
A UML-Based Tool for Designing HLA Federates 

 
 
 
 

ACKNOWLEDGEMENTS 

 
 
 
I would like to acknowledge the support from my project supervisor, Dr. Tan Soon Huat, 

Gary. His valuable comments and suggestions have helped me much during the process 

of my Master study.  

 

I wish to thank Dr. Côme Raczy. He always brings me the problem, asks me the solutions 

and clarifies my thinking. I really benefited from his academic advices. 

 

Thanks also to Yu Jun and Li Yong Bo who provided much assistance in my research. 

They gave me much valuable discussion. 

 

Last but not least, I also thank my dear wife, Yang Jie, for her understanding and moral 

support when I wrote the thesis.

  I

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A UML-Based Tool for Designing HLA Federates 

 

CONTENTS 

ACKNOWLEDGEMENTS ...............................................................................................I 

CONTENTS ...................................................................................................................... II 

LIST OF TABLES .............................................................................................................V 

LIST OF FIGURES .........................................................................................................VI 

LIST OF ABBREVIATIONS ....................................................................................... VII 

SUMMARY ...................................................................................................................VIII 

CHAPTER 1. INTRODUCTION ................................................................................. 1 

1.1. OVERVIEW OF SOFTWARE DESIGN ...................................................................... 1 
1.1.1. Object-Oriented Methodology (OOM) .................................................... 1 
1.1.2. Framework ................................................................................................. 1 
1.1.3. UML and CASE tools ................................................................................ 2 

1.2. OVERVIEW OF MODELING AND SIMULATION ...................................................... 3 
1.3. OVERVIEW OF HLA ............................................................................................ 4 
1.4. PROBLEM STATEMENT ........................................................................................ 5 
1.5. PROJECT OBJECTIVES ......................................................................................... 6 
1.6. PROJECT CONTRIBUTIONS................................................................................... 6 
1.7. STRUCTURE OF THESIS ........................................................................................ 7 

CHAPTER 2. SOFTWARE DESIGN AND RELATED WORK .............................. 9 
2.1. CRC CARDS METHODOLOGY .............................................................................. 9 
2.2. FRAMEWORK ..................................................................................................... 10 
2.3. UML .................................................................................................................. 13 

2.3.1. Overview of UML .................................................................................... 13 
2.3.2. Class and stereotype ................................................................................ 14 

2.4. CASE TOOLS ..................................................................................................... 15 
2.5. ARGOUML ........................................................................................................ 17 

2.5.1. Overview of ArgoUML............................................................................ 17 
2.5.2. ArgoUML’s architecture......................................................................... 19 
2.5.3. ArgoUML’s expert critiquing system .................................................... 21 
2.5.4. ArgoUML’s code generation structure .................................................. 24 

CHAPTER 3. MODELING, SIMULATION AND HLA ......................................... 25 
3.1. MODELING ......................................................................................................... 25 
3.2. SIMULATION ...................................................................................................... 26 
3.3. HLA ................................................................................................................... 28 

3.3.1. Rules .......................................................................................................... 28 
3.3.2. Interface specification.............................................................................. 30 
3.3.3. Object Model Template (OMT).............................................................. 32 

  II



A UML-Based Tool for Designing HLA Federates 

3.3.4. HLA infrastructure.................................................................................. 33 
3.3.5. RTI components ....................................................................................... 34 
3.3.6. Federation execution................................................................................ 35 

3.4. FEDERATE DEVELOPMENT PROCESS ................................................................. 37 
3.4.1. SOM/FOM representation ...................................................................... 38 
3.4.2. Relevant Federation Management ......................................................... 38 
3.4.3. Relevant Declaration Management ........................................................ 40 
3.4.4. Relevant Object Management ................................................................ 42 

3.5. FEDERATE IMPLEMENTATION PROBLEMS ........................................................ 45 
3.5.1. General problems..................................................................................... 45 
3.5.2. Problems related to Federation Management ....................................... 46 
3.5.3. Problems related to Declaration Management...................................... 47 
3.5.4. Problems related to Object Management .............................................. 48 

CHAPTER 4. FEDERATE SOFTWARE FRAMEWORK ..................................... 50 

4.1 OVERVIEW OF COMPLETE FEDERATE FRAMEWORK ........................................ 50 
4.2 PROPOSED FEDERATE DESIGN FRAMEWORK .................................................... 51 

4.2.1. Overview of design framework............................................................... 51 
4.2.2. Components’ responsibilities and collaborators ................................... 52 
4.2.3. Components’ structure ............................................................................ 56 
4.2.4. Instantiation of framework ..................................................................... 64 
4.2.5. Benefits of framework ............................................................................. 65 

CHAPTER 5. ANALYSIS OF HLA EXTENSIONS ................................................ 68 
5.1. OVERVIEW OF HLA EXTENSIONS ..................................................................... 68 
5.2. EXTENSION 1: UML EXTENSIONS ..................................................................... 69 
5.3. EXTENSION 2: COGNITIVE HELP FOR FEDERATE ............................................. 70 
5.4. EXTENSION 3: AUTOMATIC C++ CODE GENERATION FOR FEDERATE............. 71 

CHAPTER 6. IMPLEMENTATION OF HLA EXTENSIONS .............................. 73 
6.1. OVERVIEW OF HLA EXTENSIONS ARCHITECTURE .......................................... 73 
6.2. USER INTERFACE: NEW MENU ITEM FOR HLA................................................. 74 
6.3. COGNITIVE SUPPORT FOR HLA ........................................................................ 76 

6.3.1. HLA specific criticism control mechanism............................................ 76 
6.3.2. HLA specific critics.................................................................................. 78 

6.4. CODE GENERATION ........................................................................................... 80 
6.4.1. Class ActionGenerateFed ........................................................................ 81 
6.4.2. Class FedGenerationDialog..................................................................... 81 
6.4.3. Classes of generating C++ source code .................................................. 83 

CHAPTER 7. CASE STUDIES................................................................................... 85 
7.1 OVERVIEW OF DESIGN AND DEVELOPMENT PROCESS ...................................... 85 
7.2 EXAMPLE 1: HELLOWORLD ............................................................................. 86 

7.2.1. Overview of HelloWorld’s specification ................................................ 86 
7.2.2. Challenge without framework ................................................................ 87 
7.2.3. Under federate framework...................................................................... 88 

7.3 EXAMPLE 2: FEDERATE TANK........................................................................... 90 

  III



A UML-Based Tool for Designing HLA Federates 

7.3.1. Application scenario ................................................................................ 90 
7.3.2. Overview of Tank’s specification ........................................................... 91 
7.3.3. Tank design process ................................................................................. 93 
7.3.4. Cognitive help for federate Tank............................................................ 95 
7.3.5. Tank development process ...................................................................... 96 

CHAPTER 8. CONCLUSION AND FUTURE WORK ......................................... 100 
8.1. CONCLUSION ................................................................................................... 100 
8.2. FUTURE WORK ................................................................................................. 102 

APPENDIX A: AN INTRODUCTION TO UML NOTATION.....................................I 

A.1 UML DIAGRAMS ................................................................................................... I 
A.2 CLASS DIAGRAM .................................................................................................. II 
A.3 SEQUENCE DIAGRAM .......................................................................................... III 

APPENDIX B: A COGNITIVE CASE TOOL: ARGOUML...................................... IV 
B.1 ARGOUML’S GRAPHIC USER INTERFACE.......................................................... IV 
B.2 OVERVIEW OF PACKAGES IN ARGOUML .......................................................... VI 

APPENDIX C: HLA TERMINOLOGY........................................................................ IX 

REFERENCE.....................................................................................................................X 
 

  IV



A UML-Based Tool for Designing HLA Federates 

  

LIST OF TABLES 

Table 2-1: An example CRC card...................................................................................... 10 
Table 2-2: The category of critics ...................................................................................... 23 
Table 3-1: The basic Runtime Infrastructure services ....................................................... 31 
Table 4-1: CRC cards describing the class ObjectClassBase ............................................ 53 
Table 4-2: CRC cards describing the user defined object class......................................... 54 
Table 4-3: CRC cards describing the user defined interaction class ................................. 54 
Table 4-4: CRC cards describing the classes for the class FederateAmbassador.............. 55 
Table 5-1: Proposed stereotypes for the HLA extensions ................................................. 70 
Table 7-1: The FOM of the federate HelloWorld.............................................................. 87 
Table 7-2: The FOM of the federate Tank......................................................................... 91 
Table A- 1: UML diagrams................................................................................................... i 

 

  V



A UML-Based Tool for Designing HLA Federates 

 

LIST OF FIGURES 

Figure 1-1: The logical view of HLA components .............................................................. 4 
Figure 2-1: The architecture of the JUnit framework ........................................................ 12 
Figure 2-2: An example class ............................................................................................ 14 
Figure 2-3: An example class with stereotype................................................................... 15 
Figure 2-4: The screenshot of ArgoUML window ............................................................ 19 
Figure 2-5: The package diagram of ArgoUML................................................................ 20 
Figure 2-6: An example critic in ArgoUML...................................................................... 22 
Figure 3-1: HLA federation ............................................................................................... 34 
Figure 3-2: The sequence diagram of the federation execution life cycle ......................... 36 
Figure 3-3: Overview of the basic federate functionalities................................................ 38 
Figure 3-4: The basic Federation Management life cycle ................................................. 39 
Figure 3-5: The basic Declaration Management life cycle ................................................ 41 
Figure 3-6: The basic Object Management life cycle for an HLA object instance ........... 43 
Figure 3-7: The basic Object Management life cycle for an HLA interaction .................. 44 
Figure 4-1: The class diagram for class ObjectClassBase and its subclasses.................... 56 
Figure 4-2: An example of the user defined object class “Position” ................................. 57 
Figure 4-3: An example of the user defined interaction class “Communication” ............. 60 
Figure 4-4: The class diagram for abstract class federate ambassador .............................. 62 
Figure 4-5: A pre-defined HLA federate class diagram .................................................... 64 
Figure 6-1: HLA extensions package structure ................................................................. 73 
Figure 6-2: A screenshot of new menu items for the HLA extensions.............................. 74 
Figure 6-3: A class diagram of action classes.................................................................... 75 
Figure 6-4: A class diagram of criticism control system for the HLA extensions ............ 76 
Figure 6-5: A screenshot of the code generation dialog for an HLA federate................... 82 
Figure 6-6: A class diagram of code generation for the HLA extensions ......................... 83 
Figure 7-1: A simplified life cycle of the federate design and development process........ 86 
Figure 7-2: A class diagram of federate HelloWorld......................................................... 89 
Figure 7-3: A class diagram of federate Tank ................................................................... 93 
Figure 7-4: A screenshot of the an HLA specific critic ..................................................... 95 
Figure A- 1: An example association relationship............................................................... ii 
Figure A- 2: An example generalization relationship......................................................... iii 
Figure A- 3: A sequence diagram of using ATM ............................................................... iii 

 

 

  VI



A UML-Based Tool for Designing HLA Federates 

 

LIST OF ABBREVIATIONS 

API     Application Programmer’s Interface  

CASE     Computer Aided Software Engineering 

CRC     Class-Responsibility-Collaborator 

DMSO     Defense Modeling and Simulation Office  

FOM     Federation Object Model  

GEF     Graph Editing Framework  

HLA      High Level Architecture 

M&S     Modeling and Simulation  

NSUML    Novosoft UML API 

OMG     Object Management Group 

OMT     Object Model Template  

OO     Object Oriented  

OOM     Object Oriented Methodology  

RTI     Runtime Infrastructure 

SOM     Simulation Object Model  

UML     Unified Modeling Language 

 

  VII



A UML-Based Tool for Designing HLA Federates 

 

SUMMARY 

 

The High Level Architecture (HLA) defines a set of standards and principles for 

distributed simulations and promotes the reuse of simulation software and interoperability 

between them.  

However, it is a laborious task when directly developing HLA simulations with the low 

level service methods. Moreover, the HLA does not address formal design approach for 

the simulation software. These difficulties hinder the HLA simulations design and 

development.  

To improve the productivity of the simulation development and enhance software reuse, 

this project proposes a design framework based on the HLA simulation development 

process. It is an architectural point for the users to implement the simulation software. 

Moreover, a UML-based tool is implemented to support designing HLA simulations. It 

includes pre-defined class diagram, reflection-in-action context help, and automatic code 

generation. Concepts and notations for HLA extensions have been presented and their 

implementations are discussed.  

Two example simulations, HelloWorld and Tank, are introduced to describe the basic 

process of the design and development of HLA simulations under the proposed 

framework with tool support.  
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Chapter 1. Introduction 

1.1. Overview of software design  

1.1.1. Object-Oriented Methodology (OOM) 

Object Oriented (OO) is the technology based on objects and classes [BAUD96]. An 

object is a representation of a real-life entity that incorporates both data structure and 

behavior. A class is the abstraction of the real world based on the objects. OO design is 

concerned with developing an OO model of a software system to implement the identified 

requirements [HEND92]. 

Object Oriented Methodology (OOM) is a system development approach that encourages 

and facilitates the reuse of software components [G52A03].  With this methodology, a 

system can be developed on a component basis which enables the effective reuse of 

existing components and facilitates the sharing of its components by other systems. There 

are several types OOM given in [COAD90] [MART96]. In this project, one of OOM: 

Class-Responsibility-Collaborator (CRC) card modeling approach is introduced to 

describe the classes of application software.  

1.1.2. Framework  

The OO framework is a promising technique to support reusable software components. 

The description of software framework is given [GAMM95]: 

"A framework is a set of cooperating classes that make up a reusable design for a 

specific class of software… A framework provides architectural guidance by 

partitioning the design into abstract classes and defining their responsibilities and 
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collaborations…A developer customizes a framework to a particular application 

by adding new components to plug into it" 

From the description above, the framework is a reusable design expressed as object-

oriented class hierarchy. It defines the responsibilities of the classes, the interaction of the 

objects derived from the class hierarchy and the thread of control.  

The framework describes the architecture of the applications. All the classes in the 

framework provide the skeleton of applications. By subclassing and composting instances 

of classes to customize the framework, developers can construct and develop the 

particular applications.  

The framework emphasizes reusable design over code reuse [FAYA99]. It can be 

embodied in OO programming languages, executed and reused. 

1.1.3. UML and CASE tools 

The Unified Modeling Language (UML) is a model language for OO design and 

development. It helps users specify, visualize, and document models of software systems. 

It facilities the development process of the framework [OMG003] [DSOU99] [ODELl98].  

The development process of framework needs automated tools in some way. The 

Computer Aided Software Engineering (CASE) tools are the automation of step-by-step 

tools for software development to reduce the amount of repetitive work the developers 

need to do [DANE96] [HERZ94] [SINA02]. They provide the automated engineering 

discipline for software development, maintenance, and project management. It plays an 

assistant role in the design phases of system. CASE tools are introduced to enforce a 

standard development methodology.  
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In the OO software development process, UML and CASE tools can help users design and 

implement more flexible and reusable systems. This project focused towards the 

framework technique and UML-based CASE tool for modeling and simulation domain. 

1.2. Overview of modeling and simulation 

As the size and complexity of real systems are increasing, modeling and simulation 

techniques have been widely used to analyze their behaviors and communication. The 

modeling of a relevant real system or subsystem is the first step in the OO software design. 

A model is an abstract representation of a real system or subsystem. A simulation is the 

program execution of a model to give information about the system [BOEH96]. 

Modeling and Simulation (M&S) is the discipline of designing a model, and executing the 

model [ZEIG00]. Distributed simulations refer to the technology concerned with 

executing simulations over computing systems containing a collection of loosely coupled 

distributed processors [DOD994]. 

