

INCORPORATION OF CONSTRAINTS TO IMPROVE

MACHINE LEARNING APPROACHES ON

COREFERENCE RESOLUTION

CEN CEN

(MSc. NUS)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING
NATIONAL UNVIERSITY OF SINGAPORE

2004

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48626031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 1 -

Acknowledgements

I would like to say “Thank You” to everyone who has helped me during the course of

the research. Without their support, the research would not be possible.

My first thanks go to thank my supervisor, Associate Professor Lee Wee Sun, for his

invaluable guidance and assistance. I am always inspired by his ideas and visions. I

cannot thank him enough.

I also want to say thank you to many others - Yun Yun, Miao Xiaoping, Huang

Xiaoning, Wang Yunyan and Yin Jun. Their suggestions and concern for me put me

always in a happy mood during this period.

Last but not least, I wish to thank my friend in China, Xu Sheng, for his moral support.

His encouragement is priceless.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 2 -

Content

List of Figures 6

List of Tables 7

Summary 8

1. Introduction 9

1.1. Coreference Resolution 9

1.1.1. Problem Statement 9

1.1.2. Applications of Coreference Resolution 10

1.2. Terminology 11

1.3. Introduction 12

1.3.1. Related Work 12

1.3.2. Motivation 18

1.4. Structure of the thesis 20

2. Natural Language Processing Pipeline 22

2.1. Markables Definition 22

2.2. Markables Determination 23

2.2.1. Toolkits used in NLP Pipeline 24

2.2.2. Nested Noun phrase Extraction 26

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 3 -

2.2.3. Semantic Class Determination 27

2.2.4. Head Noun Phrases Extraction 27

2.2.5. Proper Name Identification 30

2.2.6. NLP Pipeline Evaluation 32

3. The Baseline Coreference System 36

3.1. Feature Vector 36

3.2. Classifier 38

3.2.1. Training Part 38

3.2.2. Testing Part 40

4. Ranked Constraints 42

4.1. Ranked Constraints in coreference resolution 43

4.1.1. Linguistic Knowledge and Machine Learning Rules 43

4.1.2. Pair-level Constraints and Markable-level Constraints 47

4.1.3. Un-ranked Constraints vs. Ranked Constraints 48

4.1.4. Unsupervised and Supervised approach 49

4.2. Ranked Constraints Definition 52

4.2.1. Must-link 53

4.2.2. Cannot-link 55

4.2.3. Markable-level constraints 58

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 4 -

4.3. Multi-link Clustering Algorithm 60

5. Conflict Resolution 64

5.1. Conflict 64

5.2. Main Algorithm 67

5.2.1. Coreference tree 68

5.2.2. Conflict Detection and Separating Link 71

5.2.3. Manipulation of Coreference Tree 74

6. Evaluation 81

6.1. Score 81

6.2. The contribution of constraints 87

6.2.1. Contribution of Each Constraints Group 88

6.2.2. Contribution of Each Combination of Constraints Group 89

6.2.3. Contribution of Each Constraint in ML and CL 94

6.3. The contribution of conflict resolution 97

6.4. Error analysis 101

6.4.1. Errors Made by NLP 102

6.4.2. Errors Made by ML 103

6.4.3. Errors Made by MLS 104

6.4.4. Errors Made by CL 105

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 5 -

6.4.5. Errors Made by CLA 105

6.4.6. Errors Made by CR 106

6.4.7. Errors Made by Baseline 106

7. Conclusion 108

7.1.1. Two Contributions 108

7.1.2. Future Work 109

Appendix A : Name List 111

A.1 Man Name List 111

A.2 Woman Name List 112

Appendix B: MUC-7 Sample 113

B.1 Sample MUC-7 Text 113

B.2 Sample MUC-7 Key 113

Bibliography 115

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 6 -

 List of Figures

Figures Page

2.1 The architecture of natural language procession pipeline 23

2.2 The noun phrase extraction algorithm 28

2.3 The proper name identification algorithm 31

3.1 The decision tree classifier 41

4.1 The algorithm of coreference chains generation with constraints 62

5.1 An example of conflict resolution 66

5.2 An example of coreference tree in MUC-7 70

5.3 The algorithm to detect conflict and find separating link 71

5.4 An example of extending coreference tree 73

5.5 The Add function of the algorithm of coreference chain generation 74

5.6 An example of merging coreference trees 76

5.7 Examples of separating coreference tree 77

5.8 The result of separating the tree with conflict shown in Figure 5.4 78

6.1 Results for the effects of ranked constraints and conflict resolution 84

6.2 Results to study the contribution of each constraints group 86

6.3 Results for each combination of four constraint groups 89

6.4 Results to study the effect of ML and CL 90

6.5 Results to study the effect of CLA and MLS 91

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 7 -

 List of Tables

Table Page

2.1 MUC-7 results to study the two additions to NLP pipeline 33

3.1 Feature set for the duplicated Soon baseline system 37

4.1 Ranked Constraints set used in our system 61

6.1 Results for formal data in terms of result, precision and F-measure 81

6.2 Results for to study the ranked constraints and conflict resolution 83

6.3 Results for each combination of four constraint groups 89

6.4 Results for coreference system to study the effect of each constraint 94

6.5 Errors in our complete system 100

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 8 -

Summary

In this thesis, we utilize linguistic knowledge to improve coreference resolution

systems built through a machine learning approach. The improvement is the result of

two main ideas: incorporation of multi-level ranked constraints based on linguistic

knowledge and conflict resolution for handling conflicting constraints within a set of

corefering elements. The method resolves problems with using machine learning for

building coreference resolution systems, primarily the problem of having limited

amounts of training data. The method provides a bridge between coreference

resolution methods built using linguistic knowledge and machine learning methods. It

outperforms earlier machine learning approaches on MUC-7 data increasing the

F-measure of a baseline system built using a machine learning method from 60.9% to

64.2%.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 9 -

1. Introduction

1.1. Coreference Resolution

1.1.1. Problem Statement

Coreference resolution is the process of collecting together all expressions which refer

to the same real-world entity mentioned in a document. The problem can be recast as a

classification problem: given two expressions, do they refer to the same entity or

different entities. It is a very critical component of Information Extraction systems.

Because of its importance in Information Extraction (IE) tasks, the DARPA Message

Understanding Conferences have taken coreference resolution as an independent task

and evaluated it separately since MUC-6 [MUC-6, 1995]. Up to now, there have been

two MUCs, MUC-6 [MUC-6, 1995] and MUC-7 [MUC-7, 1997] which involve the

evaluation of coreference task.

In this thesis, we focus on the coreference task of MUC-7 [MUC-7, 1997]. MUC-7

[MUC-7, 1997] has a standard set of 30 dry-run documents annotated with coreference

information which is used for training and a set of 20 test documents which is used in

the evaluation. They are both retrieved from the corpus of New York Times News

Service and have different domains.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 10 -

1.1.2. Applications of Coreference Resolution

Information Extraction

An Information Extraction (IE) system is used to identify information of interest from

a collection of documents. Hence an Information Extraction (IE) system must

frequently extract information from documents containing pronouns. Furthermore, in a

document, the entity including interesting information is often mentioned in different

places and in different ways. The coreference resolution can capture such information

for the Information Extraction (IE) system. In the context of MUC, the coreference

task also provides the input to the template element task and the scenario template task.

However its most important criterion is the support for the MUC Information

Extraction tasks.

Text Summarization

Many text summarization systems include the component for selecting the important

sentences from a source document and using them to form a summary. These systems

could encounter some sentences which contain pronouns. In this case, coreference

resolution is required to determine the referents of pronouns in the source document

and replace these pronouns.

Human-computer interaction

Human-computer interaction needs computer system to provide the ability to

understand the user’s utterances. Human dialogue generally contains many pronouns

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 11 -

and similar types of expressions. Thus, the system must figure out what the pronouns

denote in order to “understand” the user’s utterances.

1.2. Terminology

In this section, the concepts and definitions used in this thesis are introduced.

