
 

DESIGN AND ANALYSIS OF ALGORITHMS FOR SOLVING 

SOME STOCHASTIC VEHICLE ROUTING AND SCHEDULING 

PROBLEMS 

 

 

 

 

 

 

 

TENG SUYAN 

 

 

 

 

 

 

NATIONAL UNIVERSITY OF SINGAPORE 

2004 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

DESIGN AND ANALYSIS OF ALGORITHMS FOR 

SOLVING SOME STOCHASTIC VEHICLE ROUTING 

AND SCHEDULING PROBLEMS 

 

 

 

By 

 

 

 

TENG SUYAN (B.ENG. M.ENG.) 

 

 

 

 

A THESIS SUBMITTED  

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING 

NATIONAL UNIVERSITY OF SINGAPORE 

 

2004 

 



ACKNOWLEDGMENTS 
 

First and foremost, I would like to express my sincere gratitude to my 

supervisors, Associate Professor Ong Hoon Liong and Associate Professor Huang Huei 

Chuen, who provided patient guidance and constant encouragement throughout the 

study and research process. I would also like to thank all other faculty members of the 

ISE Department, from whom I have learnt a lot through coursework and seminars. 

Special gratitude also goes to those colleagues who accompanied me and made 

my stay in the Department pleasant and memorable. Particularly, I am grateful to Lin 

shenxue, Gao yinfeng, Yang guiyu, Liu shubin, Yew Loon, Adam, Mong Soon, Liang 

zhe, Ivy, who kindly offered help in one way or another. Also I would like to extend 

my thanks to those whose names are not listed here, for their concern and help. 

A special thank is for my mother who always cared and loved me with all her 

heart.  

This dissertation is dedicated to my husband, Mr. Wang zhidong, and my 

daughter, Wang qing. They gave me all the love and encouragement when I was in the 

low moments that inevitably occurred during the development of the dissertation. 

Lastly, but not the least, I would like to thank my father, my parents-in-law and all 

members of my family for their continuous encouragement and support.  

 

–––––––––––– 

TENG SUYAN 

 i



 

TABLE OF CONTENTS 

 

Acknowledgements...........................................................................................................i 

Table of Contents.............................................................................................................ii 

Summary.........................................................................................................................vi 

Nomenclature...............................................................................................................viii 

List of Figures.................................................................................................................xi 

List of Tables................................................................................................................xiii 

 

 

1  Introduction   

1.1 Introduction to the Stochastic Vehicle Routing Problems ……………………1 

1.2 Introduction to the Generalized Traveling Salesman Problem…………………4 

1.3 Scope and Purpose of this Study……………………………………………….6 

   1.3.1 Scope and Purpose of Part I of this Study………………………………6 

   1.3.2 Scope and Purpose of Part II of this Study………………………………7 

1.4 Structure of the Thesis………………………………………………………….9 

 

2  Literature Review  

2.1 General Overview of the Literature on SVRP……………………...…………11 

2.2 Literature Review on Recourse Policies and Algorithms for VRPSD………17 

   2.2.1 Solution Concepts and Recourse Policies ……………………………17 

   2.2.2 Available Algorithms for VRPSD in the Literature ……………………20 

2.3 Literature Review on the Generalized Traveling Salesman Problem……....…22 

2.4 Conclusion and Further Remarks……………………………………………..26 

 

 ii



3  Comparative Study of Algorithms for VRPSD 

3.1 Problem Statement…………………………………………………………….29 

3.1.1 Problem Description…………………………………………………….29 

3.1.2 Calculation of the Expected Cost………………………………………..30 

3.1.3 Dynamic Programming (DP) Recourse Policy………………………….31 

3.2 Review of the Selected Algorithms…………………………………………...33 

3.2.1 Bertsimas et al.’s Algorithm…………………………………………..33 

3.2.2 Yang et al.’s Algorithm………………………………………………....34 

3.2.3 Teodorovic and Pavkovic’s Simulated Annealing (SA) Algorithm……36 

3.3 Common Grounds for the Comparative Study………………………………..37 

3.3.1 Criteria for the Measurement of the Comparative Study………………..37 

3.3.2 Building the Common Ground for Comparison ………………………..37 

3.4 Computational Results and Analysis………………………………………….41 

   3.4.1 Computational Results………………………………………………......42   

   3.4.2 Performance Analysis of the Algorithms………………………………60 

3.5 Summary and Conclusions……………………………………………………63 

 

4  Metaheuristics for Vehicle Routing Problem with Stochastic Demands 

4.1 Mtaheuristics for Single VRPSD……………………………….......................65 

4.1.1 Initial Solution and Generation of Neighborhood Solutions……………65 

4.1.2 The Simulated Annealing and Threshold Accepting Algorithms……….66 

4.1.3 The Tabu Search Algorithm………………………………...…………..72 

4.2 Simulated Annealing and Threshold Accepting Algorithms for Multiple 

VRPSD..............................................................................................................76 

4.2.1 Generation of Neighborhood Solutions.………………………………...76 

4.2.2 Determining the Number of Vehicles and the Initial Solution..........…...77 

4.2.3 Dealing with the Route Length Constraint……………………………...78 

4.2.4 The Procedure Involved in the SA and TA Algorithms………………...78 

4.2.5 Parameter Setting in the SA and TA Algorithms……………………….81 

 

 iii



4.3 Computational Results and Analysis………………………………………….82 

4.3.1 Single Vehicle Routing Algorithms……………………………………..83 

4.3.2 Multiple Vehicle Routing Algorithms…………………………………..87 

4.4 Conclusions……………………………………………………………………92 

 

5  Algorithms for the Multi-period TCTSP in a Rolling Schedule Environment 

5.1 Problem Description and Framework of the Study.…………………………..94 

5.2 A Set-covering Type Formulation………………………………………….....96 

5.3 Solution Method Based on Iterative Customer Assignment (ICA) Scheme.....98 

5.3.1 ICA Procedure.………………………………. .………………………100 

5.3.2 Heuristics for the Assigning Procedure.……………………………….100 

5.4 Solution Method Based on Iterative Center-of-Gravity (ICG) Scheme…......105 

5.5 An Upper Bound Generated Based on the Set-covering Type Formulation and 

Column Generation Solution Method………………………………………..107 

5.5.1 Column Generation Scheme…...………………………………. .…….108 

5.5.2 Solving the Pricing Problem………………….………………………112 

5.5.3 Procedure Involved in the Column Generation Scheme………….……115 

5.6 Computational Results and Analysis….………...……………………….......116 

5.6.1 Problem Generation.………………………………. .…………………116 

5.6.2 Compare the Performance of the Heuristics Against an Upper Bound..119 

5.6.3 Performance Comparison Among the Heuristics.……………………..127 

5.7 Summary and Conclusions.………………………………………………….142 

 

6  The TCTSP with Stochastic Travel and Service Times 

6.1 Introduction…………………………………………………………………..144 

6.2 Problem Description and Model Formulation……………………………….146 

6.3 Valid Constraints Considered in the Integer L-shaped Algorithm…………...149 

6.4 The Integer L-shaped Solution Method……………………………………...155 

6.5 Computational Results……………………………………………………….156 

 iv



6.5.1 Problem Data Generation………………………………………………156 

6.5.2 Computational Results and Analysis…………………………………..158 

6.6 Conclusions………………………………………………………………......163 

 

7  Conclusions and Directions of Further Research 

7.1 Summary and Conclusions…………………………………………………..164 

7.2 Main Contributions of This Study...…………………………………………166 

7.3 Directions of Further Research………………………………………………168 
 

References…………………………………………………………………………...170 

 

Appendix.....................................................................................................................183  

 

 

 

 

 

 

 

 

 

 

 

 

 

 v



 

SUMMARY 

 

The classical traveling salesman problem (TSP) is the most studied combinatorial 

NP-hard problem in the literature. This thesis addresses two variants of the TSP: the 

vehicle routing problem with stochastic demands (VRPSD) and the time constrained 

traveling salesman problem (TCTSP).  

For the VRPSD, the problem is studied based on the formulation of stochastic 

programming with recourse, which is within the framework of a priori optimization. A 

comparative study among heuristics available in the literature is firstly carried out to 

determine which one is superior to the others in a certain context; and valuable 

suggestions and recommendations are made for decision makers in various scenarios. 

Secondly, as most of the heuristics presented in the literature belong to classical local 

search algorithms, the thesis proposes three metaheuristics: simulated annealing (SA), 

threshold accepting (TA) and tabu search (TS), to examine whether metaheuristics are 

more preferable for the VRPSD, and which metaheuristic is superior to the others in a 

certain context. Computational results show that, metaheuristics can obtain solutions 

with better solution quality for VRPSD, though they may consume more 

computational time. 

For the TCTSP, we first extend it into a multi-period problem: find a subset of 

customers as well as the sequence of serving them in each period in a rolling schedule 

environment, so that the average profit per period in the long run is maximized. 

 vi



Several heuristics based on iterative customer assignment and iterative 

centre-of-gravity have been proposed for solving the problem. Then, the problem is 

formulated as a set-covering problem and its linear programming relaxation is solved 

to optimality by a column generation scheme to get an upper bound. To evaluate the 

performance of the heuristics, for small size problems with long service time, the 

heuristics are compared against the upper bound; for other cases, they are compared 

among themselves. Computational results illustrate that, the best representative of each 

heuristic performs very well for the problem, with the largest average percentage 

deviation from the upper bound being 2.24%, and the smallest deviation only 1.02%. 

When comparing the heuristics among themselves, results indicate that, with respect to 

solution quality, each heuristic has its own advantage in a certain scenario. Decision 

makers are advised to employ different heuristics in different scenarios. Secondly, the 

TCTSP is further extended into the stochastic case, where the travel and service times 

are assumed to be independent random variables. This extension is important because: 

(a) Both travel and service times are not likely to be deterministic in the practical 

situations; (b) The profit generated from visiting a subset of the customers is directly 

affected by the travel and service times due to the time limit constraint. Again, within 

the framework of a priori optimization, two models are proposed for formulating the 

problem: a chance-constrained program and a stochastic program with recourse. Then 

an integer L-shaped solution method is developed to solve the problem to optimality. 

Results show that, the proposed algorithm can solve the stochastic TCTSP with 

moderate problem size to optimality within reasonable time.   

 vii
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Chapter 1 

 Introduction  

 
Given a set of cities, the classical traveling salesman problem (TSP) tries to 

determine a minimal cost cycle that passes through each node exactly once and starts 

and ends at the same city. In this dissertation, two variants of the TSP are considered: 

the vehicle routing problem with stochastic demands (VRPSD), and the time 

constrained traveling salesman problem (TCTSP).  

In the first problem, a fleet of vehicles with limited capacity are assumed to 

deliver goods to the customers from the depot. The demands of the customers are 

defined as random variables, because they are not known when constructing the 

vehicle routes. The problem is to determine vehicle routes so that total expected 

distance traveled by the vehicles is minimized while satisfying some side constraints. 

In the second problem, it is assumed that each customer is associated with a profit of 

visiting it. Given a predefined effective working time limit, the problem tries to 

maximize the profit generated from visiting the customers while satisfying the time 

limit constraint. The TCTSP is a relaxed variant of the TSP or a generalized TSP 

(GTSP) in the sense that not all customers are needed to be visited due to the time limit 

constraint imposed on the time duration of the tour. For the TCTSP, this study first 

considers a multi-period TCTSP in a rolling schedule environment; then it is extended 

into the stochastic case: a TCTSP with stochastic travel and service times. 

 
 
1. 1 Introduction to the Stochastic Vehicle Routing Problems 

The management of a distribution system involves many problems, such as  
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administration problems in running the depots, in designing an information system, in 

routing and scheduling of vehicles to customers, in loading of goods into vehicles and 

so on. The vehicle routing problem (VRP), which requires routing and scheduling the 

vehicles to perform the assigned functions at minimal cost, lies at the center of the 

management of a distribution system. Typically, the problem involves bringing 

products located at a central facility (where vehicles of limited capacity are also 

assumed to be initially housed) to geographically dispersed facilities at minimum cost, 

while satisfying various side constraints. This area of study, which mainly consists of 

designing optimum-seeking algorithms to identify the best configuration of routes and 

schedules, has become a very hot research topic and has been extensively studied by 

many operations researchers. Excellent surveys in this area can be found in Lawler et 

al. (1985) on the traveling salesman problem, Bodin et al. (1983) for routing and 

scheduling, and Golden and Assad (1988), Laporte (1992) and Fisher (1996) on 

vehicle routing problems. 

The capacitated vehicle routing problem (VRP) plays an important role in 

distribution management and has been both extensively studied by researchers and 

applied in practice. The VRP can be broadly classified into two classes of problems: 

the deterministic VRP and the stochastic VRP (SVRP). For the deterministic VRP, all 

the problem parameters, such as demands, travel cost and customer presence, are 

assumed to be known with certainty. For the stochastic VRP, in contrast, one or some 

components of the problem parameters may not be known for sure. The problem of 

constructing vehicle routes through the customers that minimizes the expected distance 

traveled is known as the SVRP. The SVRP has received increasing attention in recent 

years. Depending on which element is stochastic, the SVRP can be further divided into 

the following categories. 

 2



Chapter 1                                                                                                      Introduction               
                       

1)    The probabilistic traveling salesman problem (PTSP) 

Introduced by Jaillet (1985, 1988), the PTSP is also known as the traveling 

salesman problem with stochastic customers (TSPSC), where each vertex vi is 

present with probability pi.  

2)   The traveling salesman problem with stochastic traveling times (TSPST) 

In the TSPST, the traveling time between any two customers is a random 

variable. In the case when m-vehicles are scheduled to visit a set of customers, 

the problem becomes m-TSPST. 

3)   The vehicle routing problem with stochastic customers (VRPSC) 

In the VRPSC, customers are present with some probability but have 

deterministic demands. It is an extension of the PTSP, where the vehicle capacity 

constraint must be satisfied; and once the vehicle capacity is attained or 

exceeded, the vehicle may have to go back to depot. This problem is well studied 

in Bertsimas (1988). 

4)   The vehicle routing problem with stochastic demands (VRPSD) 

In the VRPSD, customer demands are not known with certainty in advance; they 

are usually assumed to be independent random variables with known probability 

distributions. The VRPSD is the most studied problem in SVRP in the literature. 

5)    The vehicle routing problem with stochastic customers and demands (VRPSCD) 

The VRPSCD is a combination of both VRPSD and VRPSC, which means that, 

not only the customers are present with a certain probability, their demands are 

also random variables. It is an extremely difficult problem; even computing the 

value of the objective function is hard (Bertsimas 1992, Gendreau et al. 1996b).  
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As the most studied problem in SVRP, VRPSD has been employed to model and 

provide solutions for many real-world problems in practice. In Bertsimas (1992), the 

application areas identified include the distribution of packages from a post office, 

routing of forklifts in a cargo terminal or in a warehouse, and strategic planning of a 

delivery and collection company which has decided to begin service in a particular 

area. In Yang et al. (2000), the applications cover the following areas: constructing 

waste collection routes with volume of trash at each stop being unknown; delivery of 

money to automatic teller machines from a central bank; peddle routes construction, 

such as beer distribution to retail outlets, resupply of baked goods at food stores, 

replenishment of liquid gas at research laboratories, and stocking of vending machines, 

etc. Other cited applications in the literature include: delivery of money to branches or 

automatic teller machines of a central bank (Lambert et al., 1993), less than truckload 

operations (Gendreau et al., 1995), the delivery of home heating oil (Dror et al., 1985), 

sludge disposal, where sludge accumulation at a plant is a random process (Larson, 

1988), and the design of “hot meals” delivery system (Bartholdi et al., 1983). Part I of 

this research will focus on the VRPSD.  

 

1.2 Introduction to the Generalized Traveling Salesman Problem (GTSP) 
 

The classical traveling salesman problem (TSP) is well studied in the literature 

(Lawler et al., 1985; Aarts and Lenstra, 1997; Korte and Vygen, 2000). The problem 

has many applications, such as large-scale integration (VLSI) chip fabrication (Korte, 

1989), X-ray crystallography (Bland and Shallcross, 1989), etc.  

In the classical TSP, each node must be visited exactly once. Nevertheless, this 

constraint is not always necessary and can be relaxed in some situations, where one 

only needs to visit a subset of the customers. The problem becomes a GTSP: firstly to 

 4
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find a proper subset of customers, and secondly to find the optimal visiting order in the 

selected subset.  

The essence of the GTSP is to select a subset of the customers for visiting. In 

Mittenthal and Noon (1992), the GTSP is called a traveling salesman subset-tour 

problem (TSSP). To characterize a desired trait of an optimal subset-tour, the TSSP 

usually appears in applications with an additional constraint. This is the reason why 

Mittenthal and Noon (1992) called it the TSSP+1 class problem. Corresponding to 

different constraints imposed, several types of the problem are studied in the literature. 

Some representative examples include the prize collecting traveling salesman problem 

(Balas, 1989; Balas, 1995) and the time constrained TSP (Cloonan, 1966) or 

orienteering problem (Golden et al., 1987).   

 The prize collecting traveling salesman (PCTS) problem was firstly introduced 

by Balas and Martin (Balas and Martin, 1991; Balas, 1995). The problem was 

formulated as a model for scheduling the daily operation of a steel rolling mill. 

Associated with each customer, in addition to the profit of visiting it, there is a penalty 

if the salesman fails to visit it. The objective is to minimize the travel costs and the net 

penalties, while satisfying the constraint that enough cities are visited to collect a 

prescribed amount of prize money.  

Different from the PCTS problem, the objective of the time constrained TSP 

(TCTSP) is to maximize the profit realized from serving a subset of customers subject 

to the time constraint imposed on the problem. This problem was first introduced and 

discussed by Cloonan (1966). Some researchers also call TCTSP the selective 

traveling salesman problem (STSP) where they consider a preset constant route length 

as the constraint, see Laporte and Martello (1990) and Gendreau et al. (1998a, 1998b).  
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The orienteering problem (OP) only differs from the TCTSP in that the start 

point and the end point may not be the same. The name “orienteering problem” was 

originated from an outdoor sport: orienteering. Golden et al. (1987) provided its 

definition, and employed it to model and solve the problem of delivering home heating 

oil. 

Among the three types of GTSP discussed above, the TCTSP (or the OP) is 

closely related to the problem considered in Part II of this study, where it is firstly 

extended to a multi-period TCTSP, then extended to a stochastic TCTSP. 

 
1.3 Scope and Purpose of this Study 
 

The scope of this research consists of the following two main parts.  
 

1.3.1 Scope and Purpose of Part I of this Study 
 

Part I focuses on the VRPSD. As the most studied problem among the SVRP, 

there are a number of algorithms available for solving VRPSD under the solution 

framework of a priori optimization. However, different researchers made various 

assumptions on the problem data in the literature; therefore, the performances of the 

algorithms proposed were evaluated based on different assumptions. In such cases, it is 

very difficult for a decision maker to know which algorithm is more preferable in a 

certain context. Therefore, firstly in Part I of this study, we try to carry out a 

comparative study on the representative algorithms for solving VRPSD, so that 

suggestions and recommendations can be made available for the practitioners in 

various contexts.  

Most of the heuristics proposed for VRPSD in the literature are based on 

classical local search algorithms. One drawback of the classical local search algorithm 

is the tendency to be easily trapped in a local optimal solution. Due to the feature that 

 6
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metaheuristics can accept deteriorations in objective function value to some extent, it 

has the ability to escape from the local optimum and therefore may get global optimal 

solution. Thus, secondly in Part I of this study, we try to examine how modern 

metaheuristics behave for the VRPSD. 

 The contribution of this part of the study is twofold. Firstly, by carrying out the 

comparative study, we can determine which algorithm is superior to the others in a 

certain context. Therefore, some valuable suggestions can be provided for the 

practitioners. Secondly, we propose three metaheuristics, the simulated annealing 

(SA), threshold accepting (TA), and tabu search (TS) algorithms for the VRPSD. By 

comparing the performance of the proposed metaheuristics with that of the heuristics 

presented in the literature in various situations with respect to problem size and 

demand pattern, we can determine whether metaheuristics are suitable for solving this 

kind of problems, and also determine which metaheuristic is superior to the others in a 

certain context. Therefore, we can provide more choices and more valuable 

suggestions to the practitioners. 

 
1.3.2 Scope and Purpose of Part II of this Study 
 

The time constrained TSP (TCTSP) is the main theme of Part II of this thesis. 

The problem firstly considered in Part II of this study is a multi-period TCTSP in a 

rolling schedule environment, which can be frequently encountered in the practice. 

Consider a company providing services to the customers. A customer calls for service 

by specifying a desirable period and a time tolerance. Of course, the time tolerance can 

be zero, which means that the service is urgent and if the company can not provide 

service at the specified period, the customer would resort to other companies. With the 

presence of the time tolerance, the company can develop more flexible and more 
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profitable schedules by considering the proximity of the customers requiring services, 

and considering the number of customers requiring services in different periods. In the 

former case, suppose that a customer j requires service in period i1, and it can also be 

visited in period i2, if the customers can be visited in period i2 are in closer proximity 

to customer j than those requiring services in period i1, it may be more profitable to 

schedule customer j in period i2. In the later case, if the number of customers require 

services in different periods is very lumpy, delaying or bringing forward the service of 

some customers may be more profitable. This gives rise to the multi-period TCTSP: 

construct a schedule consisting of several periods rather than one period, find a subset 

of customers as well as the sequence of serving them in each period, so that the 

average profit per period in the long run is maximized.  

The contribution of this part of the study can be summarized as follows. Firstly, 

from the aspect of theoretical study, the multi-period TCTSP is seldom studied in the 

literature, though it can be frequently encountered in the practice as described above. 

We provide a systematic study of this problem in this thesis: 1) We incorporate the 

concept of rolling schedule into the study of the problem due to the dynamic nature of 

the customer information. 2) We present a set-covering type formulation of the 

problem within one rolling horizon. Therefore, with the elongated rolling horizon and 

some assumptions regarding the customer demand information, an upper bound for 

this problem can be found by the column generation method. This type of formulation 

and the column generation solution method can be applied to similar problems, such as 

the team orienteering problem (Chao et al. 1996b), to find the optimal or an upper 

bound of the problems. 3) We provide several efficient heuristic methods with good 

performance in terms of both solution quality and computational time for this kind of 

problem. Moreover, the heuristics are studied against the upper bound and against each 
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other under different problem parameter settings, so that the performance of each 

heuristic is clear under different scenarios. Secondly, from the aspect of practical 

application, based on the evaluation and comparison of the performance of the 

heuristics, suggestions and recommendations in different scenarios can be made for 

potential applications and therefore provide a guideline for the decision makers in their 

decision process.  

The second problem studied in Part II of this study is the TCTSP with stochastic 

travel and service times. In the TCTSP, due to the effective working time limit 

constraint, one factor directly affects the total profit generated from the TCTSP tour is 

the travel and service time required for visiting the customers, which is usually 

assumed to be deterministic. However, in practical situations, both travel time and 

service time are not likely to be known with certainty in advance. The weather 

conditions (rain or snow) and the traffic conditions (road repair or traffic accidents) 

may impact on the travel time between the customers; while the service time is usually 

determined by the kind of service a customer requires. Obviously, the travel and 

service time is very important in the TCTSP, and it will directly affect the solution and 

therefore the profits generated from the solution. However, the stochastic nature of the 

problem never studied in the literature for this problem. Therefore, secondly in Part II 

of this thesis, we try to present models and solution methods for the stochastic TCTSP: 

the TCTSP with stochastic travel and service times.  

 

 1.4 Structure of the Thesis 
 

Corresponding to the two types of the problems considered in this study: the 

vehicle routing problem with stochastic demands (VRPSD), and the time constrained 

traveling salesman problem (TCTSP), this thesis is mainly divided into two parts. Part 
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I covers Chapter 3 and Chapter 4. Part II includes Chapter 5 and Chapter 6. Chapter 2 

provides a literature review on the solution frameworks and algorithms for the SVRP 

and the GTSP. The last chapter, Chapter 7, summarizes some conclusions for the 

whole thesis and directions of further research. 

In Chapter 3, a comprehensive comparative study is carried out among three 

algorithms presented in the literature for the VRPSD. By building a common ground 

for comparison and making some adaptations to the original algorithms, the 

comparative study examines how the algorithms perform in various situations (with the 

increase of problem size, demand mean and/or variance, etc) under the assumption that 

demands follow both uniform and normal distributions. The comparative study also 

investigates whether the algorithms are sensitive to demand distribution type. In 

Chapter 4, several metaheuristics are presented for VRPSD, which include simulated 

annealing (SA), threshold accepting (TA), and tabu search (TS), etc. Computational 

results from these metaheuristics are compared with results from other algorithms 

presented in the literature; suggestions and recommendations are made for the potential 

applications in various scenarios. Chapter 5 focuses on the multi-period TCTSP in a 

rolling schedule environment. Heuristic methods based on iterative customer 

assignment and iterative center-of-gravity are developed for the multi-period TCTSP. 

To study the performance of these heuristics, we formulate the multi-period TCTSP as 

a set-covering problem, and propose a column generation scheme to solve its linear 

programming (LP) relaxation to optimality to get an upper bound for the original 

problem. In Chapter 6, we consider the TCTSP in the stochastic case, where the travel 

and service times of the problem may become random variables. Models formulated as 

both chance-constrained program and stochastic program with recourse are provided, 

and an integer L-shaped solution method is proposed for solving it. 
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Chapter 2 

 Literature Review 

 

This chapter summarizes research work that has been done in the literature for 

the stochastic vehicle routing problem (SVRP) and the generalized traveling salesman 

problem (GTSP).  Section 2.1 covers literature for the various types of the SVRP. 

Section 2.2 focuses on one type of SVRP, the VRPSD. The solution framework, 

recourse policies and algorithms available for the VRPSD are discussed in detail in this 

section. Literature on several types of the GTSP is presented in Section 2.3. Finally, 

Section 2.4 summarizes some findings in the literature review and their relationship 

with the following chapters of the thesis.  

 

2.1 General Overview of the Literature on SVRP 

 

The SVRP addresses the problem of constructing vehicle routes through the 

customers that minimizes the expected distance traveled with the presence of 

uncertainty of some problem parameters. Though comparing with their deterministic 

counterparts, relatively less efforts and achievements have been made on the SVRP, 

there is still much literature available for various types of SVRP.  

 

(1)    The probabilistic traveling salesman problem (PTSP) 

When a postman delivers mails to the customers, obviously, he does not expect 

each customer needs a visit each day. When the customer presence is a random 

variable, and is described by a probability pi, the problem of finding a least expected 
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cost cycle becomes the PTSP. This problem was introduced by Jaillet (1985, 1988). 

The author derived closed form expressions to obtain efficiently (in polynomial time of 

low order) the expected length of tours under various probabilistic assumptions. By 

analyzing the closed form expressions, some properties and characteristics of optimal 

solutions to PTSP were derived. The paper also presented the specific conditions under 

which the TSP solution can serve as a good approximation for the PTSP. However, 

their results show that, in general, entirely new solution procedures are necessary to 

devise for PTSP. Bertsimas et al. (1990) also addressed the PTSP. They discussed the 

applicability of a priori optimization strategies. They showed that if the nodes are 

randomly distributed in the plane, the a priori strategies behave asymptotically equally 

well on average with re-optimization strategies. Two kinds of heuristics using the a 

priori strategies were also presented in the paper. The first is based on the space-filling 

curve heuristic, while the second is based on methods seeking local optimality, which 

includes 2-opt, 3-opt, 1-shift, etc. In Laporte et al. (1994), the authors formulated the 

PTSP as an integer linear stochastic program. Under the a priori strategies, the authors 

presented the first exact algorithm for this kind of problem. The algorithm is based on 

a branch-and-cut approach, which relaxes some of the constraints and uses lower 

bounding functionals on the objective function. 

 

(2)    The traveling salesman problem with stochastic traveling times (TSPST) 

Among the problem parameters: customer demand, customer presence and travel 

time, etc., travel time is the parameter that most unlikely to be known for sure in 

advance (while constructing the routes), due to the weather and traffic conditions. 

However, the TSPST is less studied compared to other SVRP in the literature. In Kao 

(1978), under the assumption that the probability of a sum of random travel times can 
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be readily computed, two heuristics for this problem were proposed: one is based on 

dynamic programming; and the other employs the implicit enumeration to find a 

solution. In Sniedovich (1981), the author pointed out that, the monotonicity property 

required by the dynamic programming algorithm was not verified in Kao (1978); 

therefore the algorithm may obtain sub-optimal solutions. This difficulty was 

overcome in Carraway et al. (1989), where a generalized dynamic programming 

algorithm was proposed and applied to TSPST. Another version of TSPST is m-

TSPST, where m vehicle routes all start and end at a common depot. Lambert et al. 

(1993) designed the money collection routes through bank branches in the case of 

stochastic traveling times, due to the fact that congestion of some arcs usually happens 

in the rush hour. To take the stochastic traveling times into consideration, the objective 

function includes two penalty terms: one is due to the fact that money accumulated 

between vehicle arrival time and a branch’s closing time is not collected until the next 

day, therefore it is preferable to delay as much as possible visits to branches; the other 

is due to the fact that all money contained in the vehicles arriving at depot later than a 

prescribed time loses one day’s interest. The authors applied the adapted Clark and 

Wright (1964) algorithm to solve the VRP with stochastic traveling times. In addition 

to the stochastic traveling times, Laporte et al. (1992) considered stochastic service 

times at the vertices as well. Here the penalty for late arrival is proportional to the 

length of the delay. Three mathematical programming models were presented in the 

paper, a chance-constrained model, a three-index simple recourse model, and a two-

index recourse model. The paper also presented a general branch-and-cut algorithm for 

solving the three models. 
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(3)    The vehicle routing problem with stochastic customers (VRPSC) 

In the PTSP, vehicle capacity constraint is relaxed. When a customer is present 

with probability pi but with deterministic demand, and the vehicle capacity constraint 

must be respected, the PTSP is extended to VRPSC. The best source of theoretical 

information on VRPSC is Bertsimas (1988), in which several properties, bounds and 

heuristics for the problem were described. Benton and Rossetti (1992) considered 

general demands and proposed an empirical comparison of three operating policies: 

follow the planned route without skipping absent customers (fixed route), skip absent 

customers (modified fixed route), and re-optimize the remaining route whenever the 

absence of a customer is revealed (variable route). The author assumed that demands 

are known at the beginning of the period in which they occur, so it is possible to 

modify the fixed route or reschedule the fixed route whenever the absence of 

customers are known. For the fixed route alternative, by using the expected value of 

non-zero demands, the total cost can be solved by classic VRP heuristics. However, 

because of the randomness of customer presence, the total cost of the other two 

alternatives must be calculated for each period. The cost of modified fixed-route 

alternative can be solved by skipping the appropriate zero demand customers from the 

VRP solution. The cost of variable route alternative is solved by applying an efficient 

heuristic VRP procedure to the customers with non-zero demand for that period. 