There are two desirable properties for a simulation: reuse and interoperability [SISO03]. 

Simulation reuse means simulations, which are constructed for the purpose application, 

can support the different applications and no need of re-coding for reuse. Simulation 

interoperability implies that the simulations on the distributed computing platform can 

provide service to other simulations and accepts services from them. Simulations use the 

exchanged services to enable them to operate effectively together. 
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1.3. Overview of HLA 

Based on the premise that no one simulation can satisfy all applications and users, the 

High Level Architecture (HLA), which was initially introduced by Defense Modeling & 

Simulation Office (DMSO) of U.S, defines a set of standards for the distributed 

simulations and promote the reuse of simulations and interoperability between the 

simulations [DMSO97]. 

The HLA has a variety of benefits for distributed simulation. It is possible to construct a 

larger and more complex simulation using existing simulations.  

Figure 1-1 shows a logical view of the main components of the HLA infrastructure: 

simulation, Runtime Infrastructure (RTI) and runtime interface.  

Federate A Federate B 

Interface Interface 

RTI 
 

Figure 1-1: The logical view of HLA components 

 

In the context of the HLA, a simulation is also generally referred to as a federate. A 

federation is the particular group of interoperating federates. The federate interacts and 

exchange data with other federates supported by the services in the Runtime Infrastructure 

(RTI). RTI is a software implementation of communication service to support federates 

interaction and federation management. Runtime interface specification, which contains a 

  4



A UML-Based Tool for Designing HLA Federates 

set of Application Programmer’s Interface (API), provides a way for communication 

between federate and RTI. A federation is the particular group of interoperating federates. 

All federates and the RTI are connected through a distributed network and together are 

made up of a federation execution.  

1.4. Problem statement  

The HLA provides a set of standards and principles for distributed simulations. But it does 

not address any detail of common approach to facilitate federate design and development. 

For the HLA programming beginners, the challenges are to effectively design and develop 

HLA federates. There are some general problems that relate to the federate development 

based on experiences: 

1) Laborious coding with HLA  

To date, most federates are manually programmed in popular object oriented languages, 

such as C++, Java, through RTI. RTI provides a number of flexible functional interfaces 

(APIs) and the interface specification consists of over a hundred methods names and 

descriptions. For example, even for the very simple federate software, it includes 

thousands of lines of source code and most are just the HLA RTI basic services. But the 

number of lines of the user defined data type and relevant operations are not more than 

one hundred. Without tools support or pre-defined template, federate developers face the 

relative steep learning curve and boring work in the HLA programming. 

2) No formal design approach  

HLA does not address formal federate design approach. It also does not address any reuse 

guideline between the different design paradigms. Developers may create their federate 

  5



A UML-Based Tool for Designing HLA Federates 

software in their own favorite manner [TOLK02] [RADE02] [COX998]. The different 

design paradigms results in implementation incompatibilities between the federates. It 

leads to ad hoc fashion. It is difficult to reuse the existing federates. Thereby, this 

conflicts with the HLA goals: reuse and interoperability.  

1.5. Project objectives 

To solve the above problems, there is a great need of techniques and tools to improve the 

productivity of the creation of the HLA simulation and enhance software reuse. The 

project objectives include: 

1) To provide a more formalized description of HLA simulations’ design and 

development process. 

2) To offer HLA developers the reusable design and source code of HLA simulations. 

3) To decrease the HLA programming complexities by encapsulating a number of HLA 

low level service methods. 

4) To allow HLA developers to focus on application-specific simulation fields rather 

than on the basic RTI services. 

5) To implement some supporting functionalities in a UML-based CASE tool for 

federate design and development.  

1.6. Project contributions 

Within OO software design’s concepts and principles, this project proposes a federate 

framework and a UML-based CASE tool to achieve the research objectives. Several 

contributions are made in this project:  
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1) Research and design a basic federate framework. The proposed framework restricts to 

HLA concepts and is compatible with the HLA principles. It is the general form of 

various kinds of HLA simulation applications and initial set-up for HLA programmers 

to develop a new federates and supports to reuse the existing federate for multi 

applications. The framework includes: 

 The collaborating classes represent the HLA simulations. In these classes, the 

standard data structures and behaviors are well-structured defined to meet the 

necessary requirement of the federate execution capability.  

 The general higher level simulation services, which are required by typical 

federates, encapsulate a set of flexible functional interfaces of HLA low level 

service methods (APIs).  

2) Design and implement the HLA extensions’ functionalities in the open source CASE 

tool: ArgoUML. They considerably support the proposed framework. The main 

functionalities can be summarized into the areas listed below: 

 Extension to the standard UML profile to represent a federate; 

 Some usable help during the federate design process; 

 Automatic process of generating the HLA simulation in C++ source code skeleton; 

1.7. Structure of thesis 

The research described in this thesis involves: 
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Chapter 1: OO design concepts, HLA, and some problems related to the federate 

software development are briefly overviewed. It proposes the project objectives and 

contributions. 

Chapter 2: CRC cards methodology, framework, UML and CASE tools are discussed. 

One CASE tool, ArgoUML, is introduced. Because ArgoUML is still a research project 

and there is insufficient documentation about it, its structure and implementation are 

thoroughly analyzed. It is the ground to support the federate design framework. 

Chapter 3: The technique of the modeling and simulation are described. The HLA 

infrastructure, its components and the general federate development process are 

investigated. Before focusing towards the federate design framework, the federate 

implementation problems have been determined. 

Chapter 4: It proposes a basic federate design framework. The classes in this framework 

and their relationship are discussed by CRC cards. The framework components’ structure 

and functions are thoroughly discussed. 

Chapter 5: Some problems of the HLA extensions to support federate design are 

discussed. This is the foundation of the functionalities implementation of ArgoUML. 

Chapter 6: The UML-based tool: ArgoUML is implemented to support HLA federate 

design. The implementations of the HLA extensions are presented. 

Chapter 7: Under the proposed federate design framework, two example federates are 

presented to describe the basic process of the design and development of a federate in 

ArgoUML environment. 

Chapter 8: It concludes the main research work and the further works are discussed.
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Chapter 2. Software design and related work 

2.1. CRC cards methodology 

The Class-Responsibility-Collaborator (CRC) cards approach is one of OOM. It usually 

includes the users, analysts, and developers in the modeling and design process, bringing 

together the entire development team to form a common understanding of an OO 

development project [BECK89]. There are a lot of materials about how to use this 

technique in the OO software [DOUG99] [WILK95] [BELL97]. 

The CRC modeling technique includes a collection of cards which are divided into three 

sections: 

 Class: A Class represents a group of similar objects. Objects are described by their 

attributes and their operations. The class name appears across the top of the CRC 

card. 

 Responsibility: The responsibilities are things that the class has knowledge about 

itself or what the class can do. For example, a customer class might have 

responsibility for its name, address, credit level, and phone number. The 

Responsibilities of a class appear along the left side of the CRC card. 

 Collaborator: A collaborator is another class that is used to get information or 

perform actions for the class at hand. It often works with a particular class to 

complete steps in a scenario. The collaborators of a class appear along the right 

side of the CRC card. 
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Table 2-1 is an example CRC card: 

Class 

Responsibility Collaborator 

  

 

Table 2-1: An example CRC card 

 

CRC cards can be created for any identified class. After CRC cards are created; they are 

often placed on a centralized table. In this project, CRC cards are used to describe the 

classes of the federate framework. 

2.2. Framework 

A framework is a reusable software architecture made of both design and code. It 

represents a partial design and implementation for an application in a given problem 

domain. Johnson and Foote have developed the most frequently used definition in 

[JOHN88]: 

“A framework is a set of classes that embodies an abstract design for 

solutions to a family of related problems.” 

Frameworks are a promising technology for the proven software designs and 

implementations in order to reduce the cost and improve the quality of software 

[SCHM97].  

The primary benefits of the framework are reuse and extensibility. 
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 Reuse: Frameworks achieve reuse by defining generic components that can be 

reapplied to create new applications. Reuse of framework components can 

substantially improve software productivity, as well as the quality, performance, 

reliability and interoperability of software. 

 Extensibility: Extending the framework can provide the functionality unique to the 

application. Framework extensibility ensures customization of new application 

services and features. 

A framework provides architectural guidance by partitioning the design into abstract 

classes and defining their responsibilities and collaborations. The framework typically 

consists of a mixture of abstract and concrete classes. The abstract classes usually reside 

in the framework, while the concrete classes reside in the application. A framework, then, 

is a half-complete application that contains certain fixed aspects common to all 

applications in the problem domain. 

The framework development has been successful in many domains. For example, JUnit 

[JUNI03] is a test framework for Java program [MARC03]. The architecture of JUnit is 

shown as a UML class diagram in figure 2-1. Each rectangular box represents a class. The 

upper section holds its name and the lower holds its methods. Each relationship between 

these classes is represented by the bars that connect them. This JUnit framework contains 

the abstract class Test, class TestCase and class TestSuite and can be instantiated by the 

concrete class myTestCase and myTestSuite. 
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Figure 2-1: The architecture of the JUnit framework 

 

Frameworks that are extended are classified whitebox frameworks and blackbox 

frameworks. 

Black-box frameworks are easier to use since the internal mechanism is hidden from the 

developers. Blackbox frameworks are more difficult to develop since they require the 

framework to anticipate a wider range of potential application scenario. Whitebox 

frameworks require application developers to have basic knowledge of the frameworks 

structure. The JUnit framework is just an example of Whitebox framework. 

There are three major steps to develop a framework: domain analysis, framework design, 

and framework instantiation [MARK03]. 

The domain analysis phase discovers the domain's requirements and possible future 

requirements. The framework design phase defines the framework's abstractions. Finally, 

in the instantiation phase, the classes of the framework are implemented, generating a 

software system. 
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There are some examples of the OO frameworks in [PATE96] [WALD96] [SRID96]. 

2.3. UML 

2.3.1. Overview of UML 

The core work of OO problem solving is the construction of a model. The model abstracts 

the essential detail of the underlying problem from its real world. The modeling languages 

encourage more developers to model their software systems before starting them. The 

standard modeling languages improve the developers’ communities. The Unified 

Modeling Language (UML) is a standard language for object-oriented analysis and design 

facilities, which was set by the Object Management Group (OMG) in 1997, and now the 

standard for communicating OO concepts.  

UML specification defines a graphical language for visualizing, specifying, constructing, 

and documenting the artifacts of software systems. UML models systems using object-

oriented concepts. The models consist of objects that interact with each other by 

exchanging message. 

UML provides different views of the abstraction level in the design process. It defines 

different types of diagram to describe and model the real world. These diagrams include:  

 Class Diagram  

 Use Case Diagram 

 Sequence Diagram 

 Collaboration Diagram 

 Statechart Diagram 
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 Activity Diagram 

 Component Diagram 

 Deployment Diagram 

In the next section, the concepts of the class and its stereotype are overviewed. In the 

appendix A, some necessary parts of UML notation: class diagram, sequence diagram, 

and classes relationships are introduced to provide background understanding. More detail 

and guide material can be found in [OMG003]. 

2.3.2. Class and stereotype 

The class is one of the most important items of UML. It is a collection of objects with 

common structure, common behavior, common relationships and common semantics. A 

class is the "blueprint" for objects. It wraps attributes (data) and behaviors (methods or 

functions) into a single distinct entity. Objects are instances of classes. 

A class is represented as a rectangle with three compartments. It wraps name, attributes 

and behaviors into a single distinct entity. Figure 2-2 shows an example class. 

 

Figure 2-2: An example class 

 

Classes should be named using the vocabulary. For example, a name, like “Order”, is a 

string that is used to identify a class. The structures of the classes can be represented by 
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their attributes such as “number” and “price”. Operations such as “dispatch” and “close” 

are the representation of the behavior of the classes, which an object may be requested to 

perform. Users can assign access levels such as private, public, protected to a class, 

attributes, and operations. 

A stereotype is a model element that defines additional values (based on tag definitions), 

additional constraints, and optionally a new graphical representation. Figure 2-3 shows an 

example class with stereotype. 

 

Figure 2-3: An example class with stereotype 

 

Stereotypes are one of the extension mechanisms of UML. User defined class can be 

associated with specific stereotype name. For example, a new stereotype name 

<<stereotype>> could be defined that can be attached to classes.  

2.4. CASE tools 

Computer Aided Software Engineering (CASE) tools provide computer based support for 

the design and development of software, mostly through the provision of a diagram editor 

with underlying functionality for the development and analysis of the design [OMAN90] 

[COST94].  

[IEEE96] gives a formal definition of CASE tools: 
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“CASE tool: A software tool that aids in software engineering activities, 

including, but not limited to requirements analysis and tracing, software 

design, code production, testing, document generation, quality assurance, 

configuration management, and project management.” 

CASE tools are introduced for modeling the design and automating repetitive 

development tasks, such as visual design diagram representation, source code skeleton 

generation from designed model, and task list management. A CASE tool may provide 

support in only selected functional areas or in a wide variety of functional areas. 

Regardless of the category and features of the tool, CASE tools users usually claim 

significant gains from successfully adoption of the CASE tools. These benefits include the 

following: 

 Increased development productivity; 

 Improvements in the quality of the delivered software; 

 Improved consistency and uniformity of the development approach; 

CASE tools provide assistance to the software developers [KEIT02] [BANK91]. There 

are many CASE tools for software modeling in [CASE03]. 

During the adoption of CASE tools phase, it involves acquiring an understanding of the 

needs of the project and the technology available [BOLO98]. In this project, the examples 

capabilities of the CASE tools are: 

 Support standard UML notation like create class diagrams; 

 Create text specifications, such as class specifications like attributes, operations 

and relationship of the model elements; 

 Support the UML extension mechanism like stereotype; 
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 Support context sensitive help for the designer; 

 Generate object-oriented language source code like C++; 

2.5. ArgoUML 

2.5.1. Overview of ArgoUML 

ArgoUML is a research CASE tool for use in the analysis and design of object-oriented 

software systems [ARGO03]. It supports the standard UML diagrams like class diagram, 

state class diagram, use case class diagram, activity class diagram, and collaboration class 

diagram. In addition, it can generate Java source code skeleton from the class diagram. 

Compared to many other UML modeling tools in industry like MagicDrawUML, 

COOL:Jex, GDPro, Visual Modeler (from Microsoft), Objecteering (with great support 

for repositories), Together (round trip engineering), ArgoUML has some unique key 

features: 

 ArgoUML cognitive help system provides the knowledge supports for the object-

oriented software designers and architects. It includes some specific cognitive 

features like context sensitive help, reflection-in-action and comprehension and 

problem solving.  ArgoUML cognitive support system includes a number of 

design critics, which are active agents that continually check the design materials 

for errors or design areas needing improvement. A design critic is an intelligent 

user interface agent embedded in a design process. It independently analyzes a 

design in the context of decision-making and produces one piece of feedback to 

help the designer improve the design. The designer can easily and timely view the 

related feedback. The designer can only see feedback produced by the critics. 

  17



A UML-Based Tool for Designing HLA Federates 

 ArgoUML is a 100% Pure Java application and open source. It does not depend on 

the particular platform. It promises Write Once, Run Anywhere in the Java2 

platform. It allows users to design and implement their object-oriented software in 

the preferred Operating System environment.  ArgoUML is an open source code 

product. Since the source code is available, it can be customized and to meet the 

user particular requirement.  

ArgoUML makes use of some of existing open-source projects in order to achieve its 

goals. 

 Graph Editing Framework (GEF) - a graph editing library that can be used to 

construct many, high quality graph editing applications. It provides a library 

making for the Java applications publish diagrams [GRAP03].  

 Novosoft UML API (NSUML) – a representation of the UML meta-model by java 

classes. It records the elements of the model in a static structure copied on meta-

model UML [NOVO03].  

