
 

INCREMENTAL EVOLUTION OF  

CLASSIFIER AGENTS USING 

INCREMENTAL GENETIC ALGORITHMS 

 

 

 

 

ZHU FANGMING 

(B.Eng. & M.Eng. Shanghai Jiaotong University) 

 

 

 

 

 

 

A THESIS SUBMITTED 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

NATIONAL UNIVERSITY OF SINGAPORE 

2003 

 



 
 

i

 
                                                                                            
 

 
 
 
 

Acknowledgements 
 

 

I am most grateful to my supervisor, Prof. Guan Sheng-Uei, Steven, for his continuous 

guidance during my PhD program. 

 I am truly indebted to the National University of Singapore for the award of the 

research scholarship, which supports me to finish this research. 

 I would also like to thank all my family members – my wife, son, parents, and 

parents-in-law. The warm encouragement from them really supports me to ride out the 

difficulties. I also present this thesis to my lovely son, who brought me much 

happiness during the whole process of my thesis writing. 

 Last but not least, I would like to thank all the fellow colleagues in Computer 

Communication Network Laboratory, and all the research students under Prof. Guan. 

My heartfelt thanks goes out to many friends who keep encouraging and helping me. 

 

 
 



Contents 
 

ii

 
                                                                                            

 

Contents 
 

 

Summary              vi 

List of Figures                                                                                        viii 

List of Tables                                                                                             x 

 

1   Introduction                                                                                         1 

 1.1 Software Agents ...............................................................................................1 

 1.2 Evolutionary Agents.........................................................................................3 

 1.3 Incremental Learning for Classifier Agents .....................................................4 

1.4 Background and Related Work ........................................................................9 

 1.4.1 Genetic Algorithms for Pattern Classification and Machine Learning  9 

 1.4.2 Incremental Learning and Multi-Agent Learning................................12 

 1.4.3 Decomposition and Feature Selection .................................................15 

 1.5 Approaches and Results .................................................................................18 

 1.6 Structure of this Thesis...................................................................................21 

2   Incremental Learning of Classifier Agents Using Incremental 

Genetic Algorithms                                                                           23 

 2.1 Introduction ....................................................................................................23 

2.2 Incremental Learning in a Multi-Agent Environment....................................25 

 

 
 



Contents 
 

iii

 
                                                                                            

2.3 GA Approach for Rule-Based Classification .................................................26 

 2.3.1 Encoding Mechanism ..........................................................................28 

 2.3.2 Genetic Operators ................................................................................29 

 2.3.3 Fitness Function...................................................................................31 

 2.3.4 Stopping Criteria..................................................................................32 

2.4 Incremental Genetic Algorithms (IGAs) ........................................................32 

 2.4.1 Initial Population for IGAs ..................................................................33 

 2.4.2 Biased Mutation and Crossover ...........................................................36 

 2.4.3 Fitness Function and Stopping Criteria for IGAs ................................37 

2.5 Experiment Results and Analysis...................................................................37 

 2.5.1 Feasibility and Performance of Our GA Approach .............................39 

 2.5.2 Training Performance of IGAs ............................................................40 

 2.5.3 Generalization Performance of IGAs...................................................45 

 2.5.4 Analysis and Explanation ....................................................................51 

2.6 Discussions and Refinement ..........................................................................54 

 2.7 Conclusion......................................................................................................58 

3   Incremental Genetic Algorithms for New Class Acquisition        59 

 3.1 Introduction ....................................................................................................59 

 3.2 IGAs for New Class Acquisition....................................................................61 

 3.3 Experiment Results and Analysis...................................................................65 

 3.3.1 The Wine Data .....................................................................................66 

 3.3.2 The Iris Data .......................................................................................70 

 3.3.3 The Glass Data.....................................................................................72 

 

 
 



Contents 
 

iv

 
                                                                                            
 3.4  Conclusion......................................................................................................74 

4   Continuous Incremental Genetic Algorithms                                 75 

 4.1 Introduction ....................................................................................................75 

 4.2 Continuous Incremental Genetic Algorithms (CIGAs)..................................76 

 4.3 Experiments with CIGA1 and CIGA3 ...........................................................78 

 4.4 Experiments with CIGA2 and CIGA4 ...........................................................82 

 4.5 Comparison to other methods.........................................................................89

 4.6 Discussions.....................................................................................................90 

 4.7 Conclusion......................................................................................................91 

5   Class Decomposition for GA-based Classifier Agents                   93   

 5.1 Introduction ....................................................................................................93 

 5.2 Class Decomposition in GA-based Classification..........................................94 

 5.2.1 Class Decomposition ...........................................................................95 

 5.2.2 Parallel Training ..................................................................................96 

 5.2.3 Integration............................................................................................97 

 5.3  Experiment Results and Analyses ..................................................................99 

  5.3.1 Results and Analysis – GA Based Class Decomposition......................99 

 5.3.2 Results and Analysis – IGA Based Class Decomposition ..................104 

 5.3.3 Generalization Performance and Comparison to Related Work .........107 

 5.4  Conclusion....................................................................................................110 

6   Feature Selection for Modular GA-based Classifier Agents       111 

 6.1 Introduction ..................................................................................................111 

 6.2 Relative Importance Factor (RIF) Feature Selection ...................................113 

 

 
 



Contents 
 

v

 
                                                                                            

6.3 Experiment Results and Analysis.................................................................115 

 6.4 Discussions...................................................................................................121 

 6.4.1 Reduction in Rule Set Complexity ....................................................121 

 6.4.2 Comparison to the Application of RIF in Neural Networks ..............123 

 6.4.3 Other Issues of RIF ............................................................................123 

 6.5  Conclusion....................................................................................................124 

7   Conclusions and Future Research                                                 126 

 7.1 Conclusions ..................................................................................................126 

 7.2 Future Research............................................................................................129 

References                                                                                              131  

Appendix                                                                                                144 

Publication List                                                                                     156          

 

 

 

 

 

 
 



Summary 
 

vi

 
                                                                                            

 

Summary 

The embodiment of evolutionary computation techniques into software agents has 

been increasingly addressed in the literature within various application areas. Genetic 

algorithm (GA) has been used as a basic evolutionary algorithm for classifier agents, 

and a number of learning techniques have been employed by GA-based classifier 

agents. However, traditional learning techniques based on GAs have been focused on 

non-incremental learning tasks, while classifier agents in dynamic environment should 

incrementally evolve their solutions or capability by learning new knowledge 

incrementally. Therefore, the development of incremental algorithms is a key 

challenge to realize the incremental evolution of classifier agents. This thesis explores 

the incremental evolution of classifier agents with a focus on their incremental learning 

algorithms. 

 First, incremental genetic algorithms (IGAs) are proposed for incremental learning 

of classifier agents in a multi-agent environment. IGAs keep old solutions and use an 

“integration” operation to integrate them with new elements, while biased mutation 

and crossover operations are adopted to evolve further a reinforced solution with 

revised fitness evaluation. Four types of IGAs with different initialization schemes are 

proposed and compared. The simulation on benchmark classification data sets showed 

that the proposed IGAs can deal with the arrival of new input attributes/classes and 

integrate them with the original input/output space. It is also shown that the learning 

process can be speeded up as compared to normal GAs. This thesis explores the 

 

 
 



Summary 
 

vii

 
                                                                                            
performance of IGAs in two scenarios. The first scenario explores the condition when 

classifier agents incrementally learn new attributes, while the other one tackles the case 

when the classifier agents incrementally learn new classes. 

 Second, using the IGAs as our basic algorithms, continuous incremental genetic 

algorithms (CIGAs) are proposed as iterative algorithms for continuous incremental 

learning and training of input attributes for classifier agents. Rather than learning input 

attributes in batch as with normal GAs, CIGAs learn attributes one after another. The 

resulting classification rule sets are also evolved incrementally to accommodate new 

attributes. The simulation results showed that CIGAs can be used successfully for 

continuous incremental training of classifier agents and can achieve better performance 

than normal GAs using batch-mode training. 

  Finally, in order to improve the performance of classifier agents, a class 

decomposition approach is proposed. This approach partitions a classification problem 

into several class modules in the output domain. Each module is responsible for 

solving a fraction of the original problem. These modules are trained in parallel and 

independently, and results obtained from them are integrated to form the final solution 

by resolving conflicts. The simulation results showed that class decomposition can 

help achieve higher classification rate with training time reduced. This thesis further 

employs a new feature selection technique, Relative Importance Factor (RIF), to find 

irrelevant features in the input domain. By removing these features, classifier agents 

can improve classification accuracy and reduce the dimensionality of classification 

problems.  

 

 
 



List of Figures 
 

viii

 
                                                                                             

 

List of Figures 
 

2.1  Incremental learning of classifier agents with GA and IGA ........................26 

2.2  Pseudocode of a typical GA..........................................................................27 

2.3  Crossover and mutation ................................................................................30 

2.4  Pseudocode for evaluating the fitness of one chromosome..........................31 

2.5  Pseudocode of IGAs .....................................................................................33 

2.6  Formation of a new rule in a chromosome ...................................................33 

2.7(a) Illustration for integrating old chromosomes with new elements under IS2 
......................................................................................................................34 

 
2.7(b) Pseudocodes for integrating old chromosomes with new elements under 

IS1 - IS4........................................................................................................35 
 

2.8  Biased crossover and mutation rates............................................................37 

2.9(a) Classifier agent evolving rule sets with 10 attributes..................................41  

2.9(b) IS2 running to achieve rule sets with 13 attributes, compared to the 
retraining GA approach. ...............................................................................41 

 
2.10  Effect of mutation reduction rate α  on the performance of IGAs (test CR 

and training time) with the wine data. ..........................................................49 
 

2.11  Effect of crossover reduction rate β  on the performance of IGAs (test CR 
and training time) with the wine data. ..........................................................50 

 
2.12  Analysis model for a simplified classification problem. ..............................51 

2.13  Refined IGAs with separate evolution of new elements...............................57 

3.1  Pseudocode of IGAs for new class acquisition.............................................60 

3.2  Formation of a new chromosome in IGAs with CE or RI ............................61 

 

 
 



List of Figures 
 

ix

 
                                                                                             

3.3  Pseudocodes for the formation of initial population under CE1 and RI1.....63 

3.4  Pseudocodes for the formation of initial population under CE2 and RI2.....64 

3.5  Illustration of experiments on new class acquisition ....................................66  

3.6  Simulation shows: (a) GA results in agent 1 with class 1 & 2; (b) GA 

results in agent 2 with class 2 & 3; (c) IGA (RI1) results in agent 1 with 

class 1, 2, & 3................................................................................................67 

4.1  Illustrations of normal GAs and CIGAs .......................................................76 

4.2  Algorithms for CIGA1 and CIGA3 ..............................................................77 

4.3  Comparison of CIGA1, CIGA3, and normal GA on the glass data..............80 

4.4  Comparison of CIGA1, CIGA3, and normal GA on the yeast data .............81 

4.5  Algorithms for CIGA2 and CIGA4 ..............................................................82 

4.6 Illustration of CIGA2 and CIGA4 ................................................................83 

4.7  Comparison of CIGA2, CIGA4, and normal GA on the wine data..............84 

4.8  Comparison of CIGA2, CIGA4, and normal GA on the cancer data ...........86 

4.9  Performance comparison of CIGAs on the glass data ..................................87 

4.10  Performance comparison of CIGAs on the yeast data ..................................88 

5.1  Illustration of GA with class decomposition ................................................95 

5.2  The evolution process in three class modules on the wine data ...................99 

5.3  Illustration of experiments on IGAs with/without class decomposition.....104 

6.1  Rule set for module 1 with all features – diabetes1 data ............................122 

6.2  Rule set for module 1 with feature 4 removed – diabetes1 data.................122 

 

 

 
 



List of Tables 
 

x

 
                                                                                            

 

List of Tables 
 
 

2.1  IGAs alternatives on the formation of a new population..............................34 

2.2  Details of benchmark data sets used in this thesis ........................................38 

2.3  Comparison of various approaches on the wine data classification .............39 

2.4  Comparison of the performance of IGA on the wine data with various 
attribute partitions.........................................................................................42 

 
2.5  Comparison of the performance of IGA on the glass data with various 

attribute partitions.........................................................................................44 
 

2.6  Comparison of the performance of IGA on the diabetes data ......................44 

2.7  Comparison of the performance of IGAs on the wine data ..........................46 

2.8  Comparison of the performance of IGAs on the cancer data .......................47 

3.1  IGAs alternatives on the formation of a new population for new class 
acquisition.....................................................................................................62 

 
3.2  Comparison of the performance of IGAs on the wine data with various 

class settings .................................................................................................68 
 

3.3  Comparison of the performance of IGAs on the iris data with various 
class settings .................................................................................................71 

 
3.4  Comparison of the performance of IGAs on the glass data with various 

class settings .................................................................................................73 
 
4.1  Performance comparison on the glass data  - CIGA1, CIGA3, and 

normal GA ....................................................................................................79 
 
4.2  Performance comparison on the yeast data – CIGA1, CIGA3, and 

normal GA ....................................................................................................81 
 

 

 
 



List of Tables 
 

xi

 
                                                                                            

4.3  Performance comparison on the wine data  - CIGA2, CIGA4, and 
normal GA ....................................................................................................84 

 
4.4  Performance comparison on the cancer data - CIGA2, CIGA4, and 

normal GA ....................................................................................................85 
 
4.5  Performance comparison of CIGAs on the glass data ..................................88 

4.6  Performance comparison of CIGAs on the yeast data ..................................89 

5.1  Performance of GA with class decomposition on the wine data ................100 

5.2  Performance of GA with class decomposition on the iris data...................101 

5.3  Performance of GA with class decomposition on the diabetes data...........102 

5.4  Performance of GA with 3-module class decomposition on the glass data103 

5.5  Comparison of different approaches of GA with class decomposition on 
the glass data...............................................................................................103 

 
5.6  Comparison of performance of IGAs with/without class decomposition on 

the wine data ...............................................................................................105 
 

5.7  Comparison of performance of IGAs with/without class decomposition on 
the iris data..................................................................................................106 

 
5.8  Comparison of performance of IGA with/without class decomposition on 

the glass data...............................................................................................106 
 

5.9  Generalization performance of GA with class decomposition on the wine 
data..............................................................................................................107 

 
5.10  Generalization performance of GA with class decomposition on the iris 

data..............................................................................................................108 
 

5.11  Generalization performance of GA with class decomposition on the cancer 
data..............................................................................................................108 

 
5.12  Comparison of error rates of various classification methods on the iris data  

....................................................................................................................109 
 
6.1  RIF value for each feature in different class modules - wine data..............116 

6.2  Performance of the classifier with/without feature selection - wine data...117 
 

 

 
 



List of Tables 
 

xii

 
                                                                                            

6.3  RIF value for each feature in different class modules - glass data .............118 

6.4  Performance of the classifier with the complete set of features - glass data     
....................................................................................................................119 

 
6.5  Performance of the classifier with all IRFs removed - glass data...............119 

6.6  RIF value for each feature in different class modules - diabetes1 data ......119 

6.7  Performance of the classifier with different set of features - diabetes1 
data..............................................................................................................120 

 
6.8  Performance of the non-modular GA classifier - diabetes1 data................121 

7.1  Rules of thumb for the selection of IGA and CIGA approaches ................128 

 

 
 



Chapter 1  Introduction   1 

 

Chapter 1 

Introduction 

 

1.1 Software Agents 

The term "agent" is used increasingly to describe a broad range of computational 

entities, although the academia has not reached a generally accepted definition for 

agents. Some agents may be physically embodied, such as robotic systems that 

cooperatively manipulate objects in a task environment, whereas others may be 

computationally coded, which are referred as software agents. In general, software 

agents are software entities that carry out some set of operations on behalf of a user or 

another program with some degree of independence or autonomy (Bradshaw, 1997; 

Maes, 1994). 

 Despite some diversity in various applications, some common properties can be 

identified to make agents different from conventional programs. Each agent might 

possess to a greater or lesser degree attributes like those enumerated in (Etzioni and 

Weld, 1995) and (Franklin and Graesser, 1996): 

• Reactivity: the ability to selectively sense and act; 

• Autonomy: goal-directedness, proactive and self-starting behavior; 

• Collaborative behavior: can work in concert with other agents to achieve a 

common goal; 



Chapter 1  Introduction   2 

• “Knowledge-level” communication ability: the ability to communicate with 

persons and other agents with language more resembling human-like “speech 

acts” than typical symbol-level program-to-program protocols; 

• Personality: the capability of manifesting the attributes of a “believable” 

character such as emotion; 

• Adaptability: being able to learn and improve with experience; 

• Mobility: being able to migrate in a self-directed way from one host plat-form to 

another. 

 There are many classification approaches in the literature. Nwana's classification  

(Nwana, 1996) classifies the agent types according to the attributes of cooperation, 

learning, and autonomy. According to their mobility, agents can also be static or 

mobile. In terms of reasoning model, agents can be deliberative or reactive. Hybrid 

agents are also common in various applications. 

 Nowadays, agent-based solutions are explored and applied in many science and 

engineering applications, such as pattern recognition, scheduling, embedded systems, 

network management, simulation, virtual reality, etc. In the domain of commercial 

applications, agent-based e-commerce has emerged and become the focus of the next 

generation of e-commerce, where software agents act on behalf of customers to carry 

out delegated tasks automatically (Zhu et al., 2000). They have demonstrated 

tremendous potential in conducting various tasks in e-commerce, such as comparison 

shopping, negotiation, payment, etc. (Guan et al., 2000; Guan and Zhu, 2002a; Guan et 

al., 2002)  

 Pattern classification plays an important role in various applications such as image 

processing, information indexing, and information retrieval, and agent-based solutions 



Chapter 1  Introduction   3 

for pattern classification have attracted more and more research interests (Vuurpijl and 

Schomaker, 1998). This thesis explores incremental learning of evolutionary agents in 

the application domain of pattern classification. These agents are called as classifier 

agents.  

 

1.2 Evolutionary Agents 

It has attracted much attention in the literature to embody agents with some 

intelligence and adaptability (Smith et al., 2000). Soft computing has been viewed as a 

foundation component for this purpose. It differs from conventional (hard) computing 

in that, unlike hard computing, it is tolerant of imprecision, uncertainty, partial truth, 

and approximation (Zadeh, 1997). The principal constituents of soft computing are 

fuzzy logic (FL), neural networks (NN), evolutionary computation (EC), and machine 

learning (ML) (Nwana and Azarmi, 1997).  

 Evolutionary computation (EC) is one of the main techniques of soft computing. 

As a naturally inspired computing theory, EC has already found applications in the 

development of autonomous agents and multi-agent systems (Smith et al. 1999). 

Imbuing agents with the ability to evolve their behavior and reasoning capabilities can 

give them the ability to exist within dynamic domains. EC techniques are good in any 

situation where agents must deal with many interacting variables that can result in 

many possible solutions to a problem. The agent’s job, in some situations, is to find the 

optimal mix of values of those variables that produce an optimal solution (Namatame 

and Sasaki, 1998; Sheth and Maes, 1993; Haynes and Wainwright, 1995).  

 EC consists of many subcategories, such as evolutionary programming (Fogel et 

al., 1991), genetic algorithms (Holland, 1975; Michalewicz, 1996), evolution strategies 



Chapter 1  Introduction   4 

(Back et al. 1991; Schwefel and Rudolph, 1995), genetic programming (Koza, 1992), 

etc. Fogel (1995) and Back et al. (1997) provided a comprehensive treatment on the 

foundation and scope of EC. The most widely used form of evolutionary computation 

is genetic algorithms (GAs). Specifically, GAs work by maintaining a gene pool of 

possible solutions - chromosomes. Successive evaluations of the performance of 

chromosomes regarding some fitness function results in the unfit chromosomes being 

eliminated. Then mutation and crossover produce new offspring. After some 

generations, GAs ensure that the fittest chromosome is evolved as the final solution.  

 GAs have been widely used in the literature to learn rules for pattern classification 

problems, either through supervised or unsupervised learning, and they have been 

proved as effective approaches in globally searching solutions for classification 

problems (Corcoran and Sen 1994; Ishibuchi et al., 1999).  In this thesis, genetic 

algorithms (GAs) are used as the basic evolution tools for classifier agents. On its basis, 

incremental genetic algorithms (IGAs) are proposed for incremental learning of 

classifier agents. 

 

1.3 Incremental Learning for Classifier Agents 

When agents are initially created, they have little knowledge and experience with 

relatively low capability. It is advantageous if they have the ability to evolve (Zhu and 

Guan, 2001a, 2001b; Guan and Zhu, 2002e). Learning is the basic approach for agents 

to advance the evolution process, hence the selection of learning techniques is 

important for agent evolution. There are a number of learning techniques being 

employed by agents in the literature. They can be categorized according to the 

following criteria: aim of learning, role of agents, and trigger of learning (Liu, 2001).  



Chapter 1  Introduction   5 

 As the real-world situation is complicated and keeps changing, agents are actually 

exposed to a changing environment. Therefore, they need to evolve their solutions to 

adapt to various changes. That is, it should incrementally evolve their solutions or 

capability by incrementally learning some new knowledge. Another situation may be 

that the tasks or changes are too complicated, so that the agents may need to evolve 

incrementally, i.e., step by step. For example, an agent is using certain GA to resolve a 

new task t. As all the individual chromosomes may perform poorly and therefore the 

GA gets trapped in an unfruitful region in the solution space. If a population is first 

evolved on an easier task version t’ and then on task t, it may be possible to evolve a 

better solution.  

 The term of incremental learning has been used rather loosely in the literature. 

However, there are some common criteria for an incremental learning algorithm, such 

as it should be able to learn additional information from new data; it should preserve 

previously acquired knowledge; it should be able to accommodate new classes that 

may be introduced with new data (Polikar et al., 2001). 

 Specifically, incremental learning is also critical for classifier agents. There can be 

a number of changes occurring for classifier agents in a dynamic environment. For 

instance, new training patterns may become available; new attributes may emerge; and 

new classes may be found. In order to tackle these changes, classifier agents need to be 

equipped with special learning techniques. However, traditional learning techniques 

based on GAs have been focused on non-incremental learning. It is assumed that the 

problem to be solved is fixed and the training set is constructed a priori, so the 

learning algorithm stops when the training set is fully processed. On the contrary, 

incremental learning is an ad hoc learning technique whereby learning occurs with the 



Chapter 1  Introduction   6 

change of environmental settings, i.e., it is a continuing process rather than a one-shot 

experience (Giraud-Carrier, 2000). In order to satisfy these requirements, special 

approaches need to be designed for incremental learning of classifier agents under 

different circumstances. This motivates the research work of this thesis, where 

incremental genetic algorithms are proposed for this purpose. In addition, most 

literature work in classification uses neural networks as tools for incremental learning, 

while very few employ genetic algorithms. As GAs have been widely used as basic 

soft computing techniques, the exploration of incremental learning with genetic 

algorithms becomes more important. This thesis aims to establish an explorative 

research on incremental learning with proposed IGAs. Through this study, the 

application domains of GAs can be expanded, as IGAs can cater to more adaptive 

applications in a changing environment. 

 Agents are both self-interested and social. Communication between agents enables 

them to exchange information and to coordinate their activities. Multi-agent systems 

(MAS) have been established as an important subdiscipline of artificial intelligence. In 

general, MAS are computational systems in which several semi-autonomous agents 

interact or work together to perform some set of tasks or satisfy some set of goals 

(Lesser, 1995; Ferber, 1999; Wooldridge and Jennings, 1995; Jennings et al., 1995). 

 Learning in single-agent environment and multi-agent environment can be largely 

different. To date, most learning algorithms have been developed from a single-agent 

perspective. According to Stone and Veloso (1998), single-agent learning focuses on 

how one agent improves its individual skills, irrespective of the domain in which it is 

embedded. But in a multi-agent environment, the coordinated multi-agent learning is a 

more nature metaphor and may improve the effectiveness. There are two streams of 



Chapter 1  Introduction   7 

research about combining MAS and learning. One regards multi-agent systems in 

which agents learn from the environment where they operate. The second stream 

investigates the issues of multi-agent learning with a focus on the interactions among 

the learning agents (Lesser, 1995).  

 In this thesis, incremental learning is considered in both single-agent and multi-

agent environment. However, incremental learning in this thesis has some difference 

from the above-mentioned multi-agent learning. In conventional approaches, multiple 

agents coexist in a competitive and collaborative environment. In order to achieve 

optimal solutions for multiple agents, these approaches concern more about 

coordination and collaboration among agents. Thus, their research is focused more on 

the game theory or constraint-based optimization. In this thesis, we make use of the 

communication and information exchange among agents and explore how they can 

facilitate incremental learning and boost performance. That is, we explore how agents 

can benefit from the knowledge provided by other agents, and how agents can adapt 

their learning algorithms to incorporate new knowledge acquired.  

 In addition to incremental learning, achieving higher performance for classifier 

agents is always an ultimate pursuit. In general, classification accuracy and training 

time are two main metrics for evaluating classifier performance. There are many 

techniques proposed for this purpose, among which decomposition methods and 

feature selection have attracted more interests. 

 The purpose of decomposition methodology is to break down a complex problem 

into several manageable subproblems. According to Michie (1995), finding a good 

decomposition is a major tactic both for ensuring the transparent solutions and for 

avoiding the combinatorial explosion. It is generally believed that problem 



Chapter 1  Introduction   8 

decomposition can benefit from: conceptual simplification of the problem, making the 

problem more feasible by reducing its dimensionality, achieving clearer results (more 

understandable), reducing run time by solving smaller problems and by using parallel 

or distributed computation and allowing different solution techniques for individual 

sub problems. The approach proposed in the thesis is based on the decomposition on 

the output classes of classification problems. It is shown that the proposed class 

decomposition approach can improve the classification accuracy with training time 

reduced. Very little research work has been done for class decomposition with genetic 

algorithms. In this thesis, the proposed class decomposition approach is applied to not 

only normal GAs, but also IGAs for incremental learning. This actually increases the 

adaptability of the decomposition approach, as it can be used in both static and 

adaptive applications.  

 A number of features are usually associated with each classification problem. 

However, not all of the features are equally important for a specific task. Some of them 

may be redundant or even irrelevant. But they are often unknown a priori. Better 

performance may be achieved by discarding some features (Verikas and Bacauskiene, 

2002).  In many applications, the size of a data set is so large that learning might not 

work as well before removing these unwanted features. Reducing the number of 

irrelevant/redundant features drastically reduces the running time of a learning 

algorithm and yields a more general solution. This helps in getting a better insight into 

the underlying concept of a real-world classification problem (Koller and Sahami, 

1996; Dash and Liu, 1997). In order to find these irrelevant/redundant features, many 

feature selection techniques have been proposed. However, these approaches are based 

on neural networks, and most of them are computation-intensive such as knock- out 



Chapter 1  Introduction   9 

techniques. This motivates us to use an approach to determine irrelevant features with 

small computation cost, and apply it to genetic algorithms. This thesis employs a 

feature selection technique - relative importance factor (RIF), which was originally 

proposed in (Guan and Li, 2002b). RIF has proved its effectiveness with NN-based 

classifiers. This thesis explores further the application of RIF in modular GA-based 

classifier agents where RIF is used together with the above-mentioned class 

decomposition approach. It is shown that RIF is effective with modular-GA based 

approach, and its performance is comparable to that of NN-based solutions. 

 

1.4  Background and Related Work 

1.4.1  Genetic Algorithms for Pattern Classification and Machine Learning  

Pattern recognition/classification problems have been widely used as traditional 

formulation of machine learning problems and researched with different approaches 

including statistical methods (Fukunaga, 1990; Weiss and Kulikowski, 1991), neural 

networks (Yamauchi et al., 1999; Guan and Li, 2001; Su et al., 2001), fuzzy sets 

(Setnes and Roubos, 2000), cellular automata (Kang, 2000) and evolutionary 

algorithms (Ishibuchi et al., 1997; Merelo et al., 2001; Adeli and Hung, 1995). Among 

evolutionary algorithms, GA-based solutions have become one of the popular 

techniques for classification. De Jong and Spears (1991) considered the application of 

GAs to a symbolic learning task -- supervised concept learning from a set of examples. 

Corcoran and Sen (1994) used GAs to evolve a set of classification rules with real-

valued attributes. Bala et al. (1995) introduced a hybrid learning methodology that 

integrates GAs and decision tree learning in order to evolve optimal subsets of 

discriminatory features for robust pattern classification. GAs are used to search the 



Chapter 1  Introduction   10 

space of all possible subsets of a large set of candidate discrimination features. 

Ishibuchi et al. (1999) examined the performance of a fuzzy genetic-based machine 

learning method for pattern classification problems with continuous attributes.  

 Compared to the other methods, GA-based approaches have many advantages. For 

example, neural networks have no explanatory power by default to describe why 

results are as they are. This means that the knowledge (models) extracted by neural 

networks is still hidden and distributed over the network. GAs have comparatively 

more explanatory power, as it explicitly shows the evolutionary process of solutions 

and the solution format is completely decodable. 

 GAs are widely used in rule-based machine learning (Goldberg, 1989; 

Grefenstette, 1993). Fidelis et al. (2000) presented a classification algorithm based on 

GA that discovers comprehensible rules. Merelo et al. (2001) presented a general 

procedure for optimizing classifiers based on a two-level GA operating on variable 

size chromosomes. There are two general approaches for GA-based rule optimization 

and learning (Cordon et al., 2001). The Michigan approach uses GAs to evolve 

individual rules, a collection of which comprises the solution for the classification 

system (Holland, 1986). Another approach is called the Pitt approach, where rule sets 

in a population compete against each other with respect to performance on the domain 

task (DeJong, 1988; Smith, 1980). Although little is known currently concerning the 

relative merits of these two approaches, the selection of encoding mechanism will not 

affect the final solution and performance. In this thesis, the Pitt approach is chosen, as 

it is more straightforward. Because each chromosome in the Pitt approach represents a 

candidate solution for a target problem, it facilitates implementation of encoding/ 

decoding mechanisms and genetic operators such as mutation and crossover. 



Chapter 1  Introduction   11 

Moreover, fitness evaluation is simpler than that in the Michigan approach, as fitness 

value is assigned to a single chromosome, not shared by a group of chromosomes. 

  One innovative form of the traditional GA is variable-length GA (VGA), where the 

length of chromosome is not fixed during evolution. VGA is suitable for specific 

problems where the representation of candidates is difficult to be determined in 

advance. Srikanth et al. (1995) proposed VGA-based methods for pattern clustering 

and classification. Bandyopadhyay et al. (2001) combined the concept of chromosome 

differentiation with VGA, and designed a classifier that is able to automatically evolve 

the appropriate number of hyperplanes to classify different land-cover regions from 

satellite images. Incremental genetic algorithm in this thesis is also a type of VGA. For 

instance, when new attributes or classes are acquired, chromosomes will be expanded 

in terms of structure and length as a result of the integration of the new attributes or 

classes. However, the length of chromosome in our approach is still fixed when the 

number of attributes remains unchanged, and varied when the new attributes or classes 

need to be integrated. 

 There is a stream of research called parallel genetic algorithms (PGAs) (Cantu-Paz, 

2000b; Melab and Talbi, 2001), which are parallel implementation of GAs. PGAs can 

provide considerable gains in terms of performance and scalability and they can be 

implemented on networks of heterogeneous computers or on parallel mainframes. 

Cantu-Paz (2000a) proposed a Markov Chain model to predict the effect of parameters, 

such as number of population, size, topology, migration rate, on the performance of 

PGAs. Melab and Talbi (2001) explored the application of PGAs in rule mining for 

large databases. There are two main models for PGA - Island model and 

Neighbourhood model (Cantu-Paz 2000a, 2000b). The first has a number of 



Chapter 1  Introduction   12 

subpopulations, each containing a number of individuals. Each subpopulation runs like 

a canonical GA with some communication (exchange of individuals) between 

subpopulations. The second model has each individual located on some topography 

with the restriction that it is only allowed to communicate with its immediate 

neighbours. The GA with class decomposition approach proposed in this thesis is 

similar to the method of PGAs, when it is implemented in a parallel model. The 

distinct feature of our class decomposition is that sub-populations in our approach are 

all independent, so that there is no migration among them. As a result, training time 

can be reduced. Moreover, no interaction required among populations for modules 

allows full-fledged parallel implementation. Our design of class decomposition also 

ensures that the final solutions are not trapped into local optima. The inner mechanism 

is that each module needs to not only classify the data with the target classes correctly, 

but also ensure that data for other classes will not be misclassified into these target 

classes. The use of intelligent decision rules in the integration step will resolve further 

the conflicts among sub-solutions.   

 

1.4.2 Incremental Learning and Multi-Agent Learning 

Many researchers have addressed incremental learning algorithms and methods in 

various application domains. Giraud-Carrier and Martinez (1994) created a self-

organizing incremental learning model that attempts to combine inductive learning 

with prior knowledge and default reasoning. New rules may be created and existing 

rules modified, thus allowing the system to evolve over time. The model remains self-

adaptive, while not having to unnecessarily suffer from poor learning environments. 

Tsumoto and Tanaka (1997) introduced an incremental learning approach to 



Chapter 1  Introduction   13 

knowledge acquisition, which induces probabilistic rules incrementally by using rough 

set technique, and their approach was evaluated on two clinical databases. Ratsaby 

(1998) presented experimental results for an incremental nearest-neighbor learning 

algorithm which actively selects samples from different pattern classes according to a 

querying rule as opposed to the a priori probabilities. It was found that the amount of 

improvement of this query-based approach over the passive batch approach depends on 

the complexity of the Bayes rule. Lange and Grieser (2002) provided a systematic 

study of incremental learning from noise-free and noisy data. 

 In pattern classification, a wealth of work on incremental learning uses neural 

networks as learning subjects, and few touch on the use of evolutionary algorithms. Fu 

et al. (1996) proposed an incremental backpropagation learning network which 

employs bounded weight modification and structural adaptation learning rules and 

applies initial knowledge to constrain the learning process. Yamauchi et al. (1999) 

proposed incremental learning methods for retrieving interfered patterns. In their 

methods, a neural network learns new patterns with a relearning of a few number of 

retrieved past patterns that interfere with the new patterns. Polikar et al. (2001) 

introduced Learn++, an algorithm for incremental training of neural network. Dalché-

Buc and Ralaivola (2001) presented a new local strategy to solve incremental learning 

tasks. It avoids relearning of all the parameters by selecting a working subset where the 

incremental learning is performed. Other incremental learning algorithms include the 

growing and pruning of classifier architectures (Osorio and Amy, 1999) and the 

selection of most informative training samples (Engelbrecht and Brits, 2001). As 

discussed earlier, some incremental learning algorithms are employed for a 

complicated problem, learning from an easier task to a more difficult task. Liu et al. 