Finally, the one with the least total cost in each period is chosen as the best alternative. 

Waters (1989) also applied the above-mentioned three alternatives to deal with VRP 

with stochastic customers, but from a different point of view. In practice, the third 

alternative of variable routes is not always possible, because the customers to be 

omitted must be known some time before vehicles set out, to allow time to produce 

new routes. Therefore, the problem the paper studied is: how large are potential 
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savings of using modified-fixed routes and variable routes, its relationship with the 

number of absent customers, and the break-even points (the proportion of absent 

customers) to make rescheduling worthwhile over fixed and modified-fixed routes. 

 

(4)    The vehicle routing problem with stochastic demands (VRPSD) 

In VRPSD, the customer demand is a random variable while all the other 

problem parameters are assumed to be deterministic. As VRPSD is the most studied 

SVRP in the literature and it is the focus of Part I of this study, Section 2.2 will present 

a more detailed literature review on the solution framework, recourse policies and the 

algorithms available for VRPSD. 

 

(5)    The vehicle routing problem with stochastic customers and demands (VRPSCD) 

As a combination of the VRPSC and VRPSD, VRPSCD is an extremely difficult 

problem (Gendreau et al. 1996b). Bertsimas (1992) presented the closed-form 

recursive expressions and algorithms to compute the expected length of an a priori 

sequence under general probabilistic assumptions. Also the upper and lower bounds on 

the a priori and re-optimization strategies were derived for this kind of problems. The 

purpose is to compare these strategies from a worst and average case perspective. 

Heuristics based on cyclic heuristic (Haimovitch and Rinnooy Kan, 1985), were 

proposed and their worst-case performance as well as their average behavior were 

analyzed in the paper. Gendreau et al. (1996a) presented a tabu search algorithm for 

this problem. Based on an initial solution constructed by Clark and Wright (1964) 

algorithm, the neighborhood of a solution X contains all solutions that can be reached 

by removing in turn one of neighbor_size randomly selected customers, and inserting 

each of them either immediately before, or immediately after one of its ϖ  nearest 
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neighbors. If a vertex is moved from route π  to the same route or to a different route 

at iteration i , its reinsertion or displacement in route π  is tabu until iteration i  + 

NoTabu, where NoTabu is the tabu tenure and is randomly selected in the interval [n-5, 

n]. However, the penalized objective function can not be used directly to evaluate the 

moves and select the best move for the tabu search, due to the computational burden in 

the case of stochastic customers and demands. One of the major contributions of the 

paper is the development of an easily computed proxy for the objective function, to be 

used in the evaluation of potential moves, and also the elaboration of a series of 

mechanisms aimed at efficiently managing the proxy. Ong et al. (1997) provided a 

framework to model customers in a due-date environment. In addition to the stochastic 

demand, each customer requires a service on a specific day (due-date) and at a 

particular time window of the day. In the objective function of their model, in addition 

to the routing cost, there are two penalty terms: one is associated with the overdue 

dissatisfaction of each customer and the expected losses of the company; the other is 

related to the customers that can not be served fully on the planned route. The paper 

presented a “LOSS function” based on due-date to serve as selection criteria of 

customers to be served. The stochastic demand was handled based on the chance-

constrained model (Stewart and Golden, 1983). To take the time window constraint 

into consideration, the paper proposed an adaptation of the insertion heuristic by 

Solomon (1987) for the routing and scheduling. Gendreau et al. (1995) presented an 

exact algorithm for this problem, which used an Integer L-Shaped method. Solutions 

were reported for instances involving up to 46 vertices solved to optimality. 
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2.2 Literature Review on Recourse Policies and Algorithms for VRPSD 

 

Since VRPSD is the most studied problem among the SVRP and it is the focus of 

Part I of this study, the solution framework, recourse policies and available algorithms 

are discussed in detail as follows. 

 

2.2.1 Solution Concepts and Recourse Policies 

 

For the vehicle routing problem with stochastic demands (VRPSD), solution 

frameworks mainly depend on the operating policies (whether re-optimization is 

allowed) adopted and the time when demand information is available. Two solution 

frameworks are available in the literature: stochastic programming and Markov 

decision processes. The former belongs to the a priori or static method, because the 

order of the customers’ visitation is not changed during its real time execution; while 

the later belongs to real time or dynamic method, because routes are recomputed based 

on the information that becomes available during the execution of the tour. An 

inherently dynamic formulation was proposed by Dror et al. (1989). They developed a 

Markov decision process model for the VRPSD, but no computational experience was 

provided. Dror (1993) studied a slightly modified version of the model, also no 

computational experience was provided and the author considered instances with more 

than three customers as computationally intractable. Secomandi (1998) proposed 

different Markov decision process models for VRPSD solved in the dynamic context. 

Moreover, the author developed an exact dynamic programming algorithm to compute 

a dynamic optimal policy; he also proposed a heuristic dynamic programming 
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algorithm to compute a partially dynamic policy and an on-line rollout algorithm to 

compute a dynamic routing policy.  

However, the dynamic routing policy may be impractical or even impossible in 

practical applications due to the following reasons:  

 

1)  Not enough resources to repeat the redesigns; 

2) Not enough information regarding demands before actually visiting the 

customer, etc. 

 

Therefore, one representative method in the literature is to determine a fixed a 

priori sequence among all potential customers, and consider recourse actions upon a 

route failure. The idea of using a priori sequence was first proposed for the PTSP in 

Jaillet (1985). Bertsimas (1988) generalized the idea and applied it to other 

combinatorial optimization problems, such as the probabilistic minimum spanning tree 

problem, the PTSP, the probabilistic vehicle routing problem, and facility location 

problems. All studies above assume that the demand distribution is binary, i.e., 

customer i either has 1 unit demand with probability pi, or does not have any demand 

with probability 1 - pi. The idea is further generalized to the arbitrary discrete-demand 

distributions in Bertsimas (1992).   

Within the framework of the a priori optimization method, the VRPSD can be 

formulated both as a chance-constrained program (CCP) and as a stochastic program 

with recourse (SPR). In chance-constrained program, one seeks a first stage solution 

for which the probability that all demands on a route exceeding the vehicle capacity is 

not greater than a predefined probability level. Under this condition, no recourse action 

is adopted in case of route failure. Under some assumptions, a chance-constrained 
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model can be transformed into an equivalent VRP with an artificial vehicle capacity. 

Therefore existing algorithms for VRP can be applied to the resulting problem in this 

case.  

  In the stochastic program with recourse, the problem is solved in two stages. In 

the first stage, the objective is to determine a solution that minimizes the expected cost 

of the second stage solution.  Specifically, in the first stage, a planned or a priori 

solution is determined. In the second stage, as the actual demands are revealed, the first 

stage solution may not be possible as planned because of the route failure, for example, 

the total demand of a route may exceed the vehicle capacity. A recourse or corrective 

action is then applied to the first stage solution. The total expected distance traveled 

includes two parts: one is the fixed length of the a priori sequence; the second is the 

expected value of the additional distance traveled whenever demand on the sequence 

exceeds vehicle capacity. 

For a given VRPSD, two categories of recourse approaches can be found in the 

literature. One recourse approach belongs to the dynamic category, which re-optimizes 

the remaining portion of the route upon each failure based on the information that 

becomes available during the execution of the tour. Among those static recourse 

policies, a simple and obvious one is that, whenever route failure occurs, go back to 

depot to restock. In the two SPR models presented in Stewart and Golden (1983), one 

applies a penalty proportional to the probability of exceeding the vehicle capacity, the 

other uses a penalty proportional to the expected demand in excess of the vehicle 

capacity.  Both Bertsimas et al. (1995) and Yang et al. (2000) employed a dynamic 

programming procedure to plan “preventive breaks” at strategic points along the first 

stage route, rather than waiting for route failure to occur. The difference is that, in 

Yang et al. (2000), partial delivery is permitted, though penalized by imposing a fixed 
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nonnegative cost whenever route failure occurs. These recourse policies, though 

different from one another, belong to the static approach, because the order of the 

customers’ visitation is not changed during its real time execution. In this study, we 

will focus on the fixed a priori static method. 

 

2.2.2 Available Algorithms for VRPSD in the Literature 

 

Exact algorithms for the SVRP are developed based on mixed or pure integer 

stochastic programs; see Laport et al. (1992, 1994) and Gendreau et al. (1995). The 

integer L-shaped method was employed to solve the SVRP in the above papers. It is an 

extension of the L-shaped method of Van Slyke and Wets (1969) for solving the two 

stage stochastic linear problems when the random variables have finite support, by 

incorporating a branching procedure to recover the integrality of the variables. As a 

branch-and-cut algorithm applicable to a wide range of stochastic integer programs 

with recourse, the integer L-shaped method has also been applied in solving the 

VRPSD. Hjorring and Holt (1999) derived more effective optimality cuts and a tight 

global lower bound on the second stage value function based on the concept of partial 

routes for the single vehicle case.  Laporte et al. (2002) studied lower bound on the 

second stage value function for the normal and Poisson distributed demands. They also 

constructed their optimality cuts based on the concept of partial routes in Hjorring and 

Holt (1999). In addition, Dror et al. (1993) considered the VRPSD, in which the 

number of potential failures per route is restricted either by the data or the problem 

constraints. A chance-constrained version of the problem was considered and solved to 

optimality by algorithms similar to those developed for the deterministic VRP. Then 

three classes of recourse models were analyzed. Under the assumption that route 
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failure can only occur at most once, an exact solution with a very high probability of 

being optimal was easily computed by solving a sequence of deterministic problems.   

The VRP is a combinatorial NP-Hard problem (Bodin et al., 1983). By adding 

the stochastic element to the demands, the problem becomes even more difficult to 

solve in terms of computational time as intricate probability computations are usually 

involved. Known approaches for solving these problems optimally suffer from an 

exponential growth in computation time with problem size, which is very unlikely to 

be acceptable in the real world. Therefore, considerable attention and research efforts 

have been devoted to the development of efficient heuristics (approximate algorithms) 

to get near optimal solutions for large sized problems.  

The first heuristic for the VRPSD was proposed in Tillman (1969), which is for 

multiple depot case and the algorithm is based on Clark and Wright (1964). In Stewart 

and Golden (1983), in addition to presenting one CCP and two SPR models, they also 

considered several demand distributions and proposed two heuristics: one based on 

Clark and Wright (1964), the other based on Lagrangean relaxation.    

Bertsimas et al. (1995) presented an a priori heuristic based on the cyclic 

heuristic (tour construction), 2-interchange and the dynamic programming (tour 

improvement). Computational results were presented based on two types of demand 

distributions: discrete uniform distribution and discretised normal distribution. They 

considered the single vehicle case, because in VRPSD, returning trips to the depot are 

permitted, and therefore vehicle capacity becomes a soft constraint. Moreover, Yang et 

al. (2000) shown that, with the presence of no additional constraints, it is not necessary 

to use multiple vehicles due to the recourse policy, the optimal route is always a single 

one. Nevertheless, with the presence of such constraints as a limit on the maximum 

traveling distance or effective working time of a vehicle, a single route may not be 
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usable in most real-world situations. Therefore, in Yang et al. (2000), they proposed 

heuristics for both the single vehicle and multiple vehicle cases. In the single vehicle 

case, a composite method (insertion + Or-opt) was used to build a single route. For the 

multiple vehicle case, they applied classic route-first-cluster-second and cluster-first-

route-second heuristics to solve this problem, under the assumption that the expected 

route length of each route must be within a predefined limit. In their computational 

experience, customer demands were assumed to follow discretised triangular 

distribution.     

In addition to the traditional heuristics discussed above, modern heuristic, such as 

simulated annealing (SA), has also found its application in solving VRPSD. 

Teodorovic and Pavkovic (1992) presented a SA algorithm, which is limited to the 

situation where at most one route failure occurs in each route. Under this assumption, 

they first introduced how to calculate the expected cost; then presented a two-stage 

scheme, both of which utilize SA algorithm, with the first stage SA serving as a 

clustering procedure and the second stage SA serving as a routing procedure. The 

computational results were presented based on uniformly distributed customer demand 

information. 

 

2.3 Literature Review on the Generalized Traveling Salesman Problem 

 

As a relaxed variant of the TSP, where not each customer is required to be visited 

exactly once, the GTSP tries to select a subset of the customers with a desired trait 

which is usually described as an additional constraint imposed on the subset tour. The 

GTSP has received increasing attention in recent years. Most studies focus on the prize 
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collecting traveling salesman (PCTS) problem, the time constrained TSP (TCTSP) and 

the orienteering problem (OP).   

For the PCTS problem, Balas (1989, 1995) presented an intensive theoretical 

study. In Balas (1989), he discussed the structural properties of the PCTS polytope, the 

convex hull of solutions to the PCTS problem. In particular, he identified several 

families of facet defining inequalities for this polytope, which can be used in 

developing algorithms for the PCTS problem either as cutting planes or as ingredients 

of a Lagrangean optimand. In Balas (1995), he presented a general method for deriving 

a facet defining inequality for the PCTS polytope from any facet defining inequality 

for the asymmetric traveling salesman (ATS) polytope. The method was applied to 

several well-known families of facet inducing inequalities for the ATS polytope. The 

cloning and clique lifting procedure for the ATS polytope was also extended to the 

PCTS polytope in his paper. In addition to the theoretical study, a number of heuristics 

have been developed for the PCTS problem and its several variants. In Bienstock et al. 

(1993), they considered a simplified version of PCTS problem, where the objective is 

to find a tour that visits a subset of the vertices such that the length of the tour plus the 

sum of penalties of all vertices not in the tour is as small as possible. They presented 

an approximation algorithm with constant bound. The algorithm is based on an 

algorithm presented in Christofides (1976) for the TSP as well as a method to round 

fractional solutions of a linear programming (LP) relaxation to integers, feasible for the 

original problem. In Lopez et al. (1998), they considered the hot strip mill production 

scheduling problem for scheduling steel coil production in the steel industry. The 

problem was modeled as a generalization of the PCTS problem with multiple and 

conflicting objectives and constraints. They presented a heuristic based on tabu search 

and a new idea of “cannibalization” for solving the problem. In Awerbuch et al. 
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(1998), they presented the first approximation algorithm having a polylogarithmic 

performance guarantee for the PCTS problem and two variations of the problem. In 

one variation, there is no penalty associated with each unvisited city. Another variation 

is called the “orienteering problem" by Golden et al. (1987).  

The TCTSP was first introduced and discussed by Cloonan (1966). Gensch 

(1978) proposed a solution method based on tree search for an industrial application of 

this problem. The algorithm requires finding both the lower bound and the upper 

bound of the solution to get an optimal sub-tour for the problem. The lower bound is 

found by constructing a sub-tour by the nearest neighbor heuristic; while the upper 

bound is obtained by solving a time constrained assignment problem by relaxing the 

sub-tour elimination constraints, which applied the generalized Lagrange multiplier 

method. Golden et al. (1981) developed a simple iterative procedure for the problem. 

When the constraint considered is a preset constant route length rather than a time 

limit, some researchers call TCTSP the selective traveling salesman problem (STSP). 

Laporte and Martello (1990) proposed an exact algorithm, which consists of 

embedding a LP relaxation within a branch-and-bound scheme. Another exact 

algorithm proposed by Gendreau et al. (1998a) is based on branch-and-cut procedure. 

Heuristics for STSP can be found in Laporte and Martello (1990) and Gendreau et al. 

(1998b).   

The definition of OP was first provided in Golden et al. (1987). Ramesh et al. 

(1992) presented an exact algorithm for OP. In Leifer and Rosenwein (1994), they 

tightened the LP relaxation and proposed a procedure to obtain upper bounds. In 

Kataoka et al. (1998), they proposed a minimum directed 1-subtree problem as a 

relaxation to the OP and developed a cut and dual simplex method and a Lagrangean 

relaxation method to improve its lower bound. Since the OP is NP-hard (Golden et al., 
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1987), a number of heuristics have been developed during the past few years. 

Tsiligirides (1984) also studied this problem; however, he called it the generalized 

TSP. Two heuristics were presented in Tsiligirides (1984): one is deterministic, and the 

other is stochastic. In the deterministic heuristic, the geographic region is divided into 

sectors by concentric circles. Routes are then built within sectors to minimize the total 

travel time. The stochastic algorithm selects the best route among a large number of 

routes created based on Mont Carlo techniques. When constructing the OP tour, to 

select a node j for inclusion, he applied a measure of desirability for all nodes not 

currently on the route. The largest 4 values of the measure of desirability are selected 

and normalized so that they sum to one. A random number is then generated according 

to U (0, 1) in order to select a node j for inclusion. The procedure is repeated until no 

more nodes can be included into the route. Since the inclusion of each node j is 

randomly selected, many routes can be generated in this method. An algorithm based 

on the concept of center-of-gravity was proposed by Golden et al. (1987). The 

heuristic includes three steps: route construction, route improvement and center-of-

gravity step. After constructing an initial route, they applied 2-opt to improve the 

route, followed by a cheapest insertion step to insert as many nodes as possible to the 

initial route without violating the constraint. Suppose that the route resulted from the 

first two steps is called route π . In the center-of-gravity step, they first calculate the 

center-of-gravity for route π  by using the coordinates and profits of all nodes in route 

π .  Then, for each node i, calculate the ratio of its profit to the traveling time from 

node i to the center-of-gravity of route π . Add nodes to the route in descending order 

of this ratio using cheapest insertion, until no additional nodes can be added without 

violating the time limit constraint. The route improvement step is then applied again to 

make some adjustments to the resulting route. After getting the new route 'π , the 

 25



Chapter 2                                                                                              Literature Review 

center-of-gravity step is applied again to form a new route ''π . The procedure is 

repeated until a cycle develops, and then the route with the highest score is selected as 

the final solution. In their computational experience, Golden et al. (1987) claimed that 

their heuristic outperforms the two heuristics proposed in Tsiligirides (1984). An 

improved algorithm that incorporates the center-of-gravity idea, Tsiligirides’s 

randomization concept, along with learning capabilities was presented by Golden et al. 

(1988). In Keller (1989), he adapted the algorithm originally developed for the 

multiobjective vending problem (Keller, 1985) to solve the OP, and made a 

comparison with algorithms from Tsiligirides (1984) and Golden et al. (1987). In 

Mittenthal and Noon (1992), they presented a heuristic for the TSSP+1 class of 

problems, which explores the solution space by either insertion of unvisited vertices or 

deletion of included vertices from the subset tour. A fast and effective heuristic that 

consists of one initialization step and one improvement step was presented by Chao et 

al. (1996a). A similar procedure was employed to address the team orienteering 

problem in Chao et al. (1996b). Moreover, Kantor and Rosenwein (1992) addressed 

the orienteering problem with time windows. They developed a tree heuristic based on 

an exhaustive search of the feasible solution space. 

 

2.4 Conclusion and Further Remarks 

 

From literature presented for the SVRP (Sections 2.1 and 2.2), it is clear that 

VRPSD is the most studied among various types of SVRP in terms of solution 

concepts, recourse policies and algorithms proposed in the literature. Moreover, most 

of the researchers formulated VRPSD as a stochastic program with recourse within the 

framework of the a priori optimization. Several representative heuristics for solving 
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VRPSD include Bertsimas et al. (1995), Yang et al. (2000) and Teodorovic and 

Pavkovic (1992). However, different researchers made different assumptions on the 

problem data when doing the computational experiment; and the performances of the 

algorithms proposed were evaluated based on their assumptions. For example, in 

Bertsimas et al. (1995), the demands are assumed to follow normal and uniform 

distributions; in Yang et al. (2000), the demands follow triangular distribution; in 

Teodorovic and Pavkovic (1992), the demands follow uniform distribution, and they 

also assumed that at most one route failure could occur for each route. In such cases, it 

is very difficult for a decision maker to know which heuristic is more preferable in a 

certain context. Therefore, in Chapter 3 of this thesis, a comprehensive comparative 

study is carried out on algorithms presented in Bertsimas et al. (1995), Yang et al. 

(2000) and Teodorovic and Pavkovic (1992), so that suggestions and recommendations 

can be made available for the practitioners in various contexts.  

One other finding from the literature review of SVRP is that, most of the 

heuristics proposed for VRPSD in the literature are based on classical local search 

algorithms (except for the SA algorithm presented in Teodorovic and Pavkovic, 1992), 

which have the tendency to be easily trapped in a local optimal solution. Though there 

is an SA algorithm presented in Teodorovic and Pavkovic (1992), results from our 

comparative study (Teng et al., 2001) show that SA algorithm based on the original 

neighborhood generation method and cooling schedule performed quite badly in 

comparison with the other heuristics with respect to both solution quality and 

computational time. Also, it seemed that there are some randomness involved in both 

the solution quality and computational time. This does not mean that SA algorithm is 

not suitable for VRPSD, because the performance of the SA algorithm depends greatly 

on the neighborhood generation mechanism and the cooling schedule. Thus, in Chapter 
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4 of this thesis, we present three metaheuristics, simulated annealing (SA), threshold 

accepting (TA) and tabu search (TS) for solving VRPSD, and try to examine how 

modern heuristics behave for the VRPSD. 

Literature presented for the GTSP in Section 2.3 indicates that, the TCTSP and 

OP are most closely related to the problems considered in Part II of this study. For 

TCTSP and OP, except for the team orienteering problem considered in Chao et al. 

(1996b), most work done in the literature is to construct a single orienteering tour 

(TCTSP tour) in an optimal way or through heuristics. Chapter 5 of this thesis extends 

the TCTSP into a multi-period TCTSP, and presents some heuristics for solving it in a 

rolling schedule environment. 

In the literature as well as in the multi-period TCTSP considered in Chapter 5, 

both the travel time and the service time are assumed to be deterministic, though, in 

practical situations, both are not likely to be known with certainty in advance. 

Nevertheless, the profit generated from the TCTSP is directly affected by the travel 

and service times, due to the time limit constraint of the TCTSP. To make the problem 

considered more sensible, in Chapter 6 of this thesis, the TCTSP is extended to the 

stochastic case, where the travel time and the service time are assumed to be random 

variables.  
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Chapter 3 

 Comparative Study of Algorithms for VRPSD 

 
 

For SVRP, most studies have been made on the VRPSD and several heuristics 

can be found in the literature. In this chapter, we compare the performance of three 

representative heuristics from the literature based on the model of stochastic program 

with recourse (SPR). A common ground for the comparative study is built first, 

followed by conducting a comprehensive computational study on each of the three 

selected heuristics. We examine how the heuristics perform in various situations with 

respect to problem size and demand pattern, in order to determine which algorithm is 

superior to the others in a certain context. Based on these findings, some valuable 

suggestions are recommended to the practitioners.  

 

3.1 Problem Statement 

3.1.1 Problem Description 

 

The vehicle routing problem with stochastic demands (VRPSD) can be described 

as follows: Given a set V = {1, …, n}, and  = V ∪  {0}, with 0 representing the 

depot, and 1, … ,n denoting the n customers, a distance matrix C = (c

'V

i,j), ',' VjVi ∈∈ ,  

is defined on Euclidean plane. There is a fleet of m identical vehicles of capacity Q at 

the depot that deliver goods to the n customers. Let Di, i = 1, 2, …, n, denote the 

random variables that describe the demand of customers. We assume that all Di are 

independent random variables following a known discrete probability distribution with 
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K+1 possible values, 0, 1, 2, … , K. Let pi(k) be P(Di = k), the probability that demand 

at node i is k. We further assume that K < Q; that is, the vehicle’s capacity is greater 

than the largest demand of a customer in a given period. This assumption removes the 

consideration of multiple returns to the depot from the same node. Moreover, we 

assume that L is a predefined maximum limit for the expected route length. The 

VRPSD tries to determine vehicle routes, restocking policy at each node, as well as the 

number of vehicles m, under the following conditions:  

(i) All routes start and end at the depot;  

(ii) Each city is visited exactly once except the depot;  

(iii) The expected distance traveled by any vehicle does not exceed the 

prescribed value L;  

(iv) The total expected distance traveled by all vehicles is to be minimized. 

  

Note that, though we evaluate the routes by using the expected route length, we 

also call it the expected cost in the following parts of this thesis. 

 

3.1.2 Calculation of the Expected Cost 

 

In Bertsimas et al. (1995), they presented the following equation to calculate the 

expected cost of each tour: 

∑∑
=

+
=

+ +++−=
n

i
iiiii

n

i
iii ccccLE

1
0,10,0,

0
1, ])[2()1(][ γδγτ                             (3.1) 

where γi is the probability that the demand at the ith node is exactly equal to the stock 

available in the vehicle, δi is the probability that the demand at the ith node exceeds the 
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remaining stock, and ci,j is the distance between nodes i and j in the tour. Bertsimas 

(1992) presented some equations to calculate γi and δi as follows: 

01 =γ  

⎣ ⎦

∑ ∑
= =

≤≤
⎭
⎬
⎫

⎩
⎨
⎧

−−=
QiK

l

K

k
ii niklQifkp

/

1 1

2,),1()(γ                                                    (3.2) 

01 =δ  

⎣ ⎦

∑ ∑ ∑
=

−

= +=

≤≤
⎭
⎬
⎫

⎩
⎨
⎧

−−⎟
⎠

⎞
⎜
⎝

⎛=
QiK

l

K

k

K

kr
ii niklQifrp

/

1

1

1 1

2,),1()(δ                                          (3.3) 
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recursion: 
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3.1.3 Dynamic Programming (DP) Recourse Policy 

 

Both Bertsimas et al. (1995) and Yang et al. (2000) employed the following 

dynamic programming (DP) recourse policy. Instead of waiting for route failure to 

occur, DP recourse policy can recursively decide at each stage (node), which is more 

preferable: go on visiting the next node, or return to the depot for restocking. A 

threshold value, vehicle remaining load for delivery operation, is calculated at each 
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node i. If the remaining load after visiting node i is less than or equal to the threshold 

value, it is better to return to depot before visiting the rest of the customers.  

For any given a priori solution to the VRPSD problem, let ( be the set 

of nodes arranged in the same sequence as they appear in the visitation tour. Let q 

denote the vehicle’s remaining load. Define f

),...,, 21 nvvv

j(q) to be the expected remaining distance 

to travel, given that the optimal strategy is followed. The following dynamic 

programming recursion describes the decision about when the vehicle should return to 

the depot. 

 

1) Initialization 

Set                                                                         (3.7) }...,,1,0{,)( ,0 Qqcqf
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2) Recursion 
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3) Threshold calculation   

                                                                       (3.10) )}()(:max{)(* 2 qfqfqjq jj ==

 

 

Here, the terms and  reflect the strategy of returning to depot, and 

the strategy of continuing to the next node, respectively.  

)(2 qf j )(1 qf j
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The term q*(j) is the threshold value for node vj. When the remaining load is very 

large, it is obvious that one should go on to the next node. As remaining load 

decreases, the cost of going on to the next node increases, the maximum remaining 

load q*(j) that makes going on to the next node more costly than going back to depot is 

the threshold value for node vj. If the remaining load after visiting node vj is less than 

q*(j), it is better to return to the depot before serving further demand points.  

For each visitation sequence, through the backward dynamic programming, its 

expected cost can be calculated by the following equation. 

∑
=

+=
Q

j
vv cjfjpz

0
,01 11

)()(                                                                               (3.11) 

This expected cost, together with the threshold value at each node, forms a 

solution for any visitation sequence. 

 

3.2 Review of the Selected Algorithms 

 

In this section, we give a brief review of the algorithms selected for comparison 

in this study. Readers can refer to the original papers for details. 

 

3.2.1 Bertsimas et al.’s Algorithm 

 

Bertsimas et al. (1995) presented an a priori heuristic based on the cyclic 

heuristic, 2-interchange and dynamic programming (DP) procedure. They only 

considered the single vehicle case. This is possible in VRPSD, because returning trips 

to the depot are permitted, and vehicle capacity becomes a soft constraint.  
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Cyclic heuristic with local improvement and dynamic programming (DP) 

For a given initial TSP tour (0, 1, 2, …, n), the cyclic heuristic generates n cyclic 

permutations, with the ith permutation iπ  = (0, i, i+1,…, n, 1, 2,…, i-1, 0). 2-

interchange is then applied to make local improvement for each of the n orderings. The 

DP recursion along with the threshold calculation is used to determine when the 

vehicle should return to the depot. The heuristic then chooses the lowest cost visitation 

sequence and recourse policy as the final solution. 

 

3.2.2 Yang et al.’s Algorithms 

 

In Yang et al. (2000), a composite method (insertion + Or-opt) was proposed for 

single VRPSD. For the multiple VRPSD, they applied classic route-first-cluster-second 

(R1-C2) and cluster-first-route-second (C1-R2) heuristics to solve this problem. The 

calculation of the expected cost of the routes and the best restocking policy are 

performed by the DP recursion, which is similar to the recursion presented by 

Bertsimas et al. (1995). One difference is the recourse cost. To penalize a partial 

delivery, a fixed nonnegative cost is imposed whenever route failure occurs, in 

addition to the cost of traveling to the depot and back to the route. Additionally, to 

save the computational time, they present an approximation method to calculate the 

insertion cost. 

 

Single vehicle routing problem 

The heuristic first attempts to find a single route through all the customers using 

the insertion procedure (Bodin et al., 1983). Next, Or-opt procedure (Or, 1976) is used 

to seek further improvements. In the Or-opt procedure, a set of k successive nodes are 
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removed from the current location (I), and reinserted back into the route elsewhere 

other than where they are removed (II). The approximation method is used to calculate 

the cost improvement: the difference of cost savings (resulted from I) and the 

additional costs (resulted from II). The move with the maximum cost improvement is 

implemented. The procedure repeats until there is no cost improvement available and k 

is decreased by 1. The procedure terminates until k is 1 and there is no further cost 

improvement available.  

 

Multiple vehicle routing - Route-first-cluster-second algorithm  

The routing procedure is the same as the one used in the single vehicle routing. 

Suppose π  = (i1, i2, … in) is an ordered sequence obtained by using insertion and Or-

opt algorithms. Given a limit L on the expected cost of each route, in the clustering 

procedure, Yang et al. (2000) proposed another dynamic programming procedure to 

partition the sequence into multiple vehicle routes. The procedure recursively 

determines the partitioning points for each subsequence such that the expected cost of 

the total route set is minimized and the expected cost of each subsequence is within the 

limit L. 

 

Multiple Vehicle Routing - Cluster-first-route-second algorithm 

In the clustering process, one needs to select the seed points first. Yang et al. 

