
XML-BASED

FORMAL SPECIFICATION

COMPREHENSION

HUANG XIAO NING

(B.Sc. Fudan University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

At the very beginning I would like to express my deepest gratitude to my supervisor

Dr. Dong Jinsong. I owe my Master program and this thesis to his continuous en-

couragement and support, his valuable guidance and insight through this program,

and his constructive criticisms and suggestions of this thesis. I especially appre-

ciate his patience and kindness when I come across any trouble in my research. I

feel really lucky to have such a nice advisor.

Next I would like to thank Professor Stan Jarzabek and Professor Chan Chee Yong,

for their wonderful suggestions of my project.

I would like to thank Sun Jing, Wang Hai, Li Yuan Fang and other officemates, for

their valuable discussions and comments, their help and friendship.

This study has received financial support from the National University of Sin-

gapore. The School of Computing has provided me with excellent facilities and

resources. For all of this, I am very grateful.

Many thanks to my friends in Singapore. It is their friendship that makes my days

in the National University of Singapore pleasant and memorable.

Finally I am in deep grateful to my parents in China. Without their love, encour-

agement and understanding, I cannot finish my Master research. This thesis is

dedicated to them.

Contents

1 Introduction 1

1.1 Motivations and Objectives . 2

1.2 Organization of the Thesis . 4

2 Background and Related Work 6

2.1 Z Family Specification . 7

2.1.1 Z and Object-Z . 7

2.1.2 TCOZ Features . 11

2.2 ZML Environment for Z Family . 15

2.3 Related Works . 16

2.3.1 Recent Works on Specification Comprehension 16

2.3.2 UML Projection by Statechart 18

CONTENTS ii

3 From Program Understanding to Specification Comprehension 21

3.1 The Research of Program Understanding 22

3.2 From Program Understanding to Specification Comprehension . . . 25

3.2.1 What Affect Specification Comprehension? 25

3.2.2 The Descriptive Model . 26

3.2.3 Activities of Specification Comprehension for Z family . . . 27

4 Specification Comprehension for Z Family Languages 28

4.1 The Framework . 29

4.2 Query of TCOZ Specification . 29

4.2.1 Information on Classes . 30

4.2.2 Information on Schemas . 33

4.2.3 Information on Operations 34

4.2.4 Information on Variables . 34

4.2.5 Information on Cross-reference 35

4.3 Visualization of TCOZ Specification 36

4.4 Animation of TCOZ Specification 38

4.4.1 Translation Rules . 39

CONTENTS iii

5 A Case Tool 41

5.1 The Case Tool . 42

5.1.1 Load and Edit . 43

5.1.2 Query . 44

5.1.3 Visualization . 51

5.1.4 Animation . 52

6 Conclusions and Future Work 61

6.1 Conclusions . 62

6.2 Future Works . 63

A Library Functions For Animation 71

A.1 Set Library Class . 71

A.2 Channel and Sensor/Actuator . 74

B The Entire XSLT File for Queue System 77

C Java Classes of Queue, ActiveQueue and TwoActiveQueueClasses 87

D The Queue System in TCOZ 91

List of Figures

2.1 ZML process . 16

2.2 UML projection rules, excerpted from [6] 18

2.3 UML class diagram for Queue system, excerpted from [34] 19

2.4 ActiveQueue statechart diagram, excerpted from [34] 19

4.1 The Framework of TCOZ Comprehension 30

4.2 The reference between classes . 37

5.1 The graphical displaying of Queue system 42

5.2 The text displaying of Queue system 43

5.3 The component type . 44

5.4 The edit of Add operation . 45

5.5 Five types of query . 46

5.6 Class query popup frame . 46

LIST OF FIGURES v

5.7 Inheritance hierarchy chart . 47

5.8 Class detail query popup frame . 48

5.9 Class detail of ActiveQueue . 49

5.10 Schema query frame . 50

5.11 Operation query frame . 51

5.12 Operation detail frame . 52

5.13 Variable query frame . 53

5.14 Reference query frame . 54

5.15 Click the Make Statechart button 54

5.16 The transform process from TCOZ to statecharts 55

5.17 ActiveQueue statechart diagram . 56

5.18 Animation . 57

Summary

Specification comprehension is an analytical process of a specification model. Dur-

ing this process the specification model can be improved. Our concept of specifi-

cation comprehension comes from the idea of program understanding. It aims at

utilizing some techniques to display the static and dynamic properties of a specifi-

cation.

In this thesis, we propose a framework of specification comprehension for Z family

formal languages(Z/Object-Z/TCOZ), particularly TCOZ language. The environ-

ment of Z-family we exploit is ZML. Three techniques helping the comprehension

of a Z family specification are introduced: query, visualization and animation.

The query of a Z family specification is similar to the query of a program. Through

the process of query, we attempt to display some static properties of the specifica-

tion, such as properties about a class, an operation, or a cross-reference between

classes.

The visualization of a Z family specification is achieved by UML projection. This

projection transforms the textual specification into UML diagrams, e.g. state-

charts, which illustrate the relationship between the classes of this specification.

The animation of a Z family specification aims at displaying the dynamic proper-

ties of the specification. It utilizes the transformation from Z family language to

Java language to achieve an animated mapping of the original Z family document.

Then through this animated document, some dynamic properties of the original

one can be illustrated easily and directly.

A case tool is implemented in this thesis. This case tool provides an environment

to display and edit the Z family specification, implements the query and animation

functions and also links the visualization function as a module of it. This tool also

supports schema checking and simple logic and semantic checking.

Chapter 1

Introduction

We start this thesis with a brief introduction to formal methods and specification

languages. Then we discuss the motivation of specification comprehension. Later

we demonstrate summarily the three categories of specification comprehension for

Z family formal languages. This chapter ends with an overview of the organization

of the whole thesis.

Chapter 1. Introduction 2

1.1 Motivations and Objectives

Formal methods are techniques that provide mathematical groundwork for the de-

sign of more reliable software. They help reducing the errors of a system at the early

stages of design. A formal specification is a specification that utilizes some formal

methods to model a system accurately. Many specification languages have been

proposed. For example, some state-oriented formalisms such as VDM [1], Z [39]

, Object-Z [8] model systems by an underlying state which can undergo change;

some process-oriented formalisms such as CSP [14], CCS [16] , LOTOS [3] model

systems as processes partaking in communication; some algebraic formalisms such

as ACT1 [9], OBJ [11], Larch [15] model systems by equations related by axioms(re-

writing rules); some formalisms are the combination of other formalisms, such as

TCOZ(Timed Communicating Object Z) [24], which is the combination of Object-

Z and Timed CSP.

A specification model can be improved during the analytical process of itself. We

believe specification comprehension may be a new research area to pursue. Our

concept of specification comprehension comes from the idea of program under-

standing. In our viewpoint, specification comprehension is more important than

program understanding. Programs are executable, which make it easy to know

whether this program satisfies users’ requirement. There are also many kinds of

debugger tool for each programming language, which make it convenient to check

the syntax or semantic errors of a program. As to a specification, it may not be

necessarily executable [12]. It is not easy to perform this analytical process. For

Chapter 1. Introduction 3

such reasons, it is very important to develop some techniques to help the user un-

derstand the specification and to provide tools for these techniques, which is what

our specification comprehension attempts to do.

In this thesis we put forward a framework of specification comprehension for Z fam-

ily formal languages, especially TCOZ. The environment of Z family we exploit here

is ZML(Z family on the Web through XML and UML projection facilities) [34, 35].

We introduce three parts of comprehension for XML-based Z family specifications

in this thesis. The first part is the query of a Z family specification. This kind of

comprehension is to answer queries about a TCOZ specification and provide useful

information to the user. It itself includes five types: class query, schema query,

operation query, variable query and cross-reference query. The first four types of

query provide information on classes, schemas, operations and variables. The last

one provides information on the cross-references between classes or schemas.

In this thesis, we also introduce an implementation of TCOZ visualization utilizing

UML projection proposed by Sun et al [34, 35]. Sun et al.’s UML projection build

the connection between TCOZ and UML diagrams. We find that this kind of con-

nection can be viewed as a visualization tool of our specification comprehension for

Z family languages. UML is the most popular graphical notation which is easy to

understand and widely accepted by the industry. By transforming TCOZ specifica-

tions into UML diagrams, the readability and interpretability of a specification can

be improved. In our work, we exploit this UML projection as a tool for visualizing

Z family languages and link the transformation process of UML projection as part

of our case tool.

Chapter 1. Introduction 4

The third part we introduce to our specification comprehension is the animation

from a Z family specification to a Java program. Animation is a means of perform-

ing the validation to determine whether the requirements of a specification are the

right requirements and whether they are complete. Its purpose is to exhibit the

dynamic properties of a specification. In this thesis we present a simple approach of

animating a TCOZ specification in Java language and utilizing this animation. We

attempt to illustrate the dynamic properties of the original TCOZ specification.

At the end of this thesis, we present a case tool which provides an environment

where a Z family specification can be displayed and edited in both textual and

graphical form. The query and animation of Z family specifications are both im-

plemented in this case tool, and the visualization with UML statechart is also linked

as a part to it. This case tool is also able to support schema checking and simple

logic and semantic checking.

1.2 Organization of the Thesis

The structure of this thesis is as follows.

Chapter 2 introduces the background of the Z family specification languages and

ZML environment. It also gives a review of past and current research on specifica-

tion comprehension.

Chapter 3 compares specification comprehension with program understanding,

a better developed research area, where our idea of specification comprehension

comes from.

Chapter 1. Introduction 5

Chapter 4 describes our framework of specification comprehension and illustrates

the three parts of Z family comprehension using a specification of Queue system.

Chapter 5 demonstrates the case tool - an environment for Z family comprehension.

Chapter 6 concludes this thesis and highlights some possible future research direc-

tions.

Chapter 2

Background and Related Work

This chapter sets the context for later chapters. We introduce the related notations

and tools of Z family languages and ZML. We also present a review of research works

on specification comprehension.

Chapter 2. Background and Related Work 7

2.1 Z Family Specification

In this section, we will use a simple message queue system to give a brief introduc-

tion to the Z, Object-Z and TCOZ notations.

2.1.1 Z and Object-Z

A typical Z [39] specification consists of a number of state and operation schema

definitions. A state schema encapsulates variable declarations and related pred-

icates(invariants). The system state is determined by values taken by variables

which are subject to restrictions imposed by state invariants. An operation schema

defines the relationship between the “before” and “after” states which are cor-

responding to one or more state schemas. Complex schema definitions can be

composed by simple ones utilizing schema calculus.

Consider the Z model of a FIFO message queue. The given basic type MSG presents

a set of messages. The corresponding notation for this is:

[MSG]

This queue contains two operations Add and Delete. Add operation is to add

elements to the queue while Delete operation is to delete elements from the queue.

The number of the total elements in the queue cannot be more than max (that is,

a number larger than 100). The global constant max can be defined using the Z

axiomatic definitions as:

max : N

max > 100

Chapter 2. Background and Related Work 8

N is understood as a predefined type in Z-family languages, which represents nat-

ural numbers. The state of the queue system can be specified in Z as:

Queue
items : seqMSG

#items 6 max

The initial state of the queue can be specified by using schema inclusion (the

simplest form of Z schema calculus) as:

QueueInit
Queue

items = 〈〉

QueueInitc
items : seqMSG

#items 6 max
items = 〈 〉

Note that QueueInitc expands the included Queue. 〈 〉 represents empty sequence.

