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Abstract 

The value of information (VOI) on an uncertain variable is the economic value to the 

decision maker of making an observation about the outcome of the variable before 

taking an action. VOI is an important concept in decision-analytic consultation as well 

as in normative systems.  Unfortunately, exact computation of VOIs in a general 

decision model is an intractable task.  The task is not made any easier when the model 

falls in the class of dynamic decision model (DDM) where the effect of time is 

explicitly considered.   

This dissertation first examines the properties and boundaries of VOI in DDMs under 

various dynamic decision environments. It then proposes an efficient method for the 

exact computation of VOI in DDMs.  The method first identifies some structure in the 

graphical representation of Dynamic Influence Diagrams (DID) which could be 

decomposed to temporal invariant sub-DIDs.  The model is then transformed into 

reusable sub-junction trees to reduce the effort in inference, and hence to improve the 

efficiency in the computation of both the total expected value and the VOI. 

Furthermore, this method is also tailored to cover a wider range of issues, for example, 

computing VOIs for uncertainty variables intervened by decisions, the discounting of 

optimizing metric over time and elapsing time being stochastic. A case study example 

is used to illustrate the computational procedure and to demonstrate the results.  

The dissertation also considers computation of VOI in hard Partially Observable 

Markov Decision Processes (POMDPs) problems.  Various kinds of approximations 

for the belief update and value function construction of POMDPs which take 

advantages of divide-and-conquer or compression techniques are considered and the 

recommendations are given based on studies of the accuracy-efficiency tradeoffs.   

II



In general decision models, conditional independencies reveal the qualitative relevance 

of the uncertainties. Hence by exploiting these qualitative graphical relationships in a 

graphical representation, an efficient non-numerical search algorithm is developed for 

identifying partial orderings over chance variables in terms of their informational 

relevance.  

Finally, in summery of all the above achievements, a concluding guideline for VOI 

computation is composed to provide decision makers with approaches suitable for their 

objectives. 
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1 Introduction 

 

 

Everyone makes decisions in everyday life.  Frequently, people make these decisions 

just out of common sense or instinct, even though the situations are complex and 

uncertain. Such decisions are not always rational under close examination. Decision 

analysis provides a rational way for achieving clarity of action under complex and 

uncertain decision situations. Decision analysis has grown over the last two decades 

from a mathematical theory to a powerful professional discipline used in many 

industries and professions. Managers, engineers, medical doctors, military 

commanders, management consultants and other professionals are now implementing 

decision analytic tools to direct their actions under uncertain, complex and even 

rapidly changing situations.  

The theories in normative decision analysis provide a foundation of this dissertation. 

Hence in this chapter, we shall define the basic problem addressed by this dissertation 

and provide some general review of related modeling and solution approaches. The last 

section of this chapter provides a brief summary of the remainder of the dissertation. 

 

1.1 The Problem 

Accurate, crucial and prompt information usually will improve the quality of decisions, 

though an undesirable cost might accompany the activity of gathering such 
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information. For example, various kinds of medical tests help doctors diagnose a 

patient more accurately, and introduce more efficient therapies to cure the patient 

quickly. However the tests may cost the patient some fortune, hence he/she faces the 

problem of determining whether the test is worthy of the benefits it brings, i.e., how 

much value will this information add to the total benefits and is it cost-effective.  

For decision problems, the computation of information value is regarded as an 

important tool in sensitivity analysis. By obtaining information for previously 

uncertain variables, there may be a change in the economic value of the decision under 

consideration; this is the value of the information (VOI). Knowing this VOI is quite 

useful for the decision maker, since it will help him/her decide which variable is more 

important, and should be clarified first; or whether the uncertain factor should be 

clarified at all considering to the cost spent on gathering the information.  

However, it is hard to obtain perfect information (or clairvoyance) because the future 

is full of uncertainty. This uncertainty can be ‘screened out’ by using probability 

theory, which calculates the expected value as one criterion for random variables. So 

traditionally the Expected Value of Perfect Information (EVPI) is used to analyze the 

sensitivity of the effects of gathering information on the final decision.  

Recently researchers in decision analysis have adopted graphical probabilistic 

representations to model decision problems. These representations include Bayesian 

belief networks and influence diagrams, which are both illustrative and able to deal 

with the uncertainty in real world problems (Russell and Norvig, 1995).  

A Bayesian network is a triplet {X, A, T} in which X is the set of uncertain nodes, A is 

the set of directed arcs between the nodes and T is the set of probability tables 

associated with the nodes. 
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An influence diagram includes a set of decision nodes and utilities other than the triplet 

in a Bayesian network. In influence diagrams, rectangles represent decisions or 

actions, ovals represent chance events or uncertain events, and diamonds represent the 

value that can be obtained through the decision process. The directed arcs in the 

diagram indicate the possible relationship between the variables linked with the arcs. It 

is quite convenient to build decision models using influence diagrams. Figure 1-1 

shows an example of an influence diagram with one decision variable D, one observed 

variable A, one chance variable B not observed before any decisions, and one value 

node V. 

 

 

D

V

A

B

 

Figure 1-1: A simple influence diagram 

The EVPI of an uncertain variable or a set of uncertain variables is the difference 

between the expected value of the value node with the states of these variables known 

and unknown. In a decision model, the expected value of any bit of information must 

be zero or greater, and the upper bound of this value is the EVPI for this piece of 

information.  

Other terms for Expected Value of Perfect of Information include value of 

clairvoyance, and value of information of observing the evidence. 
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1.2 Related topics 

A great deal of effort has been spent on evaluating the EVPIs of uncertain variables in 

a decision model, including quantitative and qualitative methods, exact and 

approximate computations. 

The traditional economic evaluation of information in decision making was first 

introduced by Howard (1966, 1967). Raiffa’s (1968) classical textbook described an 

exact method for computing EVPI. Statistical methods were adopted in these papers to 

calculate the difference in values between knowing the information and not. Ezawa 

(1994) used evidence propagation operations in influence diagrams to calculate the 

value of information out of value of evidence.  

Unfortunately, the computational complexity of such exact computation of EVPI in a 

general decision model with any general utility function is known to be intractable. 

(Heckerman, Horvitz and Middleton, 1991; Poh and Horvitz, 1996) Even with the 

simplifying assumption that a decision maker is risk neutral or has a constant degree of 

risk aversion, the problem remains intractable. 

The intractability of EVPI computation has motivated researchers to explore a variety 

of quantitative approximations, including myopic, iterative one-step look-ahead 

procedures (Gorry, 1973; Heckerman, Horvitz & Nathwani, 1992; Dittmer and Jensen, 

1997; Shachter, 1999) and non-myopic procedures based on employing arguments 

hinging on the law of large numbers, e.g., central-limit theorem. (Heckerman, Horvitz 

& Middleton, 1991). Poh & Horvitz (1996) have found that the EVPIs of chance nodes 

in a decision model can be arrayed if conditional independence statements (CISs) hold 

among the chance nodes and the value node. In this way, an ordering of EVPIs of 

chance nodes can be obtained without conducting expensive quantitative computation. 
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With the knowledge of this EVPI ordering, a decision maker is able to allocate the 

resource for information gathering. 

When the time that decisions are taken also influences the total benefits of the decision 

maker, we address such problems as dynamic decision models with the explicit 

reference to time. Besides the traditional ways to address dynamic decision problems, 

e.g., dynamic programming and Markov decision processes (MDPs) (Bellman, 1957; 

Howard, 1960), there are dynamic influence diagrams (DIDs) (Tatman & Shachter, 

1990), Markov cycle trees (Beck & Pauker, 1983), stochastic trees (Hazen, 1992), and 

temporal influence diagrams (Provan, 1993). On the other hand, researchers have 

explored the temporal invariant features of dynamic systems in stochastic models 

without decisions such as dynamic Bayesian networks (Kjærulff, 1995; Xiang, 1999). 

 

1.3 Methodologies 

Since the value of information is typically a sensitivity analysis tool applied before the 

actual decision is made to guide the collection of important information, timely results 

of information value are preferred. Thus a major concern in choosing methodologies 

could be efficiency.  

1.3.1 Junction Trees 

A relatively fast algorithm for probability propagation in trees of cliques was first 

developed in Lauritzen & Spiegelhalter (1988). Shafer and Shenoy (1990) introduced 

junction trees (“Markov tree”) and Jensen & Dittmer (1994) improved the method and 

applied it in influence diagrams.  

As described by Aji & McEliece (2000), the junction tree method is a kind of “General 

Distributed Law” which distributes the probability marginalization problem into 
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several local structures called cliques and thus saves efforts in the computation of the 

probability product function (joint probability). The method first renders the DAG of a 

Bayesian network into an undirected graph by adding arcs between parents of every 

node, which are called moral arcs, and then adds necessary arcs to make it triangulated, 

out of which a sequence of cliques can be generated. Calculations upon such cliques 

were proved to be quite efficient. (Lauritzen & Spiegelhalter, 1988; Aji & McEliece, 

2000). 

In an influence diagram, the operations we adopt are: First take the expectations over 

the unknown variables, then maximize over the actions alternately, and finally take 

expectations over the variables known by the time we choose actions. A general 

marginalization operation for both maximization and summation was introduced in 

Jensen & Dittmer (1994), which introduced the junction tree method to decision 

problems. Kjærulff (1995) and Xiang (1999) applied junction tree propagation in 

dynamic Bayesian networks, making use of the time-invariant features. 

We identify the decomposability of time-invariant dynamic influence diagrams 

(DIDs), and make use of the repeated features in such DIDs by constructing sub-

junction trees on the identified parts. This method is applied in a dynamic case in the 

medical domain to illustrate the computation for the total expected value and the value 

of information.  

1.3.2 Approximation Methods 

The exact solution of general graphical and partially observable decision problems is 

hard (Cooper, 1990; Papadimitriou &Tsitsiklis, 1987). When it comes to the 

computation of EVPI, the complexity can be twice that of an exact solution. Even 

calculating a bound for EVPI will be intractable. 
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On the other hand, the purpose for VOI computation is to guide the information 

gathering process and ultimately improve the decision quality. Therefore, in many 

occasions it is necessary to consider some approximation methods with higher 

efficiency, but with some tradeoff in accuracy. 

The approximate VOI computations considered in this thesis are mainly based on 

graphical models that consist of a graph topology and a set of parameters associated 

with it. Hence the original decision model can be approximated by revising either the 

structures or the parameters, or both, to reduce the total complexity. 

1.3.3 Graphical Analysis 

Graphs are among the basic tools for establishing probabilistic or other models, 

especially those in Artificial Intelligence (AI). Many theoretical and practical 

conclusions of graph theory facilitate researchers in AI to analyze and solve problems 

explicitly.  

A directed acyclic graph (DAG) is defined as a directed graph that contains no directed 

cycles (Castillo et al, 1997). Basically, Bayesian belief networks and influence 

diagrams are all DAGs with probability table and conditional independent statements 

(CIS) embedded in them. The CISs can be checked for validity by implementing some 

graph separation criterion, namely directed separation or d-separation in DAGs. A 

formal definition will be introduced in Chapter4 Section 1. 

We have sought to find more methods for computation of VOI by leveraging the 

priorities of the chance nodes in an influence diagram with regards to their VOI, based 

on graph separation relationships which imply CISs. We have explored the properties 

in undirected graphs to accelerate the procedure of finding such qualitative 
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relationships about the information relevance of chance variables in graphical decision 

models. 

In order to show the effectiveness of our methodology we have presented the results 

obtained on several networks structurally based on real-world models. 

 

1.4 Contributions 

This section briefly summarizes the major contributions of the work described in this 

dissertation. 

The problem of value of information is discussed in dynamic decision models, mainly 

dynamic influence diagrams. Temporal VOI priority is revealed in a dynamic 

environment. Ways of VOI computation using existing Partially Observable Markov 

Decision Processes (POMDP) solution methods are studied and boundaries for 

maximum EVPI of chance nodes are given as well. Moreover, the VOI for decision-

intervened chance variables is also investigated for dynamic models. 

In order to facilitate fast computation for VOI, we have identified a group of DIDs 

which can be decomposed into sub-networks with similar structures, and hence a sub-

junction tree can be generated based on such sub-networks as the computing template. 

This method of time-invariant reusable junction tree is realized and applied to a 

practical medical case. Experimental results show the method is quite efficient. 

To handle the intractability of general VOI computation, quantitative and qualitative 

approximate approaches are suggested to present timely results. 
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For hard POMDPs, structural and parametric model reductions are surveyed and 

analyzed to provide the decision maker guidance in selecting an approximation scheme 

that best suits the need. 

Furthermore, we have worked on a qualitative algorithm for the identification of partial 

orderings of EVPI for chance nodes in graphical decision models. It considers all the 

chance nodes in the diagram simultaneously. The algorithm is based on non-numerical 

graphical analysis on the basis of the idea of undirected graph separation.  

The algorithm is tested on a large network based structurally on real-world models. 

Dramatic savings in time have been observed compared to numerical approaches. 

Hence we proposed a heuristic combining both the qualitative and quantitative 

methods together to obtain efficiency and accuracy. 

Knowledge of EVPI orderings of the chance nodes in a graphical decision network can 

help decision analysts and automated decision systems weigh the importance or 

information relevance of each node and direct information-gathering efforts to 

variables with the highest expected payoffs.  We believe that the methods described in 

this dissertation can serve the purpose well. 

 

1.5 Organization of the Dissertation 

This chapter has given a brief introduction to some basic ideas in decision analysis, 

reviewed some major work related to the topics addressed in this dissertation, and 

described the methodologies used and the contributions roughly. 

The rest of this thesis is arranged as the following: 
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As the basis of all further discussions, Chapter 2 introduces related work involving 

different representations, computation methods used in these representations and 

various other problems addressed. 

Chapter 3 mainly discusses opinions on VOI computation in dynamic environments, 

both general dynamic influence diagrams and partially observable Markov processes. 

Chapter 4 presents an algorithm for identifying time-decomposable DIDs and the VOI 

computation after the decomposition of the DIDs. The complexity problem is also 

addressed in this section. Implementation of the method and experimental results on a 

dynamic medical problem are reported at the end of the section. 

Chapter 5 compares various kinds of approximation schemes for POMDP. Issues on 

the approximation quality and computational complexity are addressed. 

Chapter 6 describes methods for identifying the qualitative ordering of VOI of chance 

nodes in influence diagrams. An algorithm is proposed and shown to be 

computationally efficient both by theoretical analysis and experiments. 

Chapter 7 summarizes this thesis by discussing the contributions and the limitations of 

the whole work. It also points out some possible directions for future research. 



 

 

2 Literature Review 

 

 

This chapter briefly surveys some related work: Value of information computation in 

influence diagrams, dynamic systems including dynamic influence diagram, dynamic 

Bayesian networks, Markov decision processes and partially observable Markov 

decision processes. 

 

2.1 Value of Information Computation in Influence Diagrams 

Value of information analysis is an effective and important tool for sensitivity analysis 

in decision theoretical models. It can be used to determine whether to gather 

information for unknown factors or which information source to consult before taking 

costly actions. In a decision model, the expected value of any bit of evidence must be 

zero or greater (Jensen, 1996), and the upper bound of this value is the expected value 

of perfect information (EVPI) for this piece of evidence. Hence the computation of 

EVPI is one of the important foci in decision analysis. 

EVPI is the difference between a decision maker’s expected value calculated with and 

without the information. When a decision maker considers only money, the expected 

value can be simply substituted by Expected Monetary Value (EMV). 

In a simple decision model M, X denotes the set of uncertain parameters; V is the value 

for the decision maker, D is the decision set, then   

11
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          (2-1) 

Here d0 ∈ D is the best strategy taken without information, for each instantiation of X, 

the best strategy is the same. E stands for taking expectation, and EM denotes the 

expected value of model M, which is equivalent to taking expectation over uncertainty 

X here. For a binary X with probability distribution p(x0) and p(x1), a binary D with d0 

and  d1, EVPI(X) = p(x0)[maxd V(d, x0)-V(d0, x0)] + p(x1) [maxd V(d, x1)-V(d0, x1)]. 

As shown by formula (2-1), EVPI (X) denotes the average improvement the decision 

maker could expect to gain over the payoff resulting from his selection of alternative 

d0 given perfect information on the parameter X prior to the time of making the 

decision. 

Other terms for the Expected Value of Perfect of Information include value of 

clairvoyance, and the value of information of observing the evidence, etc. 

2.1.1 Quantitative Methods for Computing EVPI 

There are several ways to evaluate the EVPI in a decision model. They can be divided 

into two main groups: quantitative computation that returns a certain number and 

qualitative evaluations that returns an ordering of EVPIs of the uncertain variables. 

The EVPIs can be exactly calculated, or approximated under some assumptions.  

The earliest computation of EVPI started from Howard (1966, 1967). The expected 

profit given clairvoyance about an uncertain variable is calculated by evaluating the 

expected profit given that the state of the variable is known and then summing up the 

expectation with respect to the probability assignment on it. Deducted by the expected 

)]|()|([max)(
0

XVEXVEEXEVPI dddM −=
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value without knowing the outcomes of the variable, we get the EVPI of the specific 

uncertain variable. 

2.1.1.1 Exact Computation of EVPI 

The value of evidences (VOE) is calculated in the process of updating evidence 

(observations) through the influence diagram. VOE can be used to find out what 

evidence we would like to observe to increase the benefit, and the maximum benefit 

can be received by removing the uncertainties, i.e., the EVPI. VOE is defined below 

(Ezawa, 1994): 

)(),\()( XEVxXXXEVxXVOE jJJjJ −===    (2-2) 

where XJ is the chance variable associated with node J that an observation can be 

made, xj is one of the instances for XJ, and EV is the expected value. X \ XJ is the 

chance node set excluding XJ, with XJ taking the value xj. EVPI of JX  can be 

represented by a function of VOE: 

)(*)()( jjJJ xPxXVOEXEVPI ==∑  

For the state space ΩJ of node J.     (2-3) 

In other words, once the evidence xj is propagated, when the decision maker makes the 

next decision (remove decision node), this information is already absorbed. Hence by 

weighing the VOE for each xj with P (xj), EVPI can be computed. The unconditional 

probability P (XJ) can always be obtained by applying arc reversals (Shachter, 1986) 

between its predecessors as long as they are not decision nodes. 

The value of evidence could be negative, but the value of perfect information is always 

greater than or equal to zero. 
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Note that the EVPI computed from VOE is the EVPI for overall decisions, assuming 

the observing of the evidence before the first decision if a sequence of decisions are 

involved in the influence diagram.  

This method of calculating VOI by evidence propagation solely depends on the 

computational efficiency of general propagation algorithms in the influence diagrams. 

It just performs the operation of evidence propagation j times, where j is the number of 

outcomes of the uncertain node J under concern. 

In practical use, the problem may grow very large and be complicated, thus the exact 

computation of EVPI becomes intractable (Cooper, 1990). In order to avoid the 

intractability, some assumptions were proposed to simplify the computation in 

practical use, e.g., myopic assumption. This is a situation that the decision maker 

considers whether to observe one more piece of evidence before acting given he has 

zero or more pieces of evidence in the influence diagram. For each piece of evidence, 

the decision maker will act after observing only that piece of evidence. This 

assumption is very often used in sequential decision-making, e.g., the pathfinder 

project (Heckerman et. al., 1992). Another frequently used simplification is assuming 

the decision maker is risk-neutral so that the value can be replaced by utility. The 

decision maker’s risk profile, i.e., risk-neutral, risk-seeking or risk-averting makes him 

value differently of certain amount of money. Risk-neutral is the only linear mapping 

from money value to utility, while the other two are nonlinear.  

Lauritzen & Spiegelhalter (1988) developed a relatively fast algorithm for probability 

propagation in trees of cliques in belief networks. Shafer and Shenoy (1990) 

introduced the concept of junction trees (“Markov tree”) and Jensen & Dittmer (1994) 

improved the method by extending the marginaliztion of probability nodes to decision 

nodes and thus applied it in influence diagrams.  
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Such an inference method could be adopted in the computation of EVPI as well. 

Dittmer & Jensen (1997) pointed out that constructing strong junction trees 

corresponding to the original influence diagram facilitates the computation of the EVPI 

for different information scenarios. The computation procedure for both scenarios, 

with and without information, can make use of the same junction tree.  

Let’s denote the chance node set in an influence diagram as W, decision node set as D, 

the value node as V. For all the chance nodes and decision nodes, we can partition 

them into a collection of disjoint sets W0, …, Wk, …, Wn; for 0<k<n, Wk is the set of 

chance nodes that will be observed between decision Dk and Dk+1; W0 is the initial 

evidence variables, Wn is the set of variables that will be observed only after the last 

decision. This induces an order p in W: 

nnkkk WDDWDDWDW ppLppppLpppp 12110 +  (2-4) 

In graphical representation, this means that Wk is the parent set of Dk+1, and Wn thus 

includes all the other chance nodes that cannot be observed before the last decision. 

For this partitioned influence diagram, Jensen et al. (1994) have shown that the 

maximum expected utility Uk for decision Dk is: 

UDDWWWWPU nk
W

nk
WDDk

k n
nk

∗= −∑ ∑ ),,,,,|,,(maxmax 110 KKKL  (2-5) 

Here, U is the utility function. This equation means the maximum expected utility for a 

decision problem could be calculated by performing a series of marginalizations of 

summation and maximization alternatively.  

Marginalizing a chance variable A out of the joint probability distribution we get the 

joint probability of all the remaining variables: P (X1,…, Xn) = ∑A P(A, X1,…, Xn). 



Chapter2: Literature Review   

 16

Marginalization can be conducted in a graph which consists of a vertex set and an edge 

set. Hence the following gives out definitions for some basic concepts in Graph Theory 

which are related to marginalization. 

Def. 2.1 Chord (West 2002) 

A chord of a cycle C in a graph is an edge not in the edge set of C whose endpoints lie 

in the vertex set of C. 

Def. 2.2 Complete Graph (West 2002) 

A graph in which each pair of graph vertices is connected by a graph edge. 

Def. 2.3 Clique (West 2002) 

A clique of a graph is its maximal complete subgraph. 