In a document, the expressions that can be part of coreference relations are called

markables. Markable includes three categories: noun, noun phrase and pronoun. A

markable used to perform reference is called the referring expression, and the entity

that is referred to is called the referent. Sometimes a referring expression is referred as

a referent. If two referring expressions refer to each other, they corefer in the document

and are called coreference pair. The first markable in a coreference pair is called

antecedent and the second markable is called anaphor. When the coreference relation

between two markables is not confirmed, the two markables constitute a possible

coreference pair, and the first one is called possible antecedent and the second is

possible anaphor. Only those markables which are anaphoric can be anaphors. All

referring expressions referring to the same entity in a document constitute a

coreference chain. In order to determine a coreference pair, a feature vector is

calculated for each possible coreference pair. The feature vector is the basis of the

classifier model.

For the sake of evaluation, we constructed the system’s output according to the

requirement of MUC-7 [MUC-7, 1997]. The output is called responses and the key file

is offered by MUC-7 [MUC-7, 1997] keys. A coreference system is evaluated

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 12 -

according to three criteria: recall, precision and F-measure [Amit and Baldwin, 1998].

1.3. Introduction

1.3.1. Related Work

In coreference resolution, so far, there are two different but complementary approaches:

one is theory-oriented rule-based approach and the other is empirical corpus-based

approach.

Theory-oriented Rule-based Model

Theory-oriented rule-based approaches [Mitkov, 1997; Baldwin, 1995; Charniak,

1972] employ manually encoded heuristics to determine coreference relationship.

These manual approaches require the information encoded by knowledge engineers:

features of each markable, rules to form coreference pairs, and the order of these rules.

Because coreference resolution is a linguistics problem, most rule-based approaches

more or less employ theoretical linguistic work, such as Focusing Theory [Grosz et al.,

1977; Sidner, 1979], Centering Theory [Grosz et al., 1995] and the systemic theory

[Halliday and Hasan, 1976]. The manually encoded rules incorporate background

knowledge into coreference resolution. Within a specific knowledge domain, the

approaches achieve a high precision (around 70%) and a good recall (around 60%).

However, language is hard to be captured by a set of rules. Almost no linguistic rule

can be guaranteed to be 100% accurate. Hence, rule-based approaches are subject to

three disadvantages as follows:

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 13 -

1) Features, rules and the order of the rules need to be determined by knowledge

engineers.

2) The existence of an optimal set of features, rules and an optimal arrangement

of the rules set has not been conclusively established.

3) A set of features, rules and the arrangement of rules depend much on

knowledge domain. Even though a set of features, rules and the arrangement

can work well in one knowledge domain, they may not work as well in other

knowledge domains. Therefore if the knowledge domain is changed, the set

of features, rules and the arrangement of the rules set need to be tuned

manually again.

Hence considering these disadvantages, further manual refinement of theory-oriented

rule-based models will be very costly and it is still far from being satisfactory for many

practical applications.

Corpus-based Empirical Model

Corpus-based empirical approaches aree reasonably successful and achieve a

performance comparable to the best-performing rule-based systems for the coreference

task’s test sets of MUC-6 [MUC-6, 1995] and MUC-7 [MUC-7, 1997]. Compared to

rule-based approaches, corpus-based approaches have following advantages:

1) They are not as sensitive to knowledge domain as rule-based approaches.

2) They use machine learning algorithms to extract rules and arrange the rules

set in order to eliminate the requirement for the knowledge engineer to

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 14 -

determine the rules set and arrangement of the set. Therefore, they are more

cost-effective.

3) They provide a flexible mechanism for coordinating context-independent and

context-dependent coreference constraints.

Corpus-based empirical approaches are divided into two groups: one is supervised

machine learning approach [Aone and Bennett, 1995; McCarthy, 1996; Soon et al.,

2001; Ng and Cardie, 2002a; Ng and Cardie, 2002; Yang et al., 2003], which recasts

coreference problem as a binary classification problem; the other is unsupervised

approach, such as [Cardie and Wagstaff, 1999], which recasts coreference problem as a

clustering task. In recent years, supervised machine learning approach has been widely

used in coreference resolution. In most supervised machine learning systems [e.g.

Soon et al., 2001; Ng and Cardie, 2002a], a set of features is devised to determine

coreference relationship between two markables. Rules are learned from these features

extracted from training set. For each possible anaphor which is considered in test

document, its possible antecedent is searched for in the preceding part of the document.

Each time, a pair of markables is found, it will be tested using those rules. This is

called the single-candidate model [Yang et al., 2003]. Although these approaches have

achieved significant success, the following disadvantages exist:

Limitation of training data

The limitation of training data is mostly due to training data insufficiency and “hard”

training examples.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 15 -

Because of insufficiency of training data, corpus-based model cannot learn sufficiently

accurate rules to determine coreference relationship in test set. In [Soon et al., 2001;

Ng and Cardie, 2002a], they used 30 dryrun documents to train their coreference

decision tree. But coreference is a rare relation [See Ng and Cardie, 2002]. In [Soon et

al., 2001]’s system, only about 2150 positive training pairs were extracted from

MUC-7 [MUC-7, 1997], but the negative pairs were up to 46722. Accordingly the

class distributions of the training data are highly skewed. Learning in the presence of

such skewed class distributions results in models, which tend to determine that a

possible coreference pair is not coreferential. This makes the system’s recall drop

significantly. Furthermore, insufficient training data may result in some rules being

missed. For example, if within a possible coreference pair, one is another’s appositive,

the pair should be a coreference pair. However, appositives are rare in training

documents, and it cannot be determined easily. As a result, the model may not include

the appositive rule. This obviously influences the accuracy of coreference system.

During the sampling of positive training pair, if the types of noun phrases are ignored,

it would result in “hard” training example [Ng and Cardie, 2002]. For example, the

interpretation of a pronoun may be dependent only on its closest antecedent and not on

the rest of the members of the same coreference chain. For proper name resolution, the

string matching or more sophisticated aliasing techniques would be better for training

example generation. Consequently, generation of positive training pairs without

consideration of noun phrase types may induce some “hard” training instances. “Hard”

training pair is coreference pair in its coreference chain, but many pairs with the same

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 16 -

feature vectors with the pair may not be coreference pairs. “Hard” training instances

would lead to some rules which are hazardous for performance. How to deal with such

limitation of training data remains an open area of research in the machine learning

community. In order to avoid the influence of training data, [Ng and Cardie, 2002]

proposed a technique of negative training example selection similar to that proposed in

[Soon et al., 2001] and a corpus-based method for implicit selection of positive

training examples. Therefore the system got a better performance.

Considering coreference relationship in isolation

 In most supervised machine learning systems [Soon et al., 2001; Ng and Cardie,

2002a], when the model determines whether a possible coreference pair is a

coreference pair or not, each time it only considers the relationship between two

markables. Even if the model’s feature sets include context-dependent information, the

context-dependent information is only about one markable, not both two markables.

For example, so far, no coreference system cares about that how many pronouns

appear between two markables in a document. Therefore only local information of two

markables is used and global information in a document is neglected. [Yang et al.,

2003] suggested that whether a candidate is coreferential to an anaphor is determined

by the competition among all the candidates. Therefore, they proposed a

twin-candidate model compared to the single-candidate model. Such approach

empirically outperformed those based on a single-candidate model. The paper implied

that it is potentially better to incorporate more context-dependent information into

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 17 -

coreference resolution. Furthermore, because of incomplete rules set, the model may

determine that (A, B) is a coreference pair and (B, C) is a coreference pair. But actually,

(A, C) is not a coreference pair. This is a conflict in a coreference chain. So far, most

systems do not consider conflicts within one coreference chain. [Ng and Cardie, 2002]

noticed the conflicts. They claimed that these were due to classification error. To avoid

such conflicts, they incorporated error-driven pruning of classification rule set to avoid.

However Ng and Cardie, 2002 did not take the whole coreference chain’s information

into account either.

Lack of an appropriate reference to theoretical linguistic work on coreference

Basically, coreference resolution is a linguistic problem and machine learning is an

approach to learn those linguistic rules in training data. As we have mentioned above,

training data has its disadvantages and it may lead to missing some rules which can be

simply formulated manually. Moreover, current machine learning approaches usually

embed some background knowledge into the feature set, hoping the machine could

learn such rules from these features. However, “hard” training examples influence the

rules-learning. As a result, such simple rules are missed by the machine.

