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Summary 

This thesis focuses on techniques that improve flexibility and accuracy of Multiple 

Layer Perceptron (MLP) neural network. It covers three topics of incremental learning 

of neural networks in terms of output attributes, task decomposition based on 

incremental leaning and feature selection for neural networks with task decomposition. 

 

In the first topic of the thesis, the situation of adding a new set of output attributes into 

an existing neural network is discussed. Conventionally, when new output attributes 

are introduced to a neural network, the old network would be discarded and a new 

network would be retrained to integrate the old and the new knowledge. In this part of 

my thesis, I proposed three Incremental Output Learning (IOL) algorithms for 

incremental output learning. In these methods, a new sub-network is trained under IOL 

to acquire the new knowledge and the outputs from the new sub-network are 

integrated with the outputs of the existing network when a new output is added. The 

results from several benchmarking datasets showed that the methods are more 

effective and efficient than retraining. 

 

In the second topic, I proposed a hierarchical incremental class learning (HICL) task 

decomposition method based on IOL algorithms. In this method, a K -class problem is 

divided into K  sub-problems. The sub-problems are learnt sequentially in a 

hierarchical structure. The hidden structure for the original problem’s output units is 

decoupled and the internal interference is reduced. Unlike other task decomposition 

methods, HICL can also maintain the useful correlation within the output attributes of 



                                                                                                                          vi                 

a problem. The experiments showed that the algorithm can improve both regression 

accuracy and classification accuracy very significantly. 

 

In the last topic of the thesis, I propose two feature selection techniques – Relative 

Importance Factor (RIF) and Relative FLD Weight Analysis (RFWA) for neural 

network with class decomposition. These approaches involved the use of Fisher’s 

linear discriminant (FLD) function to obtain the importance of each feature and find 

out correlation among features. In RIF, the input features are classified as relevant and 

irrelevant based on their contribution in classification. In RFWA, the irrelevant 

features are further classified into noise or redundant features based on the correlation 

among features. The proposed techniques have been applied to several classification 

problems. The results show that they can successfully detect the irrelevant features in 

each module and improve accuracy while reducing computation effort. 
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Chapter 1  

Introduction 
 

An Artificial Neural Network, or commonly referred to as Neural Network (NN), is an 

information processing paradigm that works in an entirely different way compared to 

modern digital computers. The original paradigm of how neural network works is 

inspired by the way biological nervous systems processes information, such as the 

human brain. In this paradigm, the information is processed in a complex novel 

structure, which is composed of a large number of highly interconnected processing 

elements (neurons) working in unison. The bionic structure permits neural networks to 

adapt itself to the surrounding environment, so that it can perform useful computation, 

such as pattern recognition or data classification. This adaptation is carried out by a 

learning process. Learning in biological systems involves adjustments to the synaptic 

connections that exist between the neurons. This is true for neural networks as well.[1] 

Thus, the following definition can be offered to a neural network viewed as an 

adaptive machine [2]: 

A neural network is a massively parallel distributed processor made up of simple 
processing units, which has a natural propensity for storing experiential 
knowledge and making it available for use. It resembles the brain in tow respects: 
1. Knowledge is acquired by the network from its environment through a learning 

process. 
2. Interneuron connection strengths, known as synaptic weights, are sued to store 

the acquired knowledge. 
 

Neural networks process information in a self-adaptive, novel computational structure, 

which offers some useful properties and capabilities, compared to conventional 

information processing systems: 
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� Nonlinearity. A neural network, which is composed by many interconnected 

nonlinear neurons, is nonlinear itself. This nonlinearity is distributed throughout 

the network and makes neural network suitable for solving complex nonlinear 

problems, such as nonlinear control functions and speech signal processing. 

� Input-output Mapping. In supervised learning of neural networks, the network 

learns from the examples by constructing an input-output mapping for the problem. 

This property is useful in model-free estimation [3]. 

� Adaptivity. Neural networks have built-in capability to adapt their synaptic weights 

to changes in the surrounding environment. 

� Evidential Response. In pattern classification, a neural network can be designed to 

provide information about the confidence in the decision made, which can be used 

to reject ambiguous patterns. 

� Contextual Information. In neural networks, knowledge is represented by the very 

structure and activation state of a neural network. Because each neuron can be 

affected by the global activity of other neurons, hence, the contextual information 

is represented naturally. 

� Fault Tolerance. If a neural network is implemented in hardware form, its 

performance degrades gradually under adverse operating conditions, such as 

damaged connection links, since the knowledge is distributed in the structure of the 

NN [4]. 

� VLSI Implementability. Because of the parallel framed nature of neural network, it 

is suitable for implementation using very-large-scale-integrated (VLSI) technology. 

� Uniformity of Analysis and Design. The learning algorithm in every neuron is 

common. 
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� Neurobiological Analogy. It is easy for engineers to obtain new ideas from 

biological brain to develop neural network for complex problems. 

 

Because of the useful properties, neural networks are more and more widely adopted 

for industrial and research purposes. Many neural network models and learning 

algorithms have been proposed for pattern recognition, data classification, function 

approximation, prediction, optimization, and non-linear control. These models of 

neural networks belong to several categories, such as Multiple Layer Perceptron 

(MLP), Radial Basis-Function (RBF) [5], self-organizing maps (SOM) [6] and 

Supported Vector Machine (SVM), etc. Among them, the MLP is the most popular 

one. In my thesis, I will focus on MLP neural networks only. 

 

The major issues of present neural networks are flexibility and accuracy. Most of 

neural networks are designed to work in a stable environment. They may fail to work 

properly when environment changes. As non-deterministic solutions, accuracy of 

neural networks is always an important problem and has a great room for improvement. 

In order to improve the flexibility and accuracy of a MLP network, there are three 

factors that should be considered: (1) the network should be able to adapt itself to the 

environment changes; (2) the proper network structure should be selected to make 

maximum use of the information contained in the training data; (3) the training data 

should be preprocessed to filter out the irrelevant information. In this thesis, I will 

discuss the issues in detailed.  
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1.1 Changing Environment – Incremental Output Learning 

Usually, a neural network is assumed to exist in a static environment in its learning 

and application phases. In this situation, the dimensions of output space and input 

space are fixed and all sets of training patterns are provided prior to the learning of 

neural network. The network adapts itself to the static environment by updating its link 

values. However, in some special applications the network can be exposed into a 

dynamic environment. The parameters may change with time. Generally, the dynamic 

environment can be classified into the following three situations. 

 

a) Incomplete training pattern set in the initial state: New training patterns 

(knowledge) are introduced into the existing system during the training 

process[8][9][10][28]. 

b) Introduction of new input attributes into the existing system during the 

training process: it causes an expansion of the input space [26][27]. 

c) Introduction of new output attributes into the existing system during the 

training process: it causes an expansion of the output space. 

 

Traditionally, if any of the three situations happens to a neural network, the network 

structure that is already learnt will be discarded and a new network will be 

reconstructed to learn the information in the new environment. This procedure is 

referred to as retraining method. There are some serious shortcomings with this 

retraining method. Firstly, this method does not make use of the information already 

learnt in the old network. Though the environment has changed, a large portion of the 

learnt information in the old network is still valid in the new environment. Relearning 

of this portion of information requires long training time. Secondly, the neural network 
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cannot provide its service during the retraining, which is unacceptable in some 

applications. Hence, it is necessary to find a solution to enable it to learn the new 

information provided incrementally without forgetting the learnt information. Many 

researchers have proposed such incremental methods for the problems in the first and 

the second categories, which will be discussed in section 2.1. 

 

During the library research, I cannot find any solutions proposed in literature for the 

problems in the third category. In fact, such category of problems can be further 

divided into two groups. If the new output attributes are independent with the old ones, 

the incremental learning needs only to acquire the new information, since the learnt 

information is still valid in the new environment. However, if there are conflicts 

between the new and old output attributes, the learnt information must be modified to 

meet the new environment while the new information is being learnt. In this thesis, 

problems belong to this category will be discussed in detail and several solutions will 

be proposed. 

 

 

1.2 Network Structure – Task Decomposition with 

Modular Networks 

The most important issue on the performance of a neural network system is its ability 

to generalize beyond the set of examples on which it was trained. This issue is 

grievous in some applications, especially in dealing with real-world large-scale 

complex problems. Recently, there has been a growing interest in decomposing a 

single large neural network into small modules; each module solves a fragment of the 

original problem. These modular techniques not only improve the generalization 
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ability of a neural network, but also increase the learning efficiency and simplify the 

design [11]. There are some other advantages [12] [13] including: 1) Reducing model 

complexity and making the overall system easier to understand. 2) Incorporating prior 

knowledge. The system architecture may incorporate a prior knowledge when there 

exists an intuitive or a mathematical understanding of problem decomposition. 3) Data 

fusion and prediction averaging. Modular systems allow us to take into account data 

from different sources and nature. 4) Hybrid systems. Heterogeneous systems allow us 

to combine different techniques to perform successive tasks, ranging, e.g., from signal 

to symbolic processing. 5) They can be easily modified and extended. 

 

The key step of designing a modular system is how to perform the decomposition – 

using the right technique at the right place and, when possible, estimating the 

parameters optimally according to a global goal. There are many task decomposition 

methods proposed in literature, which roughly belong to the following classes. 

 

•  Domain Decomposition. The original input data space is partitioned into several 

sub-spaces and each module (for each sub-problem) is learned to fit the local data 

on each sub-space [11][14]-[17][39][40]. 

•  Class Decomposition. A problem is broken down into a set of sub-problems 

according to the inherent class relations among training data [18][19][42]. 

•  State Decomposition. Different modules are learned to deal with different states in 

which the system can be [20][21][43][44]. 

 

In most of the proposed task decomposition methods, each sub-network is trained in 

parallel and independently with all the other sub-networks. The correlation between 
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classes or sub-networks is ignored. A sub-network can only use the local information 

restricted to the classes involved in it. The sub-networks cannot exchange with other 

sub-networks information already learnt by them. Though the harmful internal 

interference between the classes is avoided, the global information (or dependency) 

between the classes is neglected as well. This global information is very useful in 

solving many problems. Hence, it is necessary to find a new method that utilizes the 

information transfer between sub-networks while keeping the advantages of a modular 

system. 

 

1.3 Data Preprocessing – Feature Selection for Modular 

Neural Network 

In section 1.2, I showed that most of task decomposition methods, such as Class 

Decomposition, split a large scale neural network into several smaller modules. Every 

module solves a subset of the original problem. Hence, the optimal input feature space 

that contains features useful in classification for each module is also likely to be a 

subset of the original one. The input features that are useless for a specified module 

contained in the original data set can disturb the proper learning of the module. For the 

purpose of improving classification accuracy and reducing computation effort, it is 

important to remove the input features that are not relevant to each module. A natural 

approach is to evaluate every feature and remove those with low importance. This 

procedure is often referred to as feature selection technique.  

 

In order to evaluate the importance of every input feature in a data set, many 

researchers have proposed their methods from different perspectives. Roughly, these 

methods can be classified into the following categories. 
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1. Neural network performance perspective. The importance of a feature is 

determined based on whether it helps improve the performance of neural network 

[22].  

2. Mutual information (entropy) perspective. The importance of a feature is 

determined based on mutual information among input features and input and 

output features[23][59]. 

3. Statistic information perspective. The importance of a feature can be evaluated by 

goodness-score functions based on the distribution of this feature [24][25][60].  

 

A common problem of the existing feature selection techniques is that they need 

excessive computational time, which is normally longer than training the neural 

network actually used in application. It is not acceptable in some time-critical 

applications. It is necessary to find a new technique that utilizes reasonable 

computation time while removing the irrelevant input features. 

 

1.4 Contribution of the Thesis 

In order to improve the performance of the existing neural networks in terms of 

accuracy, learning speed and network complexity, I have researched in the areas 

introduced by section 1.1 to 1.3. The research results discussed in this thesis covers the 

topics of automatic adaptation of the changing environment, task decomposition and 

feature selection. 
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In the discussion of automatic adaptation, I proposed three incremental output 

learning (IOL) methods, which were completed newly developed by us. The 

motivation of these IOL methods is to make the existing neural network automatically 

adapts to the output space changes, while keeping proper operation during the 

adaptation process. IOL methods construct and train a new sub-network using the 

added output attributes based on the existing network. They have the ability to train 

incrementally and allow the system to modify the existing network without excessive 

computation. Moreover, IOL methods can reduce the generalization error of the 

problem compared to conventional retraining method. 

 

In the discussion of task decomposition, a new task decomposition method of 

hierarchical incremental class learning (HICL) is proposed, which is developed based 

on one of the IOL methods. The objective is to facilities information transfer between 

classes during training, as well as reduces harmful interference among hidden layers 

like other task decomposition methods. I also proposed two ordering algorithms of 

MSEF and MSEF-FLD to determine the hierarchical relationship between the sub-

networks. HICL approach shows smaller regression error and classification error than 

some widely used task decomposition methods. 

 

In the discussion of feature selection, I propose two new techniques that are designed 

specially for neural networks using task decomposition (class decomposition). The 

objective is to detect and remove irrelevant input features without excessive 

computation. These two methods, namely Relative Importance Factor (RIF) and 

Relative FLD Weight Analysis (RFWA), need much less computation than other 
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feature selection methods. As an additional advantage, they are also able to analyze the 

correlation between the input features clearly. 

 

All the methods and techniques proposed in this thesis are designed, developed and 

tested by the student under the guidance of the supervisor. 

 

In brief, in the thesis, I proposed several new methods and techniques in nearly every 

stage of neural network development, from pre-processing of data, choosing proper 

network structure to automatic adapting of environment changes during operation. 

These methods and techniques are proven to improve the performance of neural 

network systems significantly with the experiments conducted with real world 

problems. 

 

 

1.5 Organization of the Thesis 

 

In this chapter, I have briefly introduced some background information and 

motivations of my researches, which covers the area of automatic adaptation of the 

changing environment, task decomposition and feature selection. In chapter 2, I will 

introduce the IOL methods and prove their validity by experiments. In chapter 3, 

HCIL method will be introduced. It is proven to have better performance than some 

other task decomposition methods by experiments. In chapter 4, I will introduce RIF 

and RFWA feature selection techniques and prove their performance by experiments. 

The conclusion of the thesis and some suggestions to the future work are given in 

chapter 5. 



Chapter 2     Incremental Learning in Terms of Output Attributes           11 

Chapter 2  

Incremental Learning in Terms of Output 

Attributes 

 

2.1 Background 
 
Conventionally, the environment in which a neural network is being trained during its 

learning phase can be assumed to be static, wherein the input and output space 

together with the training patterns are assumed to be fixed before training. In such an 

environment, the learning process takes place in the form of “the neural network 

updating its parameters or by updating its network structure according to the given 

problem” [26].  

 

However, in the real world, neural networks are often exposed to dynamic 

environments instead of static ones. Most likely a desiner do not know exactly in 

which type of environment a neural network is going to be used. Therefore, it would 

be attractive to make neural network more adaptive, capable of combining knowledge 

learned in the previous environment with new knowledge acquired in the changed 

environment [27] automatically. A natural approach to this kind of problems is 

keeping the main structure of existing neural network unchanged to preserve the learnt 

information and building additional structures (hidden units or sub-networks) to 

acquire new information. Because the existing neural network looks like increasing its 
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structure to adapt it to the changed environment during the process, this approach is 

often referred as incremental learning.  

 

Changing environment can be classified into three categories: 

 

a) Incomplete training pattern set in the initial state: New training patterns 

(knowledge) are introduced into the existing system during the training 

process. 

b) Expansion of input space: New inputs are introduced into the existing system. 

c) Expansion of output space: New outputs are introduced into the existing 

system. 

 

Many researchers have come out with incremental learning methods under the first 

category. Fu et al. [9] presented a method called “Incremental Back-Propagation 

Learning Network”, which employs bounded weight modification and structural 

adaptation learning rules and applies initial knowledge to constrain the learning 

process. Bruzzon et al. [10] proposed a similar method. [8] proposed a novel classifier 

based on the RBF neural networks for remote-sensing images. [28] proposed a method 

to combine an unsupervised self-organizing map with a multilayered feedforward 

neural network to form the hybrid Self-Organizing Perceptron Network for character 

detection. These methods can adapt network structure and/or parameters to learn new 

incoming patterns automatically, without forgetting previous knowledge. 

 

For the second category, Guan and Li [26] proposed “Incremental Learning in terms of 

Input Attributes (ILIA)”. It solves the problem via a “divide and conquer” approach. In 



Chapter 2     Incremental Learning in Terms of Output Attributes           13 

this approach, a new sub-network is constructed and trained using the ILIA methods 

when new input attributes are introduced to the network. [27] proposed Incremental 

Self Growing Neural Networks (ISGNN), which implements incremental learning by 

adding hidden units and links to the existing network. 

 

In the research, I focused on the problems of third category, where one or more new 

output attributes must be added into the current systems. For example, the original 

problem has N input attributes and K output attributes. When another output attribute 

needs to be added into the problem domain, the output vector will contain K+1 

elements. Conventionally, the problem is solved by discarding the existing network 

and redesigning a new network from scratch based on the new output vector and 

training patterns. However, this approach would waste the previously learnt 

knowledge in the existing network, which may still be valid in the new environment. 

The operation of the neural network also has to be broken during the training of new 

network, which is unacceptable in some applications, especially real-time applications. 