Def. 2.4 Triangulated Graph (Castillo, 1997) 

Triangulated graph refers to the undirected graph that every loop of length four or 

more has at least one chord 

The marginaliztion corresponds to the following operations on the undirected graph: 

complete the set of neighbors of A in the graph, and then remove A. All variables can 

be eliminated in this manner without adding edges if and only if the graph is 

triangulated (Jensen, 1996). The operation of triangulation is making a graph into a 

triangulated one by adding chords to break the loops. The procedure of adding such 

chords is called fill-in. The fill-in that gives the smallest state space for a triangulation 

is an optimal fill-in. 

For a triangulated undirected graph, the cliques in this graph can be organized into a 

strong junction tree with the following definition: 
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A tree of cliques is called a junction tree if for each pair (C1, C2) of cliques; C1∩C2 

belongs to every clique on the path connecting C1 and C2. For two adjacent cliques C1 

and C2, the intersection C1∩C2 is called a separator. If a junction tree has at least one 

distinguished clique R, called a strong root, such that for each pair (C1, C2) of adjacent 

cliques in the tree, with C1 closer to R than C2, there exists an ordering of C2 that 

respects the order p and with the vertices of the separator C1∩C2 preceding the vertices 

of C2\C1, then the junction tree is a strong one.  

Finding an optimal junction tree is NP-complete (Arnborg, Corneil, & Proskurowski, 

1987), which means the problem is both NP (verifiable in nondeterministic polynomial 

time1) and NP-hard (any other NP-problem can be translated into this problem). The 

simple greedy algorithms by Rose (1974) will often give smaller state space than the 

fill-ins generated by the vertex ordering of the algorithm Maximum Cardinality Search 

of Tarjan and Yannakakis (1984), but a mistake in the first step will lead to a junction 

tree far from optimal. Kjærulff (1990) discussed algorithms for finding a fill-in given a 

small state space based on simulated annealing. They are better in performance but 

take longer time to run. Jensen & Jensen (1994) proposed an approach to construct 

optimal junction trees from triangulated graphs and Becker and Geiger (1996) 

developed some sufficiently fast algorithm to find close-to-optimal junction trees. 

In the junction tree, two functions a probability potential φC and a utility potential ψC 

are associated to each clique C. The joint potential φ and ψ of a junction tree J are 

defined as φ= ∏C∈JφC, ψ= ∑ C∈J ψC. For a chance variable X, the marginalization 

operation is ∑=Μ
X

CX
φφ ; and for a decision variable D, φφ

DD
max=Μ . If J is a 

                                                 
1  A problem is assigned to the NP (nondeterministic polynomial time) class if it is verifiable in 
polynomial time by a nondeterministic Turing machine. A nondeterministic Turing machine is a 
“parallel” Turing machine which can take many computational paths simultaneously, with the restriction 
that the parallel Turing machines cannot communicate. 
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junction tree, C1 and C2 are adjacent cliques with separator S⊂J, and if C1 pC2 which 

indicates C1 is closer to the root than C2 is, then C1 updates its potential functions by 

absorbing from C2: 

S

S
CCSCC φ

ψψψφφφ +=∗==
1!11

';'   (2-6) 

here, 

22
2

2
2 \\

; CCSCSCSCS ψφψφφ ∗Μ=Μ=  

C2\S refer to nodes in C2 excluding those also in separator set S. 

By successively absorbing leaves into the strong root in the junction tree constructed, it 

is easy to obtain the overall probability and utility potentials. 

Dittmer and Jensen (1997) proposed a method to calculate VOI based on only one 

junction tree, i.e., reusing the original junction tree for calculating the expected utility 

(or value) with information obtained. The method can be more clearly described after 

we introduce the following definitions (Shachter, 1999): 

“Clique C is inward of another clique C’ if C is either the strong root clique 

or between the root clique and C’. And C’ is said to be outward of C. If all 

cliques containing a variable A are outward of some cliques containing 

variable B, then A is said to be strictly outward of B and B strictly inward of 

A. If all clusters containing A either contain B or are outward of a cluster 

containing B, then A is weakly outward of B and B is weakly inward of A.” 

The case of observing a variable A before D can be calculated by adding A to all the 

cliques between A and D’s inward-most cliques. 

We illustrate the propagation and VOI computation through junction tree by an 

example from Dittmer and Jensen (1997). Scenario (a) in Figure 2-1 is an influence 
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diagram with three decision nodes, four chance nodes and one utility node. Scenario 

(b) indicates the situation of observing chance node B before the decision D1. In order 

to turn this directed graph into an undirected graph for further operations, we need to 

add arcs between each pair of parents for every node, and drop the direction of arcs. 

This procedure is called moralization, and the arcs added between parents are moral 

arcs. The calculation of the expected utility for both scenarios can be based on the 

same strong junction tree; hence Figure 2-2 only shows the moralization and 

triangulation for scenario (b) in Figure 2-1, which is more complicated. 

 

B 

E 

A

C D1 

D2 D3 

U

B 

E 

A 

CD1 

D2 D3 

U

 

   ( a )     ( b ) 

Figure 2-1: An example of influence diagram 

(a) with no information on B before D1 and (b) with information prior to D1 
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 B 

E 

A 

C D1 

D3 D2 
 

(a) Moral graph 

 B 

E 

A 

C D1 

D3 D2 
 

(b) Triangulated graph 

Figure 2-2: Moral graph and triangulated graph for Figure 2-1 (b) 

In Figure 2-2 (a), dotted line from B to E is a moral arc to ‘marry’ A’s parents B and E. 

The solid lines (C, D2) and (A, D3) C and A are requisite observations before D2 and 

D3 respectively. The concept of requisite observation will be introduced in detail in 

Section 4.1. E is not a requisite observation of D3, hence not appeared in Figure 2-2 

(a). 

Figure 2-3 shows the junction trees for both scenarios. Here D1C and BD1C are the 

root cliques respectively. Using junction tree for scenario (b), BD1C is inward of 

BCD2E, node A is strictly outward of C, but weakly outward of E. The difference of 

the two junction trees only lies in the cliques that are from inward-most clique of the 

decision D1 to inward-most clique of B. 
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D1C AD3 EAB CD2E 

BD1C AD3 EAB BCD2E
 

Figure 2-3: Junction trees derived from influence diagrams in Figure 2-1 

Above, scenario (a); below, scenario (b) 

In (Dittmer and Jensen 1997), decision nodes were treated as chance nodes graphically 

in triangulation and junction tree construction; the difference only lies on the 

marginalization operations. In Jensen (1996) the computation in influence diagrams 

was analogous to that in Bayesian networks after Cooper’s transformation (Cooper, 

1988), which turns the decision and value nodes into chance nodes. Shachter (1999) 

used the Bayes-Ball algorithm (Shachter, 1998) to find requisite observations for 

decisions, which may lead to a simpler (unfortunately, sometimes more complex) 

diagram. Decision nodes are treated as deterministic nodes afterwards.  

 

2.1.1.2 Approximate EVPI Computation  

Heckerman et al (1991) proposed a non-myopic approximation for identifying cost-

effective evidence. First, calculate the net value of information for each piece of 

evidence using the exact method under the myopic assumption. Second, arrange the 

evidence in descending order according to their net value of information, and finally 

compute the net value of information of each m-variable subsequence (1≤ m ≤ number 

of all the chance nodes). 
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For a diagnosis problem with evidences independent to each other given the 

hypothesis, the weight of evidence could be added up based on the central-limit 

theorem for large m. This approximated method can be extended to the special classes 

of dependent distributions where the central-limit theorem is valid for these dependent 

distributions as well. 

A more traditional approximate method is Monte Carlo Simulation. Supposing the 

probability distributions of each chance variable is known, it is easy to generate great 

amount of random numbers for these variables. The best strategy and the 

corresponding expected utility can be determined thereafter (Felli & Hazen, 1998). 

This approach is simple and easy to understand and execute. However, it consumes a 

great deal of time and space in order to generate enough examples to obtain statistical 

significance. When the number of random variables gets large, which is quite common 

in practice, the simulation becomes hard to apply. 

 

2.1.2 Qualitative Method for Ordering EVPI 

Besides all the quantitative methods in calculating the EVPI in a decision model, Poh 

& Horvitz (1996) proposed a way to reveal the qualitative relationships about the 

informational relevance of variables in graphical decision models based on conditional 

independencies through graphical separations of uncertain nodes from utility nodes, 

thus to obtain a partial ordering of EVPI without considering the numerical value of 

nodes.   

The details of this method will be left for further discussion in later chapters. 

 



Chapter2: Literature Review   

 23

2.2 Dynamic Decision Problems 

A decision problem may have a sequence of decisions taken at different time stages. 

When time is explicitly considered, such problems are called dynamic decision 

problems.  

Researchers have addressed dynamic decision problems with various kinds of dynamic 

decision models. They usually depict several essential parameters for decision 

analysis, e.g., the states of the system that vary with time, a set of control laws that can 

influence the future states of the system, some criteria for the selection of the control 

laws, (maximize values, utilities, probabilities or minimize costs), and an underlying 

stochastic process that governs the evolution of the above elements in time. Some of 

these dynamic decision models will be introduced in the following sections. 

 

2.2.1 Dynamic Influence Diagrams 

Tatman and Shachter (1990) extended the general influence diagrams into dynamic 

influence diagrams (DIDs) by allowing time-separable value functions, one function 

for each time unit or decision stage. These time-separable value nodes can be summed 

up or multiplied into a super value node. The operations of chance node removal and 

decision node removal in general influence diagrams can also be performed over an 

addend (if sum ∑) or factor (if product ∏) in the value function instead of over the 

entire value function. And non-super value nodes can be reduced into the super value 

node that is the direct or indirect successor of them. 

Dynamic influence diagrams are typically used to address finite stage problems with 

partially observable state variables. DIDs allow a compact specification of the 

relationships between observable and non-observable variables, decisions and values 
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received in every stage. Furthermore, this representation gives direct information about 

the topology of the model. 

However, when the system evolves for more time stages, the graphical representation 

grows unnecessarily large. Xiang & Poh (1999) mentioned a condensed form for 

dynamic influence diagrams which represent the repeating features of an N-stage DID 

into one snap-shot stage.  

As a non-decision counterpart of DID, the dynamic Bayesian networks (DBNs) 

capture the dynamic process by representing multiple copies of the state variables, one 

for each time step (Dean and Kanazawa, 1989).  

Some other temporal models, such as hidden Markov Models (HMM) and Kalman 

filters can be considered as special cases of DBN, where the former are DBNs with a 

single discrete state variable and the latter are DBNs with continuous state/evidence 

variables and linear Gaussian transition/observation probabilities. 

2.2.2 Temporal Influence Diagrams 

Provan (1993) used temporal influence diagrams (TIDs) to represent a sequence of 

influence diagrams which evolve with time. Like Figure 2-4, each influence diagram 

ID0 to IDn models an interval of the system, assuming static states in these time 

intervals. Temporal arcs between the time-indexed influence diagrams depict the 

dependencies of a future stage on a past kth stage, 1< k <N (N is the total time 

horizon). 

ID0 ID1 IDnID2

 

Figure 2-4: An example of temporal influence diagram 
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Since the more temporal arcs added, the harder the inference in the temporal influence 

diagrams, Provan (1993) proposed two ways to restrict the network size to ensure the 

computational feasibility. One way is to construct the IDs in each time interval only 

with a particular set of observations; the other is assigning temporal arcs for only a 

subset of variables instead of all the variables. 

Later, modifiable temporal belief networks (MTBNs) were developed by Aliferis 

(1996) as a temporal extension of general Bayesian networks (BNs) to facilitate 

modeling in dynamic environments. There are three types of variables in MTBN, 

ordinary observable variables, arc variables and time-lag variables. These variables 

correspond to chance nodes, the dependency arcs and the temporal arcs in temporal 

BNs and IDs, respectively. The author used a condensed form of MTBN to facilitate 

model definition, and a deployed form with variables replicated for each time interval 

for inference. 

 

2.2.3 Markov Decision Processes 

Markov decision processes (MDPs) are mathematical models for sequential 

optimization problems with stochastic formulation and state structure (Howard, 1960).  

A Markov decision process consists of five elements: decision epochs T, states S, 

actions A, transition probabilities P and rewards r. Semi-Markov decision processes 

(SMDPs) are MDPs with stochastic time-intervals between transitions. 

A partially observable Markov Decision Process (POMDP) is a generalization of a 

Markov Decision Process, which allows for incomplete information regarding the state 

of the system. At each decision epoch, the decision maker must select an action based 

only on the incomplete information at hand.  
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In a POMDP, S = {S1, S2, …, St, St+1, …, Sn} is the set of system states. At any discrete 

time stage t ∈ T, the system is in state St. The decision maker then performs an action 

at ∈ A, makes the system change into St+1 and receives an observation (evidence) Ot 

afterwards. The process is characterized by a value function V (Rt | St, At), a transition 

probability distribution P (St+1 |St, At) and an observation probability distribution P (Ot 

|St, At)2. Let Ht = {a1, o1, a2, o2, …, at-1, ot-1} denote the history of actions and messages 

received up to time t. If based on this information, the decision maker chooses action 

at, a real value V(st, at) is received when the state of the system is st. Time increments 

by one, Ht+1 = Ht ∪ {at, ot}, the decision maker choose action at+1, and the process 

repeats. 

The information in Ht can be encapsulated in the vector St (Aoki, 1965; Bertsekas, 

1976), and partially observed process can be remodeled as an equivalent fully observed 

MDP with continuous state space. 

 

2.2.3.1 Solution methods for MDPs 

Let Vt(s) be the optimal total expected revenue, given the system starts in state s, taking 

action a, and results in state s’ with transition probability p(s’|s, a), the backward 

recursive equation for MDP is: 

NtsVasspasrsV
Ss
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'
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∈

+   (2-7) 

Here r(s, a) is the reward received every stage and N is the total number of stages.  

Start from VN+1 (s’), the additional salvage value received at the beginning of time N+1 

given SN+1 = s’, a direct approach to calculate the total expected value is to determine 

                                                 
2In the literature, e.g., (Cassandra et al, 1997), this distribution is expressed as P (Ot |St, St+1, At). 
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the values of Vt(s) iteratively for N times, which is known as the value iteration 

approach. 

Originated from Howard (1960) and Bellman (1961), the value iteration has a lot of 

variants that aim to improve the efficiency. The solution is an optimal policy π = {δ1, 

δ2, …} where δt is a function (S→A), t∈N, and the maximum cumulative expected 

value V(s) for each s in the state space. 

Generally, equation (2-7) can be modified to make the total revenue convergent when 

N→ ∞ by adding an economic discounting factor β (e.g., interest rate) greater than 0 

and less than 1. Hence the MDP can be extended to infinite-stage problems by 

performing enough iterations until a certain small tolerance is reached. In the 

discounted case, V(s)* = limitt→∞ Vt(s), proven by White (1978). Thus we can search 

for a stationary policy that satisfies |Vt+1(s)-Vt(s)| less than an arbitrary small ε. 

However, it is not efficient to iterate the computation until N is sufficiently large. 

In order to deal with infinite-stage problems, Howard (1960) proposed policy iteration. 

As a simplest implementation, the policy iteration can be initiated with any policy, and 

then determine the optimal policy through the iteration over all the possible policies. A 

more efficient way (Bellman, 1957; Howard, 1960) is to find a sequence of policies of 

increasing quality, hence avoid considering many sub-optimal policies.  

The sequence of the policies generated by policy iteration is monotonically increasing 

in value. The algorithm will converge on the optimal solution within finite number of 

steps as there are a finite number of policies. 

Infinite-stage problems can be formulated as linear programs (Derman, 1970; Kushner 

and Kleinman, 1971). It solves the optimization problem as the following: 
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Maximize E = ∑i∈S ∑a∈A  ρi
πri

π 

S.T. 

ρ πPπ=ρ π,  

ρ1
 π+ρ2

π+…+ ρ|S|
 π = 1,  

ρi
 π≥0,   i∈S      (2-8) 

ρi
 π is the long run stationary probabilities of the transition probabilities matrix Pπ 

corresponds to policy π. ρ π is the vector of ρi
 π.  

Various techniques have been developed for solving large linear programming 

problems, e.g., the simplex method, and Karmarkar interior-point algorithm. 

Among all the solution methods introduced, linear programming supports better 

sensitivity analysis. Furthermore, we can add more constraints to (2-8) to solve a wider 

class of problems. The disadvantage is it prohibits the analysis for any specific time 

stage. 

The policy evaluation routine of policy iteration method needs to solve a set of linear 

formulas, which requires O (|S|3) computation time if using Gaussian elimination 

approach. When the state space grows large, the computational cost of obtaining the 

exact solution will become quite expensive. 

One alternative is to solve such set of linear formulas by approximation. This forms an 

approximate value in the policy evaluation step. Hence when the number of controls is 

large, such approximation is much less expensive. 

Another way is to form super-states by lumping together the states of the original 

system, and then solve a system with smaller state space. This is the adaptive state 

aggregation method (Bertsekas, 1987), which is effective when the number of states is 

very large. 
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2.2.3.2 Solution methods in POMDPs 

It has been pointed out in the literature (Cassandra, 1998) that the policy for a POMDP 

is not necessarily Markovian. In general, finding an optimal policy requires the 

decision maker remember the entire history Ht of past observations and actions. Instead 

of remembering the history, one can maintain a summery sufficient statistic, the belief 

state, as the basis of the optimization as well (Astrom, 1965; Sondik, 1971 and 

Striebel, 1965). 

The belief state b is the probability distribution over the states, where b(s) corresponds 

to the probability of system being in state s. This belief state can be easily updated 

after an action is taken and an observation is made according to the Bayes Rule: 

∑∑
∑

∈∈
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and thus the value updating equation becomes: 

Vt(b) = maxa [∑s∈S b(s) R(s) +  

β∑o ∑s, s’∈S P(o| s, a, s’) P(s’| s, a) b(s) Vt+1(bo
a)]  (2-10) 

Hence the POMDP can be viewed as a continuous state-space MDP. 

 

 

Exact Solutions 

Smallwood and Sondik (1973) proved that for any finite t, Vt
*(b) is piecewise linear 

and convex on state space S (Sawaki (1980) had given a generalization to piecewise 
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linear Markov decision processes). Hence, Vt
* has a representation as the maximum of 

a finite number of linear functions, i.e., Vt
*(b) = max {γTb: γ∈Γt} for some finite set Γt 

of |S|-vectors. Figure 2-5 shows a set of γ vectors for a binary state variable. 
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Figure 2-5: Piece-wise linear value function of POMDP 

The simplest idea is to enumerate all possible vectors (Monahan, 1982; Sondik, 1971) 

for each action and observation. A large number of vectors must be generated if using 

this way. Among the vectors, many are not useful since they are completely dominated 

by other vectors over the entire belief space, like γ2 and γ4 shown in Figure 2-5. 

The first exact algorithm for POMDPs was derived by E.J. Sondik (1971). This so-

called One-Pass algorithm starts with an arbitrary belief point, constructs the vector for 

that point and then defines a set of constraints over the belief space where this vector is 

guaranteed to be dominant.  

The full set of constraints defined by Sondik may generate more boundaries than 

necessary; while the omitting of one of them may result in generating too large 

regions. Cheng (1988) proposes some algorithms based on alternative relaxations of 

the constraints. These algorithms result in fewer boundaries than the one-pass 



Chapter2: Literature Review   

 31

algorithm, and obtain computational savings at the same time. One of them, the linear 

support algorithm, can be modified to produce approximate solutions with error 

bounds, which is an advantageous feature for computationally complex POMDPs. 

The witness algorithm proposed by Littman et al (1994) does not concern all the 

actions all the time. It concentrates on finding the best value function for each of the 

actions separately. Furthermore, this algorithm also deals with only one observation at 

a time. Like the other algorithms, it tries to find the region where it is assured that the 

particular choice is the best. If it finds a belief point where a different action would be 

better, this fact serves as a witness/proof that the current set of vectors is not yet the 

real dominating value functions, and the search will go on. 

Similar to the witness algorithm in the way of dealing with actions and observations 

individually, the incremental pruning algorithm (Zhang and Liu, 1996; Cassandra, 

Littman and Zhang, 1997) considers constructing sets of vectors for each action and 

then focusing on one observation at a time. The incremental pruning algorithm is the 

fastest algorithm to compute the dynamic programming update up to now, according to 

(Hansen and Feng, 2000). 

 

Approximations 

Currently, the exact solution methods tend to be intractable for problems other than 

simple POMDPs with a few dozen states. Hence, various kinds of approximations on 

the value function or the belief state are proposed. Basically the approximations 

consider tradeoffs between computational complexity and model accuracy. 
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2.3 Summary 

Many researchers have exerted their efforts in value of information studies and 

problem solving in dynamic decision models. They proposed different representations 

to better capture characteristics of problems, and developed various kinds of methods 

for solving these problems efficiently and / or accurately. Based on these research 

works, we are able to serve the need for studying value of information under dynamic 

environments.  

This chapter gives a brief review of a variety of topics related to value of information 

studies and dynamic decision models. Some terms and concepts are introduced for a 

better understanding of the discussion in consecutive chapters. 

 



 

 
 

3 Value of Information in Dynamic Systems 

 

 

Time has an influence on our revenue. For example, if one had bought Microsoft 

stocks in 1980’s, he/she might be a millionaire now. Time also influences our non-

monetary utilities. In some cases, a patient could have been saved if he/she had an 

early screening for the disastrous diseases. The recent multi-country outbreak of the 

Severe Acute Respiratory Syndrome (SARS) could have been prevented had we 

realized its infectiousness at the very beginning of the outbreak.  Decisions are hard 

since uncertainties are involved; yet when the impacts of time are considered, they can 

be even harder. A decision made at a certain time point may affect both the system 

status and other decisions to be made some time in the future. The decision problem 

that takes effects of time into account is called a dynamic decision problem. 