Chapter 1  Introduction   14 

(2001) presented a constructive learning algorithm for feedforward neural networks, 

employing an incremental training procedure where training patterns are learned one 

by one. Guan and Liu (2002) presented an incremental training method with an 

increasing input dimension (ITID). ITID divides the whole input dimension into 

several sub dimensions each of which corresponds to an input attribute. Neural 

Networks learn input attributes one after another through their corresponding sub-

networks. In this thesis, continuous incremental genetic algorithms (CIGAs) are 

proposed for incremental training of GA-based classifiers. The incremental training 

with genetic algorithms has not been addressed in the literature so far. Different from 

using input attributes in a batch as is done in normal GAs, CIGAs learn attributes one 

after another. The resulting rule sets are also evolved incrementally to reinforce the 

final solution. As CIGAs are developed based on IGAs, various approaches are also 

explored in terms of the corresponding IGA approaches. It is shown that this type of 

incremental training/learning method can improve classification accuracy.  

 As mentioned earlier, some multi-agent learning systems are explored with the use 

of MAS.  Enee and Escazut (1999) explored the evolution of multi-agent systems with 

distributed elitism. It uses classifier systems as the evolution subjects. Caragea et al., 

(2000) proposed a theoretical framework for the design of learning algorithms for 

knowledge acquisition from multiple distributed, dynamic data sources. Abul et al. 

(2000) proposed two new multi-agent based domain independent coordination 

mechanisms for reinforcement learning. 

 Learning Classifier System (LCS) (Lanzi, 2000; Takadama et al., 2001) is a 

machine learning technique which uses reinforcement learning, evolutionary 

computing, and heuristics to develop adaptive systems. They have been used in various 



Chapter 1  Introduction   15 

applications such as knowledge discovery and adaptive expert systems. LCS is 

designed as a stimulus-response system, which means LCS passively matches 

messages from the environment and generates actions to modify the environment. In 

contrast, in addition to passive response, classifier agents in our work are capable of 

autonomously interacting and collaborating with each other. They are working in a 

multi-agent environment, which motivates and facilitates collaborative learning. As a 

result, agents can benefit from such collaboration, and achieve higher performance 

than in a stand-alone situation. 

  

1.4.3 Decomposition and Feature Selection   

Decomposition methods have been used in various fields, such as classification, data 

mining, clustering, etc. Rokach and Maimon (2002) presented a feature decomposition 

approach for improving supervised learning tasks. The original set of features is 

decomposed into several subsets. A classification model is built for each subset, and 

then all generated models are combined. A greedy procedure is developed to 

decompose the input features set into subsets and to build a classification model for 

each subset separately. Weile and Michielssen (2000) explored the application of 

domain decomposition genetic algorithms to the design of frequency selective 

surfaces. Masulli and Valentini (2000) presented a new machine learning model for 

classification problems. It decomposes multi-class classification problems into sets of 

two-class subproblems which are assigned to non-linear dichotomizers. Apté et al. 

(1997) presented a new measure to determine the degree of dissimilarity between two 

given problems, and suggested a way to search for a strategic splitting of the feature 

space that identifies different characteristics. Watson and Pollack (2000) used 



Chapter 1  Introduction   16 

techniques from multi-objective optimization to devise an automatic problem 

decomposition algorithm that solves test problems effectively.  

 In artificial neural networks, some class decomposition methods have been 

proposed for pattern classification. The method proposed in (Anand et al., 1995) is to 

split a c-class problem into c two-class sub-problems and each module is trained to 

learn a two-class sub-problem. Therefore, each module discriminates one class of 

patterns from patterns belonging to the remaining classes. The method in (Lu and Ito, 

1999) divides a c-class problem into  two-class sub-problems. Each of the two-

class sub-problems is learned independently while the existence of the training data 

belonging to the other c-2 classes is ignored. The final overall solution is obtained by 

integrating all of the trained modules into a min-max modular network. (Guan and Li, 

2002a) proposed a simple neural-network task decomposition method based on output 

parallelism. Incorporated with a constructive learning algorithm, the approach does not 

require excessive computation and any prior knowledge concerning decomposition. 

While the above research work has been focused on decomposition methods with 

neural networks, our class decomposition approach aims to explore its new application 

based on genetic algorithms which is untouched in the literature. Furthermore, it is not 

only a direct application to traditional GAs, we also have come up with a new class of 

IGAs for incremental learning. Our class decomposition is also different from 

traditional approaches, as an intelligent decision method is used to integrate sub-

solutions achieved by those sub-modules. Conflicts are then removed based on some 

heuristics using the difference of accuracy among sub-modules. Moreover, the time 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
c



Chapter 1  Introduction   17 

cost for integration is low and negligible, as the intelligent decision does not require 

any evolution process. 

 There are many feature selection techniques developed from various perspectives 

such as performance (Setiono and Liu, 1997), mutual information (entropy) (Battiti, 

1994; Kwak and Choi, 2002), and statistic information (Lerner et al., 1994). Setiono 

and Liu (1997) proposed a technique based on the performance evaluation of a neural 

network. In their technique, the original features are excluded one by one and the 

neural network is retrained and evaluated repeatedly. Pal et al. (2000) demonstrated a 

way of formulating neuro-fuzzy approaches for feature selection under unsupervised 

learning. A fuzzy feature evaluation index for a set of features is defined in terms of 

degree of similarity between two patterns. Yang and Honavar (1998) applied a genetic 

algorithm to feature subset selection, aiming to improve the effectiveness in the 

automated design of neural networks for pattern classification and knowledge 

discovery.  

 Guan and Li (2002b) proposed two feature selection techniques – relative 

importance factor (RIF) and relative FLD weight analysis (RFWA) for modular neural 

network classifiers. They involved the use of Fisher’s linear discriminant (FLD) 

function to obtain the importance of each feature and find out correlation among 

features. As a new application of RIF (Guan and Li, 2002b), this thesis applies RIF in 

modular GA-based classifier agents where RIF is used together with the class 

decomposition approach. It is shown that RIF will be more effective with a modular-

GA based classification approach, as it is easier to find irrelevant features in each class 

module. By removing the irrelevant features detected by RIF in each module, it is 

illustrated that RIF is effective in finding irrelevant features and can improve 



Chapter 1  Introduction   18 

classification accuracy and reduce the complexity of solutions.  

 

1.5 Approaches and Results 

The hypotheses of this thesis cover mainly two aspects. It is postulated that 

incremental learning of classifier agents with GAs is feasible with specially-designed 

algorithms. Different types of incremental learning algorithms should be designed for 

various circumstances. It is also postulated that decomposition methods and feature 

selection techniques coupled with GAs are potential solutions to improve classification 

performance of GA-based classifier agents. The proposed approaches together with the 

results obtained confirming with these hypotheses are summarized as follows. 

 First, this thesis employs GAs as basic learning algorithms and proposes 

incremental genetic algorithms (IGAs) for incremental learning within one or more 

classifier agents in a multi-agent environment. IGAs eliminate the need to re-evolve 

the rule set from scratch in order to adapt to the ever-changing environment. Using 

IGAs, a classifier agent can fully utilize current knowledge and quickly respond to the 

changes in environment. IGAs keep old solutions and use an “integration” operation to 

integrate them with new elements, while biased mutation and crossover operations are 

adopted to further evolve a reinforced solution with revised fitness evaluation. Four 

types of IGAs with different initialization schemes are proposed and compared. As 

IGAs inherit old solutions and use the specially-designed algorithms based on 

incremental evolution, they can outperform traditional GAs in terms of accuracy and 

training time. The simulation results on various benchmark classification data sets 

show that the proposed IGAs can deal with the arrival of new input attributes/classes 

and integrate them with the original input/output space. It is also shown that the 



Chapter 1  Introduction   19 

proposed IGAs can be successfully used for incremental learning and speed up the 

learning process as compared to normal GAs (Guan and Zhu, 2002b, 2002c). 

 This thesis explores the performance of IGAs in two scenarios. The first scenario 

explores the condition when classifier agents incrementally learn new attributes, while 

the other one tackles the case when the classifier agents incrementally learn new 

classes (Guan and Zhu, 2003). They are elaborated separately in two chapters. 

 Second, using IGAs as the basic algorithms, continuous incremental genetic 

algorithms (CIGAs) are proposed as iterative algorithms for continuous incremental 

learning and training of input attributes for classifier agents. Rather than using input 

attributes in a batch as with normal GAs, CIGAs learn attributes one after another. The 

resulting classification rule sets are also evolved incrementally to accommodate the 

new attributes. Different approaches of CIGAs are evaluated with four benchmark 

classification data sets. Their performance is also compared with normal GAs. As 

CIGAs learn attributes sequentially and the candidate solutions are improved gradually 

with the introduction of each new attribute, candidate solutions are less likely to be 

trapped in local optima. As a result, the final classification accuracy will be higher. 

The simulation results show that CIGAs can be used successfully for continuous 

incremental learning of classifier agents and can achieve better performance than 

normal GAs using batch-mode training (Guan and Zhu, 2002d). 

 Third, to improve the classification performance of classifier agents, a class 

decomposition approach is proposed. This approach partitions a classification problem 

into several class modules in the output domain, and each module is responsible for 

solving a fraction of the original problem. These modules are trained in parallel and 

independently, and results obtained from them are integrated to form the final solution. 



Chapter 1  Introduction   20 

Two conditions are considered for the use of class decomposition in classifier agents. 

One is that agents should learn solutions from scratch. The other is that they already 

have some solutions available, yet still need to evolve their solutions to accommodate 

new classes. GAs and IGAs are used for these two conditions respectively, and the 

performance of class decomposition is evaluated based on these two algorithms. As the 

class decomposition approach breaks up a target problem into several modules, the 

inter-class interference is reduced. Furthermore, with a specially-designed integration 

mechanism, the conflicts among sub-solutions obtained from sub-modules are 

removed without much computation effort. The experiments with four benchmark data 

sets show that class decomposition can help achieve a higher classification rate with 

training time reduced (Guan and Zhu, 2004a). 

 Finally, this thesis further explores the use of feature selection in modular GA-

based classifier agents. A new feature selection technique based on relative importance 

factor (RIF) is employed to find irrelevant features in the feature space. As RIF is 

employed with class decomposition approach, it is easier to find the irrelevant features 

(IRFs) in individual class, eliminating the interference from other classes. By removing 

these irrelevant features from each module, the feature space is reduced and the 

classifiers can converge to the final solution easily. The experiment results show that 

RIF can be used to determine the irrelevant features and help achieve higher 

classification accuracy with feature space reduced. The complexity of the resulting rule 

sets is also reduced which means the modular classifiers with irrelevant features 

removed will be able to classify data with a higher throughput (Guan et al., 2004b). 

 

 



Chapter 1  Introduction   21 

 

1.6 Structure of this Thesis 

This thesis is divided into seven chapters. In this chapter, the background and 

motivation of this thesis has been addressed, and approaches and results are briefly 

presented. The remainder of this thesis is organized as follows. 

 In Chapter 2, the design of rule-based classification and GAs is elaborated. 

Incremental genetic algorithms (IGAs) are proposed to incrementally learn new 

attributes in a multi-agent environment. The performance of IGAs is evaluated through 

experiments with some real-world classification data sets. 

 Chapter 3 continues the exploration of incremental leaning of classifier agents from 

another viewpoint of acquiring new classes. GAs and IGAs are still employed as the 

main techniques to evolve the rule set for classification. IGAs are adapted to 

incorporate two types of new class acquisition, i.e., class expansion (CE) and rule 

integration (RI). The performance of IGAs is still investigated through simulation on 

some real-world classification data sets. 

 Chapter 4 proposes continuous incremental genetic algorithms (CIGAs) on the 

basis of IGAs. CIGAs learn input attributes one after another, and the resulting 

classification rule sets are also evolved incrementally to accommodate the new 

attributes. Different approaches of CIGAs are evaluated with benchmark classification 

data sets, and their performance is compared with normal GAs. 

 A class decomposition approach for GA-based classifier agents is proposed in 

Chapter 5. The simulation result shows that class decomposition can help achieve 

higher classification rate with training time reduced. 



Chapter 1  Introduction   22 

 Chapter 6 proposes a simple feature selection technique - relative importance factor 

(RIF). RIF is used to find irrelevant features in the input domain for modular GA-

based classification. By removing these features, classifier agents aim to improve the 

classification accuracy and reduce the dimensionality of the classification problems. 

 Chapter 7 summarizes the work presented in this thesis and indicates some possible 

future work. 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 23 
  

 

Chapter 2 

Incremental Learning of Classifier 
Agents Using Incremental Genetic 
Algorithms 
 
 
 
2.1 Introduction 

Traditional pattern classification work in the literature focuses on batch-mode, static 

domain, where the attributes, classes, and training data are all determined in advance 

and the task of learning algorithms is to find out the best rule set which classify the 

available instances with the lowest error rate (Corcoran and Sen, 1994). However, 

some learning tasks do not fit into this static model. As the real-world situation is more 

dynamic and keeps changing, a classifier agent is actually exposed to a changing 

environment. Therefore, it needs to evolve its solution to adapt to various changes. In 

general, there are three types of changes in classification problems. First, new training 

data may be available for the solution to be refined. Second, new input attributes may 

be found to be possible contributors for a classification problem. Third, new classes 

may become possible categories for classification. To deal with these types of changes, 

classifier agents have to learn incrementally and adapt to the new environment 

gradually. This chapter chooses the arrival of new attributes as the target for 

incremental learning. 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 24 
  

 Incremental learning has attracted much research effort in the literature. However, 

as discussed in Chapter 1, research on incremental learning based on genetic 

algorithms (GAs) is still open with full challenges. As GAs have been widely used as 

basic soft computing techniques, the exploration of incremental learning with GAs 

becomes more meaningful. It will broaden the application domains of GAs, as more 

and more applications using GAs demand certain incremental algorithms to survive in 

a changing environment. To achieve incremental learning, GAs will need to be revised 

accordingly. With a scenario of new attributes being acquired, a classifier agent needs 

some algorithms to revise its rule set to accommodate the new attributes. That means it 

should find out how new attributes can be integrated into the old rule set to generate 

new solutions. Of course, the agent can run GAs from scratch again as some 

conventional approaches do. However, this approach requires a lot of time and wastes 

the previous training effort. In some applications with some hard constraints on time 

and resource, a classifier agent may need to respond quickly in an online manner. 

 In this chapter, GAs are employed as basic learning algorithms and new 

approaches called incremental genetic algorithms (IGAs) are proposed for incremental 

learning.  Classifier agents are implemented in a multi-agent environment where the 

agents can exchange information and benefit each other. IGAs inherit old solutions and 

integrate them with new elements to accommodate new attributes, while biased 

mutation and crossover operations are used to further evolve a reinforced solution. 

Four types of IGAs with different initialization schemes are proposed and compared.  

The simulation results on benchmark classification problems show that IGAs can be 

successfully used for incremental learning. IGAs also speed up the learning process as 

compared to normal GAs. 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 25 
  

 

2.2 Incremental Learning in a Multi-Agent Environment 

As discussed earlier, in some classification problems, new training data, attributes and 

classes may become available or some existing elements may get changed. Thus, 

classifier agents should have some capability to cope with these changes. Either they 

may sense the environment and evolve their solutions by themselves, or they may 

collaborate to adapt to the new environment, as shown in Figure 2.1. There are many 

possible types of cooperation among a group of agents to boost their capability. 

Classifier agents can exchange information on new attributes and classes. If available, 

they can also exchange evolved rule sets (chromosomes). They can even provide each 

other with new training/testing data, or challenge each with unsolved problems. 

Various combinations of these operational modes are also possible.  

 Figure 2.1 also shows the integration of GA and IGA as the main approach for 

incremental learning, either with self-learning or collaborative learning. Each classifier 

agent may first use GA from scratch to obtain certain solution (current solution in the 

figure) based on the attributes, classes, and training data currently known. When new 

attributes, classes, or data are sensed or acquired from the environment or other agents, 

IGA is then used to learn the new changes and evolve into a reinforced solution. As 

long as the learning process continues, the IGA procedure can be repeated for 

incremental learning. 

 When designing IGAs for incremental learning, we aim to achieve the following 

objectives. Firstly, previous knowledge should be preserved and reused if possible, 

which means IGA works on currently available solutions, instead of working from 

scratch again. Secondly, the overall performance of a classifier agent should not be 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 26 
  

degraded by using IGA. Thirdly, the complexity of IGA should be moderate so that the 

speed of IGAs can outperform GAs in incremental leaning. The complexity is 

measured in terms of training time and number of generations in the reported 

simulations.  

Classifier
Agent 2

Initial Solution

GA

Current Solution

IGA

Reinforced Solution

Classifier
Agent 1

Training Data,
Attributes, Classes,

Rules,...

Initial Solution

GA

Current Solution

IGA

Reinforced Solution
 

Figure 2.1: Incremental learning of classifier agents with GA and IGA 

 

2.3 GA Approach for Rule-Based Classification 

GAs are randomness-search procedures capable of adaptive search over a wide range 

of search spaces. Rule-based classification has already become a recognized 

application field for GAs. A typical GA is shown in Figure 2.2. 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 27 
  

 The task of classification is to assign instances to one out of a set of pre-defined 

classes, by discovering certain relationship among attributes. Let us assume a pattern 

classification problem is a c-class problem in an n-dimensional pattern space. And p 

real vectors ( ) ,,...,2,1 pi =, iniii xxxX ...,,, 21=  are given as training patterns from the 

c classes ( . Normally, a learning algorithm is applied to a set of training data 

with known classes to discover the relationship between the attributes and classes. The 

discovered rules can be evaluated by classification accuracy or error rate either on the 

training data or test data. 

)pc <<

 

begin 
t:=0; 
initialize P(t);    //initialise a population of candidates 
evaluate P(t);    //evaluate each candidate using a fitness function 
while (not terminate-condition) do         //stopping criteria 

 begin 
 select P’(t) from P(t);   // selection mechanism 
 crossover P’(t);     // crossover rate applied  
 mutate P’(t);        // mutation rate applied  
 combine P’(t) and P(t) to form P(t+1); // survivorsPercent applied        
 evaluate P(t+1);   
 t:=t+1; 
 end 

end 
 

Figure 2.2: Pseudocode of a typical GA 
 

 For classification problems, the discovered rules are usually represented in the 

following IF-THEN form:   

IF  <condition 1>&<condition 2>&...&<condition n> THEN <action>   (2.1)  

Each rule has one or more conditions as the antecedent, an action statement as the 

consequent which determines the class category. There are various representation 

methods for the conditions and actions in terms of the rule properties (fuzzy or non-

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 28 
  

fuzzy) and the attribute properties (nominal or continuous). In this thesis, the nonfuzzy 

IF-THEN rules are used, as the nonfuzzy rules are adequate to show the main theme of 

incremental learning and the encoding mechanism is simpler. The adoption of fuzzy 

rules will be a possible direction for future research. 

  

2.3.1 Encoding Mechanism 

In our approach, an IF-THEN rule is represented as follows: 

iR : IF )()...()( maxminmax22min2max11min1 nnn VxVVxVVxV ≤≤∧≤≤∧≤≤ THEN Cy =            
          
         (2.2) 

 
Where Ri is a rule label, n is the number of attributes, (x1, x2,… xn) is the attribute set, 

and C is a class. Vjmin and Vjmax are the minimum and maximum bounds of the j-th 

attribute xj respectively. We encode the rule Ri according to the following diagram:  

Antecedent Element 1 …… Antecedent Element n Consequence Element 

Act1 V1min V1max …… Actn Vnmin Vnmax C 

 
where Actj denotes whether the condition j is active or inactive, which is encoded 

as 1 or 0. 
Note:  If Vjmin is larger than Vjmax at any time, this element will be regarded as an 

invalid element.  
 

Each antecedent element represents an attribute, and each consequence element stands 

for a class. Each chromosome CRj consists of a set of classification rules Ri (i=1,2…,m) 

by concatenation: 

i
mi

j RCR
,1=

= U      sj ,...,2,1=    (2.3) 

where m is the number of rules allowed for each chromosome (ruleNumber), s is the 

size of the population (popSize). Therefore, one chromosome will represent one rule 

set. Since the value range for each attribute and class is known a priori, Vjmin, Vjmax, 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 29 
  

and C can be encoded each with a character by finding their positions in the value 

ranges. Thus, the final chromosome can be encoded as a string consisting of 

characters. According to the above encoding mechanism, each chromosome will 

consist of L characters, where 

)13( +∗∗= nmL     (2.4) 

If all the antecedent elements in a rule are inactive, this rule will be regarded as a non-

contributing rule.  

 The above encoding mechanism is similar to the one presented in (Corcoran and 

Sen, 1994). The new distinctive features are the activeness bit and the representation 

method with characters. This encoding mechanism is suitable for classification 

problems whose attributes are real-valued. However, it can be easily extended to 

classification problems with nominal-valued attributes. For instance, we can build a 

table to facilitate the conversion between nominal values and continuous values. Thus, 

the main functions such as encoding, decoding, and mutation can be realized easily by 

table lookup.     

 

2.3.2  Genetic Operators  

Genetic operators such as crossover, mutation, and reproduction play important roles 

in GAs. One-point crossover is used in this thesis, as it is a standard and common 

crossover operator and proved to be effective in the literature (Michalewicz, 1996). 

Referring to the encoding mechanism, it is noted that crossover will not lead to 

inconsistency and thus can take place in any point of chromosome. On the contrary, 

the mutation operator has some constraints. The mutation point is randomly selected. 

According to the position of selected point, it can be determined whether the selected 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 30 
  

element is an activeness, minimum or maximum element. Different mutation is 

available for each. For example, if an activeness element is selected for mutation, it 

will just be toggled. Otherwise when a boundary-value element is selected, the 

algorithm will randomly select a substitute in the range of that attribute. This is 

implemented in such a way that the lower and upper bounds are never exceeded. 

Figure 2.3 shows the operations of crossover and mutation. The rates for mutation and 

crossover are specified as mutationRate and crossoverRate. For reproduction, the 

survival rate is simply set as 50% (SurvivorsPercent=50%), which means half of the 

parent chromosomes with higher fitness will survive into the new generation, while the 

other half will be replaced by the newly created children resulting from crossover 

and/or mutation. 

Chromosome i 1 a j 0 h u ... 1 d 1

1 b h 0 f s ... 1 a 1Chromosome j

1 a j 0 h s ... 1 a s

1 b h 0 f u ... 1 d k

k

s

1

1

Crossover point

 

Chromosome i 1 a j 0 h u ... 1 d 1 1 a j 0 n u ... 1 d kk 1

Mutation point  

Figure 2.3: Crossover and mutation 

  

 Selection mechanism deals with the selection of chromosomes which will undergo 

crossover and mutation. Some selection mechanisms are deterministic such as elitism 

where just a certain percentage of the best chromosomes are selected. However, most 

research has shown that stochastic selection biased by fitness is more productive. 

There are many different ways to implement stochastic selection, and the one used 

here is called roulette wheel selection (Michalewicz, 1996). In this investigation, the 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 31 
  

probability that a chromosome i will be selected for crossover and mutation is given by 

the chromosome's fitness divided by the total fitness of all the chromosomes:  

∑
=

= p

k
k

i
i

F

F
P

1

    (2.5)  

where,  
     Pi :     Probability of chromosome i selected; 
      Fi :     Fitness of the chromosome i; 

     p  :     Total number of chromosomes. 
 

This means, during selection, high-fitness chromosomes have a higher probability of 

producing offspring for the next generation than lower fitness chromosomes. 

 

correctNumber:=0; 
for each instance 
{ for each rule in the chromosome 

{decode rule antecedents; 
if (all rule antecedents are valid for the instance)  
  then cast a vote for the class reported in the rule ; 
} 

  use a voting mechanism to determine the classPredicted; 
if (classPredicted==real class in the instance) 
 then  correctNumber++; 
} 

fitness:=correctNumber/totalNumber;   //totalNumber is the total number of instances 

Figure 2.4: Pseudocode for evaluating the fitness of one chromosome 

 

2.3.3 Fitness Function  

The fitness of a chromosome reflects the accuracy rate achieved while the 

corresponding rule set is used for classification. The genetic operators use this 

information to evolve better chromosomes over generations. Figure 2.4 shows the 

pseudocode for fitness evaluation. As each chromosome in our approach comprises an 

entire rule set, the fitness function actually measures the collective behavior of the rule 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 32 
  

set. The fitness function simply measures the percentage of instances that can be 

correctly classified by the chromosome’s rule set, which can be represented as: 

instancesofnumbertotal
classifiedcorrectlyinstancesofnumber

N
Cf ==  (2.6) 

 Since there is more than one rule in a chromosome, it is possible that multiple rules 

matching the conditions for all attributes but predicting different classes. A voting 

mechanism is used to help resolve conflict. That is, each rule casts a vote for the class 

predicted by itself, and finally the class with the highest votes is regarded as the 

conclusive result. If any classes tie on one instance, it is then concluded that this 

instance cannot be classified correctly by this rule set. (Our observation is that this case 

rarely happens, therefore it will not hurt the accuracy performance much.)  

 

2.3.4 Stopping Criteria 

There are three factors in the stopping criteria. The evolution process stops after a 

generation limit (generationLimit), or when the best fitness of chromosome reaches a 

preset threshold (which is set as 1.0 throughout this thesis), or when the best fitness of 

chromosome has no improvement over a specified number of generations -- stagnation 

limit (stagnationLimit). The detailed settings are reported along with the corresponding 

results. 

 

2.4 Incremental Genetic Algorithms (IGAs) 

IGAs share the same or similar settings with GAs in many aspects and have some 

difference in other aspects. This section illustrates the special features of IGAs. Figure 

2.5 illustrates the pseudocode of IGAs. The main features of IGAs lie in the formation 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 33 
  

of the initial population, integration of old and new chromosomes, biased genetic 

operators, and a revised fitness function. These features are elaborated in the following 

subsections. 

Loop begin 
if new attributes are ready to be integrated 

t:=0; 
if group chromosomes in the old GA/IGA are available  

then select them as seeds; 
else select the chromosome with best fitness  in the old GA/IGA as the seed; 

if new chromosomes for new attributes are available to be integrated 
then integrate them with the old chromosomes; 

  else expand old chromosomes with some randomly created elements; 
evaluate P(t); // P(t) is the resulting population from the above steps 
while (not terminate-condition) do         //stopping criteria 

begin 
  select P’(t) from P(t);       
  biased crossover P’(t);   //  biased crossover rate used 
  biased mutation P’(t);    // biased mutation rate used 
  combine P’(t) and P(t) to form P(t+1); // based on the survivorPercent rate    
  evaluate P(t+1);    
  t:=t+1; 
 end 

Loop end 
 

Figure 2.5: Pseudocode of IGAs 

2.4.1 Initial Population for IGAs 

The formation of initial population is one of the main features of IGAs, in which the 

integration of old and new chromosomes/elements is one of the major contribution. 

Figure 2.6 shows how the new elements are inserted into an old rule to form a new rule. 

Note that it only shows the operation on a single rule for the purpose of simplicity. The 

other rules in the chromosome will undergo similar operations. 

Appended ElementsOld Rule
1 a j 0 h s ... ... ... 1 1 b m 1 c g

1 a j 0 h s ... ... ... 11 b m 1 c g
New Rule  

Figure 2.6: Formation of a new rule in a chromosome 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 34 
  

 There are several ways to construct new chromosome population in terms of the 

selection of old chromosome(s) and newly appended elements. For the old 

chromosome(s), either the best rule set (chromosome) is used as a seed for all the 

initial population of IGA or the whole population of chromosomes in the last 

generation of the old GA as seeds. To create new elements, two choices are available. 

Randomly created new elements can be appended to the old rule sets, if the new 

information acquired or exchanged from the other classifier agent only includes the 

new attributes and their value ranges. If the other classifier agent can provide more 

information such as the entire evolved rule set covering the new attributes, it will be 

more helpful to use the elements from such a rule set. Table 2.1 lists these choices and 

gives them distinct names for comparison later (IS in the table stands for initialization 

schemes).  

Table 2.1: IGAs alternatives on the formation of a new population   

 Randomly Created Elements Elements from Acquired Rules 

Best Chromosome IS1 IS2 

Group Chromosomes IS3 IS4 

Old Elements 
New Elements 

  

new elements
acquired from
another agent

Best Chromosome

.

.

.
.
.
.

.

.

.

 chromosome population
in the last GA generation

old elements copied
from the best
chromosome

 

Figure 2.7(a): Illustration for integrating old chromosomes with new elements under 
IS2 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 35 
  

 
IS1:  

for each newChrom[j] in the new population for IGA 
 { bestChrom:=the best chromosome from the last generation of GA/IGA; 
   bufferChrom:=bestChrom;  
  for each rule i in bufferChrom 

{randomly create the activeness bit and bounds for each new attribute; 
 create each element with the activeness bit and boundary values;    
insert all the created elements into bufferChrom; 
} 

 newChrom[j]:=bufferChrom; 
 } 

 
IS2: 

for each newChrom[j] in the new population for IGA  
 { bufferChrom=the best chromosome from the last generation of GA/IGA; 
   incomingChrom:=a  chromosome randomly selected from the group  

chromosomes coming from another agent; 
   for each rule i in bufferChrom 

{ curClass:=the class of rule i; 
  analyze incomingChrom, and  place all new incoming rules having the same class 

 as curClass into a candidate pool; 
 randomly select a rule from the candidate  pool; 
 insert all  the elements for the new attributes in the selected rule into bufferChrom; 
} 

   newChrom[j]:=bufferChrom; 
 } 

 
IS3:  

for each newChrom[j] in the new population for IGA 
 { bufferChrom:=the chromosome[j] from the last generation of GA/IGA; 
  for each rule i in bufferChrom 

{ randomly create the activeness bit and bounds for each new attribute; 
 create each element with the activeness bit and boundary values;    
insert all the created elements into bufferChrom; 
} 

newChrom[j]:=bufferChrom; 
 } 

 
IS4:  

for each newChrom[j] in the new population for IGA 
 { bufferChrom:=the chromosome[j] from the last generation of GA/IGA; 
   incomingChrom:=a chromosome randomly selected from the group  

chromosomes coming from another agent; 
   for each rule i in bufferChrom 

{ curClass:=the class of rule i; 
analyze incomingChrom, and  place all new incoming rules having the same class as 

curClass into a candidate pool; 
randomly choose a rule from the candidate  pool; 
insert all  the elements for the new attributes in the selected rule into bufferChrom; 
} 

  newChrom[j]:=bufferChrom; 
 } 

 
Figure 2.7(b): Pseudocodes for integrating old chromosomes with new elements under 

IS1 - IS4 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 36 
  

 Figure 2.7(a) illustrates the formation of a new population using IS2 and Figure 

2.7(b) shows the pseudocodes of how the new chromosomes are created by integrating 

the old and new elements under IS1 to IS4. For instance, IS2 copies from the last 

generation of GA/IGA the best chromosome into all the new chromosomes, and new 

elements are selected with a matching mechanism from the incoming chromosomes 

from the other agent. 

 These four IGA approaches are applicable to different environments for 

incremental learning. If incremental learning happens in a stand-alone agent, this agent 

can only use IS1 and IS3. However, in a collaborative multi-agent environment, 

classifier agents gain more freedom on choosing which approach to use. They may 

choose one of the four approaches according to the environmental situation. We will 

have a detailed discussion on this later in Section 2.6 based on the experiment results. 

 

2.4.2 Biased Mutation and Crossover 

For IGAs, the mutation and crossover operators are biased with preference toward the 

new elements. Mutation and crossover points are still selected randomly. However, if 

the point chosen for mutation or crossover is located in the old chromosome part, the 

corresponding rate may be reduced with a reduction rate, as shown in Figure 2.8. 

That’s why they are called biased rates, and βα , are called mutation and crossover 

reduction rate respectively. 

 The motivation behind this is that IGAs tend to preserve the structure of old 

elements and explore more on the combination between old and new elements. The old 

elements part still needs variation, but the rates applied can be comparatively lower, 

compared with the rates exerted on the new elements. Classifier agents can adjust the 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 37 
  

values for α and β  for different classification problems to achieve better solutions. We 

have more experiments and discussions on the setting of α and β  in Section 2.5.3. 

New ElementsOld Elements
1 a j 0 h s ... ... ... 11 b m ... ... ...

Q charactersP characters

Mutation or crossover
point

S
 

 

⎩
⎨
⎧

+≤<
≤≤⋅

=
QPSP

PS
P

P
P

m

m
m

1* α

⎩
⎨
⎧

+≤<
≤≤⋅

=
QPSP

PS
P

P
P

C

C
C

1* β

1,0 ≤≤ βα
 

Legends:   S - mutation or crossover point selected;   
  P - length of the old elements;  Q - length of the new elements;   
  α - mutation reduction rate; β - crossover reduction rate; 

Pm - mutation rate applied to the new elements in IGA (mutationRate); 
Pc - crossover rate applied to the new elements in IGA (crossoverRate); 

*
mP - biased mutation rate applied to the old elements in IGA; 
*

cP - biased crossover rate applied to the old elements in IGA. 

 
Figure 2.8: Biased crossover and mutation rates 

 
 
2.4.3 Fitness Function and Stopping Criteria for IGAs 

The Fitness function is still the same as shown in (2.5). The difference in the fitness 

evaluation is that the evaluation set will be expanded to include the new attributes and 

new instances if available. Stopping criteria remain unchanged. The value for 

generation limit can be reduced, as IGAs will cost less time generally as it preserves 

existing knowledge. The detailed settings of IGAs are reported along with the results. 
 
 
 
2.5 Experiment Results and Analysis  

There are many benchmark data sets available for the research community of pattern 

classification and machine learning. The benchmark data sets used in this thesis are the 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 38 
  

wine, glass, cancer, iris, yeast, diabetes, and diabates1 data. The first six are taken from 

the UCI machine learning repository (Blake and Merz, 1998), and the last one is taken 

from the PROBEN1 collection (Prechelt, 1994). They all are real-world problems. The 

basic information of each data set is shown in Table 2.2, which includes the number of 

attributes, classes, and instances. The detailed information of these data sets can be 

found in Appendix A. 

