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SUMMARY

The classical traveling salesman problem (TSP) is the most studied combinatorial
NP-hard problem in the literature. This thesis addresses two variants of the TSP: the
vehicle routing problem with stochastic demands (VRPSD) and the time constrained
traveling salesman problem (TCTSP).

For the VRPSD, the problem is studied based on the formulation of stochastic
programming with recourse, which is within the framework of a priori optimization. A
comparative study among heuristics available in the literature is firstly carried out to
determine which one is superior to the others in a certain context; and valuable
suggestions and recommendations are made for decision makers in various scenarios.
Secondly, as most of the heuristics presented in the literature belong to classical local
search algorithms, the thesis proposes three metaheuristics: simulated annealing (SA),
threshold accepting (TA) and tabu search (TS), to examine whether metaheuristics are
more preferable for the VRPSD, and which metaheuristic is superior to the others in a
certain context. Computational results show that, metaheuristics can obtain solutions
with better solution quality for VRPSD, though they may consume more
computational time.

For the TCTSP, we first extend it into a multi-period problem: find a subset of
customers as well as the sequence of serving them in each period in a rolling schedule

environment, so that the average profit per period in the long run is maximized.

Vi



Several heuristics based on iterative customer assignment and iterative
centre-of-gravity have been proposed for solving the problem. Then, the problem is
formulated as a set-covering problem and its linear programming relaxation is solved
to optimality by a column generation scheme to get an upper bound. To evaluate the
performance of the heuristics, for small size problems with long service time, the
heuristics are compared against the upper bound; for other cases, they are compared
among themselves. Computational results illustrate that, the best representative of each
heuristic performs very well for the problem, with the largest average percentage
deviation from the upper bound being 2.24%, and the smallest deviation only 1.02%.
When comparing the heuristics among themselves, results indicate that, with respect to
solution quality, each heuristic has its own advantage in a certain scenario. Decision
makers are advised to employ different heuristics in different scenarios. Secondly, the
TCTSP is further extended into the stochastic case, where the travel and service times
are assumed to be independent random variables. This extension is important because:
(a) Both travel and service times are not likely to be deterministic in the practical
situations; (b) The profit generated from visiting a subset of the customers is directly
affected by the travel and service times due to the time limit constraint. Again, within
the framework of a priori optimization, two models are proposed for formulating the
problem: a chance-constrained program and a stochastic program with recourse. Then
an integer L-shaped solution method is developed to solve the problem to optimality.
Results show that, the proposed algorithm can solve the stochastic TCTSP with

moderate problem size to optimality within reasonable time.

vii



SVRP

VRPSD

SPR

TCTSP

LP

Di

Yi

Si

NOMENCLATURE

Stochastic vehicle routing problem

Vehicle routing problem with stochastic demands

Stochastic program with recourse

Time constrained traveling salesman problem

Linear programming

Problem size - the number of customers

{1, ..., n} denotes a set of n customers

V U {0} denotes a set of nodes including customers and the depot
{@i,j)]i,j €V"' andi<j} denotes a set of arcs

Traveling distance between customer i and j.

Number of vehicles

Vehicle capacity

A random variable that describes the demand of customer i

A predefined maximum limit for the expected route length.

The probability that the demand at the i node is exactly equal to the
stock available in the vehicle

The probability that the demand at the i node exceeds the remaining
stock

The vehicle’s remaining load

viii



pi(K)

vl())

L(x)

[ej, 1]

Pij

The probability that demand at node i is k.

The threshold value for node j. If the remaining load after visiting node j
is less than g*(j), it is better to return to the depot before serving further
demand points.

Initial temperature of a SA algorithm

Final temperature of a SA algorithm

Temperature reduction factor

Thermal equilibrium factor

An upper bound for the number of vehicles m required

Neighbor list size

An ordered sequence starting and ending at depot

The expected route length of route =

A positive parameter to penalize the objective function due to the fact that
the expected route length exceeds the predefined L

The date a customer j requires the service

Tolerance time of a customer j

Profit of visiting customer j

Number of periods in a rolling horizon

Time window that customer j can be visited

Profit of customer j if it is assigned to period i

Weight of customer j if it is assigned to period i

The effective working time for each period



AT

O(£")

The remaining working time of period i

A measure of the desirability of assigning customer j into period i

Mean arrival rate of a Poisson distribution

Center-of-gravity of the tour in period i

The set of all possible sub-tours in period i

A random variable representing time of traveling arc (i, j)

A random variable representing service time of visiting node j

Maximum probability that total travel and service time of a tour is
allowed to exceed T

Maximum amount of time allowed to exceed T

A vector of random variables corresponding to travel and service time
Total travel and service time of the route in excess of T when the
realization of the random variable is &*

A random variable representing time of traveling arc (i, j) when the
realization of the random variable is &*

A random variable representing service time of visiting node j when the
realization of the random variable is &*

The unit penalty cost for total time of the route in excess of T

A bound to estimate the expected penalty incurred for a given solution



3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

5.1

5.2

LIST OF FIGURES

Expected Cost with the Increase of Problem Size
(Demands follow uniform distribution U[0, 20])

Computational Time with the Increase of Problem Size
(Demands follow uniform distribution U[0, 20])

Expected Cost with the Increase of Demand Mean and Variance
(Problem size n = 60)

Computational Time with the Increase of Demand Mean and Variance
(Problem size n = 60)

Expected Cost with the Increase of Problem Size
(Demands follow normal distribution N(30,25))

Computational Time with the Increase of Problem Size
(Demands follow normal distribution N(30,25))

Expected Cost with the Increase of Demand Mean
(Problem size n = 20, demand variance = 25)

Expected Cost with the Increase of Demand Variance
(Problem size n = 20, demand mean = 20)

Expected Cost with the Increase of Problem Size
(Single vehicle, demands follow uniform distribution U[0,20])

Computational Time with the Increase of Problem Size
(Single vehicle, demands follow uniform distribution U[0,20])

Expected Cost with the Increase of Demand Mean and Variance
(Single vehicle, problem size n =20)

Effect of Different Measure of Desirability on Heuristic HA2

Effect of Different Profit Matrix on HA2

Xi



5.3 Effect of Different Measure of Desirability on Heuristic HA3
5.4 Effect of Different Profit Matrix on Heuristic HA4

55 Effect of Different Assigning Criteria on Heuristic HA4

Xii



3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

5.2

5.3

5.4

5.5

LIST OF TABLES

Average performance with the increase of problem size
(Demands follow uniform distribution U[0, 20])

Average performance with the increase of demand mean and variance
(Problem size n = 60)

Average performance with the increase of problem size
(Demands follow uniform distribution U[0, 20], single vehicle)

Average performance with the increase of demand mean and variance
(Problem size n = 20, single vehicle)

Temperature & maximum allowable increase in cost in different cooling
stages

Effect of the initial solution on TS with the increase of problem size

Effect of the initial solution on TS with the increase of demand mean and
variance

Comparison of algorithms with the increase of problem size

Comparison of algorithms with the increase of demand mean and variance
Average performance with the increase of problem size

Average performance with the increase of demand mean and variance
Denotations for heuristic HA2

Denotations for heuristic HA3

Denotations for heuristic HA4

Percentage deviations from the upper bound for HA2

Percentage deviations from the upper bound for HA3

Xiii



5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

6.1

Percentage deviations from the upper bound for HA4 and HA1
Computational time taken to get the best solution for each heuristic

Average percentage deviations from the maximum for HA2
(Service time = 10 minutes)

Average percentage deviations from the maximum for HA2
(Service time = 30 minutes)

Average percentage deviations from the maximum for HA2
(Service time = 100 minutes)

Combinations with the best performance for HA2, HA3 and HA4

Average percentage deviations from the maximum for HA3 and HA1
(Service time = 10 minutes)

Average percentage deviations from the maximum for HA3 and HA1
(Service time = 30 minutes)

Average percentage deviations from the maximum for HA3 and HA1
(Service time = 100 minutes)

Average percentage deviations from the maximum for HA4
(Service time = 10 minutes)

Average percentage deviations from the maximum for HA4
(Service time = 30 minutes)

Average percentage deviations from the maximum for HA4
(Service time = 100 minutes)

The heuristic yields the best solution in different scenarios
Heuristic performances when service time = 10 minutes
Heuristic performances when service time = 30 minutes

Heuristic performances when service time = 100 minutes

Average performance of the algorithm with different unit penalty cost g

Xiv



6.2

6.3

6.4

Single cut algorithm versus multi-cut algorithm

Average performance of the algorithm with different AT

Average performance of the algorithm with different number of states of &

XV



Chapter 1 Introduction

Chapter 1

Introduction

Given a set of cities, the classical traveling salesman problem (TSP) tries to
determine a minimal cost cycle that passes through each node exactly once and starts
and ends at the same city. In this dissertation, two variants of the TSP are considered:
the vehicle routing problem with stochastic demands (VRPSD), and the time
constrained traveling salesman problem (TCTSP).

In the first problem, a fleet of vehicles with limited capacity are assumed to
deliver goods to the customers from the depot. The demands of the customers are
defined as random variables, because they are not known when constructing the
vehicle routes. The problem is to determine vehicle routes so that total expected
distance traveled by the vehicles is minimized while satisfying some side constraints.
In the second problem, it is assumed that each customer is associated with a profit of
visiting it. Given a predefined effective working time limit, the problem tries to
maximize the profit generated from visiting the customers while satisfying the time
limit constraint. The TCTSP is a relaxed variant of the TSP or a generalized TSP
(GTSP) in the sense that not all customers are needed to be visited due to the time limit
constraint imposed on the time duration of the tour. For the TCTSP, this study first
considers a multi-period TCTSP in a rolling schedule environment; then it is extended

into the stochastic case: a TCTSP with stochastic travel and service times.

1. 1 Introduction to the Stochastic Vehicle Routing Problems

The management of a distribution system involves many problems, such as
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administration problems in running the depots, in designing an information system, in
routing and scheduling of vehicles to customers, in loading of goods into vehicles and
so on. The vehicle routing problem (VRP), which requires routing and scheduling the
vehicles to perform the assigned functions at minimal cost, lies at the center of the
management of a distribution system. Typically, the problem involves bringing
products located at a central facility (where vehicles of limited capacity are also
assumed to be initially housed) to geographically dispersed facilities at minimum cost,
while satisfying various side constraints. This area of study, which mainly consists of
designing optimum-seeking algorithms to identify the best configuration of routes and
schedules, has become a very hot research topic and has been extensively studied by
many operations researchers. Excellent surveys in this area can be found in Lawler et
al. (1985) on the traveling salesman problem, Bodin et al. (1983) for routing and
scheduling, and Golden and Assad (1988), Laporte (1992) and Fisher (1996) on
vehicle routing problems.

The capacitated vehicle routing problem (VRP) plays an important role in
distribution management and has been both extensively studied by researchers and
applied in practice. The VRP can be broadly classified into two classes of problems:
the deterministic VRP and the stochastic VRP (SVRP). For the deterministic VRP, all
the problem parameters, such as demands, travel cost and customer presence, are
assumed to be known with certainty. For the stochastic VRP, in contrast, one or some
components of the problem parameters may not be known for sure. The problem of
constructing vehicle routes through the customers that minimizes the expected distance
traveled is known as the SVRP. The SVRP has received increasing attention in recent
years. Depending on which element is stochastic, the SVRP can be further divided into

the following categories.
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1)

2)

3)

4)

5)

The probabilistic traveling salesman problem (PTSP)

Introduced by Jaillet (1985, 1988), the PTSP is also known as the traveling
salesman problem with stochastic customers (TSPSC), where each vertex v; is
present with probability p.

The traveling salesman problem with stochastic traveling times (TSPST)

In the TSPST, the traveling time between any two customers is a random
variable. In the case when m-vehicles are scheduled to visit a set of customers,
the problem becomes m-TSPST.

The vehicle routing problem with stochastic customers (VRPSC)

In the VRPSC, customers are present with some probability but have
deterministic demands. It is an extension of the PTSP, where the vehicle capacity
constraint must be satisfied; and once the vehicle capacity is attained or
exceeded, the vehicle may have to go back to depot. This problem is well studied
in Bertsimas (1988).

The vehicle routing problem with stochastic demands (VRPSD)

In the VRPSD, customer demands are not known with certainty in advance; they
are usually assumed to be independent random variables with known probability
distributions. The VRPSD is the most studied problem in SVRP in the literature.
The vehicle routing problem with stochastic customers and demands (VRPSCD)
The VRPSCD is a combination of both VRPSD and VRPSC, which means that,
not only the customers are present with a certain probability, their demands are
also random variables. It is an extremely difficult problem; even computing the

value of the objective function is hard (Bertsimas 1992, Gendreau et al. 1996b).
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As the most studied problem in SVRP, VRPSD has been employed to model and
provide solutions for many real-world problems in practice. In Bertsimas (1992), the
application areas identified include the distribution of packages from a post office,
routing of forklifts in a cargo terminal or in a warehouse, and strategic planning of a
delivery and collection company which has decided to begin service in a particular
area. In Yang et al. (2000), the applications cover the following areas: constructing
waste collection routes with volume of trash at each stop being unknown; delivery of
money to automatic teller machines from a central bank; peddle routes construction,
such as beer distribution to retail outlets, resupply of baked goods at food stores,
replenishment of liquid gas at research laboratories, and stocking of vending machines,
etc. Other cited applications in the literature include: delivery of money to branches or
automatic teller machines of a central bank (Lambert et al., 1993), less than truckload
operations (Gendreau et al., 1995), the delivery of home heating oil (Dror et al., 1985),
sludge disposal, where sludge accumulation at a plant is a random process (Larson,
1988), and the design of “hot meals” delivery system (Bartholdi et al., 1983). Part | of

this research will focus on the VRPSD.

1.2 Introduction to the Generalized Traveling Salesman Problem (GTSP)

The classical traveling salesman problem (TSP) is well studied in the literature
(Lawler et al., 1985; Aarts and Lenstra, 1997; Korte and Vygen, 2000). The problem
has many applications, such as large-scale integration (\VLSI) chip fabrication (Korte,
1989), X-ray crystallography (Bland and Shallcross, 1989), etc.

In the classical TSP, each node must be visited exactly once. Nevertheless, this
constraint is not always necessary and can be relaxed in some situations, where one

only needs to visit a subset of the customers. The problem becomes a GTSP: firstly to
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find a proper subset of customers, and secondly to find the optimal visiting order in the
selected subset.

The essence of the GTSP is to select a subset of the customers for visiting. In
Mittenthal and Noon (1992), the GTSP is called a traveling salesman subset-tour
problem (TSSP). To characterize a desired trait of an optimal subset-tour, the TSSP
usually appears in applications with an additional constraint. This is the reason why
Mittenthal and Noon (1992) called it the TSSP+1 class problem. Corresponding to
different constraints imposed, several types of the problem are studied in the literature.
Some representative examples include the prize collecting traveling salesman problem
(Balas, 1989; Balas, 1995) and the time constrained TSP (Cloonan, 1966) or
orienteering problem (Golden et al., 1987).

The prize collecting traveling salesman (PCTS) problem was firstly introduced
by Balas and Martin (Balas and Martin, 1991; Balas, 1995). The problem was
formulated as a model for scheduling the daily operation of a steel rolling mill.
Associated with each customer, in addition to the profit of visiting it, there is a penalty
if the salesman fails to visit it. The objective is to minimize the travel costs and the net
penalties, while satisfying the constraint that enough cities are visited to collect a
prescribed amount of prize money.

Different from the PCTS problem, the objective of the time constrained TSP
(TCTSP) is to maximize the profit realized from serving a subset of customers subject
to the time constraint imposed on the problem. This problem was first introduced and
discussed by Cloonan (1966). Some researchers also call TCTSP the selective
traveling salesman problem (STSP) where they consider a preset constant route length

as the constraint, see Laporte and Martello (1990) and Gendreau et al. (1998a, 1998b).
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The orienteering problem (OP) only differs from the TCTSP in that the start
point and the end point may not be the same. The name “orienteering problem” was
originated from an outdoor sport: orienteering. Golden et al. (1987) provided its
definition, and employed it to model and solve the problem of delivering home heating
oil.

Among the three types of GTSP discussed above, the TCTSP (or the OP) is
closely related to the problem considered in Part Il of this study, where it is firstly

extended to a multi-period TCTSP, then extended to a stochastic TCTSP.

1.3 Scope and Purpose of this Study

The scope of this research consists of the following two main parts.

1.3.1 Scope and Purpose of Part | of this Study

Part | focuses on the VRPSD. As the most studied problem among the SVRP,
there are a number of algorithms available for solving VRPSD under the solution
framework of a priori optimization. However, different researchers made various
assumptions on the problem data in the literature; therefore, the performances of the
algorithms proposed were evaluated based on different assumptions. In such cases, it is
very difficult for a decision maker to know which algorithm is more preferable in a
certain context. Therefore, firstly in Part | of this study, we try to carry out a
comparative study on the representative algorithms for solving VRPSD, so that
suggestions and recommendations can be made available for the practitioners in
various contexts.

Most of the heuristics proposed for VRPSD in the literature are based on
classical local search algorithms. One drawback of the classical local search algorithm

is the tendency to be easily trapped in a local optimal solution. Due to the feature that



Chapter 1 Introduction

metaheuristics can accept deteriorations in objective function value to some extent, it
has the ability to escape from the local optimum and therefore may get global optimal
solution. Thus, secondly in Part | of this study, we try to examine how modern
metaheuristics behave for the VRPSD.

The contribution of this part of the study is twofold. Firstly, by carrying out the
comparative study, we can determine which algorithm is superior to the others in a
certain context. Therefore, some valuable suggestions can be provided for the
practitioners. Secondly, we propose three metaheuristics, the simulated annealing
(SA), threshold accepting (TA), and tabu search (TS) algorithms for the VRPSD. By
comparing the performance of the proposed metaheuristics with that of the heuristics
presented in the literature in various situations with respect to problem size and
demand pattern, we can determine whether metaheuristics are suitable for solving this
kind of problems, and also determine which metaheuristic is superior to the others in a
certain context. Therefore, we can provide more choices and more valuable

suggestions to the practitioners.

1.3.2 Scope and Purpose of Part Il of this Study

The time constrained TSP (TCTSP) is the main theme of Part Il of this thesis.
The problem firstly considered in Part Il of this study is a multi-period TCTSP in a
rolling schedule environment, which can be frequently encountered in the practice.
Consider a company providing services to the customers. A customer calls for service
by specifying a desirable period and a time tolerance. Of course, the time tolerance can
be zero, which means that the service is urgent and if the company can not provide
service at the specified period, the customer would resort to other companies. With the

presence of the time tolerance, the company can develop more flexible and more
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profitable schedules by considering the proximity of the customers requiring services,
and considering the number of customers requiring services in different periods. In the
former case, suppose that a customer j requires service in period i;, and it can also be
visited in period i,, if the customers can be visited in period i, are in closer proximity
to customer j than those requiring services in period i, it may be more profitable to
schedule customer j in period i,. In the later case, if the number of customers require
services in different periods is very lumpy, delaying or bringing forward the service of
some customers may be more profitable. This gives rise to the multi-period TCTSP:
construct a schedule consisting of several periods rather than one period, find a subset
of customers as well as the sequence of serving them in each period, so that the
average profit per period in the long run is maximized.

The contribution of this part of the study can be summarized as follows. Firstly,
from the aspect of theoretical study, the multi-period TCTSP is seldom studied in the
literature, though it can be frequently encountered in the practice as described above.
We provide a systematic study of this problem in this thesis: 1) We incorporate the
concept of rolling schedule into the study of the problem due to the dynamic nature of
the customer information. 2) We present a set-covering type formulation of the
problem within one rolling horizon. Therefore, with the elongated rolling horizon and
some assumptions regarding the customer demand information, an upper bound for
this problem can be found by the column generation method. This type of formulation
and the column generation solution method can be applied to similar problems, such as
the team orienteering problem (Chao et al. 1996Db), to find the optimal or an upper
bound of the problems. 3) We provide several efficient heuristic methods with good
performance in terms of both solution quality and computational time for this kind of

problem. Moreover, the heuristics are studied against the upper bound and against each
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other under different problem parameter settings, so that the performance of each
heuristic is clear under different scenarios. Secondly, from the aspect of practical
application, based on the evaluation and comparison of the performance of the
heuristics, suggestions and recommendations in different scenarios can be made for
potential applications and therefore provide a guideline for the decision makers in their
decision process.

The second problem studied in Part Il of this study is the TCTSP with stochastic
travel and service times. In the TCTSP, due to the effective working time limit
constraint, one factor directly affects the total profit generated from the TCTSP tour is
the travel and service time required for visiting the customers, which is usually
assumed to be deterministic. However, in practical situations, both travel time and
service time are not likely to be known with certainty in advance. The weather
conditions (rain or snow) and the traffic conditions (road repair or traffic accidents)
may impact on the travel time between the customers; while the service time is usually
determined by the kind of service a customer requires. Obviously, the travel and
service time is very important in the TCTSP, and it will directly affect the solution and
therefore the profits generated from the solution. However, the stochastic nature of the
problem never studied in the literature for this problem. Therefore, secondly in Part Il
of this thesis, we try to present models and solution methods for the stochastic TCTSP:

the TCTSP with stochastic travel and service times.

1.4 Structure of the Thesis
Corresponding to the two types of the problems considered in this study: the
vehicle routing problem with stochastic demands (VRPSD), and the time constrained

traveling salesman problem (TCTSP), this thesis is mainly divided into two parts. Part
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I covers Chapter 3 and Chapter 4. Part Il includes Chapter 5 and Chapter 6. Chapter 2
provides a literature review on the solution frameworks and algorithms for the SVRP
and the GTSP. The last chapter, Chapter 7, summarizes some conclusions for the
whole thesis and directions of further research.

In Chapter 3, a comprehensive comparative study is carried out among three
algorithms presented in the literature for the VRPSD. By building a common ground
for comparison and making some adaptations to the original algorithms, the
comparative study examines how the algorithms perform in various situations (with the
increase of problem size, demand mean and/or variance, etc) under the assumption that
demands follow both uniform and normal distributions. The comparative study also
investigates whether the algorithms are sensitive to demand distribution type. In
Chapter 4, several metaheuristics are presented for VRPSD, which include simulated
annealing (SA), threshold accepting (TA), and tabu search (TS), etc. Computational
results from these metaheuristics are compared with results from other algorithms
presented in the literature; suggestions and recommendations are made for the potential
applications in various scenarios. Chapter 5 focuses on the multi-period TCTSP in a
rolling schedule environment. Heuristic methods based on iterative customer
assignment and iterative center-of-gravity are developed for the multi-period TCTSP.
To study the performance of these heuristics, we formulate the multi-period TCTSP as
a set-covering problem, and propose a column generation scheme to solve its linear
programming (LP) relaxation to optimality to get an upper bound for the original
problem. In Chapter 6, we consider the TCTSP in the stochastic case, where the travel
and service times of the problem may become random variables. Models formulated as
both chance-constrained program and stochastic program with recourse are provided,

and an integer L-shaped solution method is proposed for solving it.
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Chapter 2

Literature Review

This chapter summarizes research work that has been done in the literature for
the stochastic vehicle routing problem (SVRP) and the generalized traveling salesman
problem (GTSP). Section 2.1 covers literature for the various types of the SVRP.
Section 2.2 focuses on one type of SVRP, the VRPSD. The solution framework,
recourse policies and algorithms available for the VRPSD are discussed in detail in this
section. Literature on several types of the GTSP is presented in Section 2.3. Finally,
Section 2.4 summarizes some findings in the literature review and their relationship

with the following chapters of the thesis.

2.1 General Overview of the Literature on SVRP

The SVRP addresses the problem of constructing vehicle routes through the
customers that minimizes the expected distance traveled with the presence of
uncertainty of some problem parameters. Though comparing with their deterministic
counterparts, relatively less efforts and achievements have been made on the SVRP,

there is still much literature available for various types of SVRP.

(1) The probabilistic traveling salesman problem (PTSP)
When a postman delivers mails to the customers, obviously, he does not expect
each customer needs a visit each day. When the customer presence is a random

variable, and is described by a probability p;, the problem of finding a least expected
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cost cycle becomes the PTSP. This problem was introduced by Jaillet (1985, 1988).
The author derived closed form expressions to obtain efficiently (in polynomial time of
low order) the expected length of tours under various probabilistic assumptions. By
analyzing the closed form expressions, some properties and characteristics of optimal
solutions to PTSP were derived. The paper also presented the specific conditions under
which the TSP solution can serve as a good approximation for the PTSP. However,
their results show that, in general, entirely new solution procedures are necessary to
devise for PTSP. Bertsimas et al. (1990) also addressed the PTSP. They discussed the
applicability of a priori optimization strategies. They showed that if the nodes are
randomly distributed in the plane, the a priori strategies behave asymptotically equally
well on average with re-optimization strategies. Two kinds of heuristics using the a
priori strategies were also presented in the paper. The first is based on the space-filling
curve heuristic, while the second is based on methods seeking local optimality, which
includes 2-opt, 3-opt, 1-shift, etc. In Laporte et al. (1994), the authors formulated the
PTSP as an integer linear stochastic program. Under the a priori strategies, the authors
presented the first exact algorithm for this kind of problem. The algorithm is based on
a branch-and-cut approach, which relaxes some of the constraints and uses lower

bounding functionals on the objective function.

(2) The traveling salesman problem with stochastic traveling times (TSPST)

Among the problem parameters: customer demand, customer presence and travel
time, etc., travel time is the parameter that most unlikely to be known for sure in
advance (while constructing the routes), due to the weather and traffic conditions.
However, the TSPST is less studied compared to other SVRP in the literature. In Kao

(1978), under the assumption that the probability of a sum of random travel times can
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be readily computed, two heuristics for this problem were proposed: one is based on
dynamic programming; and the other employs the implicit enumeration to find a
solution. In Sniedovich (1981), the author pointed out that, the monotonicity property
required by the dynamic programming algorithm was not verified in Kao (1978);
therefore the algorithm may obtain sub-optimal solutions. This difficulty was
overcome in Carraway et al. (1989), where a generalized dynamic programming
algorithm was proposed and applied to TSPST. Another version of TSPST is m-
TSPST, where m vehicle routes all start and end at a common depot. Lambert et al.
(1993) designed the money collection routes through bank branches in the case of
stochastic traveling times, due to the fact that congestion of some arcs usually happens
in the rush hour. To take the stochastic traveling times into consideration, the objective
function includes two penalty terms: one is due to the fact that money accumulated
between vehicle arrival time and a branch’s closing time is not collected until the next
day, therefore it is preferable to delay as much as possible visits to branches; the other
is due to the fact that all money contained in the vehicles arriving at depot later than a
prescribed time loses one day’s interest. The authors applied the adapted Clark and
Wright (1964) algorithm to solve the VRP with stochastic traveling times. In addition
to the stochastic traveling times, Laporte et al. (1992) considered stochastic service
times at the vertices as well. Here the penalty for late arrival is proportional to the
length of the delay. Three mathematical programming models were presented in the
paper, a chance-constrained model, a three-index simple recourse model, and a two-
index recourse model. The paper also presented a general branch-and-cut algorithm for

solving the three models.
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(3) The vehicle routing problem with stochastic customers (VRPSC)

In the PTSP, vehicle capacity constraint is relaxed. When a customer is present
with probability p; but with deterministic demand, and the vehicle capacity constraint
must be respected, the PTSP is extended to VRPSC. The best source of theoretical
information on VRPSC is Bertsimas (1988), in which several properties, bounds and
heuristics for the problem were described. Benton and Rossetti (1992) considered
general demands and proposed an empirical comparison of three operating policies:
follow the planned route without skipping absent customers (fixed route), skip absent
customers (modified fixed route), and re-optimize the remaining route whenever the
absence of a customer is revealed (variable route). The author assumed that demands
are known at the beginning of the period in which they occur, so it is possible to
modify the fixed route or reschedule the fixed route whenever the absence of
customers are known. For the fixed route alternative, by using the expected value of
non-zero demands, the total cost can be solved by classic VRP heuristics. However,
because of the randomness of customer presence, the total cost of the other two
alternatives must be calculated for each period. The cost of modified fixed-route
alternative can be solved by skipping the appropriate zero demand customers from the
VRP solution. The cost of variable route alternative is solved by applying an efficient
heuristic VRP procedure to the customers with non-zero demand for that period.
Finally, the one with the least total cost in each period is chosen as the best alternative.
Waters (1989) also applied the above-mentioned three alternatives to deal with VRP
with stochastic customers, but from a different point of view. In practice, the third
alternative of variable routes is not always possible, because the customers to be
omitted must be known some time before vehicles set out, to allow time to produce

new routes. Therefore, the problem the paper studied is: how large are potential
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savings of using modified-fixed routes and variable routes, its relationship with the
number of absent customers, and the break-even points (the proportion of absent

customers) to make rescheduling worthwhile over fixed and modified-fixed routes.

