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SUMMARY 

Contrast-enhanced dynamic MRI (CE-MRI) or MR mammography (MRM) is an 

alternative method to conventional X-ray mammography for non-invasive detection of 

breast cancer. It is superior in its 3-D tomography, excellent tissue resolution, and is 

free from ionizing radiation. A contrast agent (Gadolinium-DTPA) is injected to create 

an intensity increase in highly vascular regions that are indicative of malignant lesions. 

Analyzing the uptake rate of the contrast agent in a series of dynamic scans determines 

whether lesions are malignant or not. CE-MRI requires image registration to model the 

inevitable patient movement that occurs during the time needed to distinguish 

malignancy. Without image registration, motion artefacts corrupt the scans, making 

analysis of the uptake rate unreliable.   

 

The current registration paradigm uses rigid registration to model global motion and 

multi-resolution non-rigid registration to model local motion. However, the 

optimization is slow and can lead to unreliable results. This thesis presents a new and 

intuitive contrast-enhancement model for normalized mutual information (NMI) non-

rigid registration. It matches or surpasses traditional NMI registration in registration 

quality and it is also much faster. The proposed contrast enhancement model 

parameterizes NMI optimization, achieving speed and optimization efficiency. We also 

incorporate the clinically established 3 time-point (3TP) method into our registration 

technique to validate the assumptions of the model.  

 



v 

Comparisons are made on 42 sets of breast registrations – 20 are normal breasts and 22 

are breasts with lesions (benign and malignant). The quantitative measurements of 

registration quality reveal that non-rigid registration surpasses rigid registration. Visual 

assessments from a clinical reader concur; registration produces images of at least 

equal visual quality as images without registration, and improves visual quality most of 

the time. We also show that the time required for the new registration scheme is 

approximately proportional to the image size.  

 

A software package has been developed to register CE-MRI, and uses the 3TP method 

for analysis. This tool allows clinicians to reliably analyze the results of MRM 

registration. This software will be used in the National University Hospital of 

Singapore for clinical research. 
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CHAPTER ONE 

INTRODUCTION 

 

Breast cancer is the most common type of cancer affecting women, and is the number 

two cause for cancer death in the world. In a general population study on Singapore 

from 1993-97, 3,574 breast cancer cases were diagnosed, and the incidence rate of 

breast cancer was one out of every four or five female cancers (22.8%) (Chia et al., 

2000). This rate was projected to double every 25 years. A follow-up study from 1998-

99 revealed that the age-standardized incidence rate1 had risen from 46.1 to 53.1 cases 

per 100,000 persons (Chia et al., 2002). While the incidence rate in Singapore still 

lagged behind that in the West, nearly half of the affected women here were below 50 

years of age and the rate for women between 40 to 50 years of age mirrored that in the 

West. The best way of fighting breast cancer is early detection. The conventional non-

invasive method of breast cancer detection is using X-ray mammography, which is 

two-dimensional and poses a radiation risk. 

 

Contrast-enhanced MRI (CE-MRI) has been proposed as an alternative method to 

conventional X-ray mammography for non-invasive detection of breast cancer. MRI is 

superior in its 3-D tomography, higher sensitivity to dense glandular tissue, and is 

radiation-free. When injected intravenously, the paramagnetic contrast-agent 

(Gadolinium-DTPA) increases the image intensity in regions of the breast parenchyma 

with higher vascularity. By taking a series of 3-D scans (one scan taken before the 

                                                 

1 The rate of new cancers per 100,000 women per year over a specific time period adjusted for a 
reference age distribution; permits meaningful comparisons between differing national or regional 
cancer occurrence rates. 
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contrast agent is introduced), the uptake rate of the contrast agent may be used to 

identify whether tissue is likely to be malignant or benign. 

 

However, CE-MRI mammography suffers from inevitable patient movement that 

creates blurring artefacts within each acquisition scan and motion artefacts between 

scans. Blurring artefacts can be reduced with improvements in MRI technology, but 

motion artefacts are inherent in serial repeated scans because patient motion is either 

physiological (e.g., respiration, cardiac motion) or involuntary (slight shifts in body 

position). Such motion is neither systematic nor predictable. The breast is also soft and 

deformable. Therefore to correct motion artefacts, an image registration technique that 

models both non-rigid motion and non-uniform increase in intensity is required. Image 

registration optimizes a cost function to align any two sets of scans; typically the pre-

contrast scan is aligned against another post-contrast scan. 

 

Registration usually requires the use of positional markers to align two images. 

However, in CE-MRI mammography, external markers cannot be used because the 

motion is non-rigid; internal markers also cannot be used because there are no distinct 

internal landmarks in breasts. Thus, a volume-registration approach has to be taken. 

Recently non-rigid registration methods favor the optimization of mutual information 

(MI) or the overlap-invariant normalized MI (NMI) as cost functions, as these can 

account for the non-uniform increase in intensity (Rueckert et al., 1999; Hayton et al., 

1999). This approach has consistently shown visual and quantitative improvements, 

and has been verified using biomechanical models (Schnabel et al., 2001, and 2003). 

However, several challenges remain unconquered. Firstly, the entropy calculations 

required in optimizing NMI are computationally exhaustive; secondly, NMI’s high 
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propensity to enter local minima during optimization; thirdly, reduction in lesion 

volume (Tanner et al., 2001) occurs due to non-rigid registration; finally, few 

references have been made to clinically verified methods of relating enhancement 

curves to malignancy. 

 

The contributions in this work focus on applying a new contrast enhancement model 

that integrates NMI with the clinically established 3TP method (Degani et al., 1997) to 

increase efficiency and improve generalization. We demonstrate that optimization of 

NMI may result in unnatural deformations regardless of regularization, which are the 

cause of the observed reduction in lesion volumes. We obtain a new cost function from 

the new model, which we show is faster and theoretically better than the current NMI 

registration paradigm. The results show improvements in registration quality, in 

quantified measurements and visual assessments from a clinical reader. 

 

The ultimate objective of this project was to create image registration software 

customized for breast cancer research and detection using CE-MRI in the National 

University Hospital (NUH) in Singapore.   

 

This thesis begins with a literature survey of background information and current 

medical image registration methods in Chapter 2. In the next chapter, the theory of the 

mathematical tools used in the non-rigid registration method is covered. Chapter 4 

explains in detail how the registration scheme is implemented. Chapter 5 explains the 

model of contrast enhancement. The results and discussion are presented in Chapter 6, 

prior to conclusion. 
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CHAPTER TWO 

BACKGROUND AND RELATED TOPICS 

 

2.1 Breast cancer and mammography 

Several large scale randomised clinical trials have shown that breast cancer screening 

with breast x-rays (mammography) can detect breast cancer much earlier than clinical 

palpation or breast self-examination, thus reducing mortality by about 30% in the 

screened population group. Prior to these trials, it had not been proven that any type of 

surgical, medical or radiation therapy improved breast cancer survival rates. Because 

breast cancer is the most common cancer in most developed nations, early detection 

through mass population screening has been both recommended and implemented in 

the form of national mammography-based breast screening programs in many 

countries.  

 

With non-invasive methods of screening come the following advantages: (i) Early 

detection of breast cancer to lower mortality rates; and (ii) Accurate pre-operative 

localization of lesions to minimize the number of operations needed for complete 

surgical removal. Current non-invasive screening methods include using x-ray, 

ultrasonography and magnetic resonance imaging (MRI). X-ray is the established 

standard imaging modality for screening, and remains the only imaging method proven 

to reduce breast cancer mortality. About 5-10% 2  of women who undergo x-ray 

mammography have additional views and/or ultrasound of the breast. 

 

                                                 

2 S.C. Wang, NUH DDR, personal communication, 2003. 
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X-ray mammography (i) has a high spatial resolution of about 50µm; (ii) has fairly 

high sensitivity and specificity 3  for breast (cancer) in fatty tissues 4 ; and (iii) is 

relatively low in cost. It is useful in detecting radio-opaque micro-calcifications and 

lesions. Two-dimensional images are acquired, typically in the medio-lateral oblique 

and cranio-caudal views. Spatial correspondences of suspected abnormalities are 

established by matching the images from the two views. Figure 2.1 shows a 

mammogram taken from two views. Lesions and calcifications that appear to 

correspond are matched visually to deduce their locations in 3-D space. However, as x-

rays are projective in nature, this spatial matching may be erroneous. X-ray also has 

low sensitivity and poor signal-to-noise ratio (SNR) in dense glandular tissue that is 

more preponderant in younger premenopausal women (below the age of 40). 

Furthermore the risks of exposure to radiation limit its applicability, especially for 

young women with a genetic disposition to develop breast cancer. 

 

Figure 2.1: Typical x-ray mammogram (left and right) from 2 views. 

 
                                                 

3  Sensitivity = true positives/(true positives + false negatives) 
 Specificity = true negatives/(true negatives + false positives) 
4 The main reason there is high specificity is because most women screened are normal. In actual head 

to head testing for specific lesions, mammography’s specificity is bad, perhaps only slightly better 
than 50%.  
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Ultrasonagraphy uses high-frequency sound waves to locate and characterize masses. 

It is usually used for younger women alongside diagnostic mammography, in 

answering specific questions about an area of the breast. It is also heavily used to 

evaluate lesions found on mammography because of its ability to distinguish solid 

from cystic lesions easily, as well as its ability to guide needle biopsy. As it uses sound 

waves rather than x-rays, ultrasound provides different and sometimes complementary 

information to the mammogram. This is especially so in dense breasts where 

mammography is often unable to visualize tiny tumors without micro-calcifications. In 

these cases ultrasound may lead to earlier detection of otherwise occult breast cancer. 

Particularly when breast conservation is contemplated, ultrasound is the modality of 

choice in the detection of multi-focal tumor foci within the contiguous area of the 

index lesion.  

 

2.2 CE-MRI mammography 

Magnetic resonance imaging (MRI) detects the magnetic resonance induced by low-

frequency radiation on hydrogen atoms. MRI has high spatial resolution in tissue 

because of the specific composition of hydrogen in different tissue types. By applying 

a magnetic gradient across an object, slices of 3-D tomographic data can be acquired. 

Hence it does not contain the spatial ambiguity that plagues projective X-ray 

mammography. With no spatial ambiguity, the location and shapes of lesions can be 

determined more precisely. A typical MRI slice and the projected volume are shown in 

Figure 2.2. 
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(a) 

 

  
(b) (c) 

 
Figure 2.2: MR mammography –  (a) A breast MRI slice; (b) 3D subtracted image maximum intensity 
projection (MIP); (c) Another MIP taken from another view. High intensity difference regions indicate 

lesions (boxed), and motion artefacts (present throughout). 
 

However, MRI has low spatial resolution (~1mm in-plane, greater than 3-5mm 

through-plane). It cannot identify micro-calcifications because of their small size (0.2-

0.5mm) and because the modality is inherently insensitive to calcium5. Also, MRI 

requires a longer time (30-60 seconds) for image acquisition, resulting in inevitable 

patient movement. This in turn results in blurring artefacts (motion within scans) and 
                                                 

5 Nevertheless CE-MRI may depict the extent of the proliferative intraductal progress in areas of micro-
calcifications as well as mammographically occult foci of high-malignant grade DCIS even when 
micro-calcifications are missing. 



8 

motion artefacts (motion between scans). MRI mammography (MRM) also costs eight 

to ten times more than X-ray mammography 6 . High data storage and transfer 

bandwidth requirements, as well as a need for novel ways to visualize dynamic 3-D 

information are also some practical limitations to using MRI in a clinical setting. For a 

more detailed discussion on MRM please refer to Wang (1999). 

 

Table 2.1: Summary of comparison between X-ray and CE-MRI mammography. 
 

 X-Ray CE-MRI 
Dimension 2-D projective, taken from 2 

views 
3-D tomography, taken in serial 
scans (5-20 scans), 1 pre-
contrast, others post-contrast 
 

Radiation X-ray (cancer-causing) Radio-waves (no cancer risk) 
 

Resolution 50µm in 2-D projections ~1mm (in-plane) 
3-5mm (through-plane) 
 

Sensitivity Sensitive in fat Sensitive in dense glandular 
tissue 
 

Acquisition time Instant 30-60 seconds; leads to blurring 
and motion artefacts 
 

 

The best way of using MRI in mammography is in contrast-enhanced MRI (CE-MRI), 

also known as Gd-DTPA MRI (Heywang-Köbrunner & Beck, 1996) or MR 

mammography (MRM). It requires the intravenous injection of a contrast agent 

(Gadolinium-pentetate, Gd-DTPA) to give intensity contrast in regions with high 

vascularity. The increase in signal due to the paramagnetic contrast agent varies 

approximately linearly with the contrast agent concentration (Buckley et al., 1994), 

and reveals regions with blood flow and leakage of vessels into the extracellular space 

of the breast tissue. Malignant cancers are characterized by their angioneogenesis, 
                                                 

6 Average unsubsidized costs of x-ray mammograms are S$100; MRI costs S$800 excluding contrast-
agent. Source: Diagnostic Imaging Department, NUH. 
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which can be observed by this increase in intensity. The protocol discussed in this 

paper uses 3-D fast spoiled gradient echo with no spectral fat suppression (TR = 

25.6ms, TE=3ms (fractional echo), flip angle = 30o, FOV = 32 to 40cm), performed on 

a GE Medical Systems Signa 1.5 Tesla clinical whole body MRI unit. 