The main window of ArgoUML contains five parts: menu and tools bars, navigator pane, 

editing pane, details pane and To-Do pane. The To-Do Pane is located on the lower left 

part of the window. It includes a ToDo list of UML-specified cognitive critics for the 

design phase. The design critics continuously track the design process. When a potential 

problem is found, the critic produces a "to do" item and adds it to the To-Do Pane. When 

the use highlighted the critics, more detail description will appear in the ToDoItem tab of 

the Details pane, which is located on the lower right part of the window. When an 
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identified problem is fixed, this ToDoItem is removed from the ToDo list. Appendix B.1 

shows more details of other parts of the user interface. 

Figure 2-4 shows a screenshot of ArgoUML window. 

Figure 2-4: The screenshot of ArgoUML window 

 

2.5.2. ArgoUML’s architecture  

The current version of ArgoUML includes sixteen key top-level packages, which are 

depicted in the package diagram in figure 2-5. 

  19



A UML-Based Tool for Designing HLA Federates 

Argouml 

 

 

     Ui  Application Kernel Pattern 
    
   

     Cognitive  Uml Language Persistence
    
   

     I18n  Util Model Resource 
    
  

     Images  Xml Ocl Swingext 
    

   

Figure 2-5: The package diagram of ArgoUML 

 

The main components of ArgoUML include the kernel, graphic user interface, cognitive 

critics system and code generation. They are: 

 org.argouml.model 
This package contains various UML metamodel implementations or facades used within 

ArgoUML. Such metamodels include Foundation component, ModelManagement 

component, BehavioralElements in UseCases, StateMachines, and Collaborations 

component. 

 org.argouml.ui  

This package manages the principal graphic interface window, with through the singleton 

of ProjectBrowser class.  
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 org.argouml.cognitive 
This package defines the fundamental elements of the cognitive support system, such as 

the Designer class, Poster class and ToDoItem class. 

Appendix B.2 shows more details of other packages. 

2.5.3. ArgoUML’s expert critiquing system  

The expert critiquing system is one of the key features of ArgoUML.  

During the design process, decision making is an essential activity. Sound design in this 

phase is important for the success of the software system. Any errors and faults in the high 

level design become more expensive to overcome at later development process [GUIN87] 

[STAC95]. 

A designer may not have the comprehensive knowledge about how to build the specific 

process related to a particular task. In addition, the analysis technologies do not support 

the design decision and provide feedback timely. 

ArgoUML expert critiquing system is based on the reflection-in-action theory. This 

approach provides the designers the results in the context of their decision making timely. 

Compared to the traditional analysis technologies, the users’ cognitive needs are 

continuously considered. It supplies the design knowledge to designer when they are 

needed. 

ArgoUML expert critiquing system is a fine-grained and real time mechanism to support 

design decision making. It uses critics to perform analysis on a particular design 

architectural model. Critics, which are also considered as context sensitive help, are 

always associated with the states of the user edit pane. A critic can identify the problem of 
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the design process and produce the feedback: ToDoItem posting on the ToDo list to give 

the explanation of the underlying issues. 

For example, when a designer selects a class and puts it in a class diagram by using 

ArgoUML, a critic is fired and produces one ToDoItem like: the name of the new package 

has not been named yet. 

Figure 2-6 shows the screenshot of ArgoUML Argo issues some critics. 

 

Figure 2-6: An example critic in ArgoUML 

 

The ArgoUML critiquing system includes critics, criticism control mechanisms, feedback 

management, corrective automations, and design history. [ROBB97] [ROBB98] 

 Critics are active agents that support decision-making by continuously and 

pessimistically analyzing partial architectures. It is embedded in the design 

environment to monitor the specified design problem, stylistic violation and 

incomplete sections. When the error is founded, it timely and automatically 

produces feedback that is relevant to design decisions.  
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ArgoUML has defined some types of critics [ROBB98]. These critics are related to 

the particular design problems. Table 2-2 shows more detail of the critics. 

Name Functionality 

Correctness critics Detects syntactic and semantic flaws in the partial design. 

Completeness critics Detects when a design task has been started but not yet finished. 

Consistency critics Detects contradictions within the design. 

Presentation critics Detects awkward use of the notation. 

Alternative critics Reminds the designer of alternatives to a given design decision. 

Optimization critics Suggests better values for design parameters. 

 

Table 2-2: The category of critics 

 

 Criticism control mechanisms determine whether the related critic is active 

continuously and control the execution of the critic. 

 Feedback management allows the designer to control the presentation of the 

design ToDoItems, which is directly linked to the elements of the architecture. The 

ToDoItems on the ToDo list are grouped by catalog as priority, decision type, 

knowledge type, offending design elements, posting package. When the designer 

select one ToDoItem, the details of problem description and suggested solution 

can be viewed through the ToDoItem Tab in the Details pane. 
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Once a critic produces the ToDoItem, it is timely presented and posted in the 

ToDo list. When the critic is not valid, it is removed from the ToDo list. 

 Corrective automations aid the architect to improve the design by correcting the 

specific problem automatically. In ArgoUML, Critic may provide a Wizard to fix 

specific problem. The designer can follow the wizard steps: “Next” and “Back” 

buttons to finish the solution. 

 Design history records the earlier significant design activities. Currently, 

ArgoUML uses the design history only to ensure that previously resolved 

ToDoItems are not produced in the future. 

2.5.4. ArgoUML’s code generation structure 

ArgoUML can generate the skeletal Java source code for class or interface based on the 

UML class diagrams. 

ArgoUML provides the abstract class: Generator and one subclass: GeneratorJava to 

generate Java source code. Another subclass GeneratorDisplay generates simplified Java 

code to be displayed in the "Source" tab. 

The source code skeleton includes the class name, member attributes and the empty body 

of the member operations. ArgoUML is only used in the design phase. Java IDE is needed 

to edit an existing the source during the development phase. 
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Chapter 3. Modeling, Simulation and HLA 

3.1. Modeling  

A model is a simplified representation of a system over some time period or spatial extent 

intended to promote understanding of the real system. [IEEE89] gives the formal 

definition of a model: 

“(1) Model is an approximation, representation or idealization of selected 

aspects of the structure, behavior, operation, or other characteristics of a 

real-world process, concepts, or system. 

(2) To serve as a model as in (1) 

(3)To develop or use a model as in (1)” 

There are five basic model types [TOLK03] [FISH95]:  

1) Conceptual Models: define a physical system at a very high abstraction level. 

All static and dynamic knowledge about the physical system must be encoded 

in some forms. 

2) Functional Models: are usually useful to expose some system behavior to help 

in exceptional situations.  

3) Declarative Models: concentrate on the form of the current system state and a 

subsequent system state after a state transition occurs. 

4) Constraint Models: denote a coherent set of application independent 

constraints defined over all the software used in an application system.  
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5) Spatial Models: describe the geographical distribution of scatterers around the 

transmitter and receiver and predict the distribution of delay, amplitude, and 

direction of arrival of multi path components at the receiver. 

Models provide ways to think and reason about real systems. A model is intended to 

promote the development of understanding of the real system. Models always involve a 

trade-off as to what levels of details of the real system are included in the models. If there 

are too little details in the model, such model may miss the relevant information and 

interaction of the real system. But if the model includes too many details, it may become 

overly complicated and actually preclude the development of understanding. A good 

model is constructed with suitable information to answer a specific set or class of 

questions about a system. There are much more resources about models in [MODE03]. 

3.2. Simulation 

A simulation is the manipulation of a model in such a way that it operates on time and/or 

space to compress it, thus enabling one to perceive the interactions that would otherwise 

not be apparent because of their separation in time or space [RUMB91] . 

[IEEE89] gives the formal definition of a simulation: 

“(1) A model that behaves or operates like a given system when provided 

a set of controlled inputs. Synonymy: simulation model. 

(2)The process of developing or using a model as in (1)”  

From the definition of simulation, it is a tightly coupled and iterative three component 

process composed of  
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1) Model design: According the objective of simulation and basic assumption of 

characteristics of the real system, Model builders formalize details of specification 

of conceptual and functional model for a simulation. 

2) Model execution: Model builders translate the functional model to an 

executable program. They can use general purpose programming language or a 

special simulation language. 

3) Execution of a model: After the model execution, validation of a model can be 

done by comparing the simulation output with output generated by the real system 

or analytical model. 

Distributed simulation systems contain a number of simulations that execute on multiple 

processing units in a geographically distributed system.  

 The distributed simulation architectures support the execution of simulation process in a 

distributed way by connecting different distributed simulation models of various 

functional areas [BRAT87]. These simulation components collaborate and communicate 

in order to realize the functionality of the system as a whole. In order to achieve the 

interoperability between the distributed simulation models architecture, the Department of 

Defense in the United States introduces the High Level Architecture (HLA) for modeling 

and simulation activities. 
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3.3. HLA 

The HLA is a software infrastructure for heterogeneous distributed simulations. It was 

developed to support reuse and interoperability for simulation models. It provides a 

concept framework for development of distributed simulations [KUHL99].  

The HLA consists of: 

 Rules; 

 Interface Specification; 

 Object Model Template; 

3.3.1. Rules 

The HLA consists of 10 rules, which must be obeyed if a federate, or federation is to be 

regarded as the HLA compliant. All these rules are divided into two groups: federation 

rules and federate rules [DMS98A].  

There are five rules for federation: 

1) Federations shall have an HLA Federation Object Model (FOM), documented in 

accordance with the HLA Object Model Template (OMT). 

2) In a federation, all representation of objects in the FOM shall be in the federates, 

not in the runtime infrastructure (RTI). 

3) During a federation execution, all exchange of FOM data among federates shall 

occur via the RTI. 
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4) During a federation execution, federates shall interact with the runtime 

infrastructure (RTI) in accordance with the HLA interface specification. 

5) During a federation execution, an attribute of an instance of an object shall be 

owned by only one federate at any given time. 

There are five rules for federate: 

6) Federates shall have a HLA Simulation Object Model (SOM), documented in 

accordance with the HLA Object Model Template (OMT). 

7) Federates shall be able to update and/or reflect any attributes of objects in their 

SOM and send and/or receive SOM object interactions externally, as specified in 

their SOM. 

8) Federates shall be able to transfer and/or accept ownership of attributes 

dynamically during a federation execution, as specified in their SOM. 

9) Federates shall be able to vary the conditions (e.g., thresholds) under which they 

provide updates of attributes of objects, as specified in their SOM. 

10) Federates shall be able to manage local time in a way which will allow them to 

coordinate data exchange with other members of a federation. 

The HLA rules govern the behaviors of the federation and federate. 

The federation rules establish the ground rules for creating a federation. The federate rules 

deal with the individual federates. Under the HLA, all federates must document the public 

information. In addition, all data representation takes place in the federates (not in the RTI) 

with only one federate owning any given attribute of a HLA object instance at any given 
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time. Federate rules do not allow explicit communications between federates and all the 

information exchange among the federates takes place via the RTI as specified in the 

HLA interface specification.  

3.3.2. Interface specification 

The HLA Interface specification defines the methods between each federate and the 

Runtime Infrastructure (RTI). These methods allow the federates to communicate and 

cooperate with each other. [DMS98B] provides the details of the definition of these 

services.  

From the viewpoint of abstraction services, the interface specification consists of six types 

of services listed in table 3-1.  
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Category Functionality 

Federation Management 

Creates dynamic control, modifies and deletes a federation 

execution, and to allow simulations to join or resign from 

existing federations, and to control checkpoint, pause, 

resume and restart an execution. 

Declaration Management 

Establishes intent to publish object attributes and 

interactions that produce and subscribe to attributes and 

interactions produced by other federates. 

Object Management 

Creates and deletes object instances, control attribute and 

interaction publication, and to produce and receive 

individual attribute updates and interactions. 

Ownership Management 
Allows a federate to transfer the ownership of object 

attribute to other federates during the federation execution.  

Time Management 

coordinates the advance of logical time and its relationship 

to real time, so it allow the federates interoperable in despite 

of different time management schedule 

Data Distribution Management 
supports efficient routing of data by applying some 

technique to filter data 

 

Table 3-1: The basic Runtime Infrastructure services 
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3.3.3. Object Model Template (OMT) 

Currently, most of the HLA federates are constructed using Object-Oriented (OO) 

programming languages like C++ through RTI API. Prior to federate development, one 

should identify the difference between the basic concepts defined in the OO programming 

language and HLA. “Object” defined in terms of HLA have only a degenerate relation 

with the concept of “object” in the OO programming language. HLA objects do not define 

any behavior or operation and do not even have a type. They are merely hierarchical sets 

of attributes (data member) declarations (In the thesis, the HLA object is referred to as 

“HLA object” and “object” in OO is referred to as “OO object”). 

The HLA object models describe the sharable elements between federates. HLA puts no 

constraints on the specific data type in these HLA objects models. It requires federate and 

federation to use the standard HLA Object Model Template (OMT) to document their 

HLA object models [DAHM97].  

The OMT defines two types of classes:  

 HLA object classes 

 HLA interaction classes.  

The main difference between them is that HLA object class associated with attributes 

persists for some interval time. By contrast, HLA interaction class is a collection of the 

data which is called parameters, sent and forgotten through the RTI to other federates. 

[KUHL99].  

HLA object models shall contain at least one HLA object class or one HLA interaction 

class. 
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The OMT are classified to two types of the HLA object models: Federation Object 

Models (FOM) and Simulation Object Model (SOM). OMT format is applicable for both 

FOM and SOM. 

The FOM describes sharable elements across the federation. The SOM describes these 

elements of the individual federate, which are available in the future federation. The FOM 

can be considered a superset of a set of SOMs of the participating federate. The federate 

interacts with other federates with a compatible FOM in the federation. The SOM and 

FOM design and development are not in the scope of this project. 

The OMT consists of the different tables, more detail about these tables can be found in 

[DMS98C]. 

3.3.4. HLA infrastructure 

HLA infrastructure contains the following main components: 

 A number of federates which are HLA compliant; 

 Runtime Infrastructure (RTI);  

 Federate and RTI  runtime communication interface;  

Figure 3-1 shows the logical view of HLA infrastructure [DMSO00]. 
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Federate Federate Federate Federate (Publisher) (Subscriber) (Interface to real 
world participator)

(Data collector/ 
Viewer)

Interface

Runtime Infrastructure (RTI) services: 
Federation Management               Ownership Management 
Time Management                         Data Distribution Management 
Declaration Management              Object Management

Figure 3-1: HLA federation 

 

A federate can be a computer simulation, a manned simulator, a supporting utility (such as 

a viewer or data collector), or a live player or instrumented range. All the data 

representation are in the federates. Each federate maintains and controls a collection of 

sharable elements. These sharable elements have a number of the HLA object class, 

attributes of the HLA object class, HLA interaction class and parameters of the HLA 

interaction class that defined in the SOM.  

3.3.5. RTI components 

The RTI software is comprised of the RTI Executive process (RtiExec), the Federation 

Executive process (FedExec) and the libRTI library.  

The RtiExec process manages the creation and destruction of federation executions. The 

FedExec manages federates joining and resigning the federation. The libRTI provides the 

federate communication service with RtiExec, FedExec and other federates. The libRTI 

library includes two classes: class RTIambassador and abstract class FederateAmbassador. 
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The class RTIambassador bundles the services provided by the RTI. All requests made by 

a federate on the RTI take the form of the RTIambassador method call. The HLA 

programmers can directly call these methods.  

The abstract class FederateAmbassador, which provides a set of callback methods, is 

connected locally to the federate, and is responsible for the communication to the RTI. 

The HLA programmers should implement functionalities of these abstract callback 

methods in the derived classes. 