(4) The vehicle routing problem with stochastic demands (VRPSD)

In VRPSD, the customer demand is a random variable while all the other
problem parameters are assumed to be deterministic. As VRPSD is the most studied
SVRP in the literature and it is the focus of Part I of this study, Section 2.2 will present
a more detailed literature review on the solution framework, recourse policies and the

algorithms available for VRPSD.

(5) The vehicle routing problem with stochastic customers and demands (VRPSCD)
As a combination of the VRPSC and VRPSD, VRPSCD is an extremely difficult
problem (Gendreau et al. 1996b). Bertsimas (1992) presented the closed-form
recursive expressions and algorithms to compute the expected length of an a priori
sequence under general probabilistic assumptions. Also the upper and lower bounds on
the a priori and re-optimization strategies were derived for this kind of problems. The
purpose is to compare these strategies from a worst and average case perspective.
Heuristics based on cyclic heuristic (Haimovitch and Rinnooy Kan, 1985), were
proposed and their worst-case performance as well as their average behavior were
analyzed in the paper. Gendreau et al. (1996a) presented a tabu search algorithm for
this problem. Based on an initial solution constructed by Clark and Wright (1964)
algorithm, the neighborhood of a solution X contains all solutions that can be reached
by removing in turn one of neighbor_size randomly selected customers, and inserting

each of them either immediately before, or immediately after one of its @ nearest
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neighbors. If a vertex is moved from route 7 to the same route or to a different route
at iteration i, its reinsertion or displacement in route z is tabu until iteration i +
NoTabu, where NoTabu is the tabu tenure and is randomly selected in the interval [n-5,
n]. However, the penalized objective function can not be used directly to evaluate the
moves and select the best move for the tabu search, due to the computational burden in
the case of stochastic customers and demands. One of the major contributions of the
paper is the development of an easily computed proxy for the objective function, to be
used in the evaluation of potential moves, and also the elaboration of a series of
mechanisms aimed at efficiently managing the proxy. Ong et al. (1997) provided a
framework to model customers in a due-date environment. In addition to the stochastic
demand, each customer requires a service on a specific day (due-date) and at a
particular time window of the day. In the objective function of their model, in addition
to the routing cost, there are two penalty terms: one is associated with the overdue
dissatisfaction of each customer and the expected losses of the company; the other is
related to the customers that can not be served fully on the planned route. The paper
presented a “LOSS function” based on due-date to serve as selection criteria of
customers to be served. The stochastic demand was handled based on the chance-
constrained model (Stewart and Golden, 1983). To take the time window constraint
into consideration, the paper proposed an adaptation of the insertion heuristic by
Solomon (1987) for the routing and scheduling. Gendreau et al. (1995) presented an
exact algorithm for this problem, which used an Integer L-Shaped method. Solutions

were reported for instances involving up to 46 vertices solved to optimality.
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2.2 Literature Review on Recourse Policies and Algorithms for VRPSD

Since VRPSD is the most studied problem among the SVRP and it is the focus of
Part | of this study, the solution framework, recourse policies and available algorithms

are discussed in detail as follows.

2.2.1 Solution Concepts and Recourse Policies

For the vehicle routing problem with stochastic demands (VRPSD), solution
frameworks mainly depend on the operating policies (whether re-optimization is
allowed) adopted and the time when demand information is available. Two solution
frameworks are available in the literature: stochastic programming and Markov
decision processes. The former belongs to the a priori or static method, because the
order of the customers’ visitation is not changed during its real time execution; while
the later belongs to real time or dynamic method, because routes are recomputed based
on the information that becomes available during the execution of the tour. An
inherently dynamic formulation was proposed by Dror et al. (1989). They developed a
Markov decision process model for the VRPSD, but no computational experience was
provided. Dror (1993) studied a slightly modified version of the model, also no
computational experience was provided and the author considered instances with more
than three customers as computationally intractable. Secomandi (1998) proposed
different Markov decision process models for VRPSD solved in the dynamic context.
Moreover, the author developed an exact dynamic programming algorithm to compute

a dynamic optimal policy; he also proposed a heuristic dynamic programming
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algorithm to compute a partially dynamic policy and an on-line rollout algorithm to
compute a dynamic routing policy.
However, the dynamic routing policy may be impractical or even impossible in

practical applications due to the following reasons:

1) Not enough resources to repeat the redesigns;
2) Not enough information regarding demands before actually visiting the

customer, etc.

Therefore, one representative method in the literature is to determine a fixed a
priori sequence among all potential customers, and consider recourse actions upon a
route failure. The idea of using a priori sequence was first proposed for the PTSP in
Jaillet (1985). Bertsimas (1988) generalized the idea and applied it to other
combinatorial optimization problems, such as the probabilistic minimum spanning tree
problem, the PTSP, the probabilistic vehicle routing problem, and facility location
problems. All studies above assume that the demand distribution is binary, i.e.,
customer i either has 1 unit demand with probability p;, or does not have any demand
with probability 1 - p;. The idea is further generalized to the arbitrary discrete-demand
distributions in Bertsimas (1992).

Within the framework of the a priori optimization method, the VRPSD can be
formulated both as a chance-constrained program (CCP) and as a stochastic program
with recourse (SPR). In chance-constrained program, one seeks a first stage solution
for which the probability that all demands on a route exceeding the vehicle capacity is
not greater than a predefined probability level. Under this condition, no recourse action

is adopted in case of route failure. Under some assumptions, a chance-constrained
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model can be transformed into an equivalent VRP with an artificial vehicle capacity.
Therefore existing algorithms for VRP can be applied to the resulting problem in this
case.

In the stochastic program with recourse, the problem is solved in two stages. In
the first stage, the objective is to determine a solution that minimizes the expected cost
of the second stage solution. Specifically, in the first stage, a planned or a priori
solution is determined. In the second stage, as the actual demands are revealed, the first
stage solution may not be possible as planned because of the route failure, for example,
the total demand of a route may exceed the vehicle capacity. A recourse or corrective
action is then applied to the first stage solution. The total expected distance traveled
includes two parts: one is the fixed length of the a priori sequence; the second is the
expected value of the additional distance traveled whenever demand on the sequence
exceeds vehicle capacity.

For a given VRPSD, two categories of recourse approaches can be found in the
literature. One recourse approach belongs to the dynamic category, which re-optimizes
the remaining portion of the route upon each failure based on the information that
becomes available during the execution of the tour. Among those static recourse
policies, a simple and obvious one is that, whenever route failure occurs, go back to
depot to restock. In the two SPR models presented in Stewart and Golden (1983), one
applies a penalty proportional to the probability of exceeding the vehicle capacity, the
other uses a penalty proportional to the expected demand in excess of the vehicle
capacity. Both Bertsimas et al. (1995) and Yang et al. (2000) employed a dynamic
programming procedure to plan “preventive breaks” at strategic points along the first
stage route, rather than waiting for route failure to occur. The difference is that, in

Yang et al. (2000), partial delivery is permitted, though penalized by imposing a fixed
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nonnegative cost whenever route failure occurs. These recourse policies, though
different from one another, belong to the static approach, because the order of the
customers’ visitation is not changed during its real time execution. In this study, we

will focus on the fixed a priori static method.

2.2.2 Available Algorithms for VRPSD in the Literature

Exact algorithms for the SVRP are developed based on mixed or pure integer
stochastic programs; see Laport et al. (1992, 1994) and Gendreau et al. (1995). The
integer L-shaped method was employed to solve the SVRP in the above papers. It is an
extension of the L-shaped method of Van Slyke and Wets (1969) for solving the two
stage stochastic linear problems when the random variables have finite support, by
incorporating a branching procedure to recover the integrality of the variables. As a
branch-and-cut algorithm applicable to a wide range of stochastic integer programs
with recourse, the integer L-shaped method has also been applied in solving the
VRPSD. Hjorring and Holt (1999) derived more effective optimality cuts and a tight
global lower bound on the second stage value function based on the concept of partial
routes for the single vehicle case. Laporte et al. (2002) studied lower bound on the
second stage value function for the normal and Poisson distributed demands. They also
constructed their optimality cuts based on the concept of partial routes in Hjorring and
Holt (1999). In addition, Dror et al. (1993) considered the VRPSD, in which the
number of potential failures per route is restricted either by the data or the problem
constraints. A chance-constrained version of the problem was considered and solved to
optimality by algorithms similar to those developed for the deterministic VRP. Then

three classes of recourse models were analyzed. Under the assumption that route
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failure can only occur at most once, an exact solution with a very high probability of
being optimal was easily computed by solving a sequence of deterministic problems.

The VRP is a combinatorial NP-Hard problem (Bodin et al., 1983). By adding
the stochastic element to the demands, the problem becomes even more difficult to
solve in terms of computational time as intricate probability computations are usually
involved. Known approaches for solving these problems optimally suffer from an
exponential growth in computation time with problem size, which is very unlikely to
be acceptable in the real world. Therefore, considerable attention and research efforts
have been devoted to the development of efficient heuristics (approximate algorithms)
to get near optimal solutions for large sized problems.

The first heuristic for the VRPSD was proposed in Tillman (1969), which is for
multiple depot case and the algorithm is based on Clark and Wright (1964). In Stewart
and Golden (1983), in addition to presenting one CCP and two SPR models, they also
considered several demand distributions and proposed two heuristics: one based on
Clark and Wright (1964), the other based on Lagrangean relaxation.

Bertsimas et al. (1995) presented an a priori heuristic based on the cyclic
heuristic (tour construction), 2-interchange and the dynamic programming (tour
improvement). Computational results were presented based on two types of demand
distributions: discrete uniform distribution and discretised normal distribution. They
considered the single vehicle case, because in VRPSD, returning trips to the depot are
permitted, and therefore vehicle capacity becomes a soft constraint. Moreover, Yang et
al. (2000) shown that, with the presence of no additional constraints, it is not necessary
to use multiple vehicles due to the recourse policy, the optimal route is always a single
one. Nevertheless, with the presence of such constraints as a limit on the maximum

traveling distance or effective working time of a vehicle, a single route may not be
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usable in most real-world situations. Therefore, in Yang et al. (2000), they proposed
heuristics for both the single vehicle and multiple vehicle cases. In the single vehicle
case, a composite method (insertion + Or-opt) was used to build a single route. For the
multiple vehicle case, they applied classic route-first-cluster-second and cluster-first-
route-second heuristics to solve this problem, under the assumption that the expected
route length of each route must be within a predefined limit. In their computational
experience, customer demands were assumed to follow discretised triangular
distribution.

In addition to the traditional heuristics discussed above, modern heuristic, such as
simulated annealing (SA), has also found its application in solving VRPSD.
Teodorovic and Pavkovic (1992) presented a SA algorithm, which is limited to the
situation where at most one route failure occurs in each route. Under this assumption,
they first introduced how to calculate the expected cost; then presented a two-stage
scheme, both of which utilize SA algorithm, with the first stage SA serving as a
clustering procedure and the second stage SA serving as a routing procedure. The
computational results were presented based on uniformly distributed customer demand

information.

2.3 Literature Review on the Generalized Traveling Salesman Problem

As a relaxed variant of the TSP, where not each customer is required to be visited

exactly once, the GTSP tries to select a subset of the customers with a desired trait

which is usually described as an additional constraint imposed on the subset tour. The

GTSP has received increasing attention in recent years. Most studies focus on the prize
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collecting traveling salesman (PCTS) problem, the time constrained TSP (TCTSP) and
the orienteering problem (OP).

For the PCTS problem, Balas (1989, 1995) presented an intensive theoretical
study. In Balas (1989), he discussed the structural properties of the PCTS polytope, the
convex hull of solutions to the PCTS problem. In particular, he identified several
families of facet defining inequalities for this polytope, which can be used in
developing algorithms for the PCTS problem either as cutting planes or as ingredients
of a Lagrangean optimand. In Balas (1995), he presented a general method for deriving
a facet defining inequality for the PCTS polytope from any facet defining inequality
for the asymmetric traveling salesman (ATS) polytope. The method was applied to
several well-known families of facet inducing inequalities for the ATS polytope. The
cloning and clique lifting procedure for the ATS polytope was also extended to the
PCTS polytope in his paper. In addition to the theoretical study, a number of heuristics
have been developed for the PCTS problem and its several variants. In Bienstock et al.
(1993), they considered a simplified version of PCTS problem, where the objective is
to find a tour that visits a subset of the vertices such that the length of the tour plus the
sum of penalties of all vertices not in the tour is as small as possible. They presented
an approximation algorithm with constant bound. The algorithm is based on an
algorithm presented in Christofides (1976) for the TSP as well as a method to round
fractional solutions of a linear programming (LP) relaxation to integers, feasible for the
original problem. In Lopez et al. (1998), they considered the hot strip mill production
scheduling problem for scheduling steel coil production in the steel industry. The
problem was modeled as a generalization of the PCTS problem with multiple and
conflicting objectives and constraints. They presented a heuristic based on tabu search

and a new idea of “cannibalization” for solving the problem. In Awerbuch et al.
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(1998), they presented the first approximation algorithm having a polylogarithmic
performance guarantee for the PCTS problem and two variations of the problem. In
one variation, there is no penalty associated with each unvisited city. Another variation
is called the “orienteering problem” by Golden et al. (1987).

The TCTSP was first introduced and discussed by Cloonan (1966). Gensch
(1978) proposed a solution method based on tree search for an industrial application of
this problem. The algorithm requires finding both the lower bound and the upper
bound of the solution to get an optimal sub-tour for the problem. The lower bound is
found by constructing a sub-tour by the nearest neighbor heuristic; while the upper
bound is obtained by solving a time constrained assignment problem by relaxing the
sub-tour elimination constraints, which applied the generalized Lagrange multiplier
method. Golden et al. (1981) developed a simple iterative procedure for the problem.
When the constraint considered is a preset constant route length rather than a time
limit, some researchers call TCTSP the selective traveling salesman problem (STSP).
Laporte and Martello (1990) proposed an exact algorithm, which consists of
embedding a LP relaxation within a branch-and-bound scheme. Another exact
algorithm proposed by Gendreau et al. (1998a) is based on branch-and-cut procedure.
Heuristics for STSP can be found in Laporte and Martello (1990) and Gendreau et al.
(1998b).

The definition of OP was first provided in Golden et al. (1987). Ramesh et al.
(1992) presented an exact algorithm for OP. In Leifer and Rosenwein (1994), they
tightened the LP relaxation and proposed a procedure to obtain upper bounds. In
Kataoka et al. (1998), they proposed a minimum directed 1-subtree problem as a
relaxation to the OP and developed a cut and dual simplex method and a Lagrangean

relaxation method to improve its lower bound. Since the OP is NP-hard (Golden et al.,
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1987), a number of heuristics have been developed during the past few years.
Tsiligirides (1984) also studied this problem; however, he called it the generalized
TSP. Two heuristics were presented in Tsiligirides (1984): one is deterministic, and the
other is stochastic. In the deterministic heuristic, the geographic region is divided into
sectors by concentric circles. Routes are then built within sectors to minimize the total
travel time. The stochastic algorithm selects the best route among a large number of
routes created based on Mont Carlo techniques. When constructing the OP tour, to
select a node j for inclusion, he applied a measure of desirability for all nodes not
currently on the route. The largest 4 values of the measure of desirability are selected
and normalized so that they sum to one. A random number is then generated according
to U (0, 1) in order to select a node j for inclusion. The procedure is repeated until no
more nodes can be included into the route. Since the inclusion of each node j is
randomly selected, many routes can be generated in this method. An algorithm based
on the concept of center-of-gravity was proposed by Golden et al. (1987). The
heuristic includes three steps: route construction, route improvement and center-of-
gravity step. After constructing an initial route, they applied 2-opt to improve the
route, followed by a cheapest insertion step to insert as many nodes as possible to the
initial route without violating the constraint. Suppose that the route resulted from the
first two steps is called route 7. In the center-of-gravity step, they first calculate the
center-of-gravity for route 7 by using the coordinates and profits of all nodes in route
7. Then, for each node i, calculate the ratio of its profit to the traveling time from
node i to the center-of-gravity of route 7. Add nodes to the route in descending order
of this ratio using cheapest insertion, until no additional nodes can be added without
violating the time limit constraint. The route improvement step is then applied again to

make some adjustments to the resulting route. After getting the new route 7', the
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center-of-gravity step is applied again to form a new route z''. The procedure is
repeated until a cycle develops, and then the route with the highest score is selected as
the final solution. In their computational experience, Golden et al. (1987) claimed that
their heuristic outperforms the two heuristics proposed in Tsiligirides (1984). An
improved algorithm that incorporates the center-of-gravity idea, Tsiligirides’s
randomization concept, along with learning capabilities was presented by Golden et al.
(1988). In Keller (1989), he adapted the algorithm originally developed for the
multiobjective vending problem (Keller, 1985) to solve the OP, and made a
comparison with algorithms from Tsiligirides (1984) and Golden et al. (1987). In
Mittenthal and Noon (1992), they presented a heuristic for the TSSP+1 class of
problems, which explores the solution space by either insertion of unvisited vertices or
deletion of included vertices from the subset tour. A fast and effective heuristic that
consists of one initialization step and one improvement step was presented by Chao et
al. (1996a). A similar procedure was employed to address the team orienteering
problem in Chao et al. (1996b). Moreover, Kantor and Rosenwein (1992) addressed
the orienteering problem with time windows. They developed a tree heuristic based on

an exhaustive search of the feasible solution space.

2.4 Conclusion and Further Remarks

From literature presented for the SVRP (Sections 2.1 and 2.2), it is clear that
VRPSD is the most studied among various types of SVRP in terms of solution
concepts, recourse policies and algorithms proposed in the literature. Moreover, most
of the researchers formulated VRPSD as a stochastic program with recourse within the

framework of the a priori optimization. Several representative heuristics for solving
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VRPSD include Bertsimas et al. (1995), Yang et al. (2000) and Teodorovic and
Pavkovic (1992). However, different researchers made different assumptions on the
problem data when doing the computational experiment; and the performances of the
algorithms proposed were evaluated based on their assumptions. For example, in
Bertsimas et al. (1995), the demands are assumed to follow normal and uniform
distributions; in Yang et al. (2000), the demands follow triangular distribution; in
Teodorovic and Pavkovic (1992), the demands follow uniform distribution, and they
also assumed that at most one route failure could occur for each route. In such cases, it
is very difficult for a decision maker to know which heuristic is more preferable in a
certain context. Therefore, in Chapter 3 of this thesis, a comprehensive comparative
study is carried out on algorithms presented in Bertsimas et al. (1995), Yang et al.
(2000) and Teodorovic and Pavkovic (1992), so that suggestions and recommendations
can be made available for the practitioners in various contexts.

One other finding from the literature review of SVRP is that, most of the
heuristics proposed for VRPSD in the literature are based on classical local search
algorithms (except for the SA algorithm presented in Teodorovic and Pavkovic, 1992),
which have the tendency to be easily trapped in a local optimal solution. Though there
is an SA algorithm presented in Teodorovic and Pavkovic (1992), results from our
comparative study (Teng et al., 2001) show that SA algorithm based on the original
neighborhood generation method and cooling schedule performed quite badly in
comparison with the other heuristics with respect to both solution quality and
computational time. Also, it seemed that there are some randomness involved in both
the solution quality and computational time. This does not mean that SA algorithm is
not suitable for VRPSD, because the performance of the SA algorithm depends greatly

on the neighborhood generation mechanism and the cooling schedule. Thus, in Chapter
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4 of this thesis, we present three metaheuristics, simulated annealing (SA), threshold
accepting (TA) and tabu search (TS) for solving VRPSD, and try to examine how
modern heuristics behave for the VRPSD.

Literature presented for the GTSP in Section 2.3 indicates that, the TCTSP and
OP are most closely related to the problems considered in Part 1l of this study. For
TCTSP and OP, except for the team orienteering problem considered in Chao et al.
(1996b), most work done in the literature is to construct a single orienteering tour
(TCTSP tour) in an optimal way or through heuristics. Chapter 5 of this thesis extends
the TCTSP into a multi-period TCTSP, and presents some heuristics for solving it in a
rolling schedule environment.

In the literature as well as in the multi-period TCTSP considered in Chapter 5,
both the travel time and the service time are assumed to be deterministic, though, in
practical situations, both are not likely to be known with certainty in advance.
Nevertheless, the profit generated from the TCTSP is directly affected by the travel
and service times, due to the time limit constraint of the TCTSP. To make the problem
considered more sensible, in Chapter 6 of this thesis, the TCTSP is extended to the
stochastic case, where the travel time and the service time are assumed to be random

variables.
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Chapter 3

Comparative Study of Algorithms for VRPSD

For SVRP, most studies have been made on the VRPSD and several heuristics
can be found in the literature. In this chapter, we compare the performance of three
representative heuristics from the literature based on the model of stochastic program
with recourse (SPR). A common ground for the comparative study is built first,
followed by conducting a comprehensive computational study on each of the three
selected heuristics. We examine how the heuristics perform in various situations with
respect to problem size and demand pattern, in order to determine which algorithm is
superior to the others in a certain context. Based on these findings, some valuable

suggestions are recommended to the practitioners.

3.1 Problem Statement

3.1.1 Problem Description

The vehicle routing problem with stochastic demands (VRPSD) can be described
as follows: Given a set V = {1, ..., n}, and V' =V U {0}, with 0 representing the
depot, and 1, ... ,n denoting the n customers, a distance matrix C = (ci;), ieV', jeV"',
is defined on Euclidean plane. There is a fleet of m identical vehicles of capacity Q at
the depot that deliver goods to the n customers. Let D, i = 1, 2, ..., n, denote the
random variables that describe the demand of customers. We assume that all D; are

independent random variables following a known discrete probability distribution with
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K+1 possible values, 0, 1, 2, ..., K. Let pi(k) be P(D; = k), the probability that demand
at node i is k. We further assume that K < Q; that is, the vehicle’s capacity is greater
than the largest demand of a customer in a given period. This assumption removes the
consideration of multiple returns to the depot from the same node. Moreover, we
assume that L is a predefined maximum limit for the expected route length. The
VRPSD tries to determine vehicle routes, restocking policy at each node, as well as the
number of vehicles m, under the following conditions:

Q) All routes start and end at the depot;

(i) Each city is visited exactly once except the depot;

(ili)  The expected distance traveled by any vehicle does not exceed the

prescribed value L;

(iv)  The total expected distance traveled by all vehicles is to be minimized.

Note that, though we evaluate the routes by using the expected route length, we

also call it the expected cost in the following parts of this thesis.
3.1.2 Calculation of the Expected Cost

In Bertsimas et al. (1995), they presented the following equation to calculate the

expected cost of each tour:
E[L,]1= 2(1_ 7i)Ciia t 2(25ici,o +7i[Ci o +Ciirol) (3.1)
i=0 i=1

where v;is the probability that the demand at the i™ node is exactly equal to the stock

available in the vehicle, &; is the probability that the demand at the i node exceeds the
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remaining stock, and c;; is the distance between nodes i and j in the tour. Bertsimas

(1992) presented some equations to calculate y; and &; as follows:

7, =0

LIK/IQ] [ K
=y {Zpi(k)f(i—l, IQ—k)}, 2<i<n (3.2)
5,=0

5, :L%J{Kﬁ( ipi(r)jf(i—l, IQ—k)}, 2<i<n (3.3)

1=1 k=1 \ r=k+1

f (s,r) = Pr{the total demandof thecustomersl,...,s isr} is computed from the

recursion:
min{K,r}
f(s,r)= D p(K)f(s-Lr-k), s=2..,nr=0.Ks (3.4)
k=0

with the initial conditions:

f(s,r)=0 for r>Ks (3.5)

f(l,r)={pi(r) for 0<r<K

. (3.6)
0, otherwise

3.1.3 Dynamic Programming (DP) Recourse Policy

Both Bertsimas et al. (1995) and Yang et al. (2000) employed the following
dynamic programming (DP) recourse policy. Instead of waiting for route failure to
occur, DP recourse policy can recursively decide at each stage (nhode), which is more
preferable: go on visiting the next node, or return to the depot for restocking. A

threshold value, vehicle remaining load for delivery operation, is calculated at each
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node i. If the remaining load after visiting node i is less than or equal to the threshold

value, it is better to return to depot before visiting the rest of the customers.

For any given a priori solution to the VRPSD problem, let (v,,v,,...,v, ) be the set
of nodes arranged in the same sequence as they appear in the visitation tour. Let g
denote the vehicle’s remaining load. Define fj(q) to be the expected remaining distance
to travel, given that the optimal strategy is followed. The following dynamic
programming recursion describes the decision about when the vehicle should return to

the depot.

1) Initialization

Set f,(a)=¢,, ,vqe{0,1,...Q} (3.7)
2) Recursion

Forj=n-1, ..., 1: compute fi(q) = min { f;(q), f ()}

where

fj:L (q) = Cvj Vi + z fj+l (q - k) pj+1 (k) + Z[chjﬂ,o + fj+l(q + Q - k)] pj+l (k) (38)
k:k<q k:k>q
K

sz (a) = CO,vj + Co,vj+1 + Z fj+1 (Q-k) Pia (k) (3.9)

k=0

3) Threshold calculation

q*(j)=max{q: f;(a) = f7(a)} (3.10)

Here, the terms f jz (q)and f jl (q) reflect the strategy of returning to depot, and

the strategy of continuing to the next node, respectively.
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The term g*(j) is the threshold value for node v;. When the remaining load is very
large, it is obvious that one should go on to the next node. As remaining load
decreases, the cost of going on to the next node increases, the maximum remaining
load g*(j) that makes going on to the next node more costly than going back to depot is
the threshold value for node v;. If the remaining load after visiting node v; is less than

g*(j), it is better to return to the depot before serving further demand points.

For each visitation sequence, through the backward dynamic programming, its

expected cost can be calculated by the following equation.

Q
Z:val(j)fl(j)'i_co,vl (3.11)

This expected cost, together with the threshold value at each node, forms a

solution for any visitation sequence.
3.2 Review of the Selected Algorithms

In this section, we give a brief review of the algorithms selected for comparison

in this study. Readers can refer to the original papers for details.
3.2.1 Bertsimas et al.’s Algorithm

Bertsimas et al. (1995) presented an a priori heuristic based on the cyclic
heuristic, 2-interchange and dynamic programming (DP) procedure. They only

considered the single vehicle case. This is possible in VRPSD, because returning trips

to the depot are permitted, and vehicle capacity becomes a soft constraint.
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Cyclic heuristic with local improvement and dynamic programming (DP)
For a given initial TSP tour (0, 1, 2, ..., n), the cyclic heuristic generates n cyclic

permutations, with the i permutation 7, = (0, i, i+1,..., n, 1, 2,..., i-1, 0). 2-

interchange is then applied to make local improvement for each of the n orderings. The
DP recursion along with the threshold calculation is used to determine when the
vehicle should return to the depot. The heuristic then chooses the lowest cost visitation

sequence and recourse policy as the final solution.