(2000) employed the circle covering method of Savelsbergh and Goetschalckx (1995) 

to determine the seed points. Then, customer clusters are formed around the seed 

points in the following way: select the seed point not yet assigned with the smallest 

covering circle (see Savelsbergh and Goetschalckx, 1995), form a seed route with 

return trips between the seed point and the depot. Calculate the insertion cost of each 
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unconnected node at the best location in the seed route. Successively insert the 

unconnected nodes with the least insertion cost into the route. Reject the nodes that 

make the route infeasible. The procedure proceeds until no more insertion is feasible; 

and other clusters are formed by repeating the same procedure. 

In the routing process, they tried to reposition each node from its current position 

to any other position, either on the same route or to other routes, provided that the new 

position of the node does not violate the route length constraint.  

 

Multiple vehicle routing - Improving the heuristic solution 

To further improve the solution obtained from the above two heuristics, Yang et 

al. (2000) also repeatedly applied inter-route and intra-route exchange procedures until 

no further improvement can be made. The inter-route exchange tries to improve the 

routes by moving a segment of nodes from one route to another. The intra-route 

exchange procedure uses Or-opt to further improve each route.  

 

3.2.3 Teodorovic and Pavkovic’s Simulated Annealing (SA) Algorithm 

 

Teodorovic and Pavkovic (1992) presented a SA algorithm to solve the problem 

in the situation where at most one route failure can occur in each route. They first 

introduced a way to calculate the expected cost in this case. The paper employs a two-

stage scheme, both of which utilize SA algorithm. In the first stage, SA is used to find 

a satisfactory initial solution. The neighborhood solutions are generated by randomly 

constructing route sets. This procedure corresponds to the clustering of customers. In 

the second stage, selected customers are repeatedly exchanged only within each route. 
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The neighborhood is generated by swapping two nodes within each of the defined 

routes. It corresponds to the routing procedure. 

 

3.3 Common Grounds for the Comparative Study 

3.3.1 Criteria for the Measurement of the Comparative Study 

 

The success of a heuristic for solving VRPSD depends on a number of aspects: 

1) Performance, i.e. the running time and the quality of the final solution; 

2) The number of vehicles required; 

3) Sensitivity. To see whether the algorithms are sensitive with respect to the 

demand distribution, problem size, the increase of demand mean, and the 

increase of demand variance, etc. 

 

3.3.2 Building the Common Ground for Comparison 

 

In addition to the assumptions already made, we further assume that, when 

applying the dynamic programming to adopt optimum recourse policy, a partial 

delivery is allowed, and no penalty is imposed in case of a partial delivery. 

 

3.3.2.1 Problem Generation 

Problem size and distance matrix 

We assume that the problem size ranges from 20-110, and the cost ci,j is the 

Euclidean distance between two points i and j. Each problem instance is randomly 

generated in the square [0, 100] 2, according to a uniform distribution. And we assume 

that the depot is situated at the center (50, 50). 
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Demand pattern 

Based on the demand patterns used in the selected algorithms, we select both the 

discretized normal and the discrete uniform distribution for the following reasons:  

1) Both of these two distributions are simple in the sense that the probability can 

be easily calculated for a given demand possibility. 

2) To examine whether these algorithms are sensitive to different demand 

distributions.  

3) When studying the algorithm performance with the increase of demand mean, 

the uniform distribution has a problem that with the increase of demand 

range, the variance also increases; while for normal distribution, we can 

examine the net effect of the demand mean. 

In fact, the algorithm can be applied to any demand pattern, given that the 

probability associated with a certain demand distribution is known. For example, 

customer demands can be not identically distributed. However, for simplicity, we 

assume that all demands are identically distributed in this comparative study. 

 

Number of instances  

For each type of problems, the number of instances used in this study is 30. The 

performances of the heuristics are compared based on the same problem instances. The 

computational results: the expected route length, running time, number of vehicles 

used (in the multiple vehicle case), etc., which are the basis of comparison, are the 

averages of the results obtained from the 30 randomly generated problem instances. 

 

Factors affecting the performance of algorithms 

In this comparative study, we will examine the following situations: 
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1) Single vehicle routing and multiple vehicle routing problems.  

2) Algorithm performance with the increase of problem size, with fixed demand 

pattern for both normal and uniform distributions. 

3) Algorithm performance with the increase of demand mean, with fixed demand 

variance and problem size for normal distribution.  

4) Algorithm performance with the increase of demand variance, with fixed 

demand mean and problem size for normal distribution. 

5) Algorithm performance with the increase of demand mean and variance, with 

fixed problem size for uniform distribution. 

 

3.3.2.2 Adaptations Made to the Original Algorithms 

 

Bertsimas et al. (1995)’s cyclic heuristic 

In Bertsimas et al. (1995), they did not specify which heuristic was used to 

construct the initial TSP solution. In this study, we employ the space-filling curve 

heuristic (Bartholdi and Platzman, 1982) to generate the initial TSP tour.  

In their study, both 2-interchange and dynamic programming were included in 

their cyclic heuristic. However, computational results showed that, the improvement 

due to 2-interchange (less that 1%) is much smaller than that of the dynamic 

programming procedure (6%), though inclusion of either procedure increases running 

time by a factor of 2-3 times. They also proposed that, 2-interchange procedure 

requires that customer demands be identically distributed. For these reasons, we only 

use the dynamic programming to adopt the best recourse policy in this comparative 

study. 
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The original algorithm is designed for single vehicle routing. To make the 

comparison in the case of multiple-vehicle routing, we apply the dynamic 

programming partitioning procedure proposed by Yang et al. (2000) to partition a 

single route into multiple routes. After the partitioning, for each single route, the cyclic 

heuristic is used again to seek further improvements.    

For Bertsimas et al. (1995), the algorithm can be executed in two ways: (1) By 

applying Equation (3.1) to calculate the expected cost, we first find the best sequence 

from cyclic heuristic, then apply dynamic programming recursion to adopt optimal 

recourse policy, this is called B-1 in Section 3.4; (2) We utilize the dynamic 

programming recursive procedure throughout the algorithm. The Equation (3.1) to 

calculate the expected cost (Bertsimas, 1995) is not used at all, this is called B-2 in 

Section 3.4. 

 

Yang et al. (2000)’s algorithms 

Similarly, in Yang et al. (2000), for the single vehicle routing and the route-first-

cluster-second algorithms, they did not mention which specific insertion heuristic is 

used to form the initial TSP. We adopt the arbitrary insertion heuristic, because the 

following Or-opt procedure and possible other post improvement procedures will 

compensate for the relatively bad performance of the arbitrary insertion heuristic.  

We also adapt cluster-first-route-second algorithm to the single vehicle routing 

algorithm by relaxing the constraint imposed on the maximum expected route length 

on each route. In Section 3.4, cluster-first-route-second algorithm is known as C1-R2, 

while the route-first-cluster-second one is called R1-C2. 

 

 40



Chapter 3                                                Comparative Study of Algorithms for VRPSD 

Teodorovic and Pavkovic (1992)’s simulated annealing (SA) algorithm 

 

For the SA algorithm in Teodorovic and Pavkovic (1992), the following 

adaptations must be made to make the comparison work:  

1) Route failure can occur any times in each route rather than at most once. 

2) The expression to calculate the expected cost in their original paper no longer 

works. To calculate the expected cost, we also adopt the dynamic programming 

recursion (Bertsimas et al., 1995) to calculate the expected cost and the 

threshold values, and to determine the best recourse policy, because of its 

effectiveness in solving VRPSD. 

3) For single vehicle routing, there are two ways to make the adaptation. One is 

that, the first stage SA is omitted, because its role in their original paper is to 

cluster the customers in different routes, this is known as SA-1 in Section 3.4. 

Secondly, we employ the first stage SA to find a satisfactory initial solution, 

then second stage SA is applied to seek further improvements, it is called SA-2 

in Section 3.4. 

 

3.4 Computational Results and Analysis 

 

To get the computational results, the algorithms are coded in VISUAL C++, and 

run on a 500 MHZ Pentium II Processor with 128 MB RAM under Microsoft 

Windows 98. 

Throughout this section, the following notations are used to represent the 

algorithms selected into the comparative study. 
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B-1: Bertsimas et al. (1995)’s algorithm, applying Equation (3.1) to calculate the 

expected cost, and dynamic programming recursion to adopt optimal 

recourse policy. 

B-2:  Bertsimas et al. (1995)’s algorithm, applying dynamic programming 

recursion to calculate both the expected cost and the optimal recourse 

policy. 

C1-R2: Yang et al. (2000)’s cluster-first-route-second algorithm. 

R1-C2: Yang et al. (2000)’s route-first-cluster-second algorithm. 

SA-1: Teodorovic and Pavkovic (1992)’s simulated annealing algorithm with 

first stage SA being omitted. 

SA-2: Teodorovic and Pavkovic (1992)’s simulated annealing algorithm with 

first stage SA being used to find a satisfactory initial solution. 

    

3.4.1 Computational Results 

 

3.4.1.1 Multiple Vehicle Routing Algorithms 

We examine the demand pattern for both truncated normal distribution and 

uniform distribution. Originally, SA algorithm is included in the comparison. 

However, its performance is quite bad, with both expected cost and computational time 

several times greater than those of the other heuristics. Since it is obvious that the SA 

algorithm is the worst, it is included only in the comparison for single vehicle routing 

but not in the comparison for the multiple vehicle routing. 

 

1) Uniform Distribution 

Uniform Distribution --Performance with the increase of problem size 
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Solution Quality with the Increase of Problem Size 
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 Figure 3.1 Expected Cost with the Increase of Problem Size  
(Demands follow uniform distribution U[0, 20]) 
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Here, we assume that all demands are generated from the uniform distribution. 

We examine two demand cases: U[0, 20] and U[0, 55], where Case 1 has relatively 

lower mean with respect to vehicle capacity Q. Figures 3.1 and 3.2 illustrate the 

solution quality and computational time of Case1 respectively. From Figure 3.1, it is 

clear that, with the increase of problem size, the expected cost increases linearly for all 

of the algorithms studied. The solution quality differs slightly when the problem size is 

small. When problem size becomes larger, R1-C2 performs slightly better than the 

other three algorithms. B-1 and B-2 perform almost equally the worst, leaving C1-R2 

in between. Regarding the number of vehicles used, both R1-C2 and C1-R2 use fewer 

vehicles than B-1 and B-2. 

Computational Time w ith the Increase of Problem Size 
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Figure 3.2 Computational Time with the Increase of Problem Size  
(Demands follow uniform distribution U[0, 20]) 

Figure 3.2 shows the computational time taken by the algorithms against problem 

sizes. It is noted that B-2 takes very little time, while R1-C2 takes the longest time. For 

the other two algorithms, B-1 runs faster than C1-R2. Computational time of R1-C2 

also increases fastest with the increase of problem size. Details of the average case 

performance regarding both solution quality and computational time can be seen in 

Table 3.1.  
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In Case 2, both B-1 and B-2 seem to perform better than in Case1. The 

difference among the algorithms becomes even smaller in terms of expected cost and 

number of vehicles used. With respect to the computational time, R1-C2 also takes the 

most time, but B-1 ranks the second most in this case, followed by C1-R2, B-2 also 

takes the least time. This implies that, in Case 2 where demand may take higher value, 

solution quality of B-1 and B-2 become better, while B-1 also takes more 

computational time. 

 

Uniform Distribution --Performance with the increase of mean and variance 

Figure 3.3 illustrates how solution quality of the algorithms performs with the 

increase of demand mean and variance when the problem size is fixed at 60. Here the 

x-axis (MEAN/Q) is the ratio between the demand mean and the vehicle capacity, 

which represents the increase of demand mean and variance. Similar to the case with 

the increase of problem size, as the demand mean and variance increase, the expected 

cost also increases linearly for all the algorithms examined. The difference between the 

algorithms is marginal. Moreover, as the mean increases, the difference between B-1 

(the worst) and the rest of the algorithms becomes even smaller. Nevertheless, we still 

can see that R1-C2 performs the best among all the algorithms studied.  
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Solution Quality with the Increase of Mean and Variance
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Figure 3.3 Expected Cost with the Increase of Demand Mean and Variance  
(Problem size n = 60) 
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Computational time taken is similar to that illustrated in Figure 3.2, as can be 

observed in Figure 3.4. R1-C2 consumes the most time, and B-2 takes the least time. 

As demand mean grows, the computational time of B-1 increases fastest, while C1-R2 

increases very slowly. Therefore, when demand mean approaches 25% or more of the 

vehicle capacity, B-1 takes more time than C1-R2. Detailed numerical results are 

presented in Table 3.2. 
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 Figure 3.4 Computational Time with the Increase of Demand Mean and Variance  

(Problem size n = 60) 
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2) Normal distribution 

The performance of the algorithms when demands follow normal distribution is 

similar to that when demands follow uniform distribution. Some observations are as 

follows. 

 

Normal Distribution -- Performance with the increase of problem size 
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Figure 3.5 Expected Cost with the Increase of Problem Size  
(Demands follow normal distribution N(30,25)) 

 

Here, we assume that all demands are generated from the truncated normal 

distribution N(30, 25). In terms of solution quality, in this case, as problem size 
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becomes larger, the algorithms R1-C2, B-1 and B-2 tend to outperform the C1-R2 

algorithm. C1-R2 performs the worst, with the performance of the other algorithms 

being very similar to one another. Detailed results for the solution quality are 

illustrated in Figure 3.5. 

With respect to the computational time, in this case, B-1 takes the most time as 

compared to the other three heuristics; B-1 also increases fastest as problem size 

grows. R1-C2 ranks the second most, B-2 still takes the least time. The difference 

among the number of vehicles used is marginal in this case. 
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Figure 3.6 Computational Time with the Increase of Problem Size  
(Demands follow normal distribution N(30,25)) 

 

 

Normal Distribution -- Performance with the increase of mean 

We examined the case where problem size is 20. Here the x-axis (MEAN/Q) is 

the ratio between the demand mean and the vehicle capacity, which represents the 
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increase of demand mean. Results for solution quality and computational time are 

illustrated in Figure 3.7 and Figure 3.8 respectively. For most of the demand mean 

ranges, the expected cost increases linearly with the increase of demand mean. 

However, when the demand mean approaches 75% or more of the vehicle capacity, the 

expected cost begins to decrease. Result also reveals that, as demand mean grows 

larger, both B-1 and B-2 performs better than R1-C2 and C1-R2. The performance of 

the later two algorithms is quite similar in this case. 
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Figure 3.7 Expected Cost with the Increase of Demand Mean  
(Problem size n = 20, demand variance = 25) 

 

Since the problem size is relatively small, the computational time is less than 3 

CPU seconds for all the four algorithms. Based on findings obtained when demands 

follow uniform distribution, we can expect that, when problem size is large, the 

 52



Chapter 3                                                Comparative Study of Algorithms for VRPSD 

difference in terms of both solution quality and computational time among algorithms 

can grow larger. 

 

Normal Distribution -Performance with the increase of variance 

Our results show that, with the increase of demand variance, the expected cost, 

the number of vehicles used and the computational time are all almost the same, which 

indicates that variance does not have much influence on the algorithm performance. 

Figure 3.8 shows how the algorithms behave with the increase of demand variance 

with respect to solution quality. 
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Figure 3.8 Expected Cost with the Increase of Demand Variance  
(Problem size n = 20, demand mean = 20) 

 

 

3.4.1.2 Single Vehicle Routing Algorithms 

 

From the comparison of the multiple vehicle routing, it is obvious that the 

algorithms are not quite sensitive to the demand distribution type. Therefore, for single 
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vehicle routing problem, we only examine the demand pattern following uniform 

distribution.  

 

Performance with the increase of problem size 

Similar to the multiple vehicle routing, the expected cost increases linearly as 

problem size grows larger, as can be seen in Figure 3.9.  
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Figure 3.9 Expected Cost with the Increase of Problem Size  
(Single vehicle, demands follow uniform distribution U[0,20]) 

 

However, in this case, solution quality of C1-R2 seems to be the best, and SA-1 

and SA-2 appear to be the worst. When the problem size is small, the difference 
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between the algorithms is little; while as problem size grows, both SA-1 and SA-2 tend 

to divert greatly from the others.  

Regarding the computational time, both implementations of SA take a lot of 

computational time. Though the computational time increases with the increase of 

problem size, it fluctuates greatly. The solution quality of SA-1 and SA-2 is very close, 

but SA-2 seems to take even more time. As we can expect from the solution quality, 

C1-R2 takes relatively more time compared to the other three algorithms, B-2 takes the 

least time, B-1 ranks the second least, and computational time of R1-C2 is very similar 

to that of C1-R2. Refer to Figure 3.10. Detailed computational results can be found in 

Table 3.3. 
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Figure 3.10 Computational Time with the Increase of Problem Size  

(Single vehicle, demands follow uniform distribution U[0,20]) 
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Performance with the increase of mean and variance 

As demand mean and variance grow larger, the expected cost of the algorithms 

grows approximately linearly, see Figure 3.11. Here the x-axis (MEAN/Q) is the ratio 

between the demand mean and the vehicle capacity, which represents the increase of 

demand mean and variance. 
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Figure 3.11 Expected Cost with the Increase of Demand Mean and Variance 
(Single vehicle, problem size n =20) 
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However, in this case, the expected cost of both SA-1 and SA-2 has some 

fluctuations. Results in Table 3.4 show that, C1-R2 is best, SA-1 and SA-2 are almost 

equally the worst, leaving R1-C2, B-1 and B-2 in between. The difference between the 

algorithms is not substantial. However, we can predict that, as the problem size 

increases, the difference between SA and the other algorithms can grow larger. 

 

Since the problem size is small, the computational time is very little except that 

of the SA-1 and SA-2. The computational time for SA-1 and SA-2 is not only very 

long but also fluctuates greatly, without clear trend of increase with the increase of 

demand mean and variance. 
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3.4.2 Performance Analysis of the Algorithms 

 

1) Common observations for all of the algorithms  

 

Sensitivity analysis 

An algorithm is said to be sensitive if it performs well in one case, but badly in 

the others. Generally, the algorithms examined are not very sensitive to demand 

distribution, problem size, increase of demand mean and/or variance. Some 

observations are summarized below. 

Demand distribution. For all the four algorithms, under the same problem size, the 

expected cost when demand follows normal distribution is slightly lower than that 

demand follows uniform distribution. This observation is consistent with the result of 

Bertsimas et al. (1995). Moreover, B-1 seems to take more computational time in the 

case of normal distribution. On the contrary, Yang et al. (2000)’s algorithms seem to 

take more time in the case of uniform distribution.  

Increase of demand mean. The solution quality of B-1 and B-2 tends to improve more 

compared with the other algorithms as demand mean increases. However, as demand 

mean grows, the computational time of B-1 also increases fastest. 

Increase of problem size. In multiple vehicle routing, R1-C2 performs better when 

problem size is large with respect to other algorithms. In single vehicle routing, C1-R2 

performs better when there are more demand points. 

Increase of demand variance. Results indicate that the increase of demand variance 

does not have much influence on the performance of the algorithms. 

 

 

 60



Chapter 3                                                Comparative Study of Algorithms for VRPSD 

Solution quality 

 

Problem size. The expected cost increases linearly as problem size grows.  

 

Demand mean. As demand mean increases, the expected cost also increases, with the 

exception that, when demand follows normal distribution and when demand mean is 

75% or more of the vehicle capacity, the expected cost begins to decrease. This may be 

due to the following reason: When demand follows normal distribution and demand 

mean is relatively large compared with the vehicle capacity, the probability that 

demand takes very small value is almost zero; while when demand follows uniform 

distribution, the probability that demand takes any value from zero to maximum 

demand possibility is the same.   

 

Demand variance. The solution quality is not influenced by the demand variance.  

 

We observe that in single vehicle routing, with respect to solution quality, C1-R2 

performs best, SA-1 and SA-2 perform the worst, leaving R1-C2, B-1 and B-2 almost 

equally in between. While in multiple vehicle routing, R1-C2 seems superior to the 

others. B-1 and B-2 behave better when demand mean is high. 

 

Computational time 

Except for B-2 in multiple vehicle routing and SA-1 and SA-2 in single vehicle 

routing, it is usually the case that, the algorithm with better solution quality takes 

relatively more time. 

 61



Chapter 3                                                Comparative Study of Algorithms for VRPSD 

Comparing B-1 with B-2, the solution quality is almost the same. However, B-1 

is much more time consuming. As described in Section 3.1, Equation (3.1) is used to 

calculate the expected cost. At each demand point, as stated in Bertsimas (1992), the 

two probabilities γi and δi are calculated recursively, which is very time consuming.  

When comparing B-2 with Yang et al. (2000)’s algorithms, though all of them 

employ dynamic programming procedure to evaluate the expected cost, B-2 takes very 

little time, because the cyclic heuristic only involves comparing the n permutations, 

while in Yang et al. (2000)’s algorithms, the Or-opt and the other possible improving 

procedures, require many comparisons. Therefore, though Yang et al. (2000)’s 

algorithms adopted the approximate dynamic programming procedure to calculate the 

insertion cost, it still takes more time. 

Similarly, in single vehicle routing, the solution quality of SA-1 does not differ 

greatly from SA-2, though SA-2 takes more computational time. This means that, the 

first stage SA which is used to find a satisfactory initial solution does not seem to be 

quite effective.   

 

2) Characteristics of certain algorithms 

Our results for Yang et al. (2000)’s algorithms show that, for the multiple vehicle 

routing, R1-C2 is slightly better than C1-R2 with respect to solution quality. However, 

the former takes more computational time than the later. This result agrees with the 

result in Yang et al. (2000). 

The result from SA is not good in comparison with the other heuristic algorithms 

with respect to both solution quality and computational time. Moreover, it seems that 

there are some randomness involved in both the solution quality and computational 

time. The poor performance of this SA may be due to the following reasons:  
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1) In the first stage of SA, generating route sets randomly may not be a good idea 

comparing with other possible more systematic neighborhood generation 

mechanisms. 

2) In the second stage, the neighborhood structure (just exchange one node with 

another randomly selected node) also may not be so efficient.  

The randomness in generating the initial tour and the neighborhood solutions is also 

the main reason of the long computational time. Trying other neighborhood generation 

mechanism, such as Or-opt, may be worthwhile. 

 

3.5 Summary and Conclusions 

 

In this chapter, we present a comparative study on some algorithms for solving 

the vehicle routing problems with stochastic demands. We examine the performance of 

these algorithms in various situations with respect to problem size and demand pattern, 

in order to determine which algorithm is superior to the others. Our study reveals that, 

except for the SA algorithm, the differences among the other algorithms examined are 

not substantial. From the aspect of practical application, our study suggests that B-2 is 

the best candidate, because it takes very little computational time, with solution quality 

comparable to the other heuristics. However, if the decision maker regards the solution 

quality as more important, in single vehicle routing, C1-R2 is a good choice; while in 

multiple vehicle routing, R1-C2 tends to be better. Due to the good solution quality of 

the Yang et al. (2000)’s algorithms, they are employed as a performance measurer in 

Chapter 4 to evaluate the metaheuristics proposed for the VRPSD. 
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Chapter 4 

Metaheuristics for Vehicle Routing Problem with Stochastic Demands 

 

In Chapter 3, a comparative study was carried out for the algorithms presented in 

Bertsimas et al. (1995), Yang et al. (2000) and Teodorovic and Pavkovic (1992). The 

comparative study shown that the SA algorithm based on the original neighborhood 

generation method and cooling schedule performed quite badly in comparison with the 

other heuristic algorithms with respect to both solution quality and computational time. 

However, this does not mean that SA algorithm is not suitable for VRPSD, because the 

performance of a SA algorithm depends greatly on the neighborhood generation 

mechanism and the cooling schedule. Thus, in this chapter, we try to examine how 

modern metaheuristics behave for the VRPSD. 

 To examine the performance of the proposed metaheuristics, the computational 

results of the proposed algorithms are compared with the results from the algorithms 

presented in Yang et al. (2000). In Yang et al. (2000), under the assumption that 

demand follows discrete triangular distribution, they claimed that, for single vehicle 

case, with small problem size (n = 8 and n = 10), their algorithm provides solutions 

with at most 1% average deviation from the optimal solution; for multiple vehicle case, 

with problem size at 10, 12 and 15, the deviation from the optimum is at most 3.3%. 

Moreover, computational results of the comparative study in Chapter 3 also shown 

that, among the heuristics compared, Yang et al. (2000)’s algorithms perform the best 

in terms of solution quality. Since Yang et al. (2000)’s algorithms perform very well 

for the VRPSD, we employ them as a performance measurer in this chapter.  
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4.1 Metaheuristics for Single VRPSD 

4.1.1 Initial Solution and Generation of Neighborhood Solutions 

 

One important element that determines the performance of metaheuristics is the 

neighborhood generation mechanism. In this study, we employ the same neighborhood 

generation method for each of the three algorithms so that we can examine the 

performance of the algorithm itself. The neighborhood generation method is described 

below. 

Given a current solution, a neighborhood solution can be obtained by relocating a 

node from its current location to a position between two other neighbor nodes in the 

tour. Bentley (1992) called this move a 2.5-opt, because it is a special and simple form 

of 3-opt (Lin, 1965). Here, in this study, we restrict the relocation of the node to only 

one of its nearest neighbors rather than elsewhere in the tour. Specifically, for each 

node, find ϖ nearest neighbors and build a neighbor list of sizeϖ . To generate a 

neighborhood solution for node i, first generate a random number b in the range 1 

toϖ , then find the node j which is bth nearest neighbor in node i’s neighbor list, 

remove node i from its current position and put it before or after node j. The neighbor 

list size ϖ should be set to a suitable value. If ϖ  is too small, the solution will have 

difficulty in escaping from the local optimum; if ϖ  is too large, the procedure tends to 

become a random search. In this study, the neighbor list size ϖ  is set as follows: 

⎩
⎨
⎧

⎤⎡

≤
=

otherwise10

20if4

n

n
ϖ  

 

To examine whether the metaheuristics are sensitive to the initial solution, we 

generate the initial solution in the following three ways: a random tour, a tour 
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generated from the nearest neighbor heuristic (Rosenkrantz et al., 1977), and a tour 

generated based on the space-filling curve heuristic (Bartholdi and Platzman, 1982). 

The effect of the initial solution on the algorithm is discussed in Section 4.3.1. 

 

4.1.2 The Simulated Annealing and Threshold Accepting Algorithms 

 

The name simulated annealing (SA) was originated from the physical annealing 

process. Kirkpatrick et al.(1983) proposed that the concept form the basis of an 

optimization technique for combinatorial and other problems. The basic idea of SA is 

to provide for small random perturbations and to compute the amount of changes in 

objective function value. A typical feature of a SA algorithm is that, in addition to 

accepting improvements in objective function value, it also accepts deteriorations in 

objective function value with a certain probability. Initially, a large value of a control 

parameter, called temperature, is used to evaluate the probability of accepting an 

unfavorable move. At the start, large deteriorations can be accepted; as temperature 

decreases, only smaller deteriorations will be accepted. This feature makes SA, in 

contrast to the local search algorithms, be able to escape from local minima without 

losing the favorable features of local search algorithms: simplicity and flexibility. SA 

is one of the metaheuristics proposed for the combinatorial problems. Ever since its 

introduction, SA has been applied to a large number of combinatorial optimization 

problems. Some of the applications of SA in solving VRP include: Alfa et al. (1991), 

Osman (1993), Hiquebran et al. (1994), etc. 

Threshold accepting (TA), introduced in Dueck and Scheuer (1990), is a 

deterministic analog to SA. The main difference is the rule of accepting worse 

neighborhood solutions. SA accepts a worse solution according to the acceptance 
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probability; while TA accepts a worse one if the deterioration is within a certain 

threshold value. The threshold value is decreased as the algorithm proceeds, and 

finally approaches zero when the algorithm terminates. One advantage of TA over SA 

is that, it is not necessary to compute probabilities or to make random decisions, 

making the algorithm even simpler. In Dueck and Scheuer (1990), they claim that TA 

yields better results than SA. An extensive introduction to TA is given in Winker 

(2000). 

 

4.1.2.1 Thermal Equilibrium Condition in the SA and TA Procedures 

 

To ensure the asymptotic convergence to the global optimal solution, the thermal 

equilibrium of the SA (TA) procedure should be attained at each temperature. One way 

to achieve thermal equilibrium is that, at a certain temperature, the objective function 

value does not change for several consecutive transitions. In Teodorovic and Pavkovic 

(1992), the thermal equilibrium is defined as follows: within each temperature, they set 

a maximum number of generations to perform; within each generation, a fixed number 

of transitions are carried out. Once a generation is finished, the total cost of all the 

transitions within the generation is recorded and another generation is performed. If the 

relative percentage change in the total cost between the current and the previous 

generations is less than a predefined thermal equilibrium factor ε , the thermal 

equilibrium is reached at the particular temperature and the temperature is lowered. In 

Hiquebran et al. (1994), thermal equilibrium is defined in a similar way. However, 

they used the cost of the final transition of each generation as an evaluation measure. 

In our study, we employ the one used in Teodorovic and Pavkovic (1992).  
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4.1.2.2 The Procedure Involved in the SA and TA Algorithms 

The SA algorithm involves the following steps: 

Step 1:  Initialization:  

              1.1: Generate an initial tour. Calculate the expected cost according to the DP 

recourse procedure described in Section 3.1.3. Denote it as Lold. 

              1.2: Select an initial temperature > 0 and a temperature reduction factor α. 

Set t

0t

i = t0, i = 0, and set total number of different temperatures needed to 

no_t. 

Step 2:  Set initial generation_count = 0, total number of generations = no_gen; set the 

length of the total routes in the last generation Totallast = , and the length of 

the total routes in the current generation Total

∞

current  = 0.  

Step 3: Select a node in the current route; generate a neighborhood solution as 

described in Section 4.1.1. Calculate the expected cost for the new route, 

denoted as Lnew. Calculate the difference between the new and the old route, 

= L∆ new-Lold. If  < 0, go to Step 5. ∆

Step 4: Generate a uniformly distributed random number rand∈[0,1]. Calculate the 

acceptance probability prob = exp(- ∆ /ti). If rand < prob, go to Step 5; 

otherwise, keep the old route and its expected cost. Go to Step 6. 

Step 5:   Record the new route and its expected cost.  

Step 6:  Update the total route length of the current generation Totalcurrent by adding 

the length of the current route to Totalcurrent.  If the neighborhood solutions for 

all n nodes have been examined 3 times, go to Step 7. Otherwise go to Step 3 

to examine the next node. 

Step 7: Check whether thermal equilibrium has been reached at temperature ti by 

testing ε<− currentlastcurrent TotalTotalTotal / , where ε  is a predefined thermal 
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equilibrium factor. If the above inequality holds, go to Step 8. Otherwise, 

update the total route length of the last generation by replacing Totallast with 

Totalcurrent if Totalcurrent < Totallast. Increase the generation_count by 1. If 

generation_count > no_gen go to Step 8 else go to Step 3. 

