S(k+1) give rise to congruent size-2n+1 subsets in S(k).

Proof. We know that S(k+1) can be expressed as a generic form as = 2qZ2Q−q for

0 6 q 6 Q − 1, Q 6 B. For the congruent size-2n subsets in S(k+1), let the identical

difference set be denoted as ∆ = {∆1, · · · ,∆2n−1}, ∆m ∈ ∆S(k+1) for 1 6 m 6 2n−1.

So for an s ∈ S(k+1), {s}⋃{s⊕
Q
∆} is one of the congruent size-2n subsets in S(k+1).

By the definition of reference, s and s⊕
Q

∆m are the references for the size-2 subsets

G0 = {s, s ⊕
Q

∆} and Gm = {s ⊕
Q

∆m, s ⊕
Q

∆m ⊕
Q

∆} in S(k). Then the size-

2n+1 subset in S(k) is G0

⋃
G1

⋃ · · ·⋃G2n−1 and the difference set with respect to

s is ∆G0
S

G1
S···SG2n−1

= {∆}⋃{∆1,∆1 ⊕Q
∆}⋃ · · ·⋃{∆2n−1,∆2n−1 ⊕Q

∆}, which

is not a function of s. This means that all the size-2n+1 subsets have the identical

difference set and therefore are congruent. Note that all additions are under ⊕
Q
. ¥

As a special case of Lemma 2, letting n = 1, we can see that congruent size-2

subsets in S(k+1) give rise to congruent size-4 subsets in S(k).

Using a similar method, we can prove:

Lemma 3. Given S(k), k > 0 and the resulting R(k) by Operation II, with a
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∆ ∈ ∆S(k) . Suppose K operations have been applied in subsequent subset-pairing in

S(k+1) ← R(k) and R(k+K) is the redefinition corresponding to this Operation II. Set

S(k+K+1) ← R(k+K). Then congruent size-2n ( generally n > 1) subsets in S(k+K+1)

give rise to congruent size-2K+n+1 subsets in S(k).

Based on these two lemmas, we have the following theorem.

Theorem 1. Given S and S(1),S(2), · · · ,S(k), k > 1, which is a series of the generic

forms on which Operation I or II has been applied. Then congruent size-2 subsets in

S(k) leads to congruent subsets in S.

Proof. From Lemma 2 and 3, congruent size-2 subsets in S(k) will lead to congruent

subsets in a S(k′), k′ 6 k− 1. For S(k′), we can still apply Lemma 2 or 3 and conclude

that the congruent subsets in S(k′) will lead to congruent subsets in S(k′′), k′′ 6 k′−1.

We can repeatedly use Lemma 2 or 3 and eventually get the conclusion that the

resulting subsets in S(0) are congruent. ¥

Theorem 1 justifies the recursive subset-pairing strategy: at time k, one only needs

to form congruent size-2 subsets in the current R(k) by setting S(k+1) ← R(k) and

applying Operation I or II, regardless of the previously used reference sets (R(t), t 6

k− 1) and the original S, and we always have that the integer subsets in S at time k

are congruent. In this sense, we can say that the reference set R(k) contains sufficient

information for a congruent subset-pairing in S.

3.5.3 Congruent Subset-Pairing in ZL

By setting S ← ZL (i.e., B ← b, p ← 0), we can see that the recursive subset-

pairing strategy proposed in Section ?? can be applied for a complete subset-pairing
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in ZL under ⊕
b
. The size-2 subsets in S will form Zb

0, · · · ,Zb
2b−1−1

( correspondingly,

Gb
0, · · · ,Gb

2b−1−1
) in layer-b of the partitioning tree. By definition, we can form the

reference set R of size L
2

for these size-2 subsets. Then by setting S(1) ← R, we can

use Operation I or II to form size-2 subsets in S(1), thus resulting in the congruent size-

4 subsets in ZL. Then we form Zb−1
0 , · · · ,Zb−1

2b−2−1
( correspondingly, Gb−1

0 , · · · ,Gb−1
2b−2−1

)

in layer-(b− 1) of the partitioning tree. This process continues until finally we reach

layer-1.

Note that when forming the partitioning tree, the ∆ from the corresponding dif-

ference set ∆S(k) is selected arbitrarily. In the next section, we will choose the optimal

∆ to satisfy Criterion 1, i.e., to form an optimal partitioning.

3.5.4 Optimal Subset-Pairing in ΦL

Based on the framework proposed in Section 3.5.1, to satisfy Criterion 1, one should

further determine an optimal ∆ ∈ ∆R(k) , denoted as ∆∗, for the integer-pairing in

R(k). For a reference r ∈ R(k), let G(r) denote the associated signal subset. Suppose

the addition is ⊕
Q

in R(k). To satisfy Criterion 1, we can see that ∆∗ should be

searched by

∆∗ = arg max
r∈R(k),∆∈∆R(k)

dmin

(
G(r)

⋃
G(r ⊕

Q
∆)

)
. (3.15)

As {0,∆} and {0⊕
Q
r,∆⊕

Q
r} are congruent size-2 subsets inR(k), we have G(0)

⋃G(∆)

∼= G(r)
⋃ G(r⊕

Q
∆) for r ∈ R(k), r 6= 0. Therefore dmin (G(0)

⋃G(∆)) = dmin (G(r)
⋃

G(r ⊕
Q

∆)), and it suffices to only consider G(0)
⋃G(∆) to obtain the optimal ∆∗.

Therefore (4.16) can be simplified into

∆∗ = arg max
∆∈∆R(k)

dmin

(
G(0)

⋃
G(∆)

)
. (3.16)
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Once ∆∗ is determined, one can obtain the corresponding normalized difference δ.

Note that ∆∗ can be an arbitrary integer in ∆R(k) . For instance, in Fig. 3.1(a), (b)

and (d), ∆∗ for size-2 subsets in ZL are even integers while in (c), ∆∗ is an odd integer.

From this observation, we can justify that ∆∗ should be taken as an arbitrary integer

in ∆R(k) for a congruent subset-pairing.

Based on the above arguments, we have the following proposition for a complete

subset-pairing.

Proposition. The subset-pairing for an arbitrary UST signal set ΦL can be for-

mulated as follows:

1) (Initialization) Set k ← 0, S(k) ← ZL and ⊕ ← ⊕
b
;

2) (Subset-pairing) Obtain ∆∗ ∈ ∆S(k) through (3.16) and determine the corre-

sponding δ. Depending on δ, employ Operation I or Operation II based on ⊕
to form congruent size-2 subsets in S(k), resulting in R(k);

3) If R(k) = {0}, go to step 4); otherwise set k ← k + 1, S(k) ← R(k−1) and go to

step 2);

4) (Redefinition) If |G(0)| = L, go to step 5); otherwise redefineR(k) and determine

Q for ⊕
Q

in the redefined R(k). Set k ← k + 1, S(k) ← R(k−1), ⊕ ← ⊕
Q
, then

go to step 2);

5) (Termination) The subset-pairing procedure terminates.

Set partitioning examples for ΦL using the Proposition will be given in Section

3.6.
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A two-branch set partitioning tree is obtained following the Proposition. Similar

to Ungerboeck’s mapping strategy, one can map binary bits 0 and 1 to the left and

right branch in the partitioning tree, respectively to obtain the so-called “mapping

by set partitioning” for TC-USTM.

3.5.5 General Extension to Other Constellations

This recursive subset-pairing strategy can be generalized to any constellation C, that

has the following property:

1) The distance profile PC(l), defined as the set of the distances between any cl ∈ C
and all other signals cl′ ∈ C, cl′ 6= cl, is the same for all the different l’s; in other

words, PC(l) is not a function of l.

2) The set of all signal indices forms an integer group of dimension as a power of

2.

For example, an M-ary phase-shift-keying (MPSK) signal set satisfies the above

two conditions. Consider 8PSK, whose Euclidean distance profile is similar to that in

Fig. 3.1(a) ( PC = {0.77, 1.41, 1.93, 2, 1.93, 1.41, 0.77}, regardless of reference l ). Let

Z8 denote the signal index set. Then Proposition in Section 3.5.4 is still applicable for

C, through the so-called recursive subset-pairing. The procedure is recorded in Table

3.1, where the subset-pairing procedure is first recorded in the bottom row, then the

second row from the bottom, and so on. In each row, the layer number, the size

of the subset G(j)
i , denoted as |G(j)

i |, the minimum distance d
(j)
min, the optimal index

difference ∆∗ and its normalized counterpart δ, the generic form S(k), the operation

type and the resulting R(k) for the current subsets, are all listed (we use the same set

of symbols as those for UST signal sets). In detail, we initiate this process by letting
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Table 3.1: Subset-pairing for 8PSK.

Layer-j |G(j)
i | d

(j)
min ∆∗ δ k S(k) − Operation → R(k)

1 8 0.77 ∼ ∼ 3 ∼ ∼ ∼
2 4 1.41 1 1 2 Z2 I 2Z1

3 2 2.00 2 2 1 Z4 II Z2

4 1 ∞ 4 4 0 Z8 II Z4

S(0) ← Z8. As ∆∗ = δ = 4 (as the resulting d3
min = 2 will be maximized) is an even

integer, then letting p′ = 2 so that 4
22 = 1 is an odd integer, and have S(0)

in = {0, 4}
and its cosets S(0)

in ⊕3 m,m ∈ Z4. Thus, by Operation II, we have R = {0}, then

R is redefined to be R = Z4. Then setting S(1) ← R we obtain that ∆∗ = δ = 2

(as the resulting d
(2)
min = 1.41 will be maximized). Letting p′ = 1, we have 2

2
= 1, an

odd integer. Then S(1)
in = {0, 2} and its coset S(1)

in ⊕2 1. As a result, R(1) = {0} and

redefined to be R(1) = Z2. The last integer-pairing in R is straightforward.

The resulting set partitioning tree is identical to that proposed in [32], where the

two-branch partition can be formulated as 8PSK / 4PSK / 2PSK / 1PSK (see also in

[53, 54]), where / denotes the quotient group operation. However we note that this

simple partitioning strategy only suits the MPSK signal set which has an inherent

regular distance profile, i.e., the Euclidean distance is symmetrical, has a maximum

at the center and is monotonically increasing (decreasing) for the first (second) half

of the profiles (similar to the distance profile shown in Fig. 3.1(a)). Our proposed

Proposition, however, can handle more complicated constellations where the distance

profile has not much regularities, as that in Fig. 3.1(b),(c) and (d).
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Table 3.2: Subset-pairing for Φ16 (T = 4,M = 2, R = 1).

Layer-j |G(j)
i | d

(j)
min ∆∗ δ k S(k) − Operation → R(k)

1 16 0.38 ∼ ∼ 4 ∼ ∼ ∼
2 8 0.44 1 1 3 2Z2 I 4Z1

3 4 0.71 1 1 2 Z4 I 2Z2

4 2 1.00 4 4 1 Z8 II Z4

5 1 ∞ 8 8 0 Z16 II Z8

3.6 Examples and Numerical Results

In this section, we perform the optimal set partitioning for the UST constellation ΦL

and evaluate the BEP performance for the resulting TC-USTM. In all cases of the

simulations, we assume that there is a single receive antenna (N = 1) and that the

channel is a piecewise constant Rayleigh flat-fading channel.

3.6.1 TC-USTM with Φ16 (T = 4,M = 2, R = 1)

The set partitioning tree for Φ16 (T = 4,M = 2, R = 1), whose intra-distance profile

is given in Fig. 3.1(d), is illustrated in Fig. 3.7. As b = R · T = 4, the tree has 5

layers and the j-th layer contains 25−j subsets of size-2j−1, 1 6 j 6 5. The integer

beside each node in the tree denotes the reference for the subset in each layer. On the

left hand side in Fig. 3.7, we also illustrate the subset-pairing process. The pertinent

parameters in the subset-pairing are recorded in Table 3.2. Note that in Table 3.2,

we first record the parameters associated with the first operation in the bottom row,

then the parameters associated with the second operation in the second row from the

bottom, and so on.

Following the Proposition in Section 3.5.4, we proceed with setting S(0) ← Z16.

By (3.16), ∆∗ = 8 and accordingly δ = ∆∗ = 8, an even integer. Let p′ = 3 such
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Figure 3.7: Set partitioning for Φ16 (T = 4,M = 2, R = 1).

that δ
2p′ = 1, an odd integer. Therefore applying Operation II on S(0), one obtains

S(0)
in = 8Z2 = {0, 8} and its cosets S(0)

in ⊕4 m, m ∈ Z8 in S(0). Note that S(0)
in itself is

already a size-2 subset and the subset-pairing in it is straightforward. The resulting

reference set is R(0) = {0}. So at this stage, one needs to redefine R(0) = Z8 and set

Q = 3 according to the Proposition. Then set S(1) ← Z8. By (3.16), one can find

that ∆∗ = 4 and accordingly δ = 4, an even integer. Therefore Operation II should

be used once again on S(1). Let p′ = 2 such that δ
2p′ = 1, an odd integer. One obtains

S(1)
in = {0, 4} and its cosets S(1)

in ⊕3 m,m ∈ Z4 in S(1). As S(1)
in is a size-2 set, readily

we have R(1) = {0} and once again R(1) is redefined to be R(1) = Z4, and Q = 2.

