

FLEXIBILITY AND ACCURACY

ENHANCEMENT TECHNIQUES FOR

NEURAL NETWORKS

LI PENG
(Master of Engineering, NUS)

A THESIS SUBMITTED FOR

THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2003

 i

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Associate Professor

Guan Sheng Uei, Steven. His continuous guidance, insightful ideas, constant

encouragement and stringent research style facilitate the accomplishment of this

dissertation. His amiable support in my most perplexed time made this thesis thus

possible.

Further thanks to my parents for their endless support and encourage throughout my

life. Their upbringing and edification is the foundation of all my achievements, in the

past and future. My thanks also go to my friends in Digital System and Application

Lab. Their friendship always encourages me in my research and life.

Finally, I would like to thank the National University of Singapore for providing me

research resources.

 ii

Contents

Acknowledgement i

Contents ii

Summary v

List of Tables vii

List of Figures x

1. Introduction 1

1 .1.Changing Environment – Incremental Output Learning 4

1 .2.Network Structure – Task Decomposition with
Modular Networks 5

1 .3.Data Preprocessing – Feature Selection for
Modular Neural Network 7

1 .4. Contribution of the Thesis 8

1 .5. Organization of the Thesis 10

2. Incremental Learning in Terms of Output Attributes 11

2.1.Background 11

2.2.External Adaptation Approach: IOL 14

2.2.1. IOL-1: Decoupled MNN for
Non-Conflicting Regression Problems 16

2.2.2. IOL-2: Decoupled MNN with Error Correction
for Regression and Classification Problems 19

2.2.3. IOL-3: Hierarchical MNN for Regression and
Classification Problems 21

2.3.Experiments and Results 24

2.3.1. Experiment Scheme 24

 iii

2.3.2. Generating Simulation Data 25

2.3.3. Experiments for IOL-1 26

2.3.4. Experiments for IOL-2 29

2.3.5. Experiments for IOL-3 35

2.4.Discussions 40

2.4.1. The IOL Methods 40

2.4.2. Handling Reclassification Problems 41

2.5.Summary of the Chapter 42

3. Task Decomposition with Hierarchical Structure 44

3.1.Background 44

3.2.Hierarchical MNN with Incremental Output 48

3.3.Determining Insertion Order for the Output Attributes 54

3.3.1. MSEF-CDE Ordering 54

3.3.1.1 Simplified Ordering Problem of HICL 54

3.3.1.2 Calculating the Order 57

3.3.2. MSEF-FLD Ordering 60

3.4.Experiments and Analysis 63

3.4.1. Experiment Scheme 63

3.4.2. Segmentation Problem 64

3.4.3. Glass Problem 66

3.4.4. Thyroid P roblem 67

3.5.Summary of the Chapter 69

 iv

4. Feature Selection for Modular Neural Network Classifiers 71

4.1.Background 71

4.2.Modular Neural Networks with Class Decomposition 74

4.3.RFWA Feature Selector 76

4.3.1. Classification of Features 76

4.3.2. Design Goals 77

4.3.3. A Goodness Score Function Based on

Fisher’s Transformation Vector 78

4.3.4. Relative Importance Factor Feature Selection (RIF) 81

4.3.5. Relative FLD Weight Analysis (RFWA)

Feature Selection 84

4.4.Experiments and Analysis 86

4.4.1. Diabetes Problem 86

4.4.2. Thyroid Problem 89

4.5.Summary of the Chapter 96

5. Conclusion and Future Works 100

Appendix I References 103

Appendix II Author’s Recent Publications 111

 v

Summary

This thesis focuses on techniques that improve flexibility and accuracy of Multiple

Layer Perceptron (MLP) neural network. It covers three topics of incremental learning

of neural networks in terms of output attributes, task decomposition based on

incremental leaning and feature selection for neural networks with task decomposition.

In the first topic of the thesis, the situation of adding a new set of output attributes into

an existing neural network is discussed. Conventionally, when new output attributes

are introduced to a neural network, the old network would be discarded and a new

network would be retrained to integrate the old and the new knowledge. In this part of

my thesis, I proposed three Incremental Output Learning (IOL) algorithms for

incremental output learning. In these methods, a new sub-network is trained under IOL

to acquire the new knowledge and the outputs from the new sub-network are

integrated with the outputs of the existing network when a new output is added. The

results from several benchmarking datasets showed that the methods are more

effective and efficient than retraining.

In the second topic, I proposed a hierarchical incremental class learning (HICL) task

decomposition method based on IOL algorithms. In this method, a K -class problem is

divided into K sub-problems. The sub-problems are learnt sequentially in a

hierarchical structure. The hidden structure for the original problem’s output units is

decoupled and the internal interference is reduced. Unlike other task decomposition

methods, HICL can also maintain the useful correlation within the output attributes of

 vi

a problem. The experiments showed that the algorithm can improve both regression

accuracy and classification accuracy very significantly.

In the last topic of the thesis, I propose two feature selection techniques – Relative

Importance Factor (RIF) and Relative FLD Weight Analysis (RFWA) for neural

network with class decomposition. These approaches involved the use of Fisher’s

linear discriminant (FLD) function to obtain the importance of each feature and find

out correlation among features. In RIF, the input features are classified as relevant and

irrelevant based on their contribution in classification. In RFWA, the irrelevant

features are further classified into noise or redundant features based on the correlation

among features. The proposed techniques have been applied to several classification

problems. The results show that they can successfully detect the irrelevant features in

each module and improve accuracy while reducing computation effort.

 vii

List of Tables

Table 2.1 Generalization Error of IOL-1 for the Flare Problem with
Different Number of Hidden Units 27

Table 2.2 Performance of IOL-1 and
Retraining with the Flare Problem 28

Table 2.3 Generalization Error of IOL-2 for the Flare Problem
with Different Number of Hidden Units 29

Table 2.4 Performance of IOL-2 and Retraining
with the Flare Problem 30

Table 2.5 Classification Error of IOL-2 for the Glass Problem with
Different Number of Hidden Units 31

Table 2.6 Performance of IOL-2 and Retraining with the
Glass Problem 32

Table 2.7 Classification Error of IOL-2 for the Thyroid Problem with
Different Number of Hidden Units 33

Table 2.8 Performance of IOL-2 and Retraining with the
Thyroid Problem 34

Table 2.9 Generalization Error of IOL-3 for the Flare Problem with
Different Number of Hidden Units 35

Table 2.10 Performance of IOL-3 and Retraining with Flare Problem 35

Table 2.11 Classification Error of IOL-3 for the Glass Problem with
Different Number of Hidden Units 36

 vii

Table 2.12 Performance of IOL-3 and Retraining
with the Glass Problem 37

Table 2.13 Classification Error of IOL-3 for the
Thyroid Problem with Different Number of Hidden Units 37

Table 2.14 Performance of IOL-3 and Retraining with the
Thyroid Problem 38

Table 3.1 Results of HICL and Other Algorithms with

Segmentation Problem 64

Table 3.2 Results of HICL and Other Algorithms with Glass Problem 66

Table 3.3 Results of HICL and Other Algorithms with Thyroid Problem 67

Table 3.4 Compare of Experimental Results of Glass Problem 69

Table 4.1 RIF and CRIF Values of Each Feature 87

Table 4.2 Results of the Diabetes Problem 88

Table 4.3 RIF and CRIF of Features in the First Module of the
Thyroid Problem 89

Table 4.4 RIF and CRIF of Features in the Second Module of the

Thyroid Problem 90

Table 4.5 RIF and CRIF of Features in the Third Module of the

Thyroid Problem 91

Table 4.6 Results of the First Module of the Thyroid Problem 92

Table 4.7 Results of the Second Module of the Thyroid Problem 92

 ix

Table 4.8 Results of the Third Module of the Thyroid1 Problem 93

Table 4.9 Results of the First Module of the Glass Problem 94

Table 4.10 Results of the Second Module of the Glass1 Problem 94

Table 4.11 Results of the Third Module of the Glass1 Problem 94

Table 4.12 Performance of Different Techniques in Diabetes1 Problem 97

 x

List of Figures

Figure 2.1 The External Adaptation Approach – an Overview 15

Figure 2.2 IOL-1 Structure 17

Figure 2.3 IOL-2 Structure 21

Figure 2.4 IOL-3 Structure 22

Figure 2.5 Illustration of Reclassification 41

Figure 3.1 Overview of Hierarchical MNN with Incremental Output 47

Figure 3.2 A three classes problem solved with HICL 52

Figure 3.3 A three classes problem solved with class decomposition 53

Figure 3.4 Desired Output for a 2-Class Problem 58

Figure 3.5 Real Output for a 2-Class Problem 58

Figure 4.1 Modular Network 75

Figure 4.2 Situation 1 of a Two-Class problem 75

Figure 4.3 Situation 2 of a Two-Class problem 75

Chapter 1 Introduction 1

Chapter 1

Introduction

An Artificial Neural Network, or commonly referred to as Neural Network (NN), is an

information processing paradigm that works in an entirely different way compared to

modern digital computers. The original paradigm of how neural network works is

inspired by the way biological nervous systems processes information, such as the

human brain. In this paradigm, the information is processed in a complex novel

structure, which is composed of a large number of highly interconnected processing

elements (neurons) working in unison. The bionic structure permits neural networks to

adapt itself to the surrounding environment, so that it can perform useful computation,

such as pattern recognition or data classification. This adaptation is carried out by a

learning process. Learning in biological systems involves adjustments to the synaptic

connections that exist between the neurons. This is true for neural networks as well.[1]

Thus, the following definition can be offered to a neural network viewed as an

adaptive machine [2]:

A neural network is a massively parallel distributed processor made up of simple
processing units, which has a natural propensity for storing experiential
knowledge and making it available for use. It resembles the brain in tow respects:
1. Knowledge is acquired by the network from its environment through a learning

process.
2. Interneuron connection strengths, known as synaptic weights, are sued to store

the acquired knowledge.

Neural networks process information in a self-adaptive, novel computational structure,

which offers some useful properties and capabilities, compared to conventional

information processing systems:

Chapter 1 Introduction 2

� Nonlinearity. A neural network, which is composed by many interconnected

nonlinear neurons, is nonlinear itself. This nonlinearity is distributed throughout

the network and makes neural network suitable for solving complex nonlinear

problems, such as nonlinear control functions and speech signal processing.

� Input-output Mapping. In supervised learning of neural networks, the network

learns from the examples by constructing an input-output mapping for the problem.

This property is useful in model-free estimation [3].

� Adaptivity. Neural networks have built-in capability to adapt their synaptic weights

to changes in the surrounding environment.

� Evidential Response. In pattern classification, a neural network can be designed to

provide information about the confidence in the decision made, which can be used

to reject ambiguous patterns.

� Contextual Information. In neural networks, knowledge is represented by the very

structure and activation state of a neural network. Because each neuron can be

affected by the global activity of other neurons, hence, the contextual information

is represented naturally.

� Fault Tolerance. If a neural network is implemented in hardware form, its

performance degrades gradually under adverse operating conditions, such as

damaged connection links, since the knowledge is distributed in the structure of the

NN [4].

� VLSI Implementability. Because of the parallel framed nature of neural network, it

is suitable for implementation using very-large-scale-integrated (VLSI) technology.

� Uniformity of Analysis and Design. The learning algorithm in every neuron is

common.

Chapter 1 Introduction 3

� Neurobiological Analogy. It is easy for engineers to obtain new ideas from

biological brain to develop neural network for complex problems.

Because of the useful properties, neural networks are more and more widely adopted

for industrial and research purposes. Many neural network models and learning

algorithms have been proposed for pattern recognition, data classification, function

approximation, prediction, optimization, and non-linear control. These models of

neural networks belong to several categories, such as Multiple Layer Perceptron

(MLP), Radial Basis-Function (RBF) [5], self-organizing maps (SOM) [6] and

Supported Vector Machine (SVM), etc. Among them, the MLP is the most popular

one. In my thesis, I will focus on MLP neural networks only.

The major issues of present neural networks are flexibility and accuracy. Most of

neural networks are designed to work in a stable environment. They may fail to work

properly when environment changes. As non-deterministic solutions, accuracy of

neural networks is always an important problem and has a great room for improvement.

In order to improve the flexibility and accuracy of a MLP network, there are three

factors that should be considered: (1) the network should be able to adapt itself to the

environment changes; (2) the proper network structure should be selected to make

maximum use of the information contained in the training data; (3) the training data

should be preprocessed to filter out the irrelevant information. In this thesis, I will

discuss the issues in detailed.

Chapter 1 Introduction 4

1.1 Changing Environment – Incremental Output Learning

Usually, a neural network is assumed to exist in a static environment in its learning

and application phases. In this situation, the dimensions of output space and input

space are fixed and all sets of training patterns are provided prior to the learning of

neural network. The network adapts itself to the static environment by updating its link

values. However, in some special applications the network can be exposed into a

dynamic environment. The parameters may change with time. Generally, the dynamic

environment can be classified into the following three situations.

a) Incomplete training pattern set in the initial state: New training patterns

(knowledge) are introduced into the existing system during the training

process[8][9][10][28].

b) Introduction of new input attributes into the existing system during the

training process: it causes an expansion of the input space [26][27].

c) Introduction of new output attributes into the existing system during the

training process: it causes an expansion of the output space.

Traditionally, if any of the three situations happens to a neural network, the network

structure that is already learnt will be discarded and a new network will be

reconstructed to learn the information in the new environment. This procedure is

referred to as retraining method. There are some serious shortcomings with this

retraining method. Firstly, this method does not make use of the information already

learnt in the old network. Though the environment has changed, a large portion of the

learnt information in the old network is still valid in the new environment. Relearning

of this portion of information requires long training time. Secondly, the neural network

Chapter 1 Introduction 5

cannot provide its service during the retraining, which is unacceptable in some

applications. Hence, it is necessary to find a solution to enable it to learn the new

information provided incrementally without forgetting the learnt information. Many

researchers have proposed such incremental methods for the problems in the first and

the second categories, which will be discussed in section 2.1.

During the library research, I cannot find any solutions proposed in literature for the

problems in the third category. In fact, such category of problems can be further

divided into two groups. If the new output attributes are independent with the old ones,

the incremental learning needs only to acquire the new information, since the learnt

information is still valid in the new environment. However, if there are conflicts

between the new and old output attributes, the learnt information must be modified to

meet the new environment while the new information is being learnt. In this thesis,

problems belong to this category will be discussed in detail and several solutions will

be proposed.

1.2 Network Structure – Task Decomposition with

Modular Networks

The most important issue on the performance of a neural network system is its ability

to generalize beyond the set of examples on which it was trained. This issue is

grievous in some applications, especially in dealing with real-world large-scale

complex problems. Recently, there has been a growing interest in decomposing a

single large neural network into small modules; each module solves a fragment of the

original problem. These modular techniques not only improve the generalization

Chapter 1 Introduction 6

ability of a neural network, but also increase the learning efficiency and simplify the

design [11]. There are some other advantages [12] [13] including: 1) Reducing model

complexity and making the overall system easier to understand. 2) Incorporating prior

knowledge. The system architecture may incorporate a prior knowledge when there

exists an intuitive or a mathematical understanding of problem decomposition. 3) Data

fusion and prediction averaging. Modular systems allow us to take into account data

from different sources and nature. 4) Hybrid systems. Heterogeneous systems allow us

to combine different techniques to perform successive tasks, ranging, e.g., from signal

to symbolic processing. 5) They can be easily modified and extended.

The key step of designing a modular system is how to perform the decomposition –

using the right technique at the right place and, when possible, estimating the

parameters optimally according to a global goal. There are many task decomposition

methods proposed in literature, which roughly belong to the following classes.

• Domain Decomposition. The original input data space is partitioned into several

sub-spaces and each module (for each sub-problem) is learned to fit the local data

on each sub-space [11][14]-[17][39][40].

• Class Decomposition. A problem is broken down into a set of sub-problems

according to the inherent class relations among training data [18][19][42].

• State Decomposition. Different modules are learned to deal with different states in

which the system can be [20][21][43][44].

In most of the proposed task decomposition methods, each sub-network is trained in

parallel and independently with all the other sub-networks. The correlation between

Chapter 1 Introduction 7

classes or sub-networks is ignored. A sub-network can only use the local information

restricted to the classes involved in it. The sub-networks cannot exchange with other

sub-networks information already learnt by them. Though the harmful internal

interference between the classes is avoided, the global information (or dependency)

between the classes is neglected as well. This global information is very useful in

solving many problems. Hence, it is necessary to find a new method that utilizes the

information transfer between sub-networks while keeping the advantages of a modular

system.

1.3 Data Preprocessing – Feature Selection for Modular

Neural Network

In section 1.2, I showed that most of task decomposition methods, such as Class

Decomposition, split a large scale neural network into several smaller modules. Every

module solves a subset of the original problem. Hence, the optimal input feature space

that contains features useful in classification for each module is also likely to be a

subset of the original one. The input features that are useless for a specified module

contained in the original data set can disturb the proper learning of the module. For the

purpose of improving classification accuracy and reducing computation effort, it is

important to remove the input features that are not relevant to each module. A natural

approach is to evaluate every feature and remove those with low importance. This

procedure is often referred to as feature selection technique.

In order to evaluate the importance of every input feature in a data set, many

researchers have proposed their methods from different perspectives. Roughly, these

methods can be classified into the following categories.

Chapter 1 Introduction 8

1. Neural network performance perspective. The importance of a feature is

determined based on whether it helps improve the performance of neural network

[22].

2. Mutual information (entropy) perspective. The importance of a feature is

determined based on mutual information among input features and input and

output features[23][59].

3. Statistic information perspective. The importance of a feature can be evaluated by

goodness-score functions based on the distribution of this feature [24][25][60].

A common problem of the existing feature selection techniques is that they need

excessive computational time, which is normally longer than training the neural

network actually used in application. It is not acceptable in some time-critical

applications. It is necessary to find a new technique that utilizes reasonable

computation time while removing the irrelevant input features.

1.4 Contribution of the Thesis

In order to improve the performance of the existing neural networks in terms of

accuracy, learning speed and network complexity, I have researched in the areas

introduced by section 1.1 to 1.3. The research results discussed in this thesis covers the

topics of automatic adaptation of the changing environment, task decomposition and

feature selection.

Chapter 1 Introduction 9

In the discussion of automatic adaptation, I proposed three incremental output

learning (IOL) methods, which were completed newly developed by us. The

motivation of these IOL methods is to make the existing neural network automatically

adapts to the output space changes, while keeping proper operation during the

adaptation process. IOL methods construct and train a new sub-network using the

added output attributes based on the existing network. They have the ability to train

incrementally and allow the system to modify the existing network without excessive

computation. Moreover, IOL methods can reduce the generalization error of the

problem compared to conventional retraining method.

In the discussion of task decomposition, a new task decomposition method of

hierarchical incremental class learning (HICL) is proposed, which is developed based

on one of the IOL methods. The objective is to facilities information transfer between

classes during training, as well as reduces harmful interference among hidden layers

like other task decomposition methods. I also proposed two ordering algorithms of

MSEF and MSEF-FLD to determine the hierarchical relationship between the sub-

networks. HICL approach shows smaller regression error and classification error than

some widely used task decomposition methods.

In the discussion of feature selection, I propose two new techniques that are designed

specially for neural networks using task decomposition (class decomposition). The

objective is to detect and remove irrelevant input features without excessive

computation. These two methods, namely Relative Importance Factor (RIF) and

Relative FLD Weight Analysis (RFWA), need much less computation than other

Chapter 1 Introduction 10

feature selection methods. As an additional advantage, they are also able to analyze the

correlation between the input features clearly.