Sometimes we make decisions based on current status of the decision system, e.g., 

taking an umbrella after catching sight of the rain. However, in many real world 

problems, only vague information about the system is available. For example, when a 

patient visits the doctor, exactly what disease or combination of diseases the patient 

has is not clear to both of them. Then the doctor will let the patient talk about the 

symptoms, his/her previous medical records, and most of the time, prescribe a set of 

diagnostic tests for the patient to undergo. Decisions for the treatment are based on this 

gathered information about patient’s status. The better and the earlier a doctor knows 

the status of his patient, the greater the chance for the patient to recover. In this case, 

33
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information on the true state of the patient is valuable, and the cost-effectiveness of the 

information with regard to time is worth studying. 

 

3.1 Properties of VOI in Dynamic Decision Models 

The models for dynamic systems have been briefly discussed in the previous chapter. 

Though Markov Decision Processes (MDPs) provide concise mathematical 

formulations to model dynamic problems, the concept of information value is hard to 

be clearly represented in MDPs and their extensions without some extra efforts. On the 

other hand, Dynamic influence diagrams (Tatman and Shachter, 1990) represent the 

dependencies between the observations, the uncertainty nodes, the decisions and the 

values in each stage explicitly. Moreover, existing computation methods for value of 

information in general models can be easily applied to dynamic influence diagrams. 

Therefore, dynamic influence diagrams are adopted as the basic configuration of our 

problems both for their graphical representation and for the convenience of extending 

methods in general influence diagrams.  However, this does not mean that there is a 

restriction in the use of representations; as shown later, other models will be mentioned 

as well, yet taking a graphical appearance. 

 

3.1.1 A Simple Example 

Let’s illustrate the basic ideas of value of information computation with the following 

simple example.  

A toy maker is producing toys without knowing the situation of the toy market. This is 

a quite naive situation with the system states totally unobservable. He has a decision 

Adi, to decide whether to use advertising or use no advertising in each time period, 
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which may affect the market in the future. In the following figure, random variable 

Marketi (i=0,…,3) denotes the status of the market in the ith stage, successful (good 

market) or unsuccessful (bad market). The node Valuei is the revenue that the decision 

maker will receive in the ith stage. Here we only display four stages. Dashed arrows 

indicate the temporal order. 

 

Figure 3-1: Toy maker example without information on market  

In this case the state variables are totally unobservable. Abbreviating Marketi as Mi, 

Valuei as Vi, the total value for this scenario is: 

V = max Ad0 max Ad1 max Ad2 max Ad3 ∑M0 P(M0) { V0(M0, Ad0)  + ∑M1 

P(M0, M1, Ad0) { V1(M1, Ad1)  + ∑M2P(M1, M2, Ad1) [ V2(M2, Ad2) 

+ ∑M3 P(M2, M3, Ad2)V3(M3, Ad3)]}}    (3-1) 

It will be an intractable computation if the state space is large. 

Supposing now we can observe the system state before taking actions in all stages, as 

shown in Figure 3-2. This case is the same as fully observable Markov Decision 

Processes, which can be solved by the classical dynamic programming techniques 

efficiently as in (Bellman, 1957; Howard, 1960; Bertsekas, 1995). The total expected 

value is the following: 

0 1 2 3 
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V” = ∑ P(M0) max Ad0 { V(M0, Ad0)  + ∑ P(M0, M1) max Ad1 { V(M1, Ad1)  

+ ∑P(M1, M2) max Ad2 [ V(M2, Ad2) + ∑ P(M2, M3) max Ad3 V(M3, 

Ad3)]}}      (3-2) 

 

Figure 3-2: Toy maker example with full information 

Figure 3-3 illustrates the situation of knowing the previous market status (including all 

the history) before the decision of current stage. The expected total value is: 

V’ = max Ad0 ∑ P(M0) { V(M0, Ad0)  + max Ad1 ∑ P(M0, M1, Ad0) { V(M1, 

Ad1)  + max Ad2 ∑P(M1, M2, Ad1) [ V(M2, Ad2) + max Ad3 ∑ P(M2, 

M3, Ad2)V(M3, Ad3)]}}    (3-3) 

 

 

Figure 3-3: Toy maker example with information of history 

In general, for decision d, denote the reward matrix in the n-stage-to-go as Qd
n, 

transition probability matrix as Pd
n, the updating equation for calculating values 

with perfect information (MDP) is: 

0 1 2 3 

0 1 2 3 
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V”n = maxd (Qd
n + Pd

n maxd V”n-1)    (3-4) 

With lagged information: 

V’n = maxd Pd
n (Qd

n + maxd Pd
n V’n-1)    (3-5) 

With no information: 

Vn = maxd bn · (Qd
n + Pd

n V’n-1)    (3-6) 

Where bn is a row vector which represents the belief state in each stage. 

Due to the invariant structure of most dynamic problems, many researchers represent 

the system dynamics by a two-stage DBN/DID. It is also convenient to draw 

condensed forms to represent multi-stage dynamic decision problems, like the ones 

shown in Figure 3-4. Dotted lines with a ‘t’ near them are temporal arcs with a time lag 

of t. 

When the time horizon is infinite, a discount factor β∈[0,1] is applied in the value 

function updating procedure to ensure that the expected utility/value is meaningful. 
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Figure 3-4: Condensed form of the three scenarios 

(a) Without information, (b) with full information and (c) with information of one 

stage delay. 
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3.1.2 Order the Information Values 

Let’s denote the total value of the above three scenarios, without information, with full 

information and with lagged information as V0, V’ and V1 respectively, it can be 

proved that V0 ≤ V1≤ V’.  

Let M = {C, D, V, E, T} be a dynamic influence diagram where C is chance node set, 

D is decision node set, V is value node set, E is the set of directed arcs and T is 

decision stages. The value of information for observing the ith stage chance node Xi ∈ 

C before the jth stage action Dj ∈ D is denote by VOIDj (Xi). 

 
Theorem 3-1:  In a dynamic influence diagram M, when j>k∈T, we have VOIDj 

(Xi) ≤ VOIDk (Xi). 

 
Proof: 

Jensen’s inequality: 

Let V: Rn → R be a convex function. Let x1, …, xn ∈ Rn and let a1, …, an ∈ [0, 1], such 

that 1
1

=∑
=

n

i
ia . Then: 

∑∑
==

≤
n

1i1
)( )( ii

n

i
ii xVaxaV  

First let’s take look at the case when there are only random variables, and no other 

decisions between the two decision nodes Dk and Dj. The variables are chronically 

ordered as {Dk, X, Dj, Xi}. Hence when knowing Xi before Dj,  

V= maxDk ∑ P(X|Dk) ∑P(Xi|X, Dk) maxDj V(H|X, Xi, Dj, Dk) 

  = maxDk ∑ P(Xi|Dk) ∑P(X|Xi, Dk) maxDj V(H|X, Xi, Dj, Dk); (3-7) 

Knowing Xi before Dk and  Dj,  
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V= ∑P(Xi) maxDk ∑ P(X|Xi, Dk) maxDj V(H|X, Xi, Dj, Dk)  (3-8) 

Since maximization is a convex function, based on the Jensen’s inequality, equation 

(4-8) will: 

   ≥ maxDk ∑ P(Xi|Dk) ∑P(X|Xi, Dk) maxDj V(H|X, Xi, Dj, Dk)  (3-9) 

Without knowing Xi:  

V= maxDk ∑ P(X|Dk) maxDj ∑ P(Xi|X, Dj, Dk)V(H| X, Xi, Dj, Dk) is the same as 

(3-9), so VOIDk (Xi) ≥ VOIDj (Xi). 

If there are other decision nodes between Dk and Dj, e.g. Dl, we can have  

VOIDk (Xi) ≥ VOIDl (Xi)  

and  VOIDl (Xi) ≥ VOIDj (Xi), thus VOIDk (Xi) ≥ VOIDj (Xi). 

If the two decisions belong to adjacent decision stages, i.e., they have different value 

successors Vk, Vj, then the value of knowing Xi before Dj is: 

Vk+Vj = maxDk ∑ P(X|Dk) ∑P(Xi|X, Dk)[ V(H|X, Xi, Dk)  

   + maxDj V(H|X’, Xi, Dj, Dk)] 

  = maxDk ∑ P(Xi|Dk) ∑P(X|Xi, Dk)[ V(H|X, Xi, Dk)  

   + maxDj V(H|X’, Xi, Dj, Dk)] 

Knowing Xi before Dk and  Dj, 

Vk+Vj =∑ P(Xi)  maxDk ∑P(X|Xi, Dk)[ V(H|X, Xi, Dk)  

   + maxDj V(H|X’, Xi, Dj, Dk)] 

  ≥ maxDk ∑ P(Xi|Dk) ∑P(X|Xi, Dk)[ V(H|X, Xi, Dk)  

   + maxDj V(H|X’, Xi, Dj, Dk)] 

If there are other decision stages between Dk and Dj, e.g. Dl, we can have VOIDk (Xi) ≥ 

VOIDl (Xi) and VOIDl (Xi) ≥ VOIDj (Xi), thus VOIDk (Xi) ≥ VOIDj (Xi).  
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Hence, it is always preferable to observe the system state earlier than later, and later 

than never if costs are not concerned. The difference of value between observing Xi 

before Dj and Dk can be called the VOI of temporal delay. The above inequality is 

meaningful because if the VOI ordering were in contrary case, there would be no need 

to concern the opportunity cost occurred in information gathering period. Since 

observing earlier is better than later, the problem becomes a tradeoff when facing the 

opportunity cost. 

 

3.1.3 EVPI in Partially Observable Models 

The influence diagram representation enjoys the freedom of illustrating all sorts of 

dynamic decision processes. In contrast to this, in the planning literature, the partially 

observable Markov decision processes (POMDP) are quite different from those for 

fully observable MDP and SMDP in representations and solution methods. As has 

been mentioned in the previous chapter, the partially observable dynamic problems are 

much harder to deal with. Studying the difficulties that lie in the POMDP and the 

influence of those hard parts in the value of information helps developing better 

methods for VOI computation. 
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Figure 3-5: Two-stage DID for a typical partially observable problem 

To facilitate a clear explanation of this set of problems, a partially observable dynamic 

decision problem is shown in Figure 3-5 in dynamic influence diagram format. In 

accordance with traditional POMDP form, the variables are arranged in such way: the 

decision maker takes an action A to affect the system state S and change its status; at 

the same time a cost is induced and a reward received, combined to the value node R; 

the decision maker then makes an observation O to detect the real state of the system, 

then decides the action to be taken in the next stage. 

As shown in Figure 3-5, typical POMDP assumes that the decision maker acts 

according to the observation of the previous stage. Described in typical dynamic 

updating formulas with the belief state b(s) together with the value function, the value 

update for stage t is: 

 

Vt = maxa
t [∑st

∈S ∑ st+1∈S b(st) P(st+1| st, at) R(at, st, st+1) +  

 β ∑st∈S ∑ st+1∈S P(st+1| st, at) b(st) ∑ot+1
∈O P(ot+1| st+1, at) Vt+1]     (3-10) 
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Here β∈(0, 1) is a discounting factor which makes sure the total expected value 

converges. When in the last stage T, VT is maxaT ∑sT-
∈S∑ sT∈S b(sT) R(aT, sT-1, sT). 

Consider the case of observing one state variable Si
t among the state variable set S only 

in stage t. Si
t is now removed from the state set S and then placed in the observation set 

O. The state set and observation set are now denoted as Ŝ and Ô, shown in Figure 3-6, 

only in this stage. Observing Si
t before At+1 will change (3-10) to: 

V̂ t (si
t=j )= maxa

t [∑st
∈Ŝ ∑ st+1∈S b̂ (st) P (st+1| st, si

t=j, at)  

R(at, st, si
t=j, st+1) + β ∑st∈Ŝ ∑ st+1∈S P (st+1| st, si

t=j, at) b̂ (st) ∑ot+1
∈O 

P (ot+1| at, st+1) Vt+1] 

V̂ t-1 = maxa
t-1 [∑ st-1∈S ∑st

∈Ŝ b(st-1) P (st| st-1, at) R(at, st, st-1)  

+ β ∑ st-1∈S ∑st∈Ŝ P (st| st-1, at) b(st-1) ∑ot
∈Ô P (ot| st, at-1) Vt] 

      (3-11) 
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Figure 3-6: Decision model with Si observed before A 

Note that the change lies in two dynamic updates since both the S set and O set at 

stage t are changed. Note that states and observations of the same stage are 
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incorporated in different dynamic update steps. The posterior belief states of the 

system after observation Ô and At are now: 
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 (3-12) 

The changed value functions will have impact on stages less than t, thus the Expected 

Value of Perfect Information (EVPI) should be the difference between total expected 

value of the two scenarios: 

  EVPI = ∑ i t+1V̂ i − ∑ i t+1V i  

If state variables in earlier stages are observed, more difference could be incurred. The 

EVPI is computed by substituting S and O with Ŝ and Ô in dynamic programming 

steps of those stages. 

3.1.4 Bounds of EVPI in Partially Observable Models 

In a single stage decision problem, denote the believed distribution of the chance 

variable S under consideration as P(s), the EVPI of variable S before decision A is: 

EVPI = ∑s P(s) maxa V(a, s) − maxa ∑s P(s) V(a, s)  

Since maxa V(a, s) is invariant to action a, ∑s P(s) maxa V(a, s) = mina∑s P(s) maxa 

V(a, s), so 

EVPI = mina ∑s P(s) maxa V(a, s) − maxa ∑s P(s) V(a, s) 

          = mina ∑s P(s) [maxa V(a, s) − V(a, s)] 
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Define regrets r(a, s) = maxa V(a, s) – V(a, s) ≥ 0 as an n×m matrix of n states and m 

actions, P(s) as the belief state matrix,  

EVPI = minai ∑sj∈S P(sj) · r(ai, sj) 

          = mina P(s) · r(a, s)      (3-13) 

If there is no prior information on the distribution of the state variable, the EVPI is 

bounded by the region [minb EVPI, maxb EVPI]. The lower bound of EVPI is 

nonnegative. Zero EVPI is obtained when there is a dominating action, or when the 

regrets vector for ith action is perpendicular to the belief vector. The max EVPI given 

a reward function is determined by an optimization problem shown bellow: 

   Max V 

  s. t. 

   ∑sj∈S P(sj) ·[maxai V(ai, sj) – V(ai, sj)] ≥ V, ∀ ai∈A. 

   ∑sj∈S P(sj) =1, ∀s, P(sj) ≥ 0   (3-14) 

When the distribution of the state variable is discrete, say, multinomial, this 

optimization is a linear program.  

In each time stage, the value functions corresponding to different actions are 

constituted by a set of γ vectors that are dominating in different regions of the belief 

state. Hence the EVPI can be expressed as: 

EVPI = mina [ b̂ (s) ·γp − b(s) · γi] 

γp
t = R(st, at) + β ∑ot

∈Ô ∑st+1
∈S P(ot, st+1| st, at) γo t+1]  

 γi
t = R(st, at) + β ∑ot

∈O ∑st+1
∈S P(ot, st+1| st, at) γo t+1]   (3-15) 

where b(s) is the belief state vector of s, ^ denotes perfect information case, γi ∈Γ is 

the γ vector for the ith action, and γp is the γ vector that corresponds to the perfect 

information case.  
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The first constraint of the optimization problem (3-14) can also be rewritten as [ b̂ (s) 

·γp − b(s) · γi]≥ V. 

Figure 3-7 shows the maximum EVPI given the piecewise linear value functions. In 

this stage, the four γ vectors γ1, γ2, γ3 and γ4 form the piece-wise linear and convex 

(PWLC) value function. The EVPI of S before A, is the distance represented by the 

double-arrow line corresponding to b and b̂ . The maximum EVPI is obtained at b* and 

b̂ *. Note that b̂  is one dimension less than b since it has fixed Si =j, but it is same to b 

after smoothing over the distribution of the observed variable. 
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Figure 3-7: Value function and the EVPI over a binary state b 

In a dynamic decision model with the state variables not directly observable, each 

action and observation in every stage corresponds to a γ vector. In the worst case, none 

of these γ vectors are dominated by the others, hence the number of γ vectors is 

exponential in the number of decisions and observations. Consequently, the 

optimization shown in (3-14) will be intractable. Nevertheless, for many practical 

cases the size of γ vectors | Γ | in each stage is finite, so that given a set of γ vectors the 

optimization (3-14) is solvable. 

Let EVPIt
* (S) = max b EVPIt denotes the largest EVPI can be induced in stage t. The 

gain in total expected value for a POMDP given perfect information in stage t is then 

bounded by [0, βt EVPIt
* (S)]. 
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If the case with perfect information is taken as an approximation of the state variable in 

POMDP, the EVPI can be viewed as the ‘error’ incurred in a certain stage. Keep 

observing variable S in each time stage as an approximating scheme for the POMDP is 

similar to which has been discussed in (Poupart and Boutilier, 2000). In that paper, 

when the POMDP is approximated by a projection scheme (e.g., a simpler structure 

which involves more conditional independencies than the real belief state), there might 

be a switch in selection of γ vectors from vectors chosen for actual belief states. An 

optimization problem is constructed to find this switch set of γ vectors and an error 

bound is calculated thereafter. Compare to other projection schemes, the perfect 

information approximation is simpler in that the γ vectors for this scheme are fixed 

with respect to a given reward structure. For an n-stage system, the upper bound of 

error is ∑t=1
n βt· EVPIt

* (S). Hence the error is bounded by [0, (maxt EVPIt
* 

(S))·
β
β

−
−

1
1 n

]. 

 

3.2 Value of clairvoyance for the intervened variables 

Some chance variables have decision nodes as their parents. These chance variables 

are called decision-intervened variables. In traditional EVPI computation, the decision-

intervened chance variables are not considered. Many computational tools in decision 

analysis also exclude such computation of VOI for intervened variables.  

Disregarding this topic is quite natural since adding an arc from the decision-

intervened variable to its parent decision node forms a directed loop, which violates 

the directed acyclic assumption in graphical decision models. It could also be logically 

contradictory in real situations. For example, the perfect information of a future 

uncertainty X says X is exactly in state x. With this perfect information, the decision 
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maker can adjust his/her strategy to make larger profit. Yet since this X is intervened 

by the decision taken, it might not be in state x any more, which indicates the original 

‘perfect information’ of X=x is not accurate at all.  

Though this situation will form a paradox conceptually, determining the value of 

information about a decision-intervened variable is not totally meaningless. This kind 

of information can be used to direct the current actions, increase the profits and avoid 

great costs. For example, in the condensed DID shown in Figure 3-8 (a), knowing the 

exact consequence of the surgery, whether it will be successful or failed, whether the 

successful surgery will improve the patient’s health of the next stage before the 

surgery is taken in the current stage, helps the surgeon decide which operation to take 

or if a surgery should be conducted. If the surgery is going to fail, the doctor might 

carry another therapy to avoid any harm. Hence, the information on decision-

intervened variable provides us an upper limit that the benefit that our current decision 

can give.  
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Figure 3-8: DID for calculating VOI of intervened nodes 

(a) Condensed form (b) Unrolled canonical DID with mapping variables added 

(c) Condensed canonical form 

In the EVPI computation of such cases we cannot simply add an arc from the decision 

to the chance node under discussion, since it forms a directed cycle in the original 

influence diagram, which means a deadlock in computation. Mapping variables, e.g. 
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those in double cycles in Figure 3-8 need to be added in order to take over the 

influence of decision and ‘set free’ the original decision-intervened variable. 

Canonical form is developed in (Howard, 1990; Heckerman, 1995) to address 

problems with computing the informational value in influence diagrams. A graphical 

decision model is in canonical form with respect to decision and chance nodes if no 

chance nodes are descendants of decision nodes, i.e., no chance nodes are decision-

intervened. Hence in a canonical influence diagram all the chance nodes that are 

descendants of one or more decision nodes should be deterministic nodes.  

It is now suitable for calculating VOI for decision descendants and for counterfactual 

reasoning using this canonical influence diagram. 

Heckermen and Shachter (1995) have introduced an algorithm for constructing 

canonical form for generic influence diagrams: 

 

Given a decision problem described by chance variables set U and decision variables set D:  

1. Add a node to the diagram corresponding to each variable in U ∪D 

2. Order the variables x1, …, xn in U so that the variables unresponsive to D come first. 

3. For each variable xi ∈ U that is responsive to D, 

a. Add a causal-mapping-variable chance node xi(Ci) to the diagram, where Ci ⊆ 

D∪ {x1; : : :; xi-1} 

b. Make xi a deterministic node with parents Ci and xi(Ci) 

4. Assess independencies among the variables that are unresponsive to D 

Here, a chance variable X unresponsive to decision D means X has the same outcome 

no matter what D is taken, i.e., D has no influence on X. For a formal definition, please 

refer to (Heckerman and Shachter, 1995). 
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We can construct the canonical form for the dynamic influence diagram shown in 

Figure 3-8 (a) as the one in 3-8 (b).  

If taking the temporal arcs into account in the process of finding unresponsive nodes to 

decisions and adding mapping variables, a condensed canonical form influence 

diagram shown in Figure 3-8 (c) can be constructed from its condensed form directly. 

In a more complex example shown in Figure 3-9, SORi, SOMi and Si are not responsive 

to the decision Di. However, Si+1 is responsive to Di through TRi, and thus SORi+1 and 

SOMi+1 are also responsive to Di. So we should construct mapping variables both for 

TRi and Si+1.  
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Figure 3-9: More complex example 

(a): Original ID; (b): ID in canonical form 

If the influence of a decision is spread over all the chance nodes then we have to add 

many mapping variables. However this is not necessary for the VOI computation of 

certain chance node before some particular decisions. Only the intervening decisions 

and their descendents need to be considered. The more stages involved in this 

conversion to canonical form, the more complex the influence diagram will be. This 

resulting complex DID keeps accordance with our experience that the farther we 

predict, the more uncertainty is encountered and hence the harder the conclusions can 

be made. 
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Figure 3-10: Convert ID (a) to canonical form (b), (c) 

Suppose the decision Di has m instances, and the chance variable Xi has n states, then 

Xi(D) has nm instances, while Xi’ has n outcomes. In the original influence diagram the 

random variable X has only m·⋅n instances, so in theory it is necessary to assign more 

probabilities for the equivalent conversion. For simplicity we will assume the 

independencies between variables X(di) given a specific decision di, like the graph 

shown in Figure 3-10 (b), where there are m random variables given m decisions, and 

no arcs between X(di) assuming independency. Thus we have P((xk, di), (xl, dj)) = P(xk, 

di)·  P(xl, dj), and the number of probabilities that need assigning reduced from nm to 

m⋅n. Other probabilities can be derived from these m⋅n outcomes. 
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The above independence assumption will simplify the conversion and the computation 

for VOI. However, if the random variables X(di) are dependent, i.e., nested as shown in 

Figure 3-10 (c), it is necessary to reassess the probabilities for the outcomes of X(di) to 

make sure the conversion is equivalent. Hence the actual VOI for knowing X before D 

will be different from the VOI computed in simplified scheme. 

