
A UML-Based Tool for Designing HLA Federates

ACKNOWLEDGEMENTS

I would like to acknowledge the support from my project supervisor, Dr. Tan Soon Huat,

Gary. His valuable comments and suggestions have helped me much during the process

of my Master study.

I wish to thank Dr. Côme Raczy. He always brings me the problem, asks me the solutions

and clarifies my thinking. I really benefited from his academic advices.

Thanks also to Yu Jun and Li Yong Bo who provided much assistance in my research.

They gave me much valuable discussion.

Last but not least, I also thank my dear wife, Yang Jie, for her understanding and moral

support when I wrote the thesis.

 I

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A UML-Based Tool for Designing HLA Federates

CONTENTS

ACKNOWLEDGEMENTS ...I

CONTENTS .. II

LIST OF TABLES ...V

LIST OF FIGURES ...VI

LIST OF ABBREVIATIONS ... VII

SUMMARY ...VIII

CHAPTER 1. INTRODUCTION ... 1

1.1. OVERVIEW OF SOFTWARE DESIGN .. 1
1.1.1. Object-Oriented Methodology (OOM) .. 1
1.1.2. Framework ... 1
1.1.3. UML and CASE tools .. 2

1.2. OVERVIEW OF MODELING AND SIMULATION .. 3
1.3. OVERVIEW OF HLA .. 4
1.4. PROBLEM STATEMENT .. 5
1.5. PROJECT OBJECTIVES ... 6
1.6. PROJECT CONTRIBUTIONS... 6
1.7. STRUCTURE OF THESIS .. 7

CHAPTER 2. SOFTWARE DESIGN AND RELATED WORK 9
2.1. CRC CARDS METHODOLOGY .. 9
2.2. FRAMEWORK ... 10
2.3. UML .. 13

2.3.1. Overview of UML .. 13
2.3.2. Class and stereotype .. 14

2.4. CASE TOOLS ... 15
2.5. ARGOUML .. 17

2.5.1. Overview of ArgoUML.. 17
2.5.2. ArgoUML’s architecture... 19
2.5.3. ArgoUML’s expert critiquing system .. 21
2.5.4. ArgoUML’s code generation structure .. 24

CHAPTER 3. MODELING, SIMULATION AND HLA ... 25
3.1. MODELING ... 25
3.2. SIMULATION .. 26
3.3. HLA ... 28

3.3.1. Rules .. 28
3.3.2. Interface specification.. 30
3.3.3. Object Model Template (OMT).. 32

 II

A UML-Based Tool for Designing HLA Federates

3.3.4. HLA infrastructure.. 33
3.3.5. RTI components ... 34
3.3.6. Federation execution.. 35

3.4. FEDERATE DEVELOPMENT PROCESS ... 37
3.4.1. SOM/FOM representation .. 38
3.4.2. Relevant Federation Management ... 38
3.4.3. Relevant Declaration Management .. 40
3.4.4. Relevant Object Management .. 42

3.5. FEDERATE IMPLEMENTATION PROBLEMS .. 45
3.5.1. General problems... 45
3.5.2. Problems related to Federation Management 46
3.5.3. Problems related to Declaration Management...................................... 47
3.5.4. Problems related to Object Management .. 48

CHAPTER 4. FEDERATE SOFTWARE FRAMEWORK 50

4.1 OVERVIEW OF COMPLETE FEDERATE FRAMEWORK .. 50
4.2 PROPOSED FEDERATE DESIGN FRAMEWORK .. 51

4.2.1. Overview of design framework... 51
4.2.2. Components’ responsibilities and collaborators 52
4.2.3. Components’ structure .. 56
4.2.4. Instantiation of framework ... 64
4.2.5. Benefits of framework ... 65

CHAPTER 5. ANALYSIS OF HLA EXTENSIONS .. 68
5.1. OVERVIEW OF HLA EXTENSIONS ... 68
5.2. EXTENSION 1: UML EXTENSIONS ... 69
5.3. EXTENSION 2: COGNITIVE HELP FOR FEDERATE ... 70
5.4. EXTENSION 3: AUTOMATIC C++ CODE GENERATION FOR FEDERATE............. 71

CHAPTER 6. IMPLEMENTATION OF HLA EXTENSIONS 73
6.1. OVERVIEW OF HLA EXTENSIONS ARCHITECTURE .. 73
6.2. USER INTERFACE: NEW MENU ITEM FOR HLA... 74
6.3. COGNITIVE SUPPORT FOR HLA .. 76

6.3.1. HLA specific criticism control mechanism.. 76
6.3.2. HLA specific critics.. 78

6.4. CODE GENERATION ... 80
6.4.1. Class ActionGenerateFed .. 81
6.4.2. Class FedGenerationDialog... 81
6.4.3. Classes of generating C++ source code .. 83

CHAPTER 7. CASE STUDIES... 85
7.1 OVERVIEW OF DESIGN AND DEVELOPMENT PROCESS 85
7.2 EXAMPLE 1: HELLOWORLD ... 86

7.2.1. Overview of HelloWorld’s specification .. 86
7.2.2. Challenge without framework .. 87
7.2.3. Under federate framework.. 88

7.3 EXAMPLE 2: FEDERATE TANK... 90

 III

A UML-Based Tool for Designing HLA Federates

7.3.1. Application scenario .. 90
7.3.2. Overview of Tank’s specification ... 91
7.3.3. Tank design process ... 93
7.3.4. Cognitive help for federate Tank.. 95
7.3.5. Tank development process .. 96

CHAPTER 8. CONCLUSION AND FUTURE WORK ... 100
8.1. CONCLUSION ... 100
8.2. FUTURE WORK ... 102

APPENDIX A: AN INTRODUCTION TO UML NOTATION.....................................I

A.1 UML DIAGRAMS ... I
A.2 CLASS DIAGRAM .. II
A.3 SEQUENCE DIAGRAM .. III

APPENDIX B: A COGNITIVE CASE TOOL: ARGOUML...................................... IV
B.1 ARGOUML’S GRAPHIC USER INTERFACE.. IV
B.2 OVERVIEW OF PACKAGES IN ARGOUML .. VI

APPENDIX C: HLA TERMINOLOGY.. IX

REFERENCE...X

 IV

A UML-Based Tool for Designing HLA Federates

LIST OF TABLES

Table 2-1: An example CRC card.. 10
Table 2-2: The category of critics .. 23
Table 3-1: The basic Runtime Infrastructure services ... 31
Table 4-1: CRC cards describing the class ObjectClassBase .. 53
Table 4-2: CRC cards describing the user defined object class... 54
Table 4-3: CRC cards describing the user defined interaction class 54
Table 4-4: CRC cards describing the classes for the class FederateAmbassador.............. 55
Table 5-1: Proposed stereotypes for the HLA extensions ... 70
Table 7-1: The FOM of the federate HelloWorld.. 87
Table 7-2: The FOM of the federate Tank... 91
Table A- 1: UML diagrams... i

 V

A UML-Based Tool for Designing HLA Federates

LIST OF FIGURES

Figure 1-1: The logical view of HLA components .. 4
Figure 2-1: The architecture of the JUnit framework .. 12
Figure 2-2: An example class .. 14
Figure 2-3: An example class with stereotype... 15
Figure 2-4: The screenshot of ArgoUML window .. 19
Figure 2-5: The package diagram of ArgoUML.. 20
Figure 2-6: An example critic in ArgoUML.. 22
Figure 3-1: HLA federation ... 34
Figure 3-2: The sequence diagram of the federation execution life cycle 36
Figure 3-3: Overview of the basic federate functionalities.. 38
Figure 3-4: The basic Federation Management life cycle ... 39
Figure 3-5: The basic Declaration Management life cycle .. 41
Figure 3-6: The basic Object Management life cycle for an HLA object instance 43
Figure 3-7: The basic Object Management life cycle for an HLA interaction 44
Figure 4-1: The class diagram for class ObjectClassBase and its subclasses.................... 56
Figure 4-2: An example of the user defined object class “Position” 57
Figure 4-3: An example of the user defined interaction class “Communication” 60
Figure 4-4: The class diagram for abstract class federate ambassador 62
Figure 4-5: A pre-defined HLA federate class diagram .. 64
Figure 6-1: HLA extensions package structure ... 73
Figure 6-2: A screenshot of new menu items for the HLA extensions.............................. 74
Figure 6-3: A class diagram of action classes.. 75
Figure 6-4: A class diagram of criticism control system for the HLA extensions 76
Figure 6-5: A screenshot of the code generation dialog for an HLA federate................... 82
Figure 6-6: A class diagram of code generation for the HLA extensions 83
Figure 7-1: A simplified life cycle of the federate design and development process........ 86
Figure 7-2: A class diagram of federate HelloWorld... 89
Figure 7-3: A class diagram of federate Tank ... 93
Figure 7-4: A screenshot of the an HLA specific critic ... 95
Figure A- 1: An example association relationship... ii
Figure A- 2: An example generalization relationship... iii
Figure A- 3: A sequence diagram of using ATM ... iii

 VI

A UML-Based Tool for Designing HLA Federates

LIST OF ABBREVIATIONS

API Application Programmer’s Interface

CASE Computer Aided Software Engineering

CRC Class-Responsibility-Collaborator

DMSO Defense Modeling and Simulation Office

FOM Federation Object Model

GEF Graph Editing Framework

HLA High Level Architecture

M&S Modeling and Simulation

NSUML Novosoft UML API

OMG Object Management Group

OMT Object Model Template

OO Object Oriented

OOM Object Oriented Methodology

RTI Runtime Infrastructure

SOM Simulation Object Model

UML Unified Modeling Language

 VII

A UML-Based Tool for Designing HLA Federates

SUMMARY

The High Level Architecture (HLA) defines a set of standards and principles for

distributed simulations and promotes the reuse of simulation software and interoperability

between them.

However, it is a laborious task when directly developing HLA simulations with the low

level service methods. Moreover, the HLA does not address formal design approach for

the simulation software. These difficulties hinder the HLA simulations design and

development.

To improve the productivity of the simulation development and enhance software reuse,

this project proposes a design framework based on the HLA simulation development

process. It is an architectural point for the users to implement the simulation software.

Moreover, a UML-based tool is implemented to support designing HLA simulations. It

includes pre-defined class diagram, reflection-in-action context help, and automatic code

generation. Concepts and notations for HLA extensions have been presented and their

implementations are discussed.

Two example simulations, HelloWorld and Tank, are introduced to describe the basic

process of the design and development of HLA simulations under the proposed

framework with tool support.

 VIII

A UML-Based Tool for Designing HLA Federates

Chapter 1. Introduction

1.1. Overview of software design

1.1.1. Object-Oriented Methodology (OOM)

Object Oriented (OO) is the technology based on objects and classes [BAUD96]. An

object is a representation of a real-life entity that incorporates both data structure and

behavior. A class is the abstraction of the real world based on the objects. OO design is

concerned with developing an OO model of a software system to implement the identified

requirements [HEND92].

Object Oriented Methodology (OOM) is a system development approach that encourages

and facilitates the reuse of software components [G52A03]. With this methodology, a

system can be developed on a component basis which enables the effective reuse of

existing components and facilitates the sharing of its components by other systems. There

are several types OOM given in [COAD90] [MART96]. In this project, one of OOM:

Class-Responsibility-Collaborator (CRC) card modeling approach is introduced to

describe the classes of application software.

1.1.2. Framework

The OO framework is a promising technique to support reusable software components.

The description of software framework is given [GAMM95]:

"A framework is a set of cooperating classes that make up a reusable design for a

specific class of software… A framework provides architectural guidance by

partitioning the design into abstract classes and defining their responsibilities and

 1

A UML-Based Tool for Designing HLA Federates

collaborations…A developer customizes a framework to a particular application

by adding new components to plug into it"

From the description above, the framework is a reusable design expressed as object-

oriented class hierarchy. It defines the responsibilities of the classes, the interaction of the

objects derived from the class hierarchy and the thread of control.

The framework describes the architecture of the applications. All the classes in the

framework provide the skeleton of applications. By subclassing and composting instances

of classes to customize the framework, developers can construct and develop the

particular applications.

The framework emphasizes reusable design over code reuse [FAYA99]. It can be

embodied in OO programming languages, executed and reused.

1.1.3. UML and CASE tools

The Unified Modeling Language (UML) is a model language for OO design and

development. It helps users specify, visualize, and document models of software systems.

It facilities the development process of the framework [OMG003] [DSOU99] [ODELl98].

The development process of framework needs automated tools in some way. The

Computer Aided Software Engineering (CASE) tools are the automation of step-by-step

tools for software development to reduce the amount of repetitive work the developers

need to do [DANE96] [HERZ94] [SINA02]. They provide the automated engineering

discipline for software development, maintenance, and project management. It plays an

assistant role in the design phases of system. CASE tools are introduced to enforce a

standard development methodology.

 2

A UML-Based Tool for Designing HLA Federates

In the OO software development process, UML and CASE tools can help users design and

implement more flexible and reusable systems. This project focused towards the

framework technique and UML-based CASE tool for modeling and simulation domain.

1.2. Overview of modeling and simulation

As the size and complexity of real systems are increasing, modeling and simulation

techniques have been widely used to analyze their behaviors and communication. The

modeling of a relevant real system or subsystem is the first step in the OO software design.

A model is an abstract representation of a real system or subsystem. A simulation is the

program execution of a model to give information about the system [BOEH96].

Modeling and Simulation (M&S) is the discipline of designing a model, and executing the

model [ZEIG00]. Distributed simulations refer to the technology concerned with

executing simulations over computing systems containing a collection of loosely coupled

distributed processors [DOD994].

There are two desirable properties for a simulation: reuse and interoperability [SISO03].

Simulation reuse means simulations, which are constructed for the purpose application,

can support the different applications and no need of re-coding for reuse. Simulation

interoperability implies that the simulations on the distributed computing platform can

provide service to other simulations and accepts services from them. Simulations use the

exchanged services to enable them to operate effectively together.

 3

A UML-Based Tool for Designing HLA Federates

1.3. Overview of HLA

Based on the premise that no one simulation can satisfy all applications and users, the

High Level Architecture (HLA), which was initially introduced by Defense Modeling &

Simulation Office (DMSO) of U.S, defines a set of standards for the distributed

simulations and promote the reuse of simulations and interoperability between the

simulations [DMSO97].

The HLA has a variety of benefits for distributed simulation. It is possible to construct a

larger and more complex simulation using existing simulations.

Figure 1-1 shows a logical view of the main components of the HLA infrastructure:

simulation, Runtime Infrastructure (RTI) and runtime interface.

Federate A Federate B

Interface Interface

RTI

Figure 1-1: The logical view of HLA components

In the context of the HLA, a simulation is also generally referred to as a federate. A

federation is the particular group of interoperating federates. The federate interacts and

exchange data with other federates supported by the services in the Runtime Infrastructure

(RTI). RTI is a software implementation of communication service to support federates

interaction and federation management. Runtime interface specification, which contains a

 4

A UML-Based Tool for Designing HLA Federates

set of Application Programmer’s Interface (API), provides a way for communication

between federate and RTI. A federation is the particular group of interoperating federates.

All federates and the RTI are connected through a distributed network and together are

made up of a federation execution.

1.4. Problem statement

The HLA provides a set of standards and principles for distributed simulations. But it does

not address any detail of common approach to facilitate federate design and development.

For the HLA programming beginners, the challenges are to effectively design and develop

HLA federates. There are some general problems that relate to the federate development

based on experiences:

1) Laborious coding with HLA

To date, most federates are manually programmed in popular object oriented languages,

such as C++, Java, through RTI. RTI provides a number of flexible functional interfaces

(APIs) and the interface specification consists of over a hundred methods names and

descriptions. For example, even for the very simple federate software, it includes

thousands of lines of source code and most are just the HLA RTI basic services. But the

number of lines of the user defined data type and relevant operations are not more than

one hundred. Without tools support or pre-defined template, federate developers face the

relative steep learning curve and boring work in the HLA programming.

2) No formal design approach

HLA does not address formal federate design approach. It also does not address any reuse

guideline between the different design paradigms. Developers may create their federate

 5

A UML-Based Tool for Designing HLA Federates

software in their own favorite manner [TOLK02] [RADE02] [COX998]. The different

design paradigms results in implementation incompatibilities between the federates. It

leads to ad hoc fashion. It is difficult to reuse the existing federates. Thereby, this

conflicts with the HLA goals: reuse and interoperability.

1.5. Project objectives

To solve the above problems, there is a great need of techniques and tools to improve the

productivity of the creation of the HLA simulation and enhance software reuse. The

project objectives include:

1) To provide a more formalized description of HLA simulations’ design and

development process.

2) To offer HLA developers the reusable design and source code of HLA simulations.

3) To decrease the HLA programming complexities by encapsulating a number of HLA

low level service methods.

4) To allow HLA developers to focus on application-specific simulation fields rather

than on the basic RTI services.