 Step 8: If the expected cost of the current solution does not change over the last 10 

consecutive temperatures ti, or a predefined maximum number of 

temperatures no_t have been performed, stop the algorithm and return the 

current route and its expected cost as the final solution. 

Step 9:   Lower the temperature by setting α*1 ii tt =+ . Set i = i+1 and go to Step 2.  

 

The steps involved in the TA algorithm only differ from those in SA in the 

following ways: 

1) In Step 1.2, instead of setting a temperature, we set a threshold value threshold.  

2) In Step 4, we just compare ∆  with the threshold value, if  < threshold, go to 

Step 5; otherwise, keep the old route set and its expected cost and then go to 

Step 6.  

∆

3) The threshold value decreases at the same reduction rate α . That is, threshold 

= threshold*α . 

 

4.1.2.3 Parameter Setting in the SA Algorithm 

 

Initial temperature t0  

To ensure that the final solution is independent of the starting solution, the initial 

temperature should be high enough; however, a too high initial temperature will 

undoubtedly increase the computational time. An appropriate t0 can be determined by 
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ensuring the initial acceptance ratio A0=ψ (t0), which is defined by the ratio between 

the number of accepted transitions and the number of all transitions, is close to 1. First 

start at a sufficiently high t0, and lower it rather quickly until the acceptance ratio 

reaches a prescribed value. Our computational experience shows that, t0 = 40 is an 

appropriate initial temperature for the SA algorithm. 

 

Temperature reduction factorα   

For the temperature reduction factorα , literature suggests to use values between 

0.8 and 0.99. We set α  = 0.9. 

 

Final temperature tf and number of temperatures no_t  

The final temperature should be low enough to guarantee that no worse solutions 

are accepted. Suppose we consider tf to be low enough, when cost increase as large as 

0.5 is accepted with very low probability (such as prob = 0.001). The final temperature 

can be calculated based on the equation prob = exp(-∆ /tf), which is about 0.072. With 

the initial temperature t0 = 40 and α  = 0.9, the total number of temperatures no_t can 

be determined by the equation , which leads to no_t = 60.  tno
f tt _

0 *α=

 

Thermal equilibrium factor ε and number of generations at each temperature 

no_gen  

The number of generations at each temperature is usually related to the size of 

the neighborhoods or the solution space. In this study, we set no_gen = 300. However, 

we perform 3*n transitions within each generation. Therefore, with the increase of 

problem size, the number of transitions performed at each temperature also increases. 

Nevertheless, no_gen = 300 is actually the maximum number of generations set for 
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each temperature, we allow the actual number of generations performed to vary from 

temperature to temperature, because not every segment of the cooling process is 

equally important. In the cooling process, most useful work is done in the middle of 

the schedule. Thus, it may be advantageous to search the beginning and the end parts 

of the temperature range quickly, using the time saved to allow slower and more 

elaborate cooling in the middle. In this study, this is done by properly setting the 

parameter ε , which determines whether thermal equilibrium is reached. By repeatedly 

fine-tuning, we set ε  = 0.2 for the first and the last 10 temperatures, and set ε  = 0.03 

for the 40 temperatures in between. As a result, less number of generations is 

performed at the beginning and the end of the cooling procedure. This is reasonable, as 

we can see from Table 4.1, during the first 10 temperatures, temperature drops from 40 

to about 13.9, and the maximum allowable increase of the objective function value 

drops from 280 to 97.6. If we set ε  to be a very low value, it is very difficult to reach 

the thermal equilibrium in this situation, which will result in long computational time. 

For the last 10 temperatures, both temperature value and the maximum allowable 

increase in cost are quite low, which indicates that the algorithm has already started to 

converge toward local optimum, therefore we should speed up the cooling process and 

quickly converge the solution to the targeted local optimum. Since different problems 

may not require the same number of temperatures to converge, to further save the 

computational time, we terminate the algorithm when the solution quality does not 

improve for about 10 consecutive temperatures. 

Table 4.1 Temperature & maximum allowable increase in cost in different cooling 
stages 

Number of Temperatures 1 10 50 60 

Temperature value 40 13.95 0.21 0.07 

Maximum Allowable Increase in Cost 280 97.63 1.44 0.50 
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4.1.2.4 Parameter Setting in the TA Algorithm 

 

For TA, the parameters are set similarly except for the threshold value. In TA, 

threshold value corresponds to temperature in SA. The initial threshold value is set 

equal to 40 when n < 60 and 60 otherwise. We also set the threshold reduction rate α  

= 0.9.   

 

4.1.3 The Tabu Search Algorithm 

 

Tabu search is an iterative procedure designed for the solution of optimization 

problems. It was first proposed by Glover and has been used to solve a wide range of 

hard combinatorial optimization problems (Glover and Laguna, 1997). To avoid being 

trapped in local optima, one needs to accept a move even when it makes the current 

solution worse. However, when a worse solution is accepted, cycling may occur; that 

is, the move may take us right back to the local optimum we just left or to some other 

recently visited solutions. This is where the TS algorithm comes in by keeping 

information about the moves most recently made in one or more tabu lists, to forbid or 

penalize certain moves that would return to a recently visited solution. Three general 

components are usually incorporated in TS to direct the search trajectory: tabu 

restrictions and aspiration criteria, short-term and long-term memory structures, and 

intensification and diversification strategies. Tabu restrictions are the tabu lists that 

keep track of recently examined solutions to avoid cycling. Aspiration criteria provide 

exceptions to the general tabu rules to allow a move to be performed provided the 

move is considered as good enough. Intensification is the exploration of a promising 

neighborhood, such as the neighborhood of a previously found good solution; while 

 72



Chapter 4                                                                               Metaheuristics for VRPSD 

diversification aims to search in previously unexplored regions of the solution space. 

Both of these strategies are realized by means of short-term and long-term memory 

structures. TS is one of the major metaheuristics that have been successfully applied in 

solving combinatorial optimization problems. Successful applications of TS in the area 

of vehicle routing problems can be found in Taillard (1993), Osman (1993), Fiechter 

(1994), Gendreau et al. (1994), Potvin et al. (1996), Duhamel et al. (1997), Taillard et 

al. (1997), Gendreau et al. (1999), etc. 

 

4.1.3.1 The Main Components and the Parameter Setting in the TS Algorithm 

 

To get the best performance in terms of both solution quality and computational 

time, we repeatedly fine-tune the parameters in the algorithm. The total number of 

iterations, NoIter, is set to 600. We set the other parameters as follows: 

 

The neighborhood size neighbor_size 

For a given current solutionΧ , the complete neighborhoods of , N( ), contain 

all combinations of repositioning each of the n nodes according to the neighborhood 

generation method. At the current iteration, when we try to find a solution among a 

selected subset of N( ) for possible acceptance, we should consider the tradeoff 

between the quality of and the effort spent on finding it, which is mainly determined 

by the size of the neighborhood. In this study, we restrict the number of neighborhood 

solutions generated from the current solution to neighbor_size. That is, we first 

randomly select neighbor_size nodes, then generate a neighborhood solution for each 

selected node. Our computational experience shows that best result in terms of both 

Χ Χ

Υ

Χ

Υ
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solution quality and computational time can be obtained when we set neighbor_size as 

follows: 

⎪⎩

⎪
⎨
⎧

⎤⎡

≤⎤⎡
=

otherwise3

20if2

n

nn
izeneighbor_s  

 Tabu list - recency based memory 

Suppose in the current solution, we accept a move in which a node is removed 

from its current position and put to one of its nearest neighbors. The move that tries to 

reposition the same node again is tabu for the next NoTabu iterations. Specifically, we 

can use TabuListi to record the tabu status for each node i. In this study, the tabu tenure 

NoTabu is set as follows: 
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This means that as problem size increases, tabu tenure also increases to avoid 

searching certain solutions too often and therefore search all possible regions of the 

solution space.  

Diversification - Frequency based memory 

The strategy of diversification encourages the search process to examine 

unvisited regions and to generate solutions that are significantly different from those 

recently visited. We use FreqDiverij to record the frequency of repositioning node i 

from its current location to the location immediately before or after its jth nearest 

neighbor. Once such a move is accepted, the frequency FreqDiverij is incremented by 

1. Then we penalize such a move by adding a diversification penalty, Diver_Penalty = 

Diverα * FreqDiverij, to the expected cost of this move, where Diverα  is a predetermined 

diversification factor. Certainly, we should not avoid visiting the previously visited 

moves forever. Therefore, after every NoReset (set to 100 in this study) iterations, we 

 74



Chapter 4                                                                               Metaheuristics for VRPSD 

reset the frequency variable FreqDiverij to 0. And all moves are eligible again in terms 

of frequency based memory.  

In this study, the diversification factor Diverα  is set dependent on the performance 

of the move. If the move is better than the current solution, we set Diverα  = 0.5; 

otherwise, we set Diverα  = 2. In this way the worse solutions are more heavily 

penalized and hence they are less likely to occur frequently. 

Intensification 

Intensification aims to direct the search process to examine the neighbors of an 

elite solution. One intensification strategy employed in this study is to keep a current 

best solution. When the current best solution has not been improved for NoNonImp 

iterations, the current best solution is employed as the current solution, because its 

immediate neighborhoods are attractive regions, therefore should be searched more 

thoroughly.  

In this study, we set NoNonImp = 200 iterations.  

Aspiration criteria 

In the searching process, we keep record of a current best solution. If a move is 

found to be better than the current best solution, it is accepted without considering its 

tabu status. 

 

4.1.3.2 Procedure Involved in the TS Algorithm 

The TS algorithm involves the following steps: 

Step 1:   Initialization 

1.1 Generate an initial tour. Calculate the expected cost according to the DP 

recourse procedure described in Section 3.1.3. 
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1.2 Set iteration_count = 0; initialize TabuListi, FreqDiverij.  

Step 2:   Set neighbor_count = 0, zBestMove =∞ . 

Step 3: Randomly select a node in the current route, generate a candidate move and 

calculate its expected cost z. If the move satisfies the aspiration criteria go to 

Step 5; if it is tabu go to Step 6; otherwise, go to Step 4. 

Step 4:  Calculate Diver_Penalty for this neighborhood move. Set z = z + 

Diver_Penalty.    If z  z≥ BestMove go to Step 6. 

Step 5:   Mark the current candidate move as the best move, and set zBestMove = z. 

Step 6:  Increment the neighbor_count by 1. If neighbor_count < neighbor_size go to 

Step 3. 

Step 7:  If a best move has been selected, update the TabuList, FreqDiver and the 

current solution. If the current best solution is worse than the selected best 

move, update it. If the current best solution has not been improved for 

NoNonImp iterations, employ the current best solution as the current solution.  

Step 8:   Increment the iteration_count by 1. If iteration_count < NoIter go to Step 2.  

Step 9:   Stop the algorithm and return the current best solution as the final solution.  

 

4.2 Simulated Annealing and Threshold Accepting Algorithms for Multiple   

VRPSD  

 

4.2.1 Generation of Neighborhood Solutions 

Similar to the neighborhood structure described in Section 4.1.1 for single 

vehicle case, here, we also adopt the 2.5-opt (Bentley, 1992) move to generate 

neighborhood solutions. The difference is that, we allow the relocation within the 
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node’s own tour and other tours as well:  a node i can move within its own route or to 

other existing routes, depending on which route node j, the selected neighbor of node i, 

is in. This neighborhood generation method allows the elimination of an existing route.  

As in the single vehicle case, the neighbor list size ϖ  changes with the problem 

size n. Moreover, it also changes with different cooling stages of the SA (TA) 

procedure. At the beginning of the search procedure, transitions with large 

deteriorations in cost should be provided for possible acceptance. As the search 

proceeds, the ability that SA (TA) can accept large deteriorations in cost also 

decreases. Therefore, the neighbor list size ϖ  should also decrease. In our problem, 

we divide the SA (TA) procedure into 3 stages; the corresponding neighbor list size ϖ  

is as follows: 

⎪
⎩
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4.2.2 Determining the Number of Vehicles and the Initial Solution  

 

In this study, the number of vehicles m is a decision variable. However, when 

constructing the initial route set for the SA and TA, we have to roughly determine the 

number of vehicles in advance. The neighborhood generation method, as described in 

Section 4.2.1, allows the elimination of an existing route. Therefore, we can set an 

upper bound  for the number of vehicles m required by applying results from the 

comparative study in Chapter 3. The initial solution of SA (TA) can be obtained by 

first constructing a TSP tour for all nodes by using a TSP construction heuristic 

(nearest neighbor heuristic, for example), then partitioning the TSP tour into  tours.  

−

m

−

m
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4.2.3 Dealing with the Route Length Constraint 

 

To satisfy the constraint that the total expected route length does not exceed a 

prescribed value L, the search should be guided in favor of feasible solutions. This is 

realized by adding a penalty element to the objective function. Suppose the expected 

route length of a certain route π  is )(πL , the penalized objective function would then 

be , where [x]+−+= ])([*)()( LLLF πρππ + = max (0, x), and ρ  is a positive 

parameter.  

With respect to the route length constraint, in order to diversify the searching 

process, it is not harmful to allow some infeasible solutions at the beginning. However, 

to ensure that the final solution is feasible, parameter ρ  should be set appropriately. In 

this study, ρ  is set to a relatively small value at the beginning and increased linearly 

with the increase of iterations.  Nevertheless, infeasible solutions still may occur in this 

case though with very low probability. To overcome this problem, we add another 

threshold accepting procedure (TA-infeasibility) along with the SA (TA) procedure. In 

other words, we evaluate a solution according to two criteria: the solution quality and 

the feasibility. This TA-infeasibility procedure allows infeasible solutions provided 

that the total amount exceeded is within the threshold value. As threshold value 

decreases, TA-infeasibility procedure can control accepting infeasible solutions in 

terms of the extent of the infeasibility.  

 

 

4.2.4 The Procedure Involved in the SA and TA Algorithms 

 

The SA algorithm involves the following steps: 

 78



Chapter 4                                                                               Metaheuristics for VRPSD 

Step 1:  Generate an initial route set by the procedure stated in Section 4.2.2. Calculate 

the expected route length using the DP recourse procedure described in 

Section 3.1.3. Denote it as Lold. 

Step 2:  Select an initial temperature > 0, a temperature reduction parameter α and 

an initial threshold value threshold_infeasible0 for the TA-infeasibility 

procedure. Set t

0t

i = t0, i = 0, and total number of different temperatures needed 

to no_t. 

Step 3:  Set initial generation_count = 0, total number of generations = no_gen; set the 

length of the total routes in the last generation Totallast = , and the length of 

the total routes in the current generation Total

∞

current  = 0.  

Step 4: Select a node in the current route set; generate a neighborhood solution as 

described in Section 4.2.1. For each route in the current route set, examine 

whether the expected route length exceeds the predefined limit. Calculate the 

total amount exceeded total_exceed for the whole route set. If total_exceed > 

threshold_infeasible, keep the old route set and its expected route length. Go 

to step 7; otherwise, calculate the expected route length for the new route set, 

Lnew. Calculate the difference between the new and the old route set, ∆ = 

Lnew-Lold. If < 0, go to Step 6. ∆

Step 5: Generate a uniformly distributed random number rand∈[0,1]. Calculate the 

acceptance probability prob = exp(- ∆ /ti). If rand < prob, go to Step 6; 

otherwise, keep the old route set and its expected route length. Go to step 7. 

Step 6:   Record the new route set and its expected route length.  

Step 7:  Update the total route length of the current generation Totalcurrent by adding 

the length of the current route set to Totalcurrent.  If the neighborhood solutions 
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for all n nodes have been examined 5 times, go to Step 8. Otherwise go to 

Step 4 to examine the next node. 

Step 8: Check whether thermal equilibrium has been reached at temperature ti by 

checking whether ε<− currentlastcurrent TotalTotalTotal / , where ε  is a 

predefined thermal equilibrium factor. If the above inequality holds, go to 

Step 9. Otherwise, update the total route length of the last generation by 

replacing Totallast with Totalcurrent if Totalcurrent < Totallast. Increase the 

generation_count by 1. If generation_count > no_gen go to Step 9 else go to 

Step 4. 

 Step 9: If the expected cost of the current solution does not change over the last 20 

consecutive temperatures ti, or a predefined maximum number of 

temperatures no_t have been performed, stop the algorithm and return the 

current route set and its expected cost as the final solution. 

Step 10:Lower the temperature by setting α*1 ii tt =+ . Set the value of threshold 

_infeasible to be total_exceed, the total amount exceeded for the whole route 

set of the current solution. Set i = i+1 and go to Step 3.  

The steps involved in the TA algorithm only differ from those in SA in the 

following ways: 

1) In Step 2, instead of setting a temperature, we set a threshold value threshold.  

2) In step 5, we just compare ∆  with the threshold value, if ∆  < threshold, go to 

Step 6; otherwise, keep the old route set and its expected route length and then 

go to step 7.  

3) The threshold value decreases at the same reduction rateα , e.g., threshold = 

threshold*α . 
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4.2.5 Parameter Setting in the SA and TA Algorithms 

 

For the SA algorithm, the parameters are set as follows. 

 

Initial temperature t0 and temperature reduction parameterα   

In this study, the initial temperature t0 is determined by allowing a certain 

percentage of deteriorations to be accepted at the beginning of the SA procedure. 

Suppose the expected cost of the initial solution is Linitial, and the maximum allowable 

percentage in cost increase is 10 %, then the initial t0 can be calculated due to the fact 

that cost increase as large as 0.1*Linitial should be accepted with very low probability 

(such as prob = 0.001). Based on the equation prob = exp(- /t∆ 0), where ∆  = 

0.1*Linitial, we can calculate the t0. Our computational experience shows that, the 

maximum allowable cost increase can be set at about 10 % of the expected cost of the 

initial solution. The temperature reduction parameterα , is set at 0.9. 

 

Final temperature tf and number of temperatures no_t  

The final temperature tf and the total number of temperatures no_t are determined 

in a similar way as described in Section 4.1.2.3. 

 

Thermal equilibrium factor ε and number of generations at each temperature 

no_gen  

In this study, we set no_gen = 20, and we perform 5*n transitions within each 

generation. At different stages of the cooling process, the thermal equilibrium factor ε  

is set as follows: ε  = 0.1 and ε  = 0.03 for the first and last 10 temperatures, and ε  = 

0.002 for the temperatures in between.  
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Parameters in the TA-infeasibility procedure controlling the infeasibility of the 

solutions 

The initial value of threshold_infeasible, threshold_infeasible0, is set equal to the 

total amount exceeded in the initial solution. In later iterations, threshold_infeasible 

only changes when the temperature in SA (or threshold in TA) is lowered, it is set 

equal to the total amount exceeded in the current solution. Here, we do not decrease 

the value threshold_infeasible steadily as used in other studies, because the function of 

this TA-infeasibility procedure is to control the infeasibility of the solutions. 

Moreover, our computational experience shows that, if we decrease 

threshold_infeasible steadily, the search process may have difficulty in finding an 

acceptable solution in terms of feasibility during the search process, therefore it is 

trapped in the current solution.   

In TA, the parameters are set similar to those in SA, except that, the initial 

threshold value is set equal to 1 % of the initial route length Linitial, which means that 

the initial percentage of the allowable deteriorations is 1 %. We also set the threshold 

reduction rate α  = 0.9.   

 

4.3 Computational Results and Analysis 

 

To get the computational results, the algorithms are coded in VISUAL C++, and 

run on a 500 MHZ Pentium II Processor with 128 MB RAM under Microsoft 

Windows 98. The problem instances are generated similarly to those used in the 

comparative study of Chapter 3. All demands Di are assumed to be identically and 

independently distributed random variables following discrete uniform distribution. 
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To get a full picture of how these algorithms perform in different scenarios, the 

performance of the algorithms is studied when demands follow uniform distribution in 

the following two cases: with the increase of problem size and with the increase of 

demand mean and variance.  

 

4.3.1 Single Vehicle Routing Algorithms 

 

Effect of the initial solution on the metaheuristics 

For each of the metaheuristics, the search procedure starts from an initial tour. To 

study the influence of the initial tour, three initial tours: randomly generated tour (RG), 

tour generated from the nearest neighbor heuristic (NN), and tour generated by the 

space-filling curve heuristic (SFC), are examined in this study.  

 

Table 4.2 Effect of the initial solution on TS with the increase of problem size 

Expected Cost Computational Time (s) Problem 

Size (n) TS-NN TS-SFC TS-NN TS-SFC 

20 558.51 570.23 8.4 8.5 

40 956.54 946.03 23.6 23.5 

60 1301.92 1296.61 56.4 56.5 

80 1678.07 1653.43 103.7 105.0 

100 2016.31 1995.14 159.1 160.0 

120 2347.94 2317.77 235.1 240.4 

 

For TS, we use TS-RG, TS-NN and TS-SFC to denote the TS algorithms 

starting from a random generated tour, a NN tour and a SFC tour respectively. TS-RG 

performs very badly. Therefore, we only present the computational results with the 

increase of problem size and the increase of demand mean and variance (here we use 

the ratio between the demand mean and the vehicle capacity to represent the increase 
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of demand mean and variance) for TS-NN and TS-SFC as illustrated in Table 4.2 and 

Table 4.3 respectively. Table 4.2 and Table 4.3 show that, based on the same 

parameters of TS, except for the case with the smallest problem size (n = 20) and the 

largest demand mean and variance (Mean/Q = 0.4167), solution quality of TS-SFC is 

better than that of TS-NN. However, their computational time is very close to each 

other. Therefore, it seems that, TS-SFC behaves better than TS-NN. We select SFC as 

the initial tour to the TS algorithm in the following computational study.  

 

Table 4.3 Effect of the initial solution on TS with the increase of demand mean and 
variance 

Expected Cost Computational Time (s) Mean/Q 

TS-NN TS-SFC TS-NN TS-SFC 

0.0833 929.38 898.26 30.9 31.2 

0.1667 1301.92 1296.61 56.5 56.4 

0.2500 1713.41 1691.10 82.9 84.1 

0.3333 2077.47 2067.81 110.1 111.6 

0.4167 2434.70 2446.74 137.7 140.3 

     

However, for the SA and TA algorithms, better initial solution does not 

necessarily guarantee better final solution. Actually, the random initial tour performs 

the best. Therefore, the random tour is adopted as the initial solution in the SA and TA 

algorithms. 

 

Comparison of performances of the metaheuristics 

In the following parts, the performance of the proposed metaheuristics is 

compared against Yang et al. (2000)’s single vehicle routing algorithm. Yang et al. 

(2000)’s single vehicle routing algorithm is denoted as Y, and the proposed 

metaheursitcs are denoted as SA, TA and TS respectively. 
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Performance with the increase of problem size 

We investigate the performance of the algorithms with the increase of problem 

size when demands follow uniform distribution U [0, 20]. Results are summarized in 

Table 4.4.  

 

Table 4.4 Comparison of algorithms with the increase of problem size 

Expected Cost Computational Time (s) Problem 

Size( n) Y1 TA2 SA3 TS4 Y TA SA TS 

20 593.85 571.14 577.60 570.23 0.9 3.4 7.4 8.5 

40 963.76 982.09 963.46 946.03 6.6 14.7 29.2 23.5 

60 1350.36 1378.76 1348.83 1296.61 19.3 42.9 66.9 56.5 

80 1700.06 1712.36 1716.64 1653.43 48.6 92.5 116.8 105.0 

100 2095.65 2089.47 2061.05 1995.14 90.4 107.7 184.5 160.0 

120 2462.10 2439.65 2431.40 2317.77 165.7 155.3 260.5 240.4 
 

1 Yang et al. (2000)’s single vehicle routing algorithm. 
2 Threshold accepting algorithm proposed in this study.  
3 Simulated annealing algorithm proposed in this study.  
4 Tabu search algorithm proposed in this study.  

 

From Table 4.4, we observe that the solution quality of TS performs better than 

that of the other heuristics in all problem instances studied. As problem size increases, 

the superiority of TS over the other algorithms also increases, the largest improvement 

occurs at problem size 120, where the improvement over the SA algorithm (best 

among the other algorithms) is about 5%. Except for problem size 80, SA performs 

better than Y; but for TA, it performs better than Y only when problem size is 20 or 

greater than 80. With respect to the computational time, SA is the most time 

consuming; though TS takes more computational time than Y, the difference between 

the times taken by the two algorithms decreases as problem size increases; and TS 
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consumes less time than SA. For TA, it is the least time consuming among the three 

metaheuristics. It even takes less time than Y at the largest problem size. 

 

Performance with the increase of demand mean and variance 

The results for the performance of the algorithms as demand mean and variance 

increase (with n fixed at 60) is summarized in Table 4.5. In terms of the solution 

quality, over the whole demand range, TS outperforms the other algorithms. Compared 

with SA (which is much better than both Y and TA), the improvement of TS over SA 

decreases as demand mean and variance increase, with the largest improvement being 

5%. With respect to computational time, the computational times taken by SA, TA and 

TS are several times longer than that of Y.  Nevertheless, TS is less time consuming 

than SA, and TA is the least time consuming one among SA, TA and TS. 

 

Table 4.5 Comparison of algorithms with the increase of demand mean and variance 

Expected Cost Computational Time (s) Mean/

Q* Y1 TA2 SA3 TS4 Y TA SA TS 

0.0833 956.09 950.70 944.34 898.26 12.5 45.3 40.9 31.2 

0.1667 1350.36 1378.76 1347.07 1296.61 19.3 42.9 65.2 56.4 

0.2500 1743.54 1753.67 1756.67 1691.10 27.0 56.0 90.7 84.1 

0.3333 2140.18 2133.33 2104.54 2067.81 33.5 70.8 120.1 111.6 

0.4167 2532.53 2480.88 2472.30 2446.74 37.74 69.9 149.1 140.3 

 

* The ratio between the demand mean and the vehicle capacity, which represents the increase of demand 

mean and variance. 
1 Yang et al. (2000)’s single vehicle routing algorithm. 
2 Threshold accepting algorithm proposed in this study.  
3 Simulated annealing algorithm proposed in this study.  
4 Tabu search algorithm proposed in this study.  
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4.3.2 Multiple Vehicle Routing Algorithms 

In Yang et al. (2000), two algorithms were presented: one is route-first-cluster-

second (denoted as R1-C2) and the other is cluster-first-route-second (denoted as C1-

R2). In this section, the performance of the proposed SA algorithm (denoted as SA) 

and TA algorithm (denoted as TA) is compared with Yang et al. (2000)’s algorithms 

based on the solution quality, computational time, and the number of vehicles required.  

 

Performance with the increase of problem size 

Here, we assume that all demands are generated from the discrete uniform 

distribution U [0, 30]. The solution quality, computational time and the number of 

vehicles required of the algorithms with the increase of problem size are illustrated in 

Table 4.6.  

In terms of solution quality, it is clear that performances of SA and TA are very 

close to each other, and they are both superior to R1-C2 and C1-R2, except when the 

problem size is 40, TA is slightly worse than R1-C2. As problem size increases, the 

superiority of TA and SA over R1-C2 and C1-R2 becomes more obvious, which 

indicates that both TA and SA are capable of finding solutions with better quality for 

large scale problems.  

With respect to computational time, C1-R2 is the least time consuming 

algorithm. For the other three algorithms, TA takes less time than SA. Computational 

time of R1-C2 increases much faster than the other algorithms. Therefore, when 

problem size is less than 100, R1-C2 consumes the least time among the three 

algorithms. However, when the problem size ranges from 100 to 120, R1-C2 takes 

more time than TA but less time than SA. When the problem size becomes even larger, 

computational time of R1-C2 exceeds both that of TA and SA. In terms of  
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computational time, TA and SA also have potential for large scale problems. For the 

number of vehicles required, both R1-C2 and TA require more vehicles than C1-R2 

and SA. Comparing C1-R2 and SA, results show that, when the problem size is less 

than 100, SA requires less number of vehicles; however, when problem size becomes 

larger, C1-R2 uses less number of vehicles. 

 

Performance with the increase of demand mean and variance 

Table 4.7 shows how the algorithms perform with the increase of demand 

mean and variance in terms of solution quality, computational time and the number of 

vehicles required. Here, the problem size is fixed at 60 nodes. Here we use the ratio 

between the demand mean and the vehicle capacity (MEAN/Q) to represent the 

increase of demand mean and variance. 

Comparing the solution quality of the 4 algorithms, C1-R2 is obviously the 

worst. For the other three algorithms, when demand mean is relatively low (less than ¼ 

of the capacity Q), their performances are quite similar. However, as demand mean 

further increases, both SA and TA start to outperform R1-C2; meanwhile, though 

solution quality of TA and SA is very close to each other, SA behaves a little better 

than TA. The computational time in Table 4.7 indicates that, as demand mean 

increases, the computational time does not increase significantly for all of the 

algorithms except for R1-C2. Among the four algorithms examined, C1-R2 takes the 

least time; while SA takes the most time, followed by TA and R1-C2. For the number 

of vehicles, Table 4.7 illustrates that, when demand mean is relatively low (less than ¼ 

of the capacity Q), TA requires the most number of vehicles, while C1-R2 requires the 

least; however, as demand mean increases, SA requires the least number of vehicles, 

and R1-C2 gradually becomes the one requires the most number of vehicles. 
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Comments on the computational results 

 

Computational results discussed above demonstrate that, both TA and SA are 

capable of finding solutions with better quality than both R1-C2 and C1-R2. This is 

quite reasonable, because the heuristic procedures employed in R1-C2 and C1-R2 are 

classical local search algorithms, which have the tendency to be trapped in the local 

optimum. While both SA and TA are metaheuristics in the sense that they are capable 

of escaping from local optimum and finally obtain a near global optimum solution.  

 

Computational results also show that, TA is a less time consuming algorithm 

than SA. This may be due to the following reasons:  

The first reason is related to the feature of TA and SA. In SA, to escape from the 

local optimum, it accepts deteriorations in objective function value with a certain 

probability, which is calculated by using exponential expressions; while in TA, 

whether a solution with deteriorations in objective function value is accepted is 

determined by comparing this deterioration with a threshold value (a constant in a 

certain context). Obviously, the later one is more simple and with less computational 

complexity.  

The second reason is related to the parameter setting in the TA and SA 

algorithms. In TA, the initial threshold value is set to 1 % of the total cost of the initial 

solution, which means that the algorithm can at most accept a solution with 

deteriorations equal to this threshold value. In SA, to get similar solution quality, the 

initial temperature must be high enough to at most accept a solution with deteriorations 

equal to about 10 % of the total cost of the initial solution. Obviously, the later one is 

more time consuming. 
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4.4 Conclusions 

 

In this chapter, we studied how metaheuristics perform for the VRPSD. We 

present three heuristics: SA, TA and TS for the single VRPSD; and two heuristics SA 

and TA for the multiple VRPSD.  

