

DESIGN AND ANALYSIS OF ALGORITHMS FOR SOLVING

SOME STOCHASTIC VEHICLE ROUTING AND SCHEDULING

PROBLEMS

TENG SUYAN

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESIGN AND ANALYSIS OF ALGORITHMS FOR

SOLVING SOME STOCHASTIC VEHICLE ROUTING

AND SCHEDULING PROBLEMS

By

TENG SUYAN (B.ENG. M.ENG.)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my

supervisors, Associate Professor Ong Hoon Liong and Associate Professor Huang Huei

Chuen, who provided patient guidance and constant encouragement throughout the

study and research process. I would also like to thank all other faculty members of the

ISE Department, from whom I have learnt a lot through coursework and seminars.

Special gratitude also goes to those colleagues who accompanied me and made

my stay in the Department pleasant and memorable. Particularly, I am grateful to Lin

shenxue, Gao yinfeng, Yang guiyu, Liu shubin, Yew Loon, Adam, Mong Soon, Liang

zhe, Ivy, who kindly offered help in one way or another. Also I would like to extend

my thanks to those whose names are not listed here, for their concern and help.

A special thank is for my mother who always cared and loved me with all her

heart.

This dissertation is dedicated to my husband, Mr. Wang zhidong, and my

daughter, Wang qing. They gave me all the love and encouragement when I was in the

low moments that inevitably occurred during the development of the dissertation.

Lastly, but not the least, I would like to thank my father, my parents-in-law and all

members of my family for their continuous encouragement and support.

––––––––––––

TENG SUYAN

 i

TABLE OF CONTENTS

Acknowledgements...i

Table of Contents...ii

Summary...vi

Nomenclature...viii

List of Figures...xi

List of Tables..xiii

1 Introduction

1.1 Introduction to the Stochastic Vehicle Routing Problems ……………………1

1.2 Introduction to the Generalized Traveling Salesman Problem…………………4

1.3 Scope and Purpose of this Study……………………………………………….6

 1.3.1 Scope and Purpose of Part I of this Study………………………………6

 1.3.2 Scope and Purpose of Part II of this Study………………………………7

1.4 Structure of the Thesis………………………………………………………….9

2 Literature Review

2.1 General Overview of the Literature on SVRP……………………...…………11

2.2 Literature Review on Recourse Policies and Algorithms for VRPSD………17

 2.2.1 Solution Concepts and Recourse Policies ……………………………17

 2.2.2 Available Algorithms for VRPSD in the Literature ……………………20

2.3 Literature Review on the Generalized Traveling Salesman Problem……....…22

2.4 Conclusion and Further Remarks……………………………………………..26

 ii

3 Comparative Study of Algorithms for VRPSD

3.1 Problem Statement…………………………………………………………….29

3.1.1 Problem Description…………………………………………………….29

3.1.2 Calculation of the Expected Cost………………………………………..30

3.1.3 Dynamic Programming (DP) Recourse Policy………………………….31

3.2 Review of the Selected Algorithms…………………………………………...33

3.2.1 Bertsimas et al.’s Algorithm…………………………………………..33

3.2.2 Yang et al.’s Algorithm………………………………………………....34

3.2.3 Teodorovic and Pavkovic’s Simulated Annealing (SA) Algorithm……36

3.3 Common Grounds for the Comparative Study………………………………..37

3.3.1 Criteria for the Measurement of the Comparative Study………………..37

3.3.2 Building the Common Ground for Comparison ………………………..37

3.4 Computational Results and Analysis………………………………………….41

 3.4.1 Computational Results………………………………………………......42

 3.4.2 Performance Analysis of the Algorithms………………………………60

3.5 Summary and Conclusions……………………………………………………63

4 Metaheuristics for Vehicle Routing Problem with Stochastic Demands

4.1 Mtaheuristics for Single VRPSD……………………………….......................65

4.1.1 Initial Solution and Generation of Neighborhood Solutions……………65

4.1.2 The Simulated Annealing and Threshold Accepting Algorithms……….66

4.1.3 The Tabu Search Algorithm………………………………...…………..72

4.2 Simulated Annealing and Threshold Accepting Algorithms for Multiple

VRPSD..76

4.2.1 Generation of Neighborhood Solutions.………………………………...76

4.2.2 Determining the Number of Vehicles and the Initial Solution..........…...77

4.2.3 Dealing with the Route Length Constraint……………………………...78

4.2.4 The Procedure Involved in the SA and TA Algorithms………………...78

4.2.5 Parameter Setting in the SA and TA Algorithms……………………….81

 iii

4.3 Computational Results and Analysis………………………………………….82

4.3.1 Single Vehicle Routing Algorithms……………………………………..83

4.3.2 Multiple Vehicle Routing Algorithms…………………………………..87

4.4 Conclusions……………………………………………………………………92

5 Algorithms for the Multi-period TCTSP in a Rolling Schedule Environment

5.1 Problem Description and Framework of the Study.…………………………..94

5.2 A Set-covering Type Formulation………………………………………….....96

5.3 Solution Method Based on Iterative Customer Assignment (ICA) Scheme.....98

5.3.1 ICA Procedure.………………………………. .………………………100

5.3.2 Heuristics for the Assigning Procedure.……………………………….100

5.4 Solution Method Based on Iterative Center-of-Gravity (ICG) Scheme…......105

5.5 An Upper Bound Generated Based on the Set-covering Type Formulation and

Column Generation Solution Method………………………………………..107

5.5.1 Column Generation Scheme…...………………………………. .…….108

5.5.2 Solving the Pricing Problem………………….………………………112

5.5.3 Procedure Involved in the Column Generation Scheme………….……115

5.6 Computational Results and Analysis….………...……………………….......116

5.6.1 Problem Generation.………………………………. .…………………116

5.6.2 Compare the Performance of the Heuristics Against an Upper Bound..119

5.6.3 Performance Comparison Among the Heuristics.……………………..127

5.7 Summary and Conclusions.………………………………………………….142

6 The TCTSP with Stochastic Travel and Service Times

6.1 Introduction…………………………………………………………………..144

6.2 Problem Description and Model Formulation……………………………….146

6.3 Valid Constraints Considered in the Integer L-shaped Algorithm…………...149

6.4 The Integer L-shaped Solution Method……………………………………...155

6.5 Computational Results……………………………………………………….156

 iv

6.5.1 Problem Data Generation………………………………………………156

6.5.2 Computational Results and Analysis…………………………………..158

6.6 Conclusions………………………………………………………………......163

7 Conclusions and Directions of Further Research

7.1 Summary and Conclusions…………………………………………………..164

7.2 Main Contributions of This Study...…………………………………………166

7.3 Directions of Further Research………………………………………………168

References…………………………………………………………………………...170

Appendix...183

 v

SUMMARY

The classical traveling salesman problem (TSP) is the most studied combinatorial

NP-hard problem in the literature. This thesis addresses two variants of the TSP: the

vehicle routing problem with stochastic demands (VRPSD) and the time constrained

traveling salesman problem (TCTSP).

For the VRPSD, the problem is studied based on the formulation of stochastic

programming with recourse, which is within the framework of a priori optimization. A

comparative study among heuristics available in the literature is firstly carried out to

determine which one is superior to the others in a certain context; and valuable

suggestions and recommendations are made for decision makers in various scenarios.

Secondly, as most of the heuristics presented in the literature belong to classical local

search algorithms, the thesis proposes three metaheuristics: simulated annealing (SA),

threshold accepting (TA) and tabu search (TS), to examine whether metaheuristics are

more preferable for the VRPSD, and which metaheuristic is superior to the others in a

certain context. Computational results show that, metaheuristics can obtain solutions

with better solution quality for VRPSD, though they may consume more

computational time.

For the TCTSP, we first extend it into a multi-period problem: find a subset of

customers as well as the sequence of serving them in each period in a rolling schedule

environment, so that the average profit per period in the long run is maximized.

 vi

Several heuristics based on iterative customer assignment and iterative

centre-of-gravity have been proposed for solving the problem. Then, the problem is

formulated as a set-covering problem and its linear programming relaxation is solved

to optimality by a column generation scheme to get an upper bound. To evaluate the

performance of the heuristics, for small size problems with long service time, the

heuristics are compared against the upper bound; for other cases, they are compared

among themselves. Computational results illustrate that, the best representative of each

heuristic performs very well for the problem, with the largest average percentage

deviation from the upper bound being 2.24%, and the smallest deviation only 1.02%.

When comparing the heuristics among themselves, results indicate that, with respect to

solution quality, each heuristic has its own advantage in a certain scenario. Decision

makers are advised to employ different heuristics in different scenarios. Secondly, the

TCTSP is further extended into the stochastic case, where the travel and service times

are assumed to be independent random variables. This extension is important because:

(a) Both travel and service times are not likely to be deterministic in the practical

situations; (b) The profit generated from visiting a subset of the customers is directly

affected by the travel and service times due to the time limit constraint. Again, within

the framework of a priori optimization, two models are proposed for formulating the

problem: a chance-constrained program and a stochastic program with recourse. Then

an integer L-shaped solution method is developed to solve the problem to optimality.

Results show that, the proposed algorithm can solve the stochastic TCTSP with

moderate problem size to optimality within reasonable time.

 vii

NOMENCLATURE

SVRP Stochastic vehicle routing problem

VRPSD Vehicle routing problem with stochastic demands

SPR Stochastic program with recourse

TCTSP Time constrained traveling salesman problem

LP Linear programming

n Problem size - the number of customers

V {1, …, n} denotes a set of n customers

'V V {0} denotes a set of nodes including customers and the depot ∪

A {(i, j) | i, j and i < j} denotes a set of arcs 'V∈

ci,j Traveling distance between customer i and j.

m Number of vehicles

Q Vehicle capacity

Di A random variable that describes the demand of customer i

L A predefined maximum limit for the expected route length.

γi The probability that the demand at the ith node is exactly equal to the

stock available in the vehicle

δi The probability that the demand at the ith node exceeds the remaining

stock

q The vehicle’s remaining load

 viii

pi(k) The probability that demand at node i is k.

q*(j) The threshold value for node j. If the remaining load after visiting node j

is less than q*(j), it is better to return to the depot before serving further

demand points.

0t Initial temperature of a SA algorithm

ft Final temperature of a SA algorithm

α Temperature reduction factor

ε Thermal equilibrium factor

−

m An upper bound for the number of vehicles m required

ϖ Neighbor list size

π An ordered sequence starting and ending at depot

)(πL The expected route length of route π

ρ A positive parameter to penalize the objective function due to the fact that

the expected route length exceeds the predefined L

gj The date a customer j requires the service

jσ Tolerance time of a customer j

Rj Profit of visiting customer j

H Number of periods in a rolling horizon

[ej, lj] Time window that customer j can be visited

pij Profit of customer j if it is assigned to period i

ijw Weight of customer j if it is assigned to period i

T The effective working time for each period

 ix

Ti The remaining working time of period i

fij A measure of the desirability of assigning customer j into period i

λ Mean arrival rate of a Poisson distribution

Gi(x, y) Center-of-gravity of the tour in period i

iΩ The set of all possible sub-tours in period i

tij A random variable representing time of traveling arc (i, j)

jτ A random variable representing service time of visiting node j

 Maximum probability that total travel and service time of a tour is

allowed to exceed T

α

T∆ Maximum amount of time allowed to exceed T

ξ A vector of random variables corresponding to travel and service time

)(kξθ Total travel and service time of the route in excess of T when the

realization of the random variable is kξ

k

ijt
ξ

 A random variable representing time of traveling arc (i, j) when the

realization of the random variable is kξ

k

j
ξ

τ A random variable representing service time of visiting node j when the

realization of the random variable is kξ

β The unit penalty cost for total time of the route in excess of T

η A bound to estimate the expected penalty incurred for a given solution

 x

LIST OF FIGURES

3.1 Expected Cost with the Increase of Problem Size
 (Demands follow uniform distribution U[0, 20])

3.2 Computational Time with the Increase of Problem Size
 (Demands follow uniform distribution U[0, 20])

3.3 Expected Cost with the Increase of Demand Mean and Variance

(Problem size n = 60)

3.4 Computational Time with the Increase of Demand Mean and Variance
(Problem size n = 60)

3.5 Expected Cost with the Increase of Problem Size

(Demands follow normal distribution N(30,25))

3.6 Computational Time with the Increase of Problem Size

(Demands follow normal distribution N(30,25))

3.7 Expected Cost with the Increase of Demand Mean
(Problem size n = 20, demand variance = 25)

3.8 Expected Cost with the Increase of Demand Variance

(Problem size n = 20, demand mean = 20)

3.9 Expected Cost with the Increase of Problem Size

(Single vehicle, demands follow uniform distribution U[0,20])

3.10 Computational Time with the Increase of Problem Size
 (Single vehicle, demands follow uniform distribution U[0,20])

3.11 Expected Cost with the Increase of Demand Mean and Variance
 (Single vehicle, problem size n =20)

5.1 Effect of Different Measure of Desirability on Heuristic HA2

5.2 Effect of Different Profit Matrix on HA2

 xi

5.3 Effect of Different Measure of Desirability on Heuristic HA3

5.4 Effect of Different Profit Matrix on Heuristic HA4

5.5 Effect of Different Assigning Criteria on Heuristic HA4

 xii

LIST OF TABLES

3.1 Average performance with the increase of problem size

(Demands follow uniform distribution U[0, 20])

3.2 Average performance with the increase of demand mean and variance
 (Problem size n = 60)

3.3 Average performance with the increase of problem size
 (Demands follow uniform distribution U[0, 20], single vehicle)

3.4 Average performance with the increase of demand mean and variance
 (Problem size n = 20, single vehicle)

4.1 Temperature & maximum allowable increase in cost in different cooling

stages

4.2 Effect of the initial solution on TS with the increase of problem size

4.3 Effect of the initial solution on TS with the increase of demand mean and

variance

4.4 Comparison of algorithms with the increase of problem size

4.5 Comparison of algorithms with the increase of demand mean and variance

4.6 Average performance with the increase of problem size

4.7 Average performance with the increase of demand mean and variance

5.1 Denotations for heuristic HA2

5.2 Denotations for heuristic HA3

5.3 Denotations for heuristic HA4

5.4 Percentage deviations from the upper bound for HA2

5.5 Percentage deviations from the upper bound for HA3

 xiii

5.6 Percentage deviations from the upper bound for HA4 and HA1

5.7 Computational time taken to get the best solution for each heuristic

5.8 Average percentage deviations from the maximum for HA2
 (Service time = 10 minutes)

5.9 Average percentage deviations from the maximum for HA2
 (Service time = 30 minutes)

5.10 Average percentage deviations from the maximum for HA2
 (Service time = 100 minutes)

5.11 Combinations with the best performance for HA2, HA3 and HA4

5.12 Average percentage deviations from the maximum for HA3 and HA1
 (Service time = 10 minutes)

5.13 Average percentage deviations from the maximum for HA3 and HA1
 (Service time = 30 minutes)

5.14 Average percentage deviations from the maximum for HA3 and HA1
 (Service time = 100 minutes)

5.15 Average percentage deviations from the maximum for HA4
 (Service time = 10 minutes)

5.16 Average percentage deviations from the maximum for HA4
 (Service time = 30 minutes)

5.17 Average percentage deviations from the maximum for HA4
 (Service time = 100 minutes)

5.18 The heuristic yields the best solution in different scenarios

5.19 Heuristic performances when service time = 10 minutes

5.20 Heuristic performances when service time = 30 minutes

5.21 Heuristic performances when service time = 100 minutes

6.1 Average performance of the algorithm with different unit penalty cost β

 xiv

6.2 Single cut algorithm versus multi-cut algorithm

6.3 Average performance of the algorithm with different T∆

6.4 Average performance of the algorithm with different number of states of ξ

 xv

Chapter 1 Introduction

Chapter 1

 Introduction

Given a set of cities, the classical traveling salesman problem (TSP) tries to

determine a minimal cost cycle that passes through each node exactly once and starts

and ends at the same city. In this dissertation, two variants of the TSP are considered:

the vehicle routing problem with stochastic demands (VRPSD), and the time

constrained traveling salesman problem (TCTSP).

In the first problem, a fleet of vehicles with limited capacity are assumed to

deliver goods to the customers from the depot. The demands of the customers are

defined as random variables, because they are not known when constructing the

vehicle routes. The problem is to determine vehicle routes so that total expected

distance traveled by the vehicles is minimized while satisfying some side constraints.

In the second problem, it is assumed that each customer is associated with a profit of

visiting it. Given a predefined effective working time limit, the problem tries to

maximize the profit generated from visiting the customers while satisfying the time

limit constraint. The TCTSP is a relaxed variant of the TSP or a generalized TSP

(GTSP) in the sense that not all customers are needed to be visited due to the time limit

constraint imposed on the time duration of the tour. For the TCTSP, this study first

considers a multi-period TCTSP in a rolling schedule environment; then it is extended

into the stochastic case: a TCTSP with stochastic travel and service times.

1. 1 Introduction to the Stochastic Vehicle Routing Problems

The management of a distribution system involves many problems, such as

 1

Chapter 1 Introduction

administration problems in running the depots, in designing an information system, in

routing and scheduling of vehicles to customers, in loading of goods into vehicles and

so on. The vehicle routing problem (VRP), which requires routing and scheduling the

vehicles to perform the assigned functions at minimal cost, lies at the center of the

management of a distribution system. Typically, the problem involves bringing

products located at a central facility (where vehicles of limited capacity are also

assumed to be initially housed) to geographically dispersed facilities at minimum cost,

while satisfying various side constraints. This area of study, which mainly consists of

designing optimum-seeking algorithms to identify the best configuration of routes and

schedules, has become a very hot research topic and has been extensively studied by

many operations researchers. Excellent surveys in this area can be found in Lawler et

al. (1985) on the traveling salesman problem, Bodin et al. (1983) for routing and

scheduling, and Golden and Assad (1988), Laporte (1992) and Fisher (1996) on

vehicle routing problems.

The capacitated vehicle routing problem (VRP) plays an important role in

distribution management and has been both extensively studied by researchers and

applied in practice. The VRP can be broadly classified into two classes of problems:

the deterministic VRP and the stochastic VRP (SVRP). For the deterministic VRP, all

the problem parameters, such as demands, travel cost and customer presence, are

assumed to be known with certainty. For the stochastic VRP, in contrast, one or some

components of the problem parameters may not be known for sure. The problem of

constructing vehicle routes through the customers that minimizes the expected distance

traveled is known as the SVRP. The SVRP has received increasing attention in recent

years. Depending on which element is stochastic, the SVRP can be further divided into

the following categories.

 2

Chapter 1 Introduction

1) The probabilistic traveling salesman problem (PTSP)

Introduced by Jaillet (1985, 1988), the PTSP is also known as the traveling

salesman problem with stochastic customers (TSPSC), where each vertex vi is

present with probability pi.

2) The traveling salesman problem with stochastic traveling times (TSPST)

In the TSPST, the traveling time between any two customers is a random

variable. In the case when m-vehicles are scheduled to visit a set of customers,

the problem becomes m-TSPST.

3) The vehicle routing problem with stochastic customers (VRPSC)

In the VRPSC, customers are present with some probability but have

deterministic demands. It is an extension of the PTSP, where the vehicle capacity

constraint must be satisfied; and once the vehicle capacity is attained or

exceeded, the vehicle may have to go back to depot. This problem is well studied

in Bertsimas (1988).

4) The vehicle routing problem with stochastic demands (VRPSD)

In the VRPSD, customer demands are not known with certainty in advance; they

are usually assumed to be independent random variables with known probability

distributions. The VRPSD is the most studied problem in SVRP in the literature.

5) The vehicle routing problem with stochastic customers and demands (VRPSCD)

The VRPSCD is a combination of both VRPSD and VRPSC, which means that,

not only the customers are present with a certain probability, their demands are

also random variables. It is an extremely difficult problem; even computing the

value of the objective function is hard (Bertsimas 1992, Gendreau et al. 1996b).

 3

Chapter 1 Introduction

As the most studied problem in SVRP, VRPSD has been employed to model and

provide solutions for many real-world problems in practice. In Bertsimas (1992), the

application areas identified include the distribution of packages from a post office,

routing of forklifts in a cargo terminal or in a warehouse, and strategic planning of a

delivery and collection company which has decided to begin service in a particular

area. In Yang et al. (2000), the applications cover the following areas: constructing

waste collection routes with volume of trash at each stop being unknown; delivery of

money to automatic teller machines from a central bank; peddle routes construction,

such as beer distribution to retail outlets, resupply of baked goods at food stores,

replenishment of liquid gas at research laboratories, and stocking of vending machines,

etc. Other cited applications in the literature include: delivery of money to branches or

automatic teller machines of a central bank (Lambert et al., 1993), less than truckload

operations (Gendreau et al., 1995), the delivery of home heating oil (Dror et al., 1985),

sludge disposal, where sludge accumulation at a plant is a random process (Larson,

1988), and the design of “hot meals” delivery system (Bartholdi et al., 1983). Part I of

this research will focus on the VRPSD.

1.2 Introduction to the Generalized Traveling Salesman Problem (GTSP)

The classical traveling salesman problem (TSP) is well studied in the literature

(Lawler et al., 1985; Aarts and Lenstra, 1997; Korte and Vygen, 2000). The problem

has many applications, such as large-scale integration (VLSI) chip fabrication (Korte,

1989), X-ray crystallography (Bland and Shallcross, 1989), etc.

In the classical TSP, each node must be visited exactly once. Nevertheless, this

constraint is not always necessary and can be relaxed in some situations, where one

only needs to visit a subset of the customers. The problem becomes a GTSP: firstly to

 4

Chapter 1 Introduction

find a proper subset of customers, and secondly to find the optimal visiting order in the

selected subset.

The essence of the GTSP is to select a subset of the customers for visiting. In

Mittenthal and Noon (1992), the GTSP is called a traveling salesman subset-tour

problem (TSSP). To characterize a desired trait of an optimal subset-tour, the TSSP

usually appears in applications with an additional constraint. This is the reason why

Mittenthal and Noon (1992) called it the TSSP+1 class problem. Corresponding to

different constraints imposed, several types of the problem are studied in the literature.

Some representative examples include the prize collecting traveling salesman problem

(Balas, 1989; Balas, 1995) and the time constrained TSP (Cloonan, 1966) or

orienteering problem (Golden et al., 1987).

 The prize collecting traveling salesman (PCTS) problem was firstly introduced

by Balas and Martin (Balas and Martin, 1991; Balas, 1995). The problem was

formulated as a model for scheduling the daily operation of a steel rolling mill.

Associated with each customer, in addition to the profit of visiting it, there is a penalty

if the salesman fails to visit it. The objective is to minimize the travel costs and the net

penalties, while satisfying the constraint that enough cities are visited to collect a

prescribed amount of prize money.

Different from the PCTS problem, the objective of the time constrained TSP

(TCTSP) is to maximize the profit realized from serving a subset of customers subject

to the time constraint imposed on the problem. This problem was first introduced and

discussed by Cloonan (1966). Some researchers also call TCTSP the selective

traveling salesman problem (STSP) where they consider a preset constant route length

as the constraint, see Laporte and Martello (1990) and Gendreau et al. (1998a, 1998b).

 5

Chapter 1 Introduction

The orienteering problem (OP) only differs from the TCTSP in that the start

point and the end point may not be the same. The name “orienteering problem” was

originated from an outdoor sport: orienteering. Golden et al. (1987) provided its

definition, and employed it to model and solve the problem of delivering home heating

oil.

Among the three types of GTSP discussed above, the TCTSP (or the OP) is

closely related to the problem considered in Part II of this study, where it is firstly

extended to a multi-period TCTSP, then extended to a stochastic TCTSP.

1.3 Scope and Purpose of this Study

The scope of this research consists of the following two main parts.

1.3.1 Scope and Purpose of Part I of this Study

Part I focuses on the VRPSD. As the most studied problem among the SVRP,

there are a number of algorithms available for solving VRPSD under the solution

framework of a priori optimization. However, different researchers made various

assumptions on the problem data in the literature; therefore, the performances of the

algorithms proposed were evaluated based on different assumptions. In such cases, it is

very difficult for a decision maker to know which algorithm is more preferable in a

certain context. Therefore, firstly in Part I of this study, we try to carry out a

comparative study on the representative algorithms for solving VRPSD, so that

suggestions and recommendations can be made available for the practitioners in

various contexts.

Most of the heuristics proposed for VRPSD in the literature are based on

classical local search algorithms. One drawback of the classical local search algorithm

is the tendency to be easily trapped in a local optimal solution. Due to the feature that

 6

Chapter 1 Introduction

metaheuristics can accept deteriorations in objective function value to some extent, it

has the ability to escape from the local optimum and therefore may get global optimal

solution. Thus, secondly in Part I of this study, we try to examine how modern

metaheuristics behave for the VRPSD.

 The contribution of this part of the study is twofold. Firstly, by carrying out the

comparative study, we can determine which algorithm is superior to the others in a

certain context. Therefore, some valuable suggestions can be provided for the

practitioners. Secondly, we propose three metaheuristics, the simulated annealing

(SA), threshold accepting (TA), and tabu search (TS) algorithms for the VRPSD. By

comparing the performance of the proposed metaheuristics with that of the heuristics

presented in the literature in various situations with respect to problem size and

demand pattern, we can determine whether metaheuristics are suitable for solving this

kind of problems, and also determine which metaheuristic is superior to the others in a

certain context. Therefore, we can provide more choices and more valuable

suggestions to the practitioners.

1.3.2 Scope and Purpose of Part II of this Study

The time constrained TSP (TCTSP) is the main theme of Part II of this thesis.

The problem firstly considered in Part II of this study is a multi-period TCTSP in a

rolling schedule environment, which can be frequently encountered in the practice.

Consider a company providing services to the customers. A customer calls for service

by specifying a desirable period and a time tolerance. Of course, the time tolerance can

be zero, which means that the service is urgent and if the company can not provide

service at the specified period, the customer would resort to other companies. With the

presence of the time tolerance, the company can develop more flexible and more

 7

Chapter 1 Introduction

profitable schedules by considering the proximity of the customers requiring services,

and considering the number of customers requiring services in different periods. In the

former case, suppose that a customer j requires service in period i1, and it can also be

visited in period i2, if the customers can be visited in period i2 are in closer proximity

to customer j than those requiring services in period i1, it may be more profitable to

schedule customer j in period i2. In the later case, if the number of customers require

services in different periods is very lumpy, delaying or bringing forward the service of

some customers may be more profitable. This gives rise to the multi-period TCTSP:

construct a schedule consisting of several periods rather than one period, find a subset

of customers as well as the sequence of serving them in each period, so that the

average profit per period in the long run is maximized.

The contribution of this part of the study can be summarized as follows. Firstly,

from the aspect of theoretical study, the multi-period TCTSP is seldom studied in the

literature, though it can be frequently encountered in the practice as described above.

We provide a systematic study of this problem in this thesis: 1) We incorporate the

concept of rolling schedule into the study of the problem due to the dynamic nature of

the customer information. 2) We present a set-covering type formulation of the

problem within one rolling horizon. Therefore, with the elongated rolling horizon and

some assumptions regarding the customer demand information, an upper bound for

this problem can be found by the column generation method. This type of formulation

and the column generation solution method can be applied to similar problems, such as

the team orienteering problem (Chao et al. 1996b), to find the optimal or an upper

bound of the problems. 3) We provide several efficient heuristic methods with good

performance in terms of both solution quality and computational time for this kind of

problem. Moreover, the heuristics are studied against the upper bound and against each

 8

Chapter 1 Introduction

other under different problem parameter settings, so that the performance of each

heuristic is clear under different scenarios. Secondly, from the aspect of practical

application, based on the evaluation and comparison of the performance of the

heuristics, suggestions and recommendations in different scenarios can be made for

potential applications and therefore provide a guideline for the decision makers in their

decision process.

The second problem studied in Part II of this study is the TCTSP with stochastic

travel and service times. In the TCTSP, due to the effective working time limit

constraint, one factor directly affects the total profit generated from the TCTSP tour is

the travel and service time required for visiting the customers, which is usually

assumed to be deterministic. However, in practical situations, both travel time and

service time are not likely to be known with certainty in advance. The weather

conditions (rain or snow) and the traffic conditions (road repair or traffic accidents)

may impact on the travel time between the customers; while the service time is usually

determined by the kind of service a customer requires. Obviously, the travel and

service time is very important in the TCTSP, and it will directly affect the solution and

therefore the profits generated from the solution. However, the stochastic nature of the

problem never studied in the literature for this problem. Therefore, secondly in Part II

of this thesis, we try to present models and solution methods for the stochastic TCTSP:

the TCTSP with stochastic travel and service times.

 1.4 Structure of the Thesis

Corresponding to the two types of the problems considered in this study: the

vehicle routing problem with stochastic demands (VRPSD), and the time constrained

traveling salesman problem (TCTSP), this thesis is mainly divided into two parts. Part

 9

Chapter 1 Introduction

I covers Chapter 3 and Chapter 4. Part II includes Chapter 5 and Chapter 6. Chapter 2

provides a literature review on the solution frameworks and algorithms for the SVRP

and the GTSP. The last chapter, Chapter 7, summarizes some conclusions for the

whole thesis and directions of further research.

In Chapter 3, a comprehensive comparative study is carried out among three

algorithms presented in the literature for the VRPSD. By building a common ground

for comparison and making some adaptations to the original algorithms, the

comparative study examines how the algorithms perform in various situations (with the

increase of problem size, demand mean and/or variance, etc) under the assumption that

demands follow both uniform and normal distributions. The comparative study also

investigates whether the algorithms are sensitive to demand distribution type. In

Chapter 4, several metaheuristics are presented for VRPSD, which include simulated

annealing (SA), threshold accepting (TA), and tabu search (TS), etc. Computational

results from these metaheuristics are compared with results from other algorithms

presented in the literature; suggestions and recommendations are made for the potential

applications in various scenarios. Chapter 5 focuses on the multi-period TCTSP in a

rolling schedule environment. Heuristic methods based on iterative customer

assignment and iterative center-of-gravity are developed for the multi-period TCTSP.

To study the performance of these heuristics, we formulate the multi-period TCTSP as

a set-covering problem, and propose a column generation scheme to solve its linear

programming (LP) relaxation to optimality to get an upper bound for the original

problem. In Chapter 6, we consider the TCTSP in the stochastic case, where the travel

and service times of the problem may become random variables. Models formulated as

both chance-constrained program and stochastic program with recourse are provided,

and an integer L-shaped solution method is proposed for solving it.

 10

Chapter 2 Literature Review

Chapter 2

 Literature Review

This chapter summarizes research work that has been done in the literature for

the stochastic vehicle routing problem (SVRP) and the generalized traveling salesman

problem (GTSP). Section 2.1 covers literature for the various types of the SVRP.

Section 2.2 focuses on one type of SVRP, the VRPSD. The solution framework,

recourse policies and algorithms available for the VRPSD are discussed in detail in this

section. Literature on several types of the GTSP is presented in Section 2.3. Finally,

Section 2.4 summarizes some findings in the literature review and their relationship

with the following chapters of the thesis.

2.1 General Overview of the Literature on SVRP

The SVRP addresses the problem of constructing vehicle routes through the

customers that minimizes the expected distance traveled with the presence of

uncertainty of some problem parameters. Though comparing with their deterministic

counterparts, relatively less efforts and achievements have been made on the SVRP,

there is still much literature available for various types of SVRP.

(1) The probabilistic traveling salesman problem (PTSP)

When a postman delivers mails to the customers, obviously, he does not expect

each customer needs a visit each day. When the customer presence is a random

variable, and is described by a probability pi, the problem of finding a least expected

 11

Chapter 2 Literature Review

cost cycle becomes the PTSP. This problem was introduced by Jaillet (1985, 1988).

The author derived closed form expressions to obtain efficiently (in polynomial time of

low order) the expected length of tours under various probabilistic assumptions. By

analyzing the closed form expressions, some properties and characteristics of optimal

solutions to PTSP were derived. The paper also presented the specific conditions under

which the TSP solution can serve as a good approximation for the PTSP. However,

their results show that, in general, entirely new solution procedures are necessary to

devise for PTSP. Bertsimas et al. (1990) also addressed the PTSP. They discussed the

applicability of a priori optimization strategies. They showed that if the nodes are

randomly distributed in the plane, the a priori strategies behave asymptotically equally

well on average with re-optimization strategies. Two kinds of heuristics using the a

priori strategies were also presented in the paper. The first is based on the space-filling

curve heuristic, while the second is based on methods seeking local optimality, which

includes 2-opt, 3-opt, 1-shift, etc. In Laporte et al. (1994), the authors formulated the

PTSP as an integer linear stochastic program. Under the a priori strategies, the authors

presented the first exact algorithm for this kind of problem. The algorithm is based on

a branch-and-cut approach, which relaxes some of the constraints and uses lower

bounding functionals on the objective function.

(2) The traveling salesman problem with stochastic traveling times (TSPST)

Among the problem parameters: customer demand, customer presence and travel

time, etc., travel time is the parameter that most unlikely to be known for sure in

advance (while constructing the routes), due to the weather and traffic conditions.

However, the TSPST is less studied compared to other SVRP in the literature. In Kao

(1978), under the assumption that the probability of a sum of random travel times can

 12

Chapter 2 Literature Review

be readily computed, two heuristics for this problem were proposed: one is based on

dynamic programming; and the other employs the implicit enumeration to find a

solution. In Sniedovich (1981), the author pointed out that, the monotonicity property

required by the dynamic programming algorithm was not verified in Kao (1978);

therefore the algorithm may obtain sub-optimal solutions. This difficulty was

overcome in Carraway et al. (1989), where a generalized dynamic programming

algorithm was proposed and applied to TSPST. Another version of TSPST is m-

TSPST, where m vehicle routes all start and end at a common depot. Lambert et al.

(1993) designed the money collection routes through bank branches in the case of

stochastic traveling times, due to the fact that congestion of some arcs usually happens

in the rush hour. To take the stochastic traveling times into consideration, the objective

function includes two penalty terms: one is due to the fact that money accumulated

between vehicle arrival time and a branch’s closing time is not collected until the next

day, therefore it is preferable to delay as much as possible visits to branches; the other

is due to the fact that all money contained in the vehicles arriving at depot later than a

prescribed time loses one day’s interest. The authors applied the adapted Clark and

Wright (1964) algorithm to solve the VRP with stochastic traveling times. In addition

to the stochastic traveling times, Laporte et al. (1992) considered stochastic service

times at the vertices as well. Here the penalty for late arrival is proportional to the

length of the delay. Three mathematical programming models were presented in the

paper, a chance-constrained model, a three-index simple recourse model, and a two-

index recourse model. The paper also presented a general branch-and-cut algorithm for

solving the three models.