The Add and Delete operation schemas can be modelled as follows:

Add
∆Queue
item? : MSG

#items ≤ max

items ′ = items a 〈item?〉

Delete
∆Queue
item! : MSG

items 6= 〈 〉
items = 〈item!〉aitems ′

Chapter 2. Background and Related Work 9

The variable item? represents an input and variable item! represents an output.

items’ represents the value after performing the schema operation. ∆Queue denotes

that the state of the schema Queue will be possibly changed by the operation

schema. Complex operations can be constructed by using schema calculus, e.g.,

a new message which push out an old message, say Penguin, can be specified by

using the sequential composition schema operator o
9 as:

Penguin =̂ Add o
9 Delete

Which is an (atomic) operation with the effect of an Add followed by a Delete.

Other forms of schema calculus include conjunction ∧, disjunction ∨, implication

⇒, negation ¬ and pipe >>, which have been discussed in many Z text books [39].

Object-Z [8] extends the Z notation by importing object-oriented concepts to

Z specification language. The main advantage is the improvement of the clarity

of large specifications through enhanced structuring and incremental specification.

The main Object-Z structure is the class definition. A class typically includes some

type and constant definitions, a state schema, an optional initial state schema and

several operation schemas that define the associated operations of the state schema

in the class. An Object-Z class is a template for objects of that class: for each such

object, its states are instances of the class’ state schema and its individual state

transitions conform to individual operations of the class. An object is said to be

an instance of a class and to evolve according to the definition of its class.

Consider the Queue system again for example. The specification in Object-Z is as

follow:

Chapter 2. Background and Related Work 10

Queue

items : seqMSG

#items 6 max

Init
items = 〈 〉
Add
∆(items)
item? : MSG

items ′ = items a 〈item?〉
Delete
∆(items)
item! : MSG

items 6= 〈 〉
items = 〈item!〉aitems ′

This is a single class example with two operation schemas. The ∆ list means state

variables in this list may change after the operation. The Queue object starts with

the empty set items and evolves by performing either Add or Delete operations.

In operation Add an input message (defined by item?) is accepted by the queue

provided the queue has not reached its maximum size. In the operation Delete the

first message (defined by item!) leaves the queue provided that the queue is not

empty and the size of the queue reduces by one after the operation.

Operations in Object-Z are atomic. An Operation may consist of several declara-

tions and predicates. It’s difficult to use the standard Object-Z semantics to model

a system composed by multi-threaded component objects whose operations have

duration.

Inheritance is a way of building up the specification incrementally. The function-

Chapter 2. Background and Related Work 11

ality, modularity and reusability of Object-Z is greatly expand by incorporating

inheritance, which is the major extension to pure Z.

The class TwoQueue defines a class that has two message queues. The operations

Join, Leave and Transfer are defined incrementally from Queue.

TwoQueue

q1, q2 : Queue

Join =̂ q1.Add
Leave =̂ q2.Delete
Transfer =̂ q1.Delete‖q2.Add

2.1.2 TCOZ Features

The formal language of specification we use in this thesis is Timed Communi-

cating Object Z (TCOZ) [24]. TCOZ is a combination of event-oriented Timed

CSP [29] and state-oriented Object-Z [8]. TCOZ has both the advantages of

Object-Z in modelling complex data and state and the advantages of Timed CSP

in modelling real-time concurrency. Besides the primary specification structure of

Object-Z, TCOZ also adopts the channel based communication mechanism and the

sensor/actuator mechanism of CSP. With such advantages TCOZ is a promising

candidate for complex systems design.

In this section we briefly consider various aspects of TCOZ. A detailed intro-

duction to TCOZ and its Timed CSP and Object-Z features may be found else-

where [23].The formal semantics of TCOZ is also documented [25].

1. A model of time

Chapter 2. Background and Related Work 12

In TCOZ, seconds , the SI standard unit of time [17], is used to represent

all timing information. Hayes and mahony [13] have extended the Z typing

system to support the use of standard units of measurement. Thus, time

quantities are represented by the type

T == R¯ T,

where R represents the real numbers and T is the SI symbol for dimensions

of time.

2. Interface - channels, sensors and actuators

In TCOZ channels play a role as communication interfaces between objects.

TCOZ allows the declaration of channels in state schema. If c is a com-

munication channel, it must be declared in the state schema to be of type

chan. Channels may carry communications of any type and are viewed as

shared rather than as encapsulated entities. To complete the synchronizing

CSP channel mechanism, sensors and actuators are also adopted in TCOZ

as a non-synchronizing shared mechanism. The declaration of s : X sensor

provides a channel-like interface to input a shared variable s. The declaration

of s : X actuator provides a local-variable-like interface to output a shared

variable s. TCOZ with sensor and actuator can be a good candidate for

specifying open control systems. Mahony and Dong [26] presented detailed

discussion on TCOZ sensors and actuators.

3. Active objects

Active objects are objects that have their own threads of control, while passive

Chapter 2. Background and Related Work 13

objects are controlled by other objects in a system. In TCOZ, the behavior

of active objects of a given class is represented by an identifier MAIN (which

indicates a non-terminating process and is optional in a class definition). The

objects of a class are active objects if MAIN operation appears in this class

definition. Class defined for passive objects will not have MAIN definition

but may contain CSP process constructors. if ob1 and ob2 are active objects

of the class C , then the independent parallel composition behavior of the

two objects can be represented as ob1 ||| ob2, which means ob1 .MAIN |||

ob2 .MAIN.

4. Semantics of TCOZ

The blended state/event process model which forms the basis for the TCOZ

semantics is detailed in a separate paper [25]. TCOZ interprets Z operations

as processes. Operation schemas are modelled by a sequence of update events

that achieve the state change. The process model of TCOZ are tuples consist-

ing of: an initial state; a trace (a sequence of time stamped update-events),

a refusal (a record what and when events are refused by the process), and a

divergence (a record of if and when the process diverged). The trace/refusal

pair is called a failure and the overall models the state/failures/divergences

model. At any given time, the state of the process is the initial state updated

by all of the updates that have occurred up to that time. If an event trace

terminates (that is if a termination event
√

occurs), then the state at the

time of terminations is called the final state. All initial states and update

Chapter 2. Background and Related Work 14

traces (terminated with a
√

) compose the process model of an operation

schema. If no legal final state exists for a given state, the operation diverges

immediately.

5. Network topology

TCOZ adopts a graph-based approach to represent the network topology [27].

For example, consider that processes A and B communicate privately through

the interface ab, processes A and C communicate privately through the inter-

face ac, and processed B and C communicate privately through the interface

bc. The network topology of A,B and C may be described by

‖ (A
ab←→ B ; B

bc←→ C ; C
ca←→ A).

Other forms of usage allow network connections with common nodes to be

run together, for example

‖ (A
ab←→ B

bc←→ C
ca←→ A),

and multiple channels above the arrow, for example, if process D and F com-

municate privately through the channel/sensor-actuator df1 and df2 , then

‖ (D
df1,df2←→ F).

The above approach implies that the basic structure of a TCOZ document

is the same as for Object-Z. TCOZ varies from Object-Z in the structrue of

class definitions which may include CSP channel and process definitions. For

instance, an active Queue can be derived from the previous (Object-Z)Queue

model as:

Chapter 2. Background and Related Work 15

ActiveQueue
Queue

tj , tl : T
in, out : chan

Join =̂ [item : MSG | #items < max] • in?item −→ Add • DEADLINEtj
Leave =̂ [items 6= 〈 〉] • out !head(items) −→ Delete • DEADLINEtl
MAIN =̂ µQ • Join2Leave; Q

2.2 ZML Environment for Z Family

ZML(Z family Markup Language) is an XML approach to define a customized

markup language for the Z family notations. It creates a standard environment

for constructing formal specifications on the web in XML rather than in LATEX.

In addition, through ZML, web technology can easily be used in Z-family based

software design and development.

The process and techniques for ZML which are utilized in this thesis are illustrated

in figure 2.1. Firstly, an XML Schema is used to define the ZML structure syntax

for Z family languages. Then through this XML schema an XML document which

defines a Z family specification is produced. This XML document then is parsed by

an XML parser and processed by an XSL processor and finally can be displayed on

the web. More about the ZML environment can be found in [36]. In this thesis, the

ZML format document of Z family specification is the object of our specification

comprehension.

Chapter 2. Background and Related Work 16

Figure 2.1: ZML process

2.3 Related Works

In this section we introduce the recent works on specification comprehension and

Sun et at’s work of UML projection from TCOZ to statechart.

2.3.1 Recent Works on Specification Comprehension

Recent research of specification comprehension has focused mostly on the compre-

hensibility (how much a user understand a specification under given conditions) of

a formal language of specification, which elements affect it and how to utilize it to

make a comparison among methodologies.

For example, to investigate whether formal specifications are more difficult to read

than code, Snook and Harrison made an experiment [31] between 36 subjects who

had been taught a course on formal methods and a similar length course on the

Chapter 2. Background and Related Work 17

Java programming language. A short specification written in Z and a corresponding

program implemented in Java were allocated at random to these subjects. Later

the subjects were given a questionnaire to test their comprehension of the materials

they had been given. At the end of this experiment they drew a conclusion that a

Z specification was no more difficult to read than Java.

Another experiment trying to assess whether comprehensibility is affected by the

structure in a formal Z specification was conducted by Finney, Fenton and Fe-

dorec [10]. They provided three specifications written in Z varied in lengh and

complexity. Subjects were allocated to these three specifications and then were

given a questionnaire to find how much they understood their allocated specifica-

tion. The results showed that the comprehensibility is neither improved by the

modularization of a Z specification nor by reducing the size of the modules.

Utilizing specification comprehension to make a comparison among methodolo-

gies is also very common. For instance, two methodologies - FOOM(Functional

and Object Oriented Methodology) and OPM(Object-Process Methodology), were

compared from the point of view of user comprehension of specifications in [19].

And OMT(Object Modelling Technique) was also compared with OPM to dis-

cuss the model multiplicity problem by experimenting with real-time specification

methods in [28].

Chapter 2. Background and Related Work 18

Figure 2.2: UML projection rules, excerpted from [6]

2.3.2 UML Projection by Statechart

In this section we introduce Sun et al.’s work on UML projection. This work builds

the connection between TCOZ language and UML diagrams, such as statecharts.

We find that this connection can be viewed as a powerful tool in terms of visual-

ization in our work of specification comprehension for Z family languages.

UML projection transforms TCOZ specifications to UML diagrams, such as state-

charts. These statecharts are easier to read and understand by users.

The key ideas of the projection are:

• UML is extended with TCOZ communication interface types - chan, sensor

and actuator.

Chapter 2. Background and Related Work 19

Figure 2.3: UML class diagram for Queue system, excerpted from [34]

Figure 2.4: ActiveQueue statechart diagram, excerpted from [34]

• States of the UML statechart diagrams are identified with the TCOZ pro-

cesses(operations) and the state transition links are identified with TCOZ

events/guards.

Thus UML diagrams can be seen as the visual projections from a unified formal

TCOZ model. Figure 2.2(excerpted from [6]) shows the detailed transformation

rules from TCOZ behaviour models to UML statecharts.

In figure 2.3(excerpted from [34]), the UML class diagram depicts the static view

Chapter 2. Background and Related Work 20

of the four graph classes of the Queue system. This diagram was generated au-

tomatically. All attributes and operations match their definitions in the TCOZ

model.