For the single vehicle case, we examine the effect of different initial solutions on 

the performance of the algorithms, and carry out a comparative study to see how 

metaheuristics perform in comparison with other heuristics presented in the literature. 

Results show that, for the TS algorithm, the better the initial solution, the better the 

final solution; however, for the SA and TA, better initial solution does not necessarily 

guarantee better final solution. The comparative study shows that, the solution quality 

of the TS outperforms the other three heuristics with the increase of both problem size 

and the increase of demand mean and variance. With respect to computational time, 

metaheuristics are much more time consuming. However, when comparing TS with 

SA, it takes less computational time. Though TA is the least time consuming one 

among the three metaheuristics, its solution quality is not quite good, it even performs 

worse than Yang et al. (2000)’s algorithm in some cases. Since all three metaheuristics 

employ the same neighborhood structure, we can conclude that, in terms of both 

solution quality and computational time, the TS algorithm performs better than the SA 

and TA algorithms for the single VRPSD.  

For the multiple vehicle case, our study reveals that, solution quality of TA and 

SA is very close to each other, and both SA and TA can provide solutions with less 

expected cost than the two algorithms presented in Yang et al. (2000) for almost all of 

the problems tested. With respect to computational time, both SA and TA are more 

time consuming for the small and medium sized problems. However, they take less 
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time than R1-C2 for problems with 120 or more nodes. These results lead to the 

conclusion that, in terms of both solution quality and computational time, SA and TA 

are more suitable for large size problems. One more finding is that, computational time 

of TA is less than that of SA. Since their solution quality is similar, TA is more 

preferable to be applied in practical applications.  
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Chapter 5 

Algorithms for the Multi-period TCTSP in a Rolling Schedule 

Environment 

 

In this chapter, we consider the multi-period TCTSP in a rolling schedule 

environment. The problems considered and the frameworks of this study are described 

in Section 5.1. Section 5.2 presents a set-covering type formulation for the problem 

within one rolling horizon. Sections 5.3 and 5.4 describe several heuristic algorithms 

based on iterative customer assignment (ICA) and the iterative center-of-gravity (ICG) 

scheme. In Section 5.5, the set-covering formulation presented in Section 5.2 is 

considered within one elongated rolling horizon, and solved to optimality as a linear 

programming (LP) problem by a column generation scheme to get an upper bound. 

Meanwhile, based on the final basis, a feasible integer solution is obtained to examine 

the gap between the LP relaxation solution and an integer solution. Section 5.6 

discusses the computational results and performances of the heuristics.  

 

5.1 Problem Description and Framework of the Study 

 

The problem considered in our study is a multi-period TCTSP in a rolling 

schedule environment. We now briefly describe the problem as follows: 

In each period, customers may call a company for services. In a call j, the 

customer specifies a date gj and a time tolerance jσ , which means that the company 

should visit the customer within the time window gj± jσ . If the service can be made 
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within the time period gj ± jσ , a profit of Rj realizes; otherwise the profit is zero. 

Assume the rolling horizon has a length of H periods, that is, for those customers who 

called before the current period, if their possible visit periods required fall into the H 

periods, they are eligible to be scheduled in this rolling horizon. The problem is to find 

a subset of customers as well as the sequence of serving them in each period in a 

rolling schedule environment, so that the average profit per period in the long run is 

maximized. 

Regarding the problem considered in this study, there is one thing in common 

with the TSSP+1 (a traveling salesman subset-tour problem with an additional 

constraint) class of problems discussed in Mittenthal and Noon (1992): not only do we 

need to figure out the order in which to visit the customers, but we must answer the 

more fundamental question: which customers do we want to visit?  However, there are 

also some differences: the time window and the dynamically changing customer 

information. It is these differences that make us consider the problem from a rolling 

schedule point of view. Firstly, since a customer may be scheduled before or after its 

desired period of visit provided that the visit is within the time window, if we know the 

customer demand information for a certain number of periods, we can make schedules 

for these periods rather than making a schedule only for one period. The rational is as 

follows: Suppose that for the current period, there are many customers eligible for 

visiting. Some customers are less profitable and the current period is at the end of their 

time windows; while some customers are more profitable and the current period is at 

the beginning of their time windows. If we only consider maximizing profit of the 

current period, the later customers may be selected and the former ones may be 

dropped. However, if the number of customers requesting services at the next period 

happens to be small, obviously we lost the profits that may be realized from the 
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dropped customers. Making schedules for several periods rather than only one period 

can avoid this kind of myopia and therefore maximize the average profit in the long 

run. On the other hand, since in each period, new customers may randomly require 

services, customer information is not static but dynamically changing from period to 

period. As a result, the customer information is only accurate for the current period; 

and the information accuracy decreases as the future period goes farther from the 

current period. Therefore, we can only implement the schedule for the current period, 

as customer information for the later periods is not accurate. After implementing the 

schedule for the current period, we update the data according to new information 

available. We then consider a new rolling horizon by forwarding the time period by 

one period and find a schedule for the new rolling horizon. This rolling schedule 

scheme nicely captures the characteristic of the problem considered in this study. 

 

5.2 A Set-covering Type Formulation 

 

In the rolling schedule environment, it is very difficult, if not impossible, to 

mathematically formulate the problem, due to the dynamically changing customer 

information from one rolling horizon to the next. Therefore, we consider one rolling 

horizon with H periods, and present a set-covering type formulation within one rolling 

horizon for the problem.   

The set-covering problem has been studied in great detail since the mid 1960s. 

Among many of its applications, some representative ones described in the literature 

include: airline fleet scheduling (Levin, 1969), truck routing (Balinski and Quandt, 

1964; Clark and Wright, 1964; Dantzig and Ramser, 1959; Garfinkel and Nemhauser, 

1969), airline crew scheduling (Arabeyre et al., 1969; Spitzer, 1961), stock cutting 
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(Pierce, 1970), assembly line balancing (Salveson, 1955), facilities location problems 

(Revelle et al., 1970), and coloring problems (Busacker and Saaty, 1965). 

The following notations are used in the description of the formulation. 

Associated with each customer j, given the date gj and time tolerance jσ  that the 

customer requires service, we define [ej, lj] as the time window the service should be 

provided, with jjj ge σ−=  and jjj gl σ+= . Let [1, H] represent the rolling horizon 

with H periods, and V the set of all customers in the rolling horizon [1, H], such that 

φ≠],1[],[ Hle jj I . That is, V = {j | j is a customer and [ej, lj]I [1, H] φ≠ }.  

Let iΩ be the set of all possible sub-tours in period i. 

Define: 
⎩
⎨
⎧

=
otherwise0

periodinchosenistour-subpossibleif1 ik
x

th
i
k  

Suppose that totally n customers are eligible for service in the rolling horizon. 

Let 
~

i
ka be a vector of size n (composed of zeros and ones), representing kth sub-tour in 

period i, and be defined in such a way that i
jka  = 1, if customer j is included in kth sub-

tour in period i, 0 otherwise. All possible sub-tours in set iΩ can be generated by 

taking into consideration the prevailing conditions and constraints imposed on the 

assignment of customers to the sub-tours. One important consideration for this 

problem is that a customer j must be assigned to the periods within its time window [ej, 

lj]. Another consideration is that, the total travel and service time of each sub-tour 

~

i
ka must be within the effective working time of a salesman in period i. 

Let i
kR represent the sales revenue if customers are served in kth sub-tour in 

period i. Then a mathematical programming model of this problem for the finite one 

rolling horizon case can be formulated as follows: 
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 Max Z = HxR
H
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= Ω∈1

                                                                               (5.1) 

subject to 

1=∑
Ω∈ ik

i
kx    i = 1, 2, …, H                                                                                         (5.2) 

i
k

H

i k

i
jk xa

i

∑ ∑
= Ω∈1

≤1     for all Vj∈                                                                                  (5.3) 

i
kx = 0, 1 for all i and k. 

Here, we denote this formulation as Problem P. 

Constraints (5.2) indicate that, in any period i = 1, 2,…, H, among all the 

possible sub-tours in iΩ , exactly one sub-tour must be chosen. Constraints (5.3) 

suggest that for all the customers Vj∈ , within the rolling horizon, they can be visited 

at most once.  

 

5.3 Solution Method Based on Iterative Customer Assignment (ICA) Scheme 

 

To solve the set-covering type formulation presented in Section 5.2, one possible 

way is to employ column generation scheme. However, in the rolling schedule 

environment, the problem has to be solved many times; column generation method 

may be time consuming. Therefore, we need a more efficient way to solve the 

problem. We present the following iterative customer assignment (ICA) procedure as 

follows. 

The iterative customer assignment scheme includes two procedures: one 

assigning procedure and one routing procedure. It is very similar to the cluster-first- 

route-second method, where the clustering procedure corresponds to the assigning 
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procedure here. The difference is that, once the routing procedure results in 

possibilities of serving other customers in certain periods, the assigning procedure is 

called again, and the assigning and routing procedures are iterated until no more 

customers can be assigned to any of the periods.   

To facilitate the description in the later sections, we give the additional 

denotations needed as follows:   

pij    =  Profit of customer j if it is assigned to period i; HiVj ...,,2,1, =∈ . 

ijw   = Weight of customer j if it is assigned to period i. It is the additional traveling 

time plus service time needed in period i, which is dynamic and dependent on 

the certain sub-tour that has been constructed before customer j is added to 

period i.  

T     =  The effective working time for each period. 

Ti     =  The remaining working time of period i. 

 

The assigning procedure is to select H subsets of customers so that the total profit 

of the selected customers is maximized, and the total weight of all customers assigned 

to each period is no more than T. Several heuristic procedures for the assigning 

procedure are proposed in Section 5.3.2.  

The routing procedure mainly tries to decrease the traveling time of the route in 

each period, since the revenue of visiting a customer is the same in different period 

within the time window. We first apply 2-opt (Croes, 1958) to improve the 

performance of the tour in each period. Then, try to further decrease the traveling time 

of the route by performing swaps between two customers in different period, provided 

that the swap is feasible with respect to the time window and time limit constraint.  
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5.3.1 ICA Procedure 

 

The procedure involved in the ICA can be described as follows: 

Step 1:  Redefine the time window of customer j, [ej, lj], with ej = max{ej, 1} and lj = 

min{H, lj}.  

Step 2:  Assign the customers in V to the most appropriate periods by some heuristic 

methods described in Section 5.3.2.  

Step 3:   Perform 2-opt and swaps of customers to improve the tour of each period.  

Step 4:  Repeat Steps 2 and 3 until no more customers in set V can be assigned to any 

of the periods. 

Step 5:  Implement the routing sequence of customers obtained in Step 4 for the first 

period. Update the data according to new information available. Now 

consider a new rolling horizon by forwarding the time period by one period. 

Repeat the whole procedure again to find a schedule for the new rolling 

horizon. 

 

5.3.2 Heuristics for the Assigning Procedure 

 

To assign the customers to the most appropriate periods, one prerequisite is the 

construction of weight matrix (wij). It is constructed as follows: Given a set of sub-

tours constructed for periods i = 1, 2, …, H, we try to insert a customer j V∈  in each 

of the sub-tours within the time window [ej, lj]. The weight wij is defined as the 

additional traveling time plus the service time, if customer j is to be added to the sub-

tour of period i. If a customer j cannot be feasibly added to the sub-tour in period i due 

to the time window constraints, wij is set to +∞ . The value of the weight wij calculated 
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in this way is not exactly the additional time spent when a customer is visited in a 

certain period, because the route in each period keeps on changing during the assigning 

procedure. 

Several heuristics for the assigning procedure are proposed in this study. They 

are described as follows. 

 

Heuristic algorithm 1 (HA1) - Assign customers based on its weight and the 

remaining working time  

HA1 procedure  

Step 1:   Rank each customer j V∈  in descending order of its revenue Rj. 

Step 2:  Start from the top of the list, select a customer j and calculate wij. Try to 

assign it to the period i* with the largest ratio of Ti/wij (i = 1, 2,…, H). If 

infeasible, go to Step 4. 

Step 3:  Insert the selected customer j into the tour of period i* in the cheapest way, 

update Ti, the remaining working time of period i*.  

Step 4:  Remove customer j from the set V. Go to Step 2 and continue the assigning 

procedure until no more customers can be assigned to any period. 

 

Heuristic algorithm 2 (HA2) – Assign customers by choosing the most profitable 

period for each customer   

 

Martello and Toth (1981) presented a polynomial-time heuristic algorithm for the 

generalized assignment problem. Let fij be a measure of the desirability of assigning 

item j into knapsack i (i K,...2,1= ). Iteratively consider all the unassigned items, and 

determine the item j* having the maximum difference between the largest and the 
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second largest fij; j* is then assigned to the knapsack for which fij* is a maximum. The 

above algorithm assigns items to the knapsacks based on opportunity cost. In our 

problem, similarly, each customer can be assigned to one of several periods, we need 

to find the most appropriate period for this customer; however, unlike the above case, 

some customers can be left over to be considered in the next rolling horizon.  

To apply the Martello and Toth (1981) algorithm to our problem, we need to 

discuss the construction of the profit matrix pij first. In the rolling schedule 

environment, we are more concerned with the profit generated from the first period, 

because firstly, we only implement the decisions of the first period; secondly, customer 

information for the later periods may be subject to some changes. Therefore, when 

solving this problem, we tried three methods to construct the profit matrix to see which 

one is more suitable in a certain situation. 

 

R1: pij based on actual revenue Rj of visiting a customer j. The pij of the profit matrix 

with H rows and n columns is defined as follows: 

pij = 
⎩
⎨
⎧ ∈

otherwise,0

],[, jjj leiR
 

 

R2: pij based on artificial revenue Rj of visiting customer j by putting more weight on 

assigning customer j to the early period of its time window. As a result, 

customers tend to be visited during the early periods of the time window. 

pij =
⎪⎩

⎪
⎨
⎧

∈−
+

−−

otherwise,0
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R3: pij based on artificial revenue Rj of visiting customer j within the desired period of 

service. In this case, for a call j with specified date gj and time tolerance jσ  

( jjj ge σ−=  and jjj gl σ+= ), the service would most likely be provided at 

period gj.   

pij =
⎪⎩

⎪
⎨
⎧

∈−
+

−−

otherwise,0

],[),/(|)
2

(| jjjj
jj

jj leiel
le

iRR  

In this study, for the measure of the desirability fij, we examine three cases: 

M1: fij = pij           (5.4) 

M2: fij = ijij wp          (5.5) 

M3: fij = ijiji wpT          (5.6) 

The heuristic applying these measures is given below. 

 

HA2 procedure  

Step 1:    Compute the weight matrix (wij) and value fij for each customer j V∈ . 

Step 2:   For each customer j V∈ , rank the periods in descending order in terms of fij 

(i H,...,2,1= ). Go to Step 3a if we assign based on opportunity desirability; 

go to Step 3b if we assign based on actual desirability.  

Step 3a: For each customer j V∈ , find the first two periods on the top of the list; 

calculate the difference between the desirability fij of these two periods, 

called opportunity desirability of customer j. Among all customers in V, find 

the customer j* and the period i* with the largest opportunity desirability. Go 

to Step 4. 

Step 3b: Among all customers in V, find the customer j* and the period i* with the 

largest desirability fij.  
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Step 4:   Test whether it is feasible to insert customer j* into the tour of period i* in a 

cheapest way. If the insertion is infeasible with respect to the time limit 

constraint, go to Step 1. Otherwise, insert customer j* into the tour of period 

i* in a cheapest way, update the remaining capacity Ti of period i*, remove 

customer j* from V and go to Step 1.  

Step 5:   Repeat Step 1 to Step 4 until no more customers can be assigned to any of the 

periods. 

 

Heuristic algorithm 3 (HA3) – Assign customers based on profitability  

In HA2, we choose the most appropriate period for each customer. In contrast, 

the rational of heuristic HA3 is as follows: for each period, there are a number of 

eligible customers, choose the most profitable customers for each period. We also 

apply fij to measure how desirable a customer j is assigned to period i and employ the 

three ways (M1, M2 and M3) to calculate fij. However, here we only need to calculate 

pij based on the method R1 as described above. 

The procedure for heuristic HA3 is the same as that of HA2, except that Steps 2, 

3a and 3b are replaced by the following three steps: 

 

Step 2:  For each period i, find all possible customers j V∈  that can be assigned to this 

period. Rank the customers in period i in descending order in terms of the 

desirability fij. Go to Step 3a if we assign based on opportunity desirability; 

go to Step 3b if we assign based on actual desirability.  

Step 3a: For each period i, find the first two customers on the top of the list, calculate 

the difference between the desirability fij of these two customers, call it 

opportunity desirability of the first customer. Among all periods, find the 
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customer j* and the period i* with the largest opportunity desirability. Go to 

Step 4. 

Step 3b: Consider the customer on the top of the list for each period, find the customer 

j* and the period i* with the largest desirability fij among all periods. Go to 

Step 4. 

 

5.4 Solution Method Based on Iterative Center-of-Gravity (ICG) Scheme 

 

The core concept of the iterative center-of-gravity (ICG) scheme is the center-of-

gravity. Suppose that node j has coordinates (xj, yj) and revenue Rj, and the tour of 

period i is denoted as iπ , the center-of-gravity of iπ , Gi(x, y), can be calculated as 

follows: 

∑∑
∈∈

=
ii j

j
j

jj RRxx
ππ

                                  (5.7) 

∑∑
∈∈

=
ii j

j
j

jj RRyy
ππ

                   (5.8) 

 In addition to the denotations introduced in Section 5.3, we further suppose that,  

dij =  distance between customer j and the center-of-gravity of iπ , Gi(x, y). 

 

Heuristic algorithm 4 (HA4) – Assignment based on ICG 

The procedure involved in the ICG scheme can be described as follows: 

 

HA4 procedure  

Step 1:  Redefine the time window of customer j, [ej, lj], with ej = max{ej, 1} and lj = 

min{H, lj}. Form the initial tour iπ of each period i by using those customers 
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who request services at period i with iσ equals to zero. If all iσ  are greater 

than zero, tour iπ  is initialized to contain the depot only.    

Step 2:   Calculate the center-of-gravity Gi(x, y) for the tour iπ  of each period i. 

Step 3:  For each customer j eligible to be visited in period i with respect to its time       

window, calculate dij, the distance between customer j and center-of-gravity 

of the tour of period i. 

Step 4:  Assign customer j to period i according to one of the following 3 criteria:    

C1:  Assign customer j to the earliest period of its time window. 

C2:  Assign customer j to period i with the largest value of pij/dij 

C3: Assign customer j to period i randomly satisfying the condition that 

customer j has more chances to be visited in a period with larger value 

of pij/dij.  

Step 5:  Rank the customers assigned to each period i in descending order of the value 

pij/dij. 

Step 6: For each period, starting from the top of the list, insert customers based on 

cheapest insertion heuristic, until no more customers can be inserted without 

exceeding the time limit. 

Step 7:  Perform 2-opt within each route and swap customers between routes (similar 

to the one described for ICA procedure in Section 5.3.1) to further decrease 

the traveling time of the routes. For the remaining (not yet assigned) 

customers eligible to be visited in period i, insert them to the tour by using 

the cheapest insertion heuristic until no more customers can be inserted into 

the tour without violating the time limit constraint.  
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Step 8:  Repeat Step 2 to Step 7 until the profit realized from visiting the customers 

does not change much or a predefined number of iterations have been 

executed. 

Step 9:  Implement the routing sequence of customers obtained in Step 8 for the first 

period. Remove the customers scheduled in the first planning period in the set 

V. Update the data according to new information available. Forward the time 

period by one period and repeat the whole procedure again to find a schedule 

for the new rolling horizon. 

To examine the effect of the artificial profit pij, we also try three ways (R1, R2 

and R3) to construct the matrix (pij) as described in Section 5.3.2. 

 

5.5 An Upper Bound Generated Based on the Set-covering Type Formulation and 

Column Generation Solution Method 

 

In Section 5.2, we present a set-covering type formulation for the problem within 

one rolling horizon. In this section, we generate an upper bound for the problem based 

on this formulation by making the following assumptions.  

• The rolling horizon is elongated in such a way that it covers all periods 

considered in each of the heuristics.  

• Customer demand information is known for all the periods considered 

when we calculate the upper bound. 

For solving the set-covering problem, there are different procedures presented in 

the literature. These include: implicit enumeration (Balas, 1965; Pierce, 1968; 

Garfinkel and Nemhauser, 1969), heuristics (Christofides, 1974; Baker et al., 1979), 

simplex based cutting plane methods (Gomory, 1963), hybrid primal cutting 
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plane/implicit enumeration method (Balas, 1975), set partitioning via node covering 

(Balas and Samuelson, 1974), network flow model (Moreland, 1966), and column 

generation algorithm (Balas and Padberg, 1975). 

 

Column generation is an effective and commonly used method for designing 

algorithms for the problems formulated as set-covering type model. Therefore, in this 

study, we consider the column generation method for the set-covering model of the 

multi-period TCTSP. From the LP relaxation of the set-covering model, it is clear that, 

if all possible sub-sets can be enumerated, one can obtain the optimal solution for the 

LP. However, the set of possible sub-sets can be very large for large size problems. 

Therefore enumeration is impractical. By applying column generation scheme, it is not 

necessary to explicitly enumerate all feasible sub-sets; one can find the non-basic 

variable with the largest non-negative reduced cost by solving an optimization 

problem, called the pricing problem. Successful applications of column generation in 

this kind of problems can be found in the literature: Staff scheduling (Sarin and 

Aggarwal, 2001), optimal shift scheduling (Mehrotra et al., 2000), the general pickup 

and delivery problem (Savelsbergh and Sol, 1998), etc. 

 

5.5.1 Column Generation Scheme 

 

Consider the Problem P formulated in Section 5.2. Let P’ denote the LP 

relaxation of Problem P, it is clear that, if we can enumerate all possible sub-tours in 

set iΩ of period i, we can obtain the optimal solution of the problem P’ by solving a 

LP problem. However, the set of possible sub-tours iΩ ( i H,...,2,1= )  can be very 

large for large size problems. Therefore a column generation scheme is adopted to find 
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the non-basic variable with the largest non-negative reduced cost by solving an 

optimization problem, called the pricing problem.  

Since problem P’ is an LP relaxation of Problem P, the optimal solution to 

problem P’ serves as an upper bound for Problem P. This upper bound will be 

employed as a performance measurer in the computational experiment of Section 

5.6.2.  

 
The master problem 

Let P’ be the LP relaxation of the Problem P. Suppose that for each period i = 1, 

2, …, H, a set ii Ω⊆Ω ' of feasible sub-tours is explicitly known, we can define the 

restricted master problem of P’ as follows: 

Max Z = HxR
H

i k

i
k

i
k

i

∑ ∑
= Ω∈1 '

                                                                                         (5.9) 
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≤1     for all Vj∈                                                                               (5.11) 

i
kx 0≥                                                                                                                        (5.12) 

Suppose that the restricted master problem of P’ has a feasible solution x, and let 

(o, u) be the associated dual solution, i.e., dual variables oi and uj are associated with 

the constraints (5.10) and (5.11) respectively. From linear programming duality we 

know that x is optimal with respect to P’ if and only if for each i = 1, 2,…, H, and for 

each k iΩ∈ , the reduced cost i
kd is non-positive. That is, 

i
kd = i

kR -∑
∈Vj

j
i
jk ua -oi 0≤  for all i = 1, 2,…,H, k iΩ∈                      (5.13) 



Chapter 5                                                                                         Multi-period TCTSP  

 110

Therefore, to test whether x is optimal with respect to P’, we can solve the 

following pricing problem: 

Max 
⎭
⎬
⎫

⎩
⎨
⎧

Ω∈=−−∑
∈Vj

iij
i
jk

i
k kHiouaR ,,...2,1|                  (5.14) 

Suppose we use zprice to denote the value of the solution to the above pricing 

problem, and let Iz and Kz represent the corresponding period and route. If zprice≤0, 

then x is optimal with respect to P’; otherwise, Kz define a column that can enter the 

basis and has to be added to '
zIΩ . So the column generation procedure can be 

illustrated as follows: 

 

Step 1:  Find the initial sets ii Ω⊆Ω ' containing a feasible solution x. 

Step 2:  Solve the restricted master problem of P’. 

Step 3: Solve the pricing problem. If zprice≤0, stop; otherwise, set { }zII K
zz
∪Ω=Ω ''  

and go to Step 2. 

In our problem, the initial sets ii Ω⊆Ω ' containing a feasible solution to P’ can be 

found by using any of the heuristics developed in Sections 5.3 and 5.4. 

 

 The pricing problem 

The pricing problem above is to find the most profitable sub-tour among all sub-

tours for all periods considered. The problem can be decomposed into several 

independent problems, one for each period, since 

Zprice = Max 
⎭
⎬
⎫

⎩
⎨
⎧

Ω∈=−−∑
∈Vj

iij
i
jk

i
k kHiouaR ,...,,2,1|               (5.15) 

is equivalent to   



Chapter 5                                                                                         Multi-period TCTSP  

 111

Zprice =
Hi

Max
,...2,1=

 Max
⎭
⎬
⎫

⎩
⎨
⎧

Ω∈−−∑
∈Vj

iij
i
jk

i
k kouaR |                                  (5.16) 

 

Thus, the pricing problem for period i can be expressed as  

Zi
price = Max

⎭
⎬
⎫

⎩
⎨
⎧

Ω∈−−∑
∈Vj

iij
i
jk

i
k kouaR |                                    (5.17) 

which tries to find the most profitable sub-tour for period i that serves a subset of the 

customers.  

 

The column selection 

From the literature, there are several ways to select the columns to add to the 

restricted master problem. One is to select the column with the maximum reduced cost; 

the other is to select some columns with positive reduced cost. In the former case, the 

LP problem will not grow very rapidly, but it has to be solved for each column added. 

While in the later case, the number of LP problems that have to be solved will be 

reduced, but the LP solved each time will become very large. In our problem, we select 

and add H columns one for each period (pricing problem) to the master problem before 

we solve it. 

 

Obtaining an integer solution 

The solution to the P’ problem serves as an upper bound of the Problem P. To 

examine whether this upper bound is tight, we can examine how far away this bound is 

from a good feasible integer solution. This feasible integer solution can be obtained by 

applying CPLEX mix-integer optimizer based on the final basis of problem P’. 
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5.5.2 Solving the Pricing Problem 

 
From the above, we know that our pricing problem is  

Zprice =
Hi

Max
,...2,1=

 Max
⎭
⎬
⎫

⎩
⎨
⎧

Ω∈−−∑
∈Vj

iij
i
jk

i
k kouaR |                (5.18) 

By making some manipulations, the pricing problem can become a knapsack 

problem for each period i as shown below. 

Given that Rj is the profit of serving customer j, the total profit of visiting all 

customers in route k of period i, i
kR , can be written as: 

 i
kR  = ∑

∈Vj
j

i
jk Ra                       (5.19) 

The pricing problem becomes,  

Zprice = 
Hi

Max
,...2,1=

 Max 
⎭
⎬
⎫

⎩
⎨
⎧

Ω∈−−∑
∈Vj

iijj
i
jk kouRa |)(                   (5.20) 

subject to 

∑
∈

≤
Vj

i
jk

i
jk Twa                    (5.21) 

where i
jkw is the additional traveling time and service time of visiting customer j in 

route k of period i.  

One more thing to consider in the pricing problem is the time window constraint 

for each customer j. We do not embody this constraint in the master problem. We can 

deal with it here by defining i
jkw = ∞ , when we try to serve a customer in the period 

outside its time window. Then, the problem becomes: for each period, first we decide 

which customers can be visited in this period in terms of time window constraint; then 

select a subset of the customers that maximize the net profit while satisfying the time 

limit constraint. Since weight i
jkw  in the pricing problem is not a constant as in real 
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knapsack problems, the pricing problem is actually a TCTSP or an orienteering 

problem with starting and ending point at the depot. 

In the column generation scheme, if we want to solve the master problem 

optimally, we have to solve the pricing problem to optimality. However, to save 

computational time, we first solve the orienteering problem with a heuristic based on 

center-of-gravity method (Golden et al., 1987). We add one column for each period to 

the restricted master problem until the heuristic can not discover any more columns 

with positive reduced cost.  Then the orienteering problem is solved to optimality to 

further search the columns with positive reduced cost. 

To solve the pricing problem to optimality, we need to present a mathematical 

formulation for the problem. Based on the following notations, an integer 

programming model for the pricing problem in one period i is presented below. 

Vi   = A set of customers that can be visited in period i. That is, Vi = {j | j is a customer 

and ej≤ i≤  lj}. 

'
iV       = Vi ∪ {0}. 

A       = {(d, j) | d, j '
iV∈  and d < j} denotes a set of arcs. 

rj        = Net profit of visiting node j, which is Rj - uj. 

T        = Maximum effective working time. 

djt       = Time of travelling arc (d, j). 

jτ      = Service time of visiting node j. 

xdj        = ⎜⎜
⎝

⎛ ∈
otherwise0

traversedis),(arcif1 Ajd
  

yj         = ⎜⎜
⎝

⎛ ∈
otherwise0

visitedisnodeif1 iVj
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The pricing problem – An orienteering problem (OP) 

 

i
priceZ  = ∑

∈ iVj
jj yrmax  - oi                                                                                      (5.22) 

Subject to:  

∑
∈ iVj

jx0 = 2                                                                                                                 (5.23)  

∑∑
∈∈

+
Akj

jk
Ajd

dj xx
),(),(

=2yj        iVj∈∀                                                                       (5.24) 

Tyxt
jd Vj

jjdjdj
i

∑ ∑
< ∈

≤+ τ                                                                                        (5.25) 

3||,1|| ≥Λ⊆Λ∀−Λ≤∑
Λ∈
Λ∈

i

j
d

jd Vx                                                               (5.26) 

,),(}1,0{ Ajdxdj ∈∀∈                                                                                    (5.27) 

ij Vjy ∈∀∈ }1,0{                                                                                            (5.28) 

 

In the above formulation, the objective (5.22) is to maximize the total profit 

generated from visiting a subset of the customers; oi is a constant representing a dual 

solution corresponding to constraints (5.10). Constraint (5.23) ensures that the route 

must start from depot and go back to depot in the end. Constraints (5.24) indicate that, 

if node j is not included in the tour, no arcs incident to j are included. Otherwise, there 

must be one arc going into and one arc coming out of node j. Constraint (5.25) 

guarantees that the total travel and service time of the OP tour is within the time limit 

T.  Constraints (5.26) are sub-tour elimination constraints, which guarantee that except 

a sub-tour including the depot, no other sub-tours in set Vi are allowed.  
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5.5.3 Procedure Involved in the Column Generation Scheme 

 

Now, we summarize the procedure involved in the column generation scheme as 

follows: 

Step 1: Find the initial sets ii Ω⊆Ω ' containing a feasible solution x. 