 

Typically, Gd-DTPA is injected after the first scan, which is followed by four or more 

post-contrast scans. The enhancement curves are analyzed and matched against 

expected enhancement curves (Figure 2.3). Essentially, non-lesion tissue and non-

tissue regions have little or weak early post-injection enhancement, while lesions 

usually have high initial enhancements (wash-in). Malignant lesions (carcinoma) will 

have an earlier incidence of decrease in signal enhancement (wash-out) than benign 

lesions (fibroadenoma). 

Figure 2.3: Typical signal enhancement curve after injection of Gd-DTP. Adapted from Hayton et al. 
(1997). 

 

Analysis of enhancement curves can be very complicated as CE-MRI is essentially a 

four-dimensional signal. To simplify this analysis, Degani et al. (1997) proposed a 
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tumor characterization model, 3TP, based on three selected time points on the 

enhancement curve. The 3TP method uses one pre-contrast ( 0t ), and two post-contrast 

( 1t , 2t ) values to determine wash-in and wash-out. 3TP was assessed at high spatial 

resolution on human breast tumors implanted in mice, and later in a clinical trial that 

had an accuracy of 88% for a variety of breast lesions (Kelcz et al., 2000). For solid 

lesions of the breast that are larger than 5 mm, sensitivity was 100%.  

 

In another study, the 3TP method was used to determine the importance of spatial 

resolution in CE-MRI (Furman-Haran et al., 2001). Sensitivity was reduced from 76% 

to 60% and 24% for a 2- and 4-fold reduction in spatial resolution respectively, while 

specificity remained largely unaffected. This showed the importance of high spatial 

resolution to minimize false-negative diagnoses. The corollary was that sensitivity 

could potentially be increased with greater spatial resolution. This implies that future 

advancements in resolution can make MRI much more reliable in breast cancer 

detection. 

 

Enhancement curves do not take into account spatial factors that are also important in 

determining malignancy. Baum et al. (2002) used five classification criteria, including 

morphological criteria (shape, border), and enhancement criteria (contrast material 

distribution, initial enhancement, postinitial enhancement) to quantitatively determine 

malignancy in CE-MRI of the breast via a scoring system (see Table 2.2). Sensitivity 

and specificity were 92% as found from 522 patients.  

 

One of the key limitations in breast MRI is the very large number of images produced 

by such sequential enhancement imaging. This currently involves labour intensive and 
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expert human reader analysis, which is one of the main reasons the test is so expensive. 

Introducing a quantitative scoring method that includes spatial criteria in diagnosing 

breast cancer using CE-MRI could potentially lead to an automated system for mass-

screening with CE-MRI. This would not only greatly reduce the time required for 

interpretation but potentially increase the accuracy over many human readers, thus 

reducing the cost of the procedure. 

 
 

Table 2.2: Scoring system proposed by Baum et al. (2002) 
 

Points 0 1 2 
Shape Round 

Oval 
Dendritic 
Irregular 

- 

Border Well-defined Ill-defined - 
Contrast material distribution Homogeneous Inhomogeneous Rim 
Initial enhancementa <50% 50-100% >100% 
Postinitial enhancementb Continous increasec Plateaud Wash oute 
a Signalinitial=(Signalmax1-3min – S precontrast): Sprecontrast x 100 (%);  
b (Signal8 min - Signalmax1-3min): S max1-3min  x 100 (%); 
c More than 10%; d +10% to –10%; e Less than –10% 
 

Despite the relatively high levels of sensitivity and specificity found in these studies 

(Degani et al., 1997; Furman-Haran et al., 2001; Baum et al., 2002), CE-MRI at best is 

only used for secondary diagnosis. Currently, the dominant indications (uses) of MRI 

mammography are in women with dense breasts, silicone implants, and in cases where 

suspected lesions found in X-ray mammograms require another imaging modality to 

characterize abnormalities (see Wang (1999) for a detailed list of MRI indicators). 

While future improvements in imaging speed and resolution and lower costs can 

address the shortfalls of MRI (including blurring artefacts), motion artefacts resulting 

from the dynamic aspect of CE-MRI will remain. This motion, which can be due to 

inadvertent breathing or arbitrary movements due to discomfiture (especially after 
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injection of the contrast-agent), is in a non-rigid manner as the breast is a flexible 

object not bounded by bones. Despite innovations in visualization of dynamic CE-MRI 

mammography (Choi et al., 2002), motion (especially those involving movements 

between acquired slices) needed to be accounted for. Figure 2.4 shows an example of 

motion artefacts arising from digital subtraction between post- and pre-contrast slices. 

While most artefacts on the boundary of the breast may be segmented visually, the 

problems of internal motion artefacts remain. Practically, it is tedious to manually 

segment artefacts or align scans because of the large 3-D dynamic dataset for each 

patient.     

 

   

(a) (b) (c) 

Figure 2.4: Misalignment of images shown after subtraction. (a) Pre-contrast image, (b) post-contrast 
image, and (c) subtracted image. Motion artefacts are present around the boundary of and inside the 

breast, in addition to the presence of an obvious lesion. 
 

 

2.3 Medical image registration 

Aligning a dynamic sequence of CE-MRI mammography images requires a process to 

model the motion between the sequences. This process is known as image registration. 

Image registration establishes physical correspondences between sets of images by 

modeling processes that include not only motion, but also non-uniform intensity 

changes due to time, difference in image acquisition techniques and other environment 

variables. In image registration, finding the parameters is just a means to an end; the 
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emphasis in image registration is the integration of information. This implies that the 

transformation must be accurate to the finest resolution required within the region(s) of 

interest. A task that uses the same processes as image registration is image fusion, 

which emphasizes the visualization of combined images from multiple modalities. 

 

Advances in image registration are predominantly in applications in medical images. 

Medical image registration is the fusion of medical images from the numerous imaging 

modalities such as computed tomography (CT), x-rays, MRI, ultrasound, positron-

emission tomography (PET), etc. Fusion of information is not limited to image 

information only. Information from spatially sparse inputs such as EEG (electro-

encephalography) and MEG (magnetic-encephalography) gives rise to the term 

functional imaging, which in this literature is considered a separate but related task. 

 

A very thorough survey on medical image registration was done by Maintz and 

Viergever (1998). They provided a standard classification for registration procedures 

that had nine criteria that were further divided into primary sub-divisions. The criteria 

may also be broadly organized into three parts – problem statement, registration 

paradigm and optimization procedure. Registration of CE-MRI mammography stands 

out in medical image registration literature because it is one of few applications that 

model motion from a single imaging modality. This classification is summarized in 

Table 2.3. 
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Table 2.3: Criteria of Medical Image Registration. 

Criteria Sub-division Parts 
Dimensionality - Problem statement 

Nature of registration basis Extrinsic, intrinsic, non-
image based Registration paradigm 

Nature of transformation Rigid, affine, projective, 
curved 

Problem statement & 
registration paradigm 

Domain of transformation - Problem statement & 
registration paradigm 

Interaction - Registration paradigm, 
optimization procedure 

Optimization procedure - Optimization procedure 

Modalities involved 
Monomodal, multi-modal, 
modality to model, patient 

to modality. 
Problem statement 

Subject Intersubject, intrasubject, 
atlas. Problem statement 

Object - Problem statement 
 

 

2.4 Registration techniques in mammography 

The problem of registration of dynamic MRM is defined as the intrasubject (subject) 

registration of the breast (object) in a single modality (modalities involved) that is 

three-dimensional (dimensionality), and that corrects misalignment of the breast 

between dynamic contrast-enhanced scans caused by patient movement. As the breast 

is a flexible object, the registration must model local deformation (domain of 

transformation) using some curved transformation (nature of transformation). This 

problem neither favors the use of extrinsic markers nor interactivity because of the 

high-order of deformation required. Thus registration has to be intrinsic (registration 

basis) and mostly automatic (interaction). 

 

Registration of dynamic breast MRM uses one volume as the positional frame of 

reference. The pre-contrast volume is usually used as the reference, and subsequent 

post-contrast volumes are registered to it. Zuo et al. (1996) proposed using the Woods 
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algorithm (1992) that minimizes the ratio of variance between images. This algorithm 

however assumes that the breast is characterized by rigid motion only, which cannot be 

used for local motion modeling. Kumar et al. (1996) and Fischer et al. (1999) proposed 

using an optical-flow technique for non-rigid registration. However, it assumes that the 

intensities between the images compared for registered must be constant. It therefore 

does not account for the increase in intensity due to the contrast agent.  

 

In order to model non-uniform intensity change, Hayton et al. (1997) used a 

pharmacokinetic model with the optical flow-algorithm to register 2-D MRI 

mammograms. It relies on the assumption that the change of intensities follows the 

pharmacokinetic model, which is not always the case due to factors like non-isotropic 

sampling, magnetic gradient bias effects, motion-blurring, and aliasing (due to motion 

and sampling) that occur typically. This led to a non-rigid registration algorithm using 

Bayesian estimates of motion fields derived from optical flow, using mutual 

information (MI) as the cost function (Hayton et al., 1999).  

 

Combining global and local motion modeling, Rueckert et al. (1999) proposed 

optimizing normalized mutual information (NMI) to account for both non-rigid motion 

and non-uniform changes in intensity. NMI, as proposed for use in image registration 

by Viola (1995) and Studholme (1999), is a better registration cost function because it 

is independent of image overlap. One disadvantage of entropy measures like MI and 

NMI are its immense computational costs, especially for non-rigid optimization.  

 

To speed up computation in a clinical setting, Rainer and Aldo (2001) proposed a 

parallel implementation using self-organizing maps (SOM) without using any 
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transformation model. Reichenbach et al. (2002) suggested a compromise between 

rigid and non-rigid registration, by using slice-wise rigid registration with subsequent 

interpolation between slices with MI. This approach however could only model slice-

by-slice rigid transformations, and discounted tissue deformations caused by the 

compressibility of the breast.  

 

To verify the accuracy of registration, quantitative and qualitative measurements might 

be used. Intensity-based measurements include sum-of-squared differences (SSD) 

(Rueckert et al., 1999; Tan et al., 2003B), absolute differences (Hayton et al., 1997), 

and correlation coefficient (Rueckert et al., 1999; Fischer et al., 1999); distance-based 

measurements include mean-square registration errors (Hayton et al., 1997); and 

information based measurements are derived from MI (Reichenbach et al., 2002; Tan 

et al., 2003A). All authors reported significant visual improvements after registration. 

Rueckert et al. provided a qualitative ranking system using the assessments from two 

radiologists to compare different transformations. They showed that rigid and affine 

registrations were comparable, while non-rigid registrations were mostly better than 

rigid registration alone. Inverse transfer functions were also compared to check for 

consistency of solutions (Hayton et al., 1999). Reichenbach et al. (2002) also used a 

phantom to verify registration accuracy, but the phantom was only manipulated rigidly. 

 

Different types of patient movements were also evaluated in controlled experiments. 

These included variations in speeds and amplitudes of breathing (Rueckert et al., 1999; 

Fischer et al., 1999), voluntary patient movement (Rueckert et al., 1999; Fischer et al., 

1999), coughing (Rueckert et al., 1999), and tensing and relaxation of pectoral muscles 

which affect movement of the Coopers ligaments (Hayton et al., 1999). The general 
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consensus were that motion resulted in blurring that worsened quantitative and visual 

assessments, and that registration continued to provide better assessments albeit worse 

than cases without prescribed motion. To computationally verify the accuracy of non-

rigid registration, Schnabel et al. used finite element modeling (FEM) to assess the 

Rueckert’s algorithm using a biomechanical model (Schnabel et al., 2003). They found 

that a higher degree of registration error was present in regions with tumors for pre-

contrast to post-contrast registration, and that the tumor volume was not preserved.  

 

While registration models the motion of the breast, the motivation behind CE-MRI is 

mainly in cancer detection. Most registration attempts compare two volumes without 

considering information from known contrast-enhancement profiles. By incorporating 

pattern recognition only after non-rigid registration, Fischer et al. (1999) used self-

organizing maps (SOM) to classify tissue as benign or malignant. While SOM offered 

an automatic way of grouping tissue, the grouping was dependent on the training data 

which are not necessarily representative of all contrast-enhancement profiles.  

 

Other tasks related to CE-MRI registration include biomechanical modeling of the 

breast (Tanner et al., 2001; Azar et al. 2002), and registration between MRI and X-ray 

mammograms (Behrenbruch et al., 2003; van Engeland et al., 2003). The motivations 

behind these were in predicting mechanical deformations during needle breast 

procedures (Azar et al., 2002), and in modeling the compression of breast during X-ray 

mammography (Tanner et al., 2001; Behrenbruch et al., 2003; van Engeland et al., 

2003). 
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2.5   Proposed approach 

Our motivation is to create a registration system to remove or reduce motion artefacts 

present in CE-MRI scans to render registered images usable in clinical settings. 

