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ABSTRACT 

Traditional methods of developing flight schedules generally do not take into 

consideration disruptions that may arise during actual operations. Potential 

irregularities in airline operations, such as equipment failure and baggage delay are not 

adequately considered during the planning stage of a flight schedule. As such, flight 

schedules cannot be fulfilled as planned and their performance is compromised, which 

may eventually lead to huge losses in revenue for airlines.  

In this thesis, a procedure to improve the robustness of an existing flight schedule was 

developed. The problem is modelled as a multi-objective optimization problem, 

optimizing the departure times of flights, allowing airlines to improve on more than 

one objective. The procedure developed to solve the problem is built on the basics of 

multi-objective genetic algorithms. A simulation model, SimAir, that models the 

operational irregularities has been employed to evaluate the performance of the flight 

schedule. SimAir considers different performance measures (or criteria) such as flight 

cancellation, operational cost and other performance indices as well.  



1 

1 INTRODUCTION 

Air transport is the fastest growing transport industry with air passenger traffic 

growing an average yearly rate of 9% since 1960. It has become a major service 

industry contributing to both domestic and international transport systems. Air 

transport facilitates widen business communications and is a key component in the 

growth of tourism, now one of the world’s major employment sectors. 

One of the strong sources of income for airlines is the business travellers who are 

willing to pay up to five times for a ticket as compared to the rest. This accounted for 

10% of the industry’s passenger volume and 40% of its revenue. But this group of 

people began to opt for low-fare carrier in the late 1990s; cheaper flights from 

discounters came into favour. As the business traveller base began to shrink and the 

economy began to slow down in early 2001, operating cost became a greater burden 

for major airlines. In the near future, the route networks of low-cost airlines might 

grow large enough to make alternative service available in almost all of the large 

business markets. To make things worse, the September 11 attacks deterred travellers 

from flying. With regards to United Airline’s recent file for bankruptcy, Aaron 

Gellman an aviation expert at Northwestern University believes that United Airlines 

will emerge from bankruptcy and they’ll come up leaner and meaner as a competitor. 

This shakeup may ripple across the industry, leading to competitive cost-cutting 

among airlines. Competition from low-cost airlines, terrorism and other factors are 

forcing U.S. major hub-and-spoke carriers to restructure their operations improving 

their efficiency or face the prospect of eventually going out of business. 

The prospects of the aviation industry in Asia have also been bleak. The air travel in 

year 2001 fell sharply as a result of the slowdown in the world’s major economies; 
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exacerbated by the September 11 attacks in the US. Along with Cathay Pacific and 

Qantas, Singapore Airlines has been one of the most profitable carriers in the world. 

But it was hit hard by the October 2002 terrorist bombing in Bali, and suffered further 

setbacks from the conflict in Iraq. The outbreak of SARS in March this year brought 

added pressure on airlines that report sharp falls in bookings and are being forced to 

cut back flights. Singapore Airlines said it was cutting 125 flights a week in response 

to its falling demand. Even after reduction of its services, Singapore Airlines 

announced that a further move to retrench cabin trainee and other operations staff. 

Nothing is more basic to an airline than the flight schedule it operates. Since every 

instance of a flight schedule affects the revenue of an airline, they are of paramount 

importance for every airline. As such, constructing a quality flight schedule is essential 

to the airline. Developing airline flight schedule is a very intricate task. Current state of 

the art optimization techniques generate highly resource utilized and hence efficient 

schedules. Consequently, airlines operate on highly optimized tight flight schedules. 

These flight schedules are tightly woven, highly interrelated structure of legs. Many 

aspects are rigidly governed by specific regulatory or contractual requirements, such as 

those relating to maintenance of equipment, and working conditions of flight crew. 

Moreover, almost every schedule is inter-wined with other scheduled flights because 

of connections, equipment routing and other factors. A major, yet unrealistic 

assumption made when modelling the problem of constructing the flight schedule is to 

assume that the airline operations are deterministic, i.e. they plan flight schedules 

assuming that they will be performed as planned, without consideration of the potential 

delays and unexpected external events. However, from Rosenberger (2001a), it is seen 

that schedules are in reality frequently disrupted by unplanned external events such as 

bad weather, crew absence or equipment failure. When an unforeseen event occurs, 
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causing a delay in the first flight of the day, without sufficient slack time between 

flights, this delay may propagate along the flight network to the rest of the flights that 

are flown be the aircraft and crew, causing wide spread disruption in the system. 

Passengers missing their connection due to delay may lose goodwill towards the airline. 

It was reported in The Atlanta Journal-Constitution (2002) that weather is responsible 

for about two-thirds of all delays. These disruptions occur every single day in airline 

operations, consequently, in 2001, only 73.4% of the flight arrived on time and up to 

3.87% of flights were cancelled (BTS, 2002).  

One challenge of the flight scheduling process is to be able to build a schedule that is 

robust such that it will be able to perform relatively well under various operational 

irregularities, be it harsh weather conditions or equipment fault.  

1.1 Flight Schedule Construction 

The flight schedule represents one of the primary products of airlines. An airline has 

the responsibility to provide adequate service to the cities it serves; it must also, 

operate efficiently and economically. Therefore, in its scheduling practices, airline 

management must continually search for the balance between adequate service and 

economic strength for the company.  

Airline flight scheduling includes all the planning decisions that have to be made for a 

schedule to be considered operational. It normally consists of the scheduling of aircraft 

maintenance, route development for the aircraft and crew scheduling. Flight Airline 

operations are made up of many interdependent components, making the planning 

problem a very complex problem to be solved. Besides meeting the customers demand, 

the airline has to incorporate into their planning many other constraints pertaining to 

the airport facilities, seasonal considerations, aircraft maintenance and crew members. 
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The produced schedule not only has to comply with all the Federal Aviation 

Administration (FAA) rules that require all the aircraft to receive periodic maintenance, 

it also has to satisfy the union agreement allowing crew member to have a minimum 

amount of rest.  

To handle the complexity of the problem, the usual approach to planning the airline 

schedule is to decompose the overall problem into sub-problems and solving these sub-

problems independently with various optimization techniques. These sub-problems 

have been well studied and many linear optimization techniques have been developed 

to solve them individually. By solving the sub-problems sequentially, a preceding sub-

problem delivers the input data for the subsequent sub-problem. Wells (1999) 

discusses each of the components of airline scheduling in detail; only issues relevant to 

this study are discussed here. 

1.1.1 Flight Scheduling 

Flight schedules are commonly constructed based on market demand. Historical data 

about bookings from computerize reservation systems are utilized to perform traffic 

forecasts for each origin-destination pair. The result of market evaluation is used to 

generate the flight network and assign frequency to the legs. Flight scheduling 

determines the origin, destination, departure time and arrival time of each flight. 

1.1.2 Fleet Assignment 

Once the flight schedule is in place, fleet assignment is carried out. A fleet is a 

collection of aircraft that is of the same aircraft type. A separate maintenance-routing 

plan must be drawn up for each type of aircraft in the fleet; this is essentially what is 

accomplished in fleet assignment. Maintenance of airplanes requires that certain 
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stations be provided with facilities and personnel for periodic mechanical checks. All 

routing plans must be coordinated to provide the best overall service.  

1.1.3 Aircraft Rotation 

Airline planners refer to a specific aircraft by a tail number. An aircraft rotation is an 

ordered sequence of legs that can be assigned to tail number. At the end of the aircraft 

rotation problem, tail numbers are assigned to the rotations. For safety reasons, 

aircrafts must be regularly maintained, thus, maintenance must be embedded within the 

aircraft routes. Also, there should be adequate turn time for the aircraft, that is to say 

that when an aircraft arrives at that gate, there should be sufficient time for the ground 

personnel to service the aircraft and transfer baggage before the plane leaves for its 

next leg; also, the passengers need time to move out of the plane and they have to 

allow time for the next group of passengers to move in. With the available set of 

aircrafts, airlines deal with the rotation problem through maximizing aircraft utilization.  

1.1.4 Crew Scheduling and Assignment 

On completing the aircraft rotation, airlines solves the crew scheduling problem. The 

crew scheduling problem partitions the set of legs into pairings (or trips) that crews 

will fly. The crew is fleet type specific; pilots are usually qualified for one aircraft type 

only. A crew pairing is a sequence of flights originating and terminating at the same 

crew base. A crew pairing is made up of a sequence of duties; a duty is a set of legs 

flown by a crew in a day. The duration between the start of a duty and the end of a 

duty is the elapsed time, it includes a briefing period before the first leg of the duty and 

a debriefing after the last leg of the duty. An example of the decomposition of the 

elapsed time of a duty is illustrated in Figure 1.1. 
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Crews may only fly for a certain number of hours in a day, week and month. They 

must also have sufficient time to transfer from aircraft to aircraft, and have adequate 

overnight rest. Every pairing is constructed so that a single crew can legally perform 

all the work activities it contains. After fuel costs, crew costs are the highest direct 

operating cost of an airline. It was report that American Airlines pays about US$1.3 

billion in salary and benefits to 8300 pilots. Thus, crew pairings are scheduled to 

maximize crew utilization while conforming to the numerous contractual restrictions 

from the union.  

Figure 1.1 Decomposition of the elapsed time of a duty 

The constructed crew pairings are then assigned to each individual crew. This is 

usually done using a bidline model. A bidline is a set of pairings that a crew flies 

within a month. A set of bidlines are generated and the pilots sequentially choose the 

bidline they prefer in order of seniority. 

1.2 Irregular Airline Operations 

Airline operations are subjected to a high level of uncertainty arising from numerous 

factors. These factors that cause disruptions to the operations ranges from inclement 

weather conditions, equipment failure, and crew unavailability to baggage delay. Any 

leg 1 leg 2 leg 3

Briefing Debriefing 

Elapsed time of a duty 
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condition that prohibits the airline from operating the flight schedule as planned is 

considered as a disruption.  

1.2.1 Recovery Techniques 

These disruptions brought about by various factors can upset the entire flight schedule. 

Snow, thunderstorm and other forms of bad weather can lead to degradation in the 

airport’s capability to handle aircrafts that are taking off and landing from it; in worst 

cases, the airport is forced to close down for a short duration. To reduce the impact 

brought upon by irregularities, a common approach is to develop real-time techniques 

that can be used to re-optimize the schedule when a disruption occurs. These 

techniques are commonly known as recovery techniques. The basic and most common 

objective of recovery is to reduce the impact of the disruption on the rest of the flight 

schedule. It is usually accomplished by assigning costs to flight cancellation and 

passenger delay, and minimizing the combined cost in hope that the new schedule 

suggested by the recovery procedure would adhere to the original flight schedule as 

much as possible. More often than not, airlines are forced to make drastic decisions 

such as cancelling flight legs or delaying flights for long durations in an effort to 

recover back to the original schedule. However, these decisions prove costly to the 

airlines.  

When flights are cancelled in a recovery attempt, aircraft rotation will be changed. The 

new set of aircraft routing have to satisfy all maintenance requirements. If cancellation 

is not possible, the recovery searches for a chance to swap parts of aircraft routing of 

the disrupted aircraft with that of other aircrafts. If a spare aircraft is available at the 

airport of the problem aircraft, a substitution can be made. The last resort would be to 

ferry aircraft between stations. Ferrying an aircraft is simply flying it without 

passengers. It can be performed on an aircraft that is ‘stuck’ at an airport without the 
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required maintenance facilities by flying it to a suitable station. Ferry is also done on a 

spare aircraft that is required to replace one that is out of service at another station. 

Ferry is used last the last option as no revenue is generated and a crew must be paid to 

fly the aircraft. 

When a decision to cancel flights is made, the passengers who were supposed to fly on 

the cancelled flights have to be reviewed. New itineraries have to be created for these 

disrupted passengers. In an event of misconnections, passengers might get stranded at 

an airport for the night. For these passengers, the airlines have to compensate them for 

their accommodation.  

In the midst of a disruption, a crew might be unable to connect to his next flight. In 

such a situation, airlines would commonly call upon a reserve crew to replace this 

disrupted crew. However, this kind of recovery is very expensive to the airline. Not 

only does the original crew gets paid for the next flight that he missed, the airline has 

to pay for the reserve crew that was utilized.  

Equipment failure and bad weather conditions are not within the control of the airlines, 

thus recovery policies and models that are able to solve the problem in a short time 

have to be designed to reduce the impact of these disruptions. Without proper recover 

policies in place, subsequent legs along the network might also be affected. Statistics 

of every flight whether it is cancelled or on-time is published regularly. On-time 

performance leads to a higher customer satisfaction and plays a major role in the 

airline become the carrier of choice. 

1.3 Trade-off between Robustness and Optimality 

Judging from the high rate of delays and cancellations, it is clear that in addition to 

generating an optimized flight schedule, one has to be concerned with the robustness 
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of this schedule operating in the real world, with its accompaniment of unexpected yet 

frequent disruptions. 

It is necessary to recognize that there is a trade-off between robustness and optimality 

of a flight schedule. A robust flight schedule usually will not correspond to the 

optimum of the objective function of the airline schedule planning problem. However, 

given that a robust schedule can better withstand disturbance, it does not mean that 

such a schedule will bring in lesser profits for the airline, or will be inferior when 

subjected to operations. On the other hand, a very efficient flight scheduling solution 

might be optimal in a deterministic environment, but highly unreliable (and thus sub-

optimal in some criteria) when implemented in a daily operational environment.  

Robustness of a flight schedule can be broadly classified into two categories. The first 

category is the degree of the flight schedule’s insensitivity to external disturbance. In 

other words, a flight schedule is considered robust if it will not badly affected when 

different forms of disruptions occur.  A list of measures that can be used to measure 

the insensitivity of a flight schedule is given below. 

• On-time performance. A leg is considered on-time if it arrives at the gate 

within 15 minutes of its originally scheduled arrival time. The on-time 

percentage is the percentage of the number of on-time legs as a percentage of 

the number of legs schedule. A cancelled leg is considered as not on-time. On-

time performance is a measure of the adherence of the flights to its original 

schedule. 

• Percentage of flights delayed. This measure is usually partitioned into two 

categories, percentage of late departures and percentage of late arrivals. A 

flight is considered late if it departs / arrives after 15 minutes of it scheduled 
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departure / arrival time. A cancelled leg is also considered late. This percentage 

serves as a measure of timeliness.  

• Average minutes late for each flight in the schedule over a period of time. Like 

the on-time percentage and percentage of flights delayed, the average minutes 

late for a flight is an indication of how well the flight schedule performs in 

operations, and its ability to adhere to the originally planned schedule. 

• Number of legs cancelled per day. Legs are cancelled by a recovery procedure 

as a result of disruption. Cancelling legs is a costly process, with leg 

cancellation, passengers have to be re-accommodated on other flights or other 

airlines. Hence, airlines need to keep this number to the minimum. 

• Average number of disruptions in a day that result in the need for an aircraft / 

crew / passenger recovery procedure. Different disruptions require different 

forms of recovery; for instance, if an aircraft unexpectedly runs into a minor 

equipment failure, a short delay of flight is sufficient to solve the problem 

without the need to modify the crew plan or put the passengers on other flights. 

Another disruption example is when the airline realizes that the crew that is 

needed to fly a leg is delayed due to a previous flight; the airline can call in a 

reserve crew without disturbing the rest of the plan. However major disruptions 

can occur, such as an airport closure can lead to the need for all three forms of 

recovery. This measure, thus keeps records of disruptions that result in the need 

for different types of recovery. 

• Operational crew cost. Crew cost is one of the highest operational costs of an 

airline, thus it is essential for the airlines to be able keep the crew cost down. 

Different airlines employ different pay structures of the crew. A typical 
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structure used by most American airlines is the flight-time credit (FTC). The 

definition of FTC is provided in a later Chapter. 

• Number of crew violating a maximum block-time rule. For example, many 

airlines use an 8-in-24 rule, which states that a crew should not fly more than 8 

hours in any 24 hour window. This measure reflects the tightness in a crew 

schedule. If this rule is always violated, the airline might have to look into 

adding some form of slack to the crew schedule so as to bring this value down. 

• Number of reserve crew required to cover the duties of a disrupted crew. One 

form of crew recovery is to call upon a reserve crew to replace a regular crew 

when the crew is unavailable. However, by doing so, both the regular crew and 

reserve crew will be paid.  

• Percentage of disrupted passengers. A passenger is considered disrupted if he 

did not fly his itinerary on the original scheduled flight, i.e. he is rerouted or the 

flight is cancelled. This measure is important to the airlines as passengers that 

are disrupted might lose interest in the airline and make a switch to other 

airlines. 

• Percentage of inconvenienced passengers. A passenger is considered 

inconvenienced if his flight is delayed for more that a certain amount of time. 

In the same way as the percentage of disrupted passengers, this measure is 

important to the airlines as a measure of providing good service. 
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1.4 Organization of Thesis 

This thesis focuses on the problem of incorporating operational considerations into the 

airline schedule planning process. It takes the approach of reducing the schedule’s 

sensitivity to irregularities that are frequent in operations. Instead of developing a new 

model for airline scheduling, the problem seeks to improve the robustness of an 

existing flight schedule. To evaluate the robustness of a flight schedule, simulation is 

performed. 

In chapter 2, a survey of the past literature on common approaches to flight scheduling, 

recovery and robust airline schedule planning is documented. 

Chapter 3 describes the motivation behind this research project and defines the 

problem that can be solved to improve the robustness of flight schedules in detail. 

Robustness of flight schedules can be measured by means of various criteria. Often, 

airlines wish to improve on more than one criterion when planning their flight 

schedule; hence, the problem is formulated as a multi-objective problem. 

Chapter 4 details the Multi-objective Genetic Algorithm (MOGA) procedure that is 

developed to solved the problem that was described. Principles of multi-objective 

optimization with traditional ways of dealing with such problems are discussed. It also 

provides an overview of genetic algorithms and how it is applied to multi-objective 

problems. 

