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Abstract

Due to increasing concerns about data piracy, digital rights management of databases

is becoming an extremely important area of research. There have recently been some

pioneering works in this area that help establish ownership of relational data. In

this thesis, we firstly consider the more general buyer-seller scenario where an owner

of the database sells it to many different customers. For this case, obviously it is

necessary to individually identify each copy of the data sold so as to precisely and

reliably identify the source in case of piracy. Also, such a scheme would be susceptible

to collusion attacks in which a set of legitimate buyers collude together to illegally

tamper the watermark. We present a novel Individualized Watermarking scheme for

the need. Secondly, we propose an Invertible Watermarking scheme for protecting

precision-critical databases, where there is a need to reverse the original data. Ex-

periments conducted on a commercial database system confirm that the proposed

methods can survive a wide variety of attacks. Moreover, Incremental Watermarking

for the second scenario is very effective when normal updates of the databases are

frequently conducted.

Keywords: Watermarking of relational databases; Fingerprinting; Collusion-resistant

watermarking; Collusion attacks; Invertible (Lossless, Reversible) watermarking
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Chapter 1

Introduction

With the rapid growth of the Internet, unauthorized duplication and distribution of

digital data is becoming effortless requiring minimal capital expenditure and provid-

ing easy illegal revenue. Digital data is easy to replicate, alter and transmit. However,

if such piracy becomes widespread, it would undermine the very basis of the trade

of digital goods. These very characteristics that have enabled the digital revolution

become a scourge from the protection point of view of intellectual property rights.

Nowadays, not only image and music (audio) industries, but also movie (video) indus-

tries are encountering big piracy problems, due to the file-sharing Web communities

and the increase of the Internet bandwidth. Therefore, digital rights management is

increasingly being a matter of great concern.

Digital watermarking and fingerprinting appear to be very promising solutions

for these problems. Digital watermarking aims at protecting a digital content from

unauthorized redistribution and copying by enabling ownership provability over the

content. Fingerprinting is a special form of digital watermarking for the purpose of

identifying the recipients who have been provided the content. In case of unauthorized

disclosure, the owner should be able to trace the source of piracy.

1



CHAPTER 1. INTRODUCTION 2

Though various techniques of digital watermarking and fingerprinting do not strictly

prevent illegal copying, they do deter such copying by establishing the original own-

ership of an illegally redistributed copy. There is a rich body of literature on wa-

termarking multimedia data [17, 7, 20]. Most of the research in the area of digital

watermarking has focused on multimedia content which includes digital still images,

audio and video sources. These techniques have traditionally relied on the availability

of a large ”bandwidth” within which information can be indelibly and imperceptibly

inserted while remaining certain essential properties of the original contents. Much

of the bandwidth is due to the insensitivity of human sensory system (for example,

human visual system) to perceive the small changes or distortions introduced into the

content.

More recently, with the focus of protecting digital rights shifting, there emerged

new concerns on protecting the ownership of software [27], natural languages [3],

digital circuits [23], and structured data like trees, graphs, or solution of optimization

problems [21], etc.

In general, the goal of digital watermarking is to insert a robust watermark into the

digital content such that the mark does not destroy the value of the content, and the

mark is hard to be removed by adversaries without destroying the utility of content.

The measurement of the value of the content is closely related to the data type and its

intended use. Obviously, for images and video clips, the utility is judged by the visual

quality of the images and video clips. As for text, the value may be in conveying the

same meaning, while for software the value may be preserved by ensuring equivalent

computation [27], etc.

The extensive use of databases in applications is creating a need for protecting copy-

right of databases. Although work in the area of database security is well-established

[4, 5, 16, 18, 26], relatively little work has been done in the area of database water-
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marking. There have recently been some pioneering works reported in [2, 29] and

the more recent work of [30]. There are a range of watermarking techniques avail-

able for protection of ownership, authentication and content integrity. Given the lead

that multimedia watermarking research has over database watermarking research,

one would hope that the standard multimedia techniques can be just carried over to

the realm of relational databases. However, there exist some fundamental differences

between the characteristics of multimedia data and relational data, which make the

adaptation of the known watermarking techniques not as easy as one would have

desired. The main differences between multimedia data and relational data from the

point of view of watermarking are as following:

• Portions of multimedia object cannot be dropped freely [2]. On the contrary,

database tuples are frequently deleted and inserted.

• Multimedia objects have fixed relative spatial/temporal positioning and neigh-

borhood correlation, while tuples of a relation have no such implied ordering.

• Multimedia objects possess a tremendous amount of redundancy, thus providing

a larger channel to hide information [2].

• Database tuples have primary and foreign key relationships, so that improper

modification of an attribute value may not only destroy the usability of this

value, but could destroy the result of join operation. On the contrary, with

multimedia data, we do not have such concern.

• There are many psycho-physical phenomena based on the human visual system

and human auditory system which can be exploited for watermark embedding.

For example, the textured areas in images can be utilized for hiding many
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watermark bits that cannot be noticed by the human eyes [19]. In general, one

cannot exploit such phenomena in relational databases.

Due to the above challenges, techniques developed for multimedia data cannot be

directly used for watermarking relational databases. Therefore, new watermarking

techniques for databases have to be designed.

1.1 Motivation

Given the work and techniques devised for watermarking relational databases, it is

now possible to establish ownership of a redistributed copy of relations. However, it

is far inadequate to trace the illegal parties (traitors) who redistribute the database.

The feasibility and reliability of traitor tracing is important as it helps identify the

data buyer should the copyright issue be brought to court. Thus it is highly desirable

if we can identify the recipients (buyers) to whom the data have been provided by

the database owners. While techniques for fingerprinting multimedia data are well-

established in literature [6, 10], they are not directly applicable to relational databases.

In this thesis, we develop an Individualized Watermarking technique for relational

databases that can both establish ownership and identify individual buyers of the

relational databases. Besides surviving the attacks in the form of data re-sorting,

subset selection, subset addition, etc, the individualized watermarks should be buyer

specific and resistant to collusion attacks.

Besides the importance of traitor tracing, we are also motivated by the scenario

where the integrity and accuracy of the data (precision-critical data) is as important

as the ability to assert ownership and to trace traitors. Examples of real world data

sets that are precision-critical include medical data, military data, satellite data, and

so on. These data are both sensitive (where protection of the data is important) and
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precision-critical (where errors in the data renders the data useless). It is noteworthy

that even a normal attribute such as salary can be sensitive and precision-critical, as

salary is confidential while inaccuracy of this attribute is disastrous. Therefore, we

present a technique of Invertible Watermarking databases, where privileged users of

the databases can losslessly remove the watermark and view the intact data, while

the non-privileged users can only get access to the watermarked data.

1.2 Problem Statement

The scope of this work falls into two major parts: one is Individualized Watermark-

ing of relational databases, where ownership establishment and traitor tracing are

enabled. The proposed technique is collusion-resistant, such that even the attempt

of a few buyers colluding together to destroy the individualized watermarks will not

be successful. The formal security analysis is given as well as the experiment results

conducted on TPC-H benchmarked databases. Both the analysis and the experiment

results show that the individualized watermark can withstand a variety of malicious

attacks and benign updates, thus verify the feasibility and reliability of our proposed

technique.

The other problem we are to address is Invertible Watermarking of precision-critical

data. For the privileged users, the precision-critical data can be recovered without

error, while being meaningless for non-privileged users. We introduce the idea of

hierarchical access of the data, and enable the function of Incremental Watermarking

when only a small portion of the database are modified or updated. Experimental

results show that Incremental Watermarking is cost effective, making it suitable for

real applications due to its low overhead.
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1.3 Overview

The remainder of the thesis is structured as follow. The related works on digital

watermarking and fingerprinting multimedia content, as well as watermarking re-

lational databases are given in Chapter 2. Chapter 3 presents the Individualized

Watermarking technique for relational databases. Chapter 4 covers the issue of In-

vertible Watermarking precision-critical databases. Experiment results for the above

two techniques are included in Chapter 3 and Chapter 4 respectively. Finally, Chapter

5 gives conclusion and suggestions for future work.



Chapter 2

Literature Review

In this chapter, we shall discuss various approaches to watermarking relational databases

in existing literature, and techniques of fingerprinting as well as invertible (lossless)

watermarking multimedia content.

2.1 Watermarking of Databases

While work in the area of watermarking multimedia data and database security is pro-

liferating, relatively less research has been done in watermarking relational databases.

In a pioneering work of [2], Agrawal and Kiernan first raised the problem of database

watermarking that marks the numeric attributes of relational data. A one-way hash

function depending on a private key known only to the owner is used. The hash func-

tion algorithmically decides the tuples, attributes within a tuple, and bit positions

(LSBs, the least significant bit) in an attribute to be marked, as well as computes

the specific bit values after marking. Only if the attackers have access to the private

key, can the watermark be detected with high probability. On the other hand, the

attackers will either get caught for piracy or greatly reduce the database usability.

7
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The strength of the work in [2] include:

• Identification of the rights management problem for relational data;

• Outline of some requirement difference between watermarking relational databases

and multimedia data;

• List of a scope of possible attacks that the watermark is supposed to survive;

• Empirical evaluation of effectiveness and robustness of the proposed watermark-

ing algorithm, etc.

Though the watermark survives several attacks and preserves mean and variance of

the numeric data, yet it has no guarantee to survive distortion induced on queries. In

other words, it does not fully consider the specific properties of relational databases.

In summary, [2] has the following weaknesses:

• The technique is a LSB watermarking depending on a probabilistic framework

and an empirical detection threshold, so it does not preserve the integrity of the

watermark sequence;

• It cannot preserve the key relationships of a database and the join constraints;

also the uniqueness and relative constraints of the values are not carefully con-

sidered;

• The requirement that the LSB in any tuple can be altered may limit the appli-

cability. For example, an important application such as data mining, requires

the classification to be preserved.

• The vulnerabilities of LSB approach lie in its nature. [2] inherits all the dis-

advantages of LSB (least significant bits) watermarking techniques which has
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been elaborated in [30]. For instance, If an attack assumes that the LSB space

is insignificant, then simply altering the space randomly or zero-ing the LSBs

would immediately defeat the watermark detection.

• Though it can prove the ownership of the database to some extent, it is not able

to trace or prevent redistribution where there are multiple sources of piracy.

While [2] is the pioneering work in watermarking relational databases, it may not

be a practical or useful solution for protecting real data. Also, a similar work reported

in [1] has the similar problems.

Independently, [29] proposed algorithms on watermarking numeric datasets, which

was later extended for watermarking relational data [30]. [30] pre-defines an order

for the numeric dataset, and embeds the watermark bits into the data distribution

properties instead of into the data themselves. For each selected subset Si of the

original dataset, a single watermark bit b is to be encoded into Si. The watermark is

modelled by the percentage of positive “confidence violators” present in Si for a given

confidence factor c and confidence violators hysteresis interval (Vfalse, Vtrue), where

Vfalse < Vfalse, c ∈ {0, 1} are real numbers (e.g. c = 90%, Vtrue = 10%, Vfalse = 7%).

Some usability bounds metrics are defined to identify the range of acceptable

changes to the data. Note that the acceptable level of changes is dependent on

the intended application of the data.

