View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by ScholarBank@NUS

THE NETWORK IS THE DATABASE

GUO YUZHI

NATIONAL UNIVERSITY OF SINGAPORE

2004

https://core.ac.uk/display/48626051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THE NETWORK IS THE DATABASE

BY

GUO YUZHI
(B.E., RUC, PRC)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

2004

Acknowledgements

I am very grateful to my supervisor, Dr. Stéphane Bressan, for his clear guidance
and faith in letting me pursue these new directions. Also he has contributed many
valuable suggestions. Each time when I got stunted in my research he would give me
new ideas and new directions. From him I learned how to do research and how to
think when encountering problems. I cannot thank him enough for all what he has
done for me, and feel very lucky that I have been able to work under his instructions.

The second person to whom I should express my sincere gratitude is Ms.Tan
Kim Luan. She gave me invaluable advice and guidance on revises of my thesis.

I should thank my friends, Chen Chao and Shen Qinghua. My research also
benefits from the discussions and cooperation with them. Without their help, it is
impossible for me to achieve the research results so quick.

Last I'd like to express my thanks to my families and my fiancee Wang Ying, for
the love and encouragement they have been giving me all along these years of my
life.

Many thanks go to the National University of Singapore for a Research Scholar-
ship and School of Computing for providing us with a pleasant working environment

and first class resources.

Contents

Acknowledgements i
Contents ii
Summary vi
List of Figures viii
List of Tables X
1 Introduction 1
1.1 Motivation 1
1.2 Contribution 2
1.3 Organization 4

2 Background and Related Works 5
2.1 Communication by Broadcast in Databases 5
211 Pullv.ss. Push, 6

2.1.2 Broadcast Disks o 7

ii

iii

2.2 Concurrency Control in Databases 8

2.2.1 Concurrency Control in Traditional Databases 9
2.2.2 Concurrency Control in Distributed Databases 11
2.3 Concurrency Control in Mobile Databases and Broadcast Disks . . . 13
2.3.1 Concurrency Control in Mobile Databases 13
2.3.2 Concurrency Control in Broadcast Disks 14
2.4 Consistency of Cache in Client 16

Concurrency Control for Simple Update with Locking in Broadcast

Disks 21
3.1 Overview 21
3.2 Client-server Model 22
3.3 Broadcast Channel with Updates and Locking 23
3.4 Broadcast Disks with Updates and Locking 27
3.5 Broadcast Disks with Client Cache, Updates, and Locking 32
3.6 Summary 35

Performance Analysis for Simple Update with Locking in Broad-

cast Disks 37
4.1 Experimental Set-upo Lo 37
4.2 Comparative Performance Analysis 38
4.2.1 Broadcasting versus Client-server 38
4.2.2 Broadcast Disks versus Broadcast Channel 42

4.2.3 Client Cache and Replacement Policies. 45

v

4.3 Summary e 46

Concurrency Control for Database Transaction with Locking in

Broadcast Disks 48

5.1 Overview e 48

5.2 Concurrency Control in Broadcast Disks Environment without Cache

inClient 49
5.2.1 Correctness Criteria in Broadcast Disks 49
5.2.2 APPROX - Update with Broadcast Disks in [SNSR99] . .. 52
5.2.3 Basic Locking Update with Broadcast Disks 55
5.24 Discussion 59
5.3 Update with Cache in Client 60
5.3.1 Server 61
5.3.2 Client e 61
5.4 Summary 64

Performance Analysis for Database Transaction with Locking in

Broadcast Disks 65
6.1 Experimental Set-up oL 65
6.2 Comparative Performance Analysis 66

6.2.1 Updates in Clients with Different Concurrency Control Mech-

6.2.2 Updates in Clients with Broadcast Disks Environment 68

6.2.3 Updates in Clients with Broadcast Disks Environment with

Cachein Client 70

6.3 Summary 74

7 Conclusions and Future work 75
7.1 Contributions e e 75
7.2 Future worko 76

Bibliography 78

vi

Summary

Broadcasting fits the requirement of more and more modern applications, such as
traffic report systems, weather forecast and stock activity monitoring systems, for
the distribution of data. This is due to the nature of data, to the ubiquity and mul-
tiplicity of devices consuming and producing data converging with the development
of a global network infrastructure.

Is broadcasting a viable mechanism for the complete management of persistent
objects? Can a broadcasting system accepting updates maintain a reasonable per-
formance while guaranteeing concurrency control? To address these questions and
possibly answer some of them, our research focuses on the design and analysis of
a peer-to-peer persistent object management system leveraging the network infras-
tructure. We consider an architecture in which the data are not stored on the disks
of the computers participating in the system - or if so, in caches, buffers, and logs,
but cyclically broadcast on the network.

In this thesis we study the design and evaluate the performance of update model
controlled by a basic locking mechanism for broadcast disks architecture that in-
volves replication on the broadcast channel and in the clients’ caches.

As a first step, we present a simple update and locking mechanism for a broadcast
disks model with cache. The new concurrency control mechanism combines the
advantages of both the locking in conventional database and the broadcast disks
environment. There can now be, on the broadcast channel, several copies of the same

object available for reading as well as one copy available for update by one identified

vii

client or/and exclusively one already updated copy not available for reading or
writing. Clients can read the previous version of an object while the current version
is being updated. This proposal constitutes a sound basis for the implementation
of concurrency control strategies for the interleaved execution of transactions. The
models we devise and study can support the implementation of schedulers or lock-
based concurrency control strategies.

Furthermore, we extend our research from simple operations to transaction pro-
cessing in the broadcast disks. We combine locking mechanism and multi-version
concurrency control to guarantee the correctness of the concurrency among the
transactions. Our proposed models based on broadcasting are efficient and yield
better performance than the basic locking mechanism when the opportunities for
sharing objects for read are high: high ratio of read over write operations, large
number of clients, and skewed distribution of popularity of objects. Thus, broad-
casting remains a viable alternative even in the presence of updates by the client.
The better performance of our models is particularly important since broadcasting
is a candidate architecture for many new applications involving new devices and
networks.

In summary, our contributions are the proposal of a new concurrency control
mechanism combined by the basic locking and the broadcast disks in the peer-to-
peer environment. From the theoretical analysis and results of experiments, we have
presented the validation and efficiency of our concurrency control mechanism, thus

paving the way for the future work in this environment.

List of Figures

3.1 Broadcast Channel Architecture 23
3.2 Client’s Monitoring Algorithm in the Broadcast Channel Model 26
3.3 Server Loop for a Broadcast Channel Model of Model 3.2 26
3.4 Client’s Monitoring Algorithm in the Broadcast Disks Model 28
3.5 Server Loop for a Broadcast Disks Model 29
3.6 Processing of Read and Write in Model 3.3 31
3.7 Client’s Monitoring Algorithm in the Broadcast Disks Model with Cache 33
3.8 Server Loop for a Broadcast Disks Model with Cache 35
4.1 Throughput at § = 0.5 and 64 clients, with varying p 39
4.2 Throughput at § = 0.5 and 64 clients, with varying 1/p 40
4.3 Throughput at § = 0.5 and p=1, with varying number of client 41
4.4 Throughput at p=4 and 64 clients, with varying 41
4.5 Throughput at p = 4 and 64 clients, with varying number of object 42
4.6 Throughput at §,=1, 0,,=0.5 and 64 clients, with varyingp 43
4.7 Throughput at §,=0.5, ,=1 and 64 clients, with varyingp 44
4.8 Throughput at §,=1, 6,=0.5 and 64 clients, with varying 1/p 44

viii

4.9 Throughput at 64 clients, 8,=60,,=0.5 and Cache size of 5, with varying p

4.10 Throughput at 64 clients ,0,=60,=0.5 and LRU, with varying p.

5.1 Venn Diagram for Classes of Schedules
9.2 Server Loop for Our Model o vt
5.3 Client’s Algorithm in Our Model without Cache

5.4 Client’s Algorithm in Our Model with Cache

6.1 Response time at =1 and client=64, with varying p
6.2 Response time at =0.5 and client=64, with varying p
6.3 Response time at §=1, p=4 and client=64, with varying number of data object

6.4 Response time at §=1 and client=64, with varying p
6.5 Response time at §=0.5 and client=64, with varying p
6.6 LRU: Response time at client=64, with varying p for different 0
6.7 LIX: Response time at client=64, with varying p for different 6
6.8 LRU: Response time at client=64, with varying 0 for different p
6.9 LIX: Response time at client=64, with varying 0 for different p
6.10 Response time at client=64 and p=16, with varying 0

6.11 Response time at client=64 and p=1, with varying 0

ix

45

46

o1

o7

58

62

67

67

69

69

70

70

71

72

72

73

List of Tables

2.1 Comparison of related work in broadcast disks 17
3.1 Description of the data structure of the algorithm 25
4.1 Parameter of the experiments on simple update model 38
5.1 Comparison of APPROX and our model 60
6.1 Parameter of the experiments on transaction process 66

Chapter 1

Introduction

Broadcasting emerges as a significant social and technical phenomenon and fits the
requirement of more and more modern applications, such as traffic report systems,
weather forecast and stock activity monitoring systems, for the distribution of data.
This is due to the nature of data (multimedia data or more generally streamed data,
e.g. movies and radio programs [VI95]), to the ubiquity and multiplicity of devices
consuming and producing data (personal computers in peer-to-peer environment,
mobile phones and portable devices, and sensors, e.g. [ZGE01]) converging with the
development of a global network infrastructure. Broadcasting has combined some
distributed database systems as a whole data resource to serve large populations of

clients.

1.1 Motivation

Is broadcasting a viable mechanism for the complete management of persistent ob-
jects? For read-only requests from clients, it can outperform the conditional client-
server system. However, can a broadcasting system accepting updates maintain a

reasonable performance while guaranteeing concurrency control? Can recovery be

implemented when the data is mainly on the volatile broadcast channel? To ad-
dress these questions and possibly answer some of them, our research focuses on
the design and analysis of a concurrency control mechanism, by which the database
will allow updating from the clients, in a peer-to-peer persistent object management
system leveraging the network infrastructure. We consider an architecture in which
the data are not stored on the disks of the computers participating in the system -
or if so, in caches, buffers, and logs, but cyclically broadcast on the network.

Broadcasting architectures in general and broadcast disks in particular outper-
form traditional client/server architectures when many clients read data from few
servers. Yet several issues arise when the broadcasting model allows updates by
the clients. These issues, most of which are related to the control of the concur-
rent access (isolation and consistency), are rooted in the asynchronous nature of the
broadcast model and in the replication of data on the broadcast channel and in the
caches of the clients.

Although several concurrency control mechanisms have been proposed and stud-
ied for broadcasting, to our knowledge, no one has studied the performance of a basic
locking mechanism. Specifically, we study concurrency control and recovery in an
environment of autonomous peers communicating with an Internet protocol with

replication on the network and in the peers’ caches.

1.2 Contribution

In this thesis we study the design and evaluate the performance of update model con-

trolled by a basic locking mechanism for broadcast disks architecture that involves

replication on the broadcast channel and in the clients’ caches.

As a first step, we present an update and locking mechanism for a broadcast disks
model with cache. The new concurrency control mechanism of this model combines
the advantages of both the locking in conventional database and the broadcast
disks environment. There can now be, on the broadcast channel, several copies of
the same object available for reading as well as one copy available for update by
one identified client or/and exclusively one already updated copy, not available for
reading or writing. Clients can read the previous version of an object while the
current version is being updated. This proposal constitutes a sound basis for the
implementation of concurrency control strategies for the interleaved execution of
transactions. The models we devise and study can support the implementation of
schedulers or lock-based concurrency control strategies.

Furthermore, we extend our research from simple data operation into transaction
processing in the broadcast disks environment. We combine locking mechanism and
multi-version concurrency control to guarantee the correctness of the concurrency
among the transactions. Our proposed models based on broadcasting are efficient.
They incrementally yield better performance by the basic locking mechanism when
the opportunities for sharing objects for read are high: high ratio of read over write
operations, large number of clients, and skewed distribution of popularity of objects.
Thus, broadcasting remains a viable alternative even in the presence of updates by
the client. The better performance of our models is particularly important since
broadcasting is candidate architecture for many new applications involving new

devices and networks.

Finally, we have conducted the comparative experiments and can observe the
features of the broadcast disks environment and the advantages and disadvantages
of the concurrency control in this environment, thus paving the way for the future
work in this environment.

In summary, our contributions are the proposal of a new concurrency control
mechanism combined by the basic locking and the broadcast disks in the peer-to-
peer environment. We will present the validation and efficiency of our concurrency

control mechanism by the theoretical analysis and results of experiments shortly.

1.3 Organization

The remaining chapters of the thesis are organized as follows:

In Chapter 2 we discuss the background and related work in the fields of broad-
cast disks and concurrency control in database.

In Chapter 3 we present the models of broadcast read and point-to-point update.