 Chapter 5 describes the simulation model (SIMAIR) used to evaluate each of the new 

flight schedules generated by the procedure and the statistics that are collected by the 

simulation program. 
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Chapter 6 outlines the results of this research project by applying the procedure to a 

flight schedule. It is shown that the solution procedure can improve the robustness of a 

flight schedule by a significant amount. 

Chapter 7 summarizes the ideas that were introduced in this project, and discusses 

possible directions for future research in this area. 
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2 LITERATURE SURVEY 

In the last two decades, substantial research has been conducted on airline schedule 

planning. Most of them decomposed the enormous problem into sub-problems 

optimizing them independently while others integrated one or more of the sub-

problems. However, very little research has been done on the problem of addressing 

the impact of irregular operations, and developing models that will result in robust 

flight schedules that are less sensitive to operational disturbance. A majority of studies 

that were carried out dealt with irregularities on a different note; they developed 

models and decision support systems to handle the problem of disruption only when it 

occurs, instead of building robustness into their original schedule.  

In this chapter, a brief review of models used to plan different stages of flight 

scheduling is outlined. Methods and policies that studied to help an airline recover 

from disruptions are also described. Finally, previous research conducted other 

researchers on robust flight scheduling is presented; these studies take into account the 

effects of disruptions in the planning stage.  

2.1 Flight Scheduling 

Flight schedule planning and in particular, crew scheduling have long been the most 

success applications of Operations Research.  

The fleet assignment model problem is of considerable importance to airlines, much of 

research have been done to solve the daily fleet assignment problem optimally. Abara 

(1989), Hane et al. (1995) and Subramanian et al. (1994) presented models to solve the 

daily fleet assignment problem; minimizing a combination of operating cost and the 

opportunity cost of spilling passengers. 
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Clarke et al. (1996b) extended the daily fleet assignment problem to provide modelling 

devices for including maintenance and crew considerations into the basic model while 

retaining its solvability. In this model, only maintenance checks for short durations are 

considered. Assuming that the fleet assignment problem is solved, Clarke et al. (1996a) 

also developed a model that solves the aircraft rotation algorithm to determine the 

routes flown by each aircraft in a given fleet.  

In Sriram and Haghani (2003), the author’s fleet assignment model explicitly caters to 

maintenance scheduling for both short and long maintenances. The objective is to 

minimize the maintenance cost and any cost incurred during the re-assignment of 

aircraft to the flight segments. The model is solved using a heuristic approach. 

Combining the fleet assignment problem and the aircraft rotation problem, Barnhart et 

al. (1998) presented a model and solution approach that can be used to solved the 

problem in a single step. Cost associated with aircraft connections and maintenance 

requirements are captured in the model and it is solved by a branch-and-price solution 

approach. 

Over the years, a considerable amount of work has been produced by operational 

researchers on crew scheduling. The most common approach centred on modelling it 

as a set-partitioning problem. To use such a formulation, pairings must either be 

enumerated or generated dynamically; it can be a complex task due to the numerous 

legality rules enforced. Hoffman and Padberg (1993) found optimal integer solutions 

to problems with a maximum of 300,000 pairings using a branch-and-cut algorithm. In 

their approach, crew base constraints were explicitly considered. 

Graves et al. (1993) describes the crew scheduling optimization system used by United 

Airlines. The system uses a variation of set partitioning formulation to find an initial 
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feasible solution by allowing flights to be overcovered or uncovered by paying a 

penalty. Once an initial feasible solution is found, local optimization is used to find 

potential improvements. 

Vance et al. (1997) presented a different model for airline crew scheduling, based on 

breaking the decision process into two stages. The first stage selects a set of duty 

periods that cover the flights in the schedule and the second builds pairings using those 

duty periods. 

Conventionally, each stage in the scheduling process was treated as an independent 

problem. However, we must not overlook the fact that there is a high degree of 

interdependence between stages; by constructing it stage by stage and optimizing 

different objectives at each stage, there is no strong basis to show that the flight 

schedule and plan that has been developed through the stages will be optimal as an 

entity. Thus in recent years, there have been attempts to solve several stages of the 

planning process together. Grosche et al. (2001) developed an integrated, GA-based 

flight schedule construction approach which simultaneously permits multiple planning 

activities like airport selection, leg selection, departure and arrival scheduling, aircraft 

rotation and fleet assignment. The flight schedule is represented as a list of flights with 

departure station and time. Langerman et al. (1997) proposed an agent-based airline 

scheduling procedure integrating the different components of airline scheduling. The 

proposed model used to develop schedule is market driven with maintenance and crew 

requirements as constraints. 

2.2 Recovering From Disruptions 

As airlines have done a better job solving fleet assignment and crew scheduling to 

optimality, flight schedules become more optimized, with minimal slack between 
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flights, making it more susceptible to disruptions. This has led to an increased need for 

recovery methods that can be employed in an event of disruption. Researchers began to 

develop recovery models and decision support systems to deal with unexpected 

disruptions. 

Teodorvic and Guberinic (1984) were the first to publish an aircraft recovery model for 

minimizing the total passenger delay. The same authors then extended their work to 

allow cancellation and include the airport operating hours. The problem is formulated 

to define a new daily flight schedule (aircraft routing), when one or more aircraft is 

taken out due to a disruption. They attempted to find the least expensive set of aircraft 

routings using a branch and bound procedure.  

Jarrah et al. (1993) presented two minimum cost network flow models to incorporate 

delay and cancellation. The objective is to systematically adjust aircraft routing and 

flight scheduling in real time to minimize total cost incurred from a shortage of aircraft.  

Yan and Yang (1997) first combined cancellation of flights, ferrying of spare aircraft 

and delays of flights in a single model for aircraft recovery. The problem was 

represented using a time-space network. To minimize the duration of schedule 

perturbation, a simple decision rule is used. This framework was extended by Yan and 

Lin (1997) to handle station closures. 

Thengvall et al. (1998) approached the aircraft recovery problem in a way that allows 

an airline to provide for schedule recovery with minimal deviations for the original 

aircraft routings. A network model with side constraints is presented in which delays 

and cancellation are used to deal with aircraft shortages in a way that ensures a 

significant portion of the original aircraft routings remain intact. The same authors also 

developed multi-commodity network-type models for determining a recovery schedule 
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for all aircraft (multiple fleets) operated by a large carrier following hub closure (2001). 

The models allow for cancellations, delays, ferrying and substitution between fleets 

and sub-fleets. 

Rosenberger et al (2001c) presented an optimization model that reschedules flight legs, 

and reroute aircraft by minimizing an objective function involving rerouting and 

cancellation costs. The author also developed a heuristic for selecting which aircraft to 

be rerouted. 

Although there is an extensive literature on Airline Crew Scheduling, studies on crew 

recovery during irregular operations are few. Teodorovic and Stojkovic (1995) 

developed a sequential approach based on a dynamic programming algorithm, using 

first-in-first-out principle to minimize the crew’ ground time. Lettovsky et al. (2000) 

presented a new solution framework to reassign crews and restore a disrupted crew 

schedule. Pre-processing techniques are applied to extract a subset of the schedule for 

rescheduling. A fast crew pairing generator is built that enumerates feasible continuous 

of partially flown crew trips. 

Lettovsky (1997) also formulated an Airline Integrated Recovery (AIR) model for 

optimal recovery from schedule disruption. The model includes variables and 

constraints pertaining to all three aspects of a flight plan (crew assignment, aircraft 

routing and passenger flow) for the problem for a given airline. The solution algorithm 

is derived by applying Benders’ decomposition algorithm to a mix-integer linear 

programming formulation for the problem. 

2.3 Robust Flight Scheduling 

Current flight scheduling models are planned in a deterministic environment; they 

define their objectives mainly on costs, resulting in schedules that are unable to 
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withstand disruptions. As such, recovery has to be summoned each time a disruption 

occurs. Robust flight scheduling is to take into account operational irregularities during 

the planning stage so that it is less sensitive to disruption or it can better recover in the 

occurrence of disruption. 

 Robustness of a flight schedule can be assessed in many different ways, for instance, a 

flight schedule that results in a minimum overall flight delay might be a measure of 

how robust a flight schedule is. Due to the numerous different ways of assessing the 

robustness of a flight schedule, there is no common basis for researchers to build on; 

this might be a probable reason to why robustness of flight schedule was not 

investigated upon until the recent couple of years. Most of the studies conducted on 

constructing robust flight schedules focused developing models for either the crew or 

the aircraft only, instead of considering the entire planning process. 

2.3.1 Insensitive Flight Schedules 

A group of researches define the robustness of flight schedules as the amount of 

insensitivity of the flight schedule to external disturbances. By this definition, 

robustness can be assessed in many different ways, some of which was provided in the 

previous chapter. 

Barnhart (2001) aimed to develop a robust schedule pertaining to fleet assignment. The 

author assessed the robustness of a fleet assignment model using the schedule’s impact 

on delay and cancellation. The robust fleet assignment model (RFAM) that was 

developed is adapted from aircraft recovery model developed by the same author. The 

aircraft recovery model’s objective is to determine which flights to cancel and at what 

time the remaining flights should depart so as to minimize delay and cancellation costs. 

Thus, in the author’s RFAM model, the goal was to build paths covering the time 



 20

period’s work which are optimal with regards to penalties for delayed arrivals, 

penalties for cancelled flights and penalties for fleet imbalances at the end of the day. 

Barnhart (2001) also showed a list of metrics that can be used to compare if one flight 

schedule is better than another (in terms of its insensitivity) , categorized according to 

different aspects of the airline operations, namely the aircraft, crew and passenger.  

Listes and Dekker (2002) made a study on robust fleet composition to determine the 

number of aircraft of each type the fleet should consist of in order to be most profitable 

when assigned to a schedule. The author’s idea was to search for a fleet composition 

which appropriately supports dynamic allocation, depending on the flight schedule 

under construction and the associated stochastic demands on its flight legs. The main 

measure of fleet performance is expressed in terms of the profit it can generate by 

operating the schedule from which the fixed costs of its aircrafts have to be subtracted. 

Wu and Caves (2002) developed a model to optimize the scheduling of aircraft rotation 

by balancing the use of schedule time, which is designed to control flight punctuality, 

and delay costs. The model seek to determine the optimal schedule buffer time at 

airport and block times between airports minimizing system costs in aircraft rotations 

by optimizing the allocation of schedule buffer time in aircraft rotation schedules. 

Adherence of the schedule implementation to the planned schedule i.e. mean delay 

time of aircraft rotation, expected delay time of aircraft rotation and schedule 

regularity are employed to evaluate the reliability of aircraft rotation schedules. 

Yen and Birge (2000) models the crew scheduling as a stochastic problem by 

explicitly including the cost of disruptions in the scheduling formulation. The delay 

cost is added to the deterministic objective function in order to take into account delays 

that affect flight segments constraints. By doing so, stochastic disruptions (short range 
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effects) are considered in the long range crew scheduling problem. The model also 

captures the interaction and interdependence between crew assignments by using a 

two-stage stochastic program with recourse. The authors have shown that significant 

savings can be achieved if delay effects on crew schedules, which consequently affect 

the entire system, are considered during the planning phase. 

Schaefer et al. (2001) seek better approximate solution methods for crew scheduling 

under uncertainty that still remains tractable. The author noted that airlines have 

traditionally evaluated a crew schedule by its planned cost; his method of evaluation is 

to determine the operational cost which is obtained through simulation. Two methods 

were developed to find robust crew schedules. The first method minimizes the 

expected crew cost by considering each pairing in isolation. The next method is a 

penalty method that penalizes certain attributes in a pairing that may lead to poor 

performance in operations; for example, if the maximum duty duration is near its limits, 

a penalty cost is added to the scheduled pairing cost that is to be minimized.  

Ehrgott and Ryan (2002) developed a model to construct robust crew schedules with 

bicriteria optimization. The authors’ define a robust schedule to be one where 

disruptions in the schedule (due to delays) are less likely to be propagated into the 

future, causing delays of subsequent flights. Crew changing aircraft between operating 

sectors should occur less frequently in a robust schedule. The problem is formulated as 

a bicriteria problem, minimizing cost and non-robustness simultaneously. To solve the 

problem, the technique of minimizing only one objective, while transforming the 

others into constraints, specifying an upper bound on their values is used. The 

objective of minimizing cost is transformed into a constraint in this case and the 

transformed problem is solved using branch and bound. 
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2.3.2 Flexible Flight Schedules 

The second broad classification of robust flight schedules are schedules with greater 

flexibility such that when a disruption occurs, recovery can be achieved with minimal 

alteration to the disrupted flight schedule. At present, only robust fleet assignment and 

robust aircraft rotation has been researched upon. 

Ageeva (2000) defined robustness of a flight schedule as the extent of the flexibility 

that parts of the aircraft rotation schedule can be recovered in the event of irregularities 

in operations. A highly robust schedule may provide an option to reassign another 

aircraft to this routing and got back on its original routing before the next maintenance 

check. Robustness is measured by computing the percentage of points in the systems 

that have overlaps. Point, as defined by the author, is the interval of time that an 

aircraft spends at an airport between flights. Two aircrafts meet if they have points at 

the same airport within a same short interval. An overlap is an occurrence of two 

aircrafts meeting twice. Thus, the author’s robust fleet assignment model is one that 

included opportunities to swap planes. 

Rosenberger et al. (2001b) also developed a fleet assignment model that can be used to 

improve robustness. It is based on the structure of a hub-and-spoke flight network to 

create a partial rotation with many short cycles. One of the major decisions that airline 

make to recover from an aircraft disruption is to cancel flight legs. By cancelling 

cycles, the rotation maintains flow balance without having to ferry an aircraft. The 

author’s approach of embedding many short cycles in the fleet assignment model is 

shown to perform better in operations. The robustness of such an assignment was 

demonstrated via a simulation of airline operations, SIMAIR. The on-time 

performance, percentage of legs cancelled, percentage of legs that are delayed on the 
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runway or in the airspace for more than twenty-five minutes and number of legs that 

are flown by an aircraft different from the originally assigned one were used as 

measures of performance. 

2.4 Evaluating robustness 

Another interesting study related to schedule robustness is the models that are used to 

evaluate the robustness of a flight schedule. 

In Haeme et al. (1998), the authors developed a Monte Carlo simulation model to help 

an airline evaluate its on-time arrival performance. The stochastic simulation of 

airline’s operation allows the scheduler to test a variety of scheduling strategies and 

operations policies which might impact schedule performance. The model was built to 

represent the airline’s entire hub-and-spoke operation. Using the model, the authors 

and airline operations planners were able to examine alternative strategies for 

maintaining high on-time performance without increasing costs. However, it was not 

known if approaches were developed to obtain a robust schedule. 

Another simulation model, SIMAIR, was originally developed by Rosenberger et al. 

(2002). The idea was to develop a simulation tool to analyzed robustness of a 

prospective schedule and compare the effectiveness of different recovery strategies. 

Such a tool can potentially be very useful to schedulers as it would allow them to 

analyze the different performances of a prospective schedule. SIMAIR 2.0, an 

improved version of SIMAIR was later developed at NUS, by Lee et al. (2003). 

SIMAIR 2.0 is described in greater details in Chapter 5. 
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3 PROBLEM AND MODEL 

From previous chapters, one would have realised that many studies have been 

conducted on airline schedule planning to optimize the decomposed sub-problems. 

These studies often aim to optimize the profits of the airline assuming that the schedule 

will be realised as planned. However, with frequent disruptions in airline operations, 

these schedules are far from optimal in practice. Robustness of the flight schedule thus 

becomes an issue of concern to the airlines. Little research has been carried out in this 

area to develop a more robust flight schedule. The researches that were studied 

previously did not consider the robustness of a flight schedule as an integrated problem, 

they mainly concentrate on constructing robust fleet assignment or crew scheduling 

independently and robustness is usually approximated by a mean value. Due to the 

complex interaction between these components, having a robust fleet assignment or a 

robust aircraft rotation only guarantees partial robustness but does not necessarily 

suggest an overall robust solution.  

The motivation of this research is to investigate whether the overall performance of a 

flight schedule can be improved using an integrated approach, that considers the flight 

schedule problem as an entity, incorporating both the aircraft and crew. Improving the 

flight schedule in this study is accomplished by adjusting the departure times of each 

of the flights in an existing flight schedule. In this chapter, the problem is described in 

detail, and the mathematical formulation of the objective together with the constraints 

is presented. 
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3.1 Problem Description 

The problem here can be described as follows: Given an existing flight schedule from 

an airline with its aircraft rotation and crew assignment determined, we seek to 

improve the robustness of the flight schedule by adjusting the departure times of the 

flights in the schedule.  

In this study, we make the following assumptions.  

Assumption 1 An existing airline flight schedule and flight plan which includes the 

flight schedule, the aircraft rotation and the crew assignment is provided as an initial 

solution to the problem. 

Assumption 2 The aircraft rotation and the crew assignment is preserved, which 

means that aircrafts or crew, will not be rerouted. 

Assumption 3 The manner in which the airline operations is carried out is 

predetermined. i.e. the recovery policy used remains unchanged. 

Assumption 4 No flights will be cancelled and no additional flights will be created in 

the process. 

3.2 Model Development 

It is not unusual for airlines to desire to improve on more than one criterion when 

planning their flight schedule, by using conventional single-objective models, this 

would not be possible. Thus in this study, the problem is modelled as a multi-objective 

optimization problem; the following notations are defined prior to the mathematical 

model. 
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Decision Variables 

 xi Departure time of leg i  

Parameters 

 τB,i Scheduled block time of leg i 

 τPconn Minimum time for passengers to connect 

 τCconn Minimum connection time for crew 

 τDrest Crew minimum rest after duty 

 τBR Duration of crew briefing before duty 

 τDE Duration of crew debriefing after duty 

 TD The latest time for the start of a duty where the crew will be granted 

additional rest. 