One example of the usability metrics can be defined as maximum allowable mean

squared error, where the mean squared error of each element of the data must be

bounded by its corresponding allowable distortion, so is the sum of the mean squared

errors over all the elements.

Aside from the allowable distortion on individual values and overall distortion lim-

its, there are also some semantic features need to be considered. For example, it
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is critical that ages under 21 should remain so after watermarking if the attribute

“age” is used to determine some behavioral patterns; result of classification should

be preserved for some application; also, for a collection of relations, key relationship

must be preserved, etc.

In the watermarking phase, if the bound is exceeded for some item, the current item

is abandoned, and a new item for watermarking is chosen. The method embeds 1 bit

per subset, so that there are a number of copies of the same bit over the databases.

In the detection phase, for each subset, the algorithm recovers all the watermark

copies embedded in the data, which globally produces a set of copies of the same

watermark bits with various errors. Then it uses a majority-voting over these recov-

ered watermark bits to decide the most likely embedded bit. A trade-off is observed

between the size of each subset and the bandwidth for watermarking. On the one

hand, a larger subset size results in more correctly recovering the watermark bit,

while lowering the watermarking capacity. On the other hand, a smaller subset size

makes the watermark more fragile to attacks.

Comparing with [1, 2], the technique in [30] has the following advantages:

• The watermarking method is more resilient to attacks, because it encodes in the

distribution domain of the data, instead of in the data themselves (e.g. LSBs).

• Unlike [1, 2], where the detection only determines the presence of the watermark,

the detection phase of [29, 30] preserves the integrity of the watermark.

However, [30] has its own limitations:

• It is more costly in terms of the time complexity than [2] in that, for each

attribute column, the mean need to be computed. And for each tuple to be

watermarked, the corresponding attribute must be compared with the column

mean. For another attribute of the same tuple, a new comparison is required.‘
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• It does not address the issue of identifying different buyers to trace redistribu-

tion, either. Just as in [2, 1], the method proposed in [30] can not prevent the

collusion attack in traitor tracing problems, etc.

In short, [1, 2] and [30] work well when there is one owner (or seller) of the relational

data who would like to establish his/her ownership of the data. For this purpose, a

watermark sequence is embedded in the numeric attributes. In case of an ownership

dispute, i.e. some other person falsely claims ownership of the relational data, a

neutral judge to whom the real owner can disclose the secret key can adjudicate

the dispute. Then the judge will be able to detect the purported watermark. It

is obvious that a fake owner will not be able to extract the embedded watermark.

While the above techniques do solve the extremely important problem of establishing

ownership, but did not address the problem of illegal redistribution. In practice, the

valuable relational data can be sold to more than one buyer. If the cost of purchasing

the data is high, a data pirate may be tempted to legally purchase one copy of the

database (which may carry the owner’s watermark) and then illegally redistribute

copies of the data to other buyers at a drastically reduced price. Or alternatively,

the pirate colludes with a few other malicious buyers to erase the watermarks. Even

if the genuine owner suspects piracy, there is no way of tracing the precise leakage

mechanism.

2.2 Fingerprinting of Databases

In [24], the watermarking technique in [1, 2] is generalized for fingerprinting databases.

It uses a technique similar to that of [1, 2], but with a fingerprinting approach.

Fingerprint bits are distributed uniformly across tuples, and the scheme is robust to

a variety of attacks, including most of those mentioned in [1, 2], as well as collusion
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attacks.

However, just as in the case of [2], the technique requires that the relational tables

have many numerical columns to be watermarked. In the case that only one or a

small number of columns are available for watermarking, the accuracy and reliability

of their technique may be greatly reduced. Most importantly, all the disadvantages

of bit-plane watermarking elaborated hold for this technique. As pointed out in

[30], LSB watermarking techniques have been tried and abandoned even in rights

management of multimedia content.

Gross-Amblard [15] proposed the problem of watermarking databases or XML doc-

uments, while preserving a set of queries. Their approach works for a limited class of

queries only. Moreover, it dose not consider the general problem of collusion attacks,

where several buyers combine together to remove the watermarks. Notwithstanding,

it briefly addressed the problem of auto-collusion attack, where a data owner needs

to update the database and propagate changes to each of the registered data buy-

ers, such that the same buyer can average the data from a few successive versions

of the databases to remove the watermark. Therefore, they suggested a brute-force

update on the databases instead of incrementally updating portions of the database

when condition requires. However, there is neither security analysis nor experimen-

tal study in supporting their contribution on defeating auto-collusion attack. And

clearly, it bears no traitor tracing ability at all.

Motivated by the shortcomings of the above work, we aim at developing a novel

individualized watermarking algorithm which can prove ownership as well as identify

the origins of unauthorized redistribution. Besides the attacks in the form of data

re-sorting, subset selection, subset addition, etc, the individualized watermark should

be buyer specific and resistant to collusion attacks.

In the light of the success of collusion-resistant watermarking for multimedia data,
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we would like to dig more into the literatures on the techniques catered to fingerprint

multimedia content in the following section.

2.3 Collusion-resistant Watermarking

Watermarks (WM) and fingerprints (FP) are both widely used in digital rights man-

agement but they are utilized for distinct purposes. WM is used to designate the

ownership of a dataset. Thus given the host data, the WM is identical in all the

copies sold to establish ownership. On the other hand, FP is used to trace piracy

so as to penalize redistribution. Therefore, FP should be individualized for various

buyers of the data.

Several works have discussed the problem of fingerprinting for digital data(e.g.,

software, documents, and images). For example, Boneh and Shaw [6] proposed a

collusion-secure fingerprinting method for digital data. They discussed methods for

assigning codewords for the purpose of fingerprinting digital data. Fingerprinting

consists of uniquely marking and registering each copy of the data. This marking

allows a distributor to detect any unauthorized copy and trace it back to the specific

buyer.

In [11], distinct spread-spectrum watermark sequences were embedded for different

copies of the data, and collusion attacks were modelled as averaging of copies with

additive noise.

Fiat et al [12] introduced a dynamic traitor-tracing scheme where users are ran-

domly grouped into r subsets, each receiving a distinct symbol. And the tracing is

confined in the subset that includes the pirate only.

[22] presents a novel collusion-resistant watermarking technique that can achieve a

minimum collusion size that grows linearly with the number of copies of the individ-
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ually marked data. Using a secret key, the various copies of the multimedia content

can be identically watermarked, but the individual detection keys are distinct [22].

Knowing one detection key, the attackers cannot remove the watermark or retrieve

a watermark-free copy of the data without making the data useless. Also if the

watermark in one copy is destroyed, enough information about the broken detector

key (fingerprint) can be known. Thus, the technique in [22] can identify those who

participated in a collusion attempt and has traitor-tracing ability.

Given the watermarking key w (referring to the notations in [22]), the ith watermark

detection key hi is defined as hi = w + ci, where ci denote the watermark carrier,

which is different for each buyer and hence it can be considered to be a fingerprint

which identifies each buyer. Obviously, hi is different from w and is distinct for

different buyers of the data. The security of the scheme lies in the fact that even if

the attackers break the detection key hi, as hi does not deterministically reveal w,

they still cannot remove w from the watermarked multimedia content.

For watermark detection, the detector can similarly do a correlation test on the

watermarked data yi of the ith buyer and the watermark sequence w by using the

classical Neyman-Pearson hypothesis test dW = yi·w to decide whether the watermark

is present or not. It decides that the watermark is present and thus proves the

ownership if dW > δW , where dW is the detection threshold that controls the tradeoff

between the probabilities of false positive and false negative decisions. Otherwise,

the watermark is considered not to be present. Similarly, another test can be done

to reveal the presence of the ith buyer’s fingerprint. dH = yi · hi. If dH > δH , the

fingerprint of the ith user is detected. Otherwise, the fingerprint of the ith user is not

present.

However, the severe limitation of [22] is that if the attackers do not break the

detection keys, and simply distribute the copies without removing the watermark
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information, the seller can only prove ownership of the distributed copies, but can-

not detect the actual illegal distributors. This is not really a limitation under the

assumptions in [22] because they address the problem of multimedia content distri-

bution which assumes that the content has to be played on some standard playback

device which does this type of detection. In that scenario, since each playback device

has an individualized detection key, the above limitation does not really arise since no

one can make use of the data without the playback device. This, however, shows that

the method in [22] is not applicable for watermarking relational data since one cannot

assume the mandatory use of only tamper-proof devices for accessing the data.

In summary, while the current database watermarking mechanism does not have

traitor tracing ability and does not survive collusion attacks, adaptation of the existing

methods of collusion-resistant watermarking multimedia data to watermark databases

is non-trivial.

While our work in Chapter 3 is inspired by the rigorous approach in [22], it is quite

distinct from their work, given the distinct requirements of watermarking relational

databases from watermarking multimedia data. It can both establish ownership and

precisely and reliably identify colluders, no matter the attackers attempt to remove

the watermark or not.

2.4 Invertible Watermarking Mechanisms

Invertible watermarking is also referred to as reversible watermarking, lossless water-

marking, and distortion-free watermarking in literature.

In [14], an invertible watermarking for JPEG image authentication is presented.

The assumption that original images have been lossy-compressed is a drawback. Even

after the watermark is removed, the result is still lossy-compressed image. In [13],
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Fridrich et al improved the idea and applied it to watermark all image formats.

A most recent work in [9] presents a spread-spectrum invertible watermarking sys-

tem for authenticating images in lossless formate. The integrity of the images can be

verified and original images before embedding watermark can be recovered.

However, the techniques in both [9] and [10] are not directly applicable to water-

mark relational databases, given the difference between multimedia data and rela-

tional databases described in Chapter 1.

2.5 Summary

In this chapter, we reviewed the related literatures of our work. We first introduced

some works on watermarking of databases and on fingerprinting of databases. Due to

the weaknesses in these techniques, we moved on to study the works done on collusion-

resistant watermarking of multimedia data. Also, we discussed the techniques on

invertible watermarking of images. Chapter 2 paved way for solving the problems

focused on in the following chapters.



Chapter 3

Individualized Watermarking of

Databases

In this chapter, we consider the more general buyer-seller scenario where an owner

of the database sells it to many different customers. For this case, some new difficult

requirements arise. First, there is the need to individually identify each copy of the

data sold in order to precisely and reliably identify the source in case of piracy. Most

of the earlier techniques are not able to distinguish the various buyers of the same

data. Thus, some form of individualized watermark for each buyer is needed for ev-

ery copy sold. Secondly, such a scheme would be susceptible to collusion attacks in

which a set of legitimate buyers collude together to illegally tamper the watermark.

We present a novel watermarking algorithm based on the direct sequence spread-

spectrum technique which embeds the owner’s watermark as well as the individual

buyer’s fingerprint into each copy of the relational data. Our security analysis shows

the feasibility of the proposed technique for real applications. We have applied this

watermarking technique to relational database generated based on TPC-H Bench-

mark. Experiments conducted on a commercial database system confirm that the

17
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proposed method can survive attacks such as data re-sorting, subset selection, subset

addition etc., as well as collusion attacks.