All the methods and techniques proposed in this thesis are designed, developed and

tested by the student under the guidance of the supervisor.

In brief, in the thesis, I proposed several new methods and techniques in nearly every

stage of neural network development, from pre-processing of data, choosing proper

network structure to automatic adapting of environment changes during operation.

These methods and techniques are proven to improve the performance of neural

network systems significantly with the experiments conducted with real world

problems.

1.5 Organization of the Thesis

In this chapter, I have briefly introduced some background information and

motivations of my researches, which covers the area of automatic adaptation of the

changing environment, task decomposition and feature selection. In chapter 2, I will

introduce the IOL methods and prove their validity by experiments. In chapter 3,

HCIL method will be introduced. It is proven to have better performance than some

other task decomposition methods by experiments. In chapter 4, I will introduce RIF

and RFWA feature selection techniques and prove their performance by experiments.

The conclusion of the thesis and some suggestions to the future work are given in

chapter 5.

Chapter 2 Incremental Learning in Terms of Output Attributes 11

Chapter 2

Incremental Learning in Terms of Output

Attributes

2.1 Background

Conventionally, the environment in which a neural network is being trained during its

learning phase can be assumed to be static, wherein the input and output space

together with the training patterns are assumed to be fixed before training. In such an

environment, the learning process takes place in the form of “the neural network

updating its parameters or by updating its network structure according to the given

problem” [26].

However, in the real world, neural networks are often exposed to dynamic

environments instead of static ones. Most likely a desiner do not know exactly in

which type of environment a neural network is going to be used. Therefore, it would

be attractive to make neural network more adaptive, capable of combining knowledge

learned in the previous environment with new knowledge acquired in the changed

environment [27] automatically. A natural approach to this kind of problems is

keeping the main structure of existing neural network unchanged to preserve the learnt

information and building additional structures (hidden units or sub-networks) to

acquire new information. Because the existing neural network looks like increasing its

Chapter 2 Incremental Learning in Terms of Output Attributes 12

structure to adapt it to the changed environment during the process, this approach is

often referred as incremental learning.

Changing environment can be classified into three categories:

a) Incomplete training pattern set in the initial state: New training patterns

(knowledge) are introduced into the existing system during the training

process.

b) Expansion of input space: New inputs are introduced into the existing system.

c) Expansion of output space: New outputs are introduced into the existing

system.

Many researchers have come out with incremental learning methods under the first

category. Fu et al. [9] presented a method called “Incremental Back-Propagation

Learning Network”, which employs bounded weight modification and structural

adaptation learning rules and applies initial knowledge to constrain the learning

process. Bruzzon et al. [10] proposed a similar method. [8] proposed a novel classifier

based on the RBF neural networks for remote-sensing images. [28] proposed a method

to combine an unsupervised self-organizing map with a multilayered feedforward

neural network to form the hybrid Self-Organizing Perceptron Network for character

detection. These methods can adapt network structure and/or parameters to learn new

incoming patterns automatically, without forgetting previous knowledge.

For the second category, Guan and Li [26] proposed “Incremental Learning in terms of

Input Attributes (ILIA)”. It solves the problem via a “divide and conquer” approach. In

Chapter 2 Incremental Learning in Terms of Output Attributes 13

this approach, a new sub-network is constructed and trained using the ILIA methods

when new input attributes are introduced to the network. [27] proposed Incremental

Self Growing Neural Networks (ISGNN), which implements incremental learning by

adding hidden units and links to the existing network.

In the research, I focused on the problems of third category, where one or more new

output attributes must be added into the current systems. For example, the original

problem has N input attributes and K output attributes. When another output attribute

needs to be added into the problem domain, the output vector will contain K+1

elements. Conventionally, the problem is solved by discarding the existing network

and redesigning a new network from scratch based on the new output vector and

training patterns. However, this approach would waste the previously learnt

knowledge in the existing network, which may still be valid in the new environment.

The operation of the neural network also has to be broken during the training of new

network, which is unacceptable in some applications, especially real-time applications.

If self-adapted leaning can be performed quickly and accurately without affecting the

operation of the existing network, it will be a better solution compared to merely

discarding the existing network and retraining another network [26].

Self adaptation of a neural network with new incoming output attributes is a new

research area and I cannot find any methods being proposed in literatures. Through the

research, I find that it can be achieved by either external adaptation or internal

adaptation. In external adaptation, the problem in a changing environment is

decomposed into several sub-problems, which are then solved by sub-networks

individually. While the environment is changing, knowledge that is new to the trained

Chapter 2 Incremental Learning in Terms of Output Attributes 14

network is acquired by one or more new sub-networks. The existing network remains

unchanged during adaptation. The final output is obtained by combining the existing

outputs and new outputs (the sub-networks) together. In internal adaptation, the

structure of the existing network is adjusted to meet the needs of the new environment.

This structural adjustment may include insertion of hidden units or links and change of

link weights, etc. In this chapter, I propose three Incremental Output Learning (IOL)

methods based on external adaptation.

The rest of the chapter is organized as follows. In section 2.2, details of the IOL

methods are introduced. In section 2.3, I present the experiments and results. In section

2.4, I discuss observations made from the experiments. In section 2.5 I summarize my

research work in this area.

2.2 External Adaptation Approach: IOL
The external adaptation approach for incremental output learning solves the problem

of self adaptation to the changing environment in a “divide and conquer” way. The

basic structure is similar to the Modular Neural Networks (MNN) [29] model. This

approach divides the changing environment problem into several smaller problems:

discarding out-of-date or invalid knowledge, acquiring new knowledge from the

incoming attributes and reusing valid learnt knowledge. These sub-problems are then

solved with different modules. During the last stage, sub-solutions are integrated via a

multi-module decision-making strategy.

Chapter 2 Incremental Learning in Terms of Output Attributes 15

In the proposed IOL methods, the existing network (or old sub-network) is kept

unchanged during self-adaptation. This existing sub-network is designed and trained

before the environmental change. Its inputs, outputs and training patterns are left

untouched as what they were before the environmental change. Reuse of valid learnt

knowledge is achieved naturally.

If all the information leant in the existing network is still valid in the changed

environment, it can be fully reused in the new structure. In this case, a new sub-

network is designed and trained to acquire the new information only. The inputs,

outputs and training patterns must cover what are changed at least. However, if some

of the learnt information in the existing network is not valid in the new environment, it

may make the outputs of the existing network different from what are desired in the

new environment. In others words, it may disturb the proper leaning of new

information. In this case, it can be considered that there is a “conflict” between the

learnt information and new information and the new sub-net work must be able to

discard the invalid information while acquiring new information. The inputs, outputs

and training patterns should cover not only those are new after environmental change,

Figure 2.1 The External Adaptation Approach – an Overview

Existing
KnowledgeExisting Network

(Old Sub-network)
New Sub-network

Overall Solution

Training Samples

Chapter 2 Incremental Learning in Terms of Output Attributes 16

but also some of the original ones before the change, so that it is able to know what

learnt information should be discarded. The design of new sub-network is based on

the Rprop learning algorithm with one hidden layer and a fixed number of hidden units.

2.2.1 IOL-1: Decoupled MNN for Non-Conflicting Regression

Problems

If there is no conflict between the new and learnt knowledge, a regression problem

with an increased number of output attributes can be solved using a simple variation of

decoupled modular networks.

The network structure of IOL-1 is shown in Figure 2.2. If the new knowledge carried

by the new output attribute and training patterns does not bear any conflict with the

learnt knowledge, the learnt knowledge in the old sub-network will still be valid under

the new environment and does not need any modification. Therefore, the sub-problem

of discarding out-of-date or invalid knowledge is avoided. In IOL-1, there is no

knowledge exchange between the sub-networks. The new sub-network is trained

independently with the old sub-network for the incoming output attribute with all

available training patterns. In another word, the new sub-network contains all input

attributes and one output attribute. The outputs of the old and new sub-networks

together form the complete output layer for the changed environment. When a new

input sample is presented at the input layer, the old sub-network and new sub-network

work in parallel to generate the final result.

Chapter 2 Incremental Learning in Terms of Output Attributes 17

The structure of IOL-1 is very simple because it does not need the multi-module

decision-making step as required in normal MNN.

 The IOL-1 algorithm is composed of two stages. The procedure is as follows.

Stage 1: the existing network is retained as the old sub-network, as shown in Figure

2(a).

Stage 2: construct and train the new sub-network.

Step 1: Construct an MLP with one hidden layer as the new sub-network. The

input layer of the new sub-network receives all input features available and

the output layer contains only one output unit representing the incoming

output attribute.

Step 2: Use the Cross-Validation Model Selection algorithm [2] to find out the

optimal number of hidden units for the new sub-network.

Step 3: Train the new sub-network obtained in step 1.

Hidden Layer

Output Layer

Input Layer

Hidden Layer

Output Layer

New Hidden Layer

New Output Node

Input Layer

b. Integrated Network

New Output Layer

a. Existing Network

Figure 2.2 IOL-1 Structure

Chapter 2 Incremental Learning in Terms of Output Attributes 18

Because the outputs from the existing network are still valid in the changed

environment, they can be used as part of the new outputs directly. The other part of the

new outputs that reflects the new information can be obtained directly from the new

sub-network. Hence, there is no need to integrate the old and new networks together

with any additional process, because they are integrated naturally.

IOL-1 is a variation of the traditional decoupled modular neural networks. It has the

advantages of decoupled MNN naturally. For example, it avoids possible coupling

among the hidden layer weights and hence reduces internal interference between the

existing outputs and the incoming output [26] [30]. Because the old and new sub-

networks process input samples in parallel, the input-output response time will not be

affected much after adaptation. Another advantage is that the old sub-network

(existing network) can continue to carry out normal work during the adaptation

process, since the new sub-networks is being trained independently. The last two

advantages make IOL-1 perfect for real-time applications.

Though IOL-1 has many advantages, its usage is limited. Because the old sub-network

and the new sub-network are independent from each other, the learnt knowledge in the

existing network that is no longer valid in the changed environment cannot be

discarded by the new sub-network. Therefore, IOL-1 can be used only when there are

no conflicts between the new and learnt knowledge. In most regression problems,

there are few conflicts so that IOL-1 is suitable. However, in classification problems

there are likely conflicts among the new and learnt classification boundaries. It should

be noted that in the existing network, each input sample has to be assigned with one

Chapter 2 Incremental Learning in Terms of Output Attributes 19

out of the many old class labels. If an input sample meant for the incoming class is

presented to IOL-1, both the new and old network will assign a different class label to

it. This will be a problem for IOL-1. Hence, IOL-1 is not suitable for classification

problems.

2.2.2 IOL-2: Decoupled MNN with Error Correction for

Regression and Classification Problems

In order to handle the sub-problem of discarding invalid knowledge in the existing

network, IOL-2 is developed from IOL-1 based on an “error generation and error

correction” model. In such a model, the old sub-network will produce a solution based

on the learnt knowledge when a sample associated with the new output attribute is

presented at the input layer. This solution will not be accurate because the existing

output attributes do not have the knowledge carried by the incoming attribute. Hence,

there is always an error between the existing output and the new desired output in the

changed environment. In IOL-2, this error is “corrected” by a new sub-network that

runs in parallel with the old sub-network. In another word, a new sub-network is

trained to minimize the error between the combined solution from the old and new

sub-networks and the desired solution for each input sample.

IOL-2 is composed of two stages. The procedure is as follows.

Stage 1: the existing network is retained as the old sub-network, as shown in Figure

2.3.

Chapter 2 Incremental Learning in Terms of Output Attributes 20

Stage 2: construct and train the new sub-network.

Step 1: Construct an MLP with one hidden layer as the new sub-network. The

input layer of the new sub-network receives all input features available and

the output layer contains K+1 units, where K is number of output units in

the existing network.

Step 2: Use the Cross-Validation Model Selection algorithm to find out the optimal

number of hidden units for the new sub-network.

Step 3: Train the new sub-network obtained in step 1 to minimize the difference

between the desired solutions and the combined solutions from the old and

new sub-networks when training samples are presented at the input layer.

In IOL-2, the output layer of the new sub-network integrates the output form old

network and new information obtained in the hidden layer of the new sub-network.

Learnt information that is invalid in the changed environment from the old network is

also discarded by this output layer.

IOL-2 has the same advantages as IOL-1. The existing network can work normally

when adapting to the changed environment. The network depth will not be changed. It

is suitable for real-time applications.

Chapter 2 Incremental Learning in Terms of Output Attributes 21

2.2.3 IOL-3: Hierarchical MNN for Regression and Classification

Problems

In IOL-1, the sub-problem of discarding invalid learnt knowledge is avoided. In IOL-2,

this sub-problem is solved by modifying the objective function of the new sub-

network to minimize the error of the combined solution of the old and new networks.

In IOL-3, I try to solve this sub-problem together with new knowledge acquiring in the

same new sub-network.

Unlike IOL-1 and IOL-2, IOL-3 is implemented with a hierarchical neural network

[31]. The new sub-network is sitting “on top of” the old sub-network instead of sitting

in parallel with it, which is shown in figure 2.4.

Hidden Layer

Old Output Layer

New Hidden Layer

Input Layer

New Output Layer

Figure 2.3 IOL-2 Structure

Old
Sub-
Networ

New
Sub-
Network

Combined

Chapter 2 Incremental Learning in Terms of Output Attributes 22

IOL-3 is composed of three stages. The procedure is as follows.

The first stage of IOL-3 is the same as IOL-1.

Stage 2 of IOL-3 is as follows:

Step 1: Construct a new sub-network with K+N input units and K+1 output units,

where K is the number of existing output attributes and N is number of input

attributes of the original problem.

Step 2: Feed input samples to the existing network; combine the outputs of the existing

network together with the original inputs to form as new inputs to the new sub-

network. Train the new sub-network with the patterns presented.

In stage 2, when an unknown sample is presented to the input layer, it should be fed

into the existing network first. Then the output attributes of the existing network

Output Layer

Hidden Layer

New Hidden Layer

New Output Layer

Input Layer

Figure 2.4 IOL-3 Structure

Old
Sub-
Networ

New
Sub-
Networ

Chapter 2 Incremental Learning in Terms of Output Attributes 23

together with the original inputs will be fed into the new sub-network as inputs. The

output attributes of the new sub-network produce the overall outputs.

The new sub-network in IOL-3 not only acquires the new information in the changed

environment, but also integrates the outputs from the old sub-network with the new

information and discards any invalid information carried by the old network.

In IOL-3, the old sub-network acts as an input data pre-processing unit. It presents to

the new sub-network pre-classified (in classification problems) or pre-estimated input

attributes (in regression problems), so that the new sub-network can use this

knowledge to build its own classification boundaries or make its own estimates of the

output attributes. The knowledge passed between the two sub-networks is direct

forward in a serial manner. The new sub-network solves all the three sub-problems of

discarding invalid knowledge, acquiring new knowledge from the incoming output

attributes and retaining valid knowledge at the same time.

Compared with IOL-1 and IOL-2, the cooperation between the old and new sub-

networks in IOL-3 is better and efficient. The training time of the new sub-network

can be significantly reduced. However, the network depth is increased as the depth of

the new sub-network is added on top of the existing network. This may be undesirable

for real time applications. The existing network can also continue with its work during

the adaptation process in IOL-1 and IOL-2.

Chapter 2 Incremental Learning in Terms of Output Attributes 24

2.3 Experiments and Results

Three benchmark problems, namely Flare, Glass and Thyroid, are used to evaluate the

performance of the proposed IOL methods. The first problem is a regression problem

and the other two are classification problems. All the three problems are taken from

the PROBEN1 benchmark collection [32].

2.3.1 Experiment Scheme

The simulation of IOL methods is implemented in the MATLAB environment with the

Rprop [33] learning algorithm.

The stopping criteria can influent the performance of an MNN significantly. If training

is too short, the network cannot acquire enough knowledge to obtain a good result. If

training is too long, the network may experience over-fitting. In over-fitting, a network

simply memorizes the training patterns, which will lead to poor generalization

performance. In order to avoid this problem, early stopping with validation is adopted

in the simulation. In the thesis, the set of available patterns is divided into three sets: a

training set is used to train the network, a validation set is used to evaluate the quality

of the network during training and to measure over-fitting, and a test set is used at the

end of training to evaluate the resultant network. The sizes of the training, validation,

and test are 50%, 25% and 25% of the problem’s total available patterns respectively.

There are three important metrics when the performance of a neural network system is

evaluated. They are accuracy, learning speed and network complexity. As to accuracy,

I use regression or classification error of the test patterns as the most important metric.

I also use error of the test patterns to measure the generalization ability of the system.

Chapter 2 Incremental Learning in Terms of Output Attributes 25

When dealing with the learning speed, it should be considered that there is significant

difference between the number of hidden units in each sub-problem of IOL and

retraining. As a result, the computation time of each epoch in the sub-networks varies

significantly. Hence, each solution (each IOL method or retraining) should be taken as

a whole and independent with the structure and complexity of networks. In order to

achieve that, I emphasize on adaptation time instead of training time, which means the

time needed for each method to achieve its best accuracy after the environmental

change. Since the old sub-network is treated as existed before performing IOL, the

adaptation time of IOL should be measured by the training time of the new sub-

network only. When network complexity is concerned, I use the number of newly

added hidden units as a metric.

The experimental results of IOL methods were compared to the results of retraining

method, which is the only known way to solve the changing output attributes problem

besides IOL methods in literatures.

The structure of new sub-networks and retraining networks are determined by the

Cross-Validation Model Selection technique. To simplify the simulation, the old sub-

network is simulated with a fixed structure with a single hidden layer and 20 hidden

units.

2.3.2 Generating Simulation Data

In nature, incremental leaning of output attributes can be classified into two categories.

In the first category, the incoming output attribute and the new training patterns

contains completely new knowledge. For example, a polygon classifier was trained to

Chapter 2 Incremental Learning in Terms of Output Attributes 26

classify squares and triangles. Now, we need it to classify a new class of diamonds

besides previously learnt classes. There is no clear dependency or conflict between the

existing output attributes and the new one. In the second category, the incoming output

attribute could be a sub-set of one or more existing attributes, which is normally

referred to as reclassification. For example, the classifier discussed above is required

to classify equilateral triangles from all triangles. The proposed IOL methods are

suitable for both categories1. However, I only adopt the first category of problems in

the experiments for IOL because reclassification problems have been well studied

already.

The simulation data for incremental output learning is obtained from several

benchmark problems. Since the benchmark problems are real world problem, it would

be difficult to generate new data to simulate a new incoming output attribute ourselves

in order to reflect the true nature of the dataset. To simulate the old environment

before inserting the incoming output attribute, training data for the existing network is

generated by removing a certain output attribute from all training patterns in the

benchmark problem. The original data of the benchmark problem without any

modification is used to simulate the new environment after inserting a new output

attribute.

2.3.3 Experiments for IOL-1

As stated in section 2.2.1, IOL-1 is suitable for regression problems only. Hence, the

experiments are conducted with the Flare problem using each different output attribute

as the incoming output attribute. This problem predicts solar flares by trying to guess

1 Please refer to section 2.4.2 for detailed discussions.

Chapter 2 Incremental Learning in Terms of Output Attributes 27

the number of solar flares of small, medium, and large sizes that will happen during

the next 24-hour period in a fixed active region of the Sun surface. Its input values

describe previous flare activity and the type and history of the active region. Flare has

24 inputs (10 attributes), 3 outputs, and 1066 patterns.

