

Two Agent-based Approaches for

Solving Multi-objective Multi-constraint Optimization

Problems

Wang Hui

(B.Eng (Computer Science and Engineering), SJTU)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my Supervisor Dr. Lau Hoong Chuin for

his insightful advice, guidance and encouragement. Without his help, this thesis

cannot be completed successfully.

I would also say thanks to Mr. Wan Wee Chong, Mr. Lim Ming Kwang, Mr. Song

Hua Wei and Mr. Neo Kok Yong for their suggestion and help during my progress.

I would take this opportunity to express gratitude to all of my friends, including Ms.

Li Xiao Chen, Mr. Chen Chao, Mr. Song Xu Yang, Ms. Hou Jing and Ms. Liu Chang.

It is you who give me courage and love and help me out during the most difficult time

in my life. Also thanks to School of Computing, NUS, for giving me an opportunity to

study in my favorite field, Computational Logistic.

And finally to everyone who helped, supported, and kept my spirits and motivations

high. Thank you.

-ii-

TABLE OF CONTENTS

ACKNOWLEDGEMENTS-- i

Chapter 1 Introduction -- - 1 -

Chapter 2 Problem Definition-- - 5 -

2.1 Multi-Objective Multi-Constraint Problem (MOMCP) ---------------------- - 5 -

2.2 Inventory Routing Problem with Time Windows (IRPTW)----------------- - 6 -

Chapter 3 Literature Review --- - 8 -

3.1Converting Multi-Objective Problem to Single-Objective Problem -------- - 8 -

3.1.1 Single Weighted Objective Method ------------------------------------ - 8 -

3.1.2 Distance Functions Method-- - 9 -

3.1.3 Min-Max Formulation Method-- 10 -

3.2 Treating Objectives Separately-- 10 -

3.3 Agent-Based Approaches -- 13 -

3.3.1 Overview--- 13 -

3.3.2 Agent Models --- 14 -

3.3.3 Algorithms for DCSP and DCOP--------------------------------------- 15 -

3.3.4 Cooperativeness-Based Strategies (CBS)------------------------------ 22 -

Chapter 4 Fine-Grained Agent System (FGAS) --- 25 -

4.1 Main Features of FGAS -- 26 -

4.2 Formulation -- 32 -

4.3 Agent Functionality--- 34 -

4.3.1 Arbitration Agent AA--- 34 -

4.3.2 Constraint agent CA -- 35 -

4.3.3 Subagents SA -- 35 -

4.4 FGAS Workflow -- 39 -

-iii-

Chapter 5 Coarse-grained Agent System (CGAS) -------------------------------------- 42 -

5.1 Overview of CGAS --- 42 -

5.2 Objective Agent --- 43 -

5.3 CGAS Workflow-- 44 -

Chapter 6 Solving IRPTW using FGAS-- 45 -

6.1 Mapping from IRPTW to FGAS -- 45 -

6.2 Solution Initialization--- 49 -

6.3 Interaction between Route agents --- 49 -

6.4 Agent Coordination -- 53 -

Chapter 7 Solving IRPTW using CGAS --- 55 -

7.1 Mapping from IRPTW to CGAS-- 55 -

7.2 A proposed conquer technique--HASTS--------------------------------------- 57 -

7.2.1 Ants System and Tabu Search--- 58 -

7.2.2 HASTS-EA (Empowered Ants)-- 59 -

7.2.3 HASTS-IE (Improved Exploitation) ----------------------------------- 60 -

7.2.4 HASTS-ED (Enhanced Diversification) ------------------------------- 62 -

7.2.5 HASTS-CC (Collaborative Coalition) --------------------------------- 63 -

7.3 Conquer technique for each objective agent----------------------------------- 64 -

Chapter 8 Experiment Results and Analysis --- 67 -

8.1 Experiment Setup --- 67 -

8.2 Analysis of Results --- 68 -

Conclusion-- 74 -

-iv-

LIST OF FIGURES

Figure 3.1: Agents and Constraints in DCSP and DCOP---------------------------- -15-

Figure 3.2: Agents in AWC--- -17-

Figure 3.3: DFS tree in Adopt--- -19-

Figure 3.4: Algorithm of Adopt-- -20-

Figure 4.1: Agents in FGAS and the constraints between and within them------- -27-

Figure 4.2 Relationships between the agents--- -31-

Figure 4.3: Interaction of Subagents-- -41-

Figure 5.1: Work flow of CGAS --- -44-

Figure 6.1: Function of minimized number of vehicle-------------------------------- -48-

Figure 6.2: Route agent : SelfRelocate Operation------------------------------------ -50-

Figure 6.3: Route agents in the same day: n-m move-------------------------------- -50-

Figure 6.4: Route agents in the different days : merge------------------------------ -52-

Figure 6.5 : Route agents in the different days : InvRelocate----------------------- - 52-

Figure 7.1: Solving IRPTW using CGAS, employing HASTS as conquer technique ---
--- -56-

Figure 7.2 HASTS-EA (Empowered Ants) -- -59-

Figure 7.3 HASTS-IE (Improved Exploitation) -------------------------------------- -60-

Figure 7.4 Pseudo codes of HASTS-EA --- -61-

Figure 7.5 Use TS to help AS reduce crossing --------------------------------------- -62-

Figure 7.6 HASTS-ED (Enhanced Diversidication) --------------------------------- -62-

Figure 7.7 HASTS-CC (Collaborative Coalition) ------------------------------------ -63-

Figure 8.1 solution quality vs. running time --- -71-

Figure 8.2 Gap between solution quality given by selfishness-included and
selfishness-excluded FGAS-- - 72-

-v-

LIST OF TABLES

Table 8.1: Results for IRPTW extended from Solomon’s original test cases by CGAS

and FGAS--- -69-

Table 8.2: Time performance of CGAS and CGAS----------------------------------- -70-

Table 8.3: The comparison between FGAS with selfishness and without selfishness.--

-- -73-

-vi-

Name: Wang Hui

Degree: Master of Science

Dept: Computer Science

Thesis Title: Two Agent-based approaches for Solving Multi-objective Multi-

constraint Optimization Problems

Abstract

In this thesis, we propose two different agent-based approaches, the Coarse Grained

Agent System (CGAS) and Fine Grained Agent System (FGAS) to solve Multi-

Objective Multi-Constraint Problems (MOMCP), which represent the nature of many

real life problems. CGAS gives a generic agent-model for multi-objective multi-

constraint problem, while FGAS caters more for distributed multi-objective multi-

constraint problem like most multiagent systems. We apply our approaches to solve

the Inventory Routing Problem with Time Window (IRPTW). Experimental results

indicate CGAS achieves a much better results than previous work, while FGAS runs

very fast, whose run time is about one-sixth of CGAS with solution quality less than

10% poorer, which is still better than previous work.

Keywords: Agent-based approach, Multi-objective multi-constraint problem,

Multiagent system

- 1 -

Chapter 1

Introduction

Real world optimization problems are often plagued with multiple objectives and

multiple constraints. In this thesis, we term such a problem as a multi-objective multi-

constraint problem (MOMCP). A common methodology for modeling MOMCP is by

first considering the basic factors and then adding more constraints that take into

account other important factors progressively. For example, the Traveling Salesman

Problem (TSP) is a classic problem with only one objective and one constraint (i.e.

permutation or tour constraint), which has been solved effectively. By adding more

constraints, we derive a rich collection of generalizations of TSP. Among them, the

most common one is Vehicle Routing Problem with Time Windows (VRPTW), which

is extended with optimal fleet size objective and time window constraint from the TSP.

While VRPTW is an important problem in transportation, in a logistics problem today,

another important factor that should often be considered is the inventory level. By

considering inventory costs across multiple periods of VRPTW, it gives rise to the

Inventory Routing Problem with Time Windows (IRPTW).

In this thesis, we study IRPTW as an instance of MOMCP. IRPTW is an important

problem in logistics and supply chain management. It is concerned with a distribution

system with multiple infinite suppliers, capacitated warehouses, capacitated retailers,

identical capacitated vehicles and unit-sized items. The items are to be transported

from the suppliers to the warehouses, and subsequently delivered to the customers by

vehicles. Vehicles deliver items to multiple customers within their respective time

windows. Given the customers’ time-varying demand over a finite planning horizon,

- 2 -

the objective of IRPTW is to find a solution so as to minimize the total operating cost,

which consists of the inventory cost and transportation cost.

Much work in optimization literature tacitly assumes that there is only one objective

for each problem. Thus, an intuitive method to solve MOMCP is transforming it into a

single-objective problem and then taking advantage of the existing optimization

methods. Some representative methods are single-weighted method, distance

functions method and min-max method [Hans, 1988].

The optimization of a single objective problem can guarantee one good solution.

However, a multi-objective problem usually has a set of good solutions, which is

known as Pareto-optimal set [Ben-Tal, 1979]. In real world scenario, a designer may

need more alternatives to make the decision. A method that can provide a set of good

solutions simultaneously is needed, which motivates a batch of researchers focusing

on this area. Evolution Algorithm distinguishes itself as an excellent candidate by its

nature of searching multiple solutions in parallel.

A newly emerging optimization approach is the agent-based (or multiagent) approach,

which is especially good at solving problems with a distributed nature.

Agent is a concept firstly introduced in AI community. Franklin and Graesser defined

an autonomous agent as “a system situated within and a part of an environment that

senses that environment and acts on it, over time, in pursuit of its own agenda and so

as to effect what it senses in the future.” [Franklin and Graesser, 1996]. Using agent

as a self-contained problem solving unit capable of autonomous, re-active and pro-

active social behavior, agent-based computing is a promising approach to develop a

complex computer system.

- 3 -

In the optimization research community, agent-based approaches have already been

applied to solve distributed optimization problems. In the existing works, such as

[Yokoo et al, 1998] and [Modi et al. 2003], each agent is in charge of one or more

variables. Agents are ordered into a tree with constraints as edges. Then the

backtracking algorithm is applied to assign a value or values to each agent, either

synchronously or asynchronously.

The existing works achieved success in solving assignment problems, but failed to

extend elegantly to routing or packing problems, which is the concern of this thesis.

One major reason is that existing works fail to handle the case of multiple variables

per agent and the objective of minimizing number of agents in the system. That leads

to our work on Fine-grained agent system (FGAS) proposed in this thesis.

A second agent system, the Coarse-grained agent system (CGAS), is also proposed in

this thesis. Two motivations are behind CGAS:

1) The traditional method of converting multi-objective problem to single-objective

problem has another drawback, which is the correlation between various objectives

and constraints of a multi-objective multi-constraint problem is hard to express

generically in one objective function. Typically, the single-objective optimization

algorithm has no insight of which objective it is improving during the search.

Consequently, much redundancy is incurred when optimization in one objective is

undone by the optimization of subsequent objectives. Therefore, in CGAS the

problem is divided along its objectives into objective agents.

2) In FGAS, since all the variables are distributed among agents, the designer faces a

major difficulty of agent coordination. CGAS avoids this problem by keeping each

objective agent working on the entire solution.

- 4 -

Note here, the concern of this thesis is not how to work out a set of Pareto-optimal

solutions, but rather we focus on how to efficiently find a quality solution with a

given weight for each objective. The work about Pareto-optimal set is reviewed to

give readers a full picture of the literature of multi-objective optimization. In both

FGAS and CGAS the weights of objective are charged by each individual agent,

which can be adjusted easily by the users during the solution evolution process.

The rest of this thesis is organized as follows. In Chapter 2, we provide formal

definitions needed in this thesis. Chapter 3 reviews related works in the literature.

Chapter 4 and 5 present our two agent-based approaches respectively. Chapter 6 and

7 demonstrate how these two approaches can be applied to Inventory Routing

Problem with Time Windows (IRPTW). Chapter 8 presents the experiment results and

provides comparison and analysis of two approaches. Chapter 9 concludes the thesis.