3.3.6. Federation execution 

A federation consists of a collection of related federate and RTI services with a FOM. 

Federates interact with other federates through the publishing/subscribing, 

sending/receiving services, which are provided by the RTI. A federate may 

simultaneously participate in more than one federation.  

Figure 3-2 shows the federation execution life cycle with UML sequence diagram. 
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Figure 3-2: The sequence diagram of the federation execution life cycle 

 

The federation execution sequence is described below: 

1) When a federation is started, the administrator first starts the RTI execution process 

(RTIExec). 

2) Then one federate creates a federation execution process (FEDExec), which is 

supposed to be given the name “FEX”, by invoking the RTI method: create Federation 

Execution. If FEX does not exist, the RTI process create it, otherwise the 

“FederationExecutionAlreadyExists” exception will be issued.  
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3) The RTIambassador reserves a name with RTIExec, and spawns a FEX, and that FEX 

registers its communication address with RTIExec.   The federation FEX execution is 

underway. 

4) When a federate joined the FEX, it can publish the sharable elements, register HLA 

objects, subscribe and discover the HLA object, update the HLA object attributes, 

exchange the attribute ownership and so on. Finally, it will shutdown and remove the 

federate from the FEX. 

5) Once a federation FEX execution exists, other federates can join it. That RTI 

Ambassador consults RTIExec to get the address of FEX, and invokes 

“joinFederationExecution” on FEX. Additional federates can join via the same process. 

3.4. Federate development process 

From the viewpoint of the functionality abstraction, the basic functionalities of a federate 

should contain sharable elements of SOM/FOM representation and cover basic RTI 

services such as Federation Management, Declaration Management, and Object 

Management. For federate developers, they should implement these basic functionalities 

for a federate [DMSO00]. Figure 3-3 shows the basic federate functionalities. 
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Federate functionalities 

SOM/FOM 
representation 

Federation 
Management service 

Object Management 
service Declaration 

Management service 

Figure 3-3: Overview of the basic federate functionalities 

 

3.4.1. SOM/FOM representation 

The HLA rules for a federate constrain that a federate should be written in accordance 

with a SOM before it joins in a federation. When the federate is deployed in a federation, 

the executable federate should be in accordance with a FOM.  

In the RTI specification, RTI and federation execution process use unique handles to 

indicate these sharable elements. The federate developers should define these sharable 

elements handles in the federate software. 

3.4.2. Relevant Federation Management  

The basic functionalities of Federation Management services are the services to create, 

join, resign and destroy a federation. Before a federate may join a federation execution, 

the federation execution must exist. Once a federation execution exists, federates may join 

and resign from it in any sequence. The relevant activities about Declaration Management 

and Object Management occur between the federate join and resign a federation. 

Figure 3-4 shows a general view of basic life cycle of federation management service. 
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Federation Management service 

FederateA FederateB RTI 

Create a federation 

Join a federation 
Join a federation 

Declaration Management  
Declaration Management 

Object Management  

Object Management 
Resign from a federation 

Resign from a federation 

Destroy a federation 

Figure 3-4: The basic Federation Management life cycle 

 
In the DMSO RTI implementation, RTIambassador method createFederationExecution() 

can create a specified federation.  

Similarly, by calling an RTIambassador method joinFederationExecution(), a federate can 

join a specified federation. RTIambassador method resignFederationExecution() 

terminates a federate's participation in a specified federation. RTIambassador method 

destroyFederationExecution() attempts to terminate an executing federation.  

 (Most of RTIambassador methods may raise exceptions. For simplification, the exception 

handling parts of relevant RTIambassador methods are omitted here although they should 

be included in the federate software.) 
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The following is the C++ code of these methods: 

rti_ambassador.createFederationExecution(federation_name, “federation_FEDfile_name”); 

rti_ambassador.joinFederationExecution(federate_name,federation_name,fedaeteambassdor); 

rti_ambassador.resignFederationExecution(RTI::DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES); 

rti_ambassador.destroyFederationExecution(federation_name); 

 

3.4.3. Relevant Declaration Management  

The basic functionalities of Declaration Mmanagement services are the services to get 

RTI handles of HLA sharable elements to publish/ subscribe and unpublish/unsubscribe 

sharable elements of HLA object model. The relevant service about Object Management 

occurs between the federate publish/subscribe and unpublish/unsubscribe activities. 

Figure 3-5 shows a general view of basic life cycle of declaration management. 
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Declaration Management service 

FederateA RTI 

Get sharable elements handles 

Publish sharable elements 

Subscribe sharable elements

Object Management  

unpublish sharable elements 

  unsubscribe sharable elements 

Figure 3-5: The basic Declaration Management life cycle 

 
By calling a RTIambassador method getObjectClassHandle(), a federate can get the 

relevant handles. The method returns an RTI::ObjectHandle. For example, “country” is an 

HLA object class. The following is the C++ code of this method: 

RTI::ObjectClassHandle ms_objectClassHandle; 

char* const ms_objectClassStr = "Country"; 

ms_objectClassHandle = rtiAmb->getObjectClassHandle(ms_objectClassStr); 

 

Similarly, a federate can get other sharable elements handles by relevant RTIambassador 

methods: getAttributeHandle(), getInteractionClassHandle() and getParameterHandle(). 
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By calling a RTIambassador methods: publishObjectClass(), unpublishObjectClass(), 

subscribeObjectClassAttributes(), and unsubscribeObjectClass() a federate can 

publish/unpublish this HLA object class and subscribe/unsubscribe attributes of the HLA 

object class. For example, “country” is a HLA object class and “name” is an attribute, the 

following is the C++ codes of these methods: 

objectClassAttributes = RTI::AttributeHandleSetFactory::create(1); 

objectClassAttributes ->add( this->ms_attributesHandle ); 

rtiAmb->publishObjectClass(this->ms_objectClassHandle,* objectClassAttributes); 

rtiAmb->subscribeObjectClassAttributes(this->ms_objectClassHandle,* objectClassAttributes); 

rtiAmb->unpublishObjectClass(this->ms_objectClassHandle); 

rtiAmb->unsubscribeObjectClass(this->ms_objectClassHandle); 

 

Similarly, by calling RTIambassador methods: publishInteractionClass(), 

unpublishInteractionClass(), subscribeInteractionClass() and 

unsubscribeInteractionClass() a federate can publish/unpublish this HLA interaction class 

and subscribe/unsubscribe parameters of the HLA interaction class. 

3.4.4. Relevant Object Management  

The basic functionalities of Object Management services are the services to 

register/discover and delete/remove HLA object instances, update/reflect instance 

attribute values, and send/ receive HLA interactions.  

The main difference between HLA object attributes and interaction data is that attributes 

associated with a registered object instance persist before the object is deleted, but an 

interaction data is sent then forgotten. Figure 3-6 shows a general view of HLA object 

instance life cycle of object management. 
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Object Management service 

FederateA FederateB RTI 

Register an object instance 

Discover an object instance 
Update object attributes 

Reflect object attributes 

Delete object instance  

Remove object instance 

Figure 3-6: The basic Object Management life cycle for an HLA object instance 

 

By calling RTIambassador methods: registerObjectInstance(), a federate can register a 

HLA object instance. The method returns an RTI::ObjectHandle. Similarly, by calling 

RTIambassador methods: updateAttributeValues() and deleteObjectInstance(), a federate 

can update attributes values and delete the object instance. 

The following is the C++ code of these methods: 

m_instanceHandle =rtiAmb->registerObjectInstance(this->ms_objectClassHandle); 

rtiAmb->updateAttributeValues(m_ instanceHandle, objectClassAttributes, NULL ); 

rtiAmb-> deleteObjectInstance (m_ instanceHandle); 

When a federate object instance registers a federation, the FederateAmbassador 
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discoverObjectInstance() callback informs a local federate with a handle indicating this 

HLA object instance. The developers must derive some subclass from the abstract class 

FederateAmbassador and implement this functionality. The following is the C++ code of 

this method: 

void discoverObjectInstance(RTI::ObjectHandle theObject, RTI::ObjectClassHandle theObjectClass, const 

char * theObjectName) 

             { 
// Implementation of how to do when find a object instance; 
} 

 

Similarly, the federate developers must implement other callback functions: 

reflectAttributeValues() and removeObjectInstance() which are declared in the abstract 

class FederateAmbassador. 

A federate sends HLA interaction data in a similar way to the HLA attribute updates. 

Figure 3-7 shows a general view of HLA interaction class life cycle of object management. 

 

Object Management service 

FederateA         FederateB RTI 

Send HLA interaction class 

Receive HLA interaction class 

Figure 3-7: The basic Object Management life cycle for an HLA interaction 

By calling RTIambassador methods: sendInteraction(), interactions data are sent and 

forgotten. The following is the C++ code of this method: 

RTI::ParameterHandleValuePairSet* pParams = NULL; 
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pParams = RTI::ParameterSetFactory::create( 1 ); 

pParams->add( this->ms_parameterHandle,cmdline,strlen(cmdline)+1); 

rtiAmb->sendInteraction( this->ms_interactionClassHandle, *pParams,NULL ); 

 

Similarly, the federate developers must implement the other callback methods: 

receiveInteraction(), which is declared in the abstract class FederateAmbassador. 

3.5. Federate implementation problems 

3.5.1. General problems 

When developers construct the HLA federate software, some common problems should 

be considered: 

1) The HLA is only a conceptual framework for the distributed simulations. It does not 

address any approach to design a federate structure. It is users’ responsibility to design 

federate software structure. If the members of the developing team design different 

federate structures, it may result in incompatibilities among the federates software. 

There is often little opportunity for reuse within an organization, much less between 

organizations. 

2) The HLA RTI structure is monolithic. A supporting infrastructure has to be provided 

for each method of the RTI API. As a result, much effort is invested to construct the 

supporting implementation. Without suitable management of these implementations, 

the federate software seems as ad hoc basis and increases the cost of software 

maintenance. 
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3) The RTI provides low level and fine granularity functions. The developers need to 

further develop complicated implementation of relevant RTI APIs respectively even 

for a very simple concept. The developers should manage the correlating RTI APIs. 

4) The HLA lacks the support for the management of the RTI concurrent event errors. In 

the RTI specification, any attempt to re-enter servicing RTI event causes a concurrent 

error that result in an exception being thrown. The developers should invest more 

effort to handle these problems. 

5) Federate source codes usually involve many RTI APIs and their supporting 

implementation. It is difficult to track the bugs in the development phase. If such 

federate software is shared by other federates, all these software meet the same 

problems.  

Based on the HLA programming experience, there are also some specific problems related 

to Federation Management, Declaration Management, and Object Management. 

3.5.2. Problems related to Federation Management 

When a federate creates, joins, resigns and destroys a federation, the developers should 

think about some strategies for the following problems:  

1) Who creates a federate execution? A federation consists of a set of related federates. 

Before a federate can join a federation, the federation execution must exist. Otherwise 

a federate must create the given federation.  

2) How to get federation run time parameters? A federate need some initialization 

data for the execution such as the run-time parameters like federate name, the 

federation name that a federate should join.  
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3) What will a federate do if it fails to create or join a federation? When the attempt 

to create a federation execution fails or a federate fails to join a federation, the 

developers should consider whether to continue or stop the simulation. 

4) What will a federate do after resigning from a federation? When a federate 

terminates its participation in a given federation, the developer should decide what 

must be done by a federate. 

5) How to destroy a federation? When a federate tries to terminate an executing 

federation, if the invoking federate is not the last federate to have resigned and there 

are still other federates joined in the targeted federation, an exception will be raised. 

Thus, this destroying effort must fail.  

3.5.3. Problems related to Declaration Management 

In the HLA, there is no functionality to represent the HLA object model and define their 

handles. Thus, when developers want to publish, subscribe sharable elements and use their 

handles. The developer should think about some strategies about mapping the HLA object 

model and their handles into object-oriented programming languages.  

1) How to represent HLA attributes? When a federate publishes or subscribes to a 

HLA object class, it must indicate explicitly which attributes it can produce. Thus, the 

attributes of HLA object class are associated with a registered object instance of the 

HLA object class. These attributes should be constructed to support each HLA object 

instance. 

2) How to represent HLA parameters? When a federate publishes or subscribes the 

HLA interaction class, interactions are sent or received as "all or nothing." It is not 
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possible to specify which parameters of an HLA interaction class will be published or 

subscribed. Thus, these parameters are usually associated with the HLA interaction 

class. 

3) How to represent handles of HLA sharable elements?  The RTI converts names of 

the HLA sharable elements to the handles that are used by the various RTI services to 

refer to them. Thus, before a federate publishes or subscribes HLA sharable elements, 

it requires their relevant handles. The handles of the HLA sharable elements should be 

access by the entire registered HLA object instance. These handles should have global 

scope for a federate. 

The developers should carefully consider how to construct the HLA object model and 

their handles as the different scopes in the federate software. 

3.5.4. Problems related to Object Management 

When a federate updates HLA instance attributes or sends HLA interactions, the 

developers should think of some strategies about: 

1) What implementation of the mechanisms for updating attributes values? Before a 

federate updates its attributes values associated with a registered HLA object instance 

in a federation, the developers should decide how to update them. When the effort of 

updating attributes fail, the developers should consider whether to continue or stop the 

simulation. 

2) What implementation of the mechanisms for reflecting attributes values? When 

the remote object instance updates its attribute values, the developers should consider 

how the local subscribing federates reflect these attributes values. 
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3) What are the implementation mechanisms for sending HLA interactions? Before 

a federate sends HLA interactions into a federation, the developers should also decide 

what are the mechanisms for sending interactions. In addition, the remote federate 

sends HLA interactions, the developers should consider how the subscribing federate 

correctly receives these interactions. When the effort of sending HLLA interactions 

fail, the developers should consider whether to continue or stop the simulation. 

4) What are the implementation mechanisms for receiving HLA interactions?  

When a federate interacts with other federates by calling RTIambassador methods, 

RTI will issue some response by callback methods that are declared in the abstract 

class FederateAmbassador. Because the RTIambassador methods and 

FederateAmbassador callback methods are used as the request and response interface 

respectively, the developers should consider how to arrange these relevant 

RTIambassador methods and FederateAmbassador callback methods in the federate 

software. 

5) What to do after a federate registers an object instance? When a federate registers 

an HLA object instance in a given federation by calling RTIambassador method: 

registerObjectInstance() . RTI will inform other federates that a new object instance 

has come into existence by the FederateAmbassador callback method: 

discoverObjectInstance(). These two methods are naturally related in a federate.  

Similarly, RTIambassador method: updateAttributeValues() and sendInteraction() are 

naturally related to FederateAmbassador callback method: reflectAttributeValues() 

and receiveInteraction(). For typical federate software, the developers should consider 

what to implement these three callback methods. 
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Chapter 4. Federate software framework  

4.1 Overview of complete federate framework 

As mentioned in section 3.4, there is a significant amount of work in developing federate 

software. Thus, the developers must handle many relevant problems. Without supporting 

tools or pre-defined federate templates, a federate must be developed more or less from 

scratch. For this reason, federate developers require tools and techniques to improve the 

productivity of the development. 

Using a framework is one promising solution. The framework includes a set of classes and 

embodies an abstract design for solutions. The complete federate framework can cover all 

the federate development process and solve the relevant problems. 

The complete framework provides the following functionalities: 

1) This framework contains a federate design guide or generic structure template to 

construct the federate software. This results in reuse of the implementations between 

the federates software. 

2) This framework provides a set of implementations for each RTI API to save 

developers effort in constructing the supporting infrastructure in the federate software. 

