MODELING A DECISION SUPPORT SYSTEM FOR

BUILDABLE DESIGNS

YANG YI QING

[B.Eng. (Cons. Eng.); M.Sc. (Bldg. Mgt. & Eco.), Chongqing

University]

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF BUILDING

SCHOOL OF DESIGN AND ENVIRONMENT

NATIONAL UNIVERSITY OF SINGAPORE

2004

i

ACKNOWLEDGEMENTS

First of all, I wish to express my deep sense of gratutide to my supervisor, Professor Low Sui Pheng, without whose support and motivation this thesis would not have been possible nor would my Ph.D. study be successful. Needless to say, all his guidance goes beyond my Ph.D. candidature and will benefit me for the rest of my life.

I wish to express my deep sense of gratutide to Dr Wang Shou Qing for his inspiring guidance, timely encouragement, and providing ingenious ideas and exemplary suggestions. It was a great pleasure and precious experience working with him.

I would like to express my sincere appreciation to Dr Goh Bee Hua and Dr Mohammad Dulaimi for their excellent guidance, valuable comments, and time.

My earnest gratitude also goes to Dr Tham Kwok Wai, Dr Zhong Qi, Dr George Zhou, and Ms. Ge Yumin for their suggestions and assistance. I would also like to thank my friends – Mao Zhi, Wang Yong, Yu Tao, Lui Yin Sheng, Leung Nga-Na, Lin Chao, Gao Xia, Dong Bing and Li Yan, who have been a great help throughout my research study.

This thesis is dedicated specially to my dear family members for their endless love and support.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	xi
LIST OF TABLES	xiii
SUMMARY	XV

CHAPTER 1 INTRODUCTION

	1
1.2 Problem statement	3
1.3 Aim and objectives	6
1.4 Research strategy	6
1.5 Significance of the research	9
1.6 Scope of the research	10
1.7 Research hypotheses	11
1.7 Structure of the thesis	12
	 1.1 Background. 1.2 Problem statement. 1.3 Aim and objectives. 1.4 Research strategy. 1.5 Significance of the research. 1.6 Scope of the research. 1.7 Research hypotheses. 1.7 Structure of the thesis.

2.1 Introduction	15
2.2 Definitions of buildability	15
2.3 Evolution of concepts of buildability	18
2.3.1 Development of concept	18
2.3.2 Design for buildability	20

2.3.3 Phase of development in concepts	21
2.4 Buildability implementation	22
2.4.1 Concept guidelines and principles	22
2.4.2 Organizational approaches for buildability implementation	25
2.4.2.1 Total buildability management system	25
2.4.2.2 Program assessment, barriers and benefits	25
2.4.2.3 Implementation guide	26
2.4.2.4 Other studies	26
2.4.3 Surveys on implementation	27
2.5 Knowledge management in buildability	28
2.5.1 Knowledge classification.	29
2.5.2 Knowledge acquisition	
2.5.3 Knowledge representation	
2.5.4 Computerized systems for knowledge management	
2.6 Buildability evaluation and reviews	34
2.6.1 The regression analysis approach	34
2.6.2 The expert system approach	35
2.6.3 The artificial neural network approach	36
2.6.4 The fuzzy approach	37
2.6.5 The Buildable Design Appraisal System (BDAS)	
2.7 Summary	39

CHAPTER 3 HOUSE OF QUALITY FOR BUILDABLE DESIGNS (HOQBD)

	•••••	-		- /
3.1 Intro	oduction		 	41

3.2 An overview of Quality Function Deployment (QFD)41
3.2.1 History of QFD
3.2.2 The QFD process
3.2.3 House of Quality (HOQ)44
3.2.4 Advantages and drawbacks of QFD47
3.2.5 Advancements in QFD
3.2.6 Uses of QFD in construction
3.3 Analysis of conventional QFD for buildable designs
3.3.1 Quality, customer satisfaction and QFD50
3.3.2 Customer requirements, customer satisfaction and buildable designs52
3.3.3 Applications of the conventional QFD approach in buildable designs54
3.3.3.1 Analyzing customer requirements
3.3.3.2 Identifying design characteristics
3.3.3.3 Analyzing design characteristics
3.3.4 Critical analysis of conventional QFD for buildable designs
3.4 Developing a house of quality for buildable designs (HOQBD)63
3.4.1 Client requirements and buildability requirements and their importance ratings
3.4.2 Characteristics of building components and correlations
3.4.3 Contributions of characteristics on client and buildability requirements65
3.4.4 Client satisfaction evaluation and buildability satisfaction evaluation65
3.4.5 Weighting of characteristics for client satisfaction and for buildability satisfaction
3.5 Summary