In Chapter 4 we analyze the performance of our proposed model and compare
with the traditional client-server model.

In Chapter 5 we describe the model of concurrency control for transaction in
broadcast disks environment.

In Chapter 6 we analyze the performance of our proposed model and compare
with the APPROX model in [SNSR99] .

In Chapter 7 we conclude this thesis and outline future work.

Chapter 2

Background and Related Works

Our research focus is on the concurrency control of database system in the broadcast
disks environment. In this chapter we discuss the background of communication and
the broadcast disks environment in database. After the review of the concurrency
control in traditional database, we investigate the related work on concurrency con-
trol in mobile database and broadcast disks. Finally, we discuss the problems of the

consistency of the cache in clients.

2.1 Communication by Broadcast in Databases

The network technique has led to an increase in many new database applications.
However, with the increasing number of the accessible networked data sources, some
asymmetric problems [AFZ97], such as the network asymmetry and the imbalance
between the number of client and the number of server, will interrupt these new
applications in the distributed data source. The main reason is that the communi-
cation method in the traditional database system does not match the environment
of the distributed data source and may not yield good results.

Broadcast technology makes it possible to disseminate the data to a large pop-

ulation of clients in many forms of application, such as traffic information system,
software distribution and entertainment delivery. Thus data broadcast acts as a
primary role in dissemination-based applications. Here, data distributed in a small
number of sources can be broadcast to a larger number of clients with similar inter-

est.

2.1.1 Pull v.s. Push

A pull-based and request-response style of operation is used in the traditional client-
server database system. Thus, a client has to send a request message to the server
to access a data object. When the server has received the request, it will manage
the whole database and response to the client. Although the client plays an active
role in the system, it still has its drawbacks when the system has more clients and
fewer servers. This in turn will generate a huge volume at the server and thereby
creates a bottleneck in the system.

In order to reduce the bottleneck, push-based data dissemination method has
been proposed. In contrast to the pull-based data delivery method, the push-based
mechanism pushes the data needed by the client, into a broadcast channel and the
client monitoring the channel had to wait for the incoming data without any request.
For example, [AFZ97] combines the pull-based and push-based system and analyzes
the performance and impact by the ratio of pull to push processes. However, this
system only allows for the read request, it does not process the conflicts between

the different operations, such as read and update, on the same data object.

2.1.2 Broadcast Disks

[AAFZ95] constructs an architecture for database management by the multi-level
broadcast disks. The architecture is based on the communication network. It in-
cludes the broadcast server and several clients. Broadcast disks is a technique of
the push-based system for replying the request of the clients of the system.

The responsibility of the broadcast server is to store the whole database and
to broadcast the data to the clients through the broadcast channel. Because the
data are pushed on the broadcast channel, the channel can be viewed as some disks.
According to the differences in the allocated sizes of each disk and different access
probabilities of data, the broadcasting data are then assigned to the different sizes
and speed disks. Hence, there are some relatively different frequencies among the
different disks and the data on the faster disks are broadcast more often than the
data on slower disks. The improved version of broadcast is the multi-disks broadcast
in which there is no variance in the inter-arrival time for each broadcast page for
each disk. Based on the information about the preference of the broadcasting data,
the broadcast server computes the relative frequency and creates the multi-disks
broadcasting schedule by replicated the hotter pages.

Clients in this system have the capacity of communicating to the server by the
broadcast channel, and they also have their local memory. When they want to
obtain some data to meet their needs, they will firstly retrieve the data from their
local cache. If the needed data is not found, the client will then be monitoring the

broadcast channel and wait for the desired data to arrive. As the broadcast server

broadcasts the preferred data according to the client, the individual client should
store the data in a place where the local frequency of access is greater than the
frequency of broadcast in their local memory. Therefore there should be an optimal
data replacement policy for the client to manage the cache. When the client wants
to update the data that is being broadcast on the channel, they will complete the
process locally, send the updated request to the server and wait for the commit or

abort message.

2.2 Concurrency Control in Databases

Concurrency control is one of the essential techniques for a database system. More
and more concurrency control mechanisms are being studied so as to improve the
performance of the different database systems. In any database, a transaction is the
basic unit of the whole system and consists of some operations which are reading
or writing database objects. In order to improve the performance of the system,
transactions are allowed to execute interleaved. A set of transactions arranged by
certain order is called a schedule [RR00] and a schedule in which transactions are
executed serially is called a serial schedule. A schedule in which transactions produce
a result which is the same as a serial schedule is called a serializable schedule. Two
operations on the same data conflict if at least one of the operations is a write. These
conflicts can destroy the consistency of the database if without the appropriate
concurrency control mechanism. Thus in different databases’, developing the better

mechanism of concurrency control is the main concern.

2.2.1 Concurrency Control in Traditional Databases

The aim of the management of any system is to improve the performance or through-
put of the system. For database system, the performance can be improved by allow-
ing transactions interleaved executing [RR00]. For instance, when a long transaction
is waiting for a certain page, another short transaction, which can be completed
quickly, will be allowed to execute. Although transactions are allowed to executed
interleaved, the state of database must maintain a consistent state, that is, the re-
sult of executing a serial or serializable schedule on a consistent database is in a
consistent state. Thereby we must guarantee the consistent state of the database

when executing interleaved transactions.

Lock-Based Concurrency Control

For a centralized database system, “a lock is a mechanism used to control access to
database objects ([RR00], p.17)”. Every transaction must follow the locking rules
of the locking protocol to ensure the serializability and reliability of database. As
usual, there are two kinds of lock: shared lock and exclusive lock. Depending on the
kind of the operation used to read or write, transaction must obtain the relevant
lock. Share lock can be held by different transactions on the same data object but

exclusive lock is only obtained by one transaction on one data object.

Non-Locking Concurrency Control

Besides locking, there are alternative approaches to concurrency control. According
to light contention of the conflict in database system, the overhead of requesting

locks and following the lock policy are a waste of time.

10

For the database system in which most transactions will not conflict with others,
a permissive method called Optimistic Concurrency Control, the transaction first
reads or writes the object in a local private workspace. When the transaction wants
to commit, it must be checked by the server whether there will be a conflict with
any other concurrently executing transactions. If there is no conflict, the private
workspace are then copied to the database, otherwise, the workspace will be cleared
and transaction will restart. This method, however, is not suitable for database
requiring high-performance of transaction processing [Tho98|.

Timestamp is often used as the order of transaction execution for lock-based
and optimal concurrency control, so as to ensure the serializable schedule and check
for possible conflicts among transactions. Timestamp can also be used by another
concurrency control policy [RR00], which can eliminate the deadlock problem for
concurrency control. Transaction is assigned a unique timestamp and each data
is assigned a write-timestamp and a read timestamp. The conflicting operations
will then be resolved by timestamp order. Whenever a transaction restarts, its
timestamp should be assigned a new timestamp.

In multiversion concurrency control, the system maintains some versions (or
copies) of data items in order to improve the performance of database system. Each
write operation on a data item creates a new version of this item. Each read op-
eration will be told by the system which version of item it should read. The first
advantage of multiversion concurrency control is to avoid rejecting the operation
that arrive too late, which means transaction can read the most recent version of

the data item. The second advantage is its lower cost, as a database system needs

11

a recovery algorithm which also needs these versions of the data items. However,
the high cost of maintaining the multiversions is the storage space. The versions
have to be flushed periodically and this process creates a problem in multiversion
concurrency control that needs to be addressed. Since the multiverisons of the data
item cannot been seen by user transactions, a multiversion history is correct if and

only if it is equivalent to a serial one-version history.

2.2.2 Concurrency Control in Distributed Databases

In a standard distributed database system, concurrency control is a mechanism for
synchronizing concurrent transactions in such a way that the consistency of the
database is maintained while maximum degree of concurrency is achieved at the
same time. There are three basic algorithms based on the locking system, in the
distributed database system: centralized (primary site) 2PL, primary copy 2PL and
distributed 2PL[MT99].

For centralized 2PL there is only one 2PL lock manager(scheduler) in the dis-
tributed system and all lock requests of the transactions from the client are issued to
the central scheduler. However, this algorithm is similar to the centralized database
system and caused more communication on the data distributed on other servers.
Hence, the concurrency control must solve the distributed replication of data con-
flicts. The solution is to place a scheduler at each site to manage the concurrency
control. The primary copy 2PL means assigning a copy of data as a primary and it
will handle all the requests on the set of data. The distributed 2PL means the site

of any copy could act as the scheduler of the data for any transaction.

12

There are mainly three schemes for discovering the conflicts in distributed sites,
Read-lock-one, write-lock-all (ROWA), majority locking, primary copy locking. Read-
lock-one, write-lock-all (ROWA) means that a transaction may obtain a read-lock
on any copy of data and if a transaction wants to write any data, it should be obtain
write-lock on all copies of the data. In the majority locking strategy, a transaction
must obtain read or write locks on a majority of the copies of the data read or
written by the transaction. The third scheme is the primary copy locking, which
means all locks for a data are requested at the site of the primary copy assigned by
the system.

For a distributed database system, [JMR98] proposed an efficient protocol of
multiversion concurrency control. It stores at most three versions, it also guaran-
tees that the update transactions cannot interfere the read transaction, the read
transactions need not request a lock and add the information into data. And the
advancement of the version is asynchronously managed by the system. For each site
in the distributed system, there are only two versions of the data items initially. One
is for read and the other is for update. Periodically, a version advancement process
runs to make the new version and to refresh the read copy. For any read operation,
it can read the read copy without any lock request and the write transaction should
follow the 2PL lock protocol. During the version advancement process, it starts at
the updated version and may create a third version to update, and thus ensuring
that there is no active transaction on the read version, which then delete it and make
the old update version to read version, hence the version advancement is completed.

This multiversion concurrency control protocol is suitable for the distributed sys-

13

tem, in which queries does not need to be the very latest data but consistent data

is highly desirable.

2.3 Concurrency Control in Mobile Databases and Broad-
cast Disks

2.3.1 Concurrency Control in Mobile Databases

Advancement of wireless communication technology pushes the progress in the ap-
plications of database system and it is widely used into the distributed database
system. Although the basic property has not been changed and the concurrency
control policy of the distributed database can still be utilized in mobile distributed
database, the performance is decreased by the characteristics of the wireless net-
work. Based on the characteristics or limitation of the wireless network, such as
limited bandwidth and frequent disconnection, the aims of improving the mobile
system led to a change in how to reduce the overhead of the communication for
concurrency control and the number of the restarting transaction due to blocking.
In the mobile distributed database system, transactions of client can be shipped
to the relevant server in order to reduce the overhead of the communication. For
the mobile network, concurrency control cannot use the policy utilized in distributed
database, as the overhead of resolving the conflict is very expensive. [LKTLO0O] pro-
posed a similarity-based distributed two phase lock protocol. Similarity means two
operations of two concurrent transactions, which are either both reads or both writes
and the object values are still similar. By this similarity of two transactions, they
are allowed to interleaved execute without effect on the integrity and consistence of

the database. The similarity is derived from the semantic analysis of the transaction

14

and is utilized to resolve the concurrent conflict, which means that the conflicting
operations of two transactions occur similarly and are allowed to execute concur-
rently.

According to the limitation of the mobile network, the traditional “pull-based”
data delivery approach has been weakened. In this asymmetric communication
environment, a new data delivery approach based on “push” is proposed. The data
will then be pushed to the client by the server’s advantage in bandwidth and the
client will retrieve the item from the broadcast channel according to their needs.

[LCC99] considered the broadcast process as a transaction, checked the concur-
rent conflict between broadcast and update transaction instead of detecting conflict
between update and read transactions from client, which is called Update First
with ordering (UFO). UFO protocol consists of execution phase and update phase.
During the execution phase, the conflict between transactions is resolved by a con-
ventional concurrency control and the write operation updates the new value into a
private workspace. When all transactions have been completed, the data broadcast
process will be checked for data conflict. By comparison of write set and read set
of broadcast process, the system will then re-broadcast the inconsistent data to the

client.

2.3.2 Concurrency Control in Broadcast Disks

Based on the previous research in [AAFZ95], which focused on the improvement
of the broadcast schedule in the read-only broadcast disks environment, [AFZ96a]

proposed the broadcast disks model with both read and update on the database.

15

Although the update is only processed on the server, the experiment results can
improve on the consistency between the cache and server and act as the preliminary
model of ours in the thesis. Two methods of ensuring the consistence of cache,
invalidation and propagation, are proposed and compared. Their experiment results
show that the broadcast disks model is robust in the presence of updates.

In the late nineteen eighties, a group of researchers proposed a radically new ar-
chitecture for database management systems intended to increase the throughput.
In this architecture, called the Datacycle [TFBW92, GHW87], the server cyclically
broadcasts database objects on a broadcast channel. The clients monitor the broad-
cast channel for the objects they want to manipulate. Other communications with
the server such as the management of update and concurrency control utilize an
upstream channel from the clients to the server. The Datacycle model use serializ-
ability as the correctness criterion to maintain the consistency of the database, but
it is very expensive to communicate with the server for all operation requests in the
broadcast disks environment.