3) This framework provides a set of higher level general simulation service 

implementing functionalities which are required by all the federates. The verbose and 

complex low level RTI APIs is hidden from the designers.  
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4) The framework components can be reused to substantially improve software 

productivity. The federate software errors can be fixed once in the framework rather 

than in each federate independently.  

5) This framework supports the error management for HLA federate software. The 

developers can easily track the bugs to avoid the common programming pitfalls 

associated with RTI programming.  

The complete federate framework works for the common simulation domain problems 

regardless of any purpose or technique implementation. It consists of the complete default 

implementations of RTI APIs, a set of general simulation service functionality, and error 

management. However, this universal framework should be based on the thorough 

analysis of the entire application requirements. In addition, designing such framework 

needs the relevant HLA programming experience on the simulation domain and deeper 

understanding of the future application evolution trend.  

A practical work is to construct a basic design framework to solve some open problems 

which the typical federates developers need to consider. It can be extended and configured 

for a particular simulation. 

4.2 Proposed federate design framework 

4.2.1. Overview of design framework 

The proposed framework restricts to HLA concepts and principles. Its scope covers the 

first four parts of the complete federate framework. To solve the parts of the general 
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problems in the section 3.5.1, the following describes the key features of the proposed 

framework: 

1) For problem (1): there is no any approach to design a federate structure, the 

proposed framework is a reusable design template which is composed of a set of 

cooperating classes. The template consists of five collaborating classes:  

 Base class ObjectClassBase for all the HLA object classes; 

 User defined subclass of the class ObjectClassBase for each HLA object class; 

 User defined interaction class for each HLA interaction class;  

 Base class DefaultFederateAmbassador and its subclass for the abstract class 

FederateAmbassador; 

2) For problem (2) and problem (3): the HLA RTI structure is monolithic and 

complicated implementations of RTI low level services are needed, each class 

defines the standard data structure to represent the HLA sharable element. In addition, 

it also provides the general higher level simulation services found in typical HLA 

simulations. All these services cover Declaration Management and Object 

Management. 

4.2.2. Components’ responsibilities and collaborators  

In this section, CRC card describes the responsibilities and collaborators of each class in 

the framework. The collaborating classes solve the federate development problems in the 

sections 3.5.3 and 3.5.4. 
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1) Class ObjectClassBase 

To solve the problem (1) in the section 3.5.4: how to implement updating of all HLA 

object classes’ attributes values, an abstract class ObjectClassBase is defined as the base 

class for the different types of the HLA object class. The abstract class supports the 

dynamic subclass loading at run time through virtual functions. For example, an object 

belonging to a derived class acts as the subclass by calling the virtual function. Using 

CRC card, table 4-1 shows the responsibilities and collaborators of the class 

ObjectClassBase. 

class ObjectClassBase 

Responsibility Collaborator 

Declares the virtual functions to reflect the 

data updating of the remote object instances. 

 The class RTIambassador; 

 Its subclass for each HLA object class; 

 The user defined subclass of the class 

DefaultFederateAmbassador ; 

 

Table 4-1: CRC cards describing the class ObjectClassBase 

 
 

2) User defined object class 

To solve the problems (1), (3) in the section 3.5.3 and problem (1) in the section 3.5,4: 

How to represent HLA attributes, handles of HLA sharable elements, and update 

attributes values, for each HLA object class, its attributes and the relevant operations 

should be modeled as an individual user defined object class. Using CRC card, table 4-2 

shows the responsibilities and collaborators of the user defined object classes. 
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User defined object class 

Responsibility Collaborator 

 Map names of HLA object class and data 

types of its attributes; 

 Construct the relevant handles; 

 Publish and subscribe HLA object class 

associated with the attributes; 

 Register the instance of HLA object class; 

 Update attributes of the HLA object; 

 Override the virtual functions;  

 The user defined subclass of the class 

DefaultFederateAmbassador ; 

 The class RTIambassador; 

 The class ObjectClassBase; 

 

Table 4-2: CRC cards describing the user defined object class 

 

3) User defined interaction class 

To solve the problems (2), (3) in the section 3.5.3 and problem (3) in the section 3.5.4: 

how to represent HLA parameters, handles of HLA sharable elements, and send 

interaction class, for each HLA interaction class, its parameters and the relevant 

operations are also modeled as an individual user defined interaction class. Using CRC 

card, table 4-3 shows the responsibilities and collaborators of the user defined interaction 

class. 

User defined interaction class 

Responsibility Collaborator 

 Map names and handles of HLA interaction 

class; 

 Map data types of the parameters (optional); 

 Construct the relevant handles; 

 The user defined subclass of the class 

DefaultFederateAmbassador ; 

 The class RTIambassador; 

 

Table 4-3: CRC cards describing the user defined interaction class 
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4) Class DefaultFederateAmbassador and the user defined subclass 

To solve the problems (2), (4) and (5) in the section 3.5.4: how to reflect attributes 

values, receive HLA interactions and what to do after registering a federation, these 

two classes contain implementations for the abstract class FederateAmbassador. The class 

DefaultFederateAmbassador provides the default implementations. Developers can 

override the necessary callback methods in its subclass to support the desirable functions. 

Using CRC cards, table 4-4 shows the responsibilities and collaborators of these classes. 

class DefaultFederateAmbassador 

Responsibility Collaborator 

It includes a set of dummy implementations 

providing the basic function to handle HLA 

concurrent exception including: 

discoverObjectInstance (), 

updateAttributeValues() and 

receiveInteraction(). 

 The abstract class FederateAmbassador; 

 The user defined federate ambassador class; 

User defined FederateAmbassador class 

Responsibility Collaborator 

It implements the user specific functions by 

overriding the functions which are inherited 

from the class DefaultFederateAmbassador. 

 The class ObjectClassBase; 

 The user defined object class; 

 The user defined interaction class; 

 The class DefaultFederateAmbassador; 

 

Table 4-4: CRC cards describing the classes for the class FederateAmbassador 
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4.2.3. Components’ structure    

This section describes the data structure and member functions of each component in the 

proposed framework.   

1) C++ class ObjectClassBase 

The class ObjectClassBase is fixed in this framework. It is an abstract class for all the 

HLA object classes. It declares two virtual functions:  

 Function getInstanceHandle() supports to get the object handle of the remote 

federate. 

 Function updateValueFromRTI() supports to reflect the data updating of the 

object instances of the remote federates.  

The user defined subclass of HLA object class should override these two functions. Figure 

4-1 shows the relationship between the class ObjectClassBase and its subclass. 

 
 

Figure 4-1: The class diagram for class ObjectClassBase and its subclasses. 
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2)  C++ class for an HLA object class  

A user defined object class, which is called “ObjectClass”, directly maps the HLA object 

class and their handles as member attributes. In addition, it can encapsulate basic 

RTIambassador methods and their relevant implementation as member functions. This 

class provides the services which cover the Declaration Management services and the 

Object Management services. 

For example, a federate, “Tank”, includes an HLA object class called “Position” and it has 

two attributes called “pos_x” and “pos_y” with float data type. 

Figure 4-2 shows an example of the user defined object class “Position”. 

 

Figure 4-2: An example of the user defined object class “Position” 

 

Member attributes: 

 The “m_pos_x”, “m_pos_y” and “m_instanceHandle” can be defined as the 

private member attributes to only associate with each registering object. Each 

object instance can update its attributes values respectively. These attributes can 

be constructed and destroyed in the construction functions and deconstruction of 

the class “ObjectClass”. 
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 The relevant handles are defined as public static member attributes such as 

“ms_PositionHandle”, “ms_pos_xHandle” and “ms_pos_yHandle” to support the 

global scope in a federate. The developers construct them to publish and subscribe 

the HLA object class. 

 To call RTIambassador methods, a pointer instance of the class RTIambassador is 

defined as a public static member attribute like “ms_rtiAmb”. 

Member functions: 

The class “ObjectClass” should override the virtual functions: getInstanceHandle() and 

updateValueFromRTI().  

 getInstanceHandle(): This function returns the m_instanceHandle value of class 

Tank; 

 updateValueFromRTI():  This function supports to update the attribute values of 

the remote object instance of class Tank;  

The class “ObjectClass” can also define some functions to encapsulate the basic 

RTIambassador methods related to HLA sharable elements.  

According to their functionalities of abstraction services, some functions below show the 

possible encapsulation. 

 Init(): This function is declared as a public static function. It is a class level 

member function with one parameter: RTI::RTIambassador* rtiAmb. This 

parameter can pass the RTIambassador pointer to the static attribute: “ms_rtiAmb”. 

The developer can use this attribute to call RTIambassador methods. In addition, 

this function constructs the handles for publishing and subscribing HLA object 
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class. It encapsulates the necessary RTIambassador methods related to getting the 

HLA handles. These methods include: 

getObjectClassHandle(),getAttributeHandle(), getInteractionClassHandle() and 

getParameterHandle(). They are described in Declaration Management.  

 PublishAndSubscribe(): This function is declared as a public function. It is an 

object level member function. This function constructs the HLA attributes, 

publishes, and subscribes HLA object classes by using their relevant handles. It 

encapsulates the necessary RTIambassador including publishObjectClass() and 

subscribeObjectClassAttributes(). They are described in Declaration Management. 

 Register(): This function is declared as a public function. It is an object level 

member function. This function registers an HLA object stance. It encapsulates the 

necessary RTIambassador methods related to creating an instance of the HLA 

object class and registering it with the federation. This method is 

registerObjectInstance(). It is described in Object Management. 

 Reflect():This function is declared as a public function. It is an object level 

member function. This function updates the attributes values associated with the 

registering HLA object instances. It encapsulates the necessary RTIambassador 

methods and the implementation mechanisms of updating attributes values. This 

method is updateAttributeValues(). It is described in Object Management.  

The user defined object class can be used after instantiation. The calling sequence is fixed 

in some degree. Functions: Init() and PublishAndSubscrib() must be first called, and the 
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function PublishAndSubscribe() should be called after the function Init(). Both of them 

are class level member functions, so they can be directly used. 

After that, the developers can use functions: Register()and Reflect(). The function 

Register() must be invoked before the function Reflect().  Because all these functions are 

the object level member functions, they should be called through one object instance. 

3) C++ class for an HLA interaction class 

A user defined interaction class, which is called “InteractionClass”, directly maps the 

HLA interaction class and their handles as member attributes. In addition, it can 

encapsulate basic RTIambassador methods and their relevant implementation as member 

functions. This class provides the services which cover Declaration Management and 

Object Management. 

For example, a federate, “Tank”, includes an HLA interaction class called 

“Communication” and its parameter called “Message” with a string type. 

Figure 4-3 shows an example of the user defined interaction class “Communication”  

 

Figure 4-3: An example of the user defined interaction class “Communication” 

 
The member attributes and member functions are similar to class “ObjectClass”. The main 

differences are: 
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Member attributes: 

The handles of the HLA interaction class and its parameters are defined as public static 

member attributes such as “ms_commHandle” and “ms_commMsgHandle” to support the 

global access scope in a federate. The developers can construct them to publish, subscribe 

the HLA interaction class. Sometimes, data type of HLA parameters need not be defined 

as member attributes. 

Member functions: 

The member functions also include Init(), PublishAndSubscribe() and Send(). The key 

feature of “InteractionClass” is the function: Send():This function is declared as a public 

function. It is an object level member function. This function sends HLA interactions. It 

encapsulates the necessary RTIambassador methods and the implementation mechanisms 

of sending interactions. This method is sendInteraction(). It is described in Object 

Management. In the DMSO, the method tick() is used to let a late arriving federate join an 

existing federation and pass the information to the existing federates. So, this method is 

encapsulated in the member function. 

The user defined interaction class can be used after instantiation. The calling sequence is 

similar to the user defined object class. The function Send() must be invoked after the 

functions Init() and PublishAndSubscribe(). 

4) C++ classes for FederateAmbassador 

The HLA constrains that the developers should define a subclass, which is derived from 

the abstract FederateAmbassador. In this subclass, the developers can override the 

callback methods to discover the remote object instance, reflect updating values of the 
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remote object instance attributes and receive HLA interactions. All these functions 

describe the remote federate data information. 

During the federate development process, the developers should derive subclass from the 

abstract class FederateAmbassador to respond to the requests that RTI issues. 

In this framework, such services can be implemented by two inheritance classes. Such 

inheritance structure allows the federate developers to focus on the simulation domain 

problems.  

The base class DefaultFederateAmbassador can play a role of “Basic” implementation and 

user defined classes can derive from this base class. Figure 4-4 shows the relationship 

between these classes. 

 

Figure 4-4: The class diagram for abstract class federate ambassador 

 

The class DefaultFederateAmbassador derives directly from the abstract class 

FederateAmabssador. It is an “abstract” base class for federate software. It provides the 
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default implementation for each abstract callback method, especially for these three 

virtual callback methods: discoverObjectInstance(), reflectAttributeValues(), and  

receiveInteraction(), which the developers usually need to override.  

The default implementation contains basic functionalities to handle HLA exception to 

avoid concurrent problems. For example, when RTI tries to re-invoke the updating 

federate attributes values, an exception “FederateInternalError” will be caught and output 

a stream.   

The following C++ codes of discoverObjectInstance (): 

void DefinedFederateAmbassador:: discoverObjectInstance ( 

                            RTI::ObjectHandle                 theObject,      

                            RTI::ObjectClassHandle        theObjectClass,,  

                            const char *          theObjectName)         

{ 

//a default implementation of class DefinedFederateAmbassador;    

{cout << "Find a new HLA object instance  " << endl;} 

} 

 

This class is fixed in this framework. It can exchange information with the class 

“ObjectClassBase”, the class “ObjectClass” and the class “InteractionClass”. They can 

work together to complete the basic functionality covering Declaration Management and 

Object Management. 

All the operations declared in this class are virtual operations. So they can be overridden 

by their subclasses.  
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The user defined subclass of the class DefaultFederateAmbassador implements the 

desirable abstract callback methods.  The users can override the virtual methods which are 

inherited from the class DefaultFederateAmbassador to do its particular work.  

4.2.4. Instantiation of framework  

The federate design framework provides a configurable federate template. The subclass of 

the class DefaultFederateAmbassador should be associated with the class 

ObjectClassBase, the user defined object class, and the user defined interaction class. 

This framework can be represented as an HLA specific class diagram. Figure 4-5 shows 

the structure of the federate design framework.  

 

Figure 4-5: A pre-defined HLA federate class diagram 

 

To use this framework, developers should instantiate all these classes in a federate 

executable program. This program usually solves the problems mentioned in the section 

3.5.2 such as reading federation name, creating a federation, joining federates to a given 
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federation, resigning federates from a specific federation, and destroying the federation. 

All these functions are described in Federation Management. Because all these works are 

tightly coupled to a particular simulation scenario, it is difficult to provide the common 

solution covering the different simulation application. This project provides an example 

simulation execution program for the developers’ reference. 

At the beginning of instantiation of federate framework, the federate execution program 

instantiates the object instances of the class RTIambassador, the user defined object class, 

the user defined interaction class and the subclass of the class 

DefaultFederateAmbassador and creates a federation and lets a federate join the given 

federation. Then, it can directly call the functions of the user defined object class and the 

user defined interaction class in the fixed sequence. 

4.2.5. Benefits of framework  

The proposed framework is a reusable design for HLA simulations. All these classes 

construct the skeleton of HLA federate software. It simplifies the task of HLA federate 

design and development in some ways: 

1)  The intention of the framework is to ease the creation of the federate. Given the FOM 

of a particular federate, developers can construct the federate software following the 

structure and functions of framework’s components. For example, as mentioned in the 

4.2.3, the designer can build a C++ class Position to map the HLA object class in 

accordance with in the FOM. Similarly, the C++ class Communication maps the HLA 

interaction class.  
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2) Through the pre-defined federate template, all the HLA simulations have the similar 

structure. That facility to reuse the existing design for the compatible federates in the 

similar application. It does not need to design and develop anew for each individual 

application. For example, there is an existing class Position in some federate and the 

FOM of another federate has the compatible definition of this class. The designer can 

totally reuse the design over OO language code.  