Accurately registered scans should display the correct enhancement curves. This is the 

requirement for any clinical application and is also the premise for using a contrast 

agent. This project strives for pixel-resolution accuracy, robustness and the efficiency 

required for clinical implementation. Rueckert’s algorithm has been verified using 

biomechanical models. However, NMI computation is very expensive; the algorithm 

does not use any information relating the contrast enhancement curve and inaccuracies 

can occur as shown by the reduction of lesion volumes.  

 

Previously, a new NMI-based adaptive cost function was proposed to improve 

accuracy and speed (Tan et al., 2003A), and the effects on enhancement curves due to 

registration were examined (Tan et al., 2003B). The challenges that remain are (i) 

whether a more intuitive cost function can improve the accuracy and speed of 

registration, and (ii) whether registration will result in improved detection rates.   

 

In answering the first challenge, a contrast enhancement model was proposed to 

simplify NMI calculations, using an adaptation from estimating Gaussians in entropy 

calculation (Leventon & Crimson, 1998). This model was combined with the 

thoroughly tested 3TP method in registration. To meet the second challenge, the 3TP 

method was also used to compare registration results so as to make the comparisons 

more meaningful in a clinical sense, in addition to using measurements of registration 

quality and visual comparisons from a clinical reader. 
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CHAPTER THREE 

THEORY 

 

3.1 Geometric transformations 

Motion models may be described using geometric transformations that are commonly 

used in various mathematics and science disciplines. The parameters that characterize 

the transformations determine the number of degrees of freedom. The registration task 

involves modeling motion. The appropriate transformations used to model the motion 

should be chosen according to the efficiency, effectiveness, and robustness of its 

parameters. The motion models used can be divided into global and local models. 

 

3.1.1 Global motion model 

A global motion model is applied to the entire signal, as opposed to a local motion 

model. There are several classes of geometric transformations that are used in global 

motion models. Rigid transformations in IR3 have 6 degrees of freedom, involving 

translations along and rotations about the three cardinal axes; they preserve all lengths 

and angles between lines. Affine transformations include rigid transformations, as well 

as scaling (dilation) and shearing; they preserve the proportion of lengths of parallel 

lines, but do not preserve their lengths and angles. Denoting R as the rotation matrix, θx, 

θy, θz as the angles of rotation and [tx, ty, tz] as the translation vector, the general form 

of an affine transformation is: 
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The rotation matrix, R is defined as: 
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Global motion models applied in registration tasks are also known as rigid registration. 

Affine transformations are commonly used in multi-modality image registration (Wells 

et al., 1996; Leventon & Crimson, 1998; Studholme et al., 1999; Loew & Carranza, 

1998; Maes et al., 1999) when the intensity mappings of the image are non-uniform. 

To reduce the dimensionality of the search space, images may be scaled or sub-

sampled to obtain images of the same scale prior to optimization of other affine 

parameters. 

 

3.1.2 Local motion model 

Local or adaptive motion models employ transformations with a much higher degree 

of freedom.  The optimization of local motion parameters is known as non-rigid 

registration. 
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In addition to being used in interpolation and curve-matching, spline models are 

commonly used in creating local motion models. The power and complexity of a spline 

model increases with the order of the spline. In image registration, 3rd order B-Splines 

are used to balance power and efficiency, and may be employed hierarchically for 

multi-resolution registration (Szeliski & Coughlan, 1994; Kumar et al., 1996; Fischer 

et al., 1999; Rueckert et al., 1999; Hayton et al., 1999). A simplified form is in the use 

of thin-plate splines (Likar & Pernuš , 2001). Figure 3.1 shows how a B-Spline mesh 

can be manipulated in 2-D.  

 

  

(a) (b) 

Figure 3.1: Mesh of control points on a 2-D Plane  (a) prior to manipulation and (b) after manipulation 
using B-Splines. 

 

Denoting the domain of the image volume as ( ){ }ZzYyXxzyx <≤<≤<≤=Ω 0,0,0,, , 

let Φ represent a 3-D set of control point co-ordinates фi,j,k , with a size of 

( )zyx nnn ,, and a uniform spacing of ( )zyx δδδ ,, .The indexes are defined as 

  1/ −= xxi δ ,   1/ −= yyj δ ,   1/ −= zzk δ , and  xx xxu δδ // −= , 

 yy yyv δδ // −= ,  zz zzw δδ // −= . In IR3, B-Splines may be expressed as a 

trifocal tensor of its coefficients and coordinates: 
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( )uBl  represents the lth basis function of the B-Spline for an interval u: 
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In multi-resolution non-rigid registration using B-Splines, the net transformation may 

be expressed as a summation of rigid and non-rigid transformations: 

∑+=
δ

δ,NRR TTT  …(3) 

 

The deformation field in image registration may also be modeled as a linear 

combination of a set of radial basis functions (RBFs). Where r is the Euclidean or 

absolute radius, and the basis function is Gaussian, RBFs may be defined as: 

( ) 







−=Φ 2

2

2
exp

σ
rr   …(4) 

 

Other common basis functions include quadric variants (multi-quadric, inverse multi-

quadric), thin plate spline ( ( ) rrr ln2=Φ ), cubic, and linear functions. The advantage 

of using RBFs is that it can be computationally efficient while physically feasible, 

provided that the centers and other parameters are initialized well. Methods of 

choosing centers include random selections, orthogonal least-squares, and k-means 

clustering. RBFs are commonly applied in atlas registration (Fornefett et al., 2001; 
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Rohde et al., 2003), which registers new images to an image (atlas) representative of 

the population. 

 

3.2 Volume registration 

The nature of registration basis considered here is intrinsic registration or volume 

registration, which uses pixel/voxel attributes such as intensity to determine motion 

parameters. As opposed to surface registration techniques which are based on point 

correspondences, volume registration requires establishing a relationship between 

intensity voxel attributes and motion. 

  

3.2.1 Optical flow 

Optical flow, as proposed by Horn and Schunck (1981), is the relationship between 

brightness variation in an image and the motion field. It has been used in many 

computer vision tasks such as camera calibration and motion estimation. Registration 

can be used to estimate motion. The fundamental equation of motion analysis is the 

image brightness constancy equation. 

 

Lemma: The image brightness constancy equation assumes that the image brightness, 

E, is a function of both spatial and temporal coordinates; that E is continuous and 

differentiable as many times as needed in both the spatial and temporal domain; and 

that the apparent brightness of the moving object is constant. Then, the summation of 

partial derivatives of E with respect to spatial and temporal variables should be zero: 

( ) 0=+∇ T
T EvE  …(5) 

In IR3, the Jacobian operator, ( ) ( )⋅
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In IR3, the motion field, 





=

dt
dz
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Temporal partial derivative,
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Defining ∆  as a small but finite spatial interval, the discrete spatial derivative (finite 

spatial gradient) is: 

( ) ( ) ( )
∆
−∆+

≅
∂

∂ xExE
x

tzyxE ,,,  …(6) 

 

Variations of the gradient computation depend on the type and size of low-pass filter 

masks.  

 

The assumption of the ability to obtain spatial derivatives implies that optical flow can 

only specify motion within the interval of resolution of the spatial derivatives. Thus it 

will fail to model motion with displacements greater than∆ . In such instances, multi-

resolution strategies employing variable spatial intervals and filters should be used.  

 

Another problem associated with optical flow is the aperture problem, whereby the 

component of the motion field in the direction orthogonal to the spatial image gradient 

is not constrained by the image brightness constancy equation. In registration, this 

problem is more acute in local motion field modeling because the parameters only 

have local reach, as opposed to the global reach in global affine models. Multi-

resolution strategies in local field modeling can reduce this problem by providing more 

accurate coarse alignments at lower resolutions prior to more precise alignments at 

higher resolutions. 
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3.2.2 Cost functions 

Optical flow assumes that image brightness is constant, which may not be the case in 

image registration. In multi-modality registration, the image brightness (intensity) 

mapping between images from different modalities is non-linear and is many-to-many. 

Thus inverse intensity mappings generally do not necessarily correspond. 

 

Adapting from the contrast brightness equation, another property derived from 

intensity may be assumed to be constant instead. The cost function, defined in 

optimization procedures, is derived from that property.  

 

When the constant property is intensity, the cost function is a sum-of-squares 

difference (SSD) of intensity, defined as: 

( )
EEi

n

EE
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n

i
ii
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′−

=
∑ 2

,  …(7) 

where E is the reference image and E’ is the registered image. 

 

A variation of SSD is NSSD (negative sum-of-squares), which is useful in estimating 

the amount of motion artefacts in CE-MRI, as intensities are expected to increase 

rather than to decrease after the injection of the contrast agent. NSSD is different from 

SSD because it only includes pixels that result in negative changes in intensity. This is 

defined as: 
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Another cost function commonly used is the correlation coefficient (CC), which is 

defined as: 

( )( )

( ) ( )
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 …(9) 

 

SSD and NSSD are at their minimum when the images are optimally aligned, while 

CC is at its maximum when the images are optimally aligned. Computationally, SSD 

and NSSD are ( )nO  operations while CC is ( )nO 3 .  

 

Mutual information (MI) is used instead of SSD and CC in multi-modality 

registrations because it can account for non-uniform changes in intensity. 

Denoting ( )sp  is the probability of occurrence of the intensity, s in the intensity range, 

the entropy commonly used is Shannon’s entropy, defined as: 

( ) ( )( )∑−=
s

spspH log   …(10) 

 

MI is defined as: 

( ) ( ) ( ) ( )EEHEHEHEEMI ′−′+=′ ,,  …(11) 

 

In registering one image to another there are two random variables. The entropies used 

here are the marginal entropies ( )EH , ( )EH ′  as well as joint entropy ( )EEH ′, . These 

are based on the definitions of marginal probability and joint probability respectively. 
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Normalized MI (NMI) has also been proposed in place of MI. It has been shown to be 

overlap invariant (Studholme et al., 1999), and have been used as a cost function in 

multi-modality registration too. Denoting NMI as ( )EE ′Υ ,  when found as a function of 

two inputs: 

( ) ( ) ( )
( )EEH

EHEHEE
′
′+

=′Υ
,

,  …(12) 

 

When images are optimally aligned, the resulting intensity mappings will correspond, 

resulting in lower joint entropy. Thus MI and NMI will be at maximum when the 

images are aligned (see Figure 3.2). Computationally, MI and NMI are at least 

( )2nO operations. 
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(a) (b) 

 

(c) (d) 

Figure 3.2: 2-D Images of breast MR slices. (a) Original image; (b) JPDF of original image against itself; 
(c) Image rotated clockwise by 15 degrees; (d) JPDF between (a) and (d). 
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3.3 Computing NMI 

Finding MI or NMI is more computationally expensive, when compared to finding 

SSD or CC, because the histograms of both images need to be found. Generally, image 

intensities are not integer values, so it will be required to estimate the contributions to 

the probability densities. Estimation methods add to the computational complexity.  

 

There are two main approaches to estimation. The first involves interpolation, which 

includes nearest neighbor (NN) interpolation, and linear interpolation; the second 

involves computing the contributions of each sample to each intensity bin analytically. 

The first method is straightforward, but does not allow analytical computation of the 

contributions; the second allows analytic computation of the histogram derivative, 

allows a wider range (not just the two nearest integer intensities), but requires 

normalization of the contributions. In general, the first approach is termed interpolation 

and the second is termed density estimation, but the difference really is in the kernel 

size.  

 

An alternative to the second approach is that if the probability density functions (PDFs) 

of the images can be parameterized, simplifications can be made to reduce the 

computational complexity. 

 

3.3.1 Linear interpolation and partial volume interpolation 

Interpolation methods of finding the histogram generally did not allow analytic 

computation of the derivative of the histogram, because the weights of the 

contributions from each sample are not stored while the histogram is computed. As 

such, gradient estimation methods such as Powell’s level set method had to be used to 
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compute the image gradient with respect to entropy measures. To circumvent this 

problem, Collignon (1995) and Maes (1997) introduced partial volume (PV) 

interpolation, which was the same as linear interpolation except that the contribution 

weights to each sample are stored to allow analytic computation of the derivative of 

the histogram with respect to each sample. The histogram probability function is: 

( ) ( )α
αα α

α
δα xxw

N
xP

x
xx −= ∑

∈
−

1,  …(13)  

 

Denoting α as the set of samples, xα is a sampled intensity, Nα is the total number of 

samples in the image, δ is a discrete unit pulse, and w  is the weight contribution. By 

considering the subset of points in the entire image that fall within one unit of intensity 

of difference from the intensity bin x , the summation via PV interpolation is the 

equivalent to linear interpolation except that if the derivative of the weights can be 

found, then the derivative of the probability can be expressed analytically. The 

derivation of this derivative is shown in the next section. 