Our approach has four novel features: (1) it is a direct sequence spread spectrum

based watermarking technique that generates a pseudo-random fingerprint for each

buyer; (2) it is robust against various attacks and has low distortion introduced to

the data values without compromising the integrity (mean and variance) of the data;

(3) it makes use of a hash table to define and later restore the order of tuples, so that

the deleted or inserted tuples will not affect the performance of watermark detection;

(4) the correctness (with low numeric distortion within tolerance)of queries (e.g. join

and project) on the database is preserved. Our proposed individualized watermarking

technique is buyer specific and thus resistant to collusion attacks. We present a

security analysis on this and show that the colluders will fail in effectively removing

the watermark. Furthermore, we have implemented our individualized watermarking

technique on a widely used database management system MySQL [25], and have

experimentally verified the robustness of our scheme using the TPC-H benchmark

data. Attacks in the form of data re-sorting, subset selection, subset addition, etc.

as well as collusion attacks were conducted, and none have caused problems to the

proposed method.

This chapter is structured as follows. Section 3.1 outlines the major attacks that

a watermarking database scheme is subject to. Section 3.2 introduces the funda-

mentals of spread-spectrum and collusion-resistant watermarking. Section 3.3 refines

the algorithms in Section 3.2 in order to adapt it to watermark relational databases,

which overcomes the limitations of the previous approaches. Section 3.4 provides a de-

tailed analysis of the security of our scheme, including the robustness against common

database ownership attacks and collusion attacks. Section 3.5 presents experimental

results. Finally, Section 3.6 summarizes the chapter.
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3.1 Possible Attacks

Given the peculiarities of relational databases, we first systematically outline the

possible attacks that databases watermarking may suffer. Note that an attack is

successful only if it preserves the usability of the data. The following attacks come

either in the form of benign updates by regular database update operations or the form

of malicious attacks aiming at destroying the watermark or claiming false ownership.

A1. Bit Modification: The attacker can simply update the least or least few

significant bit(s) of the entire data set. Though the attack is simple, the effect is

devastating, especially to LSB watermarking. The attack can be done by flipping all

the LSBs or setting all LSBs to ’0’ (or ’1’).

The work in [2] suffers exactly from this Attack A1, although the exact number of

LSBs watermarked is not known to the attackers.

A2. Tuple Reshuffle: The attacker reshuffles the relational database tuples.

Thus, the re-sorted data set loses synchronization with respect to the watermark

detection key, which increases the difficulty of watermark detection.

A3. Subset Selection: The attacker randomly selects or deletes a subset of the

original dataset tuples. Thus, some of the watermark bits are lost.

This attack can be understood from two opposing directions. On the one hand, the

attacker arbitrarily deletes some tuples in the hope that the mark is removed from

the remaining part. On the other hand, the attacker selects randomly a set of tuples

and wishes the selected set would not contain the mark. Interestingly, the attack

seems rendering the defense conflicting. Intuitively, the more bits we insert, the more

possible some of inserted bits are removed in the first case; in contrary, the less bits

we insert, the less possible the inserted bits exist in the second case.

Basically, A3 suggests the relative size of the set of watermarked tuples not to
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be small. Under this rationale, a sound solution unifying the above two plausibly

conflicting scenarios of defense is as the following: a mark is repeatedly inserted

many times so that a large portion of the data is watermarked.

A4. Subset Addition: The attacker adds a number of new tuples to the dataset.

This can also render the data losing synchronization in the watermark detection

phase.

A5. Attribute Projection: The attacker may project a subset of attributes that

are useful to him and create a new relational table. Thus, a number of columns are

missing and part of the watermark is destroyed after this attack.

A6. Attribute Permutation: This attack is quite simple in that the attacker

does not need to make any change to the data values, but to simply permutate the

attributes. Attribute Renaming is assumed as a special case of this attack. Similar to

Attack A2., the watermarked data lose synchronization with respect to the watermark

detection key, which renders the watermark detection more difficult.

This attack suggests that the names or sequence numbers of the attributes should

not be relied on in the detection phase. So a sound watermarking scheme should

base the recognition of an attribute on some intrinsic properties, e.g., the mean and

variance of a numeric attribute.

A7. Collusion Attack: Typically, a collusion attack has two forms:

(1) Some attackers work together to remove the watermark, so that the resulting

data are uncorrelated with the detection keys of any of these attackers.

(2) Some attackers average several copies of watermarked data, so that the resulting

data are not correlated with the detection keys of any of these attackers.

Attack A7 is more challenging than the others. There have been some proposed

solutions to this problem for multimedia data [6, 22, 10], however, the feasibility of

direct application of them to the case of watermarking relational data deserves future
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efforts.

3.2 Spread-Spectrum Watermarking

While our work here is inspired by the rigorous approach in [22], it is quite distinct

from their work, given that their scheme works only for multimedia content, and

cannot be adapted to watermark relational databases easily. Before we can describe

our individualized watermarking technique, we first give a brief introduction of the

traditional spread-spectrum mechanism.

In spread spectrum communications, a narrow-band signal is transmitted over a

much larger bandwidth such that the energy present in any single frequency is im-

perceptible [8]. It is a technique whereby an already modulated signal is modulated

a second time, in such a way that it produces a signal which interfaces in a barely

noticeable way with any other signal operating in the same frequency band. The

interfering signals are transparent to the spread spectrum signals, and the spread

spectrum signals are transparent to the interfering signals. To achieve transparency,

the spread spectrum modulation decreases the transmitted power spectral density so

that it lies well below the thermal noise level of any unfriendly receiver.

When the spread spectrum technique is applied to watermarking, the watermark

is spread over very many frequency bins (or relational data tuples in our approach)

so that the distributed energy (distortion) in any frequency bin (tuple) is very small

and thus undetectable. The watermark is therefore like a pseudo random noise which

is below the tolerance threshold and thus cannot be identified. Nevertheless, because

the watermark verification process knows of the precise location and the content of the

watermark, it is possible to concentrate these weak signals into a single signal with

a high signal-to-noise ratio. However, to destroy such a watermark would require
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noise of high amplitude to be added to all frequency bins (tuples in our case), as any

attacker who attempts to confidently eliminate the watermark, must introduce much

greater distortion to the data than the distortion from watermarking. As a result, an

attack creates obvious defects in the data.

Three schemes are commonly used for spreading in radio-frequency communica-

tions: direct sequence, frequency hopping, and chirp [8]. Since there is no frequency

domain transformation for relational data, only the direct sequence spread spectrum

(DSSS) technique is applicable here. In the DSSS scheme (which is most commonly

used for watermarking), the signal is modulated by a function that alternates pseudo-

randomly between +α and −α, a gain factor, at multiples of a time constant called

the chip rate. For relational data watermarking applications, the chip rate is the

number of times a watermark bit is replicated. The bit is modulated by a pseudo-

random carrier that contains components of all frequencies. It leads to spreading the

modulated signal’s energy over a large frequency band, rendering it undetectable at

any individual frequency (tuple). Therefore, at any frequency (tuple), the distortion

is quite low. We will now mathematically establish this process.

Let aj, where aj ∈ {−1, 1}, j = 0, 1, 2, ...,M0, be a sequence of bits, which is then

spread by a large factor cr, called the chip rate or the spread factor, to obtain the

spread sequence bi. The cr and M0 are selected in such a way that cr ×M0 = N ,

where N is the size of the host data z.

∀j : bi = aj, j · cr ≤ i < (j + 1) · cr.

The spread sequence bi is then amplified with an amplitude factor α and modulated

with a binary pseudo-noise sequence ri, where ri ∈ {−1, 1}, i = 1, 2, ..., N , yielding

the modulated signal, i.e. the watermark

ui = α · bi · ri.
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Given the host data zi, i = 0, 1, 2, ..., N , the watermarked data z′i is computed as

follows:

z′i = zi + ui = zi + α · bi · ri, i = 1, 2, ..., N .

Due to the noisy nature of ri, ui is also a noise-like signal and thus difficult to

detect, locate and manipulate. Note that the amplitude factor α can be thought

of as the tolerance of a particular numeric attribute. The recovery of the hidden

information is easily accomplished by correlating the watermarked signal with the

same pseudo-noise sequence ri that was used in the embedding phase:

Sj =
(j+1)·cr−1∑

i=j·cr

ri · z′i =
(j+1)·cr−1∑

i=j·cr

ri · zi +
(j+1)·cr−1∑

i=j·cr

r2
i · α · bi.

The first term on the right-hand side of the above equation vanishes if

(j+1)·cr−1∑

i=j·cr

ri · zi = 0.

Note that the pseudo-noise sequence {ri, j · cr ≤ i < (j + 1) · cr − 1} contains as

many -1’s as 1’s, and ri and zi are uncorrelated. Theoretically,
∑(j+1)·cr−1

i=j·cr ri · zi = 0.

In practice however, this sum is not zero such that a correction term

△ = −(
(j+1)·cr−1∑

i=j·cr

ri) ·mean(zi),

which accounts for the different number of -1’s and 1’s in the pseudo-noise sequence,

has to be added. Sj then ideally becomes

Sj =
(j+1)·cr−1∑

i=j·cr

ri · z′i +△+
(j+1)·cr−1∑

i=j·cr

r2
i · α · bi ≈ 0 +

(j+1)·cr−1∑

i=j·cr

r2
i · α · bi = cr · α · aj.
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Since α and cr are positive, we have

sign(Sj) = sign(cr · α · aj) = aj.

Therefore, the hidden information aj can be recovered as

aj = sign(Sj).

The above correlation is useful for watermark bits extraction. In the latter part of

this chapter, we will discuss how the technique can be used in watermark detection.

3.3 Our Approach

In this Section, we propose our individualized watermarking for Relation Databases.

Notations used in our algorithms and the analysis are summarized in Table 3.1.

3.3.1 Sorting the dataset

In image watermarking, pixels have fixed relative positions. Unfortunately, the tuples

of a relational database have no defined order. However, a fixed order is necessary

to detect the embedded watermark and keep the detection phase synchronized with

the embedding phase. Thus, some invariant information in databases can help define

such an order. For our technique, we choose the primary key information for this

purpose because the primary key information usually cannot be changed or removed.

Otherwise, the database becomes significantly less useful. This is also the assumption

of the work in [2]. Therefore, we assume that it is highly unlikely that the attackers

will intentionally change or remove the primary key information of databases, as it
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Notation Description

t a tuple with schema R(P,A1, A2, ..., Aν−1)
P the primary key
sk a secret key
x the host data
N size of the host data
A standard deviation of x
w watermark sequence to establish ownership
L size of w
M number of buyers
pi pseudo-random binary sequence for the ith buyer
ci fingerprint for the ith buyer
B standard deviation of ci

wi individualized watermark for the ith buyer
cr the chip rate
hi spread version of wi, the detection key
τ tolerance of the host data
yi watermarked data for the ith buyer
ŷi possibly modified version of yi

dW correlation value
gW detection noise
δW individualized watermark detection threshold
v∗ estimation attack vector
K size of collusion clique
ε1 probability of false positives
ε2 probability of false negatives

Table 3.1: Notations used in Chapter 3
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reduces the utility of the database information.

We assume that a standard cryptographic hash function like SHA-1 or MD-5

can be used to establish order [31, 2]. Given a database relation R with schema

R(P,A1, A2, ..., Aν−1), where P is the primary key, the hash value F (t ·P ) of primary

key attribute P of tuple t can be computed using:

F (t.P ) = H(sk ◦H(sk ◦ t.P )),

where sk is a secret key and H is a cryptographic hash function like SHA-1 or MD-5,

and ◦ denotes concatenation. The hash values can then help define the order of the

tuples of the relational data. We store the hash values in a table, which should be

maintained for the future watermark detection need.