 τDmax,b The maximum duration for duty starting before or at TD  

 τDmax,a The maximum duration for duty starting after TD  

 τAturn Minimum turn time for aircraft 

 τM,i Duration of scheduled maintenance after leg i 

 TE,s Earliest time a leg can depart from station s 

 TL,s Latest time a leg can arrive at station s 

Indices 

 l(d) Last leg of duty d 

 f(d) First leg of duty d 

 L Set of legs Li∈  
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 LD(s) Set of legs departing from station s 

 LA(s) Set of legs arriving at station s 

 D Set of duties Dd ∈  

 Db Set of duties that starts before or at TD 

 Da Set of duties that starts after TD 

 S Set of stations Ss∈  

 CP Set of passenger connections, where passengers connects from one legs to 

another in a passenger itinerary. 

 CC1 Set of crew connections, where crew connects from one leg to another 

within the same duty 

 CC2 Set of crew connections between two duties 

 CA1 Set of aircraft connections without scheduled maintenance in between 

 CA2 Set of aircraft connections with scheduled maintenance in between 

The multi-objective problem can be formulated as 

Problem P1 

Objective Function 

 )ˆ(,),ˆ(2),ˆ(1min xnfxfxf K  

Subject to: 

 PjPconniBi Cjixx ∈∀≤++ ),(, ττ  (2.1) 

 
1, ),(

CjCconniBi Cjixx ∈∀≤++ ττ  (2.2) 

 
2, ),(

CjBRDrestDEiBi Cjixx ∈∀≤++++ ττττ  (2.3) 
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bbDDEBRdfdlBdl Ddxx ∈∀≤++−+ max,)()(,)( ττττ  (2.4) 

  
aaDDEBRdfdlBdl Ddxx ∈∀≤++−+ max,)()(,)( ττττ   (2.5) 

 
aDBRdf DdTx ∈∀>−τ)(  (2.6) 

 
1, ),(

AjAturniBi Cjixx ∈∀≤++ ττ  (2.7) 

 
2,, ),(

AjiMiBi Cjixx ∈∀≤++ ττ  (2.8) 

 SssLiTx DsEi ∈∈∀≥  and )(,  (2.9) 

 SssLiTx AsLiBi ∈∈∀≤+  and )(,,τ  (2.10) 

The overall objective of the problem is to improve the robustness of the flight schedule; 

A flight schedule is considered robust if it is able to perform relatively well in various 

different situations. In other words, a schedule is robust if it is as insensitive to real life 

variabilities as possible (Mederer and Frank, 2002). Hence, the objective of the 

problem is minimizing several individual objectives, )ˆ(xf i  simultaneously, where each 

individual objective is a measure of robustness e.g. percentage of flights cancelled. A 

list of the different measures that can be used to assess the robustness of a flight 

schedule was provided in Chapter 1. The decision variable x̂  is a vector of decision 

variables, },...,,{ˆ 21 Qxxxx = such that each xi is a departure time of a flight leg in the 

flight schedule. 

Constraint (2.1) ensures that passengers on an itinerary will be able to transfer to the 

next plane at the airport where transit is to be made. This is achieved by ensuring that 

the next leg in a passenger itinerary leaves later than τPconn after the arrival time of the 

previous leg. 
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Constraints (2.2) and (2.3) ensure that crew can connect within and between duties 

respectively. Within the same duty, the crew needs a minimum connection time to be 

able to transfer from one aircraft to the next; constraint (2.2) makes sure that the 

departure time of the next leg in a crew duty is later than τCconn after the arrival of the 

previous leg. From one duty to the next, the crew requires a minimum amount of rest. 

A duty consists of a set of legs flown by a crew in a day and the elapsed time of a duty 

includes a briefing period before the first leg of the duty and a debriefing after the last 

leg of the duty, so the actual rest time for the crew starts only after the debrief of the 

previous duty and ends before the briefing of the next duty. The Constraint (2.3) 

ensures that the departure time of the first leg in the next duty allows sufficient time 

for the crew to be debriefed for the previous duty, to rest and to be briefed for the next 

duty. 

Constraints (2.4) and (2.5) ensure that the elapsed time, which is the duration of a duty, 

is within the permitted limits. Constraint (2.4) is for duties that start before TD, and it 

ensures that the different components of the elapsed time added together does not 

exceed the limit. TD is a specific time, for instance 0600 hours, where crew that starts 

their duty before this time is only limited to fly a certain amount of time, and crew 

with duty starting after this time is allowed to fly for a slightly longer duration. 

Constraint (2.5) is a similar constraint to constraint (2.4) for duties that start after TD. 

To simplify the problem, Constraint (2.6) is formulated to restrict duties starting after 

TD to its time interval such that if the departure time of the originally given flight 

schedule is after TD, the adjusted departure time should also be after TD. 

Constraint (2.7) is to ensure that the aircraft will be able to turn to the next leg in its 

rotation in the case where there is no scheduled maintenance between the two legs. 
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This ensures that the next leg in the rotation of the aircraft leaves later than τAturn after 

the arrival of the previous leg. For a rotation with a scheduled maintenance between 

the two legs, constraint (2.8) ensures that the next leg in the rotation of the aircraft 

leaves later than τM,i after the arrival of the previous leg. 

Certain stations are not opened throughout the night; they have a limit on earliest time 

a flight can depart and the latest time a flight can arrive a station, constraints (2.9) and 

(2.10) takes care of the earliest departure and the latest arrival of each flight at a station 

respectively. 

The optimal departure time, ix , which is of interest to us, given in terms of the 

originally planned scheduled departure time is given as follows 

 iii xx ∆+=  

where  

ix is the scheduled departure time of the original schedule 

i∆ is the shift in the departure time of the improved schedule from the original 

schedule 

Equivalently, problem P1 can be represented by problem P2 by replacing the original 

scheduled departure time with the above expression.  

Problem P2 

Objective function 

 )ˆ(,),ˆ(),ˆ(min 21 ∆∆∆ nfff K  
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Subject to: 

 PjjPconniBii Cjixx ∈∀∆+≤++∆+ ),(, ττ  

 
1, ),(

CjjCconniBii Cjixx ∈∀∆+≤++∆+ ττ  

 
2, ),(

CjjBRDrestDEiBii Cjixx ∈∀∆+≤++++∆+ ττττ  

 
bbDDEBRdfdfdlBdldl Ddxx ∈∀≤++∆−−+∆+ max,)()()(,)()( ττττ  

 
aaDDEBRdfdfdlBdldl Ddxx ∈∀≤++∆−−+∆+ max,)()()(,)()( ττττ  

 
aDBRdfdf DdTx ∈∀>−∆+ τ)()(  

 
1, ),(

AjjAturniBii Cjixx ∈∀∆+≤++∆+ ττ  

 
2,, ),(

AjjiMiBii Cjixx ∈∀∆+≤++∆+ ττ  

 SssLiTx DsEii ∈∈∀≥∆+  and )(,  

 SssLiTx AsLiBii ∈∈∀≤+∆+  and )(,,τ  

In problem P2, the objective of the problem is altered to minimizing several, )ˆ(∆if  

simultaneously. The decision variable ∆̂  is a vector of decision variables, 

},...,,{ˆ
21 Q∆∆∆=∆ such that each ∆i is the shift in the departure time of the improved 

schedule from the original schedule. 

The following chapters propose a solution procedure to Problem P2 solve the multi-

objective optimization problem of improving the flight schedule by using multi-

objective genetic algorithms (MOGA), which are the combinations of genetic 

algorithms (GA) and Pareto optimization. 
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4  SOLUTION APPROACH 

In this chapter, we propose a procedure of applying the approach of genetic algorithms 

to find the non-dominated solutions in the Pareto front of the multi-objective 

optimization problem that was described. The different components of the genetic 

algorithms are detailed followed by a description of the overall procedure. Before the 

solution procedure is introduced, we introduce the fundamentals of multi-objective 

optimization along with an overview of genetic algorithms. A description of the 

advantages of applying genetic algorithms to multi-objective problems is also provided, 

together with its differences from classical search procedures.   

4.1 Multi-objective Optimization 

Most real-world engineering optimization problems are multi-objective in nature, they 

normally have several objectives that must be satisfied at the same time. 

The multi-objective optimization problem is the problem of simultaneously optimizing 

the n objectives. A multi-objective optimization problem in its general form can be 

written as: 

 Minimize )ˆ(,),ˆ(2),ˆ(1 xnfxfxf K  

 Subject to mjxjg ,...,2,1,0)ˆ( =≤  

where { }Qxxxx ,...,,ˆ 21=  is the vector of decision variables, and Q is the number of 

decision variables. 

In a multi-objective optimization problem, multiple objective functions need to be 

optimized simultaneously. As such, the notion of “optimum” has to be re-defined in 



 33

this context and instead of aiming to find a single solution, the objective is to produce 

a set of good compromises or from which the decision maker will select one. This is 

because in the case of multiple objectives there does not necessarily exist a solution 

that is best with respect to all objectives because of incommensurability and 

conflicting objectives. A solution may be best in one objective but worst in another. 

Therefore, there usually exist a set of solutions for the multi-objective case which 

cannot simply be compared with each other. Hence, for a multi-objective optimization 

problem, we seek a set of non-dominated, alternative solutions known as the Pareto-

optimal set, as introduced by Pareto (1896). Pareto-optimal solutions are also known as 

efficient, non-dominated or non-inferior solutions; and the set of Pareto-optimal 

solution are also called the efficient frontier or trade-off surface. 

 Assuming a minimization problem, a given solution vector },,{ˆ 1 Quuu K= is said to 

dominate another solution vector },,{ˆ 1 Qvvv K= if and only if û  is better than v̂  in at 

least one objective. Figure 4.1 shows an illustration of Pareto dominance for a two-

objective problem, where both objectives are to be minimized.  

Figure 4.1 A population of five solutions 
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Five solutions with different objective function values are shown in the figure. If 

solutions 1 and 4 are compared, we observe that solution 1 is better than solution 4 in 

both objective values af  and bf , hence, solution 1 dominates solution 4. Comparing 

another pair of solutions, solutions 1 and 5, solution 1 is better than solution 5 in 

objective value af  and equal in terms of objective value bf . Since solution 1 is better 

in at least one objective, solution 1 is said to dominate solution 5. Considering yet 

another pair of solutions 1 and 2, solution 1 is better than solution 2 in objective 

value bf , but solution 2 is better than solution 1 in objective value af . As the condition 

is not satisfied, solutions 1 and 2 do not dominate each other.  

A solution vector û is said to be Pareto-optimal if there does not exist another solution 

vector v̂  such that )ˆ()ˆ( vfuf ii ≤  for all ni ,...2,1=  and )ˆ()ˆ( vfuf jj <  for at least one 

index j. Referring to the population of solutions in Figure 4.1, it is easy to see that 

solutions 1, 2 and 3 are not dominated by any other solutions, thus they are considered 

Pareto-optimal in this population. 

Figure 4.2 Approaching the Pareto front for a two-objective problem 

Each point in Pareto-optimal set is optimal as no improvement can be achieved in one 

vector component that does not lead to degradation in at least one of the remaining 

fb (minimize) 

fa (minimize) 

Solution to be 
improved 
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components. Hence, none of the solutions in the non-dominated set is absolutely better 

than any other, any one of them is an acceptable solution. For a two-objective problem, 

to improve on the objective function values, the solutions will move in the general 

directions as indicated in Figure 4.2. 

Over the years, a number of techniques were developed to deal with multi-objective 

optimization problems. However, it was only until recently, that researchers realized 

the potential of evolutionary algorithms in this area. The idea of applying evolutionary 

algorithms to multi-objective problems was first introduced by Rosenberg (1967), but 

this research area remained unexplored until recently.  

4.2 Multi-objective Genetic Algorithms 

4.2.1 Genetic Algorithms  

Genetic algorithms (GAs) were formally introduced in the United States in the 1970s 

by John Holland at University of Michigan. Genetic Algorithms or Evolutionary 

algorithms are search and optimization procedures that are inspired by the principles of 

natural evolution.  

The genetic algorithm maintains a population of individuals, where each individual or 

chromosome represents a potential solution to the problem. Each chromosome may 

contain a vector of decision variables, and each of these is known as the gene. GA is a 

method for moving from one population to another by using some form of natural 

selection with genetics-inspired operators. Each chromosome is evaluated according to 

some criteria, rating them in terms of their fitness. Some chromosomes are selected to 

undergo genetic operations of crossover and mutation which creates new chromosomes 

by combining parts from two chromosomes. The selection operator chooses those 

chromosomes in the population that will be allowed to reproduce, and on average, the 
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fitter chromosomes produce more offspring than the less fit ones. After several 

generations, the algorithm converges to a solution which hopefully represents an 

optimal solution. 

The steps involved for the "search for solution" using a GA are 

• Generate a set of candidate solutions as initial solutions 

• Evaluate the candidate solutions according to some fitness criteria  

• Based on the fitness, select candidates (parents) that will undergo reproduction 

• Produce further variants by using genetic operators on the selected candidates 

There are two important issues with respect to search strategies: exploiting the best 

solution and exploring the search space. Through selecting the fitter chromosomes as 

parents to be reproduced, the genetic algorithms provide a directed random search in 

complex landscapes, thus exploiting the best solutions. Exploration of the search space 

is achieved through crossover and mutation, where genetic operators perform 

essentially a blind search toward the desirable area of the solution space.  

4.2.2 Multi-Objective Genetic Algorithms 

During the last two decades, evolutionary approaches, in particular genetic algorithms 

have received considerable attention as an approach to solving multi-objective 

optimization problem. Classical search and optimization algorithms only use a single 

solution in each iteration; in contrast, genetic algorithms use a population of solutions. 

By involving a population of solutions in each iteration, the outcome of a genetic 

algorithm is also a population of solutions. If an optimization problem has a single 

optimum, genetic algorithm population members can be expected to converge toward 
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the optimum solution. However, if an optimization problem has multiple optimal 

solutions, a GA can be used to capture multiple optimal solutions in its final 

population.  

The basic feature of genetic algorithms is the multiple directional and global searches, 

in which a population of potential solutions is maintained from generation to 

generation. By dealing simultaneously with a population of possible solutions genetic 

algorithms allow us to find several members of the Pareto optimum set in a single run 

of the algorithm. They do not have any mathematical requirements and can handle all 

types of objective functions and constraints, thus, it can be used for optimization of 

theoretically known, as well as empirically estimated response surfaces. Also, genetic 

algorithms are less susceptible to the shape or continuity of the Pareto front (Coelle, 

2001); they are able to handle very complicated structured multimodal response 

surfaces. 

The first implementation of multi-objective genetic algorithms approach was Vector 

Evaluation Genetic Algorithm (VEGA) by Schaffer (1985). The VEGA algorithm 

differs from the simple GA in the way in which selection is performed. At each 

generation, a number of sub-populations are generated by performing proportional 

selection according to each objective function in turn. For a population with k 

objectives and a population of size M, k sub populations of size M/k each will be 

generated. These sub-populations are then shuffled together to obtain a new population 

of size M, on which the GA will apply the crossover and mutation operators in the 

usual way. 

Goldberg (1989) suggested the idea of Pareto ranking as a means of achieving equal 

reproductive potential for all Pareto individuals. These methods are based on the actual 
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concept of Pareto optimality. The population is ranked on the basis of non-dominated 

individuals. The procedure is as follows. Assign Rank 1 to all non-dominated 

individuals and remove them from contention. Assign Rank 2 to the next set of non-

dominated individuals and again remove them from contention. This process goes on 

until the entire population is ranked. This approach is shown in Figure 4.3, for a simple 

case with two objectives to be minimized simultaneously. 

Figure 4.3 Pareto ranking of a population of solutions 

The rank-based fitness assignment proposed by Fonseca and Fleming (1993) explicitly 

caters to emphasize non-dominated solutions and simultaneously maintains diversity in 

the non-dominated solutions. This approach ranks the individuals according to the 

number of individuals in the current population by which it is dominated. All non-

dominated individuals are assigned Rank 1, and any other individual, i∆̂ , is assigned a 

rank equal to the number of solutions, in , that dominate solution i∆̂  plus one. Thus, 

for solution i∆̂ , the rank assigned is 

 ii nr += 1  

Note that not all ranks are necessarily represented in the population at a particular 

generation. This ranking method is illustrated in Figure 4.4. 
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Figure 4.4 Fonseca’s method of ranking solutions of a multi-objective problem 

Srinivas and Deb (1994) developed the Non-dominated sorting genetic algorithm 

(NSGA). The population is ranked based on Goldberg’s Pareto ranking method. The 

non-dominated individuals are first identified and assigned a large dummy fitness 

value which is proportional to the population size. To maintain diversity in the 

population, these individuals are shared (in decision variable space) with their dummy 

fitness values. After sharing, these non-dominated individuals are ignored temporarily 

and the second non-dominated front in the rest of the population is identified and 

assigned a dummy fitness value that is kept smaller than the minimum shared dummy 

fitness of the previous front. This process is continued until the entire population is 

classified into several fronts.  A stochastic remainder proportionate selection is used to 

reproduce a new generation. Since individuals in the first front have the maximum 

fitness value, they always get more copies than the rest of the population. This allows 

us to search for non-dominated regions, and results in convergence of the population 

toward such regions. Sharing helps to distribute the population over the non-dominated 

region. Some researchers have reported that NSGA has a lower overall performance 

than MOGA, both computationally and in terms of quality of the Pareto fronts 

produced. 
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Horn et al. (1994) proposed the Niched Pareto Genetic Algorithm, which used a 

tournament selection scheme based on Pareto dominance. Two candidates for selection 

are picked a random from a population. A comparison set of individuals are also 

picked randomly from the population. Each candidate is then compared against each 

individual from the comparison set. Two types of out come may occur. First, one 

candidate is dominated by the comparison set and the other is not, in such a case, the 

non-dominated candidate is selected for reproduction. The second outcome is when 

both candidates are either non-dominated or dominated. Here, a sharing method is used 

to choose the winner for reproduction. In the sharing method used, the candidate with 

least niche count is selected as the winner. The niche count is calculated by counting 

the number of individuals in the population within a certain distance from the 

candidate. It was found that the performance of the NPGA method is sensitive several 

parameters. In particular the population size has to be large enough to search 

effectively and to sample the breadth if the Pareto front. It is also sensitive to the size 

of the comparison set which determines the selection pressure. 