5) To implement some supporting functionalities in a UML-based CASE tool for

federate design and development.

1.6. Project contributions

Within OO software design’s concepts and principles, this project proposes a federate

framework and a UML-based CASE tool to achieve the research objectives. Several

contributions are made in this project:

 6

A UML-Based Tool for Designing HLA Federates

1) Research and design a basic federate framework. The proposed framework restricts to

HLA concepts and is compatible with the HLA principles. It is the general form of

various kinds of HLA simulation applications and initial set-up for HLA programmers

to develop a new federates and supports to reuse the existing federate for multi

applications. The framework includes:

 The collaborating classes represent the HLA simulations. In these classes, the

standard data structures and behaviors are well-structured defined to meet the

necessary requirement of the federate execution capability.

 The general higher level simulation services, which are required by typical

federates, encapsulate a set of flexible functional interfaces of HLA low level

service methods (APIs).

2) Design and implement the HLA extensions’ functionalities in the open source CASE

tool: ArgoUML. They considerably support the proposed framework. The main

functionalities can be summarized into the areas listed below:

 Extension to the standard UML profile to represent a federate;

 Some usable help during the federate design process;

 Automatic process of generating the HLA simulation in C++ source code skeleton;

1.7. Structure of thesis

The research described in this thesis involves:

 7

A UML-Based Tool for Designing HLA Federates

Chapter 1: OO design concepts, HLA, and some problems related to the federate

software development are briefly overviewed. It proposes the project objectives and

contributions.

Chapter 2: CRC cards methodology, framework, UML and CASE tools are discussed.

One CASE tool, ArgoUML, is introduced. Because ArgoUML is still a research project

and there is insufficient documentation about it, its structure and implementation are

thoroughly analyzed. It is the ground to support the federate design framework.

Chapter 3: The technique of the modeling and simulation are described. The HLA

infrastructure, its components and the general federate development process are

investigated. Before focusing towards the federate design framework, the federate

implementation problems have been determined.

Chapter 4: It proposes a basic federate design framework. The classes in this framework

and their relationship are discussed by CRC cards. The framework components’ structure

and functions are thoroughly discussed.

Chapter 5: Some problems of the HLA extensions to support federate design are

discussed. This is the foundation of the functionalities implementation of ArgoUML.

Chapter 6: The UML-based tool: ArgoUML is implemented to support HLA federate

design. The implementations of the HLA extensions are presented.

Chapter 7: Under the proposed federate design framework, two example federates are

presented to describe the basic process of the design and development of a federate in

ArgoUML environment.

Chapter 8: It concludes the main research work and the further works are discussed.

 8

A UML-Based Tool for Designing HLA Federates

Chapter 2. Software design and related work

2.1. CRC cards methodology

The Class-Responsibility-Collaborator (CRC) cards approach is one of OOM. It usually

includes the users, analysts, and developers in the modeling and design process, bringing

together the entire development team to form a common understanding of an OO

development project [BECK89]. There are a lot of materials about how to use this

technique in the OO software [DOUG99] [WILK95] [BELL97].

The CRC modeling technique includes a collection of cards which are divided into three

sections:

 Class: A Class represents a group of similar objects. Objects are described by their

attributes and their operations. The class name appears across the top of the CRC

card.

 Responsibility: The responsibilities are things that the class has knowledge about

itself or what the class can do. For example, a customer class might have

responsibility for its name, address, credit level, and phone number. The

Responsibilities of a class appear along the left side of the CRC card.

 Collaborator: A collaborator is another class that is used to get information or

perform actions for the class at hand. It often works with a particular class to

complete steps in a scenario. The collaborators of a class appear along the right

side of the CRC card.

 9

A UML-Based Tool for Designing HLA Federates

Table 2-1 is an example CRC card:

Class

Responsibility Collaborator

Table 2-1: An example CRC card

CRC cards can be created for any identified class. After CRC cards are created; they are

often placed on a centralized table. In this project, CRC cards are used to describe the

classes of the federate framework.

2.2. Framework

A framework is a reusable software architecture made of both design and code. It

represents a partial design and implementation for an application in a given problem

domain. Johnson and Foote have developed the most frequently used definition in

[JOHN88]:

“A framework is a set of classes that embodies an abstract design for

solutions to a family of related problems.”

Frameworks are a promising technology for the proven software designs and

implementations in order to reduce the cost and improve the quality of software

[SCHM97].

The primary benefits of the framework are reuse and extensibility.

 10

A UML-Based Tool for Designing HLA Federates

 Reuse: Frameworks achieve reuse by defining generic components that can be

reapplied to create new applications. Reuse of framework components can

substantially improve software productivity, as well as the quality, performance,

reliability and interoperability of software.

 Extensibility: Extending the framework can provide the functionality unique to the

application. Framework extensibility ensures customization of new application

services and features.

A framework provides architectural guidance by partitioning the design into abstract

classes and defining their responsibilities and collaborations. The framework typically

consists of a mixture of abstract and concrete classes. The abstract classes usually reside

in the framework, while the concrete classes reside in the application. A framework, then,

is a half-complete application that contains certain fixed aspects common to all

applications in the problem domain.

The framework development has been successful in many domains. For example, JUnit

[JUNI03] is a test framework for Java program [MARC03]. The architecture of JUnit is

shown as a UML class diagram in figure 2-1. Each rectangular box represents a class. The

upper section holds its name and the lower holds its methods. Each relationship between

these classes is represented by the bars that connect them. This JUnit framework contains

the abstract class Test, class TestCase and class TestSuite and can be instantiated by the

concrete class myTestCase and myTestSuite.

 11

A UML-Based Tool for Designing HLA Federates

Figure 2-1: The architecture of the JUnit framework

Frameworks that are extended are classified whitebox frameworks and blackbox

frameworks.

Black-box frameworks are easier to use since the internal mechanism is hidden from the

developers. Blackbox frameworks are more difficult to develop since they require the

framework to anticipate a wider range of potential application scenario. Whitebox

frameworks require application developers to have basic knowledge of the frameworks

structure. The JUnit framework is just an example of Whitebox framework.

There are three major steps to develop a framework: domain analysis, framework design,

and framework instantiation [MARK03].

The domain analysis phase discovers the domain's requirements and possible future

requirements. The framework design phase defines the framework's abstractions. Finally,

in the instantiation phase, the classes of the framework are implemented, generating a

software system.

 12

A UML-Based Tool for Designing HLA Federates

There are some examples of the OO frameworks in [PATE96] [WALD96] [SRID96].

2.3. UML

2.3.1. Overview of UML

The core work of OO problem solving is the construction of a model. The model abstracts

the essential detail of the underlying problem from its real world. The modeling languages

encourage more developers to model their software systems before starting them. The

standard modeling languages improve the developers’ communities. The Unified

Modeling Language (UML) is a standard language for object-oriented analysis and design

facilities, which was set by the Object Management Group (OMG) in 1997, and now the

standard for communicating OO concepts.

UML specification defines a graphical language for visualizing, specifying, constructing,

and documenting the artifacts of software systems. UML models systems using object-

oriented concepts. The models consist of objects that interact with each other by

exchanging message.

UML provides different views of the abstraction level in the design process. It defines

different types of diagram to describe and model the real world. These diagrams include:

 Class Diagram

 Use Case Diagram

 Sequence Diagram

 Collaboration Diagram

 Statechart Diagram

 13

A UML-Based Tool for Designing HLA Federates

 Activity Diagram

 Component Diagram

 Deployment Diagram

In the next section, the concepts of the class and its stereotype are overviewed. In the

appendix A, some necessary parts of UML notation: class diagram, sequence diagram,

and classes relationships are introduced to provide background understanding. More detail

and guide material can be found in [OMG003].

2.3.2. Class and stereotype

The class is one of the most important items of UML. It is a collection of objects with

common structure, common behavior, common relationships and common semantics. A

class is the "blueprint" for objects. It wraps attributes (data) and behaviors (methods or

functions) into a single distinct entity. Objects are instances of classes.

A class is represented as a rectangle with three compartments. It wraps name, attributes

and behaviors into a single distinct entity. Figure 2-2 shows an example class.

Figure 2-2: An example class

Classes should be named using the vocabulary. For example, a name, like “Order”, is a

string that is used to identify a class. The structures of the classes can be represented by

 14

A UML-Based Tool for Designing HLA Federates

their attributes such as “number” and “price”. Operations such as “dispatch” and “close”

are the representation of the behavior of the classes, which an object may be requested to

perform. Users can assign access levels such as private, public, protected to a class,

attributes, and operations.

A stereotype is a model element that defines additional values (based on tag definitions),

additional constraints, and optionally a new graphical representation. Figure 2-3 shows an

example class with stereotype.

Figure 2-3: An example class with stereotype

Stereotypes are one of the extension mechanisms of UML. User defined class can be

associated with specific stereotype name. For example, a new stereotype name

<<stereotype>> could be defined that can be attached to classes.

2.4. CASE tools

Computer Aided Software Engineering (CASE) tools provide computer based support for

the design and development of software, mostly through the provision of a diagram editor

with underlying functionality for the development and analysis of the design [OMAN90]

[COST94].

[IEEE96] gives a formal definition of CASE tools:

 15

A UML-Based Tool for Designing HLA Federates

“CASE tool: A software tool that aids in software engineering activities,

including, but not limited to requirements analysis and tracing, software

design, code production, testing, document generation, quality assurance,

configuration management, and project management.”

CASE tools are introduced for modeling the design and automating repetitive

development tasks, such as visual design diagram representation, source code skeleton

generation from designed model, and task list management. A CASE tool may provide

support in only selected functional areas or in a wide variety of functional areas.

Regardless of the category and features of the tool, CASE tools users usually claim

significant gains from successfully adoption of the CASE tools. These benefits include the

following:

 Increased development productivity;

 Improvements in the quality of the delivered software;

 Improved consistency and uniformity of the development approach;

CASE tools provide assistance to the software developers [KEIT02] [BANK91]. There

are many CASE tools for software modeling in [CASE03].

During the adoption of CASE tools phase, it involves acquiring an understanding of the

needs of the project and the technology available [BOLO98]. In this project, the examples

capabilities of the CASE tools are:

 Support standard UML notation like create class diagrams;

 Create text specifications, such as class specifications like attributes, operations

and relationship of the model elements;

 Support the UML extension mechanism like stereotype;

 16

A UML-Based Tool for Designing HLA Federates

 Support context sensitive help for the designer;

 Generate object-oriented language source code like C++;

2.5. ArgoUML

2.5.1. Overview of ArgoUML

ArgoUML is a research CASE tool for use in the analysis and design of object-oriented

software systems [ARGO03]. It supports the standard UML diagrams like class diagram,

state class diagram, use case class diagram, activity class diagram, and collaboration class

diagram. In addition, it can generate Java source code skeleton from the class diagram.

Compared to many other UML modeling tools in industry like MagicDrawUML,

COOL:Jex, GDPro, Visual Modeler (from Microsoft), Objecteering (with great support

for repositories), Together (round trip engineering), ArgoUML has some unique key

features:

 ArgoUML cognitive help system provides the knowledge supports for the object-

oriented software designers and architects. It includes some specific cognitive

features like context sensitive help, reflection-in-action and comprehension and

problem solving. ArgoUML cognitive support system includes a number of

design critics, which are active agents that continually check the design materials

for errors or design areas needing improvement. A design critic is an intelligent

user interface agent embedded in a design process. It independently analyzes a

design in the context of decision-making and produces one piece of feedback to

help the designer improve the design. The designer can easily and timely view the

related feedback. The designer can only see feedback produced by the critics.

 17

A UML-Based Tool for Designing HLA Federates

 ArgoUML is a 100% Pure Java application and open source. It does not depend on

the particular platform. It promises Write Once, Run Anywhere in the Java2

platform. It allows users to design and implement their object-oriented software in

the preferred Operating System environment. ArgoUML is an open source code

product. Since the source code is available, it can be customized and to meet the

user particular requirement.

ArgoUML makes use of some of existing open-source projects in order to achieve its

goals.

 Graph Editing Framework (GEF) - a graph editing library that can be used to

construct many, high quality graph editing applications. It provides a library

making for the Java applications publish diagrams [GRAP03].

 Novosoft UML API (NSUML) – a representation of the UML meta-model by java

classes. It records the elements of the model in a static structure copied on meta-

model UML [NOVO03].

The main window of ArgoUML contains five parts: menu and tools bars, navigator pane,

editing pane, details pane and To-Do pane. The To-Do Pane is located on the lower left

part of the window. It includes a ToDo list of UML-specified cognitive critics for the

design phase. The design critics continuously track the design process. When a potential

problem is found, the critic produces a "to do" item and adds it to the To-Do Pane. When

the use highlighted the critics, more detail description will appear in the ToDoItem tab of

the Details pane, which is located on the lower right part of the window. When an

 18

A UML-Based Tool for Designing HLA Federates

identified problem is fixed, this ToDoItem is removed from the ToDo list. Appendix B.1

shows more details of other parts of the user interface.

Figure 2-4 shows a screenshot of ArgoUML window.

Figure 2-4: The screenshot of ArgoUML window

2.5.2. ArgoUML’s architecture

The current version of ArgoUML includes sixteen key top-level packages, which are

depicted in the package diagram in figure 2-5.

 19

A UML-Based Tool for Designing HLA Federates

Argouml

 Ui Application Kernel Pattern

 Cognitive Uml Language Persistence

 I18n Util Model Resource

 Images Xml Ocl Swingext

Figure 2-5: The package diagram of ArgoUML

The main components of ArgoUML include the kernel, graphic user interface, cognitive

critics system and code generation. They are:

 org.argouml.model
This package contains various UML metamodel implementations or facades used within

ArgoUML. Such metamodels include Foundation component, ModelManagement

component, BehavioralElements in UseCases, StateMachines, and Collaborations

component.

 org.argouml.ui

This package manages the principal graphic interface window, with through the singleton

of ProjectBrowser class.

 20

A UML-Based Tool for Designing HLA Federates

 org.argouml.cognitive
This package defines the fundamental elements of the cognitive support system, such as

the Designer class, Poster class and ToDoItem class.

Appendix B.2 shows more details of other packages.

2.5.3. ArgoUML’s expert critiquing system

The expert critiquing system is one of the key features of ArgoUML.

During the design process, decision making is an essential activity. Sound design in this

phase is important for the success of the software system. Any errors and faults in the high

level design become more expensive to overcome at later development process [GUIN87]

[STAC95].

A designer may not have the comprehensive knowledge about how to build the specific

process related to a particular task. In addition, the analysis technologies do not support

the design decision and provide feedback timely.

ArgoUML expert critiquing system is based on the reflection-in-action theory. This

approach provides the designers the results in the context of their decision making timely.

Compared to the traditional analysis technologies, the users’ cognitive needs are

continuously considered. It supplies the design knowledge to designer when they are

needed.

ArgoUML expert critiquing system is a fine-grained and real time mechanism to support

design decision making. It uses critics to perform analysis on a particular design

architectural model. Critics, which are also considered as context sensitive help, are

always associated with the states of the user edit pane. A critic can identify the problem of

 21

A UML-Based Tool for Designing HLA Federates

the design process and produce the feedback: ToDoItem posting on the ToDo list to give

the explanation of the underlying issues.

For example, when a designer selects a class and puts it in a class diagram by using

ArgoUML, a critic is fired and produces one ToDoItem like: the name of the new package

has not been named yet.

Figure 2-6 shows the screenshot of ArgoUML Argo issues some critics.

Figure 2-6: An example critic in ArgoUML

The ArgoUML critiquing system includes critics, criticism control mechanisms, feedback

management, corrective automations, and design history. [ROBB97] [ROBB98]

 Critics are active agents that support decision-making by continuously and

pessimistically analyzing partial architectures. It is embedded in the design

environment to monitor the specified design problem, stylistic violation and

incomplete sections. When the error is founded, it timely and automatically

produces feedback that is relevant to design decisions.

 22

A UML-Based Tool for Designing HLA Federates

ArgoUML has defined some types of critics [ROBB98]. These critics are related to

the particular design problems. Table 2-2 shows more detail of the critics.

Name Functionality

Correctness critics Detects syntactic and semantic flaws in the partial design.

Completeness critics Detects when a design task has been started but not yet finished.

Consistency critics Detects contradictions within the design.

Presentation critics Detects awkward use of the notation.

Alternative critics Reminds the designer of alternatives to a given design decision.

Optimization critics Suggests better values for design parameters.

Table 2-2: The category of critics

 Criticism control mechanisms determine whether the related critic is active

continuously and control the execution of the critic.

 Feedback management allows the designer to control the presentation of the

design ToDoItems, which is directly linked to the elements of the architecture. The

ToDoItems on the ToDo list are grouped by catalog as priority, decision type,

knowledge type, offending design elements, posting package. When the designer

select one ToDoItem, the details of problem description and suggested solution

can be viewed through the ToDoItem Tab in the Details pane.