For cases of binary states and binary decisions, we find that the difference between the 

VOI calculated in the two scenarios will be dependent on both the covariance and the 

value function for different decisions. When one state is dominant to the other and 

there is a positive correlation, the VOI calculated in simplified case will be higher than 

the actual case, thus the independence assumption boasts the value of information of 

observing the variable X before D. The range of this error caused by independence 

assumption is Vs’− Vr’ ∈ [− | R|, | R|], where R is the difference between the second 

and the third largest value. (See Appendix B). 

Moreover, if more causes for different alternatives are correlated, we are unable to tell 

if the independency assumption will increase the VOI calculated or not. If the problem 

is extended to multi-state and multi-decision case it will become more complicated and 

harder to estimate. 

The above analysis shows that we have to be careful when using the independency 

assumption. However, when there is no specified information about the dependencies 

between mapping variables given different alternatives, assuming independency will 

simplify the computation. 
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3.3 Summary 

In this chapter the properties of Expected Value of Perfect Information are studied 

under various dynamic decision environments, e.g., dynamic influence diagrams where 

the state variables are both observable and partially observable. Boundaries for EVPI 

in partially observable dynamic models are given with an analysis of complexity 

issues. Further more, the Value of Information computation for decision-intervened 

chance variables are also discussed. 

The contents in this chapter serve as a basis for the discussion in the later parts of this 

dissertation.  

 



 

 

4 Exact VOI Computation in Dynamic Systems 

 

 

As reviewed in Chapter 2, there are many ways to compute the EVPI in general 

influence diagrams. Most of these methods can be directly adopted to compute EVPIs 

in dynamic decision models formed as dynamic influence diagrams (DIDs), since 

DIDs are special cases of general influence diagrams. 

However, the direct application of these methods might not be very efficient for they 

do not take advantage of properties that are characteristic in dynamic decision models. 

In this chapter, efficient VOI computation that takes account of the dynamic structure 

of the system is discussed. 

 

4.1 Temporally Invariant Junction Tree for DIDs 

Kjærulff (1992) proposed the Dynamic Expansion and Reduction (DER) method to 

perform exact inference in Dynamic Bayesian Networks (DBNs) by adding new time 

slices and deleting old ones dynamically. However, in many practical cases the system 

structure in every time slice is stationary or near stationary. Xiang (1999) has 

mentioned that pre-compiling some slice representation of a stationary DBN could 

support more efficient exact inference. In this paper, a sub-junction tree template is 

constructed from the original DBN by first identifying a subnet, Si-1∪Ni∪Si, where Si-1 

57 
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and Si are minimal separators of the DBN and Ni is the part between them, as shown in 

Figure 4-1. 

 

 
N0 N1 Ni+1 S1 Si 

 

Figure 4-1: Partition of a DBN  

In order to calculate the value of information in dynamic systems, it is necessary to 

deal with decisions and values together with probabilistic nodes as in DBNs. Denote 

the decision node set as D, the value node set as V. Similar to the DBN partitions, for 

all the chance nodes we can partition them into a collection of disjoint sets W0, W1, …, 

Wk, …, Wn with the ordering shown in (2-4) of Chapter 2. The partition is illustrated in 

the following Figure 4-2. Denote Ii as all the information known before the decision Di, 

Ii = Ii-1 ∪ Di-1 ∪ Wi. 

 

…
Wn … W0 … 

W1 … 
Wk-1…    

D1 D2 Dk Dn 

…

Vm

V0 Vi
…

Wn-1… 

 

Figure 4-2: Partition of Influence Diagram 
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On the other hand, Shachter (1999) has presented an algorithm (here we call it the 

Requisite Observation algorithm) based on the Bayes-Ball algorithm (Shachter, 1998) 

to determine the requisite observations of each decision and then convert the influence 

diagram into a belief network in time linear to the graph size. 

In a structured belief network M = (N, A, F) which has nodes N, directed arcs A and a 

subset F of the nodes that are deterministically (functionally) related to their parents, 

not all variables are relevant to certain queries. According to node relevance, 

(Shachter, 1998) has given the following definitions: 

Def. 4.1 Irrelevant Nodes 

The irrelevant nodes for uncertain variable XJ given XK, denoted XNi (J|K), are 

those nodes which are conditionally irrelevant to XJ given XK,  

Ni(J|K) = {i ∈ N : Xi ⊥M XJ |XK}. 

Def. 4.2 Requisite Probability Nodes 

The requisite probability nodes for J given K, denoted Np(J|K), are those nodes 

for which conditional probability distributions (and possible states) might be 

needed to compute P{XJ |XK}. 

Def. 4.3 Requisite Observation Nodes 

The requisite observations for J given K, Ne(J|K) ∈ K, are those observed nodes 

for which observations (and hence the possible states which might be observed) 

might be needed to compute P{XJ |XK}. 

Both the Requisite Observation algorithm and the Bayes-Ball algorithm are based on 

the equivalency between the conditional independency and a graph property called d-

separation. 
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Def. 4.4 D-separation (Pearl 1988, Pearl et al 1990): 

If X, Y and Z are three disjoint subsets of nodes in a directed acyclic 

graph; then Z is said to d-separate X and Y, if and only if along every 

chain from each node in X to each node in Y there is an intermediate node 

A such that either: 

1. A is a head-to-head node in the path, and neither A nor its 

descendants are in Z,  

2. A is not a head-to-head node in the path and A is in Z. 

Here ‘head-to-head’ means the node has more than two arcs pointing to it, so that the 

arrow heads meet on the node. 

The Bayes-ball algorithm (Shachter, 1998) is a simple and efficient algorithm to 

compute irrelevant and requisite sets for inference and decision problems.  

In M = (N, A, F) with respect to the expression P{XJ |XK}: 

1. Initialize all nodes as neither visited, nor marked on the top, nor marked 

on the bottom. 

2. Create a schedule of nodes to be visited, initialized with each node in J to 

be visited as if from one of its children. 

3. While there are still nodes scheduled to be visited: 

a. Pick any node j scheduled to be visited and remove it from the 

schedule. Either j was scheduled for a visit from a parent, a visit 

from a child, or both. 

b. Mark j as visited. 

c. If j ∉ K and the visit to j is from a child: 
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i. if the top of j is not marked, then mark its top and schedule 

each of its parents to be visited; 

ii. if j ∉ F and the bottom of j is not marked, then mark its 

bottom and schedule each of its children to be visited. 

d. If the visit to j is from a parent: 

i. If j ∈ K and the top of j is not marked, then mark its top and 

schedule each of its parents to be visited; 

ii. if j ∉ K and the bottom of j is not marked, then mark its 

bottom and schedule each of its children to be visited. 

4. The irrelevant nodes, Ni(J|K), are those nodes not marked on the bottom. 

5. The requisite probability nodes, Np(J|K), are those nodes marked on top. 

6. The requisite observation nodes, Ne(J|K), are those nodes in K marked as 

visited. 

The Requisite Observation Algorithm (Shachter, 1999), which is closely related to 

VOI computation, is listed bellow: 

“Visit each decision Di in reverse chronological order, i = m, . . . , 1. Let Vi be 

the set of value descendants of D in the current diagram. Run the Bayes-Ball 

algorithm on Vi given Di and Ii, the variables observed before Di is chosen, 

and let Ri be the requisite observations (not including Di). Replace Di by a 

chance node “policy” with Ri as parents and proceed to the next earlier 

decision.” 

The Requisite Observation algorithm is developed in a decision system with separable 

value nodes to prune the set of irrelevant information predecessors for each of the 

decisions in general influence diagrams, hence it is appropriate to apply the algorithm 
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in dynamic influence diagrams. Yet in order to take advantage of the repeatability of 

many practical dynamic systems, it still needs to be revised. 

 

4.2 The Problem 

Our objective is trying to apply efficient clustering method in a DID, making use of the 

stationary or near stationary features of the system. It is desired to build a template 

junction tree and then evolve the system dynamically to compute the value of 

information. The procedure is: first identify a subnet to build template junction tree; 

then apply the Requisite Observation algorithm to convert the decision problem into a 

probabilistic network; construct template junction tree thereafter; evolved into the next 

time stage by updating the current belief and finally reuse the junction tree to calculate 

the value of information. 

However, DBNs can be divided into subnets based on the forward interface or 

backward interface (Xiang, 1999); while it is not clear whether this decomposition is 

valid in DIDs. The key problem is: After converting the DID into a DBN, can this 

DBN be divided into time-invariant template subnets?  

Take the DID shown in Figure 4-3 as an example. First, run the Decision Bayes-Ball 

algorithm on Vn given (Dn, In), In ={b0, D0, …, bn-1, Dn-1, bn}, the requisite observation 

set of Dn, Rn = {bn, Dn-1}. Iterating backwards yields a requisite information set Ri = 

{b0,…, bi, Di-1}. Hence arcs must be added from these requisite observations to the 

decision Di, as shown in Figure 4-4. Thus the resulting belief network is much more 

complex, and is not Markovian for decisions. This is because the information 

predecessor bi has a parent ai which is also included in the forward interface. The 

Bayes-Ball passed from bi+1 bounces back to bi from ai, and bounces back to bi’s other 
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parents that are in the previous stage. According to the repeating structural character of 

the temporally invariant DIDs, either the Bayes-Ball will stop at the previous stage; or 

else it will pass to the very first stage, include all observations and cause the complex 

structure like what is shown in Figure 4-4. 

Hence before dividing the whole DID into subnets, a check in the structure to test 

whether the DID is decomposable is needed. If the DID cannot be decomposed to 

time-invariant subnets, it is not likely that we can save much computational time and 

space by constructing template and rolling back thereafter.  
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Figure 4-3: An example of DID 
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Figure 4-4: Resulting DBN for the example above 
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If a node can carry the Bayes-Ball to the previous stages without being blocked, thus 

spread the requisite observations to those stages, we call it a spreading variable. When 

we run the Bayes-Ball algorithm in the DID we can find such spreading variables: 

 

Def 4.5 Spreading variables: 

In a DID M ={X, D, E, V}, consider a node Xi ∉Ii, if Xi is not d-separated from Xi-1 by 

the set Ii, then Xi is a spreading variable. 

Start from the last stage n, run the Bayes-Ball algorithm on (Vn | Dn, In), the requisite 

observation Rn should lie in Wn ∪ Dn.  

For the (n-1)th stage, run the Bayes-Ball algorithm on (Vn-1 ∪ Rn| Dn-1, In-1). A ball 

from Rn will pass to Xn, if the network is connected, which is a trivial constraint. If Xn-1 

is not d-separated from Xn by In, then the ball can be passed to Xn-1 through some active 

path without being blocked by In-1, and pass to Wn-1. Reason by analogy, the ball will 

be passed from Xi to Xi-1 and then to the very first stage through the active paths. Thus 

the requisite observation set will include variables in all the previous stages. 

The spreading variables can be detected in undirected graph as well. First identify the 

minimal ancestral sub-graph for Wi-1 ∪ Di-1 and Wi ∪ Di, denote as AS. In a DID 

without barren nodes, either the random variable Xi is in the ancestral sub-graph of Wi 

∪ Di, or Wi ∪ Di is in the ancestral sub-graph of Xi. If the former case holds, i.e., Xi-1 

and Xi are included in this sub-graph AS, moralize the sub-graph and cut Ii. If there are 

links found between Xi-1 and Xi, X is a spreading variable. 

Otherwise Xi is a descendent of Wi ∪ Di, then add minimal ancestral sub-graph for Xi-1 

and Xi, moralize and judge. 
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If there are any spreading variables in the DID, it is hard to take the advantage of the 

invariant features of the model. Otherwise, all the requisite observations are located 

within the subnet Ni, which is from Wi-1 ∪ Di-1 to Wi ∪ Di. We can thus identify the 

requisite observation of each decision in such subnet for the value node and the 

requisite observations obtained in the later subnet, without running the Requisite 

Observation Algorithm over the entire DID.  

After requisite observations are identified, this subnet might differ from the original 

sub-ID on structure with arcs from requisite observations added to the decision and 

arcs from non-requisite observations removed, but it inherits the temporal invariant 

feature. The forward interface based on this subnet will also be a self-sufficient 

separator and the sub-junction tree constructed be properly constructed with a root 

cluster that has no children. If the DID model contains many arcs from irrelevant nodes 

to the decision, running the Bayes-ball will reduce complexity significantly. If the 

DBN converted from original DID has a small forward interface set, this 

decomposition is quite useful and expressive. 

For a properly constructed junction tree the variables weakly inward of the decision are 

observed before the decision. Hence after the sub-junction tree is constructed, it can 

also be used to identify the variables which have zero VOI for a particular decision. 

This helps screen out unimportant chance variables for VOI computation. 

Since Ii is all the information known before the decision Di, Ii = Ii-1 ∪ Di-1 ∪ Wi, the 

condition for the absence of spreading variables, (Xi+1 ⊥ Xi | Ii), means the variable Xi+1 

in the current stage is conditionally independent of the variable Xi in previous stage 

given all the information available at present. As an example, the common Markov 

Decision Processes have such a feature; hence they can be divided and solved 
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iteratively. However, such decomposable DIDs include problems with many 

unobservable variables other than simple MDPs, as long as they satisfy the condition.  

On the other hand, Partially Observable Markov Decision Processes in which the state 

variables are dependent on the whole history cannot be separated by the decisions and 

the observations before those decisions, thus are not temporally decomposable. In 

these cases, the largest clique constructed will increase as the number of the time 

stages t increases, namely at least t in clique size. 

 

Theorem 4-1: In a connected DID where spreading variables are present, the size of 

the largest clique is at least T, here T is the number of total stages. 

 

Proof:  The presence of spreading variables means there are paths that the 

Bayes-ball can bounce back to previous stages. These paths go through decisions and 

their requisite observations. Now supposing this DID has only one decision Di has and 

its requisite observation Bi. Referring back to previous stages, nodes B0, …, Bi-1 are all 

requisite observation of Di. We then need to add arcs from B0, …, Bi-1 to Di, and also 

from B0, …, Bi-2 to Di-1, etc. In moralization, every pair of Bk and Bj (k ≠j ∈{0,…, i-1}) 

are linked with a moral arc, hence the nodes B0, …, Bi-1 and Di form a complete set of 

size i. In a T-stage DID the largest clique size will be T. Reason by analogy, if there are 

n sets of such requisite information for Di, A0, …, Ai-1, B0, …, Bi-1, …, then the clique-

width (the size of the largest clique in an optimal junction tree) will increase to at least 

nT.             

The clique includes these requisite observations and their child decision node is the 

largest cluster in the junction tree corresponding to the DID. The parts other than this 
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largest clique can still be triangulated and constructed as clusters with the same 

structure separately, in a recursive manner. 

When using the junction tree for inference, the time of loading the probabilities and 

performing the computations is proportional to the total space given by Σ C∈J Π n∈C | S 

(n)|, where C is the clique in the junction tree J and n is a node in C, S is the state space 

of n. This is dominated by the size of the maximal clique if all the vertices have the 

same or similar state space size. When there are no spreading variables in the DID, the 

clique-width will remain the same as the decision stages increase; while the DIDs with 

spreading variables will have an increasing clique-width as the increase of stages. 

Becker and Geiger (1996) argued that when clique-width is O (log N), there exists an 

approximate algorithm to find a near optimal (errs by a factor 3.66) junction tree in 

polynomial time, where N is the number of nodes in the graph. If the clique-width is 

slightly greater than the logarithm of N, there is no polynomial algorithm unless P 

equals NP (most researchers believe that P and NP are different classes, Cormen et al, 

1990). As we discussed earlier, the clique-width grows with the decision stages. 

Suppose the clique-width of m stages is k, and n is the number of nodes in these stages, 

then after adding T stages, clique-width is around k· (1+ T/m), and log n grows to log 

(n + n·T/m) =log n + log (1+ T/m), obviously the clique-width increases faster than log 

n. Solving such problems exactly will be hard, no matter what is the representation. 

The other problem we address here is the re-using of the junction tree to calculate the 

value of information on the basis of the junction tree template. Dittmer et al (1997) 

reused the original junction tree to calculate the value of observing a variable X before 

D by adding X to all the clusters between X and D’s inward-most cliques. If the 

uncertain variable lies in the same cluster as the decision, a change of elimination order 

within the cluster is needed. This method is feasible in the dynamic environment since 
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the conclusion is over an ID with multiple decisions and separable values. If a 

particular variable is to be observed several stages earlier, the sub-junction tree with 

this variable added in the cliques can be reused. 

 

4.3 Adding Mapping Variables to the Junction Tree 

As has been discussed in an earlier chapter, the VOI computation for decision-

intervened chance variables is different from the computation for those nodes 

unresponsive to the decision. Recall in the procedure of converting an influence 

diagram to canonical form in Chapter 3, causal mapping variables need to be added for 

each chance variable responsive to a decision (Heckerman & Shachter, 1995), and the 

original chance variables become deterministic nodes. 

Adding mapping variables in a specific stage only influences the construction of the 

sub- junction tree for the subnet of that stage. When the distance between the decision 

and the chance node is not far, usually it only adds some leaf clusters including the 

mapping variables to the junction tree.  
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Figure 4-5: ID without or with mapping variable added 
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Figure 4-6: Sequentially add mapping variables and cliques 

Suppose that a chance node Xi is responsive to decision D. Consider the situation that 

Xi has a set of parent nodes Π (Xi) which is unresponsive to D. The mapping variables 

are added between Xi and Π (Xi). Before the mapping variable Xi (Ci) is added, Xi is in 

the same clique of Π (Xi). With mapping variable added this clique splits to two, one 

includes Xi (Ci) and Π (Xi), and the other includes Xi and Xi (Ci), as shown in the right 

part of Figure 4-5. If Xi has no chance node parents, only a leaf clique including Xi, Xi 

(Ci), and Ci is added.  

If the responsive node has responsive parents, it is only a matter of sequentially adding 

mapping variables and consequently leaf cliques, like the procedure illustrated in 

Figure 4-6. 
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In a properly constructed junction tree, a decision D is weakly inward of an uncertain 

variable A if A is a descendant of D in the influence diagram. If a junction tree is 

already built for the sake of inference, it is now easy to check if D is weakly inward of 

A, and thus determine if the mapping variable of A are necessary to add or not based on 

the junction tree. 

 

4.4 Cost of gathering information 

Cost can be incorporated directly in the value function when it occurs recursively. It 

can also be subtracted separately from the VOI calculated. The certain equivalent 

CE(X) is the amount of money one is willing to pay for an uncertain event X (e.g., a 

gamble). Suppose U(x) is a mapping function from money value to utility, then 

U(CE)=∑i pi U(xi), where P(X=xi)= pi. We say U(x) has the Value Additive property or 

Delta-property when U(CE+∆)=∑i pi U(xi+∆). When utility is involved, we usually 

assume the delta-property holds so that an increase in value function will cause same 

amount of increase in certain equivalent. 

When time is a concern, the total expected value will be different from the case 

without taking into account the effect of time.  

In order to study the cost structure against the information value, not only the cost of 

information gathering, but also the cost of time delay, which is also called the 

opportunity cost, we divide the total cost Ctotal into two parts: static cost Cs and 

temporal cost Ct, where the former will not change as the time elapses, e.g., the cost of 

conducting a medical test; and the later will increase with the time for information 

gathering (e.g., time of waiting for a test result to turn up):   

Ctotal = Cs + Ct.  
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4.4.1 Discounting the cost 

The temporal cost can be represented with an economic discount factor rc for time 

value as well, hence the future total cost CFtotal can be derived from present total cost 

CPtotal:  

  CFtotal = CPtotal  (1+ rc)T  

T
cc

T
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sPtotal rr
r
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⋅=      (4-1) 

Here T is the number of time slices in the model, and rc ∈[0, 1]. 

The choice of interest rate of such economic discounting has been disputed by 

researchers. A rate of 2-10% is often considered as consistent with economic theories. 

Drummond et al (1987) used 5% as common rate. However, an expert panel organized 

by the United States Public Health Service recommended that researchers use a 

baseline 3% discount rate (Lipscomb, Weinstein, & Torrance, 1996). 

 

4.4.2 Discounting the benefits 

Since time value is considered when calculating cost, the benefits received in each 

decision stage should be discounted with time as well. 

Discounting benefits takes place when a discount factor rb is applied to the value node 

merging operation in DIDs. Given the value nodes v0,…, vn for each stage, the merged 

value of ith stage Vi = vi + rb Vi+1. 

 The discounting of benefit has not been discussed in the junction tree constructed 

from an influence diagram. In (Shachter 1999), if the value nodes are not nested, which 
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is the case of dynamic influence diagram, the structure of properly constructed junction 

tree will be as the Figure 4-7, for each un-nested value node, Qi is the non-value 

variables relevant to Vi. The value / utility potential ψCi (refer back to Chapter 2, 

equation 2-6) is propagated from leaves to root, if it is not null. Hence a discount factor 

rb ∈ [0, 1] can be directly multiplied to the second addend of the equation to denote the 

time value when the marginalization proceeds in reversed time order. 

S

S
bCC r

φ
ψ

ψψ ⋅+=
1!

'      (4-2) 

 

Ri, Di, Qi

Ri+1, Di+1, Qi+1

Ri+1, Di+1, Qi+1

 

Figure 4-7: A part of properly constructed junction tree  

In time-invariant dynamic influence diagrams the sub-junction trees are marginalized, 

discounted and then absorbed from leaves to root iteratively. 

Gold et al (1996) recommended a discounting rate of benefit rb be the same as the rate 

of cost rc. It is said that if rb is greater than rc, a time paradox will occur: it is always 

more profitable to delay the action than act immediately. Hence an equal rate is 

recommended and the present values of both cost and benefit are used.  