 13

Chapter 2 Literature Review

(3) The vehicle routing problem with stochastic customers (VRPSC)

In the PTSP, vehicle capacity constraint is relaxed. When a customer is present

with probability pi but with deterministic demand, and the vehicle capacity constraint

must be respected, the PTSP is extended to VRPSC. The best source of theoretical

information on VRPSC is Bertsimas (1988), in which several properties, bounds and

heuristics for the problem were described. Benton and Rossetti (1992) considered

general demands and proposed an empirical comparison of three operating policies:

follow the planned route without skipping absent customers (fixed route), skip absent

customers (modified fixed route), and re-optimize the remaining route whenever the

absence of a customer is revealed (variable route). The author assumed that demands

are known at the beginning of the period in which they occur, so it is possible to

modify the fixed route or reschedule the fixed route whenever the absence of

customers are known. For the fixed route alternative, by using the expected value of

non-zero demands, the total cost can be solved by classic VRP heuristics. However,

because of the randomness of customer presence, the total cost of the other two

alternatives must be calculated for each period. The cost of modified fixed-route

alternative can be solved by skipping the appropriate zero demand customers from the

VRP solution. The cost of variable route alternative is solved by applying an efficient

heuristic VRP procedure to the customers with non-zero demand for that period.

Finally, the one with the least total cost in each period is chosen as the best alternative.

Waters (1989) also applied the above-mentioned three alternatives to deal with VRP

with stochastic customers, but from a different point of view. In practice, the third

alternative of variable routes is not always possible, because the customers to be

omitted must be known some time before vehicles set out, to allow time to produce

new routes. Therefore, the problem the paper studied is: how large are potential

 14

Chapter 2 Literature Review

savings of using modified-fixed routes and variable routes, its relationship with the

number of absent customers, and the break-even points (the proportion of absent

customers) to make rescheduling worthwhile over fixed and modified-fixed routes.

(4) The vehicle routing problem with stochastic demands (VRPSD)

In VRPSD, the customer demand is a random variable while all the other

problem parameters are assumed to be deterministic. As VRPSD is the most studied

SVRP in the literature and it is the focus of Part I of this study, Section 2.2 will present

a more detailed literature review on the solution framework, recourse policies and the

algorithms available for VRPSD.

(5) The vehicle routing problem with stochastic customers and demands (VRPSCD)

As a combination of the VRPSC and VRPSD, VRPSCD is an extremely difficult

problem (Gendreau et al. 1996b). Bertsimas (1992) presented the closed-form

recursive expressions and algorithms to compute the expected length of an a priori

sequence under general probabilistic assumptions. Also the upper and lower bounds on

the a priori and re-optimization strategies were derived for this kind of problems. The

purpose is to compare these strategies from a worst and average case perspective.

Heuristics based on cyclic heuristic (Haimovitch and Rinnooy Kan, 1985), were

proposed and their worst-case performance as well as their average behavior were

analyzed in the paper. Gendreau et al. (1996a) presented a tabu search algorithm for

this problem. Based on an initial solution constructed by Clark and Wright (1964)

algorithm, the neighborhood of a solution X contains all solutions that can be reached

by removing in turn one of neighbor_size randomly selected customers, and inserting

each of them either immediately before, or immediately after one of its ϖ nearest

 15

Chapter 2 Literature Review

neighbors. If a vertex is moved from route π to the same route or to a different route

at iteration i , its reinsertion or displacement in route π is tabu until iteration i +

NoTabu, where NoTabu is the tabu tenure and is randomly selected in the interval [n-5,

n]. However, the penalized objective function can not be used directly to evaluate the

moves and select the best move for the tabu search, due to the computational burden in

the case of stochastic customers and demands. One of the major contributions of the

paper is the development of an easily computed proxy for the objective function, to be

used in the evaluation of potential moves, and also the elaboration of a series of

mechanisms aimed at efficiently managing the proxy. Ong et al. (1997) provided a

framework to model customers in a due-date environment. In addition to the stochastic

demand, each customer requires a service on a specific day (due-date) and at a

particular time window of the day. In the objective function of their model, in addition

to the routing cost, there are two penalty terms: one is associated with the overdue

dissatisfaction of each customer and the expected losses of the company; the other is

related to the customers that can not be served fully on the planned route. The paper

presented a “LOSS function” based on due-date to serve as selection criteria of

customers to be served. The stochastic demand was handled based on the chance-

constrained model (Stewart and Golden, 1983). To take the time window constraint

into consideration, the paper proposed an adaptation of the insertion heuristic by

Solomon (1987) for the routing and scheduling. Gendreau et al. (1995) presented an

exact algorithm for this problem, which used an Integer L-Shaped method. Solutions

were reported for instances involving up to 46 vertices solved to optimality.

 16

Chapter 2 Literature Review

2.2 Literature Review on Recourse Policies and Algorithms for VRPSD

Since VRPSD is the most studied problem among the SVRP and it is the focus of

Part I of this study, the solution framework, recourse policies and available algorithms

are discussed in detail as follows.

2.2.1 Solution Concepts and Recourse Policies

For the vehicle routing problem with stochastic demands (VRPSD), solution

frameworks mainly depend on the operating policies (whether re-optimization is

allowed) adopted and the time when demand information is available. Two solution

frameworks are available in the literature: stochastic programming and Markov

decision processes. The former belongs to the a priori or static method, because the

order of the customers’ visitation is not changed during its real time execution; while

the later belongs to real time or dynamic method, because routes are recomputed based

on the information that becomes available during the execution of the tour. An

inherently dynamic formulation was proposed by Dror et al. (1989). They developed a

Markov decision process model for the VRPSD, but no computational experience was

provided. Dror (1993) studied a slightly modified version of the model, also no

computational experience was provided and the author considered instances with more

than three customers as computationally intractable. Secomandi (1998) proposed

different Markov decision process models for VRPSD solved in the dynamic context.

Moreover, the author developed an exact dynamic programming algorithm to compute

a dynamic optimal policy; he also proposed a heuristic dynamic programming

 17

Chapter 2 Literature Review

algorithm to compute a partially dynamic policy and an on-line rollout algorithm to

compute a dynamic routing policy.

However, the dynamic routing policy may be impractical or even impossible in

practical applications due to the following reasons:

1) Not enough resources to repeat the redesigns;

2) Not enough information regarding demands before actually visiting the

customer, etc.

Therefore, one representative method in the literature is to determine a fixed a

priori sequence among all potential customers, and consider recourse actions upon a

route failure. The idea of using a priori sequence was first proposed for the PTSP in

Jaillet (1985). Bertsimas (1988) generalized the idea and applied it to other

combinatorial optimization problems, such as the probabilistic minimum spanning tree

problem, the PTSP, the probabilistic vehicle routing problem, and facility location

problems. All studies above assume that the demand distribution is binary, i.e.,

customer i either has 1 unit demand with probability pi, or does not have any demand

with probability 1 - pi. The idea is further generalized to the arbitrary discrete-demand

distributions in Bertsimas (1992).

Within the framework of the a priori optimization method, the VRPSD can be

formulated both as a chance-constrained program (CCP) and as a stochastic program

with recourse (SPR). In chance-constrained program, one seeks a first stage solution

for which the probability that all demands on a route exceeding the vehicle capacity is

not greater than a predefined probability level. Under this condition, no recourse action

is adopted in case of route failure. Under some assumptions, a chance-constrained

 18

Chapter 2 Literature Review

model can be transformed into an equivalent VRP with an artificial vehicle capacity.

Therefore existing algorithms for VRP can be applied to the resulting problem in this

case.

 In the stochastic program with recourse, the problem is solved in two stages. In

the first stage, the objective is to determine a solution that minimizes the expected cost

of the second stage solution. Specifically, in the first stage, a planned or a priori

solution is determined. In the second stage, as the actual demands are revealed, the first

stage solution may not be possible as planned because of the route failure, for example,

the total demand of a route may exceed the vehicle capacity. A recourse or corrective

action is then applied to the first stage solution. The total expected distance traveled

includes two parts: one is the fixed length of the a priori sequence; the second is the

expected value of the additional distance traveled whenever demand on the sequence

exceeds vehicle capacity.

For a given VRPSD, two categories of recourse approaches can be found in the

literature. One recourse approach belongs to the dynamic category, which re-optimizes

the remaining portion of the route upon each failure based on the information that

becomes available during the execution of the tour. Among those static recourse

policies, a simple and obvious one is that, whenever route failure occurs, go back to

depot to restock. In the two SPR models presented in Stewart and Golden (1983), one

applies a penalty proportional to the probability of exceeding the vehicle capacity, the

other uses a penalty proportional to the expected demand in excess of the vehicle

capacity. Both Bertsimas et al. (1995) and Yang et al. (2000) employed a dynamic

programming procedure to plan “preventive breaks” at strategic points along the first

stage route, rather than waiting for route failure to occur. The difference is that, in

Yang et al. (2000), partial delivery is permitted, though penalized by imposing a fixed

 19

Chapter 2 Literature Review

nonnegative cost whenever route failure occurs. These recourse policies, though

different from one another, belong to the static approach, because the order of the

customers’ visitation is not changed during its real time execution. In this study, we

will focus on the fixed a priori static method.

2.2.2 Available Algorithms for VRPSD in the Literature

Exact algorithms for the SVRP are developed based on mixed or pure integer

stochastic programs; see Laport et al. (1992, 1994) and Gendreau et al. (1995). The

integer L-shaped method was employed to solve the SVRP in the above papers. It is an

extension of the L-shaped method of Van Slyke and Wets (1969) for solving the two

stage stochastic linear problems when the random variables have finite support, by

incorporating a branching procedure to recover the integrality of the variables. As a

branch-and-cut algorithm applicable to a wide range of stochastic integer programs

with recourse, the integer L-shaped method has also been applied in solving the

VRPSD. Hjorring and Holt (1999) derived more effective optimality cuts and a tight

global lower bound on the second stage value function based on the concept of partial

routes for the single vehicle case. Laporte et al. (2002) studied lower bound on the

second stage value function for the normal and Poisson distributed demands. They also

constructed their optimality cuts based on the concept of partial routes in Hjorring and

Holt (1999). In addition, Dror et al. (1993) considered the VRPSD, in which the

number of potential failures per route is restricted either by the data or the problem

constraints. A chance-constrained version of the problem was considered and solved to

optimality by algorithms similar to those developed for the deterministic VRP. Then

three classes of recourse models were analyzed. Under the assumption that route

 20

Chapter 2 Literature Review

failure can only occur at most once, an exact solution with a very high probability of

being optimal was easily computed by solving a sequence of deterministic problems.

The VRP is a combinatorial NP-Hard problem (Bodin et al., 1983). By adding

the stochastic element to the demands, the problem becomes even more difficult to

solve in terms of computational time as intricate probability computations are usually

involved. Known approaches for solving these problems optimally suffer from an

exponential growth in computation time with problem size, which is very unlikely to

be acceptable in the real world. Therefore, considerable attention and research efforts

have been devoted to the development of efficient heuristics (approximate algorithms)

to get near optimal solutions for large sized problems.

The first heuristic for the VRPSD was proposed in Tillman (1969), which is for

multiple depot case and the algorithm is based on Clark and Wright (1964). In Stewart

and Golden (1983), in addition to presenting one CCP and two SPR models, they also

considered several demand distributions and proposed two heuristics: one based on

Clark and Wright (1964), the other based on Lagrangean relaxation.

Bertsimas et al. (1995) presented an a priori heuristic based on the cyclic

heuristic (tour construction), 2-interchange and the dynamic programming (tour

improvement). Computational results were presented based on two types of demand

distributions: discrete uniform distribution and discretised normal distribution. They

considered the single vehicle case, because in VRPSD, returning trips to the depot are

permitted, and therefore vehicle capacity becomes a soft constraint. Moreover, Yang et

al. (2000) shown that, with the presence of no additional constraints, it is not necessary

to use multiple vehicles due to the recourse policy, the optimal route is always a single

one. Nevertheless, with the presence of such constraints as a limit on the maximum

traveling distance or effective working time of a vehicle, a single route may not be

 21

Chapter 2 Literature Review

usable in most real-world situations. Therefore, in Yang et al. (2000), they proposed

heuristics for both the single vehicle and multiple vehicle cases. In the single vehicle

case, a composite method (insertion + Or-opt) was used to build a single route. For the

multiple vehicle case, they applied classic route-first-cluster-second and cluster-first-

route-second heuristics to solve this problem, under the assumption that the expected

route length of each route must be within a predefined limit. In their computational

experience, customer demands were assumed to follow discretised triangular

distribution.

In addition to the traditional heuristics discussed above, modern heuristic, such as

simulated annealing (SA), has also found its application in solving VRPSD.

Teodorovic and Pavkovic (1992) presented a SA algorithm, which is limited to the

situation where at most one route failure occurs in each route. Under this assumption,

they first introduced how to calculate the expected cost; then presented a two-stage

scheme, both of which utilize SA algorithm, with the first stage SA serving as a

clustering procedure and the second stage SA serving as a routing procedure. The

computational results were presented based on uniformly distributed customer demand

information.

2.3 Literature Review on the Generalized Traveling Salesman Problem

As a relaxed variant of the TSP, where not each customer is required to be visited

exactly once, the GTSP tries to select a subset of the customers with a desired trait

which is usually described as an additional constraint imposed on the subset tour. The

GTSP has received increasing attention in recent years. Most studies focus on the prize

 22

Chapter 2 Literature Review

collecting traveling salesman (PCTS) problem, the time constrained TSP (TCTSP) and

the orienteering problem (OP).

For the PCTS problem, Balas (1989, 1995) presented an intensive theoretical

study. In Balas (1989), he discussed the structural properties of the PCTS polytope, the

convex hull of solutions to the PCTS problem. In particular, he identified several

families of facet defining inequalities for this polytope, which can be used in

developing algorithms for the PCTS problem either as cutting planes or as ingredients

of a Lagrangean optimand. In Balas (1995), he presented a general method for deriving

a facet defining inequality for the PCTS polytope from any facet defining inequality

for the asymmetric traveling salesman (ATS) polytope. The method was applied to

several well-known families of facet inducing inequalities for the ATS polytope. The

cloning and clique lifting procedure for the ATS polytope was also extended to the

PCTS polytope in his paper. In addition to the theoretical study, a number of heuristics

have been developed for the PCTS problem and its several variants. In Bienstock et al.

(1993), they considered a simplified version of PCTS problem, where the objective is

to find a tour that visits a subset of the vertices such that the length of the tour plus the

sum of penalties of all vertices not in the tour is as small as possible. They presented

an approximation algorithm with constant bound. The algorithm is based on an

algorithm presented in Christofides (1976) for the TSP as well as a method to round

fractional solutions of a linear programming (LP) relaxation to integers, feasible for the

original problem. In Lopez et al. (1998), they considered the hot strip mill production

scheduling problem for scheduling steel coil production in the steel industry. The

problem was modeled as a generalization of the PCTS problem with multiple and

conflicting objectives and constraints. They presented a heuristic based on tabu search

and a new idea of “cannibalization” for solving the problem. In Awerbuch et al.

 23

Chapter 2 Literature Review

(1998), they presented the first approximation algorithm having a polylogarithmic

performance guarantee for the PCTS problem and two variations of the problem. In

one variation, there is no penalty associated with each unvisited city. Another variation

is called the “orienteering problem" by Golden et al. (1987).

The TCTSP was first introduced and discussed by Cloonan (1966). Gensch

(1978) proposed a solution method based on tree search for an industrial application of

this problem. The algorithm requires finding both the lower bound and the upper

bound of the solution to get an optimal sub-tour for the problem. The lower bound is

found by constructing a sub-tour by the nearest neighbor heuristic; while the upper

bound is obtained by solving a time constrained assignment problem by relaxing the

sub-tour elimination constraints, which applied the generalized Lagrange multiplier

method. Golden et al. (1981) developed a simple iterative procedure for the problem.

When the constraint considered is a preset constant route length rather than a time

limit, some researchers call TCTSP the selective traveling salesman problem (STSP).

Laporte and Martello (1990) proposed an exact algorithm, which consists of

embedding a LP relaxation within a branch-and-bound scheme. Another exact

algorithm proposed by Gendreau et al. (1998a) is based on branch-and-cut procedure.

Heuristics for STSP can be found in Laporte and Martello (1990) and Gendreau et al.

(1998b).

The definition of OP was first provided in Golden et al. (1987). Ramesh et al.

(1992) presented an exact algorithm for OP. In Leifer and Rosenwein (1994), they

tightened the LP relaxation and proposed a procedure to obtain upper bounds. In

Kataoka et al. (1998), they proposed a minimum directed 1-subtree problem as a

relaxation to the OP and developed a cut and dual simplex method and a Lagrangean

relaxation method to improve its lower bound. Since the OP is NP-hard (Golden et al.,

 24

Chapter 2 Literature Review

1987), a number of heuristics have been developed during the past few years.

Tsiligirides (1984) also studied this problem; however, he called it the generalized

TSP. Two heuristics were presented in Tsiligirides (1984): one is deterministic, and the

other is stochastic. In the deterministic heuristic, the geographic region is divided into

sectors by concentric circles. Routes are then built within sectors to minimize the total

travel time. The stochastic algorithm selects the best route among a large number of

routes created based on Mont Carlo techniques. When constructing the OP tour, to

select a node j for inclusion, he applied a measure of desirability for all nodes not

currently on the route. The largest 4 values of the measure of desirability are selected

and normalized so that they sum to one. A random number is then generated according

to U (0, 1) in order to select a node j for inclusion. The procedure is repeated until no

more nodes can be included into the route. Since the inclusion of each node j is

randomly selected, many routes can be generated in this method. An algorithm based

on the concept of center-of-gravity was proposed by Golden et al. (1987). The

heuristic includes three steps: route construction, route improvement and center-of-

gravity step. After constructing an initial route, they applied 2-opt to improve the

route, followed by a cheapest insertion step to insert as many nodes as possible to the

initial route without violating the constraint. Suppose that the route resulted from the

first two steps is called route π . In the center-of-gravity step, they first calculate the

center-of-gravity for route π by using the coordinates and profits of all nodes in route

π . Then, for each node i, calculate the ratio of its profit to the traveling time from

node i to the center-of-gravity of route π . Add nodes to the route in descending order

of this ratio using cheapest insertion, until no additional nodes can be added without

violating the time limit constraint. The route improvement step is then applied again to

make some adjustments to the resulting route. After getting the new route 'π , the

 25

Chapter 2 Literature Review

center-of-gravity step is applied again to form a new route ''π . The procedure is

repeated until a cycle develops, and then the route with the highest score is selected as

the final solution. In their computational experience, Golden et al. (1987) claimed that

their heuristic outperforms the two heuristics proposed in Tsiligirides (1984). An

improved algorithm that incorporates the center-of-gravity idea, Tsiligirides’s

randomization concept, along with learning capabilities was presented by Golden et al.

(1988). In Keller (1989), he adapted the algorithm originally developed for the

multiobjective vending problem (Keller, 1985) to solve the OP, and made a

comparison with algorithms from Tsiligirides (1984) and Golden et al. (1987). In

Mittenthal and Noon (1992), they presented a heuristic for the TSSP+1 class of

problems, which explores the solution space by either insertion of unvisited vertices or

deletion of included vertices from the subset tour. A fast and effective heuristic that

consists of one initialization step and one improvement step was presented by Chao et

al. (1996a). A similar procedure was employed to address the team orienteering

problem in Chao et al. (1996b). Moreover, Kantor and Rosenwein (1992) addressed

the orienteering problem with time windows. They developed a tree heuristic based on

an exhaustive search of the feasible solution space.

2.4 Conclusion and Further Remarks

From literature presented for the SVRP (Sections 2.1 and 2.2), it is clear that

VRPSD is the most studied among various types of SVRP in terms of solution

concepts, recourse policies and algorithms proposed in the literature. Moreover, most

of the researchers formulated VRPSD as a stochastic program with recourse within the

framework of the a priori optimization. Several representative heuristics for solving

 26

Chapter 2 Literature Review

VRPSD include Bertsimas et al. (1995), Yang et al. (2000) and Teodorovic and

Pavkovic (1992). However, different researchers made different assumptions on the

problem data when doing the computational experiment; and the performances of the

algorithms proposed were evaluated based on their assumptions. For example, in

Bertsimas et al. (1995), the demands are assumed to follow normal and uniform

distributions; in Yang et al. (2000), the demands follow triangular distribution; in

Teodorovic and Pavkovic (1992), the demands follow uniform distribution, and they

also assumed that at most one route failure could occur for each route. In such cases, it

is very difficult for a decision maker to know which heuristic is more preferable in a

certain context. Therefore, in Chapter 3 of this thesis, a comprehensive comparative

study is carried out on algorithms presented in Bertsimas et al. (1995), Yang et al.

(2000) and Teodorovic and Pavkovic (1992), so that suggestions and recommendations

can be made available for the practitioners in various contexts.

One other finding from the literature review of SVRP is that, most of the

heuristics proposed for VRPSD in the literature are based on classical local search

algorithms (except for the SA algorithm presented in Teodorovic and Pavkovic, 1992),

which have the tendency to be easily trapped in a local optimal solution. Though there

is an SA algorithm presented in Teodorovic and Pavkovic (1992), results from our

comparative study (Teng et al., 2001) show that SA algorithm based on the original

neighborhood generation method and cooling schedule performed quite badly in

comparison with the other heuristics with respect to both solution quality and

computational time. Also, it seemed that there are some randomness involved in both

the solution quality and computational time. This does not mean that SA algorithm is

not suitable for VRPSD, because the performance of the SA algorithm depends greatly

on the neighborhood generation mechanism and the cooling schedule. Thus, in Chapter

 27

Chapter 2 Literature Review

4 of this thesis, we present three metaheuristics, simulated annealing (SA), threshold

accepting (TA) and tabu search (TS) for solving VRPSD, and try to examine how

modern heuristics behave for the VRPSD.

Literature presented for the GTSP in Section 2.3 indicates that, the TCTSP and

OP are most closely related to the problems considered in Part II of this study. For

TCTSP and OP, except for the team orienteering problem considered in Chao et al.

(1996b), most work done in the literature is to construct a single orienteering tour

(TCTSP tour) in an optimal way or through heuristics. Chapter 5 of this thesis extends

the TCTSP into a multi-period TCTSP, and presents some heuristics for solving it in a

rolling schedule environment.

In the literature as well as in the multi-period TCTSP considered in Chapter 5,

both the travel time and the service time are assumed to be deterministic, though, in

practical situations, both are not likely to be known with certainty in advance.

Nevertheless, the profit generated from the TCTSP is directly affected by the travel

and service times, due to the time limit constraint of the TCTSP. To make the problem

considered more sensible, in Chapter 6 of this thesis, the TCTSP is extended to the

stochastic case, where the travel time and the service time are assumed to be random

variables.

 28

Chapter 3 Comparative Study of Algorithms for VRPSD

Chapter 3

 Comparative Study of Algorithms for VRPSD

For SVRP, most studies have been made on the VRPSD and several heuristics

can be found in the literature. In this chapter, we compare the performance of three

representative heuristics from the literature based on the model of stochastic program

with recourse (SPR). A common ground for the comparative study is built first,

followed by conducting a comprehensive computational study on each of the three

selected heuristics. We examine how the heuristics perform in various situations with

respect to problem size and demand pattern, in order to determine which algorithm is

superior to the others in a certain context. Based on these findings, some valuable

suggestions are recommended to the practitioners.

3.1 Problem Statement

3.1.1 Problem Description

The vehicle routing problem with stochastic demands (VRPSD) can be described

as follows: Given a set V = {1, …, n}, and = V ∪ {0}, with 0 representing the

depot, and 1, … ,n denoting the n customers, a distance matrix C = (c

'V

i,j), ',' VjVi ∈∈ ,

is defined on Euclidean plane. There is a fleet of m identical vehicles of capacity Q at

the depot that deliver goods to the n customers. Let Di, i = 1, 2, …, n, denote the

random variables that describe the demand of customers. We assume that all Di are

independent random variables following a known discrete probability distribution with

 29

Chapter 3 Comparative Study of Algorithms for VRPSD

K+1 possible values, 0, 1, 2, … , K. Let pi(k) be P(Di = k), the probability that demand

at node i is k. We further assume that K < Q; that is, the vehicle’s capacity is greater

than the largest demand of a customer in a given period. This assumption removes the

consideration of multiple returns to the depot from the same node. Moreover, we

assume that L is a predefined maximum limit for the expected route length. The

VRPSD tries to determine vehicle routes, restocking policy at each node, as well as the

number of vehicles m, under the following conditions:

(i) All routes start and end at the depot;

(ii) Each city is visited exactly once except the depot;

(iii) The expected distance traveled by any vehicle does not exceed the

prescribed value L;

(iv) The total expected distance traveled by all vehicles is to be minimized.

Note that, though we evaluate the routes by using the expected route length, we

also call it the expected cost in the following parts of this thesis.

3.1.2 Calculation of the Expected Cost

In Bertsimas et al. (1995), they presented the following equation to calculate the

expected cost of each tour:

∑∑
=

+
=

+ +++−=
n

i
iiiii

n

i
iii ccccLE

1
0,10,0,

0
1,])[2()1(][γδγτ (3.1)

where γi is the probability that the demand at the ith node is exactly equal to the stock

available in the vehicle, δi is the probability that the demand at the ith node exceeds the

 30

Chapter 3 Comparative Study of Algorithms for VRPSD

remaining stock, and ci,j is the distance between nodes i and j in the tour. Bertsimas

(1992) presented some equations to calculate γi and δi as follows:

01 =γ

⎣ ⎦

∑ ∑
= =

≤≤
⎭
⎬
⎫

⎩
⎨
⎧

−−=
QiK

l

K

k
ii niklQifkp

/

1 1

2,),1()(γ (3.2)

01 =δ

⎣ ⎦

∑ ∑ ∑
=

−

= +=

≤≤
⎭
⎬
⎫

⎩
⎨
⎧

−−⎟
⎠

⎞
⎜
⎝

⎛=
QiK

l

K

k

K

kr
ii niklQifrp

/

1

1

1 1

2,),1()(δ (3.3)

{ }rissrsf ,...,1customerstheofdemandtotalthePr),(= is computed from the

recursion:

∑
=

==−−=
},min{

0

...0,,...,2),,1()(),(
rK

k
s Ksrnskrsfkprsf (3.4)

with the initial conditions:

)6.3(
otherwise,0

0for)(
),1(

)5.3(for0),(

⎩
⎨
⎧ ≤≤

=

>=

Krrp
rf

Ksrrsf

i

3.1.3 Dynamic Programming (DP) Recourse Policy

Both Bertsimas et al. (1995) and Yang et al. (2000) employed the following

dynamic programming (DP) recourse policy. Instead of waiting for route failure to

occur, DP recourse policy can recursively decide at each stage (node), which is more

preferable: go on visiting the next node, or return to the depot for restocking. A

threshold value, vehicle remaining load for delivery operation, is calculated at each

 31

Chapter 3 Comparative Study of Algorithms for VRPSD

node i. If the remaining load after visiting node i is less than or equal to the threshold

value, it is better to return to depot before visiting the rest of the customers.

For any given a priori solution to the VRPSD problem, let (be the set

of nodes arranged in the same sequence as they appear in the visitation tour. Let q

denote the vehicle’s remaining load. Define f

),...,, 21 nvvv

j(q) to be the expected remaining distance

to travel, given that the optimal strategy is followed. The following dynamic

programming recursion describes the decision about when the vehicle should return to

the depot.

1) Initialization

Set (3.7) }...,,1,0{,)(,0 Qqcqf
nvn ∈∀=

2) Recursion

 For j = n-1, …, 1: compute fj(q) = min { })(),(21 qfqf jj

 where

∑∑
>

++
≤

++ −+++−+=
++

qkk
jjv

qkk
jjvvj kpkQqfckpkqfcqf

jjj
:

110,
:

11,
1)8.3()()](2[)()()(

11

∑
=

++ −++=
+

K

k
jjvvj kpkQfccqf

jj
0

11,0,0
2)()()(

1
 (3.9)

3) Threshold calculation

 (3.10))}()(:max{)(* 2 qfqfqjq jj ==

Here, the terms and reflect the strategy of returning to depot, and

the strategy of continuing to the next node, respectively.

)(2 qf j)(1 qf j

 32

Chapter 3 Comparative Study of Algorithms for VRPSD

The term q*(j) is the threshold value for node vj. When the remaining load is very

large, it is obvious that one should go on to the next node. As remaining load

decreases, the cost of going on to the next node increases, the maximum remaining

load q*(j) that makes going on to the next node more costly than going back to depot is

the threshold value for node vj. If the remaining load after visiting node vj is less than

q*(j), it is better to return to the depot before serving further demand points.

For each visitation sequence, through the backward dynamic programming, its

expected cost can be calculated by the following equation.

∑
=

+=
Q

j
vv cjfjpz

0
,01 11

)()((3.11)

This expected cost, together with the threshold value at each node, forms a

solution for any visitation sequence.

3.2 Review of the Selected Algorithms

In this section, we give a brief review of the algorithms selected for comparison

in this study. Readers can refer to the original papers for details.

3.2.1 Bertsimas et al.’s Algorithm

Bertsimas et al. (1995) presented an a priori heuristic based on the cyclic

heuristic, 2-interchange and dynamic programming (DP) procedure. They only

considered the single vehicle case. This is possible in VRPSD, because returning trips

to the depot are permitted, and vehicle capacity becomes a soft constraint.

 33

Chapter 3 Comparative Study of Algorithms for VRPSD

Cyclic heuristic with local improvement and dynamic programming (DP)

For a given initial TSP tour (0, 1, 2, …, n), the cyclic heuristic generates n cyclic

permutations, with the ith permutation iπ = (0, i, i+1,…, n, 1, 2,…, i-1, 0). 2-

interchange is then applied to make local improvement for each of the n orderings. The

DP recursion along with the threshold calculation is used to determine when the

vehicle should return to the depot. The heuristic then chooses the lowest cost visitation

sequence and recourse policy as the final solution.

3.2.2 Yang et al.’s Algorithms

In Yang et al. (2000), a composite method (insertion + Or-opt) was proposed for

single VRPSD. For the multiple VRPSD, they applied classic route-first-cluster-second

(R1-C2) and cluster-first-route-second (C1-R2) heuristics to solve this problem. The

calculation of the expected cost of the routes and the best restocking policy are

performed by the DP recursion, which is similar to the recursion presented by

Bertsimas et al. (1995). One difference is the recourse cost. To penalize a partial

delivery, a fixed nonnegative cost is imposed whenever route failure occurs, in

addition to the cost of traveling to the depot and back to the route. Additionally, to

save the computational time, they present an approximation method to calculate the

insertion cost.

Single vehicle routing problem

The heuristic first attempts to find a single route through all the customers using

the insertion procedure (Bodin et al., 1983). Next, Or-opt procedure (Or, 1976) is used

to seek further improvements. In the Or-opt procedure, a set of k successive nodes are

 34

Chapter 3 Comparative Study of Algorithms for VRPSD

removed from the current location (I), and reinserted back into the route elsewhere

other than where they are removed (II). The approximation method is used to calculate

the cost improvement: the difference of cost savings (resulted from I) and the

additional costs (resulted from II). The move with the maximum cost improvement is

implemented. The procedure repeats until there is no cost improvement available and k

is decreased by 1. The procedure terminates until k is 1 and there is no further cost

improvement available.

Multiple vehicle routing - Route-first-cluster-second algorithm

The routing procedure is the same as the one used in the single vehicle routing.

Suppose π = (i1, i2, … in) is an ordered sequence obtained by using insertion and Or-

opt algorithms. Given a limit L on the expected cost of each route, in the clustering

procedure, Yang et al. (2000) proposed another dynamic programming procedure to

partition the sequence into multiple vehicle routes. The procedure recursively

determines the partitioning points for each subsequence such that the expected cost of

the total route set is minimized and the expected cost of each subsequence is within the

limit L.

Multiple Vehicle Routing - Cluster-first-route-second algorithm

In the clustering process, one needs to select the seed points first. Yang et al.

(2000) employed the circle covering method of Savelsbergh and Goetschalckx (1995)

to determine the seed points. Then, customer clusters are formed around the seed

points in the following way: select the seed point not yet assigned with the smallest

covering circle (see Savelsbergh and Goetschalckx, 1995), form a seed route with

return trips between the seed point and the depot. Calculate the insertion cost of each

 35

Chapter 3 Comparative Study of Algorithms for VRPSD

unconnected node at the best location in the seed route. Successively insert the

unconnected nodes with the least insertion cost into the route. Reject the nodes that

make the route infeasible. The procedure proceeds until no more insertion is feasible;

and other clusters are formed by repeating the same procedure.

In the routing process, they tried to reposition each node from its current position

to any other position, either on the same route or to other routes, provided that the new

position of the node does not violate the route length constraint.

Multiple vehicle routing - Improving the heuristic solution

To further improve the solution obtained from the above two heuristics, Yang et

al. (2000) also repeatedly applied inter-route and intra-route exchange procedures until

no further improvement can be made. The inter-route exchange tries to improve the

routes by moving a segment of nodes from one route to another. The intra-route

exchange procedure uses Or-opt to further improve each route.

3.2.3 Teodorovic and Pavkovic’s Simulated Annealing (SA) Algorithm

Teodorovic and Pavkovic (1992) presented a SA algorithm to solve the problem

in the situation where at most one route failure can occur in each route. They first

introduced a way to calculate the expected cost in this case. The paper employs a two-

stage scheme, both of which utilize SA algorithm. In the first stage, SA is used to find

a satisfactory initial solution. The neighborhood solutions are generated by randomly

constructing route sets. This procedure corresponds to the clustering of customers. In

the second stage, selected customers are repeatedly exchanged only within each route.

 36

Chapter 3 Comparative Study of Algorithms for VRPSD

The neighborhood is generated by swapping two nodes within each of the defined

routes. It corresponds to the routing procedure.