In [SNSR99] a control matrix is used to resolve the concurrent conflicts. The
matrix size is determined by the database size, that is, for a database of n data
items, a matrix of size nxn is used. For each broadcast cycle, the control matrix
is broadcast together with the data item. Before the client reads the data from the
broadcast channel, it will check the control matrix to perform a consistency check.
This method requires the read operation to retrieve the consistent data and write
the data locally. At the end of the transaction, the whole transaction, including all

of the read and write operations and the cycle identifier, will be sent to the server

16

for committing.

Another concurrency control protocol, which is called STUBcast(Sever Times-
tamp and Update Broadcast Supported Concurrency), is designed for broadcast-
based transaction in [YHO1b]. Two new correctness criteria— Single Serializabil-
ity and Local Serializability — are supported by STUBcast. Single Serializability
ensures that all update transactions and any single read-only transaction are seri-
alizable. Local Serializability requires having all update transactions in the whole
system and all read-only transactions at one client site are serializable. The two new
correctness criteria are both weaker than global serializability and easier to achieve.
STUBcast allows both read-only transaction and update transaction. The broadcast
server divides broadcast operations into primary broadcast, which broadcasts data
items to client using certain broadcast algorithm, and update broadcast, which is
inserted into the primary broadcast with committed data item update. There are
three components in the STUBcast protocol: client side read-only serialization pro-
tocol(RSP), client side update tracking and verification protocol(UTVP), and server
side server verification protocol(SVP). They only abort the read-only transaction,
which cannot be serialized with the committed update transaction and ensure Single
Serializability and Local Serializability for all committed transactions in the system.

Table 2.1 shows the comparison between the related work and our models.

2.4 Consistency of Cache in Client

When the cache technical is used at client, there must be a protocol between the

client and the server to ensure that the cache at client remains consistent with the

17

Model [AFZ96a] | Model in || [TFBW92]| [SNSR99] | [YHO1b] | Model

Chapter in

3 Chapter

5

Style of | O O T T T T
process
Style of | R R/W R/W R/W R/W R/W
request
in client
Style of | Multi- Multi- Flatdisk | Flatdisk | Flatdisk | Multi-
broad- disk disk disk
cast
disks
Conflict | No Yes Yes Yes Yes Yes
Method | — Lock Optimistic| Optimistic| Time- Lock
on solv- Concur- Concur- stamp
ing rency rency
conflicts Control Control
Cache Yes Yes No Yes No Yes
Method | Invadation| Invadation|| No Time No Matrix
of Cache | report report con-
consis- straint
tency

database at server. [FCL97| presented a taxonomy providing a unified treatment of

Table 2.1: Comparison of related work in broadcast disks

proposed caches consistency algorithms for client-server database system. Based on

whether detecting or avoiding access to stale cache data, the taxonomy proposed

the numerous dimensions of the design space for transactional cache consistency

algorithm. Six algorithms presented by previous papers are described and analyzed

according to the tradeoffs inherent in the design choices of the taxonomy.

[WNO0] presented two algorithms to address the cache consistency problem. One

is a modification of two-phase locking and consists of adding new lock modes—cache

locks. The other is based on notify lock. In the first algorithm, there are three status

18

of the cache lock for data in client cache: Cache lock, Pending update lock and Out-
of-date lock. Upon updating on the data in cache, the client has to request lock
from server before accessing it. After receiving a response of committing request,
the client marks the data in updating list with out-of-data lock. When the server
receives a request of committing from client, the server will update the different
status of cache lock to share or exclusive lock according to different situations. A
message indicating whether the transaction has committed or aborted and a list
consisting of the data updated will be sent back to client. Based on the notify lock,
the server will send notification of the updates to all clients periodically. Until the
server receives the commit request, it may still be sending notification to the client
that could abort the transaction. A handshake, which is implemented by assigning
a sequence number to every message sent from the server, is required between server
and client to ensure that the client has accessed the most recent notification message.

In a mobile computing environment, it is a useful technique for reducing the
contention on the narrow bandwidth of the wireless channel to cache frequently
accessed data. However, expensive communication cost required by transactional
cache consistency strategies in traditional client-server system is not appropriate in a
mobile computing environment. [SL99] proposed a protocol, called OCC-UTS (Op-
timistic Concurrency Control with Update TimeStamp), to maintain transactional
cache consistency in mobile environment. Each client keeps two lists for a current
transaction: readset, including data items read by this transaction, and updateset,
including data items updated and new value by this transaction. A client performs

a read operation either by the cache or by requesting from server. After the client

19

sends the readset and updateset to server for committing, it will continuously listen
to the channel for CommitList and AbortList and check whether it is committed
or aborted. The server constructs Invalidation Report to achieve serializability of
mobile transaction by optimistic concurrency control in [KR81] and broadcasts it
to maintain the cache consistency of data item in clients.

For Invalidation Report, [Cao02] proposed an improvement to address the in-
effective utilization problems. Firstly, a small fraction of the essential information
called updated invalidation report(UIR) is replicated several times and broadcast to
clients within an IR interval. Then the client can refresh its cache without waiting
for the next IR and reduce the latency of query. [Cao02] also utilized the prefetch
technique to improve the performance of the caching at client and the cache hit
ratio. Clients prefetch the data item that are most likely to be used in the future
by counter for each data item. The counter is increased by one when the data is
requested by a client, and the counter is decreased by one if a client replaces its
replication by some other data items. Based on the counter, the server can find
which data is hot and broadcast their update to client. If a counter is zero, the data
item need not to be included in the Invalidation Report to save the bandwidth.

[YHO1la] proposed a new cache strategy for real-time transaction to meet their
time deadline in broadcast environment. Given the number, the sequence and the
ID of the data requests for a transaction, a cache policy called Largest First Access
Deadline Replaced(LDF) is used as a solution for the caching and pre-fetch strategy.
The access deadline of a data on any transaction is defined as an estimated latest

time for this data to be accessed. Any cache maintains an Access Deadline Table

20

including data ID, Access Deadline and First Access Deadline for all data items on
all current transactions it involves in. The First Access Deadline is the minimum
among all access deadlines of this data in all current transactions. When a data is
accessed from the broadcast channel, the value of this data in the Access Deadline
Table should be modified and subsequently, the client will check whether the data
cached with the largest value of First Access Deadline has a larger value than that
of the current data. If this is so, such a data will be replaced by the current data out
of the cache. This policy keeps the data that is needed more urgently for current

transactions to meet their deadline.

Chapter 3

Concurrency Control for Simple
Update with Locking in
Broadcast Disks

In this chapter we present the reference client-server model and three incremental
variants of our model. Without loss of generality we consider in the discussions
below a single server and several clients. Ultimately every computer in the network

can play both roles simultaneously thus yielding a peer-to-peer architecture.

3.1 Overview

In our proposed model, we attempt to combine the advantages of both conventional
database and broadcast disks environment as the new model. In order to maintain
consistent state of the database, update requests must be controlled by the database
server, and read requests can be processed of the broadcast mechanism. Thereby,

the performance of the model should be improved.

21

22

3.2 Client-server Model

For reference here and in our performance analysis, we first recall the traditional
client-server model. We later refer to this model as the client-server model.

The server manages objects. Such objects are often pages containing data ele-
ments. If a client needs to read or update a data element, it reads or updates the

object or page that contains it.

Client In the client-server model clients must request to the server the objects
for a read or a write operation. Read- and write-requests are sent by clients to the

server by an upstream channel.

Server The server controls the concurrent accesses by maintaining a lock table.
Each entry in the lock table indicates, for any given currently accessed page, the
type (read or write) and number of locks on the object as well as a queue of requests
waiting on this object. If no potential conflict is detected in the lock table, the server
delivers the requested object to the client on a downstream channel, otherwise the
request is queued. If the server receives a read-request for an object, a read-lock
is added to the lock table for this object if the object is free or locked by a read-
lock. If the object is locked by a write-lock the request is queued. If the server
receives a write-request for an object, a write-lock is added to the lock table for this
object if and only if there is no previous lock. Locks are released when the server
receives release-read-lock or release-write-lock notices indicating that the client has

completed the operation. The server then attempts to process request in the queue.

23

Release-write-lock notices may consist of the modified object itself.

Discussion Such a standard mechanism is the basis for the implementation of
concurrency control strategies for the interleaved execution of transactions. For in-
stance it is the basis of the implementation of the classic two phase locking strategies
guarantying serializability and recoverability properties for transactions.

If one is not concerned with transaction support then a simpler locking mech-
anism can be used that simply prevents the creation of diverging versions of the
same object. This simpler mechanism always grants read requests. It records write
locks and grants write-requests only when there is no write lock. The server, how-
ever, must guarantee that reads and writes are atomic operations at its side. In the
sequel, we consider a standard locking mechanism with read-write and write-write

conflicts.

3.3 Broadcast Channel with Updates and Locking

SERVER

Figure 3.1: Broadcast Channel Architecture

We now replace the upstream channel used by the clients to send their requests

and the updated objects by a single cyclic channel, which we call the broadcast

24

channel. Figure 3.1 illustrates the architecture of a cyclic broadcast channel with
clients and server placing and monitoring objects and messages on the channel. The
model we propose is now similar to the one of a broadcast disk [AAFZ95] except
that we still consider that clients send both read- and write-requests. We later refer
to this model as the broadcast channel model.

For the sake of simplicity of the presentation we assume that the broadcast
channel is a ring that allows the cyclic circulation of messages (requests, notices, and
objects). Although we do further discuss the issue in this chapter, an arrangement of
server and clients in a ring is not strictly necessary provided the realization of weaker
assumptions about messages eventually reaching clients and server. In particular,
we need not assume that the order of messages sent on the network is maintained
since synchronization is done at the server’s side when the messages return. This is
important as it allows clients to hold notices possibly contribute the implementation
of a scheduling strategy. The reader may notice that other proposal for broadcasting
architecture with updates and concurrency control often make stronger assumptions

about the order of messages on the channels.

Client The client algorithm is presented on Figure 3.2 and the description of
variables of all the algorithms is shown in Table 3.1. A client needing to read an
object sends a read-request to the server on the broadcast channel. It then monitors
the broadcast channel until the object to be read is at hand. The client reads the

object from the channel.

25

Name Description

my the active object generating in the client and
including the read or write request

page the active object being broadcast in the channel
and accessed by the client

my.kind the kind of request, reading or writing, in the
active client

my.data_id the identity of the data requested by the client

my.client_id the identity of the active client

my.rset the set of data identity read by the active client

my.wset the set of data identity written by the active
client

page.destination | the recipient identity of this page

page.tag the kind of page, such as response page, broad-
cast page, request page

page.data_id the data identity in this page

Table 3.1: Description of the data structure of the algorithm

A client needing to update an object sends a write-request to the server on the
broadcast channel. The client monitors the broadcast channel until the object to
be updated is at hand. The client removes the object from the channel, updates it,
and places it back on the channel. A client is allowed to update an object if it is
tagged with a note identifying the client as the recipient. A client is not allowed to

update an object tagged with a note identifying a different client as the recipient.

Server The server algorithm is presented on Figure 3.3. The server maintains a
lock table identical to the one used in the client-server model. When the server
receives a read- or write-request it grants the request according to the lock table,
i.e. updates the lock table and sends the object on the broadcast channel, else it
queues the request. In the case of a write-request the object sent is tagged with the

identifier of the recipient (i.e. the client requesting the page for update). Read- and

26

Algorithm

1. While(1 > 0) { /*monitoring loop*/

o

© N oA

9.
10.
11.
12.
13.
14.
15.}

/*get the page from the broadcast channel*/
page = (TRANSACTION *) get((HEAD *) broadcastchannel);
If(my.kind="w’ && page.destination == my.client_id && page.tag == "w’){
/*update request*/
wSend(page); /*Send response message to the server*/
Commitcouter—++;
break;

Else /*Broadcast reading™®/

If(my.data-id == page.data-id && page.tag ==’ && my.kind="r"){
rSend(page);/*place page back to the channel*/
Commitcouter++;
break;

}

rSend(page);/*place page back to the channel*/

Figure 3.2: Client’s Monitoring Algorithm in the Broadcast Channel Model

Algorithm

1. page = (TRANSACTION *) get((HEAD *) broadcastchannel);
2. switch(page.tag){

3 case ' 1 [*read page*/

4. Unlock(page); /*release read lock*/

5. Break;

6 case 'u’: /*update response message from the client*/
7 Unlock(page); /*release write lock*/

8 Break;

9. case 'q’: /*request from client*/

10. Lock(page) /*concurrency control*/

11. Break;

12.}

Figure 3.3: Server Loop for a Broadcast Channel Model of Model 3.2

27

write-locks are released as untagged and tagged pages, respectively, come back to

the server. The pages themselves serve as lock-release notices.