A dynamic view of the class ActiveQueue can be depicted by the statechart diagram

in figure 2.4(excerpted from [34]).

Chapter 3

From Program Understanding to

Specification Comprehension

This chapter describes briefly some recent research works in program understand-

ing. Then a comparison between program understanding and our formal specifica-

tion comprehension for Z family in this thesis is discussed.

Chapter 3. From Program Understanding to Specification Comprehension 22

3.1 The Research of Program Understanding

Program Understanding or Code Cognition is a central activity during software

maintenance, evolution, and reuse [38]. It is recognized widely as a significant

activity in software development and maintenance. Many important research works

have been done during recent decades. In this section we introduce briefly some

important works in this area. More details can be found in [4, 30, 20, 21, 22, 33,

32, 2].

1. Brooks model

Brooks [4] argues in his theory that the process of program comprehension

is finished when a complete set of mappings from the top level domain(that

is, problem domain) to the bottom level domain(that is, program domain)

can be made . It is the developer of the software who initially produces these

mappings, whereas it is the maintainer who must recover them. This model

is constructed in a top-down and breadth-first manner.

2. Shneiderman and Mayer model

Shneiderman and Mayer [30] propose that program understanding is based

upon three main type of knowledge: syntactic knowledge, general semantic

knowledge, and task related semantic knowledge. Syntactic knowledge in-

cludes syntactic details of the programming language, such as keywords, lan-

guage syntax , library routines and even hardware specific details. General

semantic knowledge is composed of high level concepts such as tree traversal

Chapter 3. From Program Understanding to Specification Comprehension 23

constructs or low level concepts such as the FOR...NEXT loop. Task related

semantic knowledge relates directly to the problem domain, for example the

semantic meaning of various program portions.

3. Letovsky model

Letovsky’s work [20] is an empirical study of programmers who attempt to

maintain unfamiliar code. He proposed a cognitive model which was sub-

divided into three components: a knowledge base, a mental model and an

assimilation process. He also suggests the assimilation process may occur in

a bottom-up manner or in a top-down manner, where the bottom level is the

source code and the top level is the most abstract view of the program.

4. Littman et al. model

Littman et al. [22] propose two distinct strategies that program comprehen-

sion is based on: the systematic and the as−need . The systematic includes

extensive studying of the static and dynamic properties of a program to ac-

quire the program structure and causal interactions among program compo-

nents. The as−need helps the maintainer concentrate on the program areas

which are likely to require modification.

5. Soloway, Adelson, Ehrlich and Letovsky

Soloway and Ehrlich [33] think that programs are composed from program-

ming plans which are used to meet the needs of the specific problem. In later

works Letovsky and Soloway [21] identify the fact that the time constraints

require the maintainer concentrate on localized areas of the code which they

Chapter 3. From Program Understanding to Specification Comprehension 24

believe are required to maintain. And these plans are described as delocal-

ized plans. Soloway, Adelson and Ehrlich [32] later propose a top-down model

based on the notion of programming plans.

Based on these research works, a framework is developed [37] to provide a means

to classify different approaches to program understanding. This framework is de-

veloped in three steps:

1. Investigate the cognitive aspects of program understanding, such as problem

factors and cognitive models.

2. Identify some canonical activities of program understanding: data gathering,

knowledge organization, and information exploration.

3. Categorize the program understanding tools and techniques along several di-

mensions. Categories include domain applicability, task support, and toolset

extensibility.

A set of tools supporting program understanding are also developed, such as Static

Program Analyzers(SPAs). SPAs are interactive tools that enhance program under-

standing during maintenance by answering queries about programs. It must pro-

cess different source programs and answer different types of program queries. For

example, Jarzabek [18] presents a design of flexible, source language-independent

SPA with PQL, a program query language which is a conceptual level notation to

specify program queries and program views.

Chapter 3. From Program Understanding to Specification Comprehension 25

3.2 From Program Understanding to Specifica-

tion Comprehension

We attempt to apply the ideas of program understanding demonstrated in last

section to our specification comprehension, utilizing the special properties and ZML

environment of Z family notations.

3.2.1 What Affect Specification Comprehension?

The problem of understanding programs depends on multiple factors [37], such as

the comprehensibility of programs, the experience and creativity of software main-

tainers, and the sheer size and complexity of programs. Similarly, the problem of

understanding a specification also depends on many factors.

Firstly, specification languages differ significantly from one another in terms of

their comprehensibility. For example, process-oriented specification languages may

be harder to comprehend than state-oriented specification languages, and algebraic

specification languages the hardest.

Secondly, the knowledge base and experience of a user affects directly the compre-

hension. For instance, a user who is familiar with object-oriented concept will feel

Object-Z not difficult to comprehend for Object-Z is a specification language intro-

ducing some object-oriented properties to Z. However this user may suffer greatly

from reading a CSP specification.

The last but most important factor that affects specification comprehension is the

Chapter 3. From Program Understanding to Specification Comprehension 26

complexity of a specification itself. Unstructured, poor-design, redundant or just

a large-size specification may be arduous to understand for a user.

3.2.2 The Descriptive Model

A significant step of program understanding is how to identify the components

and their interrelationships of a program and then create representations of the

program in a more recognizable form or at a higher abstraction level. This step

facilitates the understanding process through the identification of its components

and the discovery of their relationships.

With the same purpose, in our specification comprehension we also need to build a

model to represent Z family specifications. The environment of ZML here is of great

help. As we have described in last chapter, after formalizing Z family(Z/Object-

Z/TCOZ) syntax in a formal model, we build a ZML environment using XML

Schema. This provides a bridge from Z family specification to web environment

and then we can apply some mature web technologies to our specification com-

prehension. This XML Schema document describes the structure of Z family no-

tations in XML, defines the contents of all elements, the order and cardinality of

sub-elements and data types of some of the elements. And then using the XML

parser(e.g. parser for DOM(Document Object Model) [5]) we change this XML

document into another represented structure(e.g. DOM) to facilitate the process

of comprehension.

Chapter 3. From Program Understanding to Specification Comprehension 27

3.2.3 Activities of Specification Comprehension for Z fam-

ily

Canonical activities of program understanding include data gathering, knowledge

organization and information exploration. Information exploration is the final and

the most important activity. It includes navigating through the descriptive model

that represents the information, analyzing and filtering this information, and using

various presentation mechanisms to clarify the resultant information.

In our specification comprehension, after achieving a descriptive model for Z fam-

ily notations, we can exploit this model to hunt the information we need. For

example, answering the question related to the Z family specification document,

illustrating the specification with graphics, demonstrating the dynamic property

of TCOZ specification utilizing the animation of TCOZ. These lead to the three

activities we will introduce in this thesis: query , visualization and animation of Z

family languages. In next chapter,we will demonstrate in detail these three parts

of activities of our specification comprehension.

Chapter 4

Specification Comprehension for

Z Family Languages

This chapter first illustrates the framework of specification comprehension. Then

the activities of query , visualization and animation of Z family language, especially

TCOZ, are demonstrated in detail.

Chapter 4. Specification Comprehension for Z Family Languages 29

4.1 The Framework

In this section we present a framework of specification comprehension. This frame-

work is implemented in three steps:

1. Data and Format : First of all, the data(that is, the specification) and its

format are the basis of our comprehension. In this thesis, TCOZ specification

in XML format(ZML) is adopted.

2. Descriptive Structure: The to-be-comprehended specification must be put

into a structure that facilitates efficient storage and retrieval and permits

analysis of information and internal relationships. In this thesis, we parse an

XML document into a tree structure of Document Object Model(DOM) [5]

recommended by W3C. This tree structure permits us to create, remove,

change and traverse the ZML file conveniently.

3. Information Exploration: This is the final yet most important step. The

exploration we put forward so far in this thesis includes query, visualization

and animation, which will be elaborated on in next sections.

Figure 4.1 shows the framework of our TCOZ comprehension.

4.2 Query of TCOZ Specification

Query is an important activity of TCOZ comprehension. This process enhances

the understanding of the static properties of a TCOZ specification by answering

Chapter 4. Specification Comprehension for Z Family Languages 30

Figure 4.1: The Framework of TCOZ Comprehension

queries about the document or providing useful information on the specification.

This information might be, for example, in this specification, which class contain

OP operation; which class is the subclass of class A, etc.

According to which object this information is about, we divide the query of TCOZ

into five types: class query , providing information on classes; schema query , provid-

ing information on schemas; operation query , providing information on operations;

variable query , providing information on variables; and cross − reference query ,

solving queries related to the cross-references between classes or schemas.

4.2.1 Information on Classes

The information on classes can be subdivided further into information on inheri-

tance hierarchy and details of class. In this chapter, we utilize the full Queue system

to illustrate our TCOZ comprehension. The Queue system includes a basic type

definition [MSG], an axiomatic definition max , a schema Queue and its initial state

Chapter 4. Specification Comprehension for Z Family Languages 31

schema QueueInit , two operation schemas Add and Delete and four classes with

inheritance relationship: Queue, ActiveQueue, TwoQueue and TwoActiveQueue.

[MSG]

max : N

max > 100

Queue
items : seqMSG

#items 6 max

QueueInit
Queue

items = 〈〉

Add
∆Queue
item? : MSG

#items ≤ max

items ′ = items a 〈item?〉

Delete
∆Queue
item! : MSG

items 6= 〈 〉
items = 〈item!〉aitems ′

Queue

items : seqMSG

#items 6 max

Init
items = 〈 〉

Add
∆(items)
item? : MSG

items ′ = items a 〈item?〉

Delete
∆(items)
item! : MSG

items 6= 〈 〉
items = 〈item!〉aitems ′

ActiveQueue
Queue

tj , tl : T
in, out : chan

Join =̂ [item : MSG | #items < max] • in?item −→ Add • DEADLINEtj
Leave =̂ [items 6= 〈 〉] • out !head(items) −→ Delete • DEADLINEtl
MAIN =̂ µQ • Join2Leave; Q

Chapter 4. Specification Comprehension for Z Family Languages 32

TwoQueue

q1, q2 : Queue

Join =̂ q1.Add
Leave =̂ q2.Delete
Transfer =̂ q1.Delete‖q2.Add

TwoActiveQueue

q1 : ActiveQueue[talk/out]
q2 : ActiveQueue[talk/in]

MAIN =̂ ‖(q1 | [talk] | q2)

The inheritance relationship between classes is one of the usual problems that con-

fuse the specification analyzer, especially those facing a large-size complex specifi-

cation.

In Queue system, for instance, ActiveQueue is the subclass of Queue, while Queue

is the superclass of ActiveQueue. Although TwoQueue and TwoActiveQueue also

utilize the definition of Queue, they are not the subclass of Queue. They are in-

stantiations(reference)of Queue, which will be further illustrated in later sections.

Queue
inheritance←− ActiveQueue

Queue
reference←− TwoQueue

ActiveQueue
reference←− TwoActiveQueue

Another kind of information user might be interested in is the details of a class.

During the process of maintaining a large-scale specification, when questions about

a class is raised, the user perhaps won’t go over the whole specification, especially

when the classes and their relationship is complicated. So providing some suc-

cinct information quickly to users becomes very important. For the Queue system,

the user might require such information: where ActiveQueue comes from; what

component of it is visible; what variables and operations it has; if ActiveQueue is

stemmed from Queue, are there any other variables and operations added to it; is

there any class stemmed from ActiveQueue, etc. When user wants to know more

Chapter 4. Specification Comprehension for Z Family Languages 33

information about ActiveQueue, below is what we can provide:

Class Name: ActiveQueue

Subclass : None

Superclass : Queue

Formal Parameter : None

State Variable: Ti , Tj , in, out

Operation: Join, Leave, MAIN

Visibility List : None

The subclass is None means that no class inherits from ActiveQueue. Visibility

List is None means that all components of this class is visible. The details of state

variables and operations are hidden here.