3) The proposed framework encapsulates a number of HLA low level service methods 

(APIs). It hides much of the complexity of directly interfacing with RTI. For example, 

in the user defined object class, its member function PublishAndSubscribe() provides 

the basic encapsulation of a set of complex low level RTIambassador methods. The 

following C++ code shows the RTI methods to implement this function: 

   // Implementation of publishing and subscribing by low level RTI methods 

// to publish and subscribe 

 RTI::AttributeHandleSet *PositionAttributes; 

 PositionAttributes = RTI::AttributeHandleSetFactory::create(2); 

     PositionAttributes->add( ms_pos_xHandle ); 

  PositionAttributes->add( ms_pos_yHandle ); 

 ms_rtiAmb->subscribeObjectClassAttributes( ms_PositionHandle, 

                                                *PositionAttributes ); 

 ms_rtiAmb->publishObjectClass( ms_PositionHandle, 

                                     *PositionAttributes); 

 PositionAttributes->empty(); 

 delete PositionAttributes;   // Deallocate the memory   

Similarly, the framework defines other member functions such as Init(), Reflect(), 

Register ()and Send(). These encapsulation functions allow the designers centralize 

the simulation domain rather than on meeting HLA RTI services.  
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4) The proposed framework reduces the development cost by the class 

DefaultFederateAmbassador. This class provides some basic implementation for most 

HLA simulations. For example, the class DefaultFederateAmbassador provides the 

default implementation of the function reflectAttributeValues(). It can be reused for 

all the federate software without any change. The following C++ code shows the main 

body of this function: 

reflectAttributeValues (){…… 

//After the federate discover the object instance, it can update its values 

      if( theObject == pos->getInstanceHandle() ) { 

  cout << "An intnstanceId found! " << theObject << endl; 

  pos->updateValueFromRTI(theAttributes); 

  break;} 

 }
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Chapter 5. Analysis of HLA extensions 

5.1. Overview of HLA extensions  

The federate design framework is useful only if it is supported by a set of tools. It needs 

supporting tools to facilitate the federate design and implementation process. A CASE 

tool, ArgoUML, is introduced because of its cognitive support mechanism and open 

source features. It can be customized with the HLA extensions to support federate design 

under the framework.  

The main services of HLA extensions include:  

1) The federate design framework should be supported by default in ArgoUML. The 

designers can use pre-defined structure to rapidly design a new federate and reuse 

the existing federate. 

2) The standard UML semantics is extended to describe the federate framework. The 

designer can differentiate the HLA specific class from the ordinary class in the 

class diagram.  

3) Cognitive help system is implemented for federate design. Reflection-in-action 

context help will appear when the system predicts some problems related to 

federate framework elements like user defined federate ambassador class and user 

defined object class. It helps architects on how to use the framework and reduce 

the design time.  
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4) Automatically generates C++ source code skeleton for the federate implementation 

phase. 

5.2. Extension 1: UML extensions 

During the federate design phase, one desirable HLA extension for designer is to 

differentiate the HLA specific class and ordinary class. It provides a way to produce HLA 

specific critics and generate the federate source code skeleton for the HLA specific class 

diagram.  

As mentioned in section 2.3.2, the stereotype is one of the mechanisms for extending 

existing UML modeling elements. In predefined UML stereotype, there is no concept 

related to HLA. Thus, the HLA specific stereotype can be defined and represented by 

placing quotes around the new stereotype name, e.g. <<HLA_Name>>. This project 

proposes the possible extensions or specializations of the UML notation as part of the 

UML profile. An HLA specific class can be built through the new stereotypes names. 

A new stereotype of class, which is marked by using <<FederateAmbassador>> keyword, 

is used to present a class federate ambassador.  

Similar to the class federate ambassador, a new stereotype of UML extension, the object 

class and interaction class of the federate can be represented by using 

<<simulationObject>> and <<simulationInteraction>>. 

Table 5-1 provides an example of stereotype for HLA extensions. It describes classes’ 

representation involving a federate design.   
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Metamodel Element HLA Component Stereotype Name 

Class Federate Ambassador FederateAmbassador 

Class HLA Object Class SimulationObject 

Class HLA Interaction Class SimulationInteraction 

 

Table 5-1: Proposed stereotypes for the HLA extensions 

 

5.3. Extension 2: Cognitive help for federate 

During the design phase, the cognitive support feature can be implemented for the 

federate designer. The HLA extensions for the cognitive help include two parts: HLA 

specific critics and criticism control mechanism. 

HLA specific critics predicate the HLA specific design decision. These HLA specific 

critics’ predictions cover the following basic federate design problems: 

 It reminds the users to consider changing the name of the user defined object class 

and the user defined interaction class like “Position”. 

 It reminds the users to add the HLA sharable elements and their handles as the 

member attributes in the user defined object class and user defined interaction 

class. 

 It reminds the users to add the member functions in the user defined object class 

and user defined interaction class to encapsulate basic RTIambassador methods 
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and their relevant implementation like Init(), PublishAndSubscribe(), Register(), 

Reflect() and Send(). 

 It reminds the users to override the virtual functions: getInstanceHandle() and 

updateValueFromRTI()in the user defined object class. 

 It reminds the users to consider changing the name of the user defined federate 

ambassador class like “HwFederateAmbassador”. 

 It reminds the users to consider overriding the callback in the user defined federate 

ambassador class like discoverObjectInstance(), updateAttributeValues() and  

receiveInteraction(). 

A new catalog, By HLA design, contains all the HLA specific critics. Meanwhile, these 

critics can also show in the existing catalogs so it will not break the original ArgoUML 

cognitive help system. 

For the detailed classification, these critics can be divided into groups: HLA Federate 

Ambassador, HLA Simulation Object, and HLA Simulation Interaction. 

The HLA specific criticism control mechanism manages and control the HLA related 

critics. It controls whether the HLA specific critics are active. When they are active, these 

critics produce ToDoItem and posted ToDo list. If they are not valid, such ToDoItems 

should be removed from the ToDo list. 

5.4. Extension 3: Automatic C++ code generation for federate 

A useful extension is to allow ArgoUML to generate the C++ source code skeleton from 

the federate framework. 
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In ArgoUML with stereotype extension, the classes of the federate framework can be 

differentiated from the ordinary classes. When designer selects the targeted federate 

classes, the C++ source template codes for these classes should be generated.  

The code generation mechanism generates the C++ source code skeleton for the user 

defined federate ambassador C++ file, the user defined interaction class C++ file and the 

user defined object class C++ file and their related header files. The operations bodies in 

these files are just empty in the design phase. 

Because the class ObjectClassBase and the class DefaultFederateAmbassador are the 

fixed classes, their completed source can be generated by default. 
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Chapter 6. Implementation of HLA extensions 

6.1. Overview of HLA extensions architecture  

The HLA extensions are packaged into a new package: hla.  

A series of packages are designed to support HLA extensions. The new package contains 

four main packages. It is seamlessly integrated with ArgoUML. Figure 6-1 shows the 

HLA extensions package structure. 

 

Figure 6-1: HLA extensions package structure 

 

The package HLA UI contains the new user interface for federate designer. The designer 

can select the class with the UML extensions to differentiate an HLA specific class. The 

package of HLA critiquing system and the package HLA code generation also depend on 

this package to provide the access points for the federate designer. 

The package HLA critiquing system provides the cognitive help for the federate designer. 

It can produce the ToDoItems posting on the ToDoList.  
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The package HLA code generation produces the C++ code skeleton for a federate when 

designer selects the HLA specific classes. 

6.2. User interface: new menu item for HLA 

For the HLA extensions to be accessible in the ArgoUML, a new menu item is added into 

the ArgoUML menu. Figure 6-2 shows the new menu item for the HLA extensions. 

 

Figure 6-2: A screenshot of new menu items for the HLA extensions 

 

org.argouml.ui.ProjectBrowser is the main class in ArgoUML that needs to be modified 

in order to access the HLA extensions. This class handles the user interface functions of 

ArgoUML.  

Through the new HLA menu items, some classes are added to support HLA federate 

design action. All these action classes extend the super class: UMLAction. Figure 6-3 

shows the class diagram of the actions classes. 

  74



A UML-Based Tool for Designing HLA Federates 

 

Figure 6-3: A class diagram of action classes 

 

The following collection of the classes support the actions related to the user menu items. 

 org.argouml.uml.ui.ActionNewFederate: This class carries out the action 

related to user interface item: New Federate. It can load a pre-defined class 

diagram for federate. 

 org.argouml.uml.ui.ActionNewObjectClass: This class carries out the action 

related to user interface item: New Object. It produces a new class with HLA 

specific stereotype name “ObjectClass”. 

 org.argouml.uml.ui.ActionInteractionClass: This class carries out the action 

related to user interface item: New Interaction. It produces a new class with 

HLA specific stereotype name “InteractionClass”. 
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 org.argouml.uml.ui.ActionGenerateFed: This class carries out the action 

related to user interface item: Generate Federate Components. The designer 

can target the HLA specific class to generate C++ source code skeleton.  

 org.argouml.uml.ui.ActionCustomizationFile: This class carries out the 

action related to user interface item: HLA Customization. It is a simple text 

editor for source code edition.   

6.3. Cognitive support for HLA  

6.3.1. HLA specific criticism control mechanism 

The HLA specific criticism control system involves the class Hla, the class HlaModel, the 

class GoListToHlaToItem and the class ToDoByHla. Figure 6-4 shows the structure of the 

HLA specific control system. 

 

Figure 6-4: A class diagram of criticism control system for the HLA extensions 
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Class Hla: This class defines basic cognitive decisions related to HLA design. 

Class HlaModel: it is a part of class Designer. It describes what types of HLA related 

design issues should be active. The main functions include: 

Boolean isConsideringHla(String decision) 

void setHlaPriority(String hla, int priority) 

void defineHla(String hla, int priority) 

void startConsideringHla(String decision) 

void stopConsideringHla(String decision) 

Hla findHla(String decName) 

 

Class ToDoByHla: This class launches GoListToHlaToItem to build the tree view pane. It 

controls and monitors the HLA specific critics’ changes. HLA specific critics produce 

ToDoItems when they detect design improvement issues. ToDoItems are stored in the 

designer's ToDo list. When this ToDoItems are not valuable, they are removed from the 

ToDo list. 

Class GoListToHlaToItem: This class implements the interface TreeModel to build the 

HLA extensions tree model. 

The original ArgoUML classes: class Designer, class ToDoList, and class ToDoItem are 

modified to support HLA specific control system. The following are the major 

modification to these classes: 

The class Designer is composed of the basic types of cognitive decisions. The HLA 

related decision should be added in this class. 

The function, boolean supports (Hla h), is added in the class ToDoItem support the HLA 

extensions. 
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The function, Vector getHla() is added in the class ToDoList to access the HLA related 

critics. 

6.3.2. HLA specific critics 

HLA specific critics are implemented as the subclass from the super class CrHla.  

This class defines three types of HLA related critics:  

Hla HLA_FederateAmbassador=new Hla("hla.FederateAmbassador",5); 

Hla HLA_SimulationOjbect = new Hla("hla.SimulationObject",5); 

Hla HLA_SimulationInteraction = new Hla("hla.SimulationInteraction",5); 

 

The subclasses override the methods in the base class CrHla to customize a new critic. 

The method predicate (Object dm, Designer dsgr) is overridden to determine which 

critic should be valid and this critic can appear in the given ToDoItem and be kept in the 

ToDo list.  

The method setResource(String key) is overridden to lookup the relevant textual help 

description posting on the ToDo list. 

HLA specific wizards are implemented as the subclasses of the class Wizard. They 

implement these actions with code specific to each wizard. Designer presses the "Next>" 

button to move on to the next step of the wizard. 

The main classes related to the HLA specific critics involve:  

Class CrHLAFedAmbChangeName; 

Class CrHLAFedAmbNoOverridingOperation; 

Class CrHLAFedAmbOperationsMatched; 

Class CrHLAFedAmbOperationsNotMatched; 

Class CrHLAFedAmbOperationsNewAttributes; 

Class CrHLAObjectClassChangeName;  
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Class CrHLAObjectClassNoAttribute; 

Class CrHLAObjectClassNoOperation; 

Class CrHLAInteractionClassChangeName;  

Class CrHLAInteractionClassNoAttribute; 

Class CrHLAInteractionClassNoOperation; 

 

All the critics will be posted in the ToDo list pane according to their attributes. 

According to the ArgoUML categories of critics, the HLA specific critics can be 

classified as completeness and consistency critics: 

1) Completeness critics  

Class CrHLAFedAmbChangeName, Class CrHLAInteractionClassChangeName and 

class CrHLAObjectClassChangeName: These critics will be invoked if they predict that 

the default name of the user defined subclass of the class DefaultFederateAmbassador, the 

user defined interaction class or the user defined objects class need to be changed like 

“Tank” and “HwFederateAmbassador”. 

Class CrHLAFedAmbNoOverridingOperation: This critic will be invoked if it predicts 

that the designer does not override any callback methods which are defined subclass of 

the class DefaultFederateAmbassador. 

Class CrHLAFedAmbOperationsMatched: This critic will be invoked if it predicts that 

the designer overrides some functions such as discoverObjectInstance(), 

updateAttributeValues(), and  receiveInteraction(), which are inherited from the class 

DefaultFederateAmbassador. 

Class CrHLAObjectClassNoAttribute and Class CrHLAObjectClassNoOperation: These 

classes will be invoked if they predict that the user defined object class has no member 

attributes or member functions such as Init() and PublishAndSubscribe(). 
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Class CrHLAInteractionClassNoAttribute and Class 

CrHLAInteractionClassNoOperation: These classes will be invoked if they predict that 

the user defined interaction class has no member attributes or member functions such as 

Init() and PublishAndSubscribe(). 

2) Consistency critics 

Class CrHLAFedAmbOperationsNotMatched: This critic will be invoked if it predicts 

that the designer adds some new methods which are not defined in class 

DefaultFederateAmbassador. 

Class CrHLAFedAmbOperationsNewAttributes: This critic will be invoked if it predicts 

that the designer adds some new attribute in the user defined subclass of the class 

DefaultFederateAmbassador.  

Class CrHLAObjectClassNoVirtualOperations: This critic will be invoked if it predicts 

that the designer does not override the virtual functions in the user defined object class. 

6.4. Code generation 

In the standard version of ArgoUML, it can generate Java source codes mapping the 

ordinary class or interface. With the UML stereotype extensions, the HLA specific classes 

can be differentiated from the ordinary classes. When these HLA specific classes are 

targeted, ArgoUML can generate HLA C++ source code skeleton.  

The class Generator is an abstract base class that defines code generation framework. All 

the classes related to code generation are the subclass of it.  

All the HLA specific classes are implemented using the Singleton pattern to avoid the 

overhead of being allocated and freed each time new classes are needed.  
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6.4.1. Class ActionGenerateFed 

This code generation class should be valuable only when the targeted class is represented 

by the user defined object class, the user defined interaction class, the class 

ObjectClassBase, class DefaultFederateAmabassador or its subclass. The main function is 

implemented in shouldBeEnabled() 

Variable nodes is used to store all the classes nodes in the active UML class diagram. For 

storing the default federate ambassador class, object federate ambassador class and object 

class are used to create the vectors: 

Vector nodes;      

Vector federateObjectClasses; 

Vector defaultFedAmbClasses; 

Vector objectFedAmbClasses; 

Vector federateInteractionClasses; 

 

After it collects all the HLA specific classes, it will call class FedGenerationDialog to 

allow designers to select the federate ambassador, user defined object class and user 

defined interaction class. 