4.3 Components of the genetic algorithm 

In this section, several basic components of the genetic algorithms procedure 

developed to solve the problem are described. 

4.3.1 Coding Scheme 

Each candidate solution (or chromosome), which represents a flight schedule, is 

represented as a real-number value vector. The coding scheme that is used to represent 

a chromosome is 

 { }Q∆∆∆=∆ ,...,,ˆ
21  
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where Q is the total number of flights in the entire flight schedule; Q is equivalent to 

the number of decision variables in our problem. Each gene in a chromosome, q∆  is a 

decision variable, corresponding to the shift in the departure time of the improved 

schedule from the original schedule. 

4.3.2 Initialization 

The genetic algorithm starts the search by generating a population of candidate 

solutions, each of which is a feasible flight schedule. Each solution is generated by 

perturbing the genes of the original solution by a small value. Each gene, q∆ , is a 

uniform random number generated within the interval [-Trange, Trange]. The candidate 

solution will then be  

 { }Q∆∆∆=∆ ,...,,ˆ
21  

4.3.3 Fitness Function and assignment 

The evaluation of a solution in the multi-objective optimization problem is 

determining the objective function value for each of the objectives. Thereafter, a 

metric, known as the fitness, must be assigned to the solution based on all the objective 

values. The problem aims to optimize the robustness of the flight schedule, thus, it is 

intuitive that the performance measures, as listed in Chapter 1 will be used as a basis to 

assign the fitness. 

4.3.3.1 Evaluating the chromosomes 

To evaluate a chromosome, which in this case is a flight schedule, we need to study its 

stochastic behaviour when the schedule is submitted to irregular disturbances. As it is, 

airline operation is an extremely involved process which is dependent on many 

different factors, most of which are uncontrollable. The departure time of a flight is not 

only dependent on the availability of the aircraft and crew; it is also highly dependent 
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on external factors such as weather conditions and traffic situation at the airport. Due 

to the complexity of airline operations, testing the performance of a flight schedule by 

evaluating the objectives analytically is not viable; hence, simulation is the best 

approach to evaluate the performance matrix. In this study, SIMAIR 2.0, developed by 

Lee et al. (2003) is employed to evaluate each of the flight schedules suggested by the 

procedure. An elaboration of the simulation model used in SIMAIR 2.0 is given 

Chapter 5. 

In this research, different flight schedules that are generated by our solution procedure 

will be tested by SIMAIR. SIMAIR will simulate the flight schedule and will generate 

the performance matrix, which will in turn be used as our objective function values for 

our multi-objective problem. Multiple replications by SIMAIR will be used to get an 

estimate of the performance of the flight schedule. Hence, while we are solving a 

planning problem of the airline schedule, the objectives are obtained from operations 

via simulation. 

4.3.3.2 Rank-Based Fitness Assignment 

The rank-based fitness assignment proposed by Fonseca and Fleming (1993) is 

employed in this solution procedure. The method of ranking the population of 

solutions is as described in Chapter 4. After ranking the solutions, fitness values are 

assigned to each of the solutions. It is assigned such that a better fitness value is 

allocated to a solution in a better rank i.e. lower rank. Since the ranking procedure 

results in more than one solution in the same rank, the fitness values of the solutions in 

a rank is averaged out. This fitness averaging yields the following assignment of the 

average fitness to any solution i∆̂  where i = 1, ..., N using the following equation: 



 43

)1)((5.0)(
1

1
−−−= ∑

−

=
i

r

k
i rkNF

i

µµ  

Where ri is the rank assigned to solution i∆̂  and µ(k) is the number of solutions in rank 

k. 

This averaged fitness will be used for the parent selection procedure. 

4.3.4 Parent Selection 

The purpose of the parent selection in a genetic algorithm is to give more reproductive 

chances, on the whole, to those population members that are the most fit. By allowing 

the solutions that are fitter to be selected, the algorithm seeks to exploit the best 

solutions in the current population in hope that they will be able to produce offspring 

that are fitter.  The parent selection procedure used here is the traditional Roulette 

wheel parent selection where each parent’s chance of being selected is directly 

proportional to its fitness.  

4.3.5 Crossover and Mutation 

Crossover and mutation is performed after selecting the parents. Its function is to 

produce chromosomes created during the reproduction phase to create new solutions 

that deviate from those of their parents, hence exploring the search space. 

4.3.5.1 Crossover 

Crossover is a process where the genetic material of two parents is recombined to form 

a pair of offspring. In this solution approach, two kinds of crossover are used 

simultaneously, the arithmetic crossover, and the one-point crossover.  

Arithmetic crossover is commonly used for real coded solutions and in multi-objective 

optimization. In arithmetic crossover, random weighted mean of each gene between 

the two parents are computed to generate a new pair of solutions.  
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Let the parent solutions be 

 },...,,{ˆ
,12,11,11 Q∆∆∆=∆  and },...,,{ˆ

,22,21,22 Q∆∆∆=∆  

Thus, the qth gene in ith solution is represented by qi,∆ . 

Let the random weights be 1wx  and 2wx . Applying the first weight, 1wx , the newly 

created gene after arithmetic crossover is  

 ))1(()(' ,2
1

,1
1

,1 q
w

q
w

q xx ∆×−+∆×=∆  

For example, let the parents be 

 } 4 5, 3, {ˆ
1 −=∆  and } 0 4, 2,- {ˆ

2 =∆  

Let the random weights be 1wx  = 0.3 and 2wx  = 0.1. The pair of offspring after 

performing arithmetic crossover will then be 

 }2.1,3.4,5.0{)}0(7.0)4(3.0),4(7.0)5(3.0),2(7.0)3(3.0{'ˆ
1 −−=+−+−+=∆  

 }4.0,1.4,5.1{)}0(9.0)4(1.0),4(9.0)5(1.0),2(9.0)3(1.0{'ˆ
2 −−=+−+−+=∆  

One-point crossover is a means of creating a pair of offspring by exchanging parts of 

the parents after a crossover point. The crossover point is a randomly selected integer, 

xoverptx  in the interval [1, Q]. Referring to the same pair of parents as before, the new 

pair of solutions after performing one-point crossover is 

 { })...,,,...,,'ˆ
,21,2,12,11,11 Qxx xoverptxoverpt ∆∆∆∆∆=∆

+
 

 { })...,,,...,,'ˆ
,11,1,22,21,22 Qxx xoverptxoverpt ∆∆∆∆∆=∆

+
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Let the crossover point be 2 for the arithmetic-crossover example, the pair of offspring 

that are produced is 

 } 0 4, , 3 {'ˆ
1 =∆  

 } 4- 5, , 2- {'ˆ
2 =∆  

4.3.5.2 Mutation 

Mutation maintains population diversity and is performed on each of the new solutions 

generated by the crossover procedure. It is randomly applied to each of the genes in a 

new solution. For each gene, q, a binary random variable, MUTATE
qx , will be generated. 

These random variables will constitute the mask { }MUTATE
Q

MUTATEMUTATEmask xxxx ,...,, 21= . 

If MUTATE
qx is 1, this gene undergoes mutation by generating another random variable 

mutate
qx in the interval [-Tmutate, Tmutate]. Tmutate is a pre-assigned value in which we desire 

the gene to mutate in. 

Let the parent be { }Q∆∆∆=∆ ,...,,ˆ
21 , after mutation, the qth gene, q∆ , would have 

transformed to  

 mutate
q

MUTATE
qqq xx ×+∆=∆'  

For instance, let a solution that will undergo mutation be  

 } 0 4, , 3 {ˆ
1 =∆  

and let the mask for 'ˆ
1∆  be {1, 0, 0}. This means that the first gene in 'ˆ

1∆  will be 

mutated. Let 21 −=mutatex . The result of this mutation is a chromosome with values 
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 } 0 4, , 1 {'ˆ
1 =∆  

4.3.6 Formation of Child Population 

After generating a full set of offspring, the parent population is combined with this set 

of offspring to form what we call a combined population. Thereafter, this combined 

population is ranked and the best will be placed in the child population, which will in 

turn be the parent population for the next generation. By selecting the best of the 

combined population, the algorithm ensures that the best member of the population 

will produce an offspring in the next generation.  

4.3.7 Handling constraints and infeasible solutions 

At every iteration, after each of the offspring is created, it is examined to check if any 

of the constraints is violated. If none of the constraints are violated, the solution is 

feasible and is automatically accepted. However, if one or more constraints are 

violated, the solution cannot be accepted directly. We do not discard the solution 

straight away; instead, we put forward a procedure that will bring infeasible solutions 

back into the feasible region.  

Let the original solution (flight schedule) be x, it should satisfy the set of constraints 

such that 

 

 jj bxA ≤  or   0≤− jj bxA      j = 0, 1, 2, …, m (4.1) 

where m is the number of constraints. 
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The amount of slack in constraint j is bj - Ajx. Let the shift in the departure time of the 

new solution (generated by the GA) from the original schedule be ∆. For the new 

solution to be feasible, it must satisfy 

 0)( ≤−∆+ jj bxA  or   0)( ≤∆+− jjj AbxA  (4.2) 

A constraint j is violated when 

 xAbA jjj −≥∆  (4.3) 

For the solution to be feasible, the LHS of inequality (4.3) cannot be greater 

than xAb jj − . Thus, to bring the infeasible solution back into the feasible region, such 

that each of the constraints is satisfied, we divide the shift, ∆, by the change of the 

most violated constraint. 

Let j* be the index of the most violated constraint such that 
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The new solution (shift) after bringing it back into the feasible region is 
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 (4.4) 

This new feasible solution will be accepted as a new offspring. 

4.4 Overall procedure 

The proposed algorithm stores two populations of solutions at every generation: an 

offspring population and an elite population. The offspring population contains the set 
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of offspring that are generated in each generation, whilst the elite population contains 

the set of elite solutions in the each generation.  

To make a fair comparison between two designs, replications will have to be 

performed by SIMAIR several times on both designs using the same set of random 

seeds. The set of random seeds is essentially the set of numbers that will be used by the 

random number generator of SIMAIR. In this way, for each simulation with the same 

random seed, different solutions are subjected to the same type of disruption 

conditions. In the solution procedure, one can set the number of offspring produced in 

each generation to a huge number, such as several hundreds or thousands. However, if 

that many offspring were produced in each generation, it will be too computationally 

expensive to assess the robustness of the design by using SIMAIR to evaluate each 

offspring through replications for different scenarios. 

The purpose of having two populations of solutions is to reduce the computational 

time spent on evaluating each schedule. Let us denote the population size of the 

offspring population and the elite population as Npop and Nelite respectively, where Npop 

>> Nelite. We also denote Epop and Eelite as the number of replications of simulation to 

estimate the performance of each offspring and each of the solutions in the elite 

population respectively, with Epop << Eelite.  At every generation, Npop offspring are 

generated from the parent population at the current generation. To keep the 

computation time down, SIMAIR evaluate these offspring with only Epop replications, 

that is, for a few disruption scenarios. Thereafter, Nelite designs of the offspring 

population that perform best are extracted and place in the elite population. Each of the 

solutions in the elite population are then replicated in SIMAIR for Eelite times (which 

should be a much larger number than Epop) to estimate the performance of each flight 

schedule. By replicating each of the solutions in the elite population many more times 
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using the same set of random seeds, each design is tested for a variety of disruption 

conditions. If the solution is able to perform relatively well in many different scenarios, 

this solution should be considered as a robust flight schedule. As GA is a stochastic 

search algorithm, the precise estimation of the design is not necessary. By the Pareto 

principle, only the best 15% of the design is significant to us. Thus, extracting the best 

solutions of the offspring to be replicated through iterations ensures that the good 

designs are not lost.  

After the elite population of the current generation is assessed, it is combined with the 

elite population of the previous population and the combined best becomes the new 

elite population. In the same way, the offspring population is combined with the parent 

population and the best solutions are placed into the child population. 

The algorithm can be terminated if the non-dominated chromosomes in the elite 

population remain unchanged for many consecutive populations. 

Our algorithm can be written as follows. 

Step 1 Initialization: Generate an initial population (or parent population) of Npop 

solutions.  

Step 2 Evaluation: Use SIMAIR to estimate the performance of each solution in the 

parent population by replicating Epop times. 

Step 3 Fitness assignment: Assign a fitness value using the rank-based fitness 

assignment procedure to each of the solutions in the parent population.  



 50

Step 4 Parent Selection: Select a pair of parents using the Roulette wheel parent 

selection method, this pair of parents will be used to generate a pair of 

offspring in the next step. 

Step 5 Crossover and mutation: Generate a binary random variable with probability 

PROB_XOVER to determine if crossover is to be applied to the parents. If 

crossover should be performed, determine the type of crossover to performed 

arithmetic crossover or one-point crossover with a 0.5 probability for each of 

them. This will result in a pair of offspring. For each of the solutions, apply 

mutation to the genes. 

Step 6 Feasibility check: For each of the solutions, check if it is feasible, i.e. of any of 

the constraints is violated. For infeasible solutions, apply the procedure to bring 

them back into the feasible region. 

Step 7 Check if the number of offspring is equal to Npop. If there are insufficient 

number of offspring, go to step 4, else, proceed to step 8. 

Step 8 Determine the next elite population: Based on rank, select the best Nelite 

solutions from the newly generated set of offspring, and let this set of solutions 

be the temporary elite population. Evaluate each of the designs in the 

temporary elite population using SIMAIR by replicating it Eelite times. If it is 

the first generation of the algorithm, set the temporary elite population as the 

next elite population. Else, combine the previous elite population with the 

temporary elite population and select the best Nelite to be the next elite 

population. 
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Step 9 Formation of child population. The newly generated offspring and the old 

parent population are combined together and ranked. The best Npop is then 

selected. These solutions will make up the child population. 

Step 10 If the terminating condition is satisfied, end the algorithm. Otherwise, replace 

the parent population by the child population and the previous elite population 

by the next elite population for the next generation and return to step 2. 

An illustration of the generation of the child and elite population at every generation is 

shown in Figure 4.5. 

Figure 4.5 Update of the child and elite population 
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5 SIMULATION STUDY 

The simulation model that is used to evaluate the robustness of flight schedules 

generated by the solution procedure is ‘SIMAIR 2.0’. SIMAIR 2.0 is a discrete 

simulation software developed by Lee et al. (2003), it is a C++ simulation tool that 

models the airline operations. SIMAIR 2.0 allows us to simulate the stochastic 

behaviour of airline operations when the flight schedule is subjected to disruptions. 

The output of the simulation is a set of performance matrix that can be used to assess 

the robustness of a flight schedule, which are essentially the objectives of our multi-

objective problem. 

A flight schedule is considered robust, as defined, if it is able to perform relatively well 

in various different situations of disruption. Different distributions for durations such 

as gate delay and probabilities such as probability of unscheduled maintenance are 

generated in SIMAIR by a random number generator using random seeds. By using 

different random seeds, SIMAIR simulates different disruption scenarios; each random 

seed corresponds to one disruption case. Hence, SIMAIR may return a different set of 

performance matrix each time the same design is evaluated with different random seed. 

When a flight schedule outperforms the others in a particular seed number, we cannot 

conclude that the schedule is robust as it is merely better in one scenario. Only when a 

solution is better than the rest of solutions in a variety of scenarios, can we infer that 

the solution is a superior solution. Thus SIMAIR allows us to replicate the simulation 

several times for one flight schedule, giving a good estimate of the performance of 

each solution. 
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5.1 Overview of SIMAIR 2.0 

SIMAIR provides a means for devising and evaluating various airline recovery 

mechanisms to handle disruptions, and can also be used as a tool to evaluate the 

performance of a given schedule of operations.  

A simplified overview of the operational SIMAIR model is shown in Figure 5.1. The 

inputs to SIMAIR are the flight schedule and the plan. The flight schedule is made up 

of legs that the airline will fly with its fleet and crew. The flight plan of an airline is the 

solution to the aircraft rotation and crew assignment problem.  

Figure 5.1 An overview of the operational SIMAIR model 

The simulation module is solely involved in simulating operations. It is made up of a 

few components, such as a future event list, an event scheduler, and a simulation clock. 

The stochastic aspects of the simulation like gate delays, and unscheduled maintenance 

are handled using a probability distribution.  

The controller module plays the role of schedule legality checker. The controller is 

called at different stages of the simulation to check for schedule legality, ensuring that 

the aircraft and crew can fly. If legality is violated, this module will call upon the 

recovery to suggest a legal flight schedule.  
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Recovery policies are different methods or policies airlines use to deal with disruptions 

or irregularities. After the recovery module comes up with an alternate plan, the 

controller module will first check for legality of the proposed plan, and then implement 

the changes recommended if the proposed alternative is legal.  

The performance matrix is a matrix consisting of the different measures that can be 

used to quantify the performance of a flight schedule. A list of some of the 

performance measure that is computed by SIMAIR is given in the next section. 

SIMAIR is conceptualized and organized in a modular way that allows, as much as 

possible, the ease of integration of recovery modules written by different researchers or 

airlines. It also allows for inclusion of different crew and aircraft legality rules, making 

it easier to customize SIMAIR for simulating the operations of any specific airline 

with specific fleet and crew requirements.  