 23

A UML-Based Tool for Designing HLA Federates

Once a critic produces the ToDoItem, it is timely presented and posted in the

ToDo list. When the critic is not valid, it is removed from the ToDo list.

 Corrective automations aid the architect to improve the design by correcting the

specific problem automatically. In ArgoUML, Critic may provide a Wizard to fix

specific problem. The designer can follow the wizard steps: “Next” and “Back”

buttons to finish the solution.

 Design history records the earlier significant design activities. Currently,

ArgoUML uses the design history only to ensure that previously resolved

ToDoItems are not produced in the future.

2.5.4. ArgoUML’s code generation structure

ArgoUML can generate the skeletal Java source code for class or interface based on the

UML class diagrams.

ArgoUML provides the abstract class: Generator and one subclass: GeneratorJava to

generate Java source code. Another subclass GeneratorDisplay generates simplified Java

code to be displayed in the "Source" tab.

The source code skeleton includes the class name, member attributes and the empty body

of the member operations. ArgoUML is only used in the design phase. Java IDE is needed

to edit an existing the source during the development phase.

 24

A UML-Based Tool for Designing HLA Federates

Chapter 3. Modeling, Simulation and HLA

3.1. Modeling

A model is a simplified representation of a system over some time period or spatial extent

intended to promote understanding of the real system. [IEEE89] gives the formal

definition of a model:

“(1) Model is an approximation, representation or idealization of selected

aspects of the structure, behavior, operation, or other characteristics of a

real-world process, concepts, or system.

(2) To serve as a model as in (1)

(3)To develop or use a model as in (1)”

There are five basic model types [TOLK03] [FISH95]:

1) Conceptual Models: define a physical system at a very high abstraction level.

All static and dynamic knowledge about the physical system must be encoded

in some forms.

2) Functional Models: are usually useful to expose some system behavior to help

in exceptional situations.

3) Declarative Models: concentrate on the form of the current system state and a

subsequent system state after a state transition occurs.

4) Constraint Models: denote a coherent set of application independent

constraints defined over all the software used in an application system.

 25

A UML-Based Tool for Designing HLA Federates

5) Spatial Models: describe the geographical distribution of scatterers around the

transmitter and receiver and predict the distribution of delay, amplitude, and

direction of arrival of multi path components at the receiver.

Models provide ways to think and reason about real systems. A model is intended to

promote the development of understanding of the real system. Models always involve a

trade-off as to what levels of details of the real system are included in the models. If there

are too little details in the model, such model may miss the relevant information and

interaction of the real system. But if the model includes too many details, it may become

overly complicated and actually preclude the development of understanding. A good

model is constructed with suitable information to answer a specific set or class of

questions about a system. There are much more resources about models in [MODE03].

3.2. Simulation

A simulation is the manipulation of a model in such a way that it operates on time and/or

space to compress it, thus enabling one to perceive the interactions that would otherwise

not be apparent because of their separation in time or space [RUMB91] .

[IEEE89] gives the formal definition of a simulation:

“(1) A model that behaves or operates like a given system when provided

a set of controlled inputs. Synonymy: simulation model.

(2)The process of developing or using a model as in (1)”

From the definition of simulation, it is a tightly coupled and iterative three component

process composed of

 26

A UML-Based Tool for Designing HLA Federates

1) Model design: According the objective of simulation and basic assumption of

characteristics of the real system, Model builders formalize details of specification

of conceptual and functional model for a simulation.

2) Model execution: Model builders translate the functional model to an

executable program. They can use general purpose programming language or a

special simulation language.

3) Execution of a model: After the model execution, validation of a model can be

done by comparing the simulation output with output generated by the real system

or analytical model.

Distributed simulation systems contain a number of simulations that execute on multiple

processing units in a geographically distributed system.

 The distributed simulation architectures support the execution of simulation process in a

distributed way by connecting different distributed simulation models of various

functional areas [BRAT87]. These simulation components collaborate and communicate

in order to realize the functionality of the system as a whole. In order to achieve the

interoperability between the distributed simulation models architecture, the Department of

Defense in the United States introduces the High Level Architecture (HLA) for modeling

and simulation activities.

 27

A UML-Based Tool for Designing HLA Federates

3.3. HLA

The HLA is a software infrastructure for heterogeneous distributed simulations. It was

developed to support reuse and interoperability for simulation models. It provides a

concept framework for development of distributed simulations [KUHL99].

The HLA consists of:

 Rules;

 Interface Specification;

 Object Model Template;

3.3.1. Rules

The HLA consists of 10 rules, which must be obeyed if a federate, or federation is to be

regarded as the HLA compliant. All these rules are divided into two groups: federation

rules and federate rules [DMS98A].

There are five rules for federation:

1) Federations shall have an HLA Federation Object Model (FOM), documented in

accordance with the HLA Object Model Template (OMT).

2) In a federation, all representation of objects in the FOM shall be in the federates,

not in the runtime infrastructure (RTI).

3) During a federation execution, all exchange of FOM data among federates shall

occur via the RTI.

 28

A UML-Based Tool for Designing HLA Federates

4) During a federation execution, federates shall interact with the runtime

infrastructure (RTI) in accordance with the HLA interface specification.

5) During a federation execution, an attribute of an instance of an object shall be

owned by only one federate at any given time.

There are five rules for federate:

6) Federates shall have a HLA Simulation Object Model (SOM), documented in

accordance with the HLA Object Model Template (OMT).

7) Federates shall be able to update and/or reflect any attributes of objects in their

SOM and send and/or receive SOM object interactions externally, as specified in

their SOM.

8) Federates shall be able to transfer and/or accept ownership of attributes

dynamically during a federation execution, as specified in their SOM.

9) Federates shall be able to vary the conditions (e.g., thresholds) under which they

provide updates of attributes of objects, as specified in their SOM.

10) Federates shall be able to manage local time in a way which will allow them to

coordinate data exchange with other members of a federation.

The HLA rules govern the behaviors of the federation and federate.

The federation rules establish the ground rules for creating a federation. The federate rules

deal with the individual federates. Under the HLA, all federates must document the public

information. In addition, all data representation takes place in the federates (not in the RTI)

with only one federate owning any given attribute of a HLA object instance at any given

 29

A UML-Based Tool for Designing HLA Federates

time. Federate rules do not allow explicit communications between federates and all the

information exchange among the federates takes place via the RTI as specified in the

HLA interface specification.

3.3.2. Interface specification

The HLA Interface specification defines the methods between each federate and the

Runtime Infrastructure (RTI). These methods allow the federates to communicate and

cooperate with each other. [DMS98B] provides the details of the definition of these

services.

From the viewpoint of abstraction services, the interface specification consists of six types

of services listed in table 3-1.

 30

A UML-Based Tool for Designing HLA Federates

Category Functionality

Federation Management

Creates dynamic control, modifies and deletes a federation

execution, and to allow simulations to join or resign from

existing federations, and to control checkpoint, pause,

resume and restart an execution.

Declaration Management

Establishes intent to publish object attributes and

interactions that produce and subscribe to attributes and

interactions produced by other federates.

Object Management

Creates and deletes object instances, control attribute and

interaction publication, and to produce and receive

individual attribute updates and interactions.

Ownership Management
Allows a federate to transfer the ownership of object

attribute to other federates during the federation execution.

Time Management

coordinates the advance of logical time and its relationship

to real time, so it allow the federates interoperable in despite

of different time management schedule

Data Distribution Management
supports efficient routing of data by applying some

technique to filter data

Table 3-1: The basic Runtime Infrastructure services

 31

A UML-Based Tool for Designing HLA Federates

3.3.3. Object Model Template (OMT)

Currently, most of the HLA federates are constructed using Object-Oriented (OO)

programming languages like C++ through RTI API. Prior to federate development, one

should identify the difference between the basic concepts defined in the OO programming

language and HLA. “Object” defined in terms of HLA have only a degenerate relation

with the concept of “object” in the OO programming language. HLA objects do not define

any behavior or operation and do not even have a type. They are merely hierarchical sets

of attributes (data member) declarations (In the thesis, the HLA object is referred to as

“HLA object” and “object” in OO is referred to as “OO object”).

The HLA object models describe the sharable elements between federates. HLA puts no

constraints on the specific data type in these HLA objects models. It requires federate and

federation to use the standard HLA Object Model Template (OMT) to document their

HLA object models [DAHM97].

The OMT defines two types of classes:

 HLA object classes

 HLA interaction classes.

The main difference between them is that HLA object class associated with attributes

persists for some interval time. By contrast, HLA interaction class is a collection of the

data which is called parameters, sent and forgotten through the RTI to other federates.

[KUHL99].

HLA object models shall contain at least one HLA object class or one HLA interaction

class.

 32

A UML-Based Tool for Designing HLA Federates

The OMT are classified to two types of the HLA object models: Federation Object

Models (FOM) and Simulation Object Model (SOM). OMT format is applicable for both

FOM and SOM.

The FOM describes sharable elements across the federation. The SOM describes these

elements of the individual federate, which are available in the future federation. The FOM

can be considered a superset of a set of SOMs of the participating federate. The federate

interacts with other federates with a compatible FOM in the federation. The SOM and

FOM design and development are not in the scope of this project.

The OMT consists of the different tables, more detail about these tables can be found in

[DMS98C].

3.3.4. HLA infrastructure

HLA infrastructure contains the following main components:

 A number of federates which are HLA compliant;

 Runtime Infrastructure (RTI);

 Federate and RTI runtime communication interface;

Figure 3-1 shows the logical view of HLA infrastructure [DMSO00].

 33

A UML-Based Tool for Designing HLA Federates

Federate Federate Federate Federate (Publisher) (Subscriber) (Interface to real
world participator)

(Data collector/
Viewer)

Interface

Runtime Infrastructure (RTI) services:
Federation Management Ownership Management
Time Management Data Distribution Management
Declaration Management Object Management

Figure 3-1: HLA federation

A federate can be a computer simulation, a manned simulator, a supporting utility (such as

a viewer or data collector), or a live player or instrumented range. All the data

representation are in the federates. Each federate maintains and controls a collection of

sharable elements. These sharable elements have a number of the HLA object class,

attributes of the HLA object class, HLA interaction class and parameters of the HLA

interaction class that defined in the SOM.

3.3.5. RTI components

The RTI software is comprised of the RTI Executive process (RtiExec), the Federation

Executive process (FedExec) and the libRTI library.

The RtiExec process manages the creation and destruction of federation executions. The

FedExec manages federates joining and resigning the federation. The libRTI provides the

federate communication service with RtiExec, FedExec and other federates. The libRTI

library includes two classes: class RTIambassador and abstract class FederateAmbassador.

 34

A UML-Based Tool for Designing HLA Federates

The class RTIambassador bundles the services provided by the RTI. All requests made by

a federate on the RTI take the form of the RTIambassador method call. The HLA

programmers can directly call these methods.

The abstract class FederateAmbassador, which provides a set of callback methods, is

connected locally to the federate, and is responsible for the communication to the RTI.

The HLA programmers should implement functionalities of these abstract callback

methods in the derived classes.

3.3.6. Federation execution

A federation consists of a collection of related federate and RTI services with a FOM.

Federates interact with other federates through the publishing/subscribing,

sending/receiving services, which are provided by the RTI. A federate may

simultaneously participate in more than one federation.

Figure 3-2 shows the federation execution life cycle with UML sequence diagram.

 35

A UML-Based Tool for Designing HLA Federates

Figure 3-2: The sequence diagram of the federation execution life cycle

The federation execution sequence is described below:

1) When a federation is started, the administrator first starts the RTI execution process

(RTIExec).

2) Then one federate creates a federation execution process (FEDExec), which is

supposed to be given the name “FEX”, by invoking the RTI method: create Federation

Execution. If FEX does not exist, the RTI process create it, otherwise the

“FederationExecutionAlreadyExists” exception will be issued.

 36

A UML-Based Tool for Designing HLA Federates

3) The RTIambassador reserves a name with RTIExec, and spawns a FEX, and that FEX

registers its communication address with RTIExec. The federation FEX execution is

underway.

4) When a federate joined the FEX, it can publish the sharable elements, register HLA

objects, subscribe and discover the HLA object, update the HLA object attributes,

exchange the attribute ownership and so on. Finally, it will shutdown and remove the

federate from the FEX.

5) Once a federation FEX execution exists, other federates can join it. That RTI

Ambassador consults RTIExec to get the address of FEX, and invokes

“joinFederationExecution” on FEX. Additional federates can join via the same process.

3.4. Federate development process

From the viewpoint of the functionality abstraction, the basic functionalities of a federate

should contain sharable elements of SOM/FOM representation and cover basic RTI

services such as Federation Management, Declaration Management, and Object

Management. For federate developers, they should implement these basic functionalities

for a federate [DMSO00]. Figure 3-3 shows the basic federate functionalities.

 37

A UML-Based Tool for Designing HLA Federates

Federate functionalities

SOM/FOM
representation

Federation
Management service

Object Management
service Declaration

Management service

Figure 3-3: Overview of the basic federate functionalities

3.4.1. SOM/FOM representation

The HLA rules for a federate constrain that a federate should be written in accordance

with a SOM before it joins in a federation. When the federate is deployed in a federation,

the executable federate should be in accordance with a FOM.

In the RTI specification, RTI and federation execution process use unique handles to

indicate these sharable elements. The federate developers should define these sharable

elements handles in the federate software.

3.4.2. Relevant Federation Management

The basic functionalities of Federation Management services are the services to create,

join, resign and destroy a federation. Before a federate may join a federation execution,

the federation execution must exist. Once a federation execution exists, federates may join

and resign from it in any sequence. The relevant activities about Declaration Management

and Object Management occur between the federate join and resign a federation.

Figure 3-4 shows a general view of basic life cycle of federation management service.

 38

A UML-Based Tool for Designing HLA Federates

Federation Management service

FederateA FederateB RTI

Create a federation

Join a federation
Join a federation

Declaration Management
Declaration Management

Object Management

Object Management
Resign from a federation

Resign from a federation

Destroy a federation

Figure 3-4: The basic Federation Management life cycle

In the DMSO RTI implementation, RTIambassador method createFederationExecution()

can create a specified federation.

Similarly, by calling an RTIambassador method joinFederationExecution(), a federate can

join a specified federation. RTIambassador method resignFederationExecution()

terminates a federate's participation in a specified federation. RTIambassador method

destroyFederationExecution() attempts to terminate an executing federation.

 (Most of RTIambassador methods may raise exceptions. For simplification, the exception

handling parts of relevant RTIambassador methods are omitted here although they should

be included in the federate software.)

 39

A UML-Based Tool for Designing HLA Federates

The following is the C++ code of these methods:

rti_ambassador.createFederationExecution(federation_name, “federation_FEDfile_name”);

rti_ambassador.joinFederationExecution(federate_name,federation_name,fedaeteambassdor);

rti_ambassador.resignFederationExecution(RTI::DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES);

rti_ambassador.destroyFederationExecution(federation_name);

3.4.3. Relevant Declaration Management

The basic functionalities of Declaration Mmanagement services are the services to get

RTI handles of HLA sharable elements to publish/ subscribe and unpublish/unsubscribe

sharable elements of HLA object model. The relevant service about Object Management

occurs between the federate publish/subscribe and unpublish/unsubscribe activities.

Figure 3-5 shows a general view of basic life cycle of declaration management.

 40

A UML-Based Tool for Designing HLA Federates

Declaration Management service

FederateA RTI

Get sharable elements handles

Publish sharable elements

Subscribe sharable elements

Object Management

unpublish sharable elements

 unsubscribe sharable elements

Figure 3-5: The basic Declaration Management life cycle

By calling a RTIambassador method getObjectClassHandle(), a federate can get the

relevant handles. The method returns an RTI::ObjectHandle. For example, “country” is an

HLA object class. The following is the C++ code of this method:

RTI::ObjectClassHandle ms_objectClassHandle;

char* const ms_objectClassStr = "Country";

ms_objectClassHandle = rtiAmb->getObjectClassHandle(ms_objectClassStr);

Similarly, a federate can get other sharable elements handles by relevant RTIambassador

methods: getAttributeHandle(), getInteractionClassHandle() and getParameterHandle().

 41

A UML-Based Tool for Designing HLA Federates

By calling a RTIambassador methods: publishObjectClass(), unpublishObjectClass(),

subscribeObjectClassAttributes(), and unsubscribeObjectClass() a federate can

publish/unpublish this HLA object class and subscribe/unsubscribe attributes of the HLA

object class. For example, “country” is a HLA object class and “name” is an attribute, the

following is the C++ codes of these methods:

objectClassAttributes = RTI::AttributeHandleSetFactory::create(1);

objectClassAttributes ->add(this->ms_attributesHandle);

rtiAmb->publishObjectClass(this->ms_objectClassHandle,* objectClassAttributes);

rtiAmb->subscribeObjectClassAttributes(this->ms_objectClassHandle,* objectClassAttributes);

rtiAmb->unpublishObjectClass(this->ms_objectClassHandle);

rtiAmb->unsubscribeObjectClass(this->ms_objectClassHandle);

Similarly, by calling RTIambassador methods: publishInteractionClass(),

unpublishInteractionClass(), subscribeInteractionClass() and

unsubscribeInteractionClass() a federate can publish/unpublish this HLA interaction class

and subscribe/unsubscribe parameters of the HLA interaction class.