If self-adapted leaning can be performed quickly and accurately without affecting the 

operation of the existing network, it will be a better solution compared to merely 

discarding the existing network and retraining another network [26].  

 

Self adaptation of a neural network with new incoming output attributes is a new 

research area and I cannot find any methods being proposed in literatures. Through the 

research, I find that it can be achieved by either external adaptation or internal 

adaptation. In external adaptation, the problem in a changing environment is 

decomposed into several sub-problems, which are then solved by sub-networks 

individually. While the environment is changing, knowledge that is new to the trained 
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network is acquired by one or more new sub-networks. The existing network remains 

unchanged during adaptation. The final output is obtained by combining the existing 

outputs and new outputs (the sub-networks) together. In internal adaptation, the 

structure of the existing network is adjusted to meet the needs of the new environment. 

This structural adjustment may include insertion of hidden units or links and change of 

link weights, etc. In this chapter, I propose three Incremental Output Learning (IOL) 

methods based on external adaptation. 

  

The rest of the chapter is organized as follows. In section 2.2, details of the IOL 

methods are introduced. In section 2.3, I present the experiments and results. In section 

2.4, I discuss observations made from the experiments. In section 2.5 I summarize my 

research work in this area. 

 

2.2 External Adaptation Approach: IOL 
The external adaptation approach for incremental output learning solves the problem 

of self adaptation to the changing environment in a “divide and conquer” way. The 

basic structure is similar to the Modular Neural Networks (MNN) [29] model. This 

approach divides the changing environment problem into several smaller problems: 

discarding out-of-date or invalid knowledge, acquiring new knowledge from the 

incoming attributes and reusing valid learnt knowledge. These sub-problems are then 

solved with different modules. During the last stage, sub-solutions are integrated via a 

multi-module decision-making strategy.  
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In the proposed IOL methods, the existing network (or old sub-network) is kept 

unchanged during self-adaptation.  This existing sub-network is designed and trained 

before the environmental change. Its inputs, outputs and training patterns are left 

untouched as what they were before the environmental change. Reuse of valid learnt 

knowledge is achieved naturally.  

 

If all the information leant in the existing network is still valid in the changed 

environment, it can be fully reused in the new structure. In this case, a new sub-

network is designed and trained to acquire the new information only. The inputs, 

outputs and training patterns must cover what are changed at least. However, if some 

of the learnt information in the existing network is not valid in the new environment, it 

may make the outputs of the existing network different from what are desired in the 

new environment. In others words, it may disturb the proper leaning of new 

information. In this case, it can be considered that there is a “conflict” between the 

learnt information and new information and the new sub-net work must be able to 

discard the invalid information while acquiring new information. The inputs, outputs 

and training patterns should cover not only those are new after environmental change, 

Figure 2.1 The External Adaptation Approach – an Overview 

Existing 
KnowledgeExisting Network

(Old Sub-network)
New Sub-network 

Overall Solution

Training Samples
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but also some of the original ones before the change, so that it is able to know what 

learnt information should be discarded.  The design of new sub-network is based on 

the Rprop learning algorithm with one hidden layer and a fixed number of hidden units. 

 

2.2.1 IOL-1:  Decoupled MNN for Non-Conflicting Regression 

Problems 

If there is no conflict between the new and learnt knowledge, a regression problem 

with an increased number of output attributes can be solved using a simple variation of 

decoupled modular networks.  

 

The network structure of IOL-1 is shown in Figure 2.2. If the new knowledge carried 

by the new output attribute and training patterns does not bear any conflict with the 

learnt knowledge, the learnt knowledge in the old sub-network will still be valid under 

the new environment and does not need any modification. Therefore, the sub-problem 

of discarding out-of-date or invalid knowledge is avoided. In IOL-1, there is no 

knowledge exchange between the sub-networks. The new sub-network is trained 

independently with the old sub-network for the incoming output attribute with all 

available training patterns. In another word, the new sub-network contains all input 

attributes and one output attribute. The outputs of the old and new sub-networks 

together form the complete output layer for the changed environment. When a new 

input sample is presented at the input layer, the old sub-network and new sub-network 

work in parallel to generate the final result.  
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The structure of IOL-1 is very simple because it does not need the multi-module 

decision-making step as required in normal MNN.  

 

 The IOL-1 algorithm is composed of two stages. The procedure is as follows.  

 

Stage 1: the existing network is retained as the old sub-network, as shown in Figure 

2(a).  

 

Stage 2: construct and train the new sub-network.                                         

Step 1: Construct an MLP with one hidden layer as the new sub-network. The 

input layer of the new sub-network receives all input features available and 

the output layer contains only one output unit representing the incoming 

output attribute. 

Step 2: Use the Cross-Validation Model Selection algorithm [2] to find out the 

optimal number of hidden units for the new sub-network. 

Step 3: Train the new sub-network obtained in step 1.  

Hidden Layer 

Output Layer 

Input Layer 

Hidden Layer 

Output Layer 

New Hidden Layer 

New Output Node 

Input Layer 

b. Integrated Network 

New Output Layer 

a. Existing Network 

Figure 2.2 IOL-1 Structure 
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Because the outputs from the existing network are still valid in the changed 

environment, they can be used as part of the new outputs directly. The other part of the 

new outputs that reflects the new information can be obtained directly from the new 

sub-network. Hence, there is no need to integrate the old and new networks together 

with any additional process, because they are integrated naturally. 

 

IOL-1 is a variation of the traditional decoupled modular neural networks. It has the 

advantages of decoupled MNN naturally. For example, it avoids possible coupling 

among the hidden layer weights and hence reduces internal interference between the 

existing outputs and the incoming output [26] [30]. Because the old and new sub-

networks process input samples in parallel, the input-output response time will not be 

affected much after adaptation. Another advantage is that the old sub-network 

(existing network) can continue to carry out normal work during the adaptation 

process, since the new sub-networks is being trained independently. The last two 

advantages make IOL-1 perfect for real-time applications. 

 

Though IOL-1 has many advantages, its usage is limited. Because the old sub-network 

and the new sub-network are independent from each other, the learnt knowledge in the 

existing network that is no longer valid in the changed environment cannot be 

discarded by the new sub-network. Therefore, IOL-1 can be used only when there are 

no conflicts between the new and learnt knowledge. In most regression problems, 

there are few conflicts so that IOL-1 is suitable. However, in classification problems 

there are likely conflicts among the new and learnt classification boundaries. It should 

be noted that in the existing network, each input sample has to be assigned with one 
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out of the many old class labels. If an input sample meant for the incoming class is 

presented to IOL-1, both the new and old network will assign a different class label to 

it. This will be a problem for IOL-1. Hence, IOL-1 is not suitable for classification 

problems. 

 

2.2.2 IOL-2: Decoupled MNN with Error Correction for 

Regression and Classification Problems 

In order to handle the sub-problem of discarding invalid knowledge in the existing 

network, IOL-2 is developed from IOL-1 based on an “error generation and error 

correction” model. In such a model, the old sub-network will produce a solution based 

on the learnt knowledge when a sample associated with the new output attribute is 

presented at the input layer. This solution will not be accurate because the existing 

output attributes do not have the knowledge carried by the incoming attribute. Hence, 

there is always an error between the existing output and the new desired output in the 

changed environment. In IOL-2, this error is “corrected” by a new sub-network that 

runs in parallel with the old sub-network. In another word, a new sub-network is 

trained to minimize the error between the combined solution from the old and new 

sub-networks and the desired solution for each input sample. 

  

IOL-2 is composed of two stages. The procedure is as follows.  

 

Stage 1: the existing network is retained as the old sub-network, as shown in Figure 

2.3.  
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Stage 2: construct and train the new sub-network.                                         

Step 1: Construct an MLP with one hidden layer as the new sub-network. The 

input layer of the new sub-network receives all input features available and 

the output layer contains K+1 units, where K is number of output units in 

the existing network. 

Step 2: Use the Cross-Validation Model Selection algorithm to find out the optimal 

number of hidden units for the new sub-network. 

Step 3: Train the new sub-network obtained in step 1 to minimize the difference 

between the desired solutions and the combined solutions from the old and 

new sub-networks when training samples are presented at the input layer. 

 

In IOL-2, the output layer of the new sub-network integrates the output form old 

network and new information obtained in the hidden layer of the new sub-network. 

Learnt information that is invalid in the changed environment from the old network is 

also discarded by this output layer. 

 

IOL-2 has the same advantages as IOL-1. The existing network can work normally 

when adapting to the changed environment. The network depth will not be changed. It 

is suitable for real-time applications. 
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2.2.3 IOL-3: Hierarchical MNN for Regression and Classification 

Problems 

In IOL-1, the sub-problem of discarding invalid learnt knowledge is avoided. In IOL-2, 

this sub-problem is solved by modifying the objective function of the new sub-

network to minimize the error of the combined solution of the old and new networks. 

In IOL-3, I try to solve this sub-problem together with new knowledge acquiring in the 

same new sub-network. 

 

Unlike IOL-1 and IOL-2, IOL-3 is implemented with a hierarchical neural network 

[31]. The new sub-network is sitting “on top of” the old sub-network instead of sitting 

in parallel with it, which is shown in figure 2.4. 
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IOL-3 is composed of three stages. The procedure is as follows. 

 

The first stage of IOL-3 is the same as IOL-1. 

 

Stage 2 of IOL-3 is as follows: 

Step 1: Construct a new sub-network with K+N input units and K+1 output units, 

where K is the number of existing output attributes and N is number of input 

attributes of the original problem. 

Step 2: Feed input samples to the existing network; combine the outputs of the existing 

network together with the original inputs to form as new inputs to the new sub-

network. Train the new sub-network with the patterns presented.  

 

In stage 2, when an unknown sample is presented to the input layer, it should be fed 

into the existing network first. Then the output attributes of the existing network 
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New Hidden Layer 
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Figure 2.4  IOL-3 Structure 
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together with the original inputs will be fed into the new sub-network as inputs. The 

output attributes of the new sub-network produce the overall outputs. 

 

The new sub-network in IOL-3 not only acquires the new information in the changed 

environment, but also integrates the outputs from the old sub-network with the new 

information and discards any invalid information carried by the old network. 

 

In IOL-3, the old sub-network acts as an input data pre-processing unit. It presents to 

the new sub-network pre-classified (in classification problems) or pre-estimated input 

attributes (in regression problems), so that the new sub-network can use this 

knowledge to build its own classification boundaries or make its own estimates of the 

output attributes. The knowledge passed between the two sub-networks is direct 

forward in a serial manner. The new sub-network solves all the three sub-problems of 

discarding invalid knowledge, acquiring new knowledge from the incoming output 

attributes and retaining valid knowledge at the same time. 

 

Compared with IOL-1 and IOL-2, the cooperation between the old and new sub-

networks in IOL-3 is better and efficient. The training time of the new sub-network 

can be significantly reduced. However, the network depth is increased as the depth of 

the new sub-network is added on top of the existing network. This may be undesirable 

for real time applications. The existing network can also continue with its work during 

the adaptation process in IOL-1 and IOL-2. 
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2.3   Experiments and Results 

Three benchmark problems, namely Flare, Glass and Thyroid, are used to evaluate the 

performance of the proposed IOL methods. The first problem is a regression problem 

and the other two are classification problems. All the three problems are taken from 

the PROBEN1 benchmark collection [32].  

 

2.3.1 Experiment Scheme 

The simulation of IOL methods is implemented in the MATLAB environment with the 

Rprop [33] learning algorithm. 

 

The stopping criteria can influent the performance of an MNN significantly. If training 

is too short, the network cannot acquire enough knowledge to obtain a good result. If 

training is too long, the network may experience over-fitting. In over-fitting, a network 

simply memorizes the training patterns, which will lead to poor generalization 

performance. In order to avoid this problem, early stopping with validation is adopted 

in the simulation. In the thesis, the set of available patterns is divided into three sets: a 

training set is used to train the network, a validation set is used to evaluate the quality 

of the network during training and to measure over-fitting, and a test set is used at the 

end of training to evaluate the resultant network.  The sizes of the training, validation, 

and test are 50%, 25% and 25% of the problem’s total available patterns respectively. 

 

There are three important metrics when the performance of a neural network system is 

evaluated. They are accuracy, learning speed and network complexity. As to accuracy, 

I use regression or classification error of the test patterns as the most important metric. 

I also use error of the test patterns to measure the generalization ability of the system. 



Chapter 2     Incremental Learning in Terms of Output Attributes           25 

When dealing with the learning speed, it should be considered that there is significant 

difference between the number of hidden units in each sub-problem of IOL and 

retraining. As a result, the computation time of each epoch in the sub-networks varies 

significantly. Hence, each solution (each IOL method or retraining) should be taken as 

a whole and independent with the structure and complexity of networks. In order to 

achieve that, I emphasize on adaptation time instead of training time, which means the 

time needed for each method to achieve its best accuracy after the environmental 

change. Since the old sub-network is treated as existed before performing IOL, the 

adaptation time of IOL should be measured by the training time of the new sub-

network only. When network complexity is concerned, I use the number of newly 

added hidden units as a metric. 

 

The experimental results of IOL methods were compared to the results of retraining 

method, which is the only known way to solve the changing output attributes problem 

besides IOL methods in literatures.  

 

The structure of new sub-networks and retraining networks are determined by the 

Cross-Validation Model Selection technique. To simplify the simulation, the old sub-

network is simulated with a fixed structure with a single hidden layer and 20 hidden 

units. 

 

2.3.2 Generating Simulation Data 

In nature, incremental leaning of output attributes can be classified into two categories. 

In the first category, the incoming output attribute and the new training patterns 

contains completely new knowledge. For example, a polygon classifier was trained to 
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classify squares and triangles. Now, we need it to classify a new class of diamonds 

besides previously learnt classes. There is no clear dependency or conflict between the 

existing output attributes and the new one. In the second category, the incoming output 

attribute could be a sub-set of one or more existing attributes, which is normally 

referred to as reclassification. For example, the classifier discussed above is required 

to classify equilateral triangles from all triangles. The proposed IOL methods are 

suitable for both categories1. However, I only adopt the first category of problems in 

the experiments for IOL because reclassification problems have been well studied 

already.  

 

The simulation data for incremental output learning is obtained from several 

benchmark problems. Since the benchmark problems are real world problem, it would 

be difficult to generate new data to simulate a new incoming output attribute ourselves 

in order to reflect the true nature of the dataset. To simulate the old environment 

before inserting the incoming output attribute, training data for the existing network is 

generated by removing a certain output attribute from all training patterns in the 

benchmark problem. The original data of the benchmark problem without any 

modification is used to simulate the new environment after inserting a new output 

attribute. 

 

2.3.3 Experiments for IOL-1 

As stated in section 2.2.1, IOL-1 is suitable for regression problems only. Hence, the 

experiments are conducted with the Flare problem using each different output attribute 

as the incoming output attribute. This problem predicts solar flares by trying to guess 

                                                 
1 Please refer to section 2.4.2 for detailed discussions. 
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the number of solar flares of small, medium, and large sizes that will happen during 

the next 24-hour period in a fixed active region of the Sun surface. Its input values 

describe previous flare activity and the type and history of the active region. Flare has 

24 inputs (10 attributes), 3 outputs, and 1066 patterns. 

 

Table 2.1 shows the generalization performance of IOL-1 with different number of 

hidden units in the new sub-network and different output attribute being treated as the 

incoming output. Also listed is the generalization performance of retraining with 

different number of hidden units. This data is used for cross-validation model selection. 

 

Table 2.1 Generalization Error of IOL-1 for the Flare 
Problem with Different Number of Hidden Units 

 
Number of 

hidden units 
1st output as 
the incoming 

output 

2nd output as 
the incoming 

output 

3rd output as 
the incoming 

output 

Retraining 
with old and 
new outputs 

1 0.0028 0.0029 0.0029 0.003 
3 0.0028 0.0028 0.0031 0.003 
5 0.0028 0.0033 0.003 0.0029 
7 0.0033 0.003 0.0034 0.003 
9 0.0031 0.0031 0.0033 0.003 
11 0.0033 0.0032 0.0033 0.003 
13 0.0036 0.0036 0.0039 0.0029 
15 0.0036 0.0034 0.0036 0.003 
17 0.0037 0.0035 0.0039 0.003 
19 0.0039 0.0036 0.0038 0.0028 
21 0.0038 0.0037 0.0038 0.003 
23 0.0038 0.0036 0.0038 0.0029 
25 0.0039 0.004 0.0039 0.0032 
27 0.0043 0.004 0.004 0.0028 
29 0.0042 0.004 0.0038 0.0028 

Notes:   1. Numbers in the first column stand for the numbers of hidden units for  
the new sub-networks in IOL-1 and numbers of hidden units for the  
overall structures in retraining.  

        2. The number of hidden units for the old sub-networks is set to 20 always. 
        3. The values in the table represent regression errors of the overall 

structures with different number of hidden units. 
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We can find that the new sub-networks require only one or three hidden units to obtain 

good generalization performance. However, the generalization performance of IOL-1 

drops rapidly due to the problem of over-fitting, when the number of hidden units in 

the new sub-network increases. The generalization performance of retraining remains 

stable with various numbers of hidden units. The new sub-network is trained to solve a 

sub-problem with single output attribute, which is much simpler than the retraining 

problem with 3 output attributes. Because of the simplicity of the problem being 

solved, the new sub-network turns to memorize the training patterns instead of 

acquiring valid knowledge from the patterns. This is why the over-fitting problem of 

IOL-1 is more serious than retraining.  