5.1.1 Simulation module 

The simulation module models the plane’s operation as a sequence of events. One 

event triggers another leading to a simulation of airline operations. Each leg in the 

schedule can be decomposed according to seven events, which are determined by the 

queuing network as shown in Figure 5.2. Details of each event are as follows. 

• Scheduled Departure Event. Pilot and passenger scheduled to depart from the 

gate. 

• Depart Gate Event. Plane pushes away from the gate and begins to taxi to the 

runway. 

• Enter Runway Queue Event. Plane enters the runway queue of the departure 

station. 
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• Leave Ground Event. Plane reaches the front of the runway queue and begins 

its takeoff. 

• Arrive Airspace Event. Plane arrives at the airspace of the arrival station and 

enters the airspace queue at that station. 

• Touch Down Event. Plane reaches the front of the airspace queue and begins 

to land. 

• Arrive Gate Event. Plane reaches the gate at the arrival station. 

Figure 5.2 Decomposition of a leg 

In addition to the seven events which make up the components of a leg, there are five 

additional events. 

• Enter Major Unscheduled Maintenance Event. Plane is required to undergo 

major unscheduled maintenance. It is a chance event that is generated after the 

depart gate event. 
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• Enter Minor Unscheduled Maintenance Event. Same as the Enter major 

unscheduled maintenance event, except that the duration generated for the 

unscheduled maintenance is much shorter. 

• Leave Major Unscheduled Maintenance Event. This event is generated after 

plane undergoes major unscheduled maintenance, and signals the simulation 

module that the plane is now ready to fly again. 

• Leave Minor Unscheduled Maintenance Event. Similar to the Leave major 

unscheduled maintenance, except that it is generated after the plane undergoes 

minor unscheduled maintenance. 

• Service Rate Event. This is an event that changes the service rate of runways 

of airports simulated. This event changes the duration that a plane needs to take 

off and land. When the service rate is increases, this means that more planes 

can take off or land with a same time interval. In case of service rate event 

dropping to zero, the airport is closed and no planes can take off or land. The 

current version of SIMAIR does not explicitly model the effect of other airlines 

or weather. Such effects are reflected as a change in service rate of the airport. 

The SIMAIR model describes the operation of a particular airline or a particular fleet 

of an airline. The effect that other airlines and weather have on the congestion of an 

airport is modelled as the service rate of the airport.  

At each station, planes are modelled to fly-in and fly-out as a first-in-first-out queue.  

To simulate this action, a runway queue and airspace queue are modelled. The runway 

queue is for the aircraft beginning their flight that need the runway for takeoff and the 

airspace queue is for aircraft that will need the runway to land. These queues are 
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sequences of airplanes that are served at a rate equivalent to that of the service rate of 

the airport, which in-turn depends on weather and congestion at that particular airport. 

The queues are assumed to have infinite capacity. 

SIMAIR generates random variables for ground time (duration of time between Depart 

Gate Event and Enter Runway Queue Event), block time (duration of time between 

Leave Ground Event and Arrive Airspace Event) and unscheduled maintenance 

duration. 

5.1.2 Controller Module 

The simulation module, in the course of execution, calls the controller module at the 

beginning of every event. The controller module accounts for rules and regulations 

enforced by bodies like the FAA by introducing the concept of legality. Airline 

operations are often governed by mandatory rules, such as those proposed by the FAA 

and those agreed upon by crew unions, regarding the deployment of planes and crew 

respectively, in operations. Besides regulations imposed upon the airline, there are also 

many other constraints that have to be met before an aircraft can be considered legal to 

takeoff. The controller also checks for the violations of these constraints. One such 

constraint is to ensure that the aircraft that will be used to fly the leg is available at the 

origin airport. 

Each event in the simulation is associated with a corresponding controller in SIMAIR. 

On occurrence of an event, the corresponding controller checks for the legality of the 

current schedule. For example, at schedule departure event, one might want to check 

aircraft legality, for example, whether the crew flying the leg is available. 

Two types of illegality are identified by the controller module: Immediate illegality 

and future illegality. Immediate illegality will render the next leg infeasible while 
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future illegality will only cause a problem some time in the future, if the simulation 

continues as it is. 

In the event of illegalities, the controller module will call the recovery module to fix 

the problem. The controller module will pass the necessary information, such as the 

type of illegality encountered, the plane or crew involved in the illegality, etc., to the 

recovery module to allow it to come up with a new flight schedule that is legal.  

The controller module is also responsible for checking the feasibility of the proposed 

changes to the schedule recommended by the recovery module. Some recovery 

policies might choose to ignore future illegalities passed from the controller module, 

and only fix the problem for immediate illegalities. Other recovery policies might 

prefer a “proactive” approach and fix the illegality as soon as it appears (without 

hindering the immediate execution of the simulation). Since SIMAIR is to be used by 

different recovery policies, provisions are made such that the controller module will 

only make sure that the proposed changes ensure that the immediate next leg is legal. 

If it is not, the controller module will call the recovery module again. The controller 

module will not call the recovery module again if only future illegality is encountered. 

Once the proposed changes by the recovery module are accepted, the controller 

module will have the additional role of implementing the changes to the operational 

schedule. 

Table 5-1 Parameters used in the 8-in24 hours rule 

Scheduled Aloft 
within 24 hours 

Hours of 
Scheduled Rest

Minimum hours 
of reduced rest 

Hours of 
compensatory rest

< 8 hours ≥  9.5 8 10 
8 < blockTime < 9 ≥  10 8 11 

> 9 hours ≥  11 9 12 
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The operational crew legality rules that are checked by controller module include the 

8-in-24 hours rule, the 30 hours in 7 days rule and the maximum duty duration rule.  

The 8-in-24 hours rule is a rule that restricts the airline from making any crew fly for 

more than 8 hours in any 24 hour time window. However, this rule can be relaxed in 

operations the crew can fly for a longer duration provided that he is given extra rest at 

the end of the duty. The parameters used in the 8-in-24 hours rule are given in Table 

5-1. The schedule aloft is the actual flying time of a crew in a duty, the hours of 

scheduled rest is the amount of rest the crew is originally entitled to, the minimum 

hours of reduced rest is the minimum number of hours the duration of rest given to the 

crew can be reduced to and the hours of compensatory rest is the duration of rest that 

has to be given to the crew if his previous rest was reduced to a reduced rest. 

The 30 hours in 7 days rule is a much simpler rule that is similar to the 8-in24 rule. It 

basically limits the flying time of any crew member to a maximum of 30 hours for a 

window of 7 calendar days. 

Maximum duty duration is enforced on every duty that a crew performs. If the crew 

starts his duty before 0600 hours, he can fly up to a maximum of 10 hours, while if he 

starts on or after 0600 hours, he can fly up to a maximum of 12.5 hours. 

5.1.3 Recovery Module 

A general framework for the recovery module has been established in SIMAIR. 

Currently, a simple default recovery policy is in place, but users can substitute their 

recovery policies by following the general framework. 
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The default recovery policy in place utilizes a set of simple heuristics to recover from 

the disruptions, and is mostly concerned with resolving immediate illegalities. The set 

of recovery actions used are: 

• Use of reserve crew in event regular crew unable to fly the next leg. 

• Deadheading of regular crew to crew bases. 

• Pushback of flights when the delay is lower than a threshold and still maintains 

schedule feasibility. 

• Cancellation of several flights or short cycle cancellation of flights in the event 

that pushback is infeasible. 

• Diverting aircraft in the air to alternative airports when destination airport is 

closed, or aircraft are about to run out of fuel. 

• Putting legs “on hold” when a major disruption occurs, such as airport closed 

down. Flights are prevented from continuing, and only released from “on hold” 

status when situation recovers i.e. the airport reopens. 

• Ferrying of aircraft to stations with maintenance capability to ensure 

maintenance feasibility. 

Conceivably, users of SIMAIR can use some other options to recover, notably 

utilization of spare aircraft at certain airports, or aircraft swapping. These recovery 

actions can be coded into SIMAIR. 
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5.1.4 Performance Measures 

A series of performance metrics used in evaluating the schedule have been coded into 

SIMAIR. The output data that are collected at the end of simulation includes a set of 

summarized data and raw data on each of the stations, flight legs, crew and group of 

passengers. 

For each station in the system, SIMAIR keeps track of the number of flights that are 

on-time and the number of cancelled flights. 

Summarized data for flight legs include information such as the number of legs flown, 

number of legs cancelled and number of legs that are on-time. Also provided, is the 

frequency of legs that are late for less than fifteen minutes, between fifteen and thirty 

minutes etc. 

Summarized data for crew on the other hand, contains information on the frequency 

that different crew legality rules are violated, the number of times reserve crew are 

called upon to replace a regular crew and the number of times crew are deadheaded. 

Also recorded is the operational crew costs (FTC) of the crew. 

Passengers that fly on the same series of flights from an origin to a destination are said 

to be on the same passenger itinerary. In the summary of passenger data, the number of 

passengers that missed their connections, number of passengers that are inconvenience, 

the number of itineraries that are disrupted and the lateness of passengers are kept 

track off. 

SIMAIR also keeps a record of all the raw data. The raw data contains the unprocessed 

information about each leg categorized into under different classes, by the airports that 

are utilized, the aircraft and crew that are used to fly the leg and by the passenger 
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itinerary that contains the legs. These information consist of the details of each leg that 

has flown, the time of the occurrence of each of the events such as the scheduled 

departure event and unscheduled maintenance event. The raw data are collected to 

allow users to trace the various events that had happened to each leg. The provision of 

these raw data gives the user the flexibility to process the data into statistics that are 

meaningful to them. 

5.2 Measure of Robustness 

In this study, we optimized two objectives of the robustness is considered; the 

operational FTC and the percentage of flight delayed. SIMAIR is employed to evaluate 

these two measures of robustness for each of the flight schedules generated by the 

solution procedure. The proposed solution approach can however be extended to 

optimize more than two objectives simultaneously. 

5.2.1 Operational FTC 

The operational FTC (flight-time-credit) is used by most airlines in United States to 

assess the operational cost of a crew schedule.  FTC is the difference between the 

number of minutes paid and the number of minutes flown, as a percentage of the 

number of minutes flown, defined as 

 %100
flytime

flytime - minutes)credit -and-(pay  FTC ×=  

The number of pay-and-credit minutes that an individual crew accumulates is referred 

to as the crew cost. For each leg f, let originalblock(f) be the originally planned block 

time leg f. Let elapsed be the planned elapsed time of duty d. Let re be a fraction 

representing the rate of pay for the elapsed time, and let mgd be the minimum 

guarantee for a duty. The planned duty cost of duty d is assumed to be  
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ded mgdrfb ,elapse),(block originalmax  

Let TAFBp be the planned time away from base of pairing p. Let rt be a fraction 

representing the rate of pay of TAFB. Let mgp be a minimum guarantee per duty in a 

pairing, and let numdutiesp be the number of duties in pairing p. The planned pairing 

cost of pairing p is 

 








××= ∑
∈pd

pptdp numdutiesmgpTAFBrbc ,,max  

Vance et al. (1997) use values of 300 and,
7
2,0,

7
4

==== mgprmgdr te . 

One of the methods of computing the actual pairing cost is described here.  

Operational duty cost of a duty d, is given by 
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ded mgdrfb ,elapse),(blockmax'  

where block(f) is the operational block time of leg f, and elapsed is the operational 

elapsed time of duty d. 

Operational pairing cost of pairing p is given by 

 








××= ∑
∈pd

pptdp numdutiesmgpTAFBrbc ,,max'  

where TAFBp is the operational time away from base of pairing p. 

The actual pairing cost of the pairing p is 



 64

 { }',max~
ppp ccc =  

Let P be the set of all pairings in a crew schedule, the actual number of pay-and-credit 

minutes is then given by 

 ∑
∈Pp

pc~  

5.2.2 Operational Percentage of Flights Delayed 

The percentage of flights delayed serves as a measure of timeliness of flights. A flight 

is considered late or delayed if it arrives after fifteen minutes of it scheduled arrival 

time. Cancelled legs are also considered late. This percentage is given by 

 
flights  scheduled  ofnumber    total

cancelled      timescheduledafter    minutes  15 arrving  flights delayed % +
=  

5.3 Test Data 

Figure 5.3 Graphical representation of flight network used in test data 

In this thesis, we generated three test data sets (Test Data A, B and C) for evaluating 

the performance of our solution procedure. Each test data set consists of three 

components, the flight schedule, aircraft rotation and crew pairing. The test data sets 
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have the same flight schedule and aircraft rotation and differ in the crew pairing and 

parameters used. Here, we provide a brief description of how our test data sets were 

generated. 

5.3.1 Generating the Flight Schedule and Aircraft Rotation 

A typical American airline has several fleet types and flies several hundreds of 

domestic legs everyday using these fleets. In this thesis, the flight schedule that was 

used as our test data sets is a subset of the flight schedule which was extracted from 

one of the American Airlines. The original flight network had a hub-and-spoke 

network structure serving many cities around US; most of the flight legs fly in and out 

of the hub. To arrive at the flight schedule used as our test data, we selected the flight 

legs that were flown by one particular fleet type to be included in our flight schedule. 

A graphical representation of the approximate geographical location of the airports 

selected for our test data sets is shown in Figure 5.3. Most of the flights fly in and out 

of the hub, only several flights in a day are point to point flights that do not pass 

through the hub. The airline flies the same legs everyday of the week, thus, our 

schedule is a week long flight schedule. 63 flights are scheduled each day, making up a 

total of 441 flights in seven days.  

5.3.2 Generating the Crew Schedule 

The difference between the three sets of test data lies in the crew pairing structure. 

These crew pairings were constructed manually, observing all the legality rules of the 

crew. 

Test Data A 

The characteristics of this set of crew pairings is such that each duty consists of an 

average of two flight legs. Since the flight network has a hub-and-spoke structure, we 
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assign a crew to two consecutive legs that fly in and out of the hub. Figure 5.4 shows 

examples of how the crew is assigned to a flight. Leg 1 departs city A at 0620 hrs and 

arrives at HUB at 0735hrs while leg 25 departs HUB at 0855hrs, arriving city A at 

1000hrs. The crew legality rules (e.g. crew connecting time at the HUB within 

permissible limits and total flying time within limits) were checked to be non-violating, 

thus leg 1 and leg 25 were assigned to the same crew. Another example is assigning 

flight legs 23 and 10 to the same crew.  

By assigning crew manually using the above method for our week long flight schedule, 

126 crew members including pilots and first officers were scheduled to fly 63 pairings, 

consisting of a total of 203 duties.  

Figure 5.4 Time representation of flight schedule used in test data A 

The input files for this set of test data can be found in Appendix A. 

Table 5-2 Crew structure for test data sets 

 Test Data A Test Data B 
No. of Crew members 126 110 
No. of Pairings 63 55 
No. of Duties 203 161 
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Test Data B 

In test data B, instead of flying an average of two legs a day, most of the crew flew 

three legs in a day and the pairings lasted three or four days. Figure 5.5 shows the 

timeline representation of the flight schedule used in test data B and the crew assigned 

to the flight legs. Legs 1, 25 and 3 are assigned to the same crew while legs 19, 27 and 

20 are assigned to another crew. With each crew flying more legs each day, fewer crew 

members were needed. The number of crew members, number of pairings and number 

of duties are compared against the original test data in Error! Not a valid bookmark 

self-reference.. Crew duties and pairings were created in such a way, to investigate 

how FTC is affected by the structure of crew duties and if more improvements can be 

achieved in terms of the non-dominated solutions. 

Figure 5.5 Time representation of flight schedule used in test data B 

Test Data C 

Test Data C was generated after the results for test data A has been obtained. They 

have the same flight schedule and aircraft rotation, and the difference is parameters 

used in the computation of FTC. The motivation behind adjusting the parameters of 

FTC is to investigate if a change in these parameters would result in different values 
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for the final computed FTC and whether this would lead to better solutions in terms of 

the two objectives that were optimized. A comparison between the parameters used is 

given in Table 5-3.  

Table 5-3 Set of Parameters used to compute FTC 

Test Data A Test Data C 
re (fraction representing the 

rate of pay for the elapsed time)
4/7 5/9 

rt(fraction representing the 
rate of pay of TAFB)

2/7 2/7 

mgd(minimum guarantee 
for a duty)

0 250 

mgp (minimum guarantee 
per duty in a pairing)

300 325 

The adjustment in parameter used to compute FTC is based on the results that were 

obtained for Test Data A (refer to Chapter 6). In the results for Test Data A, pairing 

cost for the extracted pairing is 
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It was also noted that for most of the pairings, TAFB had the highest value. Thus to 

make the last component comparable, mgd was raised from 300 to 325.  

 Duty costs for each of duty in the pairing can be computed by 

 








×= ∑
∈df

ded mgdrfb ,elapse),(block originalmax  

For each duty in pairing 1907, the values of each component are displayed in Table 5-4. 

Similarly, the second component, which is dependent on the elapsed time of each duty 
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has the highest value; this is also true for most other duties in other pairings. In Test 

Data C, re is lowered from 4/7 to 5/9 and mgd is given a value of 250. 

Table 5-4 Computation of each duty cost in pairing 1907 for Test Data A 

 )(block original f delapse  der elapse× mgd db  
Duty 1 238 693 396 0 396 
Duty 2 165 520 297 0 297 
Duty 3 168 514 294 0 294 
Duty 4 161 512 293 0 293 

By changing the values of the parameters used to compute FTC. In this way, the values 

of the three components for duty cost and pairing cost become more competitive. 