3.2.2 Yang et al.’s Algorithms

In Yang et al. (2000), a composite method (insertion + Or-opt) was proposed for
single VRPSD. For the multiple VRPSD, they applied classic route-first-cluster-second
(R1-C2) and cluster-first-route-second (C1-R2) heuristics to solve this problem. The
calculation of the expected cost of the routes and the best restocking policy are
performed by the DP recursion, which is similar to the recursion presented by
Bertsimas et al. (1995). One difference is the recourse cost. To penalize a partial
delivery, a fixed nonnegative cost is imposed whenever route failure occurs, in
addition to the cost of traveling to the depot and back to the route. Additionally, to
save the computational time, they present an approximation method to calculate the

insertion cost.

Single vehicle routing problem
The heuristic first attempts to find a single route through all the customers using
the insertion procedure (Bodin et al., 1983). Next, Or-opt procedure (Or, 1976) is used

to seek further improvements. In the Or-opt procedure, a set of k successive nodes are
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removed from the current location (1), and reinserted back into the route elsewhere
other than where they are removed (I1). The approximation method is used to calculate
the cost improvement: the difference of cost savings (resulted from 1) and the
additional costs (resulted from I1). The move with the maximum cost improvement is
implemented. The procedure repeats until there is no cost improvement available and k
is decreased by 1. The procedure terminates until k is 1 and there is no further cost

improvement available.

Multiple vehicle routing - Route-first-cluster-second algorithm

The routing procedure is the same as the one used in the single vehicle routing.
Suppose 7 = (iy, iz, ... iy) is an ordered sequence obtained by using insertion and Or-
opt algorithms. Given a limit L on the expected cost of each route, in the clustering
procedure, Yang et al. (2000) proposed another dynamic programming procedure to
partition the sequence into multiple vehicle routes. The procedure recursively
determines the partitioning points for each subsequence such that the expected cost of
the total route set is minimized and the expected cost of each subsequence is within the

limit L.

Multiple Vehicle Routing - Cluster-first-route-second algorithm

In the clustering process, one needs to select the seed points first. Yang et al.
(2000) employed the circle covering method of Savelsbergh and Goetschalckx (1995)
to determine the seed points. Then, customer clusters are formed around the seed
points in the following way: select the seed point not yet assigned with the smallest
covering circle (see Savelsbergh and Goetschalckx, 1995), form a seed route with

return trips between the seed point and the depot. Calculate the insertion cost of each
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unconnected node at the best location in the seed route. Successively insert the
unconnected nodes with the least insertion cost into the route. Reject the nodes that
make the route infeasible. The procedure proceeds until no more insertion is feasible;
and other clusters are formed by repeating the same procedure.

In the routing process, they tried to reposition each node from its current position
to any other position, either on the same route or to other routes, provided that the new

position of the node does not violate the route length constraint.

Multiple vehicle routing - Improving the heuristic solution

To further improve the solution obtained from the above two heuristics, Yang et
al. (2000) also repeatedly applied inter-route and intra-route exchange procedures until
no further improvement can be made. The inter-route exchange tries to improve the
routes by moving a segment of nodes from one route to another. The intra-route

exchange procedure uses Or-opt to further improve each route.

3.2.3 Teodorovic and Pavkovic’s Simulated Annealing (SA) Algorithm

Teodorovic and Pavkovic (1992) presented a SA algorithm to solve the problem
in the situation where at most one route failure can occur in each route. They first
introduced a way to calculate the expected cost in this case. The paper employs a two-
stage scheme, both of which utilize SA algorithm. In the first stage, SA is used to find
a satisfactory initial solution. The neighborhood solutions are generated by randomly
constructing route sets. This procedure corresponds to the clustering of customers. In

the second stage, selected customers are repeatedly exchanged only within each route.
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The neighborhood is generated by swapping two nodes within each of the defined

routes. It corresponds to the routing procedure.

3.3 Common Grounds for the Comparative Study

3.3.1 Criteria for the Measurement of the Comparative Study

The success of a heuristic for solving VRPSD depends on a number of aspects:
1) Performance, i.e. the running time and the quality of the final solution;
2) The number of vehicles required;
3) Sensitivity. To see whether the algorithms are sensitive with respect to the
demand distribution, problem size, the increase of demand mean, and the

increase of demand variance, etc.

3.3.2 Building the Common Ground for Comparison

In addition to the assumptions already made, we further assume that, when
applying the dynamic programming to adopt optimum recourse policy, a partial

delivery is allowed, and no penalty is imposed in case of a partial delivery.

3.3.2.1 Problem Generation
Problem size and distance matrix

We assume that the problem size ranges from 20-110, and the cost c;; is the
Euclidean distance between two points i and j. Each problem instance is randomly
generated in the square [0, 100]?, according to a uniform distribution. And we assume

that the depot is situated at the center (50, 50).
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Demand pattern

Based on the demand patterns used in the selected algorithms, we select both the

discretized normal and the discrete uniform distribution for the following reasons:

1) Both of these two distributions are simple in the sense that the probability can
be easily calculated for a given demand possibility.

2) To examine whether these algorithms are sensitive to different demand
distributions.

3) When studying the algorithm performance with the increase of demand mean,
the uniform distribution has a problem that with the increase of demand
range, the variance also increases; while for normal distribution, we can
examine the net effect of the demand mean.

In fact, the algorithm can be applied to any demand pattern, given that the

probability associated with a certain demand distribution is known. For example,
customer demands can be not identically distributed. However, for simplicity, we

assume that all demands are identically distributed in this comparative study.

Number of instances

For each type of problems, the number of instances used in this study is 30. The
performances of the heuristics are compared based on the same problem instances. The
computational results: the expected route length, running time, number of vehicles
used (in the multiple vehicle case), etc., which are the basis of comparison, are the

averages of the results obtained from the 30 randomly generated problem instances.

Factors affecting the performance of algorithms

In this comparative study, we will examine the following situations:
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1) Single vehicle routing and multiple vehicle routing problems.

2) Algorithm performance with the increase of problem size, with fixed demand
pattern for both normal and uniform distributions.

3) Algorithm performance with the increase of demand mean, with fixed demand
variance and problem size for normal distribution.

4) Algorithm performance with the increase of demand variance, with fixed
demand mean and problem size for normal distribution.

5) Algorithm performance with the increase of demand mean and variance, with

fixed problem size for uniform distribution.

3.3.2.2 Adaptations Made to the Original Algorithms

Bertsimas et al. (1995)’s cyclic heuristic

In Bertsimas et al. (1995), they did not specify which heuristic was used to
construct the initial TSP solution. In this study, we employ the space-filling curve
heuristic (Bartholdi and Platzman, 1982) to generate the initial TSP tour.

In their study, both 2-interchange and dynamic programming were included in
their cyclic heuristic. However, computational results showed that, the improvement
due to 2-interchange (less that 1%) is much smaller than that of the dynamic
programming procedure (6%), though inclusion of either procedure increases running
time by a factor of 2-3 times. They also proposed that, 2-interchange procedure
requires that customer demands be identically distributed. For these reasons, we only
use the dynamic programming to adopt the best recourse policy in this comparative

study.
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The original algorithm is designed for single vehicle routing. To make the
comparison in the case of multiple-vehicle routing, we apply the dynamic
programming partitioning procedure proposed by Yang et al. (2000) to partition a
single route into multiple routes. After the partitioning, for each single route, the cyclic
heuristic is used again to seek further improvements.

For Bertsimas et al. (1995), the algorithm can be executed in two ways: (1) By
applying Equation (3.1) to calculate the expected cost, we first find the best sequence
from cyclic heuristic, then apply dynamic programming recursion to adopt optimal
recourse policy, this is called B-1 in Section 3.4; (2) We utilize the dynamic
programming recursive procedure throughout the algorithm. The Equation (3.1) to
calculate the expected cost (Bertsimas, 1995) is not used at all, this is called B-2 in

Section 3.4.

Yang et al. (2000)’s algorithms

Similarly, in Yang et al. (2000), for the single vehicle routing and the route-first-
cluster-second algorithms, they did not mention which specific insertion heuristic is
used to form the initial TSP. We adopt the arbitrary insertion heuristic, because the
following Or-opt procedure and possible other post improvement procedures will
compensate for the relatively bad performance of the arbitrary insertion heuristic.

We also adapt cluster-first-route-second algorithm to the single vehicle routing
algorithm by relaxing the constraint imposed on the maximum expected route length
on each route. In Section 3.4, cluster-first-route-second algorithm is known as C1-R2,

while the route-first-cluster-second one is called R1-C2.
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Teodorovic and Pavkovic (1992)’s simulated annealing (SA) algorithm

For the SA algorithm in Teodorovic and Pavkovic (1992), the following
adaptations must be made to make the comparison work:

1) Route failure can occur any times in each route rather than at most once.

2) The expression to calculate the expected cost in their original paper no longer
works. To calculate the expected cost, we also adopt the dynamic programming
recursion (Bertsimas et al., 1995) to calculate the expected cost and the
threshold values, and to determine the best recourse policy, because of its
effectiveness in solving VRPSD.

3) For single vehicle routing, there are two ways to make the adaptation. One is
that, the first stage SA is omitted, because its role in their original paper is to
cluster the customers in different routes, this is known as SA-1 in Section 3.4.
Secondly, we employ the first stage SA to find a satisfactory initial solution,
then second stage SA is applied to seek further improvements, it is called SA-2

in Section 3.4.

3.4 Computational Results and Analysis

To get the computational results, the algorithms are coded in VISUAL C++, and
run on a 500 MHZ Pentium Il Processor with 128 MB RAM under Microsoft
Windows 98.

Throughout this section, the following notations are used to represent the

algorithms selected into the comparative study.
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B-1: Bertsimas et al. (1995)’s algorithm, applying Equation (3.1) to calculate the
expected cost, and dynamic programming recursion to adopt optimal
recourse policy.

B-2: Bertsimas et al. (1995)’s algorithm, applying dynamic programming
recursion to calculate both the expected cost and the optimal recourse
policy.

C1-R2: Yang et al. (2000)’s cluster-first-route-second algorithm.

R1-C2: Yang et al. (2000)’s route-first-cluster-second algorithm.

SA-1: Teodorovic and Pavkovic (1992)’s simulated annealing algorithm with
first stage SA being omitted.

SA-2: Teodorovic and Pavkovic (1992)’s simulated annealing algorithm with

first stage SA being used to find a satisfactory initial solution.

3.4.1 Computational Results

3.4.1.1 Multiple Vehicle Routing Algorithms

We examine the demand pattern for both truncated normal distribution and
uniform distribution. Originally, SA algorithm is included in the comparison.
However, its performance is quite bad, with both expected cost and computational time
several times greater than those of the other heuristics. Since it is obvious that the SA
algorithm is the worst, it is included only in the comparison for single vehicle routing

but not in the comparison for the multiple vehicle routing.

1) Uniform Distribution

Uniform Distribution --Performance with the increase of problem size
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Here, we assume that all demands are generated from the uniform distribution.
We examine two demand cases: U[0, 20] and U[0, 55], where Case 1 has relatively
lower mean with respect to vehicle capacity Q. Figures 3.1 and 3.2 illustrate the
solution quality and computational time of Casel respectively. From Figure 3.1, it is
clear that, with the increase of problem size, the expected cost increases linearly for all
of the algorithms studied. The solution quality differs slightly when the problem size is
small. When problem size becomes larger, R1-C2 performs slightly better than the
other three algorithms. B-1 and B-2 perform almost equally the worst, leaving C1-R2
in between. Regarding the number of vehicles used, both R1-C2 and C1-R2 use fewer
vehicles than B-1 and B-2.

Computational Time with the Increase of Problem Size
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Figure 3.2 Computational Time with the Increase of Problem Size
(Demands follow uniform distribution U[0, 20])

Figure 3.2 shows the computational time taken by the algorithms against problem
sizes. It is noted that B-2 takes very little time, while R1-C2 takes the longest time. For
the other two algorithms, B-1 runs faster than C1-R2. Computational time of R1-C2
also increases fastest with the increase of problem size. Details of the average case
performance regarding both solution quality and computational time can be seen in

Table 3.1.
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In Case 2, both B-1 and B-2 seem to perform better than in Casel. The
difference among the algorithms becomes even smaller in terms of expected cost and
number of vehicles used. With respect to the computational time, R1-C2 also takes the
most time, but B-1 ranks the second most in this case, followed by C1-R2, B-2 also
takes the least time. This implies that, in Case 2 where demand may take higher value,
solution quality of B-1 and B-2 become better, while B-1 also takes more

computational time.

Uniform Distribution --Performance with the increase of mean and variance
Figure 3.3 illustrates how solution quality of the algorithms performs with the
increase of demand mean and variance when the problem size is fixed at 60. Here the
x-axis (MEAN/Q) is the ratio between the demand mean and the vehicle capacity,
which represents the increase of demand mean and variance. Similar to the case with
the increase of problem size, as the demand mean and variance increase, the expected
cost also increases linearly for all the algorithms examined. The difference between the
algorithms is marginal. Moreover, as the mean increases, the difference between B-1
(the worst) and the rest of the algorithms becomes even smaller. Nevertheless, we still

can see that R1-C2 performs the best among all the algorithms studied.
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Solution Quality with the Increase of Mean and Variance
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(Problem size n = 60)
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Computational time taken is similar to that illustrated in Figure 3.2, as can be
observed in Figure 3.4. R1-C2 consumes the most time, and B-2 takes the least time.
As demand mean grows, the computational time of B-1 increases fastest, while C1-R2
increases very slowly. Therefore, when demand mean approaches 25% or more of the
vehicle capacity, B-1 takes more time than C1-R2. Detailed numerical results are

presented in Table 3.2.

Computational Time with the Increase of Mean and Variance
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2) Normal distribution
The performance of the algorithms when demands follow normal distribution is
similar to that when demands follow uniform distribution. Some observations are as

follows.

Normal Distribution -- Performance with the increase of problem size

Solution Quality with the Increase of Problem Size
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1000

20 30 40 50 60 70 80 90 100 110
Problem Size

Figure 3.5 Expected Cost with the Increase of Problem Size
(Demands follow normal distribution N(30,25))

Here, we assume that all demands are generated from the truncated normal

distribution N(30, 25). In terms of solution quality, in this case, as problem size
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becomes larger, the algorithms R1-C2, B-1 and B-2 tend to outperform the C1-R2
algorithm. C1-R2 performs the worst, with the performance of the other algorithms
being very similar to one another. Detailed results for the solution quality are
illustrated in Figure 3.5.

With respect to the computational time, in this case, B-1 takes the most time as
compared to the other three heuristics; B-1 also increases fastest as problem size
grows. R1-C2 ranks the second most, B-2 still takes the least time. The difference

among the number of vehicles used is marginal in this case.

Computational Time with the Increase of Problem Size
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Figure 3.6 Computational Time with the Increase of Problem Size
(Demands follow normal distribution N(30,25))

Normal Distribution -- Performance with the increase of mean
We examined the case where problem size is 20. Here the x-axis (MEAN/Q) is

the ratio between the demand mean and the vehicle capacity, which represents the
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increase of demand mean. Results for solution quality and computational time are
illustrated in Figure 3.7 and Figure 3.8 respectively. For most of the demand mean
ranges, the expected cost increases linearly with the increase of demand mean.
However, when the demand mean approaches 75% or more of the vehicle capacity, the
expected cost begins to decrease. Result also reveals that, as demand mean grows
larger, both B-1 and B-2 performs better than R1-C2 and C1-R2. The performance of

the later two algorithms is quite similar in this case.

Solution Quality with the Increase of Mean
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Figure 3.7 Expected Cost with the Increase of Demand Mean
(Problem size n = 20, demand variance = 25)
Since the problem size is relatively small, the computational time is less than 3
CPU seconds for all the four algorithms. Based on findings obtained when demands

follow uniform distribution, we can expect that, when problem size is large, the
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difference in terms of both solution quality and computational time among algorithms

can grow larger.

Normal Distribution -Performance with the increase of variance

Our results show that, with the increase of demand variance, the expected cost,
the number of vehicles used and the computational time are all almost the same, which
indicates that variance does not have much influence on the algorithm performance.
Figure 3.8 shows how the algorithms behave with the increase of demand variance

with respect to solution quality.

Solution Quality with the Increase of Variance
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Figure 3.8 Expected Cost with the Increase of Demand Variance
(Problem size n = 20, demand mean = 20)

3.4.1.2 Single Vehicle Routing Algorithms

From the comparison of the multiple vehicle routing, it is obvious that the

algorithms are not quite sensitive to the demand distribution type. Therefore, for single
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vehicle routing problem, we only examine the demand pattern following uniform

distribution.

Performance with the increase of problem size
Similar to the multiple vehicle routing, the expected cost increases linearly as

problem size grows larger, as can be seen in Figure 3.9.

Solution Quality with the Increase of Problem Size
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Figure 3.9 Expected Cost with the Increase of Problem Size
(Single vehicle, demands follow uniform distribution U[0,20])

However, in this case, solution quality of C1-R2 seems to be the best, and SA-1

and SA-2 appear to be the worst. When the problem size is small, the difference
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between the algorithms is little; while as problem size grows, both SA-1 and SA-2 tend
to divert greatly from the others.

Regarding the computational time, both implementations of SA take a lot of
computational time. Though the computational time increases with the increase of
problem size, it fluctuates greatly. The solution quality of SA-1 and SA-2 is very close,
but SA-2 seems to take even more time. As we can expect from the solution quality,
C1-R2 takes relatively more time compared to the other three algorithms, B-2 takes the
least time, B-1 ranks the second least, and computational time of R1-C2 is very similar
to that of C1-R2. Refer to Figure 3.10. Detailed computational results can be found in

Table 3.3.

Computational Time with the Increase of Problem Size
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Figure 3.10 Computational Time with the Increase of Problem Size
(Single vehicle, demands follow uniform distribution U[0,20])
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Performance with the increase of mean and variance

As demand mean and variance grow larger, the expected cost of the algorithms
grows approximately linearly, see Figure 3.11. Here the x-axis (MEAN/Q) is the ratio
between the demand mean and the vehicle capacity, which represents the increase of

demand mean and variance.

Solution Quality with the Increase of Mean and Variance
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Figure 3.11 Expected Cost with the Increase of Demand Mean and Variance
(Single vehicle, problem size n =20)
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However, in this case, the expected cost of both SA-1 and SA-2 has some
fluctuations. Results in Table 3.4 show that, C1-R2 is best, SA-1 and SA-2 are almost
equally the worst, leaving R1-C2, B-1 and B-2 in between. The difference between the
algorithms is not substantial. However, we can predict that, as the problem size

increases, the difference between SA and the other algorithms can grow larger.

Since the problem size is small, the computational time is very little except that
of the SA-1 and SA-2. The computational time for SA-1 and SA-2 is not only very
long but also fluctuates greatly, without clear trend of increase with the increase of

demand mean and variance.
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3.4.2 Performance Analysis of the Algorithms

1) Common observations for all of the algorithms

Sensitivity analysis

An algorithm is said to be sensitive if it performs well in one case, but badly in
the others. Generally, the algorithms examined are not very sensitive to demand
distribution, problem size, increase of demand mean and/or variance. Some
observations are summarized below.
Demand distribution. For all the four algorithms, under the same problem size, the
expected cost when demand follows normal distribution is slightly lower than that
demand follows uniform distribution. This observation is consistent with the result of
Bertsimas et al. (1995). Moreover, B-1 seems to take more computational time in the
case of normal distribution. On the contrary, Yang et al. (2000)’s algorithms seem to
take more time in the case of uniform distribution.
Increase of demand mean. The solution quality of B-1 and B-2 tends to improve more
compared with the other algorithms as demand mean increases. However, as demand
mean grows, the computational time of B-1 also increases fastest.
Increase of problem size. In multiple vehicle routing, R1-C2 performs better when
problem size is large with respect to other algorithms. In single vehicle routing, C1-R2
performs better when there are more demand points.
Increase of demand variance. Results indicate that the increase of demand variance

does not have much influence on the performance of the algorithms.
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Solution quality

Problem size. The expected cost increases linearly as problem size grows.

Demand mean. As demand mean increases, the expected cost also increases, with the
exception that, when demand follows normal distribution and when demand mean is
75% or more of the vehicle capacity, the expected cost begins to decrease. This may be
due to the following reason: When demand follows normal distribution and demand
mean is relatively large compared with the vehicle capacity, the probability that
demand takes very small value is almost zero; while when demand follows uniform
distribution, the probability that demand takes any value from zero to maximum

demand possibility is the same.

Demand variance. The solution quality is not influenced by the demand variance.

We observe that in single vehicle routing, with respect to solution quality, C1-R2
performs best, SA-1 and SA-2 perform the worst, leaving R1-C2, B-1 and B-2 almost
equally in between. While in multiple vehicle routing, R1-C2 seems superior to the

others. B-1 and B-2 behave better when demand mean is high.

Computational time
Except for B-2 in multiple vehicle routing and SA-1 and SA-2 in single vehicle
routing, it is usually the case that, the algorithm with better solution quality takes

relatively more time.

61



Chapter 3 Comparative Study of Algorithms for VRPSD

Comparing B-1 with B-2, the solution quality is almost the same. However, B-1
is much more time consuming. As described in Section 3.1, Equation (3.1) is used to
calculate the expected cost. At each demand point, as stated in Bertsimas (1992), the
two probabilities y; and &; are calculated recursively, which is very time consuming.

When comparing B-2 with Yang et al. (2000)’s algorithms, though all of them
employ dynamic programming procedure to evaluate the expected cost, B-2 takes very
little time, because the cyclic heuristic only involves comparing the n permutations,
while in Yang et al. (2000)’s algorithms, the Or-opt and the other possible improving
procedures, require many comparisons. Therefore, though Yang et al. (2000)’s
algorithms adopted the approximate dynamic programming procedure to calculate the
insertion cost, it still takes more time.

Similarly, in single vehicle routing, the solution quality of SA-1 does not differ
greatly from SA-2, though SA-2 takes more computational time. This means that, the
first stage SA which is used to find a satisfactory initial solution does not seem to be

quite effective.

2) Characteristics of certain algorithms

Our results for Yang et al. (2000)’s algorithms show that, for the multiple vehicle
routing, R1-C2 is slightly better than C1-R2 with respect to solution quality. However,
the former takes more computational time than the later. This result agrees with the
result in Yang et al. (2000).

The result from SA is not good in comparison with the other heuristic algorithms
with respect to both solution quality and computational time. Moreover, it seems that
there are some randomness involved in both the solution quality and computational

time. The poor performance of this SA may be due to the following reasons:
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1) In the first stage of SA, generating route sets randomly may not be a good idea
comparing with other possible more systematic neighborhood generation
mechanisms.

2) In the second stage, the neighborhood structure (just exchange one node with
another randomly selected node) also may not be so efficient.

The randomness in generating the initial tour and the neighborhood solutions is also
the main reason of the long computational time. Trying other neighborhood generation

mechanism, such as Or-opt, may be worthwhile.

3.5 Summary and Conclusions

In this chapter, we present a comparative study on some algorithms for solving
the vehicle routing problems with stochastic demands. We examine the performance of
these algorithms in various situations with respect to problem size and demand pattern,
in order to determine which algorithm is superior to the others. Our study reveals that,
except for the SA algorithm, the differences among the other algorithms examined are
not substantial. From the aspect of practical application, our study suggests that B-2 is
the best candidate, because it takes very little computational time, with solution quality
comparable to the other heuristics. However, if the decision maker regards the solution
quality as more important, in single vehicle routing, C1-R2 is a good choice; while in
multiple vehicle routing, R1-C2 tends to be better. Due to the good solution quality of
the Yang et al. (2000)’s algorithms, they are employed as a performance measurer in

Chapter 4 to evaluate the metaheuristics proposed for the VRPSD.
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Chapter 4

Metaheuristics for Vehicle Routing Problem with Stochastic Demands

In Chapter 3, a comparative study was carried out for the algorithms presented in
Bertsimas et al. (1995), Yang et al. (2000) and Teodorovic and Pavkovic (1992). The
comparative study shown that the SA algorithm based on the original neighborhood
generation method and cooling schedule performed quite badly in comparison with the
other heuristic algorithms with respect to both solution quality and computational time.
However, this does not mean that SA algorithm is not suitable for VRPSD, because the
performance of a SA algorithm depends greatly on the neighborhood generation
mechanism and the cooling schedule. Thus, in this chapter, we try to examine how
modern metaheuristics behave for the VRPSD.

To examine the performance of the proposed metaheuristics, the computational
results of the proposed algorithms are compared with the results from the algorithms
presented in Yang et al. (2000). In Yang et al. (2000), under the assumption that
demand follows discrete triangular distribution, they claimed that, for single vehicle
case, with small problem size (n = 8 and n = 10), their algorithm provides solutions
with at most 1% average deviation from the optimal solution; for multiple vehicle case,
with problem size at 10, 12 and 15, the deviation from the optimum is at most 3.3%.
Moreover, computational results of the comparative study in Chapter 3 also shown
that, among the heuristics compared, Yang et al. (2000)’s algorithms perform the best
in terms of solution quality. Since Yang et al. (2000)’s algorithms perform very well

for the VRPSD, we employ them as a performance measurer in this chapter.
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4.1 Metaheuristics for Single VRPSD

4.1.1 Initial Solution and Generation of Neighborhood Solutions

One important element that determines the performance of metaheuristics is the
neighborhood generation mechanism. In this study, we employ the same neighborhood
generation method for each of the three algorithms so that we can examine the
performance of the algorithm itself. The neighborhood generation method is described
below.

Given a current solution, a neighborhood solution can be obtained by relocating a
node from its current location to a position between two other neighbor nodes in the
tour. Bentley (1992) called this move a 2.5-opt, because it is a special and simple form
of 3-opt (Lin, 1965). Here, in this study, we restrict the relocation of the node to only
one of its nearest neighbors rather than elsewhere in the tour. Specifically, for each
node, find @ nearest neighbors and build a neighbor list of size@ . To generate a
neighborhood solution for node i, first generate a random number b in the range 1
tow , then find the node j which is b™ nearest neighbor in node i’s neighbor list,
remove node i from its current position and put it before or after node j. The neighbor
list size @ should be set to a suitable value. If @ is too small, the solution will have
difficulty in escaping from the local optimum; if @ is too large, the procedure tends to
become a random search. In this study, the neighbor list size @ is set as follows:

4 if n<20
) {rn/lﬂ otherwise
To examine whether the metaheuristics are sensitive to the initial solution, we

generate the initial solution in the following three ways: a random tour, a tour
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generated from the nearest neighbor heuristic (Rosenkrantz et al., 1977), and a tour
generated based on the space-filling curve heuristic (Bartholdi and Platzman, 1982).

The effect of the initial solution on the algorithm is discussed in Section 4.3.1.

4.1.2 The Simulated Annealing and Threshold Accepting Algorithms

The name simulated annealing (SA) was originated from the physical annealing
process. Kirkpatrick et al.(1983) proposed that the concept form the basis of an
optimization technique for combinatorial and other problems. The basic idea of SA is
to provide for small random perturbations and to compute the amount of changes in
objective function value. A typical feature of a SA algorithm is that, in addition to
accepting improvements in objective function value, it also accepts deteriorations in
objective function value with a certain probability. Initially, a large value of a control
parameter, called temperature, is used to evaluate the probability of accepting an
unfavorable move. At the start, large deteriorations can be accepted; as temperature
decreases, only smaller deteriorations will be accepted. This feature makes SA, in
contrast to the local search algorithms, be able to escape from local minima without
losing the favorable features of local search algorithms: simplicity and flexibility. SA
is one of the metaheuristics proposed for the combinatorial problems. Ever since its
introduction, SA has been applied to a large number of combinatorial optimization
problems. Some of the applications of SA in solving VRP include: Alfa et al. (1991),
Osman (1993), Hiquebran et al. (1994), etc.