4.2.2 Information on Schemas

Similarly users of a TCOZ specification may also encounter a schema and want to

gather information of this schema without going over the whole specification. There

is no inheritance hierarchy between schemas. The information we can provide is

what’s the use of this schema, such as where this schema is used and how it’s used –

just being included or being modified, etc. Take the Queue system for an instance,

when users want to know more about the schema Queue (not the class Queue),

the information we can offer here is:

Schema Name: Queue

Used by : QueueInit – included

Chapter 4. Specification Comprehension for Z Family Languages 34

Add – modified

Delete – modified

4.2.3 Information on Operations

When encountering operations, users might be concerned in which classes they are

used and their visibility in these classes, as well as their specified functions. The

visibility of an operation influences directly the usage of it. An operation invisible

means that this operation can only be referenced inside the class that defines it.

The users cannot reference and use this operation successfully outside this class.

For example, about the operation Leave, information we can provide is:

Operation Name: Leave

In which Class : TwoQueue – Visible

ActiveQueue – Visible

If the user needs, the detail of this operation is also presented to make clear its

specified function. However no modification is permitted:

TwoQueue.Leave=̂q2.Delete

ActiveQueue.Leave =̂[items 6= 〈 〉]•out !head(items) −→ Delete• DEADLINE tl

4.2.4 Information on Variables

Information on variables in a specification might be: is this variable a state variable

or an input/output variable? Is this a primary or secondary variable? Where is

Chapter 4. Specification Comprehension for Z Family Languages 35

this variable defined(in which class and further in which operation)? Is it visible?

If it is an input/output variable, what is its original form? Above are the frequently

asked questions about a variable as well as the specified definition of this variable.

For example, we provide information of variable in:

a state variable

in class ActiveQueue

visible

the type of chan

The information of variable item?:

an input variable

in operation Queue.Add

invisible

the type of MSG

original form is item

4.2.5 Information on Cross-reference

Firstly we clarify that the cross-reference here means instantiation of a class or

a schema. Strictly, inheritance is also a kind of reference. But because we have

discussed inheritance hierarchy in ”Information on Classes“ part, here we leave it

out. Class Union, such as C =̂ A ∪ B , might also be considered as a type of

reference too. However, according to the definition of Class union, C here may not

Chapter 4. Specification Comprehension for Z Family Languages 36

be a class necessarily, and we also leave it out in this thesis.

In this thesis we discuss two types of references:

a : A ,

a :↓ A

where a is an object and A is a class that a references. That is, a is an instantiation

of A. The latter type is a kind of Polymorphic Object Reference because the class

of this reference is not uniquely determined.

Object reference is a means to produce a concrete instance of a class. The com-

ponents of a system are not the classes but the objects of them. The object can

be used according to the class’s interface and its behavior is consistent with that

defined by the schemas of the class. Take the Queue system for example, class

Queue is referenced in class TwoQueue to produce two instances of it: objects q1

and q2 . They all behave as class Queue to build the new class TwoQueue. In class

TwoActiveQueue, two objects q1 and q2 also reference the class ActiveQueue. How-

ever the output and input variables (in and out) of these two objects are renamed

respectively to a unified name talk . This kind of renaming builds a connection

between q1 and q2 and constructs the class TwoActiveQueue. Figure 4.2 shows the

reference relations between Queue, TwoQueue and TwoActiveQueue.

4.3 Visualization of TCOZ Specification

As a combination of state-oriented Object-Z and process-oriented CSP, TCOZ is

very suitable to model software systems. However, without relevant mathemati-

Chapter 4. Specification Comprehension for Z Family Languages 37

Figure 4.2: The reference between classes

cal background, TCOZ is very difficult to understand by software engineers. An

useful method to interpret a TCOZ specification well is attempting to visualize

the specification to UML diagrams. With these diagrams the specification can be

easy to understand. This is why we view visualization as part of our formal spec-

ification comprehension. In Sun et al.’s work, a connection between TCOZ and

UML diagrams has been built. We utilize this connection as a tool of our visual-

ization, transforming a TCOZ specification to UML diagrams, such as statecharts.

In “related works” section, we have introduced the work of UML projection.

Chapter 4. Specification Comprehension for Z Family Languages 38

4.4 Animation of TCOZ Specification

Query and visualization of a specification mainly focus on the static properties of

this specification. As for the dynamic properties, we need another effective method

to illustrate them. In this thesis, we utilize the animation of Z family languages

to achieve this goal. The purpose of animation is to validate the requirements

captured by exhibiting the dynamic properties of a specification. Animation is not

a real computer system with the detailed functionalities.

Generally speaking, any programming language could be used for animation. How-

ever each programming languages has some specialized features suitable for partic-

ular types of problems. For example, Prolog is good at AI programming, Power-

Builder is good at database application and so on. The degree of similarity in

syntax and semantic between formal notation and animation language should be

the first criterion of selection.

Because most animation languages have differences from the formal specification

notations, an equivalent library which handles all those specification constructs is

indispensable. Thus the completeness of the existing library compared to the for-

mal notation could be the second measure for the selection.

In this thesis, we choose Java programming language as our animation language

for Z family notations, especially TCOZ. Java is an object-oriented, multi-thread-

supported programming language with high security, robustness and running effi-

ciency. Java is a perfect embodiment of object orientation concept and also sup-

ports multi-thread synchronization. Object orientation in Object-Z, concurrency

Chapter 4. Specification Comprehension for Z Family Languages 39

in CSP and the combination of the two in TCOZ all could find a majority of their

correspondences in Java. With the help of proper library functions, integrated

notations such as TCOZ could be well animated in Java.

4.4.1 Translation Rules

The translation guideline from TCOZ to Java is the same as offering an executable

semantics of TCOZ in Java. Some rules are defined as follows.

• Data types are referred to as given sets. Each data type is basically a set of

possible values a variable can have.

• Sequence is referred to as Vector structure type in Java. Set and correspond-

ing functions are referred to as the corresponding library methods (set library

class).

• TCOZ classes is referred to as Java classes with inheritance expanded.

• Type and function definitions local to a TCOZ class is referred to as local

declarations and functions in a Java class.

• The type declaration of the state schema in TCOZ class is referred to as one

of the invariants in Java. The initial schema is referred to as the constructor

function in the related Java class. The operation schemas are referred to as

methods in the related Java class.

Chapter 4. Specification Comprehension for Z Family Languages 40

• Object reference is implemented by the instantiation (obtaining an object)of

a Java class.

• Operations not in the visible list in a TCOZ class are defined as private

operations in a Java class; Operations in the visible list are defined as public

operations.

• Channel and sensor/actuator are referred to pre-defined Java class.

The implementation will be introduced in next chapter by a case study.

Chapter 5

A Case Tool

In this chapter we present a case tool which provides an integrated environment

for specification comprehension for Z family.

Chapter 5. A Case Tool 42

Figure 5.1: The graphical displaying of Queue system

5.1 The Case Tool

In this section we demonstrate a case tool which provides an environment where

a Z family specification can be displayed and edited in both textual and graphical

form. This case tool is also able to support schema checking and simple logic and

semantic checking. Figure 5.1 is the main user interface of this case tool. The right

hand part is the main editing field. User can choose either Graphical Editor or

Text Editor(See figure 5.2). The left part is a file system tree which makes user

search and select files easier.

Chapter 5. A Case Tool 43

Figure 5.2: The text displaying of Queue system

5.1.1 Load and Edit

The case tool allows loading and editing Z family specifications. User can open a

new file. An XML parser is used at this point to check the loaded file. Only valid

ZML file will be loaded. After the ZML file is loaded successfully, user can edit this

file either in graphical editor or in text editor. The edit operation in the text editor

is direct but not convenient. Here we explain the editor in graphical editor. If user

single click at some point in the graphical editor, the editor will check whether

that point belongs to any component in the menu list of Figure 5.3. If it does, the

corresponding component will be highlighted. If user double click at this point,

user will be allowed to edit. For an instance, let’s load “queue(full).xml” to this

Chapter 5. A Case Tool 44

Figure 5.3: The component type

case tool. Then double click the Add operation schema in the graphical editor. A

pop up frame will display the information of the component double-clicked. In this

instance, it’s a schema definition frame, as shown in figure 5.4. We can edit the

name of this operation, the parameters, the including list, the Xi list, the delta list,

the declarations and the predicates. When adding any declarations or predicates

to the ZML file, an evaluator and validator will be used to check whether these

new components conform to the XML schema and logically correct.

5.1.2 Query

This case tool supports five types of query for Z family specifications. Each type

of query aims at providing some type of information on a specification, which we

have described in detail in last chapter. See the figure 5.5.

Chapter 5. A Case Tool 45

Figure 5.4: The edit of Add operation

Class Query

Class query aims at providing information on classes in the specification. One

significant information user might want to know is the inheritance relationship

among the classes in a TCOZ specification. In our case tool, we use a hierarchy

chart to display this inheritance relationship. Another information user might want

to know is the detail of a specified class. Take the Queue system specification for

example again. After loading the Queue system specification into our case tool,

Chapter 5. A Case Tool 46

Figure 5.5: Five types of query

Figure 5.6: Class query popup frame

user can click the Class Query item in the menu shown in figure 5.5. Then a class

query popup frame will display as in figure 5.6. At the beginning, this frame only

display which classes this specification consists. We can see that there are four

classes, Queue, TwoQueue, ActiveQueue, TwoActiveQueue, in this system. Click

the Inheritance Hierarchy button, an inheritance hierarchy chart will pop up, as

shown in figure 5.7. Select one class shown in figure 5.6, and click the class detail

button, a class detail query frame will display, as shown in figure 5.8. In this frame,

we list in detail which query user is allowed to ask about this class. Each item has

Chapter 5. A Case Tool 47

Figure 5.7: Inheritance hierarchy chart

a box on the left of it. Tick the box means that user wants the related information.

Take the ActiveQueue class for example, we tick the boxes on the left of Class

Name, Superclass , State Var . and Operation respectively. Then click “OK”. The

result is shown as figure 5.9.

Schema Query

Schema query is the same as class query, aiming at providing information on

schemas. A difference between class query and schema query is that there is no in-

heritance relationship among schemas. Click the Schema Query item in the menu,

a schema query frame will pop up, as figure 5.10. A list of schemas in Queue

specification is shown in this frame. We can also query which schema includes a

specified schema or modifies it. In figure 5.10 we see that there are four schemas,

Queue, QueueInit , Add and Delete, in this specification. And Queue is included

by QueueInit and modified by Add and Delete.

Chapter 5. A Case Tool 48

Figure 5.8: Class detail query popup frame

Operation Query

Operation query provides information on operations in a specification. After load-

ing the ZML file successfully, take Queue system for instance again, click the

Operation Query item in the menu, and an operation query frame will display, as

shown in figure 5.11. All the operations in this specification are listed in this frame.

The name of the classes they belong to and their visibility in these classes are also

indicated. Selecting one specific operation in the list and clicking the Operation

Detail button, the detail of this operation is display in another operation detail

frame, see figure 5.12.