There is a primary key replacement attack, such that the attacker simply hashes

the primary key and makes use of the hash value to replace the primary key. In

the way, the primary key is still unique for each tuple, which makes the database

suitable for some application. All the existing techniques are subject to this attack.

However, as we previously assumed, the modification of primary key will render the

data significantly less useful. Especially when the primary keys carries meanings

instead of merely serving as ID’s, this attack will make the primary keys totally

meaningless. Moreover, when join operations are applied on two or more tables,

improper modification of primary keys or foreign keys will introduce great errors

to the join results. In short, attackers can hardly benefit from this primary key

replacement attack.
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3.3.2 Embedding Phase

Like [2], our technique watermarks and fingerprints only the numeric attributes.

Without loss of generality, assume the first k numeric attributes A1, A2, ..., Ak are

candidate of watermarking and fingerprinting. Figure 3.1 outlines the individualized

watermark embedding algorithm.

Let w be a sequence of binary values {−1, 1} of size L. w is for the purpose of

establishing ownership, and it is the same for all the buyers. We assume that one

buyer corresponds to one copy of relational data sold. Let C = {cij} be a M × L

matrix, where M is the number of buyers, and cij ∈ R, cij = N(0, B2), i.e. each

entry is a zero-mean normal random variable with standard deviation σc = B. Let

P = {pij} be a M × L matrix of pseudo-random binary values, where pij ∈ {−1, 1}.

For each buyer i, pi is distinct for this buyer and is uncorrelated with any other

buyer’s sequence pj, ∀j : i 6= j. To guarantee this, good pseudo-random sequences

possessing certain properties in terms of sequence length, auto-correlation, cross-

correlation, orthogonality, and bit balancing are recommended. For example, good

pseudo-random sequences like M-sequence and Gold sequence of length 31 [28] can

be used.

The individualized watermark sequence wi (here pi, ci and wi all denote sequences,

instead of bits)can be computed as:

wi = pi · w + ci.

Note that the goal of the watermark carrier ci is to hide the watermark w, and the

goal of pi is to further de-correlate the different wi’s.

Then we spread the individualized watermark sequence wi by the chip rate cr, such

that the spread watermark hi is of size N = cr · L, where N is the size of the host
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data x (i.e. the sequence of numeric attributes selected to be watermarked). Each

window of wi corresponds to one watermarking block. In total, we have cr blocks.

We then embed the spread individualized watermark hi into the host data x, where

x is relational data sorted by the above sorting algorithm, to obtain the watermarked

data yi for the ith buyer.

yi = x +
τ

2
hi,

where τ denotes the tolerance of the host data. We assume τ is the maximum dis-

tortion that the numeric attribute of the tuple can survive without compromising

the integrity of the data. Note that for different relational data, τ can be different.

Even for the different columns in the same table, τ can be varied as well. Note that

up to cr number of copies of the individualized watermark wi are embedded into

the relational data. Since we choose factor cr as large as possible, we maximize the

spreading of the embedded watermark bits wi. This results in the advantages of the

spread spectrum technique which increases robustness (against various attacks) with

low distortion introduced into the host data.

Individualized Watermark Embedding Algorithm:

Input: sorted relation R with schema R(P, A1, A2, ..., Aν−1), number of tuples N , owner-
ship sequence w and its length L, ith pseudo random sequence ci and pi

Output: new relation R′ with individualized watermark, chip rate cr
Method:

1: compute the individualized watermark wi for user i, wi = piw + ci

2: chip rate cr = floor(N/L)
3: ∀m : m (mod L) = n, set him = win

4: for each j ← 1 to N do

5: for each l← 1 to k do

6: compute the watermarked data A′

j l = Aj l + τ
2 hij

7: return R′ = (P, A′

1, A
′

2, ..., A
′

k, Ak+1, ..., Aν−1), cr

Figure 3.1: Individualized Watermark Embedding Algorithm
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3.3.3 Detection Phase

We now describe the watermark detection process. Note that we assume the scenario

wherein several copies of the relational data are sold to different buyers, each copy

embedded with a distinct buyer fingerprint ci and the ownership watermark w mod-

ulated by pi. In case of piracy or ownership dispute, the watermark and fingerprint

need to be detected in a possibly modified copy of the watermarked relational data.

Figure 3.2 outlines the individualized watermark detection algorithm. The algo-

rithm consists of 2 phases. Phase 1 re-sorts the tuples of a suspected copy of relational

data according to the hash function and kept hash table. Phase 2 scans all the tuples

in re-sorted order, and computes the correlation value between the suspected data ŷi

and the corresponding detection key wi to determine traitor(s). In the following, we

describe the two phases in detail.

Semi-blind Re-sorting Scheme

Note that the suspected copy of the relational data can be a modified version ŷi of

the original watermarked data yi, which may be caused by distortion due to benign

updates or malicious attacks. The primary key of each tuple is hashed by the same

hash function used in the watermark embedding phase, and the hash value is com-

pared with the kept hash table to check if the current tuple is present in the table.

If it is present, the tuple is recovered in the order that the hash function indicates.

Otherwise, the current tuple is a newly-inserted one which does not exist in our orig-

inal table, so we simply skip and ignore it. After checking all the tuples in ŷi, all the

tuples that were present in the original database, are sorted and ready for detection

purpose.

Since we use the hash table to recover the original order and ignore the newly-
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Individualized Watermark Detection Algorithm:

Input: Hash secret key sk, database relation R′ with schema
R′(P, A′

1, A
′

2, ...A
′

k, Ak+1, ..., Aν−1), chip rate cr, suspected buyer ID l and corre-
sponding detection key wl

Output: buyer ID l if the lth buyer pirates
Method:

phase 1: database re-sorting

1: for each tuple t ∈ R′ do

2: compute F (t.P ) = H(sk ◦H(sk ◦ t.P ))
3: scan the kept Hash table
4: if F (t.P ) is in the table then

5: restore its order by F (t.P )
6: retrieve the corresponding watermarking bit in wi

7: mark isnew = 0
8: mark isnew = 1 /* this tuple is new*/

phase 2: scan all tuples and compute correlation

1: initiate the counts count+ = 0
2: for each tuple t in the re-sorted order do

3: for each watermarking block i← 0 to cr − 1 do

4: for each tuple j ← L× i + 1 to L× (i + 1) do

5: if isnew = 0 then

6: current tuple is involved in the calculation of correlation dW with detection
key bit wi[j (mod L)]

7: else

8: skip current tuple
9: if dW > δW then

10: count+ = count+ + 1
11: if count+ > 1

2 · cr then

12: return traitor ID l
13: else

14: return 0

Figure 3.2: Individualized Watermark Detection Algorithm

inserted tuples, it is not necessary to compare the current database with the original

one. However, we have to maintain the hash values of the original tuples for re-sorting

purpose. Therefore, our scheme can be considered as a semi-blind watermarking

detection scheme [7] (differing from absolutely blind watermarking scheme, where no

information from the original data needs to be maintained), which makes our scheme
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more competent for real database applications.

Correlation-based Watermark Detection

Given the sorted watermarked data ŷi (possibly attacked), we can compute the cor-

relation of the watermarked data with the watermark detection key wi = piw + ci.

Note that we compute the correlation for each watermarking block. For each block,

we compute dW = ŷi · wi and compare it with the detection threshold δW .

If the corresponding tuple of a watermark bit has been deleted, we ignore the tuple

and the corresponding bit in wi. Therefore, the number of bits in wi involved in the

correlation computation may be less than or equal to the actual length of wi, due to

the possible delete operations in the database. If the correlation value is greater than

the detection threshold, i.e. dW > δW , then the watermark wi = piw+ci is considered

to be present. Otherwise, the watermark does not exist in that copy of the relational

data.

Since we embed individualized watermark in all the k numeric attributes A1, A2, ..., Ak,

we can actually compute k correlation values {dWn
, n = 1, 2, ..., k} for each watermark-

ing block. Thus, we can choose the maximum value in {dWn
, n = 1, 2, ..., k} as the

value of dW , i.e.

dW = max(dWn
),∀n : n = 1, 2, .., k.

Also, as we embed the individualized watermark wi = piw+ci up to cr times in the

host data, we can compute cr number of dW for all the watermarking blocks. Then

we can apply a majority voting scheme to decide whether the watermark is present

or not.

In the event that collusion attack occurs, we apply phase 2 of the detection algo-

rithm to all the suspected buyers’ detection keys. Thus, we can detect the traitors
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(malicious buyers) who took part in the collusion attack.

The major advantage of our scheme is that we can establish the ownership and

detect the real colluders, even if the attackers collude and tamper the watermark

information. In the following section, we will present the formal security analysis.

3.4 Security Analysis

If there are no malicious attacks or benign updates, we denote the watermarked

relational data for the ith buyer as:

yi = x +
τ

2
(piw + ci),

where τ denotes the tolerance which is the amount of distortion that the content

can survive. Note that τ can vary according to different relational data and different

numeric attributes. Let wi = piw + ci denote the corresponding detection key for yi.

We denote correlation between yi and wi as dW = yi · wi, which is the normalized

inner product of vectors yi and wi. For instance,

a · b =
1

‖ a ‖‖ b ‖
∑

aibi,

with a2 = a · a.

Let δW be the watermark detection threshold, which decides that the watermark

is present if dW > δW . Basically, δW controls the trade-off between the probabilities

of false positives and false negatives, i.e. for equal probability of false positives and

false negatives, we should set δW = 1/2 (refer to [22]).

Let vi be the attacker’s estimated version of wi. The closer the estimated vi is to

wi , the more successful is the attacker in eliminating the watermark.



CHAPTER 3. INDIVIDUALIZED WATERMARKING OF DATABASES 33

For watermark detection, let ε1 denote the probability of false positives, which is the

probability of wrongly identifying an unwatermarked copy of the data as watermarked.

For the sake of the credibility and security of our scheme, ε1 must be kept very small

with a typical value of ε1 = 10−9.

Let ε2 denote the probability of false negatives, which is the probability of not

identifying a colluder. We would like ε2 to be small as well, but do not have to insist

that ε2 is as small as ε1.

3.4.1 Watermark Removal Attack

Assume the pseudo-random number generator is secure (i.e. PRNG can not be at-

tacked by attackers), let us consider the case where the attacker has broken the water-

mark detection key wl = plw + cl for client l. Since the attacker does not know which

copy yl = x+ τ
2
(plw+cl) the detection key wl corresponds to, he/she is likely to utilize

wl to estimate the watermark wi = piw+ci for the buyer i, where it is with high prob-

ability that l 6= i. The attacker estimates the detection key vi = αwl = α(plw + cl),

where α ∈ R. The attacker removes vi and creates a new version of relational data

content by:

ŷi = yi − vi = yi − αwl = x +
τ

2
(piw + ci)− α(plw + cl).

In order to deceive the detector that the watermark is not present in the attacker’s

modified data, the attacker would like to lower the correlation value given by dW =

ŷ · wi:

dW = ŷi · wi = [x +
τ

2
(piw + ci)− α(plw + cl)] · (piw + ci).

Note that we assume the fingerprint part ci follows a zero-mean Gaussian probability
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distribution with the standard deviation σ = B. For the sake of simplicity of analysis,

we set τ = 2.