 Several classifier agents are implemented running on four benchmark data sets. 

First, the feasibility of our GA design is tested by running the GA approach separately. 

Then, the training and generalization performance of IGAs is evaluated. The different 

IGA approaches are also compared and the effect of biased mutation and crossover 

rates is evaluated. 

 
Table 2.2: Details of benchmark data sets used in this thesis 

Name of Data Sets No. of 
Attributes 

No. of  
Classes 

No. of 
Instances 

Wine  13 2 178 
Glass 9 6 214 

Cancer 9 2 699 
Iris 4 3 150 

Yeast 8 10 1484 
Diabetes/Diabetes1 8 2 768 

 

 In order to simulate the process of incremental learning, the data sets are utilized in 

different ways for different experiments. The detailed information is presented with 

experiments. All experiments are completed on Pentium III 650MHz PCs with 128MB 

memory. The values reported in all tables are averaged over ten independent runs. 

(These apply to all the experiments presented in this thesis.)  

 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 39 
  

 
2.5.1 Feasibility and Performance of Our GA Approach  
 
The wine data is used to test the feasibility of our GA approach. All the 178 instances 

are used as training data to evolve the rule set. The GA parameters are chosen as 

follows: mutationRate=0.01, crossoverRate=1, survivorsPercent=0.5, ruleNumber=60, 

popSize=500, generationLimit=150. GA is run for 10 independent trials, and we get 

the final classification rate (CR) value 1.0 for eight times, and 0.994 for two times. 

Thus, the average CR is 0.999. 

 Corcoran and Sen (1994) used a real-coded genetic-based machine learning 

approach to evolve 60 nonfuzzy IF-THEN rules on the wine data. They used a 

population of 1500 and applied 300 generations with full replacement and reported the 

results as follows: best CR 100%, average CR 0.995, and worst CR 0.983. Ishibuchi et 

al. (1999) designed a fuzzy classifier with 60 fuzzy rules by means of an integer-coded 

GA and grid partitioning. They got the results for the wine data as follows: overall CR 

0.994, average CR 0.985, and worst CR is 0.978. 

 

Table 2.3: Comparison of various approaches on the wine data classification 

 Corcoran and 
Sen (1994) 

Ishibuchi et 
al. (1999) 

Our GA 
approach 

Rule Number  60 60 60 
Generation 300 1000 150 
Population 1500 100 500 
Best CR 1.00 0.994 1.00 

Average CR 0.995 0.985 0.999 
Worst CR 0.983 0.978 0.994 

 

 As shown in Table 2.3, our approach uses the fewest generations while having a 

comparable population size. This experiment shows that our genetic approach to 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 40 
  

classification problems is feasible and its performance is comparable to other 

approaches.  

 

2.5.2 Training Performance of IGAs 
 
In order to demonstrate the properties of IGAs, the experiment steps are designed as 

follows.  

� First, the whole instances in a data set are partitioned into two groups. One 

half is used as the old training data, and the other half is used to simulate the 

newly available data.  

� Assume one classifier agent knows only partial attributes at first, and it uses 

the first half data with the partial attributes as the training data.  

� After the agent acquires the new attributes or rule sets from the other agent, 

IGAs form the new population (There are four different approaches, as listed 

in Table 2.1). IGAs use the other half data with the complete set of attributes 

as the training data. 

� The procedures of IGAs and biased genetic operators are applied as presented 

in Section 2.4. 

 Figure 2.9(a) shows the evolution of rule set with the first 10 attributes in the wine 

data set. The figure records the best CR in each generation, i.e. the highest fitness 

value achieved for each generation. It shows that CR grows from an initial value of 

0.46 gradually, and finally reaches 0.99 at generation 150. 

 Figure 2.9(b) shows the IGA process with 13 attributes. IS2 is chosen for the 

formation of the initial population, which uses the best chromosome in the resultant 

rule set from (a), and combining it with the rule elements from the other agent. The 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 41 
  

retraining GA, which trains the classifier from scratch again with 13 attributes, is also 

shown in the figure as a comparison. 

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

C
la

ss
ifi

ca
tio

n 
R

at
e

  
0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

C
la

ss
ifi

ca
tio

n 
R

at
e

IGA-IS2       
Re-Training GA

 

(a)      (b) 
Notes:  
1. for (a), mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, 

ruleNumber=30, popSize=500, stagnationLimit=30, generationLimit=150. 
2. for (b), α =0.5, β =0.4, generationLimit=50, the rest are the same as in the note 1.  

 
Figure 2.9: Simulation results shows: (a) Classifier agent evolving rule sets with 10 
attributes; (b) IS2 running to achieve rule sets with 13 attributes, compared to the 

retraining GA approach. 
  

 It is shown that the best CR from IS2 decreases from 0.99 to 0.91 immediately 

after the formation of initial population. This can be explained by the facts that new 

attributes are integrated into the new chromosomes and the new training data are used. 

Then, CR increases gradually, and reaches 1.0 with 25 generations only. In the case of 

retraining GA, it costs about 50 generations to reach a CR of 0.99. The simulation 

results show that IS2 has integrated successfully the new attributes, and evolves a new 

rule set within a much shorter time compared to retraining GA. 

 In order to show the advantages of IGAs and explore their performance on 

integrating different number of new attributes, more experiments have been conducted 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 42 
  

on the wine data. Table 2.4 shows the experiment results with various attribute 

partitions. The upper part shows the results of GA running with the old attributes, and 

the middle part shows the IGA results on the expanded attributes. The bottom part 

shows the results of retraining using GA from scratch to accommodate the expanded 

attributes. Each column in the table represents a different combination of the number 

of old and new attributes (NOA and NNA). Attributes are used in the same order as 

they are in the original data set. For instance, NOA=8 means the first 8 attributes are 

used as old attributes, and NNA=3 means the remaining 3 attributes are used as new 

attributes. 

 
Table 2.4: Comparison of the performance of IGA on the wine data with various 

attribute partitions 
 NOA =10 NOA=8 NOA=6 

Initial CR 0.4574 0.4773 0.5056 
Generations 129.7 139.2 138 G

A
 

Ending CR 0.9855 0.9844 0.9496 

  NOA =10 
NNA=3 

NOA=8 
NNA=5 

NOA=6 
NNA=7 

Initial CR 0.8933 0.9212 0.8934 
Generations 33.3 21.8 23.2 IG

A
- 

IS
2 

Ending CR 0.9978 1.0 1.0 
   

Initial CR 0.4124 
Generations 49.5 

R
et

ra
in

. 
G

A
 

Ending CR 0.9865 
 
Legends:   

NOA: number of old attributes;  NNA: number of new attributes; 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, 

popSize=500, stagnationLimit=30, generationLimit=150 (GA), α =0.5, β =0.4, 
generationLimit=50 (IGA, Retraining GA). 

2. “Initial CR” means the best classification rate achieved by the initial population; 
“Generations” means the number of generations needed to reach stopping criteria; 
“Ending CR” means the best classification rate achieved by the resulting population. 

3. IS2 is used as the method for the formation of initial population.  
 

  

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 43 
  

 It is shown that IS2 performs well in integrating various numbers of attributes. 

When it forms an initial population, the initial CR decreases a little. Finally, IS2 

reaches a higher ending CR in much fewer generations. For example, in the case of 

NOA=6, NNA=7, the initial run of GA achieves an ending CR with 0.9496. IS2 gets 

an initial CR of 0.8934. Then with only 23 generations, it reaches an ending CR of 1.0. 

This means that IS2 recovers the information loss caused by missing attributes, and 

obtains new capability to use the information from the expanded attributes. As listed in 

the table, if retraining GA is used to retrain from scratch, it will cost about 50 

generations, and the resulting CR is inferior to IS2. Therefore, IS2 obviously 

outperforms retraining.           

 It is also noted from the table that the ending CRs with incomplete attributes are 

inferior to the ending CR with complete attributes, i.e. the ending CRs with 6, 8, and 

10 attributes can only reach 0.9496, 0.9844, and 0.9855 respectively, which are lower 

than 0.9980 achieved with 13 attributes, while they cost similar number of generations. 

It means the contributions made by these attributes are not negligible, although they 

are small. 

 In order to demonstrate the power of IGAs further, they are tested on another data 

set -- the glass data. Three different combinations of the number of old and new 

attributes are tried, and the results are shown in Table 2.5. This time, IS1 is employed 

instead of IS2 as the method for the formation of initial population. The results further 

demonstrate the power of IGAs, as it is verified again that IS1 can integrate 

successfully the new attributes, and achieve a new solution quickly. It is also shown 

that IS1 outperforms the retraining GA, as it achieves much better CR than the latter.   

 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 44 
  

 

Table 2.5: Comparison of the performance of IGA on the glass data with various 
attribute partitions 

 
  NOA=8 NOA=7 NOA =6 

Initial CR 0.367 0.3598 0.3653 
Generations 134.9 131.3 145.7 G

A
 

Ending CR 0.6363 0.6372 0.6235 

  NOA=8 
NNA=1 

NOA=7 
NNA=2 

NOA =6 
NNA=3 

Initial CR 0.429 0.425 0.4299 
Generations 78.9 78.6 75.1 IG

A
- 

IS
1 

Ending CR 0.6441 0.6424 0.6423 
   

Initial CR 0.3551 
Generations 80.0 

R
et

ra
in

. 
G

A
 

Ending CR 0.5636 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, 

popSize=500, stagnationLimit=30, generationLimit=150 (GA), α =0.5, β =0.4, 
generationLimit=80 (IGA, retraining GA). 

2. IS1 is used as the method for the formation of initial population. 
 

 
Table 2.6: Comparison of the performance of IGA on the diabetes data 

  
NOA=7 

(excluding 
attr. 2) 

NOA=7 
(excluding 

attr. 4) 

NOA=7 
(excluding 

attr. 6) 

NOA=7 
(excluding 

attr. 8) 
Initial CR 0.6428 0.6489 0.6448 0.6406 

Generations 223.5 207.4 214.7 233.5 G
A

 

Ending CR 0.7151 0.7664 0.7645 0.7641 

  
NOA=7 
NNA=1 
(attr. 2) 

NOA=7 
NNA=1 
(attr. 4) 

NOA=7 
NNA=1 
(attr. 6) 

NOA=7 
NNA=1 
(attr. 8) 

Initial CR 0.6641 0.7391 0.7302 0.6969 
Generations 115.3 115.8 115.9 116.6 IG

A
- 

IS
1 

Ending CR 0.7860 0.7899 0.7875 0.7896 
   

Initial CR 0.6388 
Generations 104.2 

R
et

ra
in

. 
G

A
 

Ending CR 0.7737 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, 

popSize=100, stagnationLimit=30, generationLimit=250 (GA), α =0.5, β =0.4, 
generationLimit=120 (IGA, retraining GA). 

2. IS1 is used as the method for the formation of initial population. 
 

 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 45 
  

 Table 2.6 reports the experiment results on the diabetes data. As shown in the table, 

NOA and NNA are kept unchanged as 7 and 1, but a different attribute is selected as 

the new attribute in each experiment, i.e., attribute 2, 4, 6, and 8 are selected as the 

new attribute respectively. For example, the last column means that attributes 1 to 7 

are chosen as the old attributes, and attribute 8 as the new attribute for IS1. Apart from 

similar findings obtained like in the last two experiments, we get another more 

interesting finding. It is noted that if attribute 2 is excluded from the input attributes, 

the ending CR from using the other seven attributes is only 0.7151, which is apparently 

lower than the other three cases (about 0.765). In other words, CR has dropped about 

0.05 more if attribute 2 is removed. It tells us that attribute 2 is an important attribute 

in the diabetes data, as it contributes more than attribute 4, 6, and 8. The results also 

show that IS1 recovers successfully the larger CR loss caused by the missing attribute 

(2), and achieves a similar ending CR as the other three settings. 

 

2.5.3 Generalization Performance of IGAs 

In the above experiments, the whole data set is used only for training. In order to test 

the generalization performance of the classifier agents, each data set is partitioned into 

three parts, namely, TRA, TRB, and TST, with respective percentage of 35%, 35%, 

and 30%. TRA is used to simulate the partial attributes, TRB is used to simulate the 

full set of attributes, and TST is used for all instances as unknown test data. Therefore, 

when the classifier knows only partial attributes, it uses TRA and TST as training data 

and test data respectively. When it learns the full set of attributes, TRB and TST are 

used instead. 

  

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 46 
  

 

Table 2.7: Comparison of the performance of IGAs on the wine data 

Initial CR 0.4429 
Generations 106.2 
T. time (s) 175.0 
Ending CR  0.9556 

G
A

 

Test CR 0.7788  

 Retraining GA IS1 IS2 IS3 IS4 
Initial CR 0.4365 0.6667 0.8000 0.6603 0.8175 

Generations 46.3 36.1 30.2 34.5 30.5 
T. time (s) 97.0 78.5 66.6 74.6 67.0 
Ending CR  0.9365 0.9952 1.0 1.0 0.9984 

N
O

A
=8

, N
N

A
=5

 

R
et

ra
in

. G
A

  
&

 IG
A

s 

Test CR 0.8192 0.8558 0.8615 0.8519 0.8769 
       

Initial CR 0.4444 
Generations 101.0 
T. time (s) 162.5 
Ending CR  0.9825 

G
A

 

Test CR 0.8096  

 Retraining GA IS1 IS2 IS3 IS4 
Initial CR 0.4365 0.7063 0.7810 0.7 0.8000 

Generations 46.3 41.1 35.7 42.1 31.1 
T. time (s) 97.0 81.9 70.8 83.5 61.9 
Ending CR  0.9365 0.9921 0.9921 0.9905 0.9952 

N
O

A
=9

, N
N

A
=4

 

R
et

ra
in

. G
A

 
&

 IG
A

s 

Test CR 0.8192 0.8558 0.8865 0.8635 0.8769 
       

Initial CR 0.4397 
Generations 105.5 
T. time (s) 176.9 
Ending CR  0.9746 

G
A

 

Test CR 0.8019  

 Retraining GA IS1 IS2 IS3 IS4 
Initial CR 0.4365 0.7508 0.8032 0.7397 0.8254 

Generations 46.3 42.4 35.8 37.4 32.3 
T. time (s) 97.0 85.5 72.7 74.8 64.9 
Ending CR 0.9365 0.9905 0.9984 0.9952 0.9968 

N
O

A
=1

0,
 N

N
A

=3
 

R
et

ra
in

. G
A

 
&

 IG
A

s 

Test CR 0.8192 0.8558 0.8577 0.8327 0.8481 
        

Notes:  
1. The meaning of various IGAs can be referred to Table 2.1.  
2. “T. time (s)” means the training time cost, in seconds; 

“Test CR” means the classification rate achieved by the resulting population on the 
test data. Other legends follow the explanations under Table 2.4. 

3. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, 
popSize=200, stagnationLimit=30, generationLimit=150 (GA), α =0.5, β =0.4, 
generationLimit=50 (IGA, retraining GA). 

 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 47 
  

Table 2.8: Comparison of the performance of IGAs on the cancer data 

Initial CR 0.8344 
Generations 89.9 
T. time (s) 349.5 
Ending CR  0.9746 

G
A

 

Test CR 0.9678  

 Retraining GA IS1 IS2 IS3 IS4 
Initial CR 0.7660 0.9193 0.9422 0.9316 0.9426 

Generations 80.0 72.2 58.1 69.3 63.0 
T. time (s) 347.4 324.1 258.4 315.8 287.6 
Ending CR  0.9873 0.9807 0.9766 0.9811 0.9799 

N
O

A
=6

, N
N

A
=3

 

R
et

ra
in

. G
A

  
&

 IG
A

s 

Test CR 0.9479 0.9502 0.9521 0.9569 0.9583 
        

Initial CR 0.8582 
Generations 91.4 
T. time (s) 294.8 
Ending CR  0.9689 

G
A

 

Test CR 0.9578  

 Retraining GA IS1 IS2 IS3 IS4 
Initial CR 0.7660 0.9074 0.95 0.9012 0.9508 

Generations 80.0 73.2 61.5 68.7 65.3 
T. time (s) 347.4 302.7 260.0 293.8 277.6 
Ending CR  0.9873 0.9836 0.9779 0.9816 0.9799 

N
O

A
=4

, N
N

A
=5

 

R
et

ra
in

. G
A

 
&

 IG
A

s 

Test CR 0.9479 0.9649 0.9664 0.9597 0.9597 
Notes:  
1. The meaning of various IGAs can be referred to Table 2.1.  
2. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, 

popSize=200, stagnationLimit=30, generationLimit=200 (GA), α =0.5, β =0.4, 
generationLimit=80 (IGA, Retraining GA). 

 

 Table 2.7 shows the comparison among the four IGA approaches (listed in Table 

2.1 earlier) using the wine data. GA is run with a certain number of attributes first (8, 

9, 10 attributes as shown in the table). With the results of GA, four IGA approaches are 

employed. Therefore these four approaches have the same starting point, which is fair 

for comparison. The results show that IS2 and IS4 cost fewer generations and thus less 

training time to reach convergence than IS1 and IS3. This may be explained by 

recalling the method each approach uses to form the initial population. As IS2 and IS4 

use the evolved rule set from the other agent, they can acquire more useful information 

from the rule set than IS1 and IS3 with the randomly created elements. This can also 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 48 
  

be verified by observing the initial CR for IGAs, i.e., the initial CRs of IS2 and IS4 are 

apparently higher than those of IS1 and IS3. Comparing the resulting test CR of these 

four approaches, it is found that either IS2 or IS4 achieves the best test CR. This again 

shows that using evolved rule sets helps achieve better performance. 

 Table 2.7 also compares performance between the four IGAs and the retraining GA. 

It is found that all IGAs cost fewer generations (shorter training time) and achieve 

better performance (training and test CRs) than the retraining GA, which further 

demonstrates the advantages of IGAs. 

 Table 2.8 compares the performance of various IGAs with another data set – the 

cancer data. Similar findings are obtained as those from Table 2.7. It is shown again 

that the four approaches meet the requirements of incremental learning with different 

performance. IS2 or IS4 again achieves the best test CR among the four approaches 

and needs fewest generations (least training time) to reach convergence. The 

comparison between IGAs and retraining GA also shows the similar findings as with 

wine data. IGAs outperform retraining GA in training time and test CR. 

 Finally, several experiments are conducted with different settings of the mutation 

and crossover reduction rates α and β  to explore their effects on the performance of 

IGAs. When one rate is evaluated, the other rate is fixed as 1.0. Figure 2.10 and 2.11 

show the results on the wine data with different values of α  and β  respectively. α = 0 

or β = 0 means there is no operation (mutation or crossover) on the old elements, and 

α = 1 or β = 1 means there is no bias on mutation or crossover between the old 

elements and new elements. 

   

 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 49 
  

 

0 0 .2 0 . 4 0 .6 0 . 8 1
0 .5

0 .6

0 .7

0 .8

0 .9

1

A lp ha

C
la

ss
i. 

R
at

e

IS 1
IS 2
IS 3
IS 4

 

0 0 . 2 0 . 4 0 . 6 0 . 8 1
0

1

2

3

4

5

6

7

8

9

1 0
x  1 0

4

A lp ha

Tr
ai

ni
ng

 T
im

e 
(m

s)

IS 1
IS 2
IS 3
IS 4

 

Notes:  
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=200, 

stagnationLimit=30, generationLimit=150 (GA), generationLimit=50 (IGA). 
2. NOA=10, NNA=3. 

 
Figure 2.10: Effect of mutation reduction rateα  on the performance of IGAs (test CR 

and training time) with the wine data  
 

 It is found that α and β  really affect the performance of IGAs. Both Figures show 

that if IGAs are used with α = 0 or β = 0, they need the longest training time and 

achieve lower test CRs compared to other values for α and β . This tells us that the 

extremely biased rates (α = 0 or β = 0) are not suitable for IGAs and the old elements 

still need some genetic operations during IGAs. It is also shown in both figures that the 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 50 
  

test CR increases and training time decreases in a general trend, when the values of 

α and β  increase. It is noted that α = 1 or β = 1 is not the best parameter. In contrast, 

the best parameter values for α and β  are between 0.6 to 0.8, depending on the type of 

IGAs. This result supports the use of reduced crossover and mutation rates on the old 

elements.   

 

0 0 .2 0 .4 0 .6 0 . 8 1
0 .5

0 .6

0 .7

0 .8

0 .9

1

B e ta

C
la

ss
i. 

R
at

e

IS 1
IS 2
IS 3
IS 4

 

0 0 .2 0 .4 0 .6 0 .8 1
0

1

2

3

4

5

6

7

8

9

1 0
x  1 0

4

B e ta

Tr
ai

ni
ng

 T
im

e 
(m

s)

IS 1
IS 2
IS 3
IS 4

 

Notes:  
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=200, 

stagnationLimit=30, generationLimit=150 (GA), generationLimit=50 (IGA). 
2. NOA=10, NNA=3. 

 
Figure 2.11: Effect of crossover reduction rate β  on the performance of IGAs (test 

CR and training time) with the wine data 
 
 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 51 
  

2.5.4 Analysis and Explanation 

 

 
 
 
 
 
 
 
 
 

S1 S2 

 
 

Figure 2.12:

 

It is found from the e

GA. The advantages 

training time and high

explanation on the inn

 Figure 2.12 pres

attribute ( , ) an

analysis can be easily

area confined by the v

1x 2x

maximum searching 

instances belonging to

evolves the rule set u

directly. However, IG

dimensional search al

m2x
'

2V

2V

'
2V

2x
2V

 

2x
 

C2

ax  

max  

min  
 

 Analysis model for a simplifie

xperiment results that IGA app

of IGA approaches mainly exis

er classification rates. In this se

er mechanisms leading to the ad

ents a model for a simplified 

d two classes ( , ). This 

 extended to higher-dimension

alue range of (

1C 2C

min1x , max1x ) and

area for GA.  and  are 

 the two class categories respe

sing two attribute (  and )

A approaches consist of two

ong the axis , trying to find t

1C 2C

1x 2x

1x

C1max

min1V max1V '
min1V '

ma1Vmin1x  

min  

min  
S

 

d classification problem 

roaches outperform the retraining 

t in two aspects, namely, shorter 

ction, we give some analysis and 

vantages of IGA approaches.  

classification problem with two 

simplified model and following 

al spaces. S  denotes the possible 

 ( min2x , max2x ), which is also the 

the areas covering the training 

ctively. When the retraining GA 

 together, it searches the area S  

 steps. The first step is a one-

he boundary information for both 

max1xx
1x  



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 52 
  

classes, i.e. , , , . The second step inherits these boundary 

information, and continue searching the boundary information for the two attributes 

(further searching , , , ).  However, with the help of the inherited 

information, the second search step can be confined in the areas  and  (the 

shadow area plus the grid area for each as shown in the figure). It is easy to see that the 

search space is largely reduced from S  to . Even the effort of the one-

dimensional search in the first sep is added, the IGA approaches still search smaller 

area than the retraining GA. This explains why the IGA approaches need less training 

time. That is, as the IGA approaches inherit old information, they stand on a better 

starting point.  

min1V max1V '
min1V '

max1V

min2V max2V '
min2V '

max2V

1S 2S

21 SS U

 Figure 2.12 also provides some information for the reason of the improvement on 

the classification rates. As the initial population for IGAs is created using the boundary 

information of , they are located in the area  or . Because they are close to the 

best solutions  or , it is more likely that the IGA approaches converge to either 

solution. However, the retraining GA needs to search a larger area , thus it may miss 

the best solutions occasionally. As shown in the Figure 2.12, it is relatively more 

difficult for the retraining GA to derive such solution contour. As a result, the 

partitioning in the attribute domain brings along some advantages. In general, the 

interference among intervened attributes makes GA search more difficult. When a 

larger attribute domain is partitioned, the interference among attributes can be reduced. 

Therefore, it is easier to map partial attributes to classes, which makes GA search 

easier and more accurate. 

1x 1S 2S

1C 2C

S

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 53 
  

 We continue to analyze the contributions of two reduction rates α and β. Still 

learned from Figure 2.12, IGA approaches should stick to the  neighborhood for the 

old attribute , while exploring more for the boundary information on the new 

attribute . As the exploration is more focused on the new attribute, the training time 

can be  further saved. This analysis supports the use of reduction rates, i.e. 

1S

1x

2x

1<α  and 

1<β . Meanwhile, as the real classification problems are more complicated than the 

simplified one in the Figure 2.12, the two areas  and  may have irregular contour 

shape and may overlap sometimes. Therefore, the exploration on the boundary 

information of the old attribute should not be stopped entirely. This implies 

1S 2S

0>α  and 

0>β . Thus, we have 10 <<α  and 10 << β , and the optimal values for the 

reduction rates exist in between. The experiment results in Figures 2.10 and 2.11 have 

confirmed this, and it is found the optimal values for α and β differ according to the 

IGA approaches used. With the selection of α and β, the generation cost to achieve the 

stopping criteria can be reduced, thus the training time will be saved accordingly. 

 The advantages of IGAs and the justification for α and β can also be explained 

with the schema analysis and building block hypothesis (Holland, 1975; Goldberg 

1989). A schema is a similarity template describing a subset of strings with similarities 

at certain string positions. It is postulated that an individual's high fitness is due to the 

fact that it contains good schemata. Short and high-performance schemata are 

combined to form building blocks with higher performance expected. Building blocks 

are propagated from generation to generation, which leads to a keystone of the GA 

approach. Research on GA has proved that it is beneficial to preserve building blocks 

during the evolution process (Goldberg 1989). IGAs inherit the old chromosomes from 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 54 
  

the previous results, where the building blocks likely reside. The integration of these 

building blocks into the initial population for IGAs provides a solid foundation for the 

following evolutions. Also, the smooth preservation of these building blocks during the 

following evolutions also boosts the classification performance. This justifies the use 

of α and β. When the crossover and mutation rates are reduced in the old elements 

portion, the building blocks inside will undergo less genetic evolution pressure and 

thus increase their survival chance. 

 

2.6 Discussions and Refinement 

The literature in GA has provided extensive discussions on how traditional GA 

prevents from falling local minima (Holland, 1975; Goldberg 1989; Michalewicz, 

1996). It has been shown that “the crossover leads the program towards better 

solutions while mutation prevents it from getting stuck with local minimum” 

(Goldberg 1989). Crossover biases the search towards promising regions of the search 

space by sticking together useful building blocks, and mutation serves to prevent 

premature loss of population diversity by randomly sampling new points in the search 

space. Compared with other methods such as hill-climbing, GA is extremely unlikely 

to be trapped in local minima, as crossover and mutation bring in variance and new 

offspring (Michalewicz, 1996). The selection of crossover and mutation rates is 

important. The rule of thumb is that the mutation rate is kept small, while crossover is 

much larger. We have chosen the commonly-use rates for these two rates, i.e. 1.0 for 

the crossover rate and 0.01 for the mutation rate. We have also carefully observed the 

results of GA/IGA experiments, and found that they never fall into local minima. 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 55 
  

 Several real-world data sets have been employed. They have different properties 

including the number of attribute, classes, and training instances. Therefore, some data 

sets, e.g. the cancer data, are easier to classify, making their classification rates close to 

1.0, while other data sets, such as the diabetes data and glass data, are more difficult to 

classify, and their final classification rates are about 0.6. According to the results 

reported, the improvement on the classification rates with these data sets is still large 

(about 14%), apart from the obvious improvement on the training time. Therefore, we 

can draw the following conclusions from the overall experiment results: our IGA 

approaches both improve the classification rates and save the training time. The saving 

of training time is obvious, while the level of improvement on the classification rates 

depends on the data sets’ properties. For some data sets whose classification rates are 

close to 1.0, the improvement still exist but may become small.  

 There can be many variations for the algorithms and experiment settings to deal 

with different environmental situations. This section discusses some possibilities 

which include more IGA alternatives, the expansion of population size to facilitate the 

integration of new and old elements, the algorithms for a single agent to accommodate 

new attributes, and the special case when new patterns are available with new 

attributes only. 

 Four IGA alternatives have been proposed and evaluated in this chapter. Actually, 

there can be more options for the integration of old and new elements. For example, 

the elements from the acquired rules can also be available as the best chromosome, 

group chromosomes, or even some percentage of the group chromosomes. There still 

has room for future research to explore these combinations.  

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 56 
  

 As discussed earlier, before IS2 and IS4 are employed, the old and new elements 

have already been evolved in two classifier agents. When they are integrated, there are 

many options in producing the offspring by integration. In the current experiments, 

same population size is chosen for GAs and IGAs. In order to explore more on 

integration, the population size is doubled to accommodate more resulting offspring 

chromosomes from the integration of old and new elements. Then the offspring 

chromosomes are sorted in a descending order of fitness. The fitter half will survive as 

the initial population for IS2 or IS4. The other half will be discarded. The experiments 

with this refinement have shown that the resulting test CR can be improved in most 

cases. For instance, the test CR for wine data can be improved by about 2%. IS2 and 

IS4 still outperform IS1 and IS3. Therefore, the integration mechanism really affects 

the final classifier performance. As for the training time, it will be a little longer 

because of the longer integration process. However, it can be neglected, as the 

succeeding training time will dominate the whole IGA process. 

 From the results of IS1 to IS4, it is found that the performance of IS2 and IS4 are 

generally better than IS1 and IS3. We have considered the application of IGAs in a 

multi-agent environment, which means IS2 and IS4 are used only when two or more 

classifier agents are exchanging information on new attributes and instances. However, 

IS2 and IS4 can also be used in the situation of one single agent.  When such an agent 

learns that new attributes are available, it can create the elements for these attributes 

first, then independently evolve these elements, as if it was done in other agents. 

Finally, these elements can be integrated with the old ones using IS2 or IS4. With this 

method, the final performance will be better than that of randomly creating elements 

with IS1 or IS3. Therefore, the IGA algorithm can be refined for a single agent to 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 57 
  

achieve better performance by replacing the process of randomly creating new 

elements with a separate evolution process for new elements before they are integrated, 

as shown in Figure 2.13. 

 Loop begin 
if new attributes are ready to be integrated 

t:=0; 
if group chromosomes in the old GA/IGA are available  

then select them as seeds; 
else select the chromosome with best fitness  in the old GA/IGA as the seed; 

if new chromosomes for new attributes are available to be integrated 
then integrate them with the old chromosomes; 

  else  randomly create new elements for new attributes; 
evolve the new elements using conventional GA; 
integrate the evolved new elements with the old chromosomes;   

 evaluate P(t); // P(t) is the resulting population from the above steps 
while (not terminate-condition) do         //stopping criteria 

begin 
  select P’(t) from P(t);     
  biased crossover P’(t);    //  biased crossover rate used 
  biased mutation P’(t);      // biased mutation rate used 
  combine P’(t) and P(t) to form P(t+1);   // based on the survivorPercent rate 
  evaluate P(t+1);    
  t:=t+1; 
 end 

Loop end 
 

Figure 2.13: Refined IGAs with separate evolution of new elements (ref. Fig. 2.5) 

  

 In the above experiments, it is assumed that new training patterns including all 

attributes come along with new attributes so that these patterns can be used to train the 

rule set with all attributes. This is likely in most realistic applications. For instance, a 

researcher may find a new symptom which is likely to contribute to the diagnosis of a 

certain disease. Then, new data associated with the old and new symptoms may be 

collected for further research. However, sometimes newly collected data may only 

contain information on the new attributes, without information on the old attributes. 

Therefore, when the old and new attributes are integrated, there is no on-hand training 

pattern to train the rule set for the whole set of attributes. As an alternative solution, 

 



Chapter 2  Incremental Learning Using Incremental Genetic Algorithms 58 
  

classifier agents may integrate the old and new training patterns together to form a new 

training pattern set according to the class categories. Then, IGAs can evolve a new rule 

set on the new training patterns. 

 

2.7 Conclusion 

In this chapter, incremental genetic algorithms (IGAs) have been proposed for 

incremental learning of classifier agents. IGAs eliminate the need to re-evolve the rule 

set from scratch in order to accommodate new incoming attributes. Using IGAs, a 

classifier agent can fully utilize current knowledge and quickly evolve a new solution. 

 The main features of IGAs, such as the incremental evolution of new attributes, 

formation of new population, integration of chromosomes, and biased rates for genetic 

operators, have been elaborated. Four real-world data sets were used to evaluate the 

performance of IGAs. The results show IGAs can be successfully used for incremental 

learning and speeds up the learning process as compared with normal GAs. 

 Four IGA approaches have been proposed in this chapter, and their performance 

has been compared. Classifier agents can choose one of them according to various 

conditions such as whether the group chromosomes from the old solution are preserved 

or the evolved rule sets from other agents are available. Experimental results show that 

utilizing the group chromosomes from the old solution and the evolved rule sets from 

other agents can achieve better performance. However, there are some tradeoffs for 

agents to determine which type of IGAs to use for incremental learning. For example, 

as IS2 and IS4 need to use the whole population from the last GA/IGA run instead of 

just one rule set, classifier agents need more memory for temporary storage, which will 

cost extra resource.  

 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   59 

 

Chapter 3 

Incremental Genetic Algorithms for 
New Class Acquisition 
 
 
 
3.1 Introduction  

We have considered the incremental learning from the perspective of accommodating 

new attributes in the previous chapter, and IGAs have been proposed with different 

initialization schemes to integrate the old chromosomes and new elements for new 

attributes. As discussed earlier in section 2.2, a classifier agent is actually exposed to 

the changing environment, and it needs to evolve its solution by adapting to various 

changes. There are three categories of changes for classification problems. This 

chapter continues to explore the utilization of IGAs from another perspective - 

incremental learning of new classes, and it is still considered in the context of multi-

agent environment.  

 Agents are both self-interested and social. They have their own goals, but they also 

seek for collaboration. The interaction with other agents should in some way or 

another help each individual agent fulfill one or more of its goals. The motivation for 

collaboration can arise for the purpose of some temporary tasks, e.g. dealing with 

specific classification problem, or for long-term objectives, e.g. co-evolution. 

Classifier agents not only passively respond to the changing environment, but also 

actively interact, collaborate, and evolve autonomously. In this chapter, we still 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   60 

simplify the multi-agent environment as a scenario of two agents, simple yet adequate 

to illustrate the collaboration among agents. Because this chapter is focused on 

designing incremental algorithms for acquiring and integrating new classes, the 

difference between the scenarios of multi-agent and two-agent has no effect on the 

algorithms involved. 