Set S(2) ← R(1). By (3.16), δ = ∆∗ = 1, which is an odd integer. Thus Operation I

should be employed to partition S(2) into {0, 1} and {2, 3} resulting in R(2) = {0, 2}.
The last pairing of 0 and 2 is straightforward.

We employ a rate b
b+1

TC-USTM encoder. The above partitioning scheme can be

used for the TC-USTM of T = 4,M = 2, R = 3
4

and the trellis diagram is illustrated

in Fig. 3.8 (a). For comparison, we also consider two non-optimal set partitioning



48

(a) (b) (c)

Figure 3.8: 4-state trellis diagrams for TC-USTM employing Φ16(T = 4,M = 2, R =
1). Mapping is based on (a) optimal set partitioning; (b) non-optimal set partitioning
(Case 1); (c) non-optimal set partitioning (Case 2).

schemes. The first one is referred to as Case 1, in which signals in layer-5 are paired

optimally (∆∗ = 8), however subsets in layer-4 are non-optimally paired by letting

∆ = 2 6= ∆∗ = 4. The subsequent subset-pairing follows the Proposition. The trellis

diagram that results from Case 1 is illustrated in Fig. 3.8(b). Another non-optimal

set partitioning is referred to as Case 2, in which ∆ = 1 6= ∆∗ = 8 for integers in

layer-1. The remaining subset-pairing in Case 2 follows the Proposition. The trellis

diagram is illustrated in Fig. 3.8(c).

In Fig. 3.9 we show that TC-USTM with the optimal set partitioning has a

significant coding gain (> 7 dB) over Case 2 in the high SNR region. However,

compared with Case 1, it has a slight coding gain (6 1 dB) in the moderate SNR

region and has almost the same performance at high SNR. Here we see that d
(4)
min for

size-2 subsets plays a more important role than d
(j)
min, j 6 3 for larger size subsets

when there are 2 parallel paths in the trellis diagram. This justifies that the two

signals with the largest distance should be paired to form the size-2 subsets. It can

be easily deduced that if there are 2κ, κ > 2 parallel paths between consecutive states,

then the minimum distance in the size-2κ subsets is more important than that in the
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Figure 3.9: BEP comparison between TC-USTM (T = 4,M = 2, R = 0.75) with
optimal set partitioning and non-optimal set partitioning.

larger subsets.

The BEP lower bound can be evaluated by following the formula given in Section

3.3. Due to that now the size-2 subsets are all congruent, and the associated number of

bit error is 1 for the “mapping by set partitioning”, the analytical BEP performance

can be evaluated by simply assuming that the all Φ0 sequence is transmitted and

the shortest error event with length 1 is {Φ8, Φ0, Φ0, · · · }. At high SNR, the BEP

associated with the shortest error event dominates the overall error performance. We



50

Table 3.3: Subset-pairing for Φ16 (T = 3,M = 1, R = 1.33).

Layer-j |G(j)
i | d

(j)
min ∆∗ δ k S(k) − Operation → R(k)

1 16 0.61 ∼ ∼ 4 ∼ ∼ ∼
2 8 0.61 8 1 3 8Z2 I 16Z1

3 4 0.74 4 1 2 4Z4 I 8Z2

4 2 0.98 2 1 1 2Z8 I 4Z4

5 1 ∞ 7 7 0 Z16 I 2Z8

find that the simulation and the analytical results agree well at high SNR. As TC-

USTM with the optimal set partitioning and that in Case 1 have the same shortest

error events, the lower bounds for both cases are identical.

3.6.2 TC-USTM with Φ16 (T = 3,M = 1, R = 1.33)

Set partitioning for Φ16 (T = 3,M = 1, R = 1.33), whose distance profile is given in

Fig. 3.1(c), is illustrated in Fig. 3.10. The subset-pairing procedure is shown on the

left hand side of the figure. We follow the Proposition in Section 3.5.4 and initiate

the subset-pairing by setting S(0) ← Z16. The detailed parameters in this process are

recorded in Table 3.3.

For comparison, we employ a non-optimal set partitioning of Φ16 by letting

∆ = 5 6= ∆∗ = 7 for the first layer while the subsequent subset-pairing follows

the Proposition. In this example, we employ a 4-state and a 16-state trellis diagrams

to investigate the BEP of the TC-USTM with and without the optimal set partition-

ing. In Fig. 3.11 we show for TC-USTM of 4-state, around 2 dB coding gain can be

obtained at high SNR by TC-USTM with the optimal set partitioning over the one

with non-optimal partitioning. For 16-state trellis, one can see that the coding gain

is not that significant and the lower bounds are quite loose compared with the 4-state
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Figure 3.10: Set partitioning for Φ16 (T = 3,M = 1, R = 1.33).

Table 3.4: Subset-pairing for Φ8 (T = 2,M = 1, R = 1.5).

Layer-j |G(j)
i | d

(j)
min ∆∗ δ k S(k) − Operation → R(k)

1 8 0.38 ∼ ∼ 3 ∼ ∼ ∼
2 4 0.71 1 1 2 Z2 I 2Z1

3 2 1.00 2 2 1 Z4 II Z2

4 1 ∞ 4 4 0 Z8 II Z4

case. However, the value of coding gain demonstrated by the lower bounds and the

simulation results agree well.

3.6.3 TC-USTM with Φ8 (T = 2,M = 1, R = 1.5)

In this example, we perform the optimal set partitioning for the signal set Φ8 (T =

2,M = 1, R = 1.5), which is used for the TC-USTM of T = 2,M = 1, R = 1. In

Table 3.4, we recorded the pertinent parameters in the subset-pairing procedure. The

set partitioning tree has the same structure as the one in Fig. 3.3.

In this section, we mainly compare the BEP performance between the resulting

TC-USTM (T = 2,M = 1, R = 1) using Φ8 and the TC-USTM (T = 4,M =
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Figure 3.11: BEP comparison between TC-USTM (T = 3,M = 1, R = 1) with
optimal set partitioning and non-optimal set partitioning.
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Figure 3.12: BEP comparisons between TC-USTM (T = 2,M = 1, R = 1) and
TC-USTM (T = 4, M = 2, R = 1), with optimal set partitioning. `min = 1.

2, R = 1) with Φ32(T = 4,M = 2, R = 1.25). We examine two cases: `min = 1 and

`min = 2. In the first case, we use a 2-state trellis for TC-USTM with Φ8 and a

16-state trellis for the one with Φ32. In the second case, we use an 8-state trellis and

a 32-state trellis, respectively for the two TC-USTM schemes. The error performance

is given in Fig. 3.12 and Fig. 3.13. Both TC-USTM schemes have significant coding

gains over the uncoded USTM. We know that the TC-USTM with T = 4,M = 2 has

diversity gain (order) MN = 2, while the TC-USTM with T = 2,M = 1 has diversity
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Figure 3.13: BEP comparisons between TC-USTM (T = 2,M = 1, R = 1) and
TC-USTM (T = 4, M = 2, R = 1), with optimal set partitioning. `min = 2.

gain MN = 1. Therefore though both schemes have the same coding gain `min = 1,

the TC-USTM using larger number antennas performs much better than the former,

which is shown in both figures. One can also observe that the slope of the error rate

curves in Fig. 3.13 where `min = 2 is much more sharper than their counterparts in

Fig. 3.12 where `min = 1. This is because for the former, the coding gain in terms of

`min is increased to 2. One can also observe that the BEP lower bounds in Fig. 3.13

are not as tight as those in Fig. 3.12.
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3.7 Summary

We have performed the PEP and BEP analysis of the TC-USTM in Rayleigh flat

fading channel in this section. Based on these analysis, the design criteria for a good

TC-USTM have been proposed, and lead to the so-called optimal set partitioning. A

systematic as well as universal set partitioning strategy is proposed for an arbitrary

UST signal set. This approach is based on a procedure called subset-pairing, and

this procedure can be implemented in the recursive manner through the definition

of the reference set R. The BEP performance of the TC-USTM is investigated in

terms of computer simulations and theoretical analysis. It is demonstrated that TC-

USTM outperforms its uncoded counterparts and in most cases the BEP lower bounds

agree well with the simulation results. Due to the assumption of piecewise constant

Rayleigh fading channel, we should point out that in practice TC-USTM is especially

catered for a rapid fading channel, or for a frequency hopping or fully block-interleaved

communication system.



Chapter 4

Multiple Trellis-Coded Unitary
Space-Time Modulation

4.1 Background

In the classical work by Divsalar and Simon [34]-[36], multiple trellis coded modula-

tion (MTCM) was proposed for a single antenna communication system, where k > 2

MPSK signals are assigned to a trellis branch. The accompanying set partitioning

scheme for MTCM employing k-fold Cartesian products of the MPSK signal set was

proposed in [36]. Significant coding gain can be obtained by MTCM over the con-

ventional (single signal per trellis branch) TCM, when both have the same number of

trellis states and information rates. Most recently we have noticed that MTCM has

been combined with space-time trellis codes [17, 43] and a concatenated space-time

block codes with trellis codes [26] to obtain a better BEP performance. However, in

[17], [43], [26], the CSI is assumed to be known a priori or has to be estimated and

tracked through training.

In this chapter, we extend the TC-USTM scheme to the multiple trellis-coded

USTM (MTC-USTM) by combining USTM and MTCM, where k > 2 UST signal

blocks are assigned to a single trellis branch. As in previous works [4, 9, 10, 15], we

56
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assume the so-called piecewise constant Rayleigh flat fading channel where CSI is not

known both at the transmitter and receiver. We propose design criteria which are

aimed at minimizing the PEP, which also leads to a lower BEP for the MTC-USTM.

We also designed a partitioning approach for the k-fold Cartesian product of the UST

signal set. Through analysis and computer simulations, we shall demonstrate that

MTC-USTM can produce superior BEP performance over the TC-USTM of the same

information rate and number of trellis states.

This chapter is organized as follows. Design criteria minimizing the PEP are

presented in Section 4.2. A systematic code design approach and the numerical

results are presented in Section 4.3 and 4.4 respectively. We summarize this chapter

in Section 4.5.

4.2 Performance Analysis and Design Criteria for

MTC-USTM

In this section, we are concerned with a rate bk
(b+1)k

= b
(b+1)

, k > 2 MTC-USTM in

which a k-tuple c = (Φd1 , · · · , Φdk
) is assigned to a single trellis branch, where dr ∈ ZL

for r = 1, · · · , k and L = 2b+1. Let cr denote the r-th signal in c. Suppose a multiple

trellis coded sequence ΦK = {Φlt , 1 6 t 6 K} is transmitted, where t is the time

index of each signal block and lt ∈ ZL is the data transmitted at t. Note that the

sequential signal blocks of length k belong to the same k-tuple and K is a multiple

of k. The received signal Xt can be expressed as

Xt =
√

ρT/MΦltHt + Wt. (4.1)

In equation (4.1), Ht and Wt follow the same definitions as those for equation (3.3).

ρ is the signal-to-noise ratio (SNR) at each receive antenna. An error event happens
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when the decoder selects another sequence Φ̂K = {Φl̂t
, 1 6 t 6 K}, l̂t ∈ ZL in place

of ΦK . The length of the error event is defined as the number of places in which the

two coded sequences differ, i.e., the Hamming distance between ΦK and Φ̂K .

As Xt, 1 6 t 6 K are independent due to the independent realizations of Ht, the

PEP for MTC-USTM can be derived using the same method as that for TC-USTM

in Section 3. The PEP p(ΦK → Φ̂K) of mistaking ΦK for Φ̂K , or vice versa, is

p(ΦK → Φ̂K) =
1

4π

∫ ∞

−∞

dx

x2 + 1/4

∏
t∈η

M∏
m=1

[
1 +

(ρT/M)2(1− d2
m,t)(x

2 + 1/4)

1 + ρT/M

]−N

,

(4.2)

where η denotes the set of t for which Φlt 6= Φl̂t
along the path of the error event and

dm,t is the mth singular value of the correlation matrix Φ†
lt
Φl̂t

. By letting ρ approach

∞, i.e., in the region of sufficiently high SNR, we have

p(ΦK → Φ̂K) 6 1

2`min

(
ρT

4M

)−MN`min ∏
t∈ηmin

ζ(Φlt , Φl̂t
)−2MN , (4.3)

where ηmin denotes the set of t along the path of the shortest error event of length

`min. In this chapter, we shall employ d to denote the Hamming distance between

two k-tuples. So in the sequel, the dissimilarity between Φl and Φl′ is denoted as

ζ(Φl, Φl′) (instead of d(Φl, Φl′)) and we also refer to
∏

t∈ηmin
ζ(Φlt , Φl̂t

) as the dis-

similarity product along the path of the shortest error event. The upper bound in

(4.3) gives an approximate estimate of the exact PEP given by equation (4.2), which

has been demonstrated in Section 3.3 in Chapter 3. Therefore for simplicity, we can

investigate (4.3) instead of (4.2) to minimize the PEP. It follows that `min plays a

more important role than the dissimilarity product, because the PEP bound (4.3) is

inversely proportional to the (MN`min)-th power of the SNR. Therefore the prime

objective of a good MTC-USTM design is to maximize `min while the second objective
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is to maximize the dissimilarity product along the path of the shortest error event.