However, (Gold et al, 1996) is mainly focusing on the societal perspective of the cost 

and benefit, e.g., the same amount of money can save the same number of patients the 

next year as this year without inflation. As to the view of an individual patient, this 

might not be true since an earlier detection and treatment of some disease are better 

than a late one, and a one-day delay may be so expensive that it cost the patient his/her 
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own life. So when individual opinions are involved the discounting rate might be 

different from that of societal analysis. One way for analysis is to define a base rate of 

3% and perform sensitivity analysis in the range of 0 to 7% on the discounting rate. 

The discounting rate can be varying from individual to individual, but for curative 

health investment with immediate benefits, a positive discounting rate is appropriate. 

 

4.4.3 Semi-Markov Processes 

In the case of transition time being stochastic, i.e., the semi-Markov decision process, 

an attribute t(δ) denoting the time with respect to a granularity unit δ can be added to 

each node, the marginalization of the utility potential will become: 
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4.5 Calculating VOI in Dynamic Influence Diagrams 

As a synthesis of the above discussions, an algorithm for exact VOI computation 

comes out: 

Input: A dynamic influence diagram M with temporally invariant structure, the 

chance node Xi of interest, the decision node Di prior to which we 

observe Xi. 

Output: The value of information of observing Xi before Di. 

Procedure:  

1. Check if there are any spreading variables in the DID.  

a. If no, specify the subnet between the forward interfaces. 

b. If yes, report and stop. Approximate method may be needed. 
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2. Find requisite observations Ri for (Vi | Di, Ii) using the Bayes-Ball algorithm. 

Run Bayes-Ball on  (Vi-1 ∪ Ri | Di-1, Ii-1) 

3. Store all the requisite observations in Ri, make Ri as only parents of Di. 

4. For i = T to k do 

i. Construct sub-junction tree 

ii. Calculate the expected value of sub-ID 

iii. Discount and update the potentials 

iv. Save the potentials 

5. For i = k to 0 repeat i to iii 

6. Add mapping variables if necessary. Add Xl to all cliques inward of the clique 

with Dk, re-calculate the expected value from kth stage to lth stage, then to the 

root.  

7. Finally, get the difference.  

The Bayes-Ball algorithm runs in time linear to the graph size, i.e., O (|V|+|A|), where 

|V| is the number of vertices and |A| is the number of arcs. To judge if there are any 

spreading variables, there’s no need to run it in the whole DID, but two stages of the 

DID. Hence if a time-decomposable DID has T time stages with N nodes in each stage, 

the time will be O (N2). On the other hand, the time for performing the computations is 

dominated by the size of the largest clique with maximum state space in the junction 

tree. The inference time is O (T ·N ·|S|), which is linear to the state space |S|. Here 

|S|=∏Xi∈C S (Xi), where C is the largest clique in the total junction tree, and S (Xi) is the 

state space of Xi in C. 

As been discussed before, for clique-width k = O(log N), an approximate algorithm can 

be used to find a near optimal (with error factor a is a constant, a = 3.66 in (Becker and 
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Geiger, 1996), a can be improved further) junction tree in polynomial time, where N is 

the number of nodes in the whole graph. The inference will be O {T ·N · poly(N) 

·[∏Xi∈C S(Xi)]a} (proved in (Becker and Geiger, 1996)). Here poly(N) is the complexity 

for solving a linear programming, which is polynomial. For binary variables Xi, ·[∏Xi∈C 

S(Xi)]=2k, since the largest clique C contains k variables, and when k = O(log N) this 

term is O(N), and·[∏Xi∈C S(Xi)]a = O(Na). The time for running Bayes-Ball is 

negligible, compare to the inference time. Hence in this case the total time will be O {T 

·N · poly(N) O(Na)}, which is  polynomial to N. 

The inference is much more complex at the presence of spreading variables, as has 

been discussed before. 

 

4.6 Implementation 

In order to illustrate the procedure of calculating the VOI in dynamic situation, an 

example based on an actual dynamic decision problem in medical practice is 

introduced in this part. The case comes from (Leong and Cao, 1998; Wang, 1999; 

Wang et al 2000). 

 

4.6.1 The follow-up of colorectal cancer 

Colorectal cancer refers to the malignant tumor of the colon or rectum. It is the second 

most common neoplasm in Singapore. Nowadays many of the patients with colorectal 

cancer undergo a potentially curative resection but about 50% nevertheless die from 

the local recurrence or distant metastasis within five years after the resection (Wilson 

and Donohue, 1991). Regular follow-up is a logical way of improving the patient’s 
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prognosis by early detection and treatment of metachronous tumors, local recurrence 

or metastatic disease.  

During the follow-up process, the colorectal cancer patient visits the physician at 

regular intervals to have some of the diagnostic tests performed. These diagnostic tests 

include those for detecting either recurrence, e.g. sigmoidoscopy, colonoscopy and 

fecal occult blood test (FOBT), or metastasis, e.g. chest radiography (CXR), or both, 

e.g. computed tomography (CT) scan and carcino-embryonis antigen (CEA) test. 

Hence the tumor follow-up was defined as “clinical and apparative test repeated 

schematically to detect tumor relapse after curative resection.” (Staib at el, 2000) 

On each visit, the doctor would prescribe several tests according to the current status 

and the symptoms of the patient. The patient needs to pay for the consulting fee of the 

physician, the cost of the test, and spend time on both conducting the test and waiting 

for the result. Hence it is important to give only the necessary tests to a patient on each 

follow-up visit.  

 

4.6.2 The model 

The case has a clearly multi-staging nature. Furthermore, the time value should be 

considered in the process: earlier detection of the recurrence is more useful than later 

detection. The whole problem can be described in a standard dynamic model (Wang, 

1999) including time horizon T, actions A, states S, events E, reward function R and 

probabilities P. The model is built on the basis of data from Singapore General 

Hospital, yet the variables are abstracted to simplify the model. 

The patient visits the physician every 3 months in the first three years after curative 

surgery (4 times each year). If a patient survives these three years without recurrence 
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and metastasis, he/she is assumed as completely cured. Hence the decision horizon for 

the intensive follow-up model is: T = {0, 1, 2, …, 12}. 

The actions that can be taken include a series of medical tests for detecting the 

patient’s status, which fall into three categories: test for recurrence (denoted as 

Test_R), test for metastasis (denoted as Test_M), and test for both recurrence and 

metastasis (denoted as Test_RM). It may be significant to compare these alternatives to 

the case of without any follow-up (the ‘do nothing’ action), but patients that do not go 

to hospital for follow-up treatments leave no records. It is difficult to gather 

information for this scenario; hence this action is not included in the model. 

During the follow-up programme, a patient may be free from malignant tumor, 

develop tumor with local recurrence, develop metastasis tumor in distant location, or 

have both recurrent and metastasis tumor, which has little hope of cure. We denote the 

above four states as Well, Rec, Met and Rec-Met. Symptoms and test results (TR) 

support the diagnosis for the patient. Different symptoms are related to different states, 

which can be grouped into two abstract symptoms: symptom of recurrence (SOR), 

symptom of metastasis (SOM). (SOR), (SOM) and (TR) are the abstract event variables 

that can be observed. 

Utility values of 10.0, 4.0, 2.0, and 0.0 are assigned corresponding to the four states 

Well, Recurrence, Metastasis, and Rec-Met respectively. We assume the decision 

maker is risk-neutral and delta-property holds for the utility function, hence in the rest 

of this chapter we will calculate the expected utility instead of expected value, and 

VOI computed is actually utility of information. All the probabilities and utilities are 

assigned by domain experts.  

In the original model of (Leong and Cao 1998; Wang 1999), costs are not explicitly 

included. In order to support a more practical value of information study, costs of 
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information gathering procedures (medical consulting, diagnostic tests) are taken into 

account in this example.  

The costs for the alternatives are the amount of money paid for the diagnostic tests, 

which is shown in Table 4-1. (Data source: Singapore General Hospital price list). 

Tests are grouped into three categories. The abstracted cost for each category is the 

weighted average over all tests in the category. The weights come from the frequency 

of each test used in all 20,149 patient records. 

Table 4-1: Cost for alternatives in follow-up case 

 Test for both Test for recurrence 

 CEA CT scan Colono-
scopy 

Sigmoid-
scopy 

Abdominal 
X-ray 

 

Endorectal 

Ultrasound 

Price 
(SG$) 16 200 60 60 6 94 

Frequency 1 0.95 0.95 0.99 0.82 0.94 
Weight 0.51 0.49 0.26 0.27 0.22 0.25 
Abstract 

cost (SG$) 106.16 56.62 

 Test for metastasis 

 Chest X-ray Ultrasound-liver Barium Enema 
Price 
(SG$) 6 94 58 

Frequency 0.95 0.95 0.95 
Weight 0.33 0.33 0.34 
Abstract 

cost(SG$) 
52.7 

 

When costs of each alternative are taken into account, it becomes a multiple criteria 

decision making problem. In this case, two objectives are considered: maximize the 

utility of finding earlier sign for recurrence, and minimize the cost of conducting the 

diagnostic tests. The cost is the price (in Singapore Dollars) of the test that the patient 
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takes, and the consultation fee, etc. It's hard to map this money value to utility scale, 

for every patient has a different utility profile. 

In such cases, a comparison on benefits over costs ratio, or the B/C ratio (Table 4-2) 

can be conducted among the test strategies. This B/C ratio is frequently used in cost-

effectiveness analysis. 

 

Table 4-2: Value functions for the follow-up case 

State 
Decision 

Well Rec Met Rec_Met 

Test_R 10/52.7=0.19 4/52.7=0.076 2/52.7=0.038 0 

Test_M 10/56.62=0.177 4/56.62=0.07 2/56.62=0.035 0 

Test_RM 10/106.16=0.094 4/106.16=0.038 2/106.16=0.019 0 

 

 

 

Discounting 

The way of discounting for both cost and benefit will vary for their different measures. 

Many researchers use the Quality Adjusted Life Year (QALY) as the measure for 

benefit gained in health care, and compare alternatives on the basis of the rate that 

QALY over cost (money). The benefit scales experts provided for this case is in 0-10 

utility, and hence the comparison of alternatives can be done based on utility-cost ratio.  

The problem in this case is not concerning individual patient alone, hence the 

traditional discounting rates of benefit and cost for social perspective are adopted. The 

United States Public Health Service recommended 3% rate, now used for both the 

benefit and the cost. 



Chapter 4: Exact VOI computation in Dynamic Systems 

 80

 

4.6.3 Methods 

This is a finite horizon dynamic problem, thus can be described in dynamic influence 

diagram format. Figure 4-8 is a DID for the abstracted model of colorectal cancer 

follow-up treatment problem. In this case, chance nodes Si-1, SORi, and SOMi are d-

separated from the previous stages by the set {Di, TRi}, so there are no spreading 

variables. Essentially, this is a problem with observable state variable (TR), yet it 

includes unobserved nodes (S, SOR, SOM). 

To demonstrate the VOI computation for SOR and SOM before decision D, there are 

no information arcs from events SOR and SOM to the decision node in the model 

shown in Figure 4-8. The importance of observing these symptoms before decision is 

thus evaluated by computing the VOIs. 

 D1 S1 

V1

SOMi

SORiTR1 TRi 

Si S0 

SOM1 

SOR1 

V0 Vi 

Di 

 

Figure 4-8: The follow-up problem 



Chapter 4: Exact VOI computation in Dynamic Systems 

 81

Si-1

Vi-1

SOMi

SORiTRi-1 TRi

Si 

Vi

Di 

 

Figure 4-9: Subnet for the follow-up problem 

In the last stage, the requisite observation for the last decision Dn is Rn = {TRn-1}. 

Cutting a subnet from {TRi-1} to {TRi} and running the Bayes-Ball for (Vi, Ri+1 | Di, Ii), 

it could be found that the requisite observations for Di are {TRi-1}. A subnet shown in 

Figure 4-9 is thus obtained, where the set {SORi, SOMi, Di, TRi} is the forward 

interface. Replace Di with a chance node as the child of the requisite observations and 

construct sub-junction tree in this subnet, a quite simple junction tree could be built as 

shown in Figure 4-10. The root cluster may be a little different from other clusters in 

later stages since the first stage is not exactly the same as later ones. 

 Di+1, TRi+1, Si+1

Di, Si-1, SORi, SOMi, TRi

Di+1, Si, SORi+1, SOMi+1, TRi+1

TRi-1, Di, Si-1, SORi, SOMi 

Di, TRi, Si

TRi, Di+1, Si, SORi+1, SOMi+1 

 

Figure 4-10: A sub-junction tree (for 2 stages). 
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After building such junction tree the total expected utility can be computed from the 

leaf to the root node. The procedure is: first store the whole DID as a 2-stage structure 

and the number of time stages; second, compute the utility and probability potentials 

from the last stage, store them in the forward interface {SORi, SOMi, Di, TRi}; and then 

repeat the computation for potentials until finally the first stage is reached. Suppose the 

value of information of observing S1 before D2 is of the interest, it is only necessary to 

reverse the elimination order inside the clique {TR1, D2, S1, SOR2, SOM2} since they 

are in the same clique. For the scenario of knowing S2 before D2, a mapping variable 

should be added for S2, like the condensed form shown in Figure 4-11. Other 

procedures are the same, and then VOI is computed afterwards.  

 

t 

t 

Vi

SOMi 

SORi 

TRi 

Si 

Di 

S(Di,TRi)

 

Figure 4-11: Condensed canonical form for VOI of Si before Di 

The VOI computation can be implemented in the same junction tree when the chance 

node and the decision node in question are input at the same time. However, if we 

require a VOI computation after computing the total expected utility of the whole DID, 

the reuse of the original junction tree will require extra space for storing the potentials 

of each time stage. 
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4.6.4 Results and Discussion 

Using traditional VOI computation methods (procedures from Smile© Library, 

Decision Systems Laboratory) in above DID which only includes 4 stages, an average 

time of 45 seconds (In a Pentium III 500. Computing facility is the same for all 

programs described afterwards) are required for each VOI computation. It will be very 

time-consuming to both construct the 12-stage model and compute the value of 

information for any chance node. 

When using the BNT toolkit (Murphy et al, 2002) for MATLAB to solve the example 

as a whole DID, using the LIMID model (Lauritzen and Nilsson, 2001), the elapsing 

time is around 8 seconds. In LIMID model, the assumption of non-forgetfulness of the 

whole decision history is omitted, to produce soluble influence diagrams that might be 

different from traditional ones, hence the model is called Limited Information 

Influence Diagram. The model can be taken as an approximation of the traditional IDs, 

which will be discussed later. The MATLAB BNT toolbox realization of LIMID is an 

exact one, however. Thus it is used for comparison purpose. 

Meanwhile, the computing time of total expected utility for procedure with the sub-

junction tree algorithm described in previous section is 0.82 seconds for a 4-stage DID. 

The running time for the whole 12 stages is around 1.5 seconds for sub-junction tree 

algorithm and 22.5 for unrolled DBN inference. For computing VOI, the elapse time is 

about 2 seconds on average using sub-junction tree algorithm, varying with the starting 

and ending stage of observing the perfect information. 
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Table 4-3 Comparison of Computation Time  

(Measured in seconds) 

 VOI computation 

(Smile© library) 

LIMID 

(Matlab BNT) 

Unrolled DBN 

(Matlab BNT) 

Sub-junction Tree 

(Matlab BNT) 

4-stages 45  ⎯* ⎯* 0.82 

12-stages ⎯+ 8  22.5 1.5  

Comments Exact Approximate Exact Exact 

*: Experiments not necessary hence not done. 

+: Computation time too long to reach a stop. 

The method using the junction tree may not be very advantageous over the probability 

propagation in this case where the largest clique includes all the nodes in a stage. 

However, it surely is faster than inference over the whole DID without dividing the 

DID according to stages. 

The total expected utility calculated is 1.5137, the VOI for knowing Si before Di+1 is 

0.0677 and knowing SORi and SOMi before Di is 0.0592. Though, in this particular 

case, such number of ‘VOI’ is not of our final interest since this is the gain in B/C ratio 

given the perfect information of S2 before D3. The policies for both scenarios are 

recorded to calculate the actual benefit and costs occurred respectively. The total 

expected utility = 61.4113, (remember the maximum utility in one stage is 10 and 

minimum is 0), total cost = 675.5200 (in Singapore dollar) for no perfect information 

on S; and the expected utility 83.0590, total cost = 675.5200 for knowing S.  

Furthermore, the case of not taking any diagnostic tests is also studied under the 

assumption of maximum entropy (An even distribution of ‘test results’). The original 

model is thus converted into Figure 4-12. The total expected utility is now only 1.3042, 



Chapter 4: Exact VOI computation in Dynamic Systems 

 85

0.2772 less than full information and 0.2095 less than taking diagnostic tests, which is 

a much larger advantage. This means the diagnostic tests are quite important in the 

follow-up decision model. 

 
t 

SOMi

SORi

Si 

Vi

Di 

 

Figure 4-12: Follow-up without diagnostic tests 

When the starting status of the patient is well, it is best to choose tests for recurrence, 

while tests for metastasis should be employed if the starting status of the patient is 

recurrence or metastasis. When the patient’s starting statues is unknown and assumed 

to be equally distributed, the policy of tests for recurrence should be used. 

These results show that it is beneficial having perfect information for the status of 

patient. However, if the problem is modeled other way, e.g., the next stage state Si+1 

depends on Si, this sub-junction tree algorithm may not be applicable because of the 

presence of spreading variables. 

 

4.7 Conclusions 

This chapter describes an algorithm to compute value of information in dynamic 

decision models, namely dynamic influence diagrams.  

A group of DIDs are identified as which can be decomposed into sub-networks with 

similar structures, and hence a sub-junction tree can be generated as a computing 
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template based on these sub-networks. The methods on reusing the sub-junction tree 

are also discussed when VOI for variables with intervening decisions is under concern.  

This chapter also considers the time value of benefits and costs for information 

gathering by discounting the value in each stage. For societal analysis an equal 

discounting for both cost and benefit is suggested, however, when the individual 

preference is concerned, the rates may be different. Hence a base rate and a sensitive 

analysis afterwards are suggested. 

An algorithm of calculating VOI in DIDs is proposed and the computational 

complexity discussed. Using our method, the inference in DIDs without spreading 

variables is polynomial to the state space and when clique width is O(log N) the 

algorithm is polynomial. This method is supposed to provide researchers a tool of 

sensitive analysis in dynamic decision modeling. We believe it is both illustrative and 

efficient. 

Finally, an example based on real world practice is used to illustrate the computation 

of EVPI in different scenarios. The example shows that the algorithm is quite efficient 

and still yields reasonable results. 



 

 

5 Quantitative Approximations in Partially Observable 

Models 

 

 

The method proposed in Chapter 4 is polynomial to state space only when spreading 

variables are not present, which is equivalent to dynamic models in which decision 

variables are Markovian (I.e., given the current variables, future variables are 

conditionally independent are of the past). 

The presence of spreading variables results in immense difficulties in the computation 

of the expected value of a DID. The exact solution of such POMDP with finite-horizon 

is PSPACE-hard 3 (Papadimitriou &Tsitsiklis, 1987), let alone the infinite-horizon 

problems. When it comes to the computation of EVPI, the complexity can be twice of 

that for a single POMDP solution. Even computing a bound for EVPI will be 

intractable (please refer back to Chapter 3). 

On the other hand, the purpose for VOI computation is to guide the information 

gathering process, to adjust the model and ultimately to improve the decision quality. 

Therefore, in many occasions we would like to consider some approximation methods 

with higher efficiency, but with some tradeoff in accuracy. 

                                                 
3 The class PSPACE is the set of decision problems that can be solved by a Turing machine using a 
polynomial amount of memory, and unlimited time. A problem is PSPACE-hard if an algorithm for 
solving it can be translated into one for solving any other PSPACE-problem, therefore PSPACE-hard 
means "at least as hard as any PSPACE-problem," although it might, in fact, be harder. 

87 
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Chapter 3 has analyzed the EVPI computation in POMDPs, which is quite similar to 

the value function pruning process. Hence approximations for POMDPs can be 

naturally adopted in EVPI computation as well. 

Approximations of POMDP solution techniques have been surveyed in (Cassandra, 

1998) and (Murphy, 2000). The later paper converts the known POMDP model into a 

belief state MDP and divides the solution methods according to the approximations 

lies in belief state b and value functions γ. The EVPI computation considered in this 

thesis mainly falls in graphical models which consist of a graph topology and a set of 

parameters associated with it; hence the approximations discussed here are divided into 

two major categories: structural and parametric approximations. 

 

5.1 Structural Approximation  

Structural approximations make use of the changes in network structure, e.g., asserting 

conditional independencies, adding information or similar steps in order to simplify the 

original model to improve the efficiency. Many ways of structural reduction have been 

proposed: adding certain assumptions to restrict the complexity in computation, 

approximating the true value function and the belief state by breaking arcs or removing 

nodes, etc. 

5.1.1 Finite History Approximations 

As has been discussed in early chapters, the complexity of a partially observable 

dynamic decision problem is exponential to the history of past decisions and 

observations. A straightforward way is assuming the decision-maker keeps memory to 

only the latest k observations and throwing away the history before the k stages. 

Constructing a window containing finite history is widely used in the learning 
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literature. The agent uses memoryless policies (Platzman, 1977; White & Scherer, 

1994; Littman, 1994; Singh, Jaakkola, & Jordan, 1994), policies based on truncated 

histories (Platzman, 1977; White & Scherer, 1994; McCallum, 1995; Hernandez-

Gardiol and Mahdevan, 2000), or finite-state controllers with a fixed number of 

memory states (Platzman, 1980; Hauskrecht, 1997; Hansen, 1998a, 1998b). 

Lauritzen and Nilsson (2001) introduce Limited Memory Influence Diagram (LIMID). 

The original purpose is to describe multistage decision problems in situations like 

restricted agent memory or multiple decision makers. Yet this can be taken as an 

approximation for the traditional IDs with memory constraints. The arcs from all the 

decisions and observations in previous stages to current decision node are deleted 

(information forgotten). That is, the information known before a decision is only in the 

same stage of the decision, and no earlier information will be remembered.  