3.4.4. Relevant Object Management

The basic functionalities of Object Management services are the services to

register/discover and delete/remove HLA object instances, update/reflect instance

attribute values, and send/ receive HLA interactions.

The main difference between HLA object attributes and interaction data is that attributes

associated with a registered object instance persist before the object is deleted, but an

interaction data is sent then forgotten. Figure 3-6 shows a general view of HLA object

instance life cycle of object management.

 42

A UML-Based Tool for Designing HLA Federates

Object Management service

FederateA FederateB RTI

Register an object instance

Discover an object instance
Update object attributes

Reflect object attributes

Delete object instance

Remove object instance

Figure 3-6: The basic Object Management life cycle for an HLA object instance

By calling RTIambassador methods: registerObjectInstance(), a federate can register a

HLA object instance. The method returns an RTI::ObjectHandle. Similarly, by calling

RTIambassador methods: updateAttributeValues() and deleteObjectInstance(), a federate

can update attributes values and delete the object instance.

The following is the C++ code of these methods:

m_instanceHandle =rtiAmb->registerObjectInstance(this->ms_objectClassHandle);

rtiAmb->updateAttributeValues(m_ instanceHandle, objectClassAttributes, NULL);

rtiAmb-> deleteObjectInstance (m_ instanceHandle);

When a federate object instance registers a federation, the FederateAmbassador

 43

A UML-Based Tool for Designing HLA Federates

discoverObjectInstance() callback informs a local federate with a handle indicating this

HLA object instance. The developers must derive some subclass from the abstract class

FederateAmbassador and implement this functionality. The following is the C++ code of

this method:

void discoverObjectInstance(RTI::ObjectHandle theObject, RTI::ObjectClassHandle theObjectClass, const

char * theObjectName)

 {
// Implementation of how to do when find a object instance;
}

Similarly, the federate developers must implement other callback functions:

reflectAttributeValues() and removeObjectInstance() which are declared in the abstract

class FederateAmbassador.

A federate sends HLA interaction data in a similar way to the HLA attribute updates.

Figure 3-7 shows a general view of HLA interaction class life cycle of object management.

Object Management service

FederateA FederateB RTI

Send HLA interaction class

Receive HLA interaction class

Figure 3-7: The basic Object Management life cycle for an HLA interaction

By calling RTIambassador methods: sendInteraction(), interactions data are sent and

forgotten. The following is the C++ code of this method:

RTI::ParameterHandleValuePairSet* pParams = NULL;

 44

A UML-Based Tool for Designing HLA Federates

pParams = RTI::ParameterSetFactory::create(1);

pParams->add(this->ms_parameterHandle,cmdline,strlen(cmdline)+1);

rtiAmb->sendInteraction(this->ms_interactionClassHandle, *pParams,NULL);

Similarly, the federate developers must implement the other callback methods:

receiveInteraction(), which is declared in the abstract class FederateAmbassador.

3.5. Federate implementation problems

3.5.1. General problems

When developers construct the HLA federate software, some common problems should

be considered:

1) The HLA is only a conceptual framework for the distributed simulations. It does not

address any approach to design a federate structure. It is users’ responsibility to design

federate software structure. If the members of the developing team design different

federate structures, it may result in incompatibilities among the federates software.

There is often little opportunity for reuse within an organization, much less between

organizations.

2) The HLA RTI structure is monolithic. A supporting infrastructure has to be provided

for each method of the RTI API. As a result, much effort is invested to construct the

supporting implementation. Without suitable management of these implementations,

the federate software seems as ad hoc basis and increases the cost of software

maintenance.

 45

A UML-Based Tool for Designing HLA Federates

3) The RTI provides low level and fine granularity functions. The developers need to

further develop complicated implementation of relevant RTI APIs respectively even

for a very simple concept. The developers should manage the correlating RTI APIs.

4) The HLA lacks the support for the management of the RTI concurrent event errors. In

the RTI specification, any attempt to re-enter servicing RTI event causes a concurrent

error that result in an exception being thrown. The developers should invest more

effort to handle these problems.

5) Federate source codes usually involve many RTI APIs and their supporting

implementation. It is difficult to track the bugs in the development phase. If such

federate software is shared by other federates, all these software meet the same

problems.

Based on the HLA programming experience, there are also some specific problems related

to Federation Management, Declaration Management, and Object Management.

3.5.2. Problems related to Federation Management

When a federate creates, joins, resigns and destroys a federation, the developers should

think about some strategies for the following problems:

1) Who creates a federate execution? A federation consists of a set of related federates.

Before a federate can join a federation, the federation execution must exist. Otherwise

a federate must create the given federation.

2) How to get federation run time parameters? A federate need some initialization

data for the execution such as the run-time parameters like federate name, the

federation name that a federate should join.

 46

A UML-Based Tool for Designing HLA Federates

3) What will a federate do if it fails to create or join a federation? When the attempt

to create a federation execution fails or a federate fails to join a federation, the

developers should consider whether to continue or stop the simulation.

4) What will a federate do after resigning from a federation? When a federate

terminates its participation in a given federation, the developer should decide what

must be done by a federate.

5) How to destroy a federation? When a federate tries to terminate an executing

federation, if the invoking federate is not the last federate to have resigned and there

are still other federates joined in the targeted federation, an exception will be raised.

Thus, this destroying effort must fail.

3.5.3. Problems related to Declaration Management

In the HLA, there is no functionality to represent the HLA object model and define their

handles. Thus, when developers want to publish, subscribe sharable elements and use their

handles. The developer should think about some strategies about mapping the HLA object

model and their handles into object-oriented programming languages.

1) How to represent HLA attributes? When a federate publishes or subscribes to a

HLA object class, it must indicate explicitly which attributes it can produce. Thus, the

attributes of HLA object class are associated with a registered object instance of the

HLA object class. These attributes should be constructed to support each HLA object

instance.

2) How to represent HLA parameters? When a federate publishes or subscribes the

HLA interaction class, interactions are sent or received as "all or nothing." It is not

 47

A UML-Based Tool for Designing HLA Federates

possible to specify which parameters of an HLA interaction class will be published or

subscribed. Thus, these parameters are usually associated with the HLA interaction

class.

3) How to represent handles of HLA sharable elements? The RTI converts names of

the HLA sharable elements to the handles that are used by the various RTI services to

refer to them. Thus, before a federate publishes or subscribes HLA sharable elements,

it requires their relevant handles. The handles of the HLA sharable elements should be

access by the entire registered HLA object instance. These handles should have global

scope for a federate.

The developers should carefully consider how to construct the HLA object model and

their handles as the different scopes in the federate software.

3.5.4. Problems related to Object Management

When a federate updates HLA instance attributes or sends HLA interactions, the

developers should think of some strategies about:

1) What implementation of the mechanisms for updating attributes values? Before a

federate updates its attributes values associated with a registered HLA object instance

in a federation, the developers should decide how to update them. When the effort of

updating attributes fail, the developers should consider whether to continue or stop the

simulation.

2) What implementation of the mechanisms for reflecting attributes values? When

the remote object instance updates its attribute values, the developers should consider

how the local subscribing federates reflect these attributes values.

 48

A UML-Based Tool for Designing HLA Federates

3) What are the implementation mechanisms for sending HLA interactions? Before

a federate sends HLA interactions into a federation, the developers should also decide

what are the mechanisms for sending interactions. In addition, the remote federate

sends HLA interactions, the developers should consider how the subscribing federate

correctly receives these interactions. When the effort of sending HLLA interactions

fail, the developers should consider whether to continue or stop the simulation.

4) What are the implementation mechanisms for receiving HLA interactions?

When a federate interacts with other federates by calling RTIambassador methods,

RTI will issue some response by callback methods that are declared in the abstract

class FederateAmbassador. Because the RTIambassador methods and

FederateAmbassador callback methods are used as the request and response interface

respectively, the developers should consider how to arrange these relevant

RTIambassador methods and FederateAmbassador callback methods in the federate

software.

5) What to do after a federate registers an object instance? When a federate registers

an HLA object instance in a given federation by calling RTIambassador method:

registerObjectInstance() . RTI will inform other federates that a new object instance

has come into existence by the FederateAmbassador callback method:

discoverObjectInstance(). These two methods are naturally related in a federate.

Similarly, RTIambassador method: updateAttributeValues() and sendInteraction() are

naturally related to FederateAmbassador callback method: reflectAttributeValues()

and receiveInteraction(). For typical federate software, the developers should consider

what to implement these three callback methods.

 49

A UML-Based Tool for Designing HLA Federates

Chapter 4. Federate software framework

4.1 Overview of complete federate framework

As mentioned in section 3.4, there is a significant amount of work in developing federate

software. Thus, the developers must handle many relevant problems. Without supporting

tools or pre-defined federate templates, a federate must be developed more or less from

scratch. For this reason, federate developers require tools and techniques to improve the

productivity of the development.

Using a framework is one promising solution. The framework includes a set of classes and

embodies an abstract design for solutions. The complete federate framework can cover all

the federate development process and solve the relevant problems.

The complete framework provides the following functionalities:

1) This framework contains a federate design guide or generic structure template to

construct the federate software. This results in reuse of the implementations between

the federates software.

2) This framework provides a set of implementations for each RTI API to save

developers effort in constructing the supporting infrastructure in the federate software.

3) This framework provides a set of higher level general simulation service

implementing functionalities which are required by all the federates. The verbose and

complex low level RTI APIs is hidden from the designers.

 50

A UML-Based Tool for Designing HLA Federates

4) The framework components can be reused to substantially improve software

productivity. The federate software errors can be fixed once in the framework rather

than in each federate independently.

5) This framework supports the error management for HLA federate software. The

developers can easily track the bugs to avoid the common programming pitfalls

associated with RTI programming.

The complete federate framework works for the common simulation domain problems

regardless of any purpose or technique implementation. It consists of the complete default

implementations of RTI APIs, a set of general simulation service functionality, and error

management. However, this universal framework should be based on the thorough

analysis of the entire application requirements. In addition, designing such framework

needs the relevant HLA programming experience on the simulation domain and deeper

understanding of the future application evolution trend.

A practical work is to construct a basic design framework to solve some open problems

which the typical federates developers need to consider. It can be extended and configured

for a particular simulation.

4.2 Proposed federate design framework

4.2.1. Overview of design framework

The proposed framework restricts to HLA concepts and principles. Its scope covers the

first four parts of the complete federate framework. To solve the parts of the general

 51

A UML-Based Tool for Designing HLA Federates

problems in the section 3.5.1, the following describes the key features of the proposed

framework:

1) For problem (1): there is no any approach to design a federate structure, the

proposed framework is a reusable design template which is composed of a set of

cooperating classes. The template consists of five collaborating classes:

 Base class ObjectClassBase for all the HLA object classes;

 User defined subclass of the class ObjectClassBase for each HLA object class;

 User defined interaction class for each HLA interaction class;

 Base class DefaultFederateAmbassador and its subclass for the abstract class

FederateAmbassador;

2) For problem (2) and problem (3): the HLA RTI structure is monolithic and

complicated implementations of RTI low level services are needed, each class

defines the standard data structure to represent the HLA sharable element. In addition,

it also provides the general higher level simulation services found in typical HLA

simulations. All these services cover Declaration Management and Object

Management.

4.2.2. Components’ responsibilities and collaborators

In this section, CRC card describes the responsibilities and collaborators of each class in

the framework. The collaborating classes solve the federate development problems in the

sections 3.5.3 and 3.5.4.

 52

A UML-Based Tool for Designing HLA Federates

1) Class ObjectClassBase

To solve the problem (1) in the section 3.5.4: how to implement updating of all HLA

object classes’ attributes values, an abstract class ObjectClassBase is defined as the base

class for the different types of the HLA object class. The abstract class supports the

dynamic subclass loading at run time through virtual functions. For example, an object

belonging to a derived class acts as the subclass by calling the virtual function. Using

CRC card, table 4-1 shows the responsibilities and collaborators of the class

ObjectClassBase.

class ObjectClassBase

Responsibility Collaborator

Declares the virtual functions to reflect the

data updating of the remote object instances.

 The class RTIambassador;

 Its subclass for each HLA object class;

 The user defined subclass of the class

DefaultFederateAmbassador ;

Table 4-1: CRC cards describing the class ObjectClassBase

2) User defined object class

To solve the problems (1), (3) in the section 3.5.3 and problem (1) in the section 3.5,4:

How to represent HLA attributes, handles of HLA sharable elements, and update

attributes values, for each HLA object class, its attributes and the relevant operations

should be modeled as an individual user defined object class. Using CRC card, table 4-2

shows the responsibilities and collaborators of the user defined object classes.

 53

A UML-Based Tool for Designing HLA Federates

User defined object class

Responsibility Collaborator

 Map names of HLA object class and data

types of its attributes;

 Construct the relevant handles;

 Publish and subscribe HLA object class

associated with the attributes;

 Register the instance of HLA object class;

 Update attributes of the HLA object;

 Override the virtual functions;

 The user defined subclass of the class

DefaultFederateAmbassador ;

 The class RTIambassador;

 The class ObjectClassBase;

Table 4-2: CRC cards describing the user defined object class

3) User defined interaction class

To solve the problems (2), (3) in the section 3.5.3 and problem (3) in the section 3.5.4:

how to represent HLA parameters, handles of HLA sharable elements, and send

interaction class, for each HLA interaction class, its parameters and the relevant

operations are also modeled as an individual user defined interaction class. Using CRC

card, table 4-3 shows the responsibilities and collaborators of the user defined interaction

class.

User defined interaction class

Responsibility Collaborator

 Map names and handles of HLA interaction

class;

 Map data types of the parameters (optional);

 Construct the relevant handles;

 The user defined subclass of the class

DefaultFederateAmbassador ;

 The class RTIambassador;

Table 4-3: CRC cards describing the user defined interaction class

 54

A UML-Based Tool for Designing HLA Federates

4) Class DefaultFederateAmbassador and the user defined subclass

To solve the problems (2), (4) and (5) in the section 3.5.4: how to reflect attributes

values, receive HLA interactions and what to do after registering a federation, these

two classes contain implementations for the abstract class FederateAmbassador. The class

DefaultFederateAmbassador provides the default implementations. Developers can

override the necessary callback methods in its subclass to support the desirable functions.

Using CRC cards, table 4-4 shows the responsibilities and collaborators of these classes.

class DefaultFederateAmbassador

Responsibility Collaborator

It includes a set of dummy implementations

providing the basic function to handle HLA

concurrent exception including:

discoverObjectInstance (),

updateAttributeValues() and

receiveInteraction().

 The abstract class FederateAmbassador;

 The user defined federate ambassador class;

User defined FederateAmbassador class

Responsibility Collaborator

It implements the user specific functions by

overriding the functions which are inherited

from the class DefaultFederateAmbassador.

 The class ObjectClassBase;

 The user defined object class;

 The user defined interaction class;

 The class DefaultFederateAmbassador;

Table 4-4: CRC cards describing the classes for the class FederateAmbassador

 55

A UML-Based Tool for Designing HLA Federates

4.2.3. Components’ structure

This section describes the data structure and member functions of each component in the

proposed framework.

1) C++ class ObjectClassBase

The class ObjectClassBase is fixed in this framework. It is an abstract class for all the

HLA object classes. It declares two virtual functions:

 Function getInstanceHandle() supports to get the object handle of the remote

federate.

 Function updateValueFromRTI() supports to reflect the data updating of the

object instances of the remote federates.

The user defined subclass of HLA object class should override these two functions. Figure

4-1 shows the relationship between the class ObjectClassBase and its subclass.

Figure 4-1: The class diagram for class ObjectClassBase and its subclasses.

 56

A UML-Based Tool for Designing HLA Federates

2) C++ class for an HLA object class

A user defined object class, which is called “ObjectClass”, directly maps the HLA object

class and their handles as member attributes. In addition, it can encapsulate basic

RTIambassador methods and their relevant implementation as member functions. This

class provides the services which cover the Declaration Management services and the

Object Management services.

For example, a federate, “Tank”, includes an HLA object class called “Position” and it has

two attributes called “pos_x” and “pos_y” with float data type.

Figure 4-2 shows an example of the user defined object class “Position”.

Figure 4-2: An example of the user defined object class “Position”

Member attributes:

 The “m_pos_x”, “m_pos_y” and “m_instanceHandle” can be defined as the

private member attributes to only associate with each registering object. Each

object instance can update its attributes values respectively. These attributes can

be constructed and destroyed in the construction functions and deconstruction of

the class “ObjectClass”.