Step 2: Solve the restricted master problem of P’. 

Step 3: Solve the pricing problem by heuristic. 

Step 3.1  Initialize period count i = 0; num_column = 0;  

Step 3.2  Solve the problem OP by heuristic 

Step 3.3 If 0≤price
iZ , go to Step 3.4; otherwise add a column to the restricted 

master problem and increment num_column; 

Step 3.4  Increment period count i. If i < H, go to Step 3.2. 

Step 3.5  If  num_column > 0, go to Step 2.  

Step 4:  Solve the problem OP by exact algorithm. 

  Step 4.1   Initialize period count i = 0; num_column = 0;  

  Step 4.2 Solve the pricing problem without constraints (5.26) by calling 

CPLEX mix-integer optimizer.  

  Step 4.3 If there is a sub-tour, add a sub-tour elimination constraint. Go to 

Step 4.2.  

  Step 4.4 If 0≤price
iZ , go to Step 4.5; otherwise add a column to the restricted 

master problem and increment num_column. 

  Step 4.5  Increment period count i. If i < H, go to Step 4.2. 

  Step 4.6  If  num_column > 0, go to Step 2.  

Step 5: Output the LP solution as an upper bound or find a feasible integer solution by 

calling the CPLEX mix-integer optimizer. 
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 5.6 Computational Results and Analysis 

 

To get the computational results, the algorithms are coded in VISUAL C++, and 

run on a 500 MHZ Pentium II Processor with 128 MB RAM under Microsoft Windows 

98. To carry out computational experiment for the column generation scheme, we 

called the functions in the CPLEX optimization package into the VC++ program. 

Note that, our computational result presented below is the average performance 

(including solution quality and computational time) for each period, given that 

customers have been scheduled for service in the rolling schedule environment within 

60 periods. 

 

5.6.1 Problem Generation 

 

For each problem instance, the location of the customers are randomly generated 

in the square 20*20 (km2), according to a continuous uniform distribution. And the 

depot is assumed to be situated at the center. We assume that the effective working 

time T is 480 minutes a day. Revenue of serving a customer j, Rj is randomly generated 

and scaled to [0, 1]. The traveling time between customers i and j is calculated based 

on the Euclidean distance and the speed of the vehicle. For service time of visiting a 

customer j, we examine three cases in computational analysis: 10, 30 and 100 minutes, 

representing short, medium and long service time cases. The length of the rolling 

horizon is set to 7. Within each period i, the number of customers that call the 

company to “book” the service follows a Poisson distribution with mean arrival rateλ . 

In this study, λ  is varied from 20 to 80 to represent the change of the problem size so 

that the performance of the algorithms can be evaluated. gj, the desired period 



Chapter 5                                                                                         Multi-period TCTSP  

 117

(customer j to be visited) that customer j specifies when “booking” the service, is 

uniformly generated within the rolling horizon. jσ , tolerance time of visiting customer 

j, is uniformly generated within the interval [0, 2].   

As described in Section 5.3 and Section 5.4, each of the heuristics HA2, HA3 and 

HA4 has several versions due to: 

 

1) Different ways to construct the profit matrix pij  

R1:  Based on actual revenue Rj of visiting a customer j.  

R2:  Based on artificial revenue Rj of visiting customer j by putting more weight on 

assigning customer j to the early period of its time window. 

R3:  Based on artificial revenue Rj of visiting customer j within the desired period 

of service. 

2) Different ways to examine the measure of desirability fij  

M1:  fij = pij           

M2:  fij = ijij wp           

M3:  fij = ijiji wpT          

3) Different criteria to assign customers to different periods  

C1:  Assign customer j to the earliest period of its time window. 

C2:  Assign customer j to period i with the largest value of pij/dij 

C3:  Assign customer j to period i randomly satisfying the condition that customer 

j has more chances to be visited in a period with larger value of pij/dij.  

Where dij is defined as the distance between customer j and the center-of-gravity of the 

tour in period i. 

4) Whether the algorithm is implemented based on opportunity desirability (denoted as 

O) or actual desirability (denoted as A).  
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To examine the impact of all these factors on the heuristics, we need the 

following notations to denote each version of the algorithms. 

For HA2, we have 18 combinations altogether denoted by HA2(1) to HA2(18) as 

illustrated in Table 5.1, with * corresponding to the one selected in the version of the 

algorithm named in column 1. Similarly, for HA3, we have 6 combinations denoted by 

HA3(1) to HA3(6) as illustrated in Table 5.2. The 9 combinations denoted by HA4(1) 

to HA4(9) for heuristic HA4 are shown in Table 5.3.  

 

Table 5.1 Denotations for heuristic HA2 

HA2 
versions 

R1 R2 R3 M1 M2 M3 O A 

HA2(1)  *   *  *  
HA2(2) *    *  *  
HA2(3)   *  *  *  
HA2(4)  *   *   * 
HA2(5) *    *   * 
HA2(6)   *  *   * 
HA2(7)  *    * *  
HA2(8) *     * *  
HA2(9)   *   * *  
HA2(10)  *    *  * 
HA2(11) *     *  * 
HA2(12)   *   *  * 
HA2(13)  *  *   *  
HA2(14) *   *   *  
HA2(15)   * *   *  
HA2(16)  *  *    * 
HA2(17) *   *    * 
HA2(18)   * *    * 

 

 

Table 5.2 Denotations for heuristic HA3 

HA3 
versions 

M1 M2 M3 O A 

HA3(1)  *  *  
HA3(2)  *   * 
HA3(3)   * *  
HA3(4)   *  * 
HA3(5) *   *  
HA3(6) *    * 
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Table 5.3  Denotations for heuristic HA4 

HA4 
versions 

R1 R2 R3 C1 C2 C3 

HA4(1)  *  *   
HA4(2) *   *   
HA4(3)   * *   
HA4(4)  *   *  
HA4(5) *    *  
HA4(6)   *  *  
HA4(7)  *    * 
HA4(8) *     * 
HA4(9)   *   * 

 

 

5.6.2 Compare the Performance of the Heuristics Against an Upper Bound 

 

To study how the heuristics behave for the multi-period TCTSP in the rolling 

schedule environment, ideally, we should compare the performance of the heuristics 

with that of the optimal solution. However, in the rolling schedule environment, since 

the customer demand information is dynamically changing from one rolling horizon to 

the next, even the mathematical formulation of the problem is very complicated, if not 

impossible. Therefore, in Section 5.5, we try to find an upper bound for this problem 

based on set-covering type formulation and the column generation method. 

In Section 5.5, we solved the LP relaxation of the set-covering model (P’) to 

optimality, which serves as an upper bound for Problem P. Also, we found a feasible 

integer solution for Problem P based on the final basis. Results show that, the LP 

relaxation solution is very close to the feasible integer solution, with maximum 

deviation being only about 0.1%. Therefore, the LP relaxation upper bound is tight 

enough and we employ it as the performance measurer in the following parts.    
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Tables 5.4 to 5.6 illustrate the percentage deviations from the upper bound 

(denoted as UB) for heuristics HA1 to HA4 with the customer arrival rate and the 

service time being set at 20 and 100 respectively. 

 

Table 5.4 Percentage deviations from the upper bound for HA2 

Problem UB HA2(1) % HA2(2) % HA2(3) % HA2(4) % HA2(5) % 

1 3.53 3.40 3.87 3.39 4.12 3.08 12.77 3.28 7.05 3.43 2.92 
2 3.60 3.45 4.38 3.45 4.31 3.18 11.62 3.33 7.52 3.50 2.98 
3 3.64 3.52 3.17 3.52 3.24 3.23 11.06 3.38 6.93 3.54 2.73 
4 3.57 3.42 4.12 3.42 4.12 3.10 13.15 3.32 7.03 3.45 3.39 
5 3.62 3.47 4.13 3.47 4.13 3.20 11.55 3.40 6.06 3.49 3.46 
6 3.51 3.36 4.38 3.36 4.38 3.13 10.94 3.24 7.68 3.41 2.83 
7 3.59 3.41 5.04 3.42 4.67 3.17 11.66 3.30 8.03 3.46 3.66 
8 3.60 3.46 3.71 3.46 3.74 3.28 8.73 3.33 7.46 3.49 3.11 
9 3.58 3.42 4.35 3.42 4.35 3.13 12.49 3.35 6.49 3.49 2.61 

10 3.54 3.33 5.97 3.33 5.97 3.11 12.30 3.28 7.43 3.42 3.62 
11 3.60 3.43 4.73 3.44 4.40 3.17 11.89 3.31 7.99 3.50 2.81 
12 3.51 3.34 4.64 3.34 4.73 3.04 13.46 3.27 6.62 3.38 3.69 
13 3.54 3.38 4.59 3.39 4.41 3.13 11.74 3.28 7.33 3.45 2.72 
14 3.59 3.43 4.40 3.44 4.03 3.19 11.13 3.36 6.43 3.44 4.20 
15 3.55 3.42 3.75 3.42 3.75 3.14 11.49 3.29 7.36 3.44 3.06 
16 3.63 3.48 4.15 3.48 4.15 3.18 12.30 3.41 5.96 3.52 2.88 
17 3.56 3.36 5.51 3.36 5.51 3.11 12.70 3.31 6.97 3.42 3.77 
18 3.57 3.40 4.75 3.40 4.70 3.14 12.00 3.30 7.52 3.44 3.66 
19 3.59 3.44 4.19 3.44 4.19 3.17 11.85 3.27 8.95 3.46 3.64 
20 3.60 3.45 3.98 3.45 3.98 3.19 11.31 3.33 7.44 3.50 2.73 

Average 3.58 3.42 4.39 3.42 4.34 3.15 11.81 3.32 7.21 3.46 3.22 
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Table 5.4 Percentage deviations from the upper bound for HA2 (Con.) 

Problem UB HA2(6) % HA2(7) % HA2(8) % HA2(9) % HA2(10) % 

1 3.53 3.39 4.13 3.38 4.23 3.39 4.14 3.04 13.80 3.27 7.45 
2 3.60 3.41 5.35 3.43 4.78 3.43 4.73 3.13 13.04 3.34 7.18 
3 3.64 3.50 3.62 3.49 3.91 3.48 4.20 3.18 12.49 3.37 7.36 
4 3.57 3.38 5.24 3.42 4.20 3.42 4.20 3.11 12.82 3.33 6.87 
5 3.62 3.43 5.36 3.47 4.20 3.46 4.36 3.17 12.51 3.40 6.08 
6 3.51 3.34 4.99 3.36 4.29 3.36 4.29 3.10 11.79 3.28 6.69 
7 3.59 3.43 4.39 3.42 4.68 3.42 4.64 3.14 12.48 3.30 8.07 
8 3.60 3.46 3.86 3.45 4.08 3.46 3.97 3.21 10.88 3.33 7.40 
9 3.58 3.39 5.33 3.42 4.35 3.42 4.35 3.12 12.73 3.34 6.62 

10 3.54 3.36 5.25 3.33 6.13 3.33 5.93 3.07 13.28 3.28 7.43 
11 3.60 3.42 4.95 3.43 4.75 3.44 4.44 3.10 13.88 3.32 7.63 
12 3.51 3.29 6.21 3.35 4.51 3.35 4.63 3.02 14.00 3.28 6.53 
13 3.54 3.33 5.98 3.38 4.60 3.38 4.60 3.11 12.21 3.29 7.13 
14 3.59 3.41 4.82 3.45 3.82 3.44 3.95 3.15 12.09 3.34 6.83 
15 3.55 3.38 4.68 3.42 3.64 3.42 3.64 3.09 12.83 3.26 8.20 
16 3.63 3.45 4.75 3.47 4.34 3.47 4.33 3.16 12.78 3.42 5.79 
17 3.56 3.41 4.18 3.36 5.54 3.36 5.70 3.12 12.33 3.33 6.34 
18 3.57 3.37 5.40 3.40 4.74 3.40 4.69 3.08 13.73 3.27 8.24 
19 3.59 3.42 4.86 3.43 4.56 3.43 4.47 3.16 12.05 3.28 8.77 
20 3.60 3.42 4.94 3.45 3.97 3.45 3.97 3.19 11.44 3.36 6.46 

Average 3.58 3.40 4.91 3.40 4.47 3.40 4.46 3.12 12.66 3.32 7.15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 5                                                                                         Multi-period TCTSP  

 122

 
 

Table 5.4 Percentage deviations from the upper bound for HA2 (Con.) 

Problem UB HA2(11) % HA2(12) % HA2(13) % HA2(14) % 

1 3.53 3.44 2.73 3.38 4.20 3.40 3.66 3.39 3.92 
2 3.60 3.52 2.34 3.42 5.19 3.47 3.58 3.48 3.49 
3 3.64 3.55 2.33 3.49 3.99 3.55 2.30 3.55 2.30 
4 3.57 3.48 2.65 3.40 4.66 3.45 3.36 3.45 3.36 
5 3.62 3.53 2.53 3.43 5.14 3.50 3.38 3.50 3.25 
6 3.51 3.42 2.56 3.35 4.55 3.40 3.31 3.40 3.31 
7 3.59 3.47 3.27 3.42 4.58 3.46 3.66 3.46 3.64 
8 3.60 3.51 2.31 3.46 3.88 3.50 2.86 3.50 2.86 
9 3.58 3.49 2.58 3.39 5.41 3.45 3.56 3.45 3.56 

10 3.54 3.44 2.83 3.35 5.45 3.36 5.10 3.37 4.99 
11 3.60 3.52 2.03 3.43 4.74 3.44 4.34 3.45 4.01 
12 3.51 3.41 2.66 3.30 5.98 3.37 3.96 3.37 4.05 
13 3.54 3.45 2.58 3.34 5.58 3.41 3.87 3.41 3.71 
14 3.59 3.50 2.43 3.42 4.62 3.46 3.49 3.45 3.69 
15 3.55 3.47 2.25 3.38 4.64 3.44 2.96 3.44 2.96 
16 3.63 3.55 2.00 3.45 4.87 3.52 2.83 3.52 2.83 
17 3.56 3.46 2.76 3.39 4.81 3.42 3.87 3.42 3.99 
18 3.57 3.48 2.52 3.36 5.68 3.43 3.85 3.42 4.01 
19 3.59 3.50 2.58 3.42 4.88 3.48 3.17 3.48 3.05 
20 3.60 3.51 2.38 3.42 4.92 3.49 2.91 3.49 2.91 

Average 3.58 3.47 2.52 3.37 4.89 3.45 3.50 3.45 3.49 
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Table 5.4 Percentage deviations from the upper bound for HA2 (Con.) 

Problem UB HA2(15) % HA2(16) % HA2(17) % HA2(18) % 

1 3.53 3.06 13.24 3.27 7.54 3.44 2.59 3.40 3.86 
2 3.60 3.19 11.39 3.31 8.17 3.52 2.29 3.44 4.41 
3 3.64 3.24 11.01 3.36 7.58 3.58 1.58 3.49 3.91 
4 3.57 3.10 13.24 3.30 7.69 3.49 2.13 3.40 4.82 
5 3.62 3.20 11.44 3.42 5.43 3.56 1.64 3.45 4.69 
6 3.51 3.11 11.51 3.26 7.08 3.44 2.10 3.37 4.10 
7 3.59 3.17 11.59 3.33 7.10 3.48 2.97 3.44 3.97 
8 3.60 3.28 8.97 3.32 7.86 3.51 2.31 3.46 3.93 
9 3.58 3.13 12.54 3.35 6.34 3.52 1.73 3.44 3.84 

10 3.54 3.10 12.59 3.30 6.96 3.43 3.31 3.35 5.35 
11 3.60 3.18 11.56 3.34 7.15 3.53 1.72 3.44 4.41 
12 3.51 3.04 13.42 3.27 6.65 3.41 2.87 3.33 4.97 
13 3.54 3.14 11.46 3.29 7.19 3.45 2.64 3.34 5.67 
14 3.59 3.18 11.23 3.37 6.13 3.51 2.00 3.44 3.95 
15 3.55 3.14 11.58 3.25 8.33 3.48 1.96 3.39 4.53 
16 3.63 3.21 11.61 3.40 6.37 3.54 2.26 3.46 4.50 
17 3.56 3.12 12.39 3.32 6.78 3.47 2.42 3.40 4.35 
18 3.57 3.13 12.30 3.29 7.76 3.48 2.41 3.39 5.04 
19 3.59 3.19 11.27 3.30 8.08 3.52 1.93 3.43 4.46 
20 3.60 3.20 10.94 3.34 7.26 3.53 1.88 3.43 4.52 

Average 3.58 3.15 11.76 3.32 7.17 3.50 2.24 3.42 4.46 

 
 
 

For HA2, HA3 and HA4, Tables 5.4 to 5.6 show that, the factors considered in 

the algorithms (R1, R2, R3; M1, M2, M3; O, A; and C1, C2, C3) all exert influence on 

the solution quality of the algorithms to some extent. 

One finding from Table 5.4 is that, constructing the profit matrix pij based on 

actual revenue (R1) yields better solution than the other two methods (R2 and R3). 

Moreover, whether employing opportunity desirability (O) or actual desirability (A) 

can provide better solution depends on how to construct the profit matrix pij: if it is 

constructed by R1 or R3, selecting the customers based on actual desirability (A) 

performs better; otherwise, one should select the customers based on opportunity 
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desirability (O). For the measure of desirability fij, if the algorithm is implemented 

based on opportunity desirability (O), fij defined by M1 provides the best solution 

followed by M2 and M3; otherwise, fij defined by M1 provides the best solution 

followed by M3 and M2. Another observation is that, the average percentage deviation 

is quite different from one version of the algorithm to another, which can be as small 

as 2.24% and as large as 12.66%. Among all 18 combinations, the smallest average 

percentage deviation from the upper bound, 2.24%, is generated by HA2(17), which is 

a combination of M1AR1, that is: construct the profit matrix pij with actual revenue 

(R1); select the customers based on actual desirability (A) and define the measure of 

desirability by fij = pij. 

Table 5.5 Percentage deviations from the upper bound for HA3 

Problem UB HA3(1) % HA3(2) % HA3(3) % HA3(4) % HA3(5) % HA3(6) % 

1 3.53 3.44 2.48 3.40 3.77 3.45 2.40 3.43 3.00 3.46 1.97 3.45 2.21 
2 3.60 3.50 2.88 3.49 3.06 3.49 3.24 3.51 2.70 3.53 2.14 3.50 2.77 
3 3.64 3.54 2.58 3.53 2.86 3.55 2.31 3.54 2.62 3.58 1.67 3.57 1.88 
4 3.57 3.46 3.12 3.45 3.35 3.47 2.85 3.48 2.57 3.51 1.84 3.50 2.07 
5 3.62 3.54 2.28 3.48 3.82 3.53 2.34 3.53 2.43 3.55 1.79 3.56 1.59 
6 3.51 3.43 2.47 3.40 3.16 3.43 2.40 3.42 2.61 3.46 1.41 3.44 1.97 
7 3.59 3.47 3.20 3.48 2.91 3.46 3.52 3.45 3.71 3.49 2.78 3.49 2.57 
8 3.60 3.49 3.11 3.48 3.39 3.51 2.49 3.51 2.58 3.54 1.58 3.53 1.81 
9 3.58 3.49 2.52 3.47 3.10 3.47 3.07 3.49 2.49 3.51 1.97 3.50 2.20 

10 3.54 3.44 2.96 3.42 3.52 3.45 2.70 3.43 3.09 3.46 2.37 3.45 2.70 
11 3.60 3.51 2.36 3.49 2.94 3.52 2.26 3.51 2.37 3.54 1.44 3.51 2.40 
12 3.51 3.42 2.58 3.40 3.12 3.41 2.78 3.40 3.04 3.41 2.81 3.42 2.55 
13 3.54 3.43 3.18 3.42 3.43 3.43 3.10 3.46 2.45 3.46 2.31 3.47 1.91 
14 3.59 3.50 2.38 3.46 3.57 3.50 2.37 3.50 2.46 3.52 1.90 3.50 2.37 
15 3.55 3.44 3.02 3.41 3.91 3.44 3.21 3.45 2.67 3.48 2.01 3.46 2.40 
16 3.63 3.54 2.41 3.50 3.36 3.55 2.05 3.54 2.45 3.57 1.66 3.56 1.86 
17 3.56 3.46 2.79 3.43 3.51 3.45 3.08 3.47 2.55 3.49 1.86 3.46 2.82 
18 3.57 3.47 2.82 3.42 4.17 3.46 3.09 3.48 2.37 3.49 2.04 3.49 2.29 
19 3.59 3.48 3.22 3.47 3.31 3.50 2.66 3.48 3.21 3.52 1.99 3.53 1.64 
20 3.60 3.49 2.94 3.47 3.40 3.50 2.80 3.48 3.15 3.54 1.50 3.53 1.80 

Average 3.58 3.48 2.76 3.45 3.38 3.48 2.74 3.48 2.73 3.51 1.95 3.50 2.19 
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For HA3, Table 5.5 clearly shows that, if measure of desirability fij is defined by 

M1 or M2, algorithms implemented based on opportunity desirability (O) are superior 

to those based on actual desirability (A); while for fij defined by M3, the average 

percentage deviations from the upper bound for the two alternatives are very similar to 

each other. The smallest deviation, 1.95%, is obtained from HA3(5), with measure of 

desirability fij defined by M1 and implement the algorithm based on opportunity 

desirability (O). The overall performance of HA3 is quite good, with average 

percentage deviations from the upper bound for all the versions being within 3.5%.  

 
 
 

Table 5.6 Percentage deviations from the upper bound for HA4 and HA1 

Problem UB HA4(1) % HA4(2) % HA4(3) % HA4(4) % HA4(5) % 

1 3.53 3.29 6.81 3.50 0.84 3.47 1.87 3.28 7.22 3.46 2.16 
2 3.60 3.35 6.98 3.55 1.35 3.50 2.90 3.32 7.82 3.52 2.21 
3 3.64 3.37 7.23 3.60 1.10 3.55 2.36 3.37 7.41 3.60 1.11 
4 3.57 3.31 7.22 3.54 0.96 3.48 2.55 3.31 7.40 3.49 2.21 
5 3.62 3.42 5.52 3.59 0.73 3.52 2.68 3.42 5.48 3.56 1.52 
6 3.51 3.26 7.10 3.49 0.69 3.44 2.12 3.26 7.30 3.46 1.50 
7 3.59 3.33 7.04 3.56 0.80 3.52 1.93 3.33 7.28 3.51 2.05 
8 3.60 3.33 7.47 3.56 1.02 3.54 1.60 3.33 7.55 3.54 1.74 
9 3.58 3.36 6.10 3.55 0.79 3.50 2.25 3.35 6.31 3.51 1.85 

10 3.54 3.31 6.55 3.52 0.72 3.42 3.40 3.32 6.37 3.46 2.37 
11 3.60 3.37 6.30 3.58 0.57 3.50 2.61 3.36 6.61 3.54 1.70 
12 3.51 3.28 6.49 3.47 1.12 3.41 2.85 3.27 6.75 3.43 2.20 
13 3.54 3.28 7.29 3.49 1.46 3.44 2.79 3.27 7.65 3.45 2.68 
14 3.59 3.39 5.48 3.55 0.93 3.53 1.62 3.37 5.98 3.47 3.11 
15 3.55 3.28 7.55 3.50 1.44 3.45 2.93 3.27 7.92 3.46 2.47 
16 3.63 3.42 5.76 3.59 1.14 3.54 2.42 3.42 5.74 3.57 1.45 
17 3.56 3.33 6.48 3.52 1.09 3.46 2.64 3.31 7.01 3.47 2.55 
18 3.57 3.29 7.63 3.52 1.24 3.47 2.66 3.28 8.16 3.48 2.34 
19 3.59 3.34 7.12 3.56 0.91 3.50 2.52 3.32 7.62 3.51 2.29 
20 3.60 3.33 7.47 3.55 1.39 3.51 2.50 3.32 7.72 3.54 1.72 

Average 3.58 3.33 6.78 3.54 1.02 3.49 2.46 3.32 7.07 3.50 2.06 
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Table 5.6 Percentage deviations from the upper bound for HA4 and HA1 (Con.) 

Problem UB HA4(6) % HA4(7) % HA4(8) % HA4(9) % HA1 % 

1 3.53 3.40 3.83 3.37 4.70 3.37 4.70 2.95 16.56 3.47 1.84 
2 3.60 3.42 5.01 3.44 4.48 3.44 4.48 3.07 14.71 3.55 1.37 
3 3.64 3.48 4.17 3.49 4.10 3.49 4.10 3.13 14.04 3.61 0.76 
4 3.57 3.38 5.41 3.44 3.66 3.44 3.66 3.08 13.82 3.52 1.39 
5 3.62 3.47 4.18 3.47 4.18 3.47 4.18 3.08 14.77 3.58 1.13 
6 3.51 3.36 4.31 3.38 3.89 3.38 3.89 3.05 13.14 3.47 1.11 
7 3.59 3.41 4.88 3.42 4.79 3.42 4.79 3.05 14.85 3.52 1.82 
8 3.60 3.45 4.01 3.43 4.57 3.43 4.57 3.16 12.14 3.56 1.00 
9 3.58 3.44 3.95 3.44 3.96 3.44 3.96 3.11 13.28 3.54 1.24 

10 3.54 3.34 5.80 3.33 6.07 3.33 6.07 3.03 14.56 3.48 1.67 
11 3.60 3.44 4.47 3.44 4.48 3.44 4.48 3.05 15.18 3.56 0.97 
12 3.51 3.32 5.31 3.33 5.18 3.33 5.18 2.93 16.44 3.44 1.97 
13 3.54 3.33 5.96 3.39 4.26 3.39 4.26 3.07 13.36 3.47 2.10 
14 3.59 3.43 4.48 3.43 4.35 3.43 4.35 3.09 13.86 3.55 0.94 
15 3.55 3.37 4.92 3.43 3.49 3.43 3.49 3.03 14.71 3.49 1.60 
16 3.63 3.46 4.49 3.49 3.70 3.49 3.70 3.11 14.17 3.59 1.03 
17 3.56 3.41 4.25 3.37 5.16 3.37 5.16 3.05 14.36 3.50 1.68 
18 3.57 3.36 5.88 3.39 5.09 3.39 5.09 2.99 16.14 3.52 1.40 
19 3.59 3.41 5.22 3.45 4.09 3.45 4.09 3.10 13.77 3.54 1.50 
20 3.60 3.43 4.62 3.45 4.14 3.45 4.14 3.11 13.48 3.54 1.64 

Average 3.58 3.41 4.76 3.42 4.42 3.42 4.42 3.06 14.37 3.53 1.41 

 
 
 
 

For HA4, assign the customers to the periods based on criterion C1 is better than 

the other two criteria: C2 and C3. Once customers are assigned to a period, selecting 

the customers based on ijij dp with jij Rp =  (constructing the profit matrix based on 

the actual revenue) provides the best solution. The smallest average percentage 

deviation (1.02%), is obtained from HA4(2). Unlike HA3, solution quality of different 

versions of HA4 heavily depends on how to assign the customers (C1, C2 and C3) and 

how to construct the profit matrix pij for selecting the customers within one period.  
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For HA1, the average percentage deviation from the upper bound is 1.41%. It is 

better than the best among both HA2 (2.24%) and HA3 (1.95%), only inferior to the 

best of HA4 (1.02%). 

The average computational time taken to get the best solution for each of the 

heuristics is illustrated in Table 5.7, which indicates that HA1 is the least time 

consuming heuristic, followed by HA2, HA4 and HA3. 

  

Table 5.7 Computational time taken to get the best solution for each heuristic 

Computational time (ms) Customer Arrival 

Rate HA1 HA2 HA3 HA4 

20 11 24 57 41 

 

 

5.6.3 Performance Comparison Among the Heuristics  

 

For problems with high customer arrival rate and short service times, it is very 

difficult to get the upper bound in terms of computational time. Therefore, the 

performance of the heuristics is compared among themselves to determine which one 

is more preferable in a certain scenario. As we discussed above, each heuristic has 

several versions due to different combinations of the factors involved in it; totally, we 

have 34 versions of the heuristics. For each problem instance, the heuristic with the 

maximum profit realized is identified and regarded as the performance measurer; then 

each heuristic is examined by calculating the percentage deviation from the maximum 

profit. The following computational results are the averages of the results obtained 

from 30 randomly generated problem instances.  
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5.6.3.1 Analysis of the Factors Affecting the Performance of the Heuristics  

 

Effect of different profit matrix, measure of desirability and opportunity or 

actual desirability in HA2  

Tables 5.8 to 5.10 illustrate the average percentage deviations from the maximum 

for HA2 when the service time is 10, 30 and 100 minutes respectively. The minimum 

average percentage deviation among all 18 combinations for each case is shown in 

bold and italic font. 

 

Table 5.8 Average percentage deviations from the maximum for HA2  

(Service time = 10 minutes) 

λ  HA2(1) HA2(2) HA2(3) HA2(4) HA2(5) HA2(6) HA2(7) HA2(8) HA2(9) 

20 0.45 1.37 1.32 0.86 2.07 1.64 0.90 2.11 1.62 
30 0.29 1.28 1.18 2.15 3.83 2.15 1.35 2.54 1.66 
40 3.12 3.39 3.76 3.00 4.26 2.31 3.27 3.60 3.80 
50 3.38 3.65 4.60 2.58 3.14 1.80 3.48 3.72 4.62 
60 3.82 4.05 5.55 2.35 2.52 1.75 3.89 4.14 5.53 
70 4.44 4.61 6.42 2.18 1.70 1.73 4.45 4.61 6.39 
80 4.82 4.93 7.11 2.05 1.46 2.01 4.77 4.89 7.06 

 

 

Table 5.8 Average percentage deviations from the maximum for HA2 (Con.)  