- 5 -

Chapter 2

Problem Definition

In this chapter, we present a formal definition of Multi-objective Multi-constraint

Problem (MOMCP) as well as the Inventory Routing Problem with Time Windows

(IRPTW).

2.1 Multi-Objective Multi-Constraint Problem (MOMCP)

MOMCP consists of a set of objectives subject to a set of inequality or equality

constraints.

Mathematically, the problem can be formulated as follows [Rao, S.S. 1991]:

Maximize/Minimize {g1(x), g2(x),…, gn(x)}

 Subject to {c1(x),c2(x),…, cm(x)}

 Where ci(x) i∈[1,m] takes the form of ci(x)≤0 or ci(x)= 0

Solutions to a multi-objective optimization problem are mathematically expressed in

terms of non-dominated points, or Pareto-optimal solutions [Ben-Tal, 1979]. The

Pareto-optimal set consists of all those solutions such that their components cannot be

all simultaneously improved.

Formally, a solution x is Pareto-optimal for a multi-objective minimizing problem if

and only if there exists no solution 'x such that fi('x)≤ fi(x) for i=1,2,..,n with fj('x)<

fj(x) for at least one j . If it is a maximizing problem, the “≤” and “<” in the definition

should be replaced by “≥” and “>”, respectively.

- 6 -

2.2 Inventory Routing Problem with Time Windows

(IRPTW)

The Inventory Routing Problem with Time Windows is an extension of Vehicle

Routing Problem with Time Windows. Given a set of capacitated warehouse, a set of

capacitated customers and a set of identical capacitated vehicles, the vehicles will

deliver the unit-sized items from warehouse to customers within their service time

window. The objective of the problem is to work out a transportation plan and a

distribution plan over a finite time period such that the total operating cost is

minimized. The total operating cost consists of inventory cost, backlogging cost and

transportation cost.

Stated formally [Lau et al. 2000]:

An IRPTW instance consists of the following inputs,

C: set of customers;

T: consecutive days in the planning period {1,2,…,n};

dit: demand of customer i on day t;

qv: vehicle capacity;

qw: storage capacity of customer i;

Wit: time window of customer i on day t;

ci
h: holding cost per unit item per day at customer i;

ci
b: backlog cost per unit item per day at customer i;

- 7 -

The outputs are as follows:

1. the distribution plan, which is denoted by xit; integral flow amount from the

warehouse to customer i on day t;

2. the set of daily transportation routes Φ, which carry the flow amounts in 1

from the warehouse to the customers such that the sum of the following linear

costs is minimized;

a) Inventory cost at the warehouse

b) Inventory cost at the customer

c) Backlog cost

d) Transportation cost from the warehouse to the customers

We use indices i and t for customers and days respectively.

The distribution plan must obey the demands and storage capacity constraints, and the

transportation routes must obey the standard routing, vehicle capacities and time

windows constraints.

- 8 -

Chapter 3

Literature Review

The multi-objective multi-constraint problem is well-studied in the literature. All the

past works fall into two categories:

1) Converting a multi-objective problem to a single-objective problem and then

applying the single objective optimization method which is rich in literature.

2) Treating different objectives separately and generating a set of optimal results,

which is called Pareto-optimal set.

We look at several classic methodologies in sections 3.1 and 3.2. In section 3.3 we

review the multiagent systems for optimization.

3.1Converting Multi-Objective Problem to Single-Objective

Problem

The methods in this categories [Hajela and Lin 1992] use different formulas to

integrate multiple objectives into one objective function. Then a single objective

optimization algorithm is applied.

3.1.1 Single Weighted Objective Method

In this method, the idea is to project all the objectives onto a single objective function

by adding a weight to each objective. The weight of an objective indicates the

importance of the objective.

- 9 -

Mathematically, the new function is written as:

∑
=

=
k

i
ii xgwxg

1
)()(

where 10 ≤≤ iw and .1
1
∑
=

=
k

i
iw

Since the coefficients of the objective function are determined statically, one cannot

guarantee whether the chosen weights can reflect the importance of each original goal

appropriately.

3.1.2 Distance Functions Method

In this method, the single objective function derived from multiple objectives is as

follows:

r
N

i

r
ii yxgxZ /1

1

])([)(∑
=

−= , ,1 ∞≤≤ r

where x∈X (the feasible region)

y is a demand-level vector which has to be specified by the decision maker.

Typically, a Euclidean metric r=2 is chosen. [Hans, 1988].

There are two disadvantages to this method:

1) The ideal solution should be known, otherwise a demand level is assumed.

2) If the wrong demand level is chosen, the result will be non-Pareto-optimal

solutions.

- 10 -

3.1.3 Min-Max Formulation Method

This method assumes every objective function is equally important. It attempts to

minimize the relative deviations of the single objective functions from individual

optimum. That is, it tries to minimize the objective conflict.

For a minimization problem, the corresponding min-max problem is formulated as

follows:

Minimize F(x) = max [Zj(x)], j=1,2,…, N

where x∈X (the feasible region) ;

Zj(x) is calculated for a nonnegative target optimal value)(xg j > 0 as

follows:

.,...,2,1,
)(

)()(
)(Nj

xg
xgxg

xZ
j

jj
j =

−
=

This method can be modified to include priority of each objective by introducing

dimensionless weights in the formulation.

3.2 Treating Objectives Separately

Usually, the Pareto-optimal set consists of more than one solution. However, single –

objective method can provide only one Pareto-optimal solution each time. Moreover,

these methods become expensive as they call for the designer’s thorough

- 11 -

understanding of the relative importance of objectives before optimization. Those

reasons motivate researchers to find a method which can provide a set of Pareto-

optimal solutions without exact knowledge of objective weights.

Evolutionary algorithms (EAs) is recognized to be well-suited to multi-objective

optimization. Multiple individuals can search for multiple solutions in parallel,

eventually derived a set of good solutions. The ability to handle complex problems,

involving features such as discontinuities, disjoint feasible spaces and noisy function

evaluations, reinforces the potential effectiveness of EAs in multi-objective

optimization.

The research of EA mainly concerns with three aspects, fitness assignment, diversity

preservation, and elitism.

The first studies on multi-objective evolutionary algorithms (MOEAs) were mainly

concerned with the problem of guiding the search towards the Pareto-optimal set. In

contrast to single-objective optimization, where objective function and fitness

function are often identical, both fitness assignment and selection must allow for

several objectives with multi-criteria optimization problems. Criterion-based and

Pareto-based fitness assignment strategies have been studied in the history.

Criterion-based methods switch between the objectives during the selection phase.

Each time an individual is chosen for reproduction, potentially a different objective

will decide which member of the population will be copied into the mating pool.

For example, [Schaffer 1985] proposed filling equal portions of the mating pool

according to the distinct objectives, while [Kursawe 1991] suggested assigning a

probability to each objective which determines whether the objective will be the

sorting criterion in the next selection step -- the probabilities can be user-defined or

- 12 -

chosen randomly over time.

The idea of calculating an individual's fitness based on Pareto dominance was

proposed in [Goldberg 1989]. Some approaches, such as [Fonseca and Fleming 1993],

use the dominance rank, i.e. the number of individuals by which an individual is

dominated, to determine the fitness values. Others make use of the dominance depth.

An example is [Srinivas and Ddb 1994]. Alternatively, also the dominance count, i.e.,

the number of individuals dominated by a certain individual, can be taken into

account. For instance, [Zitzler and Thiele 1999] and [Zitzler et al. 2001] assign fitness

values on the basis of both dominance rank and count.

Maintaining diversity along the current approximation of the Pareto set is the second

important issue. Most work incorporates density information into the selection process:

an individual's chance of being selected is decreased when the density of individuals

in its neighborhood is greater. Some representative methods include Kernel methods,

Nearest neighbor techniques and Histograms [Silverman 1986]. Kernel methods

define the neighborhood of a point in terms of a so-called Kernel function K which

takes the distance to another point as an argument. Nearest neighbor techniques take

the distance of a given point to its kth nearest neighbor into account in order to

estimate the density in its neighborhood. Histograms define a third category of density

estimators that use a hypergrid to define neighborhoods within the space.

Although fitness assignment and diversity preservation techniques aim at guiding the

population towards the Pareto-optimal set, still good solutions may be lost during the

optimization process due to random nature. A common way to deal with this problem

is to maintain a secondary population, the so-called archive, to record the promising

solutions in the population.

Due to memory and run-time limitations, the size of archive is limited. Therefore,

- 13 -

criteria have to be defined for which the solutions should be kept in the archive. The

dominance criterion is most commonly used, i.e., dominated archive members are

removed and the archive comprises only the current approximation of the Pareto-

optimal set. However, as this criterion is in general not sufficient, additional

information is taken into account to reduce the number of archive members further.

Examples are density information [Zitzler and Thiele 1999] and [Knowles and Corne

1999] and the time that has been passed since the individual entered the archive

[Rudolph and Agapie 2000].

It should be mentioned that not all elitist MOEAs explicitly incorporate an archive,

e.g., NSGA-II [Deb et al. 2000]. However, the basic principle is the same: during

environmental selection special care is taken to not loose non-dominated solutions.

3.3 Agent-Based Approaches

3.3.1 Overview

Recently, the agent-based approach has become popular in various branches of

computer science. Multiagent system can naturally represent the decentralized nature

of the problem, the multiple location control, the multiple perspectives, or the

competing interests. Moreover, a multiagent system is good at expressing the

interaction between agents, either to achieve their individual objectives or to manage

the dependencies coming from existing in a common environment. These interactions

range from simple semantic interoperation (the ability to exchange comprehensible

communications), through traditional client-server type interactions (the ability to

- 14 -

request that a particular action is performed), to rich social interactions (the ability to

cooperate, coordinated and negotiate about a course of action).

Multiagent systems research brings together a diverse set of research disciplines and

thus there is a wide range of ideas currently being explored. In our research, we focus

on the multiagent systems applications on optimization/constraint satisfaction, since

we are dealing with multi-objective multi-constraint optimization problem. Typically,

in MAS for optimization each agent represents a partial solution.

3.3.2 Agent Models

Several agent models in the literature have been proposed to study the optimization

problem.

The most widely-used Belief-Desire-Intention (BDI) agent model was proposed in

[Rao and Georgeff 1995]. In that work, Belief represents the state of the environment

that a BDI agent roams. Desire represents the motivation of agents. Intention

represents the course of action taken by an agent. However, this work only explained

the general principles for constructing an agent system, while does not give any

indication for multiagent interaction.

The interaction issue is first studied by Chainbi in [Chainbi et al. 2001]. A Belief-

Goal-Role (BGR) agent model is proposed. In BGR model, agents can have different

local goals and roles in achieving a common global goal.

[Liu and Tang 2002] proposed an Environment-Reactive rules-Agents (ERA) agent

model for tackling constraint satisfaction problems. Competitive collaboration among

agents and “survival-of-the fittest” principle is discussed in that work.

- 15 -

3.3.3 Algorithms for DCSP and DCOP

Definitions of DCSP and DCOP

Two classic problems are highly related to MAS for optimization. One is Distributed

Constraint Optimization Problem (DCOP), the other is Distributed Constraint

Satisfaction Problem (DCSP). DCSP techniques have been used for coordination and

conflict resolution in many multiagent applications. DCOP extends from DCSP by

further considering optimization of the objective.

Here are the definitions of these two problems:

DCSP

A Constraint Satisfaction Problem (CSP) is defined by a set of n variables,

X={x1,…,xn},each element associated with value domains D1,…, Dn respectively, and

a set of k constraints, C={C1, …, Ck}. A solution in CSP is the value assignment for

the variables which satisfies all the constraints in C.