6.4.2. Class FedGenerationDialog 

This class constructs the dialog for code generation.  

Class FedGenerationDialog builds the main dialog for the designer. Federate ambassador 

classes, user defined object classes and user defined interaction classes will be located in 

the different tables. 
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Class TableModelClassChecks implements table model in a subclass of the 

AbstractTableModel class. The AbstractTableModel class specifies the methods which 

the JTable will use to interrogate a tabular data model. 

JTable _classFedAmbTable and _classFedObjTable display federate nodes in the table. 

JScrollPane _classFedAmbScrollPane and _classFedObjScrollPane provide scrollable 

view of federate ambassador and object classes. Figure 6-5 shows the code generation 

dialog for HLA federate. 

 

 

Figure 6-5: A screenshot of the code generation dialog for an HLA federate 
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6.4.3. Classes of generating C++ source code 

There are some main classes to generate the C++ source code: GeneratorObjectClass, 

GeneratorInteractionClass, GenObjectFederateAmbassador and 

GenDefaultFederateAmbassador. 

Figure 6-6 shows the class diagram of code generation for HLA extensions. 

 

Figure 6-6: A class diagram of code generation for the HLA extensions 

 

The class GeneratorObjectClass generates the C++ source code for the class 

ObjectClassBase and the user defined object class. It contains: 

SINGLETON: It creates a single instance of the class GeneratorObjectClass. Using the 

Singleton Pattern can save run time and have advantages in memory management like 

garbage collection. 

GenerateObjectFed (MClassifier cls, String path): It builds the object class file and 

object head file.  

generateHeader (MClassifier cls, String name,String packagePath): It builds the header 

for the object class file. 
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generateAttribute (MAttribute attr, boolean documented): It builds the single object class 

attribute.  

generateOperation (MOperation op, boolean documented): It builds the single object 

class operation. 

generateClassifierBody (MClassifier cls): It builds the main body of the user defined 

object class file including all the attributes and operations in accordance with C++ 

grammar. The attributes and operations are classified according to their visibility: Public, 

Private and Protected. The strings of the attributes and operations are transferred to the 

class GeneratorObjectClassHead to build the header file. 

The class GeneratorObjectClass uses SINGLETON, the static instance of the class 

GeneratorObjectClassHead, to generate the main body of the object class C++ header file. 

The class GenObjectFederateAmbassador, the class GenDefaultFederateAmbassador and 

the class GeneratorInteractionClass have the similar structure with the class 

GeneratorObjectClass. They can generate the relevant C++ files and their header files.  

The class CustomizationDialog is similar to traditional text editor tool. It can read, write 

and save the existing federate file. Designers need not leave the ArgoUML environment 

to edit their federate source code.
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Chapter 7. Case studies  

7.1 Overview of design and development process 

Under the proposed framework and the UML-based CASE tool, ArgoUML, the general 

federate design and development process is: 

Step 1: Through the pre-defined structure in ArgoUML, a designer creates some 

user defined classes in a class diagram to represent HLA object models and their 

relationships. These user defined classes extend the fixed classes (class 

ObjectClassBase and class DefaultFederateAmbassador) for a particular 

application. 

Step 2: For each user defined class, the designer adds the member attributes to 

map the sharable elements and member operations to encapsulate the HLA low 

level APIs. During the design phase, ArgoUML issues some cognitive help for 

federate designers.  

Step 3: By using the code generation mechanism in ArgoUML, the designer can 

generate some source code skeleton from the designed visual models.  

Finally, the HLA developers can insert the application-specific logic code into the 

stub code and compile the complete code in the programming environment with 

HLA support. The actually executable federate software is deployed in the 

federation.  

Figure 7-1 shows a simplified life cycle of the design and development process. 
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Source Codes Federate  

 

Figure 7-1: A simplified life cycle of the federate design and development process 

Two examples, HelloWorld and Tank, have been exercised in the following sections.  

The example HelloWorld is a basic federate. It only has the necessary RTI services and no 

specific operations. The federates just communicate by sending a set of fixed string 

“Hello World”. This example shows the challengeable work of directly manually 

designing and coding. Thus, it can be improved under the framework with tool support. 

Another example: Tank, which is a realistic and simplified example, covers not only the 

fundamental aspects of the RTI functionality but also the specific logic for actual 

operations. The tanks can exchange the information belonging to the sharable elements in 

accordance with the HLA object models. This example shows the complete the design and 

development process. It also illustrates how to the reuse the components of the existing 

federate: HelloWorld. 

7.2 Example 1: HelloWorld 

7.2.1. Overview of HelloWorld’s specification 

The federate HelloWorld only covers the necessary RTI services including Declaration 

Management and the Object Management. The simple operation is to send and receive 
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character string “Hello World”. For the purpose of reuse in the following example, it 

defines two classes: Country and Communication.  

 Object class: Country, which includes the attributes “Name” and “Population”. 

 Interaction class: Communication, which includes the parameter, “Message”. It 

has the string “Hello World”. 

Table 7-1 shows the FOM of the federate HelloWorld. 

FOM 

Object class Interaction class 

Country Communication 

Name: String 

Population: int 

Message: String 

 

Table 7-1: The FOM of the federate HelloWorld 

7.2.2. Challenge without framework 

As discussed in the section 3.3 and 3.4, the HLA adds a great amount complexity to a 

compatible simulation. Even for this simple federate, which does not contain any specific 

logic code; it should contain hundreds of lines of HLA functionalities’ C++ source code to 

complete the basic federate execution capability. The HLA developers should face the 

following challenge during the design and development process without the framework: 

1) There is no formal way to design the classes: Country and Communication and 

the structure of HelloWorld should be described from scratch ; 
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2) It is a laborious task to build a big monolithic simulation system: HelloWorld  

because of  directly interfacing with HLA RTI low level APIs; 

3) The development effort tends to ad-hoc in nature. It is difficult to reuse the 

components of HelloWorld in the other applications; 

7.2.3. Under federate framework  

The proposed framework in ArgoUML improves the design process by formal 

descriptions and graphic user interface environment. The relationships and interactions in 

the federate HelloWorld are visualized.  

1) Structure of HelloWorld 

At first, the designer invokes the pre-defined class diagram: selecting “New Federate” 

item to design this federate. The designers may name the new class Country, the class 

Communication and the class HwFederateAmbassador. For reusing the structure and code, 

the abstract class ObjectClassBase is also included in the federate software.  

Figure 7-2 shows the example class diagram of the federate HelloWorld. This class 

diagram is stored as the name “HelloWorld.argo” for the reuse in the future. 
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Figure 7-2: A class diagram of federate HelloWorld 

 

2) User defined classes in the diagram  

• Class Country  

It is the subclass of the class ObjectClassBase. It defines the member attributes, the 

“name”, “population”, and relevant handles as member attributes.  

The class Country defines some member functions to encapsulate the necessary 

RTIambassador methods and access the member attributes including Init() 

PublishAndSubscribe(), Register(), Reflect(), GetName(), GetPopulation(), SetName(), 

SetPopulation() and getInstanceHandle() .  

• Class Communication 

It defines the handles of Communication and Message as member attributes. It does not 

define Message as the member attribute because the string “Hello World” is sent and 
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forgotten. It also defines some member functions to encapsulate the necessary 

RTIambassador methods including Init(), PublishAndSubscribe() and Send(). 

• Class HwFederateAmbassador 

The designer considers overriding some callback methods in the subclass 

HwFederateAmbassador. According to the HelloWorld specification, three methods 

should be overridden including: discoverObjectInstance(), reflectAttributeValues() and 

receiveInteraction(). 

The designer can generate the necessary C++ source code skeleton from the class diagram. 

Once the stub code is generated, all that remains is to add the necessary implementations.  

As mentioned in the section 4.2.5, federate HelloWorld needs a simulation execution 

program. This program initializes the class Country, the class Communication and the 

class HwFederateAmbassador and invokes the RTI service like creating the federation 

execution, joining, resigning and deleting the federation.  

In the simulation execution environment, a federate HelloWorld can join a given 

federation and just sends or receive the “Hello world!”. 

7.3 Example 2: federate Tank 

7.3.1. Application scenario 

The federate Tank is abstracted from the real battlefield system. In the simulation scenario, 

each tank belongs to a specific country which is selected by the user. A tank is armed with 

some ammunition and moves in the 2D dimension.   
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The simulation system can contain more tanks. A tank can know the positions and 

country’s names of any others. The tank can send and receive the friendly information 

from others. In addition, it may fire at another enemy tank.  

The proposed federate Tank is a simple simulation and just used for analysis studies. The 

complete implementation of the Tank simulation product such as 2D View Displays, 

motion platforms and fully populated control panels are beyond this project. 

7.3.2. Overview of Tank’s specification  

The federate Tank is a more complicated federate than HelloWorld. For illustrating the 

design and code reuse of the proposed design framework, this federate has one new HLA 

object class Position and HLA interaction class WeaponStatus based on the existing 

federate HelloWorld.  

Table 7-2 shows the FOM of the federate Tank. 

FOM 

Object class Interaction class 

Country Communication 

Name: String 

Population: int 
Message: String 

Position WeaponStatus 

pos_x: double 

pos_y: double 
FireLevel: int 

 

Table 7-2: The FOM of the federate Tank 
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In this form, the existing HLA object class: Country and its attribute Name represent the 

nationality of a tank. The interaction class: Communication, which includes the parameter, 

“Message”, represents the exchangeable friendly information between the tanks. 

The additional sharable elements of the FOM in the federate Tank are: 

 Object class: Position, which includes the attributes “pos_x” and “pos_y”. These 

values indicate the physical position of the tank.  

 Interaction class: WeaponStatus, which includes one parameter, “FireLevel”. 

This value represents the ammunition of the tank.  

The relevant operations of a tank are described below: 

 An instance of the class Country set the name of the tank. A tank can know 

country’s names of other tanks by reflecting the attribute value “Name”. 

 An instance of the class Position changes its position “pos_x” and “pos_y” value 

according to user control from the PC console. A tank can also view the positions 

of other tanks. 

 The tanks can exchange the friendly information “Hello World” by sending and 

receiving the HLA interaction value class Communication and its parameter 

Message. 

 The federate Tank sends its HLA interaction class WeaponStatus and parameter 

FireLevel, and receives by other federates. The ammunition is a fixed integer 

value “100”. When a tank fires at another one, this value will be sent and forgotten. 
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7.3.3. Tank design process 

1) Design the structure of Tank 

The designer can invoke the existing class diagram “HelloWorld.argo” and add the new 

classes: the class Position, the class WeaponStatus. Designing process is similar to the 

federate HelloWorld.  

Figure 7-3 shows the example class diagram of the federate. This class diagram is stored 

as the name “Tank.argo” for reuse in the other federation.  

 

Figure 7-3: A class diagram of federate Tank 

2) Design each user defined class in the diagram  

• Class Position 
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It is inherited from the abstract class ObjectClassBase. It defines the member attributes: 

“m_pos_x”, “m_pos_y”, and object instance handle “m_instanceHandle”.  

It defines some member functions to encapsulate the necessary RTIambassador methods. 

Particularly, it also defines some member functions to read and write the member 

attributes. For example, functions Getpos_x(), Getpos_y(), Setpos_x() and  Setpos_y() are 

used to reflect and update the location of a tank. 

• Class WeaponStatus 

It defines the handles of WeaponStatus and FireLevel as member attributes. It need not 

define its parameter FireLevel as the member attribute because the ammunition is sent and 

forgotten. It also defines some member functions to encapsulate the necessary 

RTIambassador methods covering Declaration Management and Object Management. 

They are Init(), PublishAndSubscribe() and Send(). For example, when a tank fires at 

another one, the function Send() will be invoked. 

• Class HwFederateAmbassador 

In the design phase, designers can totally reuse this class in the existing federate 

HelloWorld. Three callback methods are still kept including: discoverObjectInstance(), 

reflectAttributeValues() and receiveInteraction(). 

 Function discoverObjectInstance() will be invoked when another federate Tank 

joins the simulation system. 

 Function reflectAttributeValues()  will be invoked to inform some tank changes its 

name or position. 
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 Function receiveInteraction() will be invoked if a friendly tank send “Hello 

World” or an enemy tank fire the ammunition.  

7.3.4. Cognitive help for federate Tank 

As discussed in the section 5.3, during the federate design phase, the cognitive support 

helps the design decision making. When the HLA specific critic predicts some design 

problems, it will produce the ToDoItems and post on the ToDoList. For example, if the 

users override the callback methods: updateAttributeValues() and  receiveInteraction() in 

the class HwFederateAmbassador, it produces some reminding information to help users 

to use these methods. 

Figure 7-4 shows an example HLA specific critic. 

 

 

Figure 7-4: A screenshot of the an HLA specific critic 
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7.3.5. Tank development process 

1) Code generation for Tank 

The designer targets any component in the class diagram and generates necessary C++ 

source code skeleton for the federate Tank. The files:  

WeaponStatus.cpp and WeaponStatus.hh 

Position.cpp and Position.hh 

DefaultFederateAmbassador.cpp, and DefaultFederateAmbassador.hh, 

HwFederateAmbassador.cpp and HwFederateAmbassador.hh 

Communication.cpp and Communication.hh 

Country.cpp and Country.hh 

 

The existing files Communication.cpp, Communication.hh, Country.cpp and Country.hh 

can be totally reused in the federate Tank. All these files contain the C++ source template 

codes for each class. The developers need to complete the files: Position.cpp and 

WeaponStatus.cpp  

For example, the following C++ code shows the main body of file Position.cpp: 

//main stub code for class Position 

RTI::ObjectHandle&      GetPositionHandle() { return m_instanceHandle; }; 

void Position::Setpos_x( const double& pos_x ){ 

//Need to be implemented the function for class Position in the future  

} 

void Position::Setpos_y( const double& pos_y ){ 

//Need to be implemented the function for class Position in the future  

} 
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Once the source code is generated, all that remains is to add the necessary functionality 

into the skeleton implementations.  

2) Code implementation  process  

• Classes Position and WeaponStatus 

Because a tank has real operations as defined before, the developer should the relevant 

implementation into these files.  

For example, the following C++ code shows that a tank will view the position of the other 

tanks in the method updateValueFromRTI():  

// to decide which attribute should be updated 

if ( attrHandle == Position::Getpos_xHandle() ) 

      {// to update Pos_x   

         double pos_x; 

         theAttributes.getValue( i, (char*)&pos_x, valueLength ); 

         cout << "new pos_x value from proxy: " << pos_x << endl; 

      } 

// same as above goes to update Pos_y   

• Class HwFederateAmbassador 

In the file HwFederateAmbassador.cpp file, the function reflectAttributeValues() 

automatically supports any subclass of the class ObjectClassBase. The developer can 

reuse this function. For the federate Tank, it defines a void pointer array as void * 

g_EntityInstances[ ]. This array stores the local proxy object instances for all the HLA 

object class no matter which class it belongs to. It makes the simulation software more 

scalable.  

The following is the C++ code of the function reflectAttributeValues() : 
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// Lookup for each local proxy object instance 

if( g_EntityInstances[i] != 0 ) { 

 ObjectClassBase* pos= (ObjectClassBase*) g_EntityInstances[i]; 

if( theObject == pos->getInstanceHandle() ) { 

// Update the attributes values 

pos->updateValueFromRTI(theAttributes); 

 } 

      } 

In the function discoverObjectInstance(), the developers may implement necessary 

function to identify the class Country and class Position.   