(Service time = 10 minutes)  

λ  HA2(10) HA2(11) HA2(12) HA2(13) HA2(14) HA2(15) HA2(16) HA2(17) HA2(18) 

20 0.71 1.69 1.51 0.30 3.15 1.33 0.32 3.15 1.34 
30 0.74 1.64 1.37 0.20 3.23 1.19 0.54 3.27 1.43 
40 0.60 1.20 1.01 3.15 3.93 3.90 1.24 3.37 1.41 
50 0.79 0.58 0.78 3.39 4.06 4.84 1.66 3.26 1.47 
60 0.97 0.64 1.21 3.76 4.36 6.09 2.77 3.67 2.22 
70 0.96 0.38 1.36 4.10 4.65 7.34 3.46 3.92 2.70 
80 0.91 0.25 1.79 4.51 4.93 8.64 4.27 4.29 3.10 
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Table 5.9 Average percentage deviations from the maximum for HA2  

(Service time = 30 minutes)   

λ  HA2(1) HA2(2) HA2(3) HA2(4) HA2(5) HA2(6) HA2(7) HA2(8) HA2(9) 

20 3.80 4.13 5.56 3.16 3.23 2.06 3.84 4.19 5.53 
30 3.84 3.96 7.65 3.44 1.86 2.80 3.83 3.97 7.67 
40 3.80 3.85 9.73 3.67 1.17 2.93 3.57 3.67 9.68 
50 4.18 4.23 11.64 4.46 0.92 3.20 3.96 4.02 11.75 
60 4.74 4.77 13.35 5.18 0.82 3.67 4.61 4.67 13.75 
70 5.07 5.08 14.48 5.88 0.90 3.87 4.89 4.91 15.06 
80 5.41 5.38 14.99 6.44 0.83 4.30 5.34 5.26 15.74 

 

 

Table 5.9 Average percentage deviations from the maximum for HA2 (Con.)  

(Service time = 30 minutes) 

λ  HA2(10) HA2(11) HA2(12) HA2(13) HA2(14) HA2(15) HA2(16) HA2(17) HA2(18) 

20 1.25 0.50 1.50 4.13 4.87 5.95 3.01 3.28 2.52 
30 2.27 0.34 2.56 4.54 4.97 8.65 4.74 3.62 3.56 
40 2.95 0.32 2.87 4.84 5.15 11.77 6.06 3.88 3.73 
50 3.83 0.15 3.15 5.37 5.43 14.26 7.69 4.35 4.15 
60 4.92 0.24 3.63 6.05 6.04 16.65 9.36 4.95 4.66 
70 5.48 0.24 3.82 6.64 6.63 17.62 10.25 5.44 5.01 
80 6.31 0.14 4.28 7.10 7.11 17.95 11.00 6.04 5.53 

 

 

Table 5.10 Average percentage deviations from the maximum for HA2  

(Service time = 100 minutes) 

λ  HA2(1) HA2(2) HA2(3) HA2(4) HA2(5) HA2(6) HA2(7) HA2(8) HA2(9) 

30 3.04 3.04 9.91 6.44 2.28 3.65 3.10 3.09 11.36 
40 3.19 3.17 8.56 6.11 2.39 3.51 3.31 3.31 9.96 
50 3.04 3.02 7.16 5.86 2.37 3.40 3.10 3.08 8.59 
60 3.10 3.08 6.55 5.59 2.50 3.36 3.12 3.10 7.93 
70 3.10 3.07 6.09 5.32 2.62 3.37 3.19 3.19 7.17 
80 3.20 3.19 5.74 4.97 2.62 3.38 3.22 3.20 6.82 
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Table 5.10 Average percentage deviations from the maximum for HA2 (Con.)  

(Service time = 100 minutes) 

λ  HA2(10) HA2(11) HA2(12) HA2(13) HA2(14) HA2(15) HA2(16) HA2(17) HA2(18) 

30 6.41 1.65 3.66 1.77 1.77 9.81 6.26 0.79 2.78 
40 6.09 2.03 3.50 1.51 1.49 8.01 5.59 0.61 2.03 
50 5.83 2.19 3.40 1.07 1.05 6.52 5.05 0.43 1.67 
60 5.57 2.37 3.37 0.95 0.95 5.74 4.53 0.39 1.48 
70 5.29 2.53 3.36 0.88 0.89 4.91 3.94 0.45 1.26 
80 4.96 2.62 3.38 0.76 0.76 4.48 3.40 0.33 1.11 

 

Results from Tables 5.8 to 5.10 indicate that, there is no dominant combination 

always superior to the others. Specifically, when the service time is 10 minutes and 

when the customer arrival rate is low ( λ < 40), HA2(13) with the combination 

M1OR2 performs the best; however, when λ  = 40, HA2(10) with the combination 

M3AR2 yields the best solution. In case of λ  > 40 and the case when the service time 

is medium, HA2(11) with the combination M3AR1 gives the best result. Finally, when 

the service time is long (100 minutes), HA2(17) with the combination M1AR1 is the 

best alternative. The combination with the best performance in each scenario is 

summarized in Table 5.11. 

 

Table 5.11 Combinations with the best performance for HA2, HA3 and HA4 

Service time (minutes)  

Heuristic 

Customer Arrival 

Rate λ  10 30 100 

<λ 40   M1OR2 M3AR1 M1AR1 

=λ 40   M3AR2 M3AR1 M1AR1 

 

HA2 

λ > 40 M3AR1 M3AR1 M1AR1 

<λ 50     M1A M3A M1O  

HA3 λ ≥ 50          M3A M3A M1O 

λ ≤  40         C1R3 C2R1 C1R1  

HA4 >λ  50         C2R1 C2R1 C1R1 
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Computational results show that, all three factors considered in HA2 have some 

impacts on the performance of the heuristics, and the factors are interdependent. Figure 

5.1 illustrates the effect of different measure of desirability (M1, M2 and M3) on HA2 

when actual desirability (A) is applied and when profit matrix is constructed by R1, 

with service time being set at 100 minutes. In this case, it is clear that, desirability 

defined by fij = ijp  (M1) gives the best solution; while fij = ijij wp  (M2) gives the 

worst solution.  

 

Effect of Different Measure of Desirability on HA2
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Figure 5.1 Effect of Different Measure of Desirability on Heuristic HA2 

 

The effect of different profit matrix (R1, R2 and R3) on HA2 is shown in Figure 

5.2 when actual desirability (A) is applied and when measure of desirability is fixed at 

M3, with the service time being set at 10 minutes. In this case, when the customer 

arrival rate is less than 50, we should construct the profit matrix according to R2, that 

is, putting more weight on assigning customer j to the early period of its time window. 

Otherwise, profit matrix should be constructed based on R1, the actual revenue.  
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Effect of Different Profit Matrix on HA2
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Figure 5.2 Effect of Different Profit Matrix on HA2 

 

Effect of applying different measure of desirability and opportunity or actual 

desirability in H3 

Tables 5.12 to 5.14 illustrate the average percentage deviation from the 

maximum for HA3 when the service time is 10, 30 and 100 minutes respectively. 

Similarly, the minimum average percentage deviation from the maximum among the 6 

combinations is shown in bold and italic font. 

 

Table 5.12 Average percentage deviations from the maximum for HA3 and HA1  

(Service time = 10 minutes) 

λ  HA3(1) HA3(2) HA3(3) HA3(4) HA3(5) HA3(6) HA1 

20 2.15 2.19 2.20 1.66 1.88 0.10 1.72 
30 2.52 3.73 2.28 1.61 2.41 0.20 1.83 
40 2.62 4.17 2.09 1.23 2.42 0.72 0.96 
50 2.05 3.15 1.64 0.72 1.98 0.77 0.17 
60 1.75 2.30 1.40 0.62 1.87 1.09 0.17 
70 1.59 1.62 1.12 0.37 1.89 1.18 0.26 
80 1.16 1.33 1.08 0.33 2.10 1.36 0.35 
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Table 5.13 Average percentage deviations from the maximum for HA3 and HA1  

(Service time = 30 minutes) 

λ  HA3(1) HA3(2) HA3(3) HA3(4) HA3(5) HA3(6) HA1 

20 1.78 3.34 1.32 0.52 1.72 1.52 0.43 
30 1.17 1.87 0.78 0.34 1.77 1.73 0.62 
40 1.03 0.99 0.84 0.43 1.95 1.72 0.92 
50 0.79 0.76 0.73 0.21 2.52 2.27 1.43 
60 0.86 0.73 0.75 0.36 3.03 3.02 2.14 
70 0.71 0.73 0.55 0.23 3.56 3.63 2.73 
80 0.69 0.74 0.58 0.27 4.20 4.09 3.23 

 
 
 
 

Table 5.14 Average percentage deviations from the maximum for HA3 and HA1  

(Service time = 100 minutes) 

λ  HA3(1) HA3(2) HA3(3) HA3(4) HA3(5) HA3(6) HA1 

30 2.00 2.40 1.94 1.98 0.61 0.80 0.25 
40 2.29 2.52 2.23 2.27 0.53 0.68 0.20 
50 2.48 2.45 2.38 2.36 0.44 0.55 0.10 
60 2.60 2.70 2.61 2.63 0.50 0.55 0.13 
70 2.72 2.81 2.74 2.77 0.44 0.55 0.16 
80 2.82 2.88 2.84 2.83 0.41 0.50 0.14 

 
 

The combination with the best performance in each scenario is also summarized 

in Table 5.11. Specifically, when the service time is short and medium, actual 

desirability should be selected; otherwise, one should choose opportunity desirability. 

In terms of measure of desirability fij, when the service time is short with arrival rate 

λ < 50 and when the service time is long, M1 is the best; M3 should be applied when 

the service time is short with arrival rate λ ≥  50 and when the service time is medium. 
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For HA3, the overall performance is quite good with largest percentage deviation 

(HA3(5) when service time is 30 minutes) from the maximum being within 4.2%. The 

impact of actual or opportunity desirability (A/O) is marginal except for the case when 

service time is set at 10 minutes. Since the effect of different measure of desirability is 

more important, we illustrate in Figure 5.3 of this effect in the case when service time 

is 30 minutes and when we assign based on actual desirability. In this case, measure of 

desirability defined by fij = ijiji wpT (M3) gives the best solution. 

Effect of Different Measure of Desirability on HA3
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Figure 5.3 Effect of Different Measure of Desirability on Heuristic HA3 

 

 

Effect of artificial revenue and different assigning criteria in H4 

Tables 5.15 to 5.17 illustrate the average percentage deviations from the 

maximum for HA4 when service time is 10, 30 and 100 minutes respectively. The 

minimum average percentage deviation from the maximum among the 9 combinations 

is shown in bold and italic font. Specifically, when service time is short, and customer 

arrival rate λ  < 50, HA4(3) gives the best result, where profit matrix is constructed by 

R3, and customers are assigned by C1; when the service time is short and customer 



Chapter 5                                                                                         Multi-period TCTSP  

 135

arrival rate λ  ≥  50, and when service time is medium, HA4(5) yields the best result 

with profit matrix constructed by R1, and customers assigned by C2;  when service 

time is long, HA4(2) provides the best solution, again profit matrix should be 

constructed by R1, but customers should be assigned based on C1 in this case. The 

best combination in different scenarios for HA4 can be found in Table 5.11. 

 

Table 5.15 Average percentage deviations from the maximum for HA4 

(Service time = 10 minutes) 

λ  HA4(1) HA4(2) HA4(3) HA4(4) HA4(5) HA4(6) HA4(7) HA4(8) HA4(9) 

20 0.00 0.00 0.00 0.14 1.62 1.38 3.15 3.15 3.15 
30 0.25 0.13 0.02 0.36 1.66 1.44 3.56 3.56 3.60 
40 0.81 0.25 0.00 0.91 1.14 1.35 4.34 4.34 4.79 
50 1.27 0.33 0.34 1.32 0.14 1.50 4.27 4.27 5.48 
60 2.32 1.01 1.17 2.23 0.11 2.21 4.53 4.54 6.68 
70 3.30 1.48 1.93 3.08 0.15 2.69 4.81 4.81 7.94 
80 4.26 2.02 2.48 3.92 0.25 3.01 5.10 5.09 9.17 

 
 

 

Table 5.16 Average percentage deviations from the maximum for HA4  

(Service time = 30 minutes) 

λ  HA4(1) HA4(2) HA4(3) HA4(4) HA4(5) HA4(6) HA4(7) HA4(8) HA4(9) 

20 2.05 0.46 0.20 2.29 0.46 2.53 5.34 5.34 6.97 
30 4.32 1.57 1.99 4.17 0.17 3.60 5.25 5.24 9.48 
40 6.24 2.23 2.90 6.14 0.30 3.70 5.43 5.43 12.37 
50 8.15 3.17 3.88 7.90 0.63 4.17 5.71 5.72 14.99 
60 9.71 4.05 5.00 9.48 1.28 4.66 6.27 6.27 17.70 
70 10.88 4.62 5.52 10.57 1.78 4.96 6.84 6.84 19.22 
80 11.46 5.36 6.08 11.23 2.28 5.36 7.13 7.13 19.94 
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Table 5.17 Average percentage deviations from the maximum for HA4  

(Service time = 100 minutes) 

λ  HA4(1) HA4(2) HA4(3) HA4(4) HA4(5) HA4(6) HA4(7) HA4(8) HA4(9) 

30 6.27 0.05 1.46 6.32 0.58 2.82 2.24 2.24 13.98 
40 5.57 0.10 1.09 5.53 0.58 2.03 2.08 2.08 12.79 
50 5.02 0.13 0.84 5.02 0.26 1.66 1.39 1.39 10.79 
60 4.49 0.08 0.86 4.51 0.30 1.49 1.22 1.22 9.65 
70 3.93 0.13 0.71 3.93 0.33 1.23 1.26 1.26 8.42 
80 3.38 0.15 0.73 3.38 0.27 1.11 0.95 0.95 7.54 

 

 

Computational results reveal that, except for the case when service time is 10 

minutes, profit matrix constructed by R1, actual revenue, always obtains the best 

solution. Figure 5.4 displays this effect when customers are assigned based on C2 and 

service time is set at 30 minutes. 
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Figure 5.4 Effect of Different Profit Matrix on Heuristic HA4 

 

For the effect of different assigning criteria, computational results show that, 

when the service time is short with arrival rate λ < 50 and when the service time is 
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long, we should assign the customers according to criterion C1. Otherwise, when the 

service time is short with arrival rate λ ≥  50 and when the service time is medium, we 

should assign the customers according to criterion C2. An example of the above effect 

for the case of medium service time is illustrated in Figure 5.5, which shows that 

criterion C2 produces the best result. 
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Figure 5.5 Effect of Different Assigning Criteria on Heuristic HA4 

 

Some observations 

From the above analysis and data in Table 5.11, the following observations can 

be obtained. We classify all the scenarios considered above into three types. Type I: 

when customer arrival rate is low and service time is short, most customers can be 

included in the solution. Type II: when the service time is very long, only a few 

customers can be included in the solution. Type III: when the service time is short and 

customer arrival rate is high, or when service time is medium, the number of customers 

can be included in the solution is neither very large nor very small. For the measure of 

desirability in HA2 and HA3, in type I and II, it should be defined by fij = pij, i.e., only 

consider the revenue of assigning customer j in period i. However, in type III, it should 
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be defined by fij = ijiji wpT , i.e., we should not only consider the revenue of the 

customer, but also the time required to visit it, and the remaining working time at the 

moment. For HA4, customers should be assigned according to criterion C1 for type I 

and II and according to criterion C2 in type III. For profit matrix in HA2 and HA4, it 

should be constructed based on actually revenue (R1) for type II and III; for type I, in 

HA2, it should be constructed by R2, putting more weight on the earlier period the 

customer requests a service; in HA4, it should be constructed by R3, putting more 

weight on the period the customer requests the service. For the opportunity or actual 

desirability, in HA2, opportunity desirability should be applied in type I; otherwise, 

actual desirability should be used. In HA3, for type II, opportunity desirability should 

be applied; otherwise, actual desirability should be applied. 

 

Finally, the heuristic yields the best solution in each scenario is summarized in 

Table 5.18.  

 

Table 5.18 The heuristic yields the best solution in different scenarios 

Service time (minutes) Customer 

Arrival Rate λ  
10 30 100 

20              HA4(3) HA4(5) HA4(2) 

30 HA4(3) HA4(5) HA4(2) 

40              HA4(3) HA4(5) HA4(2) 

50 HA4(5)   HA2(11)         HA1 

60 HA4(5)    HA2(11) HA4(2) 

70 HA4(5)    HA3(4) HA4(2) 

80 HA4(5) or HA2(11)    HA2(11)         HA1 
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5.6.3.2 Comparison of the Heuristic Performances  

 
We make a comparison of the performance of the heuristics HA1, HA2, HA3 and 

HA4 in this section. We compare the performance of the heuristics in several 

scenarios: the service time is short, the service time is medium, and the service time is 

long. Since each heuristic (HA2, HA3 and HA4) has several versions due to the factors 

discussed in Section 5.6.3.1, we select the ones with the best solution quality to 

represent HA2, HA3 and HA4. Therefore, the algorithms do not divert from one 

another greatly. However, we still can distinguish them in each scenario.   

 

Performance of the heuristics when the service time is short (10 minutes) 

When service time is 10 minutes, results are illustrated in Table 5.19.  

 

Table 5.19 Heuristic performances when service time = 10 minutes 

Profits Computational Time (ms) Customer 

Arrival Rate HA1 HA2 HA3 HA4 HA1 HA2 HA3 HA4 

20 9.73 9.87 9.89 9.90 10 32 63 10 

30 14.47 14.71 14.71 14.74 22 83 168 23 

40 18.83 18.90 18.87 19.01 44 242 467 57 

50 21.62 21.53 21.50 21.63 70 445 1435 189 

60 23.60 23.49 23.49 23.61 102 729 2522 269 

70 25.07 25.05 25.05 25.10 132 1108 3797 378 

80 26.12 26.14 26.12 26.14 169 1513 5319 454 

 

 

With respect to solution quality, HA4 performs the best. However, the 

differences among the algorithms are small, with the largest deviation from the 

maximum being 1.7%. The solution quality of HA2 is very close to that of HA3. When 

the customer arrival rate is small (λ < 40), HA1 performs not as good as the other 
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heuristics; however, with the increase of problem size, it behaves almost as well as 

HA4. For computational time, HA3 takes the most time, followed by H2, H4 and H1. 

Meanwhile, time taken by HA4 is much more comparable to HA1 than to HA2; 

computational time of both HA2 and HA3 also increases much faster than the other 

two heuristics as arrival rate increases. 

 

Performance of the heuristics when the service time is medium (30 minutes) 

When the service time is 30 minutes, Table 5.20 summarizes both the solution 

quality and the computational time with the increase of customer arrival rateλ .  

 

Table 5.20 Heuristic performances when service time = 30 minutes 

Profits Computational Time (ms) Customer 

Arrival Rate HA1 HA2 HA3 HA4 HA1 HA2 HA3 HA4 

20 8.28 8.27 8.27 8.30 11 46 115 48 

30 9.66 9.69 9.69 9.71 23 96 299 77 

40 10.40 10.46 10.45 10.46 37 175 590 117 

50 10.83 10.97 10.96 10.92 52 250 999 207 

60 11.13 11.35 11.33 11.23 73 364 1532 274 

70 11.36 11.65 11.65 11.47 95 494 2153 370 

80 11.51 11.88 11.87 11.63 122 605 2794 442 

 

 

With respect to solution quality, result from HA1 is always the worst in this case. 

For the other three heuristics, when customer arrival rate λ < 50, results are very 

similar to one another. However, as λ increases, both HA2 and HA3 outperform HA4 

with HA2 being slightly better than HA3. The difference between the best (HA2) and 

the worst (HA1) also increases as λ increases with the largest difference being about 

3.2%.  In terms of the computational time, from largest to smallest, it follows the same 
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order as the case when service time is short: HA3, HA2, HA4 and HA1. However, in 

this case, time taken by HA4 is much more comparable to HA2 than to HA1. 

Computational time of HA3 also increases fastest; and computational time of both 

HA2 and HA3 increase faster than that of HA1. 

 

Performance of the heuristics when the service time is long (100 minutes) 

When the service time is 100 minutes, results are shown in Table 5.21. 

Performance of HA1 and HA4 are consistently better than that of HA2 and HA3. 

When the customer arrival rate λ is less than 50, HA4 performs the best followed by 

HA1, HA3 and HA2. As λ  further increases, performance of HA1 improves and it 

produces results very close to that of HA4; similarly, performance of HA2 also 

improves and it produces results slightly better than HA3. With respect to 

computational time, HA3 still takes the most time and HA1 takes the least time. 

However, in this case, HA4 becomes the second most time consuming heuristic; and 

HA2 becomes the second least time consuming one.  

 

Table 5.21 Heuristic performances when service time = 100 minutes 

Profits Computational time (ms) Customer 

Arrival Rate HA1 HA2 HA3 HA4 HA1 HA2 HA3 HA4 

20 3.521 3.492 3.504 3.535 11 24 57 41 

30 3.678 3.658 3.665 3.685 19 44 120 58 

40 3.758 3.742 3.745 3.761 33 68 216 87 

50 3.806 3.793 3.793 3.805 53 98 345 154 

60 3.838 3.828 3.824 3.840 66 142 476 193 

70 3.862 3.851 3.851 3.863 89 177 639 266 

80 3.877 3.870 3.867 3.877 113 206 817 310 

 

 



Chapter 5                                                                                         Multi-period TCTSP  

 142

5.7 Summary and Conclusions 

 

In this chapter, we consider a multi-period time constrained TSP in the rolling 

schedule environment. The problem is to design a schedule for each period so that the 

average profit of serving a subset of the customers is maximized in a long run. We 

propose three heuristic algorithms based on iterative customer assignment (HA1, HA2 

and HA3) and one heuristic based on iterative center-of-gravity scheme (HA4) for 

solving the problem. Then, the problem is formulated as a set-covering problem, and 

its LP relaxation is solved to optimality by a column generation scheme to get an upper 

bound for the original set-covering problem. To evaluate the performance of the 

proposed heuristics, for small size problem with long service times, the heuristics are 

compared against the upper bound; for other cases, the performance of the heuristics 

are compared among themselves. Computational results illustrate that, each of the best 

representative of the heuristics perform very well for the problem, with the largest 

average deviation from the upper bound being 2.24%, and the smallest deviation only 

1.02%. When comparing heuristics among themselves, results indicate that, with 

respect to solution quality, each heuristic has its own advantage in a certain scenario. 

When the service time is short, the heuristics perform quite similar to one another; 

when the service time is medium, both HA2 and HA3 tend to behave better than HA1 

and HA4; however, when the service time is long, HA1 and HA4 become better than 

HA2 and HA3. For the computational time, HA3 always ranks the most time 

consuming and HA1 ranks the least time consuming, leaving HA2 and HA4 in 

between. Computational time of HA4 increases much faster than that of HA2 as the 

service time increases: when service time is short, HA2 ranks the second time 

consuming; while when service time is long, HA4 becomes the second time consuming 
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one. We make the following recommendations to the decision makers: When the 

service time is short and long, HA1 is the best candidate, because its solution quality is 

quite good compared to the other heuristics, but it takes very little computational time. 

When the service time is medium, both HA2 and HA3 perform very good, since HA3 

takes much more time, HA2 is more preferable. 
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Chapter 6 

 The TCTSP with Stochastic Travel and Service Times 

 

6.1 Introduction 

 

The time constrained travelling salesman problem (TCTSP), is a variant of the 

classical travelling salesman problem, where only a subset of the customers can be 

visited due to the time limit constraint. The problem is usually considered as a 

deterministic problem in the literature. In practical applications, however, both the 

travel and the service times may not be known with certainty in advance. For example, 

the travel time may be affected by the weather conditions (rain or snow) as well as the 

traffic conditions (road repair or traffic accidents); the service time is then determined 

by the kind of service the customer requires. In this chapter, a TCTSP with stochastic 

travel and service times is considered. The problem consists of optimally selecting and 

sequencing a subset of customers to visit in the presence of random travel and service 

times to maximize the expected profit while satisfying the time limit constraint.  

 

The problem can be formulated both as a chance-constrained program and a two 

stage stochastic program with recourse (SPR). In the later formulation, a subset of the 

customers must be optimally selected and sequenced before the particular values of the 

random travel and service times are known, these are called first stage decisions; once 

the customers are selected and their visiting order is fixed, it is possible to calculate the 

total travel and service time associated with the tour. Thus, in the second stage, 

recourse actions can be taken to impose an expected penalty on the objective function. 
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In practice, drivers usually are paid overtime for work done after normal hours, it is 

therefore reasonable to set the penalty to be proportional to the total travel and service 

time of the route in excess of a preset constant T. 

The L-shaped method of Van Slyke and Wet (1969) is a cutting plane or 

Benders’ decomposition (Benders, 1962) technique for solving the two stage stochastic 

linear problems when the random variables have finite support. The name ‘L-shaped 

method’ is due to the special block structure of the two stage stochastic problem in its 

extensive form. Birge and Louveaux (1988) extended the L-shaped algorithm with 

single optimality cut to a multi-cut algorithm. They showed that, the effectiveness of 

the multi-cut algorithm is conditional: it is more effective when the number of 

realizations of the random variables is not significantly larger than the number of first 

stage constraints. In Laporte and Louveaux (1993), they presented an integer L-shaped 

method for the stochastic integer program with complete recourse, in which a 

branching procedure is incorporated into the L-shaped method to recover the 

integrality of the variables. New optimality cuts were derived for the case when first 

stage variables are binary. These cuts are more efficient when random variables have 

many states or have continuous distributions, or when the second stage problem cannot 

be formulated in terms of first stage variables. Some lower bounds on the second stage 

value function were also presented in the paper. Laporte et al. (1992) addressed the 

vehicle routing problem with stochastic travel times. A branch-and-cut algorithm was 

proposed, and optimality cuts were generated in a similar way as in Laporte and 

Louveaux (1993). The integer L-shaped method has also been applied in the vehicle 

routing problem with stochastic demands; see Hjorring and Holt (1999), Laporte et al. 

(2002). Gendreau et al. (1995) applied the integer L-shaped method to the vehicle 

routing problem with stochastic demands and customers. 
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The purpose of this chapter is to present an integer L-shaped algorithm for the 

TCTSP with stochastic travel and service times. In Section 6.2, we give a formal 

description of the problem considered and formulate it as both a chance-constrained 

program and a stochastic program with recourse. Valid constraints used in the integer 

L-shaped algorithm are derived in Section 6.3. The procedure involved in the integer 

L-shaped algorithm is described in Section 6.4. Section 6.5 presents the computational 

results and analysis. Finally the results obtained in this study are summarized in 

Section 6.6.  

 

6.2 Problem Description and Model Formulation 

 
The TCTSP with stochastic travel and service times considered in this chapter 

can be described as follows. Let ),'( AVG =  be a complete graph, where = {0, 1, 

…, n} is a vertex set, and A  = {(i, j) | i, j 

'V

'V∈  and i < j} denotes a set of arcs.  Vertex 

0 represents the depot, and 1,…, n denote n customers. Associated with each customer 

i, there is a profit Ri and a service time iτ ; and associated with each arc, there is a 

travel time tij. Assume that the travel time for each arc and the service time for each 

node are independent discrete random variables. Assume that T is the maximum 

effective working time, T∆  is the maximum amount of time allowed to exceed T. The 

objective is to maximize the expected profit realized from visiting a subset of the 

customers without violating the time limit constraint.   

In stochastic programming, commonly, two versions of the problem are 

considered: chance-constrained program and stochastic program with recourse.  
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Chance-constrained program 

In addition to the notations , A, R'V j, T, T∆  described above, the following 

notations are used in the model formulation. 

V  =   \ {0}. 'V

tij   = A random variable representing time of travelling arc (i, j). 

jτ  = A random variable representing service time of visiting node j. 

α  = The maximum probability that the total travel and service time within a tour is 

allowed to exceed . TT ∆+

xij =  ⎜⎜   
⎝

⎛ ∈
otherwise,0

traversedis),(arcif,1 Aji

yj  = ⎜⎜  
⎝

⎛ ∈
otherwise,0

visitedis'nodeif,1 Vj

 

The chance – constrained model is formulated as follows: 

Z = Max                                                                                                        (6.1) ∑
∈Vj

jj yR

Subject to  

∑
∈Vj

jx0 = 2                                                                                                                   (6.2) 

∑∑
∈∈

+
Alj

jl
Aji

ij xx
),(),(

=2yj                                                                   Vj∈∀                               (6.3) 

3||,1|| ≥Λ⊆Λ∀−Λ≤∑
Λ∈
Λ∈

Vx
j
i

ij                                                                    (6.4) 

,),(}1,0{ Ajixij ∈∀∈                                                                                         (6.5) 

Vjy j ∈∀∈ }1,0{                                                                                                (6.6) 

 

Now consider an orienteering tour π  = (i0 = 0, i1, …, iu, iu+1 = i0=0). Such a route is 

legal only if     
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ατ ≤⎟
⎠

⎞
⎜
⎝

⎛
>+∑

=
+

TtP
kkk i

u

k
ii ][

0
1

                                                                             (6.7) 

 

In the above formulation, the objective (6.1) is to maximize the total profit 

realized from visiting the subset of the customers. Constraints (6.2) ensure that the 

route must start from depot and go back to depot in the end. Constraints (6.3) indicate 

that, if node j is not included in the tour, no arcs incident to j are included. Otherwise, 

there must be one arc going into and one arc coming out of node j. Constraints (6.4) 

are sub-tour elimination constraints, which guarantee that except a sub-tour including 

the depot, no other sub-tours in set V are allowed. Constraint (6.7) removes those tours 

with probability that total travel and service times exceed T being greater thanα .    

 

Stochastic program with recourse 

To present the model of stochastic program with recourse (SPR), we need 

slightly different notations from the chance-constrained model. 

Notation: 

ξ         = A vector of random variables corresponding to travel and service time. It has 

a finite number of realizations, with probabilities . Kξξξ ,...,, 21
Kppp ,...,, 21

pk         = The probability that the random vector ξ  takes on the realization . kξ

K         = Number of realizations of vector ξ . 

)( kξθ  = The total travel and service time of the route in excess of T when the 

realization of the random variable is . kξ

k

ijt ξ   = A random variable representing time of travelling arc (i, j) when the realization 

of the random variable is . kξ
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k

j
ξτ   = A random variable representing service time of visiting node j when the 

realization of the random variable is . kξ

β         = The unit penalty cost for total time of the route in excess of T.  

xij        = ⎜⎜   
⎝

⎛ ∈
otherwise0

traversedis),(arcif1 Aji

yj         = ⎜⎜  
⎝

⎛ ∈
otherwise0

visitedisnodeif1 Vj

The SPR model is as follows: 

Z= -                                                                               (6.8) ∑
∈Vj

jj yrmax( ))(
1
∑
=

K

k

k
kp ξθβ

subject to  

Constraints 6.2, 6.3, 6.4, 6.5, 6.6 and  

Tyxt
ji Vj

jjijij
k kk

−+≥ ∑ ∑
< ∈

ξξ τξθ )(                     Kk ,...2,1=                                       (6.9) 

KkTk ,...,2,1)(0 =∆≤≤ ξθ                                                                          (6.10) 

 
In the above formulation, the objective (6.8) is to maximize the expected profit 

generated (include the expected penalties incurred) from visiting a subset of the n 

customers. Constraints (6.9) and (6.10) ensure that if the total travel and service time 

of a route is greater than T, the excess amount should be within T∆ .  