Refer back to the example illustrated in Figure 4-3, the inference process in traditional 

influence diagrams requires adding arcs from {b0, D0, …, bi-1, Di-1} to each Di, as 

shown in Figure 4-4, which are called ‘no-forgetting arcs’ indicating they are in the 

decision maker’s memory. However in a LIMID, all such arcs are cleared out, as the 

following topology in Figure 5-1. Obviously, it will not form the large clique analyzed 

in section § 4.1, hence avoid the complexity exponential to the time horizon. 
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Figure 5-1: LIMID version of Figure 4-3 (after converting decisions to chance 

nodes) 

LIMID is often a good approximation of the traditional ID. In the PIGS example 

(Lauritzen and Nilsson 2001) the expected value of LIMID approaching that of the 

traditional ID very closely. However, this error between LIMID and ID can be 

arbitrary large.  

Typically the limited memory influence diagram will have less expected utility since 

the decision made in the absence of historical information could be a sub-optimal one. 

If state variables are all observed in perfect information case, the observed states are 

the only requisite information before the decision and there will be no difference 

between no-forgetting and forgetting case. Hence the expected utility in perfect 

information case is the same for both assumptions. Then it can be derived that VOI 

computed with limited memory assumption offers an upper bound. 

The case is a bit subtle when only a sub set of state variables are observed. The LIMID 

version expected utility of both with and without the perfect information will be less 

than the no-forgetting influence diagram, which makes it hard to decide the error in 

VOI calculated this way. 
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5.1.2 Structural Value Approximations 

MDP approximation attempts to retain the Markovian property of the actions by 

adding information arcs from the state variables to the actions, approaching the 

POMDP with an observable process thus breaking the large cliques containing all the 

history into smaller ones. MDP approximation methods include fully observable MDP 

approximation, the Q-function approximation of POMDP (Littman, Cassandra, & 

Kaelbling, 1995), the fast informed bound update (Hauskrecht, 2000), and the Even-

Odd MDP (Zubek and Dietterich, 2001). 

 X1

D1 

V1

X2

D2

V2

Xn

Dn

Vn
 

Figure 5-2: Graphical description of MDP 

The fully observable MDP approximation shown in the above Figure 5-2 is equal to 

the case with perfect information on all state variables. Q-function MDP (QMDP), 

shown in Figure 5-3, can be thought as similar to the DID in Figure 5-2, with perfect 

information for system state variable X, yet we need to average the value over the 

belief state b(X).  

Here is the value update for QMDP: 

ViQMDP = maxDi ∑ b(Xi) Q*MDP (Xi, Di) 

Q*MDP (Xi, Di) = Q (Xi, Di) + ∑ P(Xi+1|Xi) maxDi+1 [V(Xi+1, Di+1)] 

        (5-1) 
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Figure 5-3: DID for Q-function MDP approximation 

The only difference between the Q-function MDP and the fully observable MDP is that 

the position of the maximization of decision and the summation over belief states is 

swapped. The value difference (VOI) of the two scenarios offers a lower bound of the 

actual VOI. 

The fast informed bound (FIB) approximation (Hauskrecht, 2000), on the other hand, 

will offer tighter bound on the expected value thus bare a lower loss in accuracy than 

the QMDP. It is just like the DID shown in Figure 5-4, which the decision maker has 

information of state variable with one-stage lag and the observations O influenced by 

X. 
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Figure 5-4: DID for fast informed bound approximation 

ViFIB = maxDi ∑ b(Xi) [Q (Xi, Di) + ∑Oi+1 maxDi+1 ∑Xi+1 P(Xi+1, Oi+1|Xi) 

[V(Xi+1, Oi+1, Di+1)]     (5-2) 
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The only revision need to do in the original DID to form a fast informed bound 

approximation is adding one-stage lag information arcs to the decision in each stage. 

The relationships between the expected value for the different cases are (Hauskrecht, 

2000):  

MDP≥ QMDP ≥ Fast Informed Bound MDP ≥ Exact POMDP ≥ Unobservable MDP. 

 

The difference between them can be viewed as the value of different kind of 

information, e.g., full, lagged, etc. 

The VOI calculated by subtracting the expected value of MDPFIB from MDP, will be 

less than or equal to the actual VOI by the above inequality. Hence if after such 

computation a chance variable has VOI greater than 0, it is worth gathering 

information around it. Moreover, the importance ordering determined by the VOI of 

chance nodes is unchanged by such approximation. 

In (Zubek and Dietterich, 2001). an approximation of even-odd POMDP (POMDP 

with stages observable in even stages and unobservable in odd stages, actually a 2-

stage MDP) is studied. Figure 5-5 is an example of even-odd POMDP, where the 

variables in stage 0 and stage 1 can be grouped together to form a ‘big’ stage. This 

even-odd POMDP is a better approximation of the real POMDP than MDP and Q-

MDP.  
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Figure 5-5: Even-Odd POMDP (2-stage MDP) 

Moreover, if we including 3 POMDP stages in one MDP stage, with delayed 

information from stage 1 to stage 2, omitting any information arc in the third stage, the 

approximation of the value function will be better than both even-odd POMDP and the 

fast informed bound MDP. However, the accuracy is based on a trade-off in 

computation cost. As we have discussed in the previous part, the clique size increases 

with the number of stages involved in a sub-graph. A more accurate approximation of 

3-stage MDP needs about C3 if the computational cost of MDP is C. Hence in practical 

applications, the selection of approximation methods also depends on the 

computational resources. 

5.1.3 Factorize the Network 

Another way of structural approximation is to reduce problem complexity by removing 

edges in the network. In (Kjærulff, 1994), the large cliques can be split by the removal 

of weak dependences among chance nodes. It is said in many practical dynamic 

problems, for graphical models the largest clique includes almost every node in each 

stage. If weak links are found in such cliques, breaking these links will cut down the 

clique size and alleviate the computational cost. 
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However, a well-constructed model may not contain too many weak dependencies, 

which leaves little space for improvement by removing these weak dependencies. 

To describe how close an approximation is to the true distribution (joint), researchers 

focused their attention to a distance measure for two probability distributions, the 

relative entropy or K-L divergence.  

Def. 5-1 Relative entropy (Cover and Thomas, 1991) 

If φ and ψ are two distributions over the same space Ω, the relative entropy of φ to ψ is  
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Boyen and Koller (1998) prove the relative entropy of two stochastic processes 

converged geometrically; hence the approximation scheme (also called projection 

scheme since it projects the joint probability distribution to a factored space, e.g., 

approximating a joint probability P(ABC) by P(AB)*P(BC) assuming A and C are 

independent given B) of factored belief state in POMDP has a tight error bound, while 

at the same time gaining computational efficiency.  

Chan & Darwiche (2002) proposed a distance measure between two probability 

distributions that satisfies symmetry and triangular inequality, comparing to the K-L 

divergence used in (Boyen and Koller, 1998). The distance measure puts emphasis on 

local changes of the distribution. A dramatic change in probability distributions leads 

to a looser boundary, which the authors claim that the “hard evidence” makes the new 

distribution no longer zero-congruent (zero-congruent: P(x)=0 iff P’(x)=0 to avoid 

being divided by 0). This makes this probability distance measure not a very useful 

tool in VOI computation. 
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These approximations may reduce the clique size for a single stage. Yet the problem is 

hard in POMDP because the solution of a POMDP requires the entire history, which is 

dependent on the number of stages involved. In this sense, such methods can offer 

limited improvement. Moreover, only the errors occurred in belief state are tightly 

bounded. Yet in decision models, value function also affects the selection of the 

optimal strategy, so that a small error in belief state could lead to different optimal 

policies and induce big error in expected utility, while a large deviation in belief state 

could have little influence in the decision and the final expected utility. 

Because of this, Poupart and Boutilier (2000, 2001) seek better approximate strategies 

that improve the decision quality by γ vector (it is called α-vector in their papers) 

analysis. Their idea is given a set of γ vectors from a solved POMDP, for any possible 

projection scheme in system dynamics (correspondent DBN of the POMDP), find out 

the scheme with the smallest error in decision quality by solving an optimization 

problem constructed by those γ vectors.  

Using this method, the error of approximation is bounded tightly. Yet the projection 

schemes are chosen after the POMDP is solved and the γ vectors retained for each 

stage. For any complex POMDPs, obtaining the γ vector set is a hard job (PSPACE as 

in Papadimitriou & Tsitsiklis, 1987; Mundhenk et al, 2000). In their paper, they also 

point out the expensiveness in computation and emphasize this selection of projection 

schemes is performed offline to accelerate the online inference of the POMDP. Direct 

application of the method to VOI computation can be prohibitive. 
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5.2 Parametric Approximation 

In the graphical decision models, besides the approximation in network structures, it is 

also possible to simplify the computation by parametric approximation. As well as 

structural approximation, parameters on both belief state and the value function can be 

approximated. 

Boutilier and Dearden (1994) solve a factored MDP by state-space abstraction. In 

(Dean and Givan, 1997) the model minimization method is used to find MDP 

compressions by iteratively partitioning the state space into homogenous blocks and 

aggregating all states in one partition. 

Boutilier and Poole (1996) incorporate the system dynamics represented in Bayesian 

Networks to the solution methods of POMDPs. A decision tree is constructed in each 

stage to represent the γ value functions. 

In (Hoey et al, 1999), ADDs (algebraic decision diagrams) are applied in dynamic 

programming steps in MDPs. Later, Hansen and Feng (2000) describe the use of 

ADDs of abstracting the state space and saving computational costs in POMDPs. ADD 

represents the context-specific information of the model and supports further 

compression by merging branches with similar values. 

In POMDP, the process can be treated as an MDP with continuous belief state. Roy 

and Gordon (2002) propose an exponential family PCA method for belief 

compression, which reduces the high-dimensional belief space by generating the 

principal components and project belief to this lower dimensional space. This is a kind 

of belief state abstraction, which also effectively reduces the state space in a single 

stage. 
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Belief state aggregation can be used in general solution of POMDP, yet may not be an 

ideal candidate in VOI computation. The belief state changes when the perfect 

information of certain variables is available, enforcing the user calculating the 

expected value twice if using state aggregation. Comparing to the method of only 

calculating the different parts and reusing unaffected parts, this looks a little 

inefficient. 

Mentioned in (Cassandra, 1998; Hauskrecht, 2000), the Grid-based approximation is a 

simple but powerful algorithm. The idea is to approximate a POMDP (continuous state 

MDP) with a grid-based MDP, which divide the belief state space into grids. The 

parameters of the new grid-based MDP are found by interpolating-extrapolating the 

value of a non-grid point in original MDP. The approximate MDP has a value update 

with complexity of O (|G| |A| |S|2 |O|) in each dynamic programming step, where |G| is 

number of grids used in approximating state space, A, S, O are action, state and 

observation sets respectively. 

 

5.3 Comments on the approximations 

Most of the approximation approaches aim to keep a better leverage between the 

quality of solution and the computational complexity. The adoption of any specific 

approximation scheme is essentially based on the requirements of the particular 

problem at hand. 

Breaking no-forgetting arcs, restricting the computation of the process within a k-stage 

window, adding information arcs so that the process forms a QMDP, fast informed 

bound (FIB) MDP, or an even-odd MDP all reduce the problem of VOI computation to 

polynomial. Except the limited memory assumption (LIMID model), the others offer 
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lower bounds for the real VOI. The VOI computed based on fully-unobservable MDP 

(UMDP) is the maximum among these VOI computed by approximations because 

fully-unobservable case has no information to support decisions, so perfect information 

will have the largest profit. The VOI for those approximations are ordered as such: 

VOIFIB 

VOIQMDP ≤   VOIeven-odd   ≤ VOI exact ≤ VOILIMID ≤ VOIUMDP. 

Removing weak dependencies or assuming more conditional independencies offers 

ways to divide the large cliques into smaller ones. Extended to the decision problems, 

minimizing differences in utility potentials should be considered as criteria for 

choosing a good approximation scheme instead of K-L divergence of mutual 

information. The error induced in VOI computation is not restricted within certain 

bounds, however. 

The belief state abstraction using state aggregation, Algebraic Decision Diagrams, or 

exponential principal component analysis may be of interest when the two scenarios of 

with / without information are considered separately, yet is hard for the attempt to 

reuse computed results. 

It is also promising to apply grid-based approximation in VOI computation. The fixed 

grid approximation is polynomial as well as the above methods, while induces a small 

error (Hauskrecht, 2000). As our target is to find both accurate and efficient in 

computational time and space, this might be a good candidate. 

In a whole, the decision maker can choose an approximation scheme according to the 

required accuracy, the time and resource constraints. 

 



 

 

 

6 Qualitative Analysis in General Decision Models 

 

 

In the early chapters, the value of information in dynamic decision models is studied. 

When the system structure is time-variant, or the Markov assumption does not stand, 

e.g., in more general decision environment, most of the methods discussed previously 

are still very resources-consuming, and are unable to give out real-time results. 

Methods for computing VOIs in order to recommend the best evidence to collect, 

trading off the cost and benefits of observations are thus needed.  

It is emphasized previously that the value of information is a tool for sensitivity 

analysis. In many real-world decision problems, VOI is performed before the decision 

stage to guide the information gathering procedure, so as to improve the decision 

quality. Hence a timely result on information value may be preferred than the one that 

is more accurate but comes out too late. 

 

6.1 Introduction 

As been mentioned in Chapter 2, there is great interest in developing schemes for 

computing the value of information in recent years. Various kinds of utility functions 

are considered as well, money value, utility, even relative entropy or mutual 

information (Cover and Thomas, 1991). Unfortunately, the computational complexity 

of exact computations of EVPI in an arbitrary decision model with arbitrary utility 

100 
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function is known to be intractable.  Even with the simplifying assumptions that a 

decision maker is risk neutral or has a constant degree of risk aversion, the problem 

remains intractable. 

The intractability of EVPI computation has motivated researchers to explore a variety 

of approximations, both quantitative and qualitative. In this chapter we have sought to 

extend methods for exact and approximate computation of value of information by 

pursuing opportunities for leveraging qualitative analyses of the value of information. 

Efforts are exerted to exploit the graphical relationships in decision problems 

represented as general influence diagrams.  

In many applications, it is reasonable to bypass the exact numerical computation of the 

value of information and instead to seek to identify an ordering of variables by their 

value of information. For example, an ordering over the value of information can be 

employed in conjunction with cost of that piece of information in normative decision 

systems to determine the most cost effective evidence to collect.  Such qualitative 

orderings over the information value of variables can also be useful in model 

construction systems where the qualitative ranking of the value of information can be 

used to direct either the modeler or the model constructor to refine models in directions 

of maximum value (e.g., see Poh and Horvitz, 1993).   

An earlier related work (Poh and Horvitz, 1996) derives qualitative relationships about 

the information relevance of chance variables in graphical decision models based on a 

consideration of the topology of the models. It is found that the EVPIs of chance nodes 

in a decision model can be ordered by considering conditional independence 

relationships among the chance nodes and the value node. An algorithm is outlined for 

obtaining a partial ordering of EVPI of chance nodes of decision models with single 

decision node represented as influence diagrams that are expressed in canonical form 
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(Howard, 1990; Heckerman, 1995). The algorithm is based on the notion of d-

separation (Refer to Chapter 4) of chance nodes from the single value node in the 

influence diagram. The following sections review earlier work and report new results 

on topological relationships among variables in a graphical decision problem with 

regard to the value of information. 

 

6.2 Value of Information and Conditional Independence  

Before going to further discussions, let us first examine the key qualitative 

relationships regarding the information relevance of variables in influence diagrams. 

This section will review some results obtained previously and present some extensions. 

The study basically focuses on models in canonical form, a representation where all 

chance nodes that are descendants of one or more decision nodes are deterministic 

nodes. In general, any influence diagram can be converted to canonical form. (Howard, 

1990; Heckerman, 1995) 

6.2.1 Basic Information Relevance Ordering Relations 

Let M = (C, D, V, E) be a decision model where C is the set of chance nodes, D the set 

of decision nodes, V the value node, and E ⊂ C ∪ D × C ∪ D ∪ {V} is the set of 

directed arcs. Denote the expected value of information for observing the value of 

chance node X ∈ C before action A ∈ D by EVPIM(A | X). Poh and Horvitz (1996) have 

shown previously that chance nodes that are not relevant to the value node given the 

action have zero value of information: 

 

Theorem 6-1:  If X is conditionally independent of V given A, denoted by X ⊥ V | A, 

then EVPIM(A | X) = 0. 
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Proof:  Given that X ⊥ V | A, we have EU(MA|X) = ∑i p(xi) maxk u(ak) = EU(M). Hence 

EVPIM(A|X) = 0.         

Theorem 6-1 allows us to identify nodes that have no value of information with respect 

to a decision node.  These zero-value chance nodes are ancestors of the decision node 

and are not connected to the value node except via the decision node. 

As established in the following theorem, the basic relations concerning the possible 

ordering of EVPI for two chance nodes in a graphical decision model is based on the 

conditional independence among these two chance nodes and the value: 

 

Theorem 6-2.  If X and Y are distinct chance nodes that are not descendants of A, and 

Y ⊥ V | X  (Y is conditionally independent of V given X), then EVPIM (A | X) ≥ EVPIM 

(A |Y). 

Proof:  X and Y are not descendants of A implies that EU(MA|Y) = ∑j p(yj) [maxk u(ak, 

yj) ] and EU(MA|X) = ∑i p(xi) [maxk u(ak, xi) ].  Y ⊥ V | X implies that u(ak, yj) = ∑i 

p(xi|yj) u(ak, xi).  Therefore EU(MA|Y) = ∑j p(yj) [maxk ∑i p(xi|yj) u(ak, xi)].  By 

rewriting p(xi) as ∑j p(xi|yj) p(yj), and letting ρx = EVPIM(A|X) and ρy = EVPIM(A|Y), 

we have  

∑j p(yj) [maxk [∑i p(xi|yj) u(ce(ak, xi) - ρy) ]] = EU(M)  

and  

∑j p(yj) ∑i p(xi|yj) [maxk u(ce(ak, xi) - ρx)] = EU(M).   

The last two equations imply that  
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∑j p(yj) ∑i p(xi|yj) [maxk u(ce(ak, xi) - ρx)] = ∑j p(yj) [maxk [∑i p(xi|yj) u(ce(ak, 

xi) - ρy) ]].   

For any j, Lemma 1 implies ∑i p(xi|yj) maxk u(ak,xi) ≥ maxk ∑ p(xi|yj) u(ak, xi). Since 

the utility function u is monotonically non-decreasing in the certain equivalent values, 

it follows that ρx ≥ ρy in order for the last equation to hold.     

The above results can be generalized to the joint value of perfect information of a set 

of nodes by replacing X and Y with sets. The conditional independence relations 

required for identification of the ordering of EVPI can be performed with the notion of 

d-separation (Pearl, 1988; Pearl et al, 1990). 

An equivalent graphical procedure for identification of conditional independence 

relations makes use of the notion of u-separation, the undirected graph separation 

(Castillo et al, 1997).   

Given a direct acyclic graph (DAG) and three disjoint sets of nodes X, Y, 

and Z, first moralize the smallest subgraph containing X, Y and Z and all 

their ancestral nodes, this subgraph is called ancestral subgraph of X, Y 

and Z.  If Z u-separates X and Y in the moralized ancestral subgraph, then 

Z d-separates X and Y in the original directed graph; otherwise Z does not 

d-separate X and Y. 

6.2.2 Examples  

Figure 6-1 shows the graphical model of a sample decision problem.  The topology of 

the network is adopted from a car diagnosis example (Norsys corp., 1998). By 

applying the d-separation criterion for the ordering of EVPI values, a network of the 

ordering is obtained as shown in Figure 6-2.  Here the dotted arc between two nodes, 

for example, node 2  → node 4, indicates EVPI (D | node 2) ≤ EVPI (D | node 4). 
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Figure 6-1: Influence diagram for Example 1. 
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Figure 6-2: Partial ordering of EVPI for Example 1. 

Note that Figure 6-2 only contains seven chance nodes instead of seventeen chance 

nodes in the original influence diagram. This means checking the conditional 

independencies among the chance nodes can only reveal EVPI orderings of these 

seven nodes from the original diagram. For other chance nodes, it is impossible to 

judge their EVPIs just with the graph structure. Hence the caption of Figure 6-2 says 

this is a ‘Partial ordering’. 
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A concept referred to as a barren node (Shachter, 1986) is leveraged here. Barren 

nodes are those other than the value node that have directed arcs into them but not out 

of them. Note that node 10 is such a barren node. Hence, its EVPI is bounded by the 

EVPI on its parent node 4, as shown by the dotted arc from 10 to 4. This example is 

not a very densely linked graphical decision model, and we obtained several EVPI 

orderings that indicate the relative ranking of the importance of information. 

Let us now consider a decision model with a much larger number of nodes. Figure 6-3 

displays an influence diagram developed by extending the ALARM Bayesian network 

model (Beinlich et al, 1989) to a decision problem with action and value nodes. This 

network contains 8 diagnoses, 16 findings and 13 intermediate variables.  Figure 6-4 

shows the partial ordering of EVPI for Example 2. 
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Figure 6-3: Influence diagram for Example 2. 
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Figure 6-4: The partial ordering of EVPI for Example 2 

6.2.3 Computational Issues  

In practice, it is straightforward to generate a partial ordering of EVPI by employing a 

pairwise comparison of nodes and checking for d-separation of one node from the 

value node by the other. This method can be called as the pairwise-comparison 

approach. This algorithm does not exploit the topological structure of the network to 

gain efficiency. The next section will introduce a new approach to the identification of 

partial ordering of EVPI in graphical decision model by identifying barren nodes and 

extending the u-separation relation to more encompassing neighborhoods. The new 

algorithm is referred as u-separation extension. 
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6.3 Efficient Identification of EVPI Orderings 

This section first describes a number of extensions of the graphical properties of 

information relevance for chance nodes. Then, an algorithm is described to exploit 

these new results to the identification of partial ordering of EVPI in graphical decision 

models. The new algorithm, called the u-separation extension, identifies barren nodes 

and extends the u-separation relation to more encompassing neighborhoods afterwards.  