3.3 Common Grounds for the Comparative Study

3.3.1 Criteria for the Measurement of the Comparative Study

The success of a heuristic for solving VRPSD depends on a number of aspects:

1) Performance, i.e. the running time and the quality of the final solution;

2) The number of vehicles required;

3) Sensitivity. To see whether the algorithms are sensitive with respect to the

demand distribution, problem size, the increase of demand mean, and the

increase of demand variance, etc.

3.3.2 Building the Common Ground for Comparison

In addition to the assumptions already made, we further assume that, when

applying the dynamic programming to adopt optimum recourse policy, a partial

delivery is allowed, and no penalty is imposed in case of a partial delivery.

3.3.2.1 Problem Generation

Problem size and distance matrix

We assume that the problem size ranges from 20-110, and the cost ci,j is the

Euclidean distance between two points i and j. Each problem instance is randomly

generated in the square [0, 100] 2, according to a uniform distribution. And we assume

that the depot is situated at the center (50, 50).

 37

Chapter 3 Comparative Study of Algorithms for VRPSD

Demand pattern

Based on the demand patterns used in the selected algorithms, we select both the

discretized normal and the discrete uniform distribution for the following reasons:

1) Both of these two distributions are simple in the sense that the probability can

be easily calculated for a given demand possibility.

2) To examine whether these algorithms are sensitive to different demand

distributions.

3) When studying the algorithm performance with the increase of demand mean,

the uniform distribution has a problem that with the increase of demand

range, the variance also increases; while for normal distribution, we can

examine the net effect of the demand mean.

In fact, the algorithm can be applied to any demand pattern, given that the

probability associated with a certain demand distribution is known. For example,

customer demands can be not identically distributed. However, for simplicity, we

assume that all demands are identically distributed in this comparative study.

Number of instances

For each type of problems, the number of instances used in this study is 30. The

performances of the heuristics are compared based on the same problem instances. The

computational results: the expected route length, running time, number of vehicles

used (in the multiple vehicle case), etc., which are the basis of comparison, are the

averages of the results obtained from the 30 randomly generated problem instances.

Factors affecting the performance of algorithms

In this comparative study, we will examine the following situations:

 38

Chapter 3 Comparative Study of Algorithms for VRPSD

1) Single vehicle routing and multiple vehicle routing problems.

2) Algorithm performance with the increase of problem size, with fixed demand

pattern for both normal and uniform distributions.

3) Algorithm performance with the increase of demand mean, with fixed demand

variance and problem size for normal distribution.

4) Algorithm performance with the increase of demand variance, with fixed

demand mean and problem size for normal distribution.

5) Algorithm performance with the increase of demand mean and variance, with

fixed problem size for uniform distribution.

3.3.2.2 Adaptations Made to the Original Algorithms

Bertsimas et al. (1995)’s cyclic heuristic

In Bertsimas et al. (1995), they did not specify which heuristic was used to

construct the initial TSP solution. In this study, we employ the space-filling curve

heuristic (Bartholdi and Platzman, 1982) to generate the initial TSP tour.

In their study, both 2-interchange and dynamic programming were included in

their cyclic heuristic. However, computational results showed that, the improvement

due to 2-interchange (less that 1%) is much smaller than that of the dynamic

programming procedure (6%), though inclusion of either procedure increases running

time by a factor of 2-3 times. They also proposed that, 2-interchange procedure

requires that customer demands be identically distributed. For these reasons, we only

use the dynamic programming to adopt the best recourse policy in this comparative

study.

 39

Chapter 3 Comparative Study of Algorithms for VRPSD

The original algorithm is designed for single vehicle routing. To make the

comparison in the case of multiple-vehicle routing, we apply the dynamic

programming partitioning procedure proposed by Yang et al. (2000) to partition a

single route into multiple routes. After the partitioning, for each single route, the cyclic

heuristic is used again to seek further improvements.

For Bertsimas et al. (1995), the algorithm can be executed in two ways: (1) By

applying Equation (3.1) to calculate the expected cost, we first find the best sequence

from cyclic heuristic, then apply dynamic programming recursion to adopt optimal

recourse policy, this is called B-1 in Section 3.4; (2) We utilize the dynamic

programming recursive procedure throughout the algorithm. The Equation (3.1) to

calculate the expected cost (Bertsimas, 1995) is not used at all, this is called B-2 in

Section 3.4.

Yang et al. (2000)’s algorithms

Similarly, in Yang et al. (2000), for the single vehicle routing and the route-first-

cluster-second algorithms, they did not mention which specific insertion heuristic is

used to form the initial TSP. We adopt the arbitrary insertion heuristic, because the

following Or-opt procedure and possible other post improvement procedures will

compensate for the relatively bad performance of the arbitrary insertion heuristic.

We also adapt cluster-first-route-second algorithm to the single vehicle routing

algorithm by relaxing the constraint imposed on the maximum expected route length

on each route. In Section 3.4, cluster-first-route-second algorithm is known as C1-R2,

while the route-first-cluster-second one is called R1-C2.

 40

Chapter 3 Comparative Study of Algorithms for VRPSD

Teodorovic and Pavkovic (1992)’s simulated annealing (SA) algorithm

For the SA algorithm in Teodorovic and Pavkovic (1992), the following

adaptations must be made to make the comparison work:

1) Route failure can occur any times in each route rather than at most once.

2) The expression to calculate the expected cost in their original paper no longer

works. To calculate the expected cost, we also adopt the dynamic programming

recursion (Bertsimas et al., 1995) to calculate the expected cost and the

threshold values, and to determine the best recourse policy, because of its

effectiveness in solving VRPSD.

3) For single vehicle routing, there are two ways to make the adaptation. One is

that, the first stage SA is omitted, because its role in their original paper is to

cluster the customers in different routes, this is known as SA-1 in Section 3.4.

Secondly, we employ the first stage SA to find a satisfactory initial solution,

then second stage SA is applied to seek further improvements, it is called SA-2

in Section 3.4.

3.4 Computational Results and Analysis

To get the computational results, the algorithms are coded in VISUAL C++, and

run on a 500 MHZ Pentium II Processor with 128 MB RAM under Microsoft

Windows 98.

Throughout this section, the following notations are used to represent the

algorithms selected into the comparative study.

 41

Chapter 3 Comparative Study of Algorithms for VRPSD

B-1: Bertsimas et al. (1995)’s algorithm, applying Equation (3.1) to calculate the

expected cost, and dynamic programming recursion to adopt optimal

recourse policy.

B-2: Bertsimas et al. (1995)’s algorithm, applying dynamic programming

recursion to calculate both the expected cost and the optimal recourse

policy.

C1-R2: Yang et al. (2000)’s cluster-first-route-second algorithm.

R1-C2: Yang et al. (2000)’s route-first-cluster-second algorithm.

SA-1: Teodorovic and Pavkovic (1992)’s simulated annealing algorithm with

first stage SA being omitted.

SA-2: Teodorovic and Pavkovic (1992)’s simulated annealing algorithm with

first stage SA being used to find a satisfactory initial solution.

3.4.1 Computational Results

3.4.1.1 Multiple Vehicle Routing Algorithms

We examine the demand pattern for both truncated normal distribution and

uniform distribution. Originally, SA algorithm is included in the comparison.

However, its performance is quite bad, with both expected cost and computational time

several times greater than those of the other heuristics. Since it is obvious that the SA

algorithm is the worst, it is included only in the comparison for single vehicle routing

but not in the comparison for the multiple vehicle routing.

1) Uniform Distribution

Uniform Distribution --Performance with the increase of problem size

 42

Chapter 3 Comparative Study of Algorithms for VRPSD

Solution Quality with the Increase of Problem Size

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

20 30 40 50 60 70 80 90 100 110

Problem Size

Ex
pe

ct
ed

 C
os

t

B-1
C1-R2
R1-C2
B-2

 Figure 3.1 Expected Cost with the Increase of Problem Size
(Demands follow uniform distribution U[0, 20])

 43

Chapter 3 Comparative Study of Algorithms for VRPSD

Here, we assume that all demands are generated from the uniform distribution.

We examine two demand cases: U[0, 20] and U[0, 55], where Case 1 has relatively

lower mean with respect to vehicle capacity Q. Figures 3.1 and 3.2 illustrate the

solution quality and computational time of Case1 respectively. From Figure 3.1, it is

clear that, with the increase of problem size, the expected cost increases linearly for all

of the algorithms studied. The solution quality differs slightly when the problem size is

small. When problem size becomes larger, R1-C2 performs slightly better than the

other three algorithms. B-1 and B-2 perform almost equally the worst, leaving C1-R2

in between. Regarding the number of vehicles used, both R1-C2 and C1-R2 use fewer

vehicles than B-1 and B-2.

Computational Time w ith the Increase of Problem Size

0

20

40

60

80

100

120

140

160

20 30 40 50 60 70 80 90 100 110

Problem Size

C
om

pu
ta

tio
na

l T
im

e

B-1
C1-R2
R1-C2
B-2

Figure 3.2 Computational Time with the Increase of Problem Size
(Demands follow uniform distribution U[0, 20])

Figure 3.2 shows the computational time taken by the algorithms against problem

sizes. It is noted that B-2 takes very little time, while R1-C2 takes the longest time. For

the other two algorithms, B-1 runs faster than C1-R2. Computational time of R1-C2

also increases fastest with the increase of problem size. Details of the average case

performance regarding both solution quality and computational time can be seen in

Table 3.1.

 44

Chapter 3 Comparative Study of Algorithms for VRPSD

 45

Chapter 3 Comparative Study of Algorithms for VRPSD

In Case 2, both B-1 and B-2 seem to perform better than in Case1. The

difference among the algorithms becomes even smaller in terms of expected cost and

number of vehicles used. With respect to the computational time, R1-C2 also takes the

most time, but B-1 ranks the second most in this case, followed by C1-R2, B-2 also

takes the least time. This implies that, in Case 2 where demand may take higher value,

solution quality of B-1 and B-2 become better, while B-1 also takes more

computational time.

Uniform Distribution --Performance with the increase of mean and variance

Figure 3.3 illustrates how solution quality of the algorithms performs with the

increase of demand mean and variance when the problem size is fixed at 60. Here the

x-axis (MEAN/Q) is the ratio between the demand mean and the vehicle capacity,

which represents the increase of demand mean and variance. Similar to the case with

the increase of problem size, as the demand mean and variance increase, the expected

cost also increases linearly for all the algorithms examined. The difference between the

algorithms is marginal. Moreover, as the mean increases, the difference between B-1

(the worst) and the rest of the algorithms becomes even smaller. Nevertheless, we still

can see that R1-C2 performs the best among all the algorithms studied.

 46

Chapter 3 Comparative Study of Algorithms for VRPSD

Solution Quality with the Increase of Mean and Variance

900

1100

1300

1500

1700

1900

2100

2300

2500

2700

2900

0.0833 0.125 0.1667 0.2083 0.25 0.2917 0.3333 0.375 0.4167 0.4583

MEAN/Q

Ex
pe

ct
ed

 C
os

t

B-1
C1-R2
R1-C2
B-2

Figure 3.3 Expected Cost with the Increase of Demand Mean and Variance
(Problem size n = 60)

 47

Chapter 3 Comparative Study of Algorithms for VRPSD

Computational time taken is similar to that illustrated in Figure 3.2, as can be

observed in Figure 3.4. R1-C2 consumes the most time, and B-2 takes the least time.

As demand mean grows, the computational time of B-1 increases fastest, while C1-R2

increases very slowly. Therefore, when demand mean approaches 25% or more of the

vehicle capacity, B-1 takes more time than C1-R2. Detailed numerical results are

presented in Table 3.2.

Computational Time with the Increase of Mean and Variance

0

5

10

15

20

25

30

35

40

45

50

0.0833 0.125 0.1667 0.2083 0.25 0.2917 0.3333 0.375 0.4167 0.4583

MEAN/Q

C
om

pu
ta

tio
na

l T
im

e

B-1
C1-R2
R1-C2
B-2

 Figure 3.4 Computational Time with the Increase of Demand Mean and Variance

(Problem size n = 60)

 48

Chapter 3 Comparative Study of Algorithms for VRPSD

 49

Chapter 3 Comparative Study of Algorithms for VRPSD

2) Normal distribution

The performance of the algorithms when demands follow normal distribution is

similar to that when demands follow uniform distribution. Some observations are as

follows.

Normal Distribution -- Performance with the increase of problem size

Solution Quality with the Increase of Problem Size

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

20 30 40 50 60 70 80 90 100 110

Problem Size

Ex
pe

ct
ed

 C
os

t

B-1
C1-R2
R1-C2
B-2

Figure 3.5 Expected Cost with the Increase of Problem Size
(Demands follow normal distribution N(30,25))

Here, we assume that all demands are generated from the truncated normal

distribution N(30, 25). In terms of solution quality, in this case, as problem size

 50

Chapter 3 Comparative Study of Algorithms for VRPSD

becomes larger, the algorithms R1-C2, B-1 and B-2 tend to outperform the C1-R2

algorithm. C1-R2 performs the worst, with the performance of the other algorithms

being very similar to one another. Detailed results for the solution quality are

illustrated in Figure 3.5.

With respect to the computational time, in this case, B-1 takes the most time as

compared to the other three heuristics; B-1 also increases fastest as problem size

grows. R1-C2 ranks the second most, B-2 still takes the least time. The difference

among the number of vehicles used is marginal in this case.

Computational Time with the Increase of Problem Size

0

50

100

150

200

250

300

350

20 30 40 50 60 70 80 90 100 110

Problem Size

C
om

pu
ta

tio
na

l T
im

e

B-1
C1-R2
R1-C2
B-2

Figure 3.6 Computational Time with the Increase of Problem Size
(Demands follow normal distribution N(30,25))

Normal Distribution -- Performance with the increase of mean

We examined the case where problem size is 20. Here the x-axis (MEAN/Q) is

the ratio between the demand mean and the vehicle capacity, which represents the

 51

Chapter 3 Comparative Study of Algorithms for VRPSD

increase of demand mean. Results for solution quality and computational time are

illustrated in Figure 3.7 and Figure 3.8 respectively. For most of the demand mean

ranges, the expected cost increases linearly with the increase of demand mean.

However, when the demand mean approaches 75% or more of the vehicle capacity, the

expected cost begins to decrease. Result also reveals that, as demand mean grows

larger, both B-1 and B-2 performs better than R1-C2 and C1-R2. The performance of

the later two algorithms is quite similar in this case.

Solution Quality with the Increase of Mean

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

0.0833 0.1667 0.25 0.3333 0.4167 0.5 0.5833 0.6667 0.75 0.8333

MEAN/Q

Ex
pe

ct
ed

 C
os

t

B-1
C1-R2
R1-C2
B-2

Figure 3.7 Expected Cost with the Increase of Demand Mean
(Problem size n = 20, demand variance = 25)

Since the problem size is relatively small, the computational time is less than 3

CPU seconds for all the four algorithms. Based on findings obtained when demands

follow uniform distribution, we can expect that, when problem size is large, the

 52

Chapter 3 Comparative Study of Algorithms for VRPSD

difference in terms of both solution quality and computational time among algorithms

can grow larger.

Normal Distribution -Performance with the increase of variance

Our results show that, with the increase of demand variance, the expected cost,

the number of vehicles used and the computational time are all almost the same, which

indicates that variance does not have much influence on the algorithm performance.

Figure 3.8 shows how the algorithms behave with the increase of demand variance

with respect to solution quality.

Solution Quality with the Increase of Variance

835

840

845

850

855

860

865

870

875

5 15 25 35 45 55 65 75 85 95 105

Variance

Ex
pe

ct
ed

 C
os

t

B-1
C1-R2
R1-C2
B-2

Figure 3.8 Expected Cost with the Increase of Demand Variance
(Problem size n = 20, demand mean = 20)

3.4.1.2 Single Vehicle Routing Algorithms

From the comparison of the multiple vehicle routing, it is obvious that the

algorithms are not quite sensitive to the demand distribution type. Therefore, for single

 53

Chapter 3 Comparative Study of Algorithms for VRPSD

vehicle routing problem, we only examine the demand pattern following uniform

distribution.

Performance with the increase of problem size

Similar to the multiple vehicle routing, the expected cost increases linearly as

problem size grows larger, as can be seen in Figure 3.9.

Solution Quality with the Increase of Problem Size

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

2700

2900

3100

20 30 40 50 60 70 80 90 100 110

Problem Size

Ex
pe

ct
ed

 C
os

t

B-1
C1-R2
R1-C2
B-2
SA-1
SA-2

Figure 3.9 Expected Cost with the Increase of Problem Size
(Single vehicle, demands follow uniform distribution U[0,20])

However, in this case, solution quality of C1-R2 seems to be the best, and SA-1

and SA-2 appear to be the worst. When the problem size is small, the difference

 54

Chapter 3 Comparative Study of Algorithms for VRPSD

between the algorithms is little; while as problem size grows, both SA-1 and SA-2 tend

to divert greatly from the others.

Regarding the computational time, both implementations of SA take a lot of

computational time. Though the computational time increases with the increase of

problem size, it fluctuates greatly. The solution quality of SA-1 and SA-2 is very close,

but SA-2 seems to take even more time. As we can expect from the solution quality,

C1-R2 takes relatively more time compared to the other three algorithms, B-2 takes the

least time, B-1 ranks the second least, and computational time of R1-C2 is very similar

to that of C1-R2. Refer to Figure 3.10. Detailed computational results can be found in

Table 3.3.

Computational Time with the Increase of Problem Size

0

50

100

150

200

250

300

350

400

450

20 30 40 50 60 70 80 90 100 110

Problem Size

C
om

pu
ta

tio
na

l T
im

e

B-1
C1-R2
R1-C2
B-2
SA-1
SA-2

Figure 3.10 Computational Time with the Increase of Problem Size

(Single vehicle, demands follow uniform distribution U[0,20])

 55

Chapter 3 Comparative Study of Algorithms for VRPSD

 56

Chapter 3 Comparative Study of Algorithms for VRPSD

Performance with the increase of mean and variance

As demand mean and variance grow larger, the expected cost of the algorithms

grows approximately linearly, see Figure 3.11. Here the x-axis (MEAN/Q) is the ratio

between the demand mean and the vehicle capacity, which represents the increase of

demand mean and variance.

Solution Quality with the Increase of Mean and Variance

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

0.0833 0.125 0.1667 0.2083 0.25 0.2917 0.3333 0.375 0.4167 0.4583

MEAN/Q

Ex
pe

ct
ed

 C
os

t B-1
C1-R2
R1-C2
B-2
SA-1
SA-2

Figure 3.11 Expected Cost with the Increase of Demand Mean and Variance
(Single vehicle, problem size n =20)

 57

Chapter 3 Comparative Study of Algorithms for VRPSD

However, in this case, the expected cost of both SA-1 and SA-2 has some

fluctuations. Results in Table 3.4 show that, C1-R2 is best, SA-1 and SA-2 are almost

equally the worst, leaving R1-C2, B-1 and B-2 in between. The difference between the

algorithms is not substantial. However, we can predict that, as the problem size

increases, the difference between SA and the other algorithms can grow larger.

Since the problem size is small, the computational time is very little except that

of the SA-1 and SA-2. The computational time for SA-1 and SA-2 is not only very

long but also fluctuates greatly, without clear trend of increase with the increase of

demand mean and variance.

 58

Chapter 3 Comparative Study of Algorithms for VRPSD

 59

Chapter 3 Comparative Study of Algorithms for VRPSD

3.4.2 Performance Analysis of the Algorithms

1) Common observations for all of the algorithms

Sensitivity analysis

An algorithm is said to be sensitive if it performs well in one case, but badly in

the others. Generally, the algorithms examined are not very sensitive to demand

distribution, problem size, increase of demand mean and/or variance. Some

observations are summarized below.

Demand distribution. For all the four algorithms, under the same problem size, the

expected cost when demand follows normal distribution is slightly lower than that

demand follows uniform distribution. This observation is consistent with the result of

Bertsimas et al. (1995). Moreover, B-1 seems to take more computational time in the

case of normal distribution. On the contrary, Yang et al. (2000)’s algorithms seem to

take more time in the case of uniform distribution.

Increase of demand mean. The solution quality of B-1 and B-2 tends to improve more

compared with the other algorithms as demand mean increases. However, as demand

mean grows, the computational time of B-1 also increases fastest.

Increase of problem size. In multiple vehicle routing, R1-C2 performs better when

problem size is large with respect to other algorithms. In single vehicle routing, C1-R2

performs better when there are more demand points.

Increase of demand variance. Results indicate that the increase of demand variance

does not have much influence on the performance of the algorithms.

 60

Chapter 3 Comparative Study of Algorithms for VRPSD

Solution quality

Problem size. The expected cost increases linearly as problem size grows.

Demand mean. As demand mean increases, the expected cost also increases, with the

exception that, when demand follows normal distribution and when demand mean is

75% or more of the vehicle capacity, the expected cost begins to decrease. This may be

due to the following reason: When demand follows normal distribution and demand

mean is relatively large compared with the vehicle capacity, the probability that

demand takes very small value is almost zero; while when demand follows uniform

distribution, the probability that demand takes any value from zero to maximum

demand possibility is the same.

Demand variance. The solution quality is not influenced by the demand variance.

We observe that in single vehicle routing, with respect to solution quality, C1-R2

performs best, SA-1 and SA-2 perform the worst, leaving R1-C2, B-1 and B-2 almost

equally in between. While in multiple vehicle routing, R1-C2 seems superior to the

others. B-1 and B-2 behave better when demand mean is high.

Computational time

Except for B-2 in multiple vehicle routing and SA-1 and SA-2 in single vehicle

routing, it is usually the case that, the algorithm with better solution quality takes

relatively more time.

 61

Chapter 3 Comparative Study of Algorithms for VRPSD

Comparing B-1 with B-2, the solution quality is almost the same. However, B-1

is much more time consuming. As described in Section 3.1, Equation (3.1) is used to

calculate the expected cost. At each demand point, as stated in Bertsimas (1992), the

two probabilities γi and δi are calculated recursively, which is very time consuming.

When comparing B-2 with Yang et al. (2000)’s algorithms, though all of them

employ dynamic programming procedure to evaluate the expected cost, B-2 takes very

little time, because the cyclic heuristic only involves comparing the n permutations,

while in Yang et al. (2000)’s algorithms, the Or-opt and the other possible improving

procedures, require many comparisons. Therefore, though Yang et al. (2000)’s

algorithms adopted the approximate dynamic programming procedure to calculate the

insertion cost, it still takes more time.

Similarly, in single vehicle routing, the solution quality of SA-1 does not differ

greatly from SA-2, though SA-2 takes more computational time. This means that, the

first stage SA which is used to find a satisfactory initial solution does not seem to be

quite effective.

2) Characteristics of certain algorithms

Our results for Yang et al. (2000)’s algorithms show that, for the multiple vehicle

routing, R1-C2 is slightly better than C1-R2 with respect to solution quality. However,

the former takes more computational time than the later. This result agrees with the

result in Yang et al. (2000).

The result from SA is not good in comparison with the other heuristic algorithms

with respect to both solution quality and computational time. Moreover, it seems that

there are some randomness involved in both the solution quality and computational

time. The poor performance of this SA may be due to the following reasons:

 62

Chapter 3 Comparative Study of Algorithms for VRPSD

1) In the first stage of SA, generating route sets randomly may not be a good idea

comparing with other possible more systematic neighborhood generation

mechanisms.

2) In the second stage, the neighborhood structure (just exchange one node with

another randomly selected node) also may not be so efficient.

The randomness in generating the initial tour and the neighborhood solutions is also

the main reason of the long computational time. Trying other neighborhood generation

mechanism, such as Or-opt, may be worthwhile.

3.5 Summary and Conclusions

In this chapter, we present a comparative study on some algorithms for solving

the vehicle routing problems with stochastic demands. We examine the performance of

these algorithms in various situations with respect to problem size and demand pattern,

in order to determine which algorithm is superior to the others. Our study reveals that,

except for the SA algorithm, the differences among the other algorithms examined are

not substantial. From the aspect of practical application, our study suggests that B-2 is

the best candidate, because it takes very little computational time, with solution quality

comparable to the other heuristics. However, if the decision maker regards the solution

quality as more important, in single vehicle routing, C1-R2 is a good choice; while in

multiple vehicle routing, R1-C2 tends to be better. Due to the good solution quality of

the Yang et al. (2000)’s algorithms, they are employed as a performance measurer in

Chapter 4 to evaluate the metaheuristics proposed for the VRPSD.

 63

Chapter 4 Metaheuristics for VRPSD

Chapter 4

Metaheuristics for Vehicle Routing Problem with Stochastic Demands

In Chapter 3, a comparative study was carried out for the algorithms presented in

Bertsimas et al. (1995), Yang et al. (2000) and Teodorovic and Pavkovic (1992). The

comparative study shown that the SA algorithm based on the original neighborhood

generation method and cooling schedule performed quite badly in comparison with the

other heuristic algorithms with respect to both solution quality and computational time.

However, this does not mean that SA algorithm is not suitable for VRPSD, because the

performance of a SA algorithm depends greatly on the neighborhood generation

mechanism and the cooling schedule. Thus, in this chapter, we try to examine how

modern metaheuristics behave for the VRPSD.

 To examine the performance of the proposed metaheuristics, the computational

results of the proposed algorithms are compared with the results from the algorithms

presented in Yang et al. (2000). In Yang et al. (2000), under the assumption that

demand follows discrete triangular distribution, they claimed that, for single vehicle

case, with small problem size (n = 8 and n = 10), their algorithm provides solutions

with at most 1% average deviation from the optimal solution; for multiple vehicle case,

with problem size at 10, 12 and 15, the deviation from the optimum is at most 3.3%.

Moreover, computational results of the comparative study in Chapter 3 also shown

that, among the heuristics compared, Yang et al. (2000)’s algorithms perform the best

in terms of solution quality. Since Yang et al. (2000)’s algorithms perform very well

for the VRPSD, we employ them as a performance measurer in this chapter.

 64

Chapter 4 Metaheuristics for VRPSD

4.1 Metaheuristics for Single VRPSD

4.1.1 Initial Solution and Generation of Neighborhood Solutions

One important element that determines the performance of metaheuristics is the

neighborhood generation mechanism. In this study, we employ the same neighborhood

generation method for each of the three algorithms so that we can examine the

performance of the algorithm itself. The neighborhood generation method is described

below.

Given a current solution, a neighborhood solution can be obtained by relocating a

node from its current location to a position between two other neighbor nodes in the

tour. Bentley (1992) called this move a 2.5-opt, because it is a special and simple form

of 3-opt (Lin, 1965). Here, in this study, we restrict the relocation of the node to only

one of its nearest neighbors rather than elsewhere in the tour. Specifically, for each

node, find ϖ nearest neighbors and build a neighbor list of sizeϖ . To generate a

neighborhood solution for node i, first generate a random number b in the range 1

toϖ , then find the node j which is bth nearest neighbor in node i’s neighbor list,

remove node i from its current position and put it before or after node j. The neighbor

list size ϖ should be set to a suitable value. If ϖ is too small, the solution will have

difficulty in escaping from the local optimum; if ϖ is too large, the procedure tends to

become a random search. In this study, the neighbor list size ϖ is set as follows:

⎩
⎨
⎧

⎤⎡

≤
=

otherwise10

20if4

n

n
ϖ

To examine whether the metaheuristics are sensitive to the initial solution, we

generate the initial solution in the following three ways: a random tour, a tour

 65

Chapter 4 Metaheuristics for VRPSD

generated from the nearest neighbor heuristic (Rosenkrantz et al., 1977), and a tour

generated based on the space-filling curve heuristic (Bartholdi and Platzman, 1982).

The effect of the initial solution on the algorithm is discussed in Section 4.3.1.

4.1.2 The Simulated Annealing and Threshold Accepting Algorithms

The name simulated annealing (SA) was originated from the physical annealing

process. Kirkpatrick et al.(1983) proposed that the concept form the basis of an

optimization technique for combinatorial and other problems. The basic idea of SA is

to provide for small random perturbations and to compute the amount of changes in

objective function value. A typical feature of a SA algorithm is that, in addition to

accepting improvements in objective function value, it also accepts deteriorations in

objective function value with a certain probability. Initially, a large value of a control

parameter, called temperature, is used to evaluate the probability of accepting an

unfavorable move. At the start, large deteriorations can be accepted; as temperature

decreases, only smaller deteriorations will be accepted. This feature makes SA, in

contrast to the local search algorithms, be able to escape from local minima without

losing the favorable features of local search algorithms: simplicity and flexibility. SA

is one of the metaheuristics proposed for the combinatorial problems. Ever since its

introduction, SA has been applied to a large number of combinatorial optimization

problems. Some of the applications of SA in solving VRP include: Alfa et al. (1991),

Osman (1993), Hiquebran et al. (1994), etc.

Threshold accepting (TA), introduced in Dueck and Scheuer (1990), is a

deterministic analog to SA. The main difference is the rule of accepting worse

neighborhood solutions. SA accepts a worse solution according to the acceptance

 66

Chapter 4 Metaheuristics for VRPSD

probability; while TA accepts a worse one if the deterioration is within a certain

threshold value. The threshold value is decreased as the algorithm proceeds, and

finally approaches zero when the algorithm terminates. One advantage of TA over SA

is that, it is not necessary to compute probabilities or to make random decisions,

making the algorithm even simpler. In Dueck and Scheuer (1990), they claim that TA

yields better results than SA. An extensive introduction to TA is given in Winker

(2000).

4.1.2.1 Thermal Equilibrium Condition in the SA and TA Procedures

To ensure the asymptotic convergence to the global optimal solution, the thermal

equilibrium of the SA (TA) procedure should be attained at each temperature. One way

to achieve thermal equilibrium is that, at a certain temperature, the objective function

value does not change for several consecutive transitions. In Teodorovic and Pavkovic

(1992), the thermal equilibrium is defined as follows: within each temperature, they set

a maximum number of generations to perform; within each generation, a fixed number

of transitions are carried out. Once a generation is finished, the total cost of all the

transitions within the generation is recorded and another generation is performed. If the

relative percentage change in the total cost between the current and the previous

generations is less than a predefined thermal equilibrium factor ε , the thermal

equilibrium is reached at the particular temperature and the temperature is lowered. In

Hiquebran et al. (1994), thermal equilibrium is defined in a similar way. However,

they used the cost of the final transition of each generation as an evaluation measure.

In our study, we employ the one used in Teodorovic and Pavkovic (1992).

 67

Chapter 4 Metaheuristics for VRPSD

4.1.2.2 The Procedure Involved in the SA and TA Algorithms

The SA algorithm involves the following steps:

Step 1: Initialization:

 1.1: Generate an initial tour. Calculate the expected cost according to the DP

recourse procedure described in Section 3.1.3. Denote it as Lold.

 1.2: Select an initial temperature > 0 and a temperature reduction factor α.

Set t

0t

i = t0, i = 0, and set total number of different temperatures needed to

no_t.

Step 2: Set initial generation_count = 0, total number of generations = no_gen; set the

length of the total routes in the last generation Totallast = , and the length of

the total routes in the current generation Total

∞

current = 0.

Step 3: Select a node in the current route; generate a neighborhood solution as

described in Section 4.1.1. Calculate the expected cost for the new route,

denoted as Lnew. Calculate the difference between the new and the old route,

= L∆ new-Lold. If < 0, go to Step 5. ∆

Step 4: Generate a uniformly distributed random number rand∈[0,1]. Calculate the

acceptance probability prob = exp(- ∆ /ti). If rand < prob, go to Step 5;

otherwise, keep the old route and its expected cost. Go to Step 6.

Step 5: Record the new route and its expected cost.

Step 6: Update the total route length of the current generation Totalcurrent by adding

the length of the current route to Totalcurrent. If the neighborhood solutions for

all n nodes have been examined 3 times, go to Step 7. Otherwise go to Step 3

to examine the next node.

Step 7: Check whether thermal equilibrium has been reached at temperature ti by

testing ε<− currentlastcurrent TotalTotalTotal / , where ε is a predefined thermal

 68

Chapter 4 Metaheuristics for VRPSD

equilibrium factor. If the above inequality holds, go to Step 8. Otherwise,

update the total route length of the last generation by replacing Totallast with

Totalcurrent if Totalcurrent < Totallast. Increase the generation_count by 1. If

generation_count > no_gen go to Step 8 else go to Step 3.

 Step 8: If the expected cost of the current solution does not change over the last 10

consecutive temperatures ti, or a predefined maximum number of

temperatures no_t have been performed, stop the algorithm and return the

current route and its expected cost as the final solution.

Step 9: Lower the temperature by setting α*1 ii tt =+ . Set i = i+1 and go to Step 2.

The steps involved in the TA algorithm only differ from those in SA in the

following ways:

1) In Step 1.2, instead of setting a temperature, we set a threshold value threshold.

2) In Step 4, we just compare ∆ with the threshold value, if < threshold, go to

Step 5; otherwise, keep the old route set and its expected cost and then go to

Step 6.

∆

3) The threshold value decreases at the same reduction rate α . That is, threshold

= threshold*α .

4.1.2.3 Parameter Setting in the SA Algorithm

Initial temperature t0

To ensure that the final solution is independent of the starting solution, the initial

temperature should be high enough; however, a too high initial temperature will

undoubtedly increase the computational time. An appropriate t0 can be determined by

 69

Chapter 4 Metaheuristics for VRPSD

ensuring the initial acceptance ratio A0=ψ (t0), which is defined by the ratio between

the number of accepted transitions and the number of all transitions, is close to 1. First

start at a sufficiently high t0, and lower it rather quickly until the acceptance ratio

reaches a prescribed value. Our computational experience shows that, t0 = 40 is an

appropriate initial temperature for the SA algorithm.

Temperature reduction factorα

For the temperature reduction factorα , literature suggests to use values between

0.8 and 0.99. We set α = 0.9.