Threshold accepting (TA), introduced in Dueck and Scheuer (1990), is a
deterministic analog to SA. The main difference is the rule of accepting worse

neighborhood solutions. SA accepts a worse solution according to the acceptance
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probability; while TA accepts a worse one if the deterioration is within a certain
threshold value. The threshold value is decreased as the algorithm proceeds, and
finally approaches zero when the algorithm terminates. One advantage of TA over SA
is that, it is not necessary to compute probabilities or to make random decisions,
making the algorithm even simpler. In Dueck and Scheuer (1990), they claim that TA
yields better results than SA. An extensive introduction to TA is given in Winker

(2000).

4.1.2.1 Thermal Equilibrium Condition in the SA and TA Procedures

To ensure the asymptotic convergence to the global optimal solution, the thermal
equilibrium of the SA (TA) procedure should be attained at each temperature. One way
to achieve thermal equilibrium is that, at a certain temperature, the objective function
value does not change for several consecutive transitions. In Teodorovic and Pavkovic
(1992), the thermal equilibrium is defined as follows: within each temperature, they set
a maximum number of generations to perform; within each generation, a fixed number
of transitions are carried out. Once a generation is finished, the total cost of all the
transitions within the generation is recorded and another generation is performed. If the
relative percentage change in the total cost between the current and the previous
generations is less than a predefined thermal equilibrium factor ¢ , the thermal
equilibrium is reached at the particular temperature and the temperature is lowered. In
Hiquebran et al. (1994), thermal equilibrium is defined in a similar way. However,
they used the cost of the final transition of each generation as an evaluation measure.

In our study, we employ the one used in Teodorovic and Pavkovic (1992).
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4.1.2.2 The Procedure Involved in the SA and TA Algorithms

The SA algorithm involves the following steps:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Initialization:
1.1: Generate an initial tour. Calculate the expected cost according to the DP
recourse procedure described in Section 3.1.3. Denote it as Log.

1.2: Select an initial temperature t,> 0 and a temperature reduction factor c.

Set tj = to, 1 = 0, and set total number of different temperatures needed to
no_t.
Set initial generation_count = 0, total number of generations = no_gen; set the
length of the total routes in the last generation Totaljst = oo, and the length of
the total routes in the current generation Totalcyrrent = 0.
Select a node in the current route; generate a neighborhood solution as
described in Section 4.1.1. Calculate the expected cost for the new route,
denoted as Lyew. Calculate the difference between the new and the old route,
A= Lpew-Lowg. If A <0, go to Step 5.
Generate a uniformly distributed random number rande[0,1]. Calculate the
acceptance probability prob = exp(- A /t;). If rand < prob, go to Step 5;
otherwise, keep the old route and its expected cost. Go to Step 6.
Record the new route and its expected cost.
Update the total route length of the current generation Totaleyrrent By adding
the length of the current route to Totalcrent. If the neighborhood solutions for
all n nodes have been examined 3 times, go to Step 7. Otherwise go to Step 3
to examine the next node.

Check whether thermal equilibrium has been reached at temperature t; by

testing [Total ., — Total |/ Total <&, where ¢ is a predefined thermal

current last current
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equilibrium factor. If the above inequality holds, go to Step 8. Otherwise,
update the total route length of the last generation by replacing Total s with
Totalcyrrent If Totalcyrent < Totalast. Increase the generation_count by 1. If
generation_count > no_gen go to Step 8 else go to Step 3.

Step 8: If the expected cost of the current solution does not change over the last 10
consecutive temperatures tj, or a predefined maximum number of
temperatures no_t have been performed, stop the algorithm and return the
current route and its expected cost as the final solution.

Step 9:  Lower the temperature by setting t,, =t; *« . Set i = i+1 and go to Step 2.

i+1
The steps involved in the TA algorithm only differ from those in SA in the

following ways:
1) In Step 1.2, instead of setting a temperature, we set a threshold value threshold.
2) In Step 4, we just compare A with the threshold value, if A < threshold, go to
Step 5; otherwise, keep the old route set and its expected cost and then go to

Step 6.

3) The threshold value decreases at the same reduction rate «. That is, threshold

= threshold* «.

4.1.2.3 Parameter Setting in the SA Algorithm

Initial temperature t,
To ensure that the final solution is independent of the starting solution, the initial
temperature should be high enough; however, a too high initial temperature will

undoubtedly increase the computational time. An appropriate t, can be determined by
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ensuring the initial acceptance ratio Ap=w (to), which is defined by the ratio between

the number of accepted transitions and the number of all transitions, is close to 1. First
start at a sufficiently high to, and lower it rather quickly until the acceptance ratio
reaches a prescribed value. Our computational experience shows that, to = 40 is an

appropriate initial temperature for the SA algorithm.

Temperature reduction factor «
For the temperature reduction factor «, literature suggests to use values between

0.8 and 0.99. We set o =0.9.

Final temperature t; and number of temperatures no_t

The final temperature should be low enough to guarantee that no worse solutions
are accepted. Suppose we consider t; to be low enough, when cost increase as large as
0.5 is accepted with very low probability (such as prob = 0.001). The final temperature
can be calculated based on the equation prob = exp(- A /t;), which is about 0.072. With

the initial temperature to= 40 and a = 0.9, the total number of temperatures no_t can

be determined by the equation t, =t, *a™-', which leads to no_t = 60.

Thermal equilibrium factor £ and number of generations at each temperature
no_gen

The number of generations at each temperature is usually related to the size of
the neighborhoods or the solution space. In this study, we set no_gen = 300. However,
we perform 3*n transitions within each generation. Therefore, with the increase of
problem size, the number of transitions performed at each temperature also increases.

Nevertheless, no_gen = 300 is actually the maximum number of generations set for
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each temperature, we allow the actual number of generations performed to vary from
temperature to temperature, because not every segment of the cooling process is
equally important. In the cooling process, most useful work is done in the middle of
the schedule. Thus, it may be advantageous to search the beginning and the end parts
of the temperature range quickly, using the time saved to allow slower and more
elaborate cooling in the middle. In this study, this is done by properly setting the
parameter ¢, which determines whether thermal equilibrium is reached. By repeatedly
fine-tuning, we set & = 0.2 for the first and the last 10 temperatures, and set £ = 0.03
for the 40 temperatures in between. As a result, less number of generations is
performed at the beginning and the end of the cooling procedure. This is reasonable, as
we can see from Table 4.1, during the first 10 temperatures, temperature drops from 40
to about 13.9, and the maximum allowable increase of the objective function value
drops from 280 to 97.6. If we set ¢ to be a very low value, it is very difficult to reach
the thermal equilibrium in this situation, which will result in long computational time.
For the last 10 temperatures, both temperature value and the maximum allowable
increase in cost are quite low, which indicates that the algorithm has already started to
converge toward local optimum, therefore we should speed up the cooling process and
quickly converge the solution to the targeted local optimum. Since different problems
may not require the same number of temperatures to converge, to further save the
computational time, we terminate the algorithm when the solution quality does not
improve for about 10 consecutive temperatures.

Table 4.1 Temperature & maximum allowable increase in cost in different cooling

stages
Number of Temperatures 1 10 50 60
Temperature value 40 13.95 0.21 0.07
Maximum Allowable Increase in Cost 280 97.63 1.44 0.50
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4.1.2.4 Parameter Setting in the TA Algorithm

For TA, the parameters are set similarly except for the threshold value. In TA,
threshold value corresponds to temperature in SA. The initial threshold value is set
equal to 40 when n < 60 and 60 otherwise. We also set the threshold reduction rate «

=0.9.

4.1.3 The Tabu Search Algorithm

Tabu search is an iterative procedure designed for the solution of optimization
problems. It was first proposed by Glover and has been used to solve a wide range of
hard combinatorial optimization problems (Glover and Laguna, 1997). To avoid being
trapped in local optima, one needs to accept a move even when it makes the current
solution worse. However, when a worse solution is accepted, cycling may occur; that
IS, the move may take us right back to the local optimum we just left or to some other
recently visited solutions. This is where the TS algorithm comes in by keeping
information about the moves most recently made in one or more tabu lists, to forbid or
penalize certain moves that would return to a recently visited solution. Three general
components are usually incorporated in TS to direct the search trajectory: tabu
restrictions and aspiration criteria, short-term and long-term memory structures, and
intensification and diversification strategies. Tabu restrictions are the tabu lists that
keep track of recently examined solutions to avoid cycling. Aspiration criteria provide
exceptions to the general tabu rules to allow a move to be performed provided the
move is considered as good enough. Intensification is the exploration of a promising

neighborhood, such as the neighborhood of a previously found good solution; while
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diversification aims to search in previously unexplored regions of the solution space.
Both of these strategies are realized by means of short-term and long-term memory
structures. TS is one of the major metaheuristics that have been successfully applied in
solving combinatorial optimization problems. Successful applications of TS in the area
of vehicle routing problems can be found in Taillard (1993), Osman (1993), Fiechter
(1994), Gendreau et al. (1994), Potvin et al. (1996), Duhamel et al. (1997), Taillard et

al. (1997), Gendreau et al. (1999), etc.

4.1.3.1 The Main Components and the Parameter Setting in the TS Algorithm

To get the best performance in terms of both solution quality and computational
time, we repeatedly fine-tune the parameters in the algorithm. The total number of

iterations, Nolter, is set to 600. We set the other parameters as follows:

The neighborhood size neighbor_size

For a given current solution X, the complete neighborhoods of X, N(X), contain
all combinations of repositioning each of the n nodes according to the neighborhood
generation method. At the current iteration, when we try to find a solution Y among a
selected subset of N( X) for possible acceptance, we should consider the tradeoff
between the quality of Y and the effort spent on finding it, which is mainly determined
by the size of the neighborhood. In this study, we restrict the number of neighborhood
solutions generated from the current solution to neighbor_size. That is, we first
randomly select neighbor_size nodes, then generate a neighborhood solution for each

selected node. Our computational experience shows that best result in terms of both
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solution quality and computational time can be obtained when we set neighbor_size as

follows:

[n/2] if n<20
[n/3] otherwise

neighbor_size :{
Tabu list - recency based memory
Suppose in the current solution, we accept a move in which a node is removed
from its current position and put to one of its nearest neighbors. The move that tries to
reposition the same node again is tabu for the next NoTabu iterations. Specifically, we
can use TabuList; to record the tabu status for each node i. In this study, the tabu tenure

NoTabu is set as follows:

if n<20

NoTabu =
{rn“ 2] otherwise

This means that as problem size increases, tabu tenure also increases to avoid
searching certain solutions too often and therefore search all possible regions of the
solution space.

Diversification - Frequency based memory

The strategy of diversification encourages the search process to examine
unvisited regions and to generate solutions that are significantly different from those
recently visited. We use FregDiver;; to record the frequency of repositioning node i
from its current location to the location immediately before or after its j™ nearest
neighbor. Once such a move is accepted, the frequency FregDiver;; is incremented by

1. Then we penalize such a move by adding a diversification penalty, Diver_Penalty =

Uper * FregDiver;;, to the expected cost of this move, where «,,, is a predetermined

diversification factor. Certainly, we should not avoid visiting the previously visited

moves forever. Therefore, after every NoReset (set to 100 in this study) iterations, we
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reset the frequency variable FregDiver;; to 0. And all moves are eligible again in terms

of frequency based memory.

In this study, the diversification factor «,,, IS set dependent on the performance
of the move. If the move is better than the current solution, we set ay,, = 0.5;
otherwise, we set ap,,, = 2. In this way the worse solutions are more heavily

penalized and hence they are less likely to occur frequently.

Intensification

Intensification aims to direct the search process to examine the neighbors of an
elite solution. One intensification strategy employed in this study is to keep a current
best solution. When the current best solution has not been improved for NoNonImp
iterations, the current best solution is employed as the current solution, because its
immediate neighborhoods are attractive regions, therefore should be searched more
thoroughly.

In this study, we set NoNonImp = 200 iterations.

Aspiration criteria

In the searching process, we keep record of a current best solution. If a move is

found to be better than the current best solution, it is accepted without considering its

tabu status.

4.1.3.2 Procedure Involved in the TS Algorithm
The TS algorithm involves the following steps:
Step 1: Initialization
1.1 Generate an initial tour. Calculate the expected cost according to the DP

recourse procedure described in Section 3.1.3.
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1.2 Set iteration_count = 0; initialize TabuList;, FregDiver;;.

Step 2: Set neighbor_count = 0, Zgestmove = .

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Randomly select a node in the current route, generate a candidate move and
calculate its expected cost z. If the move satisfies the aspiration criteria go to
Step 5; if it is tabu go to Step 6; otherwise, go to Step 4.

Calculate Diver_Penalty for this neighborhood move. Set z = z +
Diver_Penalty. 1fz > Zgesimove g0 t0 Step 6.

Mark the current candidate move as the best move, and set Zgestvove = Z.

Increment the neighbor_count by 1. If neighbor_count < neighbor_size go to
Step 3.
If a best move has been selected, update the TabuList, FregDiver and the

current solution. If the current best solution is worse than the selected best
move, update it. If the current best solution has not been improved for
NoNonlImp iterations, employ the current best solution as the current solution.
Increment the iteration_count by 1. If iteration_count < Nolter go to Step 2.

Stop the algorithm and return the current best solution as the final solution.

4.2 Simulated Annealing and Threshold Accepting Algorithms for Multiple

VRPSD

4.2.1 Generation of Neighborhood Solutions

Similar to the neighborhood structure described in Section 4.1.1 for single

vehicle case, here, we also adopt the 2.5-opt (Bentley, 1992) move to generate

neighborhood solutions. The difference is that, we allow the relocation within the
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node’s own tour and other tours as well: a node i can move within its own route or to
other existing routes, depending on which route node j, the selected neighbor of node i,
is in. This neighborhood generation method allows the elimination of an existing route.

As in the single vehicle case, the neighbor list size @ changes with the problem
size n. Moreover, it also changes with different cooling stages of the SA (TA)
procedure. At the beginning of the search procedure, transitions with large
deteriorations in cost should be provided for possible acceptance. As the search
proceeds, the ability that SA (TA) can accept large deteriorations in cost also
decreases. Therefore, the neighbor list size @ should also decrease. In our problem,

we divide the SA (TA) procedure into 3 stages; the corresponding neighbor list size @

is as follows:
[n/51 first stage

@ =11n/10] second stage
[n/20] third stage

4.2.2 Determining the Number of Vehicles and the Initial Solution

In this study, the number of vehicles m is a decision variable. However, when
constructing the initial route set for the SA and TA, we have to roughly determine the
number of vehicles in advance. The neighborhood generation method, as described in

Section 4.2.1, allows the elimination of an existing route. Therefore, we can set an

upper bound m for the number of vehicles m required by applying results from the
comparative study in Chapter 3. The initial solution of SA (TA) can be obtained by

first constructing a TSP tour for all nodes by using a TSP construction heuristic

(nearest neighbor heuristic, for example), then partitioning the TSP tour into m tours.
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4.2.3 Dealing with the Route Length Constraint

To satisfy the constraint that the total expected route length does not exceed a
prescribed value L, the search should be guided in favor of feasible solutions. This is
realized by adding a penalty element to the objective function. Suppose the expected

route length of a certain route 7 isL(x), the penalized objective function would then
be F(7)=L(7z)+ p*[L(x)-L]", where [x]" = max (0, x), and p is a positive
parameter.

With respect to the route length constraint, in order to diversify the searching

process, it is not harmful to allow some infeasible solutions at the beginning. However,

to ensure that the final solution is feasible, parameter o should be set appropriately. In
this study, p is set to a relatively small value at the beginning and increased linearly

with the increase of iterations. Nevertheless, infeasible solutions still may occur in this
case though with very low probability. To overcome this problem, we add another
threshold accepting procedure (TA-infeasibility) along with the SA (TA) procedure. In
other words, we evaluate a solution according to two criteria: the solution quality and
the feasibility. This TA-infeasibility procedure allows infeasible solutions provided
that the total amount exceeded is within the threshold value. As threshold value
decreases, TA-infeasibility procedure can control accepting infeasible solutions in

terms of the extent of the infeasibility.

4.2.4 The Procedure Involved in the SA and TA Algorithms

The SA algorithm involves the following steps:
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Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Generate an initial route set by the procedure stated in Section 4.2.2. Calculate
the expected route length using the DP recourse procedure described in
Section 3.1.3. Denote it as Lojg.

Select an initial temperature t,> 0, a temperature reduction parameter o and

an initial threshold value threshold_infeasibleO for the TA-infeasibility
procedure. Set t; = tp, i = 0, and total number of different temperatures needed
tono_t.

Set initial generation_count = 0, total number of generations = no_gen; set the
length of the total routes in the last generation Totaljast = oo, and the length of
the total routes in the current generation Totalcyrrent = 0.

Select a node in the current route set; generate a neighborhood solution as
described in Section 4.2.1. For each route in the current route set, examine
whether the expected route length exceeds the predefined limit. Calculate the
total amount exceeded total_exceed for the whole route set. If total _exceed >
threshold_infeasible, keep the old route set and its expected route length. Go
to step 7; otherwise, calculate the expected route length for the new route set,
Lhew. Calculate the difference between the new and the old route set, A=
Lnew-Lowa. If A< 0, go to Step 6.

Generate a uniformly distributed random number rande[0,1]. Calculate the
acceptance probability prob = exp(- A /t;). If rand < prob, go to Step 6;
otherwise, keep the old route set and its expected route length. Go to step 7.
Record the new route set and its expected route length.

Update the total route length of the current generation Totaleyrrent Dy adding

the length of the current route set to Totaleyrrent. If the neighborhood solutions
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for all n nodes have been examined 5 times, go to Step 8. Otherwise go to
Step 4 to examine the next node.

Step 8: Check whether thermal equilibrium has been reached at temperature ti by

checking whether [Total,,, —Total|/Total <g , where ¢ is a

current last current
predefined thermal equilibrium factor. If the above inequality holds, go to
Step 9. Otherwise, update the total route length of the last generation by
replacing Totalias: With Totaleyren: 1 Totalcyrrent < Totalast. INncrease the
generation_count by 1. If generation_count > no_gen go to Step 9 else go to
Step 4.

Step 9: If the expected cost of the current solution does not change over the last 20
consecutive temperatures tj, or a predefined maximum number of
temperatures no_t have been performed, stop the algorithm and return the

current route set and its expected cost as the final solution.

Step 10:Lower the temperature by setting t,,, =t, *a . Set the value of threshold

_infeasible to be total_exceed, the total amount exceeded for the whole route
set of the current solution. Set i = i+1 and go to Step 3.
The steps involved in the TA algorithm only differ from those in SA in the
following ways:
1) In Step 2, instead of setting a temperature, we set a threshold value threshold.
2) In step 5, we just compare A with the threshold value, if A < threshold, go to
Step 6; otherwise, keep the old route set and its expected route length and then
gotostep 7.
3) The threshold value decreases at the same reduction rate«, e.g., threshold =

threshold* « .
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4.2.5 Parameter Setting in the SA and TA Algorithms

For the SA algorithm, the parameters are set as follows.

Initial temperature to and temperature reduction parameter «

In this study, the initial temperature t, is determined by allowing a certain
percentage of deteriorations to be accepted at the beginning of the SA procedure.
Suppose the expected cost of the initial solution is Linitia, and the maximum allowable
percentage in cost increase is 10 %, then the initial ty can be calculated due to the fact
that cost increase as large as 0.1*Linitiar Should be accepted with very low probability
(such as prob = 0.001). Based on the equation prob = exp(- A /tp), where A =
0.1*Linitia, We can calculate the to. Our computational experience shows that, the
maximum allowable cost increase can be set at about 10 % of the expected cost of the

initial solution. The temperature reduction parameter «, is set at 0.9.

Final temperature t; and number of temperatures no_t
The final temperature t;and the total number of temperatures no_t are determined

in a similar way as described in Section 4.1.2.3.

Thermal equilibrium factor ¢ and number of generations at each temperature
no_gen

In this study, we set no_gen = 20, and we perform 5*n transitions within each
generation. At different stages of the cooling process, the thermal equilibrium factor &
is set as follows: £ = 0.1 and & = 0.03 for the first and last 10 temperatures, and ¢ =

0.002 for the temperatures in between.
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Parameters in the TA-infeasibility procedure controlling the infeasibility of the
solutions

The initial value of threshold_infeasible, threshold_infeasible0, is set equal to the
total amount exceeded in the initial solution. In later iterations, threshold_infeasible
only changes when the temperature in SA (or threshold in TA) is lowered, it is set
equal to the total amount exceeded in the current solution. Here, we do not decrease
the value threshold_infeasible steadily as used in other studies, because the function of
this TA-infeasibility procedure is to control the infeasibility of the solutions.
Moreover, our computational experience shows that, if we decrease
threshold_infeasible steadily, the search process may have difficulty in finding an
acceptable solution in terms of feasibility during the search process, therefore it is
trapped in the current solution.

In TA, the parameters are set similar to those in SA, except that, the initial
threshold value is set equal to 1 % of the initial route length Linisiai, Which means that
the initial percentage of the allowable deteriorations is 1 %. We also set the threshold

reduction rate & =0.9.

4.3 Computational Results and Analysis

To get the computational results, the algorithms are coded in VISUAL C++, and
run on a 500 MHZ Pentium Il Processor with 128 MB RAM under Microsoft
Windows 98. The problem instances are generated similarly to those used in the
comparative study of Chapter 3. All demands D; are assumed to be identically and

independently distributed random variables following discrete uniform distribution.

82



Chapter 4 Metaheuristics for VRPSD

To get a full picture of how these algorithms perform in different scenarios, the
performance of the algorithms is studied when demands follow uniform distribution in
the following two cases: with the increase of problem size and with the increase of

demand mean and variance.

4.3.1 Single Vehicle Routing Algorithms

Effect of the initial solution on the metaheuristics

For each of the metaheuristics, the search procedure starts from an initial tour. To
study the influence of the initial tour, three initial tours: randomly generated tour (RG),
tour generated from the nearest neighbor heuristic (NN), and tour generated by the

space-filling curve heuristic (SFC), are examined in this study.

Table 4.2 Effect of the initial solution on TS with the increase of problem size

Problem Expected Cost Computational Time (s)
Size (n) TS-NN TS-SFC TS-NN TS-SFC
20 558.51 570.23 8.4 8.5
40 956.54 946.03 23.6 235
60 1301.92 1296.61 56.4 56.5
80 1678.07 1653.43 103.7 105.0
100 2016.31 1995.14 159.1 160.0
120 2347.94 2317.77 235.1 240.4

For TS, we use TS-RG, TS-NN and TS-SFC to denote the TS algorithms
starting from a random generated tour, a NN tour and a SFC tour respectively. TS-RG
performs very badly. Therefore, we only present the computational results with the
increase of problem size and the increase of demand mean and variance (here we use

the ratio between the demand mean and the vehicle capacity to represent the increase
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of demand mean and variance) for TS-NN and TS-SFC as illustrated in Table 4.2 and
Table 4.3 respectively. Table 4.2 and Table 4.3 show that, based on the same
parameters of TS, except for the case with the smallest problem size (n = 20) and the
largest demand mean and variance (Mean/Q = 0.4167), solution quality of TS-SFC is
better than that of TS-NN. However, their computational time is very close to each
other. Therefore, it seems that, TS-SFC behaves better than TS-NN. We select SFC as

the initial tour to the TS algorithm in the following computational study.

Table 4.3 Effect of the initial solution on TS with the increase of demand mean and

variance

Mean/Q Expected Cost Computational Time (s)

TS-NN TS-SFC TS-NN TS-SFC
0.0833 929.38 898.26 30.9 31.2
0.1667 1301.92 1296.61 56.5 56.4
0.2500 1713.41 1691.10 82.9 84.1
0.3333 2077.47 2067.81 110.1 111.6
0.4167 2434.70 2446.74 137.7 140.3

However, for the SA and TA algorithms, better initial solution does not
necessarily guarantee better final solution. Actually, the random initial tour performs
the best. Therefore, the random tour is adopted as the initial solution in the SA and TA

algorithms.

Comparison of performances of the metaheuristics

In the following parts, the performance of the proposed metaheuristics is
compared against Yang et al. (2000)’s single vehicle routing algorithm. Yang et al.
(2000)’s single vehicle routing algorithm is denoted as Y, and the proposed

metaheursitcs are denoted as SA, TA and TS respectively.
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Performance with the increase of problem size
We investigate the performance of the algorithms with the increase of problem
size when demands follow uniform distribution U [0, 20]. Results are summarized in

Table 4.4,

Table 4.4 Comparison of algorithms with the increase of problem size

Problem Expected Cost Computational Time (s)
Size(n) % TA? SA’ TS Y TA SA TS
20 593.85 571.14 577.60 570.23 0.9 3.4 7.4 8.5

40 963.76  982.09 963.46 946.03 6.6 147 29.2 23.5

60 1350.36 1378.76  1348.83  1296.61 193 429 66.9 56.5

80 1700.06 1712.36 1716.64  1653.43 486 925 116.8 105.0

100 2095.65 2089.47 2061.05 1995.14 904 107.7 1845 160.0

120 2462.10 2439.65 243140  2317.77 165.7 1553 260.5 240.4

! Yang et al. (2000)’s single vehicle routing algorithm.
% Threshold accepting algorithm proposed in this study.
® Simulated annealing algorithm proposed in this study.

* Tabu search algorithm proposed in this study.

From Table 4.4, we observe that the solution quality of TS performs better than
that of the other heuristics in all problem instances studied. As problem size increases,
the superiority of TS over the other algorithms also increases, the largest improvement
occurs at problem size 120, where the improvement over the SA algorithm (best
among the other algorithms) is about 5%. Except for problem size 80, SA performs
better than Y; but for TA, it performs better than Y only when problem size is 20 or
greater than 80. With respect to the computational time, SA is the most time
consuming; though TS takes more computational time than Y, the difference between

the times taken by the two algorithms decreases as problem size increases; and TS
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consumes less time than SA. For TA, it is the least time consuming among the three

metaheuristics. It even takes less time than Y at the largest problem size.

Performance with the increase of demand mean and variance

The results for the performance of the algorithms as demand mean and variance
increase (with n fixed at 60) is summarized in Table 4.5. In terms of the solution
quality, over the whole demand range, TS outperforms the other algorithms. Compared
with SA (which is much better than both Y and TA), the improvement of TS over SA
decreases as demand mean and variance increase, with the largest improvement being
5%. With respect to computational time, the computational times taken by SA, TA and
TS are several times longer than that of Y. Nevertheless, TS is less time consuming

than SA, and TA is the least time consuming one among SA, TA and TS.

Table 4.5 Comparison of algorithms with the increase of demand mean and variance

Mean/ Expected Cost Computational Time (s)
Q* Y! TA? SA’ TS Y TA SA TS
0.0833 956.09  950.70 944.34 898.26 125 453 40.9 31.2
0.1667 1350.36 1378.76  1347.07 1296.61 19.3 429 65.2 56.4
0.2500 1743.54 1753.67 1756.67 1691.10 27.0 56.0 90.7 84.1
0.3333 2140.18 2133.33 210454 206781 335 70.8 1201 1116
0.4167 2532.53 2480.88 247230 2446.74 37.74 69.9 1491 1403

* The ratio between the demand mean and the vehicle capacity, which represents the increase of demand
mean and variance.

Lyang et al. (2000)’s single vehicle routing algorithm.

2 Threshold accepting algorithm proposed in this study.

® Simulated annealing algorithm proposed in this study.