Furthermore, it is still a difficult task to extract the optimal features set. [Ng and Cardie,

2002a] incorporated a feature set including 53 features, larger than [Soon et al.,

2001]’s 12 features set. It is interesting that such large feature set did not improve

system performance and even degraded the performance significantly. Instead,

[Wagstaff, 2002] incorporated some linguistic rules into coreference resolution directly

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 18 -

and the performance increased noticeably. Therefore, there is no 100% accurate

machine learning approach. However, simple rules can make up for the weakness.

Another successful example is [Iida et al., 2003] who incorporated more linguistic

features capturing contextual information and obtained a noticeable improvement over

their baseline systems.

1.3.2. Motivation

Motivated by the analysis of current coreference system, in this thesis, we propose a

method to improve current supervised machine learning coreference resolution by

incorporating a set of ranked linguistic constraints and a conflict resolution method.

Ranked Constraints

Directly incorporating linguistic constraints makes a bridge between theoretical

linguistic findings and corpus-based empirical methods. As we have mentioned above,

machine learning can lead to missing rules. In order to avoid missing rules and to

encode domain knowledge that is heuristic or approximate, we devised a set of

constraints, some of which can be violated and some of which cannot. The constraints

are seen as ranked constraints and those which cannot be violated are provided with

the infinite rank. In this way, the inflexibility of those rule-based systems is avoided.

Furthermore, our constraints include two-level of information: one is pair level and the

other is markable level. Pair-level constraints include must-link and cannot-link. They

are simple rules based two markables. Markable-level constraints consist of

cannot-link-to-anything and must-link-to-something. They are based on single

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 19 -

markable. And they guide the system to treate anaphors differently. All of them can be

simply tested. And the most important is that the constraints avoid overlooking local

information by using global information from the whole documents, while current

machine learning methods do not pay enough attention to the global information. By

incorporating constraints, each anaphor can have more than one antecedent. Hence the

system replaces the single-link clustering with multi-link clustering (described in

Chapter 4). For example, one of the constraints indicates that proper names with the

same surface string in a document should belong to the same equivalence class.

Conflict Resolution:

As we mentioned above, in testing, conflicts may appear in a coreference chain. This

should be reliable signal of error. In this thesis, we also proposed an approach to make

use of the signals to improve the system performance. When conflict arises, the

conflict is measured and a corresponding process is called to deal with the conflicts.

Because of the use of conflict resolution, the ranked constraint’s reliability is reduced.

Hence the constraints become more heuristic and approximate. As a result, the

system’s recall is improved significantly (from 59.6 to 63.8) and precision is improved

at the same time (from 61.7 to 64.1).

We observed that by incorporating some simple linguistic knowledge, constraints and

conflict resolution can reduce the influence of training data limitation to a certain

extent. By devising multi-level constraints and using the coreference chain’s

information, coreference relationship becomes more global, not isolated. In the

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 20 -

following chapter, we show how the new approach achieves the F-measure of 64.2

outperforming earlier machine learning approaches, such as [Soon et al., 2001]’s 60.4

and [Ng and Cardie, 2002a]’s 63.4.

In this thesis, we duplicated Soon work as the baseline for our work. Before we

incorporated constraints and conflict resolution, we added two more steps, head noun

phrase extraction and proper name identification, into Natural Language Processing

(NLP) pipeline. By doing so, the baseline system’s performance increases from 59.3 to

60.9 and consequently achieves an acceptable performance. In Chapter 2, the two

additions are described in detail.

1.4. Structure of the thesis

The rest of the thesis is organized as follows:

Chapter 2 and Chapter 3 will introduce the baseline system’s implementation. Chapter

2 will introduce the natural language processing pipeline used in our system and

describe the two additional steps, noun phrase extraction and proper name

identification, and the corresponding experimental result. Chapter 3 will introduce the

baseline system based on [Soon et al., 2001] in brief.

Chapter 4 and Chapter 5 will introduce our approach in detail. Ranked constraints will

be introduced in Chapter 4. In this Chapter, we will give the types and definitions of

constraints we incorporate in our system. Chapter 5 will describe the conflict

resolution algorithm in detail.

In Chapter 6, we will evaluate our system, by comparing it with some existing systems,

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 21 -

such as [Soon et al., 2001]. And we also show the contributions of constraints and

conflict resolution respectively. At the end of this chapter, we will analyze the

remaining errors in our system.

Chapter 7 will conclude the thesis, highlight its contributions to coreference resolution

and describe the future work.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 22 -

2. Natural Language Processing Pipeline

2.1. Markables Definition

Candidate which can be part of coreference chains are called markable in MUC-7

[MUC-7, 1997]. According to the definition of MUC-7 [MUC-7, 1997] Coreference

Task, markables include three categories whether it is the object of an assertion, a

negation, or a question: noun, noun phrase and pronoun. Dates, currency expression

and percentage are also considered as markables. However interrogative "wh-" noun

phrases are not markables.

Markable extraction is a critical component of coreference resolution, although it does

not take part in coreference relationship determination directly. In the training part, two

referring expressions cannot form a training positive pair if either of them is not

recognized as markable by the markable extraction component even if they belong to

the same coreference chain. In the testing part, only markables can be considered as a

possible anaphor or a possible antecedent. Those expressions which are not markables

will be skipped. In this case markable extraction component performance is an

important factor in coreference system’s recall. It also means markable extraction

component performance determines the maximum value of recall.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 23 -

2.2. Markables Determination

In this thesis, a pipeline of natural language processing (NLP) is used as shown in

Figure 2.1. It has two primary functions. One is to extract markables from free text as

actually as possible and at the same time determine the boundary of those markables.

The other is to extract linguistic information which will be used in later coreference

relationship determination. Our pipeline of natural language processing (NLP) imitates

the architecture of the one used in [Soon et al., 2001]. Both pipelines consist of

tokenization, sentence segmentation, morphological processing, part-of-speech tagging,

noun phrase identification, named entity recognition, nested noun phrase extraction

Tokenization & Sentence Segmentation

Morphological Processing & POS tagging

Noun Phrase Identification

Nested Noun Phrases
Extraction

Name Entity
Recognition

Semantic Class Determination

Head Noun Phrases Extraction

Proper Name Identification

Free text

Markables

Figure 2.1
The architecture of natural language processing pipeline.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 24 -

and semantic class determination. Besides these modules, our NLP pipeline adds head

noun phrase extraction and proper name identification to enhance the performance of

NLP pipeline and to compensate the use of a weak named entity recognition that we

used. This will be discussed in detail later.

2.2.1. Toolkits used in NLP Pipeline

In our NLP pipeline, three toolkits are used to complete the task of tokenization,

sentence segmentation, morphological processing, part-of-speech tagging, noun phrase

identification and named entity recognition.

LT TTT [Grover et al., 2000], a text tokenization system and toolset which enables

users to produce a swift and individually-tailored tokenization of text, is used to do

tokenization and sentence segmentation. It uses a set of hand-craft rules to token input

SIML files and uses a statistical sentence boundary disambiguator which determines

whether a full-stop is part of an abbreviation or a marker of a sentence boundary.

LT CHUNK [LT CHUNK, 1997], a surface parser which identifies noun groups and

verb groups, is used to do morphological processing, part-of-speech tagging and noun

phrase identification. It as well as LT TTT [Grover et al., 2000] is offered by the

Language Technology Group [LTG]. LT CHUNK [LT CHUNK, 1997] is a partial

parser, which uses the part-of-speech information provided by a nested tagger and

employs mildly context-sensitive grammars to detect boundaries of syntactic groups. It

can identify simple noun phrases. Nested noun phrases, conjunctive noun phrases as

well as noun phrases with post-modifiers cannot be recognized correctly. Consider the

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 25 -

following example:

Sentence 2.1 (1): ((The secretary of (Energy)a1)a2 and (local farmers)a3)a4 have

expressed (concern)a5 that (a (plane)a6 crash) a7 into (a ((plutonium) a8 storage) a9

bunker)a10 at (Pantex) a11 could spread (radioactive smoke) a12 for (miles)a13.