Final temperature tf and number of temperatures no_t

The final temperature should be low enough to guarantee that no worse solutions

are accepted. Suppose we consider tf to be low enough, when cost increase as large as

0.5 is accepted with very low probability (such as prob = 0.001). The final temperature

can be calculated based on the equation prob = exp(-∆ /tf), which is about 0.072. With

the initial temperature t0 = 40 and α = 0.9, the total number of temperatures no_t can

be determined by the equation , which leads to no_t = 60. tno
f tt _

0 *α=

Thermal equilibrium factor ε and number of generations at each temperature

no_gen

The number of generations at each temperature is usually related to the size of

the neighborhoods or the solution space. In this study, we set no_gen = 300. However,

we perform 3*n transitions within each generation. Therefore, with the increase of

problem size, the number of transitions performed at each temperature also increases.

Nevertheless, no_gen = 300 is actually the maximum number of generations set for

 70

Chapter 4 Metaheuristics for VRPSD

each temperature, we allow the actual number of generations performed to vary from

temperature to temperature, because not every segment of the cooling process is

equally important. In the cooling process, most useful work is done in the middle of

the schedule. Thus, it may be advantageous to search the beginning and the end parts

of the temperature range quickly, using the time saved to allow slower and more

elaborate cooling in the middle. In this study, this is done by properly setting the

parameter ε , which determines whether thermal equilibrium is reached. By repeatedly

fine-tuning, we set ε = 0.2 for the first and the last 10 temperatures, and set ε = 0.03

for the 40 temperatures in between. As a result, less number of generations is

performed at the beginning and the end of the cooling procedure. This is reasonable, as

we can see from Table 4.1, during the first 10 temperatures, temperature drops from 40

to about 13.9, and the maximum allowable increase of the objective function value

drops from 280 to 97.6. If we set ε to be a very low value, it is very difficult to reach

the thermal equilibrium in this situation, which will result in long computational time.

For the last 10 temperatures, both temperature value and the maximum allowable

increase in cost are quite low, which indicates that the algorithm has already started to

converge toward local optimum, therefore we should speed up the cooling process and

quickly converge the solution to the targeted local optimum. Since different problems

may not require the same number of temperatures to converge, to further save the

computational time, we terminate the algorithm when the solution quality does not

improve for about 10 consecutive temperatures.

Table 4.1 Temperature & maximum allowable increase in cost in different cooling
stages

Number of Temperatures 1 10 50 60

Temperature value 40 13.95 0.21 0.07

Maximum Allowable Increase in Cost 280 97.63 1.44 0.50

 71

Chapter 4 Metaheuristics for VRPSD

4.1.2.4 Parameter Setting in the TA Algorithm

For TA, the parameters are set similarly except for the threshold value. In TA,

threshold value corresponds to temperature in SA. The initial threshold value is set

equal to 40 when n < 60 and 60 otherwise. We also set the threshold reduction rate α

= 0.9.

4.1.3 The Tabu Search Algorithm

Tabu search is an iterative procedure designed for the solution of optimization

problems. It was first proposed by Glover and has been used to solve a wide range of

hard combinatorial optimization problems (Glover and Laguna, 1997). To avoid being

trapped in local optima, one needs to accept a move even when it makes the current

solution worse. However, when a worse solution is accepted, cycling may occur; that

is, the move may take us right back to the local optimum we just left or to some other

recently visited solutions. This is where the TS algorithm comes in by keeping

information about the moves most recently made in one or more tabu lists, to forbid or

penalize certain moves that would return to a recently visited solution. Three general

components are usually incorporated in TS to direct the search trajectory: tabu

restrictions and aspiration criteria, short-term and long-term memory structures, and

intensification and diversification strategies. Tabu restrictions are the tabu lists that

keep track of recently examined solutions to avoid cycling. Aspiration criteria provide

exceptions to the general tabu rules to allow a move to be performed provided the

move is considered as good enough. Intensification is the exploration of a promising

neighborhood, such as the neighborhood of a previously found good solution; while

 72

Chapter 4 Metaheuristics for VRPSD

diversification aims to search in previously unexplored regions of the solution space.

Both of these strategies are realized by means of short-term and long-term memory

structures. TS is one of the major metaheuristics that have been successfully applied in

solving combinatorial optimization problems. Successful applications of TS in the area

of vehicle routing problems can be found in Taillard (1993), Osman (1993), Fiechter

(1994), Gendreau et al. (1994), Potvin et al. (1996), Duhamel et al. (1997), Taillard et

al. (1997), Gendreau et al. (1999), etc.

4.1.3.1 The Main Components and the Parameter Setting in the TS Algorithm

To get the best performance in terms of both solution quality and computational

time, we repeatedly fine-tune the parameters in the algorithm. The total number of

iterations, NoIter, is set to 600. We set the other parameters as follows:

The neighborhood size neighbor_size

For a given current solutionΧ , the complete neighborhoods of , N(), contain

all combinations of repositioning each of the n nodes according to the neighborhood

generation method. At the current iteration, when we try to find a solution among a

selected subset of N() for possible acceptance, we should consider the tradeoff

between the quality of and the effort spent on finding it, which is mainly determined

by the size of the neighborhood. In this study, we restrict the number of neighborhood

solutions generated from the current solution to neighbor_size. That is, we first

randomly select neighbor_size nodes, then generate a neighborhood solution for each

selected node. Our computational experience shows that best result in terms of both

Χ Χ

Υ

Χ

Υ

 73

Chapter 4 Metaheuristics for VRPSD

solution quality and computational time can be obtained when we set neighbor_size as

follows:

⎪⎩

⎪
⎨
⎧

⎤⎡

≤⎤⎡
=

otherwise3

20if2

n

nn
izeneighbor_s

 Tabu list - recency based memory

Suppose in the current solution, we accept a move in which a node is removed

from its current position and put to one of its nearest neighbors. The move that tries to

reposition the same node again is tabu for the next NoTabu iterations. Specifically, we

can use TabuListi to record the tabu status for each node i. In this study, the tabu tenure

NoTabu is set as follows:

⎩
⎨
⎧

⎤⎡

≤
=

otherwise

20if5
2/1n

n
NoTabu

This means that as problem size increases, tabu tenure also increases to avoid

searching certain solutions too often and therefore search all possible regions of the

solution space.

Diversification - Frequency based memory

The strategy of diversification encourages the search process to examine

unvisited regions and to generate solutions that are significantly different from those

recently visited. We use FreqDiverij to record the frequency of repositioning node i

from its current location to the location immediately before or after its jth nearest

neighbor. Once such a move is accepted, the frequency FreqDiverij is incremented by

1. Then we penalize such a move by adding a diversification penalty, Diver_Penalty =

Diverα * FreqDiverij, to the expected cost of this move, where Diverα is a predetermined

diversification factor. Certainly, we should not avoid visiting the previously visited

moves forever. Therefore, after every NoReset (set to 100 in this study) iterations, we

 74

Chapter 4 Metaheuristics for VRPSD

reset the frequency variable FreqDiverij to 0. And all moves are eligible again in terms

of frequency based memory.

In this study, the diversification factor Diverα is set dependent on the performance

of the move. If the move is better than the current solution, we set Diverα = 0.5;

otherwise, we set Diverα = 2. In this way the worse solutions are more heavily

penalized and hence they are less likely to occur frequently.

Intensification

Intensification aims to direct the search process to examine the neighbors of an

elite solution. One intensification strategy employed in this study is to keep a current

best solution. When the current best solution has not been improved for NoNonImp

iterations, the current best solution is employed as the current solution, because its

immediate neighborhoods are attractive regions, therefore should be searched more

thoroughly.

In this study, we set NoNonImp = 200 iterations.

Aspiration criteria

In the searching process, we keep record of a current best solution. If a move is

found to be better than the current best solution, it is accepted without considering its

tabu status.

4.1.3.2 Procedure Involved in the TS Algorithm

The TS algorithm involves the following steps:

Step 1: Initialization

1.1 Generate an initial tour. Calculate the expected cost according to the DP

recourse procedure described in Section 3.1.3.

 75

Chapter 4 Metaheuristics for VRPSD

1.2 Set iteration_count = 0; initialize TabuListi, FreqDiverij.

Step 2: Set neighbor_count = 0, zBestMove =∞ .

Step 3: Randomly select a node in the current route, generate a candidate move and

calculate its expected cost z. If the move satisfies the aspiration criteria go to

Step 5; if it is tabu go to Step 6; otherwise, go to Step 4.

Step 4: Calculate Diver_Penalty for this neighborhood move. Set z = z +

Diver_Penalty. If z z≥ BestMove go to Step 6.

Step 5: Mark the current candidate move as the best move, and set zBestMove = z.

Step 6: Increment the neighbor_count by 1. If neighbor_count < neighbor_size go to

Step 3.

Step 7: If a best move has been selected, update the TabuList, FreqDiver and the

current solution. If the current best solution is worse than the selected best

move, update it. If the current best solution has not been improved for

NoNonImp iterations, employ the current best solution as the current solution.

Step 8: Increment the iteration_count by 1. If iteration_count < NoIter go to Step 2.

Step 9: Stop the algorithm and return the current best solution as the final solution.

4.2 Simulated Annealing and Threshold Accepting Algorithms for Multiple

VRPSD

4.2.1 Generation of Neighborhood Solutions

Similar to the neighborhood structure described in Section 4.1.1 for single

vehicle case, here, we also adopt the 2.5-opt (Bentley, 1992) move to generate

neighborhood solutions. The difference is that, we allow the relocation within the

 76

Chapter 4 Metaheuristics for VRPSD

node’s own tour and other tours as well: a node i can move within its own route or to

other existing routes, depending on which route node j, the selected neighbor of node i,

is in. This neighborhood generation method allows the elimination of an existing route.

As in the single vehicle case, the neighbor list size ϖ changes with the problem

size n. Moreover, it also changes with different cooling stages of the SA (TA)

procedure. At the beginning of the search procedure, transitions with large

deteriorations in cost should be provided for possible acceptance. As the search

proceeds, the ability that SA (TA) can accept large deteriorations in cost also

decreases. Therefore, the neighbor list size ϖ should also decrease. In our problem,

we divide the SA (TA) procedure into 3 stages; the corresponding neighbor list size ϖ

is as follows:

⎪
⎩

⎪
⎨

⎧

⎤⎡

⎤⎡

⎤⎡

=

stagethird20

stagesecond10

stagefirst5

n

n

n

ϖ

4.2.2 Determining the Number of Vehicles and the Initial Solution

In this study, the number of vehicles m is a decision variable. However, when

constructing the initial route set for the SA and TA, we have to roughly determine the

number of vehicles in advance. The neighborhood generation method, as described in

Section 4.2.1, allows the elimination of an existing route. Therefore, we can set an

upper bound for the number of vehicles m required by applying results from the

comparative study in Chapter 3. The initial solution of SA (TA) can be obtained by

first constructing a TSP tour for all nodes by using a TSP construction heuristic

(nearest neighbor heuristic, for example), then partitioning the TSP tour into tours.

−

m

−

m

 77

Chapter 4 Metaheuristics for VRPSD

4.2.3 Dealing with the Route Length Constraint

To satisfy the constraint that the total expected route length does not exceed a

prescribed value L, the search should be guided in favor of feasible solutions. This is

realized by adding a penalty element to the objective function. Suppose the expected

route length of a certain route π is)(πL , the penalized objective function would then

be , where [x]+−+=])([*)()(LLLF πρππ + = max (0, x), and ρ is a positive

parameter.

With respect to the route length constraint, in order to diversify the searching

process, it is not harmful to allow some infeasible solutions at the beginning. However,

to ensure that the final solution is feasible, parameter ρ should be set appropriately. In

this study, ρ is set to a relatively small value at the beginning and increased linearly

with the increase of iterations. Nevertheless, infeasible solutions still may occur in this

case though with very low probability. To overcome this problem, we add another

threshold accepting procedure (TA-infeasibility) along with the SA (TA) procedure. In

other words, we evaluate a solution according to two criteria: the solution quality and

the feasibility. This TA-infeasibility procedure allows infeasible solutions provided

that the total amount exceeded is within the threshold value. As threshold value

decreases, TA-infeasibility procedure can control accepting infeasible solutions in

terms of the extent of the infeasibility.

4.2.4 The Procedure Involved in the SA and TA Algorithms

The SA algorithm involves the following steps:

 78

Chapter 4 Metaheuristics for VRPSD

Step 1: Generate an initial route set by the procedure stated in Section 4.2.2. Calculate

the expected route length using the DP recourse procedure described in

Section 3.1.3. Denote it as Lold.

Step 2: Select an initial temperature > 0, a temperature reduction parameter α and

an initial threshold value threshold_infeasible0 for the TA-infeasibility

procedure. Set t

0t

i = t0, i = 0, and total number of different temperatures needed

to no_t.

Step 3: Set initial generation_count = 0, total number of generations = no_gen; set the

length of the total routes in the last generation Totallast = , and the length of

the total routes in the current generation Total

∞

current = 0.

Step 4: Select a node in the current route set; generate a neighborhood solution as

described in Section 4.2.1. For each route in the current route set, examine

whether the expected route length exceeds the predefined limit. Calculate the

total amount exceeded total_exceed for the whole route set. If total_exceed >

threshold_infeasible, keep the old route set and its expected route length. Go

to step 7; otherwise, calculate the expected route length for the new route set,

Lnew. Calculate the difference between the new and the old route set, ∆ =

Lnew-Lold. If < 0, go to Step 6. ∆

Step 5: Generate a uniformly distributed random number rand∈[0,1]. Calculate the

acceptance probability prob = exp(- ∆ /ti). If rand < prob, go to Step 6;

otherwise, keep the old route set and its expected route length. Go to step 7.

Step 6: Record the new route set and its expected route length.

Step 7: Update the total route length of the current generation Totalcurrent by adding

the length of the current route set to Totalcurrent. If the neighborhood solutions

 79

Chapter 4 Metaheuristics for VRPSD

for all n nodes have been examined 5 times, go to Step 8. Otherwise go to

Step 4 to examine the next node.

Step 8: Check whether thermal equilibrium has been reached at temperature ti by

checking whether ε<− currentlastcurrent TotalTotalTotal / , where ε is a

predefined thermal equilibrium factor. If the above inequality holds, go to

Step 9. Otherwise, update the total route length of the last generation by

replacing Totallast with Totalcurrent if Totalcurrent < Totallast. Increase the

generation_count by 1. If generation_count > no_gen go to Step 9 else go to

Step 4.

 Step 9: If the expected cost of the current solution does not change over the last 20

consecutive temperatures ti, or a predefined maximum number of

temperatures no_t have been performed, stop the algorithm and return the

current route set and its expected cost as the final solution.

Step 10:Lower the temperature by setting α*1 ii tt =+ . Set the value of threshold

_infeasible to be total_exceed, the total amount exceeded for the whole route

set of the current solution. Set i = i+1 and go to Step 3.

The steps involved in the TA algorithm only differ from those in SA in the

following ways:

1) In Step 2, instead of setting a temperature, we set a threshold value threshold.

2) In step 5, we just compare ∆ with the threshold value, if ∆ < threshold, go to

Step 6; otherwise, keep the old route set and its expected route length and then

go to step 7.

3) The threshold value decreases at the same reduction rateα , e.g., threshold =

threshold*α .

 80

Chapter 4 Metaheuristics for VRPSD

4.2.5 Parameter Setting in the SA and TA Algorithms

For the SA algorithm, the parameters are set as follows.

Initial temperature t0 and temperature reduction parameterα

In this study, the initial temperature t0 is determined by allowing a certain

percentage of deteriorations to be accepted at the beginning of the SA procedure.

Suppose the expected cost of the initial solution is Linitial, and the maximum allowable

percentage in cost increase is 10 %, then the initial t0 can be calculated due to the fact

that cost increase as large as 0.1*Linitial should be accepted with very low probability

(such as prob = 0.001). Based on the equation prob = exp(- /t∆ 0), where ∆ =

0.1*Linitial, we can calculate the t0. Our computational experience shows that, the

maximum allowable cost increase can be set at about 10 % of the expected cost of the

initial solution. The temperature reduction parameterα , is set at 0.9.

Final temperature tf and number of temperatures no_t

The final temperature tf and the total number of temperatures no_t are determined

in a similar way as described in Section 4.1.2.3.

Thermal equilibrium factor ε and number of generations at each temperature

no_gen

In this study, we set no_gen = 20, and we perform 5*n transitions within each

generation. At different stages of the cooling process, the thermal equilibrium factor ε

is set as follows: ε = 0.1 and ε = 0.03 for the first and last 10 temperatures, and ε =

0.002 for the temperatures in between.

 81

Chapter 4 Metaheuristics for VRPSD

Parameters in the TA-infeasibility procedure controlling the infeasibility of the

solutions

The initial value of threshold_infeasible, threshold_infeasible0, is set equal to the

total amount exceeded in the initial solution. In later iterations, threshold_infeasible

only changes when the temperature in SA (or threshold in TA) is lowered, it is set

equal to the total amount exceeded in the current solution. Here, we do not decrease

the value threshold_infeasible steadily as used in other studies, because the function of

this TA-infeasibility procedure is to control the infeasibility of the solutions.

Moreover, our computational experience shows that, if we decrease

threshold_infeasible steadily, the search process may have difficulty in finding an

acceptable solution in terms of feasibility during the search process, therefore it is

trapped in the current solution.

In TA, the parameters are set similar to those in SA, except that, the initial

threshold value is set equal to 1 % of the initial route length Linitial, which means that

the initial percentage of the allowable deteriorations is 1 %. We also set the threshold

reduction rate α = 0.9.

4.3 Computational Results and Analysis

To get the computational results, the algorithms are coded in VISUAL C++, and

run on a 500 MHZ Pentium II Processor with 128 MB RAM under Microsoft

Windows 98. The problem instances are generated similarly to those used in the

comparative study of Chapter 3. All demands Di are assumed to be identically and

independently distributed random variables following discrete uniform distribution.

 82

Chapter 4 Metaheuristics for VRPSD

To get a full picture of how these algorithms perform in different scenarios, the

performance of the algorithms is studied when demands follow uniform distribution in

the following two cases: with the increase of problem size and with the increase of

demand mean and variance.

4.3.1 Single Vehicle Routing Algorithms

Effect of the initial solution on the metaheuristics

For each of the metaheuristics, the search procedure starts from an initial tour. To

study the influence of the initial tour, three initial tours: randomly generated tour (RG),

tour generated from the nearest neighbor heuristic (NN), and tour generated by the

space-filling curve heuristic (SFC), are examined in this study.

Table 4.2 Effect of the initial solution on TS with the increase of problem size

Expected Cost Computational Time (s) Problem

Size (n) TS-NN TS-SFC TS-NN TS-SFC

20 558.51 570.23 8.4 8.5

40 956.54 946.03 23.6 23.5

60 1301.92 1296.61 56.4 56.5

80 1678.07 1653.43 103.7 105.0

100 2016.31 1995.14 159.1 160.0

120 2347.94 2317.77 235.1 240.4

For TS, we use TS-RG, TS-NN and TS-SFC to denote the TS algorithms

starting from a random generated tour, a NN tour and a SFC tour respectively. TS-RG

performs very badly. Therefore, we only present the computational results with the

increase of problem size and the increase of demand mean and variance (here we use

the ratio between the demand mean and the vehicle capacity to represent the increase

 83

Chapter 4 Metaheuristics for VRPSD

of demand mean and variance) for TS-NN and TS-SFC as illustrated in Table 4.2 and

Table 4.3 respectively. Table 4.2 and Table 4.3 show that, based on the same

parameters of TS, except for the case with the smallest problem size (n = 20) and the

largest demand mean and variance (Mean/Q = 0.4167), solution quality of TS-SFC is

better than that of TS-NN. However, their computational time is very close to each

other. Therefore, it seems that, TS-SFC behaves better than TS-NN. We select SFC as

the initial tour to the TS algorithm in the following computational study.

Table 4.3 Effect of the initial solution on TS with the increase of demand mean and
variance

Expected Cost Computational Time (s) Mean/Q

TS-NN TS-SFC TS-NN TS-SFC

0.0833 929.38 898.26 30.9 31.2

0.1667 1301.92 1296.61 56.5 56.4

0.2500 1713.41 1691.10 82.9 84.1

0.3333 2077.47 2067.81 110.1 111.6

0.4167 2434.70 2446.74 137.7 140.3

However, for the SA and TA algorithms, better initial solution does not

necessarily guarantee better final solution. Actually, the random initial tour performs

the best. Therefore, the random tour is adopted as the initial solution in the SA and TA

algorithms.

Comparison of performances of the metaheuristics

In the following parts, the performance of the proposed metaheuristics is

compared against Yang et al. (2000)’s single vehicle routing algorithm. Yang et al.

(2000)’s single vehicle routing algorithm is denoted as Y, and the proposed

metaheursitcs are denoted as SA, TA and TS respectively.

 84

Chapter 4 Metaheuristics for VRPSD

Performance with the increase of problem size

We investigate the performance of the algorithms with the increase of problem

size when demands follow uniform distribution U [0, 20]. Results are summarized in

Table 4.4.

Table 4.4 Comparison of algorithms with the increase of problem size

Expected Cost Computational Time (s) Problem

Size(n) Y1 TA2 SA3 TS4 Y TA SA TS

20 593.85 571.14 577.60 570.23 0.9 3.4 7.4 8.5

40 963.76 982.09 963.46 946.03 6.6 14.7 29.2 23.5

60 1350.36 1378.76 1348.83 1296.61 19.3 42.9 66.9 56.5

80 1700.06 1712.36 1716.64 1653.43 48.6 92.5 116.8 105.0

100 2095.65 2089.47 2061.05 1995.14 90.4 107.7 184.5 160.0

120 2462.10 2439.65 2431.40 2317.77 165.7 155.3 260.5 240.4

1 Yang et al. (2000)’s single vehicle routing algorithm.
2 Threshold accepting algorithm proposed in this study.
3 Simulated annealing algorithm proposed in this study.
4 Tabu search algorithm proposed in this study.

From Table 4.4, we observe that the solution quality of TS performs better than

that of the other heuristics in all problem instances studied. As problem size increases,

the superiority of TS over the other algorithms also increases, the largest improvement

occurs at problem size 120, where the improvement over the SA algorithm (best

among the other algorithms) is about 5%. Except for problem size 80, SA performs

better than Y; but for TA, it performs better than Y only when problem size is 20 or

greater than 80. With respect to the computational time, SA is the most time

consuming; though TS takes more computational time than Y, the difference between

the times taken by the two algorithms decreases as problem size increases; and TS

 85

Chapter 4 Metaheuristics for VRPSD

consumes less time than SA. For TA, it is the least time consuming among the three

metaheuristics. It even takes less time than Y at the largest problem size.

Performance with the increase of demand mean and variance

The results for the performance of the algorithms as demand mean and variance

increase (with n fixed at 60) is summarized in Table 4.5. In terms of the solution

quality, over the whole demand range, TS outperforms the other algorithms. Compared

with SA (which is much better than both Y and TA), the improvement of TS over SA

decreases as demand mean and variance increase, with the largest improvement being

5%. With respect to computational time, the computational times taken by SA, TA and

TS are several times longer than that of Y. Nevertheless, TS is less time consuming

than SA, and TA is the least time consuming one among SA, TA and TS.

Table 4.5 Comparison of algorithms with the increase of demand mean and variance

Expected Cost Computational Time (s) Mean/

Q* Y1 TA2 SA3 TS4 Y TA SA TS

0.0833 956.09 950.70 944.34 898.26 12.5 45.3 40.9 31.2

0.1667 1350.36 1378.76 1347.07 1296.61 19.3 42.9 65.2 56.4

0.2500 1743.54 1753.67 1756.67 1691.10 27.0 56.0 90.7 84.1

0.3333 2140.18 2133.33 2104.54 2067.81 33.5 70.8 120.1 111.6

0.4167 2532.53 2480.88 2472.30 2446.74 37.74 69.9 149.1 140.3

* The ratio between the demand mean and the vehicle capacity, which represents the increase of demand

mean and variance.
1 Yang et al. (2000)’s single vehicle routing algorithm.
2 Threshold accepting algorithm proposed in this study.
3 Simulated annealing algorithm proposed in this study.
4 Tabu search algorithm proposed in this study.

 86

Chapter 4 Metaheuristics for VRPSD

4.3.2 Multiple Vehicle Routing Algorithms

In Yang et al. (2000), two algorithms were presented: one is route-first-cluster-

second (denoted as R1-C2) and the other is cluster-first-route-second (denoted as C1-

R2). In this section, the performance of the proposed SA algorithm (denoted as SA)

and TA algorithm (denoted as TA) is compared with Yang et al. (2000)’s algorithms

based on the solution quality, computational time, and the number of vehicles required.

Performance with the increase of problem size

Here, we assume that all demands are generated from the discrete uniform

distribution U [0, 30]. The solution quality, computational time and the number of

vehicles required of the algorithms with the increase of problem size are illustrated in

Table 4.6.

In terms of solution quality, it is clear that performances of SA and TA are very

close to each other, and they are both superior to R1-C2 and C1-R2, except when the

problem size is 40, TA is slightly worse than R1-C2. As problem size increases, the

superiority of TA and SA over R1-C2 and C1-R2 becomes more obvious, which

indicates that both TA and SA are capable of finding solutions with better quality for

large scale problems.

With respect to computational time, C1-R2 is the least time consuming

algorithm. For the other three algorithms, TA takes less time than SA. Computational

time of R1-C2 increases much faster than the other algorithms. Therefore, when

problem size is less than 100, R1-C2 consumes the least time among the three

algorithms. However, when the problem size ranges from 100 to 120, R1-C2 takes

more time than TA but less time than SA. When the problem size becomes even larger,

computational time of R1-C2 exceeds both that of TA and SA. In terms of

 87

Chapter 4 Metaheuristics for VRPSD

 88

Chapter 4 Metaheuristics for VRPSD

computational time, TA and SA also have potential for large scale problems. For the

number of vehicles required, both R1-C2 and TA require more vehicles than C1-R2

and SA. Comparing C1-R2 and SA, results show that, when the problem size is less

than 100, SA requires less number of vehicles; however, when problem size becomes

larger, C1-R2 uses less number of vehicles.

Performance with the increase of demand mean and variance

Table 4.7 shows how the algorithms perform with the increase of demand

mean and variance in terms of solution quality, computational time and the number of

vehicles required. Here, the problem size is fixed at 60 nodes. Here we use the ratio

between the demand mean and the vehicle capacity (MEAN/Q) to represent the

increase of demand mean and variance.

Comparing the solution quality of the 4 algorithms, C1-R2 is obviously the

worst. For the other three algorithms, when demand mean is relatively low (less than ¼

of the capacity Q), their performances are quite similar. However, as demand mean

further increases, both SA and TA start to outperform R1-C2; meanwhile, though

solution quality of TA and SA is very close to each other, SA behaves a little better

than TA. The computational time in Table 4.7 indicates that, as demand mean

increases, the computational time does not increase significantly for all of the

algorithms except for R1-C2. Among the four algorithms examined, C1-R2 takes the

least time; while SA takes the most time, followed by TA and R1-C2. For the number

of vehicles, Table 4.7 illustrates that, when demand mean is relatively low (less than ¼

of the capacity Q), TA requires the most number of vehicles, while C1-R2 requires the

least; however, as demand mean increases, SA requires the least number of vehicles,

and R1-C2 gradually becomes the one requires the most number of vehicles.

 89

Chapter 4 Metaheuristics for VRPSD

 90

Chapter 4 Metaheuristics for VRPSD

Comments on the computational results

Computational results discussed above demonstrate that, both TA and SA are

capable of finding solutions with better quality than both R1-C2 and C1-R2. This is

quite reasonable, because the heuristic procedures employed in R1-C2 and C1-R2 are

classical local search algorithms, which have the tendency to be trapped in the local

optimum. While both SA and TA are metaheuristics in the sense that they are capable

of escaping from local optimum and finally obtain a near global optimum solution.

Computational results also show that, TA is a less time consuming algorithm

than SA. This may be due to the following reasons:

The first reason is related to the feature of TA and SA. In SA, to escape from the

local optimum, it accepts deteriorations in objective function value with a certain

probability, which is calculated by using exponential expressions; while in TA,

whether a solution with deteriorations in objective function value is accepted is

determined by comparing this deterioration with a threshold value (a constant in a

certain context). Obviously, the later one is more simple and with less computational

complexity.

The second reason is related to the parameter setting in the TA and SA

algorithms. In TA, the initial threshold value is set to 1 % of the total cost of the initial

solution, which means that the algorithm can at most accept a solution with

deteriorations equal to this threshold value. In SA, to get similar solution quality, the

initial temperature must be high enough to at most accept a solution with deteriorations

equal to about 10 % of the total cost of the initial solution. Obviously, the later one is

more time consuming.

 91

Chapter 4 Metaheuristics for VRPSD

4.4 Conclusions

In this chapter, we studied how metaheuristics perform for the VRPSD. We

present three heuristics: SA, TA and TS for the single VRPSD; and two heuristics SA

and TA for the multiple VRPSD.

For the single vehicle case, we examine the effect of different initial solutions on

the performance of the algorithms, and carry out a comparative study to see how

metaheuristics perform in comparison with other heuristics presented in the literature.

Results show that, for the TS algorithm, the better the initial solution, the better the

final solution; however, for the SA and TA, better initial solution does not necessarily

guarantee better final solution. The comparative study shows that, the solution quality

of the TS outperforms the other three heuristics with the increase of both problem size

and the increase of demand mean and variance. With respect to computational time,

metaheuristics are much more time consuming. However, when comparing TS with

SA, it takes less computational time. Though TA is the least time consuming one

among the three metaheuristics, its solution quality is not quite good, it even performs

worse than Yang et al. (2000)’s algorithm in some cases. Since all three metaheuristics

employ the same neighborhood structure, we can conclude that, in terms of both

solution quality and computational time, the TS algorithm performs better than the SA

and TA algorithms for the single VRPSD.

For the multiple vehicle case, our study reveals that, solution quality of TA and

SA is very close to each other, and both SA and TA can provide solutions with less

expected cost than the two algorithms presented in Yang et al. (2000) for almost all of

the problems tested. With respect to computational time, both SA and TA are more

time consuming for the small and medium sized problems. However, they take less

 92

Chapter 4 Metaheuristics for VRPSD

time than R1-C2 for problems with 120 or more nodes. These results lead to the

conclusion that, in terms of both solution quality and computational time, SA and TA

are more suitable for large size problems. One more finding is that, computational time

of TA is less than that of SA. Since their solution quality is similar, TA is more

preferable to be applied in practical applications.

 93

Chapter 5 Multi-period TCTSP

 94

Chapter 5

Algorithms for the Multi-period TCTSP in a Rolling Schedule

Environment

In this chapter, we consider the multi-period TCTSP in a rolling schedule

environment. The problems considered and the frameworks of this study are described

in Section 5.1. Section 5.2 presents a set-covering type formulation for the problem

within one rolling horizon. Sections 5.3 and 5.4 describe several heuristic algorithms

based on iterative customer assignment (ICA) and the iterative center-of-gravity (ICG)

scheme. In Section 5.5, the set-covering formulation presented in Section 5.2 is

considered within one elongated rolling horizon, and solved to optimality as a linear

programming (LP) problem by a column generation scheme to get an upper bound.

Meanwhile, based on the final basis, a feasible integer solution is obtained to examine

the gap between the LP relaxation solution and an integer solution. Section 5.6

discusses the computational results and performances of the heuristics.

5.1 Problem Description and Framework of the Study

The problem considered in our study is a multi-period TCTSP in a rolling

schedule environment. We now briefly describe the problem as follows:

In each period, customers may call a company for services. In a call j, the

customer specifies a date gj and a time tolerance jσ , which means that the company

should visit the customer within the time window gj± jσ . If the service can be made

Chapter 5 Multi-period TCTSP

 95

within the time period gj ± jσ , a profit of Rj realizes; otherwise the profit is zero.

Assume the rolling horizon has a length of H periods, that is, for those customers who

called before the current period, if their possible visit periods required fall into the H

periods, they are eligible to be scheduled in this rolling horizon. The problem is to find

a subset of customers as well as the sequence of serving them in each period in a

rolling schedule environment, so that the average profit per period in the long run is

maximized.

Regarding the problem considered in this study, there is one thing in common

with the TSSP+1 (a traveling salesman subset-tour problem with an additional

constraint) class of problems discussed in Mittenthal and Noon (1992): not only do we

need to figure out the order in which to visit the customers, but we must answer the

more fundamental question: which customers do we want to visit? However, there are

also some differences: the time window and the dynamically changing customer

information. It is these differences that make us consider the problem from a rolling

schedule point of view. Firstly, since a customer may be scheduled before or after its

desired period of visit provided that the visit is within the time window, if we know the

customer demand information for a certain number of periods, we can make schedules

for these periods rather than making a schedule only for one period. The rational is as

follows: Suppose that for the current period, there are many customers eligible for

visiting. Some customers are less profitable and the current period is at the end of their

time windows; while some customers are more profitable and the current period is at

the beginning of their time windows. If we only consider maximizing profit of the

current period, the later customers may be selected and the former ones may be

dropped. However, if the number of customers requesting services at the next period

happens to be small, obviously we lost the profits that may be realized from the

Chapter 5 Multi-period TCTSP

 96

dropped customers. Making schedules for several periods rather than only one period

can avoid this kind of myopia and therefore maximize the average profit in the long

run. On the other hand, since in each period, new customers may randomly require

services, customer information is not static but dynamically changing from period to

period. As a result, the customer information is only accurate for the current period;

and the information accuracy decreases as the future period goes farther from the

current period. Therefore, we can only implement the schedule for the current period,

as customer information for the later periods is not accurate. After implementing the

schedule for the current period, we update the data according to new information

available. We then consider a new rolling horizon by forwarding the time period by

one period and find a schedule for the new rolling horizon. This rolling schedule

scheme nicely captures the characteristic of the problem considered in this study.

5.2 A Set-covering Type Formulation

In the rolling schedule environment, it is very difficult, if not impossible, to

mathematically formulate the problem, due to the dynamically changing customer

information from one rolling horizon to the next. Therefore, we consider one rolling

horizon with H periods, and present a set-covering type formulation within one rolling

horizon for the problem.

The set-covering problem has been studied in great detail since the mid 1960s.

Among many of its applications, some representative ones described in the literature

include: airline fleet scheduling (Levin, 1969), truck routing (Balinski and Quandt,

1964; Clark and Wright, 1964; Dantzig and Ramser, 1959; Garfinkel and Nemhauser,

1969), airline crew scheduling (Arabeyre et al., 1969; Spitzer, 1961), stock cutting

Chapter 5 Multi-period TCTSP

 97

(Pierce, 1970), assembly line balancing (Salveson, 1955), facilities location problems

(Revelle et al., 1970), and coloring problems (Busacker and Saaty, 1965).