If somehow, by sheer chance, the attacker has the knowledge of ŷl = x+plw+cl and

corresponding wl, he can simply remove the watermark, i.e ŷl = x+plw+cl−α(plw+cl)

to drive E[dW ] = 0. In this case, it is obvious that the attacker need to set α = 1.

Therefore, even if the attacker does not know ŷl = x + τ
2
(plw + cl), he will set α = 1

as well.

Given α = 1, the correlation value becomes:

dW = ŷi · wi = [x +
τ

2
(piw + ci)− (plw + cl)] · (piw + ci),

and its expect value can be computed as E[dW ] = 1 + B2, which is already large

enough for us to detect the existence of wi.

Thus, it is apparent that even with the knowledge of hl = plw + cl, the attacker

will not be able to remove watermark wi from some copy of the watermarked data yi,

where i 6= l.

In essence, the attacker cannot succeed in the watermark removal attack.

3.4.2 The Collusion Attack

Consider a collusion clique of size K. Assume that the attacker(s) have broken K

detection keys {wi = piw + ci, i = 1, 2, ..., K}, but do not know how these detection

keys correspond to the watermarked data {yi, i = 1, 2, ...,M,M >> K}. Or in

another type of attack, K legitimate buyers collude together to defeat our watermark

detection. Since the attackers will either fail in removing the individualized watermark

or make the data useless, we assume that the attackers’ real goal is to not to totally

remove the watermark, but to make the attackers’ modified version ŷi = yi − vi
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uncorrelated with any of the colluders’ detection keys {wi = piw + ci, i = 1, 2, ..., K},

so that the colluders cannot be caught.

Watermark Estimation Attack

With the knowledge of K detection keys {wi, i = 1, 2, ..., K}, the attacker would like

to best estimate the attack vector v∗, in a manner such that ŷi = yi−v∗ does not show

significant correlation with any of watermark detection keys {wi}, even for i > K.

We will now show that even with the knowledge of K detection keys {wi, i =

1, 2, ..., K}, it is still difficult for the attackers to estimate a good attack vector v∗.

We name the use of the estimate v∗ as Watermark Estimation Attack.

Lemma 3.4.1 The estimation attack vector v∗ is given by

v∗ =
1

K
(

K∑

i=1

wi)

Proof: Watermark estimation attack aims to find a vector v∗ that minimizes the

average distance between the vector and the actual watermark detection key wi, i.e.

disti = 1
K

√∑K
i=1(wi − v∗)2. We therefore have

disti
2 =

1

K2
(wi − v∗)2 =

1

K2
(

K∑

i=1

wi
2 − 2(

K∑

i=1

wi) · v∗ + K · v∗ 2).

To minimize all the distances {disti, i = 1, 2, ..., K}, it is obvious that we should set

v∗ = 1
K

(
∑K

i=1 wi). [QED]
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Collusion Size to Defeat Watermark Detection

Given the concept of watermark estimation attack, we now prove that the attackers

(or colluders) will fail in effectively removing the watermark and thereby defeating

the watermark detection.

Lemma 3.4.2 Given K detection keys {wi = piw + ci, i = 1, 2, ..., K}, in order to

reduce the correlation value to E[dW ] < θ, where θ < 1 + B2, Condition 1 must hold.

Condition 1: the K keys must contain the detection key wl for the attacker’s copy

yl = x + wl.

Proof: First, assume that wl is not in the K detection keys {wi = piw + ci, i =

1, 2, ..., K}. By using the watermark estimation attack, the attacker’s version is

ŷl = x + plw + cl −
1

K

K∑

i=1

piw −
1

K

K∑

i=1

ci.

With dW = ŷl ·wl = (x + plw + cl − 1
K

∑K
i=1 piw− 1

K

∑K
i=1 ci)(plw + cl) and l 6= i, i =

1, 2, ..., K, we can compute E[dW ] = 1+B2 > θ, so that the attackers will be caught in

piracy and collusion. Therefore, Condition 1 must be satisfied in order for the attack

to succeed. [QED]

To ensure Condition 1, it is obvious that a relatively large K is desired. However,

the larger K is, the more likely it is that the collusion clique will be betrayed by one

of the colluders. Also, it is more difficult and expensive to make a collusion clique of

a larger size.

As a result of the above contradiction, the attackers cannot succeed in removing

watermark by collusion attack.
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Averaging Collusion Attack

Lemma 3.4.3 Given K different buyers’ watermarked relational data, in order to

reduce the correlation value to E[dW ] < θ after the averaging attack, the collusion

size should be K > 1+B2

θ
.

Proof: Assume that attackers average K different buyers’ data to obtain a new ver-

sion of the relational data ŷnew = x + 1
K

∑K
i=1 piw + 1

K

∑K
i=1 ci. We would like to

use the detection keys {wi = piw + ci, i = 1, 2, ..., K} to detect the existence of the

watermark, i.e.

dW = ŷnew · wi = (x +
1

K

K∑

i=1

piw +
1

K

K∑

i=1

ci)(piw + ci).

In order to keep ∀i : E[dW ] = 1
K

(1 + B2) < θ , it is obvious that K > 1+B2

θ
. [QED]

Clearly, the smaller the value of θ is, the larger is the collusion size K required. For

a given θ value, the minimum collusion size grows proportional to B2. For example,

if θ = 0.2, then B2 = 0.8, the attackers need to average K > 9 copies. For θ = 0.2,

B2 = 2, the attackers have to average K > 15 copies.

Also note that the larger the collusion size K is, the more likely it is that the

collusion clique will be betrayed by one of the colluders. So usually the attackers

aim to keep the clique size as small as possible, e.g. K ≤ 3. These above two facts

contradict each other. Therefore, our scheme is resistant to such a collusion attack.

Thus, from Lemma 3.4.2 and Lemma 3.4.3, we can conclude that the collusion

attack is highly unlikely to succeed.
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3.4.3 Probability of False Positives

In this section, we would like to estimate the probability of falsely detecting a wa-

termark when there does not exist any. For this purpose, we compute the detection

noise gW , which is defined as dW = 1 + gW if ŷi was marked; and dW = 0 + gW ,

otherwise. We assume gW to have a zero-mean Gaussian distribution. If there are no

attacks, then

dW = yi · wi = (x + piw + ci) · (piw + ci) = 1 + gW .

Therefore, gW = x ·pi ·w +x · ci +2pi ·w · ci + ci
2. Since gW has a normal distribution,

it can be shown that the detection noise variance is

σgW

2 = (A2 + 2B2 + 5A2B2 + 5B4)/N

where A is the standard deviation of the host data, and N is the size of the host

data. For a given value of σgW
, we can now calculate the probability of false positives

ε1 = Pr[ dW > gW | dataset is not marked ] as follows:

Corollary 3.4.1 A dataset of size N produces

ε1 =
1

2
erfc(

δW

√
N

√
2(A2 + 2B2 + 5A2B2 + 5B4)

),

where erfc(·) is the complementary error function [22].

From Corollary 3.4.1, we can observe that to achieve a given ε1, with the increase of

N , we should lower the detection threshold δW . However, since our scheme assumes

a very low value for ε1 (i.e. ε1 = 10−9), N does not affect δW much in practice.
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3.4.4 Database Update Attacks

We have summarized the possible database attacks, and discussed how our water-

marking scheme can preserve join result in the previous sections, now we brief how

these attacks can be defeat-able using our watermarking technique.

A1. Bit Modification

The work in [2] suffers exactly from this attack. Our individualized watermarking

technique is resistant to this attack because we apply spread-spectrum watermarking

instead of relying on LSB method.

A2. Tuple Reshuffle

It is obvious that with the re-sorting algorithm, the tuples of the relational database

can be re-sorted and thus the synchronization can be restored. Therefore, Attack A2

can be defeated.

A3. Subset Selection

As we maintain the hash table for detection purpose, both the deleted and newly

inserted tuples can be recognized. Since detection phase is correlation based, and we

embed as many copies of the same watermark as possible in each watermarked copy

and utilize a majority-voting scheme, the delete or insert updates do not affect the

watermark detection result that much. Therefore, Attack A3 can also be overcome.

A4. Subset Addition

Similar to Attack A3, Attack A4 can be defeated.

A5. Attribute Projection

Because we can always recognize the attributes we have selected for watermarking,

we can easily know if some of the watermarked columns have been dropped. As long

as not all the watermarked columns are dropped, we can still detect the existence

of individualized watermark. We assume that no attacker will drop all the numeric
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columns as it will render the relational data significantly less useful. Therefore, Attack

A5 can be defeated as well.

A6. Attribute Permutation

Attack A6 is similar to Attack A2. For the detection purpose, we need to restore

the sequence of the attributes in the relation. Since our technique preserves the mean

and variance of the data, we can use this information to recognize the watermarked

columns. Also, as our watermarking is column-independent, permuting attributes

does not really affect the watermark detection.

A7. Collusion Attack

The two forms of collusion attack have been discussed in detail earlier.

3.5 Experimental Study

In this section, we present the experimental results to complement the theoretical

analysis in the previous section. Our experiments were performed on the relational

databases generated based on the TPC-H Benchmark, which has been designed to

evaluate the performance of decision support systems by executing sets of queries

against a standard database under controlled conditions. The database generated

consists of 8 tables, each of which has a primary key or composite primary keys. The

primary key or composite primary keys can be used for the tuple re-sorting purpose.

The schema of the tables is illustrated in Appendix. We embed watermark all the

tables except for table NATION and REGION, which have no numeric attributes.

We apply the individualized watermark embedding algorithm to these tables. For

each buyer, we apply the algorithm with a distinct individualized watermarking se-

quence. Then we use the detection algorithm to establish the ownership and track

malign buyers when piracy occurs.
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All our experiments were performed on a PC with Pentium IV 1.6Ghz CPU, 256

MB of memory, and a 20 GB hard disk drive. The watermark embedding and de-

tection algorithm were coded in Java. The feasibility of the watermarked databases

against standard databases is verified by Relational DBMS MySQL. As we embed

watermark in data domain, the watermark embedding and detection phases can both

be run in linear time O(N), where N is the size of host data (i.e. the number of

tuples watermarked or the number of tuples involved in the detection phase). In our

experiment, we set the length of individualized watermark L = 100 and vary the

tolerance parameter τ = 0.05 ∼ 1.0 for different tables.

3.5.1 Query Validation

First of all, we should be able to show the imperceptibility of our individualized

watermarking scheme, that is the watermarked databases should remain useful upon

querying. Thus, we validate the watermarked databases by comparing the query

results with the query results of standard unmarked databases.

There are twenty-two decision support queries in total as defined in the TPC-H

Benchmark. All these queries were executed using the suggested parameters and

produced satisfactory output data. If the query does not involve the watermarked

column, obviously the watermarked database produces the same output data as the

standard database. Even when we query on the watermarked columns, experiments

show that output data are of small numerical difference (within the distortion toler-

ance) from the standard database.
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Figure 3.3: Varying the percentage of tuples watermarked

3.5.2 Setting Watermark Detection Threshold

Having established the utility of the watermarked database, we now present the ex-

perimental results of robustness of our individualized watermarking algorithm. We

present the experimental results of one table out of the 6 tables, i.e. Table SUP-

PLIER. Table SUPPLIER consists of 10,000 tuples, each with 7 attributes. We

embed individualized watermark in the numeric attribute SUPPLIER.ACCTBAL.