Sentence 2.1 (2): (The secretary)b1 of (Energy)b2 and (local farmers)b3 have

expressed (concern)b4 that (a plane crash)b5 into (a plutonium storage bunker)b6 at

(Pantex)b7 could spread (radioactive smoke)b8 for (miles)b9.

The sentence is extracted from MUC-7 [MUC-7, 1997] dryrun documents and it is

shown twice with different noun phrase boundaries. The first sentence is hand-crafted

and the second is the output of LT CHUNK. Among 13 markables, LT CHUNK tagged

8 of them (a1, a3, a5, a7, a10, a11, a12, a13) correctly, missed 4 of them (a4, a6, a8, a9)

and tagged one (a2,) by error. Among 4 missed markables, “a4” is a conjunctive noun

phrase and a6, a8 as well as a9 are nested noun phrases. Among the errors, a2 is a noun

phrase with post-modifier, “Energy”, and is tagged as b1. Fortunately, It is possible to

extend it to a2 automatically, because besides the article, “The”, b1’s string matches

with the string of a2’s head noun phrase, “secretary”. In the following sections,

modules which can deal with such problems will be introduced.

As for named entity recognition, in our system dryrun documents, we use the MUC-7

NE keys. For formal documents, we use named entity recognizer offered by Annie

[Annie], Annie [Annie] is an open-source, robust Information Extraction (IE) system

which relies on finite state algorithms. Unfortunately, Annie’s performance is much

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 26 -

lower than the MUC standards. Tested on coreference task’s 30 dryrun document, its

F-measure is only 67.5, which is intolerable for the coreference task. To make up for

the weakness to a certain extent, we incorporated a module, proper name identification,

into NLP pipeline. This module will be introduced in detail later.

2.2.2. Nested Noun phrase Extraction

Nested noun phrase extraction accepts the LT CHUNK’s output and extracts

prenominals from the simple noun phrases tagged by LT CHUNK. According to [Soon

et al., 2001], there are two kinds of nested noun phrases that need to be extracted:

Nested noun phrases from possessive noun phrases: Possessive pronouns (e.g. “his”

in “his book”) and the part before “’s” of a simple noun phrase (e.g. “Peter” in “Peter’s

book”).

Prenominals: For instance, in “a plutonium storage bunker”, “plutonium” and

“storage” are extracted as nested noun phrases.

After this model, a7 and a8 in above example which were missed by LT CHUNK can

be recognized correctly. But according to the task definition of MUC-7 [MUC-7, 1997]

coreference resolution, nested noun phrases can be included into coreference chain

only if it is coreferential with a named entity or to the syntactic head of a maximal

noun phrase. Therefore after getting coreference chains, those chains which consist of

only nested noun phrases, but no named entity and syntactic head of a maximal noun

phrase, will be deleted.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 27 -

2.2.3. Semantic Class Determination

This is an important component for later feature vectors computation. Most linguistic

information is extracted from here. We use the same semantic classes and ISA

hierarchy as [Soon et al., 2001]’s and we also incorporate WordNet 1.7.1’s synset

[Miller, 1990] to get the semantic class for common nouns. The main difference is in

the gender information extraction. Besides WordNet’s output, pronouns and

designators (e.g. “Mr.”, “Mrs.”), we incorporate a woman name list and a man name

list (See Appendix A). If a person’s name is identified by named entity recognition, we

will search in name lists to see whether the name is a woman’s name, a man’s or

neither.

2.2.4. Head Noun Phrases Extraction

Head noun phrase is the main noun without left and right modifiers in a noun phrase.

The maximal noun phrase includes all text which may be considered a modifier of the

noun phrase, such as post-modifiers, appositional phrases, non-restrictive relative

clauses, prepositional phrases which may be viewed as modifiers of the noun phrase or

of a containing clause. MUC-7 [MUC-7, 1997] required that the string of a markable

generated by NLP pipeline must include the head of the markable and may include any

additional text up to a maximal noun phrase. Because pre-processing cannot determine

accurate boundaries of noun phrases, if the boundary of a markable is beyond its

maximal noun phrase, the markable cannot be recognized as an accurate antecedent or

anaphor by MUC Scorer program. But after noun phrase extraction (Shown in Figure

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 28 -

2.2), the new markable which is its head noun phrase can be recognized by MUC

Scorer. Accordingly, head noun phrase extraction can form a screen for inaccurate

boundary determination and improve system’s recall. For example:

Sentence 2.2: The risk of that scenario, previously estimated at one chance in 10

million, is expected to increase when current flight data are analyzed (later (this

(year)1)2)3, according to a safety board memo dated May 2.

The example is extracted from MUC-7 [MUC-7, 1997] dryrun document. In this

example, boundary 3 is determined by NLP pipeline without head noun phrase

extraction. Boundary 2 is determined by hand which can be recognized as an accurate

referring expression by MUC Scorer and boundary 1 can also be accepted by Scorer. It

is obvious that boundary 3 cannot meet Scorer’s requirement and it leads to missing a

referring expression. But after head noun phrase extraction, “this year” (head noun

phrase is “year”) is recovered.

Another valuable contribution of noun phrase extraction is that it can improve system’s

Algorithm Head-Noun-Phrase-Extraction (MARKABLE : set of all markables)

for MARKABLESEMCLASSii ∈)_(do

=:HeadNP the most right noun of i
if HeadNP is different from i then

 SEMCLASSiSEMCLASSHeadNP _:_ =

 })_({: SEMCLASSHeadNPHeadNPMARKABLEMARKABLE U=

return MARKABLE

Figure 2.2:
The Noun Phrase Extraction Algorithm

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 29 -

performance noticeably by head noun string matching. Actually, in [Soon et al., 2001],

String match is only for the whole markable’s string excluding articles and

demonstrative pronouns. Consider the following sentence extracted from MUC-7

[MUC-7, 1997] dryrun document:

Sentence 2.3: Mike McNulty, the FAA air traffic manager at Amarillo International,

said (the previous (aircraft) [count])1, conducted in late 1994, was a ``(manual

[count])2 on a pad,'' done informally by air traffic controllers.

The two “count”s between square brackets are coreferential. And markable 1 and

markable 2 are determined by NLP pipeline without noun phrase extraction. Even

though two markables’ boundaries can meet the requirement of MUC Scorer,

coreference resolution cannot recognize their coreference relationship. It is partially

because their string match value is negative (See Figure 3.1). But after noun phrase

extraction, two “count”s are extracted as isolate markables respectively. According to

the string match, their coreference relationship can be recognized correctly. This is

why head noun phrase extraction can recover some coreference relations. Later, we

will show that head noun phrase extraction can improve the system’s performance

significantly –recall improved from 56.1 to 62.7 (Table 2.1).

After adding head noun phrase extraction, there may be two markables with the same

head noun appearing in a coreference chain or even two different coreference chains.

In our system if two markables with the same head noun appear in coreference chains,

the shorter markable will take the place of the longer. This is called head noun

preference rule. If they are in different chains, the conflict resolution will be used.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 30 -

Later we will describe it in detail in Chapter 5.

2.2.5. Proper Name Identification

We introduce the proper name identification into NLP pipeline because of two reasons:

One has been mentioned in 2.2.1: Annie’s poor performance. Its score on the MUC-7

[MUC-7, 1997] named entity task for coreference task’s 30 dryrun documents is only

67.5 in F-measure (Recall is 73.1, precision is 79.6). It is far from the MUC-7 standard.

Through reading its output, we find that we can adjust it to meet our requirement in

such a way:

Annie always remembers the named entity’s string exactly as it first appears in the

document. Accordingly, Annie misses other different expressions of the named entity

in the later document. For example, “Bernard Schwartz” is the first appearance of the

person in the document and it is recognized as “PERSON” correctly, but the following

“Schwartz”s are all missed by Annie. For another example, “Loral” is recognized as

“ORGANIZATION” correctly, but the following named entities including “Loral” are

missed, for example “Loral Space” is recognized as two named entities: “Loral” and

“Space”. To obtain more named entities, we add a post-processing for Annie: for each

named entity recognized by Annie, search for its aliases in the document and endow

them the same named entity class with the one recognized by Annie.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 31 -

The other reason incorporating proper name identification is due to nested noun phrase

and head noun phrase extraction. As we know, proper name cannot be separated into

sub noun phrases. But nested noun phrase and head noun phrase extraction still apply

to those proper names which are not recognized as named entities. Consider the

example: “Warsaw Convention”. Our named entity recognition does not recognize it as

a named entity. Therefore “Warsaw” and “Convention” are extracted as markables by

nested noun phrase extraction and head noun phrase extraction, respectively.