  IGA approaches are revised for acquiring new classes. Similar to the case of 

learning new attributes, four types of IGAs for new class acquisition are proposed and 

compared with retraining GAs in terms of performance. The experiment results on 

benchmark data sets and their analysis are reported to demonstrate the power of IGAs 

for new class acquisition. 

 

Loop begin 
if new classes are ready to be integrated 

t:=0; 
if group chromosomes in the old GA/IGA are available  

then select them as seeds; 
else select the chromosome with best fitness  in the old GA/IGA as seeds; 

if new chromosomes for new classes are available to be integrated 
then integrate them with the old chromosomes; 

  else expand old chromosomes with some randomly created rules; 
evaluate P(t); // P(t) is the resulting population from the above steps 
while (not terminate-condition) do         //stopping criteria 

begin 
  select P’(t) from P(t);       
  crossover P’(t 
  mutation P’(t);   
  combine P’(t) and P(t) to form P(t+1); // based on the survivorsPercent rate    
  evaluate P(t+1);    
  t:=t+1; 
 end 

Loop end 
 

 

Figure 3.1: Pseudocode of IGAs for new class acquisition 

 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   61 

3.2 IGAs for New Class Acquisition 

In order to be used for acquiring new classes, IGAs presented in the last chapter should 

be revised accordingly. In this section, only the different or revised components are 

presented, while the other common components share the presentation in Chapter 2. In 

addition, the biased rates for crossover and mutation will not be used in new class 

acquisition. Figure 3.1 shows the pseudocode of revised IGAs for new class 

acquisition. 

 There are two possible situations for new class acquisition, i.e. class expansion (CE) 

and rule integration (RI). In the first situation, an agent learns that some new classes 

are available for classification, and new data with the new classes are also provided for 

training. Then, the agent can expand the rule set solution autonomously. In the second 

situation, the agent acquires evolved rules about the new classes from another agent, 

besides the above-mentioned information. Then, it integrates new rules with its old 

rules.  

Appended RulesOld Rules
1 b r 0 h q ... 1 1 a m 1 d g

1 b r 0 h q ... ... ... 1
New Chromosome

3... ... ... ... ...

1 a m 1 d g 3... ... ...

 

Figure 3.2: Formation of a new chromosome in IGAs with CE or RI 

 

 The main revision of IGAs lies in the formation of initial population and the 

integration of old and new elements. Figure 3.2 shows how the newly rules 

(chromosome) are concatenated with old rules (chromosome) to form a new 

chromosome in IGAs. Recalling the method used in Chapter 2 for integrating the new 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   62 

elements of new attributes (cf. Figure 2.6), there are some difference between these 

two figures. First, Figure 2.6 only shows the formation of a new rule, which is only a 

segment of chromosome, while Figure 3.2 shows a complete chromosome. Second, in 

Figure 2.6, the new elements are selected with a matching mechanism and inserted into 

old rules so that the class category of the new rule is inherited from the old one and 

remains unchanged. While in Figure 3.2, the new rules are a piece of complete rule 

sets consisting of attribute and class elements. Therefore, it can be appended directly 

into the old chromosome without any matching mechanism. 

 There are many ways to construct new chromosomes in terms of the selection of 

old chromosome(s) and newly appended rules. We still follow similar options used in 

Chapter 2, and select four approaches as the research targets. For the choice of old 

chromosome(s), either the best rule set (chromosome) or the whole population in the 

last generation of old GA is used as seed(s) for all the initial population of IGA. For 

the new rules, two choices are selected, i.e., CE and RI. As discussed earlier, CE 

means the newly appended rules are randomly created, and RI means these rules are 

provided by the other agent instead. Table 3.1 lists these approaches, and assigns them 

with distinct names. 

 

Table 3.1: IGAs alternatives on the formation of a new population  
for new class acquisition  

 
 CE (Class Expansion) RI (Rule Integration) 

G

New Rules 
O  

  

   
ld Rules
Best Chromosome CE1 RI1 

roup Chromosome CE2 RI2 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   63 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

th

ne

an

an

ch
CE1: 
for each newChrom[j] 

 { oldChrom:= the best chromosome from the last generation of GA/IGA; 
  determine the total number of  classes p for IGA;  
 allocate the rule number for each class (r1 ... rp); 
 parse oldChrom in terms of class category, and place rules into 

respective pools (1... p); 
 determine the number of rules in each pool (n1…np); 

 for each class k 
{  if (nk==0) then randomly create rk rules; 

   else { if (rk<=nk) then randomly select rk rules from pool k; 
    else select all rules in pool k and randomly create rk-nk rules; 
         }  
  append rk rules to bufferChrom; 

} 
 newChrom[j]:=bufferChrom; 

} 
 
RI1: 
for each newChrom[j] 

 {  oldChrom:= the best chromosome from the last generation of GA/IGA; 
  incomingChrom:=the chromosome acquired from another agent;  
  determine the total number of classes p for IGA;  
 allocate  the rule number for each class (r1 ... rp); 

 parse oldChrom in terms of class category, and place rules into 
respective pools (1... p); 

 parse incomingChrom, and place rules into respective pools (1.. p); 
 determine the number of rules in each pool (n1…np); 

 for each class k 
{  if (nk==0) then randomly create rk rules; 

   else { if (rk<=nk) then randomly select rk rules from pool k; 
    else select all rules in pool k and randomly create rk-nk rules; 
         }  
  append rk rules to bufferChrom; 

} 
 newChrom[j]:=bufferChrom; 

} 
Figure 3.3: Pseudocodes for the formation of initial population under CE1 and RI1 

Figure 3.3 and 3.4 show the pseudocodes for forming a new initial population with 

e four methods. The percentages of new and old rules are not fixed when forming a 

w population. Instead, a random rule-selection scheme is applied. That is, the old 

d new rules are reshuffled to different rule pools in terms of their class categories, 

d they are selected randomly from respective pools to become a member of the new 

romosome. Therefore, both old and new rules have the same probability to be 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   64 

selected. If there are no rules available for certain classes as in the case of CE1 and 

CE2 and the corresponding pools are thus empty, the rules for new classes are created 

randomly.  

   

 

 

  

 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

RI2: 
for each newChrom[j] 

 {  oldChrom:= the chromosome[j] from the last generation of GA/IGA; 
  incomingChrom:=the chromosome acquired from another agent;  
  determine the total number of classes p for IGA;  
 allocate  the rule number for each class (r1 ... rp); 

 parse oldChrom in terms of class category, and place rules into 
respective pools (1... p); 

 parse incomingChrom, and place rules into respective pools (1.. p); 
 determine the number of rules in each pool (n1…np); 

 for each class k 
{  if (nk==0) then randomly create rk rules; 

   else { if (rk<=nk) then randomly select rk rules from pool k; 
    else select all rules in pool k and randomly create rk-nk rules; 
         }  
  append rk rules to bufferChrom; 

} 
 newChrom[j]:=bufferChrom; 

} 

CE2: 
for each newChrom[j] 

 { oldChrom:= the chromosome[j] from the last generation of GA/IGA; 
  determine the total number of  classes p for IGA;  
 allocate the rule number for each class (r1 ... rp); 
 parse oldChrom in terms of class category, and place rules into 

respective pools (1... p); 
 determine the number of rules in each pool (n1…np); 

 for each class k 
{  if (nk==0) then randomly create rk rules; 

   else { if (rk<=nk) then randomly select rk rules from pool k; 
    else select all rules in pool k and randomly create rk-nk rules;  
         }  
  append rk rules to bufferChrom; 

} 
 newChrom[j]:=bufferChrom; 

} 

Figure 3.4: Pseudocodes for the formation of initial population under CE2 and RI2 

  

 It is possible that the newly acquired classes may overlap with the old ones. There 

are many options in tackling these situations. For example, classifier agents may 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   65 

ignore the incoming rules for the existing classes, and only absorb those rules for the 

new classes. In our approaches, all incoming rules including those for the existing 

classes are used, as these rules have been evolved and can make contribution for the 

succeeding evolution. A new set of classes is determined first and rules are selected for 

these classes based on a random-selection scheme as mentioned above. Moreover, the 

allocated rule number for each class is identical when forming the new initial 

population, since it is unknown initially which class is harder to learn and requires 

more rules. It will not affect the final solution as the evolution process will adjust the 

distribution of rules to all classes with the use of genetic operators such as mutation 

and crossover. In other words, each class may end up in different number of rules 

which is more or less than the allocated rule number. 

 

3.3 Experiment Results and Analysis  

Three data sets are chosen for experiments in this chapter. They are wine data, iris 

data, and glass data, and only the training performance of classifier agents on these 

data sets is examined. In order to simulate the process of new class acquisition, these 

data sets are utilized in a specific way by partitioning them into two sets. The first set 

contains the data whose classes have already been known by the agent, and the other 

set contains the data whose classes are unknown initially. Then, the first set is used to 

train a rule set with GAs, and the other set is used to simulate incremental learning 

using IGAs. As the known classes are varied for different experimental settings and 

data sets, the exact partitioning of training data is thus varied.  

 The results reported are all averaged over ten independent runs. The parameters for 

GAs and IGAs, such as mutationRate, crossoverRate, generationLimits, etc, are given 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   66 

under the results. The whole evolution process is recorded for GAs and IGAs, but we 

are only interested in some indicative results, which include initial classification rate 

(CR), number of generations, training time, and ending CR. (Their definitions can be 

referred to those tables in Chapter 2.) 

 

  Agent 2 
uses GAs 

(Class 2, 3)

Agent 1  
uses GAs 

(Class 1, 2)
 
 
 
 
 
 
 
 

 
 
 

Agent 1  
uses IGAs 

(Class 1, 2, & 3)

Agent 2 
uses IGAs 

(Class 1, 2 & 3)

Figure 3.5: Illustration of experiments on new class acquisition 
 

3.3.1 The Wine Data 
 
Figure 3.5 illustrates experiments on class acquisition with detailed steps explained as 

follows. The wine data are used as an example to illustrate the design of experiments. 

It has 13 attributes and 3 classes. The experiments on the other data sets can be easily 

determined. 

Step 1: Training data are prepared for two agents. It is assumed that both agents 

know 13 attributes at first, but agent 1 only knows class 1 and 2, and 

agent 2 only knows class 2 and 3. Therefore, different training data are 

provided to two agents. 

Step 2: Both agents use GAs to evolve the rule sets on the currently known 

attributes and classes.  



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   67 

Step 3: Two agents exchange information, and then each knows the complete 

class set (class 1, 2 & 3). IGAs will be used to evolve the rule set on 3 

classes. Note that there are four alternatives for IGAs (c.f., Table 3.1), 

and the whole training data will be provided for IGAs. For simplicity, 

we only focus on the IGAs in the first agent. 

 

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

C
la

ss
ifi

ca
tio

n 
R

at
e

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

C
la

ss
ifi

ca
tio

n 
R

at
e

 
(a)       (b) 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
0 .7

0 .7 5

0 .8

0 .8 5

0 .9

0 .9 5

1

G e n e ra tio n

C
la

ss
ifi

ca
tio

n 
R

at
e

 
(c) 

Note: 
1. For GA and IGA, mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, 

ruleNumber=30, popSize=500, generationLimit=150, stagnationLimit=30. 
 

Figure 3.6: Simulation shows: (a) GA results in agent 1 with class 1 & 2; (b) GA 
results in agent 2 with class 2 & 3; (c) IGA (RI1) results in agent 1 with class 1, 2, & 3. 
 

  



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   68 

Table 3.2: Comparison of the performance of IGAs on the wine data  
with various class settings 

   Agent 1 (Class=1& 2) Agent 2 (Class=2 & 3) 
Initial CR 0.6054 0.6353 

Generations 48.8 38.2 
T. time (s) 291.8 279.6 

G
A

 

Ending CR 0.9992 1.0 

 

 Agent 1 (Class=1, 2 & 3) 

 

 Retraining GA CE1 RI1 CE2 RI2 

Initial CR 0.4539 0.7421 0.9112 0.7618 0.9140 
Generations 135.9 138.0 82.7 101.6 66.2 
T. time (s) 1385.7 1520.6 969.2 1120.3 761.0 IG

A
s 

Ending CR 0.9893 0.9955 0.9983 0.9955 0.9983 
    

  Agent 1 (Class=1 & 3) Agent 2 (Class=2 & 3) 

Initial CR 0.7075 0.6059 
Generations 12.2 44.8 
T. time (s) 65.8 309.6 

G
A

 

Ending CR 1.0 1.0 

 

 Agent 1 (Class=1, 2 & 3) 

 

 Retraining GA CE1 RI1 CE2 RI2 

Initial CR 0.4539 0.5584 0.7916 0.5983 0.8152 
Generations 135.9 148.8 104.4 147.3 114.7 
T. time (s) 1385.7 1531.5 1181.6 1502.0 1269.1 IG

A
s 

Ending CR 0.9893 0.9899 0.9983 0.9916 0.9933 
    

  Agent 1 (Class=1 & 3) Agent 2 (Class= 1 & 2) 
Initial CR 0.6729 0.5906 

Generations 13.3 60.3 
T. time (s) 66.4 449.0 

G
A

 

Ending CR 1.0 0.9983 

 

 Agent 1 (Class=1, 2 & 3) 

 

 Retraining GA CE1 RI1 CE2 RI2 

Initial CR 0.4539 0.6554 0.8658 0.6860 0.8677 
Generations 135.9 145.6 117. 7 135.3 90.7 
T. time (s) 1385.7 1564.2 1353.5 1469.6 1016.6 IG

A
s 

Ending CR 0.9893 0.9894 0.9944 0.9956 0.9988 
Notes: 
1. For GA and IGA, mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, 

ruleNumber=30, popSize=500, generationLimit=150, stagnationLimit=30. 
 

 

 Figure 3.6 shows the results of a typical run of GA and IGA (RI1 is employed 

here). Figure 3.6(a) and 3.6(b) show that it takes 54 generations for GA in agent 1 to 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   69 

evolve CR from 0.55 to 1.0, and 44 generations for GA in agent 2 to advance CR from 

0.65 to 1.0. Figure 3.6(c) shows that CR decreases from 1.0 to 0.92 immediately after 

the formation of initial population. This can be explained by the fact that new classes 

are integrated into the new chromosomes, and the training data have incorporated the 

new class. Then, CR increases gradually, and reaches 1.0 again with 80 generations. It 

means that IGA has successfully integrated the new classes and evolved a new rule set.

 More experiments with different settings of classes are conducted, and the 

performance of different IGA approaches is compared. Table 3.2 summarizes the 

results of three experiments with different class combinations. For each experiment, 

GA runs in parallel for agent 1 and 2. Upon getting the results from two GAs, IGAs 

will begin to work with different approaches. Therefore, these approaches have the 

same starting point that is fair for comparison. 

 As mentioned earlier, four IGA approaches are available on forming the new 

population, in terms of the way on choosing the old rule sets (chromosomes) and the 

way on combining them with new classes. They are noted as CE1, CE2, RI1, RI2, as 

shown in Table 3.1. In order to compare them to the conventional approach, a 

retraining GA experiment is also conducted, which abandons the current solution and 

starts the evolution process from scratch. 

 It is noted that all approaches can successfully integrate the new classes learned 

and evolve a new rule set. When observing the initial CR in the IGA part of all the 

three experiment results, it is found that the initial CRs of RI1 and RI2 are apparently 

higher than those of CE1 and CE2, and the retraining GA has the lowest initial CR. This 

can be explained by recalling the method that each approach uses to form the initial 

population. As RI1 and RI2 acquire the evolved rule set from the other agent and use it 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   70 

to form a new population, they can obtain more useful information from the rule set 

than CE1 and CE2 using the randomly created rules. The retraining GA is in the most 

disadvantaged position, as it works out the new population with a totally random 

method. 

 When comparing the performance of GA/IGA, the ending CR is used as the main 

benchmark, while the number of generations/training time used is also considered. It is 

found that the performance of the four IGA approaches are generally better than the 

retraining GA in terms of ending CR and training time. Among the four IGA 

approaches, RI1 and RI2 have better performance than CE1 and CE2, which testifies 

that agents can benefit from the evolved rule sets acquired from other agents. 

Furthermore, RI2 achieves the best performance in the third experiments, RI1 wins in 

the second experiment, and they tie in the first experiment. This hints that group 

chromosomes used in RI2 may help achieve better performance. 

 

3.3.2 The Iris Data 

Table 3.3 shows the results of three experiments on the iris data, and the performance 

of retraining GA and four IGA approaches is compared. 

 It has been reported for the iris data that the first class is linearly separable from the 

other two, but the other two are not linearly separable from each other (Blake and 

Merz, 1998). This assertion has been testified in our experiment results, as shown in 

the GA part of Table 3.3. For example, in the first experiments, agent 1 with class 1 

and 2 can achieve an ending CR of 1.0, while agent 2 with class 2 and 3 can only 

achieve an ending CR of 0.953. The results from other two experiments also support 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   71 

the fact that class 2 and 3 cannot be fully classified and class 1 can be fully separated 

from the other two classes. 

  

Table 3.3: Comparison of the performance of IGAs on the iris data 
 with various class settings 

  Agent 1 (Class=1& 2) Agent 2 (Class=2 & 3) 
Initial CR 0.8110 0.6515 

Generations 6.6 66.3 
T. time (s) 2.3 23.2 

G
A

 

Ending CR 1.0 0.9530 

 

 Agent 1 (Class=1, 2 & 3) 

 

 Retraining GA CE1 RI1 CE2 RI2 

Initial CR 0.5222 0.7487 0.8987 0.6953 0.9137 
Generations 81.8 72.6 43.7 74.9 44.9 
T. time (s) 38.0 35.9 21.4 36.7 22.3 IG

A
s 

Ending CR 0.9612 0.9610 0.9670 0.9627 0.9653 
    
  Agent 1 (Class=1 & 3) Agent 2 (Class=2 & 3) 

Initial CR 0.8440 0.6560 
Generations 6.8 60.8 
T. time (s) 2.1 19.0 

G
A

 

Ending CR 1.0 0.9520 

 

 Agent 1 (Class=1, 2 & 3) 

 

 Retraining GA CE1 RI1 CE2 RI2 

Initial CR 0.5222 0.7073 0.8707 0.6933 0.8800 
Generations 81.8 78.8 53.4 76.5 44.6 
T. time (s) 38.0 37.2 26.0 38.0 22.9 IG

A
s 

Ending CR 0.9612 0.9660 0.9687 0.9600 0.9673 
    
  Agent 1 (Class=1 & 3) Agent 2 (Class= 1 & 2) 

Initial CR 0.8490 0.7960 
Generations 7.1 8.1 
T. time (s) 2.2 2.6 

G
A

 

Ending CR 1.0 1.0  

 Agent 1 (Class=1, 2 & 3) 

 

 Retraining GA CE1 RI1 CE2 RI2 

Initial CR 0.5222 0.7260 0.8020 0.6967 0.834 
Generations 81.8 70.7 67.2 75.6 60.7 
T. time (s) 38.0 31.7 31.1 36.1 29.3 IG

A
s 

Ending CR 0.9612 0.9600 0.9627 0.9593 0.9627 
Notes: 
1. For GA and IGA, mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, 

ruleNumber=6, popSize=100, generationLimit=100, stagnationLimit=30. 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   72 

 
 The comparison among IGA approaches and retraining GA leads to similar 

findings as those drawn from the wine data. RI1 or RI2 is again the best approach 

among IGAs in terms of initial CR, training time, and ending CR. The only exception 

is that the ending CR of retraining GA is sometimes slightly better than some of the 

IGA approaches, but the training time for retraining GA is still the longest. This may 

be because the iris data is easier to be classified, thus some IGA approaches may not 

show much advantage over retraining GA in terms of CR. But they still show 

advantage in terms of training time. 

 

3.3.3  The Glass Data 

 Table 3.4 shows the results of three experiments on the glass data. As the glass data 

has more classes and instances, it is noted that the CRs achieved are apparently lower 

than the other two data sets. This means the glass data is harder to be classified. 

The results presented in the GA part also give us some information regarding the 

internal interference of data. For instance, when GA is used to classify the data with 

class 3, 4, 5, and 6, it can achieve an ending CR of about 0.95. In contrast, the ending 

CR of GA with class 1, 2, 3, and 4 can only achieve a much lower value of 0.64. This 

means it is more difficult to classify the latter group of classes than the former group, 

which also indicates there is more interference among the data belonging to the latter 

group of classes.  

 Through the comparison between the four IGA approaches and the retraining GA, 

similar findings can be obtained. All the four IGA approaches achieve higher ending 

CR than the retraining GA with much greater improvement. RI1 or RI2 is still the best 

approach in terms of the ending CR. 



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   73 

 
Table 3.4: Comparison of the performance of IGAs on the glass data  

with various class settings 
   Agent 1 (Class=1, 2 & 3) Agent 2 (Class=3, 4, 5 & 6) 

Initial CR 0.4871 0.4368 
Generations 261.1 233.4 
T. time (s) 2125.6 1016.4 

G
A

 

Ending CR 0.7577 0.9515 

 

 Agent 1 (Class=1, 2, 3, 4, 5, & 6) 

 

 Retraining GA CE1 RI1 CE2 RI2 

Initial CR 0.3424 0.5318 0.5869 0.5332 0.5874 
Generations 245.4 291.3 230.9 274.1 241.9 
T. time (s) 2492.2 3186.0 2566.0 3085.3 2737.8 IG

A
s 

Ending CR 0.6278 0.7341 0.7360 0.7276 0.7383 
   

  Agent 1 (Class=1, 2, 3 & 4) Agent 2 (Class=3, 4, 5 & 6) 

Initial CR 0.4256 0.4265 
Generations 206.6 168.2 
T. time (s) 1849.7 691.1 

G
A

 

Ending CR 0.6358 0.9368 

 

 Agent 1 (Class=1, 2, 3, 4, 5, & 6) 

 

 Retraining GA CE1 RI1 CE2 RI2 

Initial CR 0.3424 0.5164 0.5799 0.5117 0.5757 
Generations 245.4 214.4 208.1 182.1 193.5 
T. time (s) 2492.2 2375.0 2321.1 2092.2 2202.1 IG

A
s 

Ending CR 0.6278 0.6930 0.7220 0.6715 0.7070 
    
  Agent 1 (Class=1, 2, 3, 4 & 5) Agent 2 (Class=3, 4, 5 & 6) 

Initial CR 0.4024 0.4363 
Generations 217.2 150.0 
T. time (s) 1905.9 607.1 

G
A

 

Ending CR 0.6547 0.9314 

 

 Agent 1 (Class=1, 2, 3, 4, 5, & 6) 

 

 Retraining GA CE1 RI1 CE2 RI2 

Initial CR 0.3424 0.5535 0.6111 0.5571 0.6059 
Generations 245.4 170.8 192.2 192.6 199.3 
T. time (s) 2492.2 1929.6 2096.0 2157.6 2249.5 IG

A
s 

Ending CR 0.6278 0.6926 0.7144 0.7056 0.7269 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, 

popSize=500, generationLimit=300, stagnationLimit=100. 
 

  



Chapter 3 Incremental Genetic Algorithms for New Class Acquisition   74 

3.4 Conclusion 

This chapter has explored the incremental learning of classifier agents through new 

class acquisition. Following the basic design of GAs and IGAs presented in the last 

chapter, IGAs have been further adapted to tackle the tasks of acquiring new class. 

Based on the different situations of class expansion and rule integration, four 

approaches have been derived and examined. Classifier agents can choose one of them 

according to various conditions such as whether group chromosomes from the old 

solution are preserved or the evolved rule sets from other agents are available. Three 

benchmark data sets are used to evaluate these approaches, and their performance is 

compared. The experimental results show that GAs and IGAs can be successfully used 

for new class acquisition, and classifier agents can benefit from collaborative learning 

with other agents. 



Chapter 4  Continuous Incremental Genetic Algorithms    75 

 

Chapter 4 

Continuous Incremental Genetic 
Algorithms 
 
 
 
4.1 Introduction 

In previous chapters, IGAs are proposed for incremental learning of new attributes and 

classes. When leaning new attributes, it is assumed that only one set of new attributes is 

introduced, and they are treated in a batch mode. Actually IGAs can also be extended to 

run in continuous mode, which means new attributes can be introduced one by another.  

 This chapter proposes continuous incremental genetic algorithms (CIGAs) to 

address continuous incremental learning and training of input attributes for classifier 

agents. Rather than using input attributes in a batch as with normal GAs, CIGAs learn 

attributes one after another. The resulting classification rule sets are also evolved 

incrementally to accommodate the new attributes. IGAs are still used as the basic 

algorithm to accommodate one or more new attributes. Based on IGAs, CIGAs are 

designed as iterative algorithms for continuous incremental learning and training.  

 With the use of four different schemes in IGAs, four approaches of CIGAs are 

explored. CIGAs are evaluated with four benchmark classification data sets, and their 

performance is compared with normal GAs. The simulation results show that CIGAs 

can be used successfully for continuous incremental training of classifier agents and 

can achieve better performance than normal GAs using batch-mode training. 



Chapter 4  Continuous Incremental Genetic Algorithms    76 

  
4.2 Continuous Incremental Genetic Algorithms (CIGAs) 

Following the notations in chapter 2, let us assume a classification problem has c 

classes in the n-dimensional pattern space, and p vectors , 

 

( )iniii xxxX ...,,, 21=

,,...,2,1 pi = cp >> , are given as training patterns. The task of classification is to 

assign instances to one out of a set of pre-defined classes, by discovering certain 

relationship among attributes.  

   

… … 

Input Output

c 
cl

as
se

s 

n 
at

tri
bu

te
s  

GAs 
 

 

 
(a) Normal GA-based solution 

 

IGAs 

 

IGAs IGAs 

Nil 

……

……

Final Solution 

A A

0f 1f 2f nf

Att. ntt. 2tt. 1

n attributes

 

 

 

 

(b) Illustration of CIGAs  

Figure 4.1: Illustrations of normal GAs and CIGAs 

 

 Figure 4.1 illustrates the concepts of normal GAs and CIGAs. As shown in Figure 

4.1(a), a normal GA maps attributes to classes directly in a batch manner, which means 

all the attributes, classes, and training data are used together to train a group of GA 

chromosomes. CIGAs are significantly different. As shown in Figure 4.1(b), they 

consist of several stages, each dealing with one new attribute by employing IGAs to 



Chapter 4  Continuous Incremental Genetic Algorithms    77 

accommodate the new attribute. They may start from nil knowledge. With the 

continuous introduction of new attributes, the rule set can be incrementally evolved 

step by step and achieve the final solution. CIGAs can also stop at any middle stage, 

and the solution at that time can be used to solve the problem with a subset of 

attributes. 

 

Step 1: Initialization. Set i=1. Initialize parameters for CIGAs.  

Step 2: i-th iteration. Introduce the i-th attribute.  

Step 3: IGAs use IS1 or IS3 to integrate the new elements for the i-th attribute, 

forming the new initial population. (i=1 means the introduction of the first 

attribute. As there is no old solution, the new elements for the first attribute are 

simply used as the initial population.) 

Step 4: Evolve the chromosomes with IGAs until the stopping criteria are met, using 

the training patterns including attributes from the 1st to the i-th. 

Step 5: If i is equal to n  (which is the total number of attributes), the training process 

will be stopped. Otherwise, increase i by 1. Repeat the procedure from step 2 to 

step 5. 

Figure 4.2:  Algorithms for CIGA1 and CIGA3 

 

Following the notations presented above, we denote each stage of CIGAs as: 

    CXff iii →− ),(: 1 ni ,...,2,1=   (4.1) 

where,  is a solution for the problem with i attributes, and is a special case - nil 

solution.  is the vector of training patterns with i  attributes, and is the set of 

output classes. In each stage i ,  is expanded into  by introducing the new i -th 

if 0f

iX C

1−iX iX



Chapter 4  Continuous Incremental Genetic Algorithms    78 

attribute, and the old solution  is also used to help evolve a new solution . 

Therefore, provides the corresponding solutions with the incremental 

introduction of new attributes, and  is the final solution accommodating the whole set 

of attributes. 

1−if if

),...,,( 10 nfff

nf

 Figure 4.2 shows the algorithms for CIGA1 and CIGA3, and their names are 

derived from their usage of IS1 and IS3 in step 3. In step 3, classifier agents have 

known the new attribute and old solution. By employing IS1 or IS3, new elements will 

be created randomly for this new attribute and integrated with old chromosomes, as 

presented in Section 2.4. The choice of best chromosome or group chromosomes 

differentiates between CIGA1 and CIGA3. 

 

4.3 Experiments with CIGA1 and CIGA3  

Four benchmark data sets, wine data, glass data, cancer data, and yeast data, are used to 

evaluate the performance of CIGAs in this chapter. Each data set is equally partitioned 

into two parts. One half is for training, and the other half is for testing. In addition, the 

biased rates for crossover and mutation will not be used in experiments. 

 Only one attribute is introduced during each iteration in CIGAs, and the sequence 

of introducing attributes is the same as in the original benchmark data set. As the first 

step, CIGA1 and CIGA3 are evaluated on the glass and yeast data sets. 

 Table 4.1 shows the performance of classifier on the glass data, using CIGA1, 

CIGA3, and normal GA. The whole training process is recorded for CIGA1 and CIGA3. 

Each column records the initial CR, which is the classification rate achieved on the 

training data after initially integrating the new attribute. After some generations 



Chapter 4  Continuous Incremental Genetic Algorithms    79 

(training time), the classifier achieves an ending CR on the training data, and a test CR 

on the test data. 

 
Table 4.1: Performance comparison on the glass data  - CIGA1, CIGA3, and normal GA 

 
CIGA1 Add Att. 

1 
Add Att. 

2 
Add Att. 

3 
Add Att. 

4 
Add Att. 

5 
Add Att. 

6 
Add Att. 

7 
Add Att. 

8 
Add Att. 

9 
Initial CR 0.3505 0.4879 0.5318 0.6131 0.6383 0.6467 0.6664 0.672 0.6907 

Generations 54.1 50.5 57 48.3 38 45.4 40 41.4 36.7 
T. time (s) 41.5 52.1 71.2 69 60.8 76.9 72.8 78.9 73.5 
Ending CR 0.4869 0.5299 0.6131 0.6383 0.6458 0.6664 0.672 0.6907 0.6963 

Test CR 0.3542 0.3654 0.3523 0.3645 0.3692 0.4009 0.3963 0.4215 0.4178 
 

CIGA3 Add Att. 
1 

Add Att. 
2 

Add Att. 
3 

Add Att. 
4 

Add Att. 
5 

Add Att. 
6 

Add Att. 
7 

Add Att. 
8 

Add Att. 
9 

Initial CR 0.3673 0.5393 0.5757 0.6533 0.6776 0.6981 0.7131 0.7234 0.7383 
Generations 58.4 53.9 57 47.2 49.8 43.1 44 38.7 32.6 
T. time (s) 47.6 58.1 74.8 69.4 79.7 73.2 79.9 74.7 64.1 
Ending CR 0.5383 0.5729 0.6533 0.6776 0.6981 0.7131 0.7234 0.7383 0.7402 

Test CR 0.3636 0.3729 0.3813 0.3897 0.3841 0.4028 0.415 0.4336 0.429 
 

Summary Normal GA CIGA1 CIGA3 
Initial CR 0.3308 0.3505 0.3673 

Generations 167.3 411.4 424.7 
T. time (s) 354.6 596.7 621.5 
Ending CR 0.5897 0.6963 (18.1%) 0.7402 (25.5%) 

Test CR 0.3953 0.4178 (5.7%) 0.429 (8.5%) 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=200, 

stagnationLimit=30; 
2. For each stage of CIGAs, generationLimit=60; For Normal GA, generationLimit=540. 

(In order to be fair, the generationLimit for normal GA is equal to the sum of those for each stage, 
other experiments in this chapter follow the same mechanism.) 

 

 The bottom part of Table 4.1 provides a summary of CIGA1 and CIGA3. The 

generations and training time consumed in all stages are summed up. The initial CR for 

CIGA1 and CIGA3 in the summary table is actually the initial CR with attribute 1, 

which is different from the initial CR for the normal GA (with the whole set of 

attributes). The ending CR and test CR are the final training and test CRs with the 

whole set of attributes introduced. They are also compared with the normal GA with 

the improvement percentage computed. 



Chapter 4  Continuous Incremental Genetic Algorithms    80 

 Figure 4.3 shows the comparison of performance among CIGA1, CIGA3, and 

normal GA in terms of training and test CRs. As normal GA uses the whole set of 

attributes in batch, there are only two points for it in the figure. On the contrary, CIGA1 

and CIGA3 each has a curve to show their continuous, incremental training process. 

From Table 4.1 and Figure 4.3, it is found that the training CR rises steadily with the 

introduction of each new attribute, while the change of test CR is relatively small. It is 

also shown that CIGA3 outperforms CIGA1 in terms of both training and test CRs. 

Recalling the difference between CIGA1 and CIGA3, it can be confirmed that the 

group chromosomes used by IS3 in CIGA3 may contain more useful information than 

the best chromosome used by IS1 in CIGA1. For the comparison between CIGAs and 

the normal GA, it is noted that CIGAs outperform normal GA in terms of training CR 

and test CR, with a significant improvement around 6% - 25%. 

1 2 3 4 5 6 7 8 9
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

N o . o f A ttr ib u te s

C
la

ss
ifi

ca
tio

n 
R

at
e

C IG A 1 (T ra in in g )    
C IG A 1 (Te s t )        
C IG A 3 (T ra in in g )    
C IG A 3 (Te s t )        
N o rm a l G A (T ra in in g )
N o rm a l G A (Te s t )    

 
Figure 4.3: Comparison of CIGA1, CIGA3, and normal GA on the glass data 

 
 The classifier performance on the yeast data is recorded in Table 4.2, and also 

shown in Figure 4.4. The performance comparison illustrates that CIGA1 and CIGA3 



Chapter 4  Continuous Incremental Genetic Algorithms    81 

outperform normal GA in terms of training and test CRs. The improvement is also 

significant, with an increase of 8%-11%. Furthermore, CIGA3 still outperforms CIGA1. 