 

Table 2.2 shows the performance of IOL-1 (test error) and retraining with properly 

selected structures in the last step. In this table, I choose 1 hidden unit for the new sub-

network when the 1st or 3rd output is used as the incoming output, 3 hidden units for 

the new sub-network when the 2nd output is used as the incoming output and 5 hidden 

units for retraining. 

 

Table 2.2 Performance of IOL-1 and Retraining with the Flare Problem 
 

 Test error Adaptation time No. of hidden units 

IOL-1 with 1st output 
as incoming output 

0.0028 0.789   (22.75%) 1 

IOL-1 with 2nd output 
as incoming output 

0.0029 0.8492 (16.86%) 3 

IOL-1 with 3rd output 
as incoming output 

0.0028 0.9014 (11.75%) 1 

Retraining 0.0029 1.0214 5 
 Notes:  
1. The number of hidden units measured in IOL methods is for the new sub-

network only. 
2. Adaptation time shows the time needed for each methods to provide its most 

accuracy solution in the changed environment respectively. It equals to the 
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training time of new sub-network for IOL methods and the training time for 
retraining method. 

3. The number in ‘( )’ is adaptation time reduction in percentage compared to 
retraining. 

 

In this experiment, the accuracy of IOL-1 is slightly better than retraining. Compared 

to retraining, IOL-1 needs much fewer new hidden units to adapt itself to the changed 

environment, which directly results in less adaptation time. The adaptation time of 

IOL-1 is 22.75% less than retraining. 

 

 

2.3.4 Experiments for IOL-2 

IOL-2 contains a generalized decoupled MNN structure and is suitable for both 

regression and classification problems. The experiments are conduced with the Flare, 

Glass and Thyroid problems for it. 

 

•  Flare Problem 

Table 2.3 shows the generalization performance of IOL-2 with different number of 

hidden units in the new sub-network and each output attribute being treated as the 

incoming output. Also listed is the generalization performance of retraining with 

different number of number of hidden units. 

 

 

Table 2.3 Generalization Error of IOL-2 for the Flare 
Problem with Different Number of Hidden Units 

 
Number of 

hidden units 
1st output as 
the incoming 

output 

2nd output as 
the incoming 

output 

3rd output as 
the incoming 

output 

Retraining 
with old and 
new outputs 

1 0.0247 0.04 0.1593 0.003 
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3 0.0031 0.0032 0.0028 0.003 
5 0.0031 0.003 0.0031 0.0029 
7 0.0033 0.0036 0.0031 0.003 
9 0.0035 0.0034 0.0036 0.003 
11 0.0039 0.0036 0.0039 0.003 
13 0.004 0.0036 0.0045 0.0029 
15 0.0042 0.0046 0.0044 0.003 
17 0.0054 0.0044 0.0051 0.003 
19 0.0046 0.0047 0.0044 0.0028 
21 0.0053 0.0044 0.005 0.003 
23 0.0051 0.0053 0.0049 0.0029 
25 0.0049 0.0058 0.0053 0.0032 
27 0.0055 0.0064 0.0051 0.0028 
29 0.0055 0.0055 0.0056 0.0028 

Notes:  1. Numbers in the first column stand for the numbers of hidden units for  
the new sub-networks in IOL-2 and numbers of hidden units for the  
overall structures in retraining.     

           2.  The Number of hidden units for the old sub-networks is set to 20  
always. 

 3.  The values in the table represent the regression errors of the overall 
structures with different number of hidden units. 

 
 
The number of hidden units in each new sub-problem is selected as 3 for each output 

used as the incoming output. Table 2.4 shows the performance of IOL-2 when such 

configuration is used. 

 

Table 2.4 Performance of IOL-2 and Retraining with the Flare Problem 
 Test error Adaptation time No. of hidden units

IOL-2 with 1st 
output as incoming 

output 

0.003 1.0214 
(0%) 

3 

IOL-2 with 2nd 
output as incoming 

output 

0.003 1.0676 
(-4.5%) 

3 

IOL-2 with 3rd 
output as incoming 

output 

0.0028 0.9154 
(10.38%) 

3 

Retraining 0.0029 1.0214 5 
Notes: 1-3. refer to notes under Table 2.2 
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Compared to retraining, IOL-2 needs 1.96% less adaptation time in average. The test 

error is very close to retraining. The differences between the test errors of IOL-2 and 

retraining are within the rage of ±0.0001, or 3.5%. 

 

•  Glass Problem 

This data set is used to classify glass types. The results of a chemical analysis of glass 

splinters (percentage of 8 different constituent elements) plus the refractive index are 

used to classify a sample to be either float processed or non-float processed building 

windows, vehicle windows, containers, tableware, or head lamps. This task is 

motivated by forensic needs in criminal investigation. This data set contains 9 inputs, 6 

outputs, and 214 patterns.  

 

Since the Glass problem is a classification problem, classification error is used instead 

of regression in the last problem to conduct cross-validation model selection. Table 2.5 

shows the classification error of IOL-2 with different number of hidden units in the 

new sub-problem and retraining. 

 

Table 2.5 Classification Error of IOL-2 for the Glass 
Problem with Different Number of Hidden Units 

 
Number of 

hidden 
units 

1st output 
as the 

incoming 
output 

2nd output 
as the 

incoming 
output 

3rd output 
as the  

incoming 
output 

4th output 
as the 

incoming 
output 

5th output 
as the 

incoming 
output 

6th output 
as the 

incoming 
output 

Retraining 
with old 
and new 
outputs 

1 0.4755 0.566 0.4528 0.3925 0.5132 0.5774 0.7434
3 0.4226 0.5245 0.3208 0.283 0.317 0.3358 0.4
5 0.4151 0.4679 0.3132 0.3132 0.3472 0.3547 0.3849
7 0.4151 0.5019 0.3094 0.3057 0.3434 0.3057 0.3547
9 0.3698 0.4302 0.317 0.3396 0.3321 0.3057 0.3283
11 0.3283 0.4 0.2906 0.3358 0.3057 0.3283 0.3509
13 0.4189 0.3736 0.317 0.2868 0.3283 0.3208 0.317
15 0.3245 0.3019 0.3208 0.283 0.3358 0.2943 0.317
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17 0.3283 0.3321 0.3132 0.3094 0.3208 0.3019 0.3132
19 0.3887 0.3472 0.3132 0.2981 0.3019 0.2981 0.3358
21 0.3472 0.3358 0.317 0.3245 0.3057 0.2868 0.3019
23 0.3208 0.3396 0.3094 0.3094 0.3019 0.3132 0.3358
25 0.3396 0.3509 0.3019 0.3019 0.3358 0.3283 0.3094
27 0.3283 0.3396 0.317 0.3019 0.3321 0.3283 0.3208
29 0.317 0.3283 0.3132 0.3057 0.3358 0.2943 0.3132

Notes:  1. Numbers in the first column stand for the numbers of hidden units for  
the new sub-networks in IOL-2 and numbers of hidden units for the  
overall structures in retraining.     

           2. The number of hidden units of the old sub-networks is set to 20 always. 
 3. The values in the table represent the classification errors of the overall 

structures with different number of hidden units. 
 

The number of hidden units in the new sub-networks is 29, 15, 11, 15, 19 and 21 

respectively when different output is used as incoming output. The network used for 

retraining requires 21 hidden units. Table 2.6 shows the performance (classification 

error of test set) of IOL-2 compared with retraining. 

 

Table 2.6 Performance of IOL-2 and Retraining with the Glass Problem 
 

 Test classification 
error 

Adaptation time No. of hidden units

IOL-2 with 1st 
output as 

incoming output 

0.3094 0.9936  
(-3.5%) 

29 

IOL-2 with 2nd output 
as incoming output 

0.3395 0.9232  
(3.79%) 

15 

IOL-2 with 3rd 
output as 

incoming output 

0.3170 0.931  
(2.98%) 

11 

IOL-2 with 4th 
output as 

incoming output 

0.3358 0.9458 
(1.44%) 

15 

IOL-2 with 5th 
output as 

incoming output 

0.3208 1.0156  
(-5.8%) 

19 

IOL-2 with 6th 
output as 

incoming output 

0.2868 0.913 
 (4.9%) 

21 

Retraining 0.3396 0.9596 21 
Notes: 1-3. refer to notes under Table 2.2 
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•  Thyroid Problem 

Thyroid diagnoses whether a patient’s thyroid has overfunction, normal function, or 

underfunction based on patient query data and patient examination data. Thyroid has 

21 inputs (21 attributes), 3 outputs, and 7200 patterns. 

 

Table 2.7 shows the classification error under cross-validation model selection. 

 

Table 2.7 Classification Error of IOL-2 for the Thyroid 
Problem with Different Number of Hidden Units 

 
Number of 

hidden units 
1st output as 
the incoming 

output 

2nd output as 
the incoming 

output 

3rd output as 
the incoming 

output 

Retraining 
with old and 
new outputs 

1 0.0343 0.1828 0.047 0.0628 
3 0.0232 0.0292 0.0227 0.0244 
5 0.019 0.0298 0.0262 0.021 
7 0.0221 0.0237 0.0188 0.0208 
9 0.019 0.0217 0.02 0.0203 
11 0.0189 0.0204 0.0206 0.0201 
13 0.0213 0.0202 0.0194 0.0183 
15 0.0212 0.0221 0.0201 0.0211 
17 0.0201 0.0217 0.0188 0.0196 
19 0.0217 0.0266 0.0193 0.0199 
21 0.0236 0.0238 0.0177 0.0192 
23 0.0224 0.0238 0.0193 0.0181 
25 0.0208 0.0204 0.0188 0.0184 
27 0.0223 0.0226 0.0192 0.0189 
29 0.0224 0.0223 0.019 0.0193 

Notes:  1. Numbers in the first column stand for the numbers of hidden units for  
the new sub-networks in IOL-2 and numbers of hidden units for the  
overall structures in retraining.     

           2.  The number of hidden units of the old sub-networks is set to 20 always. 
 3. The values in the table represent the classification errors of the overall 

structures with different number of hidden units. 
 

The number of the new sub-networks with each output as the incoming output is set to 

11, 13 and 21 respectively. The number of hidden units for retraining is set to 23. The 

results of IOL-2 with properly selected structures are shown in Table 2.8. 



Chapter 2     Incremental Learning in Terms of Output Attributes           34 

Table 2.8 Performance of IOL-2 and Retraining with the Thyroid Problem 
 

 Test 
classification 

error 

Adaptation time No. of hidden units 

IOL-2 with 1st 
output as incoming 

output 

0.0214 9.9158  
(47.41%) 

11 

IOL-2 with 2nd 
output as incoming 

output 

0.0217 35.6856  
(-89.26%) 

13 

IOL-2 with 3rd 
output as incoming 

output 

0.019 25.951  
(-37.63%) 

21 

Retraining 0.0191 18.8554 23 
Notes: 1-3. refer to notes under Table 2.2 

 

From the results of these three problems, we can find that IOL-2 provides reasonable 

generalization accuracy with slightly shorter adaptation time compared to retraining in 

most cases. However, adaptation time is problem dependent. If an incoming class is 

hard to be classified in nature, the adaptation time will be much longer. For example, 

IOL-2 needs 89.26% and 37.63% more adaptation time than retraining, when the 2nd 

or 3rd class is used in Thyroid as the incoming class. The complexity of the new sub-

network is lower than the network used for retraining. 

 

 

2.3.5 Experiments for IOL-3 

IOL-3 is developed to overcome the disadvantages of IOL-2. It needs much less 

adaptation time than IOL-2. 

 

•  Flare Problem 

Table 2.9 shows the regression error of the Flare 1 problem under cross-validation 

model selection. 
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Table 2.9 Generalization Error of IOL-3 for the Flare 
Problem with Different Number of Hidden Units 

 
Number of 

hidden units 
1st output as 
the incoming 

output 

2nd output as 
the incoming 

output 

3rd output as 
the incoming 

output 

Retraining 
with old and 
new outputs 

1 0.0032 0.0033 0.0033 0.003 
3 0.003 0.0027 0.0031 0.003 
5 0.0029 0.0029 0.0031 0.0029 
7 0.0028 0.0029 0.0028 0.003 
9 0.0029 0.0028 0.003 0.003 
11 0.0028 0.0029 0.0029 0.003 
13 0.0029 0.003 0.0028 0.0029 
15 0.0029 0.0029 0.0028 0.003 
17 0.0031 0.0031 0.0031 0.003 
19 0.0028 0.003 0.0029 0.0028 
21 0.0029 0.003 0.0028 0.003 
23 0.003 0.0029 0.003 0.0029 
25 0.0029 0.0031 0.0029 0.0032 
27 0.0029 0.003 0.0031 0.0028 
29 0.0029 0.003 0.003 0.0028 

Notes:  1. Numbers in the first column stand for the numbers of hidden units for  
the new sub-networks in IOL-3 and numbers of hidden units for the  
overall structures in retraining.     

           2.  The number of hidden units of the old sub-networks is set to 20 always. 
 3. The values in the table represent the regression errors of the overall 

structures with different number of hidden units. 
 

 

From Table 2.9, the number of hidden units of the new sub-networks when the 1st, 2nd 

and 3rd output is used as the incoming output is set to 7, 3 and 7 respectively. Table 

2.10 shows the results when such a configuration is used. 

 

Table 2.10 Performance of IOL-3 and Retraining with Flare Problem 
 

 Test Classification 
Error 

Adaptation Time No of Hidden units 

IOAL-3 with 1st 
output as incoming 

output 

0.0029 0.7642  
(25.18%) 

7 

IOAL-3 with 2nd output 
as incoming output 

0.003 0.813  
(20.4%) 

3 

IOAL-3 with 3rd 0.003 0.807  7 
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output as incoming 
output 

(20.99%) 

Retraining 0.0029 1.0214 5 
 Notes: 1-3. refer to notes under Table 2.2 
 
 

•  Glass Problem 

Table 2.11 shows the classification error used for cross-validation model selection. 

 

Table 2.11 Classification Error of IOL-3 for the Glass 
Problem with Different Number of Hidden Units 

 
Number of 

hidden 
units 

1st output 
as the 

incoming 
output 

2nd output 
as the 

incoming 
output 

3rd output 
as the  

incoming 
output 

4th output 
as the 

incoming 
output 

5th output 
as the 

incoming 
output 

6th output 
as the 

incoming 
output 

Retraining 
with old 
and new 
outputs 

1 0.6868 0.6717 0.683 0.5774 0.6151 0.6528 0.7434
3 0.4792 0.366 0.3094 0.3962 0.3321 0.3774 0.4
5 0.3887 0.3472 0.366 0.3094 0.3321 0.3472 0.3849
7 0.3132 0.3472 0.3057 0.4 0.317 0.2868 0.3547
9 0.3132 0.3698 0.2981 0.3208 0.3396 0.317 0.3283
11 0.3094 0.3208 0.3245 0.3057 0.3094 0.3057 0.3509
13 0.3472 0.317 0.3094 0.317 0.3208 0.3245 0.317
15 0.3283 0.3698 0.3208 0.3358 0.3019 0.3208 0.317
17 0.3094 0.3509 0.3208 0.3019 0.317 0.3057 0.3132
19 0.3585 0.3396 0.3094 0.3019 0.3208 0.3208 0.3358
21 0.366 0.3208 0.2981 0.3057 0.3245 0.3094 0.3019
23 0.3132 0.3321 0.3057 0.3132 0.3132 0.3132 0.3358
25 0.3472 0.3434 0.2906 0.3057 0.3019 0.3245 0.3094
27 0.2981 0.3321 0.2981 0.3019 0.3057 0.3019 0.3208
29 0.3396 0.3396 0.3396 0.317 0.3321 0.3208 0.3132

Notes:  1. Numbers in the first column stand for the numbers of hidden units for  
the new sub-networks in IOL-3 and numbers of hidden units for the  
overall structures in retraining.     

           2.  The number of hidden units of the old sub-networks is set to 20 always. 
 3. The values in the table represent the regression errors of the overall 

structures with different number of hidden units. 
 

The number of hidden units for new sub-networks is set to 27, 13, 25, 17, 15 and 7 

respectively when different outputs are used as incoming output. The results with such 

a configuration are shown in table 2.12. 
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Table 2.12 Performance of IOL-3 and Retraining with the Glass Problem 
 

 Test classification 
error 

Adaptation time No. of hidden units 

IOL-3 with 1st 
output as incoming 

output 

0.3132 0.799  
(16.74%) 

27 

IOL-3 with 2nd 
output as incoming 

output 

0.3019 0.7534  
(21.5%) 

13 

IOL-3 with 3rd 
output as incoming 

output 

0.3123 0.735 
 (23.4%) 

25 

IOL-3 with 4th 
output as incoming 

output 

0.2981 0.8514  
(11.3%) 

17 

IOL-3 with 5th 
output as incoming 

output 

0.3094 0.779  
(18.8%) 

15 

IOL-3 with 6th 
output as incoming 

output 

0.3094 0.7992  
(16.7%) 

7 

Retraining 0.3396 0.9596 21 
Notes: 1-3. refer to notes under Table 2.2. 

 
 

•  Thyroid Problem 

Table 2.13 shows the classification error used in cross-validation model selection. 