CHAPTER 4 THE FUZZY HOQBD (FHOQBD) FOR BUILDABLE DESIGNS
4.1 Introduction
4.2 Fuzzy set theories (FST)
4.2.1 Differences between FST and traditional mathematical theories
4.2.2 Fuzzy sets and membership functions
4.2.3 Fuzzy numbers
4.2.3.1 Extension principle
4.2.3.2 Triangular fuzzy numbers
4.2.4 Linguistic variables73
4.2.5 Fuzzy-to-Crisp conversions
4.2.5.1 Lambda-cuts for fuzzy sets
4.2.5.2 Defuzzification methods76
4.3 Fuzzy set theories in QFD77
4.4 The fuzzy HOQBD for buildable designs
4.4.1 Using fuzzy numbers in the fuzzy HOQBD79
4.4.2 Using fuzzy inference mechanism in the fuzzy HOQBD82
4.4.3 Using fuzzy weighted average in the fuzzy HOQBD85
4.5 A hypothetical case study
4.5.1 Identifying client requirements and buildability requirements
4.5.2 Rating importance weightings of client requirements and buildability requirements
4.5.3 Identifying design characteristics and elaborating correlations
4.5.4 Rating and inferring strengths
4.5.5 Computing $CS\tilde{I}$, $BS\tilde{I}$, $WC\tilde{S}$, and $WB\tilde{S}$
4.6 Comparison of the fuzzy HOQBD with the conventional HOQ90

4.7 Summary	
-------------	--

CHAPTER 5 A HYBRID QFD SYSTEM FOR BUILDABLE DESIGNS

5.1 Introduction
5.2 Decision support systems
5.2.1 Analytic hierarchy process (AHP)94
5.2.2 Fuzzy systems
5.3 System architecture
5.4 Knowledge management model for Buildable Designs (KM-BD)100
5.4.1 Development of KM-BD
5.4.2 Knowledge management model for buildable attributes (KM-BA)102
5.4.3 Knowledge management model for design features (KM-DF)103
5.4.4 Knowledge management for relationships (KM-BA-DF)104
5.5 Inference process
5.5.1 Justification for Linguistic Order Weighted Average (LOWA)106
5.5.2 Use of the LOWA operator for inference107
5.5.3 Summary of the inference process
5.6 A hypothetical case study
5.6.1 Identifying buildability attributes and rating their importance weightings
5.6.2 Identifying design features and elaborating their correlations
5.6.3 Reasoning strength of each feature's contribution on its corresponding attributes
5.6.4 Inferring strength of attribute satisfaction
5.7 Summary

CHAPTER 6 A PROTOTYPE DECISION SUPPORT SYSTEM FOR BUILDABLE DESIGNS (BD-DSS)	119
6.1 Introduction	119
6.2 Objective of BD-DSS	119
6.3 Information requirements	120
6.4 System architecture	121
6.4.1 User interface	122
6.4.2 Knowledge engine	123
6.4.3 Inference engine	125
6.5 Implementation environment	
6.6 Using BD-DSS for buildable designs	127
6.6.1 Inputting information	129
6.6.2 Processing information	132
6.6.3 Outputting information	136
6.7 Summary	136

CHAPTER 7 VERIFICATION AND VALIDATION OF THE PROTOTYPE

SYSTEM	137
7.1 Introduction	.137
7.2 Verification	137
7.3 Case studies	.138
7.3.1 Case study 1 – JTC's two-storey standard factory	.138
7.3.1.1 Client requirements and buildability requirements	.139
7.3.1.2 Design alternatives and their design features	.140
7.3.1.3 The HOQBD of the design alternatives	141
7.3.1.4 Analysis of the design alternatives	.145