6.3.1 Treatment of Barren Nodes 

Omission of barren nodes from a graphical decision model has no effect on the optimal 

decision policy.  Furthermore, their value of information is always bounded by the 

joint value of information of their direct predecessors. 

 

Theorem 6-3.  In a canonical decision model M, let B be a barren node and π(B) be the 

set of direct predecessors of B, and A be a decision node.  Then EVPIM (A | B) ≤ EVPIM 

(A | π(B)). 

 

Proof.    The result follows from the fact that since a barren node is a sink node 

with no arc coming out of it, it follows that it is always d-separated by all its parent 

nodes from the value node (see Figure 6-5).  We can also infer the result from the so-

called Markov property of a DAG, since the value is always a non-descendant of any 

barren nodes and the required conditional independent relation must holds.   
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Figure 6-5: EVPI of barren nodes are always bounded by those of their parents 

Note that the EVPI of barren nodes are not necessary zero. Take the barren node 10 in 

Example 1 (Figure 6-1) as an example. In influence diagrams the direction of arcs can 

be reversed by changing the conditional probabilities. If we reverse the arc from node 

4 to node 10, node 10 is now similar to node 2 as a parent of node 4. EVPI of both 

node 2 and node 10 are not necessary zero. 

Hence, in trying to obtain an EVPI ordering of the chance nodes in a decision model, 

we may first remove all the barren nodes with single parent because their EVPI is 

always less than those of their respective parents.  Furthermore, removing such barren 

nodes has no influence on the ordering of other nodes since barren nodes are not in the 

ancestral sets of any other nodes. After the EVPI ordering of all non-barren nodes has 

been achieved, we may insert the barren nodes into the ordering to complete the 

analysis. 

However, care must be taken when the barren node B has more than one parent. The 

theorem only guarantees that the EVPI of B is less than the joint EVPI of all its 

parents, yet the ordering of chance nodes is for individual node. Thus only barren 

nodes with single parent will be removed before the computation. 
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Proposition 6-1.  If the two chance nodes X and Y are both disconnected from the 

value node after the moralization of the ancestral sub-graphs, then EVPIM (A | X) = 

EVPIM (A | Y). 

 

Proof:   According to the definition, X and Y are disconnected to the value node 

after the moralization of the ancestral sub-graphs, either they are connected to each 

other but disconnected to the value node, or they and the value node are in three 

disjoint parts, just as shown in the left and right parts in Figure 6-6, then we have (X, 

V⊥Y) and (Y, V⊥X), which means EVPIM (A | X) ≤ EVPIM (A | Y) and EVPIM (A | Y) ≤ 

EVPIM (A | X), hence EVPIM (A | X) = EVPIM (A | Y).     

 

The resulting EVPI ordering should not contain the chance nodes described in 

proposition 1, since these nodes do not guarantee such a sequence. Hence when 

checking for u-separations, nodes like X and Y in Figure 6-6 can be omitted. Figure 6-

6 (a) shows the case that X and Y are connected, V is disconnected them; (b) shows 

the case that X, Y and V are all disconnected to each other. 

 
 X 

Y 
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V 

 

X
 

 

V  

 

Y

 

(a)      (b) 

Figure 6-6: Nodes with the same EVPI 
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6.3.2 Neighborhood Closure Property of u-separation with the Value 

Node 

The Neighborhood Closure Property of u-separation with the value node allows us to 

infer u-separation relations in a neighborhood thereby eliminating the need to 

explicitly check for u-separation once u-separation of a single node is established in a 

neighborhood of a cluster of nodes. 

 

Theorem 6-4.  Let G be the moralized graph of a graphical decision model with the 

decision node removed.  Let node X be a chance node, node Y be a neighbor of Z in 

graph G.  Then Y is u-separated from the value node V by X if and only if Z is u-

separated from the value node V by X. 

Y

X

Z

V
 

Figure 6-7: Extension of u-separation from value node to a direct neighbor. 

Proof:  Referring to Figure 6-7, suppose Y is u-separated from the value node V by X.  

Then every path from Y to V passes through X, and any path from Z to V must is either 

pass through both Y and X or only X alone.  No path can run from Z to V without going 

through X for this will violate the u-separation of Y from V by X.  Hence Z is separated 

from V by X. The converse is also true by symmetry.  That is, if Z is u-separated from 

V by X, then Y is u-separated by V by X.   
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Figure 6-8: U-separation of Y from V by X can be extended to the maximal 

connected sub-graph containing Y 

The above result allows us to check the u-separation of any node with V and if it is 

found to be true, to recursively add the property to all of their direct neighbors.  For 

example, in the network shown in Figure 6-8, if it is established that Y is u-separated 

by X from V, then we can infer that all the shaded nodes will also be u-separated by X 

from V.  We state this in the following theorem: 

 

Theorem 6-5.  Let G be the moralized graph of a graphical decision model with the 

decision node removed.  If in G, a chance node Y is u-separated by another chance 

node X from the value node, then the maximal connected sub-graph containing Y is 

also u-separated from V by X. 

 

Proof:  The result follows from the recursive application of Theorem 4.    
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6.3.3 An Algorithm for Identifying EVPI Orderings 

Input: An influence diagram M. 

Output: An EVPI ordering set Ω of the influence diagram. 

1. Convert the network M into canonical form if it is not already so. 

2. Remove all the barren nodes with single parent from the chance node set. 

3. Drop all the decision nodes in M. 

4. Identify the ancestral sub-network of the value node V. 

5. Moralize the ancestral sub-network. 

6. Let Ω =∅. 

7. Let N ← C, the set of chance nodes in M. 

8. While N ≠ ∅   do 

9.  Mark all nodes in N as “unvisited” 

10.  Pick a node X ∈ N  

11.  Let  N  ← N \ {X} 

12.  For each node Y ∈ Adj(X) do 

13.  If Y is “unvisited” and Y ≠ X then  

i. Mark node Y as “visited”. 

ii. If Y is u-separated by V given X then  

1. Add the ordering {X ≤ Y} to Ω 

2. Recursively add all {Z ≤ Y} to Ω where Z ∈ Adj(Y) 

and Z is “unvisited” 

iii. Else 

1. Mark all nodes Z ∈ Adj(Y) and Z ≠ X as visited”. 

iv. End if 
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14.  End if 

15. End for 

16. End While 

17. For all removed barren nodes B, add {B ≤ P} to Ω where P is the parent 

of B. 

18. Output Ω 

 

 

Y

X

Z

V
 

Figure 6-9: Propagation of EVPI from Y to its neighborhood. 

The algorithm goes through every chance node and considers it as a separator node.  If 

a neighboring node is found to be u-separated by the current node from the value node, 

the EVPI ordering is added to the list, and Theorem 6-4 is applied recursively in a 

depth-first manner to include the ordering of adjacent nodes compared with the current 

node.  Figure 6-9 shows the adjacent node u-separation probing scheme. 

In order not to output nodes with equal EVPI, the u-separation procedure is revised as 

the follows: 
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U-separation procedure: 

Input: moralized sub-graph, start node X, end node V, separator Y 

Output: True/False 

Initialize all nodes as unvisited 

Traverse the sub-graph from the start node, mark visited node 

If X and V are disconnected 

      If Y and V are disconnected, return (false) 

      Else return (true)  

      End if 

Else 

    Cut the separator off 

    Traverse 

    If connected, return (false) 

    Else return (true) 

End if 

The following provides an estimate of the runtime complexity of u-separation 

extension and compare it to the pairwise-comparison algorithm. For an n-node network 

(n includes the value node), naïve pairwise-comparison algorithm requires (n-1)(n-2) 

checks for u-separation.  The new algorithm performs only (n-1) number of u-

separation checks and (n-1) searches for adjacent nodes. We adopted the depth-first 

search (DFS) to traverse the undirected graph and perform u-separation checks. The 
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DFS requires O(n + m) time when m here stands for the number of edges in the 

moralized undirected sub-graph. In the worst case m will be n2. Hence the 

computational time for the pairwise-comparison algorithm is O(n4), and for the new 

one is O(n3). Therefore, a speed up is typically expected of about n times compared 

with the naïve algorithm.  
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6.4 Computational Evaluation of the Algorithm 

This section describes the implementation of the u-separation extension algorithm and 

its application to several real world problems 

6.4.1 Applications of the Algorithm to Sample Problems 

Let us first explore the enhanced performance of u-separation extension on Examples 

1 and 2. The run times of this algorithm and the pairwise-comparison approach are 

shown in Table 6-1.  It is shown that a significant decrease in run times for the new 

algorithm over the naïve scheme for both examples.  Note that, although Example 2 

has much more nodes than Example 1, it has a shorter runtime with a speed up ratio is 

about 47.85 compared to only 1.67.  This significant saving for Example 2 is due 

mainly to the large number of nodes that are disconnected to the value node in the 

ancestral graph, thus can be omitted in the u-separation search. It is also observed that 

the more densely the network is connected, the less EVPI ordering we can obtain. 

Table 6-1: Comparison of Running Time Using Practical Examples 

Decision model Size of network  Runtime* Speed up ratio * 

Example1 18 nodes 1.150 sec 1.67 

Example2 37 nodes 0.160 sec 47.75 

*Speed up ratio: Speed up ratio compared with pairwise-comparison. On a P166 using MS 

Visual C++. 
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6.4.2 Combination of Qualitative and Quantitative Methods 

In order to explore the practical applications for the algorithm and to study how the 

algorithm works in larger networks, another experiment adopted the network structure 

of the Pathfinder Bayesian network for surgical pathology diagnosis (Heckerman et al, 

1992) to construct an example influence diagram. This example has 135 chance nodes, 

one decision node and one value node.   

The running time for pairwise-comparison algorithm is 15.6 seconds4, while the u-

separation extension algorithm takes 3.57 seconds. The average time used in 

calculating the numerical value of information for a chance node in this example is 

roughly 25 seconds (based on methods provided in Smile © library, Decision Systems 

Laboratory, 1998), hence obtaining a complete list of VOI for all the chance nodes in 

the diagram will need about 1 hour (56 minutes). It is a tedious task to calculate all the 

numerical value for these chance nodes. 

 

1

2

101
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28

89

42

19

29

30 31
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Figure 6-10: Part of the ordering obtained in example. 

                                                 
4 *All following programs are run on a PIII350 using MS Visual C++. 
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Considering the trade off between the time-consuming work of quantitative 

computations of VOI and the incompleteness of qualitative methods, a heuristic 

procedure is now proposed to generate a set of N chance nodes with the highest value 

of information by combining our method with quantitative computation. 

The procedure is as follows: 

1. Generate an ordering using the u-separation extension algorithm and 

arrange them into a tree or several trees;  

2. Compare the root nodes of each tree using quantitative methods and 

identify one node with the most importance; 

3. Put this node in the output set and remove it from the graph.  

4. Let the node’s children be the root nodes of the remaining sub-trees and 

repeat the entire comparison procedure from step 2 until we find the top 

N nodes with the highest value of information. 

This procedure can be illustrated using the ordering that is obtained from the 

Pathfinder-like example, as shown in Figure 6-10. Suppose that the objective is to 

identify five nodes with the highest VOI in the network. In Figure 6-10 there is a tree, 

where node 1 is the only root, so node 1 enters the output set first. Next remove node 1 

from the graph, and the remaining part forms five sub-trees with five root nodes. 

Compare the numerical value of these five nodes and node 18 is the most important 

one, thus node 18 is put into output set and removed from the graph. Afterwards node 

19 becomes a root node, and the procedure continues. 

The heuristic procedure has a limitation: if the network is connected very densely, it 

may be impossible to find enough qualitative orderings to obtain the required N most 

important nodes. For example, the influence diagram of Figure 6-1 can generate a 



Chapter 6: Qualitative Analysis in General Decision Models 

 121

partial ordering consists of seven nodes. If ten most important nodes are needed, then 

we are unable to satisfy the need. One possible solution to this problem is to 

decompose the network into sub-networks, e.g., decompose the Pathfinder network 

according to its similarity sub-graphs (Heckerman, 1990). For these sub-graphs, 

generate a sequence of orderings, and then apply the heuristic indicated above. 

6.4.3 Application in Dynamic Decision Models 

Using the way introduced in Chapter 3, the dynamic influence diagrams can be 

changed into canonical form, so the qualitative ordering of chance nodes can be 

obtained in any single stage of the dynamic decision models. Moreover, the forward 

interface acts as a separator between the two stages, and it has been proved in Chapter 

3 that the chance node in early stages has VOI greater than later stages, hence some 

temporal arcs could be assumed indicating rankings of the VOI. Summing up the 

importance ordering of chance nodes in a single stage with the temporal priority, we 

can have a full picture of qualitative ordering of VOI in DIDs. 

 

6.5 Summary and Conclusion 

This chapter has described an algorithm for the identification of partial ordering of 

EVPI for chance nodes in graphical decision models.  The algorithm is based on non-

numerical graphical analysis based on the idea of u-separation.  

The algorithm is tested on 2 sample networks based structurally on real-world models. 

A runtime speedup of the algorithm over a naïve approach proposed previously is 

observed. We also applied both qualitative and quantitative methods on a large 

example based on Pathfinder Bayesian network, and saw a great difference between 
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them in computing time. Hence a heuristic combining the two methods together is 

proposed to obtain both completeness and efficiency. 

Knowledge of EVPI orderings of the chance nodes in a graphical decision network can 

help decision analysts and automated decision systems weigh the importance or 

information relevance of each node and direct information-gathering efforts to 

variables with the highest expected payoffs.  Theories and experiments show that the 

methods described in this chapter can serve the purpose well. 

A limitation of our approach is that this qualitative method only generates a partial 

ordering.  This is the price for considering only qualitative properties.  However, such 

a trade off of tractability for precision can be extremely valuable when the exact 

numerical computation of EVPI is intractable. 

An observation from experimental results is that clusters which are densely connected 

tend to produce very sparse partial ordering graph, i.e., nodes that are densely 

connected tend to resist yielding an ordering with our method.  While this may limit 

the usefulness of our approach, we can exploit this property by clustering such densely 

connected nodes as one group and treating the group as a single node. A junction tree 

is an example of such a group of clusters. Those densely connected nodes are grouped 

together to form cliques which consists of small complete sub-graphs. Then the u-

separation extension algorithm can be applied to find partial orderings of groups of 

nodes. 

Another possible extension of this qualitative approach is to consider some heuristic 

classification of decision models based on their network topology and then to apply 

different types of search strategies based on such a classification.  
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Finally, it may be promising to employ methods that decompose large networks into 

several subnets to be individually processed. The partial orderings obtained may then 

be merged. 

 



 

 

7 Conclusions and Future Work 

 

In this chapter, a summary of the merits and the limitations for all the work conducted 

is offered to conclude this thesis. Moreover, some possible future directions of 

research are also pointed out in this chapter. 

 

7.1 Summary 

Knowing the outcomes of uncertain factors before taking actions in any decision 

problems can be beneficial. Whether this information on outcomes is worthy of the 

effort for gathering it, is the objective of value of information studies. 

Researchers have been developing various kinds of methods in computing VOI as 

guidance for information gathering. Yet it is far from well studied in cases where time 

effects are explicitly considered, or where decisions on information gathering should 

be taken under time constrains. This work contributes in VOI computation both in 

dynamic decision environments and timely occasions. 

 

7.1.1 VOI in Dynamic Models 

The study of value of information in dynamic decision models in this work focuses on 

finding ways to calculate VOI in graphical representations, mainly the dynamic 

influence diagrams (DIDs).  
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Properties of VOI in dynamic environment 

In Chapter 3, some properties of VOI in general dynamic environments are revealed. It 

is proved that earlier information is always better or equal to later one without 

considering the cost of information gathering. 

In order to keep accordance with the planning literature, the dynamic decision 

problems are divided with respect to the capability of observing the state variables.  

The partially observable case is discussed separately with an analysis between two 

representations: DIDs and POMDPs. A boundary of the VOI of an uncertain variable 

in POMDPs is given thereafter. Finally, the information value for decision intervened 

chance variables is investigated as well. 

Algorithm for VOI computation in DIDs 

Chapter 4 offers a way to identify a group of DIDs which can be decomposed into sub-

networks with similar structures, and hence a sub-junction tree can be generated based 

on such sub-networks as the computing template. We discuss methods of reusing the 

sub-junction tree, including the case when VOI for variables with intervening 

decisions is under concern.  

Both the time value of benefits and costs (e.g., costs for collecting information) are 

considered by discounting the value in each stage. For societal analysis an equal 

discounting for both cost and benefit is suggested, however, when individual 

preference is concerned, the rates may be different. Hence a base rate and a sensitive 

analysis afterwards are suggested. 

An algorithm for computing VOI in DIDs is proposed and the computational 

complexity discussed. Using our methods, the inference in DIDs without spreading 
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variables can reach polynomial time when largest clique width is to the order of 

logarithm of number of total nodes. 

Implementation 

This method of VOI computation in DIDs is implemented in MATLAB and applied to 

a practical medical example. The VOI calculated can help doctors choose the best 

diagnostic tests for cancer patients. The realization is much faster than other existing 

software in this example. Experimental results show the realization is efficient and 

significant. 

In summary, this Algorithm for VOI computation provides researchers a useful tool of 

sensitive analysis in dynamic decision making. It is shown to be illustrative and 

efficient both in theory and in practice.  

Analysis of the approximations 

Since the inference and VOI computation in general influence diagrams and the 

partially observable dynamic decision models are intractable, many approximation 

schemes are introduced to facilitate efficient VOI computation with as less error as 

possible. Splitting the hardness that lies in the partially observable situations into two 

parts, the belief update and value function construction, the approximations take 

advantage of divide-and-conquer or compression techniques. It is unsurprising that the 

accuracy and efficiency conflict with each other, and users of these approximate 

methods have to leverage carefully between accuracy and efficiency to serve their 

objectives well. 

Chapter 5 provides an overview of the approximate methods and analyzes their 

computational complexity, boundary of errors, and the efficiency of application in VOI 
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computation. Based on this analysis, users are able to choose different approximations 

which satisfy their requirements better.  

7.1.2 Qualitative VOI in General IDs 

For the purpose of making timely suggestions on how to collect information, in 

Chapter 6 of the thesis a partial ordering of all the chance nodes is generated according 

to their importance.  

An algorithm for identifying qualitative EVPI 

Chapter 6 has described an algorithm for the identification of this ordering of EVPI for 

chance nodes in graphical decision models.  The algorithm is constructed from a non-

numerical graphical analysis on the basis of the idea of u-separation of graphs.  

This algorithm has been tested on two sample networks structurally based on real-

world models. A speedup in running time over a naïve approach proposed previously 

is observed.  We have also applied both qualitative and quantitative methods on a large 

example based on the Pathfinder Bayesian network, and a great difference between 

them in computing time is seen.  

A heuristic of hybrid VOI computation 

A limitation of this qualitative approach is that this method only generates a partial 

ordering.  This is the price for considering only qualitative properties.  Such a trade off 

of precision for tractability can be extremely valuable when the exact numerical 

computation of EVPI is very hard to compute, however, when the decision making 

task requires more information on VOI, the qualitative method itself can be 

insufficient. 
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Hence in Chapter 6 a heuristic method is proposed to combine the qualitative and 

quantitative methods together to obtain higher accuracy while maintaining relative 

efficiency. 

Knowledge of EVPI orderings of the chance nodes in a graphical decision network can 

help decision analysts and automated decision systems weigh the importance or 

information relevance of each node and direct information-gathering efforts to 

variables with the highest expected payoffs.  We believe that the methods described in 

this thesis can serve the purpose well. 

 

7.1.3 Guideline for VOI computation in Decision Models 

In summary of all the results obtained in this work, a concluding guideline for VOI 

computation is composed here to provide decision makers with approaches suitable for 

their objectives. 

Table 7-1 shows this guideline for VOI computation in decision models.  

Exact methods 

The exact methods are intractable in general graphical models. Typically they are only 

used to solve some simple decision problems with small state or decision space. Also, 

in some specially structured models, e.g., the time-invariant dynamic decision models 

without the spreading variables, the algorithm for calculating the VOI can be of 

polynomial time. For larger and more complex problems, the exact methods are 

unlikely to generate results within the resource or time limit. 
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Qualitative method 

Generally speaking, the qualitative approach is the fastest among all methods, yet 

lacking of completeness. The qualitative method considers the VOI of all the chance 

nodes in the model simultaneously with the lowest computational cost, yet the loss of 

information is the largest too. It is recommended for time-critical situations, online 

information gathering, or online model refinement tasks. 

Note that when the intractability of quantitative method is mainly due to large state and 

action space but not the correlations among many variables, the qualitative method is 

very useful as it bypasses the computation of those large states and decisions, and 

yields the ordering directly. While if the intractability of qualitative methods mainly 

lies in the relationship among variables, for example those DIDs with spreading 

variables, the qualitative method will be unable to yield many significant results either. 

In such complicated situation of all variables interacting with each other, neither 

qualitative nor quantitative methods perform well. 

Approximations 

Quantitative approximations lie between the qualitative and exact methods in terms of 

efficiency and accuracy. Approximations in general influence diagrams and states-

observable dynamic models are not studied in detail, while those in partially 

observable dynamic models are analyzed.  

Adding information arcs to decisions, or throwing away memories of past information 

renders a time decomposable dynamic influence diagram, which results in basically 

polynomial computational complexity. In these time-decomposable models, the more 

memory of past observations and actions involved in a decomposed sub-model, the 

larger the size of one stage in the equivalent MDP, the more accurate the value, yet the 
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more complex the computation. Grid-based value function approximation is also 

polynomial in most cases (not including variable number of grids). Other 

approximations, like the weak linkage removal, state variable factoring, state 

compression, and fully unobservable Markov decision process approximation can also 

be quite efficient, but they are not guaranteed with polynomial complexity.  

Choices of any one or combination of the approximations depend on the underlying 

model representation, the requirements for accuracy and efficiency. 