Discussion There can be several copies of an untagged object, i.e. an object
requested for read, on the broadcast channel. It is not necessary to indicate the
recipient of the copy of an object requested for read and any client having requested
an object for read can read any copy of the object. This is a potential source of
higher throughput. There can however only be one copy of a tagged object, i.e.
an object requested for update, exclusively of untagged objects on the broadcast
channel. This is a potential bottleneck that we try to avoid with the extension

presented in the next subsection.

3.4 Broadcast Disks with Updates and Locking

Except for a possible simultaneous copy of untagged objects, our model so far does
not allow the replication of objects on the broadcast channel. In other words, our
previous broadcast disks model had a single disk spinning at the lowest possible
speed and we now present a model extending a multi-disk and multi-speed broadcast
disks model following [AAFZ95] to update and locking. We later refer to this model

as the broadcast disks model.

Client The client algorithm is presented on Figure 3.4. A client needing to read
an object need not send a read-request to the server on the broadcast channel. It
just monitors the broadcast channel until the object to be read is at hand.

As previously, a client needing to update an object sends a write-request to

28

Algorithm

1. While(1 > 0) { /*monitoring loop*/
/*get the page from the broadcast channel*/

2. page = (TRANSACTION *) get((HEAD *) broadcastchannel);

3. If(my.kind="w’ && page.destination == my.client_id && && page.tag == "w’){
/*update request®/

4. wSend(page); /*Send response message to the server*/

5. Commitcouter++;

6. Waitfor Acknowledge(my.data_id);

7. break;

8.

9. Else /*Broadcast reading™/

10. If(my.data_id == page.data_id && page.tag ==’ && my.kind="r"){

11. rSend(page);/*place page back to the channel*/

12. Commitcouter+;

13. break;

14. }

15. rSend(page);/*place page back to the channel*/

16. }

Figure 3.4: Client’s Monitoring Algorithm in the Broadcast Disks Model

the server on the broadcast channel. The client monitors the broadcast channel
until the object to be updated is at hand. The client removes the object from the
channel, updates it, and places it back on the channel. The client must wait for
an acknowledgement before it can read the same object again. This prevents it
from reading an older version still on the broadcast channel. Otherwise, a client is
allowed to read or update an object if it is tagged with a note identifying the client
as the recipient. A client is not allowed to read or update an object tagged with a
note identifying a different client as the recipient. A client is allowed to read any

untagged object.

Server The server algorithm is presented on Figure 3.5. The server sends one or
more untagged copies of each object on the broadcast channel according to a pre-

determined policy (see [AAFZ95] for details) thus simulating several disks spinning

29

Algorithm

1. page = (TRANSACTION *) get((HEAD *) broadcastchannel);
2. switch(page.tag){

3. case ' : /*Broadcast*/

4. If(IsOld Version(page)!=True) /*collect old version pages*/
5. rSend(page);

6. Break;

7. case 'q’: /*update request from the client*/

8. If(Lock(page)==Ture){ /*concurrency control*/

9. Response(page.client_id); /*Response to client*/
10. SetOldVersion(page.data_id); /*Set old version page*/
11. }

12. Break;

13. case 'u’: /*response page from the client*/

14. Unlock(page); /*release write lock™/

15. While(CollectAll(page.data_id)!=True)

16. SetWait(page.data_id); /*wait for all old pages*/
17. SendAck(page.data_id);/*broadcast acknowledge™*/

18. While(True&& Ack!=True)

19. SetWait(page.data_id); /*wait for acknowledge*/
20. Broadcast(page); /*broadcast new version page*/

21. Break;

22.}

Figure 3.5: Server Loop for a Broadcast Disks Model

a different speed (the more copies the higher the speed).

In the previous model of broadcast disks in [AAFZ95], the server allocates the
data items into different disks according to the different access probabilities of each
data item. However, it is only for the read-only request of the client. In our broad-
cast disks model, we found that the data for more frequently read should be repli-
cated more copies and the data for more frequently update should be only one copy
in the broadcast channel, which means the more frequently read data should be allo-
cated in the faster disks and the more frequently updated data should be allocated in
the slower disks. Thereby, we order all data items by the ratio of read-probability to
write-probability and allocate them into the disks with different speed. The greater

ratio the data has, the faster speed disk it is allocated.

30

The server maintains a lock table in which it records, for each object being used,
the write-locks and the number of untagged copies currently on the broadcast chan-
nel. Write-locks are set as write-requests arrive. The copy counter is incremented
as an untagged copy is sent on the channel and decremented as an untagged copy
comes back to the server. When the server receives a write-request it grants if there
is no write lock for the requested object and then sends the object on the broadcast
channel, else it queues the request. The object sent is tagged with the identifier of
the recipient (i.e. the client requesting the page for update). Write-locks are re-
leased as tagged pages come back to the server. The server resends every untagged
object on the broadcast channel unless there is a write lock for the object. If there
is a write lock, untagged copies cannot be resent. An untagged copy can only be
sent after the counter for the object has reached zero, i.e. all untagged copies have
come back to the server, the updated page has come back to the server, and an
acknowledgement of update has been sent to the client performing the update and
has returned. When the condition is met the server can start resending the untagged

copies of the new version of the object.

Discussion Figure 3.6 illustrates a sequence of messages in the case of an up-
date. The client sends on the broadcast channel a write-request for an object. The
server, after receiving the request, locks the object and sends a tagged copy (the
tag indicating the recipient client) on the broadcast channel. The copy reaches its
recipient which performs the update and places the (tagged) updated object on the

channel. The server waits for the updated objects and all the untagged copies to

31

return. It then sends an acknowledgement to the client. When the acknowledgment
comes back the server can resume the broadcasting of the object, now in its updated

version.

Write request
A 2 Broadcast
Client roadeas Server
channel

Tagged object for update
Client = Server
channel
Updated object
Client (0 » Server
channel
Server waits for all

% copies of object
Client Broadcast Server
channel

Acknowledgement
Gient_ - =
channel

Server resumes

broadcast objects
Client Broadcast E Server
channel

Figure 3.6: Processing of Read and Write in Model 3.3

This policy guaranties that there is on the broadcast channel only one version
of an object that can be read. As before the pages themselves serve as lock-release
notices.

The reader notices that the model has no read-lock. Although the untagged
copy counter plays a similar role to the one of the read-locks, the model does not
seem to be able to cater for read-write conflicts. Indeed the counter is not involved
in the granting of write-request. We remember that no synchronization among the
clients is assumed. In particular there is no global clock and time. Furthermore the

clients do not send read-requests. We can therefore freely consider that every read-

32

request corresponding to a read made between the granting of a write request and
the moment at which the updated page has arrived at the server and all the untagged
pages have come back has virtually been sent before the write-request. We can also
consider that the actual read occurs before the write. Since there are no read-locks,
we can consider that prior to resuming the sending of the updated objects, the server
releases all the read-locks before it releases the write-lock. Therefore the system is
free of read-write conflicts.

There can now be, on the broadcast channel, several copies of the same object
available for read as well as one copy available for update by one identified client or
and exclusively one already updated copy not available for read or write. Clients can

read the previous version of an object while the current version is being updated.

3.5 Broadcast Disks with Client Cache, Updates, and
Locking

To complete the model we now consider the clients’ caches. We now assume that
clients may perform read and write operations directly on the data in their cache.

We later refer to this model as the broadcast disks with cache model.

Client The client algorithm is presented on Figure 3.7. A client needing to read
an object need not send a read-request to the server on the broadcast channel. If
the object is in the cache it is used. Otherwise the client monitors the broadcast
channel until the object to be read is at hand. The client removes the object from
the channel, reads it, and places it back on the channel. When an object is read from

the channel it is also loaded in the cache. An object currently in the cache may be

33

sacrificed according to the replacement policy. We later compare two policies: LRU
(Least Recently Used) as used in [AAFZ95], and LIX which has been introduced
in [AFZ96b]. LIX is an efficient constant time approximation of PIX [AAFZ95].
PIX maintains different queues for each disk in the multi-disk model and takes into

account the broadcast frequency.

Algorithm

1. If(mykind=="w’) /*send update request to server*/

2. Request();

3. If((my.kind=="r")&& (InCache(my.data_id)==True)) /*the needed data is in cache*/
4. Commitcouter++;

5. Else{

6. While(1 > 0){ /*monitoring the broadcast channel for needed data */
7. page = (TRANSACTION *) get((HEAD *) broadcastchannel);
8. switch(page.tag){

9. case ' : [*page for reading®/

10. If((my.kind=="r")&& (my.data_id==page.data_id)){
11. Commitcouter++;

12. RefreshCache(page.data_id); /*refresh the cache*/
13. my.action=1;

14. }

15. Break;

16. case 'w’: /*response from the server*/

17. If(page.destination == my.client_id){

18. wSend(page); /*send the updated data to server®/
19. my.action=1;

20. Commitcouter++;

21. RefreshCache(my.data_id); /*refresh the cache*/
22. WaitAck(my.data_id); /*wait for acknowledge*/
23. }

24. Break;

25. case 'I’: /*invalidation message from server*/

26. If(InCache(page.data_id)==True)

27. OutCache(page.data_id); /*delete the stale data out of the cache*/
28. Break;

29. }

30. rSend(page);

31. If(my.action==1)

32. break;

3.}

34. }

Figure 3.7: Client’s Monitoring Algorithm in the Broadcast Disks Model with Cache

As previously, a client needing to update an object sends a write-request to the

34

server on the broadcast channel. The client monitors the broadcast channel until
the object to be updated is at hand. The client removes the object from the channel,
updates it, and places it back on the channel. The updated object is also loaded
in the cache. An object currently in the cache may be sacrificed according to the
replacement policy. The updated object is temporarily pinned in the cache. It is
unpinned when the client receive acknowledgement of the update on the server and of
the guarantee that no older copies of the object can be read. This acknowledgement
comes in the form of an invalidation message for this object sent by the server.

A client is allowed to read or update an object if it is tagged with a note identi-
fying the client as the recipient. A client is not allowed to read or update an object
tagged with a note identifying a different client as the recipient. A client is allowed

to read any object in the cache and any untagged object on the broadcast channel.

Server The server algorithm is presented on Figure 3.8. The server functions as
in the previous subsection: upon receiving the updated object, it waits for all copies
of the object to come back and sends an invalidation message, which also acts as a
acknowledgement in previous model, to all clients and waits for the message to come
back before it releases the write-lock and resumes the broadcasting of the tagged

copies of the new version of the object.

Discussion Similarly to the model in the previous subsection this policy guar-
anties that there is on the broadcast channel and in the caches, except in the cache
of the client having performed an update, at most one version of an object that

can be read. The client performing the update must however wait until it receives

35

Algorithm

1. page = (TRANSACTION *) get((HEAD *) broadcastchannel);
2. switch(page.tag){

3.

® N o

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24.}

case ' : /*Broadcast*/
If(IsOld Version(page)!=True) /*collect old version pages*/
rSend(page);
Break;
case 'q’: /*update request from client*/
If(Lock(page)==Ture){ /*concurrency control*/
Response(page.client_id); /*Response to client*/
SetOldVersion(page.data_id); /*Set old version page*/
}
Break;
case 'u’: /*response message from the client™/
Unlock(page); /*release write lock*/
If(Collectall(page.data_id)==True&&isback==True)
Broadcast(page); /*broadcast new version page*/
Else
SetWait (page.data_id); /*wait all old pages and invalidate message*/
Invalidate(page.data_id);/*broadcast invalidate message*/
Break;
case '1’: /*invalidation message comes back™*/
InvalidateBack(page.data_id);/*collect invalidate message*/
Break;

Figure 3.8: Server Loop for a Broadcast Disks Model with Cache

the invalidation report before it unpins the updated object and before it can let

the replacement policy sacrifice the updated object from the cache. This prevents

a subsequent read of an older version of the updated object.

3.6 Summary

In this chapter, we proposed a modification on the communication channel in the

conventional concurrency control model. By the Point-to-Point method the server

communicates their clients to notify them whether their request of lock is granted.

We used the broadcast channel instead of the point-to-point communication in the

server. The client can retrieve the needed objects from the broadcast channel under

36

the mechanism of concurrency control, in which the object can be read by all clients
in the broadcast channel and the object for update only can be accessed by its
requester. Furthermore, we investigated the different variants of the broadcast disks
model with cache in client. In the next chapter we will evaluate the performance
of these models and compare performance of two different caching policies in the

broadcast disks by simulation experiments.

Chapter 4

Performance Analysis for
Simple Update with Locking in
Broadcast Disks

We empirically evaluate the performance of the models we proposed and compare
it to the performance of the conventional client-server model in this chapter. We
refer to our model as the hybrid model for it combines broadcast and point-to-point

communication.