Algorithm Proper-Name-Identification (MARKABLE : set of all markables)

for)_(),..,_(11 SEMiiSEMii nn ∈ MARKABLE && they are consecutive proper

names connected by “&”,”/” or nothing do

operNamePr =: {)_(),..,_(11 SEMiiSEMii nn };

for)_(SEMjj ∈ operNamePr do

)_(SEMjj :=)_(SEMjj ’s root markable with the same head noun;

K =: the text covered by operNamePr ’s member and their interval string;

;_:_ SEMiSEMK n=

MARKABLE =: MARKABLE);_(SEMKKU

for)_(SEMjj ∈ operNamePr do

 if)_(SEMjj is not named entity then

 MARKABLE =: MARKABLE /{)_(SEMjj ,its including markables};

return MARKABLE ;

Figure 2.3
The Proper Name Identification Algorithm

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 32 -

Consequently, all “Warsaw Convention” in the document are extracted. Because of the

string match and head noun phrase preference rule (mentioned in last section), all the

“Convention”s form a coreference chain but all the “Warsaw Convention”s are missed.

It causes system’s performance drop noticeably. Proper name identification is required

to resolve such problems. Figure 2.3 shows the module’s algorithm. It recognizes the

consecutive tokens tagged with “NNP” or “NNPS” as a markable without nested noun

phrases and head noun phrases (“NNP” and “NNPS” are added by POS tagging. The

token tagged with one of them should be a part of a proper name.). If there is a token,

“&”or“/”, between two proper names, then combine the token and the two proper

names to a proper name. In next section we will show through experimental result that

proper name identification not only can make up the weakness of named entity

recognition but also can improve the system’s performance.

2.2.6. NLP Pipeline Evaluation

In order to evaluate head noun phrase extraction and proper name identification, we

tested four different NLP pipelines: NLP without noun phrase extraction and proper

name identification, NLP with only noun phrase extraction, NLP with only proper

name identification and NLP with both modules. All four NLP pipelines use LT TTT

[Grover et al., 2000] to do tokenization and sentence segmentation procession, use LT

CHUNK [LT CHUNK, 1997] to do morphological processing and POS tagging, and

use Annie to do named entity recognition. They share the common nested noun phrase

extraction and semantic class determination module. We take the four NLP pipeline’s

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 33 -

outputs as coreference resolution system’s input. There are three coreference resolution

systems used in the experiment: duplicated Soon baseline system, our complete system

with ranked constrains and conflict resolution, and the one chain system (all markables

form a coreference chain). There are two sets of data used: MUC-7 [MUC-7, 1997] 30

dryrun documents and MUC-7 [MUC-7, 1997] 20 formal documents. Unfortunately,

we have no hand annotated corpora to test NLP pipeline. Therefore we cannot evaluate

NLP pipeline’s performance directly. But the coreference scorer results can imply their

performances. The result is shown in Table 2.1.

dryrun (30) formal(20)
System Variation

R P F R P F

Soon et al. / / / 56.1 65.5 60.4
Ng and Cardie 2002a / / / 57.4 70.8 63.4

Duplicated Soon Baseline
None 49.2 74.0 59.1 51.0 70.8 59.3
Proper Name only 49.3 74.3 59.2 51.0 71.7 59.6
Head Noun Phrase only 57.1 64.7 60.3 58.9 60.1 59.5
Head NP and Proper Name 57.4 64.7 60.9 59.6 62.3 60.9

Our Complete System
None 52.0 73.1 60.8 56.1 70.2 62.4
Proper Name only 52.1 73.4 60.9 56.2 71.2 62.8
Head Noun Phrase only 59.5 66.5 62.8 62.7 62.2 62.5
Head NP and Proper Name 59.8 67.2 63.3 63.7 64.7 64.2

One Chain
Soon et al. / / / 87.5 30.5 45.2
None 87.5 30.1 44.8 88.7 30.1 44.9
Proper Name only 87.5 30.4 45.1 88.6 30.6 45.5
Head Noun Phrase only 89.2 22.4 35.8 90.7 22.4 36.0
Head NP and Proper Name 89.2 22.7 36.2 90.6 23.0 36.6

Table 2.1:
MUC-7 results of complete and baseline systems to study the contribution of head noun
phrase extraction and proper name identification. Recall, Precision and F-measure are
provided. “One chain” means all markables form one coreference chain.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 34 -

Table 2.1 shows that both head noun phrase extraction and proper name identification

can enhance the performance of NLP pipeline as well as coreference system’s

performance. Head noun phrase extraction can make recall increase about 7.9 percent

and proper name identification mostly improves the precision. If two modules are both

used, then the result achieved is the best.

Head noun phrase extraction’s contribution is reflected well from one chain system’s

results. One chain system can tell us the maximum recall that coreference system can

achieve based one NLP pipeline. And the higher recall means more markables can be

extracted correctly by NLP pipeline. It reflects the capability of a NLP pipeline. From

Table 2.1, we see that head noun phrase extraction improves recall about 2 % on both

data sets. And the recall on formal data exceeds [Soon et al., 2001]’s by 3.2%. For

the other two systems, the recall increase is much higher, approximately 7 percent.

Although the precision drops, the F-measures did not drop and sometimes even

increases.

As for proper name identification, we see that although recall does not change too

much, all the precisions increase, and F-measures also increase a little bit.

After adding the two modules, duplicated Soon baseline’s result (60.9) can beyond

[Soon et al., 2001]’s (60.4). It shows that two modules not only can make up for the

weakness of NLP pipeline (mostly because named entity recognition), but can also

improve the performance. This is also true for our complete system. The best result

(64.2) is achieved after adding the two modules, which is higher than most coreference

systems, such as [Soon et al., 2001; Ng and Cardie, 2002a].

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 35 -

The experiment shows that NLP pipeline is a critical for a coreference system. After

adding the two modules, our duplicated Soon baseline system achieves an acceptable

result (60.9). In this thesis, we take it as our departure point. In the later chapters, we

will describe how to improve the performance of the baseline system through ranked

constraints and conflict resolution.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 36 -

3. The Baseline Coreference System

Our system takes [Soon et al., 2001] as the baseline model. [Soon et al., 2001] is the

first system machine learning system with comparable result to that of state-of-the art

non-learning systems on data sets of MUC-6 [MUC-6, 1995] and MUC-7 [MUC-7,

1997]. The system used a feature set including 12 features, decision tree trained by

C5.0 and a right-to-left search for the first antecedent to determine coreference

relationship. After adding head noun phrase extraction module and proper name

identification module into our NLP pipeline, the duplicated Soon baseline system has

achieved an acceptable result, 60.9, comparing to Soon et al.’s 60.4. In this chapter, we

will describe the baseline system’s feature set, training approach and testing approach

in brief. More details can be found in [Soon et al., 2001].

3.1. Feature Vector

 [Soon et al., 2001] proposed a feature set including 12 features, which contains

propositional, lexical, grammatical and semantic information. The feature set is simple

and effective, and it can lead to comparable result to that of non-learning systems.

After [Soon et al., 2001], [Ng and Cardie, 2002a] extended [Soon et al., 2001]’s feature

set to include 53 features. However, 53 features made the performance drop

significantly. It proves that more features do not mean higher performance.

Consequently in this thesis, we do not do any change to [Soon et al., 2001]’s feature

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 37 -

set but put our emphasis on ranked constraints and conflict resolution.

Table 3.1 describes our system’s feature set based [Soon et al., 2001]’s. The features

can be linguistically divided into four groups: positional, lexical, grammatical and

semantic. The positional feature considers the position relation between two markables.

The lexical features test the relation based on markables’ corresponding surface strings.