The following notations are used in the description of the formulation.

Associated with each customer j, given the date gj and time tolerance jσ that the

customer requires service, we define [ej, lj] as the time window the service should be

provided, with jjj ge σ−= and jjj gl σ+= . Let [1, H] represent the rolling horizon

with H periods, and V the set of all customers in the rolling horizon [1, H], such that

φ≠],1[],[Hle jj I . That is, V = {j | j is a customer and [ej, lj]I [1, H] φ≠ }.

Let iΩ be the set of all possible sub-tours in period i.

Define:
⎩
⎨
⎧

=
otherwise0

periodinchosenistour-subpossibleif1 ik
x

th
i
k

Suppose that totally n customers are eligible for service in the rolling horizon.

Let
~

i
ka be a vector of size n (composed of zeros and ones), representing kth sub-tour in

period i, and be defined in such a way that i
jka = 1, if customer j is included in kth sub-

tour in period i, 0 otherwise. All possible sub-tours in set iΩ can be generated by

taking into consideration the prevailing conditions and constraints imposed on the

assignment of customers to the sub-tours. One important consideration for this

problem is that a customer j must be assigned to the periods within its time window [ej,

lj]. Another consideration is that, the total travel and service time of each sub-tour

~

i
ka must be within the effective working time of a salesman in period i.

Let i
kR represent the sales revenue if customers are served in kth sub-tour in

period i. Then a mathematical programming model of this problem for the finite one

rolling horizon case can be formulated as follows:

Chapter 5 Multi-period TCTSP

 98

 Max Z = HxR
H

i k

i
k

i
k

i

∑∑
= Ω∈1

 (5.1)

subject to

1=∑
Ω∈ ik

i
kx i = 1, 2, …, H (5.2)

i
k

H

i k

i
jk xa

i

∑ ∑
= Ω∈1

≤1 for all Vj∈ (5.3)

i
kx = 0, 1 for all i and k.

Here, we denote this formulation as Problem P.

Constraints (5.2) indicate that, in any period i = 1, 2,…, H, among all the

possible sub-tours in iΩ , exactly one sub-tour must be chosen. Constraints (5.3)

suggest that for all the customers Vj∈ , within the rolling horizon, they can be visited

at most once.

5.3 Solution Method Based on Iterative Customer Assignment (ICA) Scheme

To solve the set-covering type formulation presented in Section 5.2, one possible

way is to employ column generation scheme. However, in the rolling schedule

environment, the problem has to be solved many times; column generation method

may be time consuming. Therefore, we need a more efficient way to solve the

problem. We present the following iterative customer assignment (ICA) procedure as

follows.

The iterative customer assignment scheme includes two procedures: one

assigning procedure and one routing procedure. It is very similar to the cluster-first-

route-second method, where the clustering procedure corresponds to the assigning

Chapter 5 Multi-period TCTSP

 99

procedure here. The difference is that, once the routing procedure results in

possibilities of serving other customers in certain periods, the assigning procedure is

called again, and the assigning and routing procedures are iterated until no more

customers can be assigned to any of the periods.

To facilitate the description in the later sections, we give the additional

denotations needed as follows:

pij = Profit of customer j if it is assigned to period i; HiVj ...,,2,1, =∈ .

ijw = Weight of customer j if it is assigned to period i. It is the additional traveling

time plus service time needed in period i, which is dynamic and dependent on

the certain sub-tour that has been constructed before customer j is added to

period i.

T = The effective working time for each period.

Ti = The remaining working time of period i.

The assigning procedure is to select H subsets of customers so that the total profit

of the selected customers is maximized, and the total weight of all customers assigned

to each period is no more than T. Several heuristic procedures for the assigning

procedure are proposed in Section 5.3.2.

The routing procedure mainly tries to decrease the traveling time of the route in

each period, since the revenue of visiting a customer is the same in different period

within the time window. We first apply 2-opt (Croes, 1958) to improve the

performance of the tour in each period. Then, try to further decrease the traveling time

of the route by performing swaps between two customers in different period, provided

that the swap is feasible with respect to the time window and time limit constraint.

Chapter 5 Multi-period TCTSP

 100

5.3.1 ICA Procedure

The procedure involved in the ICA can be described as follows:

Step 1: Redefine the time window of customer j, [ej, lj], with ej = max{ej, 1} and lj =

min{H, lj}.

Step 2: Assign the customers in V to the most appropriate periods by some heuristic

methods described in Section 5.3.2.

Step 3: Perform 2-opt and swaps of customers to improve the tour of each period.

Step 4: Repeat Steps 2 and 3 until no more customers in set V can be assigned to any

of the periods.

Step 5: Implement the routing sequence of customers obtained in Step 4 for the first

period. Update the data according to new information available. Now

consider a new rolling horizon by forwarding the time period by one period.

Repeat the whole procedure again to find a schedule for the new rolling

horizon.

5.3.2 Heuristics for the Assigning Procedure

To assign the customers to the most appropriate periods, one prerequisite is the

construction of weight matrix (wij). It is constructed as follows: Given a set of sub-

tours constructed for periods i = 1, 2, …, H, we try to insert a customer j V∈ in each

of the sub-tours within the time window [ej, lj]. The weight wij is defined as the

additional traveling time plus the service time, if customer j is to be added to the sub-

tour of period i. If a customer j cannot be feasibly added to the sub-tour in period i due

to the time window constraints, wij is set to +∞ . The value of the weight wij calculated

Chapter 5 Multi-period TCTSP

 101

in this way is not exactly the additional time spent when a customer is visited in a

certain period, because the route in each period keeps on changing during the assigning

procedure.

Several heuristics for the assigning procedure are proposed in this study. They

are described as follows.

Heuristic algorithm 1 (HA1) - Assign customers based on its weight and the

remaining working time

HA1 procedure

Step 1: Rank each customer j V∈ in descending order of its revenue Rj.

Step 2: Start from the top of the list, select a customer j and calculate wij. Try to

assign it to the period i* with the largest ratio of Ti/wij (i = 1, 2,…, H). If

infeasible, go to Step 4.

Step 3: Insert the selected customer j into the tour of period i* in the cheapest way,

update Ti, the remaining working time of period i*.

Step 4: Remove customer j from the set V. Go to Step 2 and continue the assigning

procedure until no more customers can be assigned to any period.

Heuristic algorithm 2 (HA2) – Assign customers by choosing the most profitable

period for each customer

Martello and Toth (1981) presented a polynomial-time heuristic algorithm for the

generalized assignment problem. Let fij be a measure of the desirability of assigning

item j into knapsack i (i K,...2,1=). Iteratively consider all the unassigned items, and

determine the item j* having the maximum difference between the largest and the

Chapter 5 Multi-period TCTSP

 102

second largest fij; j* is then assigned to the knapsack for which fij* is a maximum. The

above algorithm assigns items to the knapsacks based on opportunity cost. In our

problem, similarly, each customer can be assigned to one of several periods, we need

to find the most appropriate period for this customer; however, unlike the above case,

some customers can be left over to be considered in the next rolling horizon.

To apply the Martello and Toth (1981) algorithm to our problem, we need to

discuss the construction of the profit matrix pij first. In the rolling schedule

environment, we are more concerned with the profit generated from the first period,

because firstly, we only implement the decisions of the first period; secondly, customer

information for the later periods may be subject to some changes. Therefore, when

solving this problem, we tried three methods to construct the profit matrix to see which

one is more suitable in a certain situation.

R1: pij based on actual revenue Rj of visiting a customer j. The pij of the profit matrix

with H rows and n columns is defined as follows:

pij =
⎩
⎨
⎧ ∈

otherwise,0

],[, jjj leiR

R2: pij based on artificial revenue Rj of visiting customer j by putting more weight on

assigning customer j to the early period of its time window. As a result,

customers tend to be visited during the early periods of the time window.

pij =
⎪⎩

⎪
⎨
⎧

∈−
+

−−

otherwise,0

],[),/()
2

(jjjj
jj

jj leiel
le

iRR

Chapter 5 Multi-period TCTSP

 103

R3: pij based on artificial revenue Rj of visiting customer j within the desired period of

service. In this case, for a call j with specified date gj and time tolerance jσ

(jjj ge σ−= and jjj gl σ+=), the service would most likely be provided at

period gj.

pij =
⎪⎩

⎪
⎨
⎧

∈−
+

−−

otherwise,0

],[),/(|)
2

(| jjjj
jj

jj leiel
le

iRR

In this study, for the measure of the desirability fij, we examine three cases:

M1: fij = pij (5.4)

M2: fij = ijij wp (5.5)

M3: fij = ijiji wpT (5.6)

The heuristic applying these measures is given below.

HA2 procedure

Step 1: Compute the weight matrix (wij) and value fij for each customer j V∈ .

Step 2: For each customer j V∈ , rank the periods in descending order in terms of fij

(i H,...,2,1=). Go to Step 3a if we assign based on opportunity desirability;

go to Step 3b if we assign based on actual desirability.

Step 3a: For each customer j V∈ , find the first two periods on the top of the list;

calculate the difference between the desirability fij of these two periods,

called opportunity desirability of customer j. Among all customers in V, find

the customer j* and the period i* with the largest opportunity desirability. Go

to Step 4.

Step 3b: Among all customers in V, find the customer j* and the period i* with the

largest desirability fij.

Chapter 5 Multi-period TCTSP

 104

Step 4: Test whether it is feasible to insert customer j* into the tour of period i* in a

cheapest way. If the insertion is infeasible with respect to the time limit

constraint, go to Step 1. Otherwise, insert customer j* into the tour of period

i* in a cheapest way, update the remaining capacity Ti of period i*, remove

customer j* from V and go to Step 1.

Step 5: Repeat Step 1 to Step 4 until no more customers can be assigned to any of the

periods.

Heuristic algorithm 3 (HA3) – Assign customers based on profitability

In HA2, we choose the most appropriate period for each customer. In contrast,

the rational of heuristic HA3 is as follows: for each period, there are a number of

eligible customers, choose the most profitable customers for each period. We also

apply fij to measure how desirable a customer j is assigned to period i and employ the

three ways (M1, M2 and M3) to calculate fij. However, here we only need to calculate

pij based on the method R1 as described above.

The procedure for heuristic HA3 is the same as that of HA2, except that Steps 2,

3a and 3b are replaced by the following three steps:

Step 2: For each period i, find all possible customers j V∈ that can be assigned to this

period. Rank the customers in period i in descending order in terms of the

desirability fij. Go to Step 3a if we assign based on opportunity desirability;

go to Step 3b if we assign based on actual desirability.

Step 3a: For each period i, find the first two customers on the top of the list, calculate

the difference between the desirability fij of these two customers, call it

opportunity desirability of the first customer. Among all periods, find the

Chapter 5 Multi-period TCTSP

 105

customer j* and the period i* with the largest opportunity desirability. Go to

Step 4.

Step 3b: Consider the customer on the top of the list for each period, find the customer

j* and the period i* with the largest desirability fij among all periods. Go to

Step 4.

5.4 Solution Method Based on Iterative Center-of-Gravity (ICG) Scheme

The core concept of the iterative center-of-gravity (ICG) scheme is the center-of-

gravity. Suppose that node j has coordinates (xj, yj) and revenue Rj, and the tour of

period i is denoted as iπ , the center-of-gravity of iπ , Gi(x, y), can be calculated as

follows:

∑∑
∈∈

=
ii j

j
j

jj RRxx
ππ

 (5.7)

∑∑
∈∈

=
ii j

j
j

jj RRyy
ππ

 (5.8)

 In addition to the denotations introduced in Section 5.3, we further suppose that,

dij = distance between customer j and the center-of-gravity of iπ , Gi(x, y).

Heuristic algorithm 4 (HA4) – Assignment based on ICG

The procedure involved in the ICG scheme can be described as follows:

HA4 procedure

Step 1: Redefine the time window of customer j, [ej, lj], with ej = max{ej, 1} and lj =

min{H, lj}. Form the initial tour iπ of each period i by using those customers

Chapter 5 Multi-period TCTSP

 106

who request services at period i with iσ equals to zero. If all iσ are greater

than zero, tour iπ is initialized to contain the depot only.

Step 2: Calculate the center-of-gravity Gi(x, y) for the tour iπ of each period i.

Step 3: For each customer j eligible to be visited in period i with respect to its time

window, calculate dij, the distance between customer j and center-of-gravity

of the tour of period i.

Step 4: Assign customer j to period i according to one of the following 3 criteria:

C1: Assign customer j to the earliest period of its time window.

C2: Assign customer j to period i with the largest value of pij/dij

C3: Assign customer j to period i randomly satisfying the condition that

customer j has more chances to be visited in a period with larger value

of pij/dij.

Step 5: Rank the customers assigned to each period i in descending order of the value

pij/dij.

Step 6: For each period, starting from the top of the list, insert customers based on

cheapest insertion heuristic, until no more customers can be inserted without

exceeding the time limit.

Step 7: Perform 2-opt within each route and swap customers between routes (similar

to the one described for ICA procedure in Section 5.3.1) to further decrease

the traveling time of the routes. For the remaining (not yet assigned)

customers eligible to be visited in period i, insert them to the tour by using

the cheapest insertion heuristic until no more customers can be inserted into

the tour without violating the time limit constraint.

Chapter 5 Multi-period TCTSP

 107

Step 8: Repeat Step 2 to Step 7 until the profit realized from visiting the customers

does not change much or a predefined number of iterations have been

executed.

Step 9: Implement the routing sequence of customers obtained in Step 8 for the first

period. Remove the customers scheduled in the first planning period in the set

V. Update the data according to new information available. Forward the time

period by one period and repeat the whole procedure again to find a schedule

for the new rolling horizon.

To examine the effect of the artificial profit pij, we also try three ways (R1, R2

and R3) to construct the matrix (pij) as described in Section 5.3.2.

5.5 An Upper Bound Generated Based on the Set-covering Type Formulation and

Column Generation Solution Method

In Section 5.2, we present a set-covering type formulation for the problem within

one rolling horizon. In this section, we generate an upper bound for the problem based

on this formulation by making the following assumptions.

• The rolling horizon is elongated in such a way that it covers all periods

considered in each of the heuristics.

• Customer demand information is known for all the periods considered

when we calculate the upper bound.

For solving the set-covering problem, there are different procedures presented in

the literature. These include: implicit enumeration (Balas, 1965; Pierce, 1968;

Garfinkel and Nemhauser, 1969), heuristics (Christofides, 1974; Baker et al., 1979),

simplex based cutting plane methods (Gomory, 1963), hybrid primal cutting

Chapter 5 Multi-period TCTSP

 108

plane/implicit enumeration method (Balas, 1975), set partitioning via node covering

(Balas and Samuelson, 1974), network flow model (Moreland, 1966), and column

generation algorithm (Balas and Padberg, 1975).

Column generation is an effective and commonly used method for designing

algorithms for the problems formulated as set-covering type model. Therefore, in this

study, we consider the column generation method for the set-covering model of the

multi-period TCTSP. From the LP relaxation of the set-covering model, it is clear that,

if all possible sub-sets can be enumerated, one can obtain the optimal solution for the

LP. However, the set of possible sub-sets can be very large for large size problems.

Therefore enumeration is impractical. By applying column generation scheme, it is not

necessary to explicitly enumerate all feasible sub-sets; one can find the non-basic

variable with the largest non-negative reduced cost by solving an optimization

problem, called the pricing problem. Successful applications of column generation in

this kind of problems can be found in the literature: Staff scheduling (Sarin and

Aggarwal, 2001), optimal shift scheduling (Mehrotra et al., 2000), the general pickup

and delivery problem (Savelsbergh and Sol, 1998), etc.

5.5.1 Column Generation Scheme

Consider the Problem P formulated in Section 5.2. Let P’ denote the LP

relaxation of Problem P, it is clear that, if we can enumerate all possible sub-tours in

set iΩ of period i, we can obtain the optimal solution of the problem P’ by solving a

LP problem. However, the set of possible sub-tours iΩ (i H,...,2,1=) can be very

large for large size problems. Therefore a column generation scheme is adopted to find

Chapter 5 Multi-period TCTSP

 109

the non-basic variable with the largest non-negative reduced cost by solving an

optimization problem, called the pricing problem.

Since problem P’ is an LP relaxation of Problem P, the optimal solution to

problem P’ serves as an upper bound for Problem P. This upper bound will be

employed as a performance measurer in the computational experiment of Section

5.6.2.

The master problem

Let P’ be the LP relaxation of the Problem P. Suppose that for each period i = 1,

2, …, H, a set ii Ω⊆Ω ' of feasible sub-tours is explicitly known, we can define the

restricted master problem of P’ as follows:

Max Z = HxR
H

i k

i
k

i
k

i

∑ ∑
= Ω∈1 '

 (5.9)

subject to

1
'

=∑
Ω∈ ik

i
kx i = 1, 2, … ,H (5.10)

i
k

H

i k

i
jk xa

i

∑ ∑
= Ω∈1 '

≤1 for all Vj∈ (5.11)

i
kx 0≥ (5.12)

Suppose that the restricted master problem of P’ has a feasible solution x, and let

(o, u) be the associated dual solution, i.e., dual variables oi and uj are associated with

the constraints (5.10) and (5.11) respectively. From linear programming duality we

know that x is optimal with respect to P’ if and only if for each i = 1, 2,…, H, and for

each k iΩ∈ , the reduced cost i
kd is non-positive. That is,

i
kd = i

kR -∑
∈Vj

j
i
jk ua -oi 0≤ for all i = 1, 2,…,H, k iΩ∈ (5.13)

Chapter 5 Multi-period TCTSP

 110

Therefore, to test whether x is optimal with respect to P’, we can solve the

following pricing problem:

Max
⎭
⎬
⎫

⎩
⎨
⎧

Ω∈=−−∑
∈Vj

iij
i
jk

i
k kHiouaR ,,...2,1| (5.14)

Suppose we use zprice to denote the value of the solution to the above pricing

problem, and let Iz and Kz represent the corresponding period and route. If zprice≤0,

then x is optimal with respect to P’; otherwise, Kz define a column that can enter the

basis and has to be added to '
zIΩ . So the column generation procedure can be

illustrated as follows:

Step 1: Find the initial sets ii Ω⊆Ω ' containing a feasible solution x.

Step 2: Solve the restricted master problem of P’.

Step 3: Solve the pricing problem. If zprice≤0, stop; otherwise, set { }zII K
zz
∪Ω=Ω ''

and go to Step 2.

In our problem, the initial sets ii Ω⊆Ω ' containing a feasible solution to P’ can be

found by using any of the heuristics developed in Sections 5.3 and 5.4.

 The pricing problem

The pricing problem above is to find the most profitable sub-tour among all sub-

tours for all periods considered. The problem can be decomposed into several

independent problems, one for each period, since

Zprice = Max
⎭
⎬
⎫

⎩
⎨
⎧

Ω∈=−−∑
∈Vj

iij
i
jk

i
k kHiouaR ,...,,2,1| (5.15)

is equivalent to

Chapter 5 Multi-period TCTSP

 111

Zprice =
Hi

Max
,...2,1=

 Max
⎭
⎬
⎫

⎩
⎨
⎧

Ω∈−−∑
∈Vj

iij
i
jk

i
k kouaR | (5.16)

Thus, the pricing problem for period i can be expressed as

Zi
price = Max

⎭
⎬
⎫

⎩
⎨
⎧

Ω∈−−∑
∈Vj

iij
i
jk

i
k kouaR | (5.17)

which tries to find the most profitable sub-tour for period i that serves a subset of the

customers.

The column selection

From the literature, there are several ways to select the columns to add to the

restricted master problem. One is to select the column with the maximum reduced cost;

the other is to select some columns with positive reduced cost. In the former case, the

LP problem will not grow very rapidly, but it has to be solved for each column added.

While in the later case, the number of LP problems that have to be solved will be

reduced, but the LP solved each time will become very large. In our problem, we select

and add H columns one for each period (pricing problem) to the master problem before

we solve it.

Obtaining an integer solution

The solution to the P’ problem serves as an upper bound of the Problem P. To

examine whether this upper bound is tight, we can examine how far away this bound is

from a good feasible integer solution. This feasible integer solution can be obtained by

applying CPLEX mix-integer optimizer based on the final basis of problem P’.

Chapter 5 Multi-period TCTSP

 112

5.5.2 Solving the Pricing Problem

From the above, we know that our pricing problem is

Zprice =
Hi

Max
,...2,1=

 Max
⎭
⎬
⎫

⎩
⎨
⎧

Ω∈−−∑
∈Vj

iij
i
jk

i
k kouaR | (5.18)

By making some manipulations, the pricing problem can become a knapsack

problem for each period i as shown below.

Given that Rj is the profit of serving customer j, the total profit of visiting all

customers in route k of period i, i
kR , can be written as:

 i
kR = ∑

∈Vj
j

i
jk Ra (5.19)

The pricing problem becomes,

Zprice =
Hi

Max
,...2,1=

 Max
⎭
⎬
⎫

⎩
⎨
⎧

Ω∈−−∑
∈Vj

iijj
i
jk kouRa |)((5.20)

subject to

∑
∈

≤
Vj

i
jk

i
jk Twa (5.21)

where i
jkw is the additional traveling time and service time of visiting customer j in

route k of period i.

One more thing to consider in the pricing problem is the time window constraint

for each customer j. We do not embody this constraint in the master problem. We can

deal with it here by defining i
jkw = ∞ , when we try to serve a customer in the period

outside its time window. Then, the problem becomes: for each period, first we decide

which customers can be visited in this period in terms of time window constraint; then

select a subset of the customers that maximize the net profit while satisfying the time

limit constraint. Since weight i
jkw in the pricing problem is not a constant as in real

Chapter 5 Multi-period TCTSP

 113

knapsack problems, the pricing problem is actually a TCTSP or an orienteering

problem with starting and ending point at the depot.

In the column generation scheme, if we want to solve the master problem

optimally, we have to solve the pricing problem to optimality. However, to save

computational time, we first solve the orienteering problem with a heuristic based on

center-of-gravity method (Golden et al., 1987). We add one column for each period to

the restricted master problem until the heuristic can not discover any more columns

with positive reduced cost. Then the orienteering problem is solved to optimality to

further search the columns with positive reduced cost.

To solve the pricing problem to optimality, we need to present a mathematical

formulation for the problem. Based on the following notations, an integer

programming model for the pricing problem in one period i is presented below.

Vi = A set of customers that can be visited in period i. That is, Vi = {j | j is a customer

and ej≤ i≤ lj}.

'
iV = Vi ∪ {0}.

A = {(d, j) | d, j '
iV∈ and d < j} denotes a set of arcs.

rj = Net profit of visiting node j, which is Rj - uj.

T = Maximum effective working time.

djt = Time of travelling arc (d, j).

jτ = Service time of visiting node j.

xdj = ⎜⎜
⎝

⎛ ∈
otherwise0

traversedis),(arcif1 Ajd

yj = ⎜⎜
⎝

⎛ ∈
otherwise0

visitedisnodeif1 iVj

Chapter 5 Multi-period TCTSP

 114

The pricing problem – An orienteering problem (OP)

i
priceZ = ∑

∈ iVj
jj yrmax - oi (5.22)

Subject to:

∑
∈ iVj

jx0 = 2 (5.23)

∑∑
∈∈

+
Akj

jk
Ajd

dj xx
),(),(

=2yj iVj∈∀ (5.24)

Tyxt
jd Vj

jjdjdj
i

∑ ∑
< ∈

≤+ τ (5.25)

3||,1|| ≥Λ⊆Λ∀−Λ≤∑
Λ∈
Λ∈

i

j
d

jd Vx (5.26)

,),(}1,0{ Ajdxdj ∈∀∈ (5.27)

ij Vjy ∈∀∈ }1,0{ (5.28)

In the above formulation, the objective (5.22) is to maximize the total profit

generated from visiting a subset of the customers; oi is a constant representing a dual

solution corresponding to constraints (5.10). Constraint (5.23) ensures that the route

must start from depot and go back to depot in the end. Constraints (5.24) indicate that,

if node j is not included in the tour, no arcs incident to j are included. Otherwise, there

must be one arc going into and one arc coming out of node j. Constraint (5.25)

guarantees that the total travel and service time of the OP tour is within the time limit

T. Constraints (5.26) are sub-tour elimination constraints, which guarantee that except

a sub-tour including the depot, no other sub-tours in set Vi are allowed.

Chapter 5 Multi-period TCTSP

 115

5.5.3 Procedure Involved in the Column Generation Scheme

Now, we summarize the procedure involved in the column generation scheme as

follows:

Step 1: Find the initial sets ii Ω⊆Ω ' containing a feasible solution x.

Step 2: Solve the restricted master problem of P’.

Step 3: Solve the pricing problem by heuristic.

Step 3.1 Initialize period count i = 0; num_column = 0;

Step 3.2 Solve the problem OP by heuristic

Step 3.3 If 0≤price
iZ , go to Step 3.4; otherwise add a column to the restricted

master problem and increment num_column;

Step 3.4 Increment period count i. If i < H, go to Step 3.2.

Step 3.5 If num_column > 0, go to Step 2.

Step 4: Solve the problem OP by exact algorithm.

 Step 4.1 Initialize period count i = 0; num_column = 0;

 Step 4.2 Solve the pricing problem without constraints (5.26) by calling

CPLEX mix-integer optimizer.

 Step 4.3 If there is a sub-tour, add a sub-tour elimination constraint. Go to

Step 4.2.

 Step 4.4 If 0≤price
iZ , go to Step 4.5; otherwise add a column to the restricted

master problem and increment num_column.

 Step 4.5 Increment period count i. If i < H, go to Step 4.2.

 Step 4.6 If num_column > 0, go to Step 2.

Step 5: Output the LP solution as an upper bound or find a feasible integer solution by

calling the CPLEX mix-integer optimizer.

Chapter 5 Multi-period TCTSP

 116

 5.6 Computational Results and Analysis

To get the computational results, the algorithms are coded in VISUAL C++, and

run on a 500 MHZ Pentium II Processor with 128 MB RAM under Microsoft Windows

98. To carry out computational experiment for the column generation scheme, we

called the functions in the CPLEX optimization package into the VC++ program.

Note that, our computational result presented below is the average performance

(including solution quality and computational time) for each period, given that

customers have been scheduled for service in the rolling schedule environment within

60 periods.

5.6.1 Problem Generation

For each problem instance, the location of the customers are randomly generated

in the square 20*20 (km2), according to a continuous uniform distribution. And the

depot is assumed to be situated at the center. We assume that the effective working

time T is 480 minutes a day. Revenue of serving a customer j, Rj is randomly generated

and scaled to [0, 1]. The traveling time between customers i and j is calculated based

on the Euclidean distance and the speed of the vehicle. For service time of visiting a

customer j, we examine three cases in computational analysis: 10, 30 and 100 minutes,

representing short, medium and long service time cases. The length of the rolling

horizon is set to 7. Within each period i, the number of customers that call the

company to “book” the service follows a Poisson distribution with mean arrival rateλ .

In this study, λ is varied from 20 to 80 to represent the change of the problem size so

that the performance of the algorithms can be evaluated. gj, the desired period

Chapter 5 Multi-period TCTSP

 117

(customer j to be visited) that customer j specifies when “booking” the service, is

uniformly generated within the rolling horizon. jσ , tolerance time of visiting customer

j, is uniformly generated within the interval [0, 2].

As described in Section 5.3 and Section 5.4, each of the heuristics HA2, HA3 and

HA4 has several versions due to:

1) Different ways to construct the profit matrix pij

R1: Based on actual revenue Rj of visiting a customer j.

R2: Based on artificial revenue Rj of visiting customer j by putting more weight on

assigning customer j to the early period of its time window.

R3: Based on artificial revenue Rj of visiting customer j within the desired period

of service.

2) Different ways to examine the measure of desirability fij

M1: fij = pij

M2: fij = ijij wp

M3: fij = ijiji wpT

3) Different criteria to assign customers to different periods

C1: Assign customer j to the earliest period of its time window.

C2: Assign customer j to period i with the largest value of pij/dij

C3: Assign customer j to period i randomly satisfying the condition that customer

j has more chances to be visited in a period with larger value of pij/dij.

Where dij is defined as the distance between customer j and the center-of-gravity of the

tour in period i.

4) Whether the algorithm is implemented based on opportunity desirability (denoted as

O) or actual desirability (denoted as A).

Chapter 5 Multi-period TCTSP

 118

To examine the impact of all these factors on the heuristics, we need the

following notations to denote each version of the algorithms.

For HA2, we have 18 combinations altogether denoted by HA2(1) to HA2(18) as

illustrated in Table 5.1, with * corresponding to the one selected in the version of the

algorithm named in column 1. Similarly, for HA3, we have 6 combinations denoted by

HA3(1) to HA3(6) as illustrated in Table 5.2. The 9 combinations denoted by HA4(1)

to HA4(9) for heuristic HA4 are shown in Table 5.3.

Table 5.1 Denotations for heuristic HA2

HA2
versions

R1 R2 R3 M1 M2 M3 O A

HA2(1) * * *
HA2(2) * * *
HA2(3) * * *
HA2(4) * * *
HA2(5) * * *
HA2(6) * * *
HA2(7) * * *
HA2(8) * * *
HA2(9) * * *
HA2(10) * * *
HA2(11) * * *
HA2(12) * * *
HA2(13) * * *
HA2(14) * * *
HA2(15) * * *
HA2(16) * * *
HA2(17) * * *
HA2(18) * * *

Table 5.2 Denotations for heuristic HA3

HA3
versions

M1 M2 M3 O A

HA3(1) * *
HA3(2) * *
HA3(3) * *
HA3(4) * *
HA3(5) * *
HA3(6) * *

Chapter 5 Multi-period TCTSP

 119

Table 5.3 Denotations for heuristic HA4

HA4
versions

R1 R2 R3 C1 C2 C3

HA4(1) * *
HA4(2) * *
HA4(3) * *
HA4(4) * *
HA4(5) * *
HA4(6) * *
HA4(7) * *
HA4(8) * *
HA4(9) * *

5.6.2 Compare the Performance of the Heuristics Against an Upper Bound

To study how the heuristics behave for the multi-period TCTSP in the rolling

schedule environment, ideally, we should compare the performance of the heuristics

with that of the optimal solution. However, in the rolling schedule environment, since

the customer demand information is dynamically changing from one rolling horizon to

the next, even the mathematical formulation of the problem is very complicated, if not

impossible. Therefore, in Section 5.5, we try to find an upper bound for this problem

based on set-covering type formulation and the column generation method.

In Section 5.5, we solved the LP relaxation of the set-covering model (P’) to

optimality, which serves as an upper bound for Problem P. Also, we found a feasible

integer solution for Problem P based on the final basis. Results show that, the LP

relaxation solution is very close to the feasible integer solution, with maximum

deviation being only about 0.1%. Therefore, the LP relaxation upper bound is tight

enough and we employ it as the performance measurer in the following parts.

Chapter 5 Multi-period TCTSP

 120

Tables 5.4 to 5.6 illustrate the percentage deviations from the upper bound

(denoted as UB) for heuristics HA1 to HA4 with the customer arrival rate and the

service time being set at 20 and 100 respectively.

Table 5.4 Percentage deviations from the upper bound for HA2

Problem UB HA2(1) % HA2(2) % HA2(3) % HA2(4) % HA2(5) %

1 3.53 3.40 3.87 3.39 4.12 3.08 12.77 3.28 7.05 3.43 2.92
2 3.60 3.45 4.38 3.45 4.31 3.18 11.62 3.33 7.52 3.50 2.98
3 3.64 3.52 3.17 3.52 3.24 3.23 11.06 3.38 6.93 3.54 2.73
4 3.57 3.42 4.12 3.42 4.12 3.10 13.15 3.32 7.03 3.45 3.39
5 3.62 3.47 4.13 3.47 4.13 3.20 11.55 3.40 6.06 3.49 3.46
6 3.51 3.36 4.38 3.36 4.38 3.13 10.94 3.24 7.68 3.41 2.83
7 3.59 3.41 5.04 3.42 4.67 3.17 11.66 3.30 8.03 3.46 3.66
8 3.60 3.46 3.71 3.46 3.74 3.28 8.73 3.33 7.46 3.49 3.11
9 3.58 3.42 4.35 3.42 4.35 3.13 12.49 3.35 6.49 3.49 2.61

10 3.54 3.33 5.97 3.33 5.97 3.11 12.30 3.28 7.43 3.42 3.62
11 3.60 3.43 4.73 3.44 4.40 3.17 11.89 3.31 7.99 3.50 2.81
12 3.51 3.34 4.64 3.34 4.73 3.04 13.46 3.27 6.62 3.38 3.69
13 3.54 3.38 4.59 3.39 4.41 3.13 11.74 3.28 7.33 3.45 2.72
14 3.59 3.43 4.40 3.44 4.03 3.19 11.13 3.36 6.43 3.44 4.20
15 3.55 3.42 3.75 3.42 3.75 3.14 11.49 3.29 7.36 3.44 3.06
16 3.63 3.48 4.15 3.48 4.15 3.18 12.30 3.41 5.96 3.52 2.88
17 3.56 3.36 5.51 3.36 5.51 3.11 12.70 3.31 6.97 3.42 3.77
18 3.57 3.40 4.75 3.40 4.70 3.14 12.00 3.30 7.52 3.44 3.66
19 3.59 3.44 4.19 3.44 4.19 3.17 11.85 3.27 8.95 3.46 3.64
20 3.60 3.45 3.98 3.45 3.98 3.19 11.31 3.33 7.44 3.50 2.73

Average 3.58 3.42 4.39 3.42 4.34 3.15 11.81 3.32 7.21 3.46 3.22

Chapter 5 Multi-period TCTSP

 121

Table 5.4 Percentage deviations from the upper bound for HA2 (Con.)