 

Table 2.13 Classification Error of IOL-3 for the Thyroid 
Problem with Different Number of Hidden Units 

 
Number of 

hidden units 
1st output as 
the incoming 

output 

2nd output as 
the incoming 

output 

3rd output as 
the incoming 

output 

Retraining 
with old and 
new outputs 

1 0.06 0.0554 0.0467 0.0628 
3 0.0233 0.0206 0.0196 0.0244 
5 0.0181 0.0187 0.0176 0.021 
7 0.0231 0.0189 0.0179 0.0208 
9 0.0211 0.0196 0.0188 0.0203 
11 0.0229 0.0203 0.018 0.0201 
13 0.0204 0.0177 0.0204 0.0183 
15 0.0204 0.0193 0.0192 0.0211 
17 0.0184 0.0187 0.0193 0.0196 
19 0.0204 0.0198 0.0207 0.0199 
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21 0.0194 0.0179 0.0206 0.0192 
23 0.0183 0.0182 0.0183 0.0181 
25 0.0183 0.0209 0.017 0.0184 
27 0.0224 0.0211 0.0192 0.0189 
29 0.0196 0.0216 0.0186 0.0193 

Notes: 1. Numbers in the first column stand for the numbers of hidden units for  
the new sub-networks in IOL-3 and numbers of hidden units for the  
overall structures in retraining.     

           2.  The number of hidden units of the old sub-networks is set to 20 always. 
 3. The values in the table represent the regression errors of the overall 

structures with different number of hidden units. 
 

Numbers of hidden units in the new sub-networks when different output is used as 

incoming output are set to 5, 13 and 25 respectively. Table 2.14 shows the results with 

such a configuration. 

 

Table 2.14 Performance of IOL-3 and Retraining with the Thyroid Problem 
 

 Test classification 
error 

Adaptation time No. of hidden units 

IOL-3 with 1st 
output as incoming 

output 

0.0197 5.262  
(72.1%) 

5 

IOL-3 with 2nd 
output as incoming 

output 

0.02 9.113  
(51.7%) 

13 

IOL-3 with 3rd 
output as incoming 

output 

0.0197 5.1392  
(72.7%) 

25 

Retraining 0.0191 18.8554 23 
Notes: 1-3. refer to notes under Table 2.2 

 

The experiments of the three problems show that IOL-3 has good performances for 

both regression and classification problems. It has significantly reduced the adaptation 

time (up to 72.7% reduction), while achieving similar or better accuracy compared to 

retraining. 
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2.4 Discussions 

2.4.1 The IOL Methods 

As mentioned before, IOL decomposes the problem of incremental output learning for 

an existing network into sub-problems of discarding invalid old knowledge, reusing 

existing knowledge and acquiring new knowledge through the cooperation of the old 

(existing) and new sub-networks. They show great advantages over retraining methods, 

which was the only known solution when the number of outputs increased. The 

difference between IOL-1, IOL-2 and IOL-3 lies in the flow of knowledge/information 

between the old and new sub-networks. 

 

In IOL-1, the old and new sub-networks are completely independent. The new sub-

network cannot affect the results of old sub-network. Hence, the knowledge in the old 

sub-network cannot be discarded. On the other hand, the old sub-network cannot 

contribute in training of the new sub-network either. However, the new sub-network 

only needs to solve a simple problem with one output attribute instead of solving the 

whole problem in retraining. It benefits from the nature of a decoupled MNN. IOL-1 

reduces adaptation time and slightly improves the performance compared to retraining. 

 

In IOL-2, the knowledge flow from the new sub-network to the old sub-network is 

enabled by changing the objective of the new sub-network as minimizing the error 

produced by the old sub-network in the changed environment. It is possible for the 

new sub-network to discard knowledge that is no longer valid in the changed 

environment. This feature makes IOL-2 suitable for both regression and classification 

problems. However, the old and new sub-networks work under the “error generation 

and error correction” model. The new network needs to put down much effort to 
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correct the errors produced by the old sub-network, which might be difficult due to the 

fuzzy nature of the old sub-network. In another word, the new objective of IOL-2 

might be difficult to achieve in some problems. In the experiments conducted, IOL-2 

reduces adaptation time in most cases. However, in some extreme cases, it needs 

longer adaptation time than retraining. 

 

In IOL-3, two one-directional knowledge flows are enabled between the two sub-

networks by using a hierarchical MNN. The old sub-network supplies the learnt 

knowledge directly to the new sub-network as part of the inputs to the new sub-

network. The new sub-network determines whether the knowledge supplied to it is 

valid and discards it when necessary during the learning process. The two sub-

networks work in a cooperative manner. Compared to IOL-2, the training of the new 

sub-network is much easier with the help of the old sub-network. The adaptation time 

of IOL-3 is the shortest among the proposed methods. It also gives better classification 

accuracy than the other methods. However, the real-time response of IOL-3 is the 

worst among the three, due to its increased network depth. 

 

The greatest advantage of the proposed IOL methods is that the original neural 

network provides non-disturbed service when adapting itself to the environmental 

changes, which is important for real world applications, especially some real-time 

systems. IOL-1 and IOL-3 also significantly reduced adaptation time while keeping 

high accuracy when compared to retraining methods. 

 

Although no automatic adaptation methods other than IOL are proposed for changing 

output attributes problems in literatures, some prior work for automatic adaptation of 
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changing input attributes have been done, such as ILIA [26] proposed by Guan & Li. 

The proposed IOL methods follow the pioneer track of ILIA. The idea of incremental 

learning can also be applied to intelligent systems other than neural networks, for 

example, genetic algorithms (GA). In [63], Guan and Zhu suggested an incremental 

output learning algorithm for GA, which is proven to be faster and more accurate than 

retraining for many problems. 

 

 In addition, although experiments was conducted with one incoming output only in 

the research, the IOL methods can be extended easily to accommodate multiple 

incoming outputs by repeating the learning steps of the methods described. 

 

 

2.4.2 Handling Reclassification Problems 

IOL-2 and IOL-3 are also suitable for reclassification problems. In reclassification, a 

new output attributes may be formed as a subset of one or more existing output 

attributes, which is shown in figure 2.5. 

 

 

Existing Neural 
Network 

Existing 
output 
attribute

New output layer with 
one more output 

Figure 2.5 Illustration of Reclassification 
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The reclassification problem can also be decomposed into the sub-problems of 

discarding invalid learnt knowledge, acquiring new knowledge and retaining valid 

learnt knowledge. The only difference between reclassification and a completely new 

class problem is that there exists clear conflict between the existing outputs and the 

new output. Both IOL-2 and IOL-3 can fully solve the sub-problems in reclassification 

and handle the conflict between the old and new outputs. Therefore, IOL-2 and IOL-3 

can be used in reclassification. 

 

 

 

2.5 Summary of the Chapter 

In this chapter, I proposed three incremental output learning methods based on 

modular neural networks. These methods allow a neural network to learn 

incrementally with incoming output attributes. They use a “divide and conquer” way 

to decompose learning in the changing environment into several sub-problems. When 

a new output attribute is to be learnt, a new module is combined with the existing 

neural network to solve the sub-problems. The experiment result shows that the 

proposed methods can get similar or better results compared to traditional retraining in 

terms of accuracy. The learnt knowledge that is still valid in the changed environment 

is retained in the learning process of new knowledge. 

 

The proposed methods show some advantages over retraining. Firstly, they provide 

continuous work in the adaptation process and smooth handover between the existing 

neural network and the upgraded neural network. Secondly, they need less adaptation 

time in most cases. IOL-3 can reduce adaptation time up to 72.7% in the experiments. 
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Thirdly, the existing network can be reinstalled at any time after adaptation, since the 

existing network is kept unchanged as the old sub-network in the methods. 
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Chapter 3  

Task Decomposition with Hierarchical 

Structure 

 

3.1 Background 

Multiple layer perceptron (MLP) neural network suffers from several drawbacks [34] 

when applied to complex behavioral problems. [35] and [36] stated that learning a 

complex behavior requires bringing together several different kinds of knowledge and 

processing, which is impossible to be achieved for global NN like MLP. For the 

“stability-plasticity dilemma” problem, [37] argued that when two tasks have to be 

learnt consecutively by a single network, the learning of the second task will interfere 

with the previous learning. Another common problem for multiple task NN is the 

“temporal crosstalk” problem [38], which means that a network tends to introduce 

high internal interference because of the strong coupling among their hidden-layer 

weights when several tasks have to be learnt simultaneously.  

 

A widely used approach to overcome these shortcomings is to decompose the original 

problem into sub-problems (modules) and perform local and encapsulated computation 

for each sub-problem. There are various task decomposition methods that have been 
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proposed in the literature [14]-[21] [39]-[42]. These decomposition methods can be 

based in the characteristics on input data space and/or output space.  

 

One category of decomposition methods based on the characteristics of input data 

space is Domain Decomposition. [11] suggested that the original input data space can 

be partitioned into several sub-spaces and each module (for each sub-problem) is 

learnt to fit the local data in each sub-space to improve the effectiveness of training. 

There are many such methods proposed in the literature. In [39], the training set is 

divided into subsets recursively using hyper planes till all the subsets become linearly 

separable. [40] described that  neural networks where the first unit introduced on each 

hidden layer can be  trained on all patterns and further units on the layer are trained 

primarily on patterns not already correctly classified. [14] suggested that in the 

mixture of experts architecture, expert networks can be used to learn sub-spaces and 

then cooperate via a gating network. For example, in the hierarchical mixture of expert 

architecture, the input space is partitioned recursively into sub-spaces [15]. Similar 

recursive partition is also used in neural trees structure [16]. Another decomposition 

method of this category is proposed in the multi-sieving neural network [17]. In this 

method, patterns are classified by a rough sieve in the beginning and they are re-

classified further by finer ones in subsequent stages. 

 

Another category of decomposition methods based on the characteristics of output 

space is Class Decomposition. [18] split a K -class problem into K  two-class sub-

problems. One sub-network is trained to learn one sub-problem only. Therefore, each 

sub-network is used to discriminate one class of patterns from patterns belonging to 

the remaining classes, and there are K  modules in the overall structure. The method 



Chapter 3     Task Decomposition with Hierarchical Structure                46 

proposed in [19] divided a K -class problem into 








2
K

 two-class sub-problems. Each 

of the two-class sub-problems is learnt independently while the existence of the 

training data belonging to the other 2−K  classes is ignored. The final overall solution 

is obtained by integrating all of the trained modules into a min-max modular network. 

A powerful extension to the above class decomposition method, output parallelism, is 

proposed in [42]. Using output parallelism, a complex problem can be divided into 

several sub-problems as chosen, each of which is composed of the whole input vector 

and a fraction of the output vector. Each module (for one sub-problem) is responsible 

for producing a fraction of the output vector of the original problem. These modules 

can be grown and trained in parallel. 

 

Besides these two categories, there are some other decomposition methods. In [43], 

different functional aspects in a task are modeled independently and the complete 

system functionality is obtained by the combination of these individual functional 

models. In [44], the original problem is decomposed into sub-problems based on 

different states in which the system can be in at any time. 

 

Class decomposition methods reduce the internal interference among hidden layers, 

consequently, improve performance and accuracy. However, there is a shortcoming of 

this approach. In these methods, each sub-network is trained independently from all 

the other sub-networks. The correlation between classes or sub-networks is ignored. A 

sub-network can only use the local information restricted to the classes involved in it. 

The sub-networks cannot exchange with other sub-networks information already learnt 



Chapter 3     Task Decomposition with Hierarchical Structure                47 

by them. The global information between classes that can be positive to the learning of 

sub-networks is missing as well as internal interference between them. 

 

 

Figure 3.1 Overview of Hierarchical MNN with Incremental Output 

 

In this chapter, I propose a new task decomposition approach namely hierarchical 

incremental class learning (HICL). In this approach, a K -class problem is divided 

into K  sub-problems. The sub-problems are learnt sequentially in a hierarchical 

1st sub-network with 1 output 
node 

2nd sub-network with 2 output 
nodes 

Original Input Space 

Output from  the 1st sub-
network 

Output  from the 2nd sub-
network 

Kth sub-network with K output nodes 

Output from the (K-1)th  
sub-network with K-1output nodes 

Original Input Space 

Final Output 
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structure with K  sub-networks. Each sub-network takes the output from the sub-

network immediately below it as well as the original input as its input. The output 

from each sub-network contains one more class than the sub-network immediately 

below it, and this output is fed into the sub-network above it as Fig 3.1. The overall 

structure of HICL is an extension of IOL-3 discussed in section 2.2.3. This method not 

only reduces harmful interference among hidden layers, but also facilitates information 

transfer between classes during training as described in section 2.4.1. It shows more 

accurate classification performance than traditional class decomposition methods. 

 

The chapter is organized as follows. In section 3.2, the structure of HICL is introduced. 

In section 3.3, the ordering problem of HICL is discussed and two ordering methods 

are proposed. Section 3.4 discusses the experimental results of HICL. Section 3.5 

summarizes the work. 

 

 

3.2 Hierarchical MNN with Incremental Output 

In the proposed method, the original K -class problem is solved using a hierarchical 

modular neural network (HMNN) consisting of K  sub-networks. After a sub-network 

is constructed and trained, a new sub-network is constructed on top of it. The new sub-

network accepts the output from the old sub-network, together with the original input 

as its input. The output space of the new sub-network is one dimension larger than that 

of the old sub-network. For classification problems, this means the output space of the 

new sub-network includes one more class than the old sub-network. 
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The proposed HICL decomposition method is composed of the following steps. 

 

Step 1: Determine the order of the classes (output attributes) to be inserted into the 

hierarchical MNN structure. The output attributes are then sorted into a list 

based on this order. This stage is essentially important to achieve high 

accuracy, which will be discussed in detail in section 3.3. Set the trained sub-

network index counter to index=1. 

 

Step 2:  Construct a sub-network with only one output node. The input data space is 

the same as the original problem before decomposition. The output space 

contains only the first output node in the sorted list generated in Step 1. Train 

the network till convergence. Increment index by1. 

 

Step 3: If index is not equal to the number of output attributes in the original output 

space, construct a new sub-network on top of the structure that has been 

constructed.  

The input space for the newly constructed network is formed by merging the 

output space of the sub-networks below it with the original input space. When 

an input training sample is presented to the structure, the output attributes 

from the structure below the new sub-network together with the original input 

attributes form the input for the new sub-network. Hence, to the new sub-

network, there are nindex +  input attributes, where n  is the number of input 

attributes in the original input data space. The output space of the new sub-
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network contains all the output attributes (classes) that were trained in the 

sub-networks below it, together with the thindex  output attribute in the sorted 

list generated in Step 1. Hence, there are 1+index  output attributes (classes) 

for the new sub-network.  

The new sub-network is trained until it converges. Increment the trained sub-

network index counter, 1+= indexindex .  

This step is repeated until index is equal to the number of output attributes in 

the original output space. 

 

Step 4:   Test the overall structure and evaluate the performance. 

 

The functionality of the first sub-network is to classify the training samples belonging 

to the first output attribute (class) in the list generated in Step 1. This is a localized 

computation associated with the output attribute representing the specified class only, 

which is the same as one single module in class decomposition. Because internal 

interference is removed, the output from this sub-network tends to be more accurate. 

 

The functionalities of sub-networks other than the first one are more complex. Because 

each sub-network needs to deal with more than two classes simultaneously, the 

correlation between different classes is taken into consideration automatically. There 

are two functions for each sub-network.  
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•  The minor function is to perform reclassification to the classes learnt previously. If 

the lower sub-networks produce no error, they provide the present sub-network 

linear-separable inputs. Due to the strong bias of these inputs, the reclassification 

process is most likely to follow the decision boundaries delineated by the lower 

sub-networks and simply repeats the results of it.  

 

•  The major function is to classify samples belonging to the newly added class from 

all the other class. This function is a local computation relative to the new class in 

the sub-network, which is the same as a sub-network in class decomposition. 

However, it should be noted that some of the classes are already classified in the 

lower sub-networks from the newly added class. Again, if this pre-classified 

information contains no error, it takes no effort to classify the new class from the 

classes learnt in lower sub-networks.  

 

In HICL, learning processes of different classes are decomposed logically, instead of 

being decomposed physically in most task decomposition methods. Figure 3.2 

illustrates the leaning of a three-class problem with HICL in an ideal situation. A, B 

and C stand for the three classes in the problem. In this condition, the real task of the 

2nd sub-network is classifying class B from class C logically, because class B and C 

have already been classified from class A. The 2nd sub-network deals with only 2 

classes in fact. 
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Figure 3.2 A three classes problem solved with HICL 

 

Figure 3 shows how the three class problem is solved in class decomposition, which 

contains three sub-networks in total. From figure 3.2 and figure 3.3, HICL has two 

advantages over class decomposition. Firstly, problem being solved by the 2nd network 

with HICL is simpler than the one in class decomposition since it deals with 2 classes 

only. This advantage becomes greater when there are more sub-networks. For example, 

the kth sub-network with HICL deals with 1−k  fewer classes than class decomposition. 

Because the problem being solved is simpler, the kth sub-network with HICL tends to 

be more accurate than class decomposition. Secondly, HICL requires one less sub-
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network than class decomposition, which simplifies overall structure and improves 

accuracy. 