4.1 Experimental Set-up

For the purpose of the performance evaluation we simulate the models using the
CSIM [JH99] discrete event simulator. The simulator measures performance in
logical time units. We assume that it takes one unit of time to the server to process
one incoming message on the up- or downstream channel and to reply by sending
one object, request, or notice on the downstream channel (or the broadcast channel).
The performance metrics we use is the throughput, i.e. the number of (read and
write) operations executed per unit of time. The higher the throughput, the better

the performance. We subsequently plot the throughput in number of operations per

37

38

5000 units of time.

Item Number 30, 50, 70, 90, 110
Client Number 8, 16, 32, 64
0 1, 0.8, 0.6, 0.5, 0.4, 0.2, 0
p 1,2, 4,8, 16

Table 4.1: Parameter of the experiments on simple update model

To measure the relative performance of these models and illustrate their respec-
tive behavior we vary several parameters in our experiments. The parameter p
indicates the ratio of read- over write-requests for any object. In our experiments
it varies from one (there are as many read- as there are write-requests in average
for any given object) to sixteen (there are sixteen times more read- than there are
write-requests for any object). The parameter 6 controls the probability for any
object to be requested (either read- or write-request following the previous param-
eter p). 0 is the parameter of a Zipfian distribution of the form: p; = (1/i)?. A
value of zero for 6 indicates a uniform distribution while a value of one indicates
a skewed distribution (few objects are very frequently accessed). The server serves
many distinct objects. Finally we vary the number of clients from 8 to 64. The

successive values used in the experiments are reported in Table 4.1.

4.2 Comparative Performance Analysis

4.2.1 Broadcasting versus Client-server

To confirm our approach and validate our simulation with respect to the previous
work on broadcast channels we first verify that the comparative performance of

the broadcast channel model versus the client-server model is maintained in the

39

4000

3500 P

3000 =
.
2500 Broadcast

2000
1500 * *
1000
500

Channel

. —#-Client/Server

Throughput

1 2 4 8 16

Ratio of Read to Write

Figure 4.1: Throughput at @ = 0.5 and 64 clients, with varying p

presence of update with locking. It is the case provided there are sufficiently enough
opportunities for sharing objects on the broadcast channel for reading among the
clients and few chances of operations being queued and delayed because of locks.
If the read-write ratio is sufficient, the broadcast channel model outperforms
the client-server model even in the presence of updates and locks. As the ratio
of read to write operations increases, the opportunity for sharing objects for read-
operation increases for the broadcast channel model. For 64 clients and a mildly
skewed popularity distribution with 6 equals 0.5, Figure 4.1 shows that, as the
number of reads over the number of writes varies from 8 to 16 the performance
of the broadcast channel model increases significantly while the one of the client-
server model remains practically unchanged. For the purpose of verification, we also
measured the performance of the two models when there are no updates. As previous
work on the broadcasting indicates, the broadcast channel model outperforms the
client-server model with throughputs of 7137 and 2468, respectively. Indeed, in the

client-server model, the server can process every incoming request in one unit of

40

3000

2500 BN

i 2000 \- ——Broaccast

*SD 1500 . . Chelmnel

;:O* —#—Client/Server
= 1000

(&3]
f=3
o

o

1 2 4 8 16

Ratio of write- to read-

Figure 4.2: Throughput at @ = 0.5 and 64 clients, with varying 1/p

time. The server receives approximately 2500 requests and 2500 lock-release notices
(one for each request) in 5000 units of time.

Moreover, we continue to increase the number of the writing operation and
investigate the result of the models by varying 1/p. Shown as Figure 4.2 we can
find that the performance of client/server model is still changed litter, but the
performance of the broadcast channel model has been decreased by the increasing
of the ratio of write- to read-operation. When the ratio of write- to read- is greater
than 8, the performance of client/server model is better than that of the broadcast
channel model. The reason for that is the broadcasting for writing operation can
not improve the performance of the broadcast channel model and only the read
operation can be shared by the broadcast channel.

Similarly, as the number of clients increases, the opportunity for sharing objects
for read-operation increases for the broadcast channel model. For a mildly skewed
popularity distribution with 6 equals 0.5 and a read-write ratio of 1, i.e. in conditions

mildly favorable to the broadcast channel, Figure 4.3 shows that, as the number of

41

i)
2, / ——Broadcast
c
gw 1500 . ! Chelmnel
0 —&—Client/Server
ﬁ 1000

500

0
8 16 32 64

Number of Client

Figure 4.3: Throughput at § = 0.5 and p=1, with varying number of client

7000

, 6000 /
a, 9000 / —+ Broadcast
D
% 4000 / Channel
§ 3000 - (lient/Server
£ 2000 I

1000

0

0 0.2 0.4 05 0.6 0.8 1

Parameter of Zipfian
Distribution

Figure 4.4: Throughput at p=4 and 64 clients, with varying ¢

clients increases from 1 to 16, the performance of the broadcast channel model
increases significantly while the one of the client-server model remains practically
unchanged. The broadcast channel model outperforms the client-server model for
16 clients and more.

As the distribution of popularity of objects becomes skewer, the opportunity
for sharing objects for read-operation increases for the broadcast channel model.

However, there is potentially a higher risk of requests being queued and delayed

42

because of locks for both models. For 64 clients and 4 times more read operations
than write operations, Figure 4.4 shows that, as the distribution of the popularity of
objects becomes skewer, the performance of the broadcast channel model increases

significantly while the one of the client-server model remains practically unchanged.

7000
6000 \\ +C||em/semf
E_ 5000 —+—BroadcastChannel
§, 4000 \ Theta=1
0 3000 \\\ \ —k—BroadcastChannel
L —
F 2000 . Theta=0.5
s —=—BroadcastChannel
1000 Theta=0

0 T T T T
30 60 9 120 150 180

Number of Data Object

Figure 4.5: Throughput at p = 4 and 64 clients, with varying number of object

We also investigate the effect of the number of object on the server. From Fig-
ure 4.5 we find that the performance of the broadcast channel is decreased by the
increasing of the number of objects. When the data object on the server become
more and more, the data to be requested become dispersed. As a result, the oppor-
tunity of sharing becomes less and the performance of the broadcast channel model
is decreased and the performance of client/server model is better.

4.2.2 Broadcast Disks versus Broadcast Channel

Broadcast disks improve on a read-only broadcast channel by simulating several
disks spinning at different speeds. We compare in this subsubsection the broadcast
channel model with several versions of the broadcast disks model with different

combinations of speeds. We use three different sets of broadcasts, two of which

43

simulate three disks spinning at 5/3/1 and 7/4/1, respectively, and the third one a
single disk.

In this group of experiments we use different distributions for the popularity of
objects for read and write. This separation is important since, as the experiments

demonstrate, the best performing model depends on these distributions.

8000

~+ Broadcast Channel

7000
p .
g 6000 // -+ Broadcast Disk
§ /_//./ 5:3:1
9 -+ Broadcast Disk
4 5000
& /*{/// 7:4:1
4000 / # Broadcast Disk 1
3000 ‘
1 2 4 8 16

Ratio of Read to Write

Figure 4.6: Throughput at 8,=1, 6,=0.5 and 64 clients, with varying p

Figure 4.6 shows the performance of the four models with a Zipfian popularity
distribution for reads with parameter 6, of 1.0 and a Zipfian popularity distribution
for writes with parameter 8,, of 0.5. The broadcast disks models perform better
than the broadcast channel model with disks speed of 7/4/1 yielding the best per-
formance.

Figure 4.7 shows the performance of the four models with a Zipfian popularity
distribution for reads with parameter 6, of 0.5 and a Zipfian popularity distribution
for writes with parameter 6, of 1. Conversely to the prior experiment, under these
distribution parameters, the broadcast disks models still perform better than the

broadcast channel. However, conversely to the previous case, it is now the broadcast

7000
6500
6000
5500
5000
4500
4000
3500
3000

Throughput

Ratio of Read to Write

7

4

e
B

—~+Broadcast Channel

-+ Broadcast Disk
5:3:1

—+ Broadcast Disk
T:4:1

Broadcast Disk 1

Figure 4.7: Throughput at ,=0.5, ,,=1 and 64 clients, with varying p

channel model with disks speed of 7/4/1 that yields the worst performance.

44

Like previous experiments, we also study the effect of the ratio of write- to read-

operation for our models.

Shown as Figure 4.8 the performance of the flat disk

configuration is better than other two models when the ratio is greater than 3. The

reason for that is the more writing operations the more cost on synchronization of

the data. As a result the flat disk model becomes the best configuration in this

environment.

4500

4000

3500

3000

Throughput

2500

2000

T~
|

1 2 4 8 16
Ratio of write to read

—4—Broadcast
Channel

—#—Broadcast Disk
1

—4— Broadcast Disk
5:3:1

Figure 4.8: Throughput at 6,.=1, 6,,=0.5 and 64 clients, with varying 1/p

45

The experiments confirm that broadcast disks require a good (a priori) knowl-
edge of the distribution of the popularity of objects (we remark that it would be
interesting to devise an adaptive strategy for the replication of objects). Our con-
tribution, however, is a model for client update and server locking in the broadcast
disks model in spite of the replication inherent to the concept of multi-speed broad-
cast disks. Under the above model, our experiments show that both popularity
distributions for read and for write separately but not independently influence the
performance.

4.2.3 Client Cache and Replacement Policies

The broadcast disks model with cache at the client side introduces an additional
need for synchronization among the clients and the server: the cache inconsistencies

invalidation. The experiment results are given for hot caches, 64 clients and 8 = 0.5.

7500
7000

6500

6000 oA

£500 / ——No Cache
So00 sl —~—IRU
1500 T | |
4000 =

3500 ——
3000 :

1 2 4 8 16
Ratio of Read to Write

Throughput

Figure 4.9: Throughput at 64 clients, 0,=0,,=0.5 and Cache size of 5, with varying p

We first show that the results of [AAFZ95] regarding the best performing re-
placement policy in a broadcast disks model with cache still holds in the case of a

model with updates and locking. Figure 4.9 shows, for varying read-write ratio, the

46

performance of the broadcast disks model without cache and two broadcast disks
models with LRU and LIX replacement policies, respectively. The figure shows
that both models with cache outperform the model without cache. It also confirms

that LIX performs slightly better than LRU.

8000 l
7000
6000 {
5000 —4— Cahcesize=0

4000 —#—Cachesize=b

3000 —A— Cachesize=10
2000
1000

Throughput

1 2 4 8 16
Ratio of Read to Write

Figure 4.10: Throughput at 64 clients ,0,.=60,,=0.5 and LRU, with varying p

We next show that the cost of invalidation can be overcome by the gain of caching
when there are sufficiently more read than write operations. Figure 4.10 shows, for
varying read-write ratio, for 64 clients, and for popularity distributions of parameter
0 of 0.5, that, when there at least three times more read than write operation, the

best performance is obtained for the biggest client cache.

4.3 Summary

We have presented an update and locking mechanism for a broadcast disks model
with client’s cache. In order to introduce and study the features of our model we
presented three different incremental versions: a model using a broadcast channel, a

model using broadcast disks, and a model using broadcast disks and allowing caches

47

at the clients’ side. This proposal constitutes a sound basis for the implementation
of concurrency control strategies for the interleaved execution of transactions. The
models we devised and studied can support the implementation of schedulers or
lock-based concurrency control strategies.

The three models we have proposed are based on broadcasting. They incremen-
tally yield better performance compared to the reference client-server architecture
when the opportunities for sharing objects for read are high: high ratio of read
over write operations, large number of clients, and skewed distribution of popular-
ity of objects. We have indeed demonstrated that broadcasting remains a viable
alternative even in the presence of updates by the client. This result is particularly
important since broadcasting is candidate architecture for many new applications

involving new devices and networks.

Chapter 5

Concurrency Control for
Database Transaction with
Locking in Broadcast Disks

In this chapter, we extend our research focus from the concurrency control of ele-
mentary update operation into transaction processing in the broadcast disks envi-
ronment and we prove the correctness of this relaxed concurrency control mechanism

in order to improve the performance of the model.

5.1 Overview

In our proposed model, we combine the control matrix and locking mechanism in
the broadcast disks environment as the relaxed concurrency control model. In order
to maintain consistent state of the database, update requests must be controlled by
the locking mechanism in the database server, and the read requests can be checked
by the control matrix for the whole transaction and met by the advantage of the
broadcast mechanism. When the local memory is utilized in clients for improving
the model performance, problems on data consistency arise. The data in the update

set of the committed transaction must affect their replications in other client cache,

48

49

otherwise, data inconsistency will occur when another transaction access these data
objects. In order to keep the clients’ cache consistent with the update value on
the server, the invalidated report is proposed to solve the inconsistency problem of

replications in the clients’ cache.