The following is the C++ code of the function discoverObjectInstance(): 

// if the registering object belongs to class Position,  

//create the local proxy of class Position to store; 

if ( theObjectClass == Position::GetPositionHandle() ) 

Position*pPosition = new Position(theObject); 

// store this object instance in a pointer array; 

g_EntityInstances[i] = pPosition ; 

// same as above if the registering object belongs to class Country  

Similarly, the developer may implement the function to identify the class Communication 

and class WeaponStatus.  Because the class WeaponStatus is a transient data object, the 

receiving data can be stored in a temporary variable in the method receiveInteraction(). 

The following is the C++ code of this method: 

// if sending data from the class WeaponStatus  

//store this interaction in a temporary variable; 

if ( paramHandle == WeaponStatus ::GetFireLevelHandle() )  

{ 

char msg[ 1024 ]; 

theParameters.getValue( i, (char*)msg, valueLength ); 

} 

  98



A UML-Based Tool for Designing HLA Federates 

// same as above if sending data from the class Communication  

3) Simulation execution program  

This program defines the relevant functions to operate the array void * 

g_EntityInstances[ ]as:  

void addEntity(void * oEntity);  

void deleteEntity(void * oEntity); 

 

The following is the C++ code of function addEntity(): 

void addEntity(void * oEntity) { 

   for(int i=0; i < MAX_ENTITY_NUM; i++) { 

      if( g_EntityInstances[i] == 0) { 

       g_EntityInstances[i] = oEntity; 

       break; 

      } 

   } 

}  

There is the similar C++ code in the function deleteEntity(). 

This program also added the necessary code to allow the class Position and class 

WeaponStatus to join, resign and delete the federation. In the simulation execution 

environment, a federate Tank joins the existing federation firstly. It has a given name 

which is set by the attribute of class Country. It can move by updating “pos_x” and 

“pos_y” value according to user control. If another tank registers and joins the same 

federation, the previous one can discover its position and decide to fire at it by sending 

class WeaponStatus and its parameter FireLevel or say “Hello World” by sending class 

Communication and its parameter Message. 
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Chapter 8. Conclusion and future work 

8.1. Conclusion 

The main research work described in this thesis can be concluded into two parts: the basic 

federate design framework and its supporting tool. 

1) Designing a basic federate design framework  

Currently, there are two main problems related to federate development. 

 The federate implementation is a tedious work because the HLA APIs are huge 

and monolithic. 

 There are many open problems for the design of the federates.  

This project proposes a basic design framework to solve both the problems. This 

framework provides the architectural guideline for the designers to build the federate 

software. It supports reuse of the existing federate structure and code in a given federation. 

The following are the framework components and their services: 

 The user defined object class and the user defined interaction class contain the 

representations of HLA sharable elements and their handles in accordance with 

the HLA object model. These classes also encapsulate some basic RTI APIs and 

their implementation. 

 The class ObjectClassBase provides the dynamic class loading function to reflect 

the remote object attributes updating.  
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 The class DefaultFederateAmbassador provides the default implementation for 

each abstract callback method. The users can define its subclass to do its own 

work.  

2) Implementing a supporting tool 

The federate design framework is useful only if it is supported by a set of tools. The UML 

diagrams are not sufficient to support the proposed framework because the user does not 

know how to use it. Thus, a CASE tool, ArgoUML, is extended to support the framework. 

It includes: 

 UML stereotype extensions support HLA specific classes’ representations. 

These new stereotypes differentiate the HLA specific class and ordinary class 

in the federate framework. 

 A default class structure which supports the federate framework is added in the 

ArgoUML. 

 Cognitive help system support to use the federate framework. It will produce 

the ToDoItems to help designers to make relevant decisions. 

 C++ template code generation and source customization editor tool is provided 

for the future implementation work. 

The supporting tool, ArgoUML, results in a significant reduction of the designing work. 

It can also automatically generate source code skeleton for the federate software. This will 

improve the productivity of the development process.  
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8.2. Future work 

This project has started to be a foundation for future work of the complete federate 

framework. Some extensions of the research work may be considered. 

1) Consider a more flexible framework  

The proposed framework is binding with FOM. Reuse of a federate under this framework 

usually depends on the correctness of the upfront FOM specification. A more flexible 

framework can automatically publish, subscribe, send, and receive sharable elements in 

accordance to SOM. It can achieve more reusability than the proposed framework. But 

some conditions should be considered in this possible work: 

 Such framework becomes more complex. The federate software also should 

involve more codes for a federate. If there are too many HLA object classes and 

HLA interaction classes in FOM, the system performance will become a 

bottleneck under this framework and it increases the code maintenance effort.  

Thus, the tradeoff between the development productivity versus the HLA 

application requirement and simulation execution environment factors should be 

considered by the simulation users and developers.  

 In some simulation application scenario, if there is no need for rebuilding FOM 

or a new FOM is compatible, such flexible framework will not improve the 

productivity of development and the software reusability than proposed 

framework. 

 This flexible framework is not useful without a set of tools to support automatic 

mechanism. As ArgoUML is only for software design phase and it is not very 
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stable at the current stage, it is not suitable to be extended to support more 

complex functions. So the developers need to consider implementing the new 

supporting tools.  

2) Consider more complete software framework  

Due to the time constraints, the proposed federate framework only covers the basic 

necessary functionalities of the federate. In some situations, the complex federate software 

involves the optional RTI services such as Data Distribution Management (DDM), 

Ownership Management, and Time Management. The proposed federate design 

framework can be extended to the other aspects of the federate software implementation. 

Moreover, these services are also related the federation management. Thus, the more 

complete software framework, called “Federation framework” can cover all these services. 

The proposed basic design framework is the first step of this future work. 
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Appendix A: An introduction to UML notation 

A.1 UML diagrams  

UML diagram Notation 

Class Diagram 
A class diagram is a collection of static declarative model 
elements, such as classes, interfaces, and their 
relationships, connected as a graph to each other and to 
their contents. 

Use Case Diagram 

A use case diagram is a graph of actors, a set of use 
cases, possibly some interfaces, and the relationships 
between these elements. The relationships are 
associations between the actors and the use cases, 
generalizations between the actors, and generalizations, 
extend, and includes among the use cases. 

Sequence Diagram 

A sequence diagram has two dimensions: the vertical 
dimension represents time, and the horizontal dimension 
represents different instances. Normally time proceeds 
down the page. (The dimensions may be reversed, if 
desired.) Usually only time sequences are important, but 
in real-time applications the time axis could be an actual 
metric. There is no significance to the horizontal ordering 
of the instances. 

Collaboration Diagram 
A collaboration diagram shows a graph of either 
Instances linked to each other, or ClassifierRoles and 
AssociationRoles; it may also include the communication 
stated by an Interaction or InteractionInstanceSet. 

Statechart Diagram 

A statechart diagram is a graph that represents a state 
machine. States and various other types of vertices 
(pseudostates) in the state machine graph are rendered by 
appropriate state and pseudostate symbols, while 
transitions are generally rendered by directed arcs that 
interconnect them. 

Activity Diagram 
An activity diagram is a special case of a state diagram in 
which all (or at least most) of the states are action or 
subactivity states and in which all (or at least most) of the 
transitions are triggered by completion of the actions or 
subactivities in the source states. 

Component Diagram 
A component diagram is a graph of components 
connected by dependency relationships. Components may 
also be connected to components by physical 
containment representing composition relationships. 

Deployment Diagram 
A deployment diagram is a graph of nodes connected by 
communication associations. Nodes may contain 
component instances. This indicates that the component 
runs or executes on the node. Components may contain 
instances of classifiers, which indicates that the instance 
resides on the component. 

 

Table A- 1: UML diagrams 
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A.2 Class diagram 

A class diagram describes the static overview of the systems through showing the classes 

and their architecture. It may also contain classes, interfaces, packages, and relationships. 

UML defines some relationships including association, generation, dependence, 

composition and aggregation in the class diagram. In this project, two types of 

relationships are used in the class diagram: association, and generalization. The other 

relationships can be found in [BOOC99]. 

Association -- a relationship between instances of the two classes. There is an association 

between two classes if an instance of one class must know about the other in order to 

perform its work. In a diagram, an association is a link connecting two classes. Figure A-1 

shows that class Order is associated to class Customer. 

 

Figure A- 1: An example association relationship 

 

Generalization -- an inheritance link indicating one class is a superclass of the other 

classes. A generalization has a triangle pointing to the base class. All base class attributes 

and operations are also part of the subclass. 

Figure A-2 shows that class DataInputStream is generalized from the class InputStream. 
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Figure A- 2: An example generalization relationship 

 
A.3 Sequence diagram 

A sequence diagram is an interaction diagram that details how operations are carried out. 

It describes how objects collaborate through an exchange of messages. Sequence 

diagrams are organized according to time. The objects involved in the operation are listed 

from left to right according to when they take part in the message sequence. A single 

sequence diagram often represents the flow of events for a single use case. Figure A-3 

shows an example of a sequence diagram for using ATM system. 

 
Figure A- 3: A sequence diagram of using ATM 

 

The details about sequence diagram and how to create sequence diagrams can be found in 

[BOOC99] [SINA02]. 
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Appendix B: A cognitive CASE tool: ArgoUML  
 

B.1 ArgoUML’s graphic user interface 

1) Argo Menu  

The Argo Menu is located at the top of the ArgoUML. The menu consists of File, Edit, 

View, Arrange, Create, Generate, Critique, and Help items. It provides all the command 

and control mechanisms for the users. For example, from the “Create Diagram” item, 

designer can create UML diagram and put necessary components for the design purpose. 

2) Argo Navigator pane 

The Navigator Pane is located on the upper left part of the window. It lists the contents of 

the diagrams and objects of the model that the users are selected. The designer can view 

the structure of the diagram through the predefined tree like perspective. ArgoUML 

provides multiple explorer perspectives. The designer can set the choice by choice menu 

at the top of the explorer. Each perspective shows a hierarchical view of the design. For 

example, the Diagram-centric perspective shows the design structure according to the type 

of diagrams like class diagram, use case diagram etc. 

3) Argo Editing pane 

The Editing Pane, which is the user work field, is located on the upper right area of the 

window. This is where all the design diagrams are edited. The designer can use drag-drop 

action or quick-links to create new objects in the diagrams.  

The editing pane has a tool bar at the top and it provides main shortcut keys for the editing 

pane. The toolbar at the top of the editing pane provides the main functions of the pane.  
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The tools can be divided into four categories. 

 Layout tools: They are used to assist in laying out artifacts on the diagram.  

 Annotation tool: It is used to annotate artifacts on the diagram.  

 Drawing tool: They are used to add general graphic artifacts to diagrams..  

 Diagram specific tools: They are used to add UML artifacts specific to a particular 

diagram type to the diagram like Use case diagram, Class diagram, sequence 

diagram, state diagram, collaboration diagram, activity diagram, and development 

diagram. 

4) Argo Details pane 

The Details Pane is located on the lower right part of the window. It describes the details 

of various contents of the components in the diagrams. It contains several tabs to update 

the selected target. These tables are ToDoItem tab, Properties tab, Documentation tab, 

Style table, Source tab, Constrains tab, Tagged Value tab and Checklist tab. 

 ToDo Item tab: It describes the selected ToDoItem in the "To Do" Pane. It 

presents the design problem and possible solution in the short paragraph. For 

some problems, corrective wizard can be available to lead designer to fix the 

problem through the “Next” and “Back” button. 

 Properties tab: It describes properties of the selected UML model element. For 

example, when some class element is selected, the contents of this tab include 

Name, Stereotype, Namespace, Modifier, attributes, operations and relationship 

with other model elements. The contents of this tab vary much based on the 

different types of the selected elements. 
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 Documentation tab: It allows the designer to input the basic document for the 

selected element. The document includes Author, Version and other related 

information. 

 Style tab: It can be used to configure the selected target style. Designer can enter 

the selected target background color type, line type and shadow type. 

 Source tab: It previews the selected class, interface or package Java source 

skeleton codes which will be generate in the future. For the selected class or 

interface, it presents the attributes, operations and associations of this class. For 

the selected package, it presents the contents of the classes or interfaces which are 

included in this package. If there is no any class or interface in this package, only 

the package name and empty body left.  

 Constraints tab: It allows the designer to enter the OCL constraints on the selected 

target so that it can have additional meaning. Syntax assistant function is provided 

for this tab to check the OCL syntax and save the constraints. 

 Tagged Value tab: It allows the designer to enter the tagged value on the selected 

element. Tagged values are value pairs to store and system will not interpret it. 

B.2 Overview of packages in ArgoUML 

Here is a brief explanation of the main packages in the ArgoUML. 

 org.argouml  
This package contains all the classes for ArgoUML. The HLA extensions will be created 

as a child-package of the ArgoUML package. 

 org.argouml.application  

  vi



A UML-Based Tool for Designing HLA Federates 

This package provides general classes and interfaces that are fundamental to ArgoUML 

and other ArgoUML modules. 

 org.argouml.kernel  
This package contains the core class of Argo: the Project class. ArgoUML uses this class 

to manage the project. 

 org.argouml.pattern 
This package contains Critics which deal with patterns. Currently this includes the critics 

for recognizing whether a class violates the Singleton pattern, and one Critic to check 

whether a user should consider using the Singleton pattern for a class.  

 org.argouml.language 
This package defines representation of a model fragment and converts model into textual 

representations. Currently, ArgoUML only supports the generation of Java source code 

from UML class diagram. 

 org.argouml.persistence  
This package is used for setting up MySQL. It contains the functionality to load a model 

from a MySQL database and write a model into a mysql database. 

 org.argouml.uml  
This package includes the classes that relates to the UML notation in ArgoUML including 

UML different types of Diagrams, connection between the chart and the model, 

generation of code and the reverse engineering  and Panels of property, allowing user to 

control the elements of the model as well as the various elements which are posted there.  

 org.argouml.i18n 
This package contains resource bundle that provides strings for UML related critiques and 

check lists. 
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 org.argouml.util 
This package contains utilities to provide operating system independence and extensions 

to logging packages log4j and java.util.logging. 

 org.argouml.images 
This package contains the icons which are used in the ArguUML. 

 org.argouml.ocl 
This package defines the methods to support OCL notation. It makes it possible support 

language OCL of description of constraints. 

 org.argouml.swingext 
This package contains a collection of utility methods for Swing Actions and Dimensions 

including ArrowButton, ArrowIcon, BorderSplitPane and layout design components.  

 org.argouml.xml 
This package contains parsers to load and write file in graphical representation: PGML 

(Precision Graphics Markup Language). 

ArgoUML can directly load the files argo or xmi but a format of file was created: zargo. 
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Appendix C: HLA Terminology 
 

A federation is the combination of a particular FOM, a particular set of interoperating 

simulations, and the RTI services. 

A federate is one simulation that operates in a federation. 

A Simulation is a synonym of Federate. 

A federation execution is a session of a federation executing. 

The RTI is supporting software that allows the federates to communicate and cooperate 

with each other.  

The Object Model Template (OMT) is a system for documenting objects in the world 

The Federation Object Model (FOM) is a common object model for exchanging data 

among simulations. 

The Simulation Object Model (SOM) describes the federate Objects and Interactions. All the 

SOMs of all Federates together constitute the Federation Object Model (FOM). 

An Object is instance of a class and handled by the RTI. 

An Interaction is collection of data sent out at one time through the RTI to other federates. 

An Attribute is a set of data belonging to an instance of a class of type Object. The datum 

can be of any type including integer, float, double and string and have defined cardinality. 

A parameter is a set of data belonging to an instance of a class of type Interaction. The 

datum can be of any type including integer, float, double and string and have defined 

cardinality. 
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