 57

A UML-Based Tool for Designing HLA Federates

 The relevant handles are defined as public static member attributes such as

“ms_PositionHandle”, “ms_pos_xHandle” and “ms_pos_yHandle” to support the

global scope in a federate. The developers construct them to publish and subscribe

the HLA object class.

 To call RTIambassador methods, a pointer instance of the class RTIambassador is

defined as a public static member attribute like “ms_rtiAmb”.

Member functions:

The class “ObjectClass” should override the virtual functions: getInstanceHandle() and

updateValueFromRTI().

 getInstanceHandle(): This function returns the m_instanceHandle value of class

Tank;

 updateValueFromRTI(): This function supports to update the attribute values of

the remote object instance of class Tank;

The class “ObjectClass” can also define some functions to encapsulate the basic

RTIambassador methods related to HLA sharable elements.

According to their functionalities of abstraction services, some functions below show the

possible encapsulation.

 Init(): This function is declared as a public static function. It is a class level

member function with one parameter: RTI::RTIambassador* rtiAmb. This

parameter can pass the RTIambassador pointer to the static attribute: “ms_rtiAmb”.

The developer can use this attribute to call RTIambassador methods. In addition,

this function constructs the handles for publishing and subscribing HLA object

 58

A UML-Based Tool for Designing HLA Federates

class. It encapsulates the necessary RTIambassador methods related to getting the

HLA handles. These methods include:

getObjectClassHandle(),getAttributeHandle(), getInteractionClassHandle() and

getParameterHandle(). They are described in Declaration Management.

 PublishAndSubscribe(): This function is declared as a public function. It is an

object level member function. This function constructs the HLA attributes,

publishes, and subscribes HLA object classes by using their relevant handles. It

encapsulates the necessary RTIambassador including publishObjectClass() and

subscribeObjectClassAttributes(). They are described in Declaration Management.

 Register(): This function is declared as a public function. It is an object level

member function. This function registers an HLA object stance. It encapsulates the

necessary RTIambassador methods related to creating an instance of the HLA

object class and registering it with the federation. This method is

registerObjectInstance(). It is described in Object Management.

 Reflect():This function is declared as a public function. It is an object level

member function. This function updates the attributes values associated with the

registering HLA object instances. It encapsulates the necessary RTIambassador

methods and the implementation mechanisms of updating attributes values. This

method is updateAttributeValues(). It is described in Object Management.

The user defined object class can be used after instantiation. The calling sequence is fixed

in some degree. Functions: Init() and PublishAndSubscrib() must be first called, and the

 59

A UML-Based Tool for Designing HLA Federates

function PublishAndSubscribe() should be called after the function Init(). Both of them

are class level member functions, so they can be directly used.

After that, the developers can use functions: Register()and Reflect(). The function

Register() must be invoked before the function Reflect(). Because all these functions are

the object level member functions, they should be called through one object instance.

3) C++ class for an HLA interaction class

A user defined interaction class, which is called “InteractionClass”, directly maps the

HLA interaction class and their handles as member attributes. In addition, it can

encapsulate basic RTIambassador methods and their relevant implementation as member

functions. This class provides the services which cover Declaration Management and

Object Management.

For example, a federate, “Tank”, includes an HLA interaction class called

“Communication” and its parameter called “Message” with a string type.

Figure 4-3 shows an example of the user defined interaction class “Communication”

Figure 4-3: An example of the user defined interaction class “Communication”

The member attributes and member functions are similar to class “ObjectClass”. The main

differences are:

 60

A UML-Based Tool for Designing HLA Federates

Member attributes:

The handles of the HLA interaction class and its parameters are defined as public static

member attributes such as “ms_commHandle” and “ms_commMsgHandle” to support the

global access scope in a federate. The developers can construct them to publish, subscribe

the HLA interaction class. Sometimes, data type of HLA parameters need not be defined

as member attributes.

Member functions:

The member functions also include Init(), PublishAndSubscribe() and Send(). The key

feature of “InteractionClass” is the function: Send():This function is declared as a public

function. It is an object level member function. This function sends HLA interactions. It

encapsulates the necessary RTIambassador methods and the implementation mechanisms

of sending interactions. This method is sendInteraction(). It is described in Object

Management. In the DMSO, the method tick() is used to let a late arriving federate join an

existing federation and pass the information to the existing federates. So, this method is

encapsulated in the member function.

The user defined interaction class can be used after instantiation. The calling sequence is

similar to the user defined object class. The function Send() must be invoked after the

functions Init() and PublishAndSubscribe().

4) C++ classes for FederateAmbassador

The HLA constrains that the developers should define a subclass, which is derived from

the abstract FederateAmbassador. In this subclass, the developers can override the

callback methods to discover the remote object instance, reflect updating values of the

 61

A UML-Based Tool for Designing HLA Federates

remote object instance attributes and receive HLA interactions. All these functions

describe the remote federate data information.

During the federate development process, the developers should derive subclass from the

abstract class FederateAmbassador to respond to the requests that RTI issues.

In this framework, such services can be implemented by two inheritance classes. Such

inheritance structure allows the federate developers to focus on the simulation domain

problems.

The base class DefaultFederateAmbassador can play a role of “Basic” implementation and

user defined classes can derive from this base class. Figure 4-4 shows the relationship

between these classes.

Figure 4-4: The class diagram for abstract class federate ambassador

The class DefaultFederateAmbassador derives directly from the abstract class

FederateAmabssador. It is an “abstract” base class for federate software. It provides the

 62

A UML-Based Tool for Designing HLA Federates

default implementation for each abstract callback method, especially for these three

virtual callback methods: discoverObjectInstance(), reflectAttributeValues(), and

receiveInteraction(), which the developers usually need to override.

The default implementation contains basic functionalities to handle HLA exception to

avoid concurrent problems. For example, when RTI tries to re-invoke the updating

federate attributes values, an exception “FederateInternalError” will be caught and output

a stream.

The following C++ codes of discoverObjectInstance ():

void DefinedFederateAmbassador:: discoverObjectInstance (

 RTI::ObjectHandle theObject,

 RTI::ObjectClassHandle theObjectClass,,

 const char * theObjectName)

{

//a default implementation of class DefinedFederateAmbassador;

{cout << "Find a new HLA object instance " << endl;}

}

This class is fixed in this framework. It can exchange information with the class

“ObjectClassBase”, the class “ObjectClass” and the class “InteractionClass”. They can

work together to complete the basic functionality covering Declaration Management and

Object Management.

All the operations declared in this class are virtual operations. So they can be overridden

by their subclasses.

 63

A UML-Based Tool for Designing HLA Federates

The user defined subclass of the class DefaultFederateAmbassador implements the

desirable abstract callback methods. The users can override the virtual methods which are

inherited from the class DefaultFederateAmbassador to do its particular work.

4.2.4. Instantiation of framework

The federate design framework provides a configurable federate template. The subclass of

the class DefaultFederateAmbassador should be associated with the class

ObjectClassBase, the user defined object class, and the user defined interaction class.

This framework can be represented as an HLA specific class diagram. Figure 4-5 shows

the structure of the federate design framework.

Figure 4-5: A pre-defined HLA federate class diagram

To use this framework, developers should instantiate all these classes in a federate

executable program. This program usually solves the problems mentioned in the section

3.5.2 such as reading federation name, creating a federation, joining federates to a given

 64

A UML-Based Tool for Designing HLA Federates

federation, resigning federates from a specific federation, and destroying the federation.

All these functions are described in Federation Management. Because all these works are

tightly coupled to a particular simulation scenario, it is difficult to provide the common

solution covering the different simulation application. This project provides an example

simulation execution program for the developers’ reference.

At the beginning of instantiation of federate framework, the federate execution program

instantiates the object instances of the class RTIambassador, the user defined object class,

the user defined interaction class and the subclass of the class

DefaultFederateAmbassador and creates a federation and lets a federate join the given

federation. Then, it can directly call the functions of the user defined object class and the

user defined interaction class in the fixed sequence.

4.2.5. Benefits of framework

The proposed framework is a reusable design for HLA simulations. All these classes

construct the skeleton of HLA federate software. It simplifies the task of HLA federate

design and development in some ways:

1) The intention of the framework is to ease the creation of the federate. Given the FOM

of a particular federate, developers can construct the federate software following the

structure and functions of framework’s components. For example, as mentioned in the

4.2.3, the designer can build a C++ class Position to map the HLA object class in

accordance with in the FOM. Similarly, the C++ class Communication maps the HLA

interaction class.

 65

A UML-Based Tool for Designing HLA Federates

2) Through the pre-defined federate template, all the HLA simulations have the similar

structure. That facility to reuse the existing design for the compatible federates in the

similar application. It does not need to design and develop anew for each individual

application. For example, there is an existing class Position in some federate and the

FOM of another federate has the compatible definition of this class. The designer can

totally reuse the design over OO language code.

3) The proposed framework encapsulates a number of HLA low level service methods

(APIs). It hides much of the complexity of directly interfacing with RTI. For example,

in the user defined object class, its member function PublishAndSubscribe() provides

the basic encapsulation of a set of complex low level RTIambassador methods. The

following C++ code shows the RTI methods to implement this function:

 // Implementation of publishing and subscribing by low level RTI methods

// to publish and subscribe

 RTI::AttributeHandleSet *PositionAttributes;

 PositionAttributes = RTI::AttributeHandleSetFactory::create(2);

 PositionAttributes->add(ms_pos_xHandle);

 PositionAttributes->add(ms_pos_yHandle);

 ms_rtiAmb->subscribeObjectClassAttributes(ms_PositionHandle,

 *PositionAttributes);

 ms_rtiAmb->publishObjectClass(ms_PositionHandle,

 *PositionAttributes);

 PositionAttributes->empty();

 delete PositionAttributes; // Deallocate the memory

Similarly, the framework defines other member functions such as Init(), Reflect(),

Register ()and Send(). These encapsulation functions allow the designers centralize

the simulation domain rather than on meeting HLA RTI services.

 66

A UML-Based Tool for Designing HLA Federates

4) The proposed framework reduces the development cost by the class

DefaultFederateAmbassador. This class provides some basic implementation for most

HLA simulations. For example, the class DefaultFederateAmbassador provides the

default implementation of the function reflectAttributeValues(). It can be reused for

all the federate software without any change. The following C++ code shows the main

body of this function:

reflectAttributeValues (){……

//After the federate discover the object instance, it can update its values

 if(theObject == pos->getInstanceHandle()) {

 cout << "An intnstanceId found! " << theObject << endl;

 pos->updateValueFromRTI(theAttributes);

 break;}

 }

 67

A UML-Based Tool for Designing HLA Federates

Chapter 5. Analysis of HLA extensions

5.1. Overview of HLA extensions

The federate design framework is useful only if it is supported by a set of tools. It needs

supporting tools to facilitate the federate design and implementation process. A CASE

tool, ArgoUML, is introduced because of its cognitive support mechanism and open

source features. It can be customized with the HLA extensions to support federate design

under the framework.

The main services of HLA extensions include:

1) The federate design framework should be supported by default in ArgoUML. The

designers can use pre-defined structure to rapidly design a new federate and reuse

the existing federate.

2) The standard UML semantics is extended to describe the federate framework. The

designer can differentiate the HLA specific class from the ordinary class in the

class diagram.

3) Cognitive help system is implemented for federate design. Reflection-in-action

context help will appear when the system predicts some problems related to

federate framework elements like user defined federate ambassador class and user

defined object class. It helps architects on how to use the framework and reduce

the design time.

 68

A UML-Based Tool for Designing HLA Federates

4) Automatically generates C++ source code skeleton for the federate implementation

phase.

5.2. Extension 1: UML extensions

During the federate design phase, one desirable HLA extension for designer is to

differentiate the HLA specific class and ordinary class. It provides a way to produce HLA

specific critics and generate the federate source code skeleton for the HLA specific class

diagram.

As mentioned in section 2.3.2, the stereotype is one of the mechanisms for extending

existing UML modeling elements. In predefined UML stereotype, there is no concept

related to HLA. Thus, the HLA specific stereotype can be defined and represented by

placing quotes around the new stereotype name, e.g. <<HLA_Name>>. This project

proposes the possible extensions or specializations of the UML notation as part of the

UML profile. An HLA specific class can be built through the new stereotypes names.

A new stereotype of class, which is marked by using <<FederateAmbassador>> keyword,

is used to present a class federate ambassador.

Similar to the class federate ambassador, a new stereotype of UML extension, the object

class and interaction class of the federate can be represented by using

<<simulationObject>> and <<simulationInteraction>>.

Table 5-1 provides an example of stereotype for HLA extensions. It describes classes’

representation involving a federate design.

 69

A UML-Based Tool for Designing HLA Federates

Metamodel Element HLA Component Stereotype Name

Class Federate Ambassador FederateAmbassador

Class HLA Object Class SimulationObject

Class HLA Interaction Class SimulationInteraction

Table 5-1: Proposed stereotypes for the HLA extensions

5.3. Extension 2: Cognitive help for federate

During the design phase, the cognitive support feature can be implemented for the

federate designer. The HLA extensions for the cognitive help include two parts: HLA

specific critics and criticism control mechanism.

HLA specific critics predicate the HLA specific design decision. These HLA specific

critics’ predictions cover the following basic federate design problems:

 It reminds the users to consider changing the name of the user defined object class

and the user defined interaction class like “Position”.

 It reminds the users to add the HLA sharable elements and their handles as the

member attributes in the user defined object class and user defined interaction

class.

 It reminds the users to add the member functions in the user defined object class

and user defined interaction class to encapsulate basic RTIambassador methods

 70

A UML-Based Tool for Designing HLA Federates

and their relevant implementation like Init(), PublishAndSubscribe(), Register(),

Reflect() and Send().

 It reminds the users to override the virtual functions: getInstanceHandle() and

updateValueFromRTI()in the user defined object class.

 It reminds the users to consider changing the name of the user defined federate

ambassador class like “HwFederateAmbassador”.

 It reminds the users to consider overriding the callback in the user defined federate

ambassador class like discoverObjectInstance(), updateAttributeValues() and

receiveInteraction().

A new catalog, By HLA design, contains all the HLA specific critics. Meanwhile, these

critics can also show in the existing catalogs so it will not break the original ArgoUML

cognitive help system.

For the detailed classification, these critics can be divided into groups: HLA Federate

Ambassador, HLA Simulation Object, and HLA Simulation Interaction.

The HLA specific criticism control mechanism manages and control the HLA related

critics. It controls whether the HLA specific critics are active. When they are active, these

critics produce ToDoItem and posted ToDo list. If they are not valid, such ToDoItems

should be removed from the ToDo list.

5.4. Extension 3: Automatic C++ code generation for federate

A useful extension is to allow ArgoUML to generate the C++ source code skeleton from

the federate framework.

 71

A UML-Based Tool for Designing HLA Federates

In ArgoUML with stereotype extension, the classes of the federate framework can be

differentiated from the ordinary classes. When designer selects the targeted federate

classes, the C++ source template codes for these classes should be generated.

The code generation mechanism generates the C++ source code skeleton for the user

defined federate ambassador C++ file, the user defined interaction class C++ file and the

user defined object class C++ file and their related header files. The operations bodies in

these files are just empty in the design phase.

Because the class ObjectClassBase and the class DefaultFederateAmbassador are the

fixed classes, their completed source can be generated by default.

 72

A UML-Based Tool for Designing HLA Federates

Chapter 6. Implementation of HLA extensions

6.1. Overview of HLA extensions architecture

The HLA extensions are packaged into a new package: hla.

A series of packages are designed to support HLA extensions. The new package contains

four main packages. It is seamlessly integrated with ArgoUML. Figure 6-1 shows the

HLA extensions package structure.

Figure 6-1: HLA extensions package structure

The package HLA UI contains the new user interface for federate designer. The designer

can select the class with the UML extensions to differentiate an HLA specific class. The

package of HLA critiquing system and the package HLA code generation also depend on

this package to provide the access points for the federate designer.

The package HLA critiquing system provides the cognitive help for the federate designer.

It can produce the ToDoItems posting on the ToDoList.

 73

A UML-Based Tool for Designing HLA Federates

The package HLA code generation produces the C++ code skeleton for a federate when

designer selects the HLA specific classes.

6.2. User interface: new menu item for HLA

For the HLA extensions to be accessible in the ArgoUML, a new menu item is added into

the ArgoUML menu. Figure 6-2 shows the new menu item for the HLA extensions.

Figure 6-2: A screenshot of new menu items for the HLA extensions

org.argouml.ui.ProjectBrowser is the main class in ArgoUML that needs to be modified

in order to access the HLA extensions. This class handles the user interface functions of

ArgoUML.