Figure 3.1 Agents and Constraints in DCSP and DCOP

LC1

Agent1

EC13 EC25 EC15

EC45

LC2

Agent2

LC3

Agent3

LC4

Agent4
LC5

Agent5

- 16 -

A DCSP is a CSP in which variables and constraints are distributed among multiple

agents. Formally, there is a set of m agents, Ag={A1, …, Am}. Each variable (xi)

belongs to an agent Aj. There are two types of constraints based on whether variables

in a constraint belong to a single agent or not:

• For a constraint Cr∈C, if all the variables in Cr belong to a single agent Aj∈Ag,

it is called a local constraint (LC).

• For a constraint Cr∈C, if variables in Cr belong to different agents in Ag, it is

called an external constraint (EC).

Figure 3.1 illustrates an example of a DCSP. Each agent can have multiple variables.

There is no limitation on the number of local/external constraints for each agent.

Solving a DCSP requires that agents not only satisfy their local constraints, but also

communicate with other agents to satisfy external constraints.

DCOP

A Distributed Constraint Optimization Problem (DCOP) consists of n variables

X={x1,…,xn} each assigned to an agent, where the values of the variables are taken

from finite, discrete domains D1,…, Dn respectively. Only the agent who is assigned a

variable has control of its value and knowledge of its domain. The goal is to choose

values for variables such that a given objective function is minimized or maximized.

The objective function is described as an aggregation over a set of cost functions, or

valued constraints.

Algorithms for DCSP & DCOP

Asynchronous Weak Commitment (AWC) Algorithm

- 17 -

AWC search algorithm is known to be the best published DCSP algorithm [Yokoo et

al. 1998]. One limitation of the Asynchronous Backtracking (ABT) Algorithm

[Yokoo et al. 1992], a famous DCSP algorithm before AWC, is that the agent/variable

ordering is statically determined. If the value selection of a higher priority agent is bad,

the lower priority agents need to perform an exhaustive search to revise the bad

decision. In AWC search algorithm, the min-conflict heuristic is introduced to reduce

the risk of making bad decisions. Furthermore, the agent ordering is dynamically

changed so that a bad decision can be revised without performing an exhaustive

search.

To simplify the description of the algorithm, suppose that each agent has exactly one

variable and the constraints between variables are binary. We represent a DCSP as a

network, where variables are nodes and constraints are links between nodes. For

example, in Figure 3.2 there are three agents, x1,x2,x3, with variable domains {1, 2},

{2}, {1, 2} respectively, and constraints x1 ≠ x3 and x2 ≠ x3.

In AWC, agents asynchronously assign values to variables, and communicating the

values to neighboring agents with shared constraints. Each variable has a non-

negative integer priority. When the value of an agent’s variable is not consistent with

the values of its neighboring agents’ variables, there can be two cases:

Figure 3.2 Agents in AWC

- 18 -

(i) a good case where there exists a consistent value in the variable’s domain;

(ii) a nogood case that lacks a consistent value.

In the good case with one or more value choices available, an agent selects a value

that minimizes the number of conflicts with lower priority agents, which is known as

min-conflict heuristic. On the other hand, in the nogood case, an agent increases its

priority to max+1, where max is the highest priority of its neighboring agents, and

selects a new value that minimizes the number of conflicts with all of its neighboring

agents. This priority increase makes previously higher agents select new values.

Agents avoid the infinite cycle of selecting non-solution values by saving the nogood

situations.

When a value assignment in which every variable is consistent is found, we got the

solution. The proof of the algorithm completeness can be also found in [Yokoo et al.

1998].

Asynchronous Distributed Optimization (Adopt)

Adopt [Modi et al. 2003] is the first algorithm for DCOP that can find either an

optimal solution or a solution within a user-specified distance from the optimal, using

only localized asynchronous communication and polynomial space at each agent.

In Adopt, each agent is in charge of a single variable. Agents are prioritized in a

Depth-First Search (DFS) tree in which each agent has a single parent and multiple

children. Two agents are neighbors if they have a constraint between them.

Constraints are allowed between an agent and any of its ancestors or descendents, but

there can be no constraints between nodes in different subtrees of the DFS tree (See

Figure 3.3)

- 19 -

The global objective function in Adopt has been modeled as valued constraints, that is,

constraints that are described as functions that returned a range of values.

Adopt performs distributed backtrack search using an “opportunistic” best-first search

strategy. Each agent always chooses the variable value with smallest lower bound.

Using “opportunistic” best-first search strategy, we may abandon partial solutions

before they have proved the solution is definitely suboptimal. Therefore,

reconstruction of a previously explored solution is needed. The idea of Adopt is using

a stored lower bound as a backtrack threshold. The program will stop when the

interval between agent’s stored lower bound and upper bound meet the user’s

requirement.

Details of Adopt can be seen in Figure 3.4.

Currentvw: Current view of linked ancestors’ values
xi/di: Local variable/value
c(d): Current lower bound on cost for subtree rooted at child, given xi chooses

value d

A3

A2

A4

A1

Figure 3.3 DFS tree in Adopt

- 20 -

proc when_received_view(vw,cost):
 d←value of xi in vw
 if vw contains (xi, d) //child is my neighbor
 remove (xi,d) from vw;
 if vw compatible with Currentvw and cost >c(d) then
 c(d) ←cost;
 context(d) ← vw;

else //child is not my neighbor

for all d’ in Di :
if vw compatible with Currentvw and cost >c(d’) then

c(d’) ←cost;
context(d’) ←vw;

 end if;
 if(c(di) changed) then
 go to Hill climb;

proc Initialize:
 Currentvw ←{ }; di ←null; threshold ← 0

for all d in Di:
c(d) ←0;
context(d) ←{}

proc Hill_climb:
for all d in Di:

 e(d) ← δ(xi, Currentvw U{(xi,d)}) +c(d);
 choose d that minimizes e(d)
 prefer current value di in case of tie;
 if e(di)>threshold
 di←d;
 childLimit←max(c(di),threshold-δ(xi, Currentvw ∪{(xi, di)}))
 SEND VALUE ((xi, di), childLimit) to descendents

only choose variables relevant to local cost
 Neighborvw = {(xj, dj) in Currentvw | xj neighbor of xi}
 viewContext←Neighborvw ∪{union of contexts of di in D}
 # to preserve completeness – VIEW is for best value d, not current value di
 SEND VIEW, viewContext, e(d)) to parent;

proc when_received_value (xj,dj,limit):
 update Currentvw with (xj,dj)
 for all d in Di
 if(context(d) incompatible with Currentvw)
 c(d) ←0;
 context(d) ← {}
 if(xj is parent)
 threshold ←limit
 go to Hill_climb;

Figure 3.4 Algorithm of Adopt

- 21 -

Handling multiple local variables

The major disadvantage of the above algorithms is that each agent has only one local

variable. There are two major ideas of extending the method to apply to the situation

where one agent has multiple local variables.

Method 1: each agent finds all solutions to its local problem first. By finding all

solutions, the given problem can be re-formalized as a DCSP, in which each agent has

one local variable whose domain is a set of obtained local solution. Then, agents can

apply algorithms for the case of a single local variable. The drawback of this method

is that when a local problem becomes large and complex, finding all the solutions of a

local problem becomes virtually impossible. A work employing this idea is

[Armstrong and Durfee 1997]

Method 2: an agent creates multiple virtual agents, each of which corresponds to one

local variable, and simulates the activities of these virtual agents.

For example, if agent k has two local variables xi,xj, we assume that there exist two

virtual agents, each of which corresponds to either xi or xj. Then, agent k simulates the

concurrent activities of these two virtual agents. In this case, each agent does not have

to predetermine all the local solutions. However, since communicating with other

agents is usually more expensive than performing local computations, it is wasteful to

simulate the activities of multiple virtual agents without distinguishing the

communications between virtual agents within a single real agent, and the

communications between real agents. An example of this idea is [Yokoo and

Hirayama 1998].

- 22 -

3.3.4 Cooperativeness-Based Strategies (CBS)

Although AWC is one of the most efficient DCSP algorithms, real time and

dynamism in multiagent domains demands very fast conflict resolution.

While AWC relies on the min-conflict heuristic that minimizes conflicts with other

agents, the CBS [Jung et al. 2001], enhanced by local constraint communication,

consider how much flexibility (choice of values) is given towards other agents by a

selected value. By considering neighboring agents’ local constraints, an agent can

generate a more locally cooperative response, potentially leading to faster conflict

resolution convergence.

The local cooperativeness goes beyond merely satisfying constraints of neighboring

agents to accelerate convergence. That is, an agent Ai cooperates with a neighbor

agent Aj by selecting a value for its variable that not only satisfies the constraint with

Aj, but also maximized Aj’s flexibility. Then Aj has more choices for a value that

satisfies Aj’s local constraints and other external constraints with its neighboring

agents, which can lead to faster convergence. To elaborate this notion of local

cooperativeness, the followings definition was given,

Definition 1: For a value iDv∈ and a set of agents i
sub
i NN ⊆ (a set of neighboring

agents), a flexibility function is defined as ∑= j j
sub
i AvcNvf),(),(such that

sub
ij NA ∈ and),(jAvc is the number of values of jA that are consistent with v.

Definition 2: For a value v of iA , local cooperativeness of v is defined as),(jNvf .

That is, the local cooperativeness of v measures how much flexibility is given to all

of iA ’s neighbors by v.

- 23 -

As an example of the flexibility function),(sub
iNvf , suppose agent A1 has two

neighboring agents A2 and A3, where a value v leaves 70 consistent values to A2 and

40 to A3 while another value 'v leaves 50 consistent values to A2 and 49 to A3. Now,

assuming that values are ranked based on flexibility, an agent will prefer v to 'v :

f(v,{A2,A3})=110 and f('v ,{A2, A3})=99. These definitions of flexibility function and

local cooperativeness are applied for the cooperative strategies defined as follows:

• Sbasic: Each agent Ai selects a value based on min-conflict heuristics(the

original strategy in the AWC algorithm);

• Shigh: Each agent Ai attempts to give maximum flexibility towards its higher

priority neighbors by selecting a value v that maximum),(high
iNvf ;

• Slow: Each agent Ai attempts to give maximum flexibility towards its lower

priority neighbors by selecting a value v that maximizes),(low
iNvf ;

• Sall: each agent Ai selects a value v that maximizes),(jNvf , i.e. max

flexibility to all neighbors.

These four strategies can be applied to both the good and nogood cases. In the

nogood case, neighboring agents are grouped into higher and lower agents based

on the priorities before the priority increase in AWC. Therefore, there are sixteen

strategy combinations for each flexibility base.

Furthermore, in [Jung and Tambe 2003], flexibility function was extended to

accommodate different types of possible local cooperativeness:

- 24 -

Definition 3: For a value iDv∈ and a set of agents i
sub
i NN ⊆ (a set of neighboring

agents), a flexibility function is defined as)),((),(j
sub
i AvcNvf ⊕=⊕ where

(i) sub
ij NA ∈ ; (ii)),(jAvc is the number of values of jA that are consistent with v and

(iii) ⊕ referred to as a flexibility base, can be sum, min, max, product, etc.

- 25 -

Chapter 4

Fine-Grained Agent System (FGAS)

This chapter explains how FGAS works.

Typically a multiagent system (MAS) exhibits the following merits [Stone and Veloso

1997]:

1. A MAS can naturally represent the decentralized nature of the problem and is

good at expressing the complex interaction between agents;

2. The system is dynamic. For real-time practical applications, there are often

unexpected changes to the problem instances over time. Since the agents are

inherently modular and autonomous, it is easy for agents to enter and leave this

system without affecting operations which have already been performed;

3. Rather than tackling the whole problem with a centralized agent, the computation

task is split and assigned to each agent. Consequently, the computation

complexity and programming difficulty are both reduced;

4. Computation efficiency is brought by concurrent computing. By keeping agents

working in parallel, the running time is greatly reduced.

FGAS, inheriting all the merits from a typical MAS, is proposed in this thesis to solve

MOMCP.