Chapter 5. A Case Tool 49

Figure 5.9: Class detail of ActiveQueue

Variable Query

The Variable Query frame provides information on all the variables in the speci-

fication. Click the Variable Query menu item and the Variable Query frame will

pop up, as shown in figure 5.13. On the top of this frame are the name list of all the

variables in Queue specification, the classes in which they are, and the operations

in which they are (if any). On the bottom of this frame is the variable checking

area. Input the name of a variable and the class in which it is, click the button

Query , and the related information of this variable will be shown. This information

includes: whether this variable is a state variable, whether it is visible (if it’s in an

operation), the type definition of it and its original form.

Chapter 5. A Case Tool 50

Figure 5.10: Schema query frame

Reference Query

Reference query allows user to input a specific class name and query in which

class this input class is referenced. See figure 5.14. We input ActiveQueue and

click Query button. The result is, class ActiveQueue is referenced twice in class

TwoActiveQueue. The variables that are the instance of ActiveQueue are q1 and

q2 . Reference Definition gives the exact definitions of the reference.

Chapter 5. A Case Tool 51

Figure 5.11: Operation query frame

5.1.3 Visualization

In this thesis we exploit Sun et al. [34, 35]’s UML projection to visualize the TCOZ

specification. This approach transforms a TCOZ specification to diagrams. We link

this transformation process to our case tool. Click the Make Statechart item in

the menu, the process begins, as shown in figure 5.15 and figure 5.16. In figure

5.16, we can see that in the Queue specification, two classes ActiveQueue and

TwoActiveQueue are transformed to XMI files. These XMI files can be shown in

UML tool as statecharts. Figure 5.17 is the statechart of ActiveQueue.

Chapter 5. A Case Tool 52

Figure 5.12: Operation detail frame

5.1.4 Animation

TCOZ Java Library

In last chapter we have introduced the translation rules of the animation from

TCOZ to Java language. In this section, we will introduce the implementation

and case study. As we discussed in last chapter, an equivalent library functions for

handling specification constructs can greatly benefit the translation process from

TCOZ to Java. Part of Java library to manipulate TCOZ constructs, i.e., set

operations and channel declaration, is defined as follow.

%Set Definition%

public class SetDef{

Vector content;

public SetDef(Vector content){

this.content= content;

}

public boolean isElement(String o){

int size=this.content.size();

Chapter 5. A Case Tool 53

Figure 5.13: Variable query frame

for(int i=0; i<size; i++){

String temp= new String();

temp= (String) this.content.elementAt(i);

if(temp.equals(o)) return true;

}

return false;

// o is a element of Vector this.content

}

public boolean isEmpty(){

return this.content.isEmpty();

}

......

}

Chapter 5. A Case Tool 54

Figure 5.14: Reference query frame

Figure 5.15: Click the Make Statechart button

%Channel Definition%

public class Signal extends Thread {

public synchronized void wait(int T){

for(int i=0;i<T;i++){}

}

}

public class Write extends Thread {

public void notifyIt(String S, int index,Signal sig){

global.array[index]=S;

synchronized(sig){

Chapter 5. A Case Tool 55

Figure 5.16: The transform process from TCOZ to statecharts

sig.notify();

}

}

}

public class Channel {

int index;

int Deadline;

Signal sig;

Write writeChannel;

public Channel(int index, int T) {

this.index= index;

this.Deadline=T;

}

public void inChannel(String s){

sig= new Signal();

Chapter 5. A Case Tool 56

Figure 5.17: ActiveQueue statechart diagram

writeChannel= new Write();

sig.wait(Deadline);

writeChannel.notifyIt(s, index, sig);

}

public boolean isChannelActive(){

if(global.array[index].equals("")){

return false;

}else return true;

}

public String getChannel(){

String s= new String();

s=global.array[index];

global.array[index]="";

return s;

}

}

Firstly a number of set functions such as subset, power set, union , intersection and

so on are defined for matching the corresponding Z set constructs. To implement

these we use a Java class SetDef to define a set construct, and then define the

methods about a set, such as subset or power set, as the internal operations of this

class. We have completed the entire Z set operations in Java. The first example

above is part of them. The entire library can be found in Appendix A.

Chapter 5. A Case Tool 57

Figure 5.18: Animation

Secondly, TCOZ communication constructs such as channel, sensor and actuator

are all implemented as Java classes. The second example above shows a TCOZ

channel. In each channel, two thread classes Signal and Write provide a guarantee

for the time limitation mechanism of channel and achieve the synchronization.

Chapter 5. A Case Tool 58

TCOZ Java Projection

To project TCOZ specification to Java, XSL Transformation is applied. So far we

have implemented a transformation of Queue system. This projection is suitable

for any form of system ”Queue”. The change of the name of any classes, operations

or variables is allowed and won’t affect the producing of the program (the variables

of program will change accordingly).

The segment of the XSL stylesheet is as follow.

<?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet

version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">

<xsl:apply-templates select="//classDef"/>

</xsl:template>

<xsl:template match="classDef"> ... </xsl:template>

<xsl:template match="operation"> ... </xsl:template>

</xsl:stylesheet>

The above XSL transformation states that a projection will be made on each defined

TCOZ class in XML to construct their corresponding Java classes. For example,the

operations are captured through the operation tag. The entire XSLT file can be

found in Appendix B.

Chapter 5. A Case Tool 59

The case study

Consider the class ActiveQueue and TwoActiveQueuein the Queue system, the

frame of their translated specification in Java is as follow. The entire Java classes

can be found in Appendix C.

%ActiveQueue Class%

class ActiveQueue extends Queue {

......

public ActiveQueue(int inNo, int outNo){

......

}

public void Join(String item){

......

}

public String Leave(){

......

}

public void Transfer(){

......

}

}

}

%TwoActiveQueue Class%

class TwoActiveQueue {

......

public TwoActiveQueue(){

}

public void transfer(){

......

}

public static void main(String args[]) {

......

}

}

After translating ActiveQueue and TwoActiveQueue into Java classes, we can put

Chapter 5. A Case Tool 60

them with the Channel class and SetDef class together and run it in Java running

environment. Figure 5.18 is the result. We attempt a simple test of the First In

First Out(FIFO) property of TwoActiveQueue. The input message is limited to the

type of MSG(msg1 ∼ msg5). We firstly input message msg1 (type of MSG) into

TwoActiveQueue. Message msg5 is the second input message. Then we output

messages from TwoActiveQueue. We can find that msg1 is firstly output, msg5

secondly. The sequence of output is the same as the one of input.

Chapter 6

Conclusions and Future Work

This chapter concludes the whole thesis and proposes several directions for future

research works.

Chapter 6. Conclusions and Future Work 62

6.1 Conclusions

Along with the rapid development of formal methods techniques and specifica-

tion languages, the requirement of understanding a specification rises. We believe

that specification comprehension may be viewed as a new research area. Different

from some recent works of specification comprehension which mainly focus on the

comprehensibility of a specification, in this thesis, we attempt to carry out works

similar to program understanding and attempt to provide some techniques to help

users understand the specification correctly and quickly.

In this thesis, we propose a framework of specification comprehension for Z family,

attempting to utilize some techniques to illustrate the static and dynamic proper-

ties of a Z family specification. The techniques we introduce in this thesis include

query, visualization and animation. The environment of Z family we exploit here

is ZML.

The query of Z family specifications is similar to the query of a program, includ-

ing class query, schema query, operation query, variable query and cross-reference

query. Query tool focuses on displaying the static properties of a specification.

The visualization of Z family specifications aims at improving the readability and

interpretability of a specification. In this thesis we introduce an approach of visu-

alization utilizing UML projection proposed by Sun et al.

The animation of a Z family specification helps performing the dynamic properties

of a specification. Although some dynamic properties can be proved using proving

techniques, they are more apparent after the specification is animated. In this

Chapter 6. Conclusions and Future Work 63

thesis, we introduce the animation from TCOZ to Java.

A case tool is presented at the end of this thesis. This case tool provides an envi-

ronment for displaying and editing Z family specifications. In this case tool user

can query information on classes, schemas, etc., of a specification. We also link the

UML projection process to this case tool. The animation process from TCOZ to

Java along with the case study is implemented in this case tool as well. This case

tool also supports simple logic and semantic checking.

6.2 Future Works

We propose some future work directions related to specification comprehension as

follows:

• The query of TCOZ can be extended by answering more complex queries,

especially the cross-reference query part. In our implementation, the reference

query only relates to the cross-references between classes. In future work,

reference between specifications, even between systems, should be included.

Other more complex queries such as query about containment, query about

inheritance, query about polymorphic operation, etc., should be added.

• In future work, we can attempt a query of TCOZ while visualizing it. That

is, combine the query part and visualization part together.

• In future work, an entire animation tool should be developed. This tool

should be able to transform any TCOZ specifications into Java programs

Chapter 6. Conclusions and Future Work 64

automatically and thoroughly. The idea of XVCL (XML-based Variant Con-

figuration Language) [40] may be helpful to improve this tool. XVCL is a

meta-programming technique and tool that provides effective reuse mecha-

nisms. Our future animation tool may exploit these reuse mechanisms to

achieve high efficiency.

• The environment of TCOZ specification in this thesis is ZML. In future work,

we will try to base our specification specification on Semantic Web, proposed

by Dong et al [7].

• In future work, besides query, visualization and animation, more tools should

be included to extend the TCOZ comprehension.

Bibliography

[1] J-R. Abrial. The B-Book. Cambridge University Press, 1996.

[2] V. R. Basili and H. D. Mills. Understanding and documenting programs. IEEE

Transactions on Software Engineering, SE-8(3):270 – 283, March 1982.

[3] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language

LOTOS. Computer Networks and ISDN Systems, 14:25–59, 1987.

[4] R. Brooks. Towards a theory of the comprehension of computer programs.

International Journal of Man-Machine Studies, 18(6):543 – 554, July 1983.

[5] World Wide Web Consortium(W3C). Document object model(dom).

http://www.w3c.org/DOM/.

[6] J. S. Dong, Y. F. Li, J. Sun, J. Sun, and H. Wang. Xml-based static type

checking and dynamic visualization for tcoz. ICFEM’02, pages 311–322, Oct

2002.

[7] J. S. Dong, J. Sun, and H. Wang. Semantic Web for Extending and Link-

ing Formalisms. Technical Report TRB4/02, School of Computing, National

University of Singapore, March 2002.

[8] R. Duke and G. Rose. Formal Object Oriented Specification Using Object-

Z. Cornerstones of Computing, (series editors: R. Bird and C.A.R Hoare).

Macmillan, March 2000.

[9] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, volume 6

of EATCS Monographs on Theoretical Comput. Sci. Springer-Verlag, 1985.

[10] K. Finney, N. Fenton, and A. Fedorec. Effects of structure on the comprehen-

sibility of formal specifications. In IEE Proceeding of Software,146(4), pages

193–202, 1999.

[11] J. Goguen. OBJ as a theorem prover. Technical report, 1988.

[12] I. Hayes and C. Jones. Specifications are not (necessarily) executable. Software

Eng. Journal, 4(6):330–339, November 1989.

[13] I. J. Hayes and B. P. Mahony. Using units of measurement in formal specifi-

cations. Formal Aspects of Computing, 7(3), 1995.

[14] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall Interna-

tional, 1985.

[15] J. Horning. Combining algebraic and predicative specifications in Larch. In

H. Ehrig, C. Floyd, M. Nivat, and J. Thatcher, editors, TAPSOFT’85 (part

II): Formal Methods and Software Development, volume 186 of Lect. Notes in

Comput. Sci., pages 12–26. Springer-Verlag, 1985.