5.2 Concurrency Control in Broadcast Disks Environ-
ment without Cache in Client
Now, we propose a concurrency control model with broadcast disks. In this model,
which is extended from the model in Chapter 3, one server and many clients are
connected by a broadcast channel. All data objects are stored as a page in the server
and will be broadcast to all clients by the server through the broadcast channel. Any
client can generate a transaction consisting of the operations like read or update
operation for any data object on the server and commit or abort any transaction.
In order to maintain the whole database consistency among these transactions of
the clients, a control matrix like in [SNSR99] is proposed for the read-write conflict
resolution and the locking mechanism is explored for the solution of the write-write
conflict in broadcast disks. We will first discuss the correctness criteria of the models
and then describe the functionalities of the model — APPROX in [SNSR99], and

based on the APPROX model, our model will be represented.
5.2.1 Correctness Criteria in Broadcast Disks
Although the conflict serializable is the commonly accepted correct criteria for trans-

actions and used in many database systems, generally, it is too expensive to maintain

in broadcast disks environment. Higher communication costs with the server make

50

the conflict serializable inappropriate for the broadcast disks. Thereby, the alter-
native correctness criteria for transactions in broadcast disks should not only be
weaker than conflict serializable, but also ensure the consistency of the database.

In APPROX[SNSR99] update consistency in [BC92] and optimistic concurrency
control were proposed to maintain the consistency of the database. Update consis-
tency in [BC92] is weaker than conflict serializable but is able to solve the read-write
conflicts in the database system. However, optimistic concurrency control is also ex-
plored to maintain the serializability in their model. Optimistic concurrency control
is a non-lock concurrency control, which basic premise is that most transactions
will not conflict, and the timestamp acts as the criteria of the validation among the
transactions. Thus there are some disadvantages of the model of [SNSR99]. First,
while there are more update transactions in the model, the optimistic concurrency
control will restart most of them and reduce the performance of the model. Second,
the cost of identity of the global time in each client, which is used to check the
validation of the transactions, is higher.

To solve these problems, a correctness criteria called One-copy Serializability in
[PABOO] based on the multiversion concurrency control is proposed in our model.
According to Figure 5.1 in [RR00] One-copy Serializability is one kind of view seri-
alizable and weaker than conflict serializable, but is able to ensure the correctness of
the database and of the data object read concurrently by transactions in broadcast
disks environment. Unlike the conflict serializable with the same conflict order, a
schedule is One-copy Serializability if it is view equivalent to some serial schedule,

that is, they have the same reads-from relationships and the same final writes. There

o1

are one or two versions of each data stored in the server. If a data has two versions,
one will be the version being broadcast, and the other will be the version updated by
a transaction being committed. Once the transaction commits, this version becomes
the unique committed version to be broadcast and the previous committed version

will be deleted.

All Schedules

View Serializable

Conflict Serializable

Serial

Figure 5.1: Venn Diagram for Classes of Schedules

We explore the basic locking method to ensure the One-copy Serializability
among the update transactions and maintain the same current degree of read by the
control matrix. Each update transaction makes a new version of data on the server
and the server will broadcast the current version of data to client in each broadcast
cycle. Thus client can read the correct and current data from the broadcast channel
without communicating with the server and also improve the performance of the
model. For example,

Ho: ri()wa (y)ry (y)wa (x)wr (z)crce
Since ry (z)<ws(z) and wa(y)<ri(y), SG(Hp) consists of the cycle T1—Ty—T;.

Thus, Hy is not conflict serializability. In fact, this history can be accepted by our

52

model, since all transactions have the same read from relation, that is, they read
the same version data from the server.

However, H1: 11 (x)ws (y)wi (z)wa (x)cari (y)c1
Hj is not accepted by the conflict serializability nor our model, since t; first read z
from certain transaction, and then read y, which has been already updated by ts.
It will be checked by the control matrix and aborted since it can’t meet the read

condition.

5.2.2 APPROX — Update with Broadcast Disks in [SNSR99]

Server In APPROX model, there are three responsibilities for the server: broad-
casting the committed and current version data to client, ensuring the consistency
of the data in server, and updating and transmitting the control matrix with the

data being broadcast.

Broadcast One broadcast cycle is defined as the completion of total disks
broadcasting all data objects. For each broadcast cycle the server will broadcast the
latest broadcast version of the data objects to client at the beginning of the cycle.
There are two versions of data in the server: the latest committed version and the
latest broadcast version. Before the beginning of each broadcast cycle, the server

will update the latest version data with the latest committed version.

Optimistic Methods for Concurrency Control APPROX maintains the
concurrency control among the transactions by the optimistic method proposed

in [KR81], which is a non-locking and timestamp concurrency control mechanism.

93

The optimistic method divides the transaction into three phases: a read phase; a
validation phase and a write phase. In a read phase, all readings are allowed and
all writings will be updated locally, and copies will be made besides recording the
timestamp at the beginning and the ending of the read phase. After the transaction
with its data set are sent to the server and has passed the validation during its
validation phase, the local copies of the transaction can be made global in its write
phase. The server determines the validation of the transaction by comparing their

timestamp at the beginning and the ending of their phases.

Control matrix If there are n data objects in the database, a matrix of size
n X n will be used. In each broadcast cycle, the server will broadcast the control
matrix together with the latest broadcast data objects. After a whole broadcast
cycle, the server will update the control matrix entry and the data being broadcast
from the latest committed space by the committed transactions.

Initially, each entry of the control matrix C' is set to the cycle number 0. As-
suming Cpew and Cyg are the control matrix with respect to the cycle number
Cnew aNd Coig, 16t Cpew > Coiq be the cycle in which a newly transaction ¢ commits.
When transaction ¢ updates both data object ¢ and j, and the last transaction is
to update object j, the entry Chew(i, 7) is set to the cycle in which ¢ commits. If
t only updates object j, then it depends on the set of all transactions that directly
or indirectly updates the latest values of data objects in the read set of t. Thus the
entry of Chew(i, j) is set to the maximum cycle of Cyq(i, k), in which object k is

the data in the read set of t. Lastly, if an object is not updated, the entry will then

54

be Cnew(i; j):Cold(i7])

The potential disadvantage of the control matrix is that the bandwidth required
transmitting during each broadcast cycle. The size of control matrix is n? x log(n),
where n is the number of objects in the database. This overhead will be large
for large value of n. In each broadcast cycle, if the size of each data object is s,

. . s n?xlog(n)
the fraction of transmitting for control matrix is =5+ . Then the overhead
g(n)+s
of the control matrix is not large when the size of data object is large. According
to the above result we assume that the size of data object is quite large and then

the overhead of transmission of the control matrix can be looked very small in our

simulation experiments.

Client There are four operations performed in the transaction of client: read,
write, commit and abort. The client retrieves the broadcast data page from the
broadcast channel for operating transaction and sends the request and commit mes-

sage to the server.

Read Any client who wants to perform a read-request should check the control
matrix with the data to determine whether the read-operation can be performed.
For a transaction ¢ at the client, a read-operation on o0b; is allowed to execute in a
cycle iff

V(ob;,cycle) € Ry (C(i, j) < cycle),
where Ry is the set of (0b;,cycle) pairs such that transaction ¢ previously read object
ob; from broadcast cycle cycle and C' is the control matrix of the current broadcast

cycle. If the condition failed, then this read-operation is aborted and the whole

95

transaction will be aborted and restarted.

Write The update operation can be performed locally without any check.

Commit After the whole transaction is completed and if the transaction re-
quires no update operation, then the transaction will be committed. Otherwise,
the client will send a committed message with the list of all updated objects and
respective values to the server. In order to update the control matrix the client also
send the set of objects read in the transaction to the server to check for consistency.
The server will then send the commit or abort message back to the client. After the

client has received the commit message, a new transaction will be generated.

Abort If a transaction is a read-only, then the abort will only restart it. If the
transaction has performed the update operation, upon receiving the abort message
from the server, it will clear the copies that need to be updated locally and will then

be restarted at the client.

5.2.3 Basic Locking Update with Broadcast Disks

Server In our model, there are also three responsibilities for the server: broadcast-
ing the committed and the current version of data to client; ensuring the consistency
of the data in server and updating; and transmitting the control matrix with the

data that is being broadcast.

Broadcast The broadcast functionality is the same as that described in Sec-

tion 5.2.2. Based on the idea of the multi-disk broadcast in [AAFZ95], we make

o6

an improvement in the sorting of all the data objects by its accessed probability.
Hence, greater probability means that the object will be accessed more frequently.
On the contrary, smaller probability means the object will be accessed less often.
The objects will then be allocated to different disks with different speeds according
to their probability. The objects with greater probability will be allocated in the

faster disks and the objects with smaller probability will be set to the slower disks.

Basic locking concurrency control In order to ensure the consistency of
the database, the server employs the basic locking concurrency control mechanism.
When the server receives a request for updating a data object from the clients, it
will first check the locking table as to whether the data is locked by another client.
If this data object is not locked, the server will send the response message to the
client to process the transaction. If locked, the server will check whether there is
a deadlock between the waiting transaction and the owner transaction. If there is
no deadlock, this client has to wait for the release of this data and will then enter
a queue, otherwise, the server will send an abort message to the client and release
all locks the transaction has obtained. When the server receives the committing
message from the client, it will release all update locks and write the new version of

data into the latest committed version space.

Control matrix The functionality and update of the control matrix are also
like that in Section 5.2.2. Details of the server algorithm in our model is shown as

Figure 5.2.

o7

Algorithm

1. page = (TRANSACTION *) get((HEAD *) broadcastchannel);
2. switch(page.tag){

3.

® N oo

11.
12.
13.
14.
15.
16.
17.
18.
19.
20. }

case 'p’: [*read page*/
NewBroadcast(page); /*new broadcast cycle*/
Break;
case 't’: /*request from client*/
If(Lock(page)==Ture) /*obtaining the write lock*/
SendResponse(page.client_id) /*Send the response to client*/;
Else If(Deadlock(page)==Ture); /* Check the deadlock*/
Abort(page.client_id); /* Abort the transaction for deadlock™®/
Else EnterQueue(page.client_id); /*Wait for lock in queue*/
Break;
case ’c’: /*commit message from client®/
Unlock(page.client_id); /*release write lock™/
Update(page) /*update control matrix*/
Break;
case ’a’: /*abort message from client®/
Abort(page.client_id); /*Abort the transaction*/
Break;

Figure 5.2: Server Loop for Our Model

Client There are also four operations performed in the transaction of client in our

model: read, write, commit and abort. The client retrieves the broadcast data page

and response message from the broadcast channel for operating transaction and

sends the request and commit message to the server. Details of the client algorithm

is shown as Figure 5.3.

Read Like the read functionality in Section 5.2.2, Any client has to check the

control matrix with the data for processing the read-operation by the same condition

in Section 5.2.2.

Write For an update operation at the client, the client will first send a request

to server for obtaining the write-lock on this data object and wait until receiving the

o8

Algorithm

1. While(Transcouter < TRANSLENGTH){

2. Newop(Transcouter); /*Process a new operation*/

3. If(mykind=="w)

4. Send(page);/*Send request page for write lock*/

5 While(1 > 0) { /*monitoring loop*/
/*get the page from the broadcast channel*/

6. page = (TRANSACTION *) get((HEAD *) broadcastchannel);

7. If(my.kind=="w’ && page.destination == my.client_id){
/*waiting for write response from server*/

8. switch(page.tag){

9. case 't’: /*obtain the write lock*/

10. Update(page); /*update locally*/

11. Transcouter++;

12. break;

13. case 'a’: /*abort message*/

14. Abort(); /*abort the local transaction*/

15. break;

16. }

17. break;

18.

19. Else /*Broadcast reading®/

20. If(my.data_id == page.data-id && page.tag == 'p’ && my.kind=="r"){

21. If(CheckMatrix(my.data_id)==True) /*Check the control matrix for read*/

22. Transcouter++;

23. Else

24. Abort(); /*Abort the local transaction */

25. Send(page);/*place page back to the channel*/

26. break;

27.

28. Send(page);/*place page back to the channel*/

2. }

30. }

31. Commit(my.transaction_id); /*Commit the transaction to server®/

Figure 5.3: Client’s Algorithm in Our Model without Cache

99

guarantee or the abort response from the server. The updated set of this transaction
will then be sent to the server to detect the deadlock on the server. If the client
has obtained the write lock, it will retrieve the response page, update it locally and

process the transaction. Otherwise, this transaction will be aborted.

Commit After the whole transaction is finished, the client will send a commit-
ted message with the list of all updated objects and respective values to the server,
which will commit this transaction and release all write-locks of this transaction. In
order to update the control matrix, the client will also send the set of objects to be

read in the transaction to the server.

Abort If a transaction is a read-only, then the abort will only restart it. If
the transaction has obtained the writing lock on the server, it should send an abort
message to the server to release all the locks obtained and will then be restarted at

the client.