The parameters used were L = 100, τ = 1.0.

Figure 3.3 illustrates the percentage of correct votes with various detection thresh-

old δW , under the condition that there are no attacks.

We can see that setting the watermark detection threshold at δW = 0.3, we can

safely get over 50% correct votes (so as to correctly indicate the presence of the

watermark), with percentage of tuples watermarked varying from 20% to 100%.

Figure 3.4 illustrates under the condition that when there are no attacks, the
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percentage of correct votes with various threshold δW , plotted against various chip

rate cr = 20 ∼ 100. From figure 3.4, we can see that setting the threshold δW = 0.3,

we can achieve more than 50% correct votes.
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Figure 3.4: Varying the chip rate cr

Figure 3.4 also shows that the percentage of correct votes increases with the in-

crease of the chip rate cr. Therefore, a larger cr is preferred. Given 10,000 tu-

ples and watermark sequence of length L = 100, the chip rate can be as large as

cr = 10000/100 = 100, with the percentage of tuples watermarked reaching 100%. In

our following experiments, we set cr = 100.

Note that the most damaging failure in the watermark embedding and detection

phases is the probability of false positives ε1, i.e. incriminating a buyer who did not

participate in the collusion. From Figure 3.3 and Figure 3.4, we conclude that by

setting δW = 0.3 (or higher), we can almost drive ε1 = 0. That is, the proposed

method is robust against false positive errors.

In the following sections, we present watermark detection results after various at-

tacks have been applied to the watermarked data. The parameters used are N =
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10000, L = 100, cr = 100 and τ = 1.0.

3.5.3 Performance Against Attacks

Subset Selection Attack

Figure 3.5 presents the percentage of correct votes obtained when various percentages

of tuples have been randomly deleted. Note that our scheme defines a secret order

for the tuples, such that we can recognize which tuples have been deleted and which

are newly-inserted. In both cases, these tuples are not involved in the calculation of

correlation values. Therefore, the percentage of correct votes is affected little by the

increase in the percentage of deleted tuples. We can see that even with up to 90%

of tuples deleted, we can still detect the watermark with the watermark detection

threshold of δW = 0.3.
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Figure 3.5: Varying the percentage of tuples deleted

Similarly, with the insertion of new tuples or attributes, the correlation value will

not be affected either, since we always know which tuples or attributes are new

and thus do not involve them in the correlation calculation. Therefore, even if the
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attackers insert a large number of tuples or attributes, our detection scheme will still

work. However, it is obvious that too many insertions of useless tuples or attributes

will make the relational data lose value, which is not desirable from the attackers’

point of view.

Project Operation Attack

Often, the attackers project only a subset of watermarked columns. As there are

too small number of columns available for watermarking in Table SUPPLIER and

the other tables generated by TPC-H Benchmark, we experiment Project Operation

Attack on another dataset named Ovarian Cancer 1. The dataset consists of 253 in-

stances (tuples), each with 15,154 attributes (all numeric). We add an extra attribute

( column with all the values distinct from each other) to serve as the primary key for

the purposes of re-sorting tuples. We select 100 numeric attributes as candidates to

be watermarked.

We can consider the Project Operation Attack equivalent to deleting columns. The

fewer columns we project, the more columns are considered to be deleted. As long as

not all of the 100 watermarked attributes are deleted, the individualized watermark

can still be detected from the remaining columns.

Figure 3.6 presents the percentage of correct votes with various percentages of

watermarked columns deleted. Again, we can see that the watermark detection phase

works well with up to 90% of the attributes deleted.

Collusion Attacks

As we proved in the previous section, with a small collusion clique size, the attackers

will fail to eliminate the watermark. On the other hand, it is almost impractical to

1National Cancer Institute, http://clinicalproteomics.steem.com/
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Figure 3.6: Varying the percentage of watermarked columns deleted

achieve a large collusion clique.

With a collusion size of K = 5, we can see that the attacker’s copy obtained from

averaging collusion attacks still shows significant correlation with the detection keys

in the collusion clique, namely {wi, i = 1, 2, ..., 5}.

Figure 3.7 shows the correlation median of the attacked data over the 5 colluded

detections keys. We compute the median of correlation values because if the median

is greater than the detection threshold δW , then the percentage of correct votes is over

50%, which is good enough to confirm the presence of the individualized watermark.

We can observe that even after averaging K = 5 different copies of the relational

database, the correlation median values show no apparent decrease and mostly remain

greater than the detection threshold, except for the correlation median of colluder 3

with 20% tuples watermarked. But as long as we can find the majority of the colluders

within a collusion clique, it is highly likely that we can get to know the whole clique.

Therefore, with our individualized watermark embedding and detection technique,

the colluders can be precisely and reliably identified.
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Figure 3.7: Median of correlation values after collusion attack of size K = 5

Even after increasing the collusion clique size to K = 10, we could still detect

the watermark. This demonstrates that our technique is indeed robust against the

collusion attack.

3.6 Summary

In this chapter, we have addressed the problem of protecting digital rights of relational

data under the buyer-seller scenario where the same data are sold to several buyers.

We have articulated the need for collusion resistance and thus the need for individually

fingerprinting each copy of the data sold. We then proposed a novel individualized

watermarking method in which we utilized a direct sequence spread-spectrum (DSSS)

based approach for distinctly watermarking every copy of the data. The proposed

mechanism can survive a wide variety of attacks, such as data re-sorting, subset

selection, subset addition etc., as well as collusion attacks. We gave a formal security
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analysis as well as the experimental results on a real-life dataset to show the robustness

of our technique against various attacks. The validation of the join results shows that

the distortions introduced by our technique are within the tolerance of the relational

data.

Our scheme supports up to 2L distinct buyers. When the number of buyers is small,

a general pseudo-random number generator works well. However, when the number

of buyers increases, it is necessary to use good pseudo-random sequences possessing

certain properties, in terms of sequence length, auto-correlation, cross-correlation,

orthogonality, and bit balancing. For these concerns, good pseudo-random sequences,

such as M-sequence and Gold sequence [28] can be used.



Chapter 4

Invertible Watermarking of

Databases

In many applications, i.e. medical, military, satellite etc., it’s important for a legit-

imate user to verify the integrity of the data before using it, because inaccuracy in

these data will not only render the data useless but result in vicious effects. Inaccu-

rate data are unacceptable, while free redistribution of the data should be prohibited.

Unfortunately, most approaches of copyright protection modify the data to some ex-

tent. Therefore, when precision-critical data are sold, a trade-off must be achieved

between precision and integrity of the data on one hand and copyright protection on

the other. In this case, traditional watermarking as a currently wide-used solution

for protecting copyright is incompetent, and invertible (or lossless, reversible) water-

marking is therefore required. Invertible watermarking has been introduced in the

literature for image watermarking and authentication. In this chapter, we present

an invertible watermarking scheme for precision-critical databases. The data can be

recovered fully or partially with the legitimate users presenting the secret key, while

being totally meaningless to the non-privileged users.

49
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This chapter is organized as follows. Section 4.1 gives the problem specification of

this chapter. Section 4.2 introduces a naive LSB approach to invertible watermarking

of databases. Section 4.3 presents a more decent spread-spectrum based invertible

watermarking of databases. Section 4.4 addresses multi-level access. Experimental

study is given in Section 4.5. Section 4.6 summarizes the chapter.

4.1 Problem Specification

Watermarking as a most widely used solution for copyright protection has been de-

veloped well for image, audio and video etc. signals. Relatively few works have been

published for database watermarking. [2, 30] present idea of watermarking relational

database respectively. In the previous chapter, we gave out a novel watermarking

scheme that can trace pirate and survives collusion attacks. All these work [2, 30]

are based on watermarking techniques that modify the data values more or less, and

recovery of the original data is impossible. For example, in [1], the authors assumed:

“the decrease in the value of the data is small enough that the owner is

willing to pay this price in exchange for that ability to assert ownership.”

However, for some applications, such as medical, military and satellite informa-

tion, the integrity of the data is important. Reasons are obvious: medical data are

used for disease diagnosis, and any inaccuracy can potentially harm the patient and

can even lead to death. Similarly, satellite data are used to locate military strate-

gic targets or to forecast weather, thus inaccurate data may be totally useless. In

[14], an invertible watermarking for JPEG images authentication is presented. The

assumption that original images have been lossy-compressed is a drawback. Even

after the watermark is removed, the result is still lossy-compressed image. In [13],
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Fridrich et al improved the idea and applied it to watermark all image formats. [9]

present a spread-spectrum invertible watermarking system for authenticating images

in lossless formate. The integrity of the images can be verified and original images

before embedding watermark can be recovered. [10] also proposed a spread-spectrum

watermarking scheme for rights management of broadcast video. The methodology

in [10] and [9] are similar to some extent. Philosophically, we would like to adopt this

idea of invertible watermarking to watermark precision-critical database.

However, invertible watermarking of databases has been made more difficult than

invertible watermarking images for the reasons that have been discussed in chapter 3.

The particular properties of databases must be taken into account when watermarking

the relations.

For a probable application of invertible watermarking databases, we assume that

different users may have different levels of access. Multi-level access can be defined

in such a way that:

1. General users: can only see watermarked version of the data.

2. Read-only users: are allowed to remove the watermarks partially or fully (de-

fined by the different levels of clearance).

3. Administrators: not only can read the watermark-free data, but also can update

the data.

Assumption: Read-only users are a small group of users to whom the owner of the

data trusts to some extent. Administrators have permission to update the data, and

delete and insert items, and are even fewer in number.

In this Chapter, we take two different approaches for invertible watermarking

databases: One is a LSB watermarking technique, and the other is a spread-spectrum

technique.
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4.2 A Naive Approach

In this section, we present an invertible watermarking technique based on LSB (Least

Significant Bit).

Given a database tuple t with schema (P,A1, A2, ..., Aν), let t.P denote its pri-

mary key. Without loss of generality, assume that A1, A2, ..., Ak are candidates for

watermarking, where Ai, 1 ≤ i ≤ k are numeric attributes.

Let LSBn(Ai) be the nth least significant bit of Ai. Here we assume that we only

modify LSB1(Ai). We use a standard cryptographic hash function to determine the

watermark bits for tuple t. Let the hash value be

F (t.P ) = H(K ◦H(K ◦ t.P )),

where K is a secret key, and H is a hash function like SHA-1 or MD-5.

The watermarking rules are as follow:

H1: t.Ai remains intact, if F (t.p) is even;

H2: LSB1(t.Ai) is flipped, otherwise.

Because we keep the hash function H only known to the privileged users, non-

privileged users do not know which LSBs have been flipped.

In the watermark removal phase, we compute hash value again, and recover the

original data as follow:

H1: t.Ai remains intact, if F (t.p) is even;

H2: LSB1(t.Ai) is flipped, otherwise.

We can observe that the watermark removal is just the same as the watermarking

phase. This naive approach based on LSB technique is simple and effective with high
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accuracy. However, it may not be a perfect solution to protect the precision-critical

databases, because its security entirely relies on the security of the hash function,

and once the hash function is disclosed or tried out, the data will be fully exposed to

piracy. Therefore, in the next section, we will present a scheme that is more elegant

and secure.