 

Figure 3.3 A three classes problem solved with class decomposition 
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3.3 Determining Insertion Order for the Output Attributes 

In HICL, the output attributes are inserted into a network following some 

predetermined order, which is a key factor to improve the overall accuracy of the 

network. In this section, two ordering methods that lead to good accuracy will be 

introduced. 

 

3.3.1 MSEF-CDE Ordering 

In Section 2, we found that HICL have great advantages over class decomposition if 

there is no error in lower sub-networks. However, the errors can hardly be avoided in 

practice. These errors may mislead learning of upper sub-networks and downgrade the 

advantages of HICL. Due to the hierarchical structure used, the earlier a class is 

trained, the more its associated sub-network will affect the overall performance. In this 

section, the Minimal-Side-Effect-First (MSEF) ordering method based on Class 

Decomposition Error (CDE) is introduced to minimize the negative effect of possible 

errors, which in turn maximize the advantages of HICL. 

 

3.3.1.1 Simplified Ordering Problem of HICL 

The major function of a sub-network in HICL can be viewed as a 2-class problem 

logically which is similar to a module in class decomposition.  The first class 1ω  is the 

one being extracted. The second class 2ω  is the complement of 1ω  in the entire output 

space. The overall error E  of the major function in a sub-network can also be 

decomposed as: 
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eeE +=      (3.1) 

where e  is the error produced by the training samples belonging to 1ω , e  is the error 

produced by the samples belonging to 2ω .  

 

The error of a module for the class in class decomposition is a good approximation for 

the value of correspondence E  in equation (3.1). In this paper, I use a stepwise 

optimal approach to solve this problem., which simplifies the ordering problem to a 2-

step problem: 

 

(1) Find the error of each module in class decomposition and use it as an 

approximation for the correspondence major function in HICL. Find the 

portion of each error that may bring negative effect to proper learning of upper 

sub-networks. 

 

(2) Order the classes based on this portion of error belonging to each major 

function, from the smallest to the greatest. 

 

Based on this simplified model, it is necessary to identify which portion of major 

function error in a sub-network may affect the proper learning of sub-networks upper 

to it. 
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In the kth sub-network of the neural network solution for an n -class problem, there are 

kC=1ω  and nkk CCCCC ++++++= +− �� 11212ω , where iC  stands for the ith 

class in the original output space.  

 

There are two possible types of error events for the major function of this sub-network: 

1. A sample belonging to 2ω  is misclassified into 1ω , which is an event of e .  

In this case, the present sub-network indicates to the upper sub-networks that the 

sample belongs to kC . If the misclassified sample belongs to iC  (where ki > ) in 

the original data space, there will be a clear conflict between the information 

passed from the kth sub-network and the information contained in the original input 

space when it is being extracted in the ith sub-network. This conflict may cause 

interference to the proper learning of the major function of ith sub-network, so that 

it may misclassify some more samples belonging to the ith class. Hence, e  is the 

portion of error that needs to be considered in deciding the order of sub-networks.  

 

2. A sample belonging to 1ω  is misclassified into 2ω , which is an event of e . 

In this case, the present sub-network indicates to the upper sub-networks that the 

sample does not belong to kC . In the ith sub-network, the information passed from 

the kth sub-network indicates that the sample does not belong to the kth class, which 

is independent with whether the sample belongs to the ith class or not. Hence, the 

major functions of the following sub-networks will not be disturbed by the error 

event. The ordering can be made independent of this type of error.  
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From the above analysis, the ordering is dependent on the accumulated error of 

samples belonging to the complementary class 2ω , which is e . Step 1 in the proposed 

solution is further simplified as: finding e  of the major function in each sub-network. 

 

3.3.1.2 Calculating the Order 

A 2-class problem is normally solved by a neural network with a single output 

attribute. Theoretically, if a neural network is perfectly trained and produces no error 

in the entire output space, it outputs 1 when the input sample belongs to 1ω  and 0 

when the input sample belongs to 2ω . The decision boundary that differentiates 1ω  

from 2ω  is simply a threshold of 0.5. Figure 4 illustrates the distribution of the desired 

output for a 2-class problem. 

 

However, in practical applications a neural network can hardly be trained perfectly due 

to interference, existence of local minima, overfitting, and distribution of samples in 

the data space and so on. Hence, errors will occur in the output of samples. In general, 

the samples have almost equal probability to be interfered. The errors introduced by 

the interference are most probably to be Gaussian distributed with a mean of 0 and 

variance of 2σ . If any error is larger than 0.5, the specified sample will be 

misclassified. Hence, the probability of misclassification, which is represented by 

errorP , is identical for all the samples in the data space. Figure 3.5 illustrates the real 

output of a neural network for the same problem in figure 3.4. 
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Figure 3.4 Desired Output for a 2-Class Problem 

 

Figure 3.5 Real Output for a 2-Class Problem 

Assume errorP  is identical for all samples, it can be derived that: 
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=     (3.2) 

where Nspe is the number of samples belonging to 1ω  and Ncom is the number of 

samples belonging to 2ω . 

 

From equation (3.1) & (3.2), the portion of error that may affect the proper learning of 

the other classes can be calculated as: 
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N
N

E
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N
Ee com

comspe

com =
+

=     (3.3) 

 

Hence, this portion of error caused by the thk  class of a N-class problem is 

N
NNEe k

kk
−

≈      (3.4) 

where N is the number of samples in the entire data space, Nk is the number of samples 

belonging to the thk  class in the original data set and kE  is the error of the network 

used to extract kC  from the other classes in class decomposition. 

 

Based on the simplified problem descript in section 3.3.1.1, the MSEF-CDE ordering 

procedure can be summarized as: 

 

1. Train a network based on class decomposition, record the error for each class as 

nn EEEE ,,,, 121 −m  

2. Calculate the portion of error that may affect the proper learning of  the other 

classes nn eeee ,,,, 121 −m  for each class using equation (3.4) 

3. Sort the classes in order by the value of this portion of error for each class, from 

the smallest to the largest and store them in a list, as described in Step 1, Section 2. 

 

The proposed MSEF-CDE ordering method estimates the order that minimizes the 

overall interference in stepwise. From the experiment results, this ordering method is 

shown to be effective and improves the accuracy of HICL significantly. However, 



Chapter 3     Task Decomposition with Hierarchical Structure                60 

finding the error for each class using class decomposition requires computation. As a 

pre-processing step of HICL, the computation may be unaffordable. In the next section, 

another ordering method that requires much less computation is proposed. 

 

 

3.3.2 MSEF-FLD Ordering 

Linear pattern recognition techniques, such as Fisher’s Linear Discrimenent (FLD) 

[45], provide simples ways to estimate the accuracy of a classification problem. In this 

section, the method of Minimal Side-Effect Ordering (MSEF) based on Fisher’s 

Linear Discriminant (FLD) is proposed. The idea behind this method is similar to the 

MSEF-CDE method proposed previously, which is to order the sub-networks (classes) 

based on the portion of error caused by learning the specified class alone that may 

affect the proper learning of other classes. Hence, the problem is to find e  for each 

class and perform ordering based on it, which is the same as the one given in section 

3.3.1.1. Instead of using the classification error E  of each class obtained by class 

decomposition, the MSEF-FLD method uses Fisher’s criteria function ( )wJ  as a 

goodness score for each value of E . 

 

FLD projects a d-dimensional feature space into a c-1 dimensional feature space, 

where d is the number of features and c is the number of classes, by the transformation 

function i
t

i xwy = . Hence, for a 2-class problem, the projected feature space will be 

one-dimensional (projected on one line). 
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Let a set of m training patterns be [ ] t
mi xxxxX ⋅⋅⋅⋅⋅⋅= ,,, 21 , where xiєRn, i=1,2…m. 

These patterns belong to two classes 1ω  and 2ω . Mathematically, FLD can be 

described as follows: 

 

Let mi (i=1 or 2) be the d-dimensional sample means of 1ω  and 2ω  as given 

by ∑
∈

=
11

1
1

Xx
x

n
m  and ∑

∈
=

22
2

1
Xx

x
n

m  respectively, where 1X  and 2X  represent the set of 

samples belonging to classes 1ω  and 2ω  respectively, n1 and n2 represent the numbers 

of samples in 1X  and 2X  respectively. The sample means for the projected points is 

given by i
tt

Yyi
i mwxwy

n
m

i

=== ∑
∈

1~ , where i=1,2 are the symbols of the two classes 

respectively, and 1Y , 2Y  are samples belonging to class 1 and class 2 in the projected 

space respectively. It is simply the projection of im . If we define the scatter for the 

projected samples of class i as ∑
∈

=−=
iYy

ii imys 2,1,)~(~ 2 , the within-class scatter of 

∑
=

=
2

1i
iw SS can be calculated. This within-class scatter is a measure of how close the 

patterns in the same class are distributed. Similarly, the between-class scatter can be 

calculated as ∑
=

−−=
2

1
))((

i

t
iiiB mmmmnS , where ∑

∈

=
Xx

x
n

m 1  is the mean of all 

patterns in the feature space. Fisher’s linear discriminant employs that linear function 

xwt for which the Fisher’s criterion function  

wSw
wSwwJ

W
t

B
t

=)(      (3.5) 

is maximized and independent of ||w||. The optimal projection can be computed by 

solving the eigenvector problem: 0)( =− iWiB wSS λ , where iλ ’s are the non-zero 



Chapter 3     Task Decomposition with Hierarchical Structure                62 

eigenvalues and iw ’s are the corresponding eigenvector. The larger the value of ( )wJ , 

the easier the classification. Hence, the accuracy of classification is increasing 

with ( )wJ , and the error is decreasing with ( )wJ
1 . From equation (3.4) and (3.5), the 

portion of error ke  caused by extracting the kth class can then be expressed in the 

following form: 

( )NwJ
NN

e
k

k
k

−
=   (3.6) 

 

The MSEF-FLD procedure is summarized as follows: 

 

1. Calculate the value of Fisher’s criteria function for each class and its 

complementary class in the data space as ( ) ( ) ( ) ( )wJwJwJwJ NN ,,,, 121 −m . 

 

2. Calculate the portion of errors that may affect the proper learning of  the other 

classes nn eeee ,,,, 121 −m  for each class using equation (3.6). 

 

3. Sort the classes in order by the value of this portion of error for each class, from 

the smallest to the largest and store them in a list, as described in Step 1, Section 

3.2. 
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3.4 Experiments and Analysis 

 

3.4.1 Experiment Scheme 

In order to optimize the performance for each module, constructive neural network is 

used in the experiments. The constructive learning algorithms include the Dynamic 

Node Creation (DNC) method [46], Cascade-Correlation (CC) [47] algorithm and its 

variations [48]-[50], Constructive single-hidden-layer network [51], and Constructive 

Backpropagation (CBP) algorithm [52], etc. I adopt the CBP algorithm. Please refer to 

[42] for details of the CBP algorithm and parameter settings. 

 

The RPROP algorithm is used to minimize the cost functions. In the set of experiments 

undertaken, each problem was conducted with 20 runs. The RPROP algorithm used 

the following parameters: 2.1=+η , 5.0=−η , 1.00 =∆ , 50max =∆ , 60.1min −=∆ e , 

with initial weights from –0.25 … 0.25 randomly. In the experiments, the hidden units 

and output units all use the sigmoid activation function. When a hidden unit needs to 

be added, 8 candidates are trained and the best one is selected. All the experiments are 

conducted 10 times and the results are averaged. 

 

The test error measure testE  used in this chapter and chapter 4 is the squared error 

percentage [61], derived from the normalization of the mean squared error to reduce 

the dependency on the number of coefficients in the problem representation and on the 

range of output values used: 

∑∑
= =

−
⋅
−

⋅=
P

p

K

k
pkpktest to

PK
oo

E
1 1

2minmax )(100   (3.7) 
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where maxo and mino are the maximum and minimum values of output in the problem 

data. P  and K  are total number of test patterns and number of outputs. pko  and pkt  

are the desired (the value in original test data) and real output from neural network of 

the thk  output in thp  pattern in test data. 

 

 

3.4.2 Segmentation Problem 

The data set of segmentation problem consists of 18 inputs, 7 outputs, and 2310 

patterns. It is more complex compared to the  Thyroid and Glass problems. The 

experimental results of ordering obtained by the MSEF-CDE and MSEF-FLD methods, 

random ordering, retraining, and class decomposition are listed in Table 3.1 below. 

 

Table 3.1 Results of HICL and Other Algorithms with Segmentation Problem 

Method Ordering Training Time Test Error Classification Error 
Value: 5357.8  Value: 0.852246 Value: 3.604851 
Reduction (retraining):  
-452% 

Reduction (retraining):  
33.8% 

Reduction (retraining):  
38.8% 

HICL 
(MSEF-
CDE) 

7261345  

Reduction (class 
decomposition): -369% 

Reduction (class 
decomposition): 29% 

Reduction (class 
decomposition): 32% 

Value: 5979 Value: 0. 836863 Value: 3.450446 
Reduction (retraining):  
-516% 

Reduction (retraining):  
35% 

Reduction (retraining):  
41.4% 

HICL 
(MSEF-
FLD) 

7261354 

Reduction (class 
decomposition): -423% 

Reduction (class 
decomposition): 30.2% 

Reduction (class 
decomposition): 34.9% 

HICL  
(Random) 

7613542 4194.2 1.020443 3.89948 

HICL 
(Random) 

1234567 2620.8 1.020746 4.19411 

HICL  
(Random) 

4531627 1507.7 1.236225 4.800696 

HICL  
(Random) 

1436972 2560.6 1.20976 4.67938 

HICL  
(Random) 

2164357 5792.8 1.12248 4.33276 

HICL  
(Random) 

2761354 4012 0.922908 3.81282 

HICL 
(Random) 

4136572 2172.2 0.869713 4.33276 

HICL 
(Random) 

5346127 1688.6 1.22915 4.85269 
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HICL 
(Random) 

5436712 1611.5 1.2824 4.8007 

HICL 
(Random) 

6275434 3174 0.930261 4.15945 

Retraining  970 1.2869 5.89255 
Class 
Decomp 

 1143 1.2 5.3 

Notes:  
1 . Each row shows the experiment result obtained from the ordering stated in the 

cell of “ordering” column. This column shows the insertion orders of the 
experiments. The digit represents the index of the class (output attribute) to be 
added and the order of the digits represents the seq uence of inserting the class 
(output attributes). For example, 1234567 means the first class in the original 
data is inserted into the HICL structure, followed by the second class. The 
seventh output is the last one to be inserted into the HICL structure. 

2 . The row starting with “Retraining” shows the result of training the problem 
using standard CBP without task decomposition. 

3 . The row starting with “Class Decomp” shows the result of training the problem 
using class decomposition [15]. 

4 . A cell stating “Reduction(retraining)” shows the percentage value reduction  of 
the specified method compared to the value in retraining. It is calculated by 
function ( ) %100×÷− VlaueretrainingValueretraininguecurrentVla . Negative 
percentage indicates value increase instead of reduction. 

5 . A cell stating “Reduction(class decomposition)” shows the percentage value 
reduction compared to the value in class decomposition. It is calculated by 
function ( ) %100×÷− pVlaueClassDecompValueClassDecomueCurrentVla . 
Negative percentage indicates value increase instead of reduction. 

6 . Because there are 5040 possible orderings, which are hard to be tested 
completely, only a random selected small portion of them are tested in the 
experiments.  

7. The training time for Class Decomposition is calculated based on the module 
which needs the longest training time. 

 

In this problem, the linear estimator in the MSEF-FLD method obtained sufficient 

information from the data set to make accurate estimation of each module’s 

performance. As a result, MSEF-CDE and MSEF-FLD give very close orderings. 

From the experimental results, we can find that both of the orderings lead to very 

small classification errors (38.3% and 41.4% error reduction compared to retraining 

respectively) and generalization errors (33.8% and 35% error reduction compared to 

class decomposition respectively). It also shows great advantage over class 

decomposition when accuracy is emphasized.  However, as a tradeoff, both orderings 

need very long training time. 



Chapter 3     Task Decomposition with Hierarchical Structure                66 

3.4.3 Glass Problem 

The experimental results of ordered training obtained by the MSEF-CDE and MSEF-

FLD methods, random ordering, retraining, and class decomposition are listed in Table 

3.2 below. 

 

Table 3.2 Results of HICL and Other Algorithms with Glass Problem 

Method Ordering Training Time Test Error Classification Error 
Value: 66.5 Value: 8.936928 Value: 31.69813 
Reduction (retraining):  
-349%  

Reduction (retraining):  
12% 

Reduction (retraining):  
9.7%  

HICL 
(MSEF-
CDE) 

543612  

Reduction (class 
decomposition): -200% 

Reduction (class 
decomposition): -0.1% 

Reduction (class 
decomposition):  19.6% 

Value: 73.2 Value: 8.60229 Value: 32.45286 
Reduction (retraining):  
-484.6% 

Reduction (retraining):  
15.33% 

Reduction (retraining):  
7.5% 

HICL 
(MSEF-
FLD) 

614523  

Reduction (class 
decomposition): -231% 

Reduction (class 
decomposition): 3.6%  

Reduction (class 
decomposition): 17.7% 

HICL 
(Random) 

123456 87.8 8.511716 33.5849 

HICL 
(Random) 

132456 101 8.880506 32.45286 

HICL 
(Random) 

132456 83 9.497634 34.717 

HICL 
(Random) 

325146 90.4 9.066676 35.09434 

Retraining   14.8 10.15961 35.09436 
Class 
Decomp 

 22.1 8.92708 39.434 

Notes: 1-5.Refer to notes under table 3.1  
6. Because there are 720 possible orderings, which are hard to be tested 

completely, only a randomly selected small portion of them are tested in the 
experiments.  