Through the new HLA menu items, some classes are added to support HLA federate

design action. All these action classes extend the super class: UMLAction. Figure 6-3

shows the class diagram of the actions classes.

 74

A UML-Based Tool for Designing HLA Federates

Figure 6-3: A class diagram of action classes

The following collection of the classes support the actions related to the user menu items.

 org.argouml.uml.ui.ActionNewFederate: This class carries out the action

related to user interface item: New Federate. It can load a pre-defined class

diagram for federate.

 org.argouml.uml.ui.ActionNewObjectClass: This class carries out the action

related to user interface item: New Object. It produces a new class with HLA

specific stereotype name “ObjectClass”.

 org.argouml.uml.ui.ActionInteractionClass: This class carries out the action

related to user interface item: New Interaction. It produces a new class with

HLA specific stereotype name “InteractionClass”.

 75

A UML-Based Tool for Designing HLA Federates

 org.argouml.uml.ui.ActionGenerateFed: This class carries out the action

related to user interface item: Generate Federate Components. The designer

can target the HLA specific class to generate C++ source code skeleton.

 org.argouml.uml.ui.ActionCustomizationFile: This class carries out the

action related to user interface item: HLA Customization. It is a simple text

editor for source code edition.

6.3. Cognitive support for HLA

6.3.1. HLA specific criticism control mechanism

The HLA specific criticism control system involves the class Hla, the class HlaModel, the

class GoListToHlaToItem and the class ToDoByHla. Figure 6-4 shows the structure of the

HLA specific control system.

Figure 6-4: A class diagram of criticism control system for the HLA extensions

 76

A UML-Based Tool for Designing HLA Federates

Class Hla: This class defines basic cognitive decisions related to HLA design.

Class HlaModel: it is a part of class Designer. It describes what types of HLA related

design issues should be active. The main functions include:

Boolean isConsideringHla(String decision)

void setHlaPriority(String hla, int priority)

void defineHla(String hla, int priority)

void startConsideringHla(String decision)

void stopConsideringHla(String decision)

Hla findHla(String decName)

Class ToDoByHla: This class launches GoListToHlaToItem to build the tree view pane. It

controls and monitors the HLA specific critics’ changes. HLA specific critics produce

ToDoItems when they detect design improvement issues. ToDoItems are stored in the

designer's ToDo list. When this ToDoItems are not valuable, they are removed from the

ToDo list.

Class GoListToHlaToItem: This class implements the interface TreeModel to build the

HLA extensions tree model.

The original ArgoUML classes: class Designer, class ToDoList, and class ToDoItem are

modified to support HLA specific control system. The following are the major

modification to these classes:

The class Designer is composed of the basic types of cognitive decisions. The HLA

related decision should be added in this class.

The function, boolean supports (Hla h), is added in the class ToDoItem support the HLA

extensions.

 77

A UML-Based Tool for Designing HLA Federates

The function, Vector getHla() is added in the class ToDoList to access the HLA related

critics.

6.3.2. HLA specific critics

HLA specific critics are implemented as the subclass from the super class CrHla.

This class defines three types of HLA related critics:

Hla HLA_FederateAmbassador=new Hla("hla.FederateAmbassador",5);

Hla HLA_SimulationOjbect = new Hla("hla.SimulationObject",5);

Hla HLA_SimulationInteraction = new Hla("hla.SimulationInteraction",5);

The subclasses override the methods in the base class CrHla to customize a new critic.

The method predicate (Object dm, Designer dsgr) is overridden to determine which

critic should be valid and this critic can appear in the given ToDoItem and be kept in the

ToDo list.

The method setResource(String key) is overridden to lookup the relevant textual help

description posting on the ToDo list.

HLA specific wizards are implemented as the subclasses of the class Wizard. They

implement these actions with code specific to each wizard. Designer presses the "Next>"

button to move on to the next step of the wizard.

The main classes related to the HLA specific critics involve:

Class CrHLAFedAmbChangeName;

Class CrHLAFedAmbNoOverridingOperation;

Class CrHLAFedAmbOperationsMatched;

Class CrHLAFedAmbOperationsNotMatched;

Class CrHLAFedAmbOperationsNewAttributes;

Class CrHLAObjectClassChangeName;

 78

A UML-Based Tool for Designing HLA Federates

Class CrHLAObjectClassNoAttribute;

Class CrHLAObjectClassNoOperation;

Class CrHLAInteractionClassChangeName;

Class CrHLAInteractionClassNoAttribute;

Class CrHLAInteractionClassNoOperation;

All the critics will be posted in the ToDo list pane according to their attributes.

According to the ArgoUML categories of critics, the HLA specific critics can be

classified as completeness and consistency critics:

1) Completeness critics

Class CrHLAFedAmbChangeName, Class CrHLAInteractionClassChangeName and

class CrHLAObjectClassChangeName: These critics will be invoked if they predict that

the default name of the user defined subclass of the class DefaultFederateAmbassador, the

user defined interaction class or the user defined objects class need to be changed like

“Tank” and “HwFederateAmbassador”.

Class CrHLAFedAmbNoOverridingOperation: This critic will be invoked if it predicts

that the designer does not override any callback methods which are defined subclass of

the class DefaultFederateAmbassador.

Class CrHLAFedAmbOperationsMatched: This critic will be invoked if it predicts that

the designer overrides some functions such as discoverObjectInstance(),

updateAttributeValues(), and receiveInteraction(), which are inherited from the class

DefaultFederateAmbassador.

Class CrHLAObjectClassNoAttribute and Class CrHLAObjectClassNoOperation: These

classes will be invoked if they predict that the user defined object class has no member

attributes or member functions such as Init() and PublishAndSubscribe().

 79

A UML-Based Tool for Designing HLA Federates

Class CrHLAInteractionClassNoAttribute and Class

CrHLAInteractionClassNoOperation: These classes will be invoked if they predict that

the user defined interaction class has no member attributes or member functions such as

Init() and PublishAndSubscribe().

2) Consistency critics

Class CrHLAFedAmbOperationsNotMatched: This critic will be invoked if it predicts

that the designer adds some new methods which are not defined in class

DefaultFederateAmbassador.

Class CrHLAFedAmbOperationsNewAttributes: This critic will be invoked if it predicts

that the designer adds some new attribute in the user defined subclass of the class

DefaultFederateAmbassador.

Class CrHLAObjectClassNoVirtualOperations: This critic will be invoked if it predicts

that the designer does not override the virtual functions in the user defined object class.

6.4. Code generation

In the standard version of ArgoUML, it can generate Java source codes mapping the

ordinary class or interface. With the UML stereotype extensions, the HLA specific classes

can be differentiated from the ordinary classes. When these HLA specific classes are

targeted, ArgoUML can generate HLA C++ source code skeleton.

The class Generator is an abstract base class that defines code generation framework. All

the classes related to code generation are the subclass of it.

All the HLA specific classes are implemented using the Singleton pattern to avoid the

overhead of being allocated and freed each time new classes are needed.

 80

A UML-Based Tool for Designing HLA Federates

6.4.1. Class ActionGenerateFed

This code generation class should be valuable only when the targeted class is represented

by the user defined object class, the user defined interaction class, the class

ObjectClassBase, class DefaultFederateAmabassador or its subclass. The main function is

implemented in shouldBeEnabled()

Variable nodes is used to store all the classes nodes in the active UML class diagram. For

storing the default federate ambassador class, object federate ambassador class and object

class are used to create the vectors:

Vector nodes;

Vector federateObjectClasses;

Vector defaultFedAmbClasses;

Vector objectFedAmbClasses;

Vector federateInteractionClasses;

After it collects all the HLA specific classes, it will call class FedGenerationDialog to

allow designers to select the federate ambassador, user defined object class and user

defined interaction class.

6.4.2. Class FedGenerationDialog

This class constructs the dialog for code generation.

Class FedGenerationDialog builds the main dialog for the designer. Federate ambassador

classes, user defined object classes and user defined interaction classes will be located in

the different tables.

 81

A UML-Based Tool for Designing HLA Federates

Class TableModelClassChecks implements table model in a subclass of the

AbstractTableModel class. The AbstractTableModel class specifies the methods which

the JTable will use to interrogate a tabular data model.

JTable _classFedAmbTable and _classFedObjTable display federate nodes in the table.

JScrollPane _classFedAmbScrollPane and _classFedObjScrollPane provide scrollable

view of federate ambassador and object classes. Figure 6-5 shows the code generation

dialog for HLA federate.

Figure 6-5: A screenshot of the code generation dialog for an HLA federate

 82

http://java.sun.com/j2se/1.4.1/docs/api/javax/swing/table/AbstractTableModel.html

A UML-Based Tool for Designing HLA Federates

6.4.3. Classes of generating C++ source code

There are some main classes to generate the C++ source code: GeneratorObjectClass,

GeneratorInteractionClass, GenObjectFederateAmbassador and

GenDefaultFederateAmbassador.

Figure 6-6 shows the class diagram of code generation for HLA extensions.

Figure 6-6: A class diagram of code generation for the HLA extensions

The class GeneratorObjectClass generates the C++ source code for the class

ObjectClassBase and the user defined object class. It contains:

SINGLETON: It creates a single instance of the class GeneratorObjectClass. Using the

Singleton Pattern can save run time and have advantages in memory management like

garbage collection.

GenerateObjectFed (MClassifier cls, String path): It builds the object class file and

object head file.

generateHeader (MClassifier cls, String name,String packagePath): It builds the header

for the object class file.

 83

A UML-Based Tool for Designing HLA Federates

generateAttribute (MAttribute attr, boolean documented): It builds the single object class

attribute.

generateOperation (MOperation op, boolean documented): It builds the single object

class operation.

generateClassifierBody (MClassifier cls): It builds the main body of the user defined

object class file including all the attributes and operations in accordance with C++

grammar. The attributes and operations are classified according to their visibility: Public,

Private and Protected. The strings of the attributes and operations are transferred to the

class GeneratorObjectClassHead to build the header file.

The class GeneratorObjectClass uses SINGLETON, the static instance of the class

GeneratorObjectClassHead, to generate the main body of the object class C++ header file.

The class GenObjectFederateAmbassador, the class GenDefaultFederateAmbassador and

the class GeneratorInteractionClass have the similar structure with the class

GeneratorObjectClass. They can generate the relevant C++ files and their header files.

The class CustomizationDialog is similar to traditional text editor tool. It can read, write

and save the existing federate file. Designers need not leave the ArgoUML environment

to edit their federate source code.

 84

A UML-Based Tool for Designing HLA Federates

Chapter 7. Case studies

7.1 Overview of design and development process

Under the proposed framework and the UML-based CASE tool, ArgoUML, the general

federate design and development process is:

Step 1: Through the pre-defined structure in ArgoUML, a designer creates some

user defined classes in a class diagram to represent HLA object models and their

relationships. These user defined classes extend the fixed classes (class

ObjectClassBase and class DefaultFederateAmbassador) for a particular

application.

Step 2: For each user defined class, the designer adds the member attributes to

map the sharable elements and member operations to encapsulate the HLA low

level APIs. During the design phase, ArgoUML issues some cognitive help for

federate designers.

Step 3: By using the code generation mechanism in ArgoUML, the designer can

generate some source code skeleton from the designed visual models.

Finally, the HLA developers can insert the application-specific logic code into the

stub code and compile the complete code in the programming environment with

HLA support. The actually executable federate software is deployed in the

federation.

Figure 7-1 shows a simplified life cycle of the design and development process.

 85

A UML-Based Tool for Designing HLA Federates

Federate design Federate implementation
phase Phase Generating Executable

ArgoUML Programming
Environment

Source Codes Federate

Figure 7-1: A simplified life cycle of the federate design and development process

Two examples, HelloWorld and Tank, have been exercised in the following sections.

The example HelloWorld is a basic federate. It only has the necessary RTI services and no

specific operations. The federates just communicate by sending a set of fixed string

“Hello World”. This example shows the challengeable work of directly manually

designing and coding. Thus, it can be improved under the framework with tool support.

Another example: Tank, which is a realistic and simplified example, covers not only the

fundamental aspects of the RTI functionality but also the specific logic for actual

operations. The tanks can exchange the information belonging to the sharable elements in

accordance with the HLA object models. This example shows the complete the design and

development process. It also illustrates how to the reuse the components of the existing

federate: HelloWorld.

7.2 Example 1: HelloWorld

7.2.1. Overview of HelloWorld’s specification

The federate HelloWorld only covers the necessary RTI services including Declaration

Management and the Object Management. The simple operation is to send and receive

 86

A UML-Based Tool for Designing HLA Federates

character string “Hello World”. For the purpose of reuse in the following example, it

defines two classes: Country and Communication.

 Object class: Country, which includes the attributes “Name” and “Population”.

 Interaction class: Communication, which includes the parameter, “Message”. It

has the string “Hello World”.

Table 7-1 shows the FOM of the federate HelloWorld.

FOM

Object class Interaction class

Country Communication

Name: String

Population: int

Message: String

Table 7-1: The FOM of the federate HelloWorld

7.2.2. Challenge without framework

As discussed in the section 3.3 and 3.4, the HLA adds a great amount complexity to a

compatible simulation. Even for this simple federate, which does not contain any specific

logic code; it should contain hundreds of lines of HLA functionalities’ C++ source code to

complete the basic federate execution capability. The HLA developers should face the

following challenge during the design and development process without the framework:

1) There is no formal way to design the classes: Country and Communication and

the structure of HelloWorld should be described from scratch ;

 87

A UML-Based Tool for Designing HLA Federates

2) It is a laborious task to build a big monolithic simulation system: HelloWorld

because of directly interfacing with HLA RTI low level APIs;

3) The development effort tends to ad-hoc in nature. It is difficult to reuse the

components of HelloWorld in the other applications;

7.2.3. Under federate framework

The proposed framework in ArgoUML improves the design process by formal

descriptions and graphic user interface environment. The relationships and interactions in

the federate HelloWorld are visualized.

1) Structure of HelloWorld

At first, the designer invokes the pre-defined class diagram: selecting “New Federate”

item to design this federate. The designers may name the new class Country, the class

Communication and the class HwFederateAmbassador. For reusing the structure and code,

the abstract class ObjectClassBase is also included in the federate software.

Figure 7-2 shows the example class diagram of the federate HelloWorld. This class

diagram is stored as the name “HelloWorld.argo” for the reuse in the future.

 88

A UML-Based Tool for Designing HLA Federates

Figure 7-2: A class diagram of federate HelloWorld

2) User defined classes in the diagram

• Class Country

It is the subclass of the class ObjectClassBase. It defines the member attributes, the

“name”, “population”, and relevant handles as member attributes.

The class Country defines some member functions to encapsulate the necessary

RTIambassador methods and access the member attributes including Init()

PublishAndSubscribe(), Register(), Reflect(), GetName(), GetPopulation(), SetName(),

SetPopulation() and getInstanceHandle() .

• Class Communication

It defines the handles of Communication and Message as member attributes. It does not

define Message as the member attribute because the string “Hello World” is sent and

 89

A UML-Based Tool for Designing HLA Federates

forgotten. It also defines some member functions to encapsulate the necessary

RTIambassador methods including Init(), PublishAndSubscribe() and Send().

• Class HwFederateAmbassador

The designer considers overriding some callback methods in the subclass

HwFederateAmbassador. According to the HelloWorld specification, three methods

should be overridden including: discoverObjectInstance(), reflectAttributeValues() and

receiveInteraction().

The designer can generate the necessary C++ source code skeleton from the class diagram.

Once the stub code is generated, all that remains is to add the necessary implementations.

As mentioned in the section 4.2.5, federate HelloWorld needs a simulation execution

program. This program initializes the class Country, the class Communication and the

class HwFederateAmbassador and invokes the RTI service like creating the federation

execution, joining, resigning and deleting the federation.

In the simulation execution environment, a federate HelloWorld can join a given

federation and just sends or receive the “Hello world!”.

7.3 Example 2: federate Tank

7.3.1. Application scenario

The federate Tank is abstracted from the real battlefield system. In the simulation scenario,

each tank belongs to a specific country which is selected by the user. A tank is armed with

some ammunition and moves in the 2D dimension.

 90

A UML-Based Tool for Designing HLA Federates

The simulation system can contain more tanks. A tank can know the positions and

country’s names of any others. The tank can send and receive the friendly information

from others. In addition, it may fire at another enemy tank.

The proposed federate Tank is a simple simulation and just used for analysis studies. The

complete implementation of the Tank simulation product such as 2D View Displays,

motion platforms and fully populated control panels are beyond this project.

7.3.2. Overview of Tank’s specification

The federate Tank is a more complicated federate than HelloWorld. For illustrating the

design and code reuse of the proposed design framework, this federate has one new HLA

object class Position and HLA interaction class WeaponStatus based on the existing

federate HelloWorld.

Table 7-2 shows the FOM of the federate Tank.