 
Table 4.2: Performance comparison on the yeast data – CIGA1, CIGA3, and normal GA 

 
CIGA1 Add Att.1 Add Att. 2 Add Att. 3 Add Att. 4 Add Att. 5 Add Att. 6 Add Att. 7 Add Att. 8

Initial CR 0.2725 0.3084 0.3186 0.3499 0.3588 0.3664 0.3714 0.3752 
Generations 55.8 49.1 52.6 48.8 47.6 40.5 40.7 43.7 
T. time (s) 156.6 186 242 257.7 269.2 228.5 237.8 262.6 
Ending CR 0.3082 0.3164 0.3491 0.3588 0.3664 0.3714 0.3752 0.3803 

Test CR 0.3081 0.314 0.3372 0.3419 0.346 0.3505 0.3528 0.3561 
 

CIGA3 Add Att.1 Add Att. 2 Add Att. 3 Add Att. 4 Add Att. 5 Add Att. 6 Add Att. 7 Add Att. 8
Initial CR 0.2662 0.3093 0.3155 0.3635 0.3751 0.3778 0.3801 0.3809 

Generations 52 46.7 51.7 56 46.6 45.3 37 36.3 
T. time (s) 158.3 179.9 242.3 291.5 268.1 267.4 230 231.6 
Ending CR 0.3092 0.3155 0.3635 0.3751 0.3778 0.3801 0.3809 0.3817 

Test CR 0.307 0.3074 0.3488 0.3549 0.3562 0.3559 0.3553 0.3559 
 

Summary Normal GA CIGA1 CIGA3 
Initial CR 0.2127 0.2725 0.2662 

Generations 111.7 378.8 371.6 
T. time (s) 628.2 1840.4 1869.1 
Ending CR 0.3414 0.3803 (11.4%) 0.3817 (11.8%) 

Test CR 0.3284 0.3561 (8.4%) 0.3559 (8.4%) 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=100, 

stagnationLimit=30; 
2. For each stage of CIGAs, generationLimit=60; For Normal GA, generationLimit=480. 

 

 
1 2 3 4 5 6 7 8

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

N o . o f A ttr ib ute s

C
la

ss
ifi

ca
tio

n 
R

at
e

C IG A 1 (Tra in in g )    
C IG A 1 (Te s t )        
C IG A 3 (Tra in in g )    
C IG A 3 (Te s t )        
N o rm a l G A (Tra in in g )
N o rm a l G A (Te s t )    

 

Figure 4.4: Comparison of CIGA1, CIGA3, and normal GA on the yeast data 



Chapter 4  Continuous Incremental Genetic Algorithms    82 

 
4.4 Experiments with CIGA2 and CIGA4 

Experiments with CIGA1 and CIGA3 have shown that they outperform normal GA. In 

this section, further refinement for CIGAs is explored. Recalling that IGAs have four 

initialization schemes, and IS1 and IS3 have been used to integrate the randomly 

created new elements. This motivates us to design new algorithms of CIGAs by 

utilizing IS2 and IS4, and thus their names are assigned as CIGA2 and CIGA4 

respectively. In order to employ IS2 or IS4, a new step is needed to evolve separately 

new elements for a new attribute. Figure 4.5 shows the details of CIGA2 and CIGA4 

algorithms. Note that the new step 3 is inserted into the algorithms as a separate 

evolution process, and with this step, a group of chromosomes are evolved and thus 

available for the integration process in IS2 or IS4.  

Step 1: Initialization. Set i = 1. Initialize parameters for CIGAs.  

Step 2: i-th iteration. Introduce the i-th attribute.  

Step 3: Evolve the i-th attribute alone, using the training patterns for the i-th attribute.   

Step 4: IGAs use IS2 or IS4 to integrate the new elements for the i-th attribute, 

forming the new initial population. (i=1 means the introduction of the first 

attribute. As there is no old solution, the new elements for the first attribute are 

simply used as the initial population.) 

Step 5: Evolve the chromosomes with IGAs until the stopping criteria are met, using 

the training patterns including attributes from the 1st to the i-th. 

Step 6: If i is equal to n  (which is the total number of attributes), the training process 

will be stopped. Otherwise, increase i by 1. Repeat the procedure from step 2 

to step 6. 

 
Figure 4.5:  Algorithms for CIGA2 and CIGA4 



Chapter 4  Continuous Incremental Genetic Algorithms    83 

 

  

 

 

 

 

Figure 4.6: Illustration of CIGA2 and CIGA4 

  

 Figure 4.6 shows the illustration for CIGA2 and CIGA4, which is refined from 

Figure 4.1(b). Note that SEMs (Single-attribute Evolution Modules) are inserted to 

evolve separately a single attribute, and the function of these modules corresponds to 

step 3 in Figure 4.5. 

 Most experiment settings of CIGA2 and CIGA4 are the same as those for CIGA1 

and CIGA3, except the new settings for SEMs. Considering that it is relatively easy to 

evolve a single attribute, the parameters for SEMs are chosen as half of the values used 

in the normal iteration to reduce the time cost. This means: generationLimit, 

ruleNumber, and popSize are set as half of the normal iteration values. 

 First, experiments with CIGA2 and CIGA4 are conducted on the wine and cancer 

data. Table 4.3 and Figure 4.7 show the performance comparison on the wine data, 

using CIGA2, CIGA4, and normal GA. It is found that CIGA2 and CIGA4 outperform 

normal GA in terms of training CR and test CR, with an improvement around 1% - 4%. 

Furthermore, CIGA4 outperforms CIGA2 in terms of both training and test CRs. 

Recalling the difference between CIGA2 and CIGA4, it can be confirmed again that the 

group chromosomes used by IS4 in CIGA4 may contain more useful information than 

IS2/IS4 

 

n attributes

IS2/IS4 IS2/IS4 ……0 2f nff 1f

Nil 

……

Final Solution 

Att. 2 Att. nAtt. 1

SEMSEMSEM ……

SEM:  
Single-attribute Evolution Module 



Chapter 4  Continuous Incremental Genetic Algorithms    84 

the best chromosome used by IS2 in CIGA2. This result conforms to those obtained 

from the experiments of CIGA1 and CIGA3. 

 

Table 4.3: Performance comparison on the wine data  - CIGA2, CIGA4, and normal GA 
 

CIGA2 Add Att.1 Add Att. 2 Add Att. 3 Add Att. 4 Add Att. 5 Add Att. 6 Add Att.7
Initial CR 0.5809 0.7112 0.8112 0.836 0.8596 0.8888 0.9191 

Generations 39.4 40 39.7 40 40 38.3 38.9 
T. time (s) 26.5 43.6 52.3 60.7 66.4 68.8 74.6 
Ending CR 0.664 0.8404 0.8618 0.8854 0.9022 0.9213 0.9461 

Test CR 0.6596 0.6787 0.6528 0.6584 0.6528 0.7079 0.7742 
 
 

CIGA2 
(contd.) Add Att.8 Add Att. 9 Add Att. 10 Add Att. 11 Add Att. 12 Add Att. 13  

Initial CR 0.9236 0.9404 0.9517 0.9708 0.9742 0.9787  
Generations 37 36.4 34.6 28.3 25.7 15.4  
T. time (s) 76 79.7 79.6 68.9 66.6 43.6  
Ending CR 0.9562 0.964 0.9708 0.9831 0.9899 0.9955  

Test CR 0.809 0.8258 0.8517 0.8472 0.8517 0.8573  
 

CIGA4 Add Att.1 Add Att. 2 Add Att. 3 Add Att. 4 Add Att. 5 Add Att. 6 Add Att.7
Initial CR 0.5843 0.7798 0.8371 0.8528 0.8787 0.9067 0.9315 

Generations 38.5 40 38.4 40 40 39.9 39 
T. time (s) 26.7 44.4 50.2 58.8 64.8 70.7 74.1 
Ending CR 0.6764 0.8528 0.8663 0.8978 0.9146 0.9393 0.964 

Test CR 0.682 0.7112 0.691 0.6978 0.7225 0.7787 0.8461 
 
 

CIGA4 
(contd.) Add Att.8 Add Att. 9 Add Att. 10 Add Att. 11 Add Att. 12 Add Att. 13  

Initial CR 0.9461 0.9584 0.9562 0.9798 0.9787 0.9798  
Generations 38.8 34.8 35.3 20.7 23.2 18.1  
T. time (s) 79.9 75.3 80.5 52.1 60.2 49.9  
Ending CR 0.9719 0.9787 0.9831 0.991 0.9921 0.9955  

Test CR 0.8483 0.8292 0.8393 0.8506 0.8607 0.8607  
  

Summary Normal GA CIGA2 CIGA4 
Initial CR 0.4034 0.5809 0.5843 

Generations 144.7 453.7 446.7 
T. time (s) 356.7 807.3 787.6 
Ending CR 0.9876 0.9955 (0.8%) 0.9955 (0.8%) 

Test CR 0.8303 0.8573 (3.3%) 0.8607 (3.7%) 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=200, 

stagnationLimit=30;  
2. For each stage of CIGAs, generationLimit=40; For Normal GA, generationLimit=520. 

 
  



Chapter 4  Continuous Incremental Genetic Algorithms    85 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3
0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

N o . o f A ttr i b u te s

C
la

ss
ifi

ca
tio

n 
R

at
e

C IG A 2 (T ra in in g )    
C IG A 2 (Te s t )        
C IG A 4 (T ra in in g )    
C IG A 4 (Te s t )        
N o rm a l G A (T ra in in g )
N o rm a l G A (Te s t )    

 

Figure 4.7: Comparison of CIGA2, CIGA4, and normal GA on the wine data 
 

  

Table 4.4: Performance comparison on the cancer data - CIGA2, CIGA4, and normal GA 
 

CIGA2 Add Att. 
1 

Add Att. 
2 

Add Att. 
3 

Add Att. 
4 

Add Att. 
5 

Add Att. 
6 

Add Att. 
7 

Add Att. 
8 

Add Att. 
9 

Initial CR 0.8138 0.9203 0.9355 0.9381 0.9499 0.9562 0.9582 0.9619 0.9582 
Generations 31.8 52.2 50.9 50 54.5 48.9 45.2 42.3 40.7 
T. time (s) 37 94.8 110.6 121.9 141.8 132.8 127.9 126.7 125.3 
Ending CR 0.8711 0.9358 0.9513 0.957 0.9642 0.9668 0.9682 0.9691 0.9693 

Test CR 0.8539 0.9527 0.9602 0.9544 0.9527 0.9582 0.9573 0.9582 0.9596 
 

CIGA4 Add Att. 
1 

Add Att. 
2 

Add Att. 
3 

Add Att. 
4 

Add Att. 
5 

Add Att. 
6 

Add Att. 
7 

Add Att. 
8 

Add Att. 
9 

Initial CR 0.8324 0.9272 0.941 0.9438 0.951 0.9573 0.9633 0.9599 0.9633 
Generations 32.1 46.3 45.9 47 56.1 51.1 43.3 42.1 39.8 
T. time (s) 39.9 86.6 101.4 113.9 143.5 138 127.9 131 125.6 
Ending CR 0.8711 0.9372 0.9513 0.9564 0.9639 0.967 0.9685 0.9685 0.9696 

Test CR 0.8539 0.9479 0.9553 0.9521 0.9487 0.9593 0.9587 0.9639 0.9699 
 

Summary Normal GA CIGA2 CIGA4 
Initial CR 0.7324 0.8138 0.8324 

Generations 136.6 416.5 403.7 
T. time (s) 381.2 1018.8 1007.8 
Ending CR 0.967 0.9693 (0.2%) 0.9696 (0.3%) 

Test CR 0.9619 0.9596 (-0.2%) 0.9699 (0.8%) 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=100, 

stagnationLimit=30; 
2. For each stage of CIGAs, generationLimit=60; For Normal GA, generationLimit=540. 

 
 



Chapter 4  Continuous Incremental Genetic Algorithms    86 

 Table 4.4 shows the classifier performance on the cancer data. The nine attributes 

of the cancer data are introduced sequentially. The whole incremental training process 

is recorded for CIGA2 and CIGA4. With a comparison to normal GA, it is found that 

the training and test CRs for these three approaches are similar, with not much 

improvement or deterioration. Figure 4.8 also shows visually that their performance is 

very close. The curves in the figure also show that test CR may exceed training CR in 

some stages during the training process. 

1 2 3 4 5 6 7 8 9
0 .8

0 .8 5

0 .9

0 .9 5

1

N o . o f A ttrib ute s

C
la

ss
ifi

ca
tio

n 
R

at
e

C IG A 2 (Tra in in g )    
C IG A 2 (Te s t )        
C IG A 4 (Tra in in g )    
C IG A 4 (Te s t )        
N o rm a l G A (Tra in in g )
N o rm a l G A (Te s t )    

 

Figure 4.8: Comparison of CIGA2, CIGA4, and normal GA on the cancer data 

 

 In order to compare the performance of the four types of CIGAs, experiments with 

CIGA2 and CIGA4 on the glass and yeast data are conducted, and their results are 

compared with those of CIGA1 and CIGA3. Table 4.5 and Table 4.6 only list the 

respective summary of the evolution process. The detailed information of each stage of 

CIGA2 and CIGA4 can be found in Appendix B, while those of CIGA1 and CIGA3 

can be found in Table 4.1 and Table 4.2 respectively. Table 4.5 and Figure 4.9 compare 

the performance of four types of CIGAs on the glass data in two aspects, training CR 



Chapter 4  Continuous Incremental Genetic Algorithms    87 

and test CR respectively. It is shown that all types of CIGAs outperform normal GA in 

terms of both CRs. Among the four types, CIGA4 is the best approach, and CIGA1 and 

CIGA3 are inferior to CIGA2 and CIGA4 in both CRs. This tells us that the separate 

evolution of each new attribute does contribute to better performance.  

 
 

1 2 3 4 5 6 7 8 9
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

N o . o f A ttr i b u te s

C
la

ss
ifi

ca
tio

n 
R

at
e

C IG A 1 (T ra in in g )    
C IG A 2 (T ra in in g )    
C IG A 3 (T ra in in g )    
C IG A 4 (T ra in in g )    
N o rm a l G A (Tra in in g )

  

1 2 3 4 5 6 7 8 9
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

N o . o f A ttrib ute s

C
la

ss
ifi

ca
tio

n 
R

at
e

C IG A 1 (Te s t )    
C IG A 2 (Te s t )    
C IG A 3 (Te s t )    
C IG A 4 (Te s t )    
N o rm a l G A (Te s t )

 

Figure 4.9: Performance comparison of CIGAs on the glass data  
 
 
 



Chapter 4  Continuous Incremental Genetic Algorithms    88 

Table 4.5: Performance comparison of CIGAs on the glass data 

Summary Normal GA CIGA1 CIGA2 CIGA3 CIGA4 
Initial CR 0.3308 0.3505 0.3598 0.3673 0.3467 

Generations 167.3 411.4 454 424.7 496.3 
T. time (s) 354.6 596.7 779.2 621.5 874.6 
Ending CR 0.5897 0.6963 (18.1%) 0.7421 (25.8%) 0.7402 (25.5%) 0.7879 (33.6%)

Test CR 0.3953 0.4178 (5.7%) 0.4374 (10.7%) 0.429 (8.5%) 0.4458 (12.8%)
Notes:   The experiment setting is the same as that for Table 4.1. 

  
 

1 2 3 4 5 6 7 8
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

N o . o f A ttr ib u te s

C
la

ss
ifi

ca
tio

n 
R

at
e

C IG A 1 (Tra in in g )    
C IG A 2 (Tra in in g )    
C IG A 3 (Tra in in g )    
C IG A 4 (Tra in in g )    
N o rm a l G A (Tra in in g )

 

1 2 3 4 5 6 7 8
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

N o . o f A ttr ib u te s

C
la

ss
ifi

ca
tio

n 
R

at
e

C IG A 1 (Te s t )    
C IG A 2 (Te s t )    
C IG A 3 (Te s t )    
C IG A 4 (Te s t )    
N o rm a l G A (Te s t )

 

Figure 4.10: Performance comparison of CIGAs on the yeast data 



Chapter 4  Continuous Incremental Genetic Algorithms    89 

 Table 4.6 and Figure 4.10 show the comparison of performance of CIGAs on the 

yeast data. Similar results have been obtained regarding their training and test 

performance. CIGA4 is again the best approach among the four choices, and CIGA2 

and CIGA4 outperform CIGA1 and CIGA3 in both CRs. 

 

Table 4.6: Performance comparison of CIGAs on the yeast data 

Summary Normal GA CIGA1 CIGA2 CIGA3 CIGA4 
Initial CR 0.2127 0.2725 0.2667 0.2662 0.2612 

Generations 111.7 378.8 409.3 371.6 429.5 
T. time (s) 628.2 1840.4 2475.3 1869.1 2655.5 
Ending CR 0.3414 0.3803 (11.4%) 0.4097 (20%) 0.3817 (11.8%) 0.4326 (26.7%)

Test CR 0.3284 0.3561 (8.4%) 0.3803 (15.8%) 0.3559 (8.4%) 0.396 (20.6%)
Notes:   The experiment setting is the same as that for Table 4.2. 
 
 
4.5 Comparison to other methods 

In the above experiments, our CIGA approaches are compared with the normal GA 

using the benchmark data sets. It is found that the use of CIGAs (especially CIGA4) 

can improve the performance of classifiers in terms of both training and test CRs. In 

this section, we compare further the results of CIGA4 with those reported in the 

literature. 

 For the wine data, Corcoran and Sen (1994) used a real-coded GA-based machine 

learning approach, and achieved an average training rate of 99.5%. Ishibuchi et al. 

(1999) designed a fuzzy classifier by means of an integer-coded GA and grid 

partitioning, and they got an average training rate of 98.5%. Setnes and Roubos (2000) 

used GA-fuzzy classifiers which achieve a classification rate of 98.3%. Comparing to 

these results in the literature, CIGA4 achieves the highest rate as 99.55% (c.f. Table 

4.3). 



Chapter 4  Continuous Incremental Genetic Algorithms    90 

  Regarding the cancer data, Wolberg and Mangasarian (1990) reported a test rate of 

95.9% with the use of hyperplanes, and Zhang (1992) reported 93.7% with the use of 1-

nearest neighbor. CIGA4 achieves 96.99% (c.f. Table 4.4), which also outperforms 

these two. For the glass data, Falco et al. (2002) used genetic programming frameworks 

to discover classification rules, and reported a training rate of 64.61%, while CIGA4 

achieves a better rate of 78.79% (c.f. Table 4.5).  

 

4.6 Discussions 

From the experiments on the four benchmark data sets, we have an overall picture on 

CIGAs. First, with CIGAs, classifier agents are equipped with a capability to integrate 

new attribute(s). Therefore, classifier agents can evolve their solutions incrementally in 

any situation where the introduction of new attributes may be frequent. Furthermore, 

four types of CIGAs are available to accommodate new attributes, so that the classifier 

agents can choose one type to cope with the dynamic environment.  

 With the evaluation of classifier performance on the benchmark data sets and 

comparison to normal GAs, it is found that the use of CIGAs (especially CIGA4) can 

improve the performance of classifiers in terms of both training and test CRs. For some 

problems such as glass and yeast, the improvement versus normal GA is significant. 

For problems such as wine and cancer, the improvement is relatively smaller. This 

result may be explained by the fact that the final accuracy for these data achieved with 

GA is already high. This means these data are easier to be classified, and therefore 

CIGAs may not have much room to demonstrate their advantages against normal GA 

on these data. 



Chapter 4  Continuous Incremental Genetic Algorithms    91 

 Based on the experiment results, CIGA4 generally outperforms CIGA2 in both 

training CR and test CR. This tells us that group chromosomes generally contain more 

information than the best chromosome alone. Especially, when these chromosomes are 

used as seeds to create the initial population for the next round of evolution, group 

chromosomes allow more degree of heterogeneity. Also, separate evolution of each 

new attribute in advance contributes to the improvement on performance, as 

demonstrated by the results that CIGA2 and CIGA4 outperform CIGA1 and CIGA3.  

 However, there are some tradeoffs here. First, the utilization of group 

chromosomes from the old solution depends on its availability. For example, a training 

process is interrupted in the middle, and the group chromosomes in the final solution 

are not preserved. Therefore, group chromosomes are not available when the training 

process is resumed later. This suggests that, in order to cope with some unexpected 

circumstances, it may be necessary to use a combination of different types of CIGAs. 

Second, the training time for CIGA2 and CIGA4 will be generally longer as they need 

an extra evolution process for each new attribute. For example, it is found from Table 

4.5 that the training time of CIGA4 on the glass data increased by 40.7% as compared 

to CIGA3 (increased from 621.5s to 874.6s), and the training time of CIGA2 used for 

the yeast data increased by 34.5% as compared to CIGA1 (c.f. Table 4.6, increased 

from 1840.4s to 2475.3s).  

 

4.7 Conclusion  

This chapter has proposed continuous incremental genetic algorithms (CIGAs) to 

address continuous incremental learning and training tasks of GA-based classifier 

agents. Rather than using input attributes in batch as done by normal GAs, CIGAs learn 



Chapter 4  Continuous Incremental Genetic Algorithms    92 

input attributes one after another. The classification rule sets are also expanded and 

evolved incrementally to accommodate the new attributes. 

 Four benchmark data sets are used to evaluate the performance of classifier agents, 

and they are compared with normal GAs. The simulation results show that CIGAs can 

be used successfully for continuous incremental training of classifier agents and can 

achieve better performance than normal GAs using batch-mode training. Four types of 

CIGAs are also compared to explore further on the effect of different initialization 

schemes and separate evolution of new attributes. The results show that the use of old 

group chromosomes (solutions) may help achieve better training and test CR than the 

use of a single best old chromosome (solution). Separate evolution of new attributes 

also helps achieve better performance with the cost of extra training time. 

 



Chapter 5  Class Decomposition for GA-based Classifier Agents 93 

 

Chapter 5 

Class Decomposition for GA-based 
Classifier Agents 
 
 
 
5.1 Introduction 

In the previous chapters, GAs have been used as the basic algorithms for classification 

tasks, and IGAs have been developed for incremental learning. However, when GAs 

are applied to larger-scale real-world classification problems, they still suffer from 

some drawbacks, such as the inefficiency in searching a large space, the difficulty in 

breaking the internal interference of training data, and the possibility of getting trapped 

in local optima. A natural approach to overcome these drawbacks is to decompose the 

original task into several sub-tasks based on certain techniques. Normally, a 

decomposition approach divides a task into smaller and simpler sub-tasks, supervises 

the learning of each sub-task, and finally recombines individual solutions into a final 

solution.  

 Various task decomposition methods have been proposed. These methods can be 

roughly classified into the following categories: functional modularity, domain 

modularity, class decomposition, and state decomposition, according to different 

partition strategies (Anand et al., 1995; Guan and Li, 2002a; Jenkins and Yuhas, 1993; 

Lu and Ito, 1999). However, most of them are used in Artificial Neural Networks 

(ANN), very few find their applications in GAs, especially GA-based classification. In 



Chapter 5  Class Decomposition for GA-based Classifier Agents 94 

this chapter, we aim to explore the use of class decomposition in GAs and evaluate its 

performance on classification problems. 

 The class decomposition approach presented in this chapter partitions a 

classification problem into several class modules in the output domain. Each module is 

responsible for solving a fraction of the original problem. These modules are trained in 

parallel and independently. Results obtained from them are integrated to form the final 

solution. 

 GAs and IGAs are further explored with the introduction of class decomposition. 

Four benchmark data sets are used to evaluate the performance of class decomposition. 

The experiment results show that class decomposition can help achieve higher 

classification rate and save training time.  

 

5.2 Class Decomposition in GA-based Classification 

Traditional GA maps attributes to classes directly in a batch manner, which means all 

the attributes, classes, and training data are used together to train a group of GA 

chromosomes (cf. Figure 4.1). GA with class decomposition is significantly different. 

As shown in Figure 5.1, it generally consists of three steps. Firstly, a problem is 

divided into k sub-problems in terms of classes. Then, k GA modules are constructed 

for these sub-problems, and GA in each module will be responsible for evolving a sub-

solution. Finally, these sub-solutions are integrated to further obtain the final solution 

for the original problem. The details for each step are presented in the following 

subsections. 

 

 



Chapter 5  Class Decomposition for GA-based Classifier Agents 95 

 

 

 
… 

…

Module 
 1 

Module 
k  

Module
k -1 …

Integration 
 

Output 

c 
cl

as
se

s 

Input 
In

st
an

ce
s 

w
ith

 n
 

at
tri

bu
te

s 

 

 

 

 

Figure 5.1: Illustration of GA with class decomposition 

 

5.2.1 Class Decomposition 

The first step is to decompose a classification problem with a high-dimensional class 

space into a set of sub-problems with low-dimensional class spaces, in terms of class 

categories. 

 Following the previous notations, let us assume a classification problem has c 

classes in the n-dimensional pattern space, and p vectors , 

 

( )iniii xxxX ...,,, 21=

,,...,2,1 pi = cp >> , are given as training patterns. The original classification problem 

can be denoted as: 

CXf →:       (5.1) 

where, nRX ∈  is the set of instances with n attributes, and is the set of classes. 

The objective of GA is to find a certain f with a satisfactory classification rate on the 

whole training set 

cRC∈

ξ , which can be represented as: 

( ){ p
iii CX 1, ==ξ }      (5.2) 



Chapter 5  Class Decomposition for GA-based Classifier Agents 96 

Assume the c-class problem is divided into k  sub-problems, each has  ( ) 

classes. Denoting the class set for each sub-problem as , we have: 

jc kj ,...,2,1=

)( jC

)()2()1( ... kCCCC UUU=     (5.3) 

where , and , and the j-th sub-problem can be formulated as finding 

a certain  with a satisfactory classification rate on :  

cRC ∈ jcj RC ∈)(

jf )( jC

)(: j
j CXf →      (5.4) 

Note that it is not necessary to divide the whole class set into equal partitions. Agents 

can have various class partitions, which leaves them more freedom and flexibility in 

pursuit of suitable class decomposition. 

 

5.2.2  Parallel Training 

With the division of k sub-problems, agents can construct k  GA modules and run 

them in parallel, as shown in Figure 5.1. Each module is provided with the whole 

training set with the complete attribute set and a fraction of the class categories to 

produce a corresponding fraction of the original problem. 

 All the training data are fed to each module, but the class categories for each 

module are different. We denote: 

)()( jj
CCC −= , kj ,...,2,1=     (5.5) 

which means 
)( j

C  is the complemented set of . Then, the training set for each 

module can be represented as:  

)( jC

( ){ } ( ){ }p

Mq

j
qq

M

q
j

qqj CXCX
1

)(

1
)( ,,

+==
= Uξ   (5.6) 



Chapter 5  Class Decomposition for GA-based Classifier Agents 97 

where we assume there are M instances in the training set whose classes belong to 

, and the rest belong to )( jC
)( j

C .  

 Therefore, for each module, the class categories in interest are only those classes 

targeted by that module. When training each module, GA in module j has two 

objectives. It needs to not only classify the data with the classes in  correctly, but 

also ensure that training data for the classes in 

)( jC

)( j
C  will not be wrongly classified into 

the classes in . In other words, for those classes in )( jC
)( j

C , GA will just distinguish 

them from the classes in , not necessary to differentiate them in between. As a 

result, GA in each module will converge more quickly. 

)( jC

 These k  GA modules are totally independent, because the classes have been fully 

partitioned without overlapping into several modules. After each module gets a copy of 

the training patterns, they can be run in parallel. Moreover, there is no communication 

among these modules. Therefore, the training process can be implemented with a 

couple of agents running on concurrent process elements. The training time for this 

stage is determined by the longest training time spent among the  modules.  k

 

5.2.3  Integration 

Although each GA module has evolved a portion of the solution, their sub-solutions 

cannot be simply aggregated as the final one. As discussed earlier, each GA module 

only classifies the classes in , but not the classes in )( jC
)( j

C . Therefore, when the sub-

solutions are combined together, there may still exist some conflicts among the sub-

solutions. For example, rules from different modules may classify an instance into 

several classes. In order to resolve these conflicts and further improve the classification 



Chapter 5  Class Decomposition for GA-based Classifier Agents 98 

accuracy, some intelligent decision rules are employed. The detailed integration 

process is explained as follows. 

� The agent constructs an overall rule set by aggregating all rules from k  

modules. 

� Some decision rules are adopted to help resolve the above-mentioned 

conflicts. The ending classification rates obtained from all modules are 

helpful for this purpose. Currently, the following decision rules have been 

employed:  

i) If an instance is classified into more than one class categories by the 

rule set, it will be classified into the class whose corresponding module 

achieves the higher classification rate in the parallel training phase, if 

available. 

ii) If an instance is not classified into any class category by the rule set, it 

will be classified into the class whose corresponding module achieves 

the lowest classification rate in the parallel training phase, if available. 

 
 These rules are based on heuristics. The philosophy behind can be explained as 

follows. For rule one, when class categories tie for one instance, we trust more the 

rules for the class achieving higher accuracy. Therefore, the class module achieving 

higher classification rate is selected. For rule two, when a class module achieves the 

lowest classification rate, it means that the class is the most difficult to classify, and 

thus it most likely has more instances incorrectly classified. Therefore, it has high 

probability that the instance not being classified to any classes belongs to the class 

whose module achieves the lowest classification rate. 

 



Chapter 5  Class Decomposition for GA-based Classifier Agents 99 

5.3 Experiment Results and Analysis  

Several classifier agents have been implemented running on five benchmark data sets 

to evaluate the class decomposition approach. The data sets chosen are the wine data, 

iris data, glass data, cancer data, and diabetes data.  

 The evolution of each module and the integration process are recorded, and some 

indicative metrics, including initial classification rate (CR), generations, training time, 

and ending CR, are shown as results. The CR in each generation is the best rate 

achieved by the whole population. The experiments in Sections 5.3.1 and 5.3.2 use the 

whole data set as the training data, while the experiments in Section 5.3.3 use tenfold 

cross validation and the detailed partitioning on data sets are elaborated in that section. 

 

5.3.1 Results and Analysis – GA Based Class Decomposition    

Figure 5.2 shows an example of the evolution process in three class modules on the 

wine data. Each curve shows that the best CR achieved in each generation rises 

steadily in each module. The evolution in module 1 and 3 stops when it reaches the 

maximum CR, while the evolution in module 2 stops when it reaches stagnationLimit. 

0 10 20 30 40 50 60 70 80
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

G enera tion

C
la

ss
ifi

ca
tio

n 
R

at
e

M odule 1
M odule 2
M odule 3

 

Figure 5.2: The evolution process in three class modules on the wine data 



Chapter 5  Class Decomposition for GA-based Classifier Agents 100 

 Table 5.1 shows the results of GA with class decomposition on the wine data. The 

upper part of the table shows the approach of class decomposition and integration. The 

wine problem is partitioned into 3 modules, each for one class. The bottom part of the 

table provides a summary of the upper part and a comparison with normal GA 

approach which does not use class decomposition. 

 

Table 5.1: Performance of GA with class decomposition on the wine data 

 Module 1 (Class=1) Module 2 (Class=2) Module 3 (Class=3) 
Initial CR 0.8657 0.7758 0.8427 

Generations 35.6 73.3 48.5 
T. time (s) 83.2 169.5 115.3 
Ending CR 1.0 0.9966 0.9994 

 Integration (Class=1, 2, 3) 
Ending CR 0.9978 

 

Summary GA with Class 
Decomposition Normal GA 

Initial CR - 0.3831 
Generations 73.3 / 157.4 142.8 
T. time (s) 169.5 / 368.0 635.3 
Ending CR 0.9978 0.9534 

Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%;  
2. For each module, ruleNumber=10, popSize=100, generationLimit=150, stagnationLimit=30;  
3. For normal GA, ruleNumber=30, popSize=200, generationLimit=150, stagnationLimit=30. 
4. Both Generations and T. time for “GA with class decomposition” have two values, the first value 

is the longest training time consumed by all modules, and the other value is the total training time 
consumed by all modules. 

5. The computation time of the integration process is only an evaluation time on the training 
patterns. As it is less than 0.01s, it is ignored here. 

 

 It is found from the table that each module uses GA to evolve a partial rule set, 

achieving a comparatively higher ending CR of about 1.0. After these rule sets are 

integrated and the decision rules presented in section 5.2.3 are employed, an ending 

CR of 0.9978 is achieved. Then, the whole process including the parallel module 

training and the integration process is summarized on generation, training time, and 



Chapter 5  Class Decomposition for GA-based Classifier Agents 101 

ending CR, and shown in the bottom part of the table. Note that when computing the 

whole generation and training time, two values are provided as explained in the Note 4 

under Table 5.1, considering that two different implementation methods are possible. 

The first value is for parallel implementation, and the other one is for serial 

implementation. For the initial CR, because each decomposed module has its own 

initial CR, no value is listed in the summary.  

 Comparing the performance of GA with class decomposition to the normal GA, it 

is found that the former performs better in terms of training time and ending CR. For 

example, we find the approach of class decomposition improves the ending CR from 

0.9534 to 0.9978 (improved by 4.7%), using much less training time (decreased from 

635.3s to 169.5s for parallel implementation, to 368.0s for serial implementation). 

  

Table 5.2: Performance of GA with class decomposition on the iris data 

 Module 1 (Class=1)Module 2 (Class=2) Module 3 (Class=3) 
Initial CR 0.9020 0.9167 0.8853 

Generations 7.2 55.3 50.5 
T. time (s) 2.1 14.7 13.2 
Ending CR 1.0 0.9820 0.9747 

 Integration (Class=1, 2, 3) 
Ending CR 0.9820 

 

Summary GA with Class 
Decomposition Normal GA 

Initial CR - 0.546 
Generations 55.3 / 113 78.0 
T. time (s) 14.7 / 30 38.5 
Ending CR 0.9820 0.9627 

Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%; 
2. For each module, ruleNumber=2, popSize=50, generationLimit=100, stagnationLimit=30;  
3. For normal GA, ruleNumber=6, popSize=100, generationLimit=100, stagnationLimit=30. 

 
 Table 5.2 shows the results on the iris data, with the same table structure as Table 

5.1. The iris problem is divided into 3 modules, each with one class. The summary part 



Chapter 5  Class Decomposition for GA-based Classifier Agents 102 

of Table 5.2 shows that GA with class decomposition spends less training time than 

normal GA. The former obtains higher ending CR as well (improved by 2%). It is 

noted that the number of generations for the former is larger than that of latter in the 

case of serial implementation. However, the total training time in both parallel and 

serial implementation is still reduced, which is more important. 