7. The training time for Class Decomposition is calculated based on the module 
which needs the longest training time. 

 

Glass problem is a special case in the data sets used in the experiments. Because it 

contains a very small number of patterns, which is 214 in total, there is insufficient 

information for linear analysis techniques like FLD to predict the performance of each 

sub-network in HICL. In this problem, MSEF-FLD method fails to predict the 

ordering obtained by MSEF-CDE. The two methods give very different orderings. 
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The ordering obtained with the MSEF-CDE method shows much smaller test error and 

generalization error compared to retraining or class decomposition, but longer training 

time. It also leads to the most accurate result in the different orderings that have been 

tested. The result using the ordered training obtained from the MSEF-FLD method is 

not as accurate as what obtained with MSEF-CDE. However, the errors are still much 

less than the errors in retraining and class decomposition. 

 

 

3.4.4 Thyroid Problem 

The orders obtained with MSEF-CDE and MSEF-FLD are both 3? 1? 2, which 

stands for learning the sub-network associated with the third class first in HICL, 

followed by the sub-network associated with the first class, and then followed by the 

sub-network associated with the second class. The exper imental results of ordered 

training obtained by the MSEF-CDE and MSEF-FLD methods, random ordering, 

retraining, and class decomposition are listed in Table 3.3 below. 

 

Table 3.3 Results of HICL and Other Algorithms with Thyroid Problem 

Method Ordering Trai ning Time Test Error Classification Error 
Value: 840.6 Value: 0.94121 Value: 1.666668 
Reduction 
(retraining): 29.9% 

Reduction 
(retraining): 11.5% 

Reduction 
(retraining): 13.3% 

HICL 
(MSEF-CDE) 

312  
 

Reduction (class 
decomposition):49.2%  

Reduction (cl ass 
decomposition): 
9.4% 

Reduction (class 
decomposition):9.43% 

Value: 840.6 Value: 0.94121 Value: 1.666668 
Reduction 
(retraining): 29.9% 

Reduction 
(retraining): 11.5% 

Reduction 
(retraining): 13.3% 

HICL 
(MSEF-FLD) 

312 

Reduction (class 
decomposition):49.2%  

Reduction (class 
decomposition): 
9.4% 

Reduction (class 
decomposition):9.43% 

HICL 123 1509 1.203448 2.144446 
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(random) 
HICL 
(random) 

132 605.2 1.102526 2.033336 

HICL 
(random) 

213 1672.6 0.984035 1.755556 

HICL 
(random) 

231 1500.6 1.093764 1.944444 

HICL 
(random) 

321 1353 0.89799 1.544444 

Retraining  1198.4 1.063898 1.92222 
Class 
Decomposition 

 1656.2 1.038454 1.84015 

Notes:  1-5.Refer to notes under table 3.1 
 

From the experimental results, we can find the HICL approach with ordering obtained 

from the MSEF-CDE and MSEF-FLD methods gives much smaller classification error 

and generalization error (test error) compared to retraining the problem and class 

decomposition. It also requires much less computation time. Because MSEF-CDE and 

MSEF-FLD are developed with a simplified model of HICL structure, both of them 

did not give the ordering that leads to the exactly minimal error. In this problem the 

ordering of 321 gives slightly less classification error and generalization error, but 

much longer training time. However, the ordering given by MSEF-CDE and MSEF-

FLD still leads to much less error than the average of all the orderings. 

 

It is clear that HICL with MSEF-CDE and MSEF-FLD ordering methods is more 

accurate than retraining and class decomposition. However, it usually needs longer 

training time. Between the two ordering methods, MSEF-CDE is more general. It is 

suitable for small problems with insufficient information (or lack of samples). 

However, when the data set is large, MSEF-CDE may become time expensive in its 

pre-processing. If the data set contains sufficient information, MSEF-FLD can always 

give very similar, if not better, ordering compared to MSEF-CDE. In some cases like 

the Segmentation problem, MSEF-FLD gives even better ordering than MSEF-CDE, 

because it is a deterministic method and does not require the experiment result of each 



Chapter 3     Task Decomposition with Hierarchical Structure                69 

module as in MSEF-CDE. As a result, MSEF-FLD avoids the possible error in the 

experiment results required by MSEF-CDE. 

 

 

3.5 Summary of the Chapter 

In this chapter, I proposed a new task decomposition approach namely hierarchical 

incremental class learning (HICL) to grow and train neural network in a hierarchal 

manner. A neural network can be divided into several sub-networks, each sub-network 

takes the output from the sub-network immediately below it as well as the original 

input as its input. The output from each sub-network contains one more class than the 

sub-network immediately below it, and this output is fed into the sub-network above it. 

In order to reduce the error, two ordering methods, namely MSEF-CDE and MSEF-

FLD are further developed based on class decomposition error and linear analysis 

technique respectively. 

 

The suggested HICL with the MSEF-CDE and MSEF-FLD ordering methods is 

compared with one of the newest task decomposition techniques, Output Parallelism 

[42]. The experimental results of Glass problem with different task decomposition 

methods are shown in table 3.4 

 

Table 3.4 Compare of Experimental Results of Glass Problem 

Method Test Error Classification Error 
HICL-MSEF-CDE 8.936928 31.69813 
HICL-MSEF-FLD 8.60229 32.45286 
Output Parallelism 9.233 34.906 
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From the results, it is clear that the HICL method with MSEF-CDE or MSEF-FLD 

ordering has better accuracy than Output Parallelism. I have compared the results of 

some other problems and HICL is more accurate than Output Parallelism in most of 

the cases. 

 

In some task decomposition techniques such as Class Decomposition and Output 

Parallelism, the outputs of different sub-networks are assumed to be independent and 

isolated from each other. There is no information flow between the output attributes. 

However, this is not true in some real world applications. The proposed method not 

only reduces harmful interference among hidden layers, but also facilities information 

transfer between classes during training. The later sub-networks can obtain 

information learnt from the earlier sub-networks. With the hierarchical relationship 

(ordering) obtained from the MSEF-CDE and MSEF-FLD, the HICL approach shows 

smaller regression error and classification error than the class decomposition and 

retraining methods. 
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Chapter 4  

Feature Selection for Modular Neural 

Network Classifiers 

 

 

4.1 Background 

As what is discussed in section 3.1, neural networks suffers from the interference 

between outputs when it is applied to large-scale problems [14] [29]. In order to 

overcome this shortcoming, many task decomposition techniques are developed. 

Among these techniques, Class Decomposition [42] is the one most widely used. It 

splits a K -class problem into K  two-class sub-problems and each module is trained to 

learn a two-class sub-problem [19]. Therefore, each module is a feedforward network 

which is used to discriminate one class of patterns from patterns belonging to the 

remaining classes. Each module solves a subset of the original problem. Hence, the 

optimal input feature space that contains features useful in classification for each 

module is also likely to be a subset of the original one. From section 3.2, we can find 

that the HICL also decomposes the original problem into two-class sub-problem. 

Hence, it has the same problem as Class Decomposition 1 . For the purpose of 

improving classification accuracy and reducing computation effort, it is important to 

remove the input features that are not relevant to each module. A natural approach is 

                                                 
1 In this chapter, the discussion and experiments are based on Class Decomposition instead of HICL, 
because it is more widely used in practice.  
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to use a feature selection technique to find the optimal subset for each module. There 

are several feature selection techniques developed from the following perspectives 

[22]-[25] [53]-[60]. 

 

•  Neural network performance perspective 

The importance of a feature is determined based on whether it helps to improve the 

performance of neural network. Setiono and Lui [22] proposed a feature selection 

technique based on the neural network performance. In this technique, the features of 

the original feature space are excluded one by one and the neural network is retrained 

repeatedly. If the overall performance of the neural network is improved when a 

feature is excluded, the feature is removable from the input feature space. Techniques 

from this perspective have many attractive attributes but they basically require a large 

amount of processing on retraining neural networks. Besides, the performance of 

neural network classifiers depends on many parameters, for example, the initial link 

weights and neural network structure, etc. In order to obtain a reliable result for each 

combination of features, a neural network should be retrained several times with 

different initial link weights and the results averaged. This clearly makes the 

computation workload less acceptable. In order to overcome this shortcoming, faster 

learning algorithms and better search algorithms, such as RPROP and genetic 

algorithm, are used. However, it nevertheless requires considerable computation effort. 

 

•  Mutual information (entropy) perspective 

Shannon’s information theory provides a measure to the mutual information among 

input features and input and output features. The ideal greedy feature selection 

technique was developed based on the joint entropy between input and output features. 
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It can detect the features that are irrelevant to classification, but faces problems 

dealing with the features carrying redundant information. In order to overcome this 

shortcoming, Battiti [23] proposed a mutual information feature selector (MIFS) based 

on the joint entropy between not only inputs and outputs, but also different inputs. Up 

till now, researchers have developed some modified versions based on this technique, 

such as MIFS-U [59], to handle redundant features better. However, performance of 

these techniques can be largely degraded due to the large error in estimating the 

mutual information using the training data. 

 

•  Statistic information perspective 

The importance of a feature can be evaluated by goodness-score functions based on 

the distribution of this feature. Fisher’s linear discriminant (FLD) is the most popular 

goodness-score function. It is simple in computation and does not need strict 

assumptions in the distribution of features. Generally, all combinations of features in 

the original feature space can be evaluated with the goodness-score function by 

excluding some features in the feature space. The combination with a good balance of 

a large goodness-score and a small number of input features will be considered as the 

optimal input space for neural networks. Because all possible combinations of the 

features should be tried, the computation effort of such techniques is very high. In 

order to reduce computation time, some search algorithms are developed, such as 

knock-out [24], backtrack tree [25] and genetic algorithm [60]. 

 

The shortcomings of the above feature selection techniques can be summarized as: 1) 

most techniques require huge amount of computation; 2) most of them cannot analyze 

the correlation among features in a clear manner.  
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In this chapter, I propose two new feature selection techniques: Relative Importance 

Factor (RIF) and Relative FLD Weight Analysis (RFWA) based on the optimal 

transformation weights from Fisher’s linear discriminant function. The RIF technique 

can detect features that are irrelevant to the classification problem and remove them 

from the feature space to improve the performance of each module in terms of 

accuracy and network complexity. The RFWA technique can further classify the 

irrelevant features into noise features and redundant features. In section 4.2, I give a 

brief introduction to modular neural networks with class decomposition and Fisher’s 

linear discriminant. Then, the RIF and RFWA techniques are depicted in details in 

section 4.3. The experiments and results of the proposed techniques are analyzed in 

section 4.4. Section 4.5 summarizes the research on this topic. 

 

 

4.2 Modular Neural Networks with Class 

Decomposition 

When neural network classifiers are used to solve large scale real world problems, 

their structures tend to be large to match with the complex decision boundaries of the 

problems. Large networks tend to introduce high internal interference because of the 

strong coupling among their hidden-layer weights. Internal interference exists during 

the training process, whenever updating the weights of hidden units, the influence 

(desired outputs) from two or more classes cause the weights to compromise to non-

optimal values due to the clash in their weight update directions. 
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In order to avoid such interference, the original network can be decomposed into 

several modules or sub-problems (Guan, 2002). A common decomposition method 

used in classification problems is to split a K -class problem into K  two-class sub-

problems (Figure 4.1) and each module is trained to learn a “yes or no” problem for 

one class. Each two-class sub-problem is learned independently. Hence, each sub-

problem forms a module that is independent from the others. The final overall solution 

is obtained by integrating all the trained modules’ solutions together.  

 

 

 

In a modular neural network classifier, the occurrences of irrelevant input features are 

more serious than that in a non-modular neural network classifier. Each module of the 

modular network is trained independently to solve a “yes or no” problem for one class. 

Some input features supplied to the original problem may only be useful in classifying 

certain classes, but irrelevant to the other classes. This suggests that a feature selection 

process should be applied to each module independently to minimize any undesirable 

effects. Such a feature selection process can further reduce the internal interference 

within the modular network to obtain higher classification accuracy. 

Divide the original problem 
into k sub-problems

Merge the results of 
k modules

Construct 
module k -1

…Construct 
module 1 

Construct 
module 2 

Construct 
module k  

Figure 4.1 Modular Network
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4.3 RFWA Feature Selector 

In this section, two feature selection techniques are presented. The discussion start 

from the classification of different types of input features. In the next subsection, the 

design goals of the proposed techniques are given. After that, the RIF feature selection 

technique based on Fisher’s transformation matrix w is proposed. Then, the RFWA 

feature selection technique based on the RIF is introduced. 

 

4.3.1 Classification of Features 

In order to distinguish features that contribute to solve a sub-problem from features 

that do not contribute or contribute little,  the features in the original feature space 

should be classified into the following two classes. 

 

1. Relevant Features: The relevant features of a certain module carry significant 

useful information for correct classification.  

 

2. Irrelevant Features: The irrelevant features of a certain module carry little useful 

information for correct classification. In another word, irrelevant features make 

little or no contribution for correct classification. Irrelevant features can be further 

classified into noise and redundant features. 

•  Noise Features: Noise features are purely random noise to the module. 

They do not carry classification information to the module. 

•  Redundant Features: Redundant features contain classification information 

overlapping with the other features and their classification information can 

be fully represented by other relevant features. 
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The optimal input feature space of a module should contain the relevant features only. 

If noise features are present in the input feature space, the classifier may end up 

building unnecessarily complex decision boundaries in these feature dimensions under 

training. This will make the neural network harder to converge and lose generalization 

ability. If redundant features are present in the input feature space, they cannot 

contribute to classification either, because the useful information carried by them can 

be fully covered by relevant features. The noise carried by redundant features is 

harmful to the accurate classification of the neural network. 

 

 

4.3.2 Design Goals 

The aim of feature selection is to improve the performance of the classifier. For neural 

networks, there are three key measurements of the performance, which are 

generalization error, learning speed and network complexity. In the proposed RIF and 

RFWA feature selection techniques, a good balance between the three goals is desired 

in our research.  

 

•  Design Goal 1: The performance of a neural network classifier should be 

improved after the feature selection process. The test/classification error and 

network complexity should be reduced and the leaning speed should be 

increased significantly. 

 

•  Design Goal 2: The feature selection technique should be able to detect 

redundant features as well as noise features. 
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•  Design Goal 3: The feature selection technique should not require too much 

computation. 

 

A common shortcoming of available feature selection techniques based on statistic 

analysis, such as knock-out techniques, is that they do not consider the correlation 

among features in a clear manner. Hence, they will face problems when handling 

highly correlated features. The proposed RFWA technique suggests a clear way of 

detecting correlated features. The computation workload is another important 

consideration in the design. The proposed feature selection technique in this chapter is 

very attractive in computation time.  

 

 

4.3.3 A Goodness Score Function Based on Fisher’s Transformation 

Vector 

Fisher’s linear discriminant2 algorithm projects a d-dimensional feature space to a c-1 

dimensional feature space by the function i
t

i xwy = , in the direction w that maximizes 

the function
wSw
wSwwJ

W
t

B
t

=)( , where d is the number of features and c is the number of 

classes.  

 

For each module in a modular neural network described in Figure 4.1, the projected 

feature space is one-dimensional (projected on a line). Hence, the transformation 

matrix w that maximizes the criteria function J(w) is a vector 

                                                 
2 Refer to section 3.3.2 for reference of Fisher’s linear discriminant. 
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[ ] t
dwwww m21= . After transformation, an input vector 

[ ] t
idiii xxxx m21= will become 

[ ][ ] iddii
t

idiidi
t

i xwxwxwxxxwwwxwy +++=== mmm 22112121

 (4.1) 

This optimal transformation vector w which maximize )(wJ can be computed by 

solving the eigenvector problem: 0)( =− wSS WB λ , where λ  is the non-zero 

eigenvalue and w  is the corresponding eigenvector. BS and WS can be computed as 

discussed on page 61 of section 3.3.2.  

 

The elements in the transformation vector w can be viewed as weights for different 

features in the original feature space respectively. Because w represents the best 

transformation direction, diwi m2,1, = shows how much classification information 

the ith feature in the original feature space carries. 

 

Based on the above analysis and experiment results from several benchmark problems,  

an observation can be made: in an optimal transformation vector w of the Fisher’s 

linear discriminant, a larger iw represents that the i th feature is more likely to be 

relevant to the module and a smaller iw  represents the i th feature is less likely to be 

relevant to the module. This observation forms the basis of the proposed RIF and 

RFWA techniques. In order to show this observation is valid, experiments were 

conducted using the knock-out technique (Lerner, 1994) with Fisher’s 

function
wSw
wSwwJ

W
t

B
t

=)(  as a goodness-score function on several benchmark problems. 

In the experiments, the features in the original feature space are removed one at a time 
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and the Fisher’s value with respect to all the remaining features is calculated. If the 

Fisher’s value after removing a feature changes little compare to the Fisher’s value 

with respect to all features, the removed feature is likely to be irrelevant. The 

experiment results confirm with the observation. The experiment results of RIF and 

RFWA also show that the observation is correct, which will be discussed in the next 

section. 