7.3.2 Case study 2 – The Warren (Condominium)	146
7.3.2.1 Client requirements and buildability requirements	148
7.3.2.2 Design alternatives and their design features	149
7.3.2.3 The HOQBD of the design alternatives	150
7.3.2.4 Analysis of the design alternatives	154
7.4 Discussions and feedback from practitioners	156
7.5 Summary	158

CHAPTER 8 CONCLUSION AND FUTURE STUDIES

••		160
	8.1 Reviews of research aim and objectives	.160
	8.2 Summary of key findings	160
	8.3 Conclusions and validation of hypotheses	162
	8.4 Theoretical contributions	.168
	8.5 Practical contributions	170
	8.6 Policy implications	172
	8.7 Limitations of the research	173
	8.8 Recommendations for future studies	175

REFERENCES	
APPENDIX A	197
APPENDIX B	200
APPENDIX C	201
APPENDIX D	

APPENDIX E	
APPENDIX F	

LIST OF FIGURES

Fig. 1.1 Single-project fragmentation in construction	3
Fig. 1.2 Research methodology	7
Fig. 1.3 Relationships between the chapters	12
Fig. 2.1 Evolution of buildability concepts	21
Fig. 3.1 The Four Phase approach of QFD	43
Fig. 3.2 House of Quality	43
Fig. 3.3 The Kano model	51
Fig. 3.4 Customers and their requirements of buildable designs	52
Fig. 3.5 The conventional HOQ for evaluating design alternatives of the high-rise project	55
Fig. 3.6 HOQBD	63
Fig. 4.1 Diagram for (a) Crisp set boundary and (b) fuzzy set boundary	70
Fig. 4.2 Triangular fuzzy number $M = (a, b, c)$	72
Fig. 4.3 Nine-term set of linguistic importance terms and satisfaction terms	79
Fig. 5.1 Decision based on the AHP	95
Fig. 5.2 Overview of the fuzzy modeling environment	97
Fig. 5.3 Architecture of the fuzzy QFD system for buildable designs	99
Fig. 5.4 Main research tasks	101
Fig. 5.5 Categories, subcategories and attributes of KM-BA	102
Fig. 5.6 Structure of KM-DF	104
Fig. 5.7 Schematic representation of the inference process	110
Fig. 6.1 UML-based information class hierarchy of the HOQBD	121
Fig. 6.2 UML-based object model of intelligent experts	122

Fig. 6.3 UML-based case view of the BD-DSS	124
Fig. 6.4 Welcome screen for the BD-DSS	128
Fig. 6.5 Main menus and submenus of the control form	128
Fig. 6.6 The form for project information	129
Fig. 6.7 The form for team information	130
Fig. 6.8 The form for client attributes	130
Fig. 6.9. The form for buildability attributes	131
Fig. 6.10 The form for wall and finishes systems	132
Fig. 6.11 The form for correlations of design features	133
Fig. 6.12 The form for importance weightings of client attributes	133
Fig. 6.13 The form for relationships between client attributes and design features	135
Fig. 6.14 The form for assigning the 21 st relationship between the client attribute and the design feature	135
Fig. 6.15 The form for relationships between buildability attributes and design features	135
Fig. 6.16 The form for assigning the 21 st relationship between the buildability attribute and the design feature	135
Fig. 6.17 The form for the HOQBD	136
Fig. 7.1 Site plan of the Warren (Condominium)	147
Fig. 8.1 Architecture of concurrent information environment for buildable designs	176
Fig. 8.2 Example of information sharing and exchange in the concurrent information environment	177
Fig. 8.3 Comparison between the conventional customer concept and the broad customer concept	178
Fig. 8.4 An integrated customer-driven design environment	180