- 26 -

4.1 Main Features of FGAS

In a typical MAS used for optimization, each variable belongs to an agent. There are

two types of constraints, local constraint (LC) and external constraint (EC). The

agents will work through communication and negotiation to optimize the objectives of

the problem.

Two major difficulties make the existing MAS for optimization inadequate to solve

routing and packing problems:

1) They fail to handle multiple variables per agent. Although the definition states that

each agent can have multiple variables, most existing works assume each agent only

takes responsibility for one variable. While those methods perform satisfactorily on

the class of assignment problems, they fail to extend to the packing or routing

problem, which usually has multiple variables per agent. There are also some attempts

to extend these works to multiple variables per agent [Armstrong and Durfee 1997]

and [Yokoo and Hirayama 1998]. Unfortunately, they are found to be neither

effective nor scalable to large-scale problems.

2) They cannot model the objective of minimizing number of entities in the system. In

routing problems the entities are vehicles, while in packing problems the entities are

bins. In the existing MAS for optimization, agents always represent variables.

Therefore, they never consider the issue of agents’ number in the system.

FGAS is extended to handle the case of multiple variables per agent. With intelligent

agents in the system, FGAS is capable of solving routing and packing problems.

- 27 -

4.1.1. Multiple variables per agent

The main reason why existing work cannot be applied to the multiple variables per

agent is that the conflict resolution strategies employed require the knowledge of all

possible alternative assignments or states of the agent.

FGAS solves this problem by adopting the local-search idea which has been

successfully used to solve large-scale optimization problems [Lao 2002]. Instead of

listing all the alternatives, FGAS only proposes a move list based on the predefined

moves. Thus, agents in FGAS are able to host multiple variables (Figure 4.1).

4.1.2. Characteristics of an agent

In FGAS, agents represent meaningful entities. They are cooperative to achieve good

overall objective. Different from existing work, agents in FGAS are endowed with

v11,v12,..,v1n

LC1

Agent1

v21,v22,..,v2m

LC2

Agent2

v31,v32,..,v3p

LC3

Agent3

v41,v42,..,v4n

LC4

Agent4

v51,v52,..,v5n

LC5

Agent5

EC1

EC3

EC2

EC4

Figure 4.1 Agents in FGAS and the constraints between and within them.

- 28 -

more intelligence. They have their own opinion towards guiding the solution

improvement. When a change contradicts with their opinion, agents tend to be selfish

but still willing to make compromise.

1) Intelligence

Agents in FGAS are able to detect or discover trends for getting good or bad future

solutions from their local information, including the status of itself and suggestion

from constraint agent. Such future expectation will be converted to their desires of

encouraging or discouraging the corresponding changes. With such desires, agents are

able to handle a class of objectives which is usually affected by a series of changes.

We termed such objective as estimated objective, which we will explain later.

Example: In VRPTW, a single relocate usually cannot reduce one vehicle.

But several relocates together can lead to the reduction of one vehicle. In

this case, if an agent detects it stands a chance of reducing one vehicle, it

will convert it into its desire of encouraging future “relocate”.

The constraint agent mentioned above forms the second type of agents in FGAS. The

degree of satisfying or violating a constraint provides useful information for agents’

state changing.

In FGAS, there are several types of agents. We have seen the need for a constraint

agent above. Henceforth, to minimize confusion, we use the term subagent to refer to

the standard agent in a multiagent system.

2) Selfishness

- 29 -

Subagents are selfish in the sense that they are reluctant to accept the changes that

contradict with their desires. The desires are quantified into a value, called the desire

value. The desire value describes a subagent’s opinion of a change’s quality and

indicates how much the subagents desire this change. In FGAS, a desire value of

agent consists of three parts:

(a) the change of overall objective value, b) its future expectation of getting good or

bad result, and (c) the objective balance, which will be explained in section 4.3.3 in

detail.

Introducing selfishness of subagents speeds up the solution convergence.

3) Cooperativeness

When the desires of two selfish subagents conflict, the subagents tend to be

cooperative. Selecting the right conflict resolution strategy is an important issue in

MAS for optimization. Extending the idea of generating a locally cooperative

response from cooperativeness-based strategy (CBS) [Jung and Tambe 2003], agents

in FGAS negotiates based on the desire value.

4.1.3. Agent Coordination

Drawing inspiration from natural systems in which complex global structures and

behaviors result from local interactions among many simple elements, we proposed a

physics-motivated [Shehory et al. 1999] coordination mechanism for FGAS that treats

subagents as randomly moving, locally interacting entities. The similar scheme has

already successfully used in the area of coalition formation for Large-Scale Electronic

Markets [Lerman and Shehory 2000].

- 30 -

Note that in E-markets there exist few external constraints, the agents can randomly

move and interact. However, in our scenario, there may exist some external

constraints which limit the concurrent computation. For example, if the change of

subagent a will affect the local knowledge of subagent b, then they cannot be

computed concurrently. Otherwise, the b will make wrong decision based on the

obsolete information. Therefore, we introduce FORBID function to describe the

external constraints between subagents which limit the concurrent computation and

the arbitration agent to prevent the situation of error arising from concurrent

computation with inter-dependent agents.

4.1.4. Dynamic System

The number of subagents in FGAS can be dynamic. When the new demand or request

comes, a new subagent can be generated and added to FGAS. When an objective is to

minimize number of agents, the existing agents will try to achieve this objective by

destroying itself. This feature enables FGAS to model the objective of minimizing

number of agents, which is an important objective of packing or routing problem.

4.1.5. Handling Multiple Objectives

In MOMCP, a fundamental issue is how to handle multiple objectives. There are four

kinds of objectives:

1) local computable objective: objectives that can be exactly computed with local

knowledge. This kind of objective is delegated to subagents.

- 31 -

2) local estimated objective: objectives which usually cannot be affected by one move.

However, a move’s effect can be estimated using local knowledge. This kind of

objective is delegated to subagents.

C
on

su
lt

Suggestion

Constraint
agent 3

Constraint
agent….

Constraint
agent 1

Constraint
agent m

Constraint
agent 2

Constraint
agent 4

Figure 4.2 Relationships between the agents

subagent
subagent

subagent

subagent
subagent

subagent

Arbitration
Agent

Arbitration agent: centralized control

Subagent: evolve towards their
objectives autonomously

Constraint agent: provide suggestion to related subagents during their evolution

- 32 -

3) global computable objective: objectives that can be only computed with global

knowledge. The arbitration agent (AA) is used to handle this objective.

4) global estimated objective: objectives that can be only estimated with global

knowledge. The arbitration agent (AA) is used to handle this objective.

A situation which should be prevented is the over optimization of one objective at the

expense of another. In FGAS, a threshold is set for each objective such that when the

value in one objective decreases beyond a certain threshold, that change will be only

accepted with only small probability.

Using FGAS, objectives of the problem is either decomposed to subagents or handled

by the arbitration agent. We will explain the details in Section 4.3.3 and the example

of IRPTW is given in Section 6.1.2.

The relationships between subagents, arbitration agent and constraint agents are

illustrated in Figure 4.2.

4.2 Formulation

Stated formally, we are given an n-objective problem Q, the goal is to

 Maximize/Minimize)(xgi i∈[1,n] s.t. { }mcccC ,...,, 21=

where gi is one objective of Q, i∈[1,n]

 x is the vector of decision variables

 C is the constraint set consisting of constraints c1 to cm

- 33 -

Adopting the idea in [Chainbi et al. 2001], agents in FGAS interact with each other.

They have different roles and local goals. We define:

A team of agents >=< FORBIDCASAAA ,,,α , in which

• AA is an arbitration agent that provides centralized control. This agent may

not be necessary for every problem. The arrangement of AA enables FGAS to

solve more problems.

• SA is a set of subagents, which operate interactively to change their states and

finally reach an “optimal” solution for the problem.

},...,,{ 21 psAsAsASA =

where p is the number of subagents

>=< iiiiii StaDRCGXsA ,,,,

 Xi is the set of variables in sAi

Gi is the objectives of sAi

RCi returns the set of constraint agents related to sAi

Di is the desire value of sAi

Stai is the state of sAi

If Stai =A (i.e. active) sAi is changing its state

If Stai =NA (i.e. non-active) sAi is not changing its state

SXXX p =∪∪∪ ...21 and Φ=∩ ji XX],1[, pji ∈ ,

- 34 -

S is the solution of Q.

 CA is a set of constraint agents. cAi representing constraints ci of the

problem. },...,,{ 21 mcAcAcACA =

 FORBID is function of subagent pairs, defined as follows,

If FORBID(sAi, sAj)=TRUE, then at least one of Stai and Staj should be in

the state of NA. This function describes the external constraints, which limit

the concurrent computation, between the subagents, as we mentioned in

Section 4.1.

4.3 Agent Functionality

In this section, we provide details of the functionality of each kind of agent. Recall

that there are three types of agents, i.e. Arbitration Agent AA, Constraint Agent CA

and subagent SA.

4.3.1 Arbitration Agent AA

AA is a virtual agent in FGAS. It is not necessary for every problem. But with AA,

FGAS is able to solve problems which cannot be solved by traditional MAS.

Example. Without AA, the FGAS can successfully solve VRPTW but fail to

handle IRPTW, because the inventory cost across the planning period makes

some subagents cannot compute concurrently.

As previously mentioned, AA will monitor the subagents’ work and ensure that no

agents pair which makes FORBID return true is computed simultaneously.

- 35 -

AA also takes the responsibility of handling global objective.

Example. In IRPTW, the value of the inventory cost cannot be computed

with only local knowledge by the subagents. In this case, AA is required to

participate in every interaction of subagents to compute that objective.

4.3.2 Constraint agent CA

Most works in the literature solve MOMCP based on optimizing objectives while

ignoring the contribution of constraints. We observe that from examining the degree

of violating or satisfying constraints, subagents can get some insights into the future

solution quality, which is very important for handling estimated objectives.

Example. In VRPTW, if a vehicle capacity is 200 and its load will become

5 after some action, such action will probably be accepted since it will

probably realize the objective of minimizing number of vehicle. The

constraint agent will return a value containing such information to the

subagent.

4.3.3 Subagents SA

Subagents form the backbone of FGAS. Each subagent has only a local view of the

environment. Through communication, negotiation and cooperation, they work

together to optimize objectives of the problem.

Subagent and constraint agent

For each SAsAi ∈ , CACAsARC iii ⊆=)(are the constraint agents related to isA .

- 36 -

Besides optimizing the local objective, the responsibility of satisfying constraints is

also assigned to each individual subagent. To be more precise, each subagent knows

all its related constraint agents. As mentioned in section 4.3.2, it will get important

information from those constraint agents for handling the estimated objectives.

Objectives of subagent

The objectives of subagent can be described as

Gi = nxggg xiii ≤},,...,,{ 21

such that gji is the localized objective gj of subagent sAi, where n is the number of

objectives.

Usually, the localized objectives are same as the overall objectives, while there are

sometimes overall objectives should be modified to be the localized objective of

subagents

For example, in VRPTW, one objective is to minimize the total travel

distance. Then, if a subagent represents one route, its goal is also to

minimize travel distance. However, the objective of minimizing

number of vehicle should be modified before it is localized to each

subagent. Details could be found in Section 6.1.2.

Each subagent usually has more than one objective, since we are dealing with

MOMCP.

Desire of subagent

- 37 -

Desire of subagents is determined by the objectives of the problem. It represents the

motivational aspect of FGAS, which is measured by a desire value.

A desire value consists of three parts:

 Changes of overall objective. It represents the cooperative aspect of a subagent.

The more a move contributes to the overall objective, the more a subagent desires

the move.

 Future expectation. This component is the information of future expectation,

which is discovered intelligently by the subagent, as explained in section 4.1.2.

 Balance of multiple objectives of the subagent. This component is introduced to

prevent over optimizing of one objective. A threshold kit , is defined for each

objective k. When the decrease in an objective value surpasses its threshold value,

the desire for the move will be greatly decreased.