5.4 Parameter Setting 

Table 5-5 Values of Parameters used in solution procedure 

Symbol Description Value 
Npop Number of solutions in the child population 1000 
Nelite Number of solutions in the elite population 20 
Epop Number of times each design in the child 

population is evaluated 
1 

Eelite Number of times each design in the elite 
population is evaluated 

20 

PROB_XOVER Probability of crossover 0.6 
PROB_MUTATE Probability of mutation 0.2 

Trange The maximum range which each gene of the 
initial population solution is perturbed 

5 minutes 

Tmutate The maximum range which each gene is mutated 3 minutes 

The values of the parameters used for the solution procedure is shown in Table 5-5. 

For the solution procedure to be able to generate sufficient offspring at each generation, 

a value of 1000 was used Npop. Applying the Pareto principle, only the best 15% of the 

design is significant to us, thus is would be meaningful to select 150 of the best 

solutions to be placed in the elite population. Nonetheless, due to time constraint, only 

the best 20 designs were selected for the elite population (Nelite). Each offspring 

generated by the procedure is evaluated by SIMAIR once (Epop), without replicating, 
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and the best designs in the elite population are replicated 20 times (Eelite) by SIMAIR 

to estimate the performance of the schedule. 

For the initial population, each gene (flight departure time) is perturbed up to a 

maximum of 5 minutes earlier or later than the original departure time. At each 

generation, after a pair of parents is selected, they will undergo a crossover with a 

probability of 0.6. After crossover, mutation is performed on each flight departure time 

of the offspring with a probability of 0.2, if mutation is carried out; the departure time 

(gene) can be mutated up to 3 minutes earlier or later then its current departure time. 
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6 RESULTS 

In order to assess the performance of the proposed approach to solve the described 

problem, the approach was tested on the Test Data A and Test Data B that were 

described in the previous chapter. 

6.1 Test Data A 

In the implementation of the solution procedure on the test data, the terminating 

condition was carried out by visual inspection, such that if little or no improved is 

made from one elite population to the next, the Pareto front has been achieved. 

For the set of test data, the procedure was performed for 300 generations where 

improvements on the non-dominated front towards the 300th generation front were 

nominal. Figure 6.1 illustrates the progression of the non-dominated front of the elite 

population from the initial stage up to the 300th generation. The horizontal axis and 

vertical axis on the plots correspond to the values of the operational FTC and the 

operational percentage of flights delayed respectively. The labels of the axes are 

deliberately left out on the diagrams to avoid clutter.  

Since the initial set of elite solutions were basically random perturbations of the 

original schedule, it is not surprising that some of the solutions were inferior to the 

original solution. However, as the genetic algorithm progress in search of better 

solutions it can be seen that the original schedule is dominated by more and more 

solutions. 

It is also noticeable that the set of elite solutions moves in a general direction 

attempting to minimize both of the specified objectives, that is, the solutions moves 

downwards and leftwards through the generations. As such, the non-dominated front 
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also shifts in the same general direction. The solutions on the non-dominated front are 

those that are of interest to the airlines, these solutions can be implemented to achieve 

better performance in operations. The non-dominated front of our final population will 

be examined in greater detail in the next section. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Movement of elite population towards the Pareto front over several 

generations of the Genetic Algorithm 
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700th generation displayed in Figure 6.2. The solution procedure works such that the 

best offspring that are generated in each generation is re-evaluated with different 

disruption conditions (refer to section 4.4). These offspring are then compared with 

those that are already in the elite population, only the best Nelite are kept in the elite 

population. In Figure 6.2, from the 300th generation to the 500th generation and then to 

the 700th generation, only very few (circled in the 300th generation plot) of the 

solutions in the elite population have been outperformed by new offspring generated 

by the parent population. 

Figure 6.2 Elite Population of generations 300, 500 and 700 of the Genetic 

Algorithm (for test data A) 
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6.1.1 Non-dominated front 

An idea solution that is optimal with respect to all objectives in general does not exist 

for a multi-objective problem. Trade-offs must often be made between different 

objective functions. By allowing the optimization of multi-objective, the airline is 

present with the set of non-dominated solutions, which forms the trade-off surface or 

what is known as the efficient frontier. The trade-off surface allows the airline to 

analyze the expense of attempting to reduce one objective on the other, thus be able to 

better decide on the schedule to be implemented. 

 

 

 

 

 

 

Figure 6.3 Comparing solutions in elite population 300 with the original flight 

schedule 

The elite solutions in the final population, population 300 will be analyzed and is 

displayed in Figure 6.3. In particular, three solutions on the solution front are selected 

and highlighted in the figure. Solution 1 and Solution 3 correspond to two extreme 

results on the trade-off surface. By implementing Solution 1, the minimum average 
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Conversely, implementation of Solution 3 will lead to a minimum average percentage 

delay of 31.69 at the expense of a high operational FTC of 159.34.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Rotation 002 of test flight schedule 
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6.1.2 Performance of percentage of flights delayed 

To be able to analyze how an average minimum percentage of flights delayed is 

achieved by Solution 3, a particular rotation (rotation 002) is extracted and shown in 

Figure 6.4. The sequence of flights in this rotation is listed in Table 6-1. Under each 

set of solution, the “depT” is the new departure time as suggested by the solution. 

“shift” is the shift in the departure time (in minutes) for that flight, a positive value 

indicates that the flight is shifted to a time later than the original and vice versa. 

“∆slack” is the change in slack between the previous flight and the current flight flown 

by this aircraft. A positive value indicates that the slack time between the flights is 

increased and vice versa. For example, in Solution 1, flight 925 is shifted later by two 

minutes and flight 903 is shifted later by four minutes; hence, the overall change in the 

slack time between flights 925 and 903 is an increase by two minutes. 

Table 6-1 Sequence of flight in rotation 002 

 Original   Solution 1  Solution 2   Solution 3 
flight depT   depT shift ∆slack  depT shift ∆slack   depT shift ∆slack
925 0839   0841 2   0839 0    0839 0  
903 1140   1144 4 2  1138 -2 -2   1138 -2 -2 
932 1235   1231 -4 -8  1234 -1 1   1233 -2 0 
962 1435   1436 1 5  1439 4 5   1433 -2 0 
942 1645   1641 0 -1  1641 -4 -8   1640 -5 -3 
955 1840   1844 4 4  1837 -3 1   1838 -2 3 
948 2100   2100 0 -4  2101 1 4   2104 4 6 

To minimize the delay of flights, Solution 3 suggests shifting all the flights earlier, 

except flight 948 which it suggested to be shifted later in time. It may perhaps be due 

to the rush hour from 2000hrs to 2100hrs at the hub which often causes congestion. It 

has also been suggested that a delay at the start of the day could propagate along the 

network affecting the flights that will be flown by the same aircraft or same crew. 

Hence it is essential to augment the slack between these two flights.  
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Solution 3 clearly shows its attempt to minimize the delay by increasing the slack 

between flights 948 and 955 by 6 minutes. Solution 2 only increases the slack by 4 

minutes and Solution 1 on the other hand, actually reduces the slack time. Moreover, 

the “∆slack” column in Table 6-1 for Solution 3 shows a general trend such that the 

change in slack between flights increases as the departure time of the flights get closer 

to the rush hour. Solution 2 does have a similar trend although the increase is not as 

stable. This trend is clearly lacking in Solution 1. This reinforces the point that delay 

propagates along the network, causing more disruption to flight further down the 

network. To minimize the propagation of delay, more slack must be provided between 

all the flights in the rotation when congestion is expected to take place in the later part 

of the day. Thus, Solution 3 attempts to leave as much time allowance as possible 

between flights 955 and 948, resulting in flight 948 being shifted later and flight 955 

earlier, all the other flights that precede flight 955 in the plane’s rotation have also 

been shifted to an earlier time as a result. These can be observed from the flight 

network displayed in Figure 6.4. Solution 1 however, does not exhibit this trend. 

 

 

 

 

 

 

Figure 6.5 Comparing the average delay of flights in rotation 002 
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Figure 6.5 shows the distribution of the average delay for each of the flights in rotation 

002. It is not difficult to notice that for every flight, the delay for Solution 3 is smaller 

than Solution 2, which is in turn, lesser than Solution 1. Clearly, Solution 3 

outperforms Solution 1, Solution 2 and the original solution as well. It is also obvious 

that Solution 1 is not an ideal solution if minimum delay is to be achieved as the delay 

for these flights are greater as compared to the original schedule. 

 

 

 

 

 

 

 

Figure 6.6 Improvement in the delay of flights 
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the plot of the elite population in Figure 6.3, the difference between the average 

percentage of flights delayed for Solution 2 and Solution 3 is only approximately 2%, 

thus it is not surprising that the performance of Solution 2 in terms of the improvement 

in delay of flights is just as good as that of Solution 3. However, the difference 

between the average percentage of flights delayed for Solution 1 as compare to 

Solution 2 and Solution 3 are 7% and 9% respectively, thus it is easy to understand 

that Solution 1 has many flights that have delays of longer duration as compared to the 

original solution. 

Further analysis was carried out on the three selected solutions, by examining the 

tardiness of the flights. Tardiness can be defined as the quality of not adhering to the 

scheduled time, in other words, the lateness of the flights. A plot of the percentage of 

flights late for each of the five minute interval up to 100 minutes is illustrated in Figure 

6.7. On the horizontal axis is the average delay of the flights in minutes, as the 

tardiness is of concern here, an early flight is equivalent to zero minutes late, rather 

than being assigned a negative value. The last column is for the flights that have been 

cancelled, these flight are also considered late. The vertical axis shows the percentage 

of flights that have been delayed for each of the solutions including the original flight 

schedule. Also shown on the same figure, is the cumulate distribution of the 

percentage of delay of the flights for each of five-minute interval. 

Solutions 2 and 3 show improvements of more than 5% for the flights that arrive 

earlier than the scheduled time as shown in the first column. From the cumulative 

distribution plot, it is also clear that Solution 2 and Solution 3 has a higher proportion 

of flights with delay of less than 15 minutes, showing their superiority in achieving a 

minimum average delay. 
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Figure 6.7 Percentage of flights delayed against the delay in minutes (Top). 

Cumulative percentage of delay in minutes for different solutions (Bottom) 
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Figure 6.8 Comparing the shift between the original schedule and the improved 

schedule for crew pairing 1907 
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6.1.3 Performance of operational FTC 

Figure 6.8 is an extraction of a four day long crew pairing, pairing 1907, which is used 

to analyze how operational FTC is minimized in Solution 1. The flights which are 

flown by the crew are listed in Table 6-2. Under each set of solution, the “depT” is the 

new departure time as suggested by the solution. “shift” is the shift in the departure 

time (in minutes) for that flight, a positive value indicates that the flight is shifted to a 

time later than the original and vice versa. The crew starts off with flight 962 and flight 

943 on the first day, followed by 963 and 952 on the second day, 961 and 932 on the 

third and ends off with flight 960 and 929 on the fourth day.  

Table 6-2 The sequence of flights in crew pairing 1907 

 Original  Solution 1  Solution 2   Solution 3 
flight day of dep depT depT shift depT shift  depT shift
962 1 1425  1426 1  1429 4   1423 -2 
943 1 1645  1641 -4  1642 -3   1642 -3 
963 2 1840  1842 2  1836 -4   1842 2 
952 2 2125  2121 -4  2119 -6   2118 -7 
961 3 1040  1040 0  1037 -3   1036 -4 
932 3 1235  1231 -4  1234 -1   1233 -2 
960 4 0640  0645 5  0637 -3   0638 -2 
929 4 0840  0836 -4  0841 1   0840 0 

         
duration of TAFB  reduced by 5  reduced by 3   increased by 2

As defined previously, FTC is the difference between the number of minutes paid and 

the number of minutes flown, as a percentage of the number of minutes flown. Since 

our solution procedure does not alter the block time of flight, the number of minutes 

flown remains constant for different solutions, leaving number of minutes paid the 

only variable across solutions. The number of minutes paid is a sum of all the pairing 

cost. Each pairing cost is in turn dependent on three components, the sum of all the 

duty cost, the time away from base (TAFB) and the number of duties (numduties); It 

takes on the value of the largest component such that 
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××= ∑
∈pd

pptdp numdutiesmgpTAFBrbc ,,max  

bd is the cost of duty d. TAFBp is the time away from base of pairing p and rt is a 

fraction representing the rate of pay of TAFB. mgp is a minimum guarantee per duty in 

a pairing, and numdutiesp be the number of duties in pairing p. (The complete method 

of computing FTC has been discussed in a previous section, some of it is repeated here 

for the reader’s convenience) Using the values suggested by Vance et al. (1997), 

300 and,
7
2

== mgprt . For the original schedule,  

{ } 1200 1567, 1279, max=pc  

It is evident that the value of the second component, TAFB far exceeds the other two 

and is most likely to be selected as the minutes paid. To minimize the FTC Solution 1 

suggest shifting flight 962 later by 1 minute and flight 929 earlier by 4 minutes, by 

doing so, the TAFB will be reduced by a total of five minutes, lowering the FTC. From 

the table, Solution 2 also reduces the TAFB but by a smaller amount of three minutes, 

whilst Solution 3 increases the TAFB by two minutes and hence resulting in a poorer 

FTC performance. 

6.2 Test Data B 

The same solution procedure was implemented on Test Data B for 300 generations, 

using the same set of procedure parameters. The plots of the elite populations are 

shown in Figure 6.9. In the same way, the elite population shifts leftwards and 

downwards after generations, verifying that the solution procedure is able to generated 

better solutions as compare to the original schedule. 
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Figure 6.9 Progression of elite population for Test Data B 

For Test Data B, the elite population for the 300th generation are extracted and shown 

in Figure 6.10 together with the same elite population of Test Data A. In the same way, 

the solution procedure is able to improve on the given flight schedule of test data B. As 
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observed for Test Data A, although none of the solutions in the elite population are 

inferior to the originally provided solution (i.e. the original solution does not dominate 

any of the generated solutions), only three out of the twenty elite solutions in Test Data 

A dominate the original flight schedule. For Test Data B, the elite population for 

generation 300 has generated more than 10 solutions that dominate the original flight 

schedule. The solution procedure has generated better results after 300 generations for 

Test Data B. It is observed that in both sets of solutions, most of the newly generated 

improved solutions have better performance in terms of percentage delay. However, 

comparing the performance of FTC, only a few solutions are better in FTC for Test 

Data A, while more than half of the solutions have lower FTC for Test Data B. Thus, 

most of the improvements for Test Data B were achieved due to a reduction in FTC. A 

probable reason of this result is because on average, there are more flight legs in each 

duty as compare to Test Data A, thus, there might be more room for improvement.  

 

 

 

Figure 6.10 300th Elite population for original test data and test data B 

 

6.2.1 Test Data C 

The solution procedure was implemented on Test Data C for 300 generations, using 

the same set of procedure parameters that was used for Test Data A. The elite 

population for several generations is shown in Figure 6.11. From the progression of the 

elite population for the first 300 generations of Test Data C, it is clear that the solution 
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procedure also works well when the FTC parameters are adjusted. Also, FTC seems to 

be rather insensitive to its parameters; the minimum FTC achieved is slightly more 

than 154, while the minimum FTC for the original test data is just below 154. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Progression of the elite population for Test Data C 
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6.3 Summary 

The solution procedure that was developed in this study to improve the robustness of a 

flight schedule was implemented on three set of flight data to minimize the operational 

FTC and percentage of flights delayed. For all three sets of test data, it was shown that 

the proposed solution procedure was capable obtaining flight schedules that are more 

robust than the given flight schedule in both of the objectives. By implementing the 

procedure, a set of non-dominated solution front can also be obtained. The average 

percentage of flights delayed for the original set of test data can be reduced by up to a 

maximum of approximately 8%, although the operational FTC can only be reduced by 

about 2%. 
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CONCLUSION 

In this thesis, the problem of airline flight schedules being highly sensitive to 

operational disturbances is addressed. A multi-objective model was formulated to 

improve the robustness of an existing flight schedule. By formulating the problem as a 

multi-objective problem, it allows airlines to optimize several different objectives 

simultaneously. An existing flight schedule and plan serves as an input to the 

procedure, our objective is to shift the departure times of each flight so as to achieve 

optimal performance. Thus, robustness of the flight schedule is accomplished by 

determining the optimal the departure times of each of the flight legs.  

The solution procedure is built upon the idea of multi-objective genetic algorithms. By 

using genetic algorithms, a population of solutions can be obtained with a single run of 

the procedure as compared to using classical methods of solving multi-objective 

optimization problems, which results in only one solution each time.  

At each generation of the procedure, a set of new flight schedules are generated; to 

evaluate these new schedules, SIMAIR, a simulation model that models airline 

operations is employed. For a solution to be robust, it has to perform relatively well in 

a number of different situations, implying that each schedule has to be evaluated 

several times, subjecting it to different scenarios each time. However, if this is done, it 

would be too computationally expensive. To deal the computation complexity of 

passing each solution through the simulation model several times, the concept of 

maintaining two populations is introduced. The first population is only evaluated once 

in each generation, and the best solutions are duplicated into the next generation to be 

evaluated repeatedly for different operational situations.  
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The solution is provided in the form of a set of non-dominated solutions, which forms 

the trade-off surface. The trade-off surface allows the airline to analyze the expense of 

attempting to reduce one objective on the other, thus be able to better decide on the 

schedule to be implemented. This solution procedure was implemented onto three sets 

of test data, minimizing the operational FTC and average percentage of flights delayed 

and it was shown that the procedure was able to generate solutions that that were better 

in both objectives. 

This thesis has focused on developing a solution framework and procedure for 

improving the robustness of an existing flight schedule by shifting the departure times 

of each of the flights in the schedule. It was assumed that the aircraft rotation and the 

crew rosters were fixed. Future research into robust flight schedules can investigate on 

how improvements can be made to the schedule by allowing cancellation of flight legs, 

rerouting of aircraft and even rerouting of crew. It can be realized with an integrated 

airline schedule plan and an integrated recovery policy that considers the flight 

schedule, aircraft rotation and crew pairing simultaneously. 