 The diabetes problem is divided into two modules each of which deals with one 

class. From Table 5.3, we can find that CR is improved from 0.7633 to 0.7897 

(improved by 3.5%) as a result of using class decomposition in GA. 

 
 

Table 5.3: Performance of GA with class decomposition on the diabetes data 

 Module 1 (Class=1) Module 2 (Class=2) 
Initial CR 0.7122 0.6845 

Generations 159.8 184.2 
T. time (s) 556.0 679.6 
Ending CR 0.7879 0.8044 

 Integration (Class=1, 2) 
Ending CR 0.7897 

 

Summary GA with Class 
Decomposition Normal GA 

Initial CR - 0.6434 
Generations 184.2 / 344 167.5 
T. time (s) 679.6 / 1235.6 947.1 
Ending CR 0.7897 0.7633 

Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%; 
2. For each module, ruleNumber=15, popSize=100, generationLimit=200, stagnationLimit=30;  
3. For normal GA, ruleNumber=30, popSize=200, generationLimit=200, stagnationLimit=30. 

  

 As the glass data have more class categories (6 classes), we have tried different 

approaches in terms of different partitions on classes. Table 5.4 shows the result of an 

experiment where the whole problem is partitioned into 3 modules, each with 2 classes. 

Another two approaches are also tried, i.e., 2-module and 6-module partitioning, which 



Chapter 5  Class Decomposition for GA-based Classifier Agents 103 

decompose the original problem into 2 and 6 modules respectively. Table 5.5 shows 

their comparison. 

  

Table 5.4: Performance of GA with 3-module class decomposition on the glass data 
 

 Module 1 (Class=1, 2)Module 2 (Class=3, 4)Module 3 (Class=5, 6) 
Initial CR 0.4953 0.8645 0.8911 

Generations 145.3 104.4 104.1 
T. time (s) 189.9 170.3 167.0 
Ending CR 0.7411 0.9126 0.9612 

 Integration (Class=1, 2, 3, 4, 5, 6) 
Ending CR 0.7033 

 

Summary GA with Class Decomposition Normal GA 

Initial CR - 0.3332 
Generations 145.3 / 353.8 146.6 
T. time (s) 189.9 / 527.2 577.2 
Ending CR 0.7033 0.5495 

Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%; 
2. For each module, ruleNumber=10, popSize=100, generationLimit=150, stagnationLimit=50;  
3. For normal GA, ruleNumber=30, popSize=200, generationLimit=150, stagnationLimit=50. 

 
 

Table 5.5: Comparison of different approaches of GA with class decomposition on the 
glass data 

 

Summary Normal GA 
GA with Class 
Decomposition 

(2-module) 

GA with Class 
Decomposition 

(3-module) 

GA with Class 
Decomposition 

(6-module) 
Initial CR 0.3332 - - - 

Generations 146.6 142.1 / 276.8 145.3 / 353.8 147.9 / 605.9 
T. time (s) 577.2  244.7 / 442.2 189.9 / 527.2 185.5 / 693.5 
Ending CR 0.5495 0.6276 0.7033 0.8037 

 
  

 It is found that the class decomposition approaches in all experiments achieve 

higher ending CR than the normal GA approach. If the three class decomposition 

approaches are compared with each other, it is found that with the increase of modules 

used, CR scores higher from 0.6276 to 0.7033 (improved by 12.1%), then to 0.8037 



Chapter 5  Class Decomposition for GA-based Classifier Agents 104 

(improved by 28.1%), and training time decreases from 244.7s to 189.9s, then to 

185.5s in the case of parallel implementation. This tells us that a finer-grained class 

decomposition approach will achieve a higher CR and need less training time, which 

may be explained as a finer partition can reduce the internal interference among the 

training data and resolve better the conflicts in each module. 

 In (Guan and Li, 2002a), a modular neural network approach is used to classify the 

glass data, and the final error rate achieved is 34.9%, which is equivalent of 0.651 for 

the classification rate. It is found the result of our 2-module approach is comparable to 

their approach, while our 3-module and 6-module approaches perform even better. 

 

5.3.2 Results and Analysis – IGA Based Class Decomposition   

This section steps further to explore the application of class decomposition in IGAs. 

The IGAs used in this section are dealing with new class acquisition, which have been 

presented in Chapter 3. It means that an agent already has a solution and needs to 

evolve a new solution to accommodate new classes. 

 
 
 
 
 
 
 
 
 
 

 
 

Agent 1  
uses normal GA

(Class 1, 2) 

Agent 1  
uses IGAs without 
class decomposition

(Class 1, 2, & 3) 

Agent 1 
uses IGAs with class 

decomposition 
(Class 1, 2, & 3) 

 
Figure 5.3: Illustration of experiments on IGAs with/without class decomposition 

 
 



Chapter 5  Class Decomposition for GA-based Classifier Agents 105 

 Figure 5.3 illustrates the design of experiments on IGAs with/without class 

decomposition. Assuming a target classification problem has 3 classes, the detailed 

experiment steps are explained as follows. (It is easy to derive similar experiment 

settings for other problems with different number of classes.)  

� Assume that an agent only knows classes 1 and 2 at first. It uses normal 

GA to evolve a rule set on the currently known attributes and classes.  

� When the agent knows another class – class 3, it uses IGAs to evolve a 

new rule set. As there is only one agent, either CE1 or CE2 is used. (The 

details of CE1 and CE2 can be referred to Section 3.2 and Table 3.1.)  

� The class decomposition approach is optionally used with IGAs.  

 Table 5.6, 5.7, and 5.8 summarize the results of experiments on the wine, iris, and 

glass data respectively. For each data set, normal GA runs with incomplete set of 

classes first. With the solutions from GA, IGAs (CE1 and CE2) work on a complete set 

of classes with or without the class decomposition.  

  

Table 5.6: Comparison of performance of IGAs with/without class decomposition on 
the wine data 

  Agent 1 (Class=1& 2) 
Initial CR 0.5846 

Generations 51.9 
T. time (s) 432.5 

G
A

 

Ending CR 0.9992 

 

 Agent 1 (Class=1, 2 & 3)  
(Without Class Decomposition) 

Agent 1 (Class=1, 2 & 3)  
(With Class Decomposition) 

 

 CE1 CE2 CE1 CE2 

Initial CR 0.7573 0.7534 - - 
Generations 126.8 110.9 84.9 / 185.6 76.9 / 167.8 
T. time (s) 1544.7 1324.0 197.7 / 429.5 172.8 / 378 IG
A

s 

Ending CR 0.9961 0.9966 0.9966 0.9983 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%;  
2. For GA and IGAs without class decomposition, ruleNumber=30, popSize=500, 

generationLimit=150, stagnationLimit=30;  
3. For IGA with class decomposition, the parameters are the same as those listed in Table 5.1. 



Chapter 5  Class Decomposition for GA-based Classifier Agents 106 

 
 Table 5.7: Comparison of performance of IGAs with/without class 

decomposition on the iris data 
 

  Agent 1 (Class=1& 2) 
Initial CR 0.8110 

Generations 6.6 
T. time (s) 2.3 

G
A

 

Ending CR 1.0 

 

 Agent 1 (Class=1, 2 & 3)  
(Without Class Decomposition) 

Agent 1 (Class=1, 2 & 3)  
(With Class Decomposition) 

 

 CE1 CE2 CE1 CE2 

Initial CR 0.7487 0.6953 - - 
Generations 72.6 74.9 57.1 / 114.1 55.5 / 104.6 
T. time (s) 35.9 36.7 16.2 / 31.3 14.9 / 27.9 IG

A
s 

Ending CR 0.9610 0.9627 0.9807 0.9833 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%;  
2. For GA and IGAs without class decomposition, ruleNumber=6, popSize=100, 

generationLimit=100, stagnationLimit=30; 
3. For IGAs with class decomposition, the parameters are the same as those listed in Table 5.2. 

 
Table 5.8: Comparison of performance of IGAs with/without class decomposition on 

the glass data 
 

  Agent 1 (Class=1, 2, 3, 4) 
Initial CR 0.4273 

Generations 144.5 
T. time (s) 974.2 

G
A

 

Ending CR 0.6648 

 

 Agent 1 (Class=1, 2, 3, 4, 5 & 6) 
(Without Class Decomposition) 

Agent 1 (Class=1, 2, 3, 4, 5 & 6) 
(With Class Decomposition) 

 

 CE1 CE2 CE1 CE2 

Initial CR 0.5388 0.5332 - - 
Generations 138.8 146.7 146.0 / 365.3 147.5 / 377.2 
T. time (s) 1147.0 1156.5 117.1 / 306.2 107.7 / 303.3 IG

A
s 

Ending CR 0.6808 0.6664 0.7280 0.7192 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%;  
2. For GA and IGAs without class decomposition, ruleNumber=30, popSize=500, 

generationLimit=150, stagnationLimit=50; 
3. For IGAs with class decomposition, the parameters are the same as those listed in Table 5.4. 

 

 It is found from these tables that the approaches with class decomposition perform 

better than those without class decomposition, for both CE1 and CE2. The former 

always achieves higher CR and spends less training time in both serial and parallel 



Chapter 5  Class Decomposition for GA-based Classifier Agents 107 

implementation. For CE1 in Table 5.7, the class decomposition approach improves the 

ending CR from 0.9610 to 0.9807 with an increase of 2% in accuracy, and a decrease 

of training time from 35.9s to 31.3s in the case of serial implementation, with a saving 

of about 12.8%. For the glass data, the improvement on the ending CR becomes more 

significant. It is noted from Table 5.8 that the ending CR of CE1 improves by 0.047 

(i.e. 6.9%), and CR of CE2 improves by 0.053 (i.e. 7.9%). 

 

5.3.3 Generalization Performance and Comparison to Related Work 

The generalization performance of evolved rule sets is evaluated with tenfold cross 

validation. In this scheme, the complete data set is divided into ten subsets in the same 

size. Then, nine subsets are used as training data and the other subset is used as test 

data. Ten iterations are performed so that each of the ten subsets is used as test data 

just once. The results are averaged over ten iterations. Experiments on three data sets –

wine, iris, and cancer data - are conducted and their results are shown in Table 5.9, 

5.10, and 5.11 respectively.  

  

Table 5.9: Generalization performance of GA with class decomposition on the wine 
data 

 
Summary GA with Class 

Decomposition Normal GA 

Initial CR - 0.4072 
Generations 74.2 / 150.8 146.4 
T. time (s) 141.2 / 294.7 571.7 
Ending CR 0.9978 0.9817 

Test CR 0.9167 0.8450 
Notes: 
1.  The experiment settings are the same as that for Table 5.1, 

except that tenfold cross validation is used. 
 

 
 



Chapter 5  Class Decomposition for GA-based Classifier Agents 108 

 It is found from these tables that GA with class decomposition always performs 

better than normal GA, in terms of both ending CR and test CR. Using the wine data as 

an example, the classification rate is improved from 0.9817 to 0.9978 on the training 

data (i.e. 1.6%), and improved from 0.8450 to 0.9167 on the test data (i.e. 8.5%). The 

results show that the generalization power of the rule set is also enhanced by the use of 

class decomposition. 

 
Table 5.10: Generalization performance of GA with class decomposition on the iris data  

 
Summary GA with Class 

Decomposition Normal GA 

Initial CR - 0.5150 
Generations 54.4 / 109.4 82.1 
T. time (s) 13.9 / 27.8 37.0 
Ending CR 0.9820 0.9624 

Test CR 0.9560 0.9360 
Notes: 
1.  The experiment settings are the same as that for Table 5.2, 

except that tenfold cross validation is used. 
 

Table 5.11: Generalization performance of GA with class decomposition on the cancer 
data 

 
Summary GA with Class 

Decomposition Normal GA 

Initial CR - 0.7538 
Generations 129.7 / 229.2 122.2 
T. time (s) 393.9 / 716.9 615.2 
Ending CR 0.9815 0.9769 

Test CR 0.9530 0.9451 
Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%; 
2. For each module, ruleNumber=15, popSize=100, generationLimit=200, 

stagnationLimit=30;  
3. For normal GA, ruleNumber=30, popSize=100, generationLimit=200, 

stagnationLimit=30; 
4. Tenfold cross validation is used. 

  

 The performance of our approach is compared with other conventional methods.  

Table 5.12 shows the classification error rates for different methods on the iris data 



Chapter 5  Class Decomposition for GA-based Classifier Agents 109 

(error rate=1-clssifcation rate). The error rates for the first six methods were reported 

in (Weiss and Kulikowski, 1991), and the last two items are the results from our 

approach. It is found that the error rate with our normal GA approach is comparable to 

the other methods. The training error rate of our GA with class decomposition 

approach, which is 0.018, is better than most of the other methods listed. In terms of 

the test error rate, our GA with class decomposition approach achieves a comparable 

error rate.  

 

Table 5.12: Comparison of error rates of various classification methods on the iris data 

Methods Error Rate (Training) Error Rate (Test) 
Quadratic 0.020 0.027 

Bayers indep. 0.047 0.067 
Bayers 2nd order 0.040 0.160 
Neural net (BP) 0.017 0.033 

PVM rule 0.027 0.040 
CART tree  0.040 0.047 

Normal GA  0.038 0.064 
GA with decomposition 0.018 0.044 

Note: Error rate=1-clssifcation rate (CR); 
 
 

 For the wine data, Corcoran and Sen (1994) used a real-coded genetic-based 

machine learning approach to evolve nonfuzzy IF-THEN rules, and achieved an 

average training rate of 99.5%. Ishibuchi et al. (1999) designed a fuzzy classifier by 

means of an integer-coded GA and grid partitioning, and they got an average training 

rate of 98.5%. Setnes and Roubos (2000) used GA-fuzzy classifiers which achieve 

three misclassifications out of 178 instances (i.e., a classification rate of 98.3%).  

Comparing to these results in the literature, our approach achieves the highest rate as 

99.78%. 

  Regarding the cancer data, Wolberg and Mangasarian (1990) reported a test rate of 

95.9% with the use of hyperplanes, and Zhang (1992) reported 93.7% with the use of 



Chapter 5  Class Decomposition for GA-based Classifier Agents 110 

1-nearest neighbor. Our approach achieves 95.3%, which is better than the latter 

approach, while very close to the former.  

 

5.4 Conclusion 

This chapter has proposed a new approach named class decomposition for GA-based 

classifier agents. A classification problem is decomposed into several modules in terms 

of class decomposition, and each module is responsible for solving a fraction of the 

original problem. These modules are trained in parallel, and the sub-solutions obtained 

from them are integrated to obtain the final solution by resolving conflicts. 

 The approach of class decomposition has been explored with the use of GA and 

IGAs. Four benchmark data sets have been used to evaluate the performance of class 

decomposition. The results show that class decomposition can help achieve higher 

classification accuracy with training time reduced. 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  111 

 

Chapter 6 

Feature Selection for Modular GA-
based Classifier Agents 
 
 
6.1 Introduction  

In the previous chapter, a class decomposition approach is proposed to improve the 

performance of GA-based classifier. This chapter continues to explore the methods of 

improving performance from the perspective of feature selection. Feature selection 

plays an important role in finding relevant or irrelevant features in classification. As 

discussed in Chapter 1, not all features are equally important for a classification 

problem. Some of them may be redundant or even irrelevant. Better performance may 

be achieved by discarding some features (Verikas and Bacauskiene, 2002). In other 

circumstances, we may aim to reduce the dimensionality of input space to save some 

computation effort, although classification accuracy may be slightly deteriorated.  

 Principal component analysis (PCA) and linear discriminant analysis are two 

traditional techniques used to reduce dimensionality by creating new features that are 

linear combinations of the original ones (Fukunaga, 1990). Fisher’s linear discriminant 

(FLD) is the most popular goodness-score function used in feature selection. It is 

simple in computation and does not need strict assumptions in the distribution of 

features. Generally, various combinations of features in the original feature space can 

be evaluated with the goodness-score function by excluding some features in the 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  112 

feature space. Because all possible combinations of the features should be tried, the 

computation effort of such techniques is very high. In order to reduce computation 

time, some search algorithms are developed, such as knock-out and backtrack tree 

(Lerner et al., 1994; Gonzalez and Perez, 2001).  

 In this chapter, a feature selection technique based on relative importance factor 

(RIF) is presented, which is based on the optimal transformation weights from Fisher’s 

linear discriminant function. The RIF technique can detect features that are irrelevant 

to the classification problem and remove them from the feature space to improve 

classification performance in terms of accuracy and complexity. RIF is integrated into 

the modular GA-based scheme (i.e. GA with class decomposition) by employing it in 

finding a suitable feature subset for each class module. RIF has been used successfully 

for modular neural network classifiers (Guan and Li, 2002b). It is aimed here to 

explore the application of feature selection in the GA domain, which appears to be 

missing in the literature. A modular-GA based classification approach will be more 

effective for RIF-based feature selection, as it is easier to find the irrelevant features 

(IRFs) in individual class, eliminating the interference from other classes. Three 

benchmark data sets are used to evaluate the performance of RIF. The experiment 

results show that RIF can help achieve higher classification accuracy with the feature 

space dimension reduced.  

 One issue should be clarified here is the use of two terms “attribute” and  “feature”. 

Feature selection is a jargon used in the research community, and one feature may 

consist of several related attributes. In this chapter, one feature corresponds to one 

attribute, thus they hold the same meaning. In order to conform to the common usage 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  113 

of feature selection, the term “feature” is used in this chapter instead of the “attribute” 

in previous chapters.  

 

6.2 Relative Importance Factor (RIF) Feature Selection 

Fisher’s linear discriminant (FLD) algorithm projects an n-dimensional feature space 

to a c-1 dimensional feature space by the function , in the direction w that 

maximizes the criterion function 

i
t

i xwy =

wSw
wSw

wJ
W

t
B

t

=)( , where is called as the between-

class scatter matrix, and  the within-class scatter matrix (Duda and Hart, 2000). 

BS

WS

 As our feature selection technique is employed in each class module which only 

distinguishes two class categories, i.e.,  and )( jC
)( j

C  (cf. Section 5.2), the projected 

feature space is one-dimensional (projected on one line) in this situation. Hence, the 

transformation matrix w that maximizes the criterion function J(w) is a vector 

. The elements in the transformation vector w can be viewed as 

weights for different features in the original feature space respectively. Thus, the 

feature selection technique can be simplified based on one observation: in an optimal 

transformation vector w of the FLD, a larger w

[ t
nwwww ...21= ]

]

i means that the ith feature is likely to be 

more relevant to the module and a smaller wi means the ith feature is likely to be less 

relevant to the module. This observation forms the basis of the proposed RIF technique.  

 However, the weights obtained directly from the transformation vector w are not 

normalized. In order to derive a common feature selection metric across different sets 

of features in different problems, a relative importance factor (RIF), 

, is proposed instead of using the transformation vector w directly [ t
nrrrr ...21=



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  114 

for feature selection. The RIF is obtained through the following two steps (Guan and 

Li, 2002b): 

I. Normalize the length of the transformation vector w. 

Since RIF is evaluating the relative importance of features, the relative 

weights of the features in the transformation vector w is more important, 

which can be obtained through normalization: 

∑
=

=
n

i
iw

ww

1

2

'

)(
   (6.1) 

where is the weight of the ith feature in w ,  is the normalized 

transformation vector, and n is the number of features. 

iw 'w

 

II. Render the importance factor independent from the number of features. 

Since different problems have different numbers of features in their feature 

spaces, it is necessary to make the RIF values independent of the number of 

features in the feature space. This is achieved by the following function:  

'

1

'
w

w

nr n

i
i∑

=

=    (6.2) 

Combining (6.1) and (6.2), RIF values can be obtained from the 

transformation vector w directly as: 

w
w

n

w

w

w

w

nr n

i
i

n

i
in

i
n

i
i

i

∑∑
∑

∑

==

=

=

=∗=

11

2

1 2

1

)(

)(

 (6.3) 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  115 

As a result, the elements of r represent the normalized importance of 

different features, which are independent from the magnitude of w and the 

number of features in the feature space. 

 The proposed RIF technique requires much less computation time. Assume there 

are n input features in the original feature space. In order to obtain the relative 

importance of each feature, n FLD computations with n-1 features included is needed 

each time using traditional knock-out techniques. With the simplified method, the 

relative importance of each feature in the module (RIF value) can be obtained in one 

computation with all n features included. 

 RIF values are used as the feature selection tool in our modular GA-based 

classification. The feature selection technique can be summarized as follows: 

Step 1:  Calculate the Fisher’s transformation vector w with respect to all 

features in the input feature space for each class module. 

Step 2:  Calculate the RIF value for each feature by using formula (6.3).  

Step 3:    Set a threshold value T1. If the RIF value of a feature is less than T1, 

it can be considered as an irrelevant feature (IRF).  

Step 4:  Remove IRFs from each module. A new set of features for each class 

module will be selected. 

Step 5:  Modular GA-based classification is then performed based on the new 

feature set for each class module, as presented in Chapter 5. 

 

6.3 Experiment Results and Analysis  

Several classifier agents are implemented running on three benchmark data sets to 

evaluate our approaches. The data sets chosen are the wine data, glass data, and 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  116 

diabetes1 data. Each data set is partitioned into two parts with an equal number of 

instances. One half is for training, and the other half is for testing. The training data are 

used to train the rule sets, and the test data are used to evaluate the generalization 

performance of resulting rule sets.  

 Each experiment follows the five-step process to determine the IRFs and evaluate 

the performance of classifiers with those IRFs removed. Then, by comparing to the 

performance of a classifier with the complete feature set, it can be examined whether 

the performance of modular classifiers have improved or degraded as a result of 

removing IRFs. 

 

Table 6.1: RIF value for each feature in different class modules - wine data 
 

RIF Class=1 Class=2 Class=3 
Feature 1 1.8773 1.0938 0.9735 
Feature 2 0.1974 0.4703 0.4643 
Feature 3 3.9760 3.1118 2.8734 
Feature 4 0.4459 0.1332 0.1047 
Feature 5 0.0026 0.0005 0.0014 
Feature 6 0.9748 0.0398 0.1324 
Feature 7 1.7762 1.4848 1.6627 
Feature 8 0.1335 2.8563 2.8634 
Feature 9 0.6493 0.2832 0.2381 

Feature 10 0.1636 0.5319 0.5601 
Feature 11 0.9828 2.6315 2.6018 
Feature 12 1.8124 0.3605 0.5223 
Feature 13 0.0082 0.0023 0.0017 

Notes: 
1. Each row in the table records the RIF value for each feature 

under each class module; 
2. The threshold value is chosen as T1=0.1; those values below 

the threshold are highlighted. 
 

 
 Table 6.1 shows the RIF value for each feature of the wine data in different class 

modules. If the threshold value is chosen as T1=0.1, feature 5 and 13 are regarded as 

common IRFs in class module 1, 2 and 3, while feature 6 is regarded as an IRF in class 

module 2 only. Therefore, feature 5 and 13 are removed from the feature set for 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  117 

module 1 and 3, and feature 5, 6, and 13 are removed from the feature set for module 

2. Table 6.2 shows the comparison of the classifier performance with/without feature 

selection on the wine data. It is found that the test CRs are improved in all modules as 

a result of removing all IRFs. For example, the test CR of module 2 gets an 

improvement from 0.8371 to 0.8657 by 3.4%. In addition, the overall test CR is 

improved with an increase from 0.8652 to 0.8831 by 2.1%.  

 

Table 6.2: Performance of the classifier with/without feature selection - wine data  

  Module 1 
(Class=1) 

Module 2 
(Class=2) 

Module 3 
(Class=3) 

Initial CR 0.8876 0.7618 0.8685 
Generations 23.3 48.6 38.5 
T. time (s) 31.2 64.3 50.1 

Training CR 0.9989 1.0 0.9921 

Using  
All 

Features
Test CR 0.9033 0.8371 0.8703 

  Integration 
 Training CR 0.9966 
 Test CR 0.8652 
   

Initial CR 0.8899 0.7787 0.8708 
Generations 42.7 55.7 32.1 
T. time (s) 51.7 68.1 39.7 

Training CR 0.9944 0.9933 0.9955 

Removing 
all IRFs 

from each 
module 

Test CR 0.9067 0.8657 0.8833 
  Integration 
 Training CR 0.9933 
 Test CR 0.8831 

Notes: 
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%. 
2. For each module, ruleNumber=2, popSize=50, generationLimit=100, stagnationLimit=30.  

 

 It is noted that the number of generations and training time needed for each module 

become either shorter (for module 3) or longer (for module 1 and 2), after the IRFs are 

removed. This means that the classifier with a reduced feature set either converges 

quickly or needs more generations to reach a higher performance. Furthermore, 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  118 

module 2 obtains the greatest improvement, which is mainly due to the removal of 

three features. 

 Table 6.3 shows the RIF values for each feature of the glass data in different class 

modules. The threshold value is chosen as 0.1. It is found that different features are 

regarded as IRFs in different class modules, as highlighted in the table. All IRFs are 

removed from each class module. The performance of the classifier trained with the 

complete set of features and the one with IRFs removed are shown in Table 6.4 and 6.5 

respectively. 

 
Table 6.3: RIF value for each feature in different class modules - glass data 

 
RIF Class=1 Class=2 Class=3 Class=4 Class=5 Class=6 

Feature 1 6.5212 6.8322 8.9045 6.8777 8.0957 8.2007 
Feature 2 0.3349 0.3327 0.0066 0.2782 0.2675 0.1111 
Feature 3 0.3951 0.2882 0.0002 0.2596 0.0984 0.0981 
Feature 4 0.2575 0.2605 0.0288 0.2204 0.0311 0.0843 
Feature 5 0.3708 0.3064 0.0231 0.2289 0.1945 0.1293 
Feature 6 0.3709 0.3183 0.0106 0.5747 0.1378 0.1062 
Feature 7 0.3427 0.3011 0.0064 0.3070 0.1389 0.0815 
Feature 8 0.3656 0.3241 0.0040 0.2076 0.0158 0.1826 
Feature 9 0.0413 0.0365 0.0156 0.0458 0.0204 0.0062 

Notes: 
1. Each row in the table records the RIF value for each feature under each class module; 
2. The threshold value is chosen as T1=0.1; those values below the threshold are highlighted. 

 

 Comparing the corresponding module elements in Table 6.4 and 6.5, it is noted that 

the ending CR for each module is either improved or degraded slightly after IRFs are 

removed from the six modules, i.e., the test CRs of module 1, 2, and 3 have improved, 

while the test CRs of module 4, 5, 6 have degraded. However, the overall test CR is 

still improved from 0.4224 to 0.4944 (17%) after the integration process. This tells us 

that that removing IRFs may result in performance deterioration in some modules, 

which also means the selection of a suitable threshold is crucial, but it may still be 

beneficial to the overall performance. 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  119 

 

Table 6.4: Performance of the classifier with the complete set of features - glass data 
 

 Module 1 
(Class=1) 

Module 2 
(Class=2) 

Module 3 
(Class=3) 

Module 4 
(Class=4) 

Module 5 
(Class=5) 

Module 6 
(Class=6) 

Initial CR 0.7308 0.7224 0.9187 0.9523 0.9664 0.9561 
Generations 125.2 128.1 67.0 50.1 30.4 42.0 
T. time (s) 89.6 93.7 40.5 29.7 18.2 32.7 

Training CR 0.9421 0.9178 0.9299 0.9944 0.9963 0.9972 
Test CR 0.6776 0.6196 0.8832 0.9299 0.9411 0.9449 

 Integration (Class=1, 2, 3, 4, 5, 6) 
Training CR 0.7738 

Test CR 0.4224 
Notes:  
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%; 
2. For each module, ruleNumber=5, popSize=100, generationLimit=150, stagnationLimit=50;  

 
 

Table 6.5: Performance of the classifier with all IRFs removed - glass data 
 

 Module 1 
(Class=1) 

Module 2 
(Class=2) 

Module 3 
(Class=3) 

Module 4 
(Class=4) 

Module 5 
(Class=5) 

Module 6 
(Class=6) 

Initial CR 0.7346 0.7121 0.9150 0.9570 0.9636 0.9701 
Generations 127.5 123.8 50.1 24.8 59.3 39.0 
T. time (s) 87.3 83.9 33.6 14.2 34.0 29.0 

Training CR 0.9243 0.9075 0.9160 0.9991 0.9822 0.9953 
Test CR 0.7056 0.6785 0.9243 0.9168 0.9234 0.9252 

 Integration (Class=1, 2, 3, 4, 5, 6) 
Training CR 0.7720 

Test CR 0.4944 
Notes:  
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%; 
2. For each module, ruleNumber=5, popSize=100, generationLimit=150, stagnationLimit=50;  

 
 
 Table 6.6: RIF value for each feature in different class modules – diabetes1 data 

RIF Class=1/ Class=2 
Feature 1 0.8291 
Feature 2 2.8045 
Feature 3 0.6738 
Feature 4 0.0366 
Feature 5 0.3618 
Feature 6 2.1049 
Feature 7 0.8168 
Feature 8 0.3725 

Notes: 
1. Each row in the table records the RIF value for each 

feature under each class module; 
2. The threshold value is chosen as T1=0.1; those values 

below the threshold are highlighted. 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  120 

 
Table 6.7: Performance of the classifier with different set of features – diabetes1 data 

 
Removing 
Feature 4 

Module 1 
(Class=1) 

Module 2 
(Class=2) 

 Initial CR 0.6958 0.7047 
Generations 179.4 159.7 
T. time (s) 387.6 316.6 

Training CR 0.8552 0.8167 
Test CR 0.7349 0.7385 

 Integration (Class=1, 2) 
Training CR 0.8411 

Test CR 0.7477 

Using All 
Features  

Module 1 
(Class=1) 

Module 2 
(Class=2) 

Initial CR 0.6966 0.6852 
Generations 179.1 186.4 
T. time (s) 366.5 358.9 

Training CR 0.8542 0.8234 
Test CR 0.7336 0.7279 

 Integration (Class=1, 2) 
Training CR 0.8388 

Test CR 0.7365 
Notes:  
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%; 
2. For each module, ruleNumber=15, popSize=100, generationLimit=200, stagnationLimit=30;  

 
  

 The RIF values are still used to determine the IRFs of the diabetes1 data. Since the 

diabetes1 data have only 2 classes, each feature has the same RIF value in the two 

class modules as shown in Table 6.6. The threshold is chosen as T1=0.1, and feature 4 

is regarded as the IRF for both modules.   

 Feature 4 is removed from both modules and the resulting performance of classifier 

is reported in Table 6.7, which compares the classifier performance under two 

scenarios, i.e., the special case when feature 4 is removed and the normal case when all 

features are used for classification. It is noted that test CRs are improved for both 

modules, and training CR is improved for module 1. As for the final training CR and 

test CR, they all are improved after feature 4 is removed from the feature set. These 

results on the diabetes1 data have again shown that the effect of removing IRFs 

successfully reduces the feature space dimension and helps improve the classifier 

performance. 

 As the diabetes1 data has only two classes, and feature 4 is the common IRF for 

both class modules, a general non-modular GA approach with RIF feature selection 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  121 

technique is also applicable. An experiment with the non-modular GA approach has 

been conducted to contrast with the modular GA approach, and the results are shown 

in Table 6.8. 

 

Table 6.8: Performance of the non-modular GA classifier - diabetes1 data 

 Using All Features Removing Feature 4  
Initial CR 0.6273 0.6393 

Generations 178.1 184.0 
T. time (s) 581.6 616.8 

Training CR 0.7568 0.7747 
Test CR 0.6961 0.7289 

Notes:  
1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%; 
2. ruleNumber=30, popSize=100, generationLimit=200, stagnationLimit=30;  

 

 It is still found that removing feature 4 (IRF) improves both the training CR (from 

0.7568 to 0.7747 by 2.4%) and test CR (from 0.6961 to 0.7289 by 4.7%) with the non-

modular GA approach. If comparing the corresponding results of these two 

approaches, it is shown that the performance of the non-modular approach is inferior to 

that of the modular approach in terms of the final training CR and test CR, which 

shows that class decomposition approach can improve the classifier performance. 

 

6.4 Discussions 

6.4.1 Reduction in Rule Set Complexity 

As the IRFs are removed from the feature space, the resulting rule sets for a 

classification problem become shorter and more concise, i.e, the complexity is 

reduced. When these reduced rule sets are used to classify data, it is apparent that the 

classifier can achieve a higher throughput.  