Table 2.1 shows the generalization performance of IOL-1 with different number of

hidden units in the new sub-network and different output attribute being treated as the

incoming output. Also listed is the generalization performance of retraining with

different number of hidden units. This data is used for cross-validation model selection.

Table 2.1 Generalization Error of IOL-1 for the Flare
Problem with Different Number of Hidden Units

Number of

hidden units
1st output as
the incoming

output

2nd output as
the incoming

output

3rd output as
the incoming

output

Retraining
with old and
new outputs

1 0.0028 0.0029 0.0029 0.003
3 0.0028 0.0028 0.0031 0.003
5 0.0028 0.0033 0.003 0.0029
7 0.0033 0.003 0.0034 0.003
9 0.0031 0.0031 0.0033 0.003
11 0.0033 0.0032 0.0033 0.003
13 0.0036 0.0036 0.0039 0.0029
15 0.0036 0.0034 0.0036 0.003
17 0.0037 0.0035 0.0039 0.003
19 0.0039 0.0036 0.0038 0.0028
21 0.0038 0.0037 0.0038 0.003
23 0.0038 0.0036 0.0038 0.0029
25 0.0039 0.004 0.0039 0.0032
27 0.0043 0.004 0.004 0.0028
29 0.0042 0.004 0.0038 0.0028

Notes: 1. Numbers in the first column stand for the numbers of hidden units for
the new sub-networks in IOL-1 and numbers of hidden units for the
overall structures in retraining.

 2. The number of hidden units for the old sub-networks is set to 20 always.
 3. The values in the table represent regression errors of the overall

structures with different number of hidden units.

Chapter 2 Incremental Learning in Terms of Output Attributes 28

We can find that the new sub-networks require only one or three hidden units to obtain

good generalization performance. However, the generalization performance of IOL-1

drops rapidly due to the problem of over-fitting, when the number of hidden units in

the new sub-network increases. The generalization performance of retraining remains

stable with various numbers of hidden units. The new sub-network is trained to solve a

sub-problem with single output attribute, which is much simpler than the retraining

problem with 3 output attributes. Because of the simplicity of the problem being

solved, the new sub-network turns to memorize the training patterns instead of

acquiring valid knowledge from the patterns. This is why the over-fitting problem of

IOL-1 is more serious than retraining.

Table 2.2 shows the performance of IOL-1 (test error) and retraining with properly

selected structures in the last step. In this table, I choose 1 hidden unit for the new sub-

network when the 1st or 3rd output is used as the incoming output, 3 hidden units for

the new sub-network when the 2nd output is used as the incoming output and 5 hidden

units for retraining.

Table 2.2 Performance of IOL-1 and Retraining with the Flare Problem

 Test error Adaptation time No. of hidden units

IOL-1 with 1st output
as incoming output

0.0028 0.789 (22.75%) 1

IOL-1 with 2nd output
as incoming output

0.0029 0.8492 (16.86%) 3

IOL-1 with 3rd output
as incoming output

0.0028 0.9014 (11.75%) 1

Retraining 0.0029 1.0214 5
 Notes:
1. The number of hidden units measured in IOL methods is for the new sub-

network only.
2. Adaptation time shows the time needed for each methods to provide its most

accuracy solution in the changed environment respectively. It equals to the

Chapter 2 Incremental Learning in Terms of Output Attributes 29

training time of new sub-network for IOL methods and the training time for
retraining method.

3. The number in ‘()’ is adaptation time reduction in percentage compared to
retraining.

In this experiment, the accuracy of IOL-1 is slightly better than retraining. Compared

to retraining, IOL-1 needs much fewer new hidden units to adapt itself to the changed

environment, which directly results in less adaptation time. The adaptation time of

IOL-1 is 22.75% less than retraining.

2.3.4 Experiments for IOL-2

IOL-2 contains a generalized decoupled MNN structure and is suitable for both

regression and classification problems. The experiments are conduced with the Flare,

Glass and Thyroid problems for it.

• Flare Problem

Table 2.3 shows the generalization performance of IOL-2 with different number of

hidden units in the new sub-network and each output attribute being treated as the

incoming output. Also listed is the generalization performance of retraining with

different number of number of hidden units.

Table 2.3 Generalization Error of IOL-2 for the Flare
Problem with Different Number of Hidden Units

Number of

hidden units
1st output as
the incoming

output

2nd output as
the incoming

output

3rd output as
the incoming

output

Retraining
with old and
new outputs

1 0.0247 0.04 0.1593 0.003

Chapter 2 Incremental Learning in Terms of Output Attributes 30

3 0.0031 0.0032 0.0028 0.003
5 0.0031 0.003 0.0031 0.0029
7 0.0033 0.0036 0.0031 0.003
9 0.0035 0.0034 0.0036 0.003
11 0.0039 0.0036 0.0039 0.003
13 0.004 0.0036 0.0045 0.0029
15 0.0042 0.0046 0.0044 0.003
17 0.0054 0.0044 0.0051 0.003
19 0.0046 0.0047 0.0044 0.0028
21 0.0053 0.0044 0.005 0.003
23 0.0051 0.0053 0.0049 0.0029
25 0.0049 0.0058 0.0053 0.0032
27 0.0055 0.0064 0.0051 0.0028
29 0.0055 0.0055 0.0056 0.0028

Notes: 1. Numbers in the first column stand for the numbers of hidden units for
the new sub-networks in IOL-2 and numbers of hidden units for the
overall structures in retraining.

 2. The Number of hidden units for the old sub-networks is set to 20
always.

 3. The values in the table represent the regression errors of the overall
structures with different number of hidden units.

The number of hidden units in each new sub-problem is selected as 3 for each output

used as the incoming output. Table 2.4 shows the performance of IOL-2 when such

configuration is used.

Table 2.4 Performance of IOL-2 and Retraining with the Flare Problem
 Test error Adaptation time No. of hidden units

IOL-2 with 1st
output as incoming

output

0.003 1.0214
(0%)

3

IOL-2 with 2nd
output as incoming

output

0.003 1.0676
(-4.5%)

3

IOL-2 with 3rd
output as incoming

output

0.0028 0.9154
(10.38%)

3

Retraining 0.0029 1.0214 5
Notes: 1-3. refer to notes under Table 2.2

Chapter 2 Incremental Learning in Terms of Output Attributes 31

Compared to retraining, IOL-2 needs 1.96% less adaptation time in average. The test

error is very close to retraining. The differences between the test errors of IOL-2 and

retraining are within the rage of ±0.0001, or 3.5%.

• Glass Problem

This data set is used to classify glass types. The results of a chemical analysis of glass

splinters (percentage of 8 different constituent elements) plus the refractive index are

used to classify a sample to be either float processed or non-float processed building

windows, vehicle windows, containers, tableware, or head lamps. This task is

motivated by forensic needs in criminal investigation. This data set contains 9 inputs, 6

outputs, and 214 patterns.

Since the Glass problem is a classification problem, classification error is used instead

of regression in the last problem to conduct cross-validation model selection. Table 2.5

shows the classification error of IOL-2 with different number of hidden units in the

new sub-problem and retraining.

Table 2.5 Classification Error of IOL-2 for the Glass
Problem with Different Number of Hidden Units

Number of

hidden
units

1st output
as the

incoming
output

2nd output
as the

incoming
output

3rd output
as the

incoming
output

4th output
as the

incoming
output

5th output
as the

incoming
output

6th output
as the

incoming
output

Retraining
with old
and new
outputs

1 0.4755 0.566 0.4528 0.3925 0.5132 0.5774 0.7434
3 0.4226 0.5245 0.3208 0.283 0.317 0.3358 0.4
5 0.4151 0.4679 0.3132 0.3132 0.3472 0.3547 0.3849
7 0.4151 0.5019 0.3094 0.3057 0.3434 0.3057 0.3547
9 0.3698 0.4302 0.317 0.3396 0.3321 0.3057 0.3283
11 0.3283 0.4 0.2906 0.3358 0.3057 0.3283 0.3509
13 0.4189 0.3736 0.317 0.2868 0.3283 0.3208 0.317
15 0.3245 0.3019 0.3208 0.283 0.3358 0.2943 0.317

Chapter 2 Incremental Learning in Terms of Output Attributes 32

17 0.3283 0.3321 0.3132 0.3094 0.3208 0.3019 0.3132
19 0.3887 0.3472 0.3132 0.2981 0.3019 0.2981 0.3358
21 0.3472 0.3358 0.317 0.3245 0.3057 0.2868 0.3019
23 0.3208 0.3396 0.3094 0.3094 0.3019 0.3132 0.3358
25 0.3396 0.3509 0.3019 0.3019 0.3358 0.3283 0.3094
27 0.3283 0.3396 0.317 0.3019 0.3321 0.3283 0.3208
29 0.317 0.3283 0.3132 0.3057 0.3358 0.2943 0.3132

Notes: 1. Numbers in the first column stand for the numbers of hidden units for
the new sub-networks in IOL-2 and numbers of hidden units for the
overall structures in retraining.

 2. The number of hidden units of the old sub-networks is set to 20 always.
 3. The values in the table represent the classification errors of the overall

structures with different number of hidden units.

The number of hidden units in the new sub-networks is 29, 15, 11, 15, 19 and 21

respectively when different output is used as incoming output. The network used for

retraining requires 21 hidden units. Table 2.6 shows the performance (classification

error of test set) of IOL-2 compared with retraining.

Table 2.6 Performance of IOL-2 and Retraining with the Glass Problem

 Test classification
error

Adaptation time No. of hidden units

IOL-2 with 1st
output as

incoming output

0.3094 0.9936
(-3.5%)

29

IOL-2 with 2nd output
as incoming output

0.3395 0.9232
(3.79%)

15

IOL-2 with 3rd
output as

incoming output

0.3170 0.931
(2.98%)

11

IOL-2 with 4th
output as

incoming output

0.3358 0.9458
(1.44%)

15

IOL-2 with 5th
output as

incoming output

0.3208 1.0156
(-5.8%)

19

IOL-2 with 6th
output as

incoming output

0.2868 0.913
 (4.9%)

21

Retraining 0.3396 0.9596 21
Notes: 1-3. refer to notes under Table 2.2

Chapter 2 Incremental Learning in Terms of Output Attributes 33

• Thyroid Problem

Thyroid diagnoses whether a patient’s thyroid has overfunction, normal function, or

underfunction based on patient query data and patient examination data. Thyroid has

21 inputs (21 attributes), 3 outputs, and 7200 patterns.

Table 2.7 shows the classification error under cross-validation model selection.

Table 2.7 Classification Error of IOL-2 for the Thyroid
Problem with Different Number of Hidden Units

Number of

hidden units
1st output as
the incoming

output

2nd output as
the incoming

output

3rd output as
the incoming

output

Retraining
with old and
new outputs

1 0.0343 0.1828 0.047 0.0628
3 0.0232 0.0292 0.0227 0.0244
5 0.019 0.0298 0.0262 0.021
7 0.0221 0.0237 0.0188 0.0208
9 0.019 0.0217 0.02 0.0203
11 0.0189 0.0204 0.0206 0.0201
13 0.0213 0.0202 0.0194 0.0183
15 0.0212 0.0221 0.0201 0.0211
17 0.0201 0.0217 0.0188 0.0196
19 0.0217 0.0266 0.0193 0.0199
21 0.0236 0.0238 0.0177 0.0192
23 0.0224 0.0238 0.0193 0.0181
25 0.0208 0.0204 0.0188 0.0184
27 0.0223 0.0226 0.0192 0.0189
29 0.0224 0.0223 0.019 0.0193

Notes: 1. Numbers in the first column stand for the numbers of hidden units for
the new sub-networks in IOL-2 and numbers of hidden units for the
overall structures in retraining.

 2. The number of hidden units of the old sub-networks is set to 20 always.
 3. The values in the table represent the classification errors of the overall

structures with different number of hidden units.

The number of the new sub-networks with each output as the incoming output is set to

11, 13 and 21 respectively. The number of hidden units for retraining is set to 23. The

results of IOL-2 with properly selected structures are shown in Table 2.8.

Chapter 2 Incremental Learning in Terms of Output Attributes 34

Table 2.8 Performance of IOL-2 and Retraining with the Thyroid Problem

 Test
classification

error

Adaptation time No. of hidden units

IOL-2 with 1st
output as incoming

output

0.0214 9.9158
(47.41%)

11

IOL-2 with 2nd
output as incoming

output

0.0217 35.6856
(-89.26%)

13

IOL-2 with 3rd
output as incoming

output

0.019 25.951
(-37.63%)

21

Retraining 0.0191 18.8554 23
Notes: 1-3. refer to notes under Table 2.2

From the results of these three problems, we can find that IOL-2 provides reasonable

generalization accuracy with slightly shorter adaptation time compared to retraining in

most cases. However, adaptation time is problem dependent. If an incoming class is

hard to be classified in nature, the adaptation time will be much longer. For example,

IOL-2 needs 89.26% and 37.63% more adaptation time than retraining, when the 2nd

or 3rd class is used in Thyroid as the incoming class. The complexity of the new sub-

network is lower than the network used for retraining.

2.3.5 Experiments for IOL-3

IOL-3 is developed to overcome the disadvantages of IOL-2. It needs much less

adaptation time than IOL-2.

• Flare Problem

Table 2.9 shows the regression error of the Flare 1 problem under cross-validation

model selection.

Chapter 2 Incremental Learning in Terms of Output Attributes 35

Table 2.9 Generalization Error of IOL-3 for the Flare
Problem with Different Number of Hidden Units

Number of

hidden units
1st output as
the incoming

output

2nd output as
the incoming

output

3rd output as
the incoming

output

Retraining
with old and
new outputs

1 0.0032 0.0033 0.0033 0.003
3 0.003 0.0027 0.0031 0.003
5 0.0029 0.0029 0.0031 0.0029
7 0.0028 0.0029 0.0028 0.003
9 0.0029 0.0028 0.003 0.003
11 0.0028 0.0029 0.0029 0.003
13 0.0029 0.003 0.0028 0.0029
15 0.0029 0.0029 0.0028 0.003
17 0.0031 0.0031 0.0031 0.003
19 0.0028 0.003 0.0029 0.0028
21 0.0029 0.003 0.0028 0.003
23 0.003 0.0029 0.003 0.0029
25 0.0029 0.0031 0.0029 0.0032
27 0.0029 0.003 0.0031 0.0028
29 0.0029 0.003 0.003 0.0028

Notes: 1. Numbers in the first column stand for the numbers of hidden units for
the new sub-networks in IOL-3 and numbers of hidden units for the
overall structures in retraining.

 2. The number of hidden units of the old sub-networks is set to 20 always.
 3. The values in the table represent the regression errors of the overall

structures with different number of hidden units.

From Table 2.9, the number of hidden units of the new sub-networks when the 1st, 2nd

and 3rd output is used as the incoming output is set to 7, 3 and 7 respectively. Table

2.10 shows the results when such a configuration is used.

Table 2.10 Performance of IOL-3 and Retraining with Flare Problem

 Test Classification
Error

Adaptation Time No of Hidden units

IOAL-3 with 1st
output as incoming

output

0.0029 0.7642
(25.18%)

7

IOAL-3 with 2nd output
as incoming output

0.003 0.813
(20.4%)

3

IOAL-3 with 3rd 0.003 0.807 7

Chapter 2 Incremental Learning in Terms of Output Attributes 36

output as incoming
output

(20.99%)

Retraining 0.0029 1.0214 5
 Notes: 1-3. refer to notes under Table 2.2

• Glass Problem

Table 2.11 shows the classification error used for cross-validation model selection.

Table 2.11 Classification Error of IOL-3 for the Glass
Problem with Different Number of Hidden Units

Number of

hidden
units

1st output
as the

incoming
output

2nd output
as the

incoming
output

3rd output
as the

incoming
output

4th output
as the

incoming
output

5th output
as the

incoming
output

6th output
as the

incoming
output

Retraining
with old
and new
outputs

1 0.6868 0.6717 0.683 0.5774 0.6151 0.6528 0.7434
3 0.4792 0.366 0.3094 0.3962 0.3321 0.3774 0.4
5 0.3887 0.3472 0.366 0.3094 0.3321 0.3472 0.3849
7 0.3132 0.3472 0.3057 0.4 0.317 0.2868 0.3547
9 0.3132 0.3698 0.2981 0.3208 0.3396 0.317 0.3283
11 0.3094 0.3208 0.3245 0.3057 0.3094 0.3057 0.3509
13 0.3472 0.317 0.3094 0.317 0.3208 0.3245 0.317
15 0.3283 0.3698 0.3208 0.3358 0.3019 0.3208 0.317
17 0.3094 0.3509 0.3208 0.3019 0.317 0.3057 0.3132
19 0.3585 0.3396 0.3094 0.3019 0.3208 0.3208 0.3358
21 0.366 0.3208 0.2981 0.3057 0.3245 0.3094 0.3019
23 0.3132 0.3321 0.3057 0.3132 0.3132 0.3132 0.3358
25 0.3472 0.3434 0.2906 0.3057 0.3019 0.3245 0.3094
27 0.2981 0.3321 0.2981 0.3019 0.3057 0.3019 0.3208
29 0.3396 0.3396 0.3396 0.317 0.3321 0.3208 0.3132

Notes: 1. Numbers in the first column stand for the numbers of hidden units for
the new sub-networks in IOL-3 and numbers of hidden units for the
overall structures in retraining.

 2. The number of hidden units of the old sub-networks is set to 20 always.
 3. The values in the table represent the regression errors of the overall

structures with different number of hidden units.

The number of hidden units for new sub-networks is set to 27, 13, 25, 17, 15 and 7

respectively when different outputs are used as incoming output. The results with such

a configuration are shown in table 2.12.

Chapter 2 Incremental Learning in Terms of Output Attributes 37

Table 2.12 Performance of IOL-3 and Retraining with the Glass Problem

 Test classification
error

Adaptation time No. of hidden units

IOL-3 with 1st
output as incoming

output

0.3132 0.799
(16.74%)

27

IOL-3 with 2nd
output as incoming

output

0.3019 0.7534
(21.5%)

13

IOL-3 with 3rd
output as incoming

output

0.3123 0.735
 (23.4%)

25

IOL-3 with 4th
output as incoming

output

0.2981 0.8514
(11.3%)

17

IOL-3 with 5th
output as incoming

output

0.3094 0.779
(18.8%)

15

IOL-3 with 6th
output as incoming

output

0.3094 0.7992
(16.7%)

7

Retraining 0.3396 0.9596 21
Notes: 1-3. refer to notes under Table 2.2.

• Thyroid Problem

Table 2.13 shows the classification error used in cross-validation model selection.

Table 2.13 Classification Error of IOL-3 for the Thyroid
Problem with Different Number of Hidden Units

Number of

hidden units
1st output as
the incoming

output

2nd output as
the incoming

output

3rd output as
the incoming

output

Retraining
with old and
new outputs

1 0.06 0.0554 0.0467 0.0628
3 0.0233 0.0206 0.0196 0.0244
5 0.0181 0.0187 0.0176 0.021
7 0.0231 0.0189 0.0179 0.0208
9 0.0211 0.0196 0.0188 0.0203
11 0.0229 0.0203 0.018 0.0201
13 0.0204 0.0177 0.0204 0.0183
15 0.0204 0.0193 0.0192 0.0211
17 0.0184 0.0187 0.0193 0.0196
19 0.0204 0.0198 0.0207 0.0199

Chapter 2 Incremental Learning in Terms of Output Attributes 38

21 0.0194 0.0179 0.0206 0.0192
23 0.0183 0.0182 0.0183 0.0181
25 0.0183 0.0209 0.017 0.0184
27 0.0224 0.0211 0.0192 0.0189
29 0.0196 0.0216 0.0186 0.0193

Notes: 1. Numbers in the first column stand for the numbers of hidden units for
the new sub-networks in IOL-3 and numbers of hidden units for the
overall structures in retraining.