Problem UB HA2(6) % HA2(7) % HA2(8) % HA2(9) % HA2(10) %

1 3.53 3.39 4.13 3.38 4.23 3.39 4.14 3.04 13.80 3.27 7.45
2 3.60 3.41 5.35 3.43 4.78 3.43 4.73 3.13 13.04 3.34 7.18
3 3.64 3.50 3.62 3.49 3.91 3.48 4.20 3.18 12.49 3.37 7.36
4 3.57 3.38 5.24 3.42 4.20 3.42 4.20 3.11 12.82 3.33 6.87
5 3.62 3.43 5.36 3.47 4.20 3.46 4.36 3.17 12.51 3.40 6.08
6 3.51 3.34 4.99 3.36 4.29 3.36 4.29 3.10 11.79 3.28 6.69
7 3.59 3.43 4.39 3.42 4.68 3.42 4.64 3.14 12.48 3.30 8.07
8 3.60 3.46 3.86 3.45 4.08 3.46 3.97 3.21 10.88 3.33 7.40
9 3.58 3.39 5.33 3.42 4.35 3.42 4.35 3.12 12.73 3.34 6.62

10 3.54 3.36 5.25 3.33 6.13 3.33 5.93 3.07 13.28 3.28 7.43
11 3.60 3.42 4.95 3.43 4.75 3.44 4.44 3.10 13.88 3.32 7.63
12 3.51 3.29 6.21 3.35 4.51 3.35 4.63 3.02 14.00 3.28 6.53
13 3.54 3.33 5.98 3.38 4.60 3.38 4.60 3.11 12.21 3.29 7.13
14 3.59 3.41 4.82 3.45 3.82 3.44 3.95 3.15 12.09 3.34 6.83
15 3.55 3.38 4.68 3.42 3.64 3.42 3.64 3.09 12.83 3.26 8.20
16 3.63 3.45 4.75 3.47 4.34 3.47 4.33 3.16 12.78 3.42 5.79
17 3.56 3.41 4.18 3.36 5.54 3.36 5.70 3.12 12.33 3.33 6.34
18 3.57 3.37 5.40 3.40 4.74 3.40 4.69 3.08 13.73 3.27 8.24
19 3.59 3.42 4.86 3.43 4.56 3.43 4.47 3.16 12.05 3.28 8.77
20 3.60 3.42 4.94 3.45 3.97 3.45 3.97 3.19 11.44 3.36 6.46

Average 3.58 3.40 4.91 3.40 4.47 3.40 4.46 3.12 12.66 3.32 7.15

Chapter 5 Multi-period TCTSP

 122

Table 5.4 Percentage deviations from the upper bound for HA2 (Con.)

Problem UB HA2(11) % HA2(12) % HA2(13) % HA2(14) %

1 3.53 3.44 2.73 3.38 4.20 3.40 3.66 3.39 3.92
2 3.60 3.52 2.34 3.42 5.19 3.47 3.58 3.48 3.49
3 3.64 3.55 2.33 3.49 3.99 3.55 2.30 3.55 2.30
4 3.57 3.48 2.65 3.40 4.66 3.45 3.36 3.45 3.36
5 3.62 3.53 2.53 3.43 5.14 3.50 3.38 3.50 3.25
6 3.51 3.42 2.56 3.35 4.55 3.40 3.31 3.40 3.31
7 3.59 3.47 3.27 3.42 4.58 3.46 3.66 3.46 3.64
8 3.60 3.51 2.31 3.46 3.88 3.50 2.86 3.50 2.86
9 3.58 3.49 2.58 3.39 5.41 3.45 3.56 3.45 3.56

10 3.54 3.44 2.83 3.35 5.45 3.36 5.10 3.37 4.99
11 3.60 3.52 2.03 3.43 4.74 3.44 4.34 3.45 4.01
12 3.51 3.41 2.66 3.30 5.98 3.37 3.96 3.37 4.05
13 3.54 3.45 2.58 3.34 5.58 3.41 3.87 3.41 3.71
14 3.59 3.50 2.43 3.42 4.62 3.46 3.49 3.45 3.69
15 3.55 3.47 2.25 3.38 4.64 3.44 2.96 3.44 2.96
16 3.63 3.55 2.00 3.45 4.87 3.52 2.83 3.52 2.83
17 3.56 3.46 2.76 3.39 4.81 3.42 3.87 3.42 3.99
18 3.57 3.48 2.52 3.36 5.68 3.43 3.85 3.42 4.01
19 3.59 3.50 2.58 3.42 4.88 3.48 3.17 3.48 3.05
20 3.60 3.51 2.38 3.42 4.92 3.49 2.91 3.49 2.91

Average 3.58 3.47 2.52 3.37 4.89 3.45 3.50 3.45 3.49

Chapter 5 Multi-period TCTSP

 123

Table 5.4 Percentage deviations from the upper bound for HA2 (Con.)

Problem UB HA2(15) % HA2(16) % HA2(17) % HA2(18) %

1 3.53 3.06 13.24 3.27 7.54 3.44 2.59 3.40 3.86
2 3.60 3.19 11.39 3.31 8.17 3.52 2.29 3.44 4.41
3 3.64 3.24 11.01 3.36 7.58 3.58 1.58 3.49 3.91
4 3.57 3.10 13.24 3.30 7.69 3.49 2.13 3.40 4.82
5 3.62 3.20 11.44 3.42 5.43 3.56 1.64 3.45 4.69
6 3.51 3.11 11.51 3.26 7.08 3.44 2.10 3.37 4.10
7 3.59 3.17 11.59 3.33 7.10 3.48 2.97 3.44 3.97
8 3.60 3.28 8.97 3.32 7.86 3.51 2.31 3.46 3.93
9 3.58 3.13 12.54 3.35 6.34 3.52 1.73 3.44 3.84

10 3.54 3.10 12.59 3.30 6.96 3.43 3.31 3.35 5.35
11 3.60 3.18 11.56 3.34 7.15 3.53 1.72 3.44 4.41
12 3.51 3.04 13.42 3.27 6.65 3.41 2.87 3.33 4.97
13 3.54 3.14 11.46 3.29 7.19 3.45 2.64 3.34 5.67
14 3.59 3.18 11.23 3.37 6.13 3.51 2.00 3.44 3.95
15 3.55 3.14 11.58 3.25 8.33 3.48 1.96 3.39 4.53
16 3.63 3.21 11.61 3.40 6.37 3.54 2.26 3.46 4.50
17 3.56 3.12 12.39 3.32 6.78 3.47 2.42 3.40 4.35
18 3.57 3.13 12.30 3.29 7.76 3.48 2.41 3.39 5.04
19 3.59 3.19 11.27 3.30 8.08 3.52 1.93 3.43 4.46
20 3.60 3.20 10.94 3.34 7.26 3.53 1.88 3.43 4.52

Average 3.58 3.15 11.76 3.32 7.17 3.50 2.24 3.42 4.46

For HA2, HA3 and HA4, Tables 5.4 to 5.6 show that, the factors considered in

the algorithms (R1, R2, R3; M1, M2, M3; O, A; and C1, C2, C3) all exert influence on

the solution quality of the algorithms to some extent.

One finding from Table 5.4 is that, constructing the profit matrix pij based on

actual revenue (R1) yields better solution than the other two methods (R2 and R3).

Moreover, whether employing opportunity desirability (O) or actual desirability (A)

can provide better solution depends on how to construct the profit matrix pij: if it is

constructed by R1 or R3, selecting the customers based on actual desirability (A)

performs better; otherwise, one should select the customers based on opportunity

Chapter 5 Multi-period TCTSP

 124

desirability (O). For the measure of desirability fij, if the algorithm is implemented

based on opportunity desirability (O), fij defined by M1 provides the best solution

followed by M2 and M3; otherwise, fij defined by M1 provides the best solution

followed by M3 and M2. Another observation is that, the average percentage deviation

is quite different from one version of the algorithm to another, which can be as small

as 2.24% and as large as 12.66%. Among all 18 combinations, the smallest average

percentage deviation from the upper bound, 2.24%, is generated by HA2(17), which is

a combination of M1AR1, that is: construct the profit matrix pij with actual revenue

(R1); select the customers based on actual desirability (A) and define the measure of

desirability by fij = pij.

Table 5.5 Percentage deviations from the upper bound for HA3

Problem UB HA3(1) % HA3(2) % HA3(3) % HA3(4) % HA3(5) % HA3(6) %

1 3.53 3.44 2.48 3.40 3.77 3.45 2.40 3.43 3.00 3.46 1.97 3.45 2.21
2 3.60 3.50 2.88 3.49 3.06 3.49 3.24 3.51 2.70 3.53 2.14 3.50 2.77
3 3.64 3.54 2.58 3.53 2.86 3.55 2.31 3.54 2.62 3.58 1.67 3.57 1.88
4 3.57 3.46 3.12 3.45 3.35 3.47 2.85 3.48 2.57 3.51 1.84 3.50 2.07
5 3.62 3.54 2.28 3.48 3.82 3.53 2.34 3.53 2.43 3.55 1.79 3.56 1.59
6 3.51 3.43 2.47 3.40 3.16 3.43 2.40 3.42 2.61 3.46 1.41 3.44 1.97
7 3.59 3.47 3.20 3.48 2.91 3.46 3.52 3.45 3.71 3.49 2.78 3.49 2.57
8 3.60 3.49 3.11 3.48 3.39 3.51 2.49 3.51 2.58 3.54 1.58 3.53 1.81
9 3.58 3.49 2.52 3.47 3.10 3.47 3.07 3.49 2.49 3.51 1.97 3.50 2.20

10 3.54 3.44 2.96 3.42 3.52 3.45 2.70 3.43 3.09 3.46 2.37 3.45 2.70
11 3.60 3.51 2.36 3.49 2.94 3.52 2.26 3.51 2.37 3.54 1.44 3.51 2.40
12 3.51 3.42 2.58 3.40 3.12 3.41 2.78 3.40 3.04 3.41 2.81 3.42 2.55
13 3.54 3.43 3.18 3.42 3.43 3.43 3.10 3.46 2.45 3.46 2.31 3.47 1.91
14 3.59 3.50 2.38 3.46 3.57 3.50 2.37 3.50 2.46 3.52 1.90 3.50 2.37
15 3.55 3.44 3.02 3.41 3.91 3.44 3.21 3.45 2.67 3.48 2.01 3.46 2.40
16 3.63 3.54 2.41 3.50 3.36 3.55 2.05 3.54 2.45 3.57 1.66 3.56 1.86
17 3.56 3.46 2.79 3.43 3.51 3.45 3.08 3.47 2.55 3.49 1.86 3.46 2.82
18 3.57 3.47 2.82 3.42 4.17 3.46 3.09 3.48 2.37 3.49 2.04 3.49 2.29
19 3.59 3.48 3.22 3.47 3.31 3.50 2.66 3.48 3.21 3.52 1.99 3.53 1.64
20 3.60 3.49 2.94 3.47 3.40 3.50 2.80 3.48 3.15 3.54 1.50 3.53 1.80

Average 3.58 3.48 2.76 3.45 3.38 3.48 2.74 3.48 2.73 3.51 1.95 3.50 2.19

Chapter 5 Multi-period TCTSP

 125

For HA3, Table 5.5 clearly shows that, if measure of desirability fij is defined by

M1 or M2, algorithms implemented based on opportunity desirability (O) are superior

to those based on actual desirability (A); while for fij defined by M3, the average

percentage deviations from the upper bound for the two alternatives are very similar to

each other. The smallest deviation, 1.95%, is obtained from HA3(5), with measure of

desirability fij defined by M1 and implement the algorithm based on opportunity

desirability (O). The overall performance of HA3 is quite good, with average

percentage deviations from the upper bound for all the versions being within 3.5%.

Table 5.6 Percentage deviations from the upper bound for HA4 and HA1

Problem UB HA4(1) % HA4(2) % HA4(3) % HA4(4) % HA4(5) %

1 3.53 3.29 6.81 3.50 0.84 3.47 1.87 3.28 7.22 3.46 2.16
2 3.60 3.35 6.98 3.55 1.35 3.50 2.90 3.32 7.82 3.52 2.21
3 3.64 3.37 7.23 3.60 1.10 3.55 2.36 3.37 7.41 3.60 1.11
4 3.57 3.31 7.22 3.54 0.96 3.48 2.55 3.31 7.40 3.49 2.21
5 3.62 3.42 5.52 3.59 0.73 3.52 2.68 3.42 5.48 3.56 1.52
6 3.51 3.26 7.10 3.49 0.69 3.44 2.12 3.26 7.30 3.46 1.50
7 3.59 3.33 7.04 3.56 0.80 3.52 1.93 3.33 7.28 3.51 2.05
8 3.60 3.33 7.47 3.56 1.02 3.54 1.60 3.33 7.55 3.54 1.74
9 3.58 3.36 6.10 3.55 0.79 3.50 2.25 3.35 6.31 3.51 1.85

10 3.54 3.31 6.55 3.52 0.72 3.42 3.40 3.32 6.37 3.46 2.37
11 3.60 3.37 6.30 3.58 0.57 3.50 2.61 3.36 6.61 3.54 1.70
12 3.51 3.28 6.49 3.47 1.12 3.41 2.85 3.27 6.75 3.43 2.20
13 3.54 3.28 7.29 3.49 1.46 3.44 2.79 3.27 7.65 3.45 2.68
14 3.59 3.39 5.48 3.55 0.93 3.53 1.62 3.37 5.98 3.47 3.11
15 3.55 3.28 7.55 3.50 1.44 3.45 2.93 3.27 7.92 3.46 2.47
16 3.63 3.42 5.76 3.59 1.14 3.54 2.42 3.42 5.74 3.57 1.45
17 3.56 3.33 6.48 3.52 1.09 3.46 2.64 3.31 7.01 3.47 2.55
18 3.57 3.29 7.63 3.52 1.24 3.47 2.66 3.28 8.16 3.48 2.34
19 3.59 3.34 7.12 3.56 0.91 3.50 2.52 3.32 7.62 3.51 2.29
20 3.60 3.33 7.47 3.55 1.39 3.51 2.50 3.32 7.72 3.54 1.72

Average 3.58 3.33 6.78 3.54 1.02 3.49 2.46 3.32 7.07 3.50 2.06

Chapter 5 Multi-period TCTSP

 126

Table 5.6 Percentage deviations from the upper bound for HA4 and HA1 (Con.)

Problem UB HA4(6) % HA4(7) % HA4(8) % HA4(9) % HA1 %

1 3.53 3.40 3.83 3.37 4.70 3.37 4.70 2.95 16.56 3.47 1.84
2 3.60 3.42 5.01 3.44 4.48 3.44 4.48 3.07 14.71 3.55 1.37
3 3.64 3.48 4.17 3.49 4.10 3.49 4.10 3.13 14.04 3.61 0.76
4 3.57 3.38 5.41 3.44 3.66 3.44 3.66 3.08 13.82 3.52 1.39
5 3.62 3.47 4.18 3.47 4.18 3.47 4.18 3.08 14.77 3.58 1.13
6 3.51 3.36 4.31 3.38 3.89 3.38 3.89 3.05 13.14 3.47 1.11
7 3.59 3.41 4.88 3.42 4.79 3.42 4.79 3.05 14.85 3.52 1.82
8 3.60 3.45 4.01 3.43 4.57 3.43 4.57 3.16 12.14 3.56 1.00
9 3.58 3.44 3.95 3.44 3.96 3.44 3.96 3.11 13.28 3.54 1.24

10 3.54 3.34 5.80 3.33 6.07 3.33 6.07 3.03 14.56 3.48 1.67
11 3.60 3.44 4.47 3.44 4.48 3.44 4.48 3.05 15.18 3.56 0.97
12 3.51 3.32 5.31 3.33 5.18 3.33 5.18 2.93 16.44 3.44 1.97
13 3.54 3.33 5.96 3.39 4.26 3.39 4.26 3.07 13.36 3.47 2.10
14 3.59 3.43 4.48 3.43 4.35 3.43 4.35 3.09 13.86 3.55 0.94
15 3.55 3.37 4.92 3.43 3.49 3.43 3.49 3.03 14.71 3.49 1.60
16 3.63 3.46 4.49 3.49 3.70 3.49 3.70 3.11 14.17 3.59 1.03
17 3.56 3.41 4.25 3.37 5.16 3.37 5.16 3.05 14.36 3.50 1.68
18 3.57 3.36 5.88 3.39 5.09 3.39 5.09 2.99 16.14 3.52 1.40
19 3.59 3.41 5.22 3.45 4.09 3.45 4.09 3.10 13.77 3.54 1.50
20 3.60 3.43 4.62 3.45 4.14 3.45 4.14 3.11 13.48 3.54 1.64

Average 3.58 3.41 4.76 3.42 4.42 3.42 4.42 3.06 14.37 3.53 1.41

For HA4, assign the customers to the periods based on criterion C1 is better than

the other two criteria: C2 and C3. Once customers are assigned to a period, selecting

the customers based on ijij dp with jij Rp = (constructing the profit matrix based on

the actual revenue) provides the best solution. The smallest average percentage

deviation (1.02%), is obtained from HA4(2). Unlike HA3, solution quality of different

versions of HA4 heavily depends on how to assign the customers (C1, C2 and C3) and

how to construct the profit matrix pij for selecting the customers within one period.

Chapter 5 Multi-period TCTSP

 127

For HA1, the average percentage deviation from the upper bound is 1.41%. It is

better than the best among both HA2 (2.24%) and HA3 (1.95%), only inferior to the

best of HA4 (1.02%).

The average computational time taken to get the best solution for each of the

heuristics is illustrated in Table 5.7, which indicates that HA1 is the least time

consuming heuristic, followed by HA2, HA4 and HA3.

Table 5.7 Computational time taken to get the best solution for each heuristic

Computational time (ms) Customer Arrival

Rate HA1 HA2 HA3 HA4

20 11 24 57 41

5.6.3 Performance Comparison Among the Heuristics

For problems with high customer arrival rate and short service times, it is very

difficult to get the upper bound in terms of computational time. Therefore, the

performance of the heuristics is compared among themselves to determine which one

is more preferable in a certain scenario. As we discussed above, each heuristic has

several versions due to different combinations of the factors involved in it; totally, we

have 34 versions of the heuristics. For each problem instance, the heuristic with the

maximum profit realized is identified and regarded as the performance measurer; then

each heuristic is examined by calculating the percentage deviation from the maximum

profit. The following computational results are the averages of the results obtained

from 30 randomly generated problem instances.

Chapter 5 Multi-period TCTSP

 128

5.6.3.1 Analysis of the Factors Affecting the Performance of the Heuristics

Effect of different profit matrix, measure of desirability and opportunity or

actual desirability in HA2

Tables 5.8 to 5.10 illustrate the average percentage deviations from the maximum

for HA2 when the service time is 10, 30 and 100 minutes respectively. The minimum

average percentage deviation among all 18 combinations for each case is shown in

bold and italic font.

Table 5.8 Average percentage deviations from the maximum for HA2

(Service time = 10 minutes)

λ HA2(1) HA2(2) HA2(3) HA2(4) HA2(5) HA2(6) HA2(7) HA2(8) HA2(9)

20 0.45 1.37 1.32 0.86 2.07 1.64 0.90 2.11 1.62
30 0.29 1.28 1.18 2.15 3.83 2.15 1.35 2.54 1.66
40 3.12 3.39 3.76 3.00 4.26 2.31 3.27 3.60 3.80
50 3.38 3.65 4.60 2.58 3.14 1.80 3.48 3.72 4.62
60 3.82 4.05 5.55 2.35 2.52 1.75 3.89 4.14 5.53
70 4.44 4.61 6.42 2.18 1.70 1.73 4.45 4.61 6.39
80 4.82 4.93 7.11 2.05 1.46 2.01 4.77 4.89 7.06

Table 5.8 Average percentage deviations from the maximum for HA2 (Con.)

(Service time = 10 minutes)

λ HA2(10) HA2(11) HA2(12) HA2(13) HA2(14) HA2(15) HA2(16) HA2(17) HA2(18)

20 0.71 1.69 1.51 0.30 3.15 1.33 0.32 3.15 1.34
30 0.74 1.64 1.37 0.20 3.23 1.19 0.54 3.27 1.43
40 0.60 1.20 1.01 3.15 3.93 3.90 1.24 3.37 1.41
50 0.79 0.58 0.78 3.39 4.06 4.84 1.66 3.26 1.47
60 0.97 0.64 1.21 3.76 4.36 6.09 2.77 3.67 2.22
70 0.96 0.38 1.36 4.10 4.65 7.34 3.46 3.92 2.70
80 0.91 0.25 1.79 4.51 4.93 8.64 4.27 4.29 3.10

Chapter 5 Multi-period TCTSP

 129

Table 5.9 Average percentage deviations from the maximum for HA2

(Service time = 30 minutes)

λ HA2(1) HA2(2) HA2(3) HA2(4) HA2(5) HA2(6) HA2(7) HA2(8) HA2(9)

20 3.80 4.13 5.56 3.16 3.23 2.06 3.84 4.19 5.53
30 3.84 3.96 7.65 3.44 1.86 2.80 3.83 3.97 7.67
40 3.80 3.85 9.73 3.67 1.17 2.93 3.57 3.67 9.68
50 4.18 4.23 11.64 4.46 0.92 3.20 3.96 4.02 11.75
60 4.74 4.77 13.35 5.18 0.82 3.67 4.61 4.67 13.75
70 5.07 5.08 14.48 5.88 0.90 3.87 4.89 4.91 15.06
80 5.41 5.38 14.99 6.44 0.83 4.30 5.34 5.26 15.74

Table 5.9 Average percentage deviations from the maximum for HA2 (Con.)

(Service time = 30 minutes)

λ HA2(10) HA2(11) HA2(12) HA2(13) HA2(14) HA2(15) HA2(16) HA2(17) HA2(18)

20 1.25 0.50 1.50 4.13 4.87 5.95 3.01 3.28 2.52
30 2.27 0.34 2.56 4.54 4.97 8.65 4.74 3.62 3.56
40 2.95 0.32 2.87 4.84 5.15 11.77 6.06 3.88 3.73
50 3.83 0.15 3.15 5.37 5.43 14.26 7.69 4.35 4.15
60 4.92 0.24 3.63 6.05 6.04 16.65 9.36 4.95 4.66
70 5.48 0.24 3.82 6.64 6.63 17.62 10.25 5.44 5.01
80 6.31 0.14 4.28 7.10 7.11 17.95 11.00 6.04 5.53

Table 5.10 Average percentage deviations from the maximum for HA2

(Service time = 100 minutes)

λ HA2(1) HA2(2) HA2(3) HA2(4) HA2(5) HA2(6) HA2(7) HA2(8) HA2(9)

30 3.04 3.04 9.91 6.44 2.28 3.65 3.10 3.09 11.36
40 3.19 3.17 8.56 6.11 2.39 3.51 3.31 3.31 9.96
50 3.04 3.02 7.16 5.86 2.37 3.40 3.10 3.08 8.59
60 3.10 3.08 6.55 5.59 2.50 3.36 3.12 3.10 7.93
70 3.10 3.07 6.09 5.32 2.62 3.37 3.19 3.19 7.17
80 3.20 3.19 5.74 4.97 2.62 3.38 3.22 3.20 6.82

Chapter 5 Multi-period TCTSP

 130

Table 5.10 Average percentage deviations from the maximum for HA2 (Con.)

(Service time = 100 minutes)

λ HA2(10) HA2(11) HA2(12) HA2(13) HA2(14) HA2(15) HA2(16) HA2(17) HA2(18)

30 6.41 1.65 3.66 1.77 1.77 9.81 6.26 0.79 2.78
40 6.09 2.03 3.50 1.51 1.49 8.01 5.59 0.61 2.03
50 5.83 2.19 3.40 1.07 1.05 6.52 5.05 0.43 1.67
60 5.57 2.37 3.37 0.95 0.95 5.74 4.53 0.39 1.48
70 5.29 2.53 3.36 0.88 0.89 4.91 3.94 0.45 1.26
80 4.96 2.62 3.38 0.76 0.76 4.48 3.40 0.33 1.11

Results from Tables 5.8 to 5.10 indicate that, there is no dominant combination

always superior to the others. Specifically, when the service time is 10 minutes and

when the customer arrival rate is low (λ < 40), HA2(13) with the combination

M1OR2 performs the best; however, when λ = 40, HA2(10) with the combination

M3AR2 yields the best solution. In case of λ > 40 and the case when the service time

is medium, HA2(11) with the combination M3AR1 gives the best result. Finally, when

the service time is long (100 minutes), HA2(17) with the combination M1AR1 is the

best alternative. The combination with the best performance in each scenario is

summarized in Table 5.11.

Table 5.11 Combinations with the best performance for HA2, HA3 and HA4

Service time (minutes)

Heuristic

Customer Arrival

Rate λ 10 30 100

<λ 40 M1OR2 M3AR1 M1AR1

=λ 40 M3AR2 M3AR1 M1AR1

HA2

λ > 40 M3AR1 M3AR1 M1AR1

<λ 50 M1A M3A M1O

HA3 λ ≥ 50 M3A M3A M1O

λ ≤ 40 C1R3 C2R1 C1R1

HA4 >λ 50 C2R1 C2R1 C1R1

Chapter 5 Multi-period TCTSP

 131

Computational results show that, all three factors considered in HA2 have some

impacts on the performance of the heuristics, and the factors are interdependent. Figure

5.1 illustrates the effect of different measure of desirability (M1, M2 and M3) on HA2

when actual desirability (A) is applied and when profit matrix is constructed by R1,

with service time being set at 100 minutes. In this case, it is clear that, desirability

defined by fij = ijp (M1) gives the best solution; while fij = ijij wp (M2) gives the

worst solution.

Effect of Different Measure of Desirability on HA2

0

0.5

1

1.5

2

2.5

3

30 40 50 60 70 80

Customer Arrival Rate

P
er

ce
nt

ag
e

D
ev

ia
tio

n
fr

om

th
e

M
ax

im
um

 (%
)

M1
M2
M3

Figure 5.1 Effect of Different Measure of Desirability on Heuristic HA2

The effect of different profit matrix (R1, R2 and R3) on HA2 is shown in Figure

5.2 when actual desirability (A) is applied and when measure of desirability is fixed at

M3, with the service time being set at 10 minutes. In this case, when the customer

arrival rate is less than 50, we should construct the profit matrix according to R2, that

is, putting more weight on assigning customer j to the early period of its time window.

Otherwise, profit matrix should be constructed based on R1, the actual revenue.

Chapter 5 Multi-period TCTSP

 132

Effect of Different Profit Matrix on HA2

0

0.5

1

1.5

2

20 30 40 50 60 70 80

Customer Arrival Rate

P
er

ce
nt

ag
e

D
ev

ia
tio

n
fr

om

th
e

M
ax

im
um R1

R2
R3

Figure 5.2 Effect of Different Profit Matrix on HA2

Effect of applying different measure of desirability and opportunity or actual

desirability in H3

Tables 5.12 to 5.14 illustrate the average percentage deviation from the

maximum for HA3 when the service time is 10, 30 and 100 minutes respectively.

Similarly, the minimum average percentage deviation from the maximum among the 6

combinations is shown in bold and italic font.

Table 5.12 Average percentage deviations from the maximum for HA3 and HA1

(Service time = 10 minutes)

λ HA3(1) HA3(2) HA3(3) HA3(4) HA3(5) HA3(6) HA1

20 2.15 2.19 2.20 1.66 1.88 0.10 1.72
30 2.52 3.73 2.28 1.61 2.41 0.20 1.83
40 2.62 4.17 2.09 1.23 2.42 0.72 0.96
50 2.05 3.15 1.64 0.72 1.98 0.77 0.17
60 1.75 2.30 1.40 0.62 1.87 1.09 0.17
70 1.59 1.62 1.12 0.37 1.89 1.18 0.26
80 1.16 1.33 1.08 0.33 2.10 1.36 0.35

Chapter 5 Multi-period TCTSP

 133

Table 5.13 Average percentage deviations from the maximum for HA3 and HA1

(Service time = 30 minutes)

λ HA3(1) HA3(2) HA3(3) HA3(4) HA3(5) HA3(6) HA1

20 1.78 3.34 1.32 0.52 1.72 1.52 0.43
30 1.17 1.87 0.78 0.34 1.77 1.73 0.62
40 1.03 0.99 0.84 0.43 1.95 1.72 0.92
50 0.79 0.76 0.73 0.21 2.52 2.27 1.43
60 0.86 0.73 0.75 0.36 3.03 3.02 2.14
70 0.71 0.73 0.55 0.23 3.56 3.63 2.73
80 0.69 0.74 0.58 0.27 4.20 4.09 3.23

Table 5.14 Average percentage deviations from the maximum for HA3 and HA1

(Service time = 100 minutes)

λ HA3(1) HA3(2) HA3(3) HA3(4) HA3(5) HA3(6) HA1

30 2.00 2.40 1.94 1.98 0.61 0.80 0.25
40 2.29 2.52 2.23 2.27 0.53 0.68 0.20
50 2.48 2.45 2.38 2.36 0.44 0.55 0.10
60 2.60 2.70 2.61 2.63 0.50 0.55 0.13
70 2.72 2.81 2.74 2.77 0.44 0.55 0.16
80 2.82 2.88 2.84 2.83 0.41 0.50 0.14

The combination with the best performance in each scenario is also summarized

in Table 5.11. Specifically, when the service time is short and medium, actual

desirability should be selected; otherwise, one should choose opportunity desirability.

In terms of measure of desirability fij, when the service time is short with arrival rate

λ < 50 and when the service time is long, M1 is the best; M3 should be applied when

the service time is short with arrival rate λ ≥ 50 and when the service time is medium.

Chapter 5 Multi-period TCTSP

 134

For HA3, the overall performance is quite good with largest percentage deviation

(HA3(5) when service time is 30 minutes) from the maximum being within 4.2%. The

impact of actual or opportunity desirability (A/O) is marginal except for the case when

service time is set at 10 minutes. Since the effect of different measure of desirability is

more important, we illustrate in Figure 5.3 of this effect in the case when service time

is 30 minutes and when we assign based on actual desirability. In this case, measure of

desirability defined by fij = ijiji wpT (M3) gives the best solution.

Effect of Different Measure of Desirability on HA3

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

20 30 40 50 60 70 80

Customer Arrival Rate

P
er

ce
nt

ag
e

D
ev

ia
tio

n
Fr

om
 th

e
M

ax
im

um

M1
M2
M3

Figure 5.3 Effect of Different Measure of Desirability on Heuristic HA3

Effect of artificial revenue and different assigning criteria in H4

Tables 5.15 to 5.17 illustrate the average percentage deviations from the

maximum for HA4 when service time is 10, 30 and 100 minutes respectively. The

minimum average percentage deviation from the maximum among the 9 combinations

is shown in bold and italic font. Specifically, when service time is short, and customer

arrival rate λ < 50, HA4(3) gives the best result, where profit matrix is constructed by

R3, and customers are assigned by C1; when the service time is short and customer

Chapter 5 Multi-period TCTSP

 135

arrival rate λ ≥ 50, and when service time is medium, HA4(5) yields the best result

with profit matrix constructed by R1, and customers assigned by C2; when service

time is long, HA4(2) provides the best solution, again profit matrix should be

constructed by R1, but customers should be assigned based on C1 in this case. The

best combination in different scenarios for HA4 can be found in Table 5.11.

Table 5.15 Average percentage deviations from the maximum for HA4

(Service time = 10 minutes)

λ HA4(1) HA4(2) HA4(3) HA4(4) HA4(5) HA4(6) HA4(7) HA4(8) HA4(9)

20 0.00 0.00 0.00 0.14 1.62 1.38 3.15 3.15 3.15
30 0.25 0.13 0.02 0.36 1.66 1.44 3.56 3.56 3.60
40 0.81 0.25 0.00 0.91 1.14 1.35 4.34 4.34 4.79
50 1.27 0.33 0.34 1.32 0.14 1.50 4.27 4.27 5.48
60 2.32 1.01 1.17 2.23 0.11 2.21 4.53 4.54 6.68
70 3.30 1.48 1.93 3.08 0.15 2.69 4.81 4.81 7.94
80 4.26 2.02 2.48 3.92 0.25 3.01 5.10 5.09 9.17

Table 5.16 Average percentage deviations from the maximum for HA4

(Service time = 30 minutes)

λ HA4(1) HA4(2) HA4(3) HA4(4) HA4(5) HA4(6) HA4(7) HA4(8) HA4(9)

20 2.05 0.46 0.20 2.29 0.46 2.53 5.34 5.34 6.97
30 4.32 1.57 1.99 4.17 0.17 3.60 5.25 5.24 9.48
40 6.24 2.23 2.90 6.14 0.30 3.70 5.43 5.43 12.37
50 8.15 3.17 3.88 7.90 0.63 4.17 5.71 5.72 14.99
60 9.71 4.05 5.00 9.48 1.28 4.66 6.27 6.27 17.70
70 10.88 4.62 5.52 10.57 1.78 4.96 6.84 6.84 19.22
80 11.46 5.36 6.08 11.23 2.28 5.36 7.13 7.13 19.94

Chapter 5 Multi-period TCTSP

 136

Table 5.17 Average percentage deviations from the maximum for HA4

(Service time = 100 minutes)

λ HA4(1) HA4(2) HA4(3) HA4(4) HA4(5) HA4(6) HA4(7) HA4(8) HA4(9)

30 6.27 0.05 1.46 6.32 0.58 2.82 2.24 2.24 13.98
40 5.57 0.10 1.09 5.53 0.58 2.03 2.08 2.08 12.79
50 5.02 0.13 0.84 5.02 0.26 1.66 1.39 1.39 10.79
60 4.49 0.08 0.86 4.51 0.30 1.49 1.22 1.22 9.65
70 3.93 0.13 0.71 3.93 0.33 1.23 1.26 1.26 8.42
80 3.38 0.15 0.73 3.38 0.27 1.11 0.95 0.95 7.54

Computational results reveal that, except for the case when service time is 10

minutes, profit matrix constructed by R1, actual revenue, always obtains the best

solution. Figure 5.4 displays this effect when customers are assigned based on C2 and

service time is set at 30 minutes.

Effect of Different Profit Matrix on HA4

0

2

4

6

8

10

12

20 30 40 50 60 70 80

Customer Arrival Rate

P
er

ce
nt

ag
e

D
ev

ia
tio

n
fr

om

th
e

M
ax

im
um

 (%
)

R1
R2
R3

Figure 5.4 Effect of Different Profit Matrix on Heuristic HA4

For the effect of different assigning criteria, computational results show that,

when the service time is short with arrival rate λ < 50 and when the service time is

Chapter 5 Multi-period TCTSP

 137

long, we should assign the customers according to criterion C1. Otherwise, when the

service time is short with arrival rate λ ≥ 50 and when the service time is medium, we

should assign the customers according to criterion C2. An example of the above effect

for the case of medium service time is illustrated in Figure 5.5, which shows that

criterion C2 produces the best result.