There are bk information bits per encoding interval (T -symbol period), where

b = RT . Therefore there are 2bk paths emanating from each state. The number

of parallel paths between two consecutive states depends on the connectivity of the

trellis. For example, if the trellis is fully connected (all the 2ν states are mutually

connected), there are 2bk−ν parallel paths between any two states. Given bk and the

number of parallel paths between states, the fully connected trellis has the minimum

number of states. Therefore we focus on the MTC-USTM employing a fully connected

trellis with parallel paths by assuming bk > ν. Let (i, j) denote the pair of connected

states, i, j ∈ Z2ν . For any (i, j), the 2bk−ν parallel k-tuples form a set denoted as Gi,j.

Let c1 and c2 denote any two k-tuples and d(c1, c2) their Hamming distance. The

intra (subset)-Hamming distance in Gi,j is defined as

d(Gi,j) = min
c1,c2∈Gi,j ,c1 6=c2

d(c1, c2). (4.4)

The inter (subset)-Hamming distance between Gi,j and Gi′,j′ , i 6= i′ and/or j 6= j′ is

defined as

d(Gi,j,Gi′,j′) = min
c1∈Gi,j ,c2∈Gi′,j′

d(c1, c2). (4.5)

To increase `min, one has to maximize d(Gi,j) for each (i, j) so as to maximize the length

of the shortest error event that covers one branch in the trellis diagram. Moreover,

to maximize the length of the shortest error event that covers more than one branch,

one should also maximize the minimum of d(Gi,j,Gi,j′), j 6= j′ for subsets emanating

from the same state i, defined as

di,∗ = min
06j 6=j′62ν−1

d(Gi,j,Gi,j′), (4.6)

as well as the minimum of all the d(Gi,j,Gi′,j), i 6= i′ for subsets merging at the same
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state j, defined as

d∗,j = min
06i6=i′62ν−1

d(Gi,j,Gi′,j). (4.7)

It is desirable that

di,∗ + d∗,j > d(Gi,j) (4.8)

such that the length of the shortest error event is determined by the intra-Hamming

distance d(Gi,j). The inequality (4.8) is automatically satisfied for conventional (k =

1) TCM or TC-USTM. If di,∗ = d∗,j, then di,∗ = d∗,j > dd(Gi,j)

2
e, where d·e denotes the

smallest integer not less than (·). As d(Gi,j) 6 k, we have

Criterion 1. `min = k.

In other words, we require that d(Gi,j) = k for each (i, j) under the constraint of (4.8).

In the remainder of this section, we assume that Criterion 1 has been satisfied.

Let ξ(c1, c2) denote the dissimilarity product between c1 and c2, defined as ξ(c1, c2)

=
∏k

r=1,cr
1 6=cr

2
d(cr

1, c
r
2). For the trivial case of c1 = c2, ξ(c1, c2) = 0. Since Criterion

1 is assumed to have been satisfied, d(Gi,j) = k. Then the intra (subset)-dissimilarity

product in Gi,j is defined as

ξ(Gi,j) = min
c1,c2∈Gi,j ,c1 6=c2

ξ(c1, c2). (4.9)

From inequality (4.3), ξ(Gi,j) is associated with the highest PEP between two k-tuples

in Gi,j and accordingly determines the average PEP in Gi,j. Therefore to minimize

the average PEP of the shortest error events that cover one branch, ξ(Gi,j) should be

maximized. We have

Criterion 2. ξ(Gi,j) should be maximized for every (i, j).
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We next consider Gi,j and Gi,j′ , j 6= j′, which have the same emanating state but

distinct merging states. Note that di,∗ 6 d(Gi,j,Gi,j′) 6 k. We define a set of k-

tuple pairs ϑ(Gi,j,Gi,j′) = {(c1, c2) | c1 ∈ Gi,j, c2 ∈ Gi,j′ , d(c1, c2) = d(Gi,j,Gi,j′)}.
From (3.9) we can see that the pairwise error-event is more likely to happen between

c1 ∈ Gi,j, c2 ∈ Gi,j′ for (c1, c2) ∈ ϑ(Gi,j,Gi,j′) rather than between those excluded

from ϑ(Gi,j,Gi,j′). Thus the inter (subset)-dissimilarity product between Gi,j and Gi,j′

is defined as

ξ(Gi,j,Gi,j′) = min
(c1,c2)∈#(Gi,j ,Gi,j′ )

ξ(c1, c2). (4.10)

Consider now the case in which d(Gi,j,Gi,j′) = di,∗ holds for all j 6= j′ ∈ Z2ν . Then the

following quantity determines the average PEP for all the k-tuples emanating from

state i

ξi,∗ = min
j,j′∈Z2ν ,j 6=j′

ξ(Gi,j,Gi,j′). (4.11)

For the cases where there exist d(Gi,j,Gi,j′) > di,∗ for j 6= j′ ∈ Z2ν , the searching

space for j, j′ in (4.11) should be constrained to the set Ji,∗ = {(j, j′) | d(Gi,j,Gi,j′) =

di,∗, j, j′ ∈ Z2ν , j 6= j′}.
Similarly, the above definitions can be extended to Gi,j and Gi′,j, i 6= i′, which

have the same merging state but distinct emanating states, resulting in ϑ(Gi,j,Gi′,j),

ξ(Gi,j,Gi′,j), ξ∗,j and J∗,j. To maximize the dissimilarity product along the path of

the shortest error events that cover more than one branch, ξi,∗ and ξ∗,j should also be

maximized for every (i, j). Therefore we have:

Criterion 3. ξi,∗ and ξ∗,j should be maximized for every (i, j).

Criterion 1 forces `min to be maximized when there are parallel paths between

states. This criterion is not considered in [35, 36]. For instance, for MTCM with
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k = 3 [35], the `min can be 2 which is less than k. Therefore with the same information

rate and number of states, the error performance of MTCM with k = 3 is comparable

to that of MTCM with k = `min = 2. Thus the benefits of employing a greater k

cannot be realized. We avoid this by forcing `min = k in MTC-USTM. Criterion 2 and

3 further reduce the PEP associated with the error events of length `min by forcing

the dissimilarity product to be maximized. These three criteria deal with the worst

case, i.e., the shortest error events with the least dissimilarity product, which most

frequently happen at high SNR. By minimizing the probabilities of these error events,

the overall error performance of MTC-USTM can be improved.

Compared with the afore proposed criteria, design criteria for TC-USTM with

parallel paths are quite different. In TC-USTM with parallel paths between two

consecutive states, `min = 1, and therefore error events covering more than one branch,

whose length is at least 2, can be neglected at high SNR. Thus design criteria in this

case are focused on maximizing the minimum dissimilarity in the subsets formed by

signals assigned to the parallel paths between two consecutive states. This issue has

been treated in Chapter 3 by applying Ungerboeck’s “mapping by set partitioning”

to the UST signal set ΦL. That is, a set partitioning “tree” is formed for ΦL, and it

is required that in each layer of the tree, signal subsets have the identical minimum

distance ζ
(j)
min; in addition, ζ

(j)
min for subsets should increase as rapidly as possible

as j increases. For TC-USTM with κ = 2q, 1 6 q 6 b parallel paths between two

consecutive states, the size-κ subsets in the same layer of the tree should be employed

for mapping to the parallel paths between connected states.
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We conclude this section by presenting an asymptotic BEP formula for MTC-

USTM

Pb ≈ 1

kb

`′∑

`=`min

J(`)∑
j=1

m`,jp(ΦK
`,j → Φ̂K

`,j), (4.12)

where J(`) is the number of the possible error events having the same length ` and

is often referred to as the multiplicity of the error events of length `. In (4.12),

m`,j is the number of bit-errors associated with the jth error event of length ` and

p(ΦK
`,j → Φ̂K

`,j) is the PEP associated with this error event, which can be explicitly

evaluated by employing equation (4.2). The integer `′ is chosen such that most of

the dominant error events are included. A BEP lower bound at high SNR can be

obtained by only taking the shortest error event into account. By setting `′ = `min in

(4.12), we have

Pb & 1

kb

J(`min)∑
j=1

m`min,jp(ΦK
`min,j → Φ̂K

`min,j), (4.13)

which gives an accurate estimate of the BEP in the regime of high SNR. The BEP Pb

in (4.12) and its lower bound in (4.13) are linear combinations of the PEP’s associated

with the dominant error events. This indicates that the afore proposed criteria that

are aimed at minimizing the PEP will also lead to a good BEP performance.

4.3 Design of MTC-USTM

First we consider k = 2. For the 2-fold Cartesian product ΦL × ΦL, we note that

|ΦL×ΦL| = L2, where | · | denotes the dimension of (·). Let Ψ0
L = {Φm0 , · · · , ΦmL−1

},
where (m0, · · · ,mL−1) is a permutation of the integer sequence (0, · · · , L− 1). Then

Ψλ
L = {Φm0⊕λ, · · · , ΦmL−1⊕λ}, λ ∈ ZL are the cyclic shifted versions of Ψ0

L, where ⊕
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denotes addition modulo-L. We define ordered Cartesian product as

Gλ = ΦL ⊗Ψλ
L =

{
(Φ0, Φm0⊕λ), · · · , (ΦL−1, ΦmL−1⊕λ)

}
. (4.14)

As |Gλ| = L, the operator Gλ for λ ∈ ZL partitions ΦL × ΦL into L subsets. This

partitioning scheme guarantees that d(Gλ) = k = 2. Moreover,

d(Gλ,Gλ′) = 1 for λ 6= λ′ ∈ ZL. (4.15)

There are L! permutations to form Ψ0
L. We adopt the method in [36] to form Ψ0

L

systematically by Ψ0
L = {Φnl | l ∈ ZL}, where n ∈ ZL is an odd integer. In fact, any

integer n ∈ ZL relatively prime to L is a generator of the integer group ZL under ⊕,

i.e., for a generator n, ZL = {nl | l ∈ ZL}. And we note that the odd integers are all

relatively prime to L = 2b. In each Gλ, the dissimilarity product between two 2-tuples

(Φl, Φnl⊕λ) and (Φl′ , Φnl′⊕λ), l 6= l′ is ξ ((Φl, Φnl⊕λ), (Φl′ , Φnl′⊕λ)) = ζ∆l,l′ζ∆nl,nl′ , which

is not a function of λ (note that ζ∆l,l′ is a simplified notation for ζ(Φl, Φl′) due to

Property 1 in Section 3.2). Therefore ξ(Gλ) are identical for all λ and can be denoted

as ξm. To maximize ξm, the optimal n, denoted as nopt is

nopt = arg max
n∈{1,3,··· ,L−1}

min
06l 6=l′6L−1

ζ∆l,l′ζ∆n·l,n·l′ . (4.16)

If Gλ, which is formed with nopt, is mapped to Gi,j, then d(Gi,j) = 2 and ξ(Gi,j)

is maximized. As |Gi,j| = |Gλ| = L = 2b+1 and the fact that there are 22b branches

emanating from each state, the state number is 2ν = 22b

2b+1 = 2b−1. For clarity, a 2ν×2ν

mapping matrix M can be formed, with entries Mi,j = λ, which is the subscript of

Gλ that is mapped to Gi,j. We shall collect two sets of λ’s, Λ ⊂ ZL and Λ′ ⊂ ZL

which satisfy |Λ| = |Λ′| = 2ν ,Λ
⋂

Λ′ = Ø, and map Λ and Λ′ to the first and second

rows of M, respectively. Criterion 1 requires that d(Gλ,Gλ′) >
⌈

k
2

⌉
for λ 6= λ′ ∈ Λ
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(or Λ′), which is satisfied for k = 2 due to (4.15). We form the even rows of M by

permutations of Λ and the odd rows by permutations of Λ′. To allow for arbitrary

permutations and in the meantime to ensure that d∗,j > 1, j ∈ Z2ν , we require that

for λ 6= λ′ ∈ Λ
⋃

Λ′, d(Gλ,Gλ′) >
⌈

k
2

⌉
. This is also satisfied for the case of k = 2

due to (4.15).