Formally, a desire value is defined as:

∑++∗=
+

=

1

2
,10),(),()()(

y

k
kikCAiiii kmfSXemumD ααα

 0 when kimi tu ,, <

)(,, miki uf when kimi tu ,, >

where i is the index of the subagent;

 m is the move;

1
1

0

=∑
+

=

y

j
jα ;

=),(, kmf ki

- 38 -

u(m) is the overall objective change by applying the move m ;

),(CAiii SXe is the function of future expectation;

CAiS is the value obtained from related constraint agents;

),(, kmf ki is the function of objective balance. When the change in

one objective k surpasses its threshold kit , , it will return a value

which is usually negative. Otherwise, it will return 0.

The desire value can be thought of as a subagent’s willingness to execute a move. The

selfishness of a subagent makes the solution improve according to its desire. It

increases the speed of improvement in objectives of subagents, and hence leads to a

fast solution convergence speed. However, excessive emphasis on selfishness will

sacrifice the overall objective. Hence the negotiation for possible cooperation between

subagents is very important.

Negotiation between subagents

The negotiation strategy of FGAS is extended from cooperativeness-based strategies

[Jung and Tambe 2003]. It chooses the best move according to the desire value.

We define

 desired agents for a move m are those subagents with their desire values Di(m)>0

- 39 -

 non-desired agents for a move m are those subagents with their desire values

Di(m)<0

 conflict is the situation where a best move includes some non-desired agents.

Negotiation is introduced into FGAS to deal with the conflict between subagents. By

negotiation, we mean all the non-desired agents will compromise also according to

three parts, overall objective change u, the move’s future expectation e and the

objective balance f. Different from generating a desire value, when a subagent

calculates the probability for compromise, more weight is put on the overall objective

value change. If there is any subagent who still cannot accept the move, the move is

rejected.

Mathematically, the probability is defined as:

))(),(),(()(,∑= mfmemuPmp kiii

where u(m) is the overall contribution of best move m,

 ei(m) is the future expectation of move m

 ∑)(, mf ki is the aggregation of the objective balance for all the objectives, k is

 the index of objective

4.4 FGAS Workflow

After illustrating the main components of FGAS, an overall picture of how FGAS

works is given as follows:

- 40 -

First, AA, sAs and cAs initialize. The initialization of AA and cAs are straightforward.

The initialization of sAs uses some generic algorithm, such as Greedy Algorithm, to

generate an initial solution for the problem.

Subsequently, the subagents start working. These subagents will run into each other

on a random basis. They either improve their internal status by themselves or interact

with the subagents they met. AA will keep as many un-FORBID subagents as possible

working in parallel.

Several types of moves are defined for each specific problem. When two or more sAs

interact, a list of move will be proposed, which follows the idea of local search.

Actually, when the size of subagent is considerably small, brute-force idea can be

applied to achieve better results. Among all the moves, the one with maximum

contribution to the overall objective is evaluated by the related subagents. If conflict

occurs, negotiation will be held. The interaction of subagents is illustrated by Figure

4.3.

The overall objective value is recorded by AA. When a termination criterion is met,

the program will end.

- 41 -

Move list is proposed

Evaluation

Best move m will be evaluated by each subagent based on three criteria: utility change, future

expectation and objective balance.

Possible Negotiation

When conflict occurs, each subagent will try to make a compromise, which is also base on the utility

change, future expectation and objective balance. More weight is put on the utility change

Figure 4.3 Interaction of subagents

Apply the move

Apply the move and update the state.

- 42 -

Chapter 5

Coarse-grained Agent System (CGAS)

In this chapter, we discuss the second agent-based approach which we term the

Coarse-grained Agent System (CGAS). As discussed in Chapter 3, the classic method

of solving multi-objective problem is combining multiple objectives to form one

objective, and then apply the traditional single objective optimization method.

Unfortunately, the optimization algorithm has no insight to which objective it is

improving during the search. Consequently, much redundancy is incurred. To avoid

such redundancy, in Coarse-grained Agent System (CGAS), we model the whole

problem as several independent objective agents where each of them only takes

responsibility of one objective.

5.1 Overview of CGAS

For a MOMCP, the problem is broken along its objectives. Each objective is assigned

to an objective agent. The objective agents work collaboratively to achieve the overall

objectives.

Stated formally, we are given an n-objective problem Q, the goal is to

 Maximize/Minimize)(xgi i∈[1,n] s.t. { }mcccC ,...,, 21=

where gi is one objective of Q, i∈[1,n]

 x is the vector of decision variables

 C is the constraint set consisting of constraints c1 to cm

- 43 -

we solve Q using n objective agents, where the objective of ith objective agent is

defined by:

Maximize/Minimize ig)(x s.t CCi ⊆

such that CCCC n =∪∪∪ ...21 and Φ≠∩ +1ii CC .

5.2 Objective Agent

An objective agent (OA) improves the solution in the perspective of its own objective.

One feature of OAs in CGAS is it only subject to a subset of constraints. Thus, more

freedom is allowed for an OA to find potentially good solution. Although the output of

the intermediate OA may not be a feasible solution for the problem, the final solution,

after optimized by all the OAs, will satisfy all the constraints. Since the constraint

partition is highly problem-specific, we are not trying to propose a methodology to

partition constraints, instead, we propose the following guidelines for constraint

decomposition among OAs:

(1) Within one objective agent, the constraints should be those that are directly related

to its objective function.

(2) Between two consecutive objective agents (in CGAS, the objective agent works

sequentially, so we say “consecutive” here), the overlapping constraints are typically

those are common to both problems such that the output from one sub-problem will

not be over optimized at the expense of another.

(3) All the constraints should be satisfied after the solution is optimized by all OAs.

- 44 -

We will further explain the constraint decomposition in the context of IRPTW in

Chapter 7.

5.3 CGAS Workflow

In CGAS, OAs work sequentially and iteratively. The idea of greedy algorithm is

adopted-- the more important objective has more priority to be optimized. After

optimized by one objective agent, the solution structure will be changed, and therefore

the solution can be passed on to the next objective agent for further improvement. At

the end of each iteration, the solution will be checked and the program will end when

a terminating criteria is met.

The working flow can be illustrated by figure 5.1. The whole solution is passed along

the direction of the arrow.

Objective
Agent 2

Objective
Agent 3

Objective
Agent m

Figure 5.1 work flow of CGAS

Objective
Agent 1

Whether the termination
condition is met?

- 45 -

Chapter 6

Solving IRPTW using FGAS

In this chapter, we discuss how to solve IRPTW using FGAS.

6.1 Mapping from IRPTW to FGAS

In a supply chain optimization problem such as IRPTW, the optimal solution is

usually established through the cooperation and competition among the parties within

the supply chain system. FGAS has an innate advantage in modeling and representing

such supply chain optimization problem, since the subagent in FGAS also has a

cooperative yet competitive nature.

6.1.1 Identifying agents

Subagent in IRPTW

In IRPTW, those parties are a set of routes. Each route is delegated to a route agent,

i.e. the subagent in FGAS.

More formally, for IRPTW, a solution instance of IRPTW is viewed as a set of routes

[Lao 2002], each serving a certain subset of customers at a sequence of particular time

points.

Solution Plan S={R1,R2,…Rn}

where Routing Plan Ri={(Ci1,qi1,ti1) (Ci2,qi2,ti2) … (Cin, qin, tin)}

ikq],1[nk ∈ is the supply amount to customer ikC

- 46 -

ikt],1[nk ∈ is the service time to customer ikC

Mapping to FGAS, a route agent RAi is assigned to route Ri

Arbitration Agent in IRPTW

A route agent has only local knowledge of the environment. While it knows how

much distance it has changed through a move, it is unable to compute the change of

the overall inventory cost. Hence, the task of computing overall inventory is left to the

arbitration agent.

If two route agents (route a and b) from different days (day m and day n) are adjusting

their inventory interactively, the route agents between day m and n (say route set R)

who serve the same customer with a or b cannot be active concurrently. The reason is

inventory level of the customers in R will be affected or changed by the state change

of a and b. Monitoring and preventing such FORBID interactions is the task of

arbitration agent.

Constraint agent in IRPTW

There are three constraint agents in IRPTW: vehicle capacity constraint agent, time

window constraint agent and customer holding capacity agent. For a route agent, it

will related to one vehicle capacity constraint agent, one time window constraint agent

and a set of customer holding capacity agents.

The basic function of constraint agents in IRPTW is to check whether the constraints

are violated.

As discussed in Chapter 4, more information can be acquired from constraint agents

beyond the basic “satisfy or not satisfy a constraint”. For example, in order to realize

- 47 -

the local objective of minimizing number of vehicle (which will be explained in the

next section) in IRPTW, the detail information of how much the move can change the

vehicle transportation load is required. Such information is obtained from the vehicle

capacity constraint agent. In FGAS, the return from vehicle capacity constraint agent

is the exact value reflecting the effect of the move rather than simply “true” or “false”.

6.1.2 Handling objectives and constraints

The division of IRPTW is motivated and improved upon the work of [Lau et al. 2002],

in which IRPTW is divided into VRPTW and the Dynamic Lot-sizing Problem (DLP).

In addition, we also consider the decomposition of VRPTW into two single-objective

sub-problems, following the scheme of [Gambardella et al. 1999]. Hence, we derived

three objectives of IRPTW:

(1) minimizing number of vehicles used;

(2) minimizing total distance traveled;

(3) minimizing inventory and backlog costs.

Subject to

(1) Customer time windows;

(2) Vehicle capacity;

(3) Customer holding capacities.

Now we explain how to handle the objectives for IRPTW:

(1) Minimize number of vehicles—local estimated objective

- 48 -

This objective is translated to every route agent’s desire of destroying itself by

pushing out its transportation load to other route agents. However, such direct

translation is impractical because when a route (say a) transfers its transportation load

to others (say b), the load of b will increase. Route agent b will refuse such action

because it will violate its desire of decreasing its own transportation load.

Hence, each route agent’s objective is modified as: 1) when a route agent detect that

it stands a chance of emptying its transportation load, it will encourage the action

which can help it achieve this desire; 2) when a route is nearly full, it has the desire to

top up its transportation load without violating capacity constraint. The second part of

the local objective is based on the observation that when the total demand is fixed, the

fewer vehicles are used, the more one vehicle will carry. This local estimated

objective can be expressed using the curve in figure 6.1.

Figure 6.1 Function of localized minimize number of vehicle

0 full vehicle
capacity

D
esire of taking

transportation load
0 full vehicle

capacity

D
esire of giving out

transportation load

- 49 -

Two kinds of information are needed for this local objective: 1) the current

transportation load of the route agent; 2) the change of the transportation load

contributed by the move. The second piece of information is obtained from vehicle

capacity constraint agent.

(2) Minimizing travel distance—local computable objective

This objective is handled in a straight forward manner. Each route agent is willing to

contribute to the improvement of overall objective of minimizing travel distance.

(3) Minimizing inventory cost—global computable objective

The inventory cost is impossible to compute locally. Suppose a move shift the supply

amount for customer k from day i to day j, all the inventory level of customer k

between day i to day j will be affected. Therefore, the task of computing inventory

cost is left to arbitration agent instead of making this objective localize to each route

agent.

6.2 Solution Initialization

The purpose of initialization is to generate an initial set of route plans. Our method is

treating the whole problem as multiple independent VRPTW instances, where each

instance represents the routing plan in a different day. We apply a greedy algorithm to

generate the initial route set. Obviously, the inventory cost of the initial solution is 0.

6.3 Interaction between Route agents

The purpose of interaction between route agents is to change their states in order to

improve objective value. We adopt the local search strategy. All possible local moves

- 50 -

listed below will be considered and the best move will be chosen and evaluated. The

moves are defined as follows:

1) SelfRelocate —move involving only one route agent

Without changing the members of a route, the route agent tries to rearrange the

sequence of the customers to reach a better configuration. A SelfRelocate operation

describes the act of changing one customer’s position in the route. Figure 6.2

illustrates this operation. The time complexity of this operation is O(K2), where K is

the number of customers in one route, which is bound by total customer number N.