The grammatical features can be divided into 2 sub groups. One determines the NP

Feature Type Feature Description

Positional DIST
The number of sentences between i and
j. O is i and j are in the same sentence

 STR_MATCH
1 if i matches the string of j, else
0.Articles and demonstrative pronouns
are removed in advance Lexical

 ALIAS
1 if i is an alias of j or vice versa, else 0.i
and j should be named entities with the
same semantic class

I_PRONOUN 1 if i is a pronoun, else 0
J_PRONOUN 1 if j ,is a pronoun, else 0
DEF_NP 1 if j is a definite noun phrase, else 0

DEM_NP
1 if j is a demonstrative noun phrase,
else 0

NP type

PROPER_NAME
1 if both i and j are proper names, else 0.
Prepositions such as "of" or "and" are
not considered

NUMBER 1 if i and j agree in number, else 0

GENDER
2 if either i or j's gender is unknown,
else 1 if i and j agree in gender, else 0

Grammatical

Linguistic
constraints

APPOSITIVE 1 if j is in apposition to i, else 0

Semantic SEMCLASS

1 if i and j are in agreement if one is the
parent of the other or they are the same,
else 0 if neither semantic class is
unknown, else compare their head noun
strings, 1 if matched, 2 else.

Table 3.1:
Feature set for the duplicated Soon baseline system. i and j are two extracted markables.
And i is the possible antecedent and j is the possible anaphor.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 38 -

type, such as definite, indefinite, demonstrative NP, proper name. The other determines

some linguistic constraints, such as number agreement, gender agreement. The

semantic feature gives markable corresponding semantic class: person, male, female,

organization, location, money, percent, date and time. The definition of each feature is

listed in Table 3.1. More details can be found in [Soon et al., 2001].

3.2. Classifier

3.2.1. Training Part

In training part, most machine learning coreference systems used C4.5 [Quinlan, 1993],

C5.0, an updated version of C 4.5 [Quinlan, 1993], or RIPPER [Cohen, 1995], an

information-gain-based rule learning system. [Soon et al., 2001] used C5.0 to train its

decision tree. In our system, C4.5 [Quinlan, 1993] is used to build the classifier and

default setting for all C4.5 parameters is used, except the pruning confidence level.

The pruning confidence level is equal to that of [Soon et al., 2001], 60.

The main difference among machine learning coreference systems is the training

example generation, especially positive training pair generation.

Positive training pair generation can be divided into three approaches roughly. The

simplest approach is to create all possible pairing in a coreference chain. We call the

approach RESOLVE (because it is the way RESOLVE [McCarthy, 1996] used). This

approach may lead to too many “hard” training examples as we have mentioned above.

Another approach, better than RESOLVE, is [Soon et al., 2001]’s approach. [Soon et

al., 2001] only extracted the pairs consisting of two referring expressions immediately

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 39 -

adjacent in a coreference chain. Even though there will be less positive pairs, more

accurate classifier can be obtained. The third approach is more sophisticated than

former two. It introduces some rules into the selection of positive training pairs. For

example, in [Ng and Cardie, 2002a], they used different generating ways for

non-pronominal anaphor and pronoun anaphor. [Ng and Cardie, 2002] even used a

more complex approach to generate positive training pair. It incorporates a rule learner

into the positive training pair generation. By doing so, they discarded those pairs that

do not satisfy rules learned from the training data.

Ng and Cardie showed that the third approach can obtain the most accurate classifier.

For simplicity, our system uses [Soon et al., 2001]’s approach to generate positive

training pair. As to negative training pair generation, for each positive training pair, we

extract the markables between the pair, excluding those markables which has the

common part with the two referring expression of the positive training pair. Each of

the extracted markables is paired with the positive training pair’s anaphor and to form

a negative training pair. Using our NLP pipeline with head noun phrase extraction

module and proper name identification module, we can extract 1532 positive training

pairs which occupy 3.5% among total training pairs we get.

Figure 3.1 shows the decision tree our system used. The tree learned from MUC-7

data sets uses 12 features. In general, we see that STR_MATCH and GENDER are two

most important features for coreference relationship determination.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 40 -

3.2.2. Testing Part

In testing part, [Soon et al., 2001] proposed a right-to-left search which is a good fit to

the procession of how humans process documents.

Documents are written with the assumption that a human will be reading them. Like

humans, [Soon et al., 2001]’s system processes a document from the beginning to end.

Whenever the system encounters a markable in the document, except the first

markable, the system searches the markable’s antecedent from right to left till it finds

one recognized by decision tree. If there is no antecedent found, the markable is

considered non-anaphoric and the system moves on to the next markable.

It should be noticed that the test processing should match with the generation of

training pairs. In [Soon et al., 2001], positive pair is the adjustment referring

expressions in a coreference chain, Therefore in testing processing, [Soon et al., 2001]

uses the first antecedent recognized by decision tree as the anaphor’s antecedent. But

in [Ng and Cardie, 2002a], positive pair is generated differently for non-pronominal

anaphor and pronoun anaphor, Therefore in testing, [Ng and Cardie, 2002a] uses the

best antecedent recognized by decision tree as the anaphor’s antecedent (“best” means

the highest probability above 0.5).

In our system, we use the right-to-left search. But in order to add constraints and

conflict resolution, we make some modifications in testing processing, which will be

described in detail in the following chapters.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 41 -

STR_MATCH = 0:
| | GENDER = 0: - (31.0/0.5)
| | GENDER = 1:
| | | | J_PRONOUN = 1: + (60.0/6.9)
| | | | J_PRONOUN = 0:
| | | | | | I_PRONOUN = 0: - (12.0/2.7)
| | | | | | I_PRONOUN = 1:
| | | | | | | | DIST <= 2 : + (24.0/8.9)
| | | | | | | | DIST > 2 : - (5.0/1.7)
| | GENDER = 2:
| | | | ALIAS = 1: + (41.0/8.9)
| | | | ALIAS = 0:
| | | | | | J_PRONOUN = 0:
| | | | | | | | APPOSITIVE = 0: - (27124.0/460.0)
| | | | | | | | APPOSITIVE = 1:
| | | | | | | | | | PROPER_NAME = 1: - (5.0/0.5)
| | | | | | | | | | PROPER_NAME = 0:
| | | | | | | | | | | | SEMCLASS = 0: + (1.0/0.4)
| | | | | | | | | | | | SEMCLASS = 1: + (13.0/3.8)
| | | | | | | | | | | | SEMCLASS = 2: - (2.0/0.5)
| | | | | | J_PRONOUN = 1:
| | | | | | | | SEMCLASS = 0: - (249.0/12.1)
| | | | | | | | SEMCLASS = 2: - (1261.0/136.3)
| | | | | | | | SEMCLASS = 1:
| | | | | | | | | | NUMBER = 0: - (161.0/31.3)
| | | | | | | | | | NUMBER = 1:
| | | | | | | | | | | | I_PRONOUN = 1: + (9.0/1.7)
| | | | | | | | | | | | I_PRONOUN = 0:
| | | | | | | | | | | | | | DIST <= 0 : + (52.0/17.1)
| | | | | | | | | | | | | | DIST > 0 : - (43.0/21.0)
STR_MATCH = 1:
| | SEMCLASS = 0: + (3.0/1.6)
| | SEMCLASS = 2: - (29.0/1.7)
| | SEMCLASS = 1:
| | | | DEM_NP = 1: - (5.0/1.7)
| | | | DEM_NP = 0:
| | | | | | DEF_NP = 0: + (466.0/56.7)
| | | | | | DEF_NP = 1:
| | | | | | | | NUMBER = 0: - (8.0/1.7)
| | | | | | | | NUMBER = 1: + (146.0/36.4)

Figure 3.1
The decision tree classifier learned from MUC-7 dryrun 30 documents

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 42 -

4. Ranked Constraints

The high-level goal of this thesis is to improve the machine learning coreference

system effectively by incorporating linguistic background knowledge in the form of

constraints. Some earlier systems have made such attempts. In [Ng and Cardie, 2002b],

they used an anaphoricity classifier to filter those non-anaphoric markables before

using coreference engine. In order to avoid the anaphoricity classifier’s

misclassifications, they incorporated STR_MATCH constraint and ALIAS constraint

on anaphoricity classifier. By doing so, they improved the result from 58.4 to 64.0 in

F-measure. Another successful system incorporating constraints is [Wagstaff, 2002].