 2. The number of hidden units of the old sub-networks is set to 20 always.
 3. The values in the table represent the regression errors of the overall

structures with different number of hidden units.

Numbers of hidden units in the new sub-networks when different output is used as

incoming output are set to 5, 13 and 25 respectively. Table 2.14 shows the results with

such a configuration.

Table 2.14 Performance of IOL-3 and Retraining with the Thyroid Problem

 Test classification
error

Adaptation time No. of hidden units

IOL-3 with 1st
output as incoming

output

0.0197 5.262
(72.1%)

5

IOL-3 with 2nd
output as incoming

output

0.02 9.113
(51.7%)

13

IOL-3 with 3rd
output as incoming

output

0.0197 5.1392
(72.7%)

25

Retraining 0.0191 18.8554 23
Notes: 1-3. refer to notes under Table 2.2

The experiments of the three problems show that IOL-3 has good performances for

both regression and classification problems. It has significantly reduced the adaptation

time (up to 72.7% reduction), while achieving similar or better accuracy compared to

retraining.

Chapter 2 Incremental Learning in Terms of Output Attributes 39

2.4 Discussions

2.4.1 The IOL Methods

As mentioned before, IOL decomposes the problem of incremental output learning for

an existing network into sub-problems of discarding invalid old knowledge, reusing

existing knowledge and acquiring new knowledge through the cooperation of the old

(existing) and new sub-networks. They show great advantages over retraining methods,

which was the only known solution when the number of outputs increased. The

difference between IOL-1, IOL-2 and IOL-3 lies in the flow of knowledge/information

between the old and new sub-networks.

In IOL-1, the old and new sub-networks are completely independent. The new sub-

network cannot affect the results of old sub-network. Hence, the knowledge in the old

sub-network cannot be discarded. On the other hand, the old sub-network cannot

contribute in training of the new sub-network either. However, the new sub-network

only needs to solve a simple problem with one output attribute instead of solving the

whole problem in retraining. It benefits from the nature of a decoupled MNN. IOL-1

reduces adaptation time and slightly improves the performance compared to retraining.

In IOL-2, the knowledge flow from the new sub-network to the old sub-network is

enabled by changing the objective of the new sub-network as minimizing the error

produced by the old sub-network in the changed environment. It is possible for the

new sub-network to discard knowledge that is no longer valid in the changed

environment. This feature makes IOL-2 suitable for both regression and classification

problems. However, the old and new sub-networks work under the “error generation

and error correction” model. The new network needs to put down much effort to

Chapter 2 Incremental Learning in Terms of Output Attributes 40

correct the errors produced by the old sub-network, which might be difficult due to the

fuzzy nature of the old sub-network. In another word, the new objective of IOL-2

might be difficult to achieve in some problems. In the experiments conducted, IOL-2

reduces adaptation time in most cases. However, in some extreme cases, it needs

longer adaptation time than retraining.

In IOL-3, two one-directional knowledge flows are enabled between the two sub-

networks by using a hierarchical MNN. The old sub-network supplies the learnt

knowledge directly to the new sub-network as part of the inputs to the new sub-

network. The new sub-network determines whether the knowledge supplied to it is

valid and discards it when necessary during the learning process. The two sub-

networks work in a cooperative manner. Compared to IOL-2, the training of the new

sub-network is much easier with the help of the old sub-network. The adaptation time

of IOL-3 is the shortest among the proposed methods. It also gives better classification

accuracy than the other methods. However, the real-time response of IOL-3 is the

worst among the three, due to its increased network depth.

The greatest advantage of the proposed IOL methods is that the original neural

network provides non-disturbed service when adapting itself to the environmental

changes, which is important for real world applications, especially some real-time

systems. IOL-1 and IOL-3 also significantly reduced adaptation time while keeping

high accuracy when compared to retraining methods.

Although no automatic adaptation methods other than IOL are proposed for changing

output attributes problems in literatures, some prior work for automatic adaptation of

Chapter 2 Incremental Learning in Terms of Output Attributes 41

changing input attributes have been done, such as ILIA [26] proposed by Guan & Li.

The proposed IOL methods follow the pioneer track of ILIA. The idea of incremental

learning can also be applied to intelligent systems other than neural networks, for

example, genetic algorithms (GA). In [63], Guan and Zhu suggested an incremental

output learning algorithm for GA, which is proven to be faster and more accurate than

retraining for many problems.

 In addition, although experiments was conducted with one incoming output only in

the research, the IOL methods can be extended easily to accommodate multiple

incoming outputs by repeating the learning steps of the methods described.

2.4.2 Handling Reclassification Problems

IOL-2 and IOL-3 are also suitable for reclassification problems. In reclassification, a

new output attributes may be formed as a subset of one or more existing output

attributes, which is shown in figure 2.5.

Existing Neural
Network

Existing
output
attribute

New output layer with
one more output

Figure 2.5 Illustration of Reclassification

Chapter 2 Incremental Learning in Terms of Output Attributes 42

The reclassification problem can also be decomposed into the sub-problems of

discarding invalid learnt knowledge, acquiring new knowledge and retaining valid

learnt knowledge. The only difference between reclassification and a completely new

class problem is that there exists clear conflict between the existing outputs and the

new output. Both IOL-2 and IOL-3 can fully solve the sub-problems in reclassification

and handle the conflict between the old and new outputs. Therefore, IOL-2 and IOL-3

can be used in reclassification.

2.5 Summary of the Chapter

In this chapter, I proposed three incremental output learning methods based on

modular neural networks. These methods allow a neural network to learn

incrementally with incoming output attributes. They use a “divide and conquer” way

to decompose learning in the changing environment into several sub-problems. When

a new output attribute is to be learnt, a new module is combined with the existing

neural network to solve the sub-problems. The experiment result shows that the

proposed methods can get similar or better results compared to traditional retraining in

terms of accuracy. The learnt knowledge that is still valid in the changed environment

is retained in the learning process of new knowledge.

The proposed methods show some advantages over retraining. Firstly, they provide

continuous work in the adaptation process and smooth handover between the existing

neural network and the upgraded neural network. Secondly, they need less adaptation

time in most cases. IOL-3 can reduce adaptation time up to 72.7% in the experiments.

Chapter 2 Incremental Learning in Terms of Output Attributes 43

Thirdly, the existing network can be reinstalled at any time after adaptation, since the

existing network is kept unchanged as the old sub-network in the methods.

Chapter 3 Task Decomposition with Hierarchical Structure 44

Chapter 3

Task Decomposition with Hierarchical

Structure

3.1 Background

Multiple layer perceptron (MLP) neural network suffers from several drawbacks [34]

when applied to complex behavioral problems. [35] and [36] stated that learning a

complex behavior requires bringing together several different kinds of knowledge and

processing, which is impossible to be achieved for global NN like MLP. For the

“stability-plasticity dilemma” problem, [37] argued that when two tasks have to be

learnt consecutively by a single network, the learning of the second task will interfere

with the previous learning. Another common problem for multiple task NN is the

“temporal crosstalk” problem [38], which means that a network tends to introduce

high internal interference because of the strong coupling among their hidden-layer

weights when several tasks have to be learnt simultaneously.

A widely used approach to overcome these shortcomings is to decompose the original

problem into sub-problems (modules) and perform local and encapsulated computation

for each sub-problem. There are various task decomposition methods that have been

Chapter 3 Task Decomposition with Hierarchical Structure 45

proposed in the literature [14]-[21] [39]-[42]. These decomposition methods can be

based in the characteristics on input data space and/or output space.

One category of decomposition methods based on the characteristics of input data

space is Domain Decomposition. [11] suggested that the original input data space can

be partitioned into several sub-spaces and each module (for each sub-problem) is

learnt to fit the local data in each sub-space to improve the effectiveness of training.

There are many such methods proposed in the literature. In [39], the training set is

divided into subsets recursively using hyper planes till all the subsets become linearly

separable. [40] described that neural networks where the first unit introduced on each

hidden layer can be trained on all patterns and further units on the layer are trained

primarily on patterns not already correctly classified. [14] suggested that in the

mixture of experts architecture, expert networks can be used to learn sub-spaces and

then cooperate via a gating network. For example, in the hierarchical mixture of expert

architecture, the input space is partitioned recursively into sub-spaces [15]. Similar

recursive partition is also used in neural trees structure [16]. Another decomposition

method of this category is proposed in the multi-sieving neural network [17]. In this

method, patterns are classified by a rough sieve in the beginning and they are re-

classified further by finer ones in subsequent stages.

Another category of decomposition methods based on the characteristics of output

space is Class Decomposition. [18] split a K -class problem into K two-class sub-

problems. One sub-network is trained to learn one sub-problem only. Therefore, each

sub-network is used to discriminate one class of patterns from patterns belonging to

the remaining classes, and there are K modules in the overall structure. The method

Chapter 3 Task Decomposition with Hierarchical Structure 46

proposed in [19] divided a K -class problem into 








2
K

 two-class sub-problems. Each

of the two-class sub-problems is learnt independently while the existence of the

training data belonging to the other 2−K classes is ignored. The final overall solution

is obtained by integrating all of the trained modules into a min-max modular network.

A powerful extension to the above class decomposition method, output parallelism, is

proposed in [42]. Using output parallelism, a complex problem can be divided into

several sub-problems as chosen, each of which is composed of the whole input vector

and a fraction of the output vector. Each module (for one sub-problem) is responsible

for producing a fraction of the output vector of the original problem. These modules

can be grown and trained in parallel.

Besides these two categories, there are some other decomposition methods. In [43],

different functional aspects in a task are modeled independently and the complete

system functionality is obtained by the combination of these individual functional

models. In [44], the original problem is decomposed into sub-problems based on

different states in which the system can be in at any time.

Class decomposition methods reduce the internal interference among hidden layers,

consequently, improve performance and accuracy. However, there is a shortcoming of

this approach. In these methods, each sub-network is trained independently from all

the other sub-networks. The correlation between classes or sub-networks is ignored. A

sub-network can only use the local information restricted to the classes involved in it.

The sub-networks cannot exchange with other sub-networks information already learnt

Chapter 3 Task Decomposition with Hierarchical Structure 47

by them. The global information between classes that can be positive to the learning of

sub-networks is missing as well as internal interference between them.

Figure 3.1 Overview of Hierarchical MNN with Incremental Output

In this chapter, I propose a new task decomposition approach namely hierarchical

incremental class learning (HICL). In this approach, a K -class problem is divided

into K sub-problems. The sub-problems are learnt sequentially in a hierarchical

1st sub-network with 1 output
node

2nd sub-network with 2 output
nodes

Original Input Space

Output from the 1st sub-
network

Output from the 2nd sub-
network

Kth sub-network with K output nodes

Output from the (K-1)th
sub-network with K-1output nodes

Original Input Space

Final Output

Chapter 3 Task Decomposition with Hierarchical Structure 48

structure with K sub-networks. Each sub-network takes the output from the sub-

network immediately below it as well as the original input as its input. The output

from each sub-network contains one more class than the sub-network immediately

below it, and this output is fed into the sub-network above it as Fig 3.1. The overall

structure of HICL is an extension of IOL-3 discussed in section 2.2.3. This method not

only reduces harmful interference among hidden layers, but also facilitates information

transfer between classes during training as described in section 2.4.1. It shows more

accurate classification performance than traditional class decomposition methods.

The chapter is organized as follows. In section 3.2, the structure of HICL is introduced.

In section 3.3, the ordering problem of HICL is discussed and two ordering methods

are proposed. Section 3.4 discusses the experimental results of HICL. Section 3.5

summarizes the work.

3.2 Hierarchical MNN with Incremental Output

In the proposed method, the original K -class problem is solved using a hierarchical

modular neural network (HMNN) consisting of K sub-networks. After a sub-network

is constructed and trained, a new sub-network is constructed on top of it. The new sub-

network accepts the output from the old sub-network, together with the original input

as its input. The output space of the new sub-network is one dimension larger than that

of the old sub-network. For classification problems, this means the output space of the

new sub-network includes one more class than the old sub-network.

Chapter 3 Task Decomposition with Hierarchical Structure 49

The proposed HICL decomposition method is composed of the following steps.

Step 1: Determine the order of the classes (output attributes) to be inserted into the

hierarchical MNN structure. The output attributes are then sorted into a list

based on this order. This stage is essentially important to achieve high

accuracy, which will be discussed in detail in section 3.3. Set the trained sub-

network index counter to index=1.

Step 2: Construct a sub-network with only one output node. The input data space is

the same as the original problem before decomposition. The output space

contains only the first output node in the sorted list generated in Step 1. Train

the network till convergence. Increment index by1.

Step 3: If index is not equal to the number of output attributes in the original output

space, construct a new sub-network on top of the structure that has been

constructed.

The input space for the newly constructed network is formed by merging the

output space of the sub-networks below it with the original input space. When

an input training sample is presented to the structure, the output attributes

from the structure below the new sub-network together with the original input

attributes form the input for the new sub-network. Hence, to the new sub-

network, there are nindex + input attributes, where n is the number of input

attributes in the original input data space. The output space of the new sub-

Chapter 3 Task Decomposition with Hierarchical Structure 50

network contains all the output attributes (classes) that were trained in the

sub-networks below it, together with the thindex output attribute in the sorted

list generated in Step 1. Hence, there are 1+index output attributes (classes)

for the new sub-network.

The new sub-network is trained until it converges. Increment the trained sub-

network index counter, 1+= indexindex .

This step is repeated until index is equal to the number of output attributes in

the original output space.

Step 4: Test the overall structure and evaluate the performance.

The functionality of the first sub-network is to classify the training samples belonging

to the first output attribute (class) in the list generated in Step 1. This is a localized

computation associated with the output attribute representing the specified class only,

which is the same as one single module in class decomposition. Because internal

interference is removed, the output from this sub-network tends to be more accurate.

The functionalities of sub-networks other than the first one are more complex. Because

each sub-network needs to deal with more than two classes simultaneously, the

correlation between different classes is taken into consideration automatically. There

are two functions for each sub-network.

Chapter 3 Task Decomposition with Hierarchical Structure 51

• The minor function is to perform reclassification to the classes learnt previously. If

the lower sub-networks produce no error, they provide the present sub-network

linear-separable inputs. Due to the strong bias of these inputs, the reclassification

process is most likely to follow the decision boundaries delineated by the lower

sub-networks and simply repeats the results of it.

• The major function is to classify samples belonging to the newly added class from

all the other class. This function is a local computation relative to the new class in

the sub-network, which is the same as a sub-network in class decomposition.

However, it should be noted that some of the classes are already classified in the

lower sub-networks from the newly added class. Again, if this pre-classified

information contains no error, it takes no effort to classify the new class from the

classes learnt in lower sub-networks.

In HICL, learning processes of different classes are decomposed logically, instead of

being decomposed physically in most task decomposition methods. Figure 3.2

illustrates the leaning of a three-class problem with HICL in an ideal situation. A, B

and C stand for the three classes in the problem. In this condition, the real task of the

2nd sub-network is classifying class B from class C logically, because class B and C

have already been classified from class A. The 2nd sub-network deals with only 2

classes in fact.

Chapter 3 Task Decomposition with Hierarchical Structure 52

Figure 3.2 A three classes problem solved with HICL

Figure 3 shows how the three class problem is solved in class decomposition, which

contains three sub-networks in total. From figure 3.2 and figure 3.3, HICL has two

advantages over class decomposition. Firstly, problem being solved by the 2nd network

with HICL is simpler than the one in class decomposition since it deals with 2 classes

only. This advantage becomes greater when there are more sub-networks. For example,

the kth sub-network with HICL deals with 1−k fewer classes than class decomposition.

Because the problem being solved is simpler, the kth sub-network with HICL tends to

be more accurate than class decomposition. Secondly, HICL requires one less sub-

A
B

C

Decision boundary built by
1st sub-network

Class B and C are not
classified in the sub-network

A
B

C

Decision boundary follows
the decision boundary built
by the 1st sub-network,
built by the minor function Class B and C are not

classified in the 1st sub-
network

Decision boundary of the
major function built by the
2nd sub-network

2nd sub-
network
(Final
solution)

1st sub-
network

Information handover

Chapter 3 Task Decomposition with Hierarchical Structure 53

network than class decomposition, which simplifies overall structure and improves

accuracy.

Figure 3.3 A three classes problem solved with class decomposition

A

B

C

Decision
boundary built by
1st sub-network

Class B and C are not
classified in the sub-
network

1st sub-
network

A

B

C
Decision
boundary built by
2nd sub-network

Class A and B are
not classified in the
sub-network

2nd sub-
network

A

B

C

Decision
boundary built by
3rd sub-network

Class A and C are
not classified in the
sub-network

3rd sub-
network

Integration

A

B

C

Decision
boundary built by
1st sub-network

Decision
boundary built by
2nd sub-network

Decision
boundary built by
3rd sub-network

Final
Solution

Chapter 3 Task Decomposition with Hierarchical Structure 54

3.3 Determining Insertion Order for the Output Attributes

In HICL, the output attributes are inserted into a network following some

predetermined order, which is a key factor to improve the overall accuracy of the

network. In this section, two ordering methods that lead to good accuracy will be

introduced.

3.3.1 MSEF-CDE Ordering

In Section 2, we found that HICL have great advantages over class decomposition if

there is no error in lower sub-networks. However, the errors can hardly be avoided in

practice. These errors may mislead learning of upper sub-networks and downgrade the

advantages of HICL. Due to the hierarchical structure used, the earlier a class is

trained, the more its associated sub-network will affect the overall performance. In this

section, the Minimal-Side-Effect-First (MSEF) ordering method based on Class

Decomposition Error (CDE) is introduced to minimize the negative effect of possible

errors, which in turn maximize the advantages of HICL.

3.3.1.1 Simplified Ordering Problem of HICL

The major function of a sub-network in HICL can be viewed as a 2-class problem

logically which is similar to a module in class decomposition. The first class 1ω is the

one being extracted. The second class 2ω is the complement of 1ω in the entire output

space. The overall error E of the major function in a sub-network can also be

decomposed as:

Chapter 3 Task Decomposition with Hierarchical Structure 55

eeE += (3.1)

where e is the error produced by the training samples belonging to 1ω , e is the error

produced by the samples belonging to 2ω .

The error of a module for the class in class decomposition is a good approximation for

the value of correspondence E in equation (3.1). In this paper, I use a stepwise

optimal approach to solve this problem., which simplifies the ordering problem to a 2-

step problem:

(1) Find the error of each module in class decomposition and use it as an

approximation for the correspondence major function in HICL. Find the

portion of each error that may bring negative effect to proper learning of upper

sub-networks.

(2) Order the classes based on this portion of error belonging to each major

function, from the smallest to the greatest.

Based on this simplified model, it is necessary to identify which portion of major

function error in a sub-network may affect the proper learning of sub-networks upper

to it.

Chapter 3 Task Decomposition with Hierarchical Structure 56

In the kth sub-network of the neural network solution for an n -class problem, there are

kC=1ω and nkk CCCCC ++++++= +− �� 11212ω , where iC stands for the ith

class in the original output space.