An important factor that we have left out in this study is whether the proposed new 

departure times will have as high a demand as the previous departure time. As noted in 

wells (1997), saleability of a flight is highly sensitive to differences in departure times. 

Thus, further research can be studied to enhance the model by considering the demand 

for each flight at specific times.  
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Appendix A 

Simair.ini file 
 
;This is simair configuration file 
 
[Parameters] 
;SIMULATION_DAY=14 
SIMULATION_DAY=7 
NUM_OF_REPLICATIONS=1 
 
;mode is a enmu type 
;0 is stochastic case 
;1 is deterministic case 
;2 is semi case 
MODE=0 
;random number seed, if not specified it is 1 by default 
RANDOM_SEED=216 
 
 
TRACE_STATION=1 
TRACE_EVENT=1 
;start time of simulation 
START_TIME=20030505 
;performance data collection will only begin after WARM_UP_PERIOD of days 
simulation elapsed 
WARM_UP_PERIOD=2 
 
;Input Files Related 
;set this to "0" if wishes to skip verifier checking, else set 1 
VERIFIER_CHECK=1 
;set this to "0" if wishes to revert back to old leg input format. Default is SSIM format 
SSIM_FORMAT=0 
 
 
 
[Input Files] 
;STATION_FILE=../filesNW2/StationType.txt 
STATION_FILE=../filesNW2/StationTypeCurfew.txt 
FLIGHT_FILE=../filesNW2/legs.txt 
;FLIGHT_FILE=../filesNW2/SSIMlegs.txt 
PLANE_FILE=../filesNW2/planes.txt 
ROTATION_FILE=../filesNW2/rotations.txt 
SERVICE_STATE_FILE=../filesNW2/servicerate.txt 
DISTRIBUTION_FILE=../filesNW2/distributions.txt 
MAINTENANCE_FILE=../filesNW2/maintenance.txt 
ALL_STATION_FILE=../filesNW2/allStations.txt 
CREWBASE_FILE=../filesNW2/crewbase.txt 
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DUTY_FILE=../filesNW2/duty.txt 
PAIRING_FILE=../filesNW2/pairings.txt 
REGULARCREW_FILE=../filesNW2/regularCrew.txt 
RULECONFIG_FILE=../filesNW2/ruleConfig.txt 
 
[Output Files] 
EVENT_LOG_DIR=../filesNW2/event/ 
STATION_LOG_DIR=../filesNW2/station/ 
LEGALITY_LOG_DIR=../filesNW2/legality/ 
PERFMEASURE_LOG_DIR=../filesNW2/performance/ 
 
 
allStations.txt file 
Alanta USA ATL -0400 
Dallas USA DFW -0500 
Detroit USA DTW -0400 
LittleRock USA LIT -0500 
Mci city USA MCI -0500 
Memphis USA MEM -0500 
Msy city USA MSY -0500 
Oklahoma USA OKC -0500 
Vps city USA VPS -0500 
 
 
Crewbase.txt file 
801 1 DFW 
802 1 LIT 
803 1 MCI 
804 1 MSY 
805 1 OKC 
806 1 VPS 
807 1 DTW 
808 1 ATL 
809 1 MEM 
 
 
duty.txt file 
1101 3 0 907 DFW 1 924 MEM 1 908 DFW 1    
1102 3 0 938 MEM 1 909 DFW 1 946 MEM 1    
1201 2 0 916 LIT 1 935 MEM 1       
1202 4 0 917 LIT 1 944 MEM 1 918 LIT 1 948 MEM 1 
1301 4 0 919 MCI 1 927 MEM 1 920 MCI 1 933 MEM 1 
1302 4 0 921 MCI 1 941 MEM 1 922 MCI 1 951 MEM 1 
1401 2 0 953 MSY 1 934 MEM 1       
1402 4 0 954 MSY 1 942 MEM 1 955 MSY 1 947 MEM 1 
1501 4 0 956 OKC 1 928 MEM 1 957 OKC 1 931 MEM 1 
1502 4 0 958 OKC 1 940 MEM 1 959 OKC 1 949 MEM 1 
1601 4 0 960 VPS 1 929 MEM 1 961 VPS 1 932 MEM 1 
1602 4 0 962 VPS 1 943 MEM 1 963 VPS 1 952 MEM 1 
1701 2 0 913 DTW 1 945 MEM 1       



 92

1801 2 0 902 ATL 1 911 DTW 1       
1802 2 0 937 MEM 1 915 DTW 1       
1803 2 0 903 ATL 1 936 MEM 1       
1804 2 0 901 ATL 1 925 MEM 1       
1805 4 0 904 ATL 1 939 MEM 1 906 ATL 1 950 MEM 1 
1901 3 0 926 MEM 1 912 DTW 1 905 ATL 1    
1902 2 0 923 MEM 1 910 DTW 1       
1903 2 0 930 MEM 1 914 DTW 1       
2101 3 0 907 DFW 2 924 MEM 2 908 DFW 2    
2102 3 0 938 MEM 2 909 DFW 2 946 MEM 2    
2201 2 0 916 LIT 2 935 MEM 2       
2202 4 0 917 LIT 2 944 MEM 2 918 LIT 2 948 MEM 2 
2301 4 0 919 MCI 2 927 MEM 2 920 MCI 2 933 MEM 2 
2302 4 0 921 MCI 2 941 MEM 2 922 MCI 2 951 MEM 2 
2401 2 0 953 MSY 2 934 MEM 2       
2402 4 0 954 MSY 2 942 MEM 2 955 MSY 2 947 MEM 2 
2501 4 0 956 OKC 2 928 MEM 2 957 OKC 2 931 MEM 2 
2502 4 0 958 OKC 2 940 MEM 2 959 OKC 2 949 MEM 2 
2601 4 0 960 VPS 2 929 MEM 2 961 VPS 2 932 MEM 2 
2602 4 0 962 VPS 2 943 MEM 2 963 VPS 2 952 MEM 2 
2701 2 0 913 DTW 2 945 MEM 2       
2801 2 0 902 ATL 2 911 DTW 2       
2802 2 0 937 MEM 2 915 DTW 2       
2803 2 0 903 ATL 2 936 MEM 2       
2804 2 0 901 ATL 2 925 MEM 2       
2805 4 0 904 ATL 2 939 MEM 2 906 ATL 2 950 MEM 2 
2901 3 0 926 MEM 2 912 DTW 2 905 ATL 2    
2902 2 0 923 MEM 2 910 DTW 2       
2903 2 0 930 MEM 2 914 DTW 2       
3101 3 0 907 DFW 3 924 MEM 3 908 DFW 3    
3102 3 0 938 MEM 3 909 DFW 3 946 MEM 3    
3201 2 0 916 LIT 3 935 MEM 3       
3202 4 0 917 LIT 3 944 MEM 3 918 LIT 3 948 MEM 3 
3301 4 0 919 MCI 3 927 MEM 3 920 MCI 3 933 MEM 3 
3302 4 0 921 MCI 3 941 MEM 3 922 MCI 3 951 MEM 3 
3401 2 0 953 MSY 3 934 MEM 3       
3402 4 0 954 MSY 3 942 MEM 3 955 MSY 3 947 MEM 3 
3501 4 0 956 OKC 3 928 MEM 3 957 OKC 3 931 MEM 3 
3502 4 0 958 OKC 3 940 MEM 3 959 OKC 3 949 MEM 3 
3601 4 0 960 VPS 3 929 MEM 3 961 VPS 3 932 MEM 3 
3602 4 0 962 VPS 3 943 MEM 3 963 VPS 3 952 MEM 3 
3701 2 0 913 DTW 3 945 MEM 3       
3801 2 0 902 ATL 3 911 DTW 3       
3802 2 0 937 MEM 3 915 DTW 3       
3803 2 0 903 ATL 3 936 MEM 3       
3804 2 0 901 ATL 3 925 MEM 3       
3805 4 0 904 ATL 3 939 MEM 3 906 ATL 3 950 MEM 3 
3901 3 0 926 MEM 3 912 DTW 3 905 ATL 3    
3902 2 0 923 MEM 3 910 DTW 3       
3903 2 0 930 MEM 3 914 DTW 3       
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4101 3 0 907 DFW 4 924 MEM 4 908 DFW 4    
4102 3 0 938 MEM 4 909 DFW 4 946 MEM 4    
4201 2 0 916 LIT 4 935 MEM 4       
4202 4 0 917 LIT 4 944 MEM 4 918 LIT  948 MEM 4 
4301 4 0 919 MCI 4 927 MEM 4 920 MCI  933 MEM 4 
4302 4 0 921 MCI 4 941 MEM 4 922 MCI  951 MEM 4 
4401 2 0 953 MSY 4 934 MEM 4       
4402 4 0 954 MSY 4 942 MEM 4 955 MSY 4 947 MEM 4 
4501 4 0 956 OKC 4 928 MEM 4 957 OKC 4 931 MEM 4 
4502 4 0 958 OKC 4 940 MEM 4 959 OKC 4 949 MEM 4 
4601 4 0 960 VPS 4 929 MEM 4 961 VPS 4 932 MEM 4 
4602 4 0 962 VPS 4 943 MEM 4 963 VPS 4 952 MEM 4 
4701 2 0 913 DTW 4 945 MEM 4       
4801 2 0 902 ATL 4 911 DTW 4       
4802 2 0 937 MEM 4 915 DTW 4       
4803 2 0 903 ATL 4 936 MEM 4       
4804 2 0 901 ATL 4 925 MEM 4       
4805 4 0 904 ATL 4 939 MEM 4 906 ATL 4 950 MEM 4 
4901 3 0 926 MEM 4 912 DTW 4 905 ATL 1 4   
4902 2 0 923 MEM 4 910 DTW 4       
4903 2 0 930 MEM 4 914 DTW 4       
5101 3 0 907 DFW 5 924 MEM 5 908 DFW 5    
5102 3 0 938 MEM 5 909 DFW 5 946 MEM 5    
5201 2 0 916 LIT 5 935 MEM 5       
5202 4 0 917 LIT 5 944 MEM 5 918 LIT 5 948 MEM 5 
5301 4 0 919 MCI 5 927 MEM 5 920 MCI 5 933 MEM 5 
5302 4 0 921 MCI 5 941 MEM 5 922 MCI 5 951 MEM 5 
5401 2 0 953 MSY 5 934 MEM 5       
5402 4 0 954 MSY 5 942 MEM 5 955 MSY 5 947 MEM 5 
5501 4 0 956 OKC 5 928 MEM 5 957 OKC 5 931 MEM 5 
5502 4 0 958 OKC 5 940 MEM 5 959 OKC 5 949 MEM 5 
5601 4 0 960 VPS 5 929 MEM 5 961 VPS 5 932 MEM 5 
5602 4 0 962 VPS 5 943 MEM 5 963 VPS 5 952 MEM 5 
5701 2 0 913 DTW 5 945 MEM 5       
5801 2 0 902 ATL 5 911 DTW 5       
5802 2 0 937 MEM 5 915 DTW 5       
5803 2 0 903 ATL 5 936 MEM 5       
5804 2 0 901 ATL 5 925 MEM 5       
5805 4 0 904 ATL 5 939 MEM 5 906 ATL 5 950 MEM 5 
5901 3 0 926 MEM 5 912 DTW 5 905 ATL 5    
5902 2 0 923 MEM 5 910 DTW 5       
5903 2 0 930 MEM 5 914 DTW 5       
6101 3 0 907 DFW 6 924 MEM 6 908 DFW 6    
6102 3 0 938 MEM 6 909 DFW 6 946 MEM 6    
6201 2 0 916 LIT 6 935 MEM 6       
6202 4 0 917 LIT 6 944 MEM 6 918 LIT 6 948 MEM 6 
6301 4 0 919 MCI 6 927 MEM 6 920 MCI 6 933 MEM 6 
6302 4 0 921 MCI 6 941 MEM 6 922 MCI 6 951 MEM 6 
6401 2 0 953 MSY 6 934 MEM 6       
6402 4 0 954 MSY 6 942 MEM 6 955 MSY 6 947 MEM 6 
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6501 4 0 956 OKC 6 928 MEM 6 957 OKC 6 931 MEM 6 
6502 4 0 958 OKC 6 940 MEM 6 959 OKC 6 949 MEM 6 
6601 4 0 960 VPS 6 929 MEM 6 961 VPS 6 932 MEM 6 
6602 4 0 962 VPS 6 943 MEM 6 963 VPS 6 952 MEM 6 
6701 2 0 913 DTW 6 945 MEM 6       
6801 2 0 902 ATL 6 911 DTW 6       
6802 2 0 937 MEM 6 915 DTW 6       
6803 2 0 903 ATL 6 936 MEM 6       
6804 2 0 901 ATL 6 925 MEM 6       
6805 4 0 904 ATL 6 939 MEM 6 906 ATL 6 950 MEM 6 
6901 3 0 926 MEM 6 912 DTW 6 905 ATL 6    
6902 2 0 923 MEM 6 910 DTW 6       
6903 2 0 930 MEM 6 914 DTW 6       
7101 3 0 907 DFW 7 924 MEM 7 908 DFW 7    
7102 3 0 938 MEM 7 909 DFW 7 946 MEM 7    
7201 2 0 916 LIT 7 935 MEM 7       
7202 4 0 917 LIT 7 944 MEM 7 918 LIT 7 948 MEM 7 
7301 4 0 919 MCI 7 927 MEM 7 920 MCI 7 933 MEM 7 
7302 4 0 921 MCI 7 941 MEM 7 922 MCI 7 951 MEM 7 
7401 2 0 953 MSY 7 934 MEM 7       
7402 4 0 954 MSY 7 942 MEM 7 955 MSY 7 947 MEM 7 
7501 4 0 956 OKC 7 928 MEM 7 957 OKC 7 931 MEM 7 
7502 4 0 958 OKC 7 940 MEM 7 959 OKC 7 949 MEM 7 
7601 4 0 960 VPS 7 929 MEM 7 961 VPS 7 932 MEM 7 
7602 4 0 962 VPS 7 943 MEM 7 963 VPS 7 952 MEM 7 
7701 2 0 913 DTW 7 945 MEM 7       
7801 2 0 902 ATL 7 911 DTW 7       
7802 2 0 937 MEM 7 915 DTW 7       
7803 2 0 903 ATL 7 936 MEM 7       
7804 2 0 901 ATL 7 925 MEM 7       
7805 4 0 904 ATL 7 939 MEM 7 906 ATL 7 950 MEM 7 
7901 3 0 926 MEM 7 912 DTW 7 905 ATL 7    
7902 2 0 923 MEM 7 910 DTW 7       
7903 2 0 930 MEM 7 914 DTW 7       
 
 
legs.txt file 
 
1234567 0700 ATL 0717 0 MEM 901 P 77 
1234567 0834 ATL 1030 0 DTW 902 P 116 
1234567 1140 ATL 1156 0 MEM 903 P 76 
1234567 1530 ATL 1550 0 MEM 904 P 80 
1234567 1600 ATL 1620 0 MEM 905 P 80 
1234567 1930 ATL 1949 0 MEM 906 P 79 
1234567 0625 DFW 0751 0 MEM 907 P 86 
1234567 1045 DFW 1210 0 MEM 908 P 85 
1234567 1840 DFW 2005 0 MEM 909 P 85 
1234567 1030 DTW 1137 0 MEM 910 P 127 
1234567 1118 DTW 1214 0 MEM 911 P 116 
1234567 1225 DTW 1433 0 ATL 912 P 128 
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1234567 1430 DTW 1531 0 MEM 913 P 121 
1234567 1900 DTW 2003 0 MEM 914 P 123 
1234567 2050 DTW 2251 0 ATL 915 P 121 
1234567 0700 LIT 0748 0 MEM 916 P 48 
1234567 1445 LIT 1532 0 MEM 917 P 47 
1234567 1900 LIT 1946 0 MEM 918 P 46 
1234567 0620 MCI 0738 0 MEM 919 P 78 
1234567 1045 MCI 1203 0 MEM 920 P 78 
1234567 1451 MCI 1610 0 MEM 921 P 79 
1234567 1850 MCI 2010 0 MEM 922 P 80 
1234567 0620 MEM 0918 0 DTW 923 P 118 
1234567 0825 MEM 0959 0 DFW 924 P 94 
1234567 0835 MEM 1100 0 ATL 925 P 85 
1234567 0839 MEM 1135 0 DTW 926 P 116 
1234567 0840 MEM 1004 0 MCI 927 P 84 
1234567 0840 MEM 1009 0 OKC 928 P 89 
1234567 0840 MEM 0959 0 VPS 929 P 79 
1234567 0945 MEM 1240 0 DTW 930 P 115 
1234567 1245 MEM 1414 0 OKC 931 P 89 
1234567 1235 MEM 1353 0 VPS 932 P 78 
1234567 1245 MEM 1410 0 MCI 933 P 85 
1234567 1245 MEM 1400 0 MSY 934 P 75 
1234567 1250 MEM 1340 0 LIT 935 P 50 
1234567 1255 MEM 1518 0 ATL 936 P 83 
1234567 1300 MEM 1553 0 DTW 937 P 113 
1234567 1630 MEM 1805 0 DFW 938 P 95 
1234567 1635 MEM 1846 0 ATL 939 P 71 
1234567 1635 MEM 1804 0 OKC 940 P 89 
1234567 1645 MEM 1810 0 MCI 941 P 85 
1234567 1645 MEM 1800 0 MSY 942 P 75 
1234567 1645 MEM 1803 0 VPS 943 P 78 
1234567 1700 MEM 1749 0 LIT 944 P 49 
1234567 1720 MEM 2020 0 DTW 945 P 120 
1234567 2045 MEM 2220 0 DFW 946 P 95 
1234567 2050 MEM 2202 0 MSY 947 P 72 
1234567 2100 MEM 2147 0 LIT 948 P 47 
1234567 2100 MEM 2230 0 OKC 949 P 90 
1234567 2105 MEM 2329 0 ATL 950 P 84 
1234567 2105 MEM 2230 0 MCI 951 P 85 
1234567 2125 MEM 2242 0 VPS 952 P 77 
1234567 0625 MSY 0740 0 MEM 953 P 75 
1234567 1440 MSY 1559 0 MEM 954 P 79 
1234567 1840 MSY 1959 0 MEM 955 P 79 
1234567 0625 OKC 0745 0 MEM 956 P 80 
1234567 1050 OKC 1210 0 MEM 957 P 80 
1234567 1444 OKC 1604 0 MEM 958 P 80 
1234567 1845 OKC 2004 0 MEM 959 P 79 
1234567 0640 VPS 0805 0 MEM 960 P 85 
1234567 1040 VPS 1203 0 MEM 961 P 83 
1234567 1435 VPS 1557 0 MEM 962 P 82 
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1234567 1840 VPS 2001 0 MEM 963 P 81 
 
 
maintenance.txt file 
AA 70 100 50000 95000 110 200 180 MEM DTW DFW 
 
 
Pairing.txt file 
8101 1 0 1102   
8102 2 0 1101 2102  
8103 2 0 2101 3102  
8104 2 0 3101 4102  
8105 2 0 4101 5102  
8106 2 0 5101 6102  
8107 2 0 6101 7102  
8108 1 0 7101   
8201 1 0 1202   
8202 2 0 1201 2202  
8203 2 0 2201 3202  
8204 2 0 3201 4202  
8205 2 0 4201 5202  
8206 2 0 5201 6202  
8207 2 0 6201 7202  
8208 1 0 7201   
8301 1 0 1302   
8302 2 0 1301 2302  
8303 2 0 2301 3302  
8304 2 0 3301 4302  
8305 2 0 4301 5302  
8306 2 0 5301 6302  
8307 2 0 6301 7302  
8308 1 0 7301   
8401 1 0 1402   
8402 2 0 1401 2402  
8403 2 0 2401 3402  
8404 2 0 3401 4402  
8405 2 0 4401 5402  
8406 2 0 5401 6402  
8407 2 0 6401 7402  
8408 1 0 7401   
8501 1 0 1502   
8502 2 0 1501 2502  
8503 2 0 2501 3502  
8504 2 0 3501 4502  
8505 2 0 4501 5502  
8506 2 0 5501 6502  
8507 2 0 6501 7502  
8508 1 0 7501   
8601 1 0 1602   
8602 2 0 1601 2602  