   



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  122 

 

1. IF (0.81<=X2<=1.01) THEN Class=1 
2. IF (0.71<=X6<=0.88) AND (0.07<=X8<=0.51) THEN Class=1 
3. IF (0.53<=X6<=0.59) AND (0.36<=X7<=0.88) THEN Class=1 
4. IF (0.45<=X2<=0.47) AND (0.49<=X3<=0.64) AND (0.61<=X4<=0.70) THEN Class=1 
5. IF (0.43<=X2<=0.63) AND (0.28<=X3<=0.83) AND (0.22<=X4<=0.40) AND 

(0.45<=X6<=0.87) AND (0.01<=X7<=0.42) AND (0.12<=X8<=0.32) THEN Class=1 
6. IF (0.00<=X1<=0.12) AND (0.83<=X2<=0.91) AND (0.38<=X3<=0.99) AND 

(0.46<=X4<=0.46) AND (0.46<=X5<=0.55) AND (0.14<=X6<=0.70) AND 
(0.46<=X7<=0.75) THEN Class=1 

7. IF (0.03<=X1<=0.76) AND (0.79<=X2<=0.92) AND (0.18<=X4<=0.86) THEN Class=1 
8. IF (0.16<=X3<=0.64) AND (0.32<=X4<=0.47) AND (0.57<=X7<=0.65) THEN Class=1 
9. IF (0.38<=X1<=0.87) AND (0.45<=X2<=1.00) AND (0.18<=X7<=0.39) THEN Class=1 
10. IF (0.18<=X5<=0.53) AND (0.48<=X7<=0.64) THEN Class=1 
11. IF (0.59<=X2<=0.78) AND (0.41<=X6<=0.84) AND (0.35<=X8<=0.64) THEN Class=1 
12. IF (0.50<=X2<=0.75) AND (0.89<=X3<=0.91) AND (0.71<=X6<=0.95) AND 

(0.44<=X7<=0.72) THEN Class=1 
13. IF (0.14<=X1<=0.42) AND (0.41<=X7<=1.01) THEN Class=1 
14. IF (0.09<=X1<=0.30) AND (0.57<=X4<=0.60) AND (0.70<=X5<=0.73) AND 

(0.10<=X6<=0.34) AND (0.35<=X7<=0.37) THEN Class=1 
15. IF (0.44<=X3<=0.82) AND (0.24<=X5<=0.54) AND (0.30<=X7<=0.72) AND 

(0.36<=X8<=0.83) THEN Class=1 
 

Figure 6.1: Rule set for module 1 with all features - diabetes1 data 
 

 
1. IF (0.59<=X2<=0.98) AND (0.27<=X3<=0.71) AND (0.47<=X7<=0.58) THEN Class=1 
2. IF (0.36<=X1<=0.55) AND (0.70<=X2<=0.97) AND (0.54<=X3<=0.91) THEN Class=1 
3. IF (0.12<=X3<=0.96) AND (0.18<=X5<=0.51) AND (0.38<=X8<=0.75) THEN Class=1 
4. IF (0.14<=X2<=0.97) AND (0.82<=X3<=0.97) AND (0.62<=X5<=1.00) AND 

(0.90<=X7<=0.91) AND (0.27<=X8<=0.93) THEN Class=1 
5. IF (0.22<=X3<=1.00) AND (0.24<=X5<=0.33) AND (0.33<=X6<=0.73) AND 

(0.25<=X7<=0.80) AND (0.11<=X8<=0.30) THEN Class=1 
6. IF (0.54<=X2<=0.68) AND (0.39<=X6<=1.00) AND (0.20<=X8<=0.59) THEN Class=1 
7. IF (0.46<=X2<=0.95) AND (0.58<=X5<=0.91) THEN Class=1 
8. IF (0.57<=X1<=0.91) AND (0.03<=X2<=0.17) AND (0.59<=X5<=0.75) THEN Class=1 
9. IF (0.65<=X3<=0.78) AND (0.27<=X7<=0.42) AND (0.24<=X8<=0.99) THEN Class=1 
10. IF (0.31<=X1<=0.43) AND (0.37<=X3<=0.73) AND (0.42<=X5<=0.50) AND 

(0.27<=X7<=0.29) AND (0.15<=X8<=0.93) THEN Class=1 
11. IF (0.02<=X6<=0.11) THEN Class=1 
12. IF (0.81<=X2<=1.00) THEN Class=1 
13. IF (0.48<=X6<=0.50) AND (0.04<=X7<=0.70) AND (0.37<=X8<=0.69) THEN Class=1 
14. IF (0.71<=X1<=0.76) AND (0.86<=X3<=0.95) AND (0.30<=X6<=0.34) THEN Class=1 
15. IF (0.43<=X1<=0.70) AND (0.09<=X5<=0.73) THEN Class=1 
 

Figure 6.2: Rule set for module 1 with feature 4 removed – diabetes1 data 

  

 Figure 6.1 and 6.2 show the resulting rule sets for class module 1 of the diabetes1 

data before and after feature selection respectively - removing feature 4 (cf. Table 6.6 

and 6.7). It can be seen that feature 4 (X4 in the rule set) does not appear in the second 

rule list, as it has been removed from the feature space. The total number of attribute 

elements can be used to evaluate the improvement on complexity. It is found that the 

number of elements is reduced from 50 elements in Figure 6.1 to 45 elements in Figure 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  123 

6.2, with a reduction rate as 10%. Therefore, with a reduced feature space, the rule set 

complexity is also reduced. 

 The complexity of the rule sets for the wine and glass data is also measured. As a 

result, a reduction rate of 17.9% and 25% is achieved respectively. It is found that the 

rule set for glass data achieves the highest reduction rate, as more IRFs are removed 

from the feature space. 

 

6.4.2 Comparison to the Application of RIF in Neural Networks 

RIF has also been applied successfully to neural networks for feature selection. 

According to the results reported in (Guan and Li, 2002b), the diabetes1 data are also 

used to test the effect of RIF in neural networks. When feature 4 (IRF) is removed, the 

classifier achieves a classification error of 23.96% on the test data (25% of the whole 

data), which is equal to a test CR of 0.7604. According to the results reported in Table 

6.7, the modular GA-approach with RIF achieves a test CR of 0.7477 on the test data 

(50% of the whole data). In order to be fair, we also use the 25% of the whole data as 

test data, and achieve a test CR of 0.7531. We can conclude that the performance of 

our modular GA approach with RIF is comparable to that of neural networks. 

 

6.4.3 Other Issues of RIF 

The integration of RIF feature selection with a modular GA approach with class 

decomposition brings forth some advantages. First, as each module is only responsible 

for one class, it is easier to use RIF values to find the IRFs in that particular class, 

eliminating the interference from other classes. Second, RIF requires relatively small 

computation cost compared to other feature selection techniques such as the knock-out 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  124 

technique. It is based on the statistic distribution of features in the input feature space 

and needs only one calculation of FLD transformation weights. Furthermore, RIF is 

independent from the learning algorithms, and it can also be used with other soft 

computing techniques such as neural network and other types of classifiers such as 

Bayes classifiers. 

 The selection of a good threshold value for RIF is an important issue. In most 

cases, if a larger threshold value is used, more features can be removed and complexity 

can be further reduced. However, too large a threshold value may induce information 

loss, so that classification accuracy can be affected.  

 The feature selection techniques presented have different effects on the training 

and test performance of the classifiers. From the experiment results, it is found that 

training CR sometimes degrades a little while test CR improves. However, test CR 

generally improves more than training CR degrades. The test performance is of more 

importance because it represents the generalization capability of a classifier, thus it is 

worth using the proposed feature selection techniques to reduce the feature space 

dimension.    

    

6.5 Conclusion 

This chapter has employed a new feature selection technique based on relative 

importance factor (RIF) to find irrelevant features (IRFs) in the input domain of a 

classification problem. RIF is employed in modular GA-based classifier agents, which 

use the class decomposition approach presented in the last chapter. RIF is used to 

detect the IRFs in each class module. By removing these features, it aims to improve 

classification accuracy and reduce the dimensionality of the classification problems. 



Chapter 6 Feature Selection for Modular GA-based Classifier Agents  125 

 Three benchmark classification data sets have been used to evaluate the proposed 

approaches. The experiment results show that RIF can be used as a simple and yet 

effective feature selection technique to determine irrelevant features and help achieve 

higher classification accuracy with the feature space dimension reduced. In the 

meantime, the complexity of the resulting rule sets is also reduced which means the 

modular classifiers with IRFs removed will be able to classify data with a higher 

throughput. 

   

 



Chapter 7  Conclusions and Further Research 126 

 

Chapter 7 

Conclusions and Further Research 

7.1 Conclusions 

This thesis has explored incremental learning of classifier agents. Traditional 

incremental learning algorithms are generally based on neural networks and machine 

learning techniques, and few touch on the use of evolutionary algorithms. The 

approaches presented in this thesis have embodied classifier agents with genetic 

algorithms, and further explored incremental learning with specially designed 

algorithms.  

 On the basis of normal GAs, incremental genetic algorithms (IGAs) have been 

proposed for incremental learning of classifier agents. Various learning approaches for 

IGAs have been designed to cope with different changes in either single-agent or 

multi-agent environments. These approaches have been evaluated by examining the 

performance of classifier agents with benchmark classification data sets. Specifically, 

IGAs have been exploited in two circumstances. One is that classifier agents 

incrementally learn new attributes, and the other one tackles the case when the new 

classes are incrementally available. IGAs have been adapted to these two 

circumstances, and various optional initialization schemes have been proposed and 

compared. The simulation results presented in Chapter 2 and 3 have shown that IGAs 



Chapter 7  Conclusions and Further Research 127 

can be successfully used for incremental learning of new attributes and classes and 

speeds up the learning process as compared to traditional GAs. 

 As a further research on incremental learning, continuous incremental genetic 

algorithms (CIGAs) have been proposed for continuous incremental learning where 

new attributes are introduced one by one. Different approaches of CIGAs have been 

evaluated, and their performance has been compared with normal GAs. The simulation 

results have shown that CIGAs can be used to continuously learn new attributes and 

evolve new rule sets to accommodate the new attributes, and the final performance 

achieved is also better than normal GAs. 

 Finally, as further steps to enhance the performance of classifier agents, two 

additional approaches, i.e., class decomposition and feature selection, have been 

explored. The class decomposition approach partitions a classification problem into 

several class modules in the class domain. These modules are trained in parallel and 

independently, and the results obtained are integrated to form the final solution by 

resolving conflicts. GAs and IGAs have been evaluated with the use of class 

decomposition. The simulation results have shown that the class decomposition 

approach helps GAs and IGAs achieve a higher classification rate with training time 

reduced. 

 For feature selection, a new technique, relative importance factor (RIF), has been 

employed to find irrelevant features in the input domain. By removing these features, 

the classification accuracy has been improved and the dimensionality of the 

classification problems reduced. The complexity of the resulting rule sets has also been 

reduced, and it means classifier agents are able to classify data with a higher 

throughput. 



Chapter 7  Conclusions and Further Research 128 

 A number of approaches have been proposed in this thesis. In summary, IGAs and 

CIGAs have been proposed for incremental learning/training, while class 

decomposition and feature selection have been proposed to improve performance. 

They have been used for different purposes. Table 7.1 lists the rules of thumb for the 

selection among IGAs and CIGAs. Furthermore, class decomposition can be used with 

GAs and IGAs, especially when a classification problem is complex. For example, the 

instance number reaches some thousand, or the number of attributes or classes is 

around ten or more. If the reduction in the feature space is allowed or it is as an 

objective itself, the proposed RIF method may be a good choice. 

 

Table 7.1: Rules of thumb for the selection of IGA and CIGA approaches 
 

 

 

 

 

 

  

Rule 1: If new attributes or classes are available in a time-varying manner, IGAs should 

be considered. 

Rule 2: If both group chromosomes from the old solutions and evolved rule sets for 

new attributes/classes are available, IS4/RI2 should be chosen. 

Rule 3: If only the best chromosome from the old solutions and evolved rule sets for 

new attributes/classes are available, IS2/RI1 should be chosen. 

Rule 4: If only the group chromosomes from the old solutions are available, IS3/CE2 

should be chosen. 

Rule 5: If only the best chromosome from the old solutions is available, IS1/CE1 

should be chosen. 

Rule 6: If a data set is presented with all attributes, classes and instances being 

available, CIGAs are recommended for incremental training. 

Rule 7: If the resource (e.g. computer memory) is enough for the single-attribute 

evolution module, CIGA4 is recommended. Otherwise, CIGA3 is 

recommended. 

 

 

 

 

 

 

 



Chapter 7  Conclusions and Further Research 129 

 

7.2 Future Research  

While this thesis has made some contribution on incremental evolution of classifier 

agents with new approaches of incremental genetic algorithms and other methods to 

improve their performance, several issues are still open. Continuing research would 

allow us to further expand the findings of this thesis. 

 First, the rule-based approach for classification problems can be extended to fuzzy 

rule-based classification systems, by adding the membership function and grade of 

certainty. Fuzzy logic permits vague information, knowledge and concepts to be used 

in an exact mathematical manner. This enables qualitative and imprecise reasoning 

statements to be incorporated within rule-bases so producing simpler, more intuitive 

and better behaved models. A GA-fuzzy approach is a possible direction for our future 

work. 

 Second, when classifier agents exchange attributes, classes, or training data, some 

overlapping can happen. For example, the exchanged training data among agents may 

have some overlapping. Therefore, a classifier agent needs to analyze the incoming 

data, and combine them with its own current data using certain methods. Furthermore, 

if elements/rules exchanged among agents have some identical parts, agents may need 

more advanced mechanisms to detect them and integrate them properly. In addition, in 

a multi-agent environment, interaction among agents can be more complex than 

discussed in this thesis. To implement complete collaborative incremental learning for 

classifier agents, many issues should be carefully considered. For example, the 

communication channel among agents should be securely established and message 



Chapter 7  Conclusions and Further Research 130 

format should be carefully predefined. Furthermore, the interaction among agents can 

be continuous so that agents can realize frequent exchange for co-evolution. 

 Third, for the approaches of class decomposition and feature selection, there is also 

room for improvement. For class decomposition, a few kinds of intelligence can be 

embedded. For example, classifier agents can have some intelligence on determining 

the decomposition pattern which includes the size of modules, the allocation of classes 

into modules. Agents can autonomously try on different combinations to find the 

optimal decomposition pattern. On the other hand, human-agent interaction may 

provide a better way to boost the intelligence of agents and establish a control and 

feedback channel between users and agents. Currently, the RIF feature selection is 

built on a complete class decomposition, which means the output classes are 

partitioned in a non-overlapping manner, i.e. each module only tackles one class. 

Alternatively, agents can have some degree of overlapping in class decomposition, 

which will be more robust in the presence of faults and may lead to further 

improvement on classification accuracy.  

 Finally, reducing training time is always an important pursuit in designing online 

systems, as they need to react to the environment promptly. This thesis has proved that 

incremental genetic algorithms and the other approaches can save training time 

compared to normal GAs. In order to further reducing training time, future research 

may be focused on the adoption of parallel genetic algorithms and parallel 

implementation of multi-agent systems.   

 



References   131 

 

References  

Abul, O., Polat, F., and Alhajj, R. Multiagent reinforcement learning using function 

approximation, IEEE Trans. on Systems, Man, and Cybernetics, Part C, 30 (4), 

485-497, 2000. 

Adeli, H. and Hung, S.L. Machine learning: neural networks, genetic algorithms, and 

fuzzy systems, New York: Wiley, 1995. 

Anand, R., Mehrotra, K., Mohan, C.K., and Ranka, S. Efficient classification for 

multiclass problems using modular neural networks, IEEE Trans. on Neural 

Networks, 6 (1), 117-124, 1995. 

Apté, C., Hong, S.J., Hosking, J., Lepre, J., Pednault, E., and Rosen, B. Decomposition 

of heterogeneous classification problems. In Proc. of Second International 

Symposium Advances in Intelligent Data Analysis, Reasoning about Data, Lecture 

Notes in Computer Science, vol. 1280, Springer, 17-28, 1997. 

Back, T., Hammel, U., and Schwefel, H.P. Evolutionary computation: comments on 

the history and current state, IEEE Trans. on Evolutionary Computation, 1 (1), 3-17, 

1997.  

Back, T., Hoffmeister, F., and Schwefel, H.P. A survey of evolution strategies. In Proc. 

of the 4th International Conference on Genetic Algorithms, San Diego, CA, 2-9, 

1991. 

Bala, J., Huang, J., Vafaie, H., DeJong, K., and Wechsler, H. Hybrid learning using 

genetic algorithms and decision tress for pattern classification. In Proc. of the 14th 



References   132 

International Joint Conference on Artificial Intelligence, Montreal, Canada, 719-

724, 1995. 

Bandyopadhyay, S. and Pal, K. Pixel classification using variable string genetic 

algorithms with chromosome differentiation, IEEE Trans. on Geoscience and 

Remote Sensing, 39 (2), 303-308, 2001. 

Battiti, R. Using mutual information for selecting features in supervised neural net 

learning, IEEE Trans. on Neural Networks, 5 (4), 537-550, 1994. 

Blake, C.L. and Merz, C.J. UCI Repository of machine learning databases 

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of 

California, Department of Information and Computer Science, 1998. 

Bradshaw, J.M. Software Agent, MA: MIT Press, 1997. 

Cantu-Paz, E. Markov chain models of parallel genetic algorithms, IEEE Trans. on 

Evolutionary Computation, 4 (3), 216-226, 2000. 

Cantu-Paz, E. Efficient and Accurate Parallel Genetic Algorithms, Boston, MA: 

Kluwer Academic, 2000. 

Caragea, D., Silvescu, A., and Honavar, V. Towards a theoretical framework for 

analysis and synthesis of distributed and incremental learning agents. In Proc. of 

Workshop on Distributed and Parallel Knowledge Discovery, Boston, US, 2000. 

Corcoran, A.L. and Sen, S. Using real-valued genetic algorithm to evolve rule sets for 

classification. In Proc. of the 1st IEEE Conference on Evolutionary Computation, 

Orlando, US, 120-124, 1994. 

Cordón, O., Herrera, F., Hoffmann, F., and Magdalena, L. Genetic Fuzzy Systems: 

Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, Singapore: World 

Scientific, 2001. 



References   133 

Dalché-Buc, F. and Ralaivola, L. Incremental learning algorithms for classification and 

regression: local strategies. In Proc. of American Institute of Physics Conference, 

2001. 

Dash, M. and Liu, H. Feature selection for classification, Intelligent Data Analysis, 1 

(3), 131-156, 1997. 

DeJong, K.A. Learning with genetic algorithms: an overview, Machine Learning, 3, 

121-138, 1988. 

DeJong, K.A. and Spears, W.M. Learning concept classification rules using genetic 

algorithms. In Proc. of the 1991 International Joint Conference on Artificial 

Intelligence, 651-656, 1991. 

Duda, R.O., Hart, P.E., and Stork, D.G. Pattern Classification, New York: Wiley, 2nd 

Edition, 2000.  

Enee, G. and Escazut, C. Classifier systems evolving multi-agent system with 

distributed elitism. In Proc. of the 1999 Congress on Evolutionary Computation, 

1740-1746, 1999. 

Engelbrecht A.P. and Brits, R. A clustering approach to incremental learning for 

feedforward neural networks. In Proc. of Int. Joint Conf. Neural Network, vol. 3, 

2019-2024, 2001. 

Etzioni, O. and Weld, D.S. Intelligent agents on the Internet: fact, fiction, and forecast, 

IEEE Expert, 10 (4), 44-49,1995. 

Falco, I.D., Cioppa, A.D., and Tarantino, E. Discovering interesting classification rules 

with genetic programming, Applied Soft Computing, 1, 257-269, 2002. 

Ferber,  J. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, 

Addison-Wesley, 1999. 



References   134 

Fidelis, M.V., Lopes, H.S., and Freitas, A.A. Discovering comprehensible 

classification rules with a genetic algorithm. In Proc. of the 2000 Congress on 

Evolutionary Computation, vol. 1, 805-810, 2000. 

Fogel, D.B. Evolutionary Computation: Toward a New Philosophy of Machine 

Intelligence, Piscataway: IEEE Press, 1995. 

Fogel, D.B. Fogel, L.J. and Atmar, J.W. Meta-evolutionary programming. In Proc. of 

the 25th Aslimar Conf. on Signals, Systems and Computers, Maple Press, 540-

545, 1991. 

Franklin, S., and Graesser, A. Is it an agent or just a program? a taxonomy for 

autonomous agents. In Proc. of the Third International Workshop on Agent 

Theories, Architectures, and Languages, New York: Springer-Verlag, 1996. 

Fu, L., Hsu, H., and Principe, J.C. Incremental backpropagation learning networks, 

IEEE Trans. on Neural Networks, 7 (3), 757-761, 1996. 

Fukunaga, K. Introduction to Statistical Pattern Recognition, 2nd ed., Boston: 

Academic Press, 1990. 

Giraud-Carrier, C. A note on the utility of incremental learning, AI Communications, 

13 (4), 215-223, 2000. 

Giraud-Carrier, C. and Martinez, T. An incremental learning model for commonsense 

reasoning. In Proc. of the Seventh International Symposium on Artificial 

Intelligence, 134-141, 1994. 

Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning, 

Massachusetts: Addison-Wesley, 1989. 



References   135 

Gonzalez, A. and Perez, R. Selection of relevant features in a fuzzy genetic learning 

algorithm, IEEE Trans. on Systems, Man and Cybernetics, Part B, 31 (3), 417-425, 

2001. 

Grefenstette J. eds. Genetic Algorithms for Machine Learning, Kluwer Academic 

Publishers, 1993. 

Guan, S. U., Ngoo, C.S., and Zhu, F.M. Handy broker - an intelligent product-

brokering agent for m-commerce applications with user preference tracking, 

Electronic Commerce Research and Applications, Elsevier Science, 1(3-4), 314-

330, 2002. 

Guan, S.U. and Li, S.C. Incremental learning with respect to new incoming input 

attributes, Neural Processing Letters, 14 (3), 241-260, 2001. 

Guan, S.U. and Li, S.C. Parallel growing and training of neural networks using output 

parallelism, IEEE Trans. on Neural Networks, 13 (3), 542-550, 2002. (2002a) 

Guan, S.U. and Li, P, Feature selection for modular neural network classifiers, 

accepted, Journal of Intelligent Systems, 12 (3), 173-200, 2002. (2002b) 

Guan, S.U. and Liu, J. Incremental neural network training with an increasing input 

dimension, submitted to Journal of Intelligent Systems, 2002. 

Guan, S.U., Zhu, F.M., and Ko, C.C. Agent fabrication and authorization in agent-

based electronic commerce. In Proc. of International ICSC Symposium on Multi-

Agents and Mobile Agents in Virtual Organizations and E-Commerce, 

Wollongong, Australia, 528-534, 2000. 

Guan, S.U. and Zhu, F.M. Agent fabrication and its implementation for agent-based 

electronic commerce, International Journal of Information Technology & Decision 

Making, 1 (3), 473-489, 2002. (2002a) 



References   136 

Guan, S.U. and Zhu, F.M. Learning of classifier agents based on incremental genetic 

algorithms. In Proc. of 2002 IASTED International Conference on AI and 

Applications, Málaga, Spain. (2002b) 

Guan, S.U. and Zhu, F.M. Incremental learning of classifier agents with genetic 

algorithms, under second review, IEEE Trans. on Evolutionary Computation, 2002. 

(2002c)  

Guan, S.U. and Zhu, F.M. Continuous incremental training for GA-based classifiers, 

submitted to IEEE Trans. on Systems, Man and Cybernetics, Part C., 2002. 

(2002d) 

Guan, S.U. and Zhu, F.M. Evolutionary e-commerce agents with ontology exchange. 

In Proc. of IASTED International Conference on Internet and Multimedia Systems 

and Applications, 47-51, 2002. (2002e) 

Guan, S.U. and Zhu, F.M. Incremental learning of collaborative classifier agents with 

new class acquisition - an incremental genetic algorithm approach, International 

Journal of Intelligent Systems, 18 (11), 1173-1193, 2003.  

Guan, S.U. and Zhu, F.M. Class decomposition for GA-based classifier agents – a pitt 

approach, IEEE Trans. on Systems, Man and Cybernetics, Part B, 34 (1), 381-392, 

2004. (2004a).  

Guan, S.U. and Zhu, F.M. and Li, P, Modular feature selection using relative 

importance factors, International Journal of Computational Intelligence and 

Applications, 4 (1), 1-19, 2004. (2004b) 

Haynes, T.D. and Wainwright, R.L. A simulation of adaptive agents in a hostile 

environment. In Proc. of the ACM Symposium on Applied Computing, ACM 

Press, 1995. 



References   137 

Holland, J.H. Adaptation in Nature and Artificial Systems, Ann Arbor: Univ. of 

Michigan Press, 1975. 

Holland, J.H. Escaping brittleness: the possibilities of general purpose learning 

algorithms applied to parallel rule-based systems. In Machine Learning: An 

Artificial Intelligence Approach, ed. by R.S. Michalski, J.G. Carbonell, and T.M. 

Mitchell, Los Altos, CA: Morgan Kaufmann, 1986. 

Ishibuchi, H., Murata, T., and Nakashima, T. Genetic-algorithm-based approaches to 

classification problems. In Fuzzy Evolutionary Computation, ed. by W. Pedrycz, 

Boston: Kluwer Academic, 127-154, 1997. 

Ishibuchi, H., Nakashima, T., and Murata, T. Performance evaluation of fuzzy 

classifier systems for multidimensional pattern classification problems, 

IEEE Trans. on Systems, Man and Cybernetics, Part B, 29 (5), 601-618, 1999. 

Jenkins, R.E. and Yuhas, B.P. A simplified neural network solution through problem 

decomposition: the case of the truck backer-upper, IEEE Trans. on Neural 

Networks 4 (4), 718-720, 1993. 

Jennings, N.R., Corera, J.M., and Laresgoiti, I. Developing industrial multi-agent 

systems. In Proc. of the First International Conference on Multi-agent Systems, 

423-430, 1995. 

Kang, H. Evolvable cellular classifiers. In Proc. of the 2000 Congress on Evolutionary 

Computation, 464-470, 2000. 

Koller, D. and Sahami, M. Toward optimal feature selection. In Proc. of the 13th 

International Conference on Machine Learning, 284-292, Italy, July 1996. 

Koza, J.R. Genetic Programming: On the Programming of Computers by Means of 

Natural Selection, Cambridge, Mass.: MIT Press, 1992. 



References   138 

Kwak, N. and Choi, C.H. Input feature selection for classification problems, IEEE 

Trans. on Neural Networks, 13 (1), pp. 143-159, 2002. 

Lange, S. and Grieser, G. On the power of incremental learning, Theoretical Computer 

Science, 288 (2), 277-307, 2002. 

Lanzi, P.L., Stolzmann, W. and Wilson, S.W. (ed.) Learning Classifier Systems: from 

Foundations to Applications, Berlin: Springer, 2000. 

Lerner, B., Levinstein, M., Rosenberg, B., Guterman, H., Dinstein, L., and Romem, Y. 

Feature selection and chromosome classification using a multilayer perceptron 

neural network. In Proc. of IEEE International Conference on Neural Networks, 

vol. 6, 3540-3545, 1994. 

Lesser, V.R. Multiagent systems: an emerging subdiscipline of AI, ACM Computing 

Surveys, 27 (3), 340-342, 1995. 

Liu, J. Autonomous Agents and Multi-Agent Systems:  Explorations in Learning, Self-

Organization and Adaptive Computation, River Edge, N.J.: World Scientific, 2001. 

Liu, D., Chang, T.S., and Zhang, Y. A new learning algorithm for feedforward neural 

networks. In Proc. of the 2001 IEEE International Symposium on Intelligent 

Control, México City, 2001. 

Lu, B.L. and Ito, M. Task decomposition and module combination based on class 

relations: a modular neural network for pattern classification. IEEE Trans. on 

Neural Networks 10 (5), 1244-1256,1999. 

Maes, P. Agent that reduce work and information overload, Communication of the 

ACM, 37 (7), 31-40, 1994. 



References   139 

Masulli, F. and Valentini, G. Parallel non-linear dichotomizers. In Proc. of the IEEE-

INNS-ENNS International Joint Conference on Neural Networks, vol. 2, 29-33, 

2000. 

Melab, N. and Talbi, E. A parallel genetic algorithm for rule mining. In Proc. of 15th 

International Parallel and Distributed Processing Symposium, 1347-1352, 2001. 

Merelo, J.J., Prieto, A., and Moran, F. Optimization of classifiers using genetic 

algorithms. In Advances in the Evolutionary Synthesis of Intelligent Agents ed. by 

M. Patel, V. Honavar, and K. Balakrishnan, Cambridge, Mass.: MIT Press, 2001. 

Michalewicz, Z. Genetic Algorithms + Data Structures =Eevolution Programs, 3rd ed. 

New York : Springer-Verlag, 1996. 

Michie, D. Problem decomposition and the learning of skills. In Proc. of the European 

Conference on Machine Learning, Springer-Verlag, 17-31, 1995. 

Namatame, A. and Sasaki, T. Competitive evolution in a society of self-interested 

agents. In Proc. of IEEE World Congress on Computational Intelligence, 1998. 

Nwana, H.S. Software agents: an overview, Knowledge Engineering Review, 11 (3), 

205-244, 1996. 

Nwana, H.S. and Azarmi, N. (ed.) Software Agents and Soft Computing: Towards 

Enhancing Machine Intelligence, Concepts and Applications, Lecture Notes in 

Computer Science 1198, Springer 1997. 

Osorio, F.S. and Amy, B. INSS: A hybrid system for constructive machine learning, 

Neurocomputation, 28, 191–205, 1999. 

Pal, S.K., De, R.K., and Basak, J. Unsupervised feature evaluation: a neuro-fuzzy 

approach, IEEE Trans. on Neural Networks, 11 (2), 366-376, 2000. 



References   140 

Polikar, R., Udpa, L., Udpa, S.S., and Honavar, V. Learn++: an incremental learning 

algorithm for supervised neural networks, IEEE Trans. on System, Man, and 

Cybernetics, Part C, 31 (4), 497-508, 2001. 

Prechelt, L. PROBEN1: A set of neural network benchmark problems and 

benchmarking rules, Technical Report 21/94, Department of Informatics, 

University of Karlsruhe, Germany, 1994. 

Ratsaby, J.   Incremental learning with sample queries, IEEE Trans. on Pattern 

Analysis and Machine Intelligence, 20 (8), 883-888, 1998. 

Rokach, L. and Maimon, O. Improving supervised learning by feature decomposition. 

In Proc. of Second International Symposium on Foundations of Information and 

Knowledge Systems, 178-196, 2002. 

Schwefel, H.P. and Rudolph, G. Contemporary evolution strategies. In Proc. of Third 

International Conf. Artificial Life, LNAI 929, Berlin: Springer, 893-907, 1995. 

Setiono, R. and Liu, H. Neural network feature selector, IEEE Trans. on Neural 

Networks, 8 (3), 654-662, 1997. 

Setnes, M. and Roubos, H. GA-Fuzzy modeling and classification: complexity and 

performance, IEEE Trans. on Fuzzy Systems, 8 (5), 509-522, 2000. 

Sheth, B. and Maes, P. Evolving agents for personalized information filtering. In Proc. 

of the Ninth Conference on Artificial Intelligence for Applications, 345-352, 1993. 

Smith, R.E., Bonacina, C., Kearney, P.E., and Merlat, W. Embodiment of evolutionary 

computation in general agents, Evolutionary Computation, 8 (4), 475-493, 2000. 

Smith, R.E., Merlat, W., and Kearney, P. Evolutionary adaptation in autonomous agent 

systems - a paradigm for the emerging enterprise, BT Technology Journal, 17 (4), 

157-167, 1999. 



References   141 

Smith, S.F. A learning system based on genetic adaptive algorithms, Ph.D. thesis, 

University of Pittsburgh, Pittsburgh, 1980. 

Srikanth, R., George, R., Warsi, N., Prabhu, D., Petry, F.E., and Buckles, B.P. A 

variable-length genetic algorithm for clustering and classification, Pattern 

Recognition Letters, 16, 789-800, 1995. 

Stone, P. and Veloso, M. Towards collaborative and adversarial learning: A case study 

for robotic soccer, International Journal of Human Computer Studies, 48 (1), 83-

104, 1998. 

Su, L., Guan, S.U., and Yeo, Y.C., Incremental self-growing neural networks with the 

changing environment, Journal of Intelligent Systems, 11 (1), 43-74, 2001. 

Takadama, K., Terano, T, and Shimohara, K. Learning Classifier Systems Meet 

Multiagent Environments. In Advances in learning classifier systems: third 

international workshop, ed. by P.L. Lanzi, W. Stolzmann, and S.W. Wilson, Berlin: 

Springer, 192-212, 2001. 

Tsumoto, S. and Tanaka, H. Incremental learning of probabilistic rules from clinical 

databases based on rough set theory. In Proc. of AMIA annual fall symposium, 

198-202, 1997. 

Verikas, A. and Bacauskiene, M. Feature selection with neural networks, Pattern 

Recognition Letters, 23 (11), 1323-1335, 2002. 

Vuurpijl, L.G. and Schomaker, L.R.B. Multiple-agent architectures for the 

classification of handwritten text. In Proc. of the International Workshop on 

Frontiers in Handwriting Recognition, Taejon, Korea, 335-346, 1998. 



References   142 

Watson, R.A. and Pollack, J.B. Symbiotic combination as an alternative to sexual 

recombination in genetic algorithms. In Proc. of Sixth International Conference on 

Parallel Problem Solving from Nature, 425-434, 2000. 

Weile, D.S. and Michielssenm, E. The use of domain decomposition genetic 

algorithms exploiting model reduction for the design of frequency selective 

surfaces, Computer Methods in Applied Mechanics and Engineering, 18 (6), 439-

458, 2000. 

Weiss, S.M. and Kulikowski, C.A. Computer Systems that Learn: Classification and 

Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert 

Systems, San Mateo: Morgan Kaufmann, 1991. 

Wolberg, W.H. and Mangasarian, O.L. Multisurface method of pattern separation for 

medical diagnosis applied to breast cytology. In Proc. of the National Academy of 

Sciences, 9193-9196, 1990. 

Wooldridge, M. and Jennings, N. R. Agent theories, architectures, and languages. In 

Intelligent Agents, ed. by Wooldridge and Jennings, Springer Verlag, 1-22, 1995. 

Yamauchi, K., Yamaguchi, N., and Ishii, N. Incremental learning methods with 

retrieving of interfered patterns, IEEE Trans. on Neural Networks, 10 (6), 1351-

1365, 1999. 

Yang, J. and Honavar, V. Feature subset selection using a genetic algorithm, IEEE 

Intelligent Systems, 13 (2), 44-49, 1998. 

Zadeh, L.A. The Roles of Fuzzy Logic and Soft Computing in the Conception, Design 

and Deployment of Intelligent Systems. In Software Agents and Soft Computing, 

Lecture Notes in Computer Science 1198, Springer, 183-190, 1997. 



References   143 

Zhang, J. Selecting typical instances in instance-based learning. In Proc. of the Ninth 

International Conference on Machine Learning, 470-479, 1992. 

Zhu, F.M. and Guan, S.U. Evolving software agents in e-commerce with GP operators 

and knowledge exchange. In Proc. of the 2001 IEEE Systems, Man, and 

Cybernetics Conference, Tucson, USA, 3297-3302, 2001. (2001a) 

Zhu, F.M. and Guan, S.U. Towards evolution of software agents in electronic 

commerce. In Proc. of the Congress on Evolutionary Computation 2001, Seoul, 

Korea, 1303-1308, 2001. (2001b) 

Zhu, F.M., Guan, S.U., and Yang, Y. SAFER e-commerce: secure agent fabrication, 

eolution & roaming for e-commerce. In Internet Commerce and Software Agents: 

Cases, Technologies and Opportunities, ed. by S.M. Rahman and R.J. Bignall, PA: 

Idea Group, 190-206, 2000. 