There are two possible types of error events for the major function of this sub-network:

1. A sample belonging to 2ω is misclassified into 1ω , which is an event of e .

In this case, the present sub-network indicates to the upper sub-networks that the

sample belongs to kC . If the misclassified sample belongs to iC (where ki >) in

the original data space, there will be a clear conflict between the information

passed from the kth sub-network and the information contained in the original input

space when it is being extracted in the ith sub-network. This conflict may cause

interference to the proper learning of the major function of ith sub-network, so that

it may misclassify some more samples belonging to the ith class. Hence, e is the

portion of error that needs to be considered in deciding the order of sub-networks.

2. A sample belonging to 1ω is misclassified into 2ω , which is an event of e .

In this case, the present sub-network indicates to the upper sub-networks that the

sample does not belong to kC . In the ith sub-network, the information passed from

the kth sub-network indicates that the sample does not belong to the kth class, which

is independent with whether the sample belongs to the ith class or not. Hence, the

major functions of the following sub-networks will not be disturbed by the error

event. The ordering can be made independent of this type of error.

Chapter 3 Task Decomposition with Hierarchical Structure 57

From the above analysis, the ordering is dependent on the accumulated error of

samples belonging to the complementary class 2ω , which is e . Step 1 in the proposed

solution is further simplified as: finding e of the major function in each sub-network.

3.3.1.2 Calculating the Order

A 2-class problem is normally solved by a neural network with a single output

attribute. Theoretically, if a neural network is perfectly trained and produces no error

in the entire output space, it outputs 1 when the input sample belongs to 1ω and 0

when the input sample belongs to 2ω . The decision boundary that differentiates 1ω

from 2ω is simply a threshold of 0.5. Figure 4 illustrates the distribution of the desired

output for a 2-class problem.

However, in practical applications a neural network can hardly be trained perfectly due

to interference, existence of local minima, overfitting, and distribution of samples in

the data space and so on. Hence, errors will occur in the output of samples. In general,

the samples have almost equal probability to be interfered. The errors introduced by

the interference are most probably to be Gaussian distributed with a mean of 0 and

variance of 2σ . If any error is larger than 0.5, the specified sample will be

misclassified. Hence, the probability of misclassification, which is represented by

errorP , is identical for all the samples in the data space. Figure 3.5 illustrates the real

output of a neural network for the same problem in figure 3.4.

Chapter 3 Task Decomposition with Hierarchical Structure 58

0

0.5

1

Class 1 Class 2

Figure 3.4 Desired Output for a 2-Class Problem

Figure 3.5 Real Output for a 2-Class Problem

Assume errorP is identical for all samples, it can be derived that:

spe

com

speerror

comerror

N
N

NP
NP

e
e =

×
×

= (3.2)

where Nspe is the number of samples belonging to 1ω and Ncom is the number of

samples belonging to 2ω .

From equation (3.1) & (3.2), the portion of error that may affect the proper learning of

the other classes can be calculated as:

0

0.5

1

Class 1 Class 2

Chapter 3 Task Decomposition with Hierarchical Structure 59

N
N

E
NN

N
Ee com

comspe

com =
+

= (3.3)

Hence, this portion of error caused by the thk class of a N-class problem is

N
NNEe k

kk
−

≈ (3.4)

where N is the number of samples in the entire data space, Nk is the number of samples

belonging to the thk class in the original data set and kE is the error of the network

used to extract kC from the other classes in class decomposition.

Based on the simplified problem descript in section 3.3.1.1, the MSEF-CDE ordering

procedure can be summarized as:

1. Train a network based on class decomposition, record the error for each class as

nn EEEE ,,,, 121 −m

2. Calculate the portion of error that may affect the proper learning of the other

classes nn eeee ,,,, 121 −m for each class using equation (3.4)

3. Sort the classes in order by the value of this portion of error for each class, from

the smallest to the largest and store them in a list, as described in Step 1, Section 2.

The proposed MSEF-CDE ordering method estimates the order that minimizes the

overall interference in stepwise. From the experiment results, this ordering method is

shown to be effective and improves the accuracy of HICL significantly. However,

Chapter 3 Task Decomposition with Hierarchical Structure 60

finding the error for each class using class decomposition requires computation. As a

pre-processing step of HICL, the computation may be unaffordable. In the next section,

another ordering method that requires much less computation is proposed.

3.3.2 MSEF-FLD Ordering

Linear pattern recognition techniques, such as Fisher’s Linear Discrimenent (FLD)

[45], provide simples ways to estimate the accuracy of a classification problem. In this

section, the method of Minimal Side-Effect Ordering (MSEF) based on Fisher’s

Linear Discriminant (FLD) is proposed. The idea behind this method is similar to the

MSEF-CDE method proposed previously, which is to order the sub-networks (classes)

based on the portion of error caused by learning the specified class alone that may

affect the proper learning of other classes. Hence, the problem is to find e for each

class and perform ordering based on it, which is the same as the one given in section

3.3.1.1. Instead of using the classification error E of each class obtained by class

decomposition, the MSEF-FLD method uses Fisher’s criteria function ()wJ as a

goodness score for each value of E .

FLD projects a d-dimensional feature space into a c-1 dimensional feature space,

where d is the number of features and c is the number of classes, by the transformation

function i
t

i xwy = . Hence, for a 2-class problem, the projected feature space will be

one-dimensional (projected on one line).

Chapter 3 Task Decomposition with Hierarchical Structure 61

Let a set of m training patterns be [] t
mi xxxxX ⋅⋅⋅⋅⋅⋅= ,,, 21 , where xiєRn, i=1,2…m.

These patterns belong to two classes 1ω and 2ω . Mathematically, FLD can be

described as follows:

Let mi (i=1 or 2) be the d-dimensional sample means of 1ω and 2ω as given

by ∑
∈

=
11

1
1

Xx
x

n
m and ∑

∈
=

22
2

1
Xx

x
n

m respectively, where 1X and 2X represent the set of

samples belonging to classes 1ω and 2ω respectively, n1 and n2 represent the numbers

of samples in 1X and 2X respectively. The sample means for the projected points is

given by i
tt

Yyi
i mwxwy

n
m

i

=== ∑
∈

1~ , where i=1,2 are the symbols of the two classes

respectively, and 1Y , 2Y are samples belonging to class 1 and class 2 in the projected

space respectively. It is simply the projection of im . If we define the scatter for the

projected samples of class i as ∑
∈

=−=
iYy

ii imys 2,1,)~(~ 2 , the within-class scatter of

∑
=

=
2

1i
iw SS can be calculated. This within-class scatter is a measure of how close the

patterns in the same class are distributed. Similarly, the between-class scatter can be

calculated as ∑
=

−−=
2

1
))((

i

t
iiiB mmmmnS , where ∑

∈

=
Xx

x
n

m 1 is the mean of all

patterns in the feature space. Fisher’s linear discriminant employs that linear function

xwt for which the Fisher’s criterion function

wSw
wSwwJ

W
t

B
t

=)((3.5)

is maximized and independent of ||w||. The optimal projection can be computed by

solving the eigenvector problem: 0)(=− iWiB wSS λ , where iλ ’s are the non-zero

Chapter 3 Task Decomposition with Hierarchical Structure 62

eigenvalues and iw ’s are the corresponding eigenvector. The larger the value of ()wJ ,

the easier the classification. Hence, the accuracy of classification is increasing

with ()wJ , and the error is decreasing with ()wJ
1 . From equation (3.4) and (3.5), the

portion of error ke caused by extracting the kth class can then be expressed in the

following form:

()NwJ
NN

e
k

k
k

−
= (3.6)

The MSEF-FLD procedure is summarized as follows:

1. Calculate the value of Fisher’s criteria function for each class and its

complementary class in the data space as () () () ()wJwJwJwJ NN ,,,, 121 −m .

2. Calculate the portion of errors that may affect the proper learning of the other

classes nn eeee ,,,, 121 −m for each class using equation (3.6).

3. Sort the classes in order by the value of this portion of error for each class, from

the smallest to the largest and store them in a list, as described in Step 1, Section

3.2.

Chapter 3 Task Decomposition with Hierarchical Structure 63

3.4 Experiments and Analysis

3.4.1 Experiment Scheme

In order to optimize the performance for each module, constructive neural network is

used in the experiments. The constructive learning algorithms include the Dynamic

Node Creation (DNC) method [46], Cascade-Correlation (CC) [47] algorithm and its

variations [48]-[50], Constructive single-hidden-layer network [51], and Constructive

Backpropagation (CBP) algorithm [52], etc. I adopt the CBP algorithm. Please refer to

[42] for details of the CBP algorithm and parameter settings.

The RPROP algorithm is used to minimize the cost functions. In the set of experiments

undertaken, each problem was conducted with 20 runs. The RPROP algorithm used

the following parameters: 2.1=+η , 5.0=−η , 1.00 =∆ , 50max =∆ , 60.1min −=∆ e ,

with initial weights from –0.25 … 0.25 randomly. In the experiments, the hidden units

and output units all use the sigmoid activation function. When a hidden unit needs to

be added, 8 candidates are trained and the best one is selected. All the experiments are

conducted 10 times and the results are averaged.

The test error measure testE used in this chapter and chapter 4 is the squared error

percentage [61], derived from the normalization of the mean squared error to reduce

the dependency on the number of coefficients in the problem representation and on the

range of output values used:

∑∑
= =

−
⋅
−

⋅=
P

p

K

k
pkpktest to

PK
oo

E
1 1

2minmax)(100 (3.7)

Chapter 3 Task Decomposition with Hierarchical Structure 64

where maxo and mino are the maximum and minimum values of output in the problem

data. P and K are total number of test patterns and number of outputs. pko and pkt

are the desired (the value in original test data) and real output from neural network of

the thk output in thp pattern in test data.

3.4.2 Segmentation Problem

The data set of segmentation problem consists of 18 inputs, 7 outputs, and 2310

patterns. It is more complex compared to the Thyroid and Glass problems. The

experimental results of ordering obtained by the MSEF-CDE and MSEF-FLD methods,

random ordering, retraining, and class decomposition are listed in Table 3.1 below.

Table 3.1 Results of HICL and Other Algorithms with Segmentation Problem

Method Ordering Training Time Test Error Classification Error
Value: 5357.8 Value: 0.852246 Value: 3.604851
Reduction (retraining):
-452%

Reduction (retraining):
33.8%

Reduction (retraining):
38.8%

HICL
(MSEF-
CDE)

7261345

Reduction (class
decomposition): -369%

Reduction (class
decomposition): 29%

Reduction (class
decomposition): 32%

Value: 5979 Value: 0. 836863 Value: 3.450446
Reduction (retraining):
-516%

Reduction (retraining):
35%

Reduction (retraining):
41.4%

HICL
(MSEF-
FLD)

7261354

Reduction (class
decomposition): -423%

Reduction (class
decomposition): 30.2%

Reduction (class
decomposition): 34.9%

HICL
(Random)

7613542 4194.2 1.020443 3.89948

HICL
(Random)

1234567 2620.8 1.020746 4.19411

HICL
(Random)

4531627 1507.7 1.236225 4.800696

HICL
(Random)

1436972 2560.6 1.20976 4.67938

HICL
(Random)

2164357 5792.8 1.12248 4.33276

HICL
(Random)

2761354 4012 0.922908 3.81282

HICL
(Random)

4136572 2172.2 0.869713 4.33276

HICL
(Random)

5346127 1688.6 1.22915 4.85269

Chapter 3 Task Decomposition with Hierarchical Structure 65

HICL
(Random)

5436712 1611.5 1.2824 4.8007

HICL
(Random)

6275434 3174 0.930261 4.15945

Retraining 970 1.2869 5.89255
Class
Decomp

 1143 1.2 5.3

Notes:
1 . Each row shows the experiment result obtained from the ordering stated in the

cell of “ordering” column. This column shows the insertion orders of the
experiments. The digit represents the index of the class (output attribute) to be
added and the order of the digits represents the seq uence of inserting the class
(output attributes). For example, 1234567 means the first class in the original
data is inserted into the HICL structure, followed by the second class. The
seventh output is the last one to be inserted into the HICL structure.

2 . The row starting with “Retraining” shows the result of training the problem
using standard CBP without task decomposition.

3 . The row starting with “Class Decomp” shows the result of training the problem
using class decomposition [15].

4 . A cell stating “Reduction(retraining)” shows the percentage value reduction of
the specified method compared to the value in retraining. It is calculated by
function () %100×÷− VlaueretrainingValueretraininguecurrentVla . Negative
percentage indicates value increase instead of reduction.

5 . A cell stating “Reduction(class decomposition)” shows the percentage value
reduction compared to the value in class decomposition. It is calculated by
function () %100×÷− pVlaueClassDecompValueClassDecomueCurrentVla .
Negative percentage indicates value increase instead of reduction.

6 . Because there are 5040 possible orderings, which are hard to be tested
completely, only a random selected small portion of them are tested in the
experiments.

7. The training time for Class Decomposition is calculated based on the module
which needs the longest training time.

In this problem, the linear estimator in the MSEF-FLD method obtained sufficient

information from the data set to make accurate estimation of each module’s

performance. As a result, MSEF-CDE and MSEF-FLD give very close orderings.

From the experimental results, we can find that both of the orderings lead to very

small classification errors (38.3% and 41.4% error reduction compared to retraining

respectively) and generalization errors (33.8% and 35% error reduction compared to

class decomposition respectively). It also shows great advantage over class

decomposition when accuracy is emphasized. However, as a tradeoff, both orderings

need very long training time.

Chapter 3 Task Decomposition with Hierarchical Structure 66

3.4.3 Glass Problem

The experimental results of ordered training obtained by the MSEF-CDE and MSEF-

FLD methods, random ordering, retraining, and class decomposition are listed in Table

3.2 below.

Table 3.2 Results of HICL and Other Algorithms with Glass Problem

Method Ordering Training Time Test Error Classification Error
Value: 66.5 Value: 8.936928 Value: 31.69813
Reduction (retraining):
-349%

Reduction (retraining):
12%

Reduction (retraining):
9.7%

HICL
(MSEF-
CDE)

543612

Reduction (class
decomposition): -200%

Reduction (class
decomposition): -0.1%

Reduction (class
decomposition): 19.6%

Value: 73.2 Value: 8.60229 Value: 32.45286
Reduction (retraining):
-484.6%

Reduction (retraining):
15.33%

Reduction (retraining):
7.5%

HICL
(MSEF-
FLD)

614523

Reduction (class
decomposition): -231%

Reduction (class
decomposition): 3.6%

Reduction (class
decomposition): 17.7%

HICL
(Random)

123456 87.8 8.511716 33.5849

HICL
(Random)

132456 101 8.880506 32.45286

HICL
(Random)

132456 83 9.497634 34.717

HICL
(Random)

325146 90.4 9.066676 35.09434

Retraining 14.8 10.15961 35.09436
Class
Decomp

 22.1 8.92708 39.434

Notes: 1-5.Refer to notes under table 3.1
6. Because there are 720 possible orderings, which are hard to be tested

completely, only a randomly selected small portion of them are tested in the
experiments.

7. The training time for Class Decomposition is calculated based on the module
which needs the longest training time.

Glass problem is a special case in the data sets used in the experiments. Because it

contains a very small number of patterns, which is 214 in total, there is insufficient

information for linear analysis techniques like FLD to predict the performance of each

sub-network in HICL. In this problem, MSEF-FLD method fails to predict the

ordering obtained by MSEF-CDE. The two methods give very different orderings.

Chapter 3 Task Decomposition with Hierarchical Structure 67

The ordering obtained with the MSEF-CDE method shows much smaller test error and

generalization error compared to retraining or class decomposition, but longer training

time. It also leads to the most accurate result in the different orderings that have been

tested. The result using the ordered training obtained from the MSEF-FLD method is

not as accurate as what obtained with MSEF-CDE. However, the errors are still much

less than the errors in retraining and class decomposition.

3.4.4 Thyroid Problem

The orders obtained with MSEF-CDE and MSEF-FLD are both 3? 1? 2, which

stands for learning the sub-network associated with the third class first in HICL,

followed by the sub-network associated with the first class, and then followed by the

sub-network associated with the second class. The exper imental results of ordered

training obtained by the MSEF-CDE and MSEF-FLD methods, random ordering,

retraining, and class decomposition are listed in Table 3.3 below.

Table 3.3 Results of HICL and Other Algorithms with Thyroid Problem

Method Ordering Trai ning Time Test Error Classification Error
Value: 840.6 Value: 0.94121 Value: 1.666668
Reduction
(retraining): 29.9%

Reduction
(retraining): 11.5%

Reduction
(retraining): 13.3%

HICL
(MSEF-CDE)

312

Reduction (class
decomposition):49.2%

Reduction (cl ass
decomposition):
9.4%

Reduction (class
decomposition):9.43%

Value: 840.6 Value: 0.94121 Value: 1.666668
Reduction
(retraining): 29.9%

Reduction
(retraining): 11.5%

Reduction
(retraining): 13.3%

HICL
(MSEF-FLD)

312

Reduction (class
decomposition):49.2%

Reduction (class
decomposition):
9.4%

Reduction (class
decomposition):9.43%

HICL 123 1509 1.203448 2.144446

Chapter 3 Task Decomposition with Hierarchical Structure 68

(random)
HICL
(random)

132 605.2 1.102526 2.033336

HICL
(random)

213 1672.6 0.984035 1.755556

HICL
(random)

231 1500.6 1.093764 1.944444

HICL
(random)

321 1353 0.89799 1.544444

Retraining 1198.4 1.063898 1.92222
Class
Decomposition

 1656.2 1.038454 1.84015

Notes: 1-5.Refer to notes under table 3.1

From the experimental results, we can find the HICL approach with ordering obtained

from the MSEF-CDE and MSEF-FLD methods gives much smaller classification error

and generalization error (test error) compared to retraining the problem and class

decomposition. It also requires much less computation time. Because MSEF-CDE and

MSEF-FLD are developed with a simplified model of HICL structure, both of them

did not give the ordering that leads to the exactly minimal error. In this problem the

ordering of 321 gives slightly less classification error and generalization error, but

much longer training time. However, the ordering given by MSEF-CDE and MSEF-

FLD still leads to much less error than the average of all the orderings.

It is clear that HICL with MSEF-CDE and MSEF-FLD ordering methods is more

accurate than retraining and class decomposition. However, it usually needs longer

training time. Between the two ordering methods, MSEF-CDE is more general. It is

suitable for small problems with insufficient information (or lack of samples).

However, when the data set is large, MSEF-CDE may become time expensive in its

pre-processing. If the data set contains sufficient information, MSEF-FLD can always

give very similar, if not better, ordering compared to MSEF-CDE. In some cases like

the Segmentation problem, MSEF-FLD gives even better ordering than MSEF-CDE,

because it is a deterministic method and does not require the experiment result of each

Chapter 3 Task Decomposition with Hierarchical Structure 69

module as in MSEF-CDE. As a result, MSEF-FLD avoids the possible error in the

experiment results required by MSEF-CDE.

3.5 Summary of the Chapter

In this chapter, I proposed a new task decomposition approach namely hierarchical

incremental class learning (HICL) to grow and train neural network in a hierarchal

manner. A neural network can be divided into several sub-networks, each sub-network

takes the output from the sub-network immediately below it as well as the original

input as its input. The output from each sub-network contains one more class than the

sub-network immediately below it, and this output is fed into the sub-network above it.

In order to reduce the error, two ordering methods, namely MSEF-CDE and MSEF-

FLD are further developed based on class decomposition error and linear analysis

technique respectively.