Next we attempt to determine Λ and Λ′ based on Criterion 3. Consider (Φl, Φnoptl⊕λ)

∈ Gλ and (Φl′ , Φnoptl′⊕λ′) ∈ Gλ′ for l, l′, λ, λ′ ∈ ZL. Due to (4.15), ϑ(Gλ,Gλ′) =

ϑ1

⋃
ϑ2, where ϑr = {(c1, c2) | c1 ∈ Gλ, c2 ∈ Gλ′ , c

r
1 = cr

2} for r = 1, 2. Obviously,

ϑ1 = {((Φl, Φnopt·l⊕λ), (Φl, Φnopt·l⊕λ′)) | l ∈ ZL}, resulting in ξ(c1, c2) = ζ∆λ,λ′ for

(c1, c2) ∈ ϑ1. To form ϑ2, let noptl⊕λ = noptl
′⊕λ′, which results in nopt(l−l′) = λ′−λ.

As nopt is a generator of ZL, there always exists an integer a ∈ ZL such that nopta = 1.

Accordingly, we have nopt(l − l′) = nopta(λ′ − λ) and subsequently l − l′ = a(λ′ − λ).

Therefore ϑ2 = {((Φl, Φnopt·l⊕λ), (Φl−a(λ′−λ), Φnopt·l⊕λ)) | l ∈ ZL}, which results in

ξ(c1, c2) = ζ∆aλ′,aλ
. According to (4.10)

ξ(Gλ,Gλ′) = min
{

ζ∆λ,λ′ , ζ∆aλ,aλ′

}
. (4.17)

The searching space for Λ is ZL due to (4.15). According to (4.11), the optimal Λ,

denoted as Λopt can be searched by

Λopt = arg max
Λ⊂ZL

min
λ,λ′∈Λ,λ6=λ′

ξ(Gλ,Gλ′). (4.18)

Similarly, the optimal Λ′, denoted as Λ′
opt is

Λ′
opt = arg max

Λ′⊂Λopt

min
λ,λ′∈Λ′,λ6=λ′

ξ(Gλ,Gλ′). (4.19)

where (·) denotes the complement of (·) in ZL. The permutations of Λopt and Λ′
opt

should be made such that ξ∗,j for j ∈ ZL is maximized. We investigate the following

examples for elaboration.
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Example 1. Consider a MTC-USTM of T = 2,M = 1, k = 2 and R = 1 where

Φ8 (T = 2,M = 1, R = 1.5) is employed. By (4.16), nopt = 3 and accordingly

ξm = 0.3536. The 8 subsets of Φ8 ×Φ8 are obtained from (4.14) as

G0 = Φ8 ⊗Ψ0
8 = {(Φ0, Φ0), · · · , (Φ7, Φ5)},

...

G7 = Φ8 ⊗Ψ7
8 = {(Φ0, Φ7), · · · , (Φ7, Φ4)}.

As |Gλ| = 8 and 2kb = 16, 2ν = 16
8

= 2. As nopta = 1, a = 3. According to (4.18) and

by referring to Fig. 3.1(a), one can obtain four sets Λ = {0, 4}, Λ⊕1, Λ⊕2 and Λ⊕3,

where ⊕ between an integer and a set denotes the addition between the integer with

every element in the set. In fact, for λ 6= λ′ ∈ Λ⊕ p, p ∈ Z4, ∆λ,λ′ = ∆aλ′,aλ = 4 and

accordingly ξ(Gλ,Gλ′) = min{ζ4, ζ4} = 1 is maximized. Without loss of generality,

let Λopt = Λ. From the remaining 3 sets, one should choose the one which maximizes

ξ∗,0 and ξ∗,1 at the same time. It is not difficult to find that Λ′
opt = Λ⊕ 2 is the right

choice, as ξ(G0,G2) = ξ(G4,G6) = min{ζ2, ζ6} = 0.7071, which leads to ξ∗,0 = ξ∗,1 =

0.7071, while the other two sets give rise to ξ∗,0 = ξ∗,1 = 0.3827. Therefore

M =

(
0 4
2 6

)

and the trellis diagram is illustrated in Fig. 4.1(a). ¥

Example 2. Consider a MTC-USTM of T = 4,M = 2, k = 2 and R = 1 where

Φ32 (T = 4,M = 2, R = 1.25) is employed. One can determine nopt = 15 and
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Figure 4.1: Trellis diagrams for MTC-USTM of R = 1. (a) `min = k = 2, 2 states,
Φ8 (T = 2,M = 1, R = 1.5) is used; (b) `min = k = 2, 8 states, Φ32 (T = 4,M =
2, R = 1.25) is used.

ξm = 0.1464. Accordingly, a = 15. Φ32 ×Φ32 can be partitioned into 32 subsets as

G0 = Φ32 ⊗Ψ0
32 = {(Φ0, Φ0), · · · , (Φ31, Φ17)},

...

G31 = Φ32 ⊗Ψ31
32 = {(Φ0, Φ31), · · · , (Φ31, Φ16)}.

As |Gλ| = 32, 2kb = 28, the state number is 2ν = 28

32
= 8. From Fig. 3.1(b) and (4.18)

one can determine 4 subset-index sets Λ = {0, 2, 8, 10, 16, 18, 24, 26}, Λ ⊕ 1, Λ ⊕ 4

and Λ⊕ 5, which lead to that ξi,∗, i = 0, 2, 4, 6 are maximized to be 0.4374. Without

loss of generality, let Λopt = Λ and subsequently let Λ′
opt = Λ ⊕ 4. Then M can be

formed and the corresponding trellis diagram is illustrated in Fig. 4.1(b). Note that
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the resulting ξi,∗ = 0.4374, ξ∗,j = 0.3827, i, j ∈ Z8 are all maximized. ¥

Example 3. We reconsider Example 1 for the case of R = 2. For uncoded USTM,

Φ16 (T = 2,M = 1, R = 2) is employed, while for TC-USTM and MTC-USTM, a

double-sized signal set Φ32 (T = 2,M = 1, R = 2.5) is employed. Through (4.16),

nopt = 7 and ξm = 0.0622. Accordingly, a = 23. The 32 subsets in Φ32 ×Φ32 are

G0 = Φ32 ⊗Ψ0
32 = {(Φ0, Φ0), · · · , (Φ31, Φ25)},

...

G31 = Φ32 ⊗Ψ31
32 = {(Φ0, Φ31), · · · , (Φ31, Φ24)}.

As |Gλ| = 32 and 2kb = 28, the state number is 28

32
= 8. Through (4.18), one

can obtain Λ = {0, 4, 8, 12, 16, 20, 24, 28}, Λ ⊕ 1, Λ ⊕ 2 and Λ ⊕ 3, which lead to

ξ0,∗ = 0.3827. We let Λopt = Λ and Λ′
opt = Λ⊕ 2 and form M as

M =




0 4 8 12 16 20 24 28
6 10 14 18 22 26 30 2
4 0 12 8 20 16 28 24
10 6 18 14 26 22 2 30
8 12 0 4 24 28 16 20
14 18 6 10 30 2 22 26
12 8 4 0 28 24 20 16
18 14 10 6 2 30 26 22




.

In this way, ξi,∗ = 0.3827 and ξ∗,j = 0.1951, i, j ∈ Z8 are all maximized. ¥

To form subsets of dimension L
2

in ΦL ×ΦL, one can let Φ0
L/2 = {Φ2l | l ∈ ZL/2},

Φ1
L/2 = {Φ2l+1 | l ∈ ZL/2} and correspondingly, Ψ0,λ

L/2 = {Φ2ln⊕λ | l ∈ ZL/2} and

Ψ1,λ
L/2 = {Φ(2l+1)n⊕λ | l ∈ ZL/2}, where n ∈ ZL/2 is an odd integer, λ ∈ ZL. The ordered

Cartesian products Gλ0 = Φ0
L/2⊗Ψ0,λ

L/2 and Gλ1 = Φ1
L/2⊗Ψ1,λ

L/2 will form two subsets
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of dimension L
2
, where λq, q = 0, 1 denotes the subset-index. For c1 6= c2 ∈ Gλ0 ,

ξ(c1, c2) = ζ∆2l,2l′ζ∆2ln,2l′n ; for c1 6= c2 ∈ Gλ1 , ξ(c1, c2) = ζ∆2l⊕1,2l′⊕1
ζ∆(2l⊕1)n,(2l′⊕1)n

=

ζ∆2l,2l′ζ∆2ln,2l′n . This implies that the dissimilarity profile in Gλ0 is identical to that

in Gλ1 . Therefore it is sufficient to find the optimal n, denoted as n′opt by considering

Gλ0 to satisfy Criterion 2. This can be searched by using (4.16) (replacing L with

L/2). If n′opt = nopt, one can observe that Gλ = Gλ0

⋃
Gλ1 , i.e., the size-L

2
subsets

can be obtained by partitioning the size-L subset. In a similar way, one can find

size-L
4

subsets in ΦL ×ΦL and so on.

Example 4. We reconsider Example 1 by employing size-4 subsets. Let Φ0
4 =

{Φ0, Φ2, Φ4, Φ6}, Φ1
4 = {Φ1, Φ3, Φ5, Φ7}. As n′opt = 3 by (4.16), we have Ψ0,λ

4 =

{Φ2l·3⊕λ | l ∈ Z4} and Ψ1,λ
4 = {Φ(2l+1)3⊕λ | l ∈ Z4}. The resulting subsets are

G00 = {(Φ0, Φ0), · · · , (Φ6, Φ2)}

G01 = {(Φ1, Φ3), · · · , (Φ7, Φ5)}
...

G70 = {(Φ0, Φ7), · · · , (Φ6, Φ1)}

G71 = {(Φ1, Φ2), · · · , (Φ7, Φ4)}.

As |Gλq | = 4 and 2kb = 16, a 4-state trellis is needed. One can observe that

d(Gλq ,G(λ⊕2p)q′ ) = 2 for q 6= q′ ∈ {0, 1} and p ∈ Z4. When p = 0, ξ(Gλq ,Gλq′ ) =

0.3536 while when p 6= 0, ξ(Gλq ,G(λ⊕2p)q′ ) = 0.1465. Therefore Λopt = {λ0, λ1, (λ ⊕
2p)0, (λ⊕ 2p)1}, with 1 6 p 6 3 yet to be determined. We note that d(Gλq ,G(λ⊕2p)q)

= 1 for 1 6 p 6 3, and when p = 2, ξ(Gλq ,G(λ⊕4)q) = min{ζ4, ζ4} = 1, so we have

p = 2. Without loss of generality, letting λ = 0, we have Λopt = {00, 01, 40, 41}. From

Λopt ⊕ 1,Λopt ⊕ 2 and Λopt ⊕ 3, we let Λ′
opt = Λopt ⊕ 2 = {20, 21, 60, 61}, because
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ξ(G00 ,G20) = min{ζ2, ζ6} = 0.7071, while Λopt⊕ 1 and Λopt⊕ 3 give rise to a smaller

value 0.3827. Therefore

M =




00 01 40 41

20 21 60 61

41 40 01 00

61 60 21 20


 .

As a result, ξi,∗ = 1 and ξ∗,j = 0.7071 are all maximized for i, j ∈ Z4. ¥

For the general case of k > 2, we define the set n = {nq | q = 1, · · · , k − 1}, nq ∈
{1, 3, · · · , L−1}. Let Ψ0

L,q, 1 6 q 6 k−1 denote the k−1 permutations of ΦL. Then

there are Lk−1 subsets as Gλ = ΦL ⊗Ψλ1
L,1 ⊗ · · · ⊗ Ψ

λk−1

L,k−1, λq ∈ ZL and |Gλ| = L.

The subset-index is defined as λ =
∑k−1

q=1 λqL
k−1−q. To satisfy Criterion 2, similar to

(4.16), the optimal n, denoted as nopt can be determined by:

nopt = arg max
n

min
06l 6=l′6L−1

ζ∆l,l′

k−1∏
q=1

ζ∆nql,nql′ . (4.20)

We observed that if ΦL of dimension L = 2b+1 is employed following [32], [35],

[38] or [52], in most cases, there are not enough λ’s to form Λ and Λ′ such that for

λ 6= λ′ ∈ Λ
⋃

Λ′, d(Gλ,G
′
λ) >

⌈
k
2

⌉
. To overcome this problem, we employ ΦL with

L = 2b+p′ , p′ > 2. To maintain the same bandwidth, ΦL should be formed by keeping

T unchanged while R is increased to R + p′
T
. The following benefits justify using a

larger ΦL:

1) |Gλ| = 2b+p′ , which is 2p′−1 times greater than 2b+1 (the conventional case), thus

the state number 2ν = 2kb

2b+p′ , as well as |Λopt

⋃
Λ′

opt|, is only a fraction ( 1
2p′−1 )

of those for the conventional case.
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2) The searching space for Λopt and Λ′
opt is increased, as now we have in total

Lk−1 = (2b+p′)k−1 subsets, which is 2(b+p′)(k−1)

2(b+1)(k−1) = 2(p′−1)(k−1) times greater than

that of the conventional case.

Therefore with a larger ΦL, Criterion 1 can be more easily satisfied. However, ΦL of

a greater dimension with fixed T results in a reduced minimum dissimilarity in ΦL,

which in turn gives rise to a reduced ξm, as well as ξi,∗ and ξ∗,j. Nonetheless, as the

slope of the error rate curve is determined by `min, it is worthwhile to sacrifice some

dissimilarity product in return for an increased `min. For elaboration, we consider the

following example of k = 3.