Effect of Different Assigning Criteria on HA4

0
1
2
3
4
5
6
7
8

20 30 40 50 60 70 80

Customer Arrival Rate

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

fr
om

th

e
M

ax
im

um
 (%

)

C1
C2
C3

Figure 5.5 Effect of Different Assigning Criteria on Heuristic HA4

Some observations

From the above analysis and data in Table 5.11, the following observations can

be obtained. We classify all the scenarios considered above into three types. Type I:

when customer arrival rate is low and service time is short, most customers can be

included in the solution. Type II: when the service time is very long, only a few

customers can be included in the solution. Type III: when the service time is short and

customer arrival rate is high, or when service time is medium, the number of customers

can be included in the solution is neither very large nor very small. For the measure of

desirability in HA2 and HA3, in type I and II, it should be defined by fij = pij, i.e., only

consider the revenue of assigning customer j in period i. However, in type III, it should

Chapter 5 Multi-period TCTSP

 138

be defined by fij = ijiji wpT , i.e., we should not only consider the revenue of the

customer, but also the time required to visit it, and the remaining working time at the

moment. For HA4, customers should be assigned according to criterion C1 for type I

and II and according to criterion C2 in type III. For profit matrix in HA2 and HA4, it

should be constructed based on actually revenue (R1) for type II and III; for type I, in

HA2, it should be constructed by R2, putting more weight on the earlier period the

customer requests a service; in HA4, it should be constructed by R3, putting more

weight on the period the customer requests the service. For the opportunity or actual

desirability, in HA2, opportunity desirability should be applied in type I; otherwise,

actual desirability should be used. In HA3, for type II, opportunity desirability should

be applied; otherwise, actual desirability should be applied.

Finally, the heuristic yields the best solution in each scenario is summarized in

Table 5.18.

Table 5.18 The heuristic yields the best solution in different scenarios

Service time (minutes) Customer

Arrival Rate λ
10 30 100

20 HA4(3) HA4(5) HA4(2)

30 HA4(3) HA4(5) HA4(2)

40 HA4(3) HA4(5) HA4(2)

50 HA4(5) HA2(11) HA1

60 HA4(5) HA2(11) HA4(2)

70 HA4(5) HA3(4) HA4(2)

80 HA4(5) or HA2(11) HA2(11) HA1

Chapter 5 Multi-period TCTSP

 139

5.6.3.2 Comparison of the Heuristic Performances

We make a comparison of the performance of the heuristics HA1, HA2, HA3 and

HA4 in this section. We compare the performance of the heuristics in several

scenarios: the service time is short, the service time is medium, and the service time is

long. Since each heuristic (HA2, HA3 and HA4) has several versions due to the factors

discussed in Section 5.6.3.1, we select the ones with the best solution quality to

represent HA2, HA3 and HA4. Therefore, the algorithms do not divert from one

another greatly. However, we still can distinguish them in each scenario.

Performance of the heuristics when the service time is short (10 minutes)

When service time is 10 minutes, results are illustrated in Table 5.19.

Table 5.19 Heuristic performances when service time = 10 minutes

Profits Computational Time (ms) Customer

Arrival Rate HA1 HA2 HA3 HA4 HA1 HA2 HA3 HA4

20 9.73 9.87 9.89 9.90 10 32 63 10

30 14.47 14.71 14.71 14.74 22 83 168 23

40 18.83 18.90 18.87 19.01 44 242 467 57

50 21.62 21.53 21.50 21.63 70 445 1435 189

60 23.60 23.49 23.49 23.61 102 729 2522 269

70 25.07 25.05 25.05 25.10 132 1108 3797 378

80 26.12 26.14 26.12 26.14 169 1513 5319 454

With respect to solution quality, HA4 performs the best. However, the

differences among the algorithms are small, with the largest deviation from the

maximum being 1.7%. The solution quality of HA2 is very close to that of HA3. When

the customer arrival rate is small (λ < 40), HA1 performs not as good as the other

Chapter 5 Multi-period TCTSP

 140

heuristics; however, with the increase of problem size, it behaves almost as well as

HA4. For computational time, HA3 takes the most time, followed by H2, H4 and H1.

Meanwhile, time taken by HA4 is much more comparable to HA1 than to HA2;

computational time of both HA2 and HA3 also increases much faster than the other

two heuristics as arrival rate increases.

Performance of the heuristics when the service time is medium (30 minutes)

When the service time is 30 minutes, Table 5.20 summarizes both the solution

quality and the computational time with the increase of customer arrival rateλ .

Table 5.20 Heuristic performances when service time = 30 minutes

Profits Computational Time (ms) Customer

Arrival Rate HA1 HA2 HA3 HA4 HA1 HA2 HA3 HA4

20 8.28 8.27 8.27 8.30 11 46 115 48

30 9.66 9.69 9.69 9.71 23 96 299 77

40 10.40 10.46 10.45 10.46 37 175 590 117

50 10.83 10.97 10.96 10.92 52 250 999 207

60 11.13 11.35 11.33 11.23 73 364 1532 274

70 11.36 11.65 11.65 11.47 95 494 2153 370

80 11.51 11.88 11.87 11.63 122 605 2794 442

With respect to solution quality, result from HA1 is always the worst in this case.

For the other three heuristics, when customer arrival rate λ < 50, results are very

similar to one another. However, as λ increases, both HA2 and HA3 outperform HA4

with HA2 being slightly better than HA3. The difference between the best (HA2) and

the worst (HA1) also increases as λ increases with the largest difference being about

3.2%. In terms of the computational time, from largest to smallest, it follows the same

Chapter 5 Multi-period TCTSP

 141

order as the case when service time is short: HA3, HA2, HA4 and HA1. However, in

this case, time taken by HA4 is much more comparable to HA2 than to HA1.

Computational time of HA3 also increases fastest; and computational time of both

HA2 and HA3 increase faster than that of HA1.

Performance of the heuristics when the service time is long (100 minutes)

When the service time is 100 minutes, results are shown in Table 5.21.

Performance of HA1 and HA4 are consistently better than that of HA2 and HA3.

When the customer arrival rate λ is less than 50, HA4 performs the best followed by

HA1, HA3 and HA2. As λ further increases, performance of HA1 improves and it

produces results very close to that of HA4; similarly, performance of HA2 also

improves and it produces results slightly better than HA3. With respect to

computational time, HA3 still takes the most time and HA1 takes the least time.

However, in this case, HA4 becomes the second most time consuming heuristic; and

HA2 becomes the second least time consuming one.

Table 5.21 Heuristic performances when service time = 100 minutes

Profits Computational time (ms) Customer

Arrival Rate HA1 HA2 HA3 HA4 HA1 HA2 HA3 HA4

20 3.521 3.492 3.504 3.535 11 24 57 41

30 3.678 3.658 3.665 3.685 19 44 120 58

40 3.758 3.742 3.745 3.761 33 68 216 87

50 3.806 3.793 3.793 3.805 53 98 345 154

60 3.838 3.828 3.824 3.840 66 142 476 193

70 3.862 3.851 3.851 3.863 89 177 639 266

80 3.877 3.870 3.867 3.877 113 206 817 310

Chapter 5 Multi-period TCTSP

 142

5.7 Summary and Conclusions

In this chapter, we consider a multi-period time constrained TSP in the rolling

schedule environment. The problem is to design a schedule for each period so that the

average profit of serving a subset of the customers is maximized in a long run. We

propose three heuristic algorithms based on iterative customer assignment (HA1, HA2

and HA3) and one heuristic based on iterative center-of-gravity scheme (HA4) for

solving the problem. Then, the problem is formulated as a set-covering problem, and

its LP relaxation is solved to optimality by a column generation scheme to get an upper

bound for the original set-covering problem. To evaluate the performance of the

proposed heuristics, for small size problem with long service times, the heuristics are

compared against the upper bound; for other cases, the performance of the heuristics

are compared among themselves. Computational results illustrate that, each of the best

representative of the heuristics perform very well for the problem, with the largest

average deviation from the upper bound being 2.24%, and the smallest deviation only

1.02%. When comparing heuristics among themselves, results indicate that, with

respect to solution quality, each heuristic has its own advantage in a certain scenario.

When the service time is short, the heuristics perform quite similar to one another;

when the service time is medium, both HA2 and HA3 tend to behave better than HA1

and HA4; however, when the service time is long, HA1 and HA4 become better than

HA2 and HA3. For the computational time, HA3 always ranks the most time

consuming and HA1 ranks the least time consuming, leaving HA2 and HA4 in

between. Computational time of HA4 increases much faster than that of HA2 as the

service time increases: when service time is short, HA2 ranks the second time

consuming; while when service time is long, HA4 becomes the second time consuming

Chapter 5 Multi-period TCTSP

 143

one. We make the following recommendations to the decision makers: When the

service time is short and long, HA1 is the best candidate, because its solution quality is

quite good compared to the other heuristics, but it takes very little computational time.

When the service time is medium, both HA2 and HA3 perform very good, since HA3

takes much more time, HA2 is more preferable.

Chapter 6 The TCTSP with Stochastic Travel and Service Times

Chapter 6

 The TCTSP with Stochastic Travel and Service Times

6.1 Introduction

The time constrained travelling salesman problem (TCTSP), is a variant of the

classical travelling salesman problem, where only a subset of the customers can be

visited due to the time limit constraint. The problem is usually considered as a

deterministic problem in the literature. In practical applications, however, both the

travel and the service times may not be known with certainty in advance. For example,

the travel time may be affected by the weather conditions (rain or snow) as well as the

traffic conditions (road repair or traffic accidents); the service time is then determined

by the kind of service the customer requires. In this chapter, a TCTSP with stochastic

travel and service times is considered. The problem consists of optimally selecting and

sequencing a subset of customers to visit in the presence of random travel and service

times to maximize the expected profit while satisfying the time limit constraint.

The problem can be formulated both as a chance-constrained program and a two

stage stochastic program with recourse (SPR). In the later formulation, a subset of the

customers must be optimally selected and sequenced before the particular values of the

random travel and service times are known, these are called first stage decisions; once

the customers are selected and their visiting order is fixed, it is possible to calculate the

total travel and service time associated with the tour. Thus, in the second stage,

recourse actions can be taken to impose an expected penalty on the objective function.

 144

Chapter 6 The TCTSP with Stochastic Travel and Service Times

In practice, drivers usually are paid overtime for work done after normal hours, it is

therefore reasonable to set the penalty to be proportional to the total travel and service

time of the route in excess of a preset constant T.

The L-shaped method of Van Slyke and Wet (1969) is a cutting plane or

Benders’ decomposition (Benders, 1962) technique for solving the two stage stochastic

linear problems when the random variables have finite support. The name ‘L-shaped

method’ is due to the special block structure of the two stage stochastic problem in its

extensive form. Birge and Louveaux (1988) extended the L-shaped algorithm with

single optimality cut to a multi-cut algorithm. They showed that, the effectiveness of

the multi-cut algorithm is conditional: it is more effective when the number of

realizations of the random variables is not significantly larger than the number of first

stage constraints. In Laporte and Louveaux (1993), they presented an integer L-shaped

method for the stochastic integer program with complete recourse, in which a

branching procedure is incorporated into the L-shaped method to recover the

integrality of the variables. New optimality cuts were derived for the case when first

stage variables are binary. These cuts are more efficient when random variables have

many states or have continuous distributions, or when the second stage problem cannot

be formulated in terms of first stage variables. Some lower bounds on the second stage

value function were also presented in the paper. Laporte et al. (1992) addressed the

vehicle routing problem with stochastic travel times. A branch-and-cut algorithm was

proposed, and optimality cuts were generated in a similar way as in Laporte and

Louveaux (1993). The integer L-shaped method has also been applied in the vehicle

routing problem with stochastic demands; see Hjorring and Holt (1999), Laporte et al.

(2002). Gendreau et al. (1995) applied the integer L-shaped method to the vehicle

routing problem with stochastic demands and customers.

 145

Chapter 6 The TCTSP with Stochastic Travel and Service Times

The purpose of this chapter is to present an integer L-shaped algorithm for the

TCTSP with stochastic travel and service times. In Section 6.2, we give a formal

description of the problem considered and formulate it as both a chance-constrained

program and a stochastic program with recourse. Valid constraints used in the integer

L-shaped algorithm are derived in Section 6.3. The procedure involved in the integer

L-shaped algorithm is described in Section 6.4. Section 6.5 presents the computational

results and analysis. Finally the results obtained in this study are summarized in

Section 6.6.

6.2 Problem Description and Model Formulation

The TCTSP with stochastic travel and service times considered in this chapter

can be described as follows. Let),'(AVG = be a complete graph, where = {0, 1,

…, n} is a vertex set, and A = {(i, j) | i, j

'V

'V∈ and i < j} denotes a set of arcs. Vertex

0 represents the depot, and 1,…, n denote n customers. Associated with each customer

i, there is a profit Ri and a service time iτ ; and associated with each arc, there is a

travel time tij. Assume that the travel time for each arc and the service time for each

node are independent discrete random variables. Assume that T is the maximum

effective working time, T∆ is the maximum amount of time allowed to exceed T. The

objective is to maximize the expected profit realized from visiting a subset of the

customers without violating the time limit constraint.

In stochastic programming, commonly, two versions of the problem are

considered: chance-constrained program and stochastic program with recourse.

 146

Chapter 6 The TCTSP with Stochastic Travel and Service Times

Chance-constrained program

In addition to the notations , A, R'V j, T, T∆ described above, the following

notations are used in the model formulation.

V = \ {0}. 'V

tij = A random variable representing time of travelling arc (i, j).

jτ = A random variable representing service time of visiting node j.

α = The maximum probability that the total travel and service time within a tour is

allowed to exceed . TT ∆+

xij = ⎜⎜
⎝

⎛ ∈
otherwise,0

traversedis),(arcif,1 Aji

yj = ⎜⎜
⎝

⎛ ∈
otherwise,0

visitedis'nodeif,1 Vj

The chance – constrained model is formulated as follows:

Z = Max (6.1) ∑
∈Vj

jj yR

Subject to

∑
∈Vj

jx0 = 2 (6.2)

∑∑
∈∈

+
Alj

jl
Aji

ij xx
),(),(

=2yj Vj∈∀ (6.3)

3||,1|| ≥Λ⊆Λ∀−Λ≤∑
Λ∈
Λ∈

Vx
j
i

ij (6.4)

,),(}1,0{ Ajixij ∈∀∈ (6.5)

Vjy j ∈∀∈ }1,0{ (6.6)

Now consider an orienteering tour π = (i0 = 0, i1, …, iu, iu+1 = i0=0). Such a route is

legal only if

 147

Chapter 6 The TCTSP with Stochastic Travel and Service Times

ατ ≤⎟
⎠

⎞
⎜
⎝

⎛
>+∑

=
+

TtP
kkk i

u

k
ii][

0
1

 (6.7)

In the above formulation, the objective (6.1) is to maximize the total profit

realized from visiting the subset of the customers. Constraints (6.2) ensure that the

route must start from depot and go back to depot in the end. Constraints (6.3) indicate

that, if node j is not included in the tour, no arcs incident to j are included. Otherwise,

there must be one arc going into and one arc coming out of node j. Constraints (6.4)

are sub-tour elimination constraints, which guarantee that except a sub-tour including

the depot, no other sub-tours in set V are allowed. Constraint (6.7) removes those tours

with probability that total travel and service times exceed T being greater thanα .

Stochastic program with recourse

To present the model of stochastic program with recourse (SPR), we need

slightly different notations from the chance-constrained model.

Notation:

ξ = A vector of random variables corresponding to travel and service time. It has

a finite number of realizations, with probabilities . Kξξξ ,...,, 21
Kppp ,...,, 21

pk = The probability that the random vector ξ takes on the realization . kξ

K = Number of realizations of vector ξ .

)(kξθ = The total travel and service time of the route in excess of T when the

realization of the random variable is . kξ

k

ijt ξ = A random variable representing time of travelling arc (i, j) when the realization

of the random variable is . kξ

 148

Chapter 6 The TCTSP with Stochastic Travel and Service Times

k

j
ξτ = A random variable representing service time of visiting node j when the

realization of the random variable is . kξ

β = The unit penalty cost for total time of the route in excess of T.

xij = ⎜⎜
⎝

⎛ ∈
otherwise0

traversedis),(arcif1 Aji

yj = ⎜⎜
⎝

⎛ ∈
otherwise0

visitedisnodeif1 Vj

The SPR model is as follows:

Z= - (6.8) ∑
∈Vj

jj yrmax())(
1
∑
=

K

k

k
kp ξθβ

subject to

Constraints 6.2, 6.3, 6.4, 6.5, 6.6 and

Tyxt
ji Vj

jjijij
k kk

−+≥ ∑ ∑
< ∈

ξξ τξθ)(Kk ,...2,1= (6.9)

KkTk ,...,2,1)(0 =∆≤≤ ξθ (6.10)

In the above formulation, the objective (6.8) is to maximize the expected profit

generated (include the expected penalties incurred) from visiting a subset of the n

customers. Constraints (6.9) and (6.10) ensure that if the total travel and service time

of a route is greater than T, the excess amount should be within T∆ .

6.3 Valid Constraints Considered in the Integer L-shaped Algorithm

In the SPR model, if we consider constraints (6.2), (6.3) and (6.4) as one block,

and write constraints (6.9) and (6.10) in extensive form for each , it is clear

that the problem considered here has the block-angular structure, and therefore can be

solved by the L-shaped method based on Benders’ decomposition (Benders, 1962)

Kk ,...2,1=

 149

Chapter 6 The TCTSP with Stochastic Travel and Service Times

technique. The basic idea of L-shaped algorithm is to approximate the term

(second stage value function) in the objective function (6.8), which

involves a solution of the second stage recourse linear program. This is done by

building a first stage problem using an approximate term, and only evaluating the

second stage value function exactly in the second stage subproblem.

∑
=

K

k

k
kp

1

)(ξθβ

The first stage problem - current problem

At a given phase of the algorithm, we call the following first stage problem as the

current problem (CP).

(CP)

Z= -∑
∈Vj

jj yrmax()η (6.11)

subject to

∑
∈Vj

jx0 = 2

∑∑
∈∈

+
Akj

jk
Aji

ij xx
),(),(

=2yj Vj∈∀

Set of illegal route elimination constraints (6.12)

Set of optimality constraints (6.13)

,),(}1,0{ Ajixij ∈∀∈

Vjy j ∈∀∈ }1,0{

The above current problem is obtained by two relaxations. The sub-tour

elimination constraints (6.4) and second stage feasibility constraints (6.9) and (6.10)

are relaxed in a number of constraints in (6.12) known as feasibility cuts. Constraints

(6.9) and (6.10) are relaxed because they are not known in advance. Once we get the

 150

Chapter 6 The TCTSP with Stochastic Travel and Service Times

first stage solution, we know which of these constraints are violated. Constraints (6.4)

are relaxed because, though they are known, the constraints are so numerous that it

would be unrealistic to impose all of them from the beginning. Finally, the second

stage expected value function , is relaxed by an estimated bound ∑
=

K

k

k
kp

1

)(ξθβ η and

the constraints (6.13) known as optimality cuts. Note that, in the initial first stage

problem (first current problem), the constraint set (6.12) may be empty and constraint

set (6.13) may only contain constraint 0≥η . In the subsequent iteration, constraint set

(6.12) includes the newly identified sub-tour elimination constraints and the second

stage feasibility constraints; while constraint set (6.13) includes the newly identified

optimality cuts.

Given a first stage solution (x, y, η) to the above current problem, we can get the

following second stage problem, and derive feasibility and optimality cuts based on it.

The second – stage problem (SSP)

min w = (6.14) ∑
=

K

k

k
kp

1

)(ξθβ

Tyxt
ji Vj

jjijij
k kk

−+≥ ∑ ∑
< ∈

ξξ τξθ)(Kk ,...2,1= (6.15)

KkTk ,...,2,1)(=∆≤ξθ (6.16)

Kkk ,...,2,10)(=≥ξθ (6.17)

Since the second stage problem is a LP problem with continuous variables, we

can derive the feasibility cut and the optimality cut from the dual problem.

Similar to the application of the Benders’ decomposition (Benders, 1962) method

for the mixed integer program, we add both the feasibility cuts and the optimality cuts

 151

Chapter 6 The TCTSP with Stochastic Travel and Service Times

when we get an integer first stage solution, which corresponds to a set of selected

customers to be visited.

The feasibility cuts

For each k, we denote and as dual variables corresponding to constraints

(6.15) and (6.16) respectively. Then the dual problem corresponding to the above

second stage problem can be described as follows:

k
+Ι

k
−Ι

(DSSP)

Max φ = (()) (6.18) ∑
=

K

k 1

Tyxt
ji Vj

jjijij

kk

−+∑ ∑
< ∈

ξξ τ k
+Ι

kT −Ι∆− *

subject to:

k
+Ι k

k p*β≤Ι− − (6.19) Kk ,...2,1=

0≥Ι+
k , (6.20) 0≥Ι−

k Kk ,...2,1=

The above problem can be separated into K problems. For each k, ,

we have,

Kk ,...2,1=

(DSSPk)

Max = () (6.21) kφ Tyxt
ji Vj

jjijij

kk

−+∑ ∑
< ∈

ξξ τ k
+Ι

kT −Ι∆− *

 subject to:

k
+Ι k

k p*β≤Ι− − (6.22)

0≥Ι+
k , (6.23) 0≥Ι−

k

If the primal second stage problem (SSP) is infeasible, then at least one of the

above problems (DSSPk) is unbounded. An extreme ray of the feasible region of the

dual problem (DSSPk) is vray = (,) = (1, 1). Since the above problem (DSSPk
+Ι

k
−Ι

k)

is a maximization problem, if at the direction of the extreme ray,

 152

Chapter 6 The TCTSP with Stochastic Travel and Service Times

0
1
1

'

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∆−

−+∑ ∑
< ∈

T

Tyxt
ji Vj

jjijij

kk ξξ τ
 holds, then the dual problem (DSSPk) is unbounded

and the primal second stage problem (SSP) is infeasible. To eliminate this first stage

solution, we can add a feasibility constraint as follows:

0
1
1

'

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∆−

−+∑ ∑
< ∈

T

Tyxt
ji Vj

jjijij

kk ξξ τ
 (6.24)

To get the strongest feasibility constraint for the current first stage solution, we

choose the constraint corresponding to , which makes the total travel and service

times in excess of the time limit,

kξ

Tyxt
ji Vj

jjijij

kk

−+∑ ∑
< ∈

ξξ τ , the longest, and add the

constraint into constraint set (6.12) of the first stage problem (CP).

The optimality cuts

In case the first stage solution (x, y, η) is feasible, by observing the feasible

region of the dual problem (DSSPk), we know that, there are two extreme points: (0, 0)

and (β pk, 0). From the objective function of (DSSPk), it is clear that, if the following

expression holds

0≥−+∑ ∑
< ∈

Tyxt
ji Vj

jjijij

kk ξξ τ (6.25)

the dual optimal solution occurs at the extreme point (β pk, 0), an optimality cut can be

derived as

k
ji Vj

jjijij
k pTyxt

kk

βτφ ξξ)(−+≥ ∑ ∑
< ∈

 (6.26)

Otherwise, the optimal solution occurs at the extreme point (0, 0), and the optimal cut

is

 153

Chapter 6 The TCTSP with Stochastic Travel and Service Times

0≥kφ (6.27)

Therefore, in a single cut algorithm, we can aggregate the cuts into a single optimality

cut as

∑
=

≥
K

k 1

η ()Tyxt
ji Vj

jjijij

kk

−+∑ ∑
< ∈

ξξ τ kpβ (6.28)

 for all with kξ KkTyxt
ji Vj

jjijij

kk

,...2,1,0 =≥−+∑ ∑
< ∈

ξξ τ

In a multi-cut algorithm, we add the following cuts

∑
=

≥
K

k

k

1

φη (6.29)

0

,...,2,1)(

≥−+

=−+≥

∑ ∑

∑ ∑

< ∈

< ∈

Tyxtif

KkpTyxt

ji Vj
jjijij

k
ji Vj

jjijij
k

kk

kk

ξξ

ξξ

τ

βτφ
 (6.30)

00 <−+≥ ∑ ∑
< ∈

Tyxtif
ji Vj

jjijij
k kk ξξ τφ (6.31)

Sub-tour elimination constraints

For the TCTSP, since we only select a subset of the customers in the solution,

sub-tour elimination constraints only eliminate those sub-tours that do not contain the

depot. At an integer solution, it is easy to detect a sub-tour. Once a main tour

containing the depot is formed, other loops are sub-tours. Suppose we have a subset

= () which forms a sub-tour, we can add the following

constraint to eliminate such a sub-tour:

Λ 01210 ,,...,,, iiiiii uu =+

∑
=

≤
+

u

l
ii ux
ll

0
1

 (6.32)

 154

Chapter 6 The TCTSP with Stochastic Travel and Service Times

Since any node can be dropped from the solution in the TCTSP, we can also

express the sub-tour elimination constraint in terms of the edge variables xij and the

nodes variables yi.

∑∑
Λ∈=

≤
+

}\{0
1

ji
i

u

l
ii yx
ll

 for Λ∈j (6.33)

The time limit constraint added to the initial first stage problem

In the initial first stage (current) problem, after constraints (6.9) and (6.10) are

relaxed, there is no time limit constraint. The feasibility cuts, playing a similar role as

the time limit constraint, will only be gradually introduced into the current problem by

solving the second stage problems. To avoid selecting too many customers into the

first stage solution, we add the following time limit constraint to constraint set (6.12)

when solving the initial first stage problem.

TTyxt
ji Vj

jjijij ∆≤−+∑ ∑
< ∈

** ξξ τ (6.34)

We use the minimum realization of the random travel and service time variables

to construct the vector , because, otherwise, we may eliminate some possible better

tours when forming the initial tour at the very beginning.

*ξ

6.4 The Integer L-shaped Solution Method

The steps involved in the integer L-shaped algorithm can be described as follows:

Step 0: Set iteration index i : = 0. Initialize the first stage problem (the current

problem) with constraint set (6.12) only containing constraint (6.34) and

constraint set (6.13) only containing 0≥η .

Step 1: Set i = i +1. Solve the current problem. If the current problem has no feasible

solution, go to Step 6. Otherwise, let (be the optimal solution.),, iii yx η

 155

Chapter 6 The TCTSP with Stochastic Travel and Service Times

Step 2: Check for existing sub-tours, if any violation is detected, add the first sub-tour

elimination constraint found (Constraint 6.32 or 6.33) to the constraint set

(6.12) of the current problem and go to Step 1.

Step 3: Check second stage feasibility constraints. If violated, add the most violated

one (Constraint 6.24) to the constraint set (6.12) of the current problem and

go to Step 1.

Step 4: Compute the value of the expected penalty for excess amount of time at the

current first stage feasible solution, denote it as .),(ii yxΦ

Step 5: If , the current problem satisfies the optimality criterion, go to

step 6. Otherwise, introduce the optimality cuts (Constraint 6.28 for single cut

algorithm and Constraints 6.29, 6.30 and 6.31 for multi-cut algorithm) into

the constraint set (6.13) of the current problem, and go to Step 1.

),(iii yxΦ≥η

Step 6: Output the best - known solution and stop.

6.5 Computational Results

To get the computational results, the algorithm is coded in VISUAL C++, and run

on a 500 MHZ Pentium II Processor with 128 MB RAM under Microsoft Windows 98.

The MIPs are solved by calling the functions in the CPLEX optimization package into

the VC++ program.

6.5.1 Problem Data Generation

Our computational results are the averages of the results obtained from 10

randomly generated problem instances. For each problem instance, the customers are

 156

Chapter 6 The TCTSP with Stochastic Travel and Service Times

randomly generated from the square 20*20 (km2), according to a continuous uniform

distribution, with the depot situated at the center. We assume that the effective working

time T is 480 minutes a day; T∆ , the maximum amount of time allowed to exceed T, is

assumed to be 120 minutes. Revenue of serving a customer j, Rj is randomly generated

from [0, 100]. The travel time between customers i and j is calculated based on the

Euclidean distance dij and the speed of the vehicle. We assume that vehicle speed υ

can take on 5 possibilities: 60, 50, 40, 30, 20 (km/hour). Then the travel time between

any two customers i and j can be calculated according to υ
ijd . The service time at

each customer also takes on 5 possibilities: 10, 20, 30, 40, and 50 (minutes). We define

ξ as a vector of random variables corresponding to travel and service times. It has a

finite number of realizations, with probabilities , with

constructed by combining the 5 possibilities of travel time and 5 possibilities of service

time.

Kξξξ ,...,, 21
Kppp ,...,, 21

kξ

 In our computational experiment, we assume K = 5, and constructed the data

vectors for the travel time part as follows.

1ξ : Best case; with 80% of the arcs among the customers traveling at speed 60

(km/hour), and the rest traveling at the other 4 speed possibilities.

2ξ : Above average; with 80% of the arcs among the customers traveling at speed 50

(km/hour), and the rest traveling at the other 4 speed possibilities.

3ξ : Average case; with 80% of the arcs among the customers traveling at speed 40

(km/hour), and the rest traveling at the other 4 speed possibilities.

4ξ : Below average; with 80% of the arcs among the customers traveling at speed 30

(km/hour), and the rest traveling at the other 4 speed possibilities.

 157

Chapter 6 The TCTSP with Stochastic Travel and Service Times

5ξ : Worst case; with 80% of the arcs among the customers traveling at speed 20

(km/hour), and the rest traveling at the other 4 speed possibilities.

The service time part of the data vectors is constructed by uniformly selecting

service time from the 5 possibilities: 10, 20, 30, 40 and 50 minutes.

Furthermore, we assume that the probabilities, , correspond to

, are 0.1, 0.2, 0.4, 0.2, 0.1, respectively.

54321 ,,,, ppppp

54321 ,,,, ξξξξξ

6.5.2 Computational Results and Analysis

We examine the integer L-shaped algorithm from the following aspects:

• Single optimality cut versus multiple optimality cut;

• With different unit penalty cost β ;

• With different T∆ - tolerance time allowed to exceed time limit T;

• With different number of states of the random vector ξ .

Results are presented in Tables 6.1 to 6.4 based on the following notations.

n: Problem size (total number of customers)

β : Unit penalty cost for total time of the route in excess of T

Profit: Profit generated from serving the customers in the solution

F-cuts: Number of feasibility cuts generated

O-cuts: Number of optimality cuts generated

Sub-tour: Number of sub-tour elimination constraints generated

S: Single optimality cut algorithm

M: Multiple optimality cut algorithm

 158

Chapter 6 The TCTSP with Stochastic Travel and Service Times

First, from Table 6.1, we can see that, as problem size increases, the problem

becomes more difficult to solve, with more profits realized. This is due to the fact that,

though we still have to satisfy the time limit constraint (the number of customers

included in the solution may not change a lot), now we have more alternatives to

choose from, e.g., the solution space becomes larger. Therefore, the problem difficulty

increases, as indicated by the increasing number of feasibility and optimality cuts, the

number of sub-tour elimination constraints, and the computational time.

Table 6.1 Average performance of the algorithm with different unit penalty cost β

N β Profit F-cuts O-cuts Sub-tour Time (s)

10 518.6 0.4 2.2 2.1 0.08

15 732.2 1.8 3.6 7.8 2.20

20 0.5 948.2 2.3 4.4 11.6 11.86

25 995.8 1.9 4.8 10.6 21.66

30 1081.9 2.5 4.8 26.8 372.55

35 1104.6 2.6 4.6 49.9 1083.90

10 517.2 0.4 2.2 2.0 0.25

15 704.2 1.8 3.6 8.0 0.96

20 2 890.9 2.3 4.5 19.0 25.50

25 936.5 1.9 4.7 10.5 20.84

30 1008.6 2.5 4.8 23.5 201.79

35 1021.4 2.6 4.6 64.3 1182.38

In Laporte et al. (1992), their computational result showed that, as the unit

penalty cost increases, the difficulty of the problem also increases. This is because in

their problem, all customers must be visited, and higher penalty means more penalty

cuts needed and therefore more computational time taken to solve the problem.

However, in the TCTSP with stochastic travel and service times, as unit penalty cost

β increases, to maximize the profit realized, the number of customers visited in the

 159

Chapter 6 The TCTSP with Stochastic Travel and Service Times

solution may become lesser. There is no clear indication that difficulty of the problem

increases as the unit penalty cost β increases. The computational time taken mainly

depends on the number of constraints needed, especially the number of sub-tour

elimination constraints.

Table 6.2 illustrates the effect of the single-cut and the multi-cut algorithm. We

set unit penalty cost β = 2, and the number of states K = 5 in this case. Table 6.2

indicates that, the multi-cut algorithm needs to generate more optimality cuts.

However, the number of sub-tour elimination constraints needed for the multi-cut

algorithm is less than that needed for the single-cut algorithm. Therefore, multi-cut

algorithm takes less computational time than the single cut algorithm. The multi-cut

algorithm is superior to the single cut algorithm. This conforms to the findings in Birge

and Louveaux (1988), though in their study, the superiority of multi-cut algorithm over

the single-cut algorithm is based on the stochastic two stage linear problems.

Table 6.2 Single cut algorithm versus multi-cut algorithm

n Single/Multiple F-cuts O-cuts Sub-tour Time (s)

S 0.4 1.7 2.5 0.33

10 M 0.4 2.2 2.0 0.25

S 1.8 2.3 9.1 1.41

15 M 1.8 3.6 8.0 0.96

S 2.3 3.4 24.2 39.62

20 M 2.3 4.5 19.0 25.50

S 1.9 2.6 18.3 30.65

25 M 1.9 4.7 10.5 20.84

S 2.5 3.1 28.5 235.99

30 M 2.5 4.8 23.5 201.79

S 2.6 2.7 88.4 1688.35

35 M 2.6 4.6 64.3 1182.38

 160

Chapter 6 The TCTSP with Stochastic Travel and Service Times

In Table 6.3, we test the algorithm against the tolerance time T∆ . Intuitively, as

T∆ increases, the time limit constraint becomes less restrictive, therefore, we need less

number of feasibility cuts. On the other hand, as more customers may be included in

the solution, the amount of time exceeded the time limit T may also increase, which

may lead to more penalty incurred and therefore more optimality cuts generated.