* Tabu search algorithm proposed in this study.
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4.3.2 Multiple Vehicle Routing Algorithms

In Yang et al. (2000), two algorithms were presented: one is route-first-cluster-
second (denoted as R1-C2) and the other is cluster-first-route-second (denoted as C1-
R2). In this section, the performance of the proposed SA algorithm (denoted as SA)
and TA algorithm (denoted as TA) is compared with Yang et al. (2000)’s algorithms

based on the solution quality, computational time, and the number of vehicles required.

Performance with the increase of problem size

Here, we assume that all demands are generated from the discrete uniform
distribution U [0, 30]. The solution quality, computational time and the number of
vehicles required of the algorithms with the increase of problem size are illustrated in
Table 4.6.

In terms of solution quality, it is clear that performances of SA and TA are very
close to each other, and they are both superior to R1-C2 and C1-R2, except when the
problem size is 40, TA is slightly worse than R1-C2. As problem size increases, the
superiority of TA and SA over R1-C2 and C1-R2 becomes more obvious, which
indicates that both TA and SA are capable of finding solutions with better quality for
large scale problems.

With respect to computational time, C1-R2 is the least time consuming
algorithm. For the other three algorithms, TA takes less time than SA. Computational
time of R1-C2 increases much faster than the other algorithms. Therefore, when
problem size is less than 100, R1-C2 consumes the least time among the three
algorithms. However, when the problem size ranges from 100 to 120, R1-C2 takes
more time than TA but less time than SA. When the problem size becomes even larger,

computational time of R1-C2 exceeds both that of TA and SA. In terms of
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computational time, TA and SA also have potential for large scale problems. For the
number of vehicles required, both R1-C2 and TA require more vehicles than C1-R2
and SA. Comparing C1-R2 and SA, results show that, when the problem size is less
than 100, SA requires less number of vehicles; however, when problem size becomes

larger, C1-R2 uses less number of vehicles.

Performance with the increase of demand mean and variance

Table 4.7 shows how the algorithms perform with the increase of demand
mean and variance in terms of solution quality, computational time and the number of
vehicles required. Here, the problem size is fixed at 60 nodes. Here we use the ratio
between the demand mean and the vehicle capacity (MEAN/Q) to represent the
increase of demand mean and variance.

Comparing the solution quality of the 4 algorithms, C1-R2 is obviously the
worst. For the other three algorithms, when demand mean is relatively low (less than ¥4
of the capacity Q), their performances are quite similar. However, as demand mean
further increases, both SA and TA start to outperform R1-C2; meanwhile, though
solution quality of TA and SA is very close to each other, SA behaves a little better
than TA. The computational time in Table 4.7 indicates that, as demand mean
increases, the computational time does not increase significantly for all of the
algorithms except for R1-C2. Among the four algorithms examined, C1-R2 takes the
least time; while SA takes the most time, followed by TA and R1-C2. For the number
of vehicles, Table 4.7 illustrates that, when demand mean is relatively low (less than %
of the capacity Q), TA requires the most number of vehicles, while C1-R2 requires the
least; however, as demand mean increases, SA requires the least number of vehicles,

and R1-C2 gradually becomes the one requires the most number of vehicles.
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Comments on the computational results

Computational results discussed above demonstrate that, both TA and SA are
capable of finding solutions with better quality than both R1-C2 and C1-R2. This is
quite reasonable, because the heuristic procedures employed in R1-C2 and C1-R2 are
classical local search algorithms, which have the tendency to be trapped in the local
optimum. While both SA and TA are metaheuristics in the sense that they are capable

of escaping from local optimum and finally obtain a near global optimum solution.

Computational results also show that, TA is a less time consuming algorithm
than SA. This may be due to the following reasons:

The first reason is related to the feature of TA and SA. In SA, to escape from the
local optimum, it accepts deteriorations in objective function value with a certain
probability, which is calculated by using exponential expressions; while in TA,
whether a solution with deteriorations in objective function value is accepted is
determined by comparing this deterioration with a threshold value (a constant in a
certain context). Obviously, the later one is more simple and with less computational
complexity.

The second reason is related to the parameter setting in the TA and SA
algorithms. In TA, the initial threshold value is set to 1 % of the total cost of the initial
solution, which means that the algorithm can at most accept a solution with
deteriorations equal to this threshold value. In SA, to get similar solution quality, the
initial temperature must be high enough to at most accept a solution with deteriorations
equal to about 10 % of the total cost of the initial solution. Obviously, the later one is

more time consuming.
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4.4 Conclusions

In this chapter, we studied how metaheuristics perform for the VRPSD. We
present three heuristics: SA, TA and TS for the single VRPSD; and two heuristics SA
and TA for the multiple VRPSD.

For the single vehicle case, we examine the effect of different initial solutions on
the performance of the algorithms, and carry out a comparative study to see how
metaheuristics perform in comparison with other heuristics presented in the literature.
Results show that, for the TS algorithm, the better the initial solution, the better the
final solution; however, for the SA and TA, better initial solution does not necessarily
guarantee better final solution. The comparative study shows that, the solution quality
of the TS outperforms the other three heuristics with the increase of both problem size
and the increase of demand mean and variance. With respect to computational time,
metaheuristics are much more time consuming. However, when comparing TS with
SA, it takes less computational time. Though TA is the least time consuming one
among the three metaheuristics, its solution quality is not quite good, it even performs
worse than Yang et al. (2000)’s algorithm in some cases. Since all three metaheuristics
employ the same neighborhood structure, we can conclude that, in terms of both
solution quality and computational time, the TS algorithm performs better than the SA
and TA algorithms for the single VRPSD.

For the multiple vehicle case, our study reveals that, solution quality of TA and
SA is very close to each other, and both SA and TA can provide solutions with less
expected cost than the two algorithms presented in Yang et al. (2000) for almost all of
the problems tested. With respect to computational time, both SA and TA are more

time consuming for the small and medium sized problems. However, they take less
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time than R1-C2 for problems with 120 or more nodes. These results lead to the
conclusion that, in terms of both solution quality and computational time, SA and TA
are more suitable for large size problems. One more finding is that, computational time
of TA is less than that of SA. Since their solution quality is similar, TA is more

preferable to be applied in practical applications.
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Chapter 5
Algorithms for the Multi-period TCTSP in a Rolling Schedule

Environment

In this chapter, we consider the multi-period TCTSP in a rolling schedule
environment. The problems considered and the frameworks of this study are described
in Section 5.1. Section 5.2 presents a set-covering type formulation for the problem
within one rolling horizon. Sections 5.3 and 5.4 describe several heuristic algorithms
based on iterative customer assignment (ICA) and the iterative center-of-gravity (ICG)
scheme. In Section 5.5, the set-covering formulation presented in Section 5.2 is
considered within one elongated rolling horizon, and solved to optimality as a linear
programming (LP) problem by a column generation scheme to get an upper bound.
Meanwhile, based on the final basis, a feasible integer solution is obtained to examine
the gap between the LP relaxation solution and an integer solution. Section 5.6

discusses the computational results and performances of the heuristics.

5.1 Problem Description and Framework of the Study

The problem considered in our study is a multi-period TCTSP in a rolling
schedule environment. We now briefly describe the problem as follows:
In each period, customers may call a company for services. In a call j, the

customer specifies a date gj and a time tolerance o;, which means that the company

should visit the customer within the time window g+ o, . If the service can be made
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within the time period gj+ o;, a profit of R; realizes; otherwise the profit is zero.

Assume the rolling horizon has a length of H periods, that is, for those customers who
called before the current period, if their possible visit periods required fall into the H
periods, they are eligible to be scheduled in this rolling horizon. The problem is to find
a subset of customers as well as the sequence of serving them in each period in a
rolling schedule environment, so that the average profit per period in the long run is
maximized.

Regarding the problem considered in this study, there is one thing in common
with the TSSP+1 (a traveling salesman subset-tour problem with an additional
constraint) class of problems discussed in Mittenthal and Noon (1992): not only do we
need to figure out the order in which to visit the customers, but we must answer the
more fundamental question: which customers do we want to visit? However, there are
also some differences: the time window and the dynamically changing customer
information. It is these differences that make us consider the problem from a rolling
schedule point of view. Firstly, since a customer may be scheduled before or after its
desired period of visit provided that the visit is within the time window, if we know the
customer demand information for a certain number of periods, we can make schedules
for these periods rather than making a schedule only for one period. The rational is as
follows: Suppose that for the current period, there are many customers eligible for
visiting. Some customers are less profitable and the current period is at the end of their
time windows; while some customers are more profitable and the current period is at
the beginning of their time windows. If we only consider maximizing profit of the
current period, the later customers may be selected and the former ones may be
dropped. However, if the number of customers requesting services at the next period

happens to be small, obviously we lost the profits that may be realized from the
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dropped customers. Making schedules for several periods rather than only one period
can avoid this kind of myopia and therefore maximize the average profit in the long
run. On the other hand, since in each period, new customers may randomly require
services, customer information is not static but dynamically changing from period to
period. As a result, the customer information is only accurate for the current period;
and the information accuracy decreases as the future period goes farther from the
current period. Therefore, we can only implement the schedule for the current period,
as customer information for the later periods is not accurate. After implementing the
schedule for the current period, we update the data according to new information
available. We then consider a new rolling horizon by forwarding the time period by
one period and find a schedule for the new rolling horizon. This rolling schedule

scheme nicely captures the characteristic of the problem considered in this study.

5.2 A Set-covering Type Formulation

In the rolling schedule environment, it is very difficult, if not impossible, to
mathematically formulate the problem, due to the dynamically changing customer
information from one rolling horizon to the next. Therefore, we consider one rolling
horizon with H periods, and present a set-covering type formulation within one rolling
horizon for the problem.

The set-covering problem has been studied in great detail since the mid 1960s.
Among many of its applications, some representative ones described in the literature
include: airline fleet scheduling (Levin, 1969), truck routing (Balinski and Quandt,
1964; Clark and Wright, 1964; Dantzig and Ramser, 1959; Garfinkel and Nemhauser,

1969), airline crew scheduling (Arabeyre et al., 1969; Spitzer, 1961), stock cutting
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(Pierce, 1970), assembly line balancing (Salveson, 1955), facilities location problems
(Revelle et al., 1970), and coloring problems (Busacker and Saaty, 1965).

The following notations are used in the description of the formulation.
Associated with each customer j, given the date g; and time tolerance o that the
customer requires service, we define [gj, I;] as the time window the service should be
provided, with e; =g, —o; andl; =g, +o;. Let [1, H] represent the rolling horizon
with H periods, and V the set of all customers in the rolling horizon [1, H], such that
[e;, ,1N[LH]=¢. Thatis, V={j|]is a customer and [ej, i] N [1, H] # ¢ }.

Let Q, be the set of all possible sub-tours in period i.

1 if k™ possible sub - tour is chosen in period i

Define: x, = _
0 otherwise

Suppose that totally n customers are eligible for service in the rolling horizon.

Let a, be a vector of size n (composed of zeros and ones), representing k™ sub-tour in

period i, and be defined in such a way that a‘jk =1, if customer j is included in k™ sub-

tour in period i, O otherwise. All possible sub-tours in set €, can be generated by

taking into consideration the prevailing conditions and constraints imposed on the
assignment of customers to the sub-tours. One important consideration for this
problem is that a customer j must be assigned to the periods within its time window [e;,

l;]. Another consideration is that, the total travel and service time of each sub-tour

a, must be within the effective working time of a salesman in period i.

Let R} represent the sales revenue if customers are served in k™ sub-tour in

period i. Then a mathematical programming model of this problem for the finite one

rolling horizon case can be formulated as follows:
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Max 7 = izR;x;/H (5.1)

i=1 keQ;
subject to
dYx=11i=12..H (5.2)
keQ;
H . .
> >ayx <1 forall jev (5.3)
i=1 keQ;

x, =0, 1 forall i and k.

Here, we denote this formulation as Problem P.
Constraints (5.2) indicate that, in any period i = 1, 2,..., H, among all the

possible sub-tours in Q,, exactly one sub-tour must be chosen. Constraints (5.3)
suggest that for all the customers j eV , within the rolling horizon, they can be visited

at most once.

5.3 Solution Method Based on Iterative Customer Assignment (ICA) Scheme

To solve the set-covering type formulation presented in Section 5.2, one possible
way is to employ column generation scheme. However, in the rolling schedule
environment, the problem has to be solved many times; column generation method
may be time consuming. Therefore, we need a more efficient way to solve the
problem. We present the following iterative customer assignment (ICA) procedure as
follows.

The iterative customer assignment scheme includes two procedures: one
assigning procedure and one routing procedure. It is very similar to the cluster-first-

route-second method, where the clustering procedure corresponds to the assigning
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procedure here. The difference is that, once the routing procedure results in
possibilities of serving other customers in certain periods, the assigning procedure is
called again, and the assigning and routing procedures are iterated until no more
customers can be assigned to any of the periods.

To facilitate the description in the later sections, we give the additional
denotations needed as follows:

pij = Profit of customer j if it is assigned to period i; jeV,i=12,.,H.

w; = Weight of customer j if it is assigned to period i. It is the additional traveling

time plus service time needed in period i, which is dynamic and dependent on

the certain sub-tour that has been constructed before customer j is added to

period i.
T = The effective working time for each period.
Ti = The remaining working time of period i.

The assigning procedure is to select H subsets of customers so that the total profit
of the selected customers is maximized, and the total weight of all customers assigned
to each period is no more than T. Several heuristic procedures for the assigning
procedure are proposed in Section 5.3.2.

The routing procedure mainly tries to decrease the traveling time of the route in
each period, since the revenue of visiting a customer is the same in different period
within the time window. We first apply 2-opt (Croes, 1958) to improve the
performance of the tour in each period. Then, try to further decrease the traveling time
of the route by performing swaps between two customers in different period, provided

that the swap is feasible with respect to the time window and time limit constraint.
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5.3.1 ICA Procedure

The procedure involved in the ICA can be described as follows:

Step 1: Redefine the time window of customer j, [e;, Ij], with ;= max{e;, 1} and [;=
min{H, I;}.

Step 2: Assign the customers in V to the most appropriate periods by some heuristic
methods described in Section 5.3.2.

Step 3: Perform 2-opt and swaps of customers to improve the tour of each period.

Step 4: Repeat Steps 2 and 3 until no more customers in set V can be assigned to any
of the periods.

Step 5: Implement the routing sequence of customers obtained in Step 4 for the first
period. Update the data according to new information available. Now
consider a new rolling horizon by forwarding the time period by one period.
Repeat the whole procedure again to find a schedule for the new rolling

horizon.

5.3.2 Heuristics for the Assigning Procedure

To assign the customers to the most appropriate periods, one prerequisite is the
construction of weight matrix (wj). It is constructed as follows: Given a set of sub-
tours constructed for periods i = 1, 2, ..., H, we try to insert a customer j €V in each
of the sub-tours within the time window [e;, Ij]. The weight w;; is defined as the
additional traveling time plus the service time, if customer j is to be added to the sub-
tour of period i. If a customer j cannot be feasibly added to the sub-tour in period i due

to the time window constraints, wi; is set to +oo. The value of the weight w;; calculated
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in this way is not exactly the additional time spent when a customer is visited in a
certain period, because the route in each period keeps on changing during the assigning
procedure.

Several heuristics for the assigning procedure are proposed in this study. They

are described as follows.

Heuristic algorithm 1 (HA1) - Assign customers based on its weight and the

remaining working time

HAL procedure

Step 1: Rank each customer j eV in descending order of its revenue R;.

Step 2: Start from the top of the list, select a customer j and calculate w;. Try to
assign it to the period i with the largest ratio of Ti/w;; (i = 1, 2,..., H). If
infeasible, go to Step 4.

Step 3: Insert the selected customer j into the tour of period i” in the cheapest way,
update T;, the remaining working time of period i .

Step 4: Remove customer j from the set V. Go to Step 2 and continue the assigning

procedure until no more customers can be assigned to any period.

Heuristic algorithm 2 (HA2) — Assign customers by choosing the most profitable

period for each customer

Martello and Toth (1981) presented a polynomial-time heuristic algorithm for the
generalized assignment problem. Let f;; be a measure of the desirability of assigning

item j into knapsack i (i=1,2,...K). Iteratively consider all the unassigned items, and

determine the item j* having the maximum difference between the largest and the
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second largest fij; j* is then assigned to the knapsack for which fj= is a maximum. The
above algorithm assigns items to the knapsacks based on opportunity cost. In our
problem, similarly, each customer can be assigned to one of several periods, we need
to find the most appropriate period for this customer; however, unlike the above case,
some customers can be left over to be considered in the next rolling horizon.

To apply the Martello and Toth (1981) algorithm to our problem, we need to
discuss the construction of the profit matrix pj first. In the rolling schedule
environment, we are more concerned with the profit generated from the first period,
because firstly, we only implement the decisions of the first period; secondly, customer
information for the later periods may be subject to some changes. Therefore, when
solving this problem, we tried three methods to construct the profit matrix to see which

one is more suitable in a certain situation.

R1: p; based on actual revenue R; of visiting a customer j. The p;; of the profit matrix

with H rows and n columns is defined as follows:

{Rj, iele;,l;]
Pij =

0, otherwise

R2: pjj based on artificial revenue R; of visiting customer j by putting more weight on
assigning customer j to the early period of its time window. As a result,
customers tend to be visited during the early periods of the time window.

&

iy i |
5 )(j_ej)! |€[ej1j]

0, otherwise

Pij = Ry =R, (-
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R3: pj; based on artificial revenue R; of visiting customer j within the desired period of

service. In this case, for a call j with specified date g and time tolerance o
(e;=9;—0; andl; =g; +0o;), the service would most likely be provided at

period g;.

e+l .
R, —Rj(||—%|)/(lj -e;), iele;,l]

Pij =
0, otherwise
In this study, for the measure of the desirability f;;, we examine three cases:
M1: i = pi (5.4)
M2: fij = py /w; (5.5)
M3: fij = T, p; /w; (5.6)

The heuristic applying these measures is given below.

HAZ2 procedure

Step 1: Compute the weight matrix (w;;) and value f;; for each customer jeV .

Step 2: For each customer jeV , rank the periods in descending order in terms of fj;
(i=1, 2,...,H ). Go to Step 3a if we assign based on opportunity desirability;
go to Step 3b if we assign based on actual desirability.

Step 3a: For each customer jeV, find the first two periods on the top of the list;
calculate the difference between the desirability fij of these two periods,
called opportunity desirability of customer j. Among all customers in V, find
the customer j~ and the period i” with the largest opportunity desirability. Go
to Step 4.

Step 3b: Among all customers in V, find the customer j~ and the period i" with the

largest desirability fj;.
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Step 4: Test whether it is feasible to insert customer j* into the tour of period i” in a
cheapest way. If the insertion is infeasible with respect to the time limit
constraint, go to Step 1. Otherwise, insert customer j into the tour of period
i in a cheapest way, update the remaining capacity T; of period i’, remove
customer j~ from V and go to Step 1.

Step 5: Repeat Step 1 to Step 4 until no more customers can be assigned to any of the

periods.

Heuristic algorithm 3 (HA3) — Assign customers based on profitability

In HA2, we choose the most appropriate period for each customer. In contrast,
the rational of heuristic HA3 is as follows: for each period, there are a number of
eligible customers, choose the most profitable customers for each period. We also
apply f;; to measure how desirable a customer j is assigned to period i and employ the
three ways (M1, M2 and M3) to calculate f;;. However, here we only need to calculate
pij based on the method R1 as described above.

The procedure for heuristic HA3 is the same as that of HA2, except that Steps 2,

3a and 3b are replaced by the following three steps:

Step 2: For each period i, find all possible customers jeV that can be assigned to this
period. Rank the customers in period i in descending order in terms of the
desirability fij. Go to Step 3a if we assign based on opportunity desirability;
go to Step 3b if we assign based on actual desirability.

Step 3a: For each period i, find the first two customers on the top of the list, calculate
the difference between the desirability fi of these two customers, call it

opportunity desirability of the first customer. Among all periods, find the
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customer j~ and the period i” with the largest opportunity desirability. Go to
Step 4.

Step 3b: Consider the customer on the top of the list for each period, find the customer
j” and the period i" with the largest desirability fij among all periods. Go to

Step 4.
5.4 Solution Method Based on Iterative Center-of-Gravity (ICG) Scheme

The core concept of the iterative center-of-gravity (ICG) scheme is the center-of-
gravity. Suppose that node j has coordinates (x;, y;) and revenue R;, and the tour of

period i is denoted as z;, the center-of-gravity of z;, Gi(x, y), can be calculated as

follows:

x=ijRj/ZRj (5.7)

Jem; jerm

y=Zij,-/ZR,- (5.8)

jen jer;
In addition to the denotations introduced in Section 5.3, we further suppose that,

dij = distance between customer j and the center-of-gravity of z;, Gi(x, y).

Heuristic algorithm 4 (HA4) — Assignment based on ICG

The procedure involved in the ICG scheme can be described as follows:
HAA4 procedure

Step 1: Redefine the time window of customer j, [e;, I;], with ;= max{e;, 1} and I;=

min{H, I;}. Form the initial tour 7,of each period i by using those customers
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Step 2:

Step 3:

who request services at period i with o;equals to zero. If all o; are greater
than zero, tour 7, is initialized to contain the depot only.
Calculate the center-of-gravity Gi(x, y) for the tour 7, of each period i.

For each customer j eligible to be visited in period i with respect to its time
window, calculate dj, the distance between customer j and center-of-gravity

of the tour of period i.

Step 4: Assign customer j to period i according to one of the following 3 criteria:

Step 5:

Step 6:

Step 7:

C1: Assign customer j to the earliest period of its time window.

C2: Assign customer j to period i with the largest value of p;j/d;

C3: Assign customer j to period i randomly satisfying the condition that
customer j has more chances to be visited in a period with larger value
of pij/dij.

Rank the customers assigned to each period i in descending order of the value

Pii/dij

For each period, starting from the top of the list, insert customers based on

cheapest insertion heuristic, until no more customers can be inserted without

exceeding the time limit.

Perform 2-opt within each route and swap customers between routes (similar

to the one described for ICA procedure in Section 5.3.1) to further decrease

the traveling time of the routes. For the remaining (not yet assigned)
customers eligible to be visited in period i, insert them to the tour by using
the cheapest insertion heuristic until no more customers can be inserted into

the tour without violating the time limit constraint.
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Step 8: Repeat Step 2 to Step 7 until the profit realized from visiting the customers
does not change much or a predefined number of iterations have been
executed.

Step 9: Implement the routing sequence of customers obtained in Step 8 for the first
period. Remove the customers scheduled in the first planning period in the set
V. Update the data according to new information available. Forward the time
period by one period and repeat the whole procedure again to find a schedule
for the new rolling horizon.

To examine the effect of the artificial profit p;;, we also try three ways (R1, R2

and R3) to construct the matrix (p;;) as described in Section 5.3.2.

5.5 An Upper Bound Generated Based on the Set-covering Type Formulation and

Column Generation Solution Method

In Section 5.2, we present a set-covering type formulation for the problem within
one rolling horizon. In this section, we generate an upper bound for the problem based
on this formulation by making the following assumptions.

e The rolling horizon is elongated in such a way that it covers all periods
considered in each of the heuristics.

e Customer demand information is known for all the periods considered
when we calculate the upper bound.

For solving the set-covering problem, there are different procedures presented in
the literature. These include: implicit enumeration (Balas, 1965; Pierce, 1968;
Garfinkel and Nemhauser, 1969), heuristics (Christofides, 1974; Baker et al., 1979),

simplex based cutting plane methods (Gomory, 1963), hybrid primal cutting
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plane/implicit enumeration method (Balas, 1975), set partitioning via node covering
(Balas and Samuelson, 1974), network flow model (Moreland, 1966), and column

generation algorithm (Balas and Padberg, 1975).

Column generation is an effective and commonly used method for designing
algorithms for the problems formulated as set-covering type model. Therefore, in this
study, we consider the column generation method for the set-covering model of the
multi-period TCTSP. From the LP relaxation of the set-covering model, it is clear that,
if all possible sub-sets can be enumerated, one can obtain the optimal solution for the
LP. However, the set of possible sub-sets can be very large for large size problems.
Therefore enumeration is impractical. By applying column generation scheme, it is not
necessary to explicitly enumerate all feasible sub-sets; one can find the non-basic
variable with the largest non-negative reduced cost by solving an optimization
problem, called the pricing problem. Successful applications of column generation in
this kind of problems can be found in the literature: Staff scheduling (Sarin and
Aggarwal, 2001), optimal shift scheduling (Mehrotra et al., 2000), the general pickup

and delivery problem (Savelsbergh and Sol, 1998), etc.

5.5.1 Column Generation Scheme

Consider the Problem P formulated in Section 5.2. Let P’ denote the LP
relaxation of Problem P, it is clear that, if we can enumerate all possible sub-tours in

set Q, of period i, we can obtain the optimal solution of the problem P’ by solving a
LP problem. However, the set of possible sub-tours Q. ( i=1, 2,..,H) can be very

large for large size problems. Therefore a column generation scheme is adopted to find
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the non-basic variable with the largest non-negative reduced cost by solving an
optimization problem, called the pricing problem.

Since problem P’ is an LP relaxation of Problem P, the optimal solution to
problem P’ serves as an upper bound for Problem P. This upper bound will be
employed as a performance measurer in the computational experiment of Section

5.6.2.

The master problem
Let P’ be the LP relaxation of the Problem P. Suppose that for each period i =1,

2, ..., H, aset Q;'c Q,of feasible sub-tours is explicitly known, we can define the

restricted master problem of P’ as follows:

Max Z = i ZR;x‘k/H (5.9)

i=1 keQ;'
subject to

Y x=11i=12..H (5.10)
keQ;'

H . .

D> Y ayx <l forall jev (5.11)
i=1 keQ;"

X, >0 (5.12)

Suppose that the restricted master problem of P’ has a feasible solution x, and let
(0, u) be the associated dual solution, i.e., dual variables o; and u; are associated with
the constraints (5.10) and (5.11) respectively. From linear programming duality we

know that x is optimal with respect to P’ if and only if for each i = 1, 2,..., H, and for

each ke Q,, the reduced cost d; is non-positive. That is,

de= Re-D aju; -0i<o foralli=1,2,...H ke, (5.13)

jev

109



Chapter 5 Multi-period TCTSP

Therefore, to test whether x is optimal with respect to P’, we can solve the

following pricing problem:

Max {R; =Y aju; —o;|i=1, 2,...H,keQi} (5.14)

jev

Suppose we use Zpice to denote the value of the solution to the above pricing
problem, and let I, and K, represent the corresponding period and route. If zpice<0,
then x is optimal with respect to P’; otherwise, K, define a column that can enter the

basis and has to be added to €, '. So the column generation procedure can be

illustrated as follows:

Step 1: Find the initial sets Q,'c Q, containing a feasible solution x.
Step 2: Solve the restricted master problem of P’.
Step 3: Solve the pricing problem. If Zyrice<0, stop; otherwise, set Q, '=Q, 'U{K, }
and go to Step 2.
In our problem, the initial sets Q,'c Q. containing a feasible solution to P’ can be

found by using any of the heuristics developed in Sections 5.3 and 5.4.

The pricing problem
The pricing problem above is to find the most profitable sub-tour among all sub-
tours for all periods considered. The problem can be decomposed into several

independent problems, one for each period, since
Zprice = Max {R; _Za;kuj - Oi | i =1, 2,..., H y k S QI} (5.15)
jev

is equivalent to
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Zprice =i=|}(lzaxH Max{RI‘( —Zaijkuj ~0, |ke Qi} (5.16)

jev

Thus, the pricing problem for period i can be expressed as

Ziprice = MaX{R; —Za;kuj _Oi | k (S QI} (5.17)

jev
which tries to find the most profitable sub-tour for period i that serves a subset of the

customers.