4.3 Spread-spectrum Approach

Given the deficiency of the naive approach, in this section we discuss how spread-

spectrum watermarking technique can be used for invertible watermarking databases.

4.3.1 Preliminary

First, we propose the fundamentals of the spread-spectrum watermarking technique,

and how it can be invertible.

Watermark Embedding

The original data signal is xi, i = 0, 1, 2, ..., N , and the copyright information is a

binary sequence aj ∈ {−1, 1}, where j = 0, 1, 2, ...,M . We spread aj with chip-rate

cr to obtain the spread sequence bi as follows:

∀j: bi = aj, j · cr ≤ i < (j + 1) · cr,

where cr is a large factor selected in such a way that cr ×M = N . The spreading

provides redundancy of the watermark information and improves the robustness in

watermark extracting and removal phase. Then the spread sequence is multiplied

with a pseudo-random noise sequence {pi} and the amplitude (also called amplitude
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or tolerance factor αi, where pi ∈ {−1, 1}, and α > 0, such that the watermarked

signal is computed as

yi = xi + αi · pi · bi.

Watermark Detection

Watermark inversion (detection and removal) is performed by demodulating the wa-

termarked signal yi with the same pseudo-noise sequence pi used in the embedding

phase. The original unwatermarked data is not required for the detection. We mul-

tiply the watermarked signal yi by the pseudo-noise sequence pi over each window of

the embedded watermark information. Let ŷi be probably modified version of yi. In

fact, in the applications proposed in this chapter, yi is not likely to be maliciously

changed to ŷi by non-privileged users as they do not have access right and any im-

proper update may render the data useless. Correlation summation sj is calculated

over each window of the embedded watermark information aj as following:

sj =
∑(j+1)·cr−1

i=j·cr pi · ŷi

=
∑(j+1)·cr−1

i=j·cr pi · xi +
∑(j+1)·cr−1

i=j·cr p2
i · αi · bi

≈ ∑(j+1)·cr−1
i=j·cr p2

i · αi · bi.

Note that
∑(j+1)·cr−1

i=j·cr pi · xi = 0 if pseudo-noise sequence pi and original signal xi are

uncorrelated.

The extracted watermark information âj (where extracted âj may be different from

the original aj due to distortion or inevitable correlation between pi and xi for real

data), can be interpreted by the sign of sj, as
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sign(sj) = sign(
∑(j+1)·cr−1

i=j·cr p2
i · αi · bi)

= sign(
∑(j+1)·cr−1

i=j·cr αi · aj)

= sign(aj ·
∑

αi/cr).

Since amplitude factor αi is a positive number, we have

sign(sj) = aj.

Thus, the embedded watermark information aj can be extracted from the correlation

summation with high probability of correctness.

Note that the amplitude factor αi used in embedding phase must also be known.

To easily meet this requirement and simplify the calculation, we set αi to a constant

value α.

Watermark Removal

We can then remove the watermark from the data to achieve the watermark-free data

as follows:

x̂ = ŷ − α · bi · pi.

Obviously, if the embedded bits aj are correctly recovered (when âj = aj), the

watermark-cleaned data will match the original data, i.e. x̂ = x, if ∀i, âj = aj.

Note that the pseudo-noise sequence pi and amplitude factor α (or αi) must be

known in order to remove the watermark and view the watermark-free data. Only

the privileged users (Read-only users and Administrators) can know pi and αi. Non-

privileged users (Guests) have no knowledge of pi and αi, and thus have no access to

the original data.
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4.3.2 Invertible Watermarking of Relational Databases

The above mentioned method can work well for image watermarking, but is not

directly applicable to watermarking of databases. The problems to be solved include

the lack of ordering of the tuples and the update, delete and insert of the tuples.

Figure 4.1 shows the process of watermarking embedding and removal.

Watermarked
Database Y

Hash function,
alpha, {p_i}, {b_i}

Synchronized
{b_i}

Hash Table,
{p_i}, {block_id}

Watermark-free
Database X*

Watermark removal

Embedding
Original

Database X

Figure 4.1: Watermarking Embedding and Removal

Sorting Database Tuples

In image watermarking, pixels have fixed relative positions. Unfortunately, the tuples

of a relational database has no defined order. However, a fixed order is necessary to

detect the embedded watermark and keep the detection phase synchronized with the

embedding sequence. Thus, some invariant information in databases can help define

such an order. For our technique, we choose the primary key information (for example

tuple ID) for the re-sorting purpose. Note that in our application assumption, only

Administrators have access to remove or update the tuples, and Administrations will

not maliciously modify the primary key information.

Let R be a database relation with schema R(P,A1, A2, ..., Aν), where R is the pri-

mary key. We use a standard cryptographic hash function like SHA-1 or MD-5 for the
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purpose of establishing order [31], because the hash function has desirable properties

such as: (1) They are one-way function, i.e. given a hash value, it is computational

impossible to find the corresponding input. (2) It is computational impossible to find

two inputs that yield the same hash value. With these two properties, the primary

key information can be hashed to define a unique order of the tuples of the relational

data. The hash value F (t ·P ) of primary key attribute P of tuple t is computed using:

F (t · P ) = H(K ◦H(K ◦ t · P ))

where K is a secret key, H is a cryptographic hash function, and ◦ denotes concate-

nation. We maintain the hash table for the watermark detection needs.

Note that our method is not constrained to single table query, as it can also be

applied to complex queries across multiple tables. However, the primary key and

foreign keys should not be absent from watermarking, since improper modification of

these attributes will introduce great errors to join result.

Embedding Phase

In [2, 30], only the numeric attributes can be watermarked. But in our approach,

both numeric and non-numeric attributes can be used to embed watermark. Let

the original relation R have schema R(P,A1, A2, ..., Aν). Without loss of generality,

assume the first k attribute A1, A2, ..., Ak are the candidates to be watermarked.

For the sake of simplicity, in the algorithm below we only watermark attribute A1,

i.e. xi = A1,i. To watermark more attributes, we can simply apply the embedding

algorithm to these attributes respectively.

Figure 4.2 presents the invertible watermarking algorithm.

We embed the watermark bits bi, i = 0, 1, 2, ..., N , combined with the pseudo-noise
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pi and amplitude factor α into the original data xi, according to the tuples order

defined in the above re-sorting algorithm,

yi = xi + α · pi · bi.

Note that the pseudo-random number sequences pi is generated from some

For simplicity of calculation, we assume that for all the columns to be watermarked

in one table, we use the same pseudo-noise sequence pi and bi. Note that multiple

versions of bi can be embedded into the original data, given different orthogonal

pi sequences. We replicate copyright information aj number of cr times, to get a

block of bi = aj spreading the watermark bits. This nature of spread-spectrum

watermarking improves the robustness of the watermarks (against attacks) and leads

to high probability of correctness in watermark extraction phase with low distortion

of attribute data values.

Invertible Watermarking Embedding:

Input: original data xi, secret key sk, binary sequence aj , j < i, amplitude factor α
Output: watermarked data yi

Method:

1: Generate pseudo-noise sequence pi with secret key sk;
2: Duplicate aj with chip-rate cr to generate a binary sequence bi = aj , j · cr ≤ i <

(j + 1) · cr;
3: for each i← to N do

4: Compute the new value yi = xi + α · pi · bi;
5: return yi

Figure 4.2: Invertible Watermarking Embedding

Table 4.1 outlines the information we need to keep for watermark extraction and

removal phase. The information includes Hash of the private key, its corresponding

pi and the watermarking window ID bid. Assume the window width (chip-rate) is

cr = 50.
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Hash value pi bid

10000000000000000000 1 1
10000000000000000001 -1 1
10000000000000000010 -1 1

... ... ...
1000000000000110011 -1 2
1000000000000110100 1 2
1000000000000110101 1 2

... ... ...
1000000000001100101 1 3
1000000000001100110 -1 3
1000000000001100111 -1 3

... ... ...

Table 4.1: Maintained Hash Table

It is secure to keep pi and bid along with Hash of the private key, for the reason that

Hash is an one-way function. Given the output Hash, it is computational infeasible

to compute the input, that is the private key P . Therefore, even if the Hash Table

is disclosed to non-privileged users, they will not be able to find out how pi and bid

are matched to the private key P , thus can not remove the watermark and view the

original data.

Extraction Phase

The database tuples can be deleted and inserted frequently, and the tuple ordering

loses synchronization with pseudo-noise sequence pi and binary sequence bi. To be

able to extract the watermark and recover the original data without loss, the syn-

chronization is a must.

Figure 4.3 outlines the invertible watermark extraction algorithm. The algorithm

consists of two phases. Phase 1 re-sorts the tuples of watermarked data to synchronize

with pi and bi. Phase 2 scans all the tuples in re-sorted order, and recover the
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watermark bit âj, where âj is the recovered version of aj. Obviously, we aim at

âj = aj. The following paragraphs describe the three phases in more detail.

Invertible Watermarking Removal:

Input: secret key K and sk, watermarked data ŷi, chip rate cr
Output: extracted watermark bit âj , watermark-free data x̂i

Method:

phase 1: database re-sorting

1: for each tuple t in the database do

2: Compute F (t · P ) = H(K ◦H(K ◦ t · P ));
3: Scan the kept Hash table and restore its order by F (t · P );

phase 2: watermark removal and data recovery

1: for each tuple t in the re-sorted order do

2: for each watermark block j ← 0 to M do

3: for each i← j · cr to (j + 1) · cr − 1 and bid = j do

4: Compute aj = cj =
∑(j+1)·cr−1

i=j·cr pi · ŷi ≈
∑(j+1)·cr−1

i=j·cr p2
i · αi · bi;

5: Remove the watermark x̂i = ŷi − α · pi · aj ;

Figure 4.3: Invertible Watermarking Removal

Note that only the watermarked data are stored in the DBMS. We assume the

recovered relation is treated as a snapshot of the relational databases. Note that the

view could be created only based upon a subset of the whole data. And the view will

be destroyed compulsorily after the legitimate user logs off.

Incremental Watermarking

One common concern of watermarking databases is the cost in terms of time and

space. In many applications, databases are updated frequently. Therefore, water-

marking is required to be done frequently as well. Intuitively, the overhead can

be greatly reduced by Incremental Watermarking : If only a small portion of the

databases (eg. a number of tuples) are updated, we re-watermark that small portion

only. Incremental watermarking does not make much sense for watermarking im-
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age or other multimedia contents, as the images or multimedia signals are not to be

updated very often. However, it is of great importance for watermarking databases

as databases are updated frequently and the cost must be carefully considered and

reduced to utmost.

We assume that all the updates to database are applied on watermark-free (wa-

termark removed) data (the view) instead of on the watermarked data. It makes

sense because only Administrators are granted the access to update the data, and

Administrators have access to read the watermark-free data. To update on a wa-

termarked version of the data will only make the process complex and the data in

a mess and irreversible. Incremental watermarking is done afterward based on both

the watermarked version and the updated original data.

Figure 4.4 outlines five cases of database updates, namely update, insert tuple and

delete tuple, insert column,delete column. These five cases are dealt with differently

as Case 2 and Case 3 change the ordering of the tuples if re-sorted, while the others

do not.

For update, only the attributes values are changed, so we can merely watermark

this tuple again with the corresponding pi and bi, and modify the watermarked values

correspondingly in the watermarked databases.