Note that the simulation methods, e.g., the Monte Carlo and the sampling algorithms 

are not discussed, as they are not foci of this thesis. 
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Table 7-1: Guideline for VOI computation 

Dynamic decision problems 

 General Model 
State Observable 

State Partially 

Observable 

Qualitative 
Partial Orderings of 

VOI 

Partial orderings of VOI in a single stage, 

together with the temporal orderings 

Exact 

Probability inference; 

Evidence 

propagation; Junction 

tree 

Dynamic junction 

tree method 

Structural 

approximations 

One-pass; Witness; 

Incremental 

Pruning 

Structural Value 

approximation  

Structural Belief 

state approximation

Quanti-

tative 

Approxi

mations 

Monte Carlo; Non-

myopic VOI for a set 

of chance nodes 

Variable abstraction 

or aggregation 

Parametric 

approximation 
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7.2 Future Work 

The VOI computation mainly depends on the inference techniques of the graphical 

decision models. A new, efficient inference method will help the computation of VOI 

to gain efficiency in general. Hence the future research of VOI computation lies 

essentially in three areas: first, finding new efficient inference methods both for exact 

and approximate computation, thus facilitating the VOI computation; second, finding 

better ways based on existing inference methods to improve the efficiency and quality 

of VOI computation; and third, exploring methods that calculate VOI directly, maybe 

bypassing some of the difficulties that lie in calculating twice the decision scenarios 

with and without information. 

For study of VOI in dynamic decision models, future research might focus on efficient 

ways to find an optimal or near optimal triangulation, and computing VOI for a group 

of variables simultaneously and applying the method to real world case. 

Handling the inference in general graphical or partially observed decision models can 

be intractable (unless P=NP). Yet a number of approximate approaches can be 

proposed to satisfy different user’s objectives. Combinations of several 

approximations, e.g., the grid-based value function inter-extrapolation, belief space 

compression by exponential PCA, together with k-stage memory, could be interesting 

candidate approximations for further study. 

As for graph topology, it is observed that clusters which are densely connected tend to 

produce very sparse partial ordering graph, i.e., nodes that are densely connected tend 

to resist yielding an ordering with our method.  While this may limit the usefulness of 

our approach, we can exploit this property by clustering such densely connected nodes 

as one group and treating it as a single node.  We can then use our algorithm to find 
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partial orderings of group of nodes.  Another possible extension of our approach is to 

consider some heuristic classification of decision models based on their network 

topology and then to apply different types of search strategies based on such a 

classification. Finally, we note that it may be promising to employ methods that 

decompose large networks into several subnets to be individually processed. The 

partial orderings obtained may then be merged. 
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10 Appendix A: Concepts and Definitions 

 

 

Formulation of a Markov Decision Process 

A Markov decision process usually consists of the following elements:  

1. Decision Epochs. The time point when the decisions are made. It can be finite or 

infinite, discrete or continuous.  

2. State Sets. The system under study occupies a state at each decision epoch. The set 

of possible system states is denoted as X, which is usually finite and discrete; xt is 

the state occurs in time t∈T. 

3. Action Sets. At the time the decision maker observes the system state in some 

decision epoch, he may choose an action a∈A, where A is the action space which 

denotes the set of possible actions for every state in all epoch t∈T. 

4. Values (Gains, or Rewards). Let gij
a denotes the time-independent value (also 

called gain or revenue or reward) achievable by a system in state i at each decision 

epoch, given an action a is selected and its next transition is to state j, and let gij
a(t) 

denotes the non-homogeneous (time-dependent) value achievable by system in 

state i at decision epoch t, given action a is taken and system state is j at decision 

epoch t+1. 

5. Transition Probabilities. Let pij
a denotes the homogeneous probability that a system 

is in state j∈X at some decision epoch, given action a∈A in state i at the previous 
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epoch. pij
a(t) is the non-homogeneous probability for system state is i at t-1 and j at 

t, with action a∈A. We usually assume ∑j∈X pij
a=1, and ∑j∈X pij

a(t)=1. 

6. Decision Rules and Policies. A decision rule δt: X→A of a system at decision 

epoch t specifies the action choice when it occupies state x∈X at t. For each x∈X, 

δt(x) ∈ A. A sequence of such functions is called policy, π={δ1, δ2, …}. 

 

Formulation of a Semi-Markov Decision Process 

Holding Times. In SMDPs, the transition from state i to state j given action a is made 

only after the process is kept for a time τij
a(t) in state i at time t. This time τij

a(t) is 

called holding time, which is a random number with corresponding probability mass 

function hij
a(m, t). P(τij

a(t)=m)= hij
a(m, t). 

Values. The value gij
a(t) of a process consists of the yield rate yij

a(σ) and bonus bij
a(τ). 

yij
a(σ) is the reward earned at each time stage from beginning with state i till reaching 

state j with action a. bij
a(τ) is the bonus earned when the process transfer from state i to 

j given action a at time τ.  

 

Formulation of a Partially-Observable Markov Decision Process 

X = {1, 2, …, n} and Θ = {1, 2, …, m} denote finite state and message sets 

respectively. Let A denote a finite action set, and the set of probability distributions on 

X is Μ(X) = {µ∈Rn: µ≥0, ∑n
i=1µi =1}. The process is initiated with a known 

probability distribution over the state space X, µ1∈Μ(X). Let Ht = {µ1, a1, θ1, a2, θ2, …, 

at-1, θt-1} denote the history of actions and messages received up to time t with this 
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initial distribution. If based on this information, the decision maker chooses action at, 

then define: 

A real-valued reward g(xt, at) is received if the state of the system is xt. 

The system transits to another state j in accordance with the known transition 

probabilities pij
a = P{xt+1 = j: xt = i, at=a}. 

A message θt ∈Θ is received in accordance with the known probabilities rjk
a = P{ θt = 

k: xt+1 = j, at = a}. 

Time increments by one, Ht+1 = Ht ∪ {at, θt}, the decision maker must choose action 

at+1, and the process repeats. 

The reward can be included in the message θt. If the number of time periods T< ∞, an 

additional salvage value α(i) is received at the beginning of time T+1 if xT+1 = i. The 

decision maker seeks a policy δt: Ht→A that maximizes the expected net present value 

of the time stream of rewards accrued during the process: 

})())(,({
1

1
1∑

=
+

− +
T

t
T

T
ttt

t xHxgE αβδβ    (A.1) 

β ≥ 0 is an economic discount factor. If T = ∞, β is required to be <1, βT=0. 

 

Backward Recursive equation in MDPs 

Let Vi(t) be the optimal total expected revenue, given the starting state of the system is 

i. 

TttVgptV
Xj

j
a

ij
a

ijai ∈++= ∑
∈

)]},1([{max)(    (A.2) 
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Here Vj (N+1) denotes an additional salvage value received at the beginning of time 

N+1 given xN+1 = j. 

Generally, for non-homogeneous transition probabilities and returns, with an economic 

discounting factor β (e.g., interest rate), equation (A.2) becomes: 

TttVtgtptV
Xj

j
a

ij
a

ijai ∈++= ∑
∈

)]},1()()[({max)(   (A.3) 

 
Backward Recursive equation in SMDPs 

Let qij
a(m, t) = pij

a(t) hij
a(m, t) denote the transition function from state i to j, with 

action a, for duration m after entering state i at time t. Let η be defined as the number 

of stages remaining for consideration in the planning horizon. 
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          (A.4) 

The first part of right end of the equation is the expected revenue if the next transition 

out of state i occurs after time duration η, and the second part is the expected value if 

the next transition occurs before time duration η. 
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POMDPs 

Linear support algorithm 

Let the vectors γ∈ Γt be indexed by integers, i.e., Γt = {γ1, γ2, …, γνt} if |Γt| = νt (|Γ| 

denotes the cardinality of the set Γ). Apparent ΓT+1 = {α}. Given Γt+1, the expression 

(A.1) reduces to 

∑
=

∈+{  = 
m

alaaaT

a
AaRPg

1

),,(*
t }:])([max)(V

θ

θµγθµπ    (A.5) 

Here l(µ, a, θ) is the index of the maximizing γ vector in max {µT Pa Ra(θ)γ| γ∈Γt+1}, 

and the maximizing a∈ A will be an optimal action from µ in time t. 

The linear support algorithm starts with Γt+1 given ΓN+1= {α}. Then calculate the 

operative gradients at the extreme points of Μ(X), and puts these in set Gt, an 

approximation of Γt. For each γ0 ∈ Gt, construct the convex region R (γ0) = {µ ∈Μ(X)| 

µTγ0 ≥ µTγ, all γ∈Gt}. vt(µ) = max {µTγ | γ∈Gt} is used to approximate Vt
*(µ), the error 

incurred at any µ∈R(γ0) will be Vt
*(µ)-µTγ0. The maximum of this error will be 

obtained at an extreme point of R (γ0), so check the error at all extreme points of each 

region to find the maximal error over all Μ(X) for using vt instead of Vt
*. If this 

maximum error is zero, Gt = Γt, the iteration is completed. If it is positive, then the 

vertex that achieves the maximum error has a gradient vector associated with it, which 

is not included in Gt. Add this vector to Gt and repeat generating and checking of 

extreme points.  
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CONCEPTS IN INFORMATION THEORY 

Def. Conditional entropy: 

)|(log)|(log),()|( ),( xypExypyxpXYH yxp
Xx Yy

−=−= ∑∑
∈ ∈

 

         (A.6) 

Chain Rule for conditional entropy: 

 H(X, Y) = H(X) + H(Y|X)  H(X) – H(X|Y) = H(Y) – H(Y|X) 

Def. Relative entropy: 
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   (A.7) 

Def.  Mutual information: 

∑∑
∈ ∈

=
Xx Yy ypxp

yxpyxpYXI
)()(

),(log),();(    (A.8) 

I(X; Y) = D( p(x,y) || p(x)p(y) ). 

I(X; Y) = I(Y; X) = H(X) – H(X|Y) = H(Y) – H(Y|X) = H(X) + H(Y) – H(X, Y) 

          (A.9) 

Chain rule for entropy: 

),,|(),,,( 11
1
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i
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=
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The conditional mutual information of random variable X and Y given Z is: I(X;Y|Z) = 

H(X|Z) – H(X|Y, Z) = Ep(x,y,z) log (p(X,Y|Z)/p(X|Z)p(Y|Z)) 

Chain rule for information: 
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Chain rule for relative entropy: 

D(p(x,y)||q(x,y)) = D(p(x)||q(x)) + D(p(y|x)||q(y|x)) 

Information inequality: 

D (p||q) >= 0  with equality if and only if p(x) = q(x) for all x. 

Non-negativity of mutual information: 

For any two random variables X and Y,  I(X;Y) >= 0 with equality if and only if X 

and Y are independent. 

H (X) <= log |X| with equality if and only if X has a uniform distribution over X.  

H (X|Y) <= H (X) with equality if and only if X and Y are independent. 

Independence bound on entropy:  

Let X1, X2, …, Xn be drawn according to p(x1, x2, …, xn). 

)(),,,(
1

21 ∑
=

≤
n

i
in XHXXXH L  

D(p||q) is convex, and H(p) is concave function of p. The mutual information I(X;Y) is 

a concave function of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed 

p(x). (X, Y) ~ p(x,y) = p(x)p(y|x). 
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12 Appendix B: VOI Given Dependencies Among 

Mapping Variables 

 

In Chapter 3 section 3.2 the value of clairvoyance for decision intervened variables are 

discussed. Adding mapping variables and converting an ID to its canonical form is 

required in such cases. In this procedure, assuming independencies between chance 

nodes given different decisions will simplify the conversion and the computation for 

VOI. However, if the mapping variables X(di) are correlated, i.e., nested as shown in 

Figure 3-10 (c), we need to reassess the probabilities for the outcomes of X(di) to make 

sure the conversion is equivalent. Hence the actual VOI for knowing X before D will 

be different from the VOI calculated based on the simplification. 

In this appendix, a study will be carried on for the influence in VOI given such 

correlation among X(di). 

 

Binary decision and binary random variable 

First let us consider the simplest case of a binary decision D and a binary random 

variable X. Let d1 and d2 be the two choices of D and x1, x2 be the two outcomes of X. 

If X(di) are dependent of each other, suppose for the same outcome the two variables 

are positively correlated, i.e., P((d1, x1), (d2, x1)) > P(d1, x1)·P(d2, x1), P((d1, x2), (d2, 

x2)) > P(d1, x2)·  P(d2, x2). Then in order to obtain equivalent expected value (utility) it 

should be negatively correlated for different outcomes, i.e., P((d1, x1), (d2, x2)) < P(d1, 
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x1)·  P(d2, x2), P((d1, x2), (d2, x1)) > P(d1, x2)·  P(d2, x1). Since the original expected 

value will not change after the conversion, the difference is only result in the case of 

knowing information of X(D) before D. We have V’ = Σ P((di, xk), (dj, xl)) maxd V((di, 

xk), (dj, xl)). Denote the expected value for the real case as Vr’ and the simplified case 

as Vs’, let V(d1, x1), V(d1, x2), V(d2, x1) and V(d2, x2) be v11, v12, v21 and v22  respectively. 

So we have: 

 Vr’ = P((d1, x1), (d2, x1)) ·max( v11, v21) + P((d1, x1), (d2, x2)) · max( v11, v22) + 

P((d1, x2), (d2, x1)) · max( v12, v21) + P((d1, x2), (d2, x2)) · max( v12, v22) (B-1) 

 Vs’ = P(d1, x1) P(d2, x1) · max( v11, v21)  + P(d1, x1) P(d2, x2)) · max( v11, v22) + 

P(d1, x2) P(d2, x1)) · max( v12, v21) + P(d1, x2) P(d2, x2)) · max( v12, v22) (B-2) 

S.t. 

P((d1, x1), (d2, x1)) · v12 + P((d1, x1), (d2, x2)) · v12+ P((d1, x2), (d2, x1)) · v21 + P((d1, x2), 

(d2, x2)) · v21= P(d1, x1) P(d2, x1) · v12 + P(d1, x1) P(d2, x2)) · v12+ P(d1, x2) P(d2, x1)) · 

v21 + P(d1, x2) P(d2, x2)) · v21       (B-3) 

P((d1, x1), (d2, x1)) · v11 + P((d1, x1), (d2, x2)) · v22+ P((d1, x2), (d2, x1)) · v11 + P((d1, x2), 

(d2, x2)) · v22= P(d1, x1) P(d2, x1) · v11 + P(d1, x1) P(d2, x2)) · v22+ P(d1, x2) P(d2, x1)) · 

v11 + P(d1, x2) P(d2, x2)) · v22       (B-4) 

We know that covariance is the measure of correlation between random variables. For 

binary random variables XA and XB, cov (XA, XB) = P(AB) − P(A)P(B) = [P(B|A)−P(B)] 

P(A), so XA and XB are either positively correlated, uncorrelated or negatively 

correlated depending on whether P(B|A) is greater than, equal to or less than P(B). The 

binary random variables X(d1), X(d2) here might not be exactly (0, 1) valued, however, 

we can always convert them into (0, 1) variables through a simple linear 

transformation. So our following conclusion can be applied to general case: 
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cov(X(d1), X(d2)) = E(X(d1), X(d2)) – E[X(d1)] E [X(d2)] 

           = P((d1, x1), (d2, x1)) − P(d1, x1)·P(d2, x1), 

Suppose this value is >0 (positively correlated), then  

P((d2, x2), (d2, x1)) − P(d2, x2)·P(d1, x1) = − P((d1, x1), (d2, x1)) + P(d1, x1)·P(d2, 

x1) = − cov(X(d1), X(d2)) <0, 

P((d2, x1), (d1, x2)) − P(d2, x1)·P(d1, x2) = − cov(X(d1), X(d2)) <0, 

P((d2, x2), (d1, x2)) − P(d2, x2)·P(d1, x2) = P((d1, x1), (d2, x1)) − P(d1, x1)·P(d2, 

x1) = cov(X(d1), X(d2)) >0. 

Deduct equation (B-1) from equation (B-2), we have: 

Vs’− Vr’ = −[P((d1, x1), (d2, x1)) − P(d1, x1)·P(d2, x1)] · max( v11, v21)  − [P((d1, x1), (d2, 

x2)) − P(d1, x1) ·P(d2, x2)] · max( v11, v22) − [ P((d1, x2), (d2, x1)) − P(d1, x2) ·P(d2, x1)] · 

max( v12, v21) − [P((d1, x2), (d2, x2)) − P(d1, x2)·P(d2, x2)] · max( v12, v22)  

= − ( )
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So the difference in the VOI calculated will be dependent on both the covariance and 

the value for different decisions. The latter is known when we calculate the original 

model; hence it needs no additional knowledge. When one state overruns the other, 

i.e., the value for x1 is greater or smaller than x2 regardless of the decisions (monotonic 

value function), v11> v12, v21>v22, the above formula is positive with positive cov(X(d1), 

X(d2)). Otherwise, while the preference of states is different for different decisions 

(convex value function), e.g., v21 > v22 we have v11 < v12, (B-5) becomes negative. 

Note that above conclusions are based on the assumption that there are no dominant 
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alternatives in the model. When one alternative is dominant to the other, the difference 

is zero, since the VOI in this case will definitely be zero, no matter how to transform 

the problem.  

When one state is dominant to the other and there is a positive correlation, the VOI 

calculated in simplified case will be higher than the actual case, thus the independence 

assumption boasts the value of information of observing the variable X before D. 

If the random variables given different decisions are negatively correlated, which 

means the sign of each covariance is the opposite of this scenario, then we have Vr’− 

Vs’ >0, i.e., the computed VOI based on independence assumption will be 

underestimated.  

We can also obtain the range of (B-5) since cov(X(d1), X(d2)) fells in the range [−1, 1]. 

Let R = max(v11, v21) – max(v12, v21) − max(v11, v22) + max(v12, v22). R is the difference 

between the second and the third largest value. Hence: 

Vs’− Vr’ ∈ [− | R|, | R|] 

These upper and lower limits are indifferent of the dominance of states and the 

correlation. As long as there is no dominant decision, the error we might make while 

assuming independency is at most the difference of the two middle values of the value 

function. Hence we know when we have no idea of the correlations between these 

parent nodes given different decisions, how much value will we overestimate or 

underestimate at most if assuming they are independent. 
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(a) Original influence diagram   (b) Canonical form 

Figure B-1: Example of space exploration 

An example is given to illustrate the conclusion. Consider the hypothetical case of 

sending a rocket to Mars or Venus (Adopted from Ezawa, 1994). The chance of 

success is dependent of the decision; the values are shown in the following table.  

Table B-1: Space exploration 

Location & result Probability  Value 

Mars Success 0.6 50 

Mars Failure 0.4 10 

Venus Success 0.7 100 

Venus Failure 0.3 -10 

 

To convert the original problem into canonical form, we reassess the probabilities for 

the three scenarios, independent causes, positively correlated causes and negatively 

correlated causes. The probabilities and the value of information calculated in each 

scenario are shown in table B-2.  
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Table B-2: Space exploration with different relations between causes 

Probability  Location & result 

Independent Positively correlated Negatively correlated 
Mars, success 
Venus, success 

0.42 
 

0.48 0.36 

Mars, success 
Venus, failure 

0.18 0.12 0.24 

Mars, failure 
Venus, success 

0.28 0.22 0.34 

Mars, failure 
Venus, failure 

0.12 0.18 0.06 

Value of Information 13.2 10.8 15.6 

 

The results are similar to what we have predicted: when causes are positively 

correlated, the VOI calculated assuming independency will be higher than in the actual 

case, which means we might willing to pay more to the clairvoyance than he actually 

deserves; and if the random variables given different decisions are negatively 

correlated, the computed VOI based on independence assumption will be less than it 

actually is, and we might overlook the importance of gathering information for a 

certain chance variable. 

 

Multiple decision and binary random variable 

Further let us suppose we have a decision node with m alternatives, but the chance 

variable is still binary. Assume first there are only two causes are correlated, e.g., X(d1) 

and X(d2), and the other causes are independent.  
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As we has done, denote P((d1, x1), (d2, x1)) − P(d1, x1)·P(d2, x1) as Cov (X(d1), X(d2)), 

then: 

Vs’ −Vr’ = Cov (X(d1), X(d2)) { Σ…Σ P(dj, xi) max(V| (d1, x1), (d2, x1),… (dm, xi))− 

Σ…Σ P(dj, xi) max(V| (d1, x1), (d2, x2),… (dm, xi))− Σ…Σ P(dj, xi) max(V| (d1, x2), (d2, 

x1),… (dm, xi))+ Σ…Σ P(dj, xi)  max(V| (d1, x2), (d2, x2),… (dm, xi))} 

It can be denoted as the following multiplies of matrices: 
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 (B-7) 

If V(d1, xi) and V(d2, xi) have no effect in the maximum function, i.e., d1 and d2 are 

dominated by other alternatives, then (B-7) will be equal to zero, and assuming all are 

independent will not influence the VOI calculated, since these two alternatives can be 

deleted and after the deletion the other causes are independent. 

If d1 and d2 dominate other decisions, i.e., V(xi, d1) and V(xi, d2) are greater than other 

values V(xi, dj), then this makes other alternatives invalid and reduce the case to above 

binary decision scenario. 

If there is no dominant decisions, suppose V(di, x1) is the maximum among all the 

values, we can trim off half of the summations and reduced (B-7) to: 
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This procedure can be done repeatedly until the next maximum value is among X(d1) 

and X(d2). In such cases, suppose the maximum of the value function is v22, formula 

(B-8) can be further reduced to: 
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= cov(x1, x2) p3j…pmj [max(v11 v21 …vij …vmj) − max(v12 v21 …vij …vmj)] 

The value in the quadric braces is the difference of two middle value of the value 

function. This is quite similar to the binary decision case. That is, adding more 

independent causes of different decisions will not change our previous conclusion 

much.  

If more than one pair of such correlated causes exist among all the causes, the final 

influence depends on the co-effects of all the pairs. They can be of the same direction, 

or mutually subsided, hence it’s hard to determine. 

Moreover, if more causes for different alternatives are correlated, we are unable to tell 

if the independency assumption will increase the VOI calculated or not. If the problem 

is extended to multi-state and multi-decision case it will become more complicated and 

harder to estimate. 
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The above analysis proves that we need to be careful while using the independency 

assumption. 

 

 



 

 