Example 5. Consider a MTC-USTM (k = 3, T = 2, M = 1, R = 1) where by

convention Φ8 (T = 2,M = 1, R = 1.5) is employed. According to (4.20), no = {1, 3}
and correspondingly ξm = 0.1353. Therefore Φ8 × Φ8 × Φ8 can be partitioned into

64 3-tuples subsets

G0 = Φ8 ⊗Ψ0
8,1 ⊗Ψ0

8,2 = {(Φ0, Φ0, Φ0), · · · , (Φ7, Φ7, Φ5)},
...

G63 = Φ8 ⊗Ψ7
8,1 ⊗Ψ7

8,2 = {(Φ0, Φ7, Φ7), · · · , (Φ7, Φ6, Φ4)}. (4.21)

As |Gλ| = 8 and 2kb = 64, the state number is 2ν = 64
8

= 8. To satisfy Criterion

1, i.e., to ensure di,∗ = d∗,j =
⌈

3
2

⌉
= 2 for 0 6 i, j 6 7, we require that there are

at least 16 Gλ’s whose inter-Hamming distance is 2. However through an exhaustive

search, one can only find at most 7 Gλ’s to satisfy this requirement. For example,

the subset-index set is {2, 8, 17, 29, 35, 47, 62}, {3, 8, 18, 25, 37, 46, 52}, etc.. Therefore

with Φ8, it is impossible to form a MTC-USTM of `min = k = 3.

We investigate the case in which Φ16 (T = 2,M = 1, R = 2) is employed instead.
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Then |Gλ| = 16 and accordingly the state number is 2ν = 64
16

= 4, which is a half of

the former. Moreover, the searching space for λ is Z256, whose dimension is 4 times

greater than that of Z64. Therefore Criterion 1 can be more easily satisfied. By (4.20),

we have nopt = {3, 5} and ξm = 0.0901. Accordingly Φ16 ×Φ16 ×Φ16 is partitioned

into 256 subsets

G0 = Φ16 ⊗Ψ0
16,1 ⊗Ψ0

16,2 = {(Φ0, Φ0, Φ0), · · · , (Φ15, Φ13, Φ11)},
...

G255 = Φ16 ⊗Ψ15
16,1 ⊗Ψ15

16,2 = {(Φ0, Φ15, Φ15), · · · , (Φ15, Φ12, Φ10)}. (4.22)

Through an exhaustive search, one can obtain a 13-element subset-index set {0, 34,

51, 68, 85, 102, 119, 137, 152, 171, 186, 207, 222}, denoted as U. Accordingly, Λopt

and Λ′
opt are available.

From the definition of the subset index, λ and λ′ can be expressed as λ1L+λ2 and

λ′1L + λ′2, respectively, for certain λ1, λ
′
1, λ2, λ

′
2 ∈ ZL. Consider (Φl, Φn1l⊕λ1 , Φn2l⊕λ2)

∈ Gλ and (Φl′ , Φn1l′⊕λ′1 , Φn2l′⊕λ′2) ∈ Gλ′ , where l, l′ ∈ ZL. To evaluate ξ(Gλ,Gλ′),

we note that ϑ(Gλ,Gλ′) = ϑ1

⋃
ϑ2

⋃
ϑ3, where ϑr, r = 1, 2, 3 denotes the set of the

tuple pair (c1, c2) ∈ ϑr, where cr
1 = cr

2. We define a = {a1, a2} where aqnq = 1

for nq ∈ nopt, q = 1, 2. In this example, a = {11, 13}. Similar to the case of

k = 2, one can obtain that ξ(c1, c2) = ζ∆λ1,λ′1
ζ∆λ2,λ′2

for (c1, c2) ∈ ϑ1, ξ(c1, c2) =

ζ∆a1λ1,a1λ′1
ζ∆n2a1λ1⊕λ′2,n2a1λ′1⊕λ2

for (c1, c2) ∈ ϑ2 and ξ(c1, c2) = ζ∆a2λ2,a2λ′2
ζ∆n1a2λ2⊕λ′1,n1a2λ′2⊕λ1

for (c1, c2) ∈ ϑ3, which are denoted as ξ1, ξ2 and ξ3, respectively. Then similar to

(4.17), the inter-dissimilarity product is

ξ(Gλ,Gλ′) = min {ξ1, ξ2, ξ3} . (4.23)

Then Λopt and Λ′
opt can be searched by (4.18) and (4.19), respectively, however, the
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searching space ZL is replaced by U. Accordingly, we obtain Λopt = {0, 34, 68, 102}
and Λ′

opt = {51, 85, 119, 152}, which lead to ξ0,∗ = ξ2,∗ = 0.1464 and ξ1,∗ = ξ3,∗ =

0.0747, respectively. M is formed as

M =




0 34 68 102
51 85 119 152
102 68 34 0
152 119 85 51


.

As a result, ξ∗,0 = ξ∗,2 = 0.0747 and ξ∗,1 = ξ∗,3 = 0.0381 are all maximized. ¥

As a summary of this section, we list the nopt and ξm for MTC-USTM with

different k, T, M , but the same information rate R = 1 in Table 4.1.

4.4 Numerical Results

In this section, we compare the BEP performance between the uncoded USTM, TC-

USTM and MTC-USTM of the same information rate R. In this comparison, the

TC-USTM and MTC-USTM also have the same number of trellis states. We also

assume N = 1 in all cases.

The BEP performance for MTC-USTM in Example 1 is illustrated in Fig. 4.2.

The MTC-USTM starts to outperform the uncoded USTM from 12 dB and the TC-

USTM from 19 dB onwards. The error rate curve for MTC-USTM drops off faster

than that of the others with increasing SNR. This is because `min = 2 for the MTC-

USTM while `min = 1 for the TC-USTM. The dotted line denotes the BEP lower

bound (4.13) in the region of high SNR. As (4.13) is derived under the condition of
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Table 4.1: nopt and ξm for MTC-USTM with R = 1. (R′ = R + 1
T

for construction of
ΦL)

T M k [u1 · · · uT ] R′ L nopt ξm

2 1 2 [1 2] 1.5 8 [3] 0.3536

2 1 3 [1 2] 1.5 8 [1 3] 0.1353

3 1 2 [1 2 5] 1.333 16 [3] 0.4444

3 1 3 [1 2 5] 1.333 16 [1 3] 0.2963

4 1 2 [1 2 5 14] 1.25 32 [1] 0.5000

4 1 3 [1 2 5 14] 1.25 32 [1 1] 0.3536

4 2 2 [1 1 2 8] 1.25 32 [15] 0.1464

4 2 3 [1 1 2 8] 1.25 32 [3 13] 0.0809

5 1 2 [1 2 4 8 23] 1.2 64 [5] 0.6397

5 1 3 [1 2 4 8 23] 1.2 64 [5 13] 0.5966

5 2 2 [1 8 5 24 19] 1.2 64 [7] 0.3513

5 2 3 [1 8 5 24 19] 1.2 64 [7 11] 0.2513

high SNR, in the region of low and moderate SNR, it is not a strict lower bound.

At sufficiently high SNR, this lower bound agrees well with the value obtained from

the simulations and therefore can be regarded as an accurate estimate of the BEP.

To evaluate (4.13) in an approximate manner, we assume ΦK = {Φlt = Φ0, 1 6 t 6

K} is transmitted. Thus the 2-tuples in G0,0 except (Φ0, Φ0) form 7 shortest error

events that cover one branch; additionally, {(Φ0, Φ4), (Φ0, Φ2)}, {(Φ0, Φ4), (Φ2, Φ0)},

{(Φ4, Φ0), (Φ0, Φ2)} and {(Φ4, Φ0), (Φ2, Φ0)} form the 4 shortest error events that
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Figure 4.2: BEP comparison between uncoded USTM, TC-USTM and MTC-USTM
(k = 2). T = 2,M = 1, R = 1.

cover 2 branches, as illustrated in Fig. 4.3. So the multiplicity of the shortest error

events is J(2) = 11. The PEP associated with each of these 11 error events can be

evaluated using (4.2). The error bits associated with every error event can be counted

from the “mapping by set partitioning” formulated for TC-USTM in Chapter 3. Also

note that b · k = 2 · 2 = 4.

To justify Criterion 3, we reconsider Example 1 by applying another mapping
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Figure 4.3: The shortest error events of MTC-USTM (k = 2) in Example 1, assuming
constant sequence Φ0 is transmitted. Integer l in the parenthesis denotes the the
transmitted signal Φl.

matrix as

M =

(
0 1
3 4

)
.

As a result, ξ0,∗ = ξ1,∗ = min{ζ1, ζ5} = 0.3827 < 1, and ξ∗,0 = ξ∗,1 = min{ζ3, ζ1} =

0.3827 < 0.7071. Fig. 4.4 illustrates that around 1.5 dB coding gain can be obtained

by MTC-USTM in Example 1. Analytically, the coding gain obtained by a MTC-

USTM over another of the same M, N and `min at high SNR can be derived from

(3.12) and (3.9) as

Gain =
10

−MN`min

log

∑J2(`min)
j=1 m2,j

∏
t∈ηmin

ζ−2MN

1,lt,l̂t∑J1(`min)
j=1 m1,j

∏
t∈ηmin

ζ−2MN

2,lt,l̂t

(dB), (4.24)
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Figure 4.4: BEP comparison between MTC-USTM with and without optimal map-
ping. k = 2, T = 2,M = 1, R = 1.

where Jγ(`min),mγ,j and ζγ,lt,l̂t
, γ = 1, 2 denote the multiplicity of the shortest error

events, the associated error bits and the dissimilarity for two distinct MTC-USTM

schemes. In comparing the above two MTC-USTM schemes using (4.24), we have a

gain of 1.5656 dB for MTC-USTM. This agrees well with the simulation result.

To justify Criterion 2, once again we reconsider Example 1 and let nopt = 1

instead of 3, which results in ξm = 0.1464. Accordingly a = 1. The resulting subsets

are G0 = {(Φ0, Φ0), · · · , (Φ7, Φ7)}, · · · ,G7 = {(Φ0, Φ7), · · · , (Φ7, Φ6)}. With these
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Figure 4.5: BEP comparison between MTC-USTM with optimal nopt = 3 and with
n = 1. T = 2,M = 1, R = 1.

subsets, to satisfy Criterion 3, we have

M =

(
0 4
3 7

)
,

as in this case, ξ0,∗ = ξ1,∗ = min{ζ4, ζ4} = 1 and ξ∗,0 = ξ∗,1 = min{ζ3, ζ5} = 0.9239 >

0.7071. From Fig. 4.5, we see that MTC-USTM with n = 1 is around 1.5 dB worse

than the MTC-USTM with nopt. Using (4.24) we also observe that a 1.9785 dB coding

gain can be obtained by the MTC-USTM with nopt at high SNR.
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Figure 4.6: BEP comparison between uncoded USTM, TC-USTM and MTC-USTM
(k = 2). T = 2,M = 1, R = 2.

We now consider Example 3, which has a higher information rate R = 2 than Ex-

ample 1. The BEP performance comparison between uncoded USTM, TC-USTM and

MTC-USTM is illustrated in Fig. 4.6. Once again, we see that with the same number

of states and information rates, MTC-USTM performs better than TC-USTM. For

Example 2 with T = 4, M = 2, we see in Fig. 4.7 that MTC-USTM outperforms

the corresponding TC-USTM from around 18 dB onwards. The simulation result

also agrees well with the theoretical lower bound. For Example 4 where smaller-size
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Figure 4.7: BEP comparison between uncoded USTM, TC-USTM and MTC-USTM
(k = 2). T = 4,M = 2, R = 1.

subsets are employed, we show in Fig. 4.8 that the resulting MTC-USTM has ap-

proximately the same slope as that in Example 1, as `min = 2 for both cases. However

MTC-USTM in Example 4 has around 2.5 dB coding gain over that in Example 1 at

high SNR, as the former has a less number of multiplicity of the shortest error events.

For Example 5 where `min = k = 3, we show in Fig. 4.9 that the resulting

MTC-USTM also outperforms the TC-USTM at high SNR, given the same number

of trellis states and the same R. We also note that at low SNR, the MTC-USTM
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Figure 4.8: BEP comparison between MTC-USTM (k = 2) employing Gλ of different
dimension and accordingly with different number of states. T = 2,M = 1, R = 1.

performs not as good as the corresponding TC-USTM while in the previous several

examples, they have approximately the same error performance. In fact, at low SNR,

the reduced dissimilarity product for the MTC-USTM of k = 3 due to the employment

of a greater-dimension ΦL with fixed T , is more prone to error than TC-USTM at

the same level of SNR. Therefore, MTC-USTM in Example 5 is not a good choice

for a power efficient transmission scheme that operates at low SNR. However, for a

bandwidth efficient transmission that operates in the high SNR region, MTC-USTM
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Figure 4.9: BEP comparison between uncoded USTM, TC-USTM and MTC-USTM
(k = 3). T = 2,M = 1, R = 1.

in Example 5 is still attractive for its significant coding gain over its counterparts.