4.4 Multi-level Access

As mentioned in the introduction, different classes of users (Guests, Read-only users,

and Administrators) can be granted different levels of access (multi-level access).

Users are classified into three classes:

1. General Users: can only see watermarked version of the data.
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Incremental Watermarking Algorithm:

Input: updated data x̂i, amplitude factor α, recovered b̂i if Case 1 and Case 4
Output: e-watermarked data ŷi

Method:

Case 1: Update data value

1: Hash the tuple and retrieve corresponding pi;
2: Re-watermark this tuple ŷi = x̂i + α · pi · bi.

Case 2: Insert new tuple

1: Hash the new tuple and add it the end of hash table, generate additional pi and bi;
2: Watermark this tuple ŷi = x̂i + α · pi · bi.

Case 3: Delete one tuple

1: Delete its Hash, pi, and bid from the Hash table;
2: Delete its corresponding tuple from the watermarked table.

Case 4: Insert new column

1: Hash the column and retrieve corresponding pi;
2: Watermark the whole column ŷi = x̂i + α · pi · bi.

Case 5: Delete one column

1: Delete corresponding sequence pi, if pi is not applicable to other columns;
2: Delete its corresponding column in watermarked table.

Figure 4.4: Incremental Watermarking Algorithm

2. Read-only users: are allowed to remove the watermarks partially or fully (de-

fined by the different levels of clearance). With the highest level of clearance,

the user can view the whole watermark-free data.

3. Administrators: can not only read the watermark-free data but also update the

data.

For example, in medical applications, Administrators can be the doctor who can

read and write (even modify) the data and prescription, Read-only users can be the

nurses who read the data and follow instructions, and General users can be other
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people outside the above two classes. In military application, Administrators can be

commanders who make strategies, Read-only users can be soldiers entitled to know

the strategies, while General users can be those from a third party (even the enemies).

Note that Read-only users are granted access to the data to the extent of their

clearance. At one extreme end, users with no clearance at all (i.e. Guests) can only

view the watermarked data, which appears good but is not suitable for high-precision

processing. At the other extreme end, users with full clearance (for example, high-

level Read-only users and Administrators) can invert and remove all the watermarks

so as to obtain the original data. In between are users with intermediate clearance,

who can only remove parts of the watermarks. A simple solution to this problem is to

watermark fractions of the database with different pseudo-random sequences (treated

as secret keys) which are respectively known only to specific groups of users. The

users with high-clearance get to know a set of pseudo-random sequences. While this

is not the main contribution of the work, we do not discuss it in further detail.

4.5 Experimental Study

In this section, we present the experimental study and analyze the cost. Our experi-

ments were performed on the dataset named Ovarian Cancer 1. The dataset consists

of tables with various instances (tuples) and attributes. We choose one table bearing

15,154 instances (tuples) and 2 columns (attributes). We add an extra attribute (a

column with all the values distinct from each other) to serve as the primary key for

the purposes of re-sorting tuples.

We ran our experiments on Windows XP with a P4 1.6GHz Intel processor, 256 MB

of memory, and a 20 GB hard disk drive. The watermark embedding, extraction and

1National Cancer Institute, http://clinicalproteomics.steem.com/
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removal algorithms were coded in C Language. As we embed watermark in spatial

domain, the watermarking and detection scheme can both be run in linear time O(n),

where n is the number of tuples involved in watermarking and detection scheme. In

our experiment, we set the parameters empirically.

4.5.1 Setting Parameters cr and α

Given the invertible watermarking scheme discussed above, we expected the extracted

âj equal to embedded watermark information aj, thus to achieve x̂i = xi. Here, we

experiment on the precision-critical data to see how aj vs âj and xi vs. x̂i match.

Figure 4.5 shows setting α = 0.5, how the chip rate cr affects the percentage of

successful watermark bits detection.
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Figure 4.5: Varying chip rate

We can see from Figure 4.5 that given α = 0.5, the percentage of correctly detected

watermark bits increases as the chip rate cr gets larger. Note that for our application,

it is compulsory to recover every watermark bit exactly as it was, so that the percent-

age of correctly detected watermark bits must be 100%. We repeated the detection

phase 50 times, each time with a set of different seeds for the pseudo random sequence

{pi, i = 0, 1, ..., N −1} and {aj, j = 0, 1, ...,M −1}, and experiment results show that

setting cr = 100, we can safely ensure 100% watermark bits to be detected correctly.
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Next, fixing cr = 100, we choose the value of α. Figure 4.6 shows how the percent-

age of correctly detected watermark bits varies with alpha.
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Figure 4.6: Varying alpha

We can see that the percentage of correctly detected watermark bits increases with

the increase of α. Set α = 0.5 1.0, we can achieve percentage of correctly detected

watermark bits of 100%.

In the following test, we set cr = 50 and α = 0.5.

4.5.2 Varying Percentage of deleted tuples

Without update, delete and insert operations, the precision-critical database can be

correctly inverted. However, the update, delete and insert operations can not be

neglected, as they are likely to mess up the ordering of the re-sorted tuples, make

tuples lose synchronization with the watermark sequence, and introduce error to the

watermark removal phase.

We can see from the earlier discussion that as long as the privileged user has access

to the maintained hash table, insert of one tuple will not make the watermark removal

phase too difficult. However, delete and update will make the watermark not integrity.

On one hand, since the watermark detection phase is spread-spectrum based, it
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can survive tuple (watermark) deletion to some extent.

Figure 4.7 plots how the percentage of wrongly detected watermark bits goes up

with the increase of number of deleted tuples.
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Figure 4.7: Effect of Incremental Watermarking on Running Time

We can see that when the percentage of randomly deleted tuples reaches 70%

and above, the watermark bits can no longer be completely correctly detected. It

means the spread-spectrum based watermark detection can survives up to 70% tuples

randomly deleted while preserving the integrity of the watermark.

On the other hand, because normal database update may change the values greatly,

the embedded watermark may be severely destroyed. With a small portion of the tuple

values updated, depending to what extent the values have been varied, the watermark

detection can be totally wrong. Therefore, we suggest re-watermarking the databases

after updates have been issued. While re-watermark can be very expensive given the

frequency of update operations, our Incremental Watermarking scheme can cleverly

solve this problem. Next, we presents the performance of our invertible watermarking

scheme against varying update percentage.
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4.5.3 Effect of Incremental Watermarking

Here, we compare the computation cost of re-watermarking the whole database

with the cost of incremental watermarking. We compare the running time of these

two watermarking methods, varying the percentage of UPDATES introduced to the

databases. Without loss of generality, UPDATES includes updating values, insert-

ing tuples and deleting tuples only, because the proof of efficiency of incremental

watermarking over inserting and deleting columns is trivial.
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Figure 4.8: Effect of Incremental Watermarking on Running Time

Figure 4.8 shows that when the percentage of UPDATES is below 80% of the

whole databases, incremental watermarking always outperforms conventionally re-

watermarking the whole databases. When the percentage of UPDATES reaches 80%

and above, conventional watermarking performs better. This can be easily under-

standable because searching in the maintained hash table can be time-consuming,

and when too many updates occur, it is slower to search and watermark a part than

to simply re-watermark the whole.

Therefore, incremental watermarking is very much recommended when a small por-

tion (not necessary to be 80% for different databases, and it can be determined by

the application and the database administrator) of the databases is changed. Incre-
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mental watermarking has made our invertible watermarking technique more suitable

for real-life applications.

4.6 Summary

In this chapter, we have addressed the problem of invertible watermarking precision-

critical databases. Given the need for lossless recovering the watermarked data for

military or medical uses, we have presented an invertible spread-spectrum watermark-

ing method in which we utilize a direct sequence spread-spectrum based approach for

watermarking the data. With our watermark extraction method, the watermark can

be removed, and thus the original data can be recovered. We tuned the parameters

(α and cr)in the experiments, and achieved the percentage of correctly recovered data

of 100%.

Also, with Incremental Watermarking, it is no longer necessary to re-watermark

the whole databases, when only a small portion of the data are updated. With

incremental watermarking, the computation cost of updates and re-watermarking can

be greatly reduced. Experimental results have shown the effectiveness of incremental

watermarking.
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Conclusion

5.1 Summary

In this thesis, we proposed two novel techniques for watermarking relational databases,

each with a different purpose.

Firstly, we present Individualized Watermarking of relational databases, where both

ownership establishment and traitor tracing were enabled, in that merely proving the

ownership without identifying the traitor can not compensate the data owner’s loss.

We proposed a spread-spectrum based watermarking scheme, which was resilient to

various attacks, such as data re-sorting, subset selection, subset addition etc., as well

as collusion attacks. The individualized watermarks are collusion-resistant, such that

even the attempt of a few buyers colluding together to destroy the individualized

watermarks will not be successful. Formal security analysis was given, and the ex-

periment results conducted on TPC-H benchmarked databases were given in support

of the analysis. Both the analysis and the experiment results show that the individ-

ualized watermark can withstand a variety of malicious attacks and benign updates,

thus verify the feasibility and reliability of the individualized watermarking scheme.

69
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Secondly, we proposed Invertible Watermarking of precision-critical databases, tak-

ing into account that in many database applications, i.e. medical, military, satellite

and so on, the accuracy of the data is as important as the copyright protection of

the data, because inaccuracy in these data will not only render the data useless but

result in vicious effects, while free redistribution of the data will cause great capi-

tal loss to the data owner. In this thesis, we discussed two different approaches of

invertible watermarking databases, i.e. LSB and spread-spectrum. We abandoned

LSB approach because of its deficiency and chose spread-spectrum for its higher se-

curity and robustness. Also, we introduced the idea of hierarchical access of the data,

and enabled the function of Incremental Watermarking when only a small portion of

the databases were modified or updated. The experimental study showed that the

precision-critical data can be fully recovered without error for the privileged users,

while being of no value for non-privileged ones. Incremental Watermarking outper-

formed conventional re-watermarking with percentage of updates up to 80%. The

effectiveness of incremental watermarking had made the technique more practical in

real applications.

5.2 Contributions

Naturally, the major contributions of this work fall into two aspects:

First, it identified the importance of right management of relational database

through traitor-tracing, and enunciated possible attacks that individualized water-

mark inserted in relational databases must survive. It also proposed a novel individ-

ualized watermarking technique geared for relational databases, supported by formal

security analysis as well as extensive experimental results.

Second, it articulated of the need for invertible watermarking precision-critical
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data, and first proposed an invertible watermarking technique with multi-level access.

With privileged access to the database, watermark removal was very reliable. Also,

it enabled incremental watermarking, which greatly improved the efficiency of re-

watermarking a modified databases.

5.3 Future Work

In future work, we would like to address the issue of protecting the buyer’s digital

rights. Though in most watermarking scenarios, it is assumed that the seller’s rights

are more important which need to be protected against violation by malicious buyers,

yet it may also happen that the seller may be malicious and may try to falsely impli-

cate an honest buyer. Therefore, it is important to come up with reliable solutions

to protect both the seller and buyers.

Furthermore, we would like to extend our work to watermark non-numeric at-

tributes, and improve the efficiency of the watermarking schemes. Efficient water-

marking is important as to be suitable for watermarking high dimensional databases.

In fact, many real applications are devised for high dimensional data, and thus the

efficiency is of most concern.
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