 

A comparison between linear and PV interpolation by Pluim et al. (2000) revealed the 

presence of interpolation artefact patterns in both types of interpolations. This indicates 

that interpolating between the nearest two intensities does not provide good 

generalization in registration. A larger kernel size is needed in finding the weight 

contributions to the histogram. 

 

3.3.2 Parzen density estimation 

Parzen density estimation, as independently proposed by Collignon (1995) and Viola 

(Viola, 1995), allows the use of larger kernels. The fundamental difference is that each 

sample has a density function instead of having weighted sums of discrete unit pulses 
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as found using interpolation. In image registration it has been used to compute PDFs 

(Wells et al., 1996). It is a non-parametric method, where the samples are used to 

define the parameters of the PDF. This is applicable to stochastic processes like images.  

 

The general form of the estimated probability function is: 

( ) ( )α
αα α

α xxR
N

xP
x

−= ∑
∈

1,  …(14) 

where α is a sample, Nα is the total number of samples in the image, and R is a valid 

density function, also known as the smoothing or window function. The common 

density function used is the Gaussian function, making the Parzen estimate a 

summation of Gaussian functions centered on each intensity sample. Previously in PV-

interpolation, R would have taken the form of a linear function across two window 

levels (intensity bins). The derivative of the weights would have been found using a 

discrete method that is not smooth. Figure 3.3 illustrates how probability may be 

estimated based on the distribution of a Gaussian function of variance ψ centered on an 

intensity mean, x . Probability contributions to the nearby integer intensity bins, 

( )xp * , may be found using the 1-D or 2-D Gaussian PDF: 

1-D: ( ) ( )












 −
−=

ψπψ 2
exp

2
1*

2
xxxp  …(15) 
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Figure 3.3: 1-D Gaussian distribution centered on non-integer mean (x=5.7), used to interpolate the 

contributions to the histogram at integer positions.  
 

 

Other suitable density functions may be used, but the Gaussian distribution is also a 

convenient one. When differentiated with respect to its mean, the result is a factor of 

itself: 

( ) ( ) ( )xxxxg
x

xxg
−−=

∂

−∂ −1ψψ
ψ  …(17) 

 

The derivatives of marginal and joint PDFs with respect to a transformation variable φ  

are thus: 
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The derivative of NMI with respect to φ  using Parzen density estimation is: 
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The choice of variance and the Parzen window size is crucial to both the sensitivity of 

the derivative and computational efficiency. Also, a relatively wide window size will 

be required if normalization were to be neglected. It was found empirically that 

window sizes of [-3, +3] or [-4, +4], with variances that resulted in extreme sample 

values that are 1% of the peak value, were reasonably sensitive and efficient. 

 

3.3.3 Multivariate Gaussian Estimation 

If the PDFs of the images may be parameterized using standard distributions, 

computation of entropy may be simplified. Gaussians have been used to estimate the 

joint PDF (JPDF) (Leventon & Crimson, 1998) using expectation maximization to 

parameterize the JPDF as Gaussians in multi-modality registration. However, the main 

difficulty of using expectation maximization is in finding the number of parameters to 

be estimated. Thus interpolation techniques and Parzen density estimation have been 

advocated over estimating the JPDF as Gaussians.    
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CE-MRI registration may be considered a special case of non-uniform intensity 

registration where estimating PDFs as Gaussians is suitable. Instead of modeling the 

joint PDF, assume that the conditional PDF can be modeled instead. The conditional 

PDF with respect to E’ can be defined as: 

( )( )∑∑ ====−=
Y X

yYxXPyYxXPEEH |log),()'|(  …(20) 

 

Consider ( ) ( )2,| yymNYyYxXP σ⇒∀== , i.e., the conditional PDF can be modeled as 

a 1-D Gaussian distribution for all integer values of Y, where each integer value of Y 

has a mean and variance defined by:  
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The conditional entropy with respect to E’ can be expressed as: 

( )

( ) ( ) ( )
∑∑∑

∑∑

−
==+=+=
























 −
−==−=′

Y X y

y

Y
y

Y X y

y

y

mx
yYxXPyYP

mx
yYxXPEEH

2

2

2

2

2
),(log)(2log

2
1

2
exp

2
1log),()|(

σ
σπ

σσπ
 …(22) 

 

Let the mapping functions 
y

y
y

y
x

m
yfxxf

σσ 2
:,

2
: 11 →→  create two new signals 

A and B that are defined by: 

( ) ( ))(,)( 11 yYfEBxXfEA yx =′===  …(23) 
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Then conditional entropy may be expressed as: 
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where SSD(A,B) is the sum-of-squares function. 

 

Similarly, the conditional PDF with respect to E if assumed to be Gaussian for all X is: 

( ) ( ) ( )BASSDxXPEEH
X

x ′′+=+=′ ∑ ,log)(2log
2
1)|( σπ  …(25) 

 

The definitions for both conditional PDFs are summarized in Table 3.1. 

 

Table 3.1: Summary of definitions used in multivariate Gaussian estimation for conditional PDFs. 
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If the mapping functions may be assumed to be constant, the partial derivative of NMI 

with respect to a transformation parameterφ  is an ( )nO 2  operation: 
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3.4 Optimization 

Image registration is an optimization task. Cost functions that determine the degree of 

alignment of the images are either minimized or maximized. Various optimization 

strategies are applicable in global and local registration. Parameter search methods 

used in registration include simplex search (Nelder & Mead, 1965), gradient search 

methods (gradient descent (ascent), Powell’s level-set method), 2nd order methods 

(Levenberg-Marquadt, quasi-Newton, Conjugate Gradient), and genetic algorithm.  

 

In comparing the different optimization strategies, Maes et al (1999) found that a two-

level multi-resolution strategy using simplex search with conjugate-gradient or 

Levenberg-Marquadt method was found to be most efficient, outperforming Powell’s 

method by a factor of three. The standard gradient descent approach and quasi-Newton 

approach were found to be on average less precise than the other methods. However, 

this comparison was done using PV-interpolation to analytically determine the 

histogram and histogram derivative. The patterns of interpolation artefacts due to PV-

interpolation were evaluated by Pluim et al. (2000), who found patterns of local 

extrema during multi-modal rigid registration. This could explain the poor results of 

the gradient descent approach found by Maes et al., as gradient descent tends to 

terminate in local extrema more easily than 2nd order methods.  

 

To improve optimization efficiency, learning rate adaptation (LRA), various weight-

initialization methods and optimization methods can be used. To prevent over-fitting, 

generalization methods like early stopping, pruning and regularization can be used. As 
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gradient descent (ascent) is used in this project, only tools concerning gradient descent 

optimization are discussed. 

 

3.4.1 Gradient descent (ascent) and gradient computation 

The basic gradient descent (ascent) or steepest descent (ascent) algorithm is used in 

minimizing (maximizing) the cost function. If the derivative of the cost function with 

respect to a variable or parameter may be found, to minimize (maximize) the cost 

function, basically the gradient is subtracted from (added to) the current variable. 

 

For a set of parameters φ  of length n, and a cost function C, the Jacobian of C with 

respect to n-dimensionalφ  is: 
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Using gradient back-propagation technique, the derivative of C with respect to each 

parameter is the sum of product of partial derivatives: 
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The equation resembles optical flow from Eq. (5), except for two differences. First, 

that the Jacobian is taken from a function, ( )ii EEg ′,  instead of the image (energy) 

function; second, the transformation vector is used in place of a motion field vector. 

The function ( )ii EEg ′,  is a function of the two images and depends on the cost 

function to be optimized. In the case of NMI found using multivariate Gaussian 

estimation, Eq. (28) is still directly applicable. In the case of Parzen density estimation, 
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the relationship between the derivative of C and each pixel is not linear as seen in Eq. 

(18) and Eq. (19). Combining these in the form to look like Eq. (28), the derivative of 

C may be expressed as the linear sum of the derivative with respect to entropies: 
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There are two added functions, ( )iij EEf ′,  and ( )ij Ef ′ , which are the JPDF and the 

marginal PDF respectively. By comparing Eq. (28) and Eq. (29), it can be observed 

that the derivative found using Parzen density estimation is much more complicated 

and computationally expensive. 

 

The updates to φ  are a factor dependent on the Jacobian, which is called the update 

rate or learning rate. In the simplest case, the learning rate, µ , can be assumed to be 

constant for all φ  and throughout the optimization process. The process of finding the 

Jacobian and updating the parameters are repeated until a termination condition is 

reached. There are many variations to the termination condition, which depends on the 

Jacobian, or the cost function or some other suitable variable. The pseudo-code of the 

gradient descent algorithms are found in the appendix. 

 

3.4.2 Learning rate 

The choice of learning rate, µ , is an important issue in optimization. A small value 

would result in slower convergence and may result in the process terminating in local 
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minima. If µ  is large, oscillations may result from the parameters shifting about the 

global maxima but not nearing it. For gradient ascent in the epoch, t, the parameters, 

φ  , are updated using the following equation: 

( ) ( ) ( ) ni
t

Ctt
i

iii ,...,2,1,1 =
∂
∂

+=+
φ

µφφ  …(30)  

 

There are also two methods of learning. The first is via batch mode learning, which, as 

been described before, requires the weights to be updated simultaneously. The other is 

an online or pattern mode of learning, which updates the weights one at a time. While 

online mode of learning may prevent termination in local minima and may result in 

greater computational efficiency, convergence is not guaranteed for pattern mode. 

Convergence is guaranteed for batch mode learning provided that the learning rate is 

small enough, albeit the possibility of ending in a local minima. 

 

One way of speeding up learning and by-passing some local minima is to use learning 

rate adaptation (LRA). While in normal gradient ascent µ  is a constant, a separate 

learning rate that is varied from epoch to epoch is assigned for each parameter, making 

µ  a vector too. There are two forces at work. The first is ‘bold driver’, which 

increases the learning rate if the previous search direction is deemed good; the second 

is ‘annealing’, which decreases the learning rate to minimize oscillations. Various 

methods exist, which use different criteria for initializing, increasing and decreasing 

learning. These include the SuperSAB method (Tollenaere, 1990), the quickprop 

method (Fahlman, 1988), and the R-prop method (Riedmiller, 1994). In this project we 

adopt the SuperSAB method, which increases the learning rate if the previous weight 

updates are in the same direction and vice versa. 
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3.4.3 Generalization  

In optimization problems, generalization refers to how well a trained optimization 

network performs on unseen examples. This implies that the search space should be 

smooth, input initialization should be good, the trained data should be sufficiently 

representative of the entire population, and the network should be powerful enough 

without memorizing (over-fitting) the training data. 

 

In image registration optimization, smoothness of the search space and input 

initialization are crucial to achieving good results. In an intrasubject registration, the 

registration process is the training process, as the parameters are unique to the dataset. 

Some common ways of providing good generalization are early stopping, network 

pruning, and regularization. Early stopping is not used in intrasubject registration as 

there is no separate training process. Network pruning and regularization may be 

applicable. 

 

The objective of network pruning is to reduce dispensable parameters, thereby 

reducing computation and preventing over-fitting. The saliency of each parameter 

measures the indispensability, leaving parameters with low saliency to be neglected. 

Pruning is usually applied in non-rigid registration rather than rigid registration 

because of the greater number of parameters. There are several ways of determining 

saliency. One way is to use the Hessian (eg. Optimal Brain Damage (Le Cun et al., 

1990), Optimal Brain Surgeon (Hassibi et al., 1993), etc.), but that is expensive to 

compute especially in non-rigid registration. The second way is to find the variance of 

parameters but that is unreliable in registration because registration has comparably 
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fewer epochs than in a normal non-registration optimization task. The third and easiest 

way is to base it on the weight (parameter) updates. It has been used together with RBF 

non-rigid registration (Rohde et al., 2003), whereby the gradient magnitude for each 

RBF is used to determine the saliency. 

 

Regularization, also known as smoothing, addresses over-fitting by reducing the power 

of the optimization network. In image registration, it may be introduced as a penalty 

term to counter the cost function so that the image is spatially smooth. Denoting N as 

the number of image samples and T as the entire transformation matrix, the 

regularization cost function may be expressed as: 

( )( ) dxdydzzyxT
N

C
X Y Z

g ∫ ∫ ∫ ∇⋅∇=
0 0 0Re ,,1  …(31) 

 

Combined with regularization with NMI (that is to be maximized), the overall cost 

function to be maximized will be: 

gCC Reλ−Υ=  …(32) 

where λ is a constant that determines the amount of smoothness required. 

Experimentally, [ ]05.0,01.0∈λ  was found to be suitable. 

 

Adding some small amount of random noise to the parameters may also perturb the 

overall function from a local minimum without moving it significantly away from the 

global maxima. Spatially, some smoothing may be applied to all transformation 

coordinates to create this perturbation. Though it is not random, but it makes more 

sense because the perturbation results in the overall transformation becoming smoother. 
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CHAPTER FOUR 

IMPLEMENTATION 

 

4.1   Overview of registration 

The overall registration process consists of three steps as illustrated in Figure 4.1. The 

first is pre-registration, where the dataset specifications are understood prior to pre-

processing the dataset so that registration can be done efficiently and effectively. The 

next step is registration proper, which consists of global motion modeling (rigid 

registration) and local motion modeling (non-rigid registration).  The final step is to 

analyze the registration results and to compare registration results against non-

registered ones in detecting lesions. 