LIST OF TABLES

Table 3.1 Project data	54
Table 3.2 Analyzing requirements	57
Table 3.3 Differences between the two design solutions	60
Table 4.1 The four popular defuzzification methods	77
Table 4.2 Nine-term sets of linguistic importance terms and satisfaction terms	80
Table 4.3. Computing methods for $CS\tilde{I}$, $BS\tilde{I}$, $WC\tilde{S}$, and $WB\tilde{S}$	85
Table 4.4 Client requirements and their importance weightings	86
Table 4.5 HOQBD for evaluating design alternatives of the high-rise residential project	87
Table 5.1 The importance labels and the satisfaction labels and their numeric representations	108
Table 5.2 Similarities and differences between the two design solutions	112
Table 5.3 Buildability attributes and their importance	113
Table 5.4 The importance labels and satisfaction labels assigned by design team members	114
Table 5.5. The hybrid QFD for a high-rise residential project	116
Table 7.1 Project data of the JTC project	139
Table 7.2 Client requirements and their details of the JTC project	139
Table 7.3 Buildability requirements and their details of the JTC project	139
Table 7.4 Design Alternative 1 of the JTC project	140
Table 7.5 Design Alternative 2 of the JTC project	141
Table 7.6 Design Alternative 3 of the JTC project	141
Table 7.7 The HOQBD for Design Alternative 1	142
Table 7.8 The HOQBD for Design Alternative 2	143
Table 7.9 The HOQBD for Design Alternative 3	144

Table 7.10 Final results of the JTC project	146
Table 7.11 Project data of the Warren	147
Table 7.12 The total buildability score of the Warren	148
Table 7.13 Client requirements and their attributes of the Warren	148
Table 7.14 Buildability requirements and their attributes for the Warren	149
Table 7.15 Design Alternative 1 of the Warren	149
Table 7.16 Design Alternative 2 of the Warren	150
Table 7.17 Design Alternative 3 of the Warren	150
Table 7.18 The HOQBD of Design Alternative 1 (the Warren)	151
Table 7.19 The HOQBD of Design Alternative 2 (the Warren)	152
Table 7.20 The HOQBD of Design Alternative 3 (the Warren)	153
Table 7.21 Final results of the Warren	154
Table 7.22 The schedule of the decision-making process in the two case projects	157
Table 8.1 A building design with a perfect buildable score	171

SUMMARY

The construction industry is fragmented in nature. Buildable designs have been regarded as an important strategy to enhance overall performance in the fragmented industry. However, this objective has been difficult to realize due to the lack of buildability knowledge and the shortcomings of formal decision-making methods in the early design process.

The purpose of this study is to develop an integrated design approach to decisionmaking in buildable designs based on the principles and methods of concurrent engineering.

To develop such an approach, the House of Quality for Buildable Designs (HOQBD) was constructed to support the integrated decision-making of buildable designs by adapting matrices of the conventional HOQ. The algorithms and inference mechanisms of the HOQBD were then developed by fuzzy set theories. In the fuzzy HOQBD, triangular fuzzy numbers were used to intuitively represent the linguistic and imprecise nature of decisions and judgments of buildable designs so as to objectively and realistically reflect the process of buildable design decision-making. Fuzzy inference mechanisms and algorithms were established to automatically process the design-relevant QFD information. To further extend the fuzzy HOQBD for buildable designs, a hybrid QFD system was proposed by incorporating the knowledge-based system into the fuzzy HOQBD. In the hybrid QFD system, three knowledge bases, namely, knowledge of buildability attributes, knowledge of buildable design features and knowledge of relationships between

buildability attributes and buildable design features, were integrated into the process of HOQBD implementation to facilitate the transfer of design-relevant construction knowledge and experience. The Linguistic Order Weighted Average (LOWA) operator was used to process design-relevant buildability information.

A prototype software, named a Decision Support System for Buildable Designs (the BD-DSS), was developed to demonstrate and test the proposed concurrent design approach in Singapore. The system analysis of the BD-DSS was carried out by the unified modeling language (UML). The BD-DSS was developed using Microsoft Visual Basic (Professional version 6.0) for Windows. The prototype was implemented and tested by two real-life cases, namely, an industrial project and a residential project. The BD-DSS has demonstrated its ability in quantitative buildability evaluation through a cooperative multi-functional project team in two aspects. Feedback from practitioners also showed that the proposed approach is a viable decision-support tool for buildable designs.

The BD-DSS developed based on the fuzzy HOQBD advanced the traditional QFD for buildable designs in two aspects. Firstly, it can provide a structured and systematic way to support the decision-making process of buildable designs. Secondly, it can create an information-centered environment to aid the transfer, acquisition and utilization of buildability knowledge and relevant information. The possible directions for future research include provision of a supportive environment, assessment and improvement of the concurrent information representation model, automated acquisition of the integrated design and construction knowledge, development of intelligent software tools, and extension and combination of QFD with research efforts.