The suggested HICL with the MSEF-CDE and MSEF-FLD ordering methods is

compared with one of the newest task decomposition techniques, Output Parallelism

[42]. The experimental results of Glass problem with different task decomposition

methods are shown in table 3.4

Table 3.4 Compare of Experimental Results of Glass Problem

Method Test Error Classification Error
HICL-MSEF-CDE 8.936928 31.69813
HICL-MSEF-FLD 8.60229 32.45286
Output Parallelism 9.233 34.906

Chapter 3 Task Decomposition with Hierarchical Structure 70

From the results, it is clear that the HICL method with MSEF-CDE or MSEF-FLD

ordering has better accuracy than Output Parallelism. I have compared the results of

some other problems and HICL is more accurate than Output Parallelism in most of

the cases.

In some task decomposition techniques such as Class Decomposition and Output

Parallelism, the outputs of different sub-networks are assumed to be independent and

isolated from each other. There is no information flow between the output attributes.

However, this is not true in some real world applications. The proposed method not

only reduces harmful interference among hidden layers, but also facilities information

transfer between classes during training. The later sub-networks can obtain

information learnt from the earlier sub-networks. With the hierarchical relationship

(ordering) obtained from the MSEF-CDE and MSEF-FLD, the HICL approach shows

smaller regression error and classification error than the class decomposition and

retraining methods.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 71

Chapter 4

Feature Selection for Modular Neural

Network Classifiers

4.1 Background

As what is discussed in section 3.1, neural networks suffers from the interference

between outputs when it is applied to large-scale problems [14] [29]. In order to

overcome this shortcoming, many task decomposition techniques are developed.

Among these techniques, Class Decomposition [42] is the one most widely used. It

splits a K -class problem into K two-class sub-problems and each module is trained to

learn a two-class sub-problem [19]. Therefore, each module is a feedforward network

which is used to discriminate one class of patterns from patterns belonging to the

remaining classes. Each module solves a subset of the original problem. Hence, the

optimal input feature space that contains features useful in classification for each

module is also likely to be a subset of the original one. From section 3.2, we can find

that the HICL also decomposes the original problem into two-class sub-problem.

Hence, it has the same problem as Class Decomposition 1 . For the purpose of

improving classification accuracy and reducing computation effort, it is important to

remove the input features that are not relevant to each module. A natural approach is

1 In this chapter, the discussion and experiments are based on Class Decomposition instead of HICL,
because it is more widely used in practice.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 72

to use a feature selection technique to find the optimal subset for each module. There

are several feature selection techniques developed from the following perspectives

[22]-[25] [53]-[60].

• Neural network performance perspective

The importance of a feature is determined based on whether it helps to improve the

performance of neural network. Setiono and Lui [22] proposed a feature selection

technique based on the neural network performance. In this technique, the features of

the original feature space are excluded one by one and the neural network is retrained

repeatedly. If the overall performance of the neural network is improved when a

feature is excluded, the feature is removable from the input feature space. Techniques

from this perspective have many attractive attributes but they basically require a large

amount of processing on retraining neural networks. Besides, the performance of

neural network classifiers depends on many parameters, for example, the initial link

weights and neural network structure, etc. In order to obtain a reliable result for each

combination of features, a neural network should be retrained several times with

different initial link weights and the results averaged. This clearly makes the

computation workload less acceptable. In order to overcome this shortcoming, faster

learning algorithms and better search algorithms, such as RPROP and genetic

algorithm, are used. However, it nevertheless requires considerable computation effort.

• Mutual information (entropy) perspective

Shannon’s information theory provides a measure to the mutual information among

input features and input and output features. The ideal greedy feature selection

technique was developed based on the joint entropy between input and output features.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 73

It can detect the features that are irrelevant to classification, but faces problems

dealing with the features carrying redundant information. In order to overcome this

shortcoming, Battiti [23] proposed a mutual information feature selector (MIFS) based

on the joint entropy between not only inputs and outputs, but also different inputs. Up

till now, researchers have developed some modified versions based on this technique,

such as MIFS-U [59], to handle redundant features better. However, performance of

these techniques can be largely degraded due to the large error in estimating the

mutual information using the training data.

• Statistic information perspective

The importance of a feature can be evaluated by goodness-score functions based on

the distribution of this feature. Fisher’s linear discriminant (FLD) is the most popular

goodness-score function. It is simple in computation and does not need strict

assumptions in the distribution of features. Generally, all combinations of features in

the original feature space can be evaluated with the goodness-score function by

excluding some features in the feature space. The combination with a good balance of

a large goodness-score and a small number of input features will be considered as the

optimal input space for neural networks. Because all possible combinations of the

features should be tried, the computation effort of such techniques is very high. In

order to reduce computation time, some search algorithms are developed, such as

knock-out [24], backtrack tree [25] and genetic algorithm [60].

The shortcomings of the above feature selection techniques can be summarized as: 1)

most techniques require huge amount of computation; 2) most of them cannot analyze

the correlation among features in a clear manner.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 74

In this chapter, I propose two new feature selection techniques: Relative Importance

Factor (RIF) and Relative FLD Weight Analysis (RFWA) based on the optimal

transformation weights from Fisher’s linear discriminant function. The RIF technique

can detect features that are irrelevant to the classification problem and remove them

from the feature space to improve the performance of each module in terms of

accuracy and network complexity. The RFWA technique can further classify the

irrelevant features into noise features and redundant features. In section 4.2, I give a

brief introduction to modular neural networks with class decomposition and Fisher’s

linear discriminant. Then, the RIF and RFWA techniques are depicted in details in

section 4.3. The experiments and results of the proposed techniques are analyzed in

section 4.4. Section 4.5 summarizes the research on this topic.

4.2 Modular Neural Networks with Class

Decomposition

When neural network classifiers are used to solve large scale real world problems,

their structures tend to be large to match with the complex decision boundaries of the

problems. Large networks tend to introduce high internal interference because of the

strong coupling among their hidden-layer weights. Internal interference exists during

the training process, whenever updating the weights of hidden units, the influence

(desired outputs) from two or more classes cause the weights to compromise to non-

optimal values due to the clash in their weight update directions.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 75

In order to avoid such interference, the original network can be decomposed into

several modules or sub-problems (Guan, 2002). A common decomposition method

used in classification problems is to split a K -class problem into K two-class sub-

problems (Figure 4.1) and each module is trained to learn a “yes or no” problem for

one class. Each two-class sub-problem is learned independently. Hence, each sub-

problem forms a module that is independent from the others. The final overall solution

is obtained by integrating all the trained modules’ solutions together.

In a modular neural network classifier, the occurrences of irrelevant input features are

more serious than that in a non-modular neural network classifier. Each module of the

modular network is trained independently to solve a “yes or no” problem for one class.

Some input features supplied to the original problem may only be useful in classifying

certain classes, but irrelevant to the other classes. This suggests that a feature selection

process should be applied to each module independently to minimize any undesirable

effects. Such a feature selection process can further reduce the internal interference

within the modular network to obtain higher classification accuracy.

Divide the original problem
into k sub-problems

Merge the results of
k modules

Construct
module k -1

…Construct
module 1

Construct
module 2

Construct
module k

Figure 4.1 Modular Network

Chapter 4 Feature Selection for Modular Neural Network Classifiers 76

4.3 RFWA Feature Selector

In this section, two feature selection techniques are presented. The discussion start

from the classification of different types of input features. In the next subsection, the

design goals of the proposed techniques are given. After that, the RIF feature selection

technique based on Fisher’s transformation matrix w is proposed. Then, the RFWA

feature selection technique based on the RIF is introduced.

4.3.1 Classification of Features

In order to distinguish features that contribute to solve a sub-problem from features

that do not contribute or contribute little, the features in the original feature space

should be classified into the following two classes.

1. Relevant Features: The relevant features of a certain module carry significant

useful information for correct classification.

2. Irrelevant Features: The irrelevant features of a certain module carry little useful

information for correct classification. In another word, irrelevant features make

little or no contribution for correct classification. Irrelevant features can be further

classified into noise and redundant features.

• Noise Features: Noise features are purely random noise to the module.

They do not carry classification information to the module.

• Redundant Features: Redundant features contain classification information

overlapping with the other features and their classification information can

be fully represented by other relevant features.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 77

The optimal input feature space of a module should contain the relevant features only.

If noise features are present in the input feature space, the classifier may end up

building unnecessarily complex decision boundaries in these feature dimensions under

training. This will make the neural network harder to converge and lose generalization

ability. If redundant features are present in the input feature space, they cannot

contribute to classification either, because the useful information carried by them can

be fully covered by relevant features. The noise carried by redundant features is

harmful to the accurate classification of the neural network.

4.3.2 Design Goals

The aim of feature selection is to improve the performance of the classifier. For neural

networks, there are three key measurements of the performance, which are

generalization error, learning speed and network complexity. In the proposed RIF and

RFWA feature selection techniques, a good balance between the three goals is desired

in our research.

• Design Goal 1: The performance of a neural network classifier should be

improved after the feature selection process. The test/classification error and

network complexity should be reduced and the leaning speed should be

increased significantly.

• Design Goal 2: The feature selection technique should be able to detect

redundant features as well as noise features.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 78

• Design Goal 3: The feature selection technique should not require too much

computation.

A common shortcoming of available feature selection techniques based on statistic

analysis, such as knock-out techniques, is that they do not consider the correlation

among features in a clear manner. Hence, they will face problems when handling

highly correlated features. The proposed RFWA technique suggests a clear way of

detecting correlated features. The computation workload is another important

consideration in the design. The proposed feature selection technique in this chapter is

very attractive in computation time.

4.3.3 A Goodness Score Function Based on Fisher’s Transformation

Vector

Fisher’s linear discriminant2 algorithm projects a d-dimensional feature space to a c-1

dimensional feature space by the function i
t

i xwy = , in the direction w that maximizes

the function
wSw
wSwwJ

W
t

B
t

=)(, where d is the number of features and c is the number of

classes.

For each module in a modular neural network described in Figure 4.1, the projected

feature space is one-dimensional (projected on a line). Hence, the transformation

matrix w that maximizes the criteria function J(w) is a vector

2 Refer to section 3.3.2 for reference of Fisher’s linear discriminant.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 79

[] t
dwwww m21= . After transformation, an input vector

[] t
idiii xxxx m21= will become

[][] iddii
t

idiidi
t

i xwxwxwxxxwwwxwy +++=== mmm 22112121

 (4.1)

This optimal transformation vector w which maximize)(wJ can be computed by

solving the eigenvector problem: 0)(=− wSS WB λ , where λ is the non-zero

eigenvalue and w is the corresponding eigenvector. BS and WS can be computed as

discussed on page 61 of section 3.3.2.

The elements in the transformation vector w can be viewed as weights for different

features in the original feature space respectively. Because w represents the best

transformation direction, diwi m2,1, = shows how much classification information

the ith feature in the original feature space carries.

Based on the above analysis and experiment results from several benchmark problems,

an observation can be made: in an optimal transformation vector w of the Fisher’s

linear discriminant, a larger iw represents that the i th feature is more likely to be

relevant to the module and a smaller iw represents the i th feature is less likely to be

relevant to the module. This observation forms the basis of the proposed RIF and

RFWA techniques. In order to show this observation is valid, experiments were

conducted using the knock-out technique (Lerner, 1994) with Fisher’s

function
wSw
wSwwJ

W
t

B
t

=)(as a goodness-score function on several benchmark problems.

In the experiments, the features in the original feature space are removed one at a time

Chapter 4 Feature Selection for Modular Neural Network Classifiers 80

and the Fisher’s value with respect to all the remaining features is calculated. If the

Fisher’s value after removing a feature changes little compare to the Fisher’s value

with respect to all features, the removed feature is likely to be irrelevant. The

experiment results confirm with the observation. The experiment results of RIF and

RFWA also show that the observation is correct, which will be discussed in the next

section.

The proposed goodness score shows some advantages compared with some traditional

goodness scores, such as Fisher’s function J(w). Firstly, it requires much less

computation time. Assume there are d input features in the original feature space. In

order to obtain the relative importance of each feature, we need d FLD computations

with d-1 features included each time using the traditional knock-out techniques. With

the proposed goodness score, the relative importance of each feature in the module can

be obtained in one FLD computation with all d features included. Secondly, from the

experiment results, it is found that the proposed goodness score can easily handle

highly correlated features. Assume there are two duplicated features with one carrying

more noise information than the other. In order to remove the one with more noise, the

traditional knock-out goodness score requires at least d+2 FLD computations. The

proposed goodness score can automatically handle this situation without extra

computation. In the experiments, it is observed that if two features in the original

feature space carry almost the same classification information, the proposed goodness

score will assign high importance to the one with less noise and very low importance

to the other one with more noise.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 81

4.3.4 Relative Importance Factor Feature Selection3 (RIF)

From section 4.3.3, we know that the proposed goodness score can measure the

relative importance of a specified set of features. If the weights of some features in the

transformation vector w are less than some threshold value T1, these features can be

considered as irrelevant features. Otherwise, they are relevant features of the problem.

However, the weights obtained directly from the transformation vector are not

normalized. In another word, the weights obtained from one set of features are not

comparable with weights obtained from another set of features. Hence, the value of T1

may vary from problem to problem.

In order to overcome this problem, I introduce a Relative Importance Factor (RIF),

[] t
drrrr l21= , instead of using the transformation vector w directly in

feature selection. The RIF is obtained from the transformation vector w through the

following two steps of normalization.

1. Normalize the length of the transformation vector w.

Since we are looking for the relative importance between features, we are more

interested in the relative weights of the features formed from the

transformation vector w, which can be obtained through normalization:

()∑
=

=
d

i
iw

ww

1

2

' , (4.2)

3 In the discussions in section 4.3.4 and 4.3.5, the original feature space is assumed to be d-dimensional.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 82

where wi is the weight of the ith feature and w’ is the normalized transformation

vector.

2. Make the importance factor independent from the number of features.

Different problems have different numbers of features in their feature spaces.

In order to make the importance values obtained from different problems

comparable, it is necessary to make them independent with the number of

features in the feature space. This is achieved by the following equation

'
'

1

w
w

dr d

i
i∑

=

= (4.3)

If we combine the first and second steps together, the Relative Importance

Factor can be obtained from the transformation vector w directly as:

()

()
w

w

d

w

w

w

w

dr d

i
i

d

i
id

i
d

i
i

i

∑∑

∑

∑

==

=

=

=




















=

11

2

1

1

2

 (4.4)

The elements of r represent the normalized importance of different features, which are

independent from the magnitude of w and the number of features in the feature space.

If the d features carries equal classification information and they are independent from

each other, all the elements of r will have the value of 1. Hence, the RIF value

obtained from different problems are comparable, and a threshold value T1 may be

Chapter 4 Feature Selection for Modular Neural Network Classifiers 83

found that can be applied to various problems. In the research, I adopt 1.01 =T as the

threshold value base on the experiment results of several benchmark problems. This

threshold value will be used through out the rest of the chapter.

The exact value of this threshold can be varied by the user. In most cases, if a larger

threshold value is used, more features can be removed and training time and

complexity of the neural network can be further reduced. However, too large a

threshold value may cause information loss, so that the classification accuracy can be

affected. On the other hand, if the threshold value is too small, there are few features

that can be selected as irrelevant. In the problems I have worked on, there is significant

feature reduction and no undesirable affect to the classification accuracy when 0.1 is

used.

The RIF feature selection technique can be summarized as the following.

1. Calculate the Fisher’s transformation vector w with respect to all features in

the input feature space.

2. Calculate the Relative Importance Factor for each feature by normalizing the

transformation weight of each feature.

i. If the RIF value of a feature is larger than 0.1, it can be

considered as a relevant feature.

ii. If the RIF value of a feature is less than 0.1, it can be considered

as an irrelevant feature and can be removed from the input

feature space.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 84

3. Repeat step 1 and 2 for each module in the modular neural network classifier.

Though the RIF feature selection technique can classify irrelevant features from the

original input feature space, it cannot tell whether a detected feature is a noise feature

or it carries classification information that can be represented by other features. To

resolve this, the RFWA feature selection technique is further developed based on RIF.

Not only it can distinguish between relevant and irrelevant features, but also able to

classify irrelevant features into noise and redundant features.

4.3.5 Relative FLD Weight Analysis (RFWA) Feature Selection

If the classification information carried by one feature in a module can be fully

represented by another feature, it is a redundant feature and its RIF value is small

based on the analysis in section 3.3. However, when one of the features that carry

similar classification information as the redundant feature is removed from the input

feature space, the information of the redundant feature becomes more important than

before. Hence, its RIF value increases significantly if the remaining features in the

input feature space cannot fully represent the information carried by it any longer. On

the other hand, if a feature in the original feature space does not carry any

classification information, its RIF value will not be affected much with whichever

feature being removed. This observation suggests a solution to distinguish between the

noise and redundant features.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 85

The proposed RFWA feature selection technique uses the RIF feature selection

technique as the first step. In this step, the RIF value of each input feature with respect

to all input features is obtained. If the RIF value of a feature is less than the threshold

T1, this feature will be labeled as irrelevant feature, which can be either noise or

redundant.

In the next step of RFWA, one relevant feature is removed from the input feature

space and the RIF values with respect to the remaining d-1 features are calculated

again. Hence, each irrelevant feature gets one more RIF value, which is called as Cross

Relative Importance Factor (CRIF). Repeat this process by restoring the previously

removed feature back to the input feature space and removing another relevant feature,

till every relevant feature has been removed once and the corresponding CRIF values

have been computed.

Until now, d-N+1 RIF values for each feature have been obtained through the two

steps. One RIF value with respect to all input features and d-N CRIF values, where N

is the number of irrelevant features detected in the previous step. If one of the d-1

CRIF values of an irrelevant feature increases significantly so that it exceeds a pre-

defined threshold value 2T after some other feature is removed, the feature can be

considered as a redundant feature. In the research, I have adopted 6.02 =T as the

threshold value, based on the experiment results from various benchmark problems.

Otherwise, that irrelevant feature can be considered as a noise feature.

In summary, the RFWA technique can be described as the following.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 86

1. Calculate the RIF value of each feature, select those features whose RIF values are

less than 0.1 as irrelevant features, and place them in a list for further selection.

Initially set counter M=1.

2. If the Mth feature is a relevant feature, remove it from the input feature space and

calculate the CRIF values with respect to all the remaining features. Restore the

Mth feature, M=M+1. Repeat 2. If the Mth feature is an irrelevant feature, M=M+1

and repeat 2.

3. Perform the following procedure to classify each irrelevant feature in the list:

• If the CRIF value of a feature in the list exceeds 0.6, the feature is a

redundant feature to the module. Remove it from the list.

4. The features remaining in the list are noise features.

4.4 Experiments and Analysis

In this section, the same learning algorithm and parameter settings as described in

section 3.4.1 is adopted.

4.4.1 Diabetes Problem

The Diabetes problem diagnoses diabetes of Pima Indians. It has 8 inputs, 2 outputs,

and 768 patterns. All inputs are continuous.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 87

Because there are only 2 classes in the problem, it is a “yes or no” problem itself for

each class. There is only one module in the modular neural network classifier, which is

the original problem.