 



Appendix    144 

 

Appendix A 

Information on Benchmark Data Sets 
 
 
This appendix provides detailed information of the benchmark data sets used in this 

thesis. They are wine, glass, cancer, iris, yeast, diabetes, and diabates1 data. The first 

six data sets are available in the UCI machine learning repository (Blake and Merz, 

1998), and the last one is available in the PROBEN1 collection (Prechelt, 1994). They 

all are real-world problems.  

 
A.1  Wine Data 

The wine data contains the chemical analysis of 178 wines from three different 

cultivars in the same region in Italy. The analysis determines the quantities of 13 

constituents found in each of the three types of wines. In other words, it has 13 

continuous attributes, 3 classes, and 178 instances. The 13 continuous attributes are 

alcohol, malic acid, ash, alkalinity of ash, magnesium, total phenols, flavanoids, 

nonflavanoids phenols, proanthocyaninsm color intensity, hue, OD280/OD315 of 

diluted wines and proline. The class distribution is as follows: 59 instances for class 1, 

71 instances for class 2, and 48 instances for class 3. 

 

A.2  Glass Data 

The glass data set contains data of different glass types. The results of a chemical 

analysis of glass splinters plus the refractive index are used to classify a sample to be 



Appendix    145 

either float processed or non-float processed building windows, vehicle windows, 

containers, tableware, or head lamps. This task is motivated by forensic needs in 

criminal investigation. This data set consists of 214 instances with 9 continuous 

attributes from 6 classes. 

 The 9 continuous attributes are refractive index, sodium, magnesium, aluminum, 

silicon, potassium, calcium, barium and iron. The 6 classes and the distribution of 214 

instances are as follows: 70 instances for float processed building windows, 17 

instances for float processed vehicle windows, 76 instances for non-float processed 

building windows, 13 instances for containers, 9 instances for tableware, and 29 

instances for headlamps. 

 

A.3  Cancer Data 

The cancer problem diagnoses whether a breast cancer is benign or malignant. It has 9 

attributes, 2 classes, and 699 instances. All attributes are continuous, and they are 

clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, 

single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses. 

Among the 699 instances, 458 instances are benign (65.5%), and 241 are malignant 

(34.5%). 

 

A.4  Iris Data 

The iris data set contains 150 instances for 3 classes of iris species, i.e., iris setosa, iris 

versicolor, and iris virginica. Four numeric attributes are used for classification, and 

they are sepal length, sepal width, petal length, and petal width. There are 50 instances 

for each of the three classes. 



Appendix    146 

A.5  Yeast Data 

The yeast problem predicts the protein localization sites in cells. It has 8 attributes, 10 

classes, and 1484 instances. The 8 attributes are McGeoch's method for signal 

sequence recognition (mcg), von Heijne's method for signal sequence recognition 

(gvh), score of the ALOM membrane spanning region prediction program (alm), score 

of discriminant analysis of the amino acid content (mit), presence of "HDEL" substring 

(erl), peroxisomal targeting signal in the C-terminus (pox), score of discriminant 

analysis of the amino acid content of vacuolar and extracellular proteins (vac), score of 

discriminant analysis of nuclear localization signals of nuclear and non-nuclear 

proteins (nuc). The class distribution is as follows: 

   Class Category            Instances 
  CYT (cytosolic or cytoskeletal)                     463 
  NUC (nuclear)                                       429 
  MIT (mitochondrial)                           244 
  ME3 (membrane protein, no N-terminal signal)        163 
  ME2 (membrane protein, uncleaved signal)             51 
  ME1 (membrane protein, cleaved signal)               44 
  EXC (extracellular)                                  35 
  VAC (vacuolar)                                       30 
  POX (peroxisomal)                                    20 
  ERL (endoplasmic reticulum lumen)                     5 

 
 

A.6  Diabetes and Diabetes1 Data 

The diabetes and diabetes1 problems diagnose diabetes of Pima Indians, and they 

come from different source. Both of them have 8 attributes, 2 classes, and 768 

instances. All attributes are continuous, and they are number of times pregnant, plasma 

glucose concentration, diastolic blood pressure, triceps skin fold thickness, 2-hour 

serum insulin, body mass index, diabetes pedigree function, and age. 500 instances are 

tested negative for diabetes, and 268 instances are positive. 



Appendix    147 

 

Appendix B 

Results of CIGA2 and CIGA4 on the 
Glass and Yeast Data  
 
 
This appendix provides the detailed results of CIGA2 and CIGA4 on the glass and 

yeast data. The summaries of these results have been used in Table 4.5 and Table 4.6 

respectively. 

 
Performance comparison on the glass data  - CIGA2 and CIGA4 

CIGA2 Add Att. 
1 

Add Att. 
2 

Add Att. 
3 

Add Att. 
4 

Add Att. 
5 

Add Att. 
6 

Add Att. 
7 

Add Att. 
8 

Add Att. 
9 

Initial CR 0.3598 0.4729 0.5056 0.6449 0.6710 0.7084 0.6953 0.6991 0.6860 
Generations 59.2 49.7 60 54.4 50.6 40 48 47.5 44.6 
T. time (s) 45.8 60 88.1 91.6 94.5 81.6 103.1 107.7 106.8 
Ending CR 0.4879 0.5299 0.6514 0.7009 0.7206 0.7252 0.7346 0.7402 0.7421 

Test CR 0.3505 0.3505 0.3841 0.4308 0.4430 0.4421 0.4355 0.4579 0.4374 
 

CIGA4 Add Att. 
1 

Add Att. 
2 

Add Att. 
3 

Add Att. 
4 

Add Att. 
5 

Add Att. 
6 

Add Att. 
7 

Add Att. 
8 

Add Att. 
9 

Initial CR 0.3467 0.5374 0.5710 0.6607 0.7103 0.6991 0.7449 0.7056 0.7308 
Generations 57.7 59.2 59.8 55 57.6 56.9 47.8 52.9 49.4 
T. time (s) 47.5 74.8 91.3 95.5 108.2 113.1 105.8 121.9 116.5 
Ending CR 0.5477 0.5981 0.6869 0.7299 0.7467 0.7645 0.7692 0.7804 0.7879 

Test CR 0.3710 0.4196 0.4439 0.4598 0.4579 0.4505 0.4598 0.4458 0.4458 
 

Summary CIGA2 CIGA4 
Initial CR 0.3598 0.3467 

Generations 454 496.3 
T. time (s) 779.2 874.6 
Ending CR 0.7421 0.7879 

Test CR 0.4374 0.4458 
 
Notes: The experiment setting is the same as that for Table 4.1. 

 
 

 

 



Appendix    148 

Performance comparison on the yeast data – CIGA2 and CIGA4 

CIGA2 Add Att.1 Add Att. 2 Add Att. 3 Add Att. 4 Add Att. 5 Add Att. 6 Add Att. 7 Add Att. 8
Initial CR 0.2667 0.3046 0.3425 0.3786 0.3933 0.4012 0.4023 0.4035 

Generations 56.3 58.7 59.5 55.9 47.6 42.9 45.1 43.3 
T. time (s) 158.1 271.4 342.5 352.1 331.6 311.7 350.3 357.6 
Ending CR 0.3102 0.3217 0.3887 0.4042 0.4061 0.408 0.4092 0.4097 

Test CR 0.3082 0.3127 0.3683 0.3814 0.3811 0.3823 0.3809 0.3803 
 

CIGA4 Add Att.1 Add Att. 2 Add Att. 3 Add Att. 4 Add Att. 5 Add Att. 6 Add Att. 7 Add Att. 8
Initial CR 0.2612 0.3061 0.3333 0.3763 0.4111 0.4046 0.4221 0.4129 

Generations 58.2 50.1 57.7 53.9 50.3 56.1 50.8 52.4 
T. time (s) 175.5 245 319.5 338.8 353.9 410.5 401.4 410.9 
Ending CR 0.309 0.3171 0.385 0.4144 0.422 0.427 0.4286 0.4326 

Test CR 0.3073 0.3108 0.3677 0.39 0.3911 0.3935 0.3943 0.396 
 

Summary CIGA2 CIGA4 
Initial CR 0.2667 0.2612 

Generations 409.3 429.5 
T. time (s) 2475.3 2655.5 
Ending CR 0.4097 0.4326 

Test CR 0.3803 0.3960 
 
Notes: The experiment setting is the same as that for Table 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix    149 

 

Appendix C 

Major Routines of GAs/IGAs and 
Rule Sets Generated 
 
This appendix lists the major routines of GAs/IGAs, which include main evolution 

loop, crossover, mutation, fitness evaluation, etc. They are written in Java. A sample 

rule set generated for the wine data is also listed. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

public void newGeneration()  //main evolution procedure 
    { 
       generation++; 
       for (int i = 0; i < popSize; i++)   
        { 
            kids[i] = mate();       //generate kids 
            kidVals[i] = evalValue(kids[i]); 
            kidFits[i]=kidVals[i]; 
        } 
       sortKidsByVals(); 
       if (survivorsPercent > 0)  //replace parents with kids according to survivorsPercent
        {  int n = (popSize * survivorsPercent) / 100; 
            for(int i = n; i < popSize; i++) 
                if(i > n - 1) 
                {  chroms[i] = kids[i - n]; 
                    vals[i] = kidVals[i - n]; 
                    fits[i] = kidFits[i - n]; 
                } 
        } else 
        { 
           for(int i = 0; i < popSize; i++) 
            {  chroms[i] = kids[i]; 
                vals[i] = kidVals[i]; 
                fits[i] = kidFits[i]; 
            } 
        } 
        processFitness();   // sort according to fitness  
        processValue();   // check stagnation 
        bestVal[generation]=vals[0]; 
        bestChrom[generation] = chroms[0]; 
        testingFit[generation]=testing(bestChrom[generation]); 
        if ((generation>=generationLimit) || bestVal[generation]>=1.0 || stagnationCounter >= 

stagnationLimit) { exitFlag=true;}          //stopping criteria 
     } 



Appendix    150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    private String mate()  //generate kids 
    { 
        oldSumFit=selHandler.getSumFitness(fits); //select parents 
        int mom = selHandler.getParent(oldSumFit, popSize, fits); 
        int dad = selHandler.getParent(oldSumFit, popSize, fits); 
        String kid = crsHandler.crossover(chroms[mom], chroms[dad], crossoverRate1, rossoverRate2);
        kid = mutation(kid,mutationRate1, mutationRate2);   //crossover and mutation 
        return kid; 

} 
 public String mutation(String chrom, double rate1, double rate2) 
    { 
        StringBuffer sb = new StringBuffer(chrom); 
        int size = chrom.length(); 
        int rule, gene, gNum, genepos; 
        char zero=(char)48;   char one=(char)49; 
        boolean permitted=false;  double rate;  
 
        for(int i = 0; i < size; i++) 
         { if ((i % ruleLen)<GaaAction.ageneNum*GaaAction.ageneSize 
                || (i % ruleLen)==ruleLen-1)                           //determine the mutation point 
           { permitted=flipm(rate1); rate=rate1;} 
           else { permitted=flipm(rate2); rate=rate2;} 
 
        if(permitted) 
          { 
               rule= i / ruleLen; 
               gene=i % ruleLen; 
               gNum=gene/ageneSize; 
               genepos=gene % ageneSize;   
               int p=ageneNum*rule+gNum; 
               if (genepos==0 && gene!=ruleLen-1)       //mutate the activeness element 
               { if(flipm(0.5*rate))   
               if (sb.charAt(i)==zero)   sb.setCharAt(i, one);  else  sb.setCharAt(i, zero); 
                } 
            if (genepos==1)        //mutate the minimum value  
               { 
                double n1 = agene[p].lmin + Math.random() * (agene[p].lmax - agene[p].lmin); 
                char kar = agene[p].encodeLValue(n1); 
                sb.setCharAt(i, kar); 
                } 
            if (genepos==2)                     //mutate the maximum value 
               { 
                double n2 = agene[p].rmin + Math.random() * (agene[p].rmax - agene[p].rmin); 
                char kar = agene[p].encodeRValue(n2); 
                sb.setCharAt(i, kar); 
                } 
            if (gene==ruleLen-1)            //mutate class category 
                {int n3 = cgene[rule].min + (int) Math.round (Math.random() * (cgene[rule].max - 

cgene[rule].min)); 
                  char kar = cgene[rule].encodeValue(n3); 
                  sb.setCharAt(i, kar); 
                 } 
               } 
            } 
        String st = sb.toString(); 
        return st; 
    } 



Appendix    151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
public String crossover(String chrom1, String chrom2, double crossoverRate1, double 

crossoverRate2) 
    { 
        String s = ""; 
        int pos = (int)Math.floor(Math.random() * (double)chrom1.length()); 
        if ((pos % IGaaAction.ruleLen)<GaaAction.ageneNum*GaaAction.ageneSize 
           || (pos % IGaaAction.ruleLen)==IGaaAction.ruleLen-1)     //determine the crossover point 
        if(flip(crossoverRate1)) 
            { 
                String s1 = chrom1.substring(0, pos); 
                String s2 = chrom2.substring(pos); 
                s = s1.concat(s2); 
            } else  s = chrom1; 
             
        else 
        if(flip(crossoverRate2)) 
            { 
                String s1 = chrom1.substring(0, pos); 
                String s2 = chrom2.substring(pos); 
                s = s1.concat(s2); 
            } else  s = chrom1; 
        return s; 

} 
 
 
public double evalValue(String chrom) //compute chromosome fitness  
    { double fit=0D; 
       int totalCorrect=0; 
       boolean correct=false; 
       boolean valid=true; 
        
       char[] ruleAnswer=new char[ruleNumber]; 
       boolean[] ruleValid=new boolean[ruleNumber]; 
       double actualAnswer; 
       char zero=(char)48; 
       char one=(char)49; 
       char two=(char)50; 
       char three=(char)51; 
 
       int testingDataNum=tData.recordNumber/2; 
 
       for (int i=0; i<testingDataNum; i++) 
        { 
          for (int j=0; j<ruleNumber;j++) 
         { 
             ruleValid[j]=false; 
             valid=false; 
             int p1=ageneSize*ageneNum; 
             int p2=cgeneSize*cgeneNum; 
             int p=(ageneSize*ageneNum+cgeneSize*cgeneNum)*j; 
 
             int m=j*ageneNum; 
             for (int g=0; g<ageneNum; g++)           //evaluate rule set with training data 
                { if (chrom.charAt(p+g*ageneSize)==one)        
 



Appendix    152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      {    if (agene[m+g].decodeLValue(chrom.charAt(p+g*ageneSize+1))<= 
   agene[m+g].decodeRValue(chrom.charAt(p+g*ageneSize+2))+0.001) 
                       if ((agene[m+g].decodeLValue(chrom.charAt(p+g*ageneSize+1))<= 
  tData.data[i][g+numSN]+0.001 && 

agene[m+g].decodeRValue(chrom.charAt(p+g*ageneSize+2))+0.001>= 
  tData.data[i][g+numSN])) 
                       valid=true; 
                       else {valid=false; break;}    
                  } 
                } 
           if (valid==true) 
             ruleValid[j]=true;           
             else ruleValid[j]=false; 
           ruleAnswer[j]=chrom.charAt(p+ruleLen-1);            //obtain ruleValid and ruleAnswer 
        } 
         correct=false; 
         actualAnswer=tData.data[i][ageneNum]; 
 
         int max=0, OneNum=0, TwoNum=0, ThreeNum=0;     //voting mechanism  
         char finalAnswer=(char)52; 
         for (int w=0; w<ruleNumber; w++) 
           if (ruleValid[w]==true) 
              { if (ruleAnswer[w]==one) OneNum++; 
                if (ruleAnswer[w]==two) TwoNum++; 
                if (ruleAnswer[w]==three) ThreeNum++; 
              } 
         max=Math.max(OneNum, TwoNum); 
         max=Math.max(max,ThreeNum); 
 
         if (max==OneNum && max!=TwoNum && max!=ThreeNum) finalAnswer=one; 
         if (max!=OneNum && max==TwoNum && max!=ThreeNum) finalAnswer=two; 
         if (max!=OneNum && max!=TwoNum && max==ThreeNum) finalAnswer=three; 
 
         if (finalAnswer==String.valueOf(actualAnswer).charAt(0)) 
           correct=true; else correct=false;          //determine whether the instance is correctly classified
         if (correct) totalCorrect++; 
      } 
        fit=(0.0+totalCorrect)/testingDataNum;       //compute fitness 
        return fit; 
     } 
 

  public String encodingChrom(int popNum,GaaAction gaa, HGaaAction hgaa, int type)   
//generate initial population with IS1 and IS2 

    {   String st = ""; 
         if (type==1)   //IS1 
        { 
        int popNo=popNum; 
        String gaBestChrom=gaa.getCurrentBestChrom(); 
        StringBuffer sbga = new StringBuffer(chromLen).append(gaBestChrom); 
        int startAgeneNum=gaa.getAgeneNum(); 
        for (int j=0; j<ruleNumber; j++) 
       { 
        StringBuffer sb = new StringBuffer(chromLen); 
        for(int i = startAgeneNum; i < ageneNum; i++)    

//integrate old chromosome with randomly created elements 
            { 
                int m=j*ageneNum+i; 



Appendix    153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                int n0; 
                if (Math.random()<activeRate) 
                 n0=0; else n0=1; 
                char kar=(char) (n0+48); 
                sb.append(kar); 
          double n1 = agene[m].lmin + Math.random() * (agene[m].lmax - agene[m].lmin); 
                kar = agene[m].encodeLValue(n1); 
                sb.append(kar); 
          double n2 = agene[m].rmin + Math.random() * (agene[m].rmax - agene[m].rmin); 
                kar = agene[m].encodeRValue(n2); 
                sb.append(kar); 
             } 
         sbga.insert(startAgeneNum*ageneSize+j*ruleLen,sb.toString()); 
        } 
        st=sbga.toString();    
        } 
 
      if (type==2)  //IS2 
       { 
        int popNo=popNum; 
        String gaBestChrom=gaa.getCurrentBestChrom(); 
        String hgaBestChrom=hgaa.getCurrentChrom(popNo); 
        StringBuffer sbga = new StringBuffer(chromLen).append(gaBestChrom); 
        for (int j=0; j<ruleNumber;j++)             //integrate the old and new chromosomes 
      { 
        char curClass=gaBestChrom.charAt((j+1)*GaaAction.ruleLen-1); 
        int canNum=0; 
        StringBuffer canPartChrom=new StringBuffer(gaBestChrom.length()); 
        for (int i=0; i<HGaaAction.ruleNumber; i++) 
          { char hcurClass=hgaBestChrom.charAt((i+1)*HGaaAction.ruleLen-1); 
            if (hcurClass==curClass) 
            { 
             canPartChrom.append(hgaBestChrom.substring(i*HGaaAction.ruleLen, 

(i+1)*HGaaAction.ruleLen-1)); 
             canNum++; 
            } 
          } 
        if (canNum!=0)           //integration 
        { int choseNum=(int)Math.floor(Math.random()*(double)canNum); 
            String sb1=canPartChrom.substring(choseNum*(HGaaAction.ruleLen-1), 

(choseNum+1)*(HGaaAction.ruleLen-1)); 
            int startAgeneNum=gaa.getAgeneNum(); 
            sbga.insert(startAgeneNum*ageneSize+j*ruleLen,sb1); 
       }      
        else 
        { StringBuffer sb = new StringBuffer(chromLen); 
          int startAgeneNum=gaa.getAgeneNum(); 
          for(int i = startAgeneNum; i < ageneNum; i++) 
            { 
                int m=j*ageneNum+i; 
                int n0; 
                if (Math.random()<activeRate) 
                 n0=0; else n0=1; 
                char kar=(char) (n0+48); 
                sb.append(kar); 
                double n1 = agene[m].lmin + Math.random() * (agene[m].lmax - agene[m].lmin); 
                kar = agene[m].encodeLValue(n1); 



Appendix    154 

 

 

 

 

 

 

                sb.append(kar); 
                double n2 = agene[m].rmin + Math.random() * (agene[m].rmax - agene[m].rmin); 
                kar = agene[m].encodeRValue(n2); 
                sb.append(kar); 
            } 
          sbga.insert(startAgeneNum*ageneSize+j*ruleLen,sb.toString()); 
         } 
       } 
        st=sbga.toString(); 

}  
 return st; 

    } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Sample
 
  No.0 IF 

  No.1 IF 

  No.2  IF

  No.3  IF

  No.4  IF

  No.5  IF

  No.6  IF

  No.7  IF

  No.8  IF

  No.9  IF

  No.10  IF

  No.11  IF

  No.12  IF

  No.13  IF
 rule set for the wine data:  

 (13.30 <= X1 <= 14.83) AND (1.21 <= X3 <= 3.29 ) AND (66.00 <= X5 <= 
149.00 ) AND (1.62 <= X6 <= 3.86 ) AND (1.39 <= X7 <= 4.89 ) AND (0.10 <= 
X8 <= 0.48 ) AND (0.78 <= X11 <= 1.52 ) AND (880.00 <= X13 <= 1510.00 ) 
THEN Class=1 

 (20.80 <= X4 <= 20.82 ) AND (91.00 <= X5 <= 100.00 ) AND (0.23 <= X8 <= 
0.34 ) AND (2.45 <= X10 <= 7.19 ) AND (1.03 <= X11 <= 1.27 ) AND (2.06 <= 
X12 <= 3.20 ) THEN Class=1 

  (11.37 <= X1 <= 14.40 ) AND (0.99 <= X9 <= 2.31 ) AND (2.82 <= X10 <= 
12.60 ) AND (0.67 <= X11 <= 1.15 ) AND (651.00 <= X13 <= 1564.00 ) THEN 
Class=1 

  (14.53 <= X1 <= 15.36 ) AND (1.08 <= X2 <= 3.65 ) AND (0.14 <= X8 <= 0.70 ) 
AND (1.96 <= X9 <= 2.59 ) THEN Class=1 

  (3.57 <= X2 <= 5.35 ) AND (2.22 <= X3 <= 3.15 ) AND (1.07 <= X6 <= 1.16 ) 
AND (0.66 <= X7 <= 2.93 ) AND (0.39 <= X8 <= 0.76 ) AND (0.32 <= X11 <= 
1.18 ) AND (465.00 <= X13 <= 1340.00 ) THEN Class=1 

  (13.50 <= X4 <= 23.50 ) AND (0.13 <= X8 <= 0.67 ) AND (0.77 <= X11 <= 1.62 ) 
AND (3.67 <= X12 <= 3.94 ) THEN Class=1 

  (1.21 <= X3 <= 2.33 ) AND (0.31 <= X7 <= 1.55 ) AND (0.80 <= X8 <= 0.75 ) 
AND (2.72 <= X9 <= 3.56 ) AND (4.46 <= X10 <= 4.52 ) AND (2.45 <= X12 <= 
3.33 ) AND (550.00 <= X13 <= 1190.00 ) THEN Class=1 

  (13.61 <= X1 <= 15.44 ) AND (1.45 <= X7 <= 4.21 ) AND (4.68 <= X10 <= 
11.94 ) THEN Class=1 

  (11.14 <= X1 <= 12.80 ) AND (66.00 <= X5 <= 139.00 ) AND (2.51 <= X6 <= 
3.52 ) AND (2.15 <= X7 <= 4.78 ) AND (0.24 <= X8 <= 0.66 ) AND (6.36 <= X10 
<= 11.49 ) AND (1.40 <= X11 <= 1.69 ) AND (1480.00 <= X13 <= 1640.00 ) 
THEN Class=1 

  (1.08 <= X2 <= 4.78 ) AND (0.22 <= X8 <= 0.34 ) AND (1.33 <= X9 <= 3.04 ) 
AND (822.00 <= X13 <= 1490.00 ) THEN Class=1 
  (1.09 <= X6 <= 2.24 ) AND (1.02 <= X11 <= 1.64 ) AND (1.63 <= X12 <= 2.52 ) 
AND (518.00 <= X13 <= 829.00 ) THEN Class=2 
  (10.38 <= X1 <= 15.51 ) AND (1.48 <= X7 <= 2.15 ) AND (0.23 <= X8 <= 0.57 ) 
AND (0.76 <= X11 <= 1.79 ) AND (1.51 <= X12 <= 3.25 ) AND (289.00 <= X13 
<= 939.00 ) THEN Class=2 
  (0.65 <= X2 <= 1.98 ) AND (1.41 <= X6 <= 3.79 ) AND (1.40 <= X12 <= 3.33 ) 
AND (432.00 <= X13 <= 544.00 ) THEN Class=2 
  (12.05 <= X1 <= 13.91 ) AND (65.00 <= X5 <= 118.00 ) AND (1.83 <= X6 <= 
3.80 ) AND (1.20 <= X9 <= 3.49 ) AND (1.11 <= X11 <= 1.70 ) AND (356.00 <= 
X13 <= 598.00 ) THEN Class=2 



Appendix    155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
  No.14  IF  (0.73 <= X2 <= 4.72 ) AND (3.07 <= X3 <= 3.97 ) AND (2.39 <= X6 <= 3.28 ) 

AND (0.44 <= X8 <= 0.71 ) AND (1.98 <= X12 <= 2.65 ) AND (803.00 <= X13 
<= 871.00 ) THEN Class=2 

  No.15  IF  (10.61 <= X1 <= 13.02 ) AND (2.04 <= X6 <= 3.80 ) AND (0.49 <= X9 <= 2.94 ) 
AND (1.14 <= X11 <= 1.50 ) THEN Class=2 

  No.16  IF  (1.08 <= X3 <= 3.75 ) AND (77.00 <= X5 <= 124.00 ) AND (0.99 <= X6 <= 
3.34 ) AND (0.97 <= X7 <= 2.49 ) AND (0.43 <= X8 <= 0.78 ) AND (1218.00 <= 
X13 <= 948.00 ) THEN Class=2 

  No.17  IF  (3.21 <= X2 <= 3.61 ) AND (3.07 <= X3 <= 3.52 ) AND (15.20 <= X4 <= 17.50 ) 
AND (112.00 <= X5 <= 153.00 ) AND (3.65 <= X9 <= 0.77 ) AND (9.82 <= X10 
<= 10.55 ) THEN Class=2 

  No.18  IF  (12.81 <= X1 <= 12.84 ) AND (1.33 <= X2 <= 5.78 ) AND (2.10 <= X3 <= 2.15 ) 
AND (0.93 <= X6 <= 1.44 ) AND (2.38 <= X7 <= 2.83 ) AND (0.72 <= X8 <= 
0.73 ) THEN Class=2 

  No.19  IF  (10.71 <= X1 <= 12.62 ) AND (1.02 <= X3 <= 2.78 ) AND (0.68 <= X7 <= 4.93 ) 
AND (0.86 <= X11 <= 1.64 ) AND (379.00 <= X13 <= 1021.00 ) THEN Class=2 

  No.20  IF  (1.95 <= X3 <= 3.07 ) AND (20.30 <= X4 <= 30.70 ) AND (0.40 <= X8 <= 0.70 ) 
AND (0.86 <= X9 <= 2.81 ) AND (7.82 <= X10 <= 10.67 ) AND (320.00 <= X13 
<= 1029.00 ) THEN Class=3 

  No.21  IF  (11.07 <= X1 <= 14.86 ) AND (2.10 <= X2 <= 5.03 ) AND (1.65 <= X3 <= 3.88 ) 
AND (24.30 <= X4 <= 29.70 ) AND (1.13 <= X9 <= 1.84 ) AND (1.81 <= X12 <= 
2.43 ) AND (745.00 <= X13 <= 1048.00 ) THEN Class=3 

  No.22  IF  (14.00 <= X4 <= 15.70 ) AND (0.15 <= X8 <= 0.65 ) AND (1.36 <= X9 <= 2.65 ) 
AND (1.76 <= X10 <= 4.74 ) AND (0.60 <= X11 <= 1.50 ) AND (1.22 <= X12 <= 
2.32 ) THEN Class=3 

  No.23  IF  (4.68 <= X2 <= 5.54 ) AND (70.00 <= X5 <= 140.00 ) AND (0.40 <= X8 <= 
0.79 ) AND (2.76 <= X10 <= 10.24 ) AND (0.66 <= X11 <= 1.15 ) AND (363.00 
<= X13 <= 1241.00 ) THEN Class=3 

  No.24  IF  (12.41 <= X1 <= 15.84 ) AND (24.20 <= X4 <= 29.50 ) AND (94.00 <= X5 <= 
104.00 ) AND (2.22 <= X7 <= 3.62 ) AND (0.11 <= X8 <= 0.57 ) AND (0.30 <= 
X9 <= 1.24 ) AND (9.75 <= X10 <= 12.82 ) AND (468.00 <= X13 <= 1187.00 ) 
THEN Class=3 

  No.25  IF  (11.99 <= X1 <= 14.06 ) AND (1.70 <= X3 <= 3.72 ) AND (0.37 <= X11 <= 
0.89 ) THEN Class=3 

  No.26  IF  (13.32 <= X1 <= 15.53 ) AND (1.05 <= X3 <= 2.28 ) AND (0.98 <= X7 <= 2.40 ) 
AND (3.36 <= X12 <= 3.43 ) THEN Class=3 

  No.27  IF  (14.09 <= X1 <= 14.51 ) AND (2.59 <= X2 <= 4.65 ) AND (70.00 <= X5 <= 
115.00 ) AND (2.77 <= X6 <= 2.88 ) AND (3.14 <= X7 <= 4.27 ) AND (0.52 <= 
X8 <= 0.57 ) AND (4.71 <= X10 <= 8.45 ) AND (1.39 <= X11 <= 1.56 ) AND 
(1.45 <= X12 <= 2.83 ) THEN Class=3 

  No.28  IF  (10.03 <= X1 <= 11.77 ) AND (1.42 <= X2 <= 4.27 ) AND (2.94 <= X3 <= 3.70 ) 
AND (12.90 <= X4 <= 28.10 ) AND (143.00 <= X5 <= 152.00 ) AND (1.80 <= X6 
<= 2.28 ) AND (2.70 <= X7 <= 4.84 ) AND (3.49 <= X10 <= 9.23 ) AND (0.66 <= 
X11 <= 1.15 ) AND (1.38 <= X12 <= 3.65 ) AND (1208.00 <= X13 <= 1348.00 ) 
THEN Class=3 

  No.29  IF  (1.92 <= X2 <= 2.84 ) AND (1.52 <= X3 <= 2.07 ) AND (70.00 <= X5 <= 
112.00 ) AND (0.36 <= X8 <= 0.38 ) THEN Class=3 

 



Publication List                                                               156                        
  

 

Author’s Publication List 

Journal Paper and Book Chapter 

1. Guan, S.U. and Zhu, F.M. Class decomposition for GA-based classifier agents – a 

pitt approach, IEEE Trans. on Systems, Man and Cybernetics, Part B, 34 (1), 381-

392, 2004. 

2. Guan, S.U. and Zhu, F.M. Incremental learning of collaborative classifier agents 

with new class acquisition - an incremental genetic algorithm approach, 

International Journal of Intelligent Systems, 18 (11), 1173-1193, 2003. 

3. Guan, S.U. and Zhu, F.M. and Li, P, Modular feature selection using relative 

importance factors, International Journal of Computational Intelligence and 

Applications, 4 (1), 1-19, 2004. 

4. Guan, S.U. and Zhu, F.M. Agent fabrication and its implementation for agent-

based electronic commerce, International Journal of Information Technology & 

Decision Making, 1 (3), 473-489, 2002. 

5. Guan, S. U., Ngoo, C.S., and Zhu, F.M. Handy broker - an intelligent product-

brokering agent for m-commerce applications with user preference tracking, 

Electronic Commerce Research and Applications, Elsevier Science, 1(3-4), 314-

330, 2002. 

6. Guan, S.U., Zhu, F.M., and Maung, M.T. A factory-based approach to support e-

commerce agent fabrication, accepted, Electronic Commerce Research and 

Applications, Elsevier Science, 2003. 

7. Guan, S.U. and Zhu, F.M. Ontology acquisition and exchange of evolutionary 

product-brokering agents, Journal of Research and Practice in Information 

Technology, 36 (1), 3-14, February 2004. 

8. Guan, S.U. and Zhu, F.M. Incremental learning of classifier agents with genetic 

algorithms, under second review, IEEE Trans. on Evolutionary Computation, 2002. 

9. Zhu, F.M., Guan, S.U., and Yang, Y. SAFER e-commerce: secure agent 

fabrication, evolution & roaming for e-commerce. In Internet Commerce and 



Publication List                                                               157                        
  

Software Agents: Cases, Technologies and Opportunities, Idea Group, 190-206, 

2000. 

10. Ng, C.H., Guan, S.U. and Zhu, F.M., Virtual marketplace for agent-based 

electronic commerce, in Architectural Issues of Web-Enabled Electronic Business, 

303-320, Idea Group, PA, 2002. 

11. Yeo, W.C., Guan, S.U., Zhu, F.M. An architecture for authentication and 

authorization of mobile agents in e-commerce, in Architectural Issues of Web-

Enabled Electronic Business, 348-361, Idea Group, PA, 2002. 

12. Guan, S. U., Ngoo, C.S., and Zhu, F.M. Product brokering and user preference 

tracking, Wireless Communications and Mobile Commerce, 166-184, IRM press, 

2003. 

 

Conference Paper 

13. Guan, S.U. and Zhu, F.M. Learning of classifier agents based on incremental 

genetic algorithms. In Proc. of 2002 IASTED International Conference on AI and 

Applications, Málaga, Spain, 353-357, 2002. 

14. Guan, S.U. and Zhu, F.M. Evolutionary e-commerce agents with ontology 

exchange. In Proc. of IASTED International Conference on Internet and 

Multimedia Systems and Applications, 47-51, 2002.  

15. Guan, S.U., Zhu, F.M., and Ko, C.C. Agent fabrication and authorization in agent-

based electronic commerce. In Proc. of International ICSC Symposium on Multi-

Agents and Mobile Agents in Virtual Organizations and E-Commerce, 

Wollongong, Australia, 528-534, 2000. Best conference paper award.  

16. Zhu, F.M. and Guan, S.U. Evolving software agents in e-commerce with GP 

operators and knowledge exchange. In Proc. of the 2001 IEEE Systems, Man, and 

Cybernetics Conference, Tucson, USA, 3297-3302, 2001. 

17. Zhu, F.M. and Guan, S.U. Towards evolution of software agents in electronic 

commerce. In Proc. of the Congress on Evolutionary Computation 2001, Seoul, 

Korea, 1303-1308, 2001. Presentation sponsored by IEEE Neural Network 

Council.  