This operation is the simplest one. It only affects the objective of minimizing

traveling distance, so there is no need to consider the balance between different

objectives. In addition, it only involves one route agent. So, no conflict will happen

and no negotiation is needed.

2) n-m-exchange—move between two route agents within the same day

Within the same day, we introduce a complex move between the route agents—n-m

exchange. This move describes the act of exchanging a segment of length n in one

route with a segment of length m in another (see Figure 6.3). Both traveling distance

 2

 1

 3

 4

C

C

C

C

C

C

C

C 1

 2

 3

 4

Figure 6.2: Route Agent: SelfRelocate Operation

- 51 -

and number of vehicle can be affected by this move. When the n or m is equal to the

length of the route, the number of vehicle can be reduced by one.

In fact, this move can be seen as the combination of several standard moves in

VRPTW. When either n (change all variables to italics throughout this thesis) or m is

equal to 0, the move is reduced to the move “relocation”. When n=1 and m=1, the

move is the traditional “exchange”. When either n or m is equal to the route length,

this move can be seen as a “distribution”.

If we set n and m to be any value between 0 and their route length, all the possible

moves are listed based on the brute-force idea. However, considering the real situation,

brute-force is sometimes over powered. Usually an upper bound L is set for the route

segment length. Therefore, the time complexity of this move is O(L2(L+K)2)=O(K2),

where K is the length of the route.

3) Merge—move between two route agents in different days

Figure 6.3: Route Agents in the same day : n-m move

This example above is a 2-3 move

C
C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

- 52 -

When two route agents serve the same customer on different days, the two services

can be merged into one with a larger supply. Although the inventory cost will increase,

we can expect a better overall objective since the inventory cost is usually smaller

than the saved transportation cost. It’s the arbitration agent’s task to prevent the over

increase in the inventory cost. The time complexity of this move is O(K), where K is

the length of the route.

4) InvRelocate—move between two route agents in different days

The aim of introducing this move is to adjust the inventory between different days.

This move describes the act of relocating one customer’s supply from a route in one

day to a route in another day. Using this move, the inventory cost is decreased. Also,

there is a chance of reducing one vehicle. Time complexity of this move is O(K),

where K is the length of the route.

C

Figure 6.4: Route Agents in the different days: merge

C
C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

day i day j day i day j

Customer x Customer xCustomer x

Figure 6.5: Route Agents in the different days: InvRelocate

C
C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

day i day j day i day j

C

- 53 -

6.4 Agent Coordination

One route agent will encounter another on a random basis. When two1 route agents

interact with each other, a list of moves will be proposed and the best one will be

evaluated. The desire value of a route agent is defined by:

distvehmi feumD 321)(ααα ++=

where 1
3

1
=∑

=i
iα

mu is the change of overall objective by move m

vehe is future expectation regarding the number of vehicle.

distf is the balance of the objective of minimizing travel distance.

 0 when distdist tD <∆

)(distdist Df ∆ otherwise;

distD∆ is the change of travel distance

Similarly, the desire value for AA can be defined, since AA handles inventory cost and

participates in every interaction.

When the best move is not desired by any of the route agent or arbitration agent, they

are willing to negotiate by accepting the move with a probability based on the move’s

overall contribution and its own desire:

1 In our implementation, we only consider the case in which only two route agents interact with each other.

=distf

- 54 -

),(im vuPp =

where mu is the overall objective change by applying move m,

vi is the desire value of route agent i or arbitration agent AA

If the negotiation fails, the move will not be accepted.

The overall objective value is recorded by AA, when a termination criterion is met, the

program ends.

- 55 -

Chapter 7

Solving IRPTW using CGAS

In this chapter, we discuss how to solve IRPTW using CGAS.

7.1 Mapping from IRPTW to CGAS

As described in section 6.1.2, we derived three objectives of IRPTW:

(1) VRPTW 1: minimizing number of vehicles used;

(2) VRPTW 2: minimizing total distance traveled;

(3) DLP: minimizing inventory and backlog costs.

It has the following constraints:

(1) Customer time windows;

(2) Vehicle capacity;

(3) Customer holding capacities.

Each objective is subject to a subset of constraints, which is illustrated in Figure 7.1.

One objective agent is delegated to each sub problem. There objective agents work

sequentially and iteratively. The output of one objective agent (OA) is the input of the

- 56 -

Figure 7.1: Solving IRPTW using CGAS, employing HASTS as conquer technique

IRPTW
Minimize total number of vehicles, total distance traveled, and inventory and

backlog cost
Subject to customer time windows, retailer holding capacity and vehicle capacity
constraints.

Objective Agent 1: Minimize number of vehicle used,

Subject to customer time windows of the given set of customers

and vehicle capacity

Objective Agent 2: Minimize total distance traveled,

Subject to customer time windows of the given set of vehicles

and vehicle capacity

Objective Agent 3: Minimize inventory and backlog cost,

Subject to vehicle capacity and customer holding capacity

constraints.

Output solution

Terminating Criteria

OA2: HASTS-ED

OA3: HASTS-IE

OA1: HASTS-EA VRPTW1

VRPTW2

DLP

set of vehicles

route plan

distribution plan
N

Y

Initial Solution

- 57 -

next one. When the termination condition is met, the final solution is output. Notice

here, the program cannot stop at any middle point of the system because each OA only

satisfy part of constraints and the only feasible solution is produced after the last OA’s

optimization.

Another important issue is the solution convergence under such division. Fortunately,

this has been proved in [Lau et al. 2000].

Now we explain how to decide the constraint set for each OA. For OA1 and OA2, since

we are concerned with routing of vehicles, the natural set of constraints should be the

vehicle routing constraints and not the customer storage constraints. It is not necessary

to consider to customer storage capacity constraint because OA3 can always properly

take care of it and output a feasible solution. Similarly, for OA3, the customer storage

capacity constraints are more important comparing to time window constraint. In fact,

the change OA3 made will never cause the violation of time window constraint.

Another point that should be explained here is the overlapping constraint between

OA2 and OA3. If vehicle capacity constraint is removed from OA2, an extreme case of

pushing many the customers into one vehicle might happen. If such solution is passed

to OA3, in order to satisfy vehicle capacity constraint we will suffer a huge inventory

cost. What make things worse is that such situation cannot be remedied by other OAs.

7.2 A proposed conquer technique--HASTS

What we have introduced above is the framework of CGAS. A disadvantage of

this system is the framework itself cannot guarantee the quality of the solution.

The optimization technique employed by the objective counts a lot.

- 58 -

In this thesis, HASTS - Hybrid Ants System (AS) and Tabu Search (TS), a hybrid

model that contains 4 derived models, is employed as optimization technique by

objective agents.

7.2.1 Ants System and Tabu Search

The standard AS builds a complete solution with each ant and the density of the

pheromone trails reflects the preference of the solution structure. The pheromone

trails provides information sharing and intelligence in which the quality of the

solution can be optimized. As it does not require an initial solution, AS can be

viewed as an excellent construction heuristic. Being a meta-heuristic, it is also not

limited to a single type of problem and offers solutions of high quality. Hence, we

adopt AS as a component for our hybrid model.

On the other hand, the standard TS incorporates both an adaptive memory and a

responsive exploration. The adaptive memory allows TS to reduce solution cycling,

and is capable of making radically changes based on past history. Responsive

exploration allows TS to apply intensification and diversification strategies

adaptively. However, TS is not without any weaknesses. Its effectiveness hinges

on the neighborhood structure and Tabu list. Hence, TS will be trapped in a poor

local optimal if it lacks an effectual neighborhood and Tabu list.

We deem AS and TS to be a good combination as the two meta-heuristics are very

different and complementary in nature. HASTS hybridizes the two meta-heuristics

to form 4 derived models, each adjusting the relative importance of AS and TS to

cater to the needs of different sub-problems. The 4 derived models are Empowered

- 59 -

Ants (HASTS-EA), Improved Exploitation (HASTS-IE), Enhanced Diversification

(HASTS-ED) and Collaborative Coalition (HASTS-CC).

7.2.2 HASTS-EA (Empowered Ants)

 This derived model arises from the observation that while the AS reaches near

optimal solutions, it suffers from a tendency of solution cycling in the near

optimum region due to their emphasis on the strong pheromone trails. By

empowering the ants with memory, it reduces the chances of reconstructing the

same solution. An analogy can be drawn where each ant becomes more intelligent

to find a better trail by not following false tracks laid by previous ants. TS uses a

Tabu list to reduce cycling on the same set of solutions. While the AS optimizes

the solution based on its pheromone trails as a “preference” memory, solution

cycling is reduced via the Tabu list. Furthermore, TS can be applied to modify the

solutions radically, hence encouraging exploration that helps to escape from local

optimality. In our implementation, the AS is modified to include a Tabu list, which

records the solution made by each ant in a single iteration. Subsequently, each ant

in the iteration would check if the next move is Tabu-ed. If it is, the move will be

Figure 7.2 HASTS- EA (Empowered Ants)

Ants System
(Dominant)

Tabu Search
(Dominant)

Integration of Tabu List
and Pheromone Table

- 60 -

dropped and a new move will be generated. The Tabu list is reset at the end of the

iteration. A pseudo-code of HASTS-EA is shown in the Figure 7.4

 7.2.3 HASTS-IE (Improved Exploitation)

In this model, TS is embedded in the AS to conduct intensification search on the

best solution. A similar design has been employed in [Stutzle and Dorigo 1999] to

produce good solutions for TSP. This model offers two advantages. First, by

updating the pheromone trail only after intensifying the best solution, we increase

the probability of finding a better solution by subsequent ants. Second, due to the

probabilistic guided nature of AS, this narrows the chances of reaching an optimal

solution if it happens to be radically different from local optimum. For example, it

is well known that for TSP, the AS may take a long time before it reaches

optimality,

Figure 7.3 HASTS- IE(Improved Exploitation)

Ants System
(Dominant)

Tabu Search
(Passive)

- 61 -

Procedure: HASTS-EA()
While (termination-criterion-not-satisfied)
 While (Max_Ant_Not_Reached)
 Ants_generation_and_activity
 Pheromone_Evaporation
 Reset_Tabu_List
 Daemon_actions
 end Schedule_activities
 end While

Procedure: Ants_generation_and_activity ()
 While (available_resources)
 Schedule_creation_of_new_ant
 New_Solution = New_active_ant
 update_Tabu_List (New_Solution)
 end While

Procedure: New_active_ant ()
 Initialize_ant;
 M = read_Pheromone Trail
 T = read_Tabu_List
 While (current_state != target_state)
 A = read_local_ant_routing_table
 P = compute_transitional_probabilities (A, M)
 For each Next_state do
 Next_state = apply_ant_decision_policy(P)
 While (check_Tabu_List (Next_state) == non-Tabued)
 Move_to_next_state (next_state)
 If (online_step-by-step_pheromone_update)
 Deposit pheromone
 Update M
 end If
 end While
 If (online_delayed_pheromone_update)
 For each visited_arc do
 Deposit pheromone
 Update M
 end

 end If

Figure 7.4 Pseudo codes of HASTS-EA

- 62 -

due to the presence of “crossings” in the tour (see Figure 7.5). With the help of TS,

such crossings can be eliminated easily by swap moves such as 2-opt.

7.2.4 HASTS-ED (Enhanced Diversification)

In this model, AS acts as a diversifier for TS. As TS suffers from local optimality,

a diversification strategy is to apply another meta-heuristic as a diversifier (e.g. [Li

and Lim 2001]). HASTS-ED uses an AS diversifier with following rationale. First,

the probabilistic nature of the AS gives a higher chance of successfully

diversifying from the local optimum. Second, the diversifier should make a radical

Figure 7.5 Use TS to help AS reduce crossing

Figure 7.6 HASTS- ED(Enhanced Diversification)

Tabu Search
(Dominant)

Ants System
(Passive)

- 63 -

move from the current solution so as to explore new regions. Although a random

restart is a good strategy, the new starting solution is often poor. AS provides a

remedy to this by reconstructing quality solutions.