 97

8603 2 0 2601 3602  
8604 2 0 3601 4602  
8605 2 0 4601 5602  
8606 2 0 5601 6602  
8607 2 0 6601 7602  
8608 1 0 7601   
8701 3 0 1701 2701 3701 
8702 4 0 4701 5701 6701 
8801 1 0 1803   
8802 2 0 1802 2803  
8803 3 0 1801 2802 3803 
8804 3 0 2801 3802 4803 
8805 3 0 3801 4802 5803 
8806 3 0 4801 5802 6803 
8807 3 0 5801 6802 7803 
8808 2 0 6801 7802  
8809 1 0 7801   
8810 1 0 1805   
8811 2 0 1804 2805  
8812 2 0 2804 3805  
8813 2 0 3804 4805  
8814 2 0 4804 5805  
8815 2 0 5804 6805  
8816 2 0 6804 7805  
8817 1 0 7804   
8901 1 0 1903   
8902 2 0 1902 2903  
8903 3 0 1901 2902 3903 
8904 3 0 2901 3902 4903 
8905 3 0 3901 4902 5903 
8906 3 0 4901 5902 6903 
8907 3 0 5901 6902 7903 
8908 2 0 6901 7902  
8909 1 0 7901   
 
 
planes.txt file 
NA001 P 11 743 200 AA 1 
NA002 P 11 743 200 AA 2 
NA003 P 11 743 200 AA 1 
NA004 P 11 743 200 AA 2 
NA005 P 11 743 200 AA 1 
NA006 P 11 743 200 AA 2 
NA007 P 11 743 200 AA 1 
NA008 P 11 743 200 AA 2 
NA009 P 11 743 200 AA 1 
 
 
regularCrew.txt file 
9101 11 A DFW 8101 8104 8107 
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9102 11 A DFW 8102 8105 8108 
9103 11 A DFW 8103 8106  
9201 11 A LIT 8201 8204 8207 
9202 11 A LIT 8202 8205 8208 
9203 11 A LIT 8203 8206  
9301 11 A MCI 8301 8304 8307 
9302 11 A MCI 8302 8305 8308 
9303 11 A MCI 8303 8306  
9401 11 A MSY 8401 8404 8407 
9402 11 A MSY 8402 8405 8408 
9403 11 A MSY 8403 8406  
9501 11 A OKC 8501 8504 8507 
9502 11 A OKC 8502 8505 8508 
9503 11 A OKC 8503 8506  
9601 11 A VPS 8601 8604 8607 
9602 11 A VPS 8602 8605 8608 
9603 11 A VPS 8603 8506  
9701 11 A DTW 8701   
9702 11 A DTW 8702   
9801 11 A ATL 8801 8808  
9901 11 A MEM 8802 8809  
9802 11 A ATL 8803   
9803 11 A ATL 8804   
9804 11 A ATL 8805   
9805 11 A ATL 8806   
9806 11 A ATL 8807   
9807 11 A ATL 8810 8813 8816 
9808 11 A ATL 8811 8814 8817 
9809 11 A ATL 8812 8815  
9902 11 A MEM 8901 8908  
9903 11 A MEM 8902 8909  
9904 11 A MEM 8903   
9905 11 A MEM 8904   
9906 11 A MEM 8905   
9907 11 A MEM 8906   
9908 11 A MEM 8907   
10101 11 B DFW 8101 8104 8107 
10102 11 B DFW 8102 8105 8108 
10103 11 B DFW 8103 8106  
10201 11 B LIT 8201 8204 8207 
10202 11 B LIT 8202 8205 8208 
10203 11 B LIT 8203 8206  
10301 11 B MCI 8301 8304 8307 
10302 11 B MCI 8302 8305 8308 
10303 11 B MCI 8303 8306  
10401 11 B MSY 8401 8404 8407 
10402 11 B MSY 8402 8405 8408 
10403 11 B MSY 8403 8406  
10501 11 B OKC 8501 8504 8507 
10502 11 B OKC 8502 8505 8508 
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10503 11 B OKC 8503 8506  
10601 11 B VPS 8601 8604 8607 
10602 11 B VPS 8602 8605 8608 
10603 11 B VPS 8603 8506  
10701 11 B DTW 8701   
10702 11 B DTW 8702   
10801 11 B ATL 8801 8808  
10901 11 B MEM 8802 8809  
10802 11 B ATL 8803   
10803 11 B ATL 8804   
10804 11 B ATL 8805   
10805 11 B ATL 8806   
10806 11 B ATL 8807   
10807 11 B ATL 8810 8813 8816 
10808 11 B ATL 8811 8814 8817 
10809 11 B ATL 8812 8815  
10902 11 B MEM 8901 8908  
10903 11 B MEM 8902 8909  
10904 11 B MEM 8903   
10905 11 B MEM 8904   
10906 11 B MEM 8905   
10907 11 B MEM 8906   
10908 11 B MEM 8907   
 
 
rotation.txt file 
 
NA001 953 MSY 1  924 MEM 1 908 DFW 1 935 MEM 1 917 LIT 1 939 
MEM 1 906 ATL 1 949 MEM 1 956 OKC 2 925 MEM 2 903 ATL 2 932 
MEM 2 962 VPS 2 942 MEM 2 955 MSY 2 948 MEM 2 (AA) 916 LIT 3
 926 MEM 3 912 DTW 3 904 ATL 3 940 MEM 3 959 OKC 3 951 MEM 3
 919 MCI 4 928 MEM 4 957 OKC 4 937 MEM 4 914 DTW 4 946 MEM 4
 907 DFW 4 (AA) 929 MEM 5 961 VPS 5 933 MEM 5 921 MCI 5 944 
MEM 5 918 LIT 5 950 MEM 6 902 ATL 6 911 DTW 6 936 MEM 6 905 ATL 
6 945 MEM 6 915 DTW 6 901 ATL 7 927 MEM 7 920 MCI 7 934 MEM 7
 954 MSY 7 943 MEM 7 963 VPS 7 
NA002 956 OKC 1 925 MEM 1 903 ATL 1 932 MEM 1 962 VPS 1 942 
MEM 1 955 MSY 1 948 MEM 1 (AA) 916 LIT 2 926 MEM 2 912 DTW 2
 904 ATL 2 940 MEM 2 959 OKC 2 951 MEM 2 919 MCI 3 928 MEM 3
 957 OKC 3 937 MEM 3 914 DTW 3 946 MEM 3 907 DFW 3 (AA) 929 
MEM 4 961 VPS 4 933 MEM 4 921 MCI 4 944 MEM 4 918 LIT 4 950 
MEM 5 902 ATL 5 911 DTW 5 936 MEM 5 905 ATL 5 945 MEM 5 915 
DTW 5 (AA) 901 ATL 6 927 MEM 6 920 MCI 6 934 MEM 6 954 MSY 6
 943 MEM 6 963 VPS 6 923 MEM 7 910 DTW 7 931 MEM 7 958 OKC 7
 941 MEM 7 922 MCI 7 952 MEM 7 (AA) 
NA003 916 LIT 1 926 MEM 1 912 DTW 1 904 ATL 1 940 MEM 1 959 
OKC 1 951 MEM 1 919 MCI 2 928 MEM 2 957 OKC 2 937 MEM 2 914 
DTW 2 946 MEM 2 907 DFW 2 (AA) 929 MEM 3 961 VPS 3 933 MEM 3
 921 MCI 3 944 MEM 3 918 LIT 3 950 MEM 4 902 ATL 4 911 DTW 4
 936 MEM 4 905 ATL 4 945 MEM 4 915 DTW 4 (AA) 901 ATL 5 927 
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MEM 5 920 MCI 5 934 MEM 5 954 MSY 5 943 MEM 5 963 VPS 5 923 
MEM 6 910 DTW 6 931 MEM 6 958 OKC 6 941 MEM 6 922 MCI 6 952 
MEM 6 (AA) 960 VPS 7 930 MEM 7 913 DTW 7 938 MEM 7 909 DFW 7
 947 MEM 7 
NA004 919 MCI 1 928 MEM 1 957 OKC 1 937 MEM 1 914 DTW 1 946 
MEM 1 907 DFW 1 (AA)  929 MEM 2 961 VPS 2 933 MEM 2 921 MCI 
2 944 MEM 2 918 LIT 2 950 MEM 3 902 ATL 3 911 DTW 3 936 MEM 3
 905 ATL 3 945 MEM 3 915 DTW 3 (AA) 901 ATL 4 927 MEM 4 920 
MCI 4 934 MEM 4 954 MSY 4 943 MEM 4 963 VPS 4 923 MEM 5 910 
DTW 5 � 931 MEM 5 958 OKC 5 941 MEM 5 922 MCI 5 952 MEM 5
 (AA) 960 VPS 6 930 MEM 6 913 DTW 6 938 MEM 6 909 DFW 6 947 
MEM 6 953 MSY 7 924 MEM 7 908 DFW 7 935 MEM 7 917 LIT 7 939 
MEM 7 906 ATL 7 949 MEM 7 (AA) 
NA005 929 MEM 1 961 VPS 1 933 MEM 1 921 MCI 1 944 MEM 1 918 
LIT 1 950 MEM 2 902 ATL 2 911 DTW 2 936 MEM 2 905 ATL 2 945 MEM 2
 915 DTW 2 (AA) 901 ATL 3 927 MEM 3 920 MCI 3 934 MEM 3 954 
MSY 3 943 MEM 3 963 VPS 3 923 MEM 4 910 DTW 4 931 MEM 4 958 
OKC 4 941 MEM 4 922 MCI 4 952 MEM 4 (AA) 960 VPS 5 930 MEM 5
 913 DTW 5 938 MEM 5 909 DFW 5 947 MEM 5 953 MSY 6 924 MEM 6
 908 DFW 6 935 MEM 6 917 LIT 6 939 MEM 6 906 ATL 6 949 MEM 6
 (AA) 956 OKC 7 925 MEM 7 903 ATL 7 932 MEM 7 962 VPS 7 942 
MEM 7 955 MSY 7 948 MEM 7 
NA006 950 MEM 1 902 ATL 1 911 DTW 1 936 MEM 1 905 ATL 1 945 
MEM 1 915 DTW 1 (AA)  901 ATL 2 927 MEM 2 920 MCI 2 934 
MEM 2 954 MSY 2 943 MEM 2 963 VPS 2 923 MEM 3 910 DTW 3 931 
MEM 3 958 OKC 3 941 MEM 3 922 MCI 3 952 MEM 3 (AA) 960 VPS 4
 930 MEM 4 913 DTW 4 938 MEM 4 909 DFW 4 947 MEM 4 953 MSY 5
 924 MEM 5 908 DFW 5 935 MEM 5 917 LIT 5 939 MEM 5 906 ATL 5
 949 MEM 5 (AA) 956 OKC 6 925 MEM 6 903 ATL 6 932 MEM 6 962 
VPS 6 942 MEM 6 955 MSY 6 948 MEM 6 916 LIT 7 926 MEM 7 912 DTW 7
 904 ATL 7 940 MEM 7 959 OKC 7 951 MEM 7 
NA007 901 ATL 1 927 MEM 1 920 MCI 1 934 MEM 1 954 MSY 1 943 
MEM 1 963 VPS 1 923 MEM 2 910 DTW 2 931 MEM 2 958 OKC 2 941 
MEM 2 922 MCI 2 952 MEM 2 (AA)  960 VPS 3 930 MEM 3 913 
DTW 3 938 MEM 3 909 DFW 3 947 MEM 3 953 MSY 4 924 MEM 4 908 
DFW 4 935 MEM 4 917 LIT 4 939 MEM 4 906 ATL 4 949 MEM 4 (AA)
 956 OKC 5 925 MEM 5 903 ATL 5 932 MEM 5 962 VPS 5 942 MEM 5
 955 MSY 5 948 MEM 5 916 LIT 6 926 MEM 6 912 DTW 6 904 ATL 6
 940 MEM 6 959 OKC 6 951 MEM 6 (AA) 919 MCI 7 928 MEM 7 957 
OKC 7 937 MEM 7 914 DTW 7 946 MEM 7 907 DFW 7 
NA008 923 MEM 1 910 DTW 1 931 MEM 1 958 OKC 1 941 MEM 1 922 
MCI 1 952 MEM 1 (AA)  960 VPS 2 930 MEM 2 913 DTW 2 938 
MEM 2 909 DFW 2 947 MEM 2 953 MSY 3 924 MEM 3 908 DFW 3 935 
MEM 3 917 LIT 3 939 MEM 3 906 ATL 3 949 MEM 3 (AA) 956 OKC 4
 925 MEM 4 903 ATL 4 932 MEM 4 962 VPS 4 942 MEM 4 955 MSY 4
 948 MEM 4 916 LIT 5 926 MEM 5 912 DTW 5 904 ATL 5 940 MEM 5
 959 OKC 5 951 MEM 5 (AA)  919 MCI 6 928 MEM 6 957 OKC 6
 937 MEM 6 914 DTW 6 946 MEM 6 907 DFW 6 929 MEM 7 961 VPS 7
 933 MEM 7 921 MCI 7 944 MEM 7 918 LIT 7 
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NA009 960 VPS 1 930 MEM 1 913 DTW 1 938 MEM 1 909 DFW 1 947 
MEM 1 953 MSY 2 924 MEM 2 908 DFW 2 935 MEM 2 917 LIT 2 939 
MEM 2 906 ATL 2 949 MEM 2 (AA) 956 OKC 3 925 MEM 3 903 ATL 3
 932 MEM 3 962 VPS 3 942 MEM 3 955 MSY 3 948 MEM 3 916 LIT 4
 926 MEM 4 912 DTW 4 904 ATL 4 940 MEM 4 959 OKC 4 951 MEM 4
 (AA)  919 MCI 5 928 MEM 5 957 OKC 5 937 MEM 5 914 DTW 5
 946 MEM 5 907 DFW 5  929 MEM 6 961 VPS 6 933 MEM 6 921 MCI
 6 944 MEM 6 918 LIT 6  950 MEM 7 902 ATL 7 911 DTW 7 936 
MEM 7 905 ATL 7 945 MEM 7 915 DTW 7 (AA) 
 
 
ruleConfig.txt file 
 
CONFIG COMMON MAINT MAXDUTY 8IN24 30IN7 
SDE X O O O O  
DGE O O X O O 
EAE O O O O O 
EIE O O O O O 
LAE O O O O O 
LIE O O O O O 
ERE O O X X X 
LGE O O X X X 
AAE X O O O O 
TDE O O O O O 
AGE X X X X X 
SRE X O O O O 
 
 
Servicerate.txt file 
1 0000 NORMAL DFW 28 30 
1 0000 NORMAL LIT 28 30 
1 0000 NORMAL MCI 28 30 
1 0000 NORMAL MSY 28 30 
1 0000 NORMAL OKC 28 30 
1 0000 NORMAL VPS 28 30 
1 0000 NORMAL DTW 28 30 
1 0000 NORMAL ATL 28 30 
1 0000 NORMAL MEM 28 30 
3 0700 BUSY MEM 15 20 
3 0800 NORMAL MEM 15 20 
 
 
StationTypeCurfew.txt file 
ATL S 0600 2300 
DFW S 0600 2300 
DTW S 0600 2300 
LIT S 0600 2300 
MCI S 0600 2300 
MEM H 0000 2359 
MSY S 0600 2300 
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OKC S 0600 2300 
VPS S 0600 2300 
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