4.5 Summary

We have proposed a MTC-USTM transmission scheme for the Rayleigh flat fading

channel where CSI is not known both at the transmitter and the receiver. In com-

parison with TC-USTM, MTC-USTM has an additional degree of freedom, k, in the

design of the trellis diagram to obtain a larger `min with a relatively smaller number
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of states. We also provide three design criteria, whose validity are also demonstrated

through numerical analysis. Among the three criteria, we found that Criteria 1 is

of fundamental importance as it determines the slope of the BEP curves. Criterion

2 and 3 also guarantee additional coding gains. We demonstrate through numerical

results that MTC-USTM produces a superior error performance than the TC-USTM

of the same information rates and of the same number of states. We also show that

the BEP lower bound at high SNR is an accurate estimate of the true BEP.



Chapter 5

Trellis-Coded Differential Unitary
Space-Time Modulation

5.1 Background

For the proposed TC-USTM in Chapter 3 and MTC-USTM in Chapter 4, we assume

the so-called piecewise constant Rayleigh fading channel model [4, 9] or block fading

channel [15]. For these models, the component channel coefficients hi,j, 1 6 i 6

M, 1 6 j 6 N in the channel matrix H take independent values in every other T -

symbol period, and remains constant in that interval. For a real mobile environment,

the continuously changing Rayleigh fading channel, such as the Clarke’s (or Jakes’)

model [61], is more appropriate. In this chapter, we propose a trellis coding scheme for

the continuously changing Rayleigh fading channel taking into account the Doppler

frequency shift effect.

This chapter is based on the differential USTM (DUSTM) proposed by Hochwald

and Sweldens in [14], which is suitable for the slow Rayleigh flat fading channel. The

signaling scheme for DUSTM has been summarized in Section 2.3. The proposed

trellis-coded differential USTM (TC-DUSTM) can be seen as an extension of the

TC-USTM, with the signaling scheme replaced by its differential counterpart. In this

84
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Figure 5.1: Block diagram for TC-DUSTM.

chapter, a performance analysis of the TC-DUSTM is presented and design criteria

similar to that given in Chapter 3 are also presented.

5.2 Decision Metric for ML Sequence Decoding of

TC-DUSTM

The system model for TC-DUSTM is illustrated in Fig. 5.1. The information bit

sequence is divided into blocks of length RM , which is known as the coding inter-

val. In every coding interval, the RM data bits are encoded to generate RM + 1

coded bits and mapped to a signal in the signal set VL by the TC-DUSTM encoder.

Before these coded signals are transmitted, they are first block-wise interleaved by

the block interleaver. Then these signals are differentially modulated and transmit-

ted. The received coded signal blocks are first differentially demodulated and then
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de-interleaved. The decoder decides on the coded sequence that is closest to the real

sequence, by a ML algorithm (Viterbi decoder). The focus of this chapter is on how

to form the TC-DUSTM encoder to realize the minimum error rate performance.

In Fig. 5.1, suppose a trellis-coded sequence VK = {Vzτ , τ = 1, · · · , K} is fed

into the interleaver, with the output interleaved sequence denoted as ṼK = {Vz̃τ , τ =

1, · · · , K}. Here τ denotes the time index for each signal block, and the subscripts

zτ , z̃τ ∈ ZL denote the information delivered by Vzτ and Vz̃τ , respectively. The dif-

ferential modulation is realized as follows. Firstly, the constant M × M identity

matrix S0 = IM is transmitted. The second transmitted signal is S1 = Vz̃1S0. The

transmitted signal sequence can be expressed as

Sτ = Vz̃τ Sτ−1, τ = 1, 2, · · · , K (5.1)

The received coded sequence (before differential demodulation) is

Xτ =

√
ρ

M
SτHτ + Wτ , τ = 1, 2, · · · , K (5.2)

where Hτ denotes the channel matrix at the time index τ . Strictly speaking, in the

M -symbol period, hi,j takes different values every other symbol period. However, for

a slow Rayleigh flat fading channel, hi,j can be considered as a constant in this period.

More over, one can further assume that two consecutive channel matrices are identical,

i.e., Hτ = Hτ−1. The entries in Hτ is assumed to be complex Gaussian random

variables distributed as CN (0, 1). The elements in the noise matrix Wτ are also

CN (0, 1) distributed. Therefore ρ is the SNR at each receive antenna. Substituting

equation (5.1) into (5.2), one obtains another form of the received signal sequence

Xτ = Vzτ Xτ−1 + Wτ − Vzτ Wτ−1, τ = 1, 2, · · · , K (5.3)
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We define the differentially detected signal sequence as

Ỹτ = XτX
†
τ−1, τ = 1, · · · , K. (5.4)

with Ỹτ a M ×M matrix. Substituting (5.1) and (5.3) into (5.4), and neglecting the

product terms of Wτ and/or Wτ−1, we have

Ỹτ = ρVz̃τ |Sτ−1H|2 + W ′
τ , (5.5)

where

W
′
τ =

√
ρVz̃τ Sτ−1HW †

τ−1 +
√

ρWτH
†S†τ−1 (5.6)

and H is a simplified expression for the approximately identical matrices Hτ and

Hτ−1. In this chapter, |A|2 denotes AA† for a matrix A. As Sτ−1 is a deterministic

unitary matrix, Sτ−1H and H have the same distribution and one can denote the

matrix Sτ−1H by a new channel matrix H. As entries in H are i.i.d as CN (0, 1),

entries hi,j, 1 6 i 6 M, 1 6 j 6 N in H are also i.i.d as CN (0, 1). Then (5.5) and

(5.6) can be equivalently expressed as

Ỹτ = ρVz̃τ |H|2 + W
′
τ , (5.7)

W
′
τ =

√
ρVz̃τ HW †

τ−1 +
√

ρWτH
†. (5.8)

As the component channel coefficients are assumed to be independent, E{hm,nhp,q} =

∆m,p∆n,q , where ∆ denotes the Kroneker product. Therefore the conditional mean

of Ỹτ can be expressed as

E{Ỹτ |Vz̃τ} = ρNVz̃τ . (5.9)

The variance of Ỹτ given Vz̃τ is Λ = E{(Ỹτ−ρNVz̃τ )(Ỹτ−ρNVz̃τ )
†} and can be derived

as

Λ = ρMN(ρ + 2)IM . (5.10)
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Derivations of the equations (5.9) and (5.10) can be found in Appendix B and C,

respectively. Therefore the pdf of Ỹτ given Vz̃τ is

p(Ỹτ |Vz̃τ ) =
exp

{
−tr

(
Λ−1(Ỹτ − ρNVz̃τ )(Ỹτ − ρNVz̃τ )

†
)}

πM×NdetN(Λ)
. (5.11)

Assuming an ideal interleaving-deinterleaving, each element in YK = {Yτ , τ = 1, · · · , K}
is independent. Therefore the joint pdf of YK given VK is p(YK |VK) =

∏K
τ=1 p(Yτ |Vzτ ).

Note that p(Yτ |Vzτ ) = p(Ỹτ |Vz̃τ ). Hence the ML sequence decoder can be developed

as

VK
ml = arg max

VK
p(YK | VK)

= arg max
Vzτ∈{V0,··· ,VL−1}

K∑
τ=1

tr
{
YτV

†
zτ

+ Vzτ Y
†
τ

}
. (5.12)

This ML algorithm can be efficiently implemented by a Viterbi decoder. We note that

equation (5.5) is under the assumption that the product terms WτW
†
τ , WτW

†
τ−1 and

Wτ−1W
†
τ−1 are neglected in the derivation. Though in this way the resulting decision

metric loses some information, especially at low SNR, we obtained a most important

benefit as that a much simplified expression is obtained. We will continue to examine

a full decision metric comprising these product terms and put it as our future work.

5.3 Performance Analysis for the TC-DUSTM

Suppose VK is transmitted, while the decoder decides on a different sequence V̂K =

{Vẑτ , τ = 1, · · · , K} in place of VK . The length of an error event is defined as the

Hamming distance between VK and V̂K . From (5.12), the PEP p(VK → V̂K) of

mistaking VK for V̂K or vice versa is

p(VK → V̂K) = p(
K∑

τ=1

Dτ > 0) (5.13)
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where Dτ = tr{Yτ (Vẑτ − Vzτ )
† + (Vẑτ − Vzτ )Y

†
τ }. In [14], Dτ is the quadratic form

used to derive the pairwise block error probability (PBEP) between Vzτ and Vẑτ and

we know that when Vzτ 6= Vẑτ , the characteristic function of the quadratic form Dτ

is [9, 14]

ΦDτ (ω) =
M∏

m=1

[
1 + 2ρ

ρ2σ2
m,τ [(ω − i/2)2 + a2

m,τ ]

]N

(5.14)

where

am,τ =

√
1

4
+

1 + 2ρ

ρ2σ2
m,τ

(5.15)

and σm,τ is the mth singular value of the matrix Vzτ − Vẑτ . When Vzτ = Vẑτ ,

ΦDτ (ω) = 1. Assuming an ideal interleaving-interleaving, the quadratic forms Dτ ’s are

independent for different τ ’s. Therefore the characteristic function of D =
∑K

τ=1 Dτ

is ΦD(ω) =
∏

τ∈ η ΦDτ (ω), where η is the set of τ for which Vzτ 6= Vẑτ . We can invert

the characteristic function to find the pdf of D and the PEP can be derived as

p(VK → V̂K) =
1

4π

∫ ∞

−∞
dω

1

ω2 + 1/4

∏
τ∈η

M∏
m=1

[
1 + 2ρ

ρ2σ2
m,τ (ω

2 + a2
m,τ )

]N

(5.16)

An upper bound of the PEP can be found as

p(VK → V̂K) 6
∏
τ∈η

Γτ (5.17)

where

Γτ =
1

2

M∏
m=1

[
1 +

ρ2σ2
m,τ

4(1 + 2ρ)

]−N

(5.18)

is the Chernoff upper bound for the PBEP between Vzτ and Vẑτ [14]. Suppose the size

of the set η, i.e., the length of the associated error event is `. The inequality (5.17)

suggests that the error events with long length ` can be neglected while the error

event with the shortest length `min plays the main role in determining the PEP. At
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sufficiently high SNR, Γτ is upper bounded by Γτ 6 1
2

(
8
ρ

)MN ∏M
m=1 σ−2N

m,τ . Therefore

when only the shortest error event is taken into account, we have

p(VK → V̂K) 6
(

1

2`min

(
8

ρ

)MN`min
)
·
( ∏

τ∈ηmin

M∏
m=1

σ−2N
m,τ

)
(5.19)

where ηmin denotes the set of τ for which Vzτ 6= Vẑτ along the shortest error event.

The part in the first bracket in inequality (5.19) suggests that the error curve of the

PEP varies as ρ−MN`min . Thus not only a diversity gain of MN is obtained from the

space-time signal design, but also a coding gain of `min from the trellis-coding design.

Therefore one should choose a TC-DUSTM scheme with as large a value of `min as

computational complexity allows.

An additional coding gain comes from the second part of (5.19). Recalling (1), we

have
∏

τ∈ηmin

M∏
m=1

σ−2N
m,τ = 2

∏
τ∈ηmin

ζ−2MN
zτ ,ẑτ

, (5.20)

which suggests that in the shortest error event, the corresponding two signals along

the path should be selected such that the product of the dissimilarities should be

maximized.

An asymptotic BEP formula can be expressed as

Pb ≈ 1

R ·M
`′∑

`=`min

J(`)∑
j=1

m`,jp(VK
`,j → V̂K

`,j) (5.21)

where J(`) is the number of error events having the same length `. m`,j is the number

of bit-errors associated with the jth error event of length ` and p(VK
`,j → V̂K

`,j) is the

PEP between these two coded sequences along that path. `′ is chosen so that the

amount of computation will not be excessive and yet most of the dominant error

events are included. A BEP lower bound at high SNR can be obtained by only
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taking the shortest error event into account, i.e., by setting `′ = `min in (5.21), one

can have

Pb & 1

R ·M
J(`min)∑

j=1

m`min,jp(VN
`min,j → V̂N

`min,j). (5.22)

At a sufficiently high SNR, (5.22) gives an accurate estimation of the BEP.

5.4 Mapping by Set Partitioning for TC-DUSTM

5.4.1 Design Criteria

In Section 3.3, design criteria for TC-USTM have been given. On the one hand, those

criteria guarantee that the minimum BEP can be obtained; on the other hand, if there

are parallel paths between any two consecutive states, those criteria guarantee that

the BEP performance analysis can be simplified by investigating the PEP between

parallel paths between any two consecutive states.