[16] C. Hung. CCS used as a proof-assistant tool. In M. Diaz, editor, Proto-

col Specification, Testing, and Verification, V, pages 387–398. North-Holland,

1986.

[17] International Organization for Standardization, Geneva. Units of measure-

ment: handbook on international standards for units of measurement, 1979.

[18] S. Jarzabek. Design of Flexible Static Program Analyzers with PQL. IEEE

Trans. Software Eng., pages 197–215, March 1998.

[19] Judith Kabeli and Peretz Shoval. Foom and opm methodologies - experimental

comparison of user comprehension. In INGITS 2002, pages 107–122.

[20] S. Letovsky. Cognitive processes in program comprehension, empirical studies

of programmers. In Albex, Norwood NJ, pages 58 – 79, 1986.

[21] S. Letovsky and E. Soloway. Delocalized plans and program comprehension.

IEEE Software, 19(3):41–48, May 1986.

[22] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental models and

software maintenance, empirical studies of programmers. In Albex, Norwood

NJ, pages 80 – 98, 1986.

[23] B. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: An in-

troduction to TCOZ. Technical Report 97-22, Mathematical and Informa-

tion Sciences, Commonwealth Scientific and Industrial Research Organisation

(CSIRO), Australia, 1997.

[24] B. Mahony and J. S. Dong. Timed Communicating Object Z. Technical Report

98-37, Mathematical and Information Sciences, Commonwealth Scientific and

Industrial Research Organisation (CSIRO), Australia, 1998.

[25] B. Mahony and J. S. Dong. Overview of the semantics of TCOZ. In K. Araki,

A. Galloway, and K. Taguchi, editors, IFM’99: Integrated Formal Methods,

York, UK, pages 66–85. Springer-Verlag, June 1999.

[26] B. Mahony and J. S. Dong. Sensors and Actuators in TCOZ. In J. Wing,

J. Woodcock, and J. Davies, editors, FM’99: World Congress on Formal

Methods, Lect. Notes in Comput. Sci., pages 1166–1185, Toulouse, France,

September 1999. Springer-Verlag.

[27] B. P. Mahony and J. S. Dong. Network topology and a case-study in TCOZ.

In ZUM’98 The 11th International Conference of Z Users. Springer-Verlag,

September 1998.

[28] M. Peleg and D. Dori. The model multiplicity problem : Experimenting with

realtime specification methods. In IEEE Trans. on Soft. Eng.,Vol. 26, No. 8,

pages 742–759.

[29] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W.

Roscoe. Timed CSP: Theory and practice. In J. W. de Bakker, C. Huizing,

W. P. de Roever, and G. Rozenberg, editors, Real-Time: Theory in Practice,

volume 600 of Lect. Notes in Comput. Sci., pages 640–675. Springer-Verlag,

1992.

[30] B. Shneiderman and R. Mayer. Syntactic / semantic interactions in program-

mer behaviour: A model and experimental results. International Journal of

Computer and Information Sciences, 8(3):219 – 238, 1979.

[31] C. Snook and R.Harrison. Experimental comparison of the comprehensibility

of a z specification and its implementation. In Proceedings of EASE 2001: Pa-

pers from The Conference on Empirical Assessment In Software Engineering,

2001.

[32] E. Soloway, B. Adelson, and K. Ehrlich. Knowledge and processes in the com-

prehension of computer programs. In R. Glaser M. Chi and M. Farr, editors,

The Nature of Expertise, pages 129 – 152. A. Lawrence Erlbaum Associates,

Hillside, NJ, 1988.

[33] E. Soloway and K. Ehrlich. Empirical studies of programming knowledge.

IEEE Transactions on Software Engineering, SE-10(5):595 – 609, September

1984.

[34] J. Sun, J. S. Dong, J. Liu, and H. Wang. A XML/XSL Approach to Visualize

and Animate TCOZ. In The 8th Asia-Pacific Software Engineering Conference

(APSEC’01), pages 453–460. IEEE Press, 2001.

[35] J. Sun, J. S. Dong, J. Liu, and H. Wang. Object-Z Web Environment and

Projections to UML. In WWW-10: 10th International World Wide Web Con-

ference, pages 725–734. ACM Press, May 2001.

[36] J. Sun, J. S. Dong, J. Liu, and H. Wang. A formal object approach to the

design of zml. Annals of Software Engineering, an international journal, 2002.

(accepted).

[37] S. R. Tilley, S. Paul, and D. B. Smith. Towards a framework for program

understanding. In Proc. of the 4th International Workshop on Program Com-

prehension (IWPC’96), 1996.

[38] A. von Mayrhauser and A. M. Vans. Program understanding - a survey. Tech-

nical report, August 1994.

[39] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.

Prentice-Hall International, 1996.

[40] XVCL Team, School of Computing, National University of Singapore. XVCL

(XML-based Variant Configuration Language). http://fxvcl.source.forge.net/.

Appendix A

Library Functions For Animation

A.1 Set Library Class

%Set Definition%

public class SetDef{

Vector content;

public SetDef(Vector content){

this.content= content;

}

public boolean isElement(String o){

int size=this.content.size();

for(int i=0; i<size; i++){

String temp= new String();

temp= (String) this.content.elementAt(i);

if(temp.equals(o)) return true;

}

return false;

// o is a element of Vector this.content

}

Appendix A. Library Functions For Animation 72

public boolean isEmpty(){

return this.content.isEmpty();

}

public Vector getContent(){

return this.content;

}

public boolean append(Object o){

int s=this.content.size();

for(int i=0;i<s;i++){

if(content.elementAt(i).equals(o)) return false;

}

this.content.add(o);

return true;

}

public boolean isSubsetof(SetDef A){

return A.getContent().containsAll(this.content);

}

public boolean equals(SetDef A){

return this.content.equals(A.getContent());

}

public SetDef powerSet(){

SetDef powerSet= new SetDef(null);

int size= this.content.size();

Vector temp=new Vector();

temp=null;

powerSet.getContent().add(temp);

for(int i=0;i<size;i++)

for(int j=i;j<size;j++)

for(int k=i;k<=j;k++)

{ temp.add(this.content.elementAt(k));

powerSet.getContent().add(temp);

}

return powerSet;

}

public SetDef CartProdwith(SetDef A){

Vector a=new Vector();

a=A.getContent();

Appendix A. Library Functions For Animation 73

int s1=this.content.size();

int s2=a.size();

Vector cartprod= new Vector();

Vector temp=new Vector(2);

for(int i=0;i<s1;i++)

for(int j=0;j<s2;j++)

{ temp.add(this.content.elementAt(i));

temp.add(a.elementAt(j));

cartprod.add(temp);

}

SetDef cartprodset= new SetDef(cartprod);

return cartprodset;

}

public SetDef Unionwith(SetDef A){

Vector a= new Vector();

a=A.getContent();

Vector union= new Vector();

Vector intersect =new Vector();

union.add(this.content);

intersect.add(this.content);

intersect.retainAll(a);

a.removeAll(intersect);

union.add(a);

SetDef unionset= new SetDef(union);

return unionset;

}

public SetDef Intersectwith(SetDef A){

Vector a= new Vector();

a=A.getContent();

Vector intersect= new Vector();

intersect.add(this.content);

intersect.retainAll(a);

SetDef intersectset= new SetDef(intersect);

return intersectset;

}

public SetDef Substractwith(SetDef A){

Vector a= new Vector();

a=A.getContent();

Vector sub= new Vector();

Appendix A. Library Functions For Animation 74

Vector intersect= new Vector();

intersect.add(this.content);

intersect.retainAll(a);

sub.add(this.content);

sub.removeAll(intersect);

SetDef subset= new SetDef(sub);

return subset;

}

public int Cardinality(){

return this.content.size();

}

}

A.2 Channel and Sensor/Actuator

%Channel Definition%

public class global {

static String[] array= new String[6];

}

public class Signal extends Thread {

public synchronized void wait(int T){

for(int i=0;i<T;i++){}

}

}

public class Write extends Thread {

public void notifyIt(String S, int index,Signal sig){

global.array[index]=S;

synchronized(sig){

sig.notify();

}

Appendix A. Library Functions For Animation 75

}

}

public class Channel {

int index;

int Deadline;

Signal sig;

Write writeChannel;

public Channel(int index, int T) {

this.index= index;

this.Deadline=T;

}

public void inChannel(String s){

sig= new Signal();

writeChannel= new Write();

sig.wait(Deadline);

writeChannel.notifyIt(s, index, sig);

}

public boolean isChannelActive(){

if(global.array[index].equals("")){

return false;

}else return true;

}

public String getChannel(){

String s= new String();

s=global.array[index];

global.array[index]="";

return s;

}

}

%Sensor and Actuator%

public class SensorActuator{

int index;

public SensorActuator(int index){

Appendix A. Library Functions For Animation 76

this.index=index;

global.array[index]="";

}

public void update(String s){

global.array[this.index]=s;

}

public String read(){

return global.array[this.index];

}

}

Appendix B

The Entire XSLT File for Queue

System

<?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet

version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">

<xsl:apply-templates select="//classDef"/>

</xsl:template>

<xsl:template match="classDef">

<xsl:if test="@a[.=’c1’]">

<xsl:text> public class </xsl:text>

<xsl:value-of select="name"/>

<xsl:text> {

</xsl:text>

<xsl:text>

Vector msgs;

</xsl:text>

<xsl:text> SetDef </xsl:text>

<xsl:value-of select="//basicTypeDef/name"/>

<xsl:text>;

</xsl:text>

<xsl:text> Vector </xsl:text> <xsl:value-of select=

Appendix B. The Entire XSLT File for Queue System 78

"state/declaration/variable"/>

<xsl:text>;

int head=0;

int tail=0;

</xsl:text>

<xsl:text> public </xsl:text>

<xsl:value-of select="name"/>

<xsl:text>()

{ msgs = new Vector();

msgs.add("msg1");

msgs.add("msg2");

msgs.add("msg3");

msgs.add("msg4");

msgs.add("msg5");

</xsl:text>

<xsl:value-of select="//basicTypeDef/name"/>

<xsl:text> = new SetDef(msgs);

</xsl:text>

<xsl:value-of select="state/declaration/variable"/>

<xsl:text>= new Vector(</xsl:text>

<xsl:value-of select="//axiomaticDef/predicate/expression/number"/>

<xsl:text>);

}

</xsl:text>

<xsl:apply-templates select="operation"/>

<xsl:text>

}

</xsl:text>

</xsl:if>

<xsl:if test="@a[.=’c3’]">

<xsl:text>class </xsl:text>

<xsl:value-of select="name"/>

<xsl:text> extends </xsl:text>

<xsl:value-of select="inheritedClass/name"/>

<xsl:text> {

</xsl:text>

<xsl:for-each select="state/declaration">

Appendix B. The Entire XSLT File for Queue System 79

<xsl:if test="dataType/type[.=’T’]">

<xsl:for-each select="variable">

<xsl:text> int </xsl:text> <xsl:value-of select="."/>

<xsl:text>=100;

</xsl:text>

</xsl:for-each>

</xsl:if>

<xsl:if test="dataType/type[.=’Chan’]">

<xsl:for-each select="variable">

<xsl:text> Channel </xsl:text> <xsl:value-of select="."/>

<xsl:text>;