 

 

Figure 4.1: Flowchart of registration process. 
 

Using the standard medical image registration classification criteria proposed by 

Maintz and Viergever (1998), registration paradigm used in this project is summarized 

in Table 4.1. 

 

Dataset 
specifications 

Pre-processing 

Global motion 
modeling 

Local motion 
modeling 

Analysis and 
detection 

Pre-registration Registration Post-registration 
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Table 4.1: Registration Overview. 

Criteria CE-MRI 
Dimensionality 3-D to 3-D registration, but analysis is done serially. 

Nature of registration basis 
Intrinsic (volume-based registration), using NMI 
estimated with Parzen density estimation or with 
multivariate Gaussian estimation. 

Nature of transformation 
Rigid and non-rigid (curved) in IR3. Rigid registration 
includes rotation and translation (6 degrees of freedom). 
Non-rigid registration uses trifocal 3rd-order B-splines. 

Domain of transformation Global (rigid) and local (non-rigid). Local modeling 
implemented in multi-resolution fashion. 

Interaction Registration is automatic. Initial segmentation of breast 
may be manually done. 

Optimization procedure Gradient ascent, with learning-rate adaptation, network 
pruning, and regularization. 

Modalities involved Monomodal, but it includes non-uniform intensity 
change due to the contrast-agent. 

Subject Intrasubject. 
Object Breast(s); each side to be registered individually. 

 

4.2  System overview 

4.2.1 Dataset and imaging protocol 

Prior to pre-processing and registration, the specifications of the dataset have to be 

known. The MR mammogram datasets were obtained from the Diagnostic Imaging 

Department in the National University Hospital of Singapore. Each CE-MRI dataset 

contains a series of five 3-D scans, each scan having the typical specifications below: 

• Size: 256x256x24 voxels 

• Dimension: 1.05mm x 1.05mm x 5.45mm 

• Orientation and object: Entire chest section in axial view 

• Format: E-Film (16-bit) 

• Intensity Range: 0 to 255 

• MRI Equipment: GE Signa 1.5T 

• Pulse Sequence: 3-D Fast spoiled gradient echo, no spectral fat suppression 

• TR = 25.6ms, TE=3ms (fractional echo) 
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• Flip angle = 30o, FOV = 32 to 40cm 

• Contrast Agent: Gadolinium-pentetate Gd-DTPA (MagneVist) 0.2mmol/kg 

 

Variations to this protocol are mainly in the number of slices, which can vary from 16 

to 56 depending on the volume size to be acquired. The contrast agent is injected after 

the first scan, and post-contrast scans will follow in the next 5 to 20 minutes. Each 3-D 

scan requires 30-60 seconds of acquisition time, again depending on the number of 

slices. 

 

4.2.2 Pre-processing 

Prior to registration, the regions of interest will have to be segmented from the entire 

CE-MRI scans. This is to minimize the regions of interest outside the breasts, since 

these do not serve as useful landmarks for registration. It is thus convenient to segment 

each breast separately and also to register each breast separately. This will reduce the 

data size, and will provide better optimization of parameters since the free-form 

motion of the breasts can be considered to be largely independent. Most authors in 

non-rigid registration of CE-MRI have advocated separate registration for each breast 

(Hayton et al., 1997; Hayton et al., 1999; Fischer et al., 1999; Reichenbach et al., 

2002). It is not clear whether Rueckert et al. (1999) registered each breast separately.  

 

The next issue in pre-processing is whether the breast should be automatically 

segmented. Ideally it should be so because it would be extremely tedious to manually 

segment each dataset, given the high multi-dimensionality (3-D series). Hayton et al. 

(1997) presented a morphological method with graph search for edges to obtain the 

breast profiles for each scan that was shown to derive good segmentation estimates of 
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the breast. This method was deemed unsuitable in this project for several reasons: (i) 

the high variance of amount of fat (higher intensity) required for good segmentation of 

the breast (from external regions and from the lungs); (ii) variability of histopathology 

of patients; and (iii) presence of magnetic gradient bias that create non-uniform 

illumination in different slices. 

 

A much simpler and intuitive method is to make use of basic features in the axial MRI 

acquisition. As the chest wall of subjects in the upper-torso regions are largely 

perpendicular and parallel to the slices and axial direction respectively, a 2-D 

segmentation in the slice plane with the largest cross-sectional area of the breast can be 

used as a guide. A better method would be to perform a maximum intensity projection 

(MIP) in the axial direction. This will result in a 2-D output that resembles all the 

slices in a 3-D scan (Figure 4.2). The breast region can be easily manually segmented 

in the 2-D plane by using the same segmentation mask across all planes to encompass 

the entire breast volume. This method will also reduce the non-uniform illumination 

effects of magnetic gradient-bias.  

 

(a) (b) (c) 

Figure 4.2: Comparing MIPs of breast volume. (a) A slice taken from 3-D MRI pre-contrast scan, (b) 
MIP of pre-contrast scan in axial direction, (c) MIP of a post-contrast scan. With motion constrained 

within the breast coil, automatic/manual segmentation using a MIP from any part of the sequence can be 
used for the entire series. 
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To create an automatic method for segmentation based on the MIP, threshold the MIP 

image followed by contour-tracking to detect the bounding box for the breast. 

However, comparisons between manual and automatic segmentation tend to favor 

manual segmentation for several reasons: (i) the region-of-interest for registration 

sometimes may not be required to cover the entire breast; (ii) the MIP image can be 

easily manually segmented; (iii) breast intensities can vary significantly from patient to 

patient; (iv) wrap-around effect during to sampling aliasing, as can be seen in Figure 

4.2; and (v) ‘ghost’ aliasing effect due to patient movement during acquisition.  

 

Thus the object for registration is a manually segmented breast volume. 

 

4.2.3 Global motion model  

Rigid transformation is chosen to model global motion. It has 6 degrees of freedom, 

thus requiring fewer parameters to optimize compared to general affine transformation, 

which has 12 degrees of freedom. Rueckert et al. (1999) observed that affine 

registration was only marginally superior to rigid transformation. In addition, scaling 

should be minimal because the volume of the breast can be considered to be constant 

during the short scanning time. Any minute scaling may be modeled during the non-

rigid registration phase. 

 

Due to the non-uniform change in intensity, NMI is used as the cost function. While 

Maes et al. (1999) reported poorer results using the gradient descent approach as 

compared to several other optimization approaches, it was precisely this approach that 

had also been used with success in other CE-MRI registration attempts (Rueckert et al., 
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1999). Mae’s comparison was done using PV-interpolation, which suffered from 

interpolation artefacts (Pluim et al., 2000). This project uses density estimation (Parzen 

density estimation, multivariate Gaussian estimation) that has higher order of 

interpolation, and will theoretically have fewer interpolation artefacts. The gradient 

descent (ascent) optimization is chosen for its faster convergence (than simplex or 

Powell’s set method) and its smaller computational load (than 2nd order methods).  

 

NMI will be at its maximum when the images are aligned, so the search direction is an 

ascent. The terminating conditions are based on two factors. First, if the Euclidean sum 

of the Jacobian was smaller than a small fraction, ε , of its initial value – which will 

indicate reaching a plateau in the search space; or secondly if the number of epochs 

exceeded η . Experimentally, it was found that using 02.0=ε  and 15=η  was 

sufficient to attain convergence effectively.  

 

To obtain the derivative of the cost function following Eq. (28) or Eq. (29), the only 

partial derivative that is different between rigid and non-rigid registration is 

( )
φ∂

∂ zyxT ,, . In rigid registration, finding this derivative is trivial as it can be computed 

directly from Eq. (1). 

 

To examine the effects of learning rate adaptation (LRA) using the SuperSAB method 

(Tollenaere, 1990), a comparison was made between 10 representative datasets. Figure 

4.3 shows a typical learning curve in NMI rigid registration. With an acceleration 

(‘bold driver’) rate of 1.2 and deceleration (‘annealing’) rate of 0.5, the optimization 

progress tends to be faster due to the acceleration, and yet more stable due to the 

decelerating effects on oscillating parameters. NMI found with using LRA is on 
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average 2.1% (between -1.0% and 4.8%)7 higher than without using LRA. This shows 

that using LRA in rigid registration attains better optimization. 

 

As there are only 6 degrees of freedom in rigid registration, network pruning is not 

used. Regularization is not applied because rigid transformations are smooth. A single 

resolution (at the highest) is preferred to multi-resolution for two reasons: (i) the 

motion between the images is fairly minute (estimating the optical flow global motion 

vectors to be within a pixel width); and (ii) local shifts will be accounted for in multi-

resolution non-rigid registration. 
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Figure 4.3: Comparing a typical optimization progress with and without learning rate adaptation (LRA). 
Faster convergence can be seen in the initial epochs (1-5) albeit a larger fallout (5), but LRA recovery is 

better because of fluctuating parameters are de-emphasized, resulting in lower oscillations (10-15). 
 

 
                                                 

7 Computed as a percentage of the amount of increase in NMI for the entire rigid registration process 
(without using LRA). 
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The rigid registration algorithm is summarized in Figure 4.4. 

 Figure 4.4: The rigid registration algorithm 

 

4.2.4 Local motion model 

Hierarchical B-splines mesh is used to model local motion because it can be easily 

used in a multi-resolution fashion. This approach of using an evenly spaced is 

preferred to using RBFs or point-based splines because there are no obvious landmarks 

in CE-MRI that can be used as positions of reference. In an IR3 B-spline mesh, each 

control point has 3 degrees of freedom; a 128x128x24 volume at the finest resolution 

the entire mesh will have in excess of a million degrees of freedom.  

 

In order to maximize efficiency and to provide better initialization of parameters a 

multi-resolution approach to implementing B-spline model is used. At each level the 

mesh interval is halved and the sampling resolution is doubled. It was found that using 

a minimum of four levels (including the highest resolution) was computationally 
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efficient and gave good results. Figure 4.5 shows how a typical registration progresses 

with the different stages. 
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Figure 4.5: Typical progress of NMI in the progressive stages of registration. 

 

NMI is the chosen cost function, optimized using gradient ascent. Simplex search and 

Powell’s set method are inappropriate because of the high computational costs of NMI, 

while 2nd-order methods are also inappropriate because the large number of degrees of 

freedom (~106) will make Hessian computation expensive. This also rules out using 

network pruning methods that require the Hessian. Online weights update will also be 

ineffective because of the high computational costs of NMI and its analytical gradient. 

Thus, all control points will be simultaneously updated.  

 

Another advantage of simultaneously updating the parameters of a regular mesh like 

B-splines is that the derivative of the B-splines trifocal tensor with respect to a shift in 

a control point is the same for all control points; this derivative will only need to be 

computed once and applied to all control points using convolution. Following Eq. (2), 

the derivative of transformed coordinates is simply: 
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Since i, j, and k are the normalized indexes inside a regular B-Spline grid, the 

derivative for every interval ( )zyx δδδ ,,  is the same. Thus there will be computational 

savings when the derivative is found using convolution. 

 

The terminating conditions are dependent on the value of the cost function rather than 

on the Jacobian for several reasons: (i) non-rigid registration has more local extrema 

than rigid registration; (ii) under-fitting can be accommodated in a multi-resolution 

strategy, but over-fitting would result in early termination in local extrema. 

Regularization as defined in Eq. (31) was added to the cost function in Eq. (32). In 

addition to this, some additional smoothing is applied to each coordinate at the end of 

each epoch. The purpose of this smoothing is to perturb the coordinates so as to 

prevent the optimization from terminating in local extrema. This perturbation also 

makes sense because it makes the overall transformation smoother. A comparison over 

10 representative datasets showed less fluctuation in the learning curves, and 

consistently higher NMI values (-0.3% to 3.2%, taken as a percentage of total increase 

in NMI for each resolution).  

 

Though LRA is good for rigid registration, it is not always good for non-rigid 

registration. Due to the multi-resolution strategy adopted, over-fitting at a lower 

resolution often results in smaller improvements and earlier termination at a higher 

resolution. Applying LRA will also defeat the purpose of segmentation when 



52 

registering using multivariate Gaussian estimation (see chapter 5). Thus LRA is not 

employed in the non-rigid phases of registration. 

 

The non-rigid registration algorithm is summarized in Figure 4.6. 

 

 

 

  

 

Figure 4.6: The multi-resolution, non-rigid registration algorithm. 

 

 

4.2.5 Detection 

Using a variation of the thoroughly tested 3TP method proposed by Degani et al., 

(1997), and the more graduated system defined by Baum et al. (2002), a more robust 

and simpler scoring system based on intensity factors alone (initial enhancement and 

post-initial enhancement) is shown in Table 4.2. To illustrate how initial and postinitial 

enhancements 1ω  and 2ω would be calculated in Figure 4.7 signal A (normal tissue) 

initialize the control point resolution and image resolution 

repeat 
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µ , and regularization constant, λ  

 calculate the gradient vector of gNMI CCC Reλ−= , C∇ , and NMI, ( )tΥ  
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t
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1
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  recalculate the gradient vector, C∇  

 increase the control point resolution and image resolution 
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53 

has %7.8%,9.10 21 == ωω , signal B (benign lesion) has %5.13%,7.66 21 == ωω , and 

signal C (malignant lesion) has %7.16%,200 21 −== ωω . 