In this section, we follow the proposed criteria given in Section 3.3. We still focus

on the TC-DUSTM where there exist parallel paths between consecutive states. Let

b = RM , then L = 2b. Let VL be in layer-1 of the set partitioning tree and the single

signals Vl, l ∈ ZL be in the layer-(b + 1). Correspondingly, in layer-j, 1 6 j 6 b + 1,

there are 2j−1 subsets, denoted as v
(j)
i , 0 6 i 6 Z2j−1−1, and each subset contains

2b−j+1 signals. The definition of congruent subsets follows the definition in Section

3.3. Therefore Criterion 1 can be formulated as

Criterion 1. All the subsets in the same layer are congruent subsets, that is,

v
(j)
0
∼= · · · ∼= v

(j)

2j−1−1
for 2 6 j 6 b.

As a result of Criterion 1, subsets in the same layer have identical minimum

dissimilarity, denoted as ζ
(j)
min. The following criterion guarantees that the best BEP
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performance can be obtained by the TC-DUSTM.

Criterion 2. ζ
(j)
min should be maximized for each j.

Set partitioning satisfying both criteria is referred to as optimal set partitioning

for TC-DUSTM.

5.4.2 Properties of DUSTM Signal Set

We focus on the systematically designed DUSTM, which has been introduced in

Section 2.3. As Vl = V l
1 , Vl′ = V l′

1 , we have det(Vl − Vl′) = det(V1(IM − V l′−l
1 )).

Therefore

det(Vl − Vl′) = det(IM − V l′−l
1 ). (5.23)

Recalling equation (2.16), we conclude that the dissimilarity between Vl and Vl′ is a

function of the index interval (l′− l) modL, denoted as ∆l,l′ , and accordingly ζ(Vl, Vl′)

can be denoted as ζ∆l,l′ . Thus any two signals with the same index interval have the

same value of dissimilarity.

Fixing the reference signal Vl, when the index l′ of Vl′ runs over the whole integer

set ZL, we obtain the set of signal index intervals, denoted as ∆VL
(l) = {∆l,l′ | l′, l ∈

ZL, l′ 6= l}. It follows that the ∆VL
(l) is identical with different reference signal Vl,

which is {1, 2, · · · , L − 1}. The dissimilarity set corresponding to the index interval

set is defined as the dissimilarity profile, PVL
(l) = {ζ∆l,l′ | ∆l,l′ ∈ ∆VL

}. For ∆VL
(l),

we have the following property.

Property 1. ∆VL
(l) is identical for different reference l.

Therefore ∆VL
(l) and PVL

(l) can be simplified as ∆VL
and PVL

, respectively. As

a result, for simplicity, one can investigate the ζ∆0,l
, l ∈ ZL, instead of ζ∆l,l′ , l, l

′ ∈ ZL
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for a full view of the dissimilarities in a DUSTM signal set. For two signals Vl and

Vl′ , we note that (l′− l) modL = L− (l− l′) modL. It follows that in the dissimilarity

profile, ∆l,l′ and L−∆l,l′ correspond to the identical dissimilarity. Therefore we have

the following property.

Property 2. ∆VL
is symmetrical about the central point ∆l,l′ = L

2
, i.e., ζ∆l,l′ =

ζ∆l′,l .

The above two properties also hold for USTM. For DUSTM, additionally, we have

Property 3. ∆VL
has its maximum value 1 at the central point L/2, i.e., ζL/2 = 1.

In fact, we know ζ∆0,1 = |∏M
m=1 sin(πuml/L)|1/M and that um,m = 1, · · · ,M are

all odd integers [14], which indicates that ζ∆0,1 has its maximum value 1 at ∆l,l′ = L/2.

For the purpose of illustration, Fig. 5.2 displays four dissimilarity profiles for

signal set V4 (M = 2, R = 1), V8 (M = 3, R = 1), V16 (M = 4, R = 1) and

V32 (M = 5, R = 1). The above three properties can be demonstrated by these

examples.

5.4.3 A Systematic and Universal Set Partitioning Strategy
for TC-DUSTM

The systematic set partitioning strategy for TC-USTM in Chapter 3 can be exploited

in this section for the set partitioning of the DUSTM signal sets. One can observe

that the properties listed in Section 5.4.2 are similar to those for USTM in Section

3.2; more over, the design criteria proposed for TC-DUSTM in Section 5.4.1 are

similar to those for TC-USTM in Section 3.4 as well. From these facts, we can

justify that the optimal set partitioning scheme for the USTM in Section 3.5 can be
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Figure 5.2: PVL
for signal sets V4 (M = 2), V8 (M = 3), V16 (M = 4) and

V32 (M = 5). R = 1.

applied to the DUSTM signal sets. In summary, set partitioning can be realized in

two steps: 1) Formulate all the possible realizations of set partitioning tree which

guarantee subsets in the same layer are congruent subsets (Criterion 1 is satisfied);

2) Choose one realization which guarantees ζ
(j)
min increases as rapidly as possible as j

increases(Criterion 2 is satisfied).

A systematic set partitioning scheme for the UST signal set can be realized follow-

ing the same line of the Proposition in Section 3.5.4, which is known as the subset-

pairing. After some modifications to that proposition, one can obtain a new proposi-

tion to suit for the DUSTM signals sets. We also let ∆A(a) denote the index interval

set of the integer set A with respect to the reference a ∈ A. If A is a group under ⊕,
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∆A(a) will be identical for different a ∈ A and can be simplified as ∆A.

We consider an arbitrary integer group S = 2pZ2b−p , 0 6 p 6 b − 1 and an

arbitrary ∆ ∈ ∆S . We define ∆ = ∆
2p as the normalized index interval. If ∆ is

an odd integer, S can be partitioned into congruent size-2 subsets {2p+1i, 2p+1i ⊕
∆}, i ∈ Z2b−p−1 , where the reference set is defined as R = {2p+1i | i ∈ Z2b−p−1}.
This integer-pairing operation in S is defined as Operation I. If ∆ is an even integer,

{2p+p′+1i ⊕ m, 2p+p′+1i ⊕ ∆ ⊕ m}, i ∈ Z2b−p−p′−1 ,m ∈ 2pZ2p′ form congruent size-2

subsets in S, where p′, 1 6 p′ 6 b− p− 1 is chosen such that ∆
2p′ is an odd integer. In

this case, the reference set is defined as R = {2p+p′+1i | i ∈ Z2b−p−p′−1}. This integer-

pairing operation in S is defined as Operation II. Operation I and II are fundamental

operations in the subset-pairing procedure.

Setting S(0) ← ZL, congruent size-2 subsets in ZL and the corresponding reference

set R(0) can be obtained by Operation I or II. By definition, R(0) is also an integer

group under ⊕. Then for an arbitrary integer ∆ ∈ ∆R, setting S(1) ← R(0), one can

obtain the congruent size-2 subsets in R(0), which leads to congruent size-4 integer

subsets and a new ZL. Thus through the critical step S(k) ← R(k−1), k > 1, one

achieves a recursive subset-pairing procedure. When Operation II has been applied,

there should be a redefinition of the reference set corresponding to this Operation II.

The above recursive subset-pairing scheme presents a framework to realize step

1). To realize step 2), an exhaustive search for the optimal ∆∗ ∈ ∆S(k) must be done

by the following function

∆∗ = arg max
∆∈∆S(k)

ζmin

(
v(0)

⋃
v(∆)

)
(5.24)

where v(0) and v(∆) denote the signal sets in VL associated with the reference

integer 0 and ∆ ∈ ∆S(k) , respectively, and ζmin(·) denotes the minimum dissimilarity
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in the signal set (·). Therefore we have the following proposition for an optimal set

partitioning of the DUSTM signal set.

Proposition. The subset-pairing for an arbitrary DUSTM signal set VL can be

formulated as follows:

1) (Initialization) Set k ← 0, S(k) ← ZL and ⊕ ← ⊕b;

2) (Subset-pairing) Obtain ∆∗ ∈ ∆S(k) through (5.24) and determine the corre-

sponding normalized integer interval δ. Depending on δ, employ Operation I or

Operation II based on ⊕ to make congruent size-2 subsets in S(k), which results

in R(k);

3) If R(k) = {0}, go to step 4); otherwise set k ← k + 1, S(k) = R(k−1) and go to

step 2);

4) (Redefinition) If |v(0)| = L, go to step 5); otherwise redefineR(k) and determine

Q for ⊕Q. Set k ← k + 1, S(k) = R(k−1) and ⊕ ← ⊕Q, then go to step 2);

5) (Termination) The subset-pairing procedure terminates.

Due to Property 3, when k = 0, the optimal ∆∗ = L/2 = 2b−1, which is an even

integer. Then Operation II is always firstly applied on VL and redefinition of the

reference set is always a necessary step in the set partitioning for VL.

5.5 Examples and Numerical Results

In this section, we consider examples of TC-DUSTM and compare their BEP with

the uncoded DUSTM. We assume a Rayleigh flat fading channel with the maximum

normalized Doppler frequency shift as 0.0025. The number of receiver antenna is
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Table 5.1: Subset-pairing for V8 (M = 2, R = 1.5).

Layer-j |v(j)
i | ζ

(j)
min ∆∗ δ k S(k) − Operation → R(k)

1 8 0.51 ∼ ∼ 3 ∼ ∼ ∼
2 4 0.71 1 1 2 Z2 I 2Z1

3 2 1.00 2 2 1 Z4 II Z2

4 1 ∞ 4 4 0 Z8 II Z4

Table 5.2: Subset-pairing for V16 (M = 3, R = 1.33).

Layer-j |v(j)
i | ζ

(j)
min ∆∗ δ k S(k) − Operation → R(k)

1 16 0.45 ∼ ∼ 4 ∼ ∼ ∼
2 8 0.51 1 1 3 Z2 I 2Z1

3 4 0.71 2 2 2 Z4 II Z2

4 2 1.00 4 4 1 Z8 II Z4

5 1 ∞ 8 8 0 Z16 II Z8

set to be 1. We also apply a 500 × 5 block interleaver which interleaves the signal

block-wisely.

5.5.1 TC-DUSTM with V8 (M = 2, R = 1.5)

We consider DUSTM signal set V8 (M = 2, R = 1.5). PV8 is illustrated in Fig. 5.2(b).

Following the Proposition, we set S(0) ← Z8, then determine ∆ = ∆∗ = 4 ∈ ∆S(0)

according to (5.24). We choose p′ = 2 such that 4
24 = 1 is an odd integer. The

corresponding cosets in S(0) are {0, 4} ⊕3 m,m ∈ Z4. In {0, 4}, integer-pairing is

straightforward, leading to R(0) = {0}. Then we redefine R(0) = Z4 according to the

Proposition.

Then we set S(1) ← Z4. By (5.24), we find δ = ∆∗ = 2 is still an even integer.

Then we choose p′ = 1 such that 2
2

= 1 is an odd integer. Then we have cosets

S(1)
in ⊕ m,m ∈ Z2, where S(1)

in = {0, 2}. Integer-pairing in {0, 2} is straightforward,
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Figure 5.3: Set partitioning for V8 (M = 2, R = 1.5).

leading to R(1) = {0}, which is redefined as R(1) = Z2. We set S(2) ← Z2, in which

the integer-pairing is straightforward. We recorded the pertinent parameters in Table

5.1 and in Fig. 5.3 we can find the structure of the set partitioning tree.

This set partitioning can be applied to the TC-DUSTM of M = 2, R = 1. One

realization of the trellis encoder and the resulting trellis diagram are illustrated in

Fig. 5.4, from which we can see `min = 1. The BEP comparison between the TC-

DUSTM and the uncoded DUSTM (M = 2, R = 1) is given in Fig. 5.5. One can

observe that a coding gain of around 5dB can be obtained by the TC-DUSTM over

the uncoded DUSTM at moderate and high SNR. However, at low SNR, TC-DUSTM

may produce worse error performance than the uncoded DUSTM. This phenomenon

is similar to that of TCM [32]. We also note that at relatively high SNR, the BEP

lower bound gives an accurate estimate of the BEP performance.

5.5.2 TC-DUSTM with V16 (M = 3, R = 1.33)

In this section, we examine the TC-DUSTM of M = 3, R = 1. Therefore the signal

set employed should be V16 for which M = 3, R = 1.333. The set partitioning

procedure follows the Proposition in Section 5.4.3. The operations and the pertinent
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Figure 5.4: Trellis encoder and trellis diagram for TC-DUSTM (M = 2, R = 1).

parameters are recorded in Table 5.2 and the set partitioning tree is illustrated in

Fig. 5.6. We illustrate the BEP comparison in Fig. 5.7 between TC-DUSTM and

the uncoded DUSTM (M = 3, R = 1). The achieved coding gain can be observed to

be greater than 8dB at the BEP of 10−5. The lower bound also agrees well with the

BEP, especially in the high SNR region.