FOM

Object class Interaction class

Country Communication

Name: String

Population: int
Message: String

Position WeaponStatus

pos_x: double

pos_y: double
FireLevel: int

Table 7-2: The FOM of the federate Tank

 91

A UML-Based Tool for Designing HLA Federates

In this form, the existing HLA object class: Country and its attribute Name represent the

nationality of a tank. The interaction class: Communication, which includes the parameter,

“Message”, represents the exchangeable friendly information between the tanks.

The additional sharable elements of the FOM in the federate Tank are:

 Object class: Position, which includes the attributes “pos_x” and “pos_y”. These

values indicate the physical position of the tank.

 Interaction class: WeaponStatus, which includes one parameter, “FireLevel”.

This value represents the ammunition of the tank.

The relevant operations of a tank are described below:

 An instance of the class Country set the name of the tank. A tank can know

country’s names of other tanks by reflecting the attribute value “Name”.

 An instance of the class Position changes its position “pos_x” and “pos_y” value

according to user control from the PC console. A tank can also view the positions

of other tanks.

 The tanks can exchange the friendly information “Hello World” by sending and

receiving the HLA interaction value class Communication and its parameter

Message.

 The federate Tank sends its HLA interaction class WeaponStatus and parameter

FireLevel, and receives by other federates. The ammunition is a fixed integer

value “100”. When a tank fires at another one, this value will be sent and forgotten.

 92

A UML-Based Tool for Designing HLA Federates

7.3.3. Tank design process

1) Design the structure of Tank

The designer can invoke the existing class diagram “HelloWorld.argo” and add the new

classes: the class Position, the class WeaponStatus. Designing process is similar to the

federate HelloWorld.

Figure 7-3 shows the example class diagram of the federate. This class diagram is stored

as the name “Tank.argo” for reuse in the other federation.

Figure 7-3: A class diagram of federate Tank

2) Design each user defined class in the diagram

• Class Position

 93

A UML-Based Tool for Designing HLA Federates

It is inherited from the abstract class ObjectClassBase. It defines the member attributes:

“m_pos_x”, “m_pos_y”, and object instance handle “m_instanceHandle”.

It defines some member functions to encapsulate the necessary RTIambassador methods.

Particularly, it also defines some member functions to read and write the member

attributes. For example, functions Getpos_x(), Getpos_y(), Setpos_x() and Setpos_y() are

used to reflect and update the location of a tank.

• Class WeaponStatus

It defines the handles of WeaponStatus and FireLevel as member attributes. It need not

define its parameter FireLevel as the member attribute because the ammunition is sent and

forgotten. It also defines some member functions to encapsulate the necessary

RTIambassador methods covering Declaration Management and Object Management.

They are Init(), PublishAndSubscribe() and Send(). For example, when a tank fires at

another one, the function Send() will be invoked.

• Class HwFederateAmbassador

In the design phase, designers can totally reuse this class in the existing federate

HelloWorld. Three callback methods are still kept including: discoverObjectInstance(),

reflectAttributeValues() and receiveInteraction().

 Function discoverObjectInstance() will be invoked when another federate Tank

joins the simulation system.

 Function reflectAttributeValues() will be invoked to inform some tank changes its

name or position.

 94

A UML-Based Tool for Designing HLA Federates

 Function receiveInteraction() will be invoked if a friendly tank send “Hello

World” or an enemy tank fire the ammunition.

7.3.4. Cognitive help for federate Tank

As discussed in the section 5.3, during the federate design phase, the cognitive support

helps the design decision making. When the HLA specific critic predicts some design

problems, it will produce the ToDoItems and post on the ToDoList. For example, if the

users override the callback methods: updateAttributeValues() and receiveInteraction() in

the class HwFederateAmbassador, it produces some reminding information to help users

to use these methods.

Figure 7-4 shows an example HLA specific critic.

Figure 7-4: A screenshot of the an HLA specific critic

 95

A UML-Based Tool for Designing HLA Federates

7.3.5. Tank development process

1) Code generation for Tank

The designer targets any component in the class diagram and generates necessary C++

source code skeleton for the federate Tank. The files:

WeaponStatus.cpp and WeaponStatus.hh

Position.cpp and Position.hh

DefaultFederateAmbassador.cpp, and DefaultFederateAmbassador.hh,

HwFederateAmbassador.cpp and HwFederateAmbassador.hh

Communication.cpp and Communication.hh

Country.cpp and Country.hh

The existing files Communication.cpp, Communication.hh, Country.cpp and Country.hh

can be totally reused in the federate Tank. All these files contain the C++ source template

codes for each class. The developers need to complete the files: Position.cpp and

WeaponStatus.cpp

For example, the following C++ code shows the main body of file Position.cpp:

//main stub code for class Position

RTI::ObjectHandle& GetPositionHandle() { return m_instanceHandle; };

void Position::Setpos_x(const double& pos_x){

//Need to be implemented the function for class Position in the future

}

void Position::Setpos_y(const double& pos_y){

//Need to be implemented the function for class Position in the future

}

 96

A UML-Based Tool for Designing HLA Federates

Once the source code is generated, all that remains is to add the necessary functionality

into the skeleton implementations.

2) Code implementation process

• Classes Position and WeaponStatus

Because a tank has real operations as defined before, the developer should the relevant

implementation into these files.

For example, the following C++ code shows that a tank will view the position of the other

tanks in the method updateValueFromRTI():

// to decide which attribute should be updated

if (attrHandle == Position::Getpos_xHandle())

 {// to update Pos_x

 double pos_x;

 theAttributes.getValue(i, (char*)&pos_x, valueLength);

 cout << "new pos_x value from proxy: " << pos_x << endl;

 }

// same as above goes to update Pos_y

• Class HwFederateAmbassador

In the file HwFederateAmbassador.cpp file, the function reflectAttributeValues()

automatically supports any subclass of the class ObjectClassBase. The developer can

reuse this function. For the federate Tank, it defines a void pointer array as void *

g_EntityInstances[]. This array stores the local proxy object instances for all the HLA

object class no matter which class it belongs to. It makes the simulation software more

scalable.

The following is the C++ code of the function reflectAttributeValues() :

 97

A UML-Based Tool for Designing HLA Federates

// Lookup for each local proxy object instance

if(g_EntityInstances[i] != 0) {

 ObjectClassBase* pos= (ObjectClassBase*) g_EntityInstances[i];

if(theObject == pos->getInstanceHandle()) {

// Update the attributes values

pos->updateValueFromRTI(theAttributes);

 }

 }

In the function discoverObjectInstance(), the developers may implement necessary

function to identify the class Country and class Position.

The following is the C++ code of the function discoverObjectInstance():

// if the registering object belongs to class Position,

//create the local proxy of class Position to store;

if (theObjectClass == Position::GetPositionHandle())

Position*pPosition = new Position(theObject);

// store this object instance in a pointer array;

g_EntityInstances[i] = pPosition ;

// same as above if the registering object belongs to class Country

Similarly, the developer may implement the function to identify the class Communication

and class WeaponStatus. Because the class WeaponStatus is a transient data object, the

receiving data can be stored in a temporary variable in the method receiveInteraction().

The following is the C++ code of this method:

// if sending data from the class WeaponStatus

//store this interaction in a temporary variable;

if (paramHandle == WeaponStatus ::GetFireLevelHandle())

{

char msg[1024];

theParameters.getValue(i, (char*)msg, valueLength);

}

 98

A UML-Based Tool for Designing HLA Federates

// same as above if sending data from the class Communication

3) Simulation execution program

This program defines the relevant functions to operate the array void *

g_EntityInstances[]as:

void addEntity(void * oEntity);

void deleteEntity(void * oEntity);

The following is the C++ code of function addEntity():

void addEntity(void * oEntity) {

 for(int i=0; i < MAX_ENTITY_NUM; i++) {

 if(g_EntityInstances[i] == 0) {

 g_EntityInstances[i] = oEntity;

 break;

 }

 }

}

There is the similar C++ code in the function deleteEntity().

This program also added the necessary code to allow the class Position and class

WeaponStatus to join, resign and delete the federation. In the simulation execution

environment, a federate Tank joins the existing federation firstly. It has a given name

which is set by the attribute of class Country. It can move by updating “pos_x” and

“pos_y” value according to user control. If another tank registers and joins the same

federation, the previous one can discover its position and decide to fire at it by sending

class WeaponStatus and its parameter FireLevel or say “Hello World” by sending class

Communication and its parameter Message.

 99

A UML-Based Tool for Designing HLA Federates

Chapter 8. Conclusion and future work

8.1. Conclusion

The main research work described in this thesis can be concluded into two parts: the basic

federate design framework and its supporting tool.

1) Designing a basic federate design framework

Currently, there are two main problems related to federate development.

 The federate implementation is a tedious work because the HLA APIs are huge

and monolithic.

 There are many open problems for the design of the federates.

This project proposes a basic design framework to solve both the problems. This

framework provides the architectural guideline for the designers to build the federate

software. It supports reuse of the existing federate structure and code in a given federation.

The following are the framework components and their services:

 The user defined object class and the user defined interaction class contain the

representations of HLA sharable elements and their handles in accordance with

the HLA object model. These classes also encapsulate some basic RTI APIs and

their implementation.

 The class ObjectClassBase provides the dynamic class loading function to reflect

the remote object attributes updating.

 100

A UML-Based Tool for Designing HLA Federates

 The class DefaultFederateAmbassador provides the default implementation for

each abstract callback method. The users can define its subclass to do its own

work.

2) Implementing a supporting tool

The federate design framework is useful only if it is supported by a set of tools. The UML

diagrams are not sufficient to support the proposed framework because the user does not

know how to use it. Thus, a CASE tool, ArgoUML, is extended to support the framework.

It includes:

 UML stereotype extensions support HLA specific classes’ representations.

These new stereotypes differentiate the HLA specific class and ordinary class

in the federate framework.

 A default class structure which supports the federate framework is added in the

ArgoUML.

 Cognitive help system support to use the federate framework. It will produce

the ToDoItems to help designers to make relevant decisions.

 C++ template code generation and source customization editor tool is provided

for the future implementation work.

The supporting tool, ArgoUML, results in a significant reduction of the designing work.

It can also automatically generate source code skeleton for the federate software. This will

improve the productivity of the development process.

 101

A UML-Based Tool for Designing HLA Federates

8.2. Future work

This project has started to be a foundation for future work of the complete federate

framework. Some extensions of the research work may be considered.

1) Consider a more flexible framework

The proposed framework is binding with FOM. Reuse of a federate under this framework

usually depends on the correctness of the upfront FOM specification. A more flexible

framework can automatically publish, subscribe, send, and receive sharable elements in

accordance to SOM. It can achieve more reusability than the proposed framework. But

some conditions should be considered in this possible work:

 Such framework becomes more complex. The federate software also should

involve more codes for a federate. If there are too many HLA object classes and

HLA interaction classes in FOM, the system performance will become a

bottleneck under this framework and it increases the code maintenance effort.

Thus, the tradeoff between the development productivity versus the HLA

application requirement and simulation execution environment factors should be

considered by the simulation users and developers.

 In some simulation application scenario, if there is no need for rebuilding FOM

or a new FOM is compatible, such flexible framework will not improve the

productivity of development and the software reusability than proposed

framework.

 This flexible framework is not useful without a set of tools to support automatic

mechanism. As ArgoUML is only for software design phase and it is not very

 102

A UML-Based Tool for Designing HLA Federates

stable at the current stage, it is not suitable to be extended to support more

complex functions. So the developers need to consider implementing the new

supporting tools.

2) Consider more complete software framework

Due to the time constraints, the proposed federate framework only covers the basic

necessary functionalities of the federate. In some situations, the complex federate software

involves the optional RTI services such as Data Distribution Management (DDM),

Ownership Management, and Time Management. The proposed federate design

framework can be extended to the other aspects of the federate software implementation.

Moreover, these services are also related the federation management. Thus, the more

complete software framework, called “Federation framework” can cover all these services.

The proposed basic design framework is the first step of this future work.

 103

A UML-Based Tool for Designing HLA Federates

Appendix A: An introduction to UML notation

A.1 UML diagrams

UML diagram Notation

Class Diagram
A class diagram is a collection of static declarative model
elements, such as classes, interfaces, and their
relationships, connected as a graph to each other and to
their contents.

Use Case Diagram

A use case diagram is a graph of actors, a set of use
cases, possibly some interfaces, and the relationships
between these elements. The relationships are
associations between the actors and the use cases,
generalizations between the actors, and generalizations,
extend, and includes among the use cases.

Sequence Diagram

A sequence diagram has two dimensions: the vertical
dimension represents time, and the horizontal dimension
represents different instances. Normally time proceeds
down the page. (The dimensions may be reversed, if
desired.) Usually only time sequences are important, but
in real-time applications the time axis could be an actual
metric. There is no significance to the horizontal ordering
of the instances.

Collaboration Diagram
A collaboration diagram shows a graph of either
Instances linked to each other, or ClassifierRoles and
AssociationRoles; it may also include the communication
stated by an Interaction or InteractionInstanceSet.

Statechart Diagram

A statechart diagram is a graph that represents a state
machine. States and various other types of vertices
(pseudostates) in the state machine graph are rendered by
appropriate state and pseudostate symbols, while
transitions are generally rendered by directed arcs that
interconnect them.

Activity Diagram
An activity diagram is a special case of a state diagram in
which all (or at least most) of the states are action or
subactivity states and in which all (or at least most) of the
transitions are triggered by completion of the actions or
subactivities in the source states.

Component Diagram
A component diagram is a graph of components
connected by dependency relationships. Components may
also be connected to components by physical
containment representing composition relationships.

Deployment Diagram
A deployment diagram is a graph of nodes connected by
communication associations. Nodes may contain
component instances. This indicates that the component
runs or executes on the node. Components may contain
instances of classifiers, which indicates that the instance
resides on the component.

Table A- 1: UML diagrams

 i

A UML-Based Tool for Designing HLA Federates

A.2 Class diagram

A class diagram describes the static overview of the systems through showing the classes

and their architecture. It may also contain classes, interfaces, packages, and relationships.

UML defines some relationships including association, generation, dependence,

composition and aggregation in the class diagram. In this project, two types of

relationships are used in the class diagram: association, and generalization. The other

relationships can be found in [BOOC99].

Association -- a relationship between instances of the two classes. There is an association

between two classes if an instance of one class must know about the other in order to

perform its work. In a diagram, an association is a link connecting two classes. Figure A-1

shows that class Order is associated to class Customer.

Figure A- 1: An example association relationship

Generalization -- an inheritance link indicating one class is a superclass of the other

classes. A generalization has a triangle pointing to the base class. All base class attributes

and operations are also part of the subclass.

Figure A-2 shows that class DataInputStream is generalized from the class InputStream.

 ii

A UML-Based Tool for Designing HLA Federates

Figure A- 2: An example generalization relationship

A.3 Sequence diagram

A sequence diagram is an interaction diagram that details how operations are carried out.

It describes how objects collaborate through an exchange of messages. Sequence

diagrams are organized according to time. The objects involved in the operation are listed

from left to right according to when they take part in the message sequence. A single

sequence diagram often represents the flow of events for a single use case. Figure A-3

shows an example of a sequence diagram for using ATM system.

Figure A- 3: A sequence diagram of using ATM

The details about sequence diagram and how to create sequence diagrams can be found in

[BOOC99] [SINA02].

 iii

A UML-Based Tool for Designing HLA Federates

Appendix B: A cognitive CASE tool: ArgoUML

B.1 ArgoUML’s graphic user interface

1) Argo Menu

The Argo Menu is located at the top of the ArgoUML. The menu consists of File, Edit,

View, Arrange, Create, Generate, Critique, and Help items. It provides all the command

and control mechanisms for the users. For example, from the “Create Diagram” item,

designer can create UML diagram and put necessary components for the design purpose.

2) Argo Navigator pane

The Navigator Pane is located on the upper left part of the window. It lists the contents of

the diagrams and objects of the model that the users are selected. The designer can view

the structure of the diagram through the predefined tree like perspective. ArgoUML

provides multiple explorer perspectives. The designer can set the choice by choice menu

at the top of the explorer. Each perspective shows a hierarchical view of the design. For

example, the Diagram-centric perspective shows the design structure according to the type

of diagrams like class diagram, use case diagram etc.

3) Argo Editing pane

The Editing Pane, which is the user work field, is located on the upper right area of the

window. This is where all the design diagrams are edited. The designer can use drag-drop

action or quick-links to create new objects in the diagrams.

The editing pane has a tool bar at the top and it provides main shortcut keys for the editing

pane. The toolbar at the top of the editing pane provides the main functions of the pane.

 iv

A UML-Based Tool for Designing HLA Federates

The tools can be divided into four categories.

 Layout tools: They are used to assist in laying out artifacts on the diagram.

 Annotation tool: It is used to annotate artifacts on the diagram.

 Drawing tool: They are used to add general graphic artifacts to diagrams..