The column selection

From the literature, there are several ways to select the columns to add to the
restricted master problem. One is to select the column with the maximum reduced cost;
the other is to select some columns with positive reduced cost. In the former case, the
LP problem will not grow very rapidly, but it has to be solved for each column added.
While in the later case, the number of LP problems that have to be solved will be
reduced, but the LP solved each time will become very large. In our problem, we select
and add H columns one for each period (pricing problem) to the master problem before

we solve it.

Obtaining an integer solution

The solution to the P’ problem serves as an upper bound of the Problem P. To
examine whether this upper bound is tight, we can examine how far away this bound is
from a good feasible integer solution. This feasible integer solution can be obtained by

applying CPLEX mix-integer optimizer based on the final basis of problem P’.
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5.5.2 Solving the Pricing Problem

From the above, we know that our pricing problem is

Zprice =i:|Y|2% Max{R; —Za‘jkuj -0, ke Qi} (5.18)

jev
By making some manipulations, the pricing problem can become a knapsack
problem for each period i as shown below.
Given that R; is the profit of serving customer j, the total profit of visiting all
customers in route k of period i, R, , can be written as:
Ry = ;a}kRj (5.19)
je

The pricing problem becomes,

Zprice = i:'},/IZ?XH Max {%’:a}k(Rj -u;)-o ke Qi} (5.20)
subject to
2 2 W <T (5.21)

jev
where w‘jk is the additional traveling time and service time of visiting customer j in
route k of period i.

One more thing to consider in the pricing problem is the time window constraint

for each customer j. We do not embody this constraint in the master problem. We can
deal with it here by defining w‘jk = oo, When we try to serve a customer in the period
outside its time window. Then, the problem becomes: for each period, first we decide

which customers can be visited in this period in terms of time window constraint; then

select a subset of the customers that maximize the net profit while satisfying the time

limit constraint. Since weight W‘jk in the pricing problem is not a constant as in real
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knapsack problems, the pricing problem is actually a TCTSP or an orienteering
problem with starting and ending point at the depot.

In the column generation scheme, if we want to solve the master problem
optimally, we have to solve the pricing problem to optimality. However, to save
computational time, we first solve the orienteering problem with a heuristic based on
center-of-gravity method (Golden et al., 1987). We add one column for each period to
the restricted master problem until the heuristic can not discover any more columns
with positive reduced cost. Then the orienteering problem is solved to optimality to
further search the columns with positive reduced cost.

To solve the pricing problem to optimality, we need to present a mathematical
formulation for the problem. Based on the following notations, an integer
programming model for the pricing problem in one period i is presented below.

Vi = A set of customers that can be visited in period i. That is, V; = {j | j is a customer
and ej<i< I}

V»I = Vi U{O}

A ={(d,j)]d,jeV, andd < j} denotes a set of arcs.

I = Net profit of visiting node j, which is R; - u;.
T = Maximum effective working time.
ty; = Time of travelling arc (d, j).

7. = Service time of visiting node j.

_(1 if arc(d, j) € A istraversed

Xdij .
0 otherwise
(1 ifnode j eV, isvisited
Y 0 otherwise
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The pricing problem — An orienteering problem (OP)

Z e = MAX D Iy, - 0;

jevi
Subject to:

D %o =2

jevi

DXgt D XiT2 VeV,

(d,j)eA (i.k)eA

DlgXg + 2.7y ST

d<j jev,

3 X, <[ A]-1 VACV., |A|>3
deA
jeA

Xy €083 V(d, j)eA

y; €{0,1} VeV,

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

In the above formulation, the objective (5.22) is to maximize the total profit

generated from visiting a subset of the customers; o; is a constant representing a dual

solution corresponding to constraints (5.10). Constraint (5.23) ensures that the route

must start from depot and go back to depot in the end. Constraints (5.24) indicate that,

if node j is not included in the tour, no arcs incident to j are included. Otherwise, there

must be one arc going into and one arc coming out of node j. Constraint (5.25)

guarantees that the total travel and service time of the OP tour is within the time limit

T. Constraints (5.26) are sub-tour elimination constraints, which guarantee that except

a sub-tour including the depot, no other sub-tours in set V; are allowed.
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5.5.3 Procedure Involved in the Column Generation Scheme

Now, we summarize the procedure involved in the column generation scheme as

follows:

Step 1: Find the initial sets Q,'c ), containing a feasible solution x.

Step 2: Solve the restricted master problem of P’.

Step 3: Solve the pricing problem by heuristic.

Step 4:

Step 3.1 Initialize period count i = 0; num_column = 0;
Step 3.2 Solve the problem OP by heuristic
Step 3.3 If Z'ice <0, go to Step 3.4; otherwise add a column to the restricted

master problem and increment num_column;

Step 3.4 Increment period count i. If i < H, go to Step 3.2.

Step 3.5 If num_column > 0, go to Step 2.

Solve the problem OP by exact algorithm.

Step 4.1 Initialize period count i = 0; num_column = 0;

Step 4.2 Solve the pricing problem without constraints (5.26) by calling
CPLEX mix-integer optimizer.

Step 4.3 If there is a sub-tour, add a sub-tour elimination constraint. Go to

Step 4.2.
Step 4.4 If Z'wice <0, go to Step 4.5; otherwise add a column to the restricted

master problem and increment num_column.
Step 4.5 Increment period counti. If i <H, go to Step 4.2.

Step 4.6 If num_column > 0, go to Step 2.

Step 5: Output the LP solution as an upper bound or find a feasible integer solution by

calling the CPLEX mix-integer optimizer.

115



Chapter 5 Multi-period TCTSP

5.6 Computational Results and Analysis

To get the computational results, the algorithms are coded in VISUAL C++, and
run on a 500 MHZ Pentium Il Processor with 128 MB RAM under Microsoft Windows
98. To carry out computational experiment for the column generation scheme, we
called the functions in the CPLEX optimization package into the VC++ program.

Note that, our computational result presented below is the average performance
(including solution quality and computational time) for each period, given that
customers have been scheduled for service in the rolling schedule environment within

60 periods.

5.6.1 Problem Generation

For each problem instance, the location of the customers are randomly generated
in the square 20*20 (km?), according to a continuous uniform distribution. And the
depot is assumed to be situated at the center. We assume that the effective working
time T is 480 minutes a day. Revenue of serving a customer j, R; is randomly generated
and scaled to [0, 1]. The traveling time between customers i and j is calculated based
on the Euclidean distance and the speed of the vehicle. For service time of visiting a
customer j, we examine three cases in computational analysis: 10, 30 and 100 minutes,
representing short, medium and long service time cases. The length of the rolling
horizon is set to 7. Within each period i, the number of customers that call the
company to “book” the service follows a Poisson distribution with mean arrival rate A .
In this study, A is varied from 20 to 80 to represent the change of the problem size so

that the performance of the algorithms can be evaluated. g;, the desired period
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(customer j to be visited) that customer j specifies when “booking” the service, is

uniformly generated within the rolling horizon. o, tolerance time of visiting customer

J, is uniformly generated within the interval [0, 2].
As described in Section 5.3 and Section 5.4, each of the heuristics HA2, HA3 and

HAA4 has several versions due to:

1) Different ways to construct the profit matrix pj;
R1: Based on actual revenue R; of visiting a customer j.
R2: Based on artificial revenue R; of visiting customer j by putting more weight on
assigning customer j to the early period of its time window.
R3: Based on artificial revenue R; of visiting customer j within the desired period
of service.

2) Different ways to examine the measure of desirability f;

M1: fij = Pij
M2: fij = pij /Wij
M3: fij =T Pij /Wij

3) Different criteria to assign customers to different periods
C1: Assign customer j to the earliest period of its time window.
C2: Assign customer j to period i with the largest value of p;;/d;;
C3: Assign customer j to period i randomly satisfying the condition that customer
J has more chances to be visited in a period with larger value of p;/d;;.
Where dj; is defined as the distance between customer j and the center-of-gravity of the
tour in period i.
4) Whether the algorithm is implemented based on opportunity desirability (denoted as

O) or actual desirability (denoted as A).
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To examine the impact of all these factors on the heuristics, we need the
following notations to denote each version of the algorithms.

For HA2, we have 18 combinations altogether denoted by HA2(1) to HA2(18) as
illustrated in Table 5.1, with * corresponding to the one selected in the version of the
algorithm named in column 1. Similarly, for HA3, we have 6 combinations denoted by
HA3(1) to HA3(6) as illustrated in Table 5.2. The 9 combinations denoted by HA4(1)

to HA4(9) for heuristic HA4 are shown in Table 5.3.

Table 5.1 Denotations for heuristic HA2

HA2 R1 R2 R3 M1 M2 M3 o] A

Versions

HA2(1) *

HA2(2) *

HA2(3) *

HA2(4) *

HA2(5) *

HA2(6) *

HA2(7) *

HA2(8) *

HA2(9) *
HA2(10) *
HA2(11) *

HA2(12) *
HA2(13) *
HA2(14) *

HA2(15) *
HA2(16) *
HA2(17) *

HA2(18) *

¥ % X % X %
% % X % %
*

*

% X ok X %
x.

Table 5.2 Denotations for heuristic HA3

HA3 M1 M2 M3 0 A
Versions
HA3(1) * *
HA3(2) * *
HA3(3) * *
HA3(4) * *
HA3(5) * *
HA3(6) * *
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Table 5.3 Denotations for heuristic HA4

HA4 R1 R2 R3 C1 C2 C3
versions
HA4(1) * *

HA4(2) * *

HA4(3) * *

HA4(4) * *

HAA4(5) * *

HA4(6) * *

HA4(7) * *
HA4(8) * *
HA4(9) * *

5.6.2 Compare the Performance of the Heuristics Against an Upper Bound

To study how the heuristics behave for the multi-period TCTSP in the rolling
schedule environment, ideally, we should compare the performance of the heuristics
with that of the optimal solution. However, in the rolling schedule environment, since
the customer demand information is dynamically changing from one rolling horizon to
the next, even the mathematical formulation of the problem is very complicated, if not
impossible. Therefore, in Section 5.5, we try to find an upper bound for this problem
based on set-covering type formulation and the column generation method.

In Section 5.5, we solved the LP relaxation of the set-covering model (P’) to
optimality, which serves as an upper bound for Problem P. Also, we found a feasible
integer solution for Problem P based on the final basis. Results show that, the LP
relaxation solution is very close to the feasible integer solution, with maximum
deviation being only about 0.1%. Therefore, the LP relaxation upper bound is tight

enough and we employ it as the performance measurer in the following parts.
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Tables 5.4 to 5.6 illustrate the percentage deviations from the upper bound

(denoted as UB) for heuristics HA1 to HA4 with the customer arrival rate and the

service time being set at 20 and 100 respectively.

Table 5.4 Percentage deviations from the upper bound for HA2

Problem | UB  HA2(1) % HA2(2) % HA23) % HA24) % HA25) %
1 353 340 387 339 412 308 1277 328 705 343 292
2 360 345 438 345 431 318 1162 333 752 350  2.98
3 364 352 317 352 324 323 1106 338 693 354 273
4 357 342 412 342 412 310 1315 332 703 345  3.39
5 362 347 413 347 413 320 1155 340 606 349  3.46
6 351 336 438 336 438 313 1094 324 768 341 283
7 359 341 504 342 467 317 1166 330 803 346  3.66
8 360 346 371 346 374 328 873 333 746 349 3.1l
9 358 342 435 342 435 313 1249 335 649 349 261
10 | 354 333 597 333 597 311 1230 328 743 342 362
11 360 343 473 344 440 317 1189 331 799 350 281
12 351 334 464 334 473 304 1346 327 662 338  3.69
13 | 354 338 459 339 441 313 1174 328 733 345 272
14 | 359 343 440 344 403 319 1113 336 643 344 420
15 | 355 342 375 342 375 314 1149 329 736 344 306
16 | 363 348 415 348 415 318 1230 341 59 352 288
17 356 336 551 336 551 311 1270 331 697 342 377
18 | 357 340 475 340 470 314 1200 330 752 344 366
19 359 344 419 344 419 317 1185 327 895 346  3.64
20 | 360 345 398 345 398 319 1131 333 744 350 273

Average | 358 342 439 342 434 315 1181 332 721 346 322
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Table 5.4 Percentage deviations from the upper bound for HA2 (Con.)

Problem | UB  HA2(6) % HA2(7) % HA28) % HA2(9) %  HA2(10) %
1 353 339 413 338 423 339 414 304 1380 327 145
2 360 341 535 343 478 343 473 313 1304 334 718
3 364 350 362 349 391 348 420 318 1249 337 736
4 357 338 524 342 420 342 420 311 128 333 687
5 362 343 536 347 420 346 436 317 1251 340  6.08
6 351 334 499 336 429 336 429 310 1179 328  6.69
7 359 343 439 342 468 342 464 314 1248 330 807
8 360 346 386 345 408 346 397 321 1088 333 740
9 358 339 533 342 435 342 435 312 1273 334 662
10 354 336 525 333 613 333 593 307 1328 328 743
11 360 342 495 343 475 344 444 310 1388 332 763
12 351 329 621 335 451 335 463 302 1400 328 653
13 354 333 598 338 460 338 460 311 1221 329 7.3
14 359 341 482 345 382 344 395 315 1209 334 683
15 355 338 468 342 364 342 364 309 1283 326 820
16 363 345 475 347 434 347 433 316 1278 342 579
17 356 341 418 336 554 336 570 312 1233 333 634
18 357 337 540 340 474 340 469 308 1373 327 824
19 359 342 486 343 456 343 447 316 1205 328 877
20 360 342 494 345 397 345 397 319 1144 336 646

Average | 358 340 491 340 447 340 446 312 1266 332  7.15
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Table 5.4 Percentage deviations from the upper bound for HA2 (Con.)

Problem | UB  HA2(11) % HA2(12) % HA2(13) %  HA2(14) %
1 3.53 344 273 338 420 340 366 339 302
2 3.60 352 234 342 519 347 358 348  3.49
3 3.64 355 233 349 399 355 230 355 230
4 3.57 348 265 340 466 345 336 345 336
5 3.62 353 253 343 514 350 338 350 325
6 351 342 256 335 455 340 331 340 331
7 3.59 347 327 342 458 346 366 346  3.64
8 3.60 351 231 346 388 350 286 350  2.86
9 3.58 349 258 339 541 345 356 345 356
10 3.54 344 283 335 545 336 510 337 499
11 3.60 352 203 343 474 344 434 345 401
12 3.51 341 266 330 598 337 396 337 405
13 3.54 345 258 334 558 341 387 341 37
14 3.59 350 243 342 462 346 349 345 369
15 3.55 347 225 338 464 344 296 344 29
16 3.63 355 200 345 487 352 283 352 283
17 3.56 346 276 339 481 342 387 342  3.99
18 3.57 348 252 336 568 343 38 342 401
19 3.59 350 258 342 488 348 317 348  3.05
20 3.60 351 238 342 492 349 291 349 201

Average | 3.58 347 252 337 489 345 350 345 349
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Table 5.4 Percentage deviations from the upper bound for HA2 (Con.)

Problem | UB  HA2(15) %  HA2(16) %  HA2(17) % HA2(18) %
1 353 306 1324 327 754 344 259 340 3586

2 3.60 319 1139 331 817 352 229 344 441

3 3.64 324 1101 336 758 358 158 349 301

4 357 310 1324 330 769 349 213 340 482

5 3.62 320 1144 342 543 356 164 345  4.69

6

7

8

9

351 an 11.51 3.26 7.08 3.44 2.10 3.37 4.10
3.59 3.17 11.59 3.33 7.10 348 297 3.44 3.97
3.60 3.28 8.97 3.32 7.86 351 231 3.46 3.93
3.58 3.13 12.54 3.35 6.34 3.52 1.73 3.44 3.84

10 3.54 3.10 12.59 3.30 6.96 343 331 3.35 5.35
11 3.60 3.18 11.56 3.34 7.15 3.53 1.72 3.44 441
12 351 3.04 13.42 3.27 6.65 341 2.87 3.33 4.97
13 3.54 3.14 11.46 3.29 7.19 345 2.64 3.34 5.67
14 3.59 3.18 11.23 3.37 6.13 351 2.00 3.44 3.95
15 3.55 3.14 11.58 3.25 8.33 348 1.96 3.39 4.53
16 3.63 321 11.61 3.40 6.37 3.54 2.26 3.46 4.50
17 3.56 3.12 12.39 3.32 6.78 3.47 242 3.40 4.35
18 3.57 3.13 12.30 3.29 7.76 348 241 3.39 5.04
19 3.59 3.19 11.27 3.30 8.08 3.52 1.93 343 4.46
20 3.60 3.20 10.94 3.34 7.26 3.53 1.88 343 4.52

Average 3.58 3.15 11.76 3.32 7.17 3.50 2.24 3.42 4.46

For HA2, HA3 and HA4, Tables 5.4 to 5.6 show that, the factors considered in
the algorithms (R1, R2, R3; M1, M2, M3; O, A; and C1, C2, C3) all exert influence on
the solution quality of the algorithms to some extent.

One finding from Table 5.4 is that, constructing the profit matrix p;; based on
actual revenue (R1) yields better solution than the other two methods (R2 and R3).
Moreover, whether employing opportunity desirability (O) or actual desirability (A)
can provide better solution depends on how to construct the profit matrix pj: if it is
constructed by R1 or R3, selecting the customers based on actual desirability (A)

performs better; otherwise, one should select the customers based on opportunity
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desirability (O). For the measure of desirability fj, if the algorithm is implemented
based on opportunity desirability (O), f; defined by M1 provides the best solution
followed by M2 and M3; otherwise, fj; defined by M1 provides the best solution
followed by M3 and M2. Another observation is that, the average percentage deviation
is quite different from one version of the algorithm to another, which can be as small
as 2.24% and as large as 12.66%. Among all 18 combinations, the smallest average
percentage deviation from the upper bound, 2.24%, is generated by HA2(17), which is
a combination of M1ARL, that is: construct the profit matrix p;; with actual revenue
(R1); select the customers based on actual desirability (A) and define the measure of
desirability by f; = pj;.

Table 5.5 Percentage deviations from the upper bound for HA3

Problem | UB  HA3(1) % HA3(2) % HA3(3) % HA3(@4) % HA3() % HA3(6) %
1 |353 344 248 340 377 345 240 343 300 346 197 345 221
2 360 350 288 349 306 349 324 351 270 353 214 350 277
3 |364 354 258 353 28 355 231 354 262 358 167 357 188
4 |357 346 312 345 335 347 285 348 257 351 184 350 207
5 |362 354 228 348 38 353 234 353 243 355 179 356 159
6 |351 343 247 340 316 343 240 342 261 346 141 344 197
7 359 347 320 348 291 346 352 345 371 349 278 349 257
8 |360 349 311 348 339 351 249 351 258 354 158 353 181
9 358 349 252 347 310 347 307 349 249 351 197 350 220
10 |354 344 296 342 352 345 270 343 309 346 237 345 270
11 [360 351 236 349 294 352 226 351 237 354 144 351 240
12 | 351 342 258 340 312 341 278 340 304 341 281 342 255
13 | 354 343 318 342 343 343 310 346 245 346 231 347 191
14 |359 350 238 346 357 350 237 350 246 352 190 350 237
15 [355 344 302 341 391 344 321 345 267 348 201 346 240
16 | 363 354 241 350 336 355 205 354 245 357 166 356  1.86
17 | 356 346 279 343 351 345 308 347 255 349 186 346 282
18 | 357 347 282 342 417 346 309 348 237 349 204 349 229
19 |359 348 322 347 331 350 266 348 321 352 199 353 164
20 |360 349 294 347 340 350 280 348 315 354 150 353  1.80

Average | 358 348 276 345 338 348 274 348 273 351 195 350 219
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For HA3, Table 5.5 clearly shows that, if measure of desirability f;; is defined by
M1 or M2, algorithms implemented based on opportunity desirability (O) are superior
to those based on actual desirability (A); while for f; defined by M3, the average
percentage deviations from the upper bound for the two alternatives are very similar to
each other. The smallest deviation, 1.95%, is obtained from HA3(5), with measure of
desirability f; defined by M1 and implement the algorithm based on opportunity
desirability (O). The overall performance of HA3 is quite good, with average

percentage deviations from the upper bound for all the versions being within 3.5%.

Table 5.6 Percentage deviations from the upper bound for HA4 and HA1

Problem | UB  HA4(L) % HA4Q2) % HA4E) % HAA4) % HAAGE) %
1 353 329 681 350 084 347 187 328 722 346 216
2 3.60 335 698 355 135 350 290 332 782 352 221
3 3.64 337 723 360 110 355 236 337 741 360 111
4 357 331 722 354 096 348 255 331 740 349 221
5 3.62 342 552 359 073 352 268 342 548 356 152
6 351 326 710 349 069 344 212 326 730 346 150
7 359 333 704 35 080 352 193 333 728 351 205
8 3.60 333 747 356 102 354 160 333 755 354 174
9 358 33 610 355 079 350 225 335 631 351 185
10 354 331 655 352 072 342 340 332 637 346 237
11 3.60 337 630 358 057 350 261 336 661 354 170
12 351 328 649 347 112 341 285 327 675 343 220
13 3.54 328 729 349 146 344 279 327 765 345 268
14 3.59 339 548 355 093 353 162 337 598 347 311
15 355 328 755 350 144 345 293 327 792 346 247
16 3.63 342 576 359 114 354 242 342 574 357 145
17 3.56 333 648 352 109 346 264 331 701 347 255
18 357 329 763 352 124 347 266 328 816 348 234
19 359 334 712 35 091 350 252 332 762 351 229
20 3.60 333 747 355 139 351 250 332 772 354 172

Average | 358 333 678 354 102 349 246 332 707 350 2.06
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Table 5.6 Percentage deviations from the upper bound for HA4 and HA1 (Con.)

Problem | UB  HA46) %  HAAT) % HA48) % HA4Q) % HAL %

1 3.53 3.40 3.83 337 470 337 470 295 1656 347 1.84
2 3.60 342 5.01 344 448 344 448 307 1471 355 137
3 3.64 3.48 417 349 410 349 410 313 1404 361 0.76
4 3.57 3.38 541 344 366 344  3.66 308 1382 352 1.39
5 3.62 347 4.18 347 418 347 418  3.08 1477 358 113
6 351 3.36 431 338 389 338 3.89 305 1314 347 111
7 3.59 341 4.88 342 479 342 479 305 1485 352 1.82
8 3.60 3.45 4.01 343 457 343 457 316 1214 356 1.00
9 3.58 3.44 3.95 344 396 344 39 311 1328 354 1.24

10 3.54 3.34 5.80 333 607 333 6.07 303 145 348 1.67
11 3.60 3.44 447 344 448 344 448 305 1518 3.56 0.97
12 3.51 3.32 5.31 333 518 333 5.18 293 1644 344 1.97
13 3.54 3.33 5.96 339 426 339 426 307 1336 347 2.10
14 3.59 343 4.48 343 435 343 435 309 1386 355 0.94
15 3.55 3.37 4.92 343 349 343 3.49 303 1471 349 1.60
16 3.63 3.46 4.49 349 370 349 370 311 1417 359 1.03
17 3.56 341 4.25 337 516 337 5.16 305 1436 350 1.68
18 357 3.36 5.88 339 509 339 5.09 299 1614 352 1.40
19 3.59 341 5.22 345 409 345  4.09 310 1377 354 1.50
20 3.60 343 4.62 345 414 345 414 311 1348 354 1.64

Average 3.58 341 4.76 342 442 342 4.42 306 1437 353 141

For HA4, assign the customers to the periods based on criterion C1 is better than
the other two criteria: C2 and C3. Once customers are assigned to a period, selecting

the customers based on p; /d; with p; = R; (constructing the profit matrix based on

the actual revenue) provides the best solution. The smallest average percentage
deviation (1.02%), is obtained from HA4(2). Unlike HA3, solution quality of different
versions of HA4 heavily depends on how to assign the customers (C1, C2 and C3) and

how to construct the profit matrix p;; for selecting the customers within one period.
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For HAL, the average percentage deviation from the upper bound is 1.41%. It is
better than the best among both HA2 (2.24%) and HA3 (1.95%), only inferior to the
best of HA4 (1.02%).

The average computational time taken to get the best solution for each of the
heuristics is illustrated in Table 5.7, which indicates that HAl is the least time

consuming heuristic, followed by HA2, HA4 and HAS.

Table 5.7 Computational time taken to get the best solution for each heuristic

Customer Arrival Computational time (ms)
Rate HA1 HA2 HA3 HA4
20 11 24 57 41

5.6.3 Performance Comparison Among the Heuristics

For problems with high customer arrival rate and short service times, it is very
difficult to get the upper bound in terms of computational time. Therefore, the
performance of the heuristics is compared among themselves to determine which one
is more preferable in a certain scenario. As we discussed above, each heuristic has
several versions due to different combinations of the factors involved in it; totally, we
have 34 versions of the heuristics. For each problem instance, the heuristic with the
maximum profit realized is identified and regarded as the performance measurer; then
each heuristic is examined by calculating the percentage deviation from the maximum
profit. The following computational results are the averages of the results obtained

from 30 randomly generated problem instances.
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5.6.3.1 Analysis of the Factors Affecting the Performance of the Heuristics

Effect of different profit matrix, measure of desirability and opportunity or

actual desirability in HA2

Tables 5.8 to 5.10 illustrate the average percentage deviations from the maximum

for HA2 when the service time is 10, 30 and 100 minutes respectively. The minimum

average percentage deviation among all 18 combinations for each case is shown in

bold and italic font.

Table 5.8 Average percentage deviations from the maximum for HA2

(Service time = 10 minutes)

A HA2(1) HA2(2) HA2(3) HA2(4) HA2(5) HA2(6) HA2(7) HA2(8) HA2(9)
20 0.45 1.37 1.32 0.86 2.07 1.64 0.90 211 1.62
30 0.29 1.28 118 2.15 3.83 2.15 135 2.54 1.66
40 3.12 3.39 3.76 3.00 4.26 231 3.27 3.60 3.80
50 3.38 3.65 4.60 2.58 3.14 1.80 3.48 3.72 4.62
60 3.82 4.05 5.55 2.35 2.52 1.75 3.89 4.14 5.53
70 4.44 4.61 6.42 2.18 1.70 173 4.45 4.61 6.39
80 4.82 4.93 7.11 2.05 1.46 201 477 4.89 7.06

Table 5.8 Average percentage deviations from the maximum for HA2 (Con.)

(Service time = 10 minutes)

1 | HA2(10) HA2(11) HA2(12) HA2(13) HA2(14) HA2(15) HA2(16) HA2(17) HA2(18)
20 0.71 1.69 151 0.30 315 1.33 0.32 3.15 134
30 0.74 1.64 1.37 0.20 3.23 1.19 0.54 327 143
40 0.60 1.20 1.01 315 3.93 3.90 1.24 337 141
50 0.79 0.58 0.78 3.39 4.06 4.84 1.66 3.26 1.47
60 097 0.64 1.21 3.76 436 6.09 2.77 3.67 2.22
70 0.96 0.38 1.36 410 4.65 7.34 3.46 3.92 2.70
80 091 0.25 1.79 451 493 8.64 4.27 429 3.10
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Table 5.9 Average percentage deviations from the maximum for HA2

(Service time = 30 minutes)

A HA2(1) HA2(2) HA2(3) HA2(4) HA2(5) HA2(6) HA2(7) HA2(8) HA2(9)
20 3.80 413 5.56 3.16 3.23 2.06 3.84 4.19 5.53
30 3.84 3.96 7.65 3.44 1.86 2.80 3.83 3.97 7.67
40 3.80 3.85 9.73 3.67 117 2.93 3.57 3.67 9.68
50 4.18 4.23 11.64 4.46 0.92 3.20 3.96 4.02 11.75
60 474 477 13.35 5.18 0.82 3.67 4.61 4.67 13.75
70 5.07 5.08 14.48 5.88 0.90 3.87 4.89 491 15.06
80 541 5.38 14.99 6.44 0.83 4.30 5.34 5.26 15.74

Table 5.9 Average percentage deviations from the maximum for HA2 (Con.)