Before it, [Wagstaff and Cardie, 2000] had proved that incorporation of instance-level

constraints into clustering algorithm can offer substantial benefits. Based on the former

work [Cardie and Wagstaff, 1999] of viewing coreference resolution as a clustering

task, [Wagstaff, 2002] incorporated instance-level hard constraints into coreference

task and made a significant improvement. Both systems indicate that incorporation of

linguistic constraints into coreference resolution can be a promising direction to

improve the accuracy of the task.

In this chapter, we will give the details of our ranked constraints. The four

characteristics of the constraints set, linguistic-based, multi-level, ranked and

compatible with supervised machine learning approach, will be introduced in Section

4.1. Then we will present the definition of each constraint (Section 4.2). Finally, we

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 43 -

will discuss how to make the constraints cooperate with coreference system (Section

4.3). And the evaluation results will be shown in Chapter 6.

4.1. Ranked Constraints in coreference resolution

In this thesis, we incorporate a set of constraints into a supervised machine learning

coreference resolution [Soon et al., 2001]. The constraints have the following

characteristics: linguistic-based, multi-level, ranked and compatible with supervised

machine learning approach.

4.1.1. Linguistic Knowledge and Machine Learning Rules

Misclassification is inevitable in machine learning coreference resolution. There are

three reasons

Insufficient training data

30 dryrun documents of MUC-7 [MUC-7, 1997] are used to train the coreference

classifier in our system. Among the training data, there are only 1532 positive pairs

which occupy about 3.4% in total training pairs. Obviously 1532 positive pairs are not

sufficient enough to capture all rules, especially rare coreference rules, such as

appositive rule. For example:

Sentence 4.1: That's certainly how (Eileen Cook)a1 and ((her)a2 22-month-old

daughter)b1, (Jessie)b2, see it.

In this sentence, we see that a1 is not a pronoun but a2 is. Since their value of

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 44 -

STR_MATCH and GENDER are 0, 1, respectively, the decision tree (shown in Figure

3.1) recognizes (a1-a2) as coreference pair. And next system thinks b1 and b2 are not

coreferential because their STR_MATCH and GENDER are 0, 1, respectively and

neither of them is pronoun. Instead, the system assigns a2 as b2’s antecedent. The

determination is made by error because the decision tree ignores the fact that b1 and b2

are appositive. The main reason may be that there are not sufficient positive training

pairs to represent such appositive rule when two referring expressions in appositive

relation agree in gender. But the rule is applied in test document. Therefore decision

tree cannot recognize b1 and b2 correctly.

Up to now, a decision tree with 100% accuracy is still unavailable. The highest

precision achieved is approximately 70%. In the case of lack of sufficient training data,

incorporating some easily-formulated constraints based on linguistic knowledge may

be a promising idea to overcome misclassification. For instance, by adding the

appositive must-link and nested NP cannot-link (they will be described in the next

section), b1 and b2 are correctly recognized and a2 and b2’s error link is also removed

successfully.

“Hard” training example

In general, different noun phrase types have different coreference rules. For pronoun,

its antecedent should be the nearest antecedent in its preceding document. For proper

name, its antecedent should be the nearest antecedent meeting the requirement of

STR_MATCH or ALIAS. Somewhat disappointingly, more sophisticated situation

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 45 -

exists generally in coreference. For example:

Sentence 4.2:``It means that (Bernard Schwartz)a1 can focus most of ((his)a2 time) on

((his)a3 foster son)b1, (Peter)b2. (Bernard Schwartz)a4 is fatherly ,'' (he)c1 said.

There are three referents: Bernard Schwartz, Peter and the speaker, “he”. In the

sentence, a1, a2, a3, a4 refer to “Bernard Schwartz”, b1 and b2 refer to “Peter” and c1

refers to the speaker. With regard to the decision tree shown in Figure 3.1, a1, a2, a3,

a4, b2, and c1 form a coreference chain. In the coreference chain, (b1-b2) is missed

and (b2-a3) as well as (a4-c1) are spurious. If we filter “hard” training examples

according to the principle of proper name, it is possible to produce a classifier with

higher accuracy for proper name. As a result, such spurious link as (b2-a3) would not

appear in new coreference chains. But (a4-c1) is an exception. Although a4 is c1’s

nearest antecedent and their semantic class, gender class are same, they are never

coreferential. This case is too sophisticated for a machine learning approach to resolve

without more linguistic knowledge. However it is easy, even obvious for a human.

Because we know that a speaker is used to using the first person pronoun to refer to

himself in his speech. Even in comparison to the most complex approach of training

example generation (Such as [Ng and Cardie, 2002], they incorporated a rule learner to

avoid “hard” training example as possible as they can), the rules offered by human are

provided with more reliability than those learned by machine. Moreover, it is simpler

and more effective to use constraints to resolve such problem in the testing part.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 46 -

Unreliable feature value and lack of linguistic information

In our system, the features are extracted automatically without any hand-craft

information. Inevitably, features include some error linguistic information. The error

features influence both training and testing. Suppose Sentence 4.2 appears in training

documents. The classifier would learn that two markables are coreferential if they have

appositive relation and agree in gender. Based on such classifier, link (b1-b2) in

Sentence 4.1 would be recognized correctly. But if “Peter”’s gender is “unknown” in

Sentence 4.2 (it is possible if “Peter” is not included in man name list), the classifier

will miss the coreference rule again.

Among 12 features, GENDER, SEMCLASS and NUMBER have the highest error rate

(POS tagging and named entity recognizer should be responsible for it). Unfortunately,

all of them still play important roles in coreference determination. Furthermore, these

errors are almost stochastic. It is difficult for machine to capture their common

characteristics between train data and test data. If a constraint only employs reliable

features, it can be used to check the answers offered by decision tree. Incorporating

such constraints not only can avoid overlooking some features but also can filter some

errors made by unreliable features. Consider Sentence 4.1, appositive must-link gives

feature APPOSITIVE preference on other features while avoiding error in gender. For

example:

Sentence 4.3: (Louis Gallois)1, (chief executive)2 of Aerospatiale, is unequivocal about

how Europe compares to the U.S. in consolidating the aerospace and defense

industries.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 47 -

Markable 1 and markable 2 are coreferential because of appositive relation. But our

named entity recognizer think “Louis Gallois” should be an organization, and semantic

class determination module thinks “chief executive” is a person. As a result, their link

is missed by decision tree because of the error semantic class of “Louis Gallois”. In

our system, we give the appositive must-link a higher score to avoid such errors.

Besides unreliable feature values, lack of linguistic information is a factor of

misclassification. In Sentence 4.2, the 12 features set cannot distinguish the difference

between (a4-c1) and (a1-a2) using the feature vector. This is because information about

speaker and his speech is not included in features set. The reason why we make use of

constraints instead of adding more features into feature set is that more features would

bring more feature errors into the system. And the relation among features would be

more complex. Consequently, such feature set would confuse the machine learning

processing.

In conclusion, the misclassification of coreference classifier is due to insufficient

training data, “hard” training example, unreliable feature value and lack of linguistic

information. It can be resolved by applying linguistic background knowledge in the

form of constraints to a certain extent. Moreover constraints apply linguistic

knowledge in a more effectively and simpler way. It results in a more robust and

error-tolerant coreference system.

4.1.2. Pair-level Constraints and Markable-level Constraints

In [Wagstaff, 2002], they proposed a set of 10 pair-level hard constraints, including 9

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 48 -

cannot-links and one must-link. In this thesis, we expand constraints set to include

markable-level constraints. Markable-level constraint is a kind of constraint applied to

one markable in isolate, but not to a pair of markables. The constraint captures the

common characteristics of some markables, such as anaphoricity, such as

cannot-link-to-anything. By using it, we keep away from redundantly presenting

cannot-link constraints on each pair formed by a markable which never takes part in

coreference relationship. Another advantage is that some constraints cannot be

represented by pair-level constraints. Must-link-to-something is such a markable-level

constraint used in our system. It is difficult to be transferred to must-link or cannot-link.

For example, “he” is the third person pronoun. It is supposed to have an antecedent.

But it is hard to say “he” must link to a specific markable.