The RIF and CRIF values for each feature are obtained as in Table 4.1

Table 4.1 RIF and CRIF Values of Each Feature

 RIF CRIF 1 CRIF 2 CRIF 3 CRIF 4
Feature 1 0.8290 0.7966 0.8177 0.7301
Feature 2 2.8040 2.5776 2.7679 2.4643
Feature 3 0.6736 0.6040 0.5234 0.5888
Feature 4 0.0368 0.0363 0.4081 0.0750
Feature 5 0.3216 0.3853 0.7843 0.3419 0.3036
Feature 6 2.1046 1.9403 2.6555 1.9135 1.8664
Feature 7 0.8165 0.7005 0.9677 0.8357 0.7221
Feature 8 0.3726 0.7561 0.8647 0.2472 0.3253

 CRIF 5 CRIF 6 CRIF 7 CRIF 8
Feature 1 0.7744 0.8930 0.7568 0.9017
Feature 2 2.4884 3.2881 2.7295 2.5881
Feature 3 0.6147 0.4058 0.6635 0.5327
Feature 4 0.0843 0.6162 0.1196 0.0086
Feature 5 0.4685 0.2691 0.3458
Feature 6 1.9529 2.067 1.8712
Feature 7 0.7294 0.9659 0.7518
Feature 8 0.3549 0.3618 0.3941
Notes: 1. Row of the table stands for the RIF and different CRIF measures of each

specified feature with respect to the index number specified in the first
column. The row highlighted means that the specified feature is detected as
irrelevant.

 2. Column of the table stands for RIF values for all features and CRIF
values with different features removed from the input features space, with
respect to the index specified in the first row. The number following
“CRIF” means the index of feature removed. For example, CRIF 2 means
that the CRIF is measured with the second feature removed from the input
feature space.

 3. The CRIF values with respect to irrelevant features removed are also
listed in this table.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 88

From the RIF feature selection technique, feature 4 is detected as irrelevant, because

its RIF value is far less than the threshold T1, which is set as 0.1 in the experiment. We

can also find that when feature 6 is removed from the input feature space, the CRIF

value of feature 4 rises to 0.6162, which is larger than the threshold T2 in RFWA.

Hence, from RFWA, feature 4 is a redundant feature rather than noise feature and it

has redundant relations with feature 6. The experiment results for the original problem

and the problem after removing feature 4 are listed in Table 4.2.

Table 4.2 Results of the Diabetes Problem

 Epochs Training
Time (s)

Hidden
Units Test Error Classification Error

Original
Problem 3456 3 11.6 16.52402 25

Feature4
Removed 5127 5.4 16.6 15.6787(5.1%) 22.39582(10.4%)

Feature
4, 5, 8
Removed

1371 1 4 16.5006(0.14%) 24.79168(0.8%)

Notes: 1. The values in brackets show the percentage reduction of the specified
parameter obtained in the modified feature space compared to the one
obtained in the original feature,

 2. Training time is measured in seconds,
 3. The column starting with “Hidden Units” shows number of hidden units

in the neural network when training is finished. Because the results listed
are average value of ten experiments, there are decimal parts in the results,

 4. “Test Error” means the regression error obtained from test patterns and
the “Classification Error” means classification error obtained from test
patterns.

Based on table 4.2 the performance of the neural network classifier is improved

significantly in terms of classification accuracy and training time After removing the

irrelevant feature. From the experiment, I also find that using 0.1 as the value of

threshold T1 is a very strict condition. If a larger value, e.g. 0.4, is used, there are some

“boundary features” that can be detected. The features have some contribution to the

accurate classification of the module, but the contribution is limited. Normally, these

Chapter 4 Feature Selection for Modular Neural Network Classifiers 89

boundary features will make the neural network harder to converge. For example, in

Table 4.1 feature 5 and feature 8 have RIF values of 0.3216 and 0.3726 respectively,

which are larger than the threshold value we discussed earlier. However, they are still

far less than 1, which means they do not carry classification information as much as

the other features. In Table 4.2, the test error and classification error raise a little, but

the training time and number of hidden units (network complexity) drop to a very

small value after removing both boundary features. The exact value of T1 can be varied

from problem to problem and 0.1 is only a heuristic based on the experiment results

that normally reduces the classification error as much as possible in many problems. If

the user focuses on simplifying the input feature space as much as possible while

keeping the classification accuracy in an acceptable range, he can always use a larger

T1, for example, 0.4 in this problem. However, normally this value should not be

greater than 0.5, from the experiment results.

4.4.2 Thyroid Problem
This problem is divided into three modules in a modular neural network classifier,

because there are three classes, one module for each class. The RIF and CRIF values

of the features in the three modules are listed in Table 4.3, 4.4 and 4.5 respectively.

Table 4.3 RIF and CRIF of Features in the First Module of the Thyroid Problem

 RIF CRIF 15 CRIF 17 CRIF 18 CRIF 19 CRIF 20 CRIF 21
Feature 1 0.0343 0.0331 0.0007 0.063 0.0397 0.0385 0.0387
Feature 2 0.0131 0.0126 0.0209 0.0178 0.0167 0.0233 0.0152
Feature 3 0.0164 0.0157 0.0402 0.0265 0.0103 0.0172 0.0177
Feature 4 0.034 0.0338 0.0376 0.0389 0.0388 0.0436 0.037
Feature 5 0.0041 0.0039 0.0184 0.022 0.0039 0.0051 0.0055
Feature 6 0.0501 0.0481 0.0538 0.0545 0.0641 0.0665 0.0567
Feature 7 0.0155 0.0147 0.0661 0.0213 0.0008 0.0233 0.0119
Feature 8 0.0174 0.0166 0.0154 0.0179 0.01 0.0135 0.0169

Chapter 4 Feature Selection for Modular Neural Network Classifiers 90

Feature 9 0.0228 0.0219 0.0101 0.0221 0.0373 0.0373 0.027
Feature 10 0.0236 0.0227 0.0286 0.0306 0.0312 0.0326 0.0267
Feature 11 0.0288 0.0276 0.0264 0.0252 0.0363 0.038 0.0329
Feature 12 0.0641 0.0614 0.0734 0.0801 0.0749 0.0812 0.0717
Feature 13 0.0465 0.0446 0.0693 0.0546 0.0529 0.0551 0.0514
Feature 14 0.0375 0.0359 0.0157 0.0361 0.0474 0.0504 0.042
Feature 15 0.1445 0.227 0.1507 0.1395 0.1497 0.1548
Feature 16 0.0158 0.0151 0.0219 0.0205 0.0214 0.0225 0.0181
Feature 17 9.6481 9.2572 11.4325 12.3852 12.9401 10.873
Feature 18 3.1858 3.054 3.8771 3.8452 3.3785 3.3528
Feature 19 3.3733 3.2336 5.9632 3.9016 1.2145 2.7078
Feature 20 3.2921 3.1545 6.5621 3.2757 0.5642 2.4422
Feature 21 0.9324 0.8929 2.8722 0.7083 2.5802 1.7691

Table 4.4 RIF and CRIF of Features in the Second Module of the Thyroid

Problem

 RIF CRIF 1 CRIF 2 CRIF 3 CRIF 7 CRIF 8 CRIF
10

CRIF
12

Feature 1 0.2375 0.2245 0.2599 0.2253 0.2311 0.2415 0.2269
Feature 2 0.1798 0.1631 0.16 0.1646 0.1664 0.1833 0.1728
Feature 3 0.4693 0.4224 0.4095 0.4303 0.447 0.4102 0.4521
Feature 4 0.0172 0.013 0.0118 0.0164 0.0074 0.0178 0.0035 0.0148
Feature 5 0.0707 0.0732 0.0502 0.0817 0.0679 0.0593 0.0909 0.0701
Feature 6 0.048 0.0302 0.0447 0.0094 0.0429 0.0443 0.0368 0.0468
Feature 7 0.2858 0.2763 0.2544 0.2886 0.2603 0.2891 0.2775
Feature 8 0.4409 0.4025 0.3788 0.4781 0.4 0.4267 0.427
Feature 9 0.0323 0.0092 0.0298 0.1245 0.0261 0.0302 0.0016 0.0327
Feature 10 0.4533 0.4101 0.4257 0.3954 0.4176 0.4305 0.4369
Feature 11 0.0343 0.0296 0.0446 0.0605 0.0244 0.0293 0.0429 0.0324
Feature 12 0.1399 0.1159 0.1136 0.1251 0.1311 0.1381 0.1265
Feature 13 0.3513 0.3356 0.3177 0.3673 0.3291 0.3249 0.3434 0.3411
Feature 14 0.007 0.0132 0.0219 0.0115 0.0195 0.0068 0.0259 0.0084
Feature 15 0.4741 0.4875 0.5087 0.4966 0.4178 0.4392 0.4554 0.46
Feature 16 0.1439 0.1452 0.1603 0.1069 0.1314 0.1308 0.1424 0.1348
Feature 17 4.5771 4.0426 4.2602 4.1837 4.244 4.3329 4.4384 4.3993
Feature 18 10.0926 10.1074 9.6549 7.8248 9.3103 9.4393 10.05 9.6816
Feature 19 0.0342 0.107 0.0114 1.7402 0.2099 0.2672 0.1251 0.0033
Feature 20 0.176 0.3899 0.8326 0.924 0.725 0.4386 0.0405 0.145
Feature 21 2.7348 2.426 2.2447 2.3453 2.6755 2.766 2.526 2.6366

 CRIF 13 CRIF 15 CRIF

16
CRIF 17 CRIF

18
CRIF
20

CRIF
21

Feature 1 0.2362 0.2318 0.2428 0.2082 0.4259 0.2287 0.1944
Feature 2 0.1725 0.1752 0.1787 0.1766 0.2662 0.1727 0.1464
Feature 3 0.4508 0.4569 0.4459 0.4218 0.6424 0.4513 0.3837
Feature 4 0.0169 0.0126 0.0251 0.0068 0.0284 0.0165 0.0118
Feature 5 0.064 0.0688 0.0612 0.0766 0.1671 0.068 0.056
Feature 6 0.0435 0.0467 0.0415 0.0577 0.0515 0.0461 0.0383
Feature 7 0.2816 0.2778 0.2732 0.3045 0.4201 0.2767 0.2462
Feature 8 0.4196 0.4291 0.4179 0.4163 0.6197 0.4245 0.3675
Feature 9 0.0289 0.0314 0.0275 0.0339 0.064 0.0313 0.0295

Chapter 4 Feature Selection for Modular Neural Network Classifiers 91

Feature 10 0.4361 0.4413 0.437 0.4337 0.658 0.4361 0.3718
Feature 11 0.0363 0.0334 0.0395 0.0366 0.0156 0.033 0.0269
Feature 12 0.1379 0.1363 0.1195 0.1122 0.1815 0.1345 0.1147
Feature 13 0.3418 0.3309 0.3542 0.5011 0.3382 0.29
Feature 14 0.0062 0.0068 0.0015 0.0131 0.0406 0.0068 0.0058
Feature 15 0.4471 0.4481 0.5285 0.6026 0.4577 0.4047
Feature 16 0.1351 0.14 0.1423 0.2126 0.1383 0.1173
Feature 17 4.4247 4.4586 4.4195 6.8482 4.3923 3.6287
Feature 18 9.6801 9.8168 9.7743 10.5802 9.7406 8.7537
Feature 19 0.083 0.0424 0.0041 2.3446 0.3069 0.093 2.2768
Feature 20 0.2516 0.1843 0.1123 2.6373 2.5483 2.5356
Feature 21 2.6481 2.668 2.5995 1.1148 5.3991 2.5136

Table 4.5 RIF and CRIF of Features in the Third Module of the Thyroid

Problem

 RIF CRIF
3

CRIF
8

CRIF
10

CRIF
13

CRIF
15

CRIF
17

CRIF
18

CRIF
19

CRIF
20

Feature
1

0.0955 0.0959 0.0944 0.0956 0.095 0.0924 0.0453 0.1679 0.1004 0.1021

Feature
2

0.062 0.0538 0.0587 0.0628 0.0596 0.0599 0.055 0.0859 0.0669 0.0733

Feature
3

0.1217 0.1187 0.1037 0.1171 0.1174 0.0578 0.1456 0.1377 0.1386

Feature
4

0.0221 0.0214 0.0208 0.025 0.0211 0.0235 0.0293 0.027 0.0213 0.024

Feature
5

0.0235 0.0249 0.0203 0.03 0.0211 0.0227 0.0315 0.0634 0.0245 0.0261

Feature
6

0.0537 0.0417 0.0515 0.0478 0.0505 0.0517 0.0563 0.0618 0.0587 0.0603

Feature
7

0.0944 0.0898 0.0879 0.0951 0.0935 0.0908 0.1193 0.1294 0.0876 0.0764

Feature
8

0.1404 0.1417 0.1355 0.1335 0.1354 0.102 0.1789 0.1428 0.1504

Feature
9

0.0089 0.0139 0.0087 0.0189 0.0093 0.0085 0.0009 0.0027 0.0155 0.0148

Feature
10

0.149 0.1266 0.1446 0.1435 0.1437 0.1164 0.2003 0.1612 0.1672

Feature
11

0.0328 0.0376 0.0307 0.0343 0.0328 0.0316 0.0294 0.0264 0.0354 0.0367

Feature
12

0.0108 0.0145 0.0085 0.0121 0.009 0.0104 0.0358 0.0232 0.0081 0.0101

Feature
13

0.1379 0.1345 0.1309 0.1336 0.1329 0.1326 0.1803 0.1445 0.1499

Feature
14

0.0278 0.0312 0.0268 0.0199 0.0269 0.0268 0.01 0.0213 0.0303 0.0318

Feature
15

0.2512 0.2439 0.2397 0.2391 0.2381 0.2987 0.292 0.2418 0.2536

Feature
16

0.0539 0.042 0.0504 0.0529 0.0506 0.0519 0.0484 0.0741 0.059 0.0613

Feature
17

8.993 8.4933 8.6893 8.5184 8.6479 8.6741 11.9233 9.89 10.2119

Feature
18

5.4337 4.6057 5.2164 5.2881 5.2163 5.2357 5.4357 5.7449 5.5265

Chapter 4 Feature Selection for Modular Neural Network Classifiers 92

Feature
19

2.6749 2.9937 2.5074 2.5751 2.5486 2.5748 5.3698 3.3731 0.8522

Feature
20

2.5695 2.7289 2.3935 2.492 2.4346 2.4712 5.9213 2.2291 0.4289

Feature
21

0.0433 0.0651 0.1007 0.0201 0.0511 0.0447 2.1045 0.7941 2.6004 2.0329

In the module of class one, fifteen out of twenty-one features are found to be irrelevant

to the module by RIF. After applying RFWA, the entire fifteen features are classified

to be noises to the module, which are feature 1-14 and feature 16. Table 4.6 shows the

experiment results before and after removing the fifteen noise features from the input

feature space.

Table 4.6 Results of the First Module of the Thyroid Problem

 Epochs Training
Time

Hidden
Units

Test Error Classification
Error

Original
Problem

753 52.2 2.1 0.801002 1.578%

Noise Features
Removed

867 28.8 2.5 0.655246
(18.2%)

1.350% (14.44%)

In the module of class two, feature 4, 5, 6, 9, 11, and 14 are detected as noise features

by RIF and RFWA. Feature 19 is detected as redundant. The experiment results are

shown in table 4.7.

Table 4.7 Results of the Second Module of the Thyroid Problem

 Epochs Training
Time

Hidden
Units

Test Error Classification
Error

Original
Problem

13165 1187 12.66667 1.37877 1.833%

Noise Features
Removed

11303 943.2 8.8 0.944492
(31.5%)

1.144% (37.6%)

Chapter 4 Feature Selection for Modular Neural Network Classifiers 93

 In the module of class three, feature 1, 2 4-7, 9, 11, 12, 14, 16 and 21 are detected as

irrelevant by RIF. From RFWA, feature 21 is found to be a redundant feature and all

the other features are noises. Table 4.8 shows the experiment results before and after

removing the irrelevant features.

Table 4.8 Results of the Third Module of the Thyroid1 Problem

 Epochs Training
Time

Hidden
Units

Test Error Classification
Error

Original
Problem

3936.25 338.5 7.75 1.55297 1.722225

Noise Features
Removed

2568 135.8 5.2 1.508322
(2.88%)

1.61111 (6.45%)

Based on the experiment results listed above, the performance of the neural network

improves a lot. The training time and network complexity are reduced significantly,

while the classification accuracy improved more or less. In the second module of the

problem, the classification error is reduced up to 37.6%.

So experiments with some other benchmark problems, such as the Glass problem4

(Table 9 – Table 11), are also conducted. From the experiment results, the feature

selection techniques shows great performance for problems with multiple classes and

large input feature spaces. For example, in the Thyroid problem, there are nearly half

of the features in each module detected as irrelevant features by RIF. After removing

the irrelevant features, the generalization accuracy, learning speed and network

complexity improved dramatically. As an addition, it is observed that most of the

irrelevant features are noise features in the experiments.

4 Only the experiment results of module 1, 2 and 3 of the Glass problem are listed in this section. The
other three modules have very small classification error and no feature selection is performed.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 94

Table 4.9 Results of the First Module of the Glass Problem

 Epochs Training
Time

Hidden Units Test Error Classification
Error

Original
Problem

856.67 1.556 1.444 19.67771 35.6%

Feature 1, 9
Removed

438 0.6 0.3 18.81184 (4%) 35.4%
(0.56%)

Table 4.10 Results of the Second Module of the Glass1 Problem

 Epochs Training
Time

Hidden Units Test Error Classification
Error

Original
Problem

3476 6.6 3.7 21.11 33.02%

Feature 1, 9
Removed

9683.5 19.7 6.5 18.52
(12.27%)

23.4%
(29.134%)

Table 4.11 Results of the Third Module of the Glass1 Problem

 Epochs Training
Time

Hidden Units Test Error Classification
Error

Original
Problem

3519.5 6.1 2.5 6.35 7.92%

Feature 7, 9
Removed

1494 2.4 1.2 6.94 (-9%) 7.92%

An interesting observation in table 4.11 is that the test error is higher than original

problem while the classification is reduced after the irrelevant features are removed. It

does not mean the feature selection fail in this problem, but reflects that they are

designed for classification problems instead of regression problems. Because the test

error is not in the consideration of the techniques, the input features that are relevant to

regression but irrelevant to classification may also be removed.

To understand it clearly, it should be noted that the classification error is not

necessarily be an increasing function of test error. From equation 3.7 in chapter 3, we

know that the test error ∑∑
= =

−
⋅
−

⋅=
P

p

K

k
pkpktest to

PK
oo

E
1 1

2minmax)(100 ∑∑
= =

−=
P

p

K

k
pkpk to

1 1

2)(α

whereα is a constant, is a linear function of the square of real distance between the

Chapter 4 Feature Selection for Modular Neural Network Classifiers 95

desired output position and the real output position in the output space. However, the

classification error is a step function of the distance based on the decision boundary of

the classification problem. There is no clear dependency between the two errors. For

example, a two class problem has 5 data samples, three belonging to class 1 and the

other 2 belonging to class 2. Class 1 has an output value of 1 and Class 2 has an output

value of 0. The decision boundary is the output value of 0.5. There are two possible

situations as shown in figure 4.2 and figure 4.3:

1 1

0 0

1

0.9

0.3

0.1 0.1

0.9

Ou
t
pu
t
 v
a
lu
e

Desied outputs

Real outputs

Dection Boundary=0.5

Class 1

Class 2

Figure 4.2 Situation 1 of a Two-Class problem

1 1

0 0

1

0.6 0.6

0.4 0.4

0.6

O
ut
pu
t
 v
al
ue

Desired outputs

Real outputs

Class 1

Class 2

Dection Boundary=0.5

Figure 4.3 Situation 2 of a Two-Class problem

Chapter 4 Feature Selection for Modular Neural Network Classifiers 96

In figure 4.2, the real outputs have values of 0.9, 0.1, 0.1, 0.1 and 0.9 respectively. The

classification error is increased to %205
1

2 ==ClassE , while the regression error (test

error) is () αα 53.07.01.04 22
2 =+×=testE . In figure 4.3, after some input features are

removed, the real outputs have values of 0.6, 0.6, 0.4, 0.4 and 0.6 respectively. The

classification error is 0 because all the real outputs are in the correct side of the

decision boundary. The regression error (test error) is αα 8.04.05 2
1 =×=testE .