 Diagram specific tools: They are used to add UML artifacts specific to a particular

diagram type to the diagram like Use case diagram, Class diagram, sequence

diagram, state diagram, collaboration diagram, activity diagram, and development

diagram.

4) Argo Details pane

The Details Pane is located on the lower right part of the window. It describes the details

of various contents of the components in the diagrams. It contains several tabs to update

the selected target. These tables are ToDoItem tab, Properties tab, Documentation tab,

Style table, Source tab, Constrains tab, Tagged Value tab and Checklist tab.

 ToDo Item tab: It describes the selected ToDoItem in the "To Do" Pane. It

presents the design problem and possible solution in the short paragraph. For

some problems, corrective wizard can be available to lead designer to fix the

problem through the “Next” and “Back” button.

 Properties tab: It describes properties of the selected UML model element. For

example, when some class element is selected, the contents of this tab include

Name, Stereotype, Namespace, Modifier, attributes, operations and relationship

with other model elements. The contents of this tab vary much based on the

different types of the selected elements.

 v

A UML-Based Tool for Designing HLA Federates

 Documentation tab: It allows the designer to input the basic document for the

selected element. The document includes Author, Version and other related

information.

 Style tab: It can be used to configure the selected target style. Designer can enter

the selected target background color type, line type and shadow type.

 Source tab: It previews the selected class, interface or package Java source

skeleton codes which will be generate in the future. For the selected class or

interface, it presents the attributes, operations and associations of this class. For

the selected package, it presents the contents of the classes or interfaces which are

included in this package. If there is no any class or interface in this package, only

the package name and empty body left.

 Constraints tab: It allows the designer to enter the OCL constraints on the selected

target so that it can have additional meaning. Syntax assistant function is provided

for this tab to check the OCL syntax and save the constraints.

 Tagged Value tab: It allows the designer to enter the tagged value on the selected

element. Tagged values are value pairs to store and system will not interpret it.

B.2 Overview of packages in ArgoUML

Here is a brief explanation of the main packages in the ArgoUML.

 org.argouml
This package contains all the classes for ArgoUML. The HLA extensions will be created

as a child-package of the ArgoUML package.

 org.argouml.application

 vi

A UML-Based Tool for Designing HLA Federates

This package provides general classes and interfaces that are fundamental to ArgoUML

and other ArgoUML modules.

 org.argouml.kernel
This package contains the core class of Argo: the Project class. ArgoUML uses this class

to manage the project.

 org.argouml.pattern
This package contains Critics which deal with patterns. Currently this includes the critics

for recognizing whether a class violates the Singleton pattern, and one Critic to check

whether a user should consider using the Singleton pattern for a class.

 org.argouml.language
This package defines representation of a model fragment and converts model into textual

representations. Currently, ArgoUML only supports the generation of Java source code

from UML class diagram.

 org.argouml.persistence
This package is used for setting up MySQL. It contains the functionality to load a model

from a MySQL database and write a model into a mysql database.

 org.argouml.uml
This package includes the classes that relates to the UML notation in ArgoUML including

UML different types of Diagrams, connection between the chart and the model,

generation of code and the reverse engineering and Panels of property, allowing user to

control the elements of the model as well as the various elements which are posted there.

 org.argouml.i18n
This package contains resource bundle that provides strings for UML related critiques and

check lists.

 vii

A UML-Based Tool for Designing HLA Federates

 org.argouml.util
This package contains utilities to provide operating system independence and extensions

to logging packages log4j and java.util.logging.

 org.argouml.images
This package contains the icons which are used in the ArguUML.

 org.argouml.ocl
This package defines the methods to support OCL notation. It makes it possible support

language OCL of description of constraints.

 org.argouml.swingext
This package contains a collection of utility methods for Swing Actions and Dimensions

including ArrowButton, ArrowIcon, BorderSplitPane and layout design components.

 org.argouml.xml
This package contains parsers to load and write file in graphical representation: PGML

(Precision Graphics Markup Language).

ArgoUML can directly load the files argo or xmi but a format of file was created: zargo.

 viii

A UML-Based Tool for Designing HLA Federates

Appendix C: HLA Terminology

A federation is the combination of a particular FOM, a particular set of interoperating

simulations, and the RTI services.

A federate is one simulation that operates in a federation.

A Simulation is a synonym of Federate.

A federation execution is a session of a federation executing.

The RTI is supporting software that allows the federates to communicate and cooperate

with each other.

The Object Model Template (OMT) is a system for documenting objects in the world

The Federation Object Model (FOM) is a common object model for exchanging data

among simulations.

The Simulation Object Model (SOM) describes the federate Objects and Interactions. All the

SOMs of all Federates together constitute the Federation Object Model (FOM).

An Object is instance of a class and handled by the RTI.

An Interaction is collection of data sent out at one time through the RTI to other federates.

An Attribute is a set of data belonging to an instance of a class of type Object. The datum

can be of any type including integer, float, double and string and have defined cardinality.

A parameter is a set of data belonging to an instance of a class of type Interaction. The

datum can be of any type including integer, float, double and string and have defined

cardinality.

 ix

A UML-Based Tool for Designing HLA Federates

Reference

[ARGO03] ArgoUML tool, 2003, website: http://argouml.tigris.org

[BANK91] Banker, R.D. and Kauffman, R.J. Reuse and Productivity in Integrated

Computer-Aided Software Engineering: An Empirical Study, MIS Quarterly,

(15:3), September 1991, pp. 375-401.

[BAUD96] Baudoin, Claude & Hollowell, Glenn. Realizing the Object-Oriented Lifecycle,

Upper Saddle River, NJ: Prentice Hall, 1996.

[BECK89] K. Beck and W. Cunningham. A Laboratory for Teaching Object-Oriented

Thinking, OOPSLA-89: ACM Conference on Object-Oriented Programming

Systems Languages and Applications, 1989, pp. 1- 6.

[BELL97] David Bellin and Susan Suchman Simone. The CRC Card Book, Addison

Wesley Professional, 1997.

[BOEH96] B.E. Boehm and W. Scacchi. Simulation and Modeling for Software

Acquisition (SAMSA), Final Report, Center for Software Engineering,

University of Southern California, Los Angeles, CA,

http://sunset.usc.edu/SAMSA/samcover.html, March 1996.

[BOLO98] Boloix, G.; Robillard, P.N. CASE tool learnability in a software engineering

course, Education, IEEE Transactions on Volume: 41 Issue: 3 , Aug. 1998, pp.

185 -193.

[BOOC99] Booch G, Rumbaugh J, and Jacobson I. The Unified Modelling Language

User Guide, Addison-Wesley, 1999.

 x

http://sunset.usc.edu/SAMSA/samcover.html

A UML-Based Tool for Designing HLA Federates

[BRAT87] Bratley, P., B. L. Fox, and L. E. Schrage. A Guide to Simulation, Second

Edition, Springer-Verlag, 1987.

[CASE03] CASE tool index, 2003, website: http://www.cs.queensu.ca/Software-

Engineering/tools.html.

[COAD90] Coad, P., Yourdon, E. Object Oriented Analysis, Prentice Hall, 1990.

[COST94] Costain, G. A comparison of CASE-based O-O methodologies: Coad/Yourdon

OOA and Booch OOD, Software Education Conference, Proceedings, 22-25

Nov. 1994, pp.120-127.

[COX998] Cox, K. A Framework-based Approach to HLA Federate Development,

Simulation Interoperability Workshop, September 14-18, 1998.

[DAHM97] Judith S. Sahmann, Richard M. Fujimoto and Richard M.Weatherly. The

Department of Defense High Level Architecture, Proceedings of the 1997

Winter Simulation Conference, 1997, pp. 142-149.

[DANE96] Daneva, M and R. Terzieva. Assessing the Potentials of CASE-Tools in

Software Process Improvement: A Benchmarking Study. In Proceedings of the

Fourth International Symposium on Assessment of Software Tools, Toronto,

Ontario, Canada, 22-24 May 1996.

[DMS98A] Defense Modeling and Simulation Office. High Level Architecture Rules,

Version 1.3, 5 February 1998.

[DMS98B] Defense Modeling and Simulation Office. High Level Architecture Interface

Specification, Version 1.3, 5 February 1998.

 xi

A UML-Based Tool for Designing HLA Federates

[DMS98C] Defense Modeling and Simulation Office. High Level Architecture Object

Model Template, Version 1.3, 5 February 1998.

[DMSO97] Defense Modeling and Simulation Office. Test Procedures For High Level

Architecture Object Model Template, Version 1.1, 1997.

[DMSO00] Defense Modeling and Simulation Office. High Level Architecture Run-Time

Infrastructure RTI 1.3-Next Generation Programmer’s Guide Version 4, 2001,

[DOD994] DoD Directive 5000.59. DoD Modeling and Simulation (M&S) Management,

January 4, 1994.

[DOUG99] Douglas, L. Learning object-oriented software design at a distance, Frontiers

in Education Conference, FIE '99. 29th Annual, 1999.

[DSOU99] D.F. D’Souza and A.C. Wills. Objects, Components, and Frameworks with

UML, the Catalysis Approach, AddisonWesley, 1999.

[FISH95] P. Fishwick. Simulation Model Design and Execution: Building Digital Worlds,

Prentice-Hall, 1995.

[G52A03] An Introduction to Object Oriented Methodolgy (OOM), 2003, website:

http://www.itsd.gov.hk/itsd/english/itgov/download/g52a.pdf

[GAMM95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley,

Massachusetts, 1995.

[GRAP03] Graph Editing Framework, 2003, website: http://gef.tigris.org

[GUIN87] Guindon, R., Krasner, H., and Curtis, W. Breakdown and processes during

early activities of software design by professionals, In: Olson, G. M. and

 xii

http://www.itsd.gov.hk/itsd/english/itgov/download/g52a.pdf
http://www.itsd.gov.hk/itsd/english/itgov/download/g52a.pdf
http://gef.tigris.org/

A UML-Based Tool for Designing HLA Federates

Sheppard S., eds. Empirical Studies of Programmers: Second Workshop,

Norwood, NJ: Ablex Publishing Corporation. 1987, pp. 65-82.

[HEND92]Henderson-Sellers, B. A Book of Object-Oriented Knowledge, Prentice Hall

Inc, 1992.

[HERZ94] Herzwurm, G., A.Hierholzer, M.Kung. The Appropriateness of the

Conventional and Objectoriented CASE-tools to Construct a Quality

Management Systems According to ISO 9000, Journal of Information

Management, No.3, 1994, pp.72-76.

[IEEE89] IEEE Std 610.3-1989, IEEE standard glossary of modeling and simulation

terminology, 15 May 1989.

[IEEE96] IEEE Std 1348-1995, IEEE recommended practice for the adoption of

Computer-Aided Software Engineering (CASE) tools, 10 April 1996.

[JOHN88] Ralph Johnson and Brian Foote. Designing Reusable Classes, Journal of

Object-Oriented Programming, SIGS, 1988, pp. 22-35.

[JUNI03] JUnit. Testing Resources for Extreme Programming , 2003, website:

http://www.junit.org

[KEIT02] Keith-Magee, K., Parr, S. Visualising Distributed Simulation Design and

deployment, Proceedings of the Interservice/Industry, Simulation and

Education Conference (IITSEC) 2002, Paper ID 258, 2002.

[KUHL99] Kuhl, F., Dahmann, J. and Weatherly, R. Creating computer simulation

systems: an introduction to the high level architecture, Prentice Hall PTR,

1999.

 xiii

http://www.junit.org/

A UML-Based Tool for Designing HLA Federates

[MARC03] Marcus Eduardo Markiewicz, Carlos J.P. Lucena. Object oriented framework

development, ACM Crossroads 2003, website:

http://www.acm.org/crossroads/xrds7-4/frameworks.html

[MARK03] Marcus Eduardo Markiewicz and Carlos J.P. Lucena. Object Oriented

Framework Development, 2003, website:

http://www.acm.org/crossroads/xrds7-4/frameworks.html

[MART96] Martin, James and James J. Odell. Object-Oriented Methods: A Foundation,

Prentice-Hall, Englewood Cliffs, NJ, 1996.

[MODE03] Model resources, 2003, website: http://members.aol.com/lpang10473/sim.htm

[NOVO03] Novosoft UML API, 2003, website: http://nsuml.sourceforge.net

[ODEL98] James J. Odell. Advanced object-oriented analysis and design using UML,

Cambridge University Press, 1998, pp. 229-232.

[OMAN90] P. W. Oman. CASE Analysis and Design Tools, IEEE Software, May 1990,

pp. 37-43.

[OMG003] OMG Unified Modeling Language Specification, Version 1.5, March 2003.

Object Management Group, Inc., Framingham, Mass., 2003, website:

http://www.omg.org

[PATE96] Patel, J.N.; Jamieson, L.H. An object-oriented framework for the Cloner

software prototyping environment, SIGNALS, Systems and Computers, 1996.

Conference Record of the Thirtieth Asilomar Conference on, 3-6 Nov. 1996,

pp. 1354 -1358.

 xiv

http://www.acm.org/crossroads/xrds7-4/frameworks.html
http://www.acm.org/crossroads/crew/marcus_markiewicz.html
http://members.aol.com/lpang10473/sim.htm
http://nsuml.sourceforge.net/
http://www.omg.org/

A UML-Based Tool for Designing HLA Federates

[RADE02] Radeski, A., Parr, S., Keith-Magee, R., and Wharington, J. Component-Based

development Extensions to HLA, Proceedings of the 2002 Spring Simulation

Interoperability Workshop (SISO Spring 2002). Paper ID 02S-SIW-046,

March 2002.

[ROBB97] Robbins, J. E., Hilbert, D. M., and Redmiles, D. F. Argo: a design

environment for evolving software architectures, In Proceedings of the 1997

International Conference on Software Engineering, Boston, MA, USA, 17-23

May 1997, pp. 600-601.

[ROBB98] Robbins, J. E., Medvidovic, N., Redmiles, D. F., and Rosenblum, D. S.

Integrating architecture description languages with a standard design method,

In Proceedings of the 1998 International Conference on Software Engineering,

Kyoto, Japan. 19-25 April 1998. pp. 209-18.

[RUMB91] Rumbaugh, J., Blaha, M., Premerlani, W., Frederick, E., and Lorenson, W.

Object- Orzented, Modeling and Design, Prentice Hall, 1991.

[SCHM97] Douglas C. Schmidt, Applying Design Patterns and Frameworks to Develop

Object-Oriented Communication Software,' Handbook of Programming

Languages, Volume I, edited by Peter Salus, MacMillan Computer Publishing,

1997.

[SINA02] Sinan Si Alhir. Guide to applying the UML, Springer New York, 2002.

[SISO03] SISO/SCS Panel. Discussion, Priorities for M&S Standards, Spring Simulation

Interoperability Workshop, Orlando, Florida, March 2003.

 xv

A UML-Based Tool for Designing HLA Federates

 xvi

[SRID96] Sridhar, M.A.; Paranjpe, P. An object-oriented framework for embedded WWW

application, Emerging Technologies and Applications in Communications,

Proceedings, First Annual Conference on, 7-10 May 1996, pp 97 -100.

[STAC95] Stacy, W. and MacMillian, J. Cognitive Bias in Software Engineering,

Communications of the ACM, June 1995. pp. 57-63.

[TOLK02] Andreas Tolk. Avoiding Another Green Elephant – A Proposal for the Next

Generation HLA based on the Model Driven Architecture, Paper 02F-SIW-004,

Proceedings of the Fall Simulation Interoperability Workshop, Best Paper SIW

F02, Orlando, Florida, September 2002.

[TOLK03] Andreas Tolk, James A. Muguira. The Levels of Conceptual Interoperability

Model (LCIM), Fall Simulation Interoperability Workshop 2003, Paper 03F-

SIW-007, Orlando, Florida, September 2003.

[WALD96] Waldspurger, C.A.; Weihl, W.E. An object-oriented framework for modular

resource management, Object-Orientation in Operation Systems, 1996.,

Proceedings of the Fifth International Workshop on , 27-28 Oct. 1996, pp 138

-143.

[WILK95] Nancy M. Wilkinson. Using CRC Cards: An Informal Approach to Object-

Oriented Development, Cambridge University Press, Paperback, Published

April 1995.

[ZEIG00] Zeigler, B. P., T. G. Kim, and H. Praehofer. Theory of Modeling and

Simulation, New York, NY, Academic Press, 2000.

http://www.vmasc.odu.edu/publications/Tolk/03F-SIW-007.pdf
http://www.vmasc.odu.edu/publications/Tolk/03F-SIW-007.pdf
http://www.bookpool.com/.x/z49hof96ii/ss/L?qs=N+Wilkinson&qt=a

	Introduction
	Software design and related work
	Modeling, Simulation and HLA
	Federate software framework
	Analysis of HLA extensions
	Implementation of HLA extensions
	Case studies
	Conclusion and future work