7.2.5 HASTS-CC (Collaborative Coalition)

This final model proposes a collaborative coalition between the AS and TS. This

model offers the least coupling between the two meta-heuristics but allows great

flexibility in the solution approach. One configuration of HASTS-CC is to espouse

the two-phase approach as advocated by [Schulze and Fahle 1997]. This approach

consists of a construction phase follow by a local improvement phase. The AS

works extremely well for the construction phase as it could be used independently

to obtain quality solutions. Being an optimization heuristic, TS fit naturally into

the second phase of the approach. Such collaboration exploits the natural heritage

of each meta-heuristic.

HASTS is a good choice of objective agent for solving MOMCP. First, it has four

derived models and is capable to adapt itself to different objective of sub problems.

Figure 7.7 HASTS- CC(Collaborative Coalition)

Tabu Search
(Passive)

Ants System
(Passive)

Collaboration via
common objectives

- 64 -

Second, it is coding economic. Programmer can use only the code of Ants System and

Tabu Search to realize the effectiveness which can not be achieved by pure Ants

system or Tabu Search. All of these can be demonstrated by our experiment on

Inventory Routing Problem with Time Window.

7.3 Conquer technique for each objective agent

OA1—HASTS-EA

Sub-problem 1: We can reformulate this objective to its dual model and writing it as

maximizing the customers served in given a set of vehicles, and reduce the required

vehicles each time we find a solution that serves all the customers. OA1 employ the

HASTS-EA derived model. Initially m vehicles are obtained by applying a greedy

heuristic to serve all customers. The algorithm then reduces the value of m by 1 and

seeks to construct a feasible solution that services all the customers. Once a feasible

solution is found, the number of vehicles is reduced to the best-found number of

vehicles and the process is repeated for a new feasible solution. This sub-problem

requires search so as to find a configuration where the customers can fit into the pre-

set vehicles. HASTS-EA performs well since the tabu list assists each ant in an

iteration to construct a radically different solution. Although other derived models can

also be used, they lack the intensified exploration that HASTS-EA provides.

OA2—HASTS-ED

- 65 -

As we have already optimized on the number vehicles, this sub-problem will have a

tighter solution space. HASTS-EA is not very effective in such situation because of

the difficulties involved in constructing different feasible solutions on an allowed

number of vehicles, due to the nature of the AS. Hence, HASTS-ED is employed by

OA2, to minimize the total distance on a fixed set of vehicles. HASTS-ED uses TS as

the core heuristic with AS acting as the diversifier. TS is effective in solving this sub-

problem as it optimizes the route distance rather than reconstructs the solutions. When

TS meets a local optimum, it randomly selects some of the routes to be reconstructed

by AS. AS then assists TS by radically re-configuring the selected partial routes. The

output is a route plan which is the input to OA3.

OA3—HASTS-IE

HASTS-IE is adopted by OA3 to minimize the inventory and backlog costs. In order

to reduce inventory or backlog, more frequent deliveries have to be made, hence

increasing the transportation cost. Hence, the goal here is to minimize the number of

customers served each day without increasing the total cost. Our goal is to delete

customers from routes in a manner that does not incur additional cost. HASTS-IE uses

the AS to construct different solutions. It then uses TS to improve its exploitation to

reduce missing elite solutions. The TS uses the standard “add”, “delete” and “swap”

moves that attempts to improve the solution quality found by the AS.

After we fix the set of customers and the route plan, we are able to apply the

Minimum Cost Flow (MCF) model to work out a distribution plan. For a given set of

customers and their route plan, the MCF can work out the optimal distribution plan.

([Lau et al. 2002])

- 66 -

The output is a distribution plan that induces the set of customers to be served for OA1.

The solution can be either passed on for further optimization or be output as the final

solution.

- 67 -

Chapter 8

Experiment Results and Analysis

Extensive experiments have been conducted to demonstrate the efficiency of FGAS

and CGAS. The experiment results are presented in this chapter. Some observations

and analysis will also be provided.

8.1 Experiment Setup

Following the strategy of [Lau et al. 2002], our test cases are generated based on

Solomon test cases for VRPTW. A total of 56 test cases in Solomon test cases cover

different scenarios. In C series test cases (C101-C109 and C201-208), the locations of

customers are clustered. These test cases are best solved by assigning vehicles to

service the same or nearby clusters in the problem. In R series test cases (R101-R112

and R201-211), the locations of customers are randomly decided. Solving them is

more problem specific. In RC series test cases (RC101-108 and RC201-208), the

locations of customers are both random and clustered. Moreover, the C201-208,

R201-211 and RC201-208 are also called extended Solomon test cases, in which there

are 200 customers.

In the generated IRPTW test cases, the vehicle capacity, locations and time-windows

of the customers and depot are those specified in the Solomon instances. The planning

period is 10 days. The demand dit of customer i for day t (t=1,…, 10) is equal to the

demand di of the Solomon instance, by partitioning the value 10*di into 10 parts, i.e.

di1, di2,…,di10 randomly such that dit is within the range [0.5*di, 1.5*dj]. The capacities

- 68 -

of consumers and warehouse are the vehicle capacity and infinity respectively. As for

cost coefficients, the inventory cost and backlog cost for each customer are 1 and 2

respectively. The transportation cost of each route is 10 times of its total distance.

8.2 Analysis of Results

The experiments were conducted on a Pentium 1.13GHz machine with 128M memory.

We compare the solution quality, run time performance, and solution convergence

speed of each approach.

1. Solution quality

In Table 8.1, we compare the solutions of FGAS and CGAS with the previous work.

The columns ILS+VRP and TS+VRP denote the results obtained from [Lau et al.1,

2002], where ILS+VRP is the results obtained using Iterated Local Search [Gu 1992;

Johnson 1990] and TS+VRP employs a Tabu Search technique. The cases from R210

to RC208 are not experimented in previous work, therefore, in Table 8.1 we left blank

in the corresponding cells. The column FGAS and CGAS refer to the results obtained

using FGAS and CGAS respectively. The ImvF is improvement of FGAS than the

average of ILS+VRP and TS+VRP. Similarly, ImvC is that for CGAS. We can see

from Table 8.1 both FGAS and CGAS achieve much better results than the previous

work. On average, CGAS improve the previous solution by 56% and FGAS improves

previous solutions by 53%.

The gap between FGAS and CGAS are given in column GAPCF. Note the CGAS

gives a better result than FGAS, the average gap is 6.1% (with min 1.8% for C205 and

max 9.9% for R206). The reason is CGAS works in a more centralized manner. Each

improvement of solution is precisely calculated and the best one is chosen (before

reach the local optimal). In contrast, FGAS enables subagents, which represent

- 69 -

subsets of variables, to evolve towards their own objective. Although subagents are

generally cooperative, they have their own opinion of the quality of a move.

Unfortunately, those opinions are not always right, but sometimes subagents are too

stubborn to accept the result of negotiation and selfishly stick to their wrong opinion,

which lead to the decrease of solution quality.

Test
Cases ILS+VRP TS+VRP FGAS ImvF CGAS Imvc GAPCF

C201 113263 112821 53654 52.54% 52104 53.91% 3.0%
C202 117483 124312 55756 53.88% 53404 55.83% 4.4%
C203 131920 122055 56901 55.19% 53620 57.78% 6.1%
C204 136384 142300 57401 58.81% 54778 60.69% 4.8%
C205 116147 109248 52827 53.12% 51907 53.94% 1.8%
C206 123978 127876 53685 57.37% 50507 59.89% 6.3%
C207 122204 117735 53935 55.04% 51453 57.11% 4.8%
C208 124110 125667 54052 56.72% 52501 57.96% 3.0%
R201 111330 116893 63538 44.32% 62034 45.64% 2.4%
R202 116982 114717 60593 47.70% 56071 51.60% 8.1%
R203 110215 115070 56550 49.80% 53000 52.95% 6.7%
R204 114118 114118 53139 53.44% 49708 56.44% 6.9%
R205 122333 123009 57088 53.46% 53877 56.08% 6.0%
R206 120928 123251 57958 52.53% 52747 56.80% 9.9%
R207 115438 115438 55271 52.12% 51867 55.07% 6.6%
R208 120011 117255 51764 56.37% 49541 58.24% 4.5%
R209 116840 120725 57455 51.63% 52453 55.84% 9.5%
R210 - - 56630 - 52478 - 7.9%
R211 - - 54781 - 50521 - 8.4%
RC201 - - 72902 - 67765 - 7.6%
RC202 - - 71149 - 67534 - 5.4%
RC203 - - 66275 - 61722 - 7.4%
RC204 - - 62255 - 60542 - 2.8%
RC205 - - 70920 - 68507 - 3.5%
RC206 - - 70242 - 64750 - 8.5%
RC207 - - 66333 - 61677 - 7.5%
RC208 - - 61994 - 58330 - 6.3%
AVG 53.18% 55.63% 6.1%

2. Run Time Performance

Table 8.2 compares the time performance of CGAS and FGAS. TC and TF columns

Table 8.1. Comparison of Results for IRPTW test cases

- 70 -

denote the running time for CGAS and FGAS to achieve their best solution

respectively. The column Tc=f refers to the time for CGAS to reach the solution with

same quality as FGAS. On average, CGAS spends 8 times longer than FGAS to

achieve the same-quality solution. For some cases, such as RC201, FGAS runs as

much as 44 times faster than CGAS.

Calculating each step precisely in CGAS does bring us high solution quality but at the

expense of computational time. In FGAS, concurrent computing will further increase

Test
Cases TC (s) Tc=f(s) TF (s) Tc=f/TF

C201 2203.20 766.93 173.16 4.43
C202 1741.33 677.69 154.72 4.40
C203 2423.05 554.14 134.75 4.14
C204 1399.94 602.68 209.20 2.88
C205 2763.52 638.76 224.32 2.85
C206 2497.03 1077.41 277.94 3.89
C207 2539.15 685.26 287.33 2.39
C208 2278.86 790.36 199.67 3.97
R201 828.35 754.32 22.45 33.60
R202 2089.18 734.89 34.66 21.20
R203 2027.01 649.47 30.72 21.14
R204 2046.14 716.17 74.77 9.58
R205 1789.15 924.79 36.49 25.34
R206 1862.95 689.81 49.36 13.98
R207 2454.79 922.07 55.57 16.59
R208 1468.98 1000.01 114.28 8.77
R209 1918.24 602.47 39.42 15.28
R210 1812.79 828.31 48.05 17.24
R211 2821.55 652.79 72.43 9.01
RC201 2052.38 1108.78 24.65 44.98
RC202 1817.48 951.42 33.93 28.04
RC203 2581.78 1057.68 47.27 22.50
RC204 2656.73 1210.69 87.83 13.78
RC205 1221.23 852.59 26.42 32.27
RC206 2782.00 729.54 30.58 23.86
RC207 2058.50 1008.37 34.28 29.42
RC208 2848.84 758.07 66.82 11.35
Avg 2110.52 812.7952 95.81 8.48

Table 8.2 Time performance of CGAS and FGAS

- 71 -

the computational speed. The subagent’s ability to intelligently detect potentially good

solution and realize it through its selfishness also contributes to its good run time

performance.