 

The proposed goodness score shows some advantages compared with some traditional 

goodness scores, such as Fisher’s function J(w). Firstly, it requires much less 

computation time. Assume there are d input features in the original feature space. In 

order to obtain the relative importance of each feature, we need d FLD computations 

with d-1 features included each time using the traditional knock-out techniques. With 

the proposed goodness score, the relative importance of each feature in the module can 

be obtained in one FLD computation with all d features included. Secondly, from the 

experiment results, it is found that the proposed goodness score can easily handle 

highly correlated features. Assume there are two duplicated features with one carrying 

more noise information than the other. In order to remove the one with more noise, the 

traditional knock-out goodness score requires at least d+2 FLD computations. The 

proposed goodness score can automatically handle this situation without extra 

computation. In the experiments, it is observed that if two features in the original 

feature space carry almost the same classification information, the proposed goodness 

score will assign high importance to the one with less noise and very low importance 

to the other one with more noise.  
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4.3.4 Relative Importance Factor Feature Selection3 (RIF) 

From section 4.3.3, we know that the proposed goodness score can measure the 

relative importance of a specified set of features. If the weights of some features in the 

transformation vector w are less than some threshold value T1, these features can be 

considered as irrelevant features. Otherwise, they are relevant features of the problem.  

 

However, the weights obtained directly from the transformation vector are not 

normalized. In another word, the weights obtained from one set of features are not 

comparable with weights obtained from another set of features. Hence, the value of T1 

may vary from problem to problem.  

 

In order to overcome this problem, I introduce a Relative Importance Factor (RIF), 

[ ] t
drrrr l21= , instead of using the transformation vector w directly in 

feature selection. The RIF is obtained from the transformation vector w through the 

following two steps of normalization. 

 

1. Normalize the length of the transformation vector w. 

Since we are looking for the relative importance between features, we are more 

interested in the relative weights of the features formed from the 

transformation vector w, which can be obtained through normalization: 

 

( )∑
=

=
d

i
iw

ww

1

2

' ,                                                 (4.2) 

 
                                                 
3 In the discussions in section 4.3.4 and 4.3.5, the original feature space is assumed to be d-dimensional. 
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where wi is the weight of the ith feature and w’ is the normalized transformation 

vector. 

 

2. Make the importance factor independent from the number of features. 

Different problems have different numbers of features in their feature spaces. 

In order to make the importance values obtained from different problems 

comparable, it is necessary to make them independent with the number of 

features in the feature space. This is achieved by the following equation 

 

'
'

1

w
w

dr d

i
i∑

=

=                                                   (4.3) 

 

If we combine the first and second steps together, the Relative Importance 

Factor can be obtained from the transformation vector w directly as: 

 

( )

( )
w

w

d

w

w

w

w

dr d

i
i

d

i
id

i
d

i
i

i

∑∑

∑

∑

==

=

=

=




















=

11

2

1

1

2

                  (4.4) 

 

The elements of r represent the normalized importance of different features, which are 

independent from the magnitude of w and the number of features in the feature space. 

If the d features carries equal classification information and they are independent from 

each other, all the elements of r will have the value of 1. Hence, the RIF value 

obtained from different problems are comparable, and a threshold value T1 may be 
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found that can be applied to various problems. In the research, I adopt 1.01 =T  as the 

threshold value base on the experiment results of several benchmark problems. This 

threshold value will be used through out the rest of the chapter.  

 

The exact value of this threshold can be varied by the user. In most cases, if a larger 

threshold value is used, more features can be removed and training time and 

complexity of the neural network can be further reduced. However, too large a 

threshold value may cause information loss, so that the classification accuracy can be 

affected. On the other hand, if the threshold value is too small, there are few features 

that can be selected as irrelevant. In the problems I have worked on, there is significant 

feature reduction and no undesirable affect to the classification accuracy when 0.1 is 

used. 

 

The RIF feature selection technique can be summarized as the following. 

 

1. Calculate the Fisher’s transformation vector w with respect to all features in 

the input feature space. 

 

2. Calculate the Relative Importance Factor for each feature by normalizing the 

transformation weight of each feature. 

i. If the RIF value of a feature is larger than 0.1, it can be 

considered as a relevant feature. 

ii. If the RIF value of a feature is less than 0.1, it can be considered 

as an irrelevant feature and can be removed from the input 

feature space. 
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3. Repeat step 1 and 2 for each module in the modular neural network classifier. 

 

Though the RIF feature selection technique can classify irrelevant features from the 

original input feature space, it cannot tell whether a detected feature is a noise feature 

or it carries classification information that can be represented by other features. To 

resolve this,  the RFWA feature selection technique is further developed based on RIF. 

Not only it can distinguish between relevant and irrelevant features, but also able to 

classify irrelevant features into noise and redundant features. 

 

 

4.3.5 Relative FLD Weight Analysis (RFWA) Feature Selection  

If the classification information carried by one feature in a module can be fully 

represented by another feature, it is a redundant feature and its RIF value is small 

based on the analysis in section 3.3. However, when one of the features that carry 

similar classification information as the redundant feature is removed from the input 

feature space, the information of the redundant feature becomes more important than 

before. Hence, its RIF value increases significantly if the remaining features in the 

input feature space cannot fully represent the information carried by it any longer. On 

the other hand, if a feature in the original feature space does not carry any 

classification information, its RIF value will not be affected much with whichever 

feature being removed. This observation suggests a solution to distinguish between the 

noise and redundant features. 
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The proposed RFWA feature selection technique uses the RIF feature selection 

technique as the first step. In this step,  the RIF value of each input feature with respect 

to all input features is obtained. If the RIF value of a feature is less than the threshold 

T1, this feature will be labeled as irrelevant feature, which can be either noise or 

redundant. 

 

In the next step of RFWA, one relevant feature is removed from the input feature 

space and the RIF values with respect to the remaining d-1 features are calculated 

again. Hence, each irrelevant feature gets one more RIF value, which is called as Cross 

Relative Importance Factor (CRIF). Repeat this process by restoring the previously 

removed feature back to the input feature space and removing another relevant feature, 

till every relevant feature has been removed once and the corresponding CRIF values 

have been computed.  

 

Until now,  d-N+1 RIF values for each feature have been obtained through the two 

steps. One RIF value with respect to all input features and d-N CRIF values, where N 

is the number of irrelevant features detected in the previous step. If one of the d-1 

CRIF values of an irrelevant feature increases significantly so that it exceeds a pre-

defined threshold value 2T  after some other feature is removed, the feature can be 

considered as a redundant feature. In the research, I have adopted 6.02 =T  as the 

threshold value, based on the experiment results from various benchmark problems. 

Otherwise, that irrelevant feature can be considered as a noise feature. 

 

In summary, the RFWA technique can be described as the following. 
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1. Calculate the RIF value of each feature, select those features whose RIF values are 

less than 0.1 as irrelevant features, and place them in a list for further selection. 

Initially set counter M=1. 

 

2. If the Mth feature is a relevant feature, remove it from the input feature space and 

calculate the CRIF values with respect to all the remaining features. Restore the 

Mth feature, M=M+1. Repeat 2. If the Mth feature is an irrelevant feature, M=M+1 

and repeat 2. 

 

 

3. Perform the following procedure to classify each irrelevant feature in the list: 

•  If the CRIF value of a feature in the list exceeds 0.6, the feature is a 

redundant feature to the module. Remove it from the list. 

 

4. The features remaining in the list are noise features. 

 
 
 
 
4.4 Experiments and Analysis 

In this section,  the same learning algorithm and parameter settings as described in 

section 3.4.1 is adopted.  

 

4.4.1 Diabetes Problem 

The Diabetes problem diagnoses diabetes of Pima Indians. It has 8 inputs, 2 outputs, 

and 768 patterns. All inputs are continuous.  
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Because there are only 2 classes in the problem, it is a “yes or no” problem itself for 

each class. There is only one module in the modular neural network classifier, which is 

the original problem. 

 

The RIF and CRIF values for each feature are obtained as in Table 4.1 

 

Table 4.1  RIF and CRIF Values of Each Feature 

 RIF CRIF 1 CRIF 2 CRIF 3 CRIF 4 
Feature 1 0.8290  0.7966 0.8177 0.7301 
Feature 2 2.8040     2.5776  2.7679 2.4643 
Feature 3 0.6736     0.6040 0.5234  0.5888 
Feature 4 0.0368     0.0363 0.4081 0.0750  
Feature 5 0.3216     0.3853 0.7843 0.3419 0.3036 
Feature 6 2.1046     1.9403 2.6555 1.9135 1.8664 
Feature 7 0.8165     0.7005 0.9677 0.8357 0.7221 
Feature 8 0.3726    0.7561 0.8647 0.2472 0.3253 

      
 CRIF 5 CRIF 6 CRIF 7 CRIF 8  
Feature 1 0.7744 0.8930 0.7568 0.9017  
Feature 2 2.4884 3.2881 2.7295 2.5881  
Feature 3 0.6147 0.4058 0.6635 0.5327  
Feature 4 0.0843 0.6162 0.1196 0.0086  
Feature 5  0.4685 0.2691 0.3458  
Feature 6 1.9529  2.067 1.8712  
Feature 7 0.7294 0.9659  0.7518  
Feature 8 0.3549 0.3618 0.3941   
Notes:   1. Row of the table stands for the RIF and different CRIF measures of each 

specified feature with respect to the index number specified in the first 
column. The row highlighted means that the specified feature is detected as 
irrelevant. 

      2. Column of the table stands for RIF values for all features and CRIF 
values with different features removed from the input features space, with 
respect to the index specified in the first row. The number following 
“CRIF” means the index of feature removed. For example, CRIF 2 means 
that the CRIF is measured with the second feature removed from the input 
feature space. 

 3. The CRIF values with respect to irrelevant features removed are also 
listed in this table. 
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From the RIF feature selection technique, feature 4 is detected as irrelevant, because 

its RIF value is far less than the threshold T1, which is set as 0.1 in the experiment. We 

can also find that when feature 6 is removed from the input feature space, the CRIF 

value of feature 4 rises to 0.6162, which is larger than the threshold T2 in RFWA. 

Hence, from RFWA, feature 4 is a redundant feature rather than noise feature and it 

has redundant relations with feature 6. The experiment results for the original problem 

and the problem after removing feature 4 are listed in Table 4.2. 

 

Table 4.2  Results of the Diabetes Problem 

 Epochs Training 
Time (s) 

Hidden 
Units Test Error Classification Error 

Original 
Problem 3456 3 11.6 16.52402 25 

Feature4 
Removed 5127 5.4 16.6 15.6787(5.1%) 22.39582(10.4%) 

Feature 
4, 5, 8 
Removed 

1371 1 4 16.5006(0.14%) 24.79168(0.8%) 

Notes:  1. The values in brackets show the percentage reduction of the specified 
parameter obtained in the modified feature space compared to the one 
obtained in the original feature, 

 2. Training time is measured in seconds, 
 3. The column starting with “Hidden Units” shows number of hidden units 

in the neural network when training is finished. Because the results listed 
are average value of ten experiments, there are decimal parts in the results, 

 4. “Test Error” means the regression error obtained from test patterns and 
the “Classification Error” means classification error obtained from test 
patterns. 

 

Based on table 4.2  the performance of the neural network classifier is improved 

significantly in terms of classification accuracy and training time After removing the 

irrelevant feature. From the experiment, I also find that using 0.1 as the value of 

threshold T1 is a very strict condition. If a larger value, e.g. 0.4, is used, there are some 

“boundary features” that can be detected. The features have some contribution to the 

accurate classification of the module, but the contribution is limited. Normally, these 
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boundary features will make the neural network harder to converge. For example, in 

Table 4.1  feature 5 and feature 8 have RIF values of 0.3216 and 0.3726 respectively, 

which are larger than the threshold value we discussed earlier. However, they are still 

far less than 1, which means they do not carry classification information as much as 

the other features. In Table 4.2, the test error and classification error raise a little, but 

the training time and number of hidden units (network complexity) drop to a very 

small value after removing both boundary features. The exact value of T1 can be varied 

from problem to problem and 0.1 is only a heuristic based on the experiment results 

that normally reduces the classification error as much as possible in many problems. If 

the user focuses on simplifying the input feature space as much as possible while 

keeping the classification accuracy in an acceptable range, he can always use a larger 

T1, for example, 0.4 in this problem. However, normally this value should not be 

greater than 0.5, from the experiment results. 

 

 

4.4.2 Thyroid Problem 
This problem is divided into three modules in a modular neural network classifier, 

because there are three classes, one module for each class. The RIF and CRIF values 

of the features in the three modules are listed in Table 4.3, 4.4 and 4.5 respectively. 

 

Table 4.3  RIF and CRIF of Features in the First Module of the Thyroid Problem 

 RIF CRIF 15 CRIF 17 CRIF 18 CRIF 19 CRIF 20 CRIF 21 
Feature 1 0.0343 0.0331 0.0007 0.063 0.0397 0.0385 0.0387 
Feature 2 0.0131 0.0126 0.0209 0.0178 0.0167 0.0233 0.0152 
Feature 3 0.0164 0.0157 0.0402 0.0265 0.0103 0.0172 0.0177 
Feature 4 0.034 0.0338 0.0376 0.0389 0.0388 0.0436 0.037 
Feature 5 0.0041 0.0039 0.0184 0.022 0.0039 0.0051 0.0055 
Feature 6 0.0501 0.0481 0.0538 0.0545 0.0641 0.0665 0.0567 
Feature 7 0.0155 0.0147 0.0661 0.0213 0.0008 0.0233 0.0119 
Feature 8 0.0174 0.0166 0.0154 0.0179 0.01 0.0135 0.0169 
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Feature 9 0.0228 0.0219 0.0101 0.0221 0.0373 0.0373 0.027 
Feature 10 0.0236 0.0227 0.0286 0.0306 0.0312 0.0326 0.0267 
Feature 11 0.0288 0.0276 0.0264 0.0252 0.0363 0.038 0.0329 
Feature 12 0.0641 0.0614 0.0734 0.0801 0.0749 0.0812 0.0717 
Feature 13 0.0465 0.0446 0.0693 0.0546 0.0529 0.0551 0.0514 
Feature 14 0.0375 0.0359 0.0157 0.0361 0.0474 0.0504 0.042 
Feature 15 0.1445 0.227 0.1507 0.1395 0.1497 0.1548 
Feature 16 0.0158 0.0151 0.0219 0.0205 0.0214 0.0225 0.0181 
Feature 17 9.6481 9.2572 11.4325 12.3852 12.9401 10.873 
Feature 18 3.1858 3.054 3.8771 3.8452 3.3785 3.3528 
Feature 19 3.3733 3.2336 5.9632 3.9016  1.2145 2.7078 
Feature 20 3.2921 3.1545 6.5621 3.2757 0.5642  2.4422 
Feature 21 0.9324 0.8929 2.8722 0.7083 2.5802 1.7691  
 

 

Table 4.4  RIF and CRIF of Features in the Second Module of the Thyroid 

Problem 

 RIF CRIF 1 CRIF 2 CRIF 3 CRIF 7 CRIF 8 CRIF 
10 

CRIF 
12 

Feature 1 0.2375  0.2245 0.2599 0.2253 0.2311 0.2415 0.2269 
Feature 2 0.1798 0.1631  0.16 0.1646 0.1664 0.1833 0.1728 
Feature 3 0.4693 0.4224 0.4095  0.4303 0.447 0.4102 0.4521 
Feature 4 0.0172 0.013 0.0118 0.0164 0.0074 0.0178 0.0035 0.0148 
Feature 5 0.0707 0.0732 0.0502 0.0817 0.0679 0.0593 0.0909 0.0701 
Feature 6 0.048 0.0302 0.0447 0.0094 0.0429 0.0443 0.0368 0.0468 
Feature 7 0.2858 0.2763 0.2544 0.2886  0.2603 0.2891 0.2775 
Feature 8 0.4409 0.4025 0.3788 0.4781 0.4  0.4267 0.427 
Feature 9 0.0323 0.0092 0.0298 0.1245 0.0261 0.0302 0.0016 0.0327 
Feature 10 0.4533 0.4101 0.4257 0.3954 0.4176 0.4305  0.4369 
Feature 11 0.0343 0.0296 0.0446 0.0605 0.0244 0.0293 0.0429 0.0324 
Feature 12 0.1399 0.1159 0.1136 0.1251 0.1311 0.1381 0.1265  
Feature 13 0.3513 0.3356 0.3177 0.3673 0.3291 0.3249 0.3434 0.3411 
Feature 14 0.007 0.0132 0.0219 0.0115 0.0195 0.0068 0.0259 0.0084 
Feature 15 0.4741 0.4875 0.5087 0.4966 0.4178 0.4392 0.4554 0.46 
Feature 16 0.1439 0.1452 0.1603 0.1069 0.1314 0.1308 0.1424 0.1348 
Feature 17 4.5771 4.0426 4.2602 4.1837 4.244 4.3329 4.4384 4.3993 
Feature 18 10.0926 10.1074 9.6549 7.8248 9.3103 9.4393 10.05 9.6816 
Feature 19 0.0342 0.107 0.0114 1.7402 0.2099 0.2672 0.1251 0.0033 
Feature 20 0.176 0.3899 0.8326 0.924 0.725 0.4386 0.0405 0.145 
Feature 21 2.7348 2.426 2.2447 2.3453 2.6755 2.766 2.526 2.6366 
         