Clearly, the classification error increases and the regression error (test error) decreases

just like what is observed in the experiment.

4.5 Summary of the Chapter

In this chapter, I proposed two new feature selection techniques, RIF and RFWA for

modular neural network classifiers. RIF classifies input features into relevant and

irrelevant features based on the amount of classification information carried by the

features. The irrelevant features detected are then removed from the input feature

space of the module to improve the accuracy and/or reduce the training time. Based on

the results of RIF, RFWA further classifies irrelevant features into noise and redundant

features based on the correlation among features.

RIF and RFWA techniques are specially designed for modular neural networks for

modular network with class decomposition. They also show some unique

characteristics compared to other feature selection techniques. Table 4.12 shows the

performance of the proposed feature selection methods and ADHOC [62], NNFS [22],

and GADistAl [60] with Diabetes1 problem.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 97

Table 4.12 Performance of Different Techniques in Diabetes1 Problem

Technique Features Removed Classification Error
RIF and RFWA (Strict) 1 22.39582
RIF and RFWA (Loose) 3 24.79168
ADHOC 5 26.8
NNFS 6 23.2
GADistA1 5.97 25.7

From the table, it is clear that though RIF and RFWA removes less irrelevant features

than other proposed techniques, they significantly reduced the classification error of

neural network classifier. As linear analysis based feature selection techniques, RIF

and RFWA may not be as accurate as neural network performance based techniques

like NNFS. However, they are much simpler and faster than performance based

techniques.

Compared to other feature selection techniques, the advantages of RIF and RFWA can

be summarized as follows:

1. Both RIF and RFWA require relatively small computation cost.

Both techniques are based on the statistic distribution of features in the input

feature space. It dose not retrain the network repeatedly as the other techniques

based on the network performance perspective, or go through complex steps to

obtain mutual information as the techniques based on the mutual information

perspective. RIF needs only one calculation of optimal FLD transformation

weights to detect irrelevant features, whether they are noise features or

redundant features. It is even less expensive in computation than some other

techniques based on the statistic distribution of features, such as the knock-out

technique. For example, when detecting irrelevant features in Diabetes1

problem, NNFS needs to training neural networks more than 8 times, which

Chapter 4 Feature Selection for Modular Neural Network Classifiers 98

needs more than one hundred seconds in the same test machine as the one used

to test the proposed methods. ADHOC and GADistA1 need to utilize complex

genetic algorithms, which are even more computational expensive than NNFS.

All the feature selection techniques need more computation time than training

the neural network used to solve the problem, which is not acceptable in some

time critical applications. In contrary, the proposed techniques need less than 1

second only.

2. It analyzes highly correlated features in a clear manner.

RIF can detect both noise features and redundant features due to the nature of

Fisher’s transformation vector. Through RFWA, the relationship among

features can be obtained. It provides a way to detect highly correlated features

with relative small amount of computation and gives us a clear image of the

internal relationship among the input features. None of the three techniques

mentioned above can perform this kind of work.

3. It is independent with the learning algorithms used in the neural network.

No matter what learning algorithm is adopted, better performance can always

be achieved. In order to achieve good performance, different modules can even

use different learning algorithm to train the modular neural network. In NNFS,

the leaning algorithm used in feature selection and in training of the problem-

solving network should be the same, though the author did not mention it.

Chapter 4 Feature Selection for Modular Neural Network Classifiers 99

Though RIF and RFWA are designed for modular neural network classifiers, they can

be applied to other classifiers as well, such as Bayes classifiers, because RIF and

RFWA are independent with the types of classifiers.

Chapter 5 Conclusion 100

Chapter 5

Conclusion and Future Works

In the thesis, the techniques to improve the flexibility and accuracy of neural network

are proposed and discussed. These techniques belongs to three related research topics

of neural network, which are incremental learning in dynamic environment, task

decomposition and feature selection.

The research started from investigating network structures that can adapt themselves

when new output attributes are introduced into the existing system. How to integrate

learnt knowledge in the existing neural network with the new incoming knowledge to

form a new neural network is the primary interest. The Incremental Output Learning

(IOL) methods take the advantages of modular neural network to preserve learnt

knowledge while leaning the new knowledge. They can provide continuous work in

the adaptation process and smooth handover between the existing neural network and

the upgraded neural network, which is very useful in industrial applications. They are

also proven to be very efficient and accurate.

Based on one of the structures developed in the incremental learning research, a new

task decomposition of hierarchical incremental class learning (HICL) was developed.

Because of the hierarchical relationship between its sub-networks, HICL not only

avoids interferences between output attributes, but also facilitates the favorable

information flow between its sub-networks. Hence, it is more accurate compared to

many other task decomposition techniques, such as class decomposition. HICL is also

Chapter 5 Conclusion 101

very flexible to environmental changes. It adapts new output attributes automatically

due to its structure.

In order to improve the efficiency and accuracy of modular neural networks, I

developed two feature selection techniques of Relative Importance Factor (RIF) and

Relative FLD Weight Analysis (RFWA). These techniques make use of the optimal

transformation weights from Fisher’s linear discriminant function. RIF technique can

detect features that are irrelevant to the classification problem. The RFWA technique

can further classify the irrelevant features into noise features and redundant features.

Compared to other feature selection techniques in literacy, RIF and RFWA require

relatively small computation cost and independent with the leaning algorithm used in a

neural network.

In summary, several techniques and methods have been proposed in this thesis to

enhance the flexibility and accuracy of neural networks. These techniques and

methods are proven to be effective and practical by experiments. They can be easily

applied to practical neural network applications.

There are some ideas in all my three research topics that need to be developed and

tested in the future research. In the topic of incremental output learning, there is no

methods being proposed based on internal adaptation, which adapts the output change

with inserting new neurons and adjust the existing link weights between neurons. If

the researcher can find the way to make use of positive correlation between the

neurons of the network, the internal adaptation methods may give better performance

than external ones. In the topic of task decomposition with hierarchy structure, the

Chapter 5 Conclusion 102

MSEF-CDE and MSEF-FLD ordering focus only on accuracy. However, the high

accuracy is in the cost of long training time. In the future research, the researcher

should try to find an ordering method that balances high accuracy with reasonable

training time. In the topic of feature selection, the proposed feature selection methods

have a limitation that they can only work for classification problems with class

decomposition. How to extend it into normal neural network without decomposition is

still a problem. A possible solution is to find a balanced overall goodness score for

each input feature from the RIF and CRIF values of the input feature obtained in each

individual class.

Appendix I References 103

References:

[1] Simon Haykin, Neural Networks: A Comprehensive Foundation, London:

Pretice-Hall, 1999.

[2] Aleksander I., and H. Morton, An Introduction to Neural Computing, London:

Chapman and Hall, 1990.

[3] Geman S., E. Bienenstock, R. DOursat, “Neural networks and the bias/variance

dilemma,” Neural Computation, vol. 4, pp. 1-58, 1992.

[4] Kerlirzin P., F. Vallet, “Robustness in multilayer perceptrongs,” Neural

Computation, vol. 5, pp. 473-482, 1993.

[5] Light W., “Some aspects of radial basis function approximation,”

Approximation Theory, Spline Functions and Applications, NATO ASI vol.

256, pp. 163-190, Boston: Kluwer Academic Publishers, 1992.

[6] Kohonen T., “The self-organizing map,” in Proceedings of the institute of

Electrical and Electronics Engineers, vol. 78, pp. 1464-1480, 1990.

[7] Cotes C., V. Vapnik, “Support vector networks,” Machine Learning, vol. 20,

pp. 273-297, 1995.

[8] J. -F. Hebert, M. Parizeau and N. Ghazzali, “Cursive character detection using

incremental learning,” in Proceedings of the Fifth International Conference on

Document Analysis and Recognition, pp. 808 – 811, 1999.

[9] L. M. Fu, H. -H. Hsu and J. C. Principe, “Incremental backpropagation

learning networks,” IEEE Transactions on Neural Networks, vol. 7, pp. 757-

761, 1996.

Appendix I References 104

[10] L. Bruzzon and P. D. Fernandez, “An incremental-learning neural network for

the classification of remote - sensing images,” Pattern Recognition Letters, vol.

20, pp. 1241-1248, 1999.

[11] A. J. C. Sharkey, “Modularity, Combining and artificial neural nets,”

Connection Science, vol. 9, no. 1, pp.3-10, 1997.

[12] P. Gallinari, “Modular neural net systems, training of, ” in The Handbook of

Brain Theory and Neural Networks, M. A. Arbib, Ed. Cambridge, MA: MIT

Press, 1995, pp. 582-585.

[13] T. Hrycej, Modular Learning in Neural Networks, Chichester: John Wiley,

1992.

[14] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures

of local experts,” Neural Computation, vol. 3, no. 1, pp.79-87, 1991.

[15] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and EM

algorithm,” Neural Computation, vol. 6, no. 2, pp.181-214, 1994.

[16] K. Chen, L. Yang, X. Yu and H. Chin, “A self-generating modular neural

network architecture for supervised learning,” Neurocomputing, vol. 16, pp.

33-38, 1997.

[17] B. L. Lu, H. Kita, and Y. Nishikawa, “A multisieving neural-network

architecture that decomposes learning tasks automatically,” in Proceedings of

IEEE Conference on Neural Networks, Orlando, FL, pp. 1319-1324, 1994.

[18] B. L. Lu and M. Ito, “Task decomposition and module combination based on

class relations: a modular neural network for pattern classification,” IEEE

Transactions on Neural Networks, vol. 10, no. 5, pp. 1244 – 1256, 1999.

Appendix I References 105

[19] R. Anand, K. Mehrotra, C. K. Mohan and S. Ranka, “Efficient classification

for multiclass problems using modular neural networks,” IEEE Transactions

on Neural Networks, vol. 6, no.1, pp. 117 – 124, 1995.

[20] V. Petridis and A. Kehagias, Predictive Modular Neural Network: Applications

to Time Series, Boston: Kluwer Academic Publishers, 1998.

[21] S. Kumar and J. Ghosh, “GAMLS: A generalized framework for associative

modular learning systems,” in Proceedings of the Applications and Science of

Computational Intelligence II, Orlando, FL, pp. 24-34, 1999.

[22] Setiono R. and Liu H., “Neural network feature selector,” IEEE Transactions

on Neural Networks, vol. 8, pp. 654-662, 1997.

[23] Battiti R., “Using mutual information for selecting features in supervised

neural net learning,” IEEE Transaction on Neural Networks, vol. 5, pp. 537-

550, 1994.

[24] Lerner B., Levinstein M., Rosenberg B., Guterman H., Dinstein L. and Romem

Y., “Feature selection and chromosome classification using a multilayer

perceptron neural network,” IEEE International Conference on Neural

Networks, vol. 6, pp. 3540-3545, 1994.

[25] Souza J. C. S., Rodrigues M. A. P., Schilling M. T. and Do Coutto Filho M.B.

“Fault location in electrical power systems using intelligent systems

techniques,” IEEE Transaction on Power Delivery, vol. 16, pp. 59-67, 2001.

[26] Sheng-Uei Guan and Shanchun Li, “Incremental Learning with Respect to

New Incoming Input Attributes,” Neural Processing Letters, vol. 14, issue 3,

pp. 241-260, 2001.

Appendix I References 106

[27] Li Su, Sheng-Uei Guan and Y. C. Yeo, “Incremental Self-Growing Neural

Networks with Changing Environment,” Journal of Intelligent Systems, vol. 11,

issue 1, pp. 43-74, 2001.

[28] A. Blum, R. L. Rivest, “Training a 3-node Neural Network is NP-complete,”

Neural Networks, vol. 5, pp. 117-128, 1992.

[29] Auda G., Kamel, M., Raafat H, “Modular Neural Network Architectures for

Classification,” Neural Networks, IEEE International Conference on , vol. 2,

pp. 1279 –1284, 1996.

[30] R. Jacobs, M. Tai, and A Reynolds, “An Art2-bp Supervised Neural Net,” In

World Congress on Neural networks, San Diego, USA, vol. 3, pp. 619-624,

1994.

[31] E. Corwin, S. Greni, A. Logar, and K. Whitehead, “A Multi-stage Neural

Network Classifier,” In World Congress on Neural networks, San Diego, USA,

vol. 3, pp. 198-203, 1994.

[32] L. Prechelt, “PROBEN1: A Set of Neural Network Benchmark Problems and

Benchmarking Rules,” Technical Report 21/94, Department of Informatics,

University of Karlsruhe, Germany, 1994.

[33] M. Riedmiller, H. Braun, “A Direct Adaptive Method for Faster

Backpropagation Learning: the RPROP Algorithm,” in Proceedings of the

IEEE International Conference on Neural Networks, pp. 586-591, 1993.

[34] G. Auda, M. Kamel and H. Raafat, “Modular neural network architectures for

classification,” in IEEE International Conference on Neural Networks, vol. 2,

pp.1279-1284, 1996.

Appendix I References 107

[35] J. Feldman, “Neural representation of conceptual knowledge,” in Nadel and al.

(Eds.). Neural connections, mental computation. Cambridge, MA.: MIT

Press,1989.

[36] H. Simon, The sciences of the artificial. Cambridge, MA: MIT press, 1981.

[37] G.A. Carpenter, and S. Grossberg, “The art of adaprive pattern recognition by a

self organizing neural network,” in IEEE-CS Computer, vol. 21, no. 3, pp.77-

88, 1988.

[38] R.A. Jacobs, and M.I. Jordan, “A competitive modular connectionist

architecture”, in Neural Information Processing System 3, vol. 3, pp. 767-773,

1991.

[39] P. Liang, “Problem decomposition and subgoaling in artificial neural

networks,” in Proceedings of IEEE International Conference on Systems, Man

and Cybernetics, Los Angeles, CA. 1990, pp.178-181.

[40] S. G. Romaniuk and L. O. Hall, “Divide and conquer neural networks,” Neural

Networks, vol. 6, pp.1105-1116, 1993.

[41] S. -U. Guan and S.C. Li, “An approach to parallel growing and training of

neural networks,” in Proceedings of 2000 IEEE International Symposium on

Intelligent Signal Processing and Communication Systems (ISPACS2000),

Honolulu, Hawaii, 2000.

[42] S. -U. Guan and S.C. Li, “Parallel growing and training of neural networks

using output parallelism,” in IEEE Transaction on Neural Networks, vol. 13,

pp. 542 -550, 2002.

[43] R. E. Jenkins and B. P. Yuhas, “A simplified neural network solution through

problem decomposition: the case of the truck backer-upper,” IEEE

Transactions on Neural Networks, vol. 4, no. 4, pp. 718 – 720, 1993.

Appendix I References 108

[44] V. Petridis and A. Kehagias, Predictive Modular Neural Network: Applications

to Time Series, Boston: Kluwer Academic Publishers, 1998.

[45] Duda R. O., and P.E. Hart, Pattern Classification and Scene Analysis, New

York: Academic Express, 1973.

[46] T. Ash, “Dynamic node creation in backpropagation networks,” Connection

Science, vol. 1, no. 4, 1989, pp.365-375.

[47] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning architecture,”

in Advances in Neural Information Processing systems II, D. S. Touretzky, G.

Hinton, and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann Publishers,

1990, pp.524-532.

[48] L. Prechelt, “Investigation of the CasCor family of learning algorithms,”

Neural Networks, vol. 10, no. 5, pp.885-896, 1997.

[49] S. Sjogaard, “Generalization in cascade-correlation networks,” in Proceedings

of the IEEE Signal Processing Workshop, pp.59-68, 1992.

[50] S. -U. Guan and S. Li, “An approach to parallel growing and training of neural

networks,” in Proceedings of 2000 IEEE International Symposium on

Intelligent Signal Processing and Communication Systems (ISPACS2000),

Honolulu, Hawaii, 2000.

[51] D. Y. Yeung, “A neural network approach to constructive induction,” in

Proceedings of the Eighth International Workshop on Machine Learning,

Evanston, Illinois, U.S.A, 1991.

[52] M. Lehtokangas, “Modelling with constructive backpropagation,” Neural

Networks, vol. 12, pp.707-716, 1999.

[53] Priddy, K. L., “Bayesian selection of important features for feed-forward

neural networks,” Neurocomputing, vol. 5, pp.91-93, 1993.

Appendix I References 109

[54] Belue L. M. and Bauer K. W., “Methods of determining input features for

multilayer perceptrons,” Neural Computing, vol. 7, pp. 111-121, 1995.

[55] Steppe J. M., Bauer K. W. Jr., and Rogers S. K., “Integrated feature and

architecture selection,” IEEE Transaction on Neural Networks, vol. 7, pp.

1007-1014, 1996.

[56] Yeung, D. Y., “A neural network approach to constructive induction,” in

Proceedings of the Eighth International Workshop on Machine Learning,

Evanston, Illinois, 158-164. 1991.

[57] Li, Q. and Tufts, D. W., “Principal feature classification,” IEEE Transaction

on Neural Networks, vol. 8, pp. 155-160, 1997.

[58] Gonzalez A. and Perez R., “Selection of relevant features in a fuzzy genetic

learning algorithm,” IEEE Transaction on Neural Networks, vol. 48, pp. 417-

425, 2001.

[59] Kwak Nojun and Choi Chong-Ho, “Input feature selection for classification

problems,” IEEE Transaction on Neural Networks, vol. 13, pp.143-159, 2002.

[60] Jihoon Yang, Vasant Honavar, “Feature Subset Selection Using a Genetic

Algorithm”, IEEE Intelligent Systems, vol. 13, no. 2, pp. 44-49, 1998.

[61] C. S. Squires and J. W. Shavlik, “Experimental analysis of aspects of the

cascade-correlation learning architecture,” Machine Learning Research Group

Working Paper 91-1, Computer Science Department, University of Wisconsin-

Madison, 1991.

[62] M. Richeldi and P. Lanzi, “Performing effective feature selection by

investigating the deep structure of the data,” Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining, pp. 379-

383, 1996.

Appendix I References 110

[63] Sheng-Uei Guan and Fangming Zhu, “Incremental Learning of Collaborative

Classifier Agents with New Class Acquisition – An Incremental Genetic

Algorithm Approach,” International Journal of Intelligent Systems, vol. 18, no.

11, pp. 1173-1192, 2003

Appendix II Author’s Recent Publications 111

Author’s Recent Publications

[1] Guan Sheng-Uei and Peng Li, “Feature Selection for Modular Neural Network

Classifiers,” Journal of Intelligent Systems, vol. 12, no. 3, 2002.

[2] Guan Sheng-Uei and Peng Li, “A Hierarchical Incremental Learning

Approach to Task Decomposition,” Journal of Intelligent Systems, vol. 12, no. 3,

2002.

[3] Guan Sheng-Uei and Peng Li, “Incremental Learning in Terms of Outputs,”

Accepted by Journal of Intelligent Systems for future publication.