</xsl:text>

</xsl:for-each>

</xsl:if>

</xsl:for-each>

int inNo,outNo;

<xsl:text>

</xsl:text>

<xsl:text> public </xsl:text> <xsl:value-of select="name"/>

<xsl:text>(int inNo, int outNo){this.inNo=inNo; this.outNo=outNo;}

</xsl:text>

<xsl:apply-templates select="operation"/>

<xsl:text>

}

</xsl:text>

</xsl:if>

<xsl:if test="@a[.=’c4’]">

<xsl:text>class </xsl:text>

<xsl:value-of select="name"/>

<xsl:text> { </xsl:text>

<xsl:text>

</xsl:text>

<xsl:text> int talkNo=1;

int inNo=0;

int outNo=2;

</xsl:text>

<xsl:value-of select="state/declaration1/dataType/type"/>

<xsl:text> </xsl:text>

<xsl:value-of select="state/declaration1/variable"/>

<xsl:text>= new </xsl:text>

<xsl:value-of select="state/declaration1/dataType/type"/>

Appendix B. The Entire XSLT File for Queue System 80

<xsl:text>(inNo, talkNo);

</xsl:text>

<xsl:value-of select="state/declaration2/dataType/type"/>

<xsl:text> </xsl:text>

<xsl:value-of select="state/declaration2/variable"/>

<xsl:text>= new </xsl:text>

<xsl:value-of select="state/declaration2/dataType/type"/>

<xsl:text>(talkNo, outNo);

</xsl:text>

<xsl:text>

public </xsl:text><xsl:value-of select="name"/><xsl:text>(){

}

</xsl:text>

<xsl:apply-templates select="operation"/>

<xsl:text>

public static void main(String args[]) {

</xsl:text>

<xsl:value-of select="name"/> <xsl:text> myTAQ = new </xsl:text>

<xsl:value-of select="name"/><xsl:text>();

myTAQ.transfer();

</xsl:text>

<xsl:text>

}

}

</xsl:text>

</xsl:if>

</xsl:template>

<xsl:template match="operation">

<xsl:if test="@a[.=’o1’]">

<xsl:text> public void </xsl:text>

<xsl:value-of select="name"/>

<xsl:text>(String </xsl:text>

Appendix B. The Entire XSLT File for Queue System 81

<xsl:value-of select="declaration/variable"/>

<xsl:text>){

</xsl:text>

<xsl:text>

if(this.</xsl:text>

<xsl:value-of select="//basicTypeDef/name"/>

<xsl:text>.isElement(</xsl:text>

<xsl:value-of select="declaration/variable"/>

<xsl:text>))

</xsl:text>

<xsl:text>this.</xsl:text><xsl:value-of select="deltaList"/>

<xsl:text>.add(</xsl:text>

<xsl:value-of select="declaration/variable"/> <xsl:text>);

this.tail++;

</xsl:text>

<xsl:text>

}

</xsl:text>

</xsl:if>

<xsl:if test="@a[.=’o2’]">

<xsl:text> public String </xsl:text>

<xsl:value-of select="name"/> <xsl:text>(){

</xsl:text>

<xsl:text> String </xsl:text>

<xsl:value-of select="declaration/variable"/> <xsl:text>;

</xsl:text>

<xsl:value-of select="declaration/variable"/>

<xsl:text> = (String) </xsl:text>

<xsl:text>this.</xsl:text><xsl:value-of select="deltaList"/>

<xsl:text>.elementAt(head);

this.head++;

return </xsl:text> <xsl:value-of select="declaration/variable"/>

<xsl:text>;

}

</xsl:text>

</xsl:if>

<xsl:if test="@a[.=’o6’]">

<xsl:text> public void </xsl:text>

<xsl:value-of select="name"/>

<xsl:text>(String </xsl:text>

Appendix B. The Entire XSLT File for Queue System 82

<xsl:value-of select="processExpr/guard/declaration/variable"/>

<xsl:text>){

</xsl:text>

<xsl:text> String temp;

</xsl:text>

<xsl:value-of select="processExpr/processExpr/event"/>

<xsl:text>= new Channel(inNo,</xsl:text>

<xsl:value-of select="processExpr/processExpr/processExpr

/deadline"/>

<xsl:text>);

</xsl:text>

<xsl:value-of select="processExpr/processExpr/event"/>

<xsl:text>.inChannel(</xsl:text>

<xsl:value-of select="processExpr/guard/declaration/variable"/>

<xsl:text>);

</xsl:text>

<xsl:text>if(</xsl:text>

<xsl:value-of select="processExpr/processExpr/event"/>

<xsl:text>.isChannelActive())

</xsl:text>

<xsl:text>temp = </xsl:text>

<xsl:value-of select="processExpr/processExpr/event"/>

<xsl:text>.getChannel();

</xsl:text>

<xsl:value-of select="processExpr/processExpr/processExpr

/processExpr/simpleProExp"/>

<xsl:text>(</xsl:text>

<xsl:value-of select="processExpr/guard/declaration/variable"/>

<xsl:text>);

}

</xsl:text>

</xsl:if>

<xsl:if test="@a[.=’o7’]">

<xsl:text> public String </xsl:text>

<xsl:value-of select="name"/> <xsl:text>(){

</xsl:text>

<xsl:text> String temp;

</xsl:text>

<xsl:value-of select="processExpr/processExpr/event"/>

<xsl:text>= new Channel(outNo,</xsl:text>

<xsl:value-of select="processExpr/processExpr/processExpr

Appendix B. The Entire XSLT File for Queue System 83

/deadline"/>

<xsl:text>);

</xsl:text>

<xsl:text> temp=</xsl:text>

<xsl:value-of select="processExpr/processExpr/processExpr/

processExpr/simpleProExp"/>

<xsl:text>();

</xsl:text>

<xsl:value-of select="processExpr/processExpr/event"/>

<xsl:text>.inChannel(temp);

</xsl:text>

<xsl:text>if(</xsl:text>

<xsl:value-of select="processExpr/processExpr/event"/>

<xsl:text>.isChannelActive())

</xsl:text>

<xsl:text>temp = </xsl:text>

<xsl:value-of select="processExpr/processExpr/event"/>

<xsl:text>.getChannel();

</xsl:text>

<xsl:text> return temp;

}

</xsl:text>

</xsl:if>

<xsl:if test="name[.=’MAIN’]">

<xsl:choose>

<xsl:when test="processExpr/processExpr/

processExpr/proConnSym[.=’externalChoice’]">

<xsl:text> public void Transfer(){

String messageIn= new String();

String messageOut= new String();

while(true){

BufferedReader stdin= new

BufferedReader(new InputStreamReader(System.in));

System.out.print("input a message(msg1~msg5):");

try{

messageIn= stdin.readLine();

}catch (Exception e)

{System.err.println("cannot get a message!");}

</xsl:text>

<xsl:value-of select="processExpr/processExpr/

processExpr/processExpr1/simpleProExp"/>

Appendix B. The Entire XSLT File for Queue System 84

<xsl:text>(messageIn);

messageOut= </xsl:text><xsl:value-of select="processExpr/

processExpr/processExpr/processExpr2/simpleProExp"/>

<xsl:text>();

System.out.println(messageOut);

}

}

</xsl:text>

</xsl:when>

<xsl:otherwise>

<xsl:text> public void transfer(){

String messageIn=new String();

String messageTalk=new String();

String messageOut=new String();

String option= new String();

BufferedReader stdin=

new BufferedReader(new InputStreamReader(System.in));

while(true)

{

System.out.println ("1. Input a message.");

System.out.println ("2. Output a message.");

System.out.print ("Specify your option: ");

try{

option = stdin.readLine();

}catch (Exception e)

{System.err.pringln("cannot get an option!");}

if (option.equals("1"))

{

System.out.print("input a message(msg1~msg5):");

try{

messageIn= stdin.readLine();

}catch (Exception e)

{System.err.pringln("cannot get a message!");}

</xsl:text>

<xsl:value-of select="processExpr/activeObject1"/>

<xsl:text>.</xsl:text>

<xsl:for-each select="//classDef">

<xsl:if test="@a[.=’c3’]">

<xsl:for-each select="operation">

<xsl:if test="name[.=’MAIN’]">

<xsl:value-of select="processExpr/processExpr/

Appendix B. The Entire XSLT File for Queue System 85

processExpr/processExpr1/simpleProExp"/>

<xsl:text>(messageIn);

</xsl:text>

</xsl:if>

</xsl:for-each>

</xsl:if>

</xsl:for-each>

<xsl:text>messageTalk =</xsl:text><xsl:value-of

select="processExpr/activeObject1"/><xsl:text>.</xsl:text>

<xsl:for-each select="//classDef">

<xsl:if test="@a[.=’c3’]">

<xsl:for-each select="operation">

<xsl:if test="name[.=’MAIN’]">

<xsl:value-of select="processExpr/processExpr/

processExpr/processExpr2/simpleProExp"/><xsl:text>();

</xsl:text>

</xsl:if>

</xsl:for-each>

</xsl:if>

</xsl:for-each>

<xsl:value-of select="processExpr/activeObject2"/>

<xsl:text>.</xsl:text>

<xsl:for-each select="//classDef">

<xsl:if test="@a[.=’c3’]">

<xsl:for-each select="operation">

<xsl:if test="name[.=’MAIN’]">

<xsl:value-of select="processExpr/processExpr/

processExpr/processExpr1/simpleProExp"/>

<xsl:text>(messageTalk);

</xsl:text>

</xsl:if>

</xsl:for-each>

</xsl:if>

</xsl:for-each>

<xsl:text>}

if (option.equals("2"))

{

</xsl:text>

<xsl:text>messageOut =</xsl:text><xsl:value-of

select="processExpr/activeObject2"/><xsl:text>.</xsl:text>

Appendix B. The Entire XSLT File for Queue System 86

<xsl:for-each select="//classDef">

<xsl:if test="@a[.=’c3’]">

<xsl:for-each select="operation">

<xsl:if test="name[.=’MAIN’]">

<xsl:value-of select="processExpr/processExpr/

processExpr/processExpr2/simpleProExp"/><xsl:text>();

</xsl:text>

</xsl:if>

</xsl:for-each>

</xsl:if>

</xsl:for-each>

<xsl:text> System.out.println(messageOut);

}

} }

</xsl:text>

</xsl:otherwise>

</xsl:choose>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

Appendix C

Java Classes of Queue, ActiveQueue

and TwoActiveQueueClasses

%Queue Class%

public class Queue {

Vector msgs;

SetDef MSG;

Vector items;

int head=0;

int tail=0;

public Queue()

{ msgs = new Vector();

msgs.add("msg1");

msgs.add("msg2");

msgs.add("msg3");

msgs.add("msg4");

msgs.add("msg5");

MSG = new SetDef(msgs);

items= new Vector(100);

}

public void Add(String itemIn){

Appendix C. Java Classes of Queue, ActiveQueue and TwoActiveQueueClasses 88

if(this.MSG.isElement(itemIn))

this.items.add(itemIn);

this.tail++;

}

public String Delete(){

String itemOut;

itemOut = (String) this.items.elementAt(head);

this.head++;

return itemOut;

}

}

%ActiveQueue Class%

class ActiveQueue extends Queue {

int Ti=100;

int Tj=100;

Channel in;

Channel out;

int inNo,outNo;

public ActiveQueue(int inNo, int outNo){

this.inNo=inNo;

this.outNo=outNo;