5.2.4 Discussion

Table 5.1 shows the differences between our model and that in [SNSR99]. Details
of the correctness criteria has been discussed in Section 5.2.1. In our model the
deadlock problem is issued by two update data sets of one transaction, in which one
of the set of data has obtained lock and the other set of data is to obtain lock. When
the client wants to obtain the lock of one data object and the data object is locked
by another client, this client will have to check whether its obtained set overlaps the

set to obtain of the transactions in the waiting queue. If there is no overlap, it will

Model

APPROX

Our model

Broadcast

Broadcasting data

with control matrix

Concurrency Control

Optimistic con-

currency control

Basic locking mecha-
nism

Control matrix

Computing control matrix in Section 5.2.2

Read at client

Only check the read condition in Section 5.2.2

60

Write at client Write locally and | Request the write lock
after validation | from server and when
then make global commit or abort it will

be released

Comimit Commit to server | Send write set to server
with read and | ;4 release all locks ob-
write set to check | {jined
the consistency

Abort Restart the trans- | Restart the transaction
action and clear | and release all locks ob-
the local copy tained

Disadvantage Maintain the | Detecting the deadlock
identity of the
global time

Table 5.1: Comparison of APPROX and our model

then enter the queue, in which otherwise, it will then be aborted. The server will

subsequently send the abort message to client.

5.3 Update with Cache in Client

Currently, the local memory is utilized in each client to cache the objects being
broadcast so as to improve the model performance. Problems on data consistency
arise when client caching is used. If a client transaction is committed on the server,

then the data in the update set must be effected. Moreover, replications of these

61

data objects in the client memory should be affected. Data inconsistency will occur
when another transaction access these data objects. In order to keep the clients’
cache consistent with the update value on the server, the affected replications in the

clients’ cache must be invalidated.

5.3.1 Server

In our model, the control matrix is not only used in the concurrency control but also
can be an invalidation report, which is used to make the stale replication invalidated
in the client memory. The control matrix records the objects, which will be update
by certain transaction by the method presented in previous Section 5.2.3. Until the
server has committed the transaction for a client, the new version of control matrix
will be modified and broadcast with the new version data, so as to notify all clients
that some replications in the cache should be invalidated in new broadcast cycle.
Thus there is no difference on the functionality of the server between the model

without cache and with cache. Detail of the server algorithm is shown as Figure 5.2.

5.3.2 Client

Besides the functionalities in Section 5.2.3, there are some modifications on the read-
and write-operation for cache management in the client of this model. Detail of the

client algorithm is shown as Figure 5.4.

Read For a read request of a client transaction it will first check whether the
preferred data object has been cached in the local memory. If the preferred data
is not in the memory, the client will monitor the broadcast channel and wait for

the preferred data object. After consistency is checked for read operation by the

62

Algorithm

1. While(Transcouter < TRANSLENGTH){
2 Newop(Transcouter); /*Process a new operation*/
3 If(my.kind=="w")
4 Send(page);/*Send request page for write lock*/
5. If(my.kind=="r"){ /*the needed data is in cache*/
6. CheckCache(); /*invalidation of the cache*/
7 If(InCache(my.data_id)==True && CheckMatrix(my.data_id)=="Ture)
8 Transcouter++;
9. continue;
0. }
11 While(1 > 0) { /*monitoring loop*/
/*get the page from the broadcast channel*/

12. page = (TRANSACTION *) get((HEAD *) broadcastchannel);
13. If(my.kind=="w’ && page.destination == my.client_id){
/*waiting for write response from server*/
14. switch(page.tag){
15. case 'r’: /*obtain the write lock*/
16. Update(page); /*update locally™*/
17. Transcouter++;
18. break;
19. case 'a’: /*abort message*/
20. Abort(); /*abort the local transaction*/
21. break;
22.
23. Send(page);/*place page back to the channel*/
24. break;
25. }
26. Else /*Broadcast reading®/
27. If(my.data_id == page.data-id && page.tag == 'p’ && my.kind=="r"){
28. If(CheckMatrix(my.data_id)==True) /*Check the control matrix for read*/
29. Transcouter++;
30. RefreshCache(my.data_id); /*Refresh the local memory for read*/
31. Else
32. Abort(); /*Abort the local transaction */
33. Send(page);/*place page back to the channel*/
34. break;
35. }
36. Send(page);/*place page back to the channel*/
37}
38.}

39. Commit(my.client_id); /*Commit the transaction to server*/
40. Refresh(my.wset);/*Refresh local memory for committed write set*/

Figure 5.4: Client’s Algorithm in Our Model with Cache

63

read condition in Section 5.2.3, the client will cache them into local memory and
record the respective entry of the data cached in the control matrix. For example,
if 0b; is cached, then C(j, j) will be recorded. If the preferred data is in the local
memory, the client will retrieve the control matrix with a broadcast data object from
the broadcast channel before checking of consistency. This is to check whether the
preferred data object to read is validated, that is, the client will compare the same
entry between that in the matrix and in the cache. When a client finds invalidated
data objects in the local memory by the control matrix, these replications will then
be removed from the memory regardless how recent or how often they have been

accessed, and wait for the preferred data that is being broadcast in the channel.

Write For any update operation, the client will send the request to the server
for the write lock on the data object and write locally after receiving the response
message that is sent from the server. After the transaction is committed to the
server, the client will refresh the memory by certain cache management policy that

is in accordance to the write set of the committed transaction.

Cache manage policy When the local cache is full, a victim must be chosen
from the local memory to replace the new data object. According to the broadcast
environment, we choose two caching manage policies to compare the performance
of our model, one is LRU (Least Recently Used) [AAFZ95] algorithm, other is LIX
in [AFZ96b]. LRU maintains the cache as a list. When an object in the cache is
accessed, it is moved to the top of its own list. When a new object enters the cache,

LRU will choose the object that is on the bottom of the list as the victim, and the

64

new object will be inserted to the list. Like LRU, LIX is an efficient constant time
approximation of PIX. LIX also maintains the chains in each client memory by the
order of the probability of access, but it maintains one queue for each disk. When
the cache is full and a new object must enter, LIX will evaluate the lixz value of the
objects at the bottom of each chain and evict the object with the lowest lixz value.
The new object will then enter the chain corresponding to the disk it is on. The liz
value of each object is computed by the probability estimate for an object divided

by its broadcast frequency.

5.4 Summary

Based on the result of theoretical analysis and experimentation mentioned in the
previous chapters, we have constituted a sound basis for the implementation of
concurrency control strategies for the interleaved execution of transactions. In this
chapter, we have devised and studied the lock-based concurrency control strategies
for transactions in the broadcast disks. We proposed that the concurrency control
mechanism be combined by a weaker serializability, called One-copy serializability,
with the lock-based strategies. The One-copy serializability will be checked by the
control matrix in [SNSR99] and the write-write conflict will be checked by the lock-
based strategy in the server. Furthermore, we explored the different improvements
of the performance of broadcast disks model with cache in client and utilized the
control matrix to solve the problem of the inconsistent cache. In the next chapter
we will evaluate the performance of these models and compare the performance of

two different caching policies in the broadcast disks by simulation experiments.

Chapter 6

Performance Analysis for
Database Transaction with
Locking in Broadcast Disks

We empirically evaluate the performance of the model we propose. For the purpose
of the performance evaluation, we build a simulation using the CSIM [JH99] discrete
event simulator. The primary performance metrics we use is the response time in
which one committed transaction. The lower the response time, the better the

performance of our model.

6.1 Experimental Set-up

The simulator measures performance in logical time units, which equals to the time
required to broadcast a single object, request, or message. In the sequel, we measure
the response time within 1000 client transactions and the results are derived from
the last 500 transactions so as to ensure that the results form a steady-state model.

Our simulator consists of a server, some clients and a broadcast channel. The
data objects accessed by transaction follows a Zipfian distribution[AAFZ95] in the

database. The parameter p indicates the ratio of read operation over update opera-

65

66

Item Number 30,60,90,120,150
Client Number 64
Client Transaction Length 4
0 1,0.8,0.6,04, 0.2, 0
p 1,2, 4,8, 16
CacheSize 5

Table 6.1: Parameter of the experiments on transaction process

tion of one transaction for any client. The parameter 6 controls the probability for
any object to be requested in any transaction (either read- or write-request following
the previous parameter p). 6 is the parameter of a Zipfian distribution of the form:
p; = (1/i). A value of zero for ¢ indicates a uniform distribution while a value
of one indicates a skewed distribution (few objects are very frequently accessed).
Client transaction length indicates the number of read/update operations in one
transaction at the client and each transaction has a commit or abort operation as

its end. The successive values used in the experiments are reported in Table 6.1.

6.2 Comparative Performance Analysis

6.2.1 Updates in Clients with Different Concurrency Control Mech-
anism

In this experiment, all update operations generate only in the client transaction,
not in server transaction. We compared the experiment results between A PPROX
and our model with different ratio of read-operation to write-operation.

In Figure 6.1 we find that the performance of both models is improved with
an increased of the ratio of read- to write-operation. Similar to our previous re-
search work, the broadcast channel can make more improvements on the model by

increasing the number of read-operation. That is, the more read request from client,

67

180 120
= 160 =
= £ 100
5 140 N 5
9 120 2 8o
£ £
£ 100 S —+—APPROX g \\3\ —+—APPROX
s T o 60
3 B . = Our Mocel 8 Y~ ~=- Our Model
g 60 S 4 —
2 40 @ , \»
[e 20
0 : : : 0 : : :
1 2 4 8 16 1 2 4 8 16
Ratio of read- to write- Ratio of read- to write-
Figure 6.1: Response time at 6=1 and Figure 6.2: Response time at 6=0.5 and
client=64, with varying p client=64, with varying p

the better performance the model has. On the other hand, we find that the degree
of improvement of the two models is different. Although our model outperforms
the APPROX, the improvement degree of our model is smaller than that of the
APPROX. The reason for the difference is in the basic premise of Optimistic con-
currency control in APPROX in which most transactions will not conflict. Hence,
when the number of conflicts increased, its performance is worse than that of the
basic locking. Thus more transaction will be accepted in our model.

However, when there are few conflicts among the transactions, that is, the prob-
ability of access data become uniform, Figure 6.2 shows that the performance of
both models has improved with increasing of the ratio of read- to write- operation.
Furthermore, when the number of read operation becomes greater, the performance
of the APPROX is better than that of our model. The reason for that is optimistic
concurrency control can outperform the basic lock mechanism when there are few
conflicts among the transactions.

Shown as Figure 6.3 we just find that the performance of both models will be

decreased by the increasing of the number of data object. The main reason for that

68

is the increasing of the number of data object makes the length of each broadcast
cycle longer. The longer broadcast cycle will make more transactions to commit to
the server and more possible conflicts. Therefore, the response times increase with

the number of data object.

250 /“

£ 200
:
F 10 /./ ——APPROX
[
2 100 ¢ ——Qur Model
5 | 7_./
a
g 50

0 ‘ ‘ ‘

30 60 0 120 150

Number of Object

Figure 6.3: Response time at =1, p=4 and client=64, with varying number of data object

6.2.2 Updates in Clients with Broadcast Disks Environment

In previous experiment, the broadcast disks environment is a flat broadcast disk
environment, in which a data object will be broadcast in the same frequency in
spite of their different accessed probability. In order to improve the performance of
the model, multi broadcast disks in [AAFZ95] is utilized in this model. We choose
30 data objects in the server and 64 clients in the model. The length of transaction
in client is 4. And the relative speed of the multi disks is 5: 3: 1.

Shown in Figure 6.4 and 6.5, we can find that, within the different situations in
which the data objects accessed by client are being accessed more frequently and
less concentrative, the performance of multi-disk broadcast will be better than that

of the flat broadcast disk when the ratio of read- to write- operation increased. The

69

160
140
120

o0 \'\ ——flat-disk
80 o
. \\:\ = multi-disk

\'\0\\<

40 —]
20

Response Time-unit

Ratio of Read- to Write-

Figure 6.4: Response time at =1 and client=64, with varying p

100
90
80

N

.‘é
€ 70
é’ 60 \
E o T~ ~—flat-disk
2 e e
6 40 =
% ~—
& =

20

10

0 ‘ ‘ ‘

1 2 4 8 16

Ratio of Read- to Write-

Figure 6.5: Response time at §=0.5 and client=64, with varying p

multi-disk broadcast environment has two advantages. One being the time in wait-
ing for preferred data objects in the broadcast channel shortens in the multi-disk
broadcast environment, as the hotter data will be broadcast more often than the
colder data. The other is that the client will spend less time finishing the trans-
action locally in multi-disk broadcast environment. Thus the number of broadcast
circle for completing the whole transaction locally to commit is less than that in

flat broadcast disks environment. In this model we also utilize the control informa-

70

tion matrix like in [SNSR99]. Thus these advantages can make more read-requests
and committed transactions and improve the performance of model in multi-disk

broadcast environment.