Columns F-cuts and O-cuts in Table 6.3 clearly support these facts. When the problem

size is small (less than 20), as T∆ increases, the profit generated does not change

much, and the computational time incurred does not increase; however, when the

problem size becomes larger, with the increase of T∆ , profits generated increases, and

more customers are likely to be included in the solution. Therefore, the number of sub-

tour elimination constraints and the computational time also tend to increase.

Table 6.3 Average performance of the algorithm with different T∆

N T∆ (min) Profits F-cuts O-cuts Sub-tour Time (s)

60 517.25 0.9 1.9 2.5 0.23

120 517.25 0.4 2.2 2.0 0.25 10

 180 517.25 0.3 2.6 1.3 0.08

60 701.28 1.7 2.4 6.7 1.77

120 704.23 1.8 3.6 8.0 0.96

15

 180 704.40 1.7 4.6 9.3 0.94

60 880.26 2.3 3.5 12.8 15.03

120 890.92 2.3 4.5 19.0 25.50

20

 180 892.39 2.2 4.8 18.5 16.05

60 910.37 2.1 3.9 9.6 19.67

120 936.48 1.9 4.7 10.5 20.84

25

 180 941.62 1.6 4.7 15.8 23.05

60 989.30 2.7 4.1 22.4 453.14

120 1008.56 2.5 4.8 23.5 471.79

30

 180 1015.63 2.5 5.0 27.7 679.55

60 995.02 2.7 4.2 48.9 672.17

120 1021.41 2.6 4.6 64.3 1182.38

35

 180 1033.49 2.7 4.8 73.1 5717.94

 161

Chapter 6 The TCTSP with Stochastic Travel and Service Times

The effect of the number of states of the random vector ξ on the algorithm is

shown in Table 6.4. As the number of states of ξ increases, both the number of

feasibility cuts and the number of optimality cuts tend to increase. The computational

time taken mainly depends on the number of sub-tour elimination constraints added.

Except for problem size 20 and 25, the computational time and the difficulty of the

problem increase as the number of states increases.

Table 6.4 Average performance of the algorithm with different number of states of ξ

n States F-cuts O-cuts Sub-tour Time (s)

3 0.5 1.3 2.4 0.10

5 0.4 2.2 2.0 0.25 10

 10 0.5 4.3 2.0 0.26

3 1.1 2.2 7.7 0.90

5 1.8 3.6 8.0 0.96

15

 10 2.3 7.8 10.5 2.45

3 1.6 2.9 10.2 13.99

5 2.3 4.5 19.0 25.50

20

 10 3.4 8.7 15.2 20.47

3 2.1 3.0 17.3 37.61

5 1.9 4.7 10.5 20.84

25

 10 3.9 9.1 29.9 201.67

3 1.7 2.9 20.5 54.67

5 2.5 4.8 23.5 201.79

30

 10 4.0 9.5 34.2 312.66

3 2.4 2.9 41.3 838.22

5 2.6 4.6 64.3 1182.38

35

 10 4.0 8.9 94.9 23170.40

 162

Chapter 6 The TCTSP with Stochastic Travel and Service Times

6.6 Conclusions

In this chapter, we considered the time constrained traveling salesman problem

with stochastic travel and service times, which can be encountered in a number of

practical situations. We formulate it as both a chance-constrained program and a two

stage stochastic program with recourse, and presented an integer L-shaped algorithm

for solving it. We examined the algorithm from a number of aspects. Computational

results show that, for this particular problem, the difficulty mainly lies in the

elimination of the sub-tours; therefore, the larger the number of sub-tours needed, the

more computational time taken. Multi-cut algorithm showed its superiority to the

single-cut algorithm in terms of the number of sub-tours imposed and the

computational time required. As the unit penalty cost increases, difficulty of the

problem does not have a clear trend of increase due to the fact that less number of

customers will be visited. With the increase of the number of states of random vector

ξ or the increase of the tolerance time T∆ , when the problem size is large, the

difficulty of the problem increases.

 163

Chapter 7 Conclusion and Further Research

Chapter 7

 Conclusions and Directions of Further Research

In this chapter, first some concluding remarks are presented in Section 7.1;

followed by main contributions of this thesis stated in Section 7.2; finally possible

further research directions are highlighted in Section 7.3.

7.1 Summary and Conclusions

This thesis mainly addressed two variants of the classical traveling salesman

problem: the vehicle routing problem with stochastic demands (VRPSD) and the time

constrained traveling salesman problem (TCTSP).

In thesis Part I, we studied the VRPSD based on the formulation of stochastic

programming with recourse, which is within the framework of a priori optimization. A

comparative study among heuristics available in the literature was firstly carried out to

determine which one is superior to the others in a certain context; and valuable

suggestions and recommendations were made for decision makers in various scenarios.

As most of the heuristics presented in the literature belong to classical local search

algorithms, the thesis also examined whether metaheuristics are more preferable for

the VRPSD. Three metaheuristics, such as simulated annealing (SA), threshold

accepting (TA) and tabu search (TS), were presented for solving the VRPSD.

Comprehensive computational experiment was carried out to compare the performance

of the proposed metaheuristics with that of the heuristics presented in the literature in

various situations with respect to problem size and demand pattern. Results show that,

 164

Chapter 7 Conclusion and Further Research

metaheuristics can provide solutions with better solution quality for VRPSD, though

they may consume more computational time. In some cases, the time taken by

metaheuristics even can be comparable to classical local search methods. For example,

for multiple vehicle case, when the problem size is relatively large, SA can provide

better solutions with similar or less computational time than the R1-C2 in Yang et al.

(2000). Chapter 4 also carried out a performance comparison among the metaheuristics

proposed for the VRPSD to determine which one is superior to the others in a certain

context, and provide the decision makers with more choices and more valuable

suggestions.

In the literature, most researchers address the single tour TCTSP or orienteering

problem (OP). Part II of this thesis firstly studied a multi-period TCTSP: The problem

is to find a subset of customers as well as the sequence of serving them in each period

in a rolling schedule environment, so that the average profit per period in the long run

is maximized. Several heuristics based on iterative customer assignment and iterative

centre-of-gravity were proposed for solving the problem. Then, a set-covering type

formulation was presented for the problem within an elongated rolling horizon, and its

LP relaxation was solved to optimality by a column generation scheme to get an upper

bound for the original problem. To evaluate the performance of the heuristics, for

small size problem with long service times, the heuristics were compared against the

upper bound; for other cases, the performances of the heuristics were compared among

themselves. Computational results illustrate that, the best representative of each

heuristic performs very well for the problem, with the largest average percentage

deviation from the upper bound being 2.24%, and the smallest deviation only 1.02%.

When comparing the heuristics among themselves, results indicate that, with respect to

 165

Chapter 7 Conclusion and Further Research

solution quality, each heuristic has its own advantage in a certain scenario. Decision

makers are advised to employ different heuristics in different scenarios.

For TCTSP, due to the effective working time limit constraint, the profit realised

from visiting the subset of the customers is directly affected by the travel time and

service time, which are most unlikely to be known with certainty in advance due to

their dynamic nature. However, most literature considers the deterministic TCTSP.

The second problem considered in Part II of this thesis is a stochastic TCTSP: an

extension of the TCTSP into a stochastic case, where the travel and service times are

assumed to be random variables. Again, within the framework of a priori optimization,

two models: a chance-constrained program and a stochastic program with recourse,

were proposed for formulating the problem. Then an integer L-shaped solution method

was developed to solve the problem to optimality. The computational experiment

examined the algorithm in several scenarios. Results show that, the algorithm based on

integer L-shaped method can solve the stochastic TCTSP with moderate problem size

to optimality within reasonable amount of time.

7.2 Main contributions of this study

For Part I of this thesis, the comparative study helps us to identify heuristics with

better performance in a certain context, so that we can provide valuable suggestions to

the practitioners. Secondly, our study on the performance of the three metaheuristics,

the simulated annealing (SA), threshold accepting (TA), and tabu search (TS)

algorithms for the VRPSD, not only answers the question whether metaheuristics are

suitable for solving the VRPSD, but also provides more choices and more valuable

suggestions to the practitioners.

 166

Chapter 7 Conclusion and Further Research

For Part II of this thesis, the study on the multi-period TCTSP has both

theoretical and practical significance. We provide a systematic study of this problem,

as it is seldom studied in the literature. This includes:

• We incorporate the concept of rolling schedule into the study of the problem,

which can nicely capture the dynamic nature of the customer information:

when a customer needs a service.

• We present a set-covering type formulation for the problem within one rolling

horizon, and a column generation solution method to find an upper bound for

this problem. This type of formulation and the column generation solution

method can be applied to similar problems, such as the team orienteering

problem (Chao et al. 1996b), to find the optimal solution or an upper bound

of the problems, so that they can be employed as performance measurers to

evaluate the heuristics provided in the literature.

• We provide several efficient heuristic methods with good performance in

terms of both solution quality and computational time for this kind of

problem. Moreover, the heuristics are studied in detail under different

problem parameter settings, so that suggestions and recommendations in

different scenarios can be made for potential applications and therefore a

guideline can be provided for the decision makers in their decision process.

For the second problem in Part II, our focus is to extend the deterministic TCTSP

into the stochastic case with travel and service times being considered as random

variables, because they are the problem parameters that are most unlikely to be known

for sure in advance; and also they are very important in the TCTSP, as they directly

affect the solution and therefore the profits generated from the solution. However, for

 167

Chapter 7 Conclusion and Further Research

the TCTSP, or even in a much broader context, the vehicle routing problem, studies

focused on the stochastic travel and service times are quite few. Though Laporte et al.

(1992) addressed the vehicle routing problem with stochastic travel times, it is a two

stage stochastic problem with complete recourse: the first stage solution is always

second stage feasible, though penalty may occur in the second stage problem. For our

problem, on the other hand, due to the constraint that the total travel and service times

of a tour in excess of time limit T cannot exceed T∆ , second stage feasibility is also a

main concern. Therefore, in addition to optimality cuts, feasibility cuts must also be

considered in the second stage problem, which adds more difficulty to the problem

considered.

7.3 Directions of Further Research

(1) Further research directions for VRPSD

For the VRPSD with multiple vehicles, in this study as well as in Yang et al.

(2000), to partition the customers into several routes, the constraint imposed is that the

expected route length should be within a predefined limit. It would be more accurate

and reasonable if the variance of the route length could be taken into consideration as

well.

For the tabu search metaheuristic, the current study only examined its

performance on the single vehicle case; it would be worthwhile to develop TS

algorithm for the VRPSD with multiple vehicles. Moreover, one direction of further

research regarding metaheuristics is to study how some other recently developed

metaheuristics, such as ant algorithms, can be applied to the VRPSD.

 168

Chapter 7 Conclusion and Further Research

(2) Further research directions for TCTSP

 For the TCTSP, one possible direction is to extend the deterministic multi-period

TCTSP in a rolling schedule environment to the stochastic case with stochastic service

and/or travel times, and develop effective algorithms for solving the problem.

Furthermore, from the computational results presented in Chapter 6, it is clear

that, even for the single period TCTSP with stochastic travel and service times, the

exact algorithm is computationally expensive. Therefore, for large size stochastic

TCTSP, especially stochastic multi-period TCTSP in the rolling schedule environment,

it is important to design and develop heuristics with good performance for this kind of

problems.

One prerequisite for developing heuristics is how to evaluate a tour and therefore

select the best possible one. For a deterministic problem, it is an easy task; however,

when travel and service times are stochastic variables, it is nontrivial. In the Appendix,

the thesis also presented how to evaluate a single period TCTSP with stochastic service

times, given that we employ the total profit (including the expected penalty incurred)

realized from such a TCTSP with stochastic service times as the performance

measurer. Clearly, as one visit more customers, the time in excess of the effective

working time limit T increases; therefore the penalty incurred increases as well. One

possible research direction is to investigate whether there are rules regarding how to

select the more profitable customers and when to stop visiting the less profitable

customers.

 169

 References

References

[1] Aarts, E. and Lenstra, J. K. (1997). Local search in combinatorial optimization.

New York: Wiley.

[2] Alfa, A.S., Heragu, S.S. and Chen, M. (1991). A 3-opt based simulated annealing

algorithm for vehicle routing problem. Computers and Industrial Engineering 21,

635-639.

[3] Arabeyre, J.P. et al. (1969). The airline crew scheduling problem: A survey.

Transportation Science 3 (2), 140-163.

[4] Awerbuch, B., Azar, Y., Blum, A., and Vempala, S. (1998). New approximation

guarantees for minimum-weight k-trees and prize-collecting salesmen. SIAM

Journal on Computing 28 (1), 254-262.

[5] Baker, E.K. et al. (1979). Efficient heuristic solution to an airline crew scheduling

problem. AIIE Transactions, 79-84.

[6] Balas, E. (1965). An additive algorithm for solving linear programs with zero-one

variables. Operations Research 13, 517-549.

[7] Balas, E. (1975). Some valid inequalities for the set partitioning problem. MSRR

368, Carnegie-Mellon University, Pittsburgh, PA.

[8] Balas, E. (1989). The prize collecting traveling salesman problem. Networks 19 (6),

621-636.

[9] Balas, E. (1995). The prize collecting traveling salesman problem: II. Polyhedral

Results. Networks 25 (4), 199-216.

 170

 References

[10] Balas, E. and Martin, C.H. (1991). Combinatorial optimization in steel rolling

(extended abstract). Workshop on Combinatorial Optimization in Science and

Technology (COST), RUTCOR.

[11] Balas, E. and Padberg, M. (1975). On the set-covering problem: II. An algorithm

for set partitioning. Operations Research 23 (1), 74-90.

[12] Balas, E. and Samuelson, H. (1974). A symmetric subgradient cutting plane

method for set partitioning. W.P. 5-74-75, Carnegie-Mellon University,

Pittsburgh, PA.

[13] Balinski, M.L. and Quandt, R.E. (1964). On an integer program for a delivery

problem. Operations Research 12, 300-304.

[14] Bartholdi, J.J. and Platzman, L.K. (1982). An O(n log n) planar traveling

salesman heuristic based on spacefilling curves. Operations Research Letters 1,

121-125.

[15] Bartholdi, J.J., Platzman, L.K., Collins, R.L. and Warden W.H. (1983). A minimal

technology routing system for meals on wheels. Interfaces 13, 1-8.

[16] Benders, J.F. (1962). Partitioning procedures for solving mixed variables

programming problems. Numerische Mathematik 4, 238-252.

[17] Bentley, J.L. (1992). Fast algorithms for geometric traveling salesman problems.

ORSA Journal on Computing 4, 387-411.

[18] Benton, W.C. and Rossetti, M.D. (1992). The vehicle scheduling problem with

intermittent customer demands. Computers & Operations Research 19, 521-531.

[19] Bertsimas, D.J. (1988). Probabilistic combinatorial optimization problems. Ph.D.

Thesis, Massachusetts Institute of Technology, Cambridge, MA.

 171

 References

[20] Bertsimas, D.J., Jaillet, P. and Odoni, A. (1990). A priori optimization.

Operations Research 38, 1019-1033.

[21] Bertsimas, D.J. (1992). A vehicle routing problem with stochastic demand.

Operations Research 40, 574-585.

[22] Bertsimas, D.J., Chervi, P. and Peterson, M. (1995). Computational approaches to

stochastic vehicle routing problems. Transportation Science 29, 342-352.

[23] Bienstock, D., Goemans, M.X., Simchi-Levi, D. and Williamson, D. (1993). A

note on the prize collecting traveling salesman problem. Mathematical

Programming 59 (3), 413-420.

[24] Birge, J.R. and Louveaux, F.V. (1988). A multicut algorithm for two-stage

stochastic linear programs. European Journal of Operational Research 34,

384-392.

[25] Bland, R.G. and Shallcross, D.F. (1989). Large traveling salesman problems

arising from experiments in X-ray crystallography: a preliminary report on

computation. Operations Research Letters 8, 125-128.

[26] Bodin, L., Golden, B.L., Assad, A. and Ball, M. (1983). Routing and scheduling

of vehicles and crews: The state of the art. Computers & Operations Research

10, 63-211.

[27] Busacker, R.G. and Saaty, T.L. (1965). Finite graphs and networks. McGraw-Hill,

New York.

[28] Carraway, R.L., Morin, T.L. and Moskowitz, H. (1989). Generalized dynamic

programming for stochastic combinatorial optimization. Operations Research 37,

819-829.

 172

 References

[29] Chao, I.M., Golden, B.L. and Wasil, E.A. (1996a). A fast and effective heuristic

for the orienteering problem. European Journal of Operational Research 88 (3),

 475-489.

[30] Chao, I.M., Golden, B.L. and Wasil, E.A. (1996b). The team orienteering

problem. European Journal of Operational Research 88 (3), 464-474.

[31] Christofides, N. (1974). The vehicle routing problem. In: NATO Conference on

Combinatorial Optimization, Paris.

[32] Christofides, N. (1976). Worst-case analysis of a new heuristic for the traveling

salesman problem. Report 388. Graduate School of Industrial Administration.

Carnegie Mellon University, Pittsburgh, PA.

[33] Clarke, G. and Wright, J.W. (1964). Scheduling of vehicles from a central depot

to a number of delivery points. Operations Research 12 (4), 568-581.

[34] Cloonan, J. (1966). A heuristic approach to some sales territory problems. In:

Little, JDC (Eds.), Proceedings of the fourth international conference on

Operations Research. Cambridge, Massachusetts: MIT Press, 81-84.

[35] Croes, G.A. (1958). A method for solving traveling salesman problems.

Operations Research 6, 791-812.

[36] Dantzig, G.B. and Ramser, J.H. (1959). The truck dispatching problem.

Management Science 6 (1), 80-91.

[37] Dror, M. (1993). Modeling vehicle routing with uncertain demands as a stochastic

program: Properties of the corresponding solution. European Journal of

Operational Research 64, 432-441.

[38] Dror, M., Ball, M. O. and Golden, B. L. (1985). Computational comparison of

algorithms for inventory routing. Annals of Operations Research 4, 3-23.

 173

 References

[39] Dror, M., Laporte, G. and Louveaux, F.V. (1993). Vehicle routing with stochastic

demands and restricted failures. Zeitschrift für Operations Research 37, 273-283.

[40] Dror, M., Laporte, G. and Trudeau, P. (1989). Vehicle routing with stochastic

demands: properties and solution frameworks. Transportation Science 23 (3),

166-176.

[41] Dueck, G. and Scheuer, T. (1990). Threshold accepting: A general purpose

optimization algorithm appearing superior to simulated annealing. Journal of

Computational Physics 90(1), 161-175.

[42] Duhamel, C., Potvin, J.Y. and Rousseau, J.M. (1997). A tabu search heuristic for

the vehicle routing problem with backhauls and time windows. Transportation

Science 31, 49-59.

[43] Fiechter, C.N. (1994). A parallel tabu search algorithm for large traveling

salesman problems. Discrete Applied Mathematics 51, 243-267.

[44] Fisher, M.L. (1996). Vehicle routing. In: Networks and Distribution, Handbooks

in Operations Research and Management Science. North-Holland, Amsterdam.

[45] Garfinkel, R.S. and Nemhauser, G.L. (1969). The set-partitioning problem: Set

covering with equality constraints. Operations Research 17 (5), 848-856.

[46] Gendreau, M., Hertz, A. and Laporte, G. (1994). A tabu search heuristic for the

vehicle routing problem. Management Science 40 (10), 1276-1290.

[47] Gendreau, M., Laporte, G. and Seguin, R. (1995). An exact algorithm for the

vehicle routing problem with stochastic customers and demands. Transportation

Science 29, 143-155.

[48] Gendreau, M., Laporte, G. and Seguin, R. (1996a). A Tabu search heuristic for the

vehicle routing problem with stochastic demands and customers. Operations

Research 44, 469-477.

 174

 References

[49] Gendreau, M., Laporte, G. and Seguin, R. (1996b). Stochastic vehicle routing.

European Journal of Operational Research 88, 3-12.

[50] Gendreau, M., Laporte, G. and Semet, F. (1998a). A branch-and-cut algorithm for

the undirected selective traveling salesman problem. Networks 32 (4), 263-273.

[51] Gendreau, M., Laporte, G. and Semet, F. (1998b). A tabu search heuristic for the

undirected selective traveling salesman problem. European Journal of

Operational Research 106 (2-3), 539-545.

[52] Gendreau, M., Guertin, F., Potvin, J.Y. and Taillard, E. (1999). Parallel tabu

search for real-time vehicle routing and dispatching. Transportation Science 33

(4), 381-390.

[53] Gensch, D.H. (1978). An industrial application of the traveling salesman’s

sub-tour problem. AIIE Transactions 10(4), 362-370.

[54] Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers,

Boston.

[55] Golden, B.L., Levy, L. and Dahl, R. (1981). Two generalizations of the traveling

salesman problem. Omega 9, 439-445.

[56] Golden, B.L., Levy, L. and Vohra, R. (1987). The orienteering problem. Naval

Research Logistics 34, 307-318.

[57] Golden, B.L. and Assad, A. (1988). Vehicle routing: methods and studies.

North-Holland, Amsterdam.

[58] Golden, B.L., Wang, Q. and Liu, L. (1988). A multifaceted heuristic for the

orienteering problem. Naval Research Logistics 35(3), 359-366.

 175

 References

[59] Gomory, R.E. (1963). An algorithm for integer solutions to linear programs. In:

Graves, S.C., Wolfe, P.M. (Eds.). Recent Advances in Mathematical

Programming. McGraw-Hill, New York.

[60] Haimovitch, M. and Rinnooy Kan, A. (1985). Bounds and heuristics for

capacitated routing problems. Mathematics of Operations Research 10, 527-542.

[61] Hiquebran, D.T., Alfa, A.S., Shapiro, J.A. and Gittoes, D.H. (1994). A revised

simulated annealing and cluster-first route-second algorithm applied to the

vehicle routing problem. Engineering Optimization 22, 77-107.

[62] Hjorring, C. and Holt, J. (1999). New optimality cuts for a single–vehicle

stochastic routing problem. Annals of Operations Research 86, 569-584.

[63] Jaillet, P. (1985). Probabilistic traveling salesman problem. Ph.D. thesis, Report

No. 185, Operations research Center, Massachusetts Institute of Technology,

Cambridge, MA.

[64] Jaillet, P. (1988). A priori solution of a traveling salesman problem in which a

random subset of the customers are visited. Operations Research 36, 929-936.

[65] Kantor, M.G. and Rosenwein, M.B. (1992). The orienteering problem with time

windows. Journal of the Operational Research Society 43 (6), 629-635.

[66] Kao, E.P.C. (1978). A preference order dynamic program for a stochastic

traveling salesman problem. Operations Research 26, 1033-1045.

[67] Kataoka, S., Yamada, T. and Morito, S. (1998). Minimum directed 1-subtree

relaxation for score orienteering problem. European Journal of Operational

Research 104 (1), 139-153.

[68] Keller, C.P. (1985). Multiobjective routing through space and time: The MVP and

TDVP problems. Ph.D. Dissertation, The University of Western Ontario,

London.

 176

 References

[69] Keller, C.P. (1989). Algorithms to solve the orienteering problem: a comparison.

European Journal of Operational Research 41 (2), 224-231.

[70] Kirkpatrick, S., Gerlatt, C.D.Jr. and Vecchi, M.P. (1983). Optimization by

simulated annealing. Science 220, 671-680.

[71] Korte, B.H. (1989). Applications of combinatorial optimization. In: M. Iri, K.

Tanabe (Eds.). Mathematical programming: Recent developments and

applications. Kluwer, Dordrecht. p. 1-55.

[72] Korte, B.H. and Vygen, J. (2000). Combinatorial optimization: theory and

algorithms. Berlin: Springer.

[73] Lambert, V., Laporte, G. and Louveaux, F. V. (1993). Designing collection routes

through bank branches. Computers & Operations Research 20, 783-791.

[74] Laporte, G. and Martello, S. (1990). The selective traveling salesman problem.

Discrete Applied Mathematics 26, 193-207.

[75] Laporte, G. (1992). The vehicle routing problem: An overview of exact and

approximate algorithms. European Journal of Operational Research 59,

345-358.

[76] Laporte, G., Louveaux, F.V. and Mercure, H. (1992). The vehicle routing problem

with stochastic travel times. Transportation Science 26, 161-170.

[77] Laporte, G. and Louveaux, F.V. (1993). The integer L-shaped method for

stochastic integer programs with complete recourse. Operations Research Letters

13, 133-142.

[78] Laporte, G., Louveaux, F.V. and Mercure, H. (1994). A priori optimization of the

probabilistic traveling salesman problem. Operations Research 42, 543-549.

 177

 References

[79] Laporte, G., Louveaux, F.V. and Hamme, Luc Van. (2002). An integer L-shaped

algorithm for the capacitated vehicle routing problem with stochastic demands.

Operations Research 50, 415-423.

[80] Larson, R.C. (1988). Transporting sludge to the 106-mile site: An inventory

routing algorithm for fleet sizing and logistic system design. Transportation

Science 22, 186-198.

[81] Lawler, E.L., Lenstra, J.K., Rinnooy, A.H.G. Kan and Shmoys, D.B. (eds.)

(1985). The traveling salesman problem: A guided tour of combinatorial

optimization. John Wiley, Chichester, U.K.

[82] Leifer, A.C. and Rosenwein, M.B. (1994). Strong linear-programming relaxations

for the orienteering problem. European Journal of Operational Research 73 (3),

517-523.

[83] Levin, A. (1969). Fleet routing and scheduling problem for air transportation

system. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge,

MA.

[84] Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System

Technical Journal 44, 2245-2269.

[85] Lopez, L., Carter, M.W. and Gendreau, M. (1998). The hot strip mill production

scheduling problem: A tabu search approach. European Journal of Operational

Research 106 (2-3), 317-335.

[86] Martello, S. and Toth, P. (1981). An algorithm for the generalized assignment

problem. In: Brans, J.P. (Eds.), Operational Research’ 81, North-Holland,

Amsterdam, 589-603.

[87] Mehrotra, A., Murphy, K.E. and Trick, M.A. (2000). Optimal shift scheduling: A

branch-and-price approach. Naval Research Logistics 47(3), 185-200.

 178

 References

[88] Mittenthal, J. and Noon, C.E. (1992). An insert/delete heuristic for the traveling

salesman subset-tour problem with one additional constraint. Journal of the

Operational Research Society 43 (3), 277-283.

[89] Moreland, J.A. (1966). Scheduling of airline flight crews. Master’s Thesis,

Department of Aeronautica and Astronomics, Massachusetts Institute of

Technology, Cambridge, MA.

[90] Ong, H. L., Ang, B. W., Goh, T. N. and Deng, C. C. (1997). A vehicle routing and

scheduling problem with time windows and stochastic demand constraints.

Asia-Pacific Journal of Operational Research 14, 1-17.

[91] Or, I. (1976). Traveling salesman-type combinatorial problems and their relation

to the logistics of regional blood banking, Ph.D. thesis, Evanston, IL:

Northwestern University.

[92] Osman I. H. (1993). Metastrategy simulated annealing and tabu search algorithms

for the vehicle routing problem. Annals of Operations Research 41, 421-451.

[93] Pierce, J.F. (1968). Application of combinatorial programming to a class of

all-zero-one integer programming problems. Management Science 15, 191-209.

[94] Pierce, J.F. (1970). Pattern sequencing and matching in stock cutting operations.

Tappi 53 (4), 668-678.

[95] Potvin, J.Y., Kervahut, T., Garcia, B.L. and Rousseau, J.M. (1996). The vehicle

routing problem with time windows－Part I: Tabu search. INFORMS Journal on

Computing 8 (2), 158-164.

[96] Protonotarios, M., Mourkousis, G., Vyridis, I. and Varvarigou, T. (2000). Very

large scale vehicle routing with time windows and stochastic demand using

genetic algorithms with parallel fitness evaluation. Lecture Notes in Computer

Science 1823, 467-476.

 179

 References

[97] Ramesh, R., Yoon, Y.S. and Karwan, M.H. (1992). An optimal algorithm for the

orienteering tour problem. ORSA Journal on Computing 4, 155-165.

[98] Revelle, C. et al. (1970). An analysis of private and public sector location models.

Management Science 16 (12), 692-707.

[99] Rosenkrantz, D.J., Stearns, R.E. and Lewis, P.M. (1977). An analysis of several

heuristics for the traveling salesman problem. SIAM Journal on Computing 6,

563 – 581.

[100] Salveson, M.E. (1955). The assembly line balancing problem. Journal of

Industrial Engineering 6 (3), 18-25.

[101] Sarin, S.C. and Aggarwal, S. (2001). Modeling and algorithmic development

of a staff scheduling problem. European Journal of Operational Research

128(3), 558-569.

[102] Savelsbergh, M.W.P. and Goetschalckx, M. (1995). A comparison of the

efficiency of fixed versus variable vehicle routes. Journal of Business Logistics

16, 163-188.

[103] Savelsbergh, M. and Sol, M. (1998). Drive: Dynamic routing of independent

vehicles. Operations Research 46, 474-490.

[104] Secomandi, N. (1998). Exact and heuristic dynamic programming algorithms

for the vehicle routing problem with stochastic demands. Ph.D. thesis.

University of Houston.

[105] Sniedovich, M. (1981). Analysis of a preference order traveling salesman

problem. Operations Research 29, 1234-1237.

[106] Solomon, M.M. (1987). Algorithms for the vehicle routing and scheduling

problems with time window constraints. Operations Research 35, 254-265.

 180

 References

[107] Spitzer, M. (1961). Solution to the crew scheduling problem. Presented at the

First AGIFORS Symposium.

[108] Stewart, W.R. Jr. and Golden, B.L. (1983). Stochastic vehicle routing: a

comprehensive approach. European Journal of Operational Research 14,

371-385.

[109] Taillard, E. (1993). Parallel iterative search methods for vehicle routing

problems. Networks 23, 661-673.

[110] Taillard, E., Badeau, P., Gendreau, M., Guertin, F. and Potvin, J.Y. (1997). A

tabu search heuristic for the vehicle routing problem with soft time windows.

Transportation Science 31 (2), 170-186.

[111] Teng, S.Y., Ong, H.L. and Huang, H.C. (2001). A comparative study on

algorithms for vehicle routing problems with stochastic demands. In:

Proceedings of the 5th International Conference on Optimization: Techniques

and Applications, Hong Kong, 1621-1629.

[112] Teodorovic, D. and Pavkovic, G. (1992). A simulated annealing technique

approach to the vehicle routing problem in the case of stochastic demand.

Transportation Planning and Technology 16, 261-273.

[113] Tillman, F. (1969). The multiple terminal delivery problem with probabilistic

demands. Transportation Science 3, 192-204.

[114] Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of

the Operational Research Society 35(9), 797-809.

[115] Van Slyke, R.M. and Wets, R. (1969). L-shaped linear programs with

applications to optimal control and stochastic programming. SIAM Journal on

Applied Mathematics 17, 638-663.

 181

 References

[116] Waters, C.D.J. (1989). Vehicle-scheduling problems with uncertainty and

omitted customers. Journal of the Operational Research Society 40,

1099-1108.

[117] Winker, P. (2000). Optimization Heuristics in Econometrics: Applications of

Threshold Accepting. Wiley, New York.

[118] Yang, W.H., Mathur, K. and Ballou, R.H. (2000). Stochastic vehicle routing

problem with restocking. Transportation Science 34, 99-112.

 182

 Appendix

Appendix

Define the problem on a complete graph),'(AVG = , where = {0, 1,…, n} is

a vertex set, and A = {(i, j) | i, j

'V

'V∈ and i < j} denotes a set of arcs. Vertex 0

represents the depot, and 1, …, n denote n customers. Associated with each customer i,

there is a profit Ri and a service time iτ ; and associated with each arc, there is a travel

time tij. Assume that the travel time for each arc is deterministic, while the service

times for the customers are random variables. Here, we assume that all iτ , i = 1, 2,…,

n are discrete independent random variables with a known probability distribution.

Assume that T is the maximum effective working time. β is the unit penalty cost for

total time of the route in excess of T. The objective is to maximize the total profit

realized from visiting a subset of the customers without violating the time limit

constraint.

For the problem considered, we employ the total profit realized from such a

TCTSP with stochastic service times as the performance measurer, which can be

recursively calculated as described below.

Let t denote the available remaining time to travel. Assume that the stochastic

service time iτ of customer i follows a discrete distribution with K possible values:

, , …, . Let p1ξ 2ξ Kξ i(k) be P(iτ =), the probability that service time at node i is

. Let be the set of all possible states (available remaining time) in stage j.

is the profit from depot to node j when the state is t. is the probability that the

state at node j is t.

kξ

kξ jS)(tf j

)(Pr tj

)(tjϕ is the penalty incurred at node j when the state is t.

 183

 Appendix

Initialization:

0)(0 =Tf (A.1)

1)(Pr0 =T (A.2)

Recursion:

∑
−− ∈++

−− −+++=
11:

11)())()(()(
j

k
jj Sttk

jj
k

jjjjj kptttfRtf
ξ

ϕξ (A.3)

Then the penalty function)(tjϕ is as follows.

⎪
⎪
⎩

⎪⎪
⎨

⎧

<+++

≥++<−

≥

=

−−

−

0)(

0and0
00

)(

11

1

k
jj

k
jj

k
jjj

ttt

tttt
t

t

ξξβ

ξβϕ (A.4)

The probability of the state t at stage j:

Prj ∑
−− ∈++

−− ++=
11:

11)()(Pr)(
j

k
jj Sttk

j
k

jjj kpttt
ξ

ξ (A.5)

Last stage (go back to depot):

∑
−∈

−− −=
1

)(Pr))()((11
nSt

nnn tttfprofit ϕ (A.6)

The penalty function)(tnϕ is as follows.

⎪
⎩

⎪
⎨

⎧

<
<−>−

≥−
=

−

−−

−

0
0and0)(

00
)(

1

11

1

tt
ttttt

tt
t

nn

nnnn

nn

n

β
βϕ (A.7)

 184