}

public void Join(String item){

String temp;

in= new Channel(inNo,Tj);

in.inChannel(item);

if(in.isChannelActive())

temp = in.getChannel();

Add(item);

}

public String Leave(){

String temp;

out= new Channel(outNo,Ti);

temp=Delete();

Appendix C. Java Classes of Queue, ActiveQueue and TwoActiveQueueClasses 89

out.inChannel(temp);

if(out.isChannelActive())

temp = out.getChannel();

return temp;

}

public void Transfer(){

String messageIn= new String();

String messageOut= new String();

while(true){

BufferedReader stdin=

new BufferedReader(new InputStreamReader(System.in));

System.out.print("input a message(msg1~msg5):");

try{

messageIn= stdin.readLine();

}catch (Exception e)

{System.err.println("cannot get a message!");}

Join(messageIn);

messageOut= Leave();

System.out.println(messageOut);

}

}

}

%TwoActiveQueue Class%

class TwoActiveQueue {

int talkNo=1;

int inNo=0;

int outNo=2;

ActiveQueue q1= new ActiveQueue(inNo, talkNo);

ActiveQueue q2= new ActiveQueue(talkNo, outNo);

public TwoActiveQueue(){

}

public void transfer(){

String messageIn=new String();

String messageTalk=new String();

String messageOut=new String();

String option= new String();

BufferedReader stdin= new

Appendix C. Java Classes of Queue, ActiveQueue and TwoActiveQueueClasses 90

BufferedReader(new InputStreamReader(System.in));

while(true)

{

System.out.println ("1. Input a message.");

System.out.println ("2. Output a message.");

System.out.print ("Specify your option: ");

try{

option = stdin.readLine();

}catch (Exception e)

{System.err.pringln("cannot get an option!");}

if (option.equals("1"))

{

System.out.print("input a message(msg1~msg5):");

try{

messageIn= stdin.readLine();

}catch (Exception e)

{System.err.pringln("cannot get a message!");}

q1.Join(messageIn);

messageTalk =q1.Leave();

q2.Join(messageTalk);

}

if (option.equals("2"))

{

messageOut =q2.Leave();

System.out.println(messageOut);

}

}

}

public static void main(String args[]) {

TwoActiveQueue myTAQ = new TwoActiveQueue();

myTAQ.transfer();

}

}

Appendix D

The Queue System in TCOZ

<?xml version="1.0" encoding="UTF-8"?> <ZML

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://nt-

appn.comp.nus.edu.sg/fm/zml/zml.xsd" >

<basicTypeDef>

<name>MSG</name>

</basicTypeDef>

<axiomaticDef>

<declaration>

<variable>max</variable>

<dataType>

<type>N</type>

</dataType>

</declaration>

<predicate>

<expression>

<varName>max</varName>

</expression>

<relationSym>gt</relationSym>

<expression>

<number>100</number>

</expression>

</predicate>

</axiomaticDef>

<schemaDef>

<name>Queue</name>

Appendix D. The Queue System in TCOZ 92

<declaration>

<variable>items</variable>

<dataType>

<unarySym>seq</unarySym>

<type>MSG</type>

</dataType>

</declaration>

<predicate>

<expression>

<prefixExpr>#</prefixExpr>

<expression>

<varName>items</varName>

</expression>

</expression>

<relationSym>leq</relationSym>

<expression>

<varName>max</varName>

</expression>

</predicate>

</schemaDef>

<schemaDef>

<name>QueueInit</name>

<incluList>Queue</incluList>

<predicate>

<expression>

<varName>items</varName>

</expression>

<relationSym>=</relationSym>

<expression>

<left>lt</left>

<right>gt</right>

</expression>

</predicate>

</schemaDef>

<schemaDef>

<name>Add</name>

<deltaList>Queue</deltaList>

<declaration>

<variable>itemIn</variable>

<dataType>

<type>MSG</type>

</dataType>

</declaration>

<predicate>

<expression>

Appendix D. The Queue System in TCOZ 93

<expression>

<varName>items</varName>

</expression>

<postfixExpr>’</postfixExpr>

</expression>

<relationSym>=</relationSym>

<expression>

<varName>items</varName>

</expression>

<relationSym>cat</relationSym>

<expression>

<left>lt</left>

<expression>

<varName>itemIn</varName>

</expression>

<right>gt</right>

</expression>

</predicate>

</schemaDef>

<schemaDef>

<name>Delete</name>

<deltaList>Queue</deltaList>

<declaration>

<variable>itemOut</variable>

<dataType>

<type>MSG</type>

</dataType>

</declaration>

<predicate>

<expression>

<varName>items</varName>

</expression>

<relationSym>neq</relationSym>

<expression>

<left>lt</left>

<right>gt</right>

</expression>

</predicate>

<predicate>

<expression>

<varName>items</varName>

</expression>

<relationSym>=</relationSym>

<expression>

<left>lt</left>

Appendix D. The Queue System in TCOZ 94

<expression>

<varName>itemOut</varName>

</expression>

<right>gt</right>

</expression>

<relationSym>cat</relationSym>

<expression>

<expression>

<varName>items</varName>

</expression>

<postfixExpr>’</postfixExpr>

</expression>

</predicate>

</schemaDef>

<classDef a="c1">

<name>Queue</name>

<state>

<declaration>

<variable>items</variable>

<dataType>

<unarySym>seq</unarySym>

<type>MSG</type>

</dataType>

</declaration>

<predicate>

<expression>

<prefixExpr>#</prefixExpr>

<expression>

<varName>items</varName>

</expression>

</expression>

<relationSym>leq</relationSym>

<expression>

<varName>max</varName>

</expression>

</predicate>

</state>

<initialState>

<predicate>

<expression>

<varName>items</varName>

</expression>

<relationSym>=</relationSym>

<expression>

<left>lt</left>

Appendix D. The Queue System in TCOZ 95

<right>gt</right>

</expression>

</predicate>

</initialState>

<operation a="o1">

<name>Add</name>

<deltaList>items</deltaList>

<declaration>

<variable>itemIn</variable>

<dataType>

<type>MSG</type>

</dataType>

</declaration>

<predicate>

<expression>

<expression>

<varName>items</varName>

</expression>

<postfixExpr>’</postfixExpr>

</expression>

<relationSym>=</relationSym>

<expression>

<varName>items</varName>

</expression>

<relationSym>cat</relationSym>

<expression>

<left>lt</left>

<expression>

<varName>itemIn</varName>

</expression>

<right>gt</right>

</expression>

</predicate>

</operation>

<operation a="o2">

<name>Delete</name>

<deltaList>items</deltaList>

<declaration>

<variable>itemOut</variable>

<dataType>

<type>MSG</type>

</dataType>

</declaration>

<predicate>

<expression>

Appendix D. The Queue System in TCOZ 96

<varName>items</varName>

</expression>

<relationSym>neq</relationSym>

<expression>

<left>lt</left>

<right>gt</right>

</expression>

</predicate>

<predicate>

<expression>

<varName>items</varName>

</expression>

<relationSym>=</relationSym>

<expression>

<left>lt</left>

<expression>

<varName>itemOut</varName>

</expression>

<right>gt</right>

</expression>

<relationSym>cat</relationSym>

<expression>

<expression>

<varName>items</varName>

</expression>

<postfixExpr>’</postfixExpr>

</expression>

</predicate>

</operation>

</classDef>

<classDef a="c2">

<name>TwoQueue</name>

<state>

<declaration>

<variable>q1</variable>

<dataType>

<type>Queue</type>

</dataType>

</declaration>

<declaration>

<variable>q2</variable>

<dataType>

<type>Queue</type>

</dataType>

</declaration>

Appendix D. The Queue System in TCOZ 97

</state>

<operation a="o3">

<name>Join</name>

<operationExpression>

<expression>

<varName>q1</varName>

</expression>

<dot>.</dot>

<name>Add</name>

</operationExpression>

</operation>

<operation a="o4">

<name>Leave</name>

<operationExpression>

<expression>

<varName>q2</varName>

</expression>

<dot>.</dot>

<name>Delete</name>

</operationExpression>

</operation>

<operation a="o5">

<name>Transfer</name>

<operationExpression>

<operationExpression>

<expression>

<varName>q1</varName>

</expression>

<dot>.</dot>

<name>Delete</name>

</operationExpression>

<operationConnSym>parallel</operationConnSym>

<operationExpression>

<expression>

<varName>q2</varName>

</expression>

<dot>.</dot>

<name>Add</name>

</operationExpression>

</operationExpression>

</operation>

</classDef>

<classDef a="c3">

<name>ActiveQueue</name>

<inheritedClass>

Appendix D. The Queue System in TCOZ 98

<name>Queue</name>

</inheritedClass>

<state>

<declaration>

<variable>Ti</variable>

<variable>Tj</variable>

<dataType>

<type>T</type>

</dataType>

</declaration>

<declaration>

<variable>in</variable>

<variable>out</variable>

<dataType>

<type>Chan</type>

</dataType>

</declaration>

</state>

<operation a="o6">

<name>Join</name>

<processExpr>

<guard>

<declaration>

<variable>item</variable>

<dataType>

<type>MSG</type>

</dataType>

</declaration>

<predicate>

<expression>

<prefixExpr>#</prefixExpr>

<expression>

<varName>items</varName>

</expression>

</expression>

<relationSym>leq</relationSym>

<expression>

<varName>max</varName>

</expression>

</predicate>

</guard>

<processExpr>

<event type="" var="">in</event>

<then>then</then>

<processExpr>

Appendix D. The Queue System in TCOZ 99

<processExpr>

<simpleProExp>Add</simpleProExp>

</processExpr>

<deadline>Tj</deadline>

</processExpr>

</processExpr>

</processExpr>

</operation>

<operation a="o7">

<name>Leave</name>

<processExpr>

<guard>

<predicate>

<expression>

<varName>items</varName>

</expression>

<relationSym>neq</relationSym>

<expression>

<left>lt</left>

<right>gt</right>

</expression>

</predicate>

</guard>

<processExpr>

<event type="" var="">out</event>

<then>then</then>

<processExpr>

<processExpr>

<simpleProExp>Delete</simpleProExp>

</processExpr>

<deadline>Ti</deadline>

</processExpr>

</processExpr>

</processExpr>

</operation>

<operation>

<name>MAIN</name>

<processExpr>

<mu>Q</mu>

<processExpr>

<processExpr>

<processExpr1>

<simpleProExp>Join</simpleProExp>

</processExpr1>

<proConnSym>externalChoice</proConnSym>

Appendix D. The Queue System in TCOZ 100

<processExpr2>

<simpleProExp>Leave</simpleProExp>

</processExpr2>

</processExpr>

<proConnSym>composition</proConnSym>

<processExpr>

<simpleProExp>Q</simpleProExp>

</processExpr>

</processExpr>

</processExpr>

</operation>

</classDef>

<classDef a="c4">

<name>TwoActiveQueue</name>

<state>

<declaration1>

<variable>q1</variable>

<dataType>

<type>ActiveQueue</type>

<renameList>talk/out</renameList>

</dataType>

</declaration1>

<declaration2>

<variable>q2</variable>

<dataType>

<type>ActiveQueue</type>

<renameList>talk/in</renameList>

</dataType>

</declaration2>

</state>

<operation>

<name>MAIN</name>

<processExpr>

<activeObject1>q1</activeObject1>

<channelName>talk</channelName>

<activeObject2>q2</activeObject2>

</processExpr>

</operation>

</classDef>

</ZML>