6.2.3 Updates in Clients with Broadcast Disks Environment with
Cache in Client

160
140 T
£ 120 = < o
3 \
£ 100 S —=-0.2
g & \\& :8 Z
0
€ 40
20
0 T
1 2
Ratio of Read- to Write-

Figure 6.6: LRU: Response time at client=64, with varying p for different ¢

140

120
§ 100 -0
@ .
E g 02
: N 0.4
o 40 = \

20

0
1
Ratio of Read- to Write-

Figure 6.7: LIX: Response time at client=64, with varying p for different 0

Now in multi-disk broadcast environment, we explored the local memory in the

client to cache some data objects so as to improve the the performance of the model.

71

We used LRU and LIX cache policy to study the similarity and difference between
them. First, we investigate the change of the performance of the model by varying
the ratio of read- to write-operation and the distribution of accessing data objects. In
Figure 6.6 and Figure 6.7, when the parameter p becomes greater, that is, there are
more read operations in the transaction, the performance of the model has shown to
improve with respect to the different accessed probability distributions in the model
used the LRU and LIX cache policy. In fact, the number of update operation
will affect the performance of the model more. The first reason is because the
transaction, including update operation, has to be sent to the server for committing,
and the second is that the server will have to modify the data object updated by the
committed transaction and the control matrix in order to broadcast to the clients.
These two reasons will cause the transaction to be aborted and restarted due to the

conflicts among the transactions.

160

140 /

£ 120

? — 1
£ 100 .
i: /

o 80 —— — ey
2 — ¢
[} e

% 60 . 1
£

40 fF————

20

0 0.2 0.4 0.6 0.8 1
Parameter of Accessing Probability Distribution

Figure 6.8: LRU: Response time at client=64, with varying 6 for different p

Next, we study the effects of the accessing probability on the performance of

these two models. Figure 6.8 and Figure 6.9 showed that with an increased of

140

120

100

80

60

40

Response Time-unit

20

/ .
-2
/ ////I -4

" ///////t 8

L " 4|18

0 0.2 04 0.6 08 1

Parameter of Accessing Probability Distribution

Figure 6.9: LIX: Response time at client=64, with varying @ for different p

72

the parameter of the accessing probability distribution, which means that the data

objects accessed become more concentrative, the performance of the model will

decrease. The main reason for this decrease is in the conflicts of writing the con-

centrative data objects. When the parameter of the distribution becomes greater,

there will be more concurrency conflicts for the same data objects in the model due

to the competition for hotter data objects.

35

25
20
15
10
5
0

Response Time-unit

30 1

/

0 0.2 0.4 0.6 0.8 1

Parameter of Accessing Probability
Distribution

—-No Cache
- LRU
- LIX

Figure 6.10: Response time at client=64 and p=16, with varying 0

Furthermore, we compare the performance among the models without cache

73

160

140 /%

—_
n
o

=
3
[]
E 100 —+-No Cache
o 80 — + LRU
® "/4:/ e
§ 60— LIX
%
o 40
o«
20
0 T T T T

0 0.2 0.4 0.6 0.8 1

Parameter of Accessing Probability
Distribution

Figure 6.11: Response time at client=64 and p=1, with varying 0

and with cache in clients. Shown in Figure 6.10, the performance of the model with
cache is better than those of the models without cache. Although the invalidation
of the cache will cost some system time, the improvement of the retrieving from
the local memory is greater than the invalidation cost when the ratio of read- to
write- operation is 16, that is, there are more read-operations. However, all the
performance of the models will decrease as the data objects updated become more
concentrative. In Figure 6.11, when the ratio of read- to write- operation equals to
1, the performance of the model without cache and the model with LRU are almost
same. As the data objects updated becoming more concentrative, the performance of
LRU and LIX, which normally more adapts to the multi-disk broadcast environment
and are better than that of the no-cache model, are not better than that of no-cache
model. The cost of invalidation for client reduces the advantage of LIX and LRU,
which is the strategy of choosing the victim, even though it will keep the hotter data
object to be updated in the local memory. Thus the performances of the models

with cache have been reduced.

74

6.3 Summary

We proposed for the models on transactions in the broadcast channel based on the
basic locking model. A control matrix is explored for maintaining the consistency
of the read-operation of a transaction, as update-operation of a locking mechanism
is responsible for maintaining the consistency of the whole database. We have com-
pared the performance of the APPROX and our model and found that the basic
lock concurrency control outperforms the optimal concurrency control when there
are more conflicts in the model. Moreover, we utilized the broadcast disks mech-
anism in order to improve the performance of the broadcast model, in which we
allocated all the data objects into different disks with different speeds. Hence,
the multi-disk mechanism will improve the types of performance in the broadcast
environment. Furthermore, we investigated the different improvement for the per-
formance of broadcast disks model with cache in client, and compared performance
of the two different caching policies utilized by the broadcast disks. As a result, the
broadcast mechanism is a viable mechanism for the database system accepting the

update while maintaining the concurrency control of the transaction processing.

Chapter 7

Conclusions and Future work

In this chapter, we will conclude this thesis and outline the future work.

7.1 Contributions

In this thesis we studied the design and evaluated the performance of update model
controlled by a basic locking mechanism for broadcast disks architecture that in-

volves replication on the broadcast channel and in the clients’ caches.

o We have presented an update and locking mechanism for a broadcast disks
model with simple operation and cache. The new concurrency control mech-
anism of this model outperforms the traditional client-server model due to
combination of the advantages of the locking and the broadcast disks environ-
ment. There can now be, on the broadcast channel, several copies of the same
object available for reading as well as one copy available for update by one
identified client or/and exclusively one already updated copy, not available for
reading or writing. Clients can read the previous version of an object while
the current version is being updated. This proposal constitutes a sound basis

for the implementation of concurrency control strategies for the interleaved

75

76

execution of transactions. The models we devised and studied can support

the implementation of schedulers or lock-based concurrency control strategies.

o We have extended our research from simple data operation into transaction
processing in the broadcast disks environment. In order to guarantee the cor-
rectness of the concurrency among the transactions, we have combined locking
mechanism and multi-version concurrency control. Our proposed models based
on broadcasting are efficient. They incrementally yield better performance
by the basic locking mechanism when the opportunities for sharing objects
for read are high: high ratio of read over write operations, large number of
clients, and skewed distribution of popularity of objects. Thus, broadcasting
remains a viable alternative even in the presence of updates by the client. The
better performance of our models is particularly important since broadcasting
is candidate architecture for many new applications involving new devices and

networks.

In summary, our contributions are the proposal of a new concurrency control mech-
anism combined by the basic locking and the broadcast disks in the peer-to-peer
environment. From the results and analysis of our experiments, we have validated
and illustrated the efficiency of our concurrency control mechanism, thus paving the

way for the future work in this environment.

7.2 Future work

Broadcasting technology of data dissemination is very new in comparison with other

technologies. When we implement this model using the locking concurrency control

77

mechanism, it is not too complicated for the concurrency control between the server
and the client with local memory. Nevertheless, there is a greater need to modify
existing protocols for better performance in the broadcast disks environment. The
modifications should be easy to implement and add on to the original protocol with
minimal modification to the original model.

In our future work, based on our previous research work we could study the re-
covery mechanism in the broadcast disks environment and investigate the optimistic
broadcast schedule method on the server.

We will focus on the optimistic broadcast schedule of the broadcast content to
enhance our system with reinforcement learning ability in the multi-disk broadcast.
A reinforcement model should include some elements [LPKMO96]: a policy mapping
from state to action; a reword function and a value function indicating what is good
in an immediate sense and in the long run respectively. Within a reinforcement
model, the server plays an agent role. It could sense the actual need of the client
as states of the model and adaptively broadcast data by learning from its prior
mistake and experiences. We will investigate the appropriate reinforcement model

to improve the performance of the broadcast disks model.

Bibliography

[AAFZ95]

[AFZ96a]

[AFZ96b]

[AFZ97]

[BC92]

[Cao02]

Swarup Acharya, Rafael Alonso, Michael Franklin, and Stanley Zdonik.
Broadcast disks: data management for asymmetric communication envi-
ronments. In ACM SIGMOD Intl. Conference on Management of Data

(SIGMOD 95), San Jose, CA, pages 199-210, 1995.

Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik. Dis-
seminating updates on broadcast disks. In The VLDB Journal, pages

354-365, 1996.

Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik. Prefetch-

ing from broadcast disks. In ICDFE, pages 276-285, 1996.

Swarup Acharya, Michael Franklin, and Stanley Zdonik. Balancing push

and pull for data broadcast. In ACMSIGMOD 97, pages 183-194, 1997.

P. M. Bober and M. J. Carey. Multiversion query locking. In Proceedings
of the 18th Conference on Very Large Databases, Morgan Kaufman pubs.

(Los Altos CA), Vancouver, 1992.

G. Cao. On improving the performance of cache invalidation in mo-

bile environments. ACM/Kluwer Mobile Networks and Application

78

[FCL97]

[GHWS7]

[JH9]

[JMROS]

[KR81]

[LCC99)]

[LKTL00]

79

(MONET), 7(4):291-303, 2002.

Michael J. Franklin, Michael J. Carey, and Miron Livny. Transactional
client-server cache consistency: alternatives and performance. ACM

Transactions on Database Systems, 22(3):315-363, 1997.

K. Lee G. Herman, G. Gopal and A. Weinrib. The datacycle architecture
for very high throughput database systems. In Proc. of ACM SIGMOD,

San Francisco, CA, May, 1987.

P. Herout J. Hlavicka, S. Racek. C-sim v.4.1. In Research Report DC-

99-09, Sep, 1999.

H. V. Jagadish, Inderpal Singh Mumick, and Michael Rabinovich. Asyn-
chronous version advancement in a distributed three-version database.

In ICDE, pages 424-435, 1998.

H.T. Kung and John T. Robinson. On optimistic methods of concur-

rency control. In TODS, pages 213-226, 1981.

K.-Y. Lam, E. Chan, and J. Chun-Hung Yuen. Broadcast strategies to
maintain cached data for mobile computing system. Lecture Notes in

Computer Science, 1552:193-204, 1999.

Kam-Yiu Lam, Tei-Wei Kuo, Wai-Hung Tsang, and Gary C. K. Law.
Concurrency control in mobile distributed real-time database systems.

Information Systems, 25(3):261-286, 2000.

[LPKMO96]

[MT9]

[PABOO]

[RROO]

[SL99]

[SNSRO9]

[TFBW92]

[Tho98]

80

M. L. Littman L. P. Kaelbling and A. W. Moore. Reinforcement learn-
ing: A survey. Journal of Artifical Intelligence Research, (4):237-285,

1996.

P. Valduruez M. Tamer. Princles of Distributed Database System.

Prentice-Hall, second edition, 1999.

Nathan Goodman Philip A. Bernstein, Vassos Hadzilacos. Concurrency

Control and Recovery in Database Systems. Microsoft, 2000.

J.Gehrke R. Ramakrishnan. Database Management System. McGraw-

Hill, second edition, 2000.

HeongChang Yu SangKeun Lee, Chong-Sun Hwang. Supporting trans-
actional cache consistency in mobile database systems. In Proceedings
of the ACM International Workshop on Data Engineering for Wireless

and Mobile Access, August 20, 1999.

Jayavel Shanmugasundaram, Arvind Nithrakashyap, Rajendran
Sivasankaran, and Krithi Ramamritham. Efficient concurrency control

for broadcast environments. pages 85-96, 1999.

G. Herman T. Hickey K. C. Lee W. H. Mansfield J. Raitz T. F. Bowen,
G. Gopal and A. Weinrib. The datacycle architecture. In Communica-

tions of the ACM, December 1992, Vol. 85, No. 12., 1992.

A. Thomasian. Concurrency control: Methods, performance, and anal-

ysis. In ACM Computing Surveys, pages 70-119, 1998.

[VI95]

[WN9O]

[YHO1a]

[YHOLb)]

[ZGEO1]

81

S. Viswanathan and T. Imielinski. Pyramid broadcasting for video-on-
demand service. In Proceedings of the SPIE Multimedia Computing and

Networking Conference, San Jose, CA, February, 1995.

K. Wilkinson and M. A. Neimat. Maintaining consistency of client-
cached data. In Proceedings of the Sixteenth International Conferenceon-

Very Large Databases, 1990.

Y. H. Lee Y. Huang. Caching broadcasted data for soft real-time trans-
actions. In Proceedings of the 5th IIIS SCI/ISAS Conference, Orlando,

Florida, July, 2001.

Y. H. Lee Y. Huang. Stubcast - efficient support for concurrency con-
trol in broadcast-based asymmetric communication environment. In
Proceedings of the 10th IEEE ICCCN Conference, Scottsdale, Arizona,

October, 2001.

Y. Zhao, R. Govindan, and D. Estrin. Residual energy scans for moni-

toring wireless sensor networks. In Technical Report 01-745, May, 2001.