 

6.3 Valid Constraints Considered in the Integer L-shaped Algorithm  

 
In the SPR model, if we consider constraints (6.2), (6.3) and (6.4) as one block, 

and write constraints (6.9) and (6.10) in extensive form for each , it is clear 

that the problem considered here has the block-angular structure, and therefore can be 

solved by the L-shaped method based on Benders’ decomposition (Benders, 1962) 

Kk ,...2,1=

 149



Chapter 6                                  The TCTSP with Stochastic Travel and Service Times 

technique. The basic idea of L-shaped algorithm is to approximate the term 

(second stage value function) in the objective function (6.8), which 

involves a solution of the second stage recourse linear program. This is done by 

building a first stage problem using an approximate term, and only evaluating the 

second stage value function exactly in the second stage subproblem. 

∑
=

K

k

k
kp

1

)(ξθβ

 

The first stage problem - current problem 

At a given phase of the algorithm, we call the following first stage problem as the 

current problem (CP). 

(CP) 

Z= -∑
∈Vj

jj yrmax( )η                                                                                                 (6.11) 

subject to  

∑
∈Vj

jx0 = 2                                                                                                                            

∑∑
∈∈

+
Akj

jk
Aji

ij xx
),(),(

=2yj                                                                   Vj∈∀                                                    

Set of illegal route elimination constraints                                                               (6.12) 

Set of optimality constraints                                                                                     (6.13) 

,),(}1,0{ Ajixij ∈∀∈                                                                                                  

Vjy j ∈∀∈ }1,0{                                                                                                       

 

The above current problem is obtained by two relaxations. The sub-tour 

elimination constraints (6.4) and second stage feasibility constraints (6.9) and (6.10) 

are relaxed in a number of constraints in (6.12) known as feasibility cuts. Constraints 

(6.9) and (6.10) are relaxed because they are not known in advance. Once we get the 

 150



Chapter 6                                  The TCTSP with Stochastic Travel and Service Times 

first stage solution, we know which of these constraints are violated. Constraints (6.4) 

are relaxed because, though they are known, the constraints are so numerous that it 

would be unrealistic to impose all of them from the beginning. Finally, the second 

stage expected value function , is relaxed by an estimated bound ∑
=

K

k

k
kp

1

)(ξθβ η  and 

the constraints (6.13) known as optimality cuts. Note that, in the initial first stage 

problem (first current problem), the constraint set (6.12) may be empty and constraint 

set (6.13) may only contain constraint 0≥η . In the subsequent iteration, constraint set 

(6.12) includes the newly identified sub-tour elimination constraints and the second 

stage feasibility constraints; while constraint set (6.13) includes the newly identified 

optimality cuts. 

Given a first stage solution (x, y, η ) to the above current problem, we can get the 

following second stage problem, and derive feasibility and optimality cuts based on it.  

 

The second – stage problem (SSP) 

min w =                                                                                               (6.14) ∑
=

K

k

k
kp

1

)(ξθβ

Tyxt
ji Vj

jjijij
k kk

−+≥ ∑ ∑
< ∈

ξξ τξθ )(                     Kk ,...2,1=                                     (6.15) 

KkTk ,...,2,1)( =∆≤ξθ                                                                               (6.16) 

Kkk ,...,2,10)( =≥ξθ                                                                                  (6.17) 

 

Since the second stage problem is a LP problem with continuous variables, we 

can derive the feasibility cut and the optimality cut from the dual problem.  

Similar to the application of the Benders’ decomposition (Benders, 1962) method 

for the mixed integer program, we add both the feasibility cuts and the optimality cuts 
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when we get an integer first stage solution, which corresponds to a set of selected 

customers to be visited. 

 

The feasibility cuts 

For each k, we denote  and  as dual variables corresponding to constraints 

(6.15) and (6.16) respectively. Then the dual problem corresponding to the above 

second stage problem can be described as follows: 

k
+Ι

k
−Ι

(DSSP) 

Max φ  = (( ) )                                     (6.18) ∑
=

K

k 1

Tyxt
ji Vj

jjijij

kk

−+∑ ∑
< ∈

ξξ τ k
+Ι

kT −Ι∆− *

subject to: 

k
+Ι k

k p*β≤Ι− −                                                                                   (6.19) Kk ,...2,1=

0≥Ι+
k ,                                                                                       (6.20) 0≥Ι−

k Kk ,...2,1=

The above problem can be separated into K  problems. For each k, , 

we have, 

Kk ,...2,1=

(DSSPk) 

Max = ( )                                               (6.21) kφ Tyxt
ji Vj

jjijij

kk

−+∑ ∑
< ∈

ξξ τ k
+Ι

kT −Ι∆− *

 subject to:    

k
+Ι k

k p*β≤Ι− −                                                                                                    (6.22) 

0≥Ι+
k ,                                                                                                        (6.23) 0≥Ι−

k

If the primal second stage problem (SSP) is infeasible, then at least one of the 

above problems (DSSPk) is unbounded. An extreme ray of the feasible region of the 

dual problem (DSSPk) is vray = ( , ) = (1, 1).  Since the above problem (DSSPk
+Ι

k
−Ι

k) 

is a maximization problem, if at the direction of the extreme ray, 
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 holds, then the dual problem (DSSPk) is unbounded 

and the primal second stage problem (SSP) is infeasible. To eliminate this first stage 

solution, we can add a feasibility constraint as follows: 
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To get the strongest feasibility constraint for the current first stage solution, we 

choose the constraint corresponding to , which makes the total travel and service 

times in excess of the time limit, 

kξ

Tyxt
ji Vj

jjijij

kk

−+∑ ∑
< ∈

ξξ τ , the longest, and add the 

constraint into constraint set (6.12) of the first stage problem (CP). 

 

The optimality cuts 

In case the first stage solution (x, y, η ) is feasible, by observing the feasible 

region of the dual problem (DSSPk), we know that, there are two extreme points: (0, 0) 

and ( β pk, 0). From the objective function of (DSSPk), it is clear that, if the following 

expression holds 

0≥−+∑ ∑
< ∈

Tyxt
ji Vj

jjijij

kk ξξ τ                                                                                  (6.25) 

the dual optimal solution occurs at the extreme point ( β pk, 0), an optimality cut can be 

derived as 

k
ji Vj

jjijij
k pTyxt

kk

βτφ ξξ )( −+≥ ∑ ∑
< ∈

                                                                     (6.26) 

Otherwise, the optimal solution occurs at the extreme point (0, 0), and the optimal cut 

is  
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0≥kφ                                                                                                                        (6.27) 

Therefore, in a single cut algorithm, we can aggregate the cuts into a single optimality 

cut as 
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≥
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k 1

η ( )Tyxt
ji Vj
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ξξ τ kpβ                                                                 (6.28) 

 for all  with kξ KkTyxt
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In a multi-cut algorithm, we add the following cuts 
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Tyxtif
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k kk ξξ τφ                       (6.31) 

 

Sub-tour elimination constraints  

 
For the TCTSP, since we only select a subset of the customers in the solution, 

sub-tour elimination constraints only eliminate those sub-tours that do not contain the 

depot. At an integer solution, it is easy to detect a sub-tour. Once a main tour 

containing the depot is formed, other loops are sub-tours. Suppose we have a subset 

= ( ) which forms a sub-tour, we can add the following 

constraint to eliminate such a sub-tour: 

Λ 01210 ,,...,,, iiiiii uu =+

∑
=

≤
+

u

l
ii ux
ll

0
1

                                                                                                             (6.32) 
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Since any node can be dropped from the solution in the TCTSP, we can also 

express the sub-tour elimination constraint in terms of the edge variables xij and the 

nodes variables yi.  

∑∑
Λ∈=

≤
+

}\{0
1

ji
i

u

l
ii yx
ll

                 for Λ∈j                                                                     (6.33) 

 

The time limit constraint added to the initial first stage problem 

In the initial first stage (current) problem, after constraints (6.9) and (6.10) are 

relaxed, there is no time limit constraint. The feasibility cuts, playing a similar role as 

the time limit constraint, will only be gradually introduced into the current problem by 

solving the second stage problems. To avoid selecting too many customers into the 

first stage solution, we add the following time limit constraint to constraint set (6.12) 

when solving the initial first stage problem.  

TTyxt
ji Vj

jjijij ∆≤−+∑ ∑
< ∈

** ξξ τ                                                                                (6.34) 

We use the minimum realization of the random travel and service time variables 

to construct the vector , because, otherwise, we may eliminate some possible better 

tours when forming the initial tour at the very beginning. 

*ξ

 

6.4 The Integer L-shaped Solution Method 

 
The steps involved in the integer L-shaped algorithm can be described as follows: 

Step 0: Set iteration index i : = 0. Initialize the first stage problem (the current 

problem) with constraint set (6.12) only containing constraint (6.34) and 

constraint set (6.13) only containing 0≥η . 

Step 1:  Set i  = i +1. Solve the current problem. If the current problem has no feasible 

solution, go to Step 6. Otherwise, let ( be the optimal solution.  ),, iii yx η
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Step 2:  Check for existing sub-tours, if any violation is detected, add the first sub-tour 

elimination constraint found (Constraint 6.32 or 6.33) to the constraint set 

(6.12) of the current problem and go to Step 1.  

Step 3:  Check second stage feasibility constraints. If violated, add the most violated 

one (Constraint 6.24) to the constraint set (6.12) of the current problem and 

go to Step 1. 

Step 4: Compute the value of the expected penalty for excess amount of time at the 

current first stage feasible solution, denote it as . ),( ii yxΦ

Step 5:  If , the current problem satisfies the optimality criterion, go to 

step 6. Otherwise, introduce the optimality cuts (Constraint 6.28 for single cut 

algorithm and Constraints 6.29, 6.30 and 6.31 for multi-cut algorithm) into 

the constraint set (6.13) of the current problem, and go to Step 1. 

),( iii yxΦ≥η

Step 6:   Output the best - known solution and stop. 

 

6.5 Computational Results  

 

To get the computational results, the algorithm is coded in VISUAL C++, and run 

on a 500 MHZ Pentium II Processor with 128 MB RAM under Microsoft Windows 98. 

The MIPs are solved by calling the functions in the CPLEX optimization package into 

the VC++ program. 

 

6.5.1 Problem Data Generation 

 

Our computational results are the averages of the results obtained from 10 

randomly generated problem instances. For each problem instance, the customers are 
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randomly generated from the square 20*20 (km2), according to a continuous uniform 

distribution, with the depot situated at the center. We assume that the effective working 

time T is 480 minutes a day; T∆ , the maximum amount of time allowed to exceed T, is 

assumed to be 120 minutes. Revenue of serving a customer j, Rj is randomly generated 

from [0, 100]. The travel time between customers i and j is calculated based on the 

Euclidean distance dij and the speed of the vehicle. We assume that vehicle speed υ  

can take on 5 possibilities: 60, 50, 40, 30, 20 (km/hour). Then the travel time between 

any two customers i and j can be calculated according to υ
ijd . The service time at 

each customer also takes on 5 possibilities: 10, 20, 30, 40, and 50 (minutes). We define 

ξ  as a vector of random variables corresponding to travel and service times. It has a 

finite number of realizations, with probabilities , with  

constructed by combining the 5 possibilities of travel time and 5 possibilities of service 

time. 

Kξξξ ,...,, 21
Kppp ,...,, 21

kξ

    In our computational experiment, we assume K = 5, and constructed the data 

vectors for the travel time part as follows. 

1ξ : Best case; with 80% of the arcs among the customers traveling at speed 60 

(km/hour), and the rest traveling at the other 4 speed possibilities. 

2ξ :  Above average; with 80% of the arcs among the customers traveling at speed 50 

(km/hour), and the rest traveling at the other 4 speed possibilities. 

3ξ :  Average case; with 80% of the arcs among the customers traveling at speed 40 

(km/hour), and the rest traveling at the other 4 speed possibilities. 

4ξ :  Below average; with 80% of the arcs among the customers traveling at speed 30 

(km/hour), and the rest traveling at the other 4 speed possibilities. 
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5ξ : Worst case; with 80% of the arcs among the customers traveling at speed 20 

(km/hour), and the rest traveling at the other 4 speed possibilities. 

 

The service time part of the data vectors is constructed by uniformly selecting 

service time from the 5 possibilities: 10, 20, 30, 40 and 50 minutes. 

Furthermore, we assume that the probabilities, , correspond to 

, are 0.1, 0.2, 0.4, 0.2, 0.1, respectively. 

54321 ,,,, ppppp

54321 ,,,, ξξξξξ

 

6.5.2 Computational Results and Analysis 

 
We examine the integer L-shaped algorithm from the following aspects:  

• Single optimality cut versus multiple optimality cut;  

• With different unit penalty cost β ;  

• With different  T∆ - tolerance time allowed to exceed time limit T; 

• With different number of states of the random vector ξ .   

 

Results are presented in Tables 6.1 to 6.4 based on the following notations. 

n:              Problem size (total number of customers) 

β :            Unit penalty cost for total time of the route in excess of T  

Profit:       Profit generated from serving the customers in the solution 

F-cuts:      Number of feasibility cuts generated 

O-cuts:     Number of optimality cuts generated 

Sub-tour:  Number of sub-tour elimination constraints generated 

S:              Single optimality cut algorithm 

M:             Multiple optimality cut algorithm 
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First, from Table 6.1, we can see that, as problem size increases, the problem 

becomes more difficult to solve, with more profits realized. This is due to the fact that, 

though we still have to satisfy the time limit constraint (the number of customers 

included in the solution may not change a lot), now we have more alternatives to 

choose from, e.g., the solution space becomes larger. Therefore, the problem difficulty 

increases, as indicated by the increasing number of feasibility and optimality cuts, the 

number of sub-tour elimination constraints, and the computational time.  

 

Table 6.1 Average performance of the algorithm with different unit penalty cost β  

N β  Profit F-cuts O-cuts Sub-tour Time (s) 

10  518.6 0.4 2.2 2.1 0.08 

15  732.2 1.8 3.6 7.8 2.20 

20 0.5 948.2 2.3 4.4 11.6 11.86 

25  995.8 1.9 4.8 10.6 21.66 

30  1081.9 2.5 4.8 26.8 372.55 

35  1104.6 2.6 4.6 49.9 1083.90 

10  517.2 0.4 2.2 2.0 0.25 

15  704.2 1.8 3.6 8.0 0.96 

20 2 890.9 2.3 4.5 19.0 25.50 

25  936.5 1.9 4.7 10.5 20.84 

30  1008.6 2.5 4.8 23.5 201.79 

35  1021.4 2.6 4.6 64.3 1182.38 

 

 

In Laporte et al. (1992), their computational result showed that, as the unit 

penalty cost increases, the difficulty of the problem also increases. This is because in 

their problem, all customers must be visited, and higher penalty means more penalty 

cuts needed and therefore more computational time taken to solve the problem. 

However, in the TCTSP with stochastic travel and service times, as unit penalty cost 

β  increases, to maximize the profit realized, the number of customers visited in the 
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solution may become lesser. There is no clear indication that difficulty of the problem 

increases as the unit penalty cost β  increases. The computational time taken mainly 

depends on the number of constraints needed, especially the number of sub-tour 

elimination constraints.  

Table 6.2 illustrates the effect of the single-cut and the multi-cut algorithm. We 

set unit penalty cost β = 2, and the number of states K = 5 in this case. Table 6.2 

indicates that, the multi-cut algorithm needs to generate more optimality cuts. 

However, the number of sub-tour elimination constraints needed for the multi-cut 

algorithm is less than that needed for the single-cut algorithm. Therefore, multi-cut 

algorithm takes less computational time than the single cut algorithm. The multi-cut 

algorithm is superior to the single cut algorithm. This conforms to the findings in Birge 

and Louveaux (1988), though in their study, the superiority of multi-cut algorithm over 

the single-cut algorithm is based on the stochastic two stage linear problems.  

 
Table 6.2 Single cut algorithm versus multi-cut algorithm 

n Single/Multiple F-cuts O-cuts Sub-tour Time (s) 

S 0.4 1.7 2.5 0.33 

10 M 0.4 2.2 2.0 0.25 

S 1.8 2.3 9.1 1.41 

15 M 1.8 3.6 8.0 0.96 

S 2.3 3.4 24.2 39.62 

20 M 2.3 4.5 19.0 25.50 

S 1.9 2.6 18.3 30.65 

25 M 1.9 4.7 10.5 20.84 

S 2.5 3.1 28.5 235.99 

30 M 2.5 4.8 23.5 201.79 

S 2.6 2.7 88.4 1688.35 

35 M 2.6 4.6 64.3 1182.38 
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In Table 6.3, we test the algorithm against the tolerance time T∆ . Intuitively, as 

T∆ increases, the time limit constraint becomes less restrictive, therefore, we need less 

number of feasibility cuts. On the other hand, as more customers may be included in 

the solution, the amount of time exceeded the time limit T may also increase, which 

may lead to more penalty incurred and therefore more optimality cuts generated. 

Columns F-cuts and O-cuts in Table 6.3 clearly support these facts. When the problem 

size is small (less than 20), as T∆  increases, the profit generated does not change 

much, and the computational time incurred does not increase; however, when the 

problem size becomes larger, with the increase of T∆ , profits generated increases, and 

more customers are likely to be included in the solution. Therefore, the number of sub-

tour elimination constraints and the computational time also tend to increase. 

 
Table 6.3 Average performance of the algorithm with different T∆   

N T∆ (min) Profits F-cuts O-cuts Sub-tour Time (s) 

60 517.25 0.9 1.9 2.5 0.23 

120 517.25 0.4 2.2 2.0 0.25 10 

 180 517.25 0.3 2.6 1.3 0.08 

60 701.28 1.7 2.4 6.7 1.77 

120 704.23 1.8 3.6 8.0 0.96 

 

15 

 180 704.40 1.7 4.6 9.3 0.94 

60 880.26 2.3 3.5 12.8 15.03 

120 890.92 2.3 4.5 19.0 25.50 

 

20 

 180 892.39 2.2 4.8 18.5 16.05 

60 910.37 2.1 3.9 9.6 19.67 

120 936.48 1.9 4.7 10.5 20.84 

 

25 

 180 941.62 1.6 4.7 15.8 23.05 

60 989.30 2.7 4.1 22.4 453.14 

120 1008.56 2.5 4.8 23.5 471.79 

 

30 

 180 1015.63 2.5 5.0 27.7 679.55 

60 995.02 2.7 4.2 48.9 672.17 

120 1021.41 2.6 4.6 64.3 1182.38 

 

35 

 180 1033.49 2.7 4.8 73.1 5717.94 
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The effect of the number of states of the random vector ξ on the algorithm is 

shown in Table 6.4. As the number of states of ξ  increases, both the number of 

feasibility cuts and the number of optimality cuts tend to increase. The computational 

time taken mainly depends on the number of sub-tour elimination constraints added. 

Except for problem size 20 and 25, the computational time and the difficulty of the 

problem increase as the number of states increases. 

 

 

Table 6.4 Average performance of the algorithm with different number of states of ξ  

n States F-cuts O-cuts Sub-tour Time (s) 

3 0.5 1.3 2.4 0.10 

5 0.4 2.2 2.0 0.25 10 

 10 0.5 4.3 2.0 0.26 

3 1.1 2.2 7.7 0.90 

5 1.8 3.6 8.0 0.96 

 

15 

 10 2.3 7.8 10.5 2.45 

3 1.6 2.9 10.2 13.99 

5 2.3 4.5 19.0 25.50 

 

20 

 10 3.4 8.7 15.2 20.47 

3 2.1 3.0 17.3 37.61 

5 1.9 4.7 10.5 20.84 

 

25 

 10 3.9 9.1 29.9 201.67 

3 1.7 2.9 20.5 54.67 

5 2.5 4.8 23.5 201.79 

 

30 

 10 4.0 9.5 34.2 312.66 

3 2.4 2.9 41.3 838.22 

5 2.6 4.6 64.3 1182.38 

 

35 

 10 4.0 8.9 94.9 23170.40 
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6.6 Conclusions 

 
In this chapter, we considered the time constrained traveling salesman problem 

with stochastic travel and service times, which can be encountered in a number of 

practical situations. We formulate it as both a chance-constrained program and a two 

stage stochastic program with recourse, and presented an integer L-shaped algorithm 

for solving it. We examined the algorithm from a number of aspects. Computational 

results show that, for this particular problem, the difficulty mainly lies in the 

elimination of the sub-tours; therefore, the larger the number of sub-tours needed, the 

more computational time taken. Multi-cut algorithm showed its superiority to the 

single-cut algorithm in terms of the number of sub-tours imposed and the 

computational time required. As the unit penalty cost increases, difficulty of the 

problem does not have a clear trend of increase due to the fact that less number of 

customers will be visited. With the increase of the number of states of random vector 

ξ  or the increase of the tolerance time T∆ , when the problem size is large, the 

difficulty of the problem increases. 
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Chapter 7 

 Conclusions and Directions of Further Research 

 

In this chapter, first some concluding remarks are presented in Section 7.1; 

followed by main contributions of this thesis stated in Section 7.2; finally possible 

further research directions are highlighted in Section 7.3.  

 

7.1 Summary and Conclusions 

 

This thesis mainly addressed two variants of the classical traveling salesman 

problem: the vehicle routing problem with stochastic demands (VRPSD) and the time 

constrained traveling salesman problem (TCTSP).  

In thesis Part I, we studied the VRPSD based on the formulation of stochastic 

programming with recourse, which is within the framework of a priori optimization. A 

comparative study among heuristics available in the literature was firstly carried out to 

determine which one is superior to the others in a certain context; and valuable 

suggestions and recommendations were made for decision makers in various scenarios. 

As most of the heuristics presented in the literature belong to classical local search 

algorithms, the thesis also examined whether metaheuristics are more preferable for 

the VRPSD. Three metaheuristics, such as simulated annealing (SA), threshold 

accepting (TA) and tabu search (TS), were presented for solving the VRPSD. 

Comprehensive computational experiment was carried out to compare the performance 

of the proposed metaheuristics with that of the heuristics presented in the literature in 

various situations with respect to problem size and demand pattern. Results show that, 
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metaheuristics can provide solutions with better solution quality for VRPSD, though 

they may consume more computational time. In some cases, the time taken by 

metaheuristics even can be comparable to classical local search methods. For example, 

for multiple vehicle case, when the problem size is relatively large, SA can provide 

better solutions with similar or less computational time than the R1-C2 in Yang et al. 

(2000). Chapter 4 also carried out a performance comparison among the metaheuristics 

proposed for the VRPSD to determine which one is superior to the others in a certain 

context, and provide the decision makers with more choices and more valuable 

suggestions.  

In the literature, most researchers address the single tour TCTSP or orienteering 

problem (OP). Part II of this thesis firstly studied a multi-period TCTSP: The problem 

is to find a subset of customers as well as the sequence of serving them in each period 

in a rolling schedule environment, so that the average profit per period in the long run 

is maximized. Several heuristics based on iterative customer assignment and iterative 

centre-of-gravity were proposed for solving the problem. Then, a set-covering type 

formulation was presented for the problem within an elongated rolling horizon, and its 

LP relaxation was solved to optimality by a column generation scheme to get an upper 

bound for the original problem. To evaluate the performance of the heuristics, for 

small size problem with long service times, the heuristics were compared against the 

upper bound; for other cases, the performances of the heuristics were compared among 

themselves. Computational results illustrate that, the best representative of each 

heuristic performs very well for the problem, with the largest average percentage 

deviation from the upper bound being 2.24%, and the smallest deviation only 1.02%. 

When comparing the heuristics among themselves, results indicate that, with respect to 
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solution quality, each heuristic has its own advantage in a certain scenario. Decision 

makers are advised to employ different heuristics in different scenarios.  

For TCTSP, due to the effective working time limit constraint, the profit realised 

from visiting the subset of the customers is directly affected by the travel time and 

service time, which are most unlikely to be known with certainty in advance due to 

their dynamic nature. However, most literature considers the deterministic TCTSP. 

The second problem considered in Part II of this thesis is a stochastic TCTSP: an 

extension of the TCTSP into a stochastic case, where the travel and service times are 

assumed to be random variables. Again, within the framework of a priori optimization, 

two models: a chance-constrained program and a stochastic program with recourse, 

were proposed for formulating the problem. Then an integer L-shaped solution method 

was developed to solve the problem to optimality. The computational experiment 

examined the algorithm in several scenarios. Results show that, the algorithm based on 

integer L-shaped method can solve the stochastic TCTSP with moderate problem size 

to optimality within reasonable amount of time.   

 

7.2 Main contributions of this study 

 

For Part I of this thesis, the comparative study helps us to identify heuristics with 

better performance in a certain context, so that we can provide valuable suggestions to 

the practitioners. Secondly, our study on the performance of the three metaheuristics, 

the simulated annealing (SA), threshold accepting (TA), and tabu search (TS) 

algorithms for the VRPSD, not only answers the question whether metaheuristics are 

suitable for solving the VRPSD, but also provides more choices and more valuable 

suggestions to the practitioners. 
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For Part II of this thesis, the study on the multi-period TCTSP has both 

theoretical and practical significance. We provide a systematic study of this problem, 

as it is seldom studied in the literature. This includes:  

•    We incorporate the concept of rolling schedule into the study of the problem, 

which can nicely capture the dynamic nature of the customer information: 

when a customer needs a service.  

•   We present a set-covering type formulation for the problem within one rolling 

horizon, and a column generation solution method to find an upper bound for 

this problem. This type of formulation and the column generation solution 

method can be applied to similar problems, such as the team orienteering 

problem (Chao et al. 1996b), to find the optimal solution or an upper bound 

of the problems, so that they can be employed as performance measurers to 

evaluate the heuristics provided in the literature. 

•   We provide several efficient heuristic methods with good performance in 

terms of both solution quality and computational time for this kind of 

problem. Moreover, the heuristics are studied in detail under different 

problem parameter settings, so that suggestions and recommendations in 

different scenarios can be made for potential applications and therefore a 

guideline can be provided for the decision makers in their decision process.  

 

For the second problem in Part II, our focus is to extend the deterministic TCTSP 

into the stochastic case with travel and service times being considered as random 

variables, because they are the problem parameters that are most unlikely to be known 

for sure in advance; and also they are very important in the TCTSP, as they directly 

affect the solution and therefore the profits generated from the solution. However, for 
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the TCTSP, or even in a much broader context, the vehicle routing problem, studies 

focused on the stochastic travel and service times are quite few. Though Laporte et al. 

(1992) addressed the vehicle routing problem with stochastic travel times, it is a two 

stage stochastic problem with complete recourse: the first stage solution is always 

second stage feasible, though penalty may occur in the second stage problem. For our 

problem, on the other hand, due to the constraint that the total travel and service times 

of a tour in excess of time limit T cannot exceed T∆ , second stage feasibility is also a 

main concern. Therefore, in addition to optimality cuts, feasibility cuts must also be 

considered in the second stage problem, which adds more difficulty to the problem 

considered.  

 

7.3 Directions of Further Research 

 

(1) Further research directions for VRPSD 

For the VRPSD with multiple vehicles, in this study as well as in Yang et al. 

(2000), to partition the customers into several routes, the constraint imposed is that the 

expected route length should be within a predefined limit. It would be more accurate 

and reasonable if the variance of the route length could be taken into consideration as 

well.  

For the tabu search metaheuristic, the current study only examined its 

performance on the single vehicle case; it would be worthwhile to develop TS 

algorithm for the VRPSD with multiple vehicles. Moreover, one direction of further 

research regarding metaheuristics is to study how some other recently developed 

metaheuristics, such as ant algorithms, can be applied to the VRPSD.  

 

 168



Chapter 7                                                                  Conclusion and Further Research               
                       

(2) Further research directions for TCTSP 

 For the TCTSP, one possible direction is to extend the deterministic multi-period 

TCTSP in a rolling schedule environment to the stochastic case with stochastic service 

and/or travel times, and develop effective algorithms for solving the problem. 

Furthermore, from the computational results presented in Chapter 6, it is clear 

that, even for the single period TCTSP with stochastic travel and service times, the 

exact algorithm is computationally expensive. Therefore, for large size stochastic 

TCTSP, especially stochastic multi-period TCTSP in the rolling schedule environment, 

it is important to design and develop heuristics with good performance for this kind of 

problems.  

One prerequisite for developing heuristics is how to evaluate a tour and therefore 

select the best possible one. For a deterministic problem, it is an easy task; however, 

when travel and service times are stochastic variables, it is nontrivial. In the Appendix, 

the thesis also presented how to evaluate a single period TCTSP with stochastic service 

times, given that we employ the total profit (including the expected penalty incurred) 

realized from such a TCTSP with stochastic service times as the performance 

measurer. Clearly, as one visit more customers, the time in excess of the effective 

working time limit T increases; therefore the penalty incurred increases as well. One 

possible research direction is to investigate whether there are rules regarding how to 

select the more profitable customers and when to stop visiting the less profitable 

customers. 
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Appendix 

 

Define the problem on a complete graph ),'( AVG = , where  = {0, 1,…, n} is 

a vertex set, and A  = {(i, j) | i, j 

'V

'V∈  and i < j} denotes a set of arcs. Vertex 0 

represents the depot, and 1, …, n denote n customers. Associated with each customer i, 

there is a profit Ri and a service time iτ ; and associated with each arc, there is a travel 

time tij. Assume that the travel time for each arc is deterministic, while the service 

times for the customers are random variables. Here, we assume that all iτ , i = 1, 2,…, 

n are discrete independent random variables with a known probability distribution. 

Assume that T is the maximum effective working time. β  is the unit penalty cost for 

total time of the route in excess of T. The objective is to maximize the total profit 

realized from visiting a subset of the customers without violating the time limit 

constraint.   

For the problem considered, we employ the total profit realized from such a 

TCTSP with stochastic service times as the performance measurer, which can be 

recursively calculated as described below.  

Let t denote the available remaining time to travel. Assume that the stochastic 

service time iτ  of customer i follows a discrete distribution with K possible values: 

, , …, . Let p1ξ 2ξ Kξ i(k) be P( iτ = ), the probability that service time at node i is 

. Let  be the set of all possible states (available remaining time) in stage j.  

is the profit from depot to node j when the state is t.  is the probability that the 

state at node j is t. 

kξ

kξ jS )(tf j

)(Pr tj

)(tjϕ  is the penalty incurred at node j when the state is t. 
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Initialization:  

0)(0 =Tf                                                                                                                   (A.1) 

1)(Pr0 =T                                                                                                                  (A.2) 

Recursion:  
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Then the penalty function )(tjϕ  is as follows. 
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The probability of the state t at stage j: 
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Last stage (go back to depot): 
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The penalty function )(tnϕ  is as follows. 
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