 CRIF 13 CRIF 15 CRIF 

16 
CRIF 17 CRIF 

18  
CRIF 
20 

CRIF 
21 

 

Feature 1 0.2362 0.2318 0.2428 0.2082 0.4259 0.2287 0.1944  
Feature 2 0.1725 0.1752 0.1787 0.1766 0.2662 0.1727 0.1464  
Feature 3 0.4508 0.4569 0.4459 0.4218 0.6424 0.4513 0.3837  
Feature 4 0.0169 0.0126 0.0251 0.0068 0.0284 0.0165 0.0118  
Feature 5 0.064 0.0688 0.0612 0.0766 0.1671 0.068 0.056  
Feature 6 0.0435 0.0467 0.0415 0.0577 0.0515 0.0461 0.0383  
Feature 7 0.2816 0.2778 0.2732 0.3045 0.4201 0.2767 0.2462  
Feature 8 0.4196 0.4291 0.4179 0.4163 0.6197 0.4245 0.3675  
Feature 9 0.0289 0.0314 0.0275 0.0339 0.064 0.0313 0.0295  
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Feature 10 0.4361 0.4413 0.437 0.4337 0.658 0.4361 0.3718  
Feature 11 0.0363 0.0334 0.0395 0.0366 0.0156 0.033 0.0269  
Feature 12 0.1379 0.1363 0.1195 0.1122 0.1815 0.1345 0.1147  
Feature 13  0.3418 0.3309 0.3542 0.5011 0.3382 0.29  
Feature 14 0.0062 0.0068 0.0015 0.0131 0.0406 0.0068 0.0058  
Feature 15 0.4471  0.4481 0.5285 0.6026 0.4577 0.4047  
Feature 16 0.1351 0.14  0.1423 0.2126 0.1383 0.1173  
Feature 17 4.4247 4.4586 4.4195  6.8482 4.3923 3.6287  
Feature 18 9.6801 9.8168 9.7743 10.5802  9.7406 8.7537  
Feature 19 0.083 0.0424 0.0041 2.3446 0.3069 0.093 2.2768  
Feature 20 0.2516 0.1843 0.1123 2.6373 2.5483  2.5356  
Feature 21 2.6481 2.668 2.5995 1.1148 5.3991 2.5136   
 

 

Table 4.5  RIF and CRIF of Features in the Third Module of the Thyroid 

Problem 

 RIF CRIF 
3 

CRIF 
8 

CRIF 
10 

CRIF 
13 

CRIF 
15 

CRIF 
17 

CRIF 
18 

CRIF 
19 

CRIF 
20 

Feature 
1 

0.0955 0.0959 0.0944 0.0956 0.095 0.0924 0.0453 0.1679 0.1004 0.1021 

Feature 
2 

0.062 0.0538 0.0587 0.0628 0.0596 0.0599 0.055 0.0859 0.0669 0.0733 

Feature 
3 

0.1217  0.1187 0.1037 0.1171 0.1174 0.0578 0.1456 0.1377 0.1386 

Feature 
4 

0.0221 0.0214 0.0208 0.025 0.0211 0.0235 0.0293 0.027 0.0213 0.024 

Feature 
5 

0.0235 0.0249 0.0203 0.03 0.0211 0.0227 0.0315 0.0634 0.0245 0.0261 

Feature 
6 

0.0537 0.0417 0.0515 0.0478 0.0505 0.0517 0.0563 0.0618 0.0587 0.0603 

Feature 
7 

0.0944 0.0898 0.0879 0.0951 0.0935 0.0908 0.1193 0.1294 0.0876 0.0764 

Feature 
8 

0.1404 0.1417  0.1355 0.1335 0.1354 0.102 0.1789 0.1428 0.1504 

Feature 
9 

0.0089 0.0139 0.0087 0.0189 0.0093 0.0085 0.0009 0.0027 0.0155 0.0148 

Feature 
10 

0.149 0.1266 0.1446  0.1435 0.1437 0.1164 0.2003 0.1612 0.1672 

Feature 
11 

0.0328 0.0376 0.0307 0.0343 0.0328 0.0316 0.0294 0.0264 0.0354 0.0367 

Feature 
12 

0.0108 0.0145 0.0085 0.0121 0.009 0.0104 0.0358 0.0232 0.0081 0.0101 

Feature 
13 

0.1379 0.1345 0.1309 0.1336  0.1329 0.1326 0.1803 0.1445 0.1499 

Feature 
14 

0.0278 0.0312 0.0268 0.0199 0.0269 0.0268 0.01 0.0213 0.0303 0.0318 

Feature 
15 

0.2512 0.2439 0.2397 0.2391 0.2381  0.2987 0.292 0.2418 0.2536 

Feature 
16 

0.0539 0.042 0.0504 0.0529 0.0506 0.0519 0.0484 0.0741 0.059 0.0613 

Feature 
17 

8.993 8.4933 8.6893 8.5184 8.6479 8.6741  11.9233 9.89 10.2119

Feature 
18 

5.4337 4.6057 5.2164 5.2881 5.2163 5.2357 5.4357  5.7449 5.5265 
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Feature 
19 

2.6749 2.9937 2.5074 2.5751 2.5486 2.5748 5.3698 3.3731  0.8522 

Feature 
20 

2.5695 2.7289 2.3935 2.492 2.4346 2.4712 5.9213 2.2291 0.4289  

Feature 
21 

0.0433 0.0651 0.1007 0.0201 0.0511 0.0447 2.1045 0.7941 2.6004 2.0329 

 

In the module of class one, fifteen out of twenty-one features are found to be irrelevant 

to the module by RIF. After applying RFWA, the entire fifteen features are classified 

to be noises to the module, which are feature 1-14 and feature 16. Table 4.6 shows the 

experiment results before and after removing the fifteen noise features from the input 

feature space. 

 

Table 4.6  Results of the First Module of the Thyroid Problem 

 Epochs Training 
Time 

Hidden 
Units 

Test Error Classification 
Error 

Original 
Problem 

753  52.2 2.1 0.801002 1.578% 

Noise Features 
Removed 

867 28.8 2.5 0.655246 
(18.2%) 

1.350% (14.44%)

 

In the module of class two, feature 4, 5, 6, 9, 11, and 14 are detected as noise features 

by RIF and RFWA. Feature 19 is detected as redundant. The experiment results are 

shown in table 4.7. 

 

Table 4.7  Results of the Second Module of the Thyroid Problem 

 Epochs Training 
Time 

Hidden 
Units 

Test Error Classification 
Error 

Original 
Problem 

13165 1187 12.66667 1.37877 1.833% 

Noise Features 
Removed 

11303 943.2 8.8 0.944492 
(31.5%) 

1.144% (37.6%) 
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 In the module of class three, feature 1, 2 4-7, 9, 11, 12, 14, 16 and 21 are detected as 

irrelevant by RIF. From RFWA, feature 21 is found to be a redundant feature and all 

the other features are noises. Table 4.8 shows the experiment results before and after 

removing the irrelevant features. 

 

Table 4.8  Results of the Third Module of the Thyroid1 Problem 

 Epochs Training 
Time 

Hidden 
Units 

Test Error Classification 
Error 

Original 
Problem 

3936.25 338.5 7.75 1.55297 1.722225 

Noise Features 
Removed 

2568 135.8 5.2 1.508322 
(2.88%) 

1.61111 (6.45%) 

 

 

Based on the experiment results listed above, the performance of the neural network 

improves a lot. The training time and network complexity are reduced significantly, 

while the classification accuracy improved more or less. In the second module of the 

problem, the classification error is reduced up to 37.6%. 

 

So experiments with some other benchmark problems, such as the Glass problem4 

(Table 9 – Table 11), are also conducted.  From the experiment results, the feature 

selection techniques shows great performance for problems with multiple classes and 

large input feature spaces. For example, in the Thyroid problem, there are nearly half 

of the features in each module detected as irrelevant features by RIF. After removing 

the irrelevant features, the generalization accuracy, learning speed and network 

complexity improved dramatically. As an addition, it is observed that most of the 

irrelevant features are noise features in the experiments. 

                                                 
4 Only the experiment results of module 1, 2 and 3 of the Glass problem are listed in this section. The 
other three modules have very small classification error and no feature selection is performed. 
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Table 4.9  Results of the First Module of the Glass Problem 

 Epochs Training 
Time 

Hidden Units Test Error Classification 
Error 

Original 
Problem 

856.67 1.556 1.444 19.67771 35.6% 

Feature 1, 9 
Removed 

438 0.6 0.3 18.81184 (4%) 35.4% 
(0.56%) 

 

Table 4.10  Results of the Second Module of the Glass1 Problem 

 Epochs Training 
Time 

Hidden Units Test Error Classification 
Error 

Original 
Problem 

3476 6.6 3.7 21.11 33.02% 

Feature 1, 9 
Removed 

9683.5 19.7 6.5 18.52 
(12.27%) 

23.4% 
(29.134%) 

 

Table 4.11  Results of the Third Module of the Glass1 Problem 

 Epochs Training 
Time 

Hidden Units Test Error Classification 
Error 

Original 
Problem 

3519.5 6.1 2.5 6.35 7.92% 

Feature 7, 9 
Removed 

1494 2.4 1.2 6.94 (-9%) 7.92% 

 

An interesting observation in table 4.11 is that the test error is higher than original 

problem while the classification is reduced after the irrelevant features are removed. It 

does not mean the feature selection fail in this problem, but reflects that they are 

designed for classification problems instead of regression problems. Because the test 

error is not in the consideration of the techniques, the input features that are relevant to 

regression but irrelevant to classification may also be removed. 

 

To understand it clearly, it should be noted that the classification error is not 

necessarily be an increasing function of test error. From equation 3.7 in chapter 3, we 

know that the test error ∑∑
= =

−
⋅
−

⋅=
P

p
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k
pkpktest to
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whereα  is a constant, is a linear function of the square of real distance between the 
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desired output position and the real output position in the output space. However, the 

classification error is a step function of the distance based on the decision boundary of 

the classification problem. There is no clear dependency between the two errors. For 

example, a two class problem has 5 data samples, three belonging to class 1 and the 

other 2 belonging to class 2. Class 1 has an output value of 1 and Class 2 has an output 

value of 0. The decision boundary is the output value of 0.5. There are two possible 

situations as shown in figure 4.2 and figure 4.3: 

1 1
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Figure 4.2 Situation 1 of a Two-Class problem 
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Figure 4.3 Situation 2 of a Two-Class problem 
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In figure 4.2, the real outputs have values of 0.9, 0.1, 0.1, 0.1 and 0.9 respectively. The 

classification error is increased to %205
1

2 ==ClassE , while the regression error (test 

error) is ( ) αα 53.07.01.04 22
2 =+×=testE . In figure 4.3, after some input features are 

removed, the real outputs have values of 0.6, 0.6, 0.4, 0.4 and 0.6 respectively. The 

classification error is 0 because all the real outputs are in the correct side of the 

decision boundary. The regression error (test error) is αα 8.04.05 2
1 =×=testE . 

Clearly, the classification error increases and the regression error (test error) decreases 

just like what is observed in the experiment. 

 

 

4.5 Summary of the Chapter 

In this chapter, I proposed two new feature selection techniques, RIF and RFWA for 

modular neural network classifiers. RIF classifies input features into relevant and 

irrelevant features based on the amount of classification information carried by the 

features. The irrelevant features detected are then removed from the input feature 

space of the module to improve the accuracy and/or reduce the training time. Based on 

the results of RIF, RFWA further classifies irrelevant features into noise and redundant 

features based on the correlation among features.  

 

RIF and RFWA techniques are specially designed for modular neural networks for 

modular network with class decomposition. They also show some unique 

characteristics compared to other feature selection techniques. Table 4.12 shows the 

performance of the proposed feature selection methods and ADHOC [62], NNFS [22], 

and GADistAl [60] with Diabetes1 problem. 
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Table 4.12 Performance of Different Techniques in Diabetes1 Problem 

Technique Features Removed Classification Error 
RIF and RFWA (Strict) 1 22.39582 
RIF and RFWA (Loose) 3 24.79168 
ADHOC 5 26.8 
NNFS 6 23.2 
GADistA1 5.97 25.7 
 

From the table, it is clear that though RIF and RFWA removes less irrelevant features 

than other proposed techniques, they significantly reduced the classification error of 

neural network classifier. As linear analysis based feature selection techniques, RIF 

and RFWA may not be as accurate as neural network performance based techniques 

like NNFS. However, they are much simpler and faster than performance based 

techniques. 

 

Compared to other feature selection techniques, the advantages of RIF and RFWA can 

be summarized as follows: 

 

1. Both RIF and RFWA require relatively small computation cost.  

Both techniques are based on the statistic distribution of features in the input 

feature space. It dose not retrain the network repeatedly as the other techniques 

based on the network performance perspective, or go through complex steps to 

obtain mutual information as the techniques based on the mutual information 

perspective. RIF needs only one calculation of optimal FLD transformation 

weights to detect irrelevant features, whether they are noise features or 

redundant features. It is even less expensive in computation than some other 

techniques based on the statistic distribution of features, such as the knock-out 

technique. For example, when detecting irrelevant features in Diabetes1 

problem, NNFS needs to training neural networks more than 8 times, which 
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needs more than one hundred seconds in the same test machine as the one used 

to test the proposed methods. ADHOC and GADistA1 need to utilize complex 

genetic algorithms, which are even more computational expensive than NNFS. 

All the feature selection techniques need more computation time than training 

the neural network used to solve the problem, which is not acceptable in some 

time critical applications. In contrary, the proposed techniques need less than 1 

second only. 

 

2. It analyzes highly correlated features in a clear manner.  

RIF can detect both noise features and redundant features due to the nature of 

Fisher’s transformation vector. Through RFWA, the relationship among 

features can be obtained. It provides a way to detect highly correlated features 

with relative small amount of computation and gives us a clear image of the 

internal relationship among the input features. None of the three techniques 

mentioned above can perform this kind of work. 

 

3. It is independent with the learning algorithms used in the neural network.  

No matter what learning algorithm is adopted, better performance can always 

be achieved. In order to achieve good performance, different modules can even 

use different learning algorithm to train the modular neural network. In NNFS, 

the leaning algorithm used in feature selection and in training of the problem-

solving network should be the same, though the author did not mention it. 
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Though RIF and RFWA are designed for modular neural network classifiers, they can 

be applied to other classifiers as well, such as Bayes classifiers, because RIF and 

RFWA are independent with the types of classifiers. 
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Chapter 5  

Conclusion and Future Works 

 

In the thesis, the techniques to improve the flexibility and accuracy of neural network 

are proposed and discussed. These techniques belongs to three related research topics 

of neural network, which are incremental learning in dynamic environment, task 

decomposition and feature selection.  

 

The research started from investigating network structures that can adapt themselves 

when new output attributes are introduced into the existing system. How to integrate 

learnt knowledge in the existing neural network with the new incoming knowledge to 

form a new neural network is the primary interest. The Incremental Output Learning 

(IOL) methods take the advantages of modular neural network to preserve learnt 

knowledge while leaning the new knowledge. They can provide continuous work in 

the adaptation process and smooth handover between the existing neural network and 

the upgraded neural network, which is very useful in industrial applications. They are 

also proven to be very efficient and accurate.  

 

Based on one of the structures developed in the incremental learning research, a new 

task decomposition of hierarchical incremental class learning (HICL) was developed. 

Because of the hierarchical relationship between its sub-networks, HICL not only 

avoids interferences between output attributes, but also facilitates the favorable 

information flow between its sub-networks. Hence, it is more accurate compared to 

many other task decomposition techniques, such as class decomposition. HICL is also 
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very flexible to environmental changes. It adapts new output attributes automatically 

due to its structure. 

 

In order to improve the efficiency and accuracy of modular neural networks, I 

developed two feature selection techniques of Relative Importance Factor (RIF) and 

Relative FLD Weight Analysis (RFWA). These techniques make use of the optimal 

transformation weights from Fisher’s linear discriminant function. RIF technique can 

detect features that are irrelevant to the classification problem. The RFWA technique 

can further classify the irrelevant features into noise features and redundant features. 

Compared to other feature selection techniques in literacy, RIF and RFWA require 

relatively small computation cost and independent with the leaning algorithm used in a 

neural network. 

 

In summary, several techniques and methods have been proposed in this thesis to 

enhance the flexibility and accuracy of neural networks. These techniques and 

methods are proven to be effective and practical by experiments. They can be easily 

applied to practical neural network applications. 

 

There are some ideas in all my three research topics that need to be developed and 

tested in the future research. In the topic of incremental output learning, there is no 

methods being proposed based on internal adaptation, which adapts the output change 

with inserting new neurons and adjust the existing link weights between neurons. If 

the researcher can find the way to make use of positive correlation between the 

neurons of the network, the internal adaptation methods may give better performance 

than external ones. In the topic of task decomposition with hierarchy structure, the 
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MSEF-CDE and MSEF-FLD ordering focus only on accuracy. However, the high 

accuracy is in the cost of long training time. In the future research, the researcher 

should try to find an ordering method that balances high accuracy with reasonable 

training time. In the topic of feature selection, the proposed feature selection methods 

have a limitation that they can only work for classification problems with class 

decomposition. How to extend it into normal neural network without decomposition is 

still a problem. A possible solution is to find a balanced overall goodness score for 

each input feature from the RIF and CRIF values of the input feature obtained in each 

individual class. 
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