 

Table 4.2: A simple and robust scoring system. 

 None (Score = 0) Benign (Score = 1) Malignant (Score = 2) 

Conditions: ( )11 κω ≤  
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[ ]%200%,301 ∈κ , [ ]%50%,202 −∈κ  
Default: %0%,60 21 == κκ  

 

 

Figure 4.7: Typical signal enhancements in CE-MRI, for normal tissue (A), benign lesions (B), and 
malignant lesions (C). 

 

This method is based on 5 time scans (1 pre- and 4 post-contrast). The first time point 

is taken as the maximum intensity between the 1st and 2nd post-contrast scan; the 

A 

B 

C 
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second time point is taken as the minimum intensity between the 3rd and final post-

contrast scan. By using the maximum and minimum conditions and applying it voxel 

by voxel, this scoring system is more sensitive to variations in contrast-enhancement 

dynamics. The initial enhancement (wash-in) and post-initial enhancement (wash-out) 

constants 21 , κκ are interactively changed depending on the perceived size of the 

lesions to be detected, thus making it robust to blurring artefacts. In addition, wider 

ranges of values are allowed for 1κ  and 2κ  because the discriminating characteristic 

for malignancy with the GE scanner used in this project tends to be a significantly high 

(greater than 100%) wash-in rather than a fast wash-out. For example, signals with 

%0.5%,180 21 == ωω  do not have the wash-out characteristic, but the strong initial 

enhancement is strongly indicative of malignancy. Therefore, a voxel which continues 

to retain a score of 1 when 1κ  is increased from the default of 60% to 180% should 

really be considered to be malignant. 

 

4.2   System implementation 

4.2.1  System platform 

The registration algorithm is implemented in Visual C and C++ for efficiency. All 

visualization is done using OpenGL v1.0. The registration software is run using a 

Pentium IV 2.4MHz system with 512MB DDR RAM.  

 

4.2.2 Program organization and work-flow 

The program is organized into two layers (Figure 4.8). The graphical user interface 

(GUI) layer is divided into the dataset manager and the registration GUI. The dataset 

manager allows the user to preview and select the desired dataset for registration, 

review or analysis. Each dataset consists of several types of data. First, there is the set 
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of original CE-MRI stored in DICOM format. There are also datasets of segmented 

and registered images stored in a matrix format used in this project. This format stores 

image intensities in 32-bit floating point. Next, there are motion field vectors that are 

also stored in the matrix format, used for one of the display functions. Lastly there is a 

configuration (*.ini) file that is used to integrate all the data. Each dataset is stored in 

separate folders, bearing the same name as the configuration file. 

 

 

Figure 4.8: System work-flow and organization. 
 

After a dataset is selected, the registration GUI and the original data are displayed. The 

functions are available in the button panel and in the menu. A brief image description 

and mouse-pointer intensity values are displayed in the status bar. The study list shows 

a list of available matrices (studies) that can be selected for viewing, editing, and 

registration.  

 

Screen-shots of both GUIs are found in Figures 4.9 and 4.10.  
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(a) 

 

(b) 

Figure 4.9: Dataset manager GUI. (a) Screen-shot, and (b) Layout description 
 

Menu  
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Status bar 

 

Preview Pane 
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(a) 

 

(b) 

Figure 4.10: Registration GUI. (a) Screen-shot, and (b) Layout description. 
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4.2.3  Functions 

The functions of the program are grouped by their locations. Most functions are 

activated from the registration GUI. 

• Menu: There are three main menus. “File” functions are used in both GUIs for 

importing new images, saving images, screen-shots and opening the dataset. 

“View” functions are used for changing the layout in the display panel. 

“Registration” functions are used for configuring the resolutions and 

optimization cost functions used in registration. 

• Button functions panel: These are the main functions used in the registration 

GUI. A summary of the buttons are listed in Table 4.3. 

• Study list panel: This panel displays the studies found in the selected dataset, 

and allows the user to change the displayed study. For multiple-study display, 

selection will be disabled in this panel. 

• Info panel: This panel shows the study information of the current study selected. 

• Message and options panel: This panel displays messages and options when 

user decision is required. 

• Slider panel: This allows the user to manually select values for certain 

variables, particularly the initial and postinitial enhancements constants. 

• Status bar: The left status bar displays the view type, slice number, sequence 

number, zoom factor, and the pointer intensity. The right status bar displays the 

mouse and keyboard commands for the button functions selected. 

• Display panel: There are many user-interaction functions that are activated in 

the display panel, depending on the functions that had been activated. These 

range from study selection, change of view, etc. 
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Table 4.3: List of functions in button functions panel. 
 

Function Description 
Panning Allows the user to pan the image on the display panel. 
Zooming Allows the user to zoom in and out on the image on the display 

panel. 
Contrast and 
brightness 

Allows the user to adjust the contrast and brightness using the 
mouse. 

Navigation In single study view, this allows the user to navigate in slice and 
sequence within the same study. In multiple study view, this 
allows the user to navigate between studies as well. 

Rotate view Rotates between axial, saggital and coronal views. 
Change view type Cycles between options for normal, difference and maximum 

intensity projection (MIP) views. User will confirm the option by 
pressing the enter key. 

Free-form ROI 
selection 

Allows the user to interactively select the ROI on the display 
panel. 

Registration Starts the registration process on the current study. 
Motion field vector 

display 
Toggles the display of motion field vectors on registered datasets. 

Multiple view display Toggles between single and multiple study view. 
Score display Toggles the display of color-coded scoring. 

Exit Exits program. 

 

4.2.4  Analyzing registration results 

The functions and their layout and interactivity are specially designed to aid the 

clinical user to register the images and to analyze the registration results within studies 

and against different studies. The main objective of this program is to compare 

registration results against non-registered or registered results derived using different 

optimization schemes. The best way to do this is to use the multiple-study view with 

difference (and normal) images with motion field vectors and scoring as shown in 

Figure 4.11. The difference images for no registration, rigid registration and non-rigid 

registration can be compared simultaneously. The clinician can toggle the motion field 

vectors to observe the optimum motion fields found by the registration schemes. The 

scoring display can be toggled on or off to observe the 3TP analysis or the difference 

gray-scale respectively. 
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Figure 4.11: Display panel showing multiple-study view for user to compare scoring results. 
 

Also, by adjusting the initial and postinitial enhancement constants 21 , κκ in the slider 

panel, the scoring display will change accordingly to the desired display requirements. 

This will be particularly useful to detect lesions of different sizes. Figure 4.12 shows 

how the scoring would differ when 1κ  was changed from 50% to 100% (decrease in 

sensitivity). So even though the lesion area is colored blue, the lesion is suspiciously 

malignant because of the high initial enhancements above 100%. 
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(a) (b) 

Figure 4.12: Difference images with scoring at different enhancement constants. (a) %501 =κ  (high 
sensitivity to lesions), and (b) %1001 =κ  (low sensitivity to lesions). Highlighted regions indicate 

lesions found using the 3TP method. Blue indicates fast wash-in, red indicates fast wash-out. 
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CHAPTER FIVE 

NEW MODEL OF CONTRAST ENHANCEMENT 

 

In section 3.3.3, multivariate Gaussian estimation was introduced as a method of 

estimating NMI so as to simplify the calculation of the NMI derivative. This required 

all conditional PDFs to be Gaussian. Using an intuitive model of contrast enhancement 

for CE-MRI, it will be shown that registration of CE-MRI is a special case where 

multivariate Gaussian estimation is applicable, provided that hypervascularized regions 

are excluded from the optimization process during non-rigid registration.  

 

5.1 Modeling contrast enhancement  

In registration, the pre-contrast scan is used as the reference volume, and any of the 

post-contrast scans is the registered volume. The model proposes to separate the 

motion variables from the non-uniform change in intensity due to the contrast agent. If 

the variables can be isolated, then registration of the motion (global and local) can be 

made independent of the changes due to the contrast agent. Figure 5.1 illustrates this 

model, which uses an approximation of the reference and registered volumes to 

separate motion variables from the non-uniform change in intensity. 
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Figure 5.1: Theoretical model of contrast enhancement behind applying multivariate Gaussian 
estimation to CE-MRI registration. 

 

MRI has good resolution in tissue, so different intensities in the reference volume can 

indicate the type of tissue. However contrast-enhancement dynamics can be 

complicated, and uptake rate of the contrast agent is non-linearly related to the 

intensity value in MRI. The task involved in CE-MRI is to find lesions, and if found, 

determine malignancy. This model proposes that tissue may be classified as non-

hypervascularized (non-lesions) or hypervascularized (lesions), with each having a 

distinct intensity distribution. By separating the two classes, simplifications to the 

existing registration paradigm may be made to speed up registration and improve the 

quality of registration. 

 

Assumptions: Since most tissues found in the breast, even enhancing areas, are non-

lesions, so the dominant distribution will belong to non-lesions. So two further 

assumptions are made about the main distribution: 

1. Contrast-enhanced dynamics can be modeled as a Gaussian distribution; 

2. Motion artefacts can also be modeled as a Gaussian distribution. 
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When both assumptions are combined, the net effect will also be Gaussian. Assuming 

that lesions can either be neglected or removed, a suitable method for implementing 

this model was implemented. 

 

5.2 Applying multivariate Gaussian estimation 

To integrate the model with registration, multivariate Gaussian estimation of the 

conditional PDFs can be used. From Eq. (26), the derivative of NMI found using 

multivariate Gaussian estimation can be divided as a sum of two terms: 
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The first term is called ‘registered volume approximation’ while the second is called 

‘reference volume approximation’. The first term approximates the registered volume 

B from the actual registered volume E ′  by assuming that no contrast agent has been 

injected. Similarly, the second term approximates the reference volume A′  from the 

actual reference volume E by assuming that the same amount of contrast agent has 

been present in both E and E ′ . If the only difference between B and A′  is non-uniform 

intensity changes due to the contrast agent, then the model’s assumptions will be met.  
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As proven in section 3.3.3, multivariate Gaussian estimation will be good if and only if 

the conditional PDFs are perfectly Gaussian. It may be even better than Parzen density 

estimation in terms of registration quality. 

 

In general, the conditional PDFs in this registration task are not Gaussian. Figures 5.2 

and 5.3 show the un-registered conditional PDFs, ( )xXEEP =′ , and ( )yYEEP =′,  

respectively. These conditional PDFs depict intensities of particular interest (intensities 

corresponding to tissue) and are representative of the datasets examined. Both 

conditional PDFs show bell-shaped distributions, but are not perfectly bell-shaped. The 

‘forward looking’ PDF ( )xXEEP =′ ,  in Figure 5.2 has a dominant bell-shaped 

distribution and an outlier distribution. It is observed that both distributions appear to 

shift to the right with time, and that the outlier distribution becomes more distinct with 

time. This is consistent with the observations of intensity enhancement in normal tissue 

(dominant distribution) and lesions (outlier distribution). The ‘retrospective’ PDF 

( )yYEEP =′,  in Figure 5.3 also has bell-shaped distributions that appear to shift to 

the left with time. Outliers to the right of the distribution can be considered to be 

artefacts as intensity should increase from pre- to post-contrast scans; contributions 

from the left of the distribution are due to contrast enhancement from normal tissue 

and lesions. 
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Figure 5.2: Conditional PDFs ( )35, =′ XEEP , for a set of four post- to pre-contrast registration, 
demonstrating the net increase in the predominant distribution mean, as well as the emergence of a 

break-away distribution that corresponded to hypervascularized tissue. 
 

 

Figure 5.3: Conditional PDFs ( )50, =′ YEEP , for a set of four post- to pre-contrast registration. While 
the effects of the contrast-agent were not as obvious, the retrospective effects could be correlated to the 

other effect observed in ( )xXEEP =′ , . 
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Comparing ‘forward looking’ ( )xXEEP =′ ,  with its estimated Gaussian in Figure 5.4 

it can be seen that the peaks roughly coincide, but the outlier distribution stands out. 

The estimated variance will be larger mainly because of the outlier distribution. The 

amount of probability error was 0.00203 (see Table 5.3 for a detailed comparison), 

which was about a tenth of the peak probability in the estimated Gaussian. In 

normalizing this probability error against the peak probability in the estimated 

Gaussian distribution, the estimation error across 10 datasets had the range of [7.7%, 

15.2%] and the mean of 10.1%. While the error can be considered small, it is not ideal. 

For now, the effects of the outlier distribution may be assumed to be negligible. 