3. Solution Convergence

C201

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

500005200054000560005800060000

Objective Value

t
i
m
e
(
s
)

CGAS

FGAS

C205

0

200

400

600

800

1000

1200

1400

50000550006000065000

CGAS

FGAS

R205

0

500

1000

1500

2000

5000060000700008000090000100000110000

CGAS

FGAS

RC201

0

500

1000

1500

2000

2500

60000700008000090000100000110000120000130000

CGAS

FGAS

RC205

0

200

400

600

800

1000

1200

1400

60000700008000090000100000110000120000130000

CGAS

FGAS

R201

0

200

400

600

800

1000

50000100000150000

CGAS

FGAS

Figure 8.1 solution quality vs. running time

- 72 -

Figure 8.3 shows the solution convergence curves for FGAS and CGAS, using C201,

C205, R201, R205, RC201 and RC 201 as examples. We can see clearly FGAS

converges quickly to its best solution, while CGAS is relatively slow, especially when

it reaches its near best solution region. However, FGAS fails to reach the same quality

as CGAS, which can be seen from the x-coordinate of the curve’s end point.

4. Selfishness of subagents

Finally, we like to demonstrate the effectiveness of the subagents’ intelligence realized

through subagents’ selfishness. We conduct another set of experiments using

selfishness-excluded FGAS (Table 8.3). We list the results of selfishness-included

FGAS as the comparison. The columns “W/O Selfishness” and “With Selfishness”

give the average solution achieved by subagents without and with selfishness

respectively. The GAP column gives the gap between the solution qualities. Each test

cases run for 40000 iterations. The effectiveness of the subagents’ selfishness can be

clearly seen through the gap (Also see Figure 8.2).

The effect of selfishness

0

10000

20000

30000

40000

50000

60000

70000

80000

with selfishness w/o selfishness

O
bj
e
c
ti
v
e
 V
a
l
ue

Figure 8.2 Gap between solution quality given by selfishness-included and selfishness-excluded FGAS

- 73 -

Test Cases With Selfishness W/O Selfishness GAP
C201 53654 69237 0.29
C202 55756 77647 0.39
C203 56901 79508 0.40
C204 57401 81150 0.41
C205 52827 56793 0.08
C206 53685 80637 0.50
C207 53935 79953 0.48
C208 54052 71114 0.32
R201 63538 72333 0.14
R202 60593 71159 0.17
R203 56550 72387 0.28
R204 53139 67882 0.28
R205 57088 70232 0.23
R206 57958 71229 0.23
R207 55271 71334 0.29
R208 51764 69700 0.35
R209 57455 68052 0.18
R210 56630 66501 0.17
R211 54781 68236 0.25
RC201 72902 84361 0.16
RC202 71149 83744 0.18
RC203 66275 82398 0.24
RC204 62255 86501 0.39
RC205 70920 81217 0.15
RC206 70242 82991 0.18
RC207 66333 82392 0.24
RC208 61994 78066 0.26
Avg 59446.22 75064.96 0.27

Table 8.3 Comparison between FGAS with selfishness and without selfishness.

- 74 -

Chapter 9

Conclusion

In this thesis, we proposed two agent-based approaches for solving multi-objective

multi-constraint problems.

The rationality of agents and the strength of local-search are combined in FGAS to

successfully solve the large-scale optimization problem. The objectives are reflected

through the desire of a set of subagents and realized through their cooperation and

competition. By competition, the objectives of subagents are able to improve fast,

which indirectly lead to a fast solution convergence speed. By cooperation through

cooperativeness-based negotiation, FGAS is also able to produce a quality solution.

CGAS deals with the objectives in a centralized manner by assigning an objective

agent to each objective. Each objective agent works on the entire solution. In this way,

CGAS avoids the trouble of coordinating partial solutions handled by subagents. The

objective agents also take responsibility of satisfying constraints, but not the full set of

constraints. In this way, CGAS stands a chance to find a potentially good solution. In

particular, a hybrid meta-heuristic technique—hybrid Ants System and Tabu

Search—is introduced as optimization technique for objective agents. By adjusting the

relative importance of the two algorithms, the sub-models cater to problems with

different nature.

We apply our two systems to Inventory Routing Problem with Time Window.

Solutions were compared with the existing work, and we showed that our solution

quality was much better than the given benchmark results. In addition, CGAS gives a

better performance in solution quality and FGAS gives a better performance in

running time.

- 75 -

Further work could be conducted on the following directions:

1) One motivation of HASTS is code economy. Adjusting the relative importance of

two components and getting four derived models with different strength is much

easier than writing four different pieces of code. More works could be done on

proposing solving models following that idea. In MOMCP, different natured sub

problems need different optimization technique. It is highly code economic if the

derived models of a solving model cater for different objectives in MOMCP

respectively.

2) More work could be done on introducing more effective negotiating strategies and

further enhance the performance of FGAS.

- 76 -

Reference

[Armstrong and Durfee 1997] Armstrong, A. and E. Durfee. Dynamic Prioritization of Complex

Agents in Distributed Constraint Satisfaction Problems. P620-625.In Proceddings of the Fifteenth

International Joint Conference on Artificial Intelligence,1997.

[Ben-Tal, 1979] A. Ben-Tal, Characterization of pareto and lexicographic optimal solutions, in

Multiple Criteria Decision Making Theory and Application, Fandel and Gal, Eds., pp. 1--11.

SpringerVerlag, 1979

[Chainbi et al. 2001] W. Chainbi, A. Ben-Hamadou, and M. Jmaiel. A belief-goal-role theory for

multiagent systems. International Journal of Pattern Recognition and Artificial Intelligence,

15(3):435–450, 2001.

[Deb et al. 2000] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A fast elitist non-dominated

sorting genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer, K. Deb, G.

Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Parallel Problem Solving

from Nature -- PPSN VI, pages 849-858. Springer Verlag, 2000.

[Fonseca and Fleming 1993] Carlos M. Fonseca and Peter J. Fleming. Genetic algorithms for

multiobjective optimization: Formulation, discussion and generalization. In Stephanie Forrest,

editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 416-423,

San Mateo, California.Morgan Kaufmann, 1993.

[Franklin and Graesser, 1996] Franklin, S. and Graesser, A., Is it an Agent, or just a Program?:

A Taxonomy for Autonomous Agents, Proceedings of the Third International Workshop on Agent

Theories, Architectures, and Languages, SpringerVerlag, 1996.

[Gambardella et al. 1999] L. M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A

multiple ant colony system for vehicle routing problems with time windows. In D. Corne, M.

Dorigo, and F. Glover, editors, New Ideas in Optimization, pp. 63-76. McGraw Hill, 1999.

[Goldberg 1989] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, Reading, Massachusetts, 1989.

- 77 -

[Hajela and Lin 1992] P. Hajela and C.-Y. Lin. Genetic search strategies in multicriterion

optimal design. Structural Optimization, 4, pp. 99-107, 1992

[Hans, 1988] Hans, A.E.(1988) Multicriteria Optimization for highly accurate systems.

Multicriteria Optimization in Engineering and Sciences, W. Stadler(Ed.), Mathematical concepts

and methods in science and engineering, 19, 309-352. New York: Plenum press.

[Jung et al. 2001] H. Jung, M. Tambe, and S. Kulkarni. Argumentation as distributed constraint

satisfaction: Applications and results. In Proceedings of the International Conference on

Autonomous Agents, 2001.

[Jung and Tambe 2003] Hyuckchul Jung, Milind Tambe. Performance Models for Large Scale

Multiagent Systems: Using Distributed POMDP Building Blocks, In Proc of Autonomous Agents

and Multiagent Systems, 2003.

[Knowles and Corne 1999] J. D. Knowles and D. W. Corne. The pareto archived evolution

strategy: A new baseline algorithm for pareto multiobjective optimization. In Congress on

Evolutionary Computation (CEC99), volume 1, pages 98-105, Piscataway, NJ. IEEE Press, 1999.

[Kursawe 1991] Frank Kursawe. A variant of evolution strategies for vector optimization. In H.-P.

�Schwefel and R. M anner, editors, Parallel Problem Solving from Nature, pages 193-197, Berlin.

Springer, 1991.

[Lao 2002] Lao Yizhi, A Multiagent based approach to the inventory Routing Problem, National

University of Singapore, School of computing, 2002

[Lau et al. 2000] H. C. Lau, A. Lim, and Q. Z. Liu. Solving a Supply Chain Optimization Problem

Collaboratively. Proc. 17th National Conf. on Artificial Intelligence (AAAI), 780-785, 2000

[Lau et al. 2002] H. C. Lau, H. Ono, and Q. Z. Liu. Integrating Local Search and Network Flow

to Solve the Inventory Routing Problem. Proc. 19th National Conf. on Artificial Intelligence

(AAAI), 9-14, 2002.

[Lerman and Shehory 2000] K. Lerman and O. Shehory. Coalition formation for largescale

electronic markets. Proceedings of the International Conference on Multi-Aent Systems, 2000

- 78 -

[Li and Lim 2001] H. Li and A. Lim. A Metaheuristic for the Pickup and Delivery Problem with

Time Windows. 13th IEEE Int’l Conf on Tools with Artificial Intelligence (ICTAI), 2001

[Liu and Tang 2002] J. Liu, J. Han, and Y. Y. Tang. Multiagent oriented constraint satisfaction.

Artificial Intelligence, 136(1):101–144, 2002.

[Modi et al. 2003] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronous complete

method for distributed constraint optimization. In Proc of Autonomous Agents and Multiagent

Systems, 2003.

[Rao, S.S. 1991] Optimization theory and application. New Delhi: Wiley Eastern Limited, 1991.

[Rao and Georgeff 1995] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In

Proceedings of the First Intl. Conference on Multiagent Systems, pages 312–317, San Francisco,

1995. AAAI Press.

[Rudolph and Agapie 2000] G. Rudolph and A. Agapie. Convergence properties of some multi-

objective evolutionary algorithms. In Congress on Evolutionary Computation (CEC 2000),

volume 2, pages 1010-1016, Piscataway, NJ. IEEE Press, 2000.

[Schaffer 1985] J. David Schaffer. Multiple objective optimization with vector evaluated genetic

algorithms. Proceedings of an International Conference on Genetic Algorithms and Their

Applications, pages 93-100, Pittsburgh, PA. 1985.

[Schulze and Fahle 1997] J. Schulze, and T. Fahle, A Parallel Algorithm for the Vehicle Routing

Problem with Time Windows Constraints, 1997.

[Silverman 1986] B. W. Silverman. Density estimation for statistics and data analysis. Chapman

and Hall, London, 1986.

[Shehory et al. 1999] O. Shehory, S. Kraus, and O. Yadgar. Emergent cooperative goal

satisfaction in large-scale automated-agent systems. Artificial Intelligence, 1999.

[Srinivas and Ddb 1994] N. Srinivas and K. Deb. Multiobjective optimization using

nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221-248, 1994.

- 79 -

[Stone and Veloso 1997] P. Stone and M. Veloso, Multiagent Systems: A Survey from a Machine

Learning Perspective, Carnegie Mellon University, School of Computer Science, Pittsburgh, PA

CMU-CS-97-193, 1997.

[Stutzle and Dorigo 1999] T. Stutzle and M. Dorigo, AS Algorithms for the Traveling Salesman

Problem. In Evolutionary Algorithms in Engineering and Computer Science, pp. 163-183, Wiley,

1999.

[Yokoo et al. 1992] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint

satisfaction for formalizing distributed problem solving �. In Proceedings DCS, pages 614 621,

1992.

[Yokoo et al. 1998] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint

satisfaction problem: Formalization and algorithms. IEEE Transaction on Data and Knowledge

Engineering, 10:673--685, 1998

[Yokoo and Hirayama 1998] M. Yokoo and K. Hirayama. Distributed constraint satisfaction

algorithm for complex local problems. In Proceedings of the Third International Conference on

Multiagent Systems (ICMAS-98), pages 372-379, Paris, France, 1998.

[Zitzler and Thiele 1999] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A

comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary

Computation, 3(4), 257-271, 1999.

[Zitzler et al. 2001] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the

Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and

Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse

35, CH-8092 Zurich, Switzerland, May 2001.