(Service time = 30 minutes)

A HA2(10) HA2(11) HA2(12) HA2(13) HA2(14) HA2(15) HA2(16) HA2(17) HA2(18)
20 125 0.50 150 4.13 4.87 5.95 3.01 3.28 2.52
30 2.27 0.34 2.56 4.54 4.97 8.65 4.74 3.62 3.56
40 2.95 0.32 2.87 4.84 5.15 11.77 6.06 3.88 3.73
50 3.83 0.15 3.15 5.37 543 14.26 7.69 4.35 415
60 4.92 0.24 3.63 6.05 6.04 16.65 9.36 4.95 4.66
70 5.48 0.24 3.82 6.64 6.63 17.62 10.25 5.44 5.01
80 6.31 0.14 4.28 7.10 7.11 17.95 11.00 6.04 5.53

Table 5.10 Average percentage deviations from the maximum for HA2

(Service time = 100 minutes)

A HA2(1) HA2(2) HA2(3) HA2(4) HA2(5) HA2(6) HA2(7) HA2(8) HA2(9)
30 3.04 3.04 9.91 6.44 2.28 3.65 3.10 3.09 11.36
40 3.19 3.17 8.56 6.11 2.39 351 331 331 9.96
50 3.04 3.02 7.16 5.86 2.37 340 3.10 3.08 8.59
60 3.10 3.08 6.55 5.59 2.50 3.36 3.12 3.10 7.93
70 3.10 3.07 6.09 5.32 2.62 3.37 3.19 3.19 7.17
80 3.20 3.19 5.74 4.97 2.62 3.38 3.22 3.20 6.82
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Table 5.10 Average percentage deviations from the maximum for HA2 (Con.)

(Service time = 100 minutes)

A HA2(10) HA2(11) HA2(12) HA2(13) HA2(14) HA2(15) HA2(16) HA2(17) HA2(18)
30 6.41 1.65 3.66 177 177 9.81 6.26 0.79 2.78
40 6.09 2.03 3.50 151 1.49 8.01 5.59 0.61 2.03
50 5.83 219 340 1.07 1.05 6.52 5.05 0.43 1.67
60 5.57 2.37 3.37 0.95 0.95 5.74 453 0.39 1.48
70 5.29 2.53 3.36 0.88 0.89 491 3.94 0.45 1.26
80 4.96 2.62 3.38 0.76 0.76 4.48 3.40 0.33 111

Results from Tables 5.8 to 5.10 indicate that, there is no dominant combination

always superior to the others. Specifically, when the service time is 10 minutes and

when the customer arrival rate is low (A < 40), HA2(13) with the combination

M1OR?2 performs the best; however, when 4 = 40, HA2(10) with the combination

M3AR?2 yields the best solution. In case of 4 > 40 and the case when the service time

is medium, HA2(11) with the combination M3ARL1 gives the best result. Finally, when

the service time is long (100 minutes), HA2(17) with the combination M1ARL1 is the

best alternative. The combination with the best performance in each scenario is

summarized in Table 5.11.

Table 5.11 Combinations with the best performance for HA2, HA3 and HA4

Customer Arrival

Service time (minutes)

Heuristic Rate A 10 30 100
1 <40 M1OR2 M3AR1 M1AR1
HAZ2 1 =40 M3AR2 M3AR1 M1AR1
A >40 M3AR1 M3AR1 M1AR1

1 <50 M1A M3A M10

HA3 1 >50 M3A M3A M10

1< 40 CIR3 C2R1 CIR1

HA4 1> 50 C2R1 C2R1 CIR1
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Computational results show that, all three factors considered in HA2 have some
impacts on the performance of the heuristics, and the factors are interdependent. Figure
5.1 illustrates the effect of different measure of desirability (M1, M2 and M3) on HA2
when actual desirability (A) is applied and when profit matrix is constructed by R1,
with service time being set at 100 minutes. In this case, it is clear that, desirability

defined by fij = p; (M1) gives the best solution; while fj = p; /w; (M2) gives the

worst solution.

Effect of Different Measure of Desirability on HA2
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Figure 5.1 Effect of Different Measure of Desirability on Heuristic HA2

The effect of different profit matrix (R1, R2 and R3) on HA2 is shown in Figure
5.2 when actual desirability (A) is applied and when measure of desirability is fixed at
M3, with the service time being set at 10 minutes. In this case, when the customer
arrival rate is less than 50, we should construct the profit matrix according to R2, that
is, putting more weight on assigning customer j to the early period of its time window.

Otherwise, profit matrix should be constructed based on R1, the actual revenue.
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Effect of Different Profit Matrix on HA2
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Figure 5.2 Effect of Different Profit Matrix on HA2

Effect of applying different measure of desirability and opportunity or actual
desirability in H3

Tables 5.12 to 5.14 illustrate the average percentage deviation from the
maximum for HA3 when the service time is 10, 30 and 100 minutes respectively.
Similarly, the minimum average percentage deviation from the maximum among the 6

combinations is shown in bold and italic font.

Table 5.12 Average percentage deviations from the maximum for HA3 and HA1

(Service time = 10 minutes)

1 | HA3(1) HA3(2) HA3(3) HA3(4) HA3(5) HA3(6) HAL

20 2.15 2.19 2.20 1.66 1.88 0.10 1.72
30 2.52 3.73 2.28 1.61 241 0.20 1.83
40 2.62 417 2.09 1.23 242 0.72 0.96
50 2.05 3.15 1.64 0.72 1.98 0.77 0.17
60 1.75 2.30 1.40 0.62 1.87 1.09 0.17
70 1.59 1.62 112 0.37 1.89 1.18 0.26
80 1.16 1.33 1.08 0.33 2.10 1.36 0.35
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Table 5.13 Average percentage deviations from the maximum for HA3 and HA1

(Service time = 30 minutes)

A HA3(1) HA3(2) HA3(3) HA3(4) HA3(5) HA3(6) HAl
20 1.78 3.34 132 0.52 172 152 043
30 117 1.87 0.78 0.34 177 1.73 0.62
40 1.03 0.99 0.84 043 1.95 172 0.92
50 0.79 0.76 0.73 021 2.52 2.27 1.43
60 0.86 0.73 0.75 0.36 3.03 3.02 2.14
70 0.71 0.73 0.55 0.23 3.56 3.63 2.73
80 0.69 0.74 0.58 0.27 4.20 4.09 3.23

Table 5.14 Average percentage deviations from the maximum for HA3 and HA1

(Service time = 100 minutes)

A HA3(1) HA3(2) HA3(3) HA3(4) HA3(5) HA3(6) HAL
30 2.00 240 1.94 1.98 0.61 0.80 0.25
40 2.29 2.52 2.23 2.27 0.53 0.68 0.20
50 248 245 2.38 2.36 0.44 0.55 0.10
60 2.60 2.70 2.61 2.63 0.50 0.55 0.13
70 2.72 281 2.74 2.77 0.44 0.55 0.16
80 2.82 2.88 2.84 2.83 041 0.50 0.14

The combination with the best performance in each scenario is also summarized

in Table 5.11. Specifically, when the service time is short and medium, actual

desirability should be selected; otherwise, one should choose opportunity desirability.

In terms of measure of desirability fi;, when the service time is short with arrival rate

A <50 and when the service time is long, M1 is the best; M3 should be applied when

the service time is short with arrival rate 4 > 50 and when the service time is medium.

133



Chapter 5 Multi-period TCTSP

For HA3, the overall performance is quite good with largest percentage deviation
(HA3(5) when service time is 30 minutes) from the maximum being within 4.2%. The
impact of actual or opportunity desirability (A/O) is marginal except for the case when
service time is set at 10 minutes. Since the effect of different measure of desirability is
more important, we illustrate in Figure 5.3 of this effect in the case when service time
is 30 minutes and when we assign based on actual desirability. In this case, measure of

desirability defined by fij = T, p; /w; (M3) gives the best solution.

Effect of Different Measure of Desirability on HA3
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Figure 5.3 Effect of Different Measure of Desirability on Heuristic HA3

Effect of artificial revenue and different assigning criteria in H4

Tables 5.15 to 5.17 illustrate the average percentage deviations from the
maximum for HA4 when service time is 10, 30 and 100 minutes respectively. The
minimum average percentage deviation from the maximum among the 9 combinations
is shown in bold and italic font. Specifically, when service time is short, and customer
arrival rate 4 <50, HA4(3) gives the best result, where profit matrix is constructed by

R3, and customers are assigned by C1; when the service time is short and customer
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arrival rate 4 > 50, and when service time is medium, HA4(5) yields the best result
with profit matrix constructed by R1, and customers assigned by C2; when service
time is long, HA4(2) provides the best solution, again profit matrix should be
constructed by R1, but customers should be assigned based on C1 in this case. The

best combination in different scenarios for HA4 can be found in Table 5.11.

Table 5.15 Average percentage deviations from the maximum for HA4

(Service time = 10 minutes)

) HA4(1)  HA4(2) HA4(3) HA4(4) HA4(5) HA4(6) HA4(7) HA4(8) HA4(9)
20 0.00 0.00 0.00 0.14 1.62 1.38 3.15 3.15 3.15
30 0.25 0.13 0.02 0.36 1.66 1.44 3.56 3.56 3.60
40 081 0.25 0.00 091 1.14 1.35 4.34 434 479
50 127 0.33 0.34 132 0.14 1.50 4.27 4.27 548
60 2.32 101 1.17 2.23 0.11 221 453 4.54 6.68
70 3.30 1.48 1.93 3.08 0.15 2.69 4.81 481 7.94
80 4.26 2.02 2.48 3.92 0.25 3.01 5.10 5.09 9.17

Table 5.16 Average percentage deviations from the maximum for HA4

(Service time = 30 minutes)

) HA4(1)  HA4(2) HA4(3) HA4(4) HA4(5) HA4(6) HA4(7) HA4(8) HA4(9)
20 2.05 0.46 0.20 2.29 0.46 2.53 5.34 5.34 6.97

30 4.32 157 1.99 4.17 0.17 3.60 5.25 5.24 9.48

40 6.24 2.23 2.90 6.14 0.30 3.70 543 543 12.37
50 8.15 3.17 3.88 7.90 0.63 417 5.71 5.72 14.99
60 9.71 4.05 5.00 9.48 1.28 4.66 6.27 6.27 17.70
70 10.88 4.62 5.52 10.57 1.78 4.96 6.84 6.84 19.22
80 11.46 5.36 6.08 11.23 2.28 5.36 7.13 7.13 19.94
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Table 5.17 Average percentage deviations from the maximum for HA4

(Service time = 100 minutes)

A HA4(1)  HA4(2) HA4(3) HA4(4) HA4(5) HA4(6) HAA4(7) HA4(8)  HA4(9)
30 6.27 0.05 1.46 6.32 0.58 2.82 2.24 2.24 13.98
40 5.57 0.10 1.09 5.53 0.58 2.03 2.08 2.08 12.79
50 5.02 0.13 0.84 5.02 0.26 1.66 1.39 1.39 10.79
60 4.49 0.08 0.86 451 0.30 1.49 122 122 9.65
70 3.93 0.13 071 3.93 0.33 123 1.26 1.26 8.42
80 3.38 0.15 0.73 3.38 0.27 111 0.95 0.95 7.54

Computational results reveal that, except for the case when service time is 10

minutes, profit matrix constructed by R1, actual revenue, always obtains the best

solution. Figure 5.4 displays this effect when customers are assigned based on C2 and

service time is set at 30 minutes.
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Figure 5.4 Effect of Different Profit Matrix on Heuristic HA4

For the effect of different assigning criteria, computational results show that,

when the service time is short with arrival rate A< 50 and when the service time is
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long, we should assign the customers according to criterion C1. Otherwise, when the
service time is short with arrival rate A > 50 and when the service time is medium, we
should assign the customers according to criterion C2. An example of the above effect
for the case of medium service time is illustrated in Figure 5.5, which shows that

criterion C2 produces the best result.

Effect of Different Assigning Criteria on HA4
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Figure 5.5 Effect of Different Assigning Criteria on Heuristic HA4

Some observations

From the above analysis and data in Table 5.11, the following observations can
be obtained. We classify all the scenarios considered above into three types. Type I:
when customer arrival rate is low and service time is short, most customers can be
included in the solution. Type II: when the service time is very long, only a few
customers can be included in the solution. Type I1I: when the service time is short and
customer arrival rate is high, or when service time is medium, the number of customers
can be included in the solution is neither very large nor very small. For the measure of
desirability in HA2 and HAS3, in type | and 11, it should be defined by fi; = pj;, i.e., only

consider the revenue of assigning customer j in period i. However, in type 11, it should
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be defined by fj = T,p; /w; , i.e., we should not only consider the revenue of the

customer, but also the time required to visit it, and the remaining working time at the
moment. For HA4, customers should be assigned according to criterion C1 for type |
and Il and according to criterion C2 in type Ill. For profit matrix in HA2 and HAA4, it
should be constructed based on actually revenue (R1) for type Il and IlI; for type I, in
HAZ2, it should be constructed by R2, putting more weight on the earlier period the
customer requests a service; in HA4, it should be constructed by R3, putting more
weight on the period the customer requests the service. For the opportunity or actual
desirability, in HA2, opportunity desirability should be applied in type I; otherwise,
actual desirability should be used. In HA3, for type Il, opportunity desirability should

be applied; otherwise, actual desirability should be applied.

Finally, the heuristic yields the best solution in each scenario is summarized in

Table 5.18.

Table 5.18 The heuristic yields the best solution in different scenarios

Customer Service time (minutes)
Arrival Rate A
10 30 100
20 HA4(3) HA4(5) HA4(2)
30 HAA4(3) HAA4(5) HA4(2)
40 HA4(3) HA4(5) HA4(2)
50 HAA4(5) HA2(11) HAL
60 HA4(5) HA2(11) HA4(2)
70 HA4(5) HA3(4) HA4(2)
80 HAA4(5) or HA2(11) HA2(11) HAL
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5.6.3.2 Comparison of the Heuristic Performances

We make a comparison of the performance of the heuristics HA1, HA2, HA3 and

HA4 in this section. We compare the performance of the heuristics in several

scenarios: the service time is short, the service time is medium, and the service time is

long. Since each heuristic (HA2, HA3 and HA4) has several versions due to the factors

discussed in Section 5.6.3.1, we select the ones with the best solution quality to

represent HA2, HA3 and HA4. Therefore, the algorithms do not divert from one

another greatly. However, we still can distinguish them in each scenario.

Performance of the heuristics when the service time is short (10 minutes)

When service time is 10 minutes, results are illustrated in Table 5.19.

Table 5.19 Heuristic performances when service time = 10 minutes

Customer Profits Computational Time (ms)

Arrival Rate HAL HA2 HA3 HA4 HA1 HA2 HA3 HA4
20 9.73 9.87 9.89 9.90 10 32 63 10
30 1447 1471 14.71 14.74 22 83 168 23
40 18.83  18.90 18.87 19.01 44 242 467 57
50 21.62 2153 2150 2163 70 445 1435 189
60 23.60 2349 23.49 23.61 102 729 2522 269
70 25.07 25.05 25.05 25.10 132 1108 3797 378
80 26.12 2614 26.12 26.14 169 1513 5319 454

With respect to solution quality, HA4 performs the best. However, the

differences among the algorithms are small, with the largest deviation from the

maximum being 1.7%. The solution quality of HAZ2 is very close to that of HA3. When

the customer arrival rate is small (A< 40), HA1 performs not as good as the other
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heuristics; however, with the increase of problem size, it behaves almost as well as
HAA4. For computational time, HA3 takes the most time, followed by H2, H4 and H1.
Meanwhile, time taken by HA4 is much more comparable to HAl than to HAZ2;
computational time of both HA2 and HA3 also increases much faster than the other

two heuristics as arrival rate increases.
Performance of the heuristics when the service time is medium (30 minutes)
When the service time is 30 minutes, Table 5.20 summarizes both the solution

quality and the computational time with the increase of customer arrival rate 4 .

Table 5.20 Heuristic performances when service time = 30 minutes

Customer Profits Computational Time (ms)

Arrival Rate HA1 HA2 HA3 HA4 HAl HA2 HA3 HA4
20 8.28 8.27 8.27 8.30 11 46 115 48
30 9.66 9.69 9.69 9.71 23 96 299 77
40 10.40 10.46 10.45 10.46 37 175 590 117
50 10.83 1097 1096  10.92 52 250 999 207
60 1113 1135 1133 11.23 73 364 1532 274
70 11.36 1165 1165 11.47 95 494 2153 370
80 1151 11.88 1187 11.63 122 605 2794 442

With respect to solution quality, result from HAL is always the worst in this case.
For the other three heuristics, when customer arrival rate A < 50, results are very
similar to one another. However, as A increases, both HA2 and HA3 outperform HA4
with HA2 being slightly better than HA3. The difference between the best (HA2) and
the worst (HA1) also increases as A increases with the largest difference being about

3.2%. In terms of the computational time, from largest to smallest, it follows the same
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order as the case when service time is short: HA3, HA2, HA4 and HA1. However, in
this case, time taken by HA4 is much more comparable to HA2 than to HAL.
Computational time of HA3 also increases fastest; and computational time of both

HAZ2 and HA3 increase faster than that of HA1.

Performance of the heuristics when the service time is long (100 minutes)

When the service time is 100 minutes, results are shown in Table 5.21.
Performance of HA1 and HA4 are consistently better than that of HA2 and HA3.
When the customer arrival rate Ais less than 50, HA4 performs the best followed by
HA1, HA3 and HA2. As A further increases, performance of HA1 improves and it
produces results very close to that of HA4; similarly, performance of HA2 also
improves and it produces results slightly better than HA3. With respect to
computational time, HA3 still takes the most time and HAL takes the least time.
However, in this case, HA4 becomes the second most time consuming heuristic; and

HAZ2 becomes the second least time consuming one.

Table 5.21 Heuristic performances when service time = 100 minutes

Customer Profits Computational time (ms)

Arrival Rate HAl HA2 HA3 HA4 HAl HA2 HA3 HA4
20 3521 3492 3504 3535 11 24 57 41
30 3.678 3.658 3665 3.685 19 44 120 58
40 3.758 3.742 3.745 3.761 33 68 216 87
50 3806 3793 3793  3.805 53 98 345 154
60 3.838 3.828 3.824  3.840 66 142 476 193
70 3.862 3851 3.851 3.863 89 177 639 266
80 3.877 3870 3867 3.877 113 206 817 310
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5.7 Summary and Conclusions

In this chapter, we consider a multi-period time constrained TSP in the rolling
schedule environment. The problem is to design a schedule for each period so that the
average profit of serving a subset of the customers is maximized in a long run. We
propose three heuristic algorithms based on iterative customer assignment (HAL1, HA2
and HA3) and one heuristic based on iterative center-of-gravity scheme (HA4) for
solving the problem. Then, the problem is formulated as a set-covering problem, and
its LP relaxation is solved to optimality by a column generation scheme to get an upper
bound for the original set-covering problem. To evaluate the performance of the
proposed heuristics, for small size problem with long service times, the heuristics are
compared against the upper bound; for other cases, the performance of the heuristics
are compared among themselves. Computational results illustrate that, each of the best
representative of the heuristics perform very well for the problem, with the largest
average deviation from the upper bound being 2.24%, and the smallest deviation only
1.02%. When comparing heuristics among themselves, results indicate that, with
respect to solution quality, each heuristic has its own advantage in a certain scenario.
When the service time is short, the heuristics perform quite similar to one another;
when the service time is medium, both HA2 and HA3 tend to behave better than HA1
and HA4; however, when the service time is long, HA1 and HA4 become better than
HA2 and HA3. For the computational time, HA3 always ranks the most time
consuming and HAL ranks the least time consuming, leaving HA2 and HA4 in
between. Computational time of HA4 increases much faster than that of HA2 as the
service time increases: when service time is short, HA2 ranks the second time

consuming; while when service time is long, HA4 becomes the second time consuming
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one. We make the following recommendations to the decision makers: When the
service time is short and long, HA1 is the best candidate, because its solution quality is
quite good compared to the other heuristics, but it takes very little computational time.
When the service time is medium, both HA2 and HA3 perform very good, since HA3

takes much more time, HA2 is more preferable.
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Chapter 6

The TCTSP with Stochastic Travel and Service Times

6.1 Introduction

The time constrained travelling salesman problem (TCTSP), is a variant of the
classical travelling salesman problem, where only a subset of the customers can be
visited due to the time limit constraint. The problem is usually considered as a
deterministic problem in the literature. In practical applications, however, both the
travel and the service times may not be known with certainty in advance. For example,
the travel time may be affected by the weather conditions (rain or snow) as well as the
traffic conditions (road repair or traffic accidents); the service time is then determined
by the kind of service the customer requires. In this chapter, a TCTSP with stochastic
travel and service times is considered. The problem consists of optimally selecting and
sequencing a subset of customers to visit in the presence of random travel and service

times to maximize the expected profit while satisfying the time limit constraint.

The problem can be formulated both as a chance-constrained program and a two
stage stochastic program with recourse (SPR). In the later formulation, a subset of the
customers must be optimally selected and sequenced before the particular values of the
random travel and service times are known, these are called first stage decisions; once
the customers are selected and their visiting order is fixed, it is possible to calculate the
total travel and service time associated with the tour. Thus, in the second stage,

recourse actions can be taken to impose an expected penalty on the objective function.
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In practice, drivers usually are paid overtime for work done after normal hours, it is
therefore reasonable to set the penalty to be proportional to the total travel and service
time of the route in excess of a preset constant T.

The L-shaped method of Van Slyke and Wet (1969) is a cutting plane or
Benders’ decomposition (Benders, 1962) technique for solving the two stage stochastic
linear problems when the random variables have finite support. The name ‘L-shaped
method’ is due to the special block structure of the two stage stochastic problem in its
extensive form. Birge and Louveaux (1988) extended the L-shaped algorithm with
single optimality cut to a multi-cut algorithm. They showed that, the effectiveness of
the multi-cut algorithm is conditional: it is more effective when the number of
realizations of the random variables is not significantly larger than the number of first
stage constraints. In Laporte and Louveaux (1993), they presented an integer L-shaped
method for the stochastic integer program with complete recourse, in which a
branching procedure is incorporated into the L-shaped method to recover the
integrality of the variables. New optimality cuts were derived for the case when first
stage variables are binary. These cuts are more efficient when random variables have
many states or have continuous distributions, or when the second stage problem cannot
be formulated in terms of first stage variables. Some lower bounds on the second stage
value function were also presented in the paper. Laporte et al. (1992) addressed the
vehicle routing problem with stochastic travel times. A branch-and-cut algorithm was
proposed, and optimality cuts were generated in a similar way as in Laporte and
Louveaux (1993). The integer L-shaped method has also been applied in the vehicle
routing problem with stochastic demands; see Hjorring and Holt (1999), Laporte et al.
(2002). Gendreau et al. (1995) applied the integer L-shaped method to the vehicle

routing problem with stochastic demands and customers.
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The purpose of this chapter is to present an integer L-shaped algorithm for the
TCTSP with stochastic travel and service times. In Section 6.2, we give a formal
description of the problem considered and formulate it as both a chance-constrained
program and a stochastic program with recourse. Valid constraints used in the integer
L-shaped algorithm are derived in Section 6.3. The procedure involved in the integer
L-shaped algorithm is described in Section 6.4. Section 6.5 presents the computational
results and analysis. Finally the results obtained in this study are summarized in

Section 6.6.

6.2 Problem Description and Model Formulation

The TCTSP with stochastic travel and service times considered in this chapter

can be described as follows. Let G = (V', A) be a complete graph, where V'= {0, 1,

..,n}isavertexset,and A ={(i,]) |i,j €V"' and i <j} denotes a set of arcs. Vertex
0 represents the depot, and 1,..., n denote n customers. Associated with each customer

i, there is a profit R; and a service time z;; and associated with each arc, there is a

travel time t;. Assume that the travel time for each arc and the service time for each
node are independent discrete random variables. Assume that T is the maximum
effective working time, AT is the maximum amount of time allowed to exceed T. The
objective is to maximize the expected profit realized from visiting a subset of the
customers without violating the time limit constraint.

In stochastic programming, commonly, two versions of the problem are

considered: chance-constrained program and stochastic program with recourse.
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Chance-constrained program
In addition to the notations V', A, R;, T, AT described above, the following

notations are used in the model formulation.

<
"

V' \ {0}.

ot
=
1

A random variable representing time of travelling arc (i, j).

7. = A random variable representing service time of visiting node j.

a = The maximum probability that the total travel and service time within a tour is
allowed to exceed T + AT .
1, if arc(i, j) € Aistraversed
Xij = .
0, otherwise

_ (4 if node j € V'isvisited
iTlo,  otherwise

The chance — constrained model is formulated as follows:

Z=Max Y R;y; (6.1)
jev

Subject to

ZXOj =2 (6.2)
jev

2+ D% = VjeV (6.3)
(.)eA  (iDeA

> x; <IA]-1 VAcCV, |A|=3 (6.4)
i

x; {0, V(i j)eA (6.5)
y; €{0, % VjeV (6.6)
Now consider an orienteering tour 7 = (ip = 0, i1, ..., Iy, ly+1 = 10=0). Such a route is
legal only if
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P(Zu:[tikim i1 1> T] <a (6.7)

In the above formulation, the objective (6.1) is to maximize the total profit
realized from visiting the subset of the customers. Constraints (6.2) ensure that the
route must start from depot and go back to depot in the end. Constraints (6.3) indicate
that, if node j is not included in the tour, no arcs incident to j are included. Otherwise,
there must be one arc going into and one arc coming out of node j. Constraints (6.4)
are sub-tour elimination constraints, which guarantee that except a sub-tour including
the depot, no other sub-tours in set V are allowed. Constraint (6.7) removes those tours

with probability that total travel and service times exceed T being greater than« .

Stochastic program with recourse

To present the model of stochastic program with recourse (SPR), we need
slightly different notations from the chance-constrained model.
Notation:

3 = A vector of random variables corresponding to travel and service time. It has
a finite number of realizations, &', &2,..., & with probabilities p,, p,,..., Pg -

Pk = The probability that the random vector & takes on the realization &*.

K = Number of realizations of vector &.
0(&*) = The total travel and service time of the route in excess of T when the
realization of the random variable is &,

tifk = A random variable representing time of travelling arc (i, j) when the realization

of the random variable is &.
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rfk = A random variable representing service time of visiting node j when the

realization of the random variable is &.

yis = The unit penalty cost for total time of the route in excess of T.
x-- (1 if arc(i, j) € Aistraversed
! 0 otherwise

y _ (1 if node j eV is visited
.=

0 otherwise

The SPR model is as follows:

K

Z= max(z rjyj 'ﬂz pke(fk)) (6-8)
subject to

Constraints 6.2, 6.3, 6.4, 6.5, 6.6 and

O ) 2Dt % + Y o5y, T k=12,.K (6.9)
i<j jev
0< (&) <AT k=12,..,K (6.10)

In the above formulation, the objective (6.8) is to maximize the expected profit
generated (include the expected penalties incurred) from visiting a subset of the n
customers. Constraints (6.9) and (6.10) ensure that if the total travel and service time

of a route is greater than T, the excess amount should be within AT .

6.3 Valid Constraints Considered in the Integer L-shaped Algorithm

In the SPR model, if we consider constraints (6.2), (6.3) and (6.4) as one block,
and write constraints (6.9) and (6.10) in extensive form for each k =1,2,..K, it is clear
that the problem considered here has the block-angular structure, and therefore can be

solved by the L-shaped method based on Benders’ decomposition (Benders, 1962)
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technique. The basic idea of L-shaped algorithm is to approximate the term

K
ﬂz p.O(E*) (second stage value function) in the objective function (6.8), which

k=1
involves a solution of the second stage recourse linear program. This is done by
building a first stage problem using an approximate term, and only evaluating the

second stage value function exactly in the second stage subproblem.