 

 

Figure 5.4: A conditional PDF, ( )35, =′ XEEP , and the estimated Gaussian distribution. 
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5.3 Comparing NMI estimation methods  

To determine how the estimation error corresponds with registration results, a 

comparison will have to be to be made between the current paradigm of using Parzen 

density estimation and the new model using multivariate Gaussian estimation. First, to 

compare the differences in transformed coordinates, the deviation T∆  is found for the 

three directions, X, Y and Z according to Eq. (34), where PT  is the registered 

coordinates with Parzen density estimation, MT is the registered coordinates with 

multivariate Gaussian estimation, and I is the index coordinates. T∆  is taken as the 

percentage magnitude difference in coordinates. The results for T∆  are obtained 

across 10 datasets for the different phases of registration and are shown in Figure 5.5. 
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Figure 5.5: Magnitude difference of transformed coordinates comparing multivariate Gaussian 
estimation and Parzen density estimation. Measurements of in-plane coordinates (X, Y) were taken 
separately from through-plane coordinates (Z) because of the large statistical variation due to non-

isotropic sampling in the through-plane direction. 
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The percentage ranges for in-plane transformation are smaller than those of through-

plane, and the ranges and means increase with the progress of registration (from rigid 

to multi-resolution non-rigid). Through-plane transformation has a wider range of 

percentage difference, and its means and ranges do not vary significantly after rigid 

registration. The results indicate that the differences in transformation are relatively 

small (<60%), considering that the magnitude of transformed coordinates are mostly 

within a pixel width; thus we can consider the transformations to be relatively close. 

 

However, the differences between transformed coordinates after non-rigid registration 

for scans with lesions were significant. Non-rigid registration using multivariate 

Gaussian estimation created some abnormal transformations when lesions were present, 

and this could only be clearly observed through visualization. Figure 5.6 compares 

three slices of in-plane meshes corresponding to CE-MRI slice in Figure 2.4, which 

shows a round benign lesion of approximately 12mm in diameter. Registration using 

multivariate Gaussian estimation gave an abnormal ‘dome-shaped’ mesh at the 

location of the lesion. This shows that the lesion had been compressed abnormally, 

which made it smaller and deformed despite regularization being applied. The reason 

optimization using multivariate Gaussian estimation resulted in an abnormal 

transformation was because the outlier distribution corresponding to lesions did not 

conform to the Gaussian shape as seen in Figure 5.4. Figure 5.7 demonstrates another 

instance of abnormal transformation that can be seen by comparing the difference 

images from the CE-MRI scans – here, the reduction in the lesion volume is 

unmistakable. 
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(a) 

 

 

(b) 

Figure 5.6: In-plane meshes after non-rigid registration using (a) Parzen window estimation, and (b) 
multivariate Gaussian estimation. 
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(a) (b) (c) 

Figure 5.7: Observing effects of abnormal transformations on subtracted images. (a) Original subtracted 
image, (b) Subtracted image after non-rigid registration using Parzen density estimation, (c) Subtracted 
image after non-rigid registration using multivariate Gaussian estimation without segmenting lesions. 

 

Before we present a method to prevent such abnormal transformations from happening, 

we want to compare the quality of registration. The indicators are NMI (found using 

Parzen density estimation), NNSD, CC and SSD. Normalized performance 

indicators RigidK  and rigidNonK −  of these indicators are used, substituting the symbol K 

with any of the four indicators. Positive values indicate better performance, and zero 

indicates equal performance. RigidK  and rigidNonK −  are defined as: 

%100×
−

−
=

OriginalRigid

OriginalRigid
RigidK

ζζ
λλ

 …(35) 

%100×
−

−
=

−

−
−
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λλ

 …(36) 

 

Rigidλ  and rigidNon−λ  are the measurements (NMI, NNSD, CC or SSD) from registration 

using multivariate Gaussian estimation; Rigidζ  and rigidNon−ζ  are the measurements from 

registration using Parzen density estimation; Results are found for 10 representative 

datasets and are shown in Table 5.1. 
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Table 5.1: Normalized measurements showing improvement of registration using multivariate Gaussian 
estimation over Parzen density estimation, shown as percentages (%). 

 

Measurement Registration Max (%) Min (%) Average (%) 
Rigid 17.3 -0.2 9.1 

NMI 
Non-rigid 5.8 -1.2 1.9 

Rigid 6.2 -1.2 2.1 
NSSD 

Non-rigid 31 -5.1 6.9 
Rigid 5.3 -0.6 3.3 

CC 
Non-rigid 3.3 -1.0 1.1 

Rigid 15.2 0.6 6.9 
SSD 

Non-rigid 23.1 -1.1 9.2 
 

Despite the apparent abnormality in its non-rigid transformation in scans with lesions, 

multivariate Gaussian estimation consistently yielded better registration quality than 

Parzen density estimation in all measurements. If registration using multivariate 

Gaussian estimation obtained better NMI values than Parzen density estimation, the 

registration using multivariate Gaussian estimation is more optimum than Parzen 

density estimation. Regularization is not the prime reason for better registration quality 

because this occurred for rigid registration as well. 

 

The reason for this phenomenon can be attributed to the fact that the bell-shaped 

conditional PDFs of CE-MRI almost resembles Gaussians. Unlike multivariate 

Gaussian estimation, Parzen density estimation is not parameterized, so its search 

space is more prone to termination in local extrema. From here we can infer two things: 

(i) registration using Parzen density estimation can potentially create the abnormalities 

in Figure 5.6; and (ii) early termination may not give abnormal transformations, but it 

is by no means optimum. Therefore, non-rigid registration using Parzen density 

estimation terminates early, albeit compressing the lesion as observed before with 
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Rueckert’s algorithm (Tanner et al., 2001). The outlier distributions are a direct cause 

of the abnormalities, thus its effects cannot be assumed to be negligible. 

 

5.4 Segmentation of hypervascularized regions 

The other option to deal with outlier distributions is to exclude them from the 

optimization procedure. If segmenting away regions with outlier distributions can be 

done to make the conditional PDFs more Gaussian-like, the abnormalities are less 

likely to occur. If the outlier distributions are indeed the areas with lesions, then all that 

is needed is a lesion identification method. We will show if this is true. 

 

The 3TP method is a clinically proven, sensitive way for identifying lesion regions 

(Kelcz et al., 2000), and it also offers a way of varying non-rigid registration to the 

desired size of the lesions by varying the enhancement constants ( 1κ  and 2κ ). The 3TP 

derives its results from all sequences rather than only from the registered scan and the 

reference scan. Since it is a sensitive identification method, we propose to use the 3TP 

method for segmenting lesions for exclusion from non-rigid registration. As it is 

dependent on scans other than the reference and registered scans, it is a more sensible 

method than segmentation by thresholding outliers in the conditional PDFs. 

 

We propose to apply 3TP segmentation only after rigid registration. This is due to the 

high unreliability of the 3TP method in the presence of registration artefacts. 

Particularly there are significant motion artefacts on the breast boundaries due to the 

high intensity gradient across breast boundaries, resulting in the conditional PDFs of 

non-registered images containing more outliers. So applying the 3TP segmentation 

method from the start (i.e., from a non-registered image) will result in such artefacts. 
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Table 5.2 shows the amount of reduction in the standard deviation of the estimated 

Gaussian with and without segmentation. Figure 5.8 compares the same conditional 

PDFs before and after rigid registration, showing how rigid registration reduces the 

standard deviation of the dominant distribution while making the outlier distribution 

more obvious. It had also been observed in previous experiments (Tan et al., 2003A) 

that rigid registration phase accounted for majority of the motion artefacts removal in 

non-rigid registration. Table 5.3, on the other hand, compares the sum-of-squares 

probability error, which shows the amount of probability deviation from the estimated 

Gaussian. Prior to segmentation, the deviation from a true Gaussian distribution 

increased a little. This is because the reduction in the standard deviation due to rigid 

registration made the deviation due to the outliers more pronounced. Figure 5.8 also 

shows that after the lesions have been segmented (using %601 =κ  and %02 =κ ), the 

outliers are gone, the standard deviation of the estimated Gaussian has been reduced, 

and the probability deviation has also been reduced despite a much smaller standard 

deviation. This shows that lesion segmentation using the 3TP method corresponds to 

the outlier distribution and that removal of the lesions after rigid registration result in a 

much better Gaussian fit. 

 

 

Table 5.2: Comparing percentage reduction in standard deviation of conditional PDF across 10 datasets. 
 
 

 

 

 

Percentage reduction 
in standard deviation 

 

Max Min Mean 
Before segmentation (after rigid registration) 28.7 1.11 16 
After segmentation (after rigid registration) 72.3 19.5 47 
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Figure 5.8: Conditional PDFs ( )35, =′ XEEP comparing without registration, and before and after 
segmentation of lesion areas. Rigid registration was done before segmentation. After segmentation, the 

outliers at 100 were significantly reduced, and the PDF was more Gaussian like. 
 
 
 

Table 5.3: Comparing the sum-of-squares probability error from estimated Gaussian distributions across 
10 datasets. 

 
Sum-of-squares probability error  

Max (x10-4) Min (x10-4) Mean (x10-4) 
No registration 47.3 9.21 20.2 
Before segmentation (after rigid 
registration) 

51.1 10.0 32.8 

After segmentation (after rigid 
registration) 

28.5 5.12 10.9 

Before segmentation (after rigid 
registration) 

28.7 1.11 16 

After segmentation (after rigid 
registration) 

72.3 19.5 47 
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Rigid transformations do not result in a change in volume, so the adverse effects of 

abnormal transformations will not occur during rigid registration. Multivariate 

Gaussian estimation may be used instead of Parzen density estimation in the rigid 

phase. Besides, there are only small differences in the transformed coordinates 

between rigid registration with Parzen density estimation and with multivariate 

Gaussian estimation (without segmentation, as shown in Figure 5.5). Another 

comparison also shows that rigid transformations after segmentation are closer to 

Parzen density estimation’s transformations by (closer by 17% for in-plane, closer by 

8.3% for through-plane). As multivariate Gaussian estimation is less computationally 

expensive, it is retained for rigid registration. 

 

Next, we need to compare the transformed coordinates and to see if segmentation was 

successful in preventing abnormal transformations during non-registration. The 

transformed coordinates with segmentation are on average closer to Parzen density 

estimation than without segmentation (closer by 14% for in-plane, closer by 5.8% for 

through-plane). In addition, the abnormalities as previously seen in Figure 5.6(b) are 

not present ( Figure 5.9).  
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Figure 5.9: In-plane meshes after non-rigid registration using multivariate Gaussian estimation after 

segmentation. 
 

The registration quality for non-rigid registration is compared in Table 5.4 using the 

normalized performance indicators from Eqs. (35) and (36). Multivariate Gaussian 

estimation with segmentation continues to outperform Parzen density estimation in 

NSSD (9.8%) and CC (24%), while the differences in NMI are small (-2.2%) on 

average. While SSD is significantly weaker (-11%), it should be noted that NSSD is a 

much better measurement than SSD because of the expected increase in intensity after 

the pre-contrast scan. In fact, this disparity shows that registration using multivariate 

Gaussian is more successful in targeting registration errors due to decrease in intensity. 

Though the improvements in CC are quite significant, it has been observed that CC 

measurements occasionally decreased after rigid registration. This is because CC 

cannot account for non-uniform intensity changes in CE-MRI. 
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Table 5.4: Normalized performance indicator measurements, rigidNonK − comparing results of non-rigid 
registration. Results obtained using multivariate Gaussian estimation with segmentation are normalized 

against results from Parzen density estimation.  
 

 

 

 

Registration using multivariate Gaussian estimation is thus comparable to using Parzen 

density estimation. We have shown that potential errors can occur with Parzen density 

estimation especially in reduction of lesion volume. Segmenting lesions using the 3TP 

method is successful in making a better fit between conditional PDFs the estimated 

Gaussians. Thus this new model of contrast enhancement is suitable for CE-MRI 

registration; multivariate Gaussian estimation will be used in the subsequent 

comparisons. 

Measurement Max (%) Min (%) Average (%) 
NMI 0.12 -8.1 -2.2 

NSSD 18 -3.5 9.8 
CC 56 1.0 24 

SSD -5.1 -21 -11 
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CHAPTER SIX 

RESULTS AND DISCUSSION 

 

The new registration paradigm adopted uses the new model of contrast enhancement. 

The results presented here use objective and subjective metrics of determining the 

quality of registration. Rigid and non-rigid registration results are compared 

thoroughly using quantitative and qualitative metrics. The efficiency of the new 

registration paradigm is also examined, before rounding up with a summary of the 

results and some discussion. 

 

6.1 Comparing rigid against non-rigid registration 

Quantitative results and visual assessments using a clinical reader were made using the 

new registration scheme. 22 CE-MRI datasets of varying scan sizes and pathology 

were processed, and each breast was analyzed separately, giving 42 breasts (2 patients 

underwent mastectomy previously). Among these, 20 are normal, and 22 have lesions 

(benign and malignant). A list of abnormalities is found in Table 5.5. Detailed 

assessments of cases of interest are also presented.  A comparison of the efficiency of 

registration follows. 
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Table 6.1: The instances of abnormalities found from the pathology of the data. 
 