5.6 Summary

Based on the PEP and BEP analysis, a trellis coding scheme for the DUSTM has

been proposed in this chapter for a continuously changing mobile environment. The

PEP and the BEP analysis also suggest the design criteria for the TC-DUSTM to

obtain a best BEP performance. Simulations and theoretical analysis demonstrate

that significant coding gain can be obtained by the TC-DUSTM over the uncoded

DUSTM.
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Figure 5.5: BEP comparison between TC-DUSTM and uncoded DUSTM (M =
2, R = 1).

Figure 5.6: Set partitioning tree for V16 (M = 3, R = 1.33).
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Chapter 6

Conclusions and Future Works

In this thesis, we have examined a large class of trellis coded unitary space-time

modulation schemes for the non-coherent MIMO system, namely, the trellis-coded

USTM in Chapter 3, the multiple trellis-coded USTM in Chapter 4 and the trellis-

coded differential USTM in Chapter 5. To carry out the research in these topics, we

have followed the same approach: firstly, we proceed with the error performance of

the proposed coding scheme; then we come up with the design criteria to minimize

the PEP or BEP performance; lastly, we realize these criteria in a systematic way.

We also carry out simulation as well as use BEP lower bound to demonstrate the

validity of these coding scheme. Mainly, we have obtained the following results.

6.1 Completed Work

6.1.1 TC-USTM

We have proposed a bandwidth and power efficient TC-USTM coding scheme, which

combines modulation and coding into one step for the non-coherent MIMO system,

operated in the piecewise constant Rayleigh fading channel. Following the line of

102
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Ungerboeck’s celebrated “mapping by set partitioning” for the 2-D signal set, we for-

mulate a systematic “mapping by set partitioning” technique for the UST signal set,

which can be realized through a systematic recursive way. This approach can greatly

simplify the searching procedure for a good coding scheme, and is implementable in

a computer search. The resulting TC-USTM has significant coding gains over the

uncoded USTM, due to the increased diversity gain and coding gain by the coding

process. Computer simulations show that the theoretical analysis is accurate as they

agree well with the BEP curves obtained through simulations, especially at high SNR.

6.1.2 MTC-USTM

We also assign multiple UST signals to one trellis branch, resulting in the so-called

MTC-USTM. Though parallel paths exist in this scheme, the `min can be as long as

k, which is the length of the tuple associated with each trellis, and this gives another

degree of freedom in the design of the coding scheme. We implement a systematic

partitioning of the k-fold Cartesian product, that produces equal-size and identically

structured k-fold UST signal subsets. We focus on the case where `min = k. We found

that a larger UST signal set (four-times greater instead of two-times greater as usual)

is usually employed when k > 3. Given the same information rates and same number

of states, the MTC-USTM outperforms the TC-USTM, especially at high SNR.

6.1.3 TC-DUSTM

We extend the TC-USTM to the case where the continuous Rayleigh fading channel

is employed instead of the piecewise constant fading channel. To suit this channel

model, differential UST signal set is used, which requires a new error performance

analysis to obtain the design criteria for TC-DUSTM, though we arrive at a similar
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result to that in TC-USTM. Therefore the systematic and recursive “mapping by set

partitioning” can be borrowed from TC-USTM and modified to suit for TC-DUSTM.

The results also conforms with the analysis.

6.2 Future Work

Several issues, which are discovered during this work and listed below, can be further

investigated.

For TC-DUSTM, when we derived the decision metric in Section 5.2, we only

considered the condition that the operating SNR is high enough such that the product

terms of the white Gaussian noise matrices WτW
†
τ , WτW

†
τ−1 and Wτ−1W

†
τ−1 were

neglected in the derivation. Though we obtained a most important benefit as that a

much simplified expression is obtained, some useful information is also lost. Therefore

it is interesting to continue to examine a full decision metric comprising these product

terms, especially in the low SNR region. We believe in this way by sacrificing some

decoding complexity, the decision metric would be more accurate and therefore give

rise to a better error rate performance.

For MTC-USTM, when k > 3, the condition under which the availability of the

subsets in the k-fold Cartesian product that ensures `min > k, need to be further

studied. In this work, the searching for such kind of subsets is conducted simply by

computer search, which is cumbersome and time consuming. Therefore theoretical

analysis on the availability of such subsets is desirable.

Another important issue to explore is to incorporate the state-of-the-art coding
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technique into this trellis coded USTM, e.g., turbo codes and iterative decoding pro-

cess, and the low density parity check codes. These codes are powerful and can ap-

proach channel capacity even at low SNR. Therefore it is of great interest to evaluate

the error performance for these combined coding system.

The UST signal set also lends itself for the purpose of blind channel estimation.

Since the subspace delivered by the UST signal set will not change due to the mul-

tiplicative fading coefficients between antenna pairs, one can first obtain the channel

matrix (CSI) through a ML algorithm. Then this channel matrix can be taken as the

real channel matrix and subsequently a coherent decoding algorithm can be obtained.

Thus, a hybrid transmission and detection scheme can be proposed.

It is also interesting to put the USTM signaling in a time dispersive channel

environments to study the error rate performance. Each component channel is now

characterized by a FIR filter. For the purpose of implementing the ML decoding,

deconvolution techniques have to be employed to demodulate the received UST signal

set.



Appendix A

Derivation of Pairwise Error Event
Probability Pevent

Based on equation (3.5), the PEP of mistaking ΦK for Φ̂K , or vice versa can be

derived in a integral form as

Pevent = p
(
ΦL → Φ̂L | ΦLtransmitted

)

= p
(
Φ̂L → ΦL | Φ̂Ltransmitted

)

= p

(
K∑

t=1

tr
{

X†
t ΦltΦ

†
lt
Xt

}
<

K∑
t=1

tr
{

X†
t Φl̂t

Φ†
l̂t
Xt

}
| ΦL

)

= p

(
K∑

t=1

tr
{

X†
t

(
ΦltΦ

†
lt
− Φl̂t

Φ†
l̂t

)
Xt

}
< 0 | ΦL

)

= p

(
D =

K∑
t=1

Dt > 0 | ΦL

)
(A.1)

where the random variable Dt is defined as Dt = X†
t

(
Φl̂t

Φ†
l̂t
− ΦltΦ

†
lt

)
Xt. To evaluate

Pevent, which is the probability that the sum of K independent random variables Dt

is greater than 0, a common approach is to find the characteristic function of D,

denoted as ΨD(ω), then invert ΨD(ω) to find the pdf of D [62].
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When Φlt 6= Φl̂t
, the characteristic function of Dt is [9]

ΨDt(ω) =
M∏

m=1,dm,t<1

(
1 + ρT/M

(ρT/M)2(1− d2
m,t)((ω − i/2)2 + a2

m,t)

)N

, (A.2)

where

am,t =

√
1

4
+

1 + ρT/M

(ρT/M)2(1− d2
m,t)

(A.3)

and dm,t is the mth singular value of the correlation matrix Φ†
lt
Φl̂t

. When Φlt = Φl̂t
,

ΨDt(ω) = 1. As Ht’s are independent for different t’s, the Dt’s are independent.

Therefore the characteristic function of D is ΨD(ω) =
∏

t∈ η ΨDt(ω), where η is the

set of t for which Φlt 6= Φl̂t
. Note that the region of convergence for ΨDt(ω) is

1/2−am,t < =(ω) < 1/2+am,t, where =(·) denote the imaginary part of the complex

number (·). We can invert the characteristic function ΨD(ω) to find the pdf of D by

selecting an integration contour within the region of the convergence as −∞ + i
2

to

+∞+ i
2

PD(z) =
1

2π

∫ ∞+i/2

ω=−∞+i/2

dω exp(iωz)
∏
t∈η

ΨDt(ω). (A.4)

Accordingly, the PEP can be derived as

Pevent =

∫ ∞

z=0

PD(z)dz

=

∫ ∞

z=0

1

2π

∫ ∞+i/2

ω=−∞+i/2

dω exp(iωz)
∏
t∈η

ΨDt(ω)dz

=
1

2π

∫ ∞+i/2

ω=−∞+i/2

dω
∏
t∈η

ΨDt(ω)

∫ ∞

z=0

exp(iωz)dz

=
1

2π

∫ ∞

ω=−∞

dω

ω2 + 1/4

∏
t∈η

M∏

m=1,dm,t<1

[
1 + ρT/M

(ρT/M)2(1− d2
m,t)(ω

2 + a2
m,t)

]N
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=
1

2π

∫ ∞

ω=−∞

dω

ω2 + 1/4





∏
t∈η

M∏

m=1,dm,t<1

[
1 +

(ρT/M)2(1− d2
m,t)(ω

2 + 1/4)

1 + ρT/M

]−N


 .

(A.5)



Appendix B

Derivation of Conditional Mean of
Ỹτ

The conditional mean of the received signal Ỹτ is

E{Ỹτ | Vz̃τ} = ρVz̃τ E{|H|2}+ E{W′
τ}

= ρVz̃τ E{|H|2} (B.1)

Let K = HH†. Then each entry in K can be expressed as ki,j =
∑N

p=1 hi,ph
∗
j,p, 1 6

i, j 6 M . So

E{ki,j} =
N∑

p=1

E{hi,ph
∗
j,p} =

N∑
p=1

δi,j = Nδi,j. (B.2)

Therefore

E{K} = NIM . (B.3)

As a result

E{Ỹτ | Vz̃τ} = ρNVz̃τ . (B.4)

109



Appendix C

Derivation of Conditional Variance
of Ỹτ

Let A = KK†, where K is defined in Appendix B. Each element in A is expressed

as ai,j =
∑M

l=1 ki,lk
∗
j,l, 1 6 i, j 6 M . When i 6= j,

E{ai,j} =
M∑

l=1

E{ki,lk
∗
j,l} =

M∑

l=1

N∑

k=1

N∑

k′=1

E{hi,kh
∗
l,kh

∗
j,k′hl,k′}

=
N∑

k=1

E{hi,kh
∗
i,kh

∗
j,khi,k}+

N∑

k=1,k 6=k′

N∑

k′=1

E{hi,kh
∗
i,kh

∗
j,khi,k}

+
M∑

l=1,i6=l

N∑

k=1

N∑

k′=1

E{hi,kh
∗
i,kh

∗
j,khi,k}

= 0. (C.1)

When i = j,

E{ai,j} =
M∑

l=1

E{ki,lk
∗
i,l} =

M∑

l=1

N∑

k=1

N∑

k′=1

E{hi,kh
∗
l,kh

∗
i,k′hl,k′}

=
N∑

k=1

E{hi,kh
∗
i,kh

∗
i,khi,k}+

N∑

k=1,k 6=k′

N∑

k′=1

E{|hi,k|2}E{|hi,k′|2}

+
M∑

l=1,l 6=i

N∑

k=1

N∑

k′=1

E{hi,kh
∗
l,kh

∗
i,k′hl,k′}
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=
N∑

k=1

E{|hi,k|4}+ N(N − 1) +
M∑

l=1,l 6=i

N∑

k′=1

E{|hi,k′|2}E{|hl,k′|2}

+
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l=1,l 6=i

N∑

k=1,k 6=k′

N∑
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= N(2× 2× 1

4
+ 22 1

4
) + N(N − 1) + (M − 1)N + 0

= N2 + MN (C.2)

Therefore,

E{A} = (N2 + NM)IM (C.3)

With the above results, one can readily derive the variance of Ỹτ as

Λ = E

{(
Ỹτ − ρNVz̃τ

)(
Ỹτ − ρNVz̃τ

)†}

= E

{(
ρVz̃τ

(
HH† −NIM

)
+ W

′
τ

)(
ρVz̃τ

(
HH† −NIM

)
+ W

′
τ

)†}

= ρ2MNIM + E
{
W

′
τW

′†
τ

}

Let W1 =
√

ρVz̃τ HW†
τ−1 and W2 =

√
ρWτH

†, then

E{W′
τW

′†
τ } = E

{
W1W

†
1

}
+ E

{
W2W

†
2

}
(C.4)

Let Z = HW†
τ−1, then each entry in Z is zi,j =

∑N
k=1 hi,kw

†
j,k, 1 6 i, j 6 M , where

wj,k denotes the entry in Wτ−1. Then entries in ZZ† will have the form

M∑

k=1

zi,kz
∗
j,k =

M∑

k=1

(
N∑

k′=1

hi,k′w
∗
k,k′

)(
N∑

k′′=1

h∗j,k′′wk,k′′

)

=
M∑

k=1

N∑

k′=1

N∑

k′′=1

hi,k′w
∗
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Thus,

E

{
M∑

k=1

zi,kz
∗
j,k

}
=

M∑

k=1

N∑

k′=1

N∑

k′′=1

E
{
hi,k′h

∗
j,k′′

}
E

{
w∗
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}

=
M∑

k=1
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E{hi,k′h
∗
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=





MN 1 6 i = j 6 M

0 otherwise

(C.5)

As a result,

E

{∣∣∣HW†
τ−1

∣∣∣
2
}

= MNIM . (C.6)

Similarly, E{|WτH
†|2} = MNIM . Therefore the conditional variance is

Λ = ρ2MNIM + 2ρMNIM . (C.7)
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