The first stage problem - current problem
At a given phase of the algorithm, we call the following first stage problem as the
current problem (CP).

(CP)

Z=max(Q_r;y; -n) (6.11)

jev
subject to

D %o =2

jev

DX+ DX =2 YjeV

(.)eA  (ik)eA
Set of illegal route elimination constraints (6.12)
Set of optimality constraints (6.13)

x; 0,3 V(i j)eA

y; €{0,1} VjeV

The above current problem is obtained by two relaxations. The sub-tour
elimination constraints (6.4) and second stage feasibility constraints (6.9) and (6.10)
are relaxed in a number of constraints in (6.12) known as feasibility cuts. Constraints

(6.9) and (6.10) are relaxed because they are not known in advance. Once we get the
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first stage solution, we know which of these constraints are violated. Constraints (6.4)
are relaxed because, though they are known, the constraints are so numerous that it

would be unrealistic to impose all of them from the beginning. Finally, the second

K
stage expected value function ,BZ pO(E¥), is relaxed by an estimated bound 7 and
k=1

the constraints (6.13) known as optimality cuts. Note that, in the initial first stage
problem (first current problem), the constraint set (6.12) may be empty and constraint

set (6.13) may only contain constraint » >0 . In the subsequent iteration, constraint set

(6.12) includes the newly identified sub-tour elimination constraints and the second
stage feasibility constraints; while constraint set (6.13) includes the newly identified
optimality cuts.

Given a first stage solution (x, y, ») to the above current problem, we can get the

following second stage problem, and derive feasibility and optimality cuts based on it.

The second — stage problem (SSP)

min w= ,BZK: P O(E*) (6.14)
k=1
O ) 2Dt % + >l y, T k=12,.K (6.15)
i<j jev
O(E*) < AT k=12,.,K (6.16)
0(£*)>0 k=12,...,K (6.17)

Since the second stage problem is a LP problem with continuous variables, we
can derive the feasibility cut and the optimality cut from the dual problem.
Similar to the application of the Benders’ decomposition (Benders, 1962) method

for the mixed integer program, we add both the feasibility cuts and the optimality cuts
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when we get an integer first stage solution, which corresponds to a set of selected

customers to be visited.

The feasibility cuts
For each k, we denote I and I* as dual variables corresponding to constraints

(6.15) and (6.16) respectively. Then the dual problem corresponding to the above

second stage problem can be described as follows:

(DSSP)

Max ¢ = 3 (Ot % + D5y, ~T)IE AT *1*) (6.18)
ey i

subject to:

-1 <p*p, k=12,.K (6.19)

>0, I>0 k=12,..K (6.20)

The above problem can be separated into K problems. For each k, k =1.2,..K,

we have,

(DSSPY

Max ¢“= (3 ts x; + D05y, —T )1 — AT *1 (6.21)
i< =

subject to:

I -1 < g*p, (6.22)

>0, 1>0 (6.23)

If the primal second stage problem (SSP) is infeasible, then at least one of the

above problems (DSSPX) is unbounded. An extreme ray of the feasible region of the
dual problem (DSSPY) is viay = (1., 1.¥) = (1, 1). Since the above problem (DSSP¥)

IS a maximization problem, if at the direction of the extreme ray,
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Ztifk X +erky1 1) 1

i<] jev (J > 0 holds, then the dual problem (DSSP¥) is unbounded
—AT

and the primal second stage problem (SSP) is infeasible. To eliminate this first stage

solution, we can add a feasibility constraint as follows:

(6.24)

2 X+ -T 1
i< jev 1 <0
—AT

To get the strongest feasibility constraint for the current first stage solution, we

choose the constraint corresponding to &*, which makes the total travel and service

times in excess of the time limit, > t5' x, +> 75y, T, the longest, and add the
i< jev

constraint into constraint set (6.12) of the first stage problem (CP).

The optimality cuts

In case the first stage solution (X, y, n) is feasible, by observing the feasible
region of the dual problem (DSSP), we know that, there are two extreme points: (0, 0)
and (B px, 0). From the objective function of (DSSPY), it is clear that, if the following

expression holds

Stix +>. 8y, ~T =0 (6.25)

i<j jev

the dual optimal solution occurs at the extreme point ( 2 pk, 0), an optimality cut can be

derived as
¢k 2 (Z‘,ti}§k Xj; +sz§k Yi -T)Bp, (6.26)
i<j jev

Otherwise, the optimal solution occurs at the extreme point (0, 0), and the optimal cut

is
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#* >0 (6.27)

Therefore, in a single cut algorithm, we can aggregate the cuts into a single optimality

cut as
K ‘ )

n=Y (Ot X+ 25y =T)Bp, (6.28)
k=l i< eV

forall & with 't5 x, +> 75y, -T20, k=12,.K

i<j jev

In a multi-cut algorithm, we add the following cuts

K
7= ¢* (6.29)
k=1
g > (thk X; +erkyj ~T)Bp, k=12..K
o = (6.30)
if Zt,f X; +Z\;rf y;-T=0
i<j je
¢* >0 it Ytx +> 5y, -T<0 (6.31)
i<j jev

Sub-tour elimination constraints

For the TCTSP, since we only select a subset of the customers in the solution,
sub-tour elimination constraints only eliminate those sub-tours that do not contain the
depot. At an integer solution, it is easy to detect a sub-tour. Once a main tour
containing the depot is formed, other loops are sub-tours. Suppose we have a subset
A= (g, iy, iy, i,y =i, ) Which forms a sub-tour, we can add the following

constraint to eliminate such a sub-tour:

u

2 X, SU (6.32)

1=0
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Since any node can be dropped from the solution in the TCTSP, we can also
express the sub-tour elimination constraint in terms of the edge variables x;; and the

nodes variables y;.

u

D XL S LY for jeA (6.33)

1=0 ieA\{j}

The time limit constraint added to the initial first stage problem

In the initial first stage (current) problem, after constraints (6.9) and (6.10) are
relaxed, there is no time limit constraint. The feasibility cuts, playing a similar role as
the time limit constraint, will only be gradually introduced into the current problem by
solving the second stage problems. To avoid selecting too many customers into the
first stage solution, we add the following time limit constraint to constraint set (6.12)

when solving the initial first stage problem.

Stix, + > 5y, ~T <AT (6.34)

i<j jev
We use the minimum realization of the random travel and service time variables
to construct the vector &”, because, otherwise, we may eliminate some possible better

tours when forming the initial tour at the very beginning.

6.4 The Integer L-shaped Solution Method

The steps involved in the integer L-shaped algorithm can be described as follows:
Step 0: Set iteration index i: = 0. Initialize the first stage problem (the current
problem) with constraint set (6.12) only containing constraint (6.34) and

constraint set (6.13) only containing n>0.
Step 1: Set i = i+1. Solve the current problem. If the current problem has no feasible

solution, go to Step 6. Otherwise, let (x',y',7") be the optimal solution.
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Step 2: Check for existing sub-tours, if any violation is detected, add the first sub-tour
elimination constraint found (Constraint 6.32 or 6.33) to the constraint set
(6.12) of the current problem and go to Step 1.

Step 3: Check second stage feasibility constraints. If violated, add the most violated
one (Constraint 6.24) to the constraint set (6.12) of the current problem and
go to Step 1.

Step 4: Compute the value of the expected penalty for excess amount of time at the

current first stage feasible solution, denote it as®(x', y').
Step 5: If ' >d(x',y'), the current problem satisfies the optimality criterion, go to

step 6. Otherwise, introduce the optimality cuts (Constraint 6.28 for single cut
algorithm and Constraints 6.29, 6.30 and 6.31 for multi-cut algorithm) into
the constraint set (6.13) of the current problem, and go to Step 1.

Step 6: Output the best - known solution and stop.

6.5 Computational Results

To get the computational results, the algorithm is coded in VISUAL C++, and run
on a 500 MHZ Pentium I1 Processor with 128 MB RAM under Microsoft Windows 98.
The MIPs are solved by calling the functions in the CPLEX optimization package into

the VC++ program.

6.5.1 Problem Data Generation

Our computational results are the averages of the results obtained from 10

randomly generated problem instances. For each problem instance, the customers are
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randomly generated from the square 20*20 (km?), according to a continuous uniform
distribution, with the depot situated at the center. We assume that the effective working
time T is 480 minutes a day; AT , the maximum amount of time allowed to exceed T, is
assumed to be 120 minutes. Revenue of serving a customer j, R; is randomly generated
from [0, 100]. The travel time between customers i and j is calculated based on the
Euclidean distance d;; and the speed of the vehicle. We assume that vehicle speed v

can take on 5 possibilities: 60, 50, 40, 30, 20 (km/hour). Then the travel time between
any two customers i and j can be calculated according tod” = The service time at

each customer also takes on 5 possibilities: 10, 20, 30, 40, and 50 (minutes). We define
& as a vector of random variables corresponding to travel and service times. It has a
finite number of realizations, &', &2,..., & with probabilities p,, p,,..., Py, With &

constructed by combining the 5 possibilities of travel time and 5 possibilities of service
time.
In our computational experiment, we assume K = 5, and constructed the data

vectors for the travel time part as follows.

£ Best case; with 80% of the arcs among the customers traveling at speed 60
(km/hour), and the rest traveling at the other 4 speed possibilities.

£%: Above average; with 80% of the arcs among the customers traveling at speed 50
(km/hour), and the rest traveling at the other 4 speed possibilities.

£3: Average case; with 80% of the arcs among the customers traveling at speed 40
(km/hour), and the rest traveling at the other 4 speed possibilities.

£*: Below average; with 80% of the arcs among the customers traveling at speed 30

(km/hour), and the rest traveling at the other 4 speed possibilities.
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£°: Worst case; with 80% of the arcs among the customers traveling at speed 20

(km/hour), and the rest traveling at the other 4 speed possibilities.

The service time part of the data vectors is constructed by uniformly selecting
service time from the 5 possibilities: 10, 20, 30, 40 and 50 minutes.

Furthermore, we assume that the probabilities, p,, p,, P, P4, Ps, correspond to

grog? g3 g g5 are 0.1, 0.2, 0.4, 0.2, 0.1, respectively.

6.5.2 Computational Results and Analysis

We examine the integer L-shaped algorithm from the following aspects:
e Single optimality cut versus multiple optimality cut;

e With different unit penalty cost 3;

e With different AT - tolerance time allowed to exceed time limit T;

e With different number of states of the random vector &.

Results are presented in Tables 6.1 to 6.4 based on the following notations.
n: Problem size (total number of customers)

i Unit penalty cost for total time of the route in excess of T

Profit: Profit generated from serving the customers in the solution
F-cuts:  Number of feasibility cuts generated

O-cuts:  Number of optimality cuts generated

Sub-tour: Number of sub-tour elimination constraints generated

S: Single optimality cut algorithm

M: Multiple optimality cut algorithm
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First, from Table 6.1, we can see that, as problem size increases, the problem
becomes more difficult to solve, with more profits realized. This is due to the fact that,
though we still have to satisfy the time limit constraint (the number of customers
included in the solution may not change a lot), now we have more alternatives to
choose from, e.g., the solution space becomes larger. Therefore, the problem difficulty
increases, as indicated by the increasing number of feasibility and optimality cuts, the

number of sub-tour elimination constraints, and the computational time.

Table 6.1 Average performance of the algorithm with different unit penalty cost g

N B Profit F-cuts O-cuts Sub-tour Time ()
10 518.6 0.4 2.2 2.1 0.08
15 7322 1.8 3.6 7.8 2.20
20 0.5 948.2 2.3 4.4 11.6 11.86
25 995.8 1.9 4.8 10.6 21.66
30 1081.9 25 4.8 26.8 372.55
35 1104.6 2.6 4.6 49.9 1083.90
10 517.2 0.4 2.2 2.0 0.25
15 704.2 1.8 3.6 8.0 0.96
20 2 890.9 2.3 45 19.0 25.50
25 936.5 1.9 4.7 10.5 20.84
30 1008.6 25 4.8 235 201.79
35 1021.4 2.6 4.6 64.3 1182.38

In Laporte et al. (1992), their computational result showed that, as the unit
penalty cost increases, the difficulty of the problem also increases. This is because in
their problem, all customers must be visited, and higher penalty means more penalty
cuts needed and therefore more computational time taken to solve the problem.
However, in the TCTSP with stochastic travel and service times, as unit penalty cost

S increases, to maximize the profit realized, the number of customers visited in the
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solution may become lesser. There is no clear indication that difficulty of the problem

increases as the unit penalty cost g increases. The computational time taken mainly

depends on the number of constraints needed, especially the number of sub-tour
elimination constraints.
Table 6.2 illustrates the effect of the single-cut and the multi-cut algorithm. We

set unit penalty cost g = 2, and the number of states K = 5 in this case. Table 6.2

indicates that, the multi-cut algorithm needs to generate more optimality cuts.
However, the number of sub-tour elimination constraints needed for the multi-cut
algorithm is less than that needed for the single-cut algorithm. Therefore, multi-cut
algorithm takes less computational time than the single cut algorithm. The multi-cut
algorithm is superior to the single cut algorithm. This conforms to the findings in Birge
and Louveaux (1988), though in their study, the superiority of multi-cut algorithm over

the single-cut algorithm is based on the stochastic two stage linear problems.

Table 6.2 Single cut algorithm versus multi-cut algorithm

n Single/Multiple F-cuts O-cuts Sub-tour Time (s)
S 04 17 25 0.33
10 M 0.4 2.2 2.0 0.25
S 1.8 2.3 9.1 141
15 M 1.8 3.6 8.0 0.96
S 2.3 34 24.2 39.62
20 M 2.3 45 19.0 25.50
S 1.9 2.6 18.3 30.65
25 M 1.9 4.7 10.5 20.84
S 25 3.1 28.5 235.99
30 M 25 4.8 235 201.79
S 2.6 2.7 88.4 1688.35
35 M 2.6 4.6 64.3 1182.38
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In Table 6.3, we test the algorithm against the tolerance time AT . Intuitively, as

AT increases, the time limit constraint becomes less restrictive, therefore, we need less

number of feasibility cuts. On the other hand, as more customers may be included in

the solution, the amount of time exceeded the time limit T may also increase, which

may lead to more penalty incurred and therefore more optimality cuts generated.

Columns F-cuts and O-cuts in Table 6.3 clearly support these facts. When the problem

size is small (less than 20), as AT increases, the profit generated does not change

much, and the computational time incurred does not increase; however, when the

problem size becomes larger, with the increase of AT, profits generated increases, and

more customers are likely to be included in the solution. Therefore, the number of sub-

tour elimination constraints and the computational time also tend to increase.

Table 6.3 Average performance of the algorithm with different AT

N AT (min) Profits F-cuts O-cuts  Sub-tour Time (S)
60 517.25 0.9 1.9 2.5 0.23
10 120 517.25 0.4 2.2 2.0 0.25
180 517.25 0.3 2.6 1.3 0.08
60 701.28 1.7 2.4 6.7 1.77
15 120 704.23 1.8 3.6 8.0 0.96
180 704.40 1.7 4.6 9.3 0.94
60 880.26 2.3 3.5 12.8 15.03
20 120 890.92 2.3 4.5 19.0 25.50
180 892.39 2.2 4.8 18.5 16.05
60 910.37 2.1 3.9 9.6 19.67
25 120 936.48 1.9 4.7 10.5 20.84
180 941.62 1.6 4.7 15.8 23.05
60 989.30 2.7 4.1 22.4 453.14
30 120 1008.56 2.5 4.8 235 471.79
180 1015.63 2.5 5.0 27.7 679.55
60 995.02 2.7 4.2 48.9 672.17
35 120 1021.41 2.6 4.6 64.3 1182.38
180 1033.49 2.7 4.8 73.1 5717.94
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The effect of the number of states of the random vector £on the algorithm is

shown in Table 6.4. As the number of states of & increases, both the number of

feasibility cuts and the number of optimality cuts tend to increase. The computational

time taken mainly depends on the number of sub-tour elimination constraints added.

Except for problem size 20 and 25, the computational time and the difficulty of the

problem increase as the number of states increases.

Table 6.4 Average performance of the algorithm with different number of states of &

n States F-cuts O-cuts Sub-tour Time (s)
3 0.5 1.3 24 0.10
10 5 0.4 2.2 2.0 0.25
10 0.5 4.3 2.0 0.26
3 11 2.2 7.7 0.90
15 5 1.8 3.6 8.0 0.96
10 2.3 7.8 10.5 2.45
3 1.6 2.9 10.2 13.99
20 5 2.3 4.5 19.0 25.50
10 34 8.7 15.2 20.47
3 2.1 3.0 17.3 37.61
25 5 19 4.7 10.5 20.84
10 3.9 9.1 29.9 201.67
3 1.7 2.9 20.5 54.67
30 5 25 4.8 235 201.79
10 4.0 9.5 34.2 312.66
3 24 2.9 41.3 838.22
35 5 2.6 4.6 64.3 1182.38
10 4.0 8.9 94.9 23170.40
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6.6 Conclusions

In this chapter, we considered the time constrained traveling salesman problem
with stochastic travel and service times, which can be encountered in a number of
practical situations. We formulate it as both a chance-constrained program and a two
stage stochastic program with recourse, and presented an integer L-shaped algorithm
for solving it. We examined the algorithm from a number of aspects. Computational
results show that, for this particular problem, the difficulty mainly lies in the
elimination of the sub-tours; therefore, the larger the number of sub-tours needed, the
more computational time taken. Multi-cut algorithm showed its superiority to the
single-cut algorithm in terms of the number of sub-tours imposed and the
computational time required. As the unit penalty cost increases, difficulty of the
problem does not have a clear trend of increase due to the fact that less number of
customers will be visited. With the increase of the number of states of random vector

& or the increase of the tolerance time AT , when the problem size is large, the

difficulty of the problem increases.
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Chapter 7

Conclusions and Directions of Further Research

In this chapter, first some concluding remarks are presented in Section 7.1;
followed by main contributions of this thesis stated in Section 7.2; finally possible

further research directions are highlighted in Section 7.3.

7.1 Summary and Conclusions

This thesis mainly addressed two variants of the classical traveling salesman
problem: the vehicle routing problem with stochastic demands (VRPSD) and the time
constrained traveling salesman problem (TCTSP).

In thesis Part I, we studied the VRPSD based on the formulation of stochastic
programming with recourse, which is within the framework of a priori optimization. A
comparative study among heuristics available in the literature was firstly carried out to
determine which one is superior to the others in a certain context; and valuable
suggestions and recommendations were made for decision makers in various scenarios.
As most of the heuristics presented in the literature belong to classical local search
algorithms, the thesis also examined whether metaheuristics are more preferable for
the VRPSD. Three metaheuristics, such as simulated annealing (SA), threshold
accepting (TA) and tabu search (TS), were presented for solving the VRPSD.
Comprehensive computational experiment was carried out to compare the performance
of the proposed metaheuristics with that of the heuristics presented in the literature in

various situations with respect to problem size and demand pattern. Results show that,
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metaheuristics can provide solutions with better solution quality for VRPSD, though
they may consume more computational time. In some cases, the time taken by
metaheuristics even can be comparable to classical local search methods. For example,
for multiple vehicle case, when the problem size is relatively large, SA can provide
better solutions with similar or less computational time than the R1-C2 in Yang et al.
(2000). Chapter 4 also carried out a performance comparison among the metaheuristics
proposed for the VRPSD to determine which one is superior to the others in a certain
context, and provide the decision makers with more choices and more valuable
suggestions.

In the literature, most researchers address the single tour TCTSP or orienteering
problem (OP). Part Il of this thesis firstly studied a multi-period TCTSP: The problem
is to find a subset of customers as well as the sequence of serving them in each period
in a rolling schedule environment, so that the average profit per period in the long run
is maximized. Several heuristics based on iterative customer assignment and iterative
centre-of-gravity were proposed for solving the problem. Then, a set-covering type
formulation was presented for the problem within an elongated rolling horizon, and its
LP relaxation was solved to optimality by a column generation scheme to get an upper
bound for the original problem. To evaluate the performance of the heuristics, for
small size problem with long service times, the heuristics were compared against the
upper bound; for other cases, the performances of the heuristics were compared among
themselves. Computational results illustrate that, the best representative of each
heuristic performs very well for the problem, with the largest average percentage
deviation from the upper bound being 2.24%, and the smallest deviation only 1.02%.

When comparing the heuristics among themselves, results indicate that, with respect to
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solution quality, each heuristic has its own advantage in a certain scenario. Decision
makers are advised to employ different heuristics in different scenarios.

For TCTSP, due to the effective working time limit constraint, the profit realised
from visiting the subset of the customers is directly affected by the travel time and
service time, which are most unlikely to be known with certainty in advance due to
their dynamic nature. However, most literature considers the deterministic TCTSP.
The second problem considered in Part 1l of this thesis is a stochastic TCTSP: an
extension of the TCTSP into a stochastic case, where the travel and service times are
assumed to be random variables. Again, within the framework of a priori optimization,
two models: a chance-constrained program and a stochastic program with recourse,
were proposed for formulating the problem. Then an integer L-shaped solution method
was developed to solve the problem to optimality. The computational experiment
examined the algorithm in several scenarios. Results show that, the algorithm based on
integer L-shaped method can solve the stochastic TCTSP with moderate problem size

to optimality within reasonable amount of time.

7.2 Main contributions of this study

For Part | of this thesis, the comparative study helps us to identify heuristics with
better performance in a certain context, so that we can provide valuable suggestions to
the practitioners. Secondly, our study on the performance of the three metaheuristics,
the simulated annealing (SA), threshold accepting (TA), and tabu search (TS)
algorithms for the VRPSD, not only answers the question whether metaheuristics are
suitable for solving the VRPSD, but also provides more choices and more valuable

suggestions to the practitioners.
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For Part Il of this thesis, the study on the multi-period TCTSP has both

theoretical and practical significance. We provide a systematic study of this problem,

as it is seldom studied in the literature. This includes:

We incorporate the concept of rolling schedule into the study of the problem,
which can nicely capture the dynamic nature of the customer information:

when a customer needs a service.

e \We present a set-covering type formulation for the problem within one rolling

horizon, and a column generation solution method to find an upper bound for
this problem. This type of formulation and the column generation solution
method can be applied to similar problems, such as the team orienteering
problem (Chao et al. 1996b), to find the optimal solution or an upper bound
of the problems, so that they can be employed as performance measurers to

evaluate the heuristics provided in the literature.

e We provide several efficient heuristic methods with good performance in

terms of both solution quality and computational time for this kind of
problem. Moreover, the heuristics are studied in detail under different
problem parameter settings, so that suggestions and recommendations in
different scenarios can be made for potential applications and therefore a

guideline can be provided for the decision makers in their decision process.

For the second problem in Part I, our focus is to extend the deterministic TCTSP

into the stochastic case with travel and service times being considered as random

variables, because they are the problem parameters that are most unlikely to be known

for sure in advance; and also they are very important in the TCTSP, as they directly

affect the solution and therefore the profits generated from the solution. However, for
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the TCTSP, or even in a much broader context, the vehicle routing problem, studies
focused on the stochastic travel and service times are quite few. Though Laporte et al.
(1992) addressed the vehicle routing problem with stochastic travel times, it is a two
stage stochastic problem with complete recourse: the first stage solution is always
second stage feasible, though penalty may occur in the second stage problem. For our
problem, on the other hand, due to the constraint that the total travel and service times
of a tour in excess of time limit T cannot exceed AT , second stage feasibility is also a
main concern. Therefore, in addition to optimality cuts, feasibility cuts must also be
considered in the second stage problem, which adds more difficulty to the problem

considered.

7.3 Directions of Further Research

(1) Further research directions for VRPSD

For the VRPSD with multiple vehicles, in this study as well as in Yang et al.
(2000), to partition the customers into several routes, the constraint imposed is that the
expected route length should be within a predefined limit. It would be more accurate
and reasonable if the variance of the route length could be taken into consideration as
well.

For the tabu search metaheuristic, the current study only examined its
performance on the single vehicle case; it would be worthwhile to develop TS
algorithm for the VRPSD with multiple vehicles. Moreover, one direction of further
research regarding metaheuristics is to study how some other recently developed

metaheuristics, such as ant algorithms, can be applied to the VRPSD.
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(2) Further research directions for TCTSP

For the TCTSP, one possible direction is to extend the deterministic multi-period
TCTSP in a rolling schedule environment to the stochastic case with stochastic service
and/or travel times, and develop effective algorithms for solving the problem.

Furthermore, from the computational results presented in Chapter 6, it is clear
that, even for the single period TCTSP with stochastic travel and service times, the
exact algorithm is computationally expensive. Therefore, for large size stochastic
TCTSP, especially stochastic multi-period TCTSP in the rolling schedule environment,
it is important to design and develop heuristics with good performance for this kind of
problems.

One prerequisite for developing heuristics is how to evaluate a tour and therefore
select the best possible one. For a deterministic problem, it is an easy task; however,
when travel and service times are stochastic variables, it is nontrivial. In the Appendix,
the thesis also presented how to evaluate a single period TCTSP with stochastic service
times, given that we employ the total profit (including the expected penalty incurred)
realized from such a TCTSP with stochastic service times as the performance
measurer. Clearly, as one visit more customers, the time in excess of the effective
working time limit T increases; therefore the penalty incurred increases as well. One
possible research direction is to investigate whether there are rules regarding how to
select the more profitable customers and when to stop visiting the less profitable

customers.
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Appendix

Define the problem on a complete graph G = (V', A), where V' = {0, 1,..., n} is
a vertex set, and A = {(i, j) | i, j €eV"'and i < j} denotes a set of arcs. Vertex 0
represents the depot, and 1, ..., n denote n customers. Associated with each customer i,
there is a profit R; and a service time z,; and associated with each arc, there is a travel
time tj. Assume that the travel time for each arc is deterministic, while the service
times for the customers are random variables. Here, we assume that allz,, i =1, 2,...,
n are discrete independent random variables with a known probability distribution.
Assume that T is the maximum effective working time. g is the unit penalty cost for
total time of the route in excess of T. The objective is to maximize the total profit
realized from visiting a subset of the customers without violating the time limit
constraint.

For the problem considered, we employ the total profit realized from such a
TCTSP with stochastic service times as the performance measurer, which can be
recursively calculated as described below.

Let t denote the available remaining time to travel. Assume that the stochastic

service time z; of customer i follows a discrete distribution with K possible values:
ErE2 L, EXL Let pi(k) be P(z,= &%), the probability that service time at node i is
EX. Let S, be the set of all possible states (available remaining time) in stage j. f,(t)
is the profit from depot to node j when the state is t. Pr;(t) is the probability that the

state at node j is t. ¢, (t) is the penalty incurred at node j when the state is t.
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Initialization:

fo(T)=0 (A1)
Pry(T) =1 (A2)
Recursion:

=R+ D (fult+ty; +&)—p;®)p;K) (A.3)

. k
kit+tj g +&7 €S,

Then the penalty function ¢ (t) is as follows.

0 t>0
p;(t)=1-pt t<Oandt+t.

i-1j

Bt +E9) t+t,, +&<0

+E>0 (A.4)

The probability of the state t at stage j:

Prj(t) = Zprj—l(t+tj—1j +§k)pj(k) (A.5)

. k
kit+tj g +67 €S,

Last stage (go back to depot):

profit="» (f,,(t) - ¢, (1)) Pr,,(t) (A.6)

teS, 4

The penalty function ¢, (t) is as follows.

0 t—t _, >0
o, (t) =1 Bt-t, ) t>0andt—t _, <O (A7)
ﬂtn—ln t<0
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