 

 

   

6.1.1  Quantitative results 

The quantitative measurements used are NMI, NSSD, SSD, and CC. Contrary to the 

normalized performance indicators used in chapter 5, here we compare the 

measurements as percentages of their pre-registration measurements because the 

comparison is between rigid and non-rigid registration. Figure 6.1 shows this 

comparison between the two categories of normal breasts and breasts with lesions. 

Figure 6.2 provides the same information but shows how the measurements perform 

with respect to the sequence of the post-contrast scans. 

 

Overall, registration quality improves with each phase of registration, indicating better 

alignment. The only exception to that is CC, which has an unexpected overall decrease 

with rigid registration, and a marginal increase after non-rigid registration (Figure 6.1).  

By observing the variation of CC with scan sequence (Figure 6.2), CC increases only 

during the 1st post-contrast scan; it is clear that the overall decrease of CC is because 

the strongest intensity increases occur between the 1st and 2nd post-contrast scans. CC 

Pathology No. of cases 
DCIS 5 

Invasive lobular carcinoma 1 
Axillary carcinoma 3 
Malignant (others) 2 

Benign fibroadenoma 4 
Benign fibrosis post-treatment 1 

Benign hemangioma 2 
Benign sclerosing adenosis 1 

Benign (others) 6 
Implants 1 
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is only reliable for registering the 1st post-contrast scan using our protocol; thus it will 

not be used henceforth. 

 

The magnitude and standard deviations of percentage changes are roughly the same for 

breasts with and without lesions. Registration quality for NMI and SSD are marginally 

higher in magnitude for breasts without lesions, and vice versa for NSSD. Thus NMI, 

SSD and NSSD achieved good generalization for breasts with and without lesions. 

Their consistencies also show that these three are good indicators of registration 

quality. 

 

The results are also fairly constant across the sequences for NMI and SSD. The 

magnitudes for NSSD however increase with the sequence. This may be explained by 

the expected increase in intensity with sequence, which decreases absolute NSSD, 

hence increasing the percentage magnitudes. 
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6.1.2  Visual assessments 

A subjective scoring system is used to grade visual improvements resulting from 

registration. The assessments are divided into three categories. ‘Skin line registration’ 

considers the boundary of the breast; ‘breast cone registration’ considers the 

boundaries of the cone-shaped parenchyma; ‘residual motion artefacts’ is everything 

else in the breast of interest that has components of less significant image gradient as 

the earlier two categories. A 4-point score is used (see Table 6.2), of which the lowest 

score reflects the best perceived alignment. An expert radiologist in MRM is our 

clinical reader. 

 

Table 6.2: 4-point score used by a clinical reader in visual assessments of registration results. 
 

Feature Score= 0 Score= 1 Score= 2 Score= 3 

Skin line registration Excellent Good Fair Poor 
Breast cone 
registration Excellent Good Fair Poor 

Residual motion 
artefacts Minimal Slight Moderate Marked 

 

 

Table 6.3 is a summary of the comparison of the visual assessments for normal breasts, 

and Table 6.4 is a summary for breasts with lesions. For normal breasts, rigid 

registration was always at least as good as pre-registration, and non-rigid registration 

was always at least as good as pre-registration. The same was observed for rigid 

registration of breasts with lesions; non-rigid registration was worse than rigid 

registration 9.1% of the time for skin line registration, but had more instances of better 

scores. In the cases with worse results, non-rigid registration had the same scores as 

pre-registration. Thus, non-rigid registration in general improved the visual quality of 

the images. 



85 

 

Skin line and breast cone registration tends to be better than residual motion artefacts 

registration for both types of breast. This is because the boundaries of the skin and the 

breast cones have stronger image gradient. Visually, it is also easier to observe 

improvements in alignment in regions with stronger image gradient. 

 

Table 6.3: Visual assessments for 20 normal breasts using a clinical reader based on a 4-point score; 
comparing skin line registration (SKIN), breast cone registration (CONE), and residual motion artefacts 

(MOTION). 
 

Registration Comparison SKIN CONE MOTION 
Better (%) 50.0 70.0 20.0 
Same (%) 50.0 30.0 80.0 Rigid vs. no 

registration 
Worse (%) 0.0 0.0 0.0 
Better(%) 50.0 40.0 25.0 
Same (%) 50.0 60.0 75.0 Non-rigid 

vs. rigid 
Worse (%) 0.0 0.0 0.0 

 

 

Table 6.4: Visual assessments for 22 breasts with lesions using a clinical reader based on a 4-point score; 
comparing skin line registration (SKIN), breast cone registration (CONE), and residual motion artefacts 

(MOTION). 
 

Registration Comparison SKIN CONE MOTION 
Better (%) 68.2 54.5 18.2 
Same (%) 31.8 45.5 81.8 

Rigid vs. no 
registration 

Worse (%) 0.0 0.0 0.0 
Better (%) 72.7 31.8 18.2 
Same (%) 18.2 68.2 81.8 

Non-rigid 
vs. rigid 

Worse (%) 9.1 0.0 0.0 
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6.1.3 Cases of interest 

Figure 6.3 compares a slice from a breast with DCIS. Rigid registration accounted for 

majority of artefact removal, especially around at the boundaries. The clinical reader 

analysis concurs, that rigid and non-rigid registration improved skin-line registration, 

while only rigid registration improved breast cone registration. Changes in quantitative 

measurements are consistent with visual observations – in NMI, 1.8% and 2.7% for 

rigid and non-rigid respectively; in SSD, -13.0% and 16.0%; and in NSSD, -38.2% and 

-44.8%. When 3TP analysis was done, the images displayed distinct regions of 

malignancy when the enhancement parameters were set as %50%,90 21 == κκ . It 

was found that majority of malignant regions were better characterized by high initial 

enhancements ( %1501 >κ ) than with a fast wash-out. This was because the scans used 

spanned 3-5 minutes postinjection to focus on initial enhancements; no scans were 

taken during the 6-10 minutes postinjection period when wash-out is usually observed. 

 

Figure 6.4 compares a slice taken from a breast with benign fibroadenoma. In this case, 

rigid and non-rigid registration resulted in visual improvements in skin-line 

registration and breast-cone registration. Analysis using 3TP with 

%30%,90 21 == κκ erroneously displayed more internal regions with malignancy at 

pre-registration than after non-rigid registration, and more 3TP-detected lesions along 

the skin. The changes in measurements were consistent in NMI (2.0%, 4.4%), in SSD 

(-23.4%, -36.0%), and in NSSD (-14.2%, -48.9%). 
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Figure 6.3: Comparing registration for a case with DCIS. (a) Pre-registration subtraction image; (b) Pre-
registration original image; (c) Rigid registration subtraction image; (d) Non-rigid registration 

subtraction image; (e) Non-rigid registration with 3TP ( %50%,90 21 == κκ ) 
 

(a) (b)

(c) (d)

(e)
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Figure 6.4: Comparing registration for a case with benign fibroadenoma.  

(a) Pre-registration subtraction image; (b) Pre-registration original image;  
(c) Rigid registration subtraction image; (d) Non-rigid registration 

subtraction image; (e) Pre-registration with 3TP ( %30%,90 21 == κκ );  
(f) Non-rigid registration with 3TP ( %30%,90 21 == κκ )  

 

(a) (b)

(c) (d)

(e) (f)
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6.1.4  Efficiency 

The time taken for registration is compared. Figure 6.5 shows that both phases are 

approximately linear to the size of the images, where the time taken is that of the entire 

dataset (typically four runs of registration for four post-contrast volumes). Rigid 

registration takes about 0.225ms per voxel; non-rigid registration takes about 0.670ms 

per voxel. The largest registered image (3.1 million voxels) took less than an hour. The 

reason for this linearity is the multivariate Gaussian estimation. Registration using the 

Parzen density estimation took 0.4 to 3.8 times longer for rigid registration, and 2.6 to 

7.5 times longer for non-rigid registration. Thus, the new registration scheme is 

predictably fast, and is feasible to use in a clinical environment where high throughput 

may be needed. 
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Figure 6.5: Comparing time taken for the rigid and non-rigid phases of registration against dataset size. 
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6.2 Summary of results and discussion 

The new model of contrast enhancement proposed has been shown to be theoretically 

consistent and was verified experimentally. Multivariate Gaussian estimation has been 

shown to be much more efficient than Parzen density estimation, and has given 

comparable measurements in terms of quality of registration. Without segmentation, 

non-rigid registration may result in abnormal transformations at regions with 

hypervascularity, which is the failing of current registration paradigm. Applying 

segmentation solves this problem, while retaining registration quality. The 

improvements in visual quality are matched in quantitative measurements in small 

population study of breasts with varying conditions. It has been found that rigid and 

non-rigid registration almost always have had at least equal visual quality in the skin 

line, in the breast cone, and in other residual regions. Registration is needed to reflect 

accurate detection using enhancement analysis methods like 3TP.   

 

It should be noted that the theoretical parameters for the 3TP method were not suited to 

analyzing our studies. However, 3TP remained sensitive to lesion detection in general 

without distinguishing malignancy, which is useful to the segmentation of lesions for 

non-rigid registration with the new model. Another aspect of the 3TP method that has 

not been investigated is the variation of enhancement parameters in segmentation. By 

decreasing (increasing) the sensitivity of the parameters to lesions, the degrees of 

freedom of transformations can be increased (decreased). When implemented 

interactively or adaptively, registration can be customized to the sizes of lesions 

expected, to balance between lesion obliteration and motion artefact reduction. 
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Also, “ghosting” aliasing artefacts are made more obvious by the subtraction process, 

whether registered or unregistered, and has only been partially reduced by the use of 

rigid or non-rigid registration. Such gross motion artefacts are not usually troubling 

from a diagnostic clinical reader’s perspective as they are visually obvious and usually 

can be ignored. However, they may be important for automated analysis algorithms. A 

separate approach will be necessary to remove this specific artefact, probably during 

the initial preprocessing phase.  
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CHAPTER SEVEN 

CONCLUSION 

 

7.1 Summary 

This thesis has presented a scheme for the non-rigid registration of MRM. This scheme 

improves on currently available registration paradigms, the best of which uses global 

and local motion modeling and optimizes NMI. We have proposed a new contrast 

enhancement model that parameterizes optimization of NMI using multivariate 

Gaussian estimation. This assumes that the intensity mappings due to motion artefacts 

and contrast enhancement can be mainly modeled as Gaussians. We have shown that 

the assumptions of multivariate Gaussian estimation can be met if outliers in the 

estimated Gaussians can be segmented out from registration; we have also shown that 

the current NMI registration paradigm is much slower, and can potentially result in 

erroneous registration. Comparable registration results have been achieved when the 

new contrast enhancement model was applied, leading us to adopt this new registration 

paradigm. 

 

The effects of the new registration scheme have been analyzed using quantitative 

measurements and qualitative visual assessments by an experienced clinical reader. 

The measurements show that non-rigid registration is better than rigid registration, and 

rigid registration surpasses pre-registration images. Visual analysis has revealed that 

non-rigid registration was at least as good as pre-registration images, and was better 

than pre-registration most of the time. The time required for the new scheme has also 
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been found to be linear to the image size used for registration – this shows that 

registration can be a manageable process especially when high throughput is required. 

 

In examining the results using the 3TP method, we have demonstrated that accurate 

registration is required to produce the correct analysis. Thus, a fast and improved 

registration scheme that can enable accurate clinical analysis of CE-MRI has been 

proposed. With accurate clinical analysis, CE-MRI will become a more reliable tool 

for breast cancer detection. 

 

7.2 Future Work 

In our work, we have used the 3TP method for voxel by voxel analysis. As 

demonstrated in section 6.1.3, the theoretical parameters for 3TP may not be suitable 

for the CE-MRI protocol used in our experiments and in NUH, as these rapidly 

acquired sequences occur over the first 3 to 5 minutes after contrast injection; most 

studies using 3TP obtain a later time point (6 to 10 minutes postinjection) for lesion 

washout analysis. More research can be done on creating a more reliable method for 

determining malignancy. 

 

Jacobs et al., (2003) used a novel multi-parametric method to analyze CE-MRI. This 

required analyzing both T1- and T2-weighted images, which is not done traditionally 

and in this thesis. The registration scheme proposed in this project may also be applied 

to multimodality registration between T1- and T2-weighted images. 

 

The incorporation of the 3TP method into registration can also be investigated further. 

By varying the parameters of 3TP when segmenting lesions in non-rigid registration, 
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the user can interactively change the desired degree of registration to find a balance 

between artefact removal and lesion preservation. 

 

The registration scoring process has shown that gross intra-sequence motion which 

caused “ghosting” of the breast due to macroscopic motion by the patient was not 

eliminated by the registration process. However, the unregistered raw images can be 

readily adjusted to visually minimize or even eliminate the appearance of such 

“ghosts”. Paradoxically then, the registration process has made such large-scale motion 

artefacts more visible, not less. Preprocessing of the initial images by filtering may be 

able to further minimize these macroscopic “ghost artefacts. 
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