4.1.3. Un-ranked Constraints vs. Ranked Constraints

Theory-oriented rule’s inflexibility has been noted for a long time. It is because that

language is infamous for its exceptions to rules. If a rule is violated by an actual text,

then the rule will force the system to make an incorrect decision. However,

machine-learning approach is better than theory-oriented rule due to its flexibility.

How to incorporate constraints to a coreference system built through machine learning

without any harm to its flexibility? In this thesis, we devise a set of constraints which

is general enough to be used in a large range of knowledge domains. And we give each

constraint a score to avoid forcing system to make incorrect decision when it is

violated. Furthermore, when a constraint is violated, the conflict resolution technique

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 49 -

(described in Chapter 5) can help coreference system to make a correct decision

according to corresponding scores.

By doing so, there is no need to ensure the 100% accuracy of each constraint.

Constraints can be more heuristic and approximate. Even in a set of constraints, one

constraint can violate other constraints in some special case. For example:

Sentence 4.4: “(McDonald's Chief Financial Officer)1, (Jack Greenberg)2”.

Markable 1 and markable 2 are both proper names. Besides appositive must-link, this

pair meets the requirement of a cannot-link, which defines that two proper names with

totally different strings cannot be coreferential. According to the rank of each

constraint, we can resolve such a conflict as explained in the next chapter. Suppose that

the constraints have no score at all, we should consider removing one of them and

ignore their great contribution in coreference resolution.

4.1.4. Unsupervised and Supervised approach

In this thesis, instead of popular single-link clustering, we view coreference as a

multi-link clustering based on both classification and linguistic rules. Therefore we

allow unsupervised learning approach and supervised learning approach to work

harmoniously in coreference resolution.

Single-link clustering

In [Cardie and Wagstaff, 1999], they viewed coreference as clustering. Each cluster is

an equivalence class including the referring expressions which refer to a common

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 50 -

entity. Although in recent years, the most popular approach is supervised machine

learning approach and not the clustering approach, the testing part of supervised

machine learning approach seems like a special clustering algorithm, a

classification-based single-link clustering algorithm. Single-link means that each

anaphor only has one antecedent in a document. Consider the following example:

Sentence 4.5:

<S>While the state-owned French companies' rivals across the Atlantic have been

``extremely impressive and fast'' about coming together in mergers, European

companies, hobbled by political squabbling and red tape, have lagged behind,

(Gallois)1 said.</S>

<S>…</S>

<S>``I think in the second step, we will have to consolidate at the level of the big

groups,'' (he)2 said.</S>

<S>The competition is even tougher for Aerospatiale in that the U.S. dollar has

weakened 10 percent against the French franc last year, giving U.S. companies what

(Gallois)3 called a ``superficial'' advantage.</S>

Markable 1, 2 and 3 form a coreference chain. The part between “<S>” and “</S>” is a

sentence determined by sentence segmentation. The example includes four sentences.

According to the decision tree shown in Figure 3.1, link (2-3) can be recognized

correctly because they agree in gender and their distance is no more than one sentence.

But link (1-2) is missed because their distance is beyond the limitation in decision tree.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 51 -

Here the single-link clustering model should be responsible for the missing pair. The

single-link clustering model assumes that the current anaphor’s antecedents, excluding

the nearest one, have been in the coreference chain. It means that there are enough cues

to introduce these antecedents into the coreference chain before testing current anaphor.

According to the assumption, in Sentence 4.5, markable 1 should be found by

markable 2, not by markable 3. However the assumption does not take noun phrase

types into account. Besides distance, two markable’s types also influence the intensity

of their link. In Sentence 4.5, markable 1 and 3 are both proper names and markable 2

is pronoun. Therefore it is easier to find link (1-3) than link (1-2). In this case,

single-link clustering results in some missing pairs.

Multi-link clustering based classification and constraints

Actually, one anaphor can have more than one antecedent. Therefore it is reasonable to

take a current anaphor as a seed of a new cluster and add all markables which have

direct links with it into the new cluster. Consider Sentence 4.5 again. Suppose that

markable 3 is the current anaphor, its new cluster should include not only markable 2

but also markable 1. Markable 2 can be added into the cluster by decision tree’s

determination because it is the nearest antecedent to markable 3. But for markable 1,

the rules of coreference decision tree are not reliable enough. Considering generation

of training examples, a positive pair is formed by two adjacent referring expressions in

a coreference chain. Therefore rules learned from training data are only suited to find

the nearest antecedent. For those farther antecedents, they may not be good.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 52 -

Coreference relation is distance-sensitive. Increasing distance can cause coreference

link intensity to drop quickly. Accordingly, the rules, which are used to find farther

antecedents, should be provided with higher reliability than those of decision tree. In

this thesis, we make use of must-links to find farther antecedents. In Sentence 4.5,

markable 1 is found by RC_ML1 (It is a must-link belonging to our must-links set. We

will give its definition later). Besides high reliability, constraints are easy to be

combined into a right-to-left-search also. Each time no more than two markables are

tested based on a rule whether it belongs to constraints set or decision tree. By using

the mixed rules, we view coreference task as a multi-link clustering task based on

machine learning classification as well as linguistic rules.

Clustering is an unsupervised machine learning approach while classification is a

supervised machine learning approach. By incorporating constraints, we make

clustering and classification work harmoniously within a coreference system. Our

experimental results show that incorporating constraints improves both recall and

precision significantly. We will describe it later.

4.2. Ranked Constraints Definition

In this section, we give the detail of the ranked constraints used in our system. In this

thesis we incorporate 4 groups of constraints to coreference system built through

machine learning approach. They are: must-link (RC_ML), cannot-link (RC_CL),

must-link-to- something (RC_MLS), and cannot-link-to-anything (RC_CLA).

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 53 -

4.2.1. Must-link

A must-link constraint specifies that two markables should belong to the same

coreference chain. There are four must-links in RC_ML:

Proper Names and String Match (RC_ML1)

The must-link indicates that in a pair),(ji , if both markables are proper names and

their strings match or one is the other’s abbreviation, they can form a coreference pair

and belong to the same coreference chain. We have included the proper name

information and the result of string match in the feature vector. Therefore the must-link

can be represented as the following: in a possible coreference pair’s feature vector, if

both PROPER_NAME and STR_MATCH are “1”, or PROPER_NAME is “1” and one

is the other’s abbreviation, they form a coreference pair and belong to the same

coreference chain.

Appositive Noun Phrases (RC_ML2)

The must-link constraint indicates that in a pair),(ji , if j is in apposition to i , then

they form a coreference pair. It is difficult to detect appositive noun phrases correctly

in a document. In our system, we use a set of rules to detect appositive noun phrases.

We assume that in an appositive pair: one should be proper name, and the other should

not be proper name; between i and j , there should be a comma and there is not any

verb or conjunction; both markables should in the same sentence. In addition, we make

use of two patterns to enhance the capability of detecting appositive noun phrases. One

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 54 -

is “ i (person), j , said(say)”, the other is “ i , j .”. Appositive is a very important rule

because it is the only rule representing coreference relationship between proper name

and common noun phrase in our system. Actually, common noun phrases’ coreference

resolution is more difficult than that of proper names and pronouns. In error analysis,

we will discuss the problem again.

Alias and String Match (RC_ML3)

The must-link constraint indicates that in a pair),(ji , if both are proper names and i is

an alias of j , but not abbreviation, or vice versa, they form a coreference pair. Like

RC_ML1, we make use of the feature vector to obtain the parameters of RC_ML3. By

doing so, the must-link (RC_ML3) is represented as the following: in a possible

coreference pair’s feature vector, if PROPER_NAME and ALIAS are both “1”s, and

the pair cannot meet the requirement of RC_ML1, they form a coreference pair and

belong to the same coreference chain.

Speaker and Speech (RC_ML4)

In general, those pronouns in speech between double quotation marks have to be

transferred before referring to the antecedent which is not in the speech, because the

sentences in the speech belong to a different domain (different speakers) from those

sentences out of the speech. Consider singular first person pronoun appearing in

speech between double quotation marks, they should refer to the speaker, even though

the speaker’s surface string is “he” or “she” (In general, “he”, “she” and “I” should

refer to different persons). More interestingly, singular third person pronoun appearing

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 55 -

in the speech between quotations refers to different person from the speaker “he” or

“she”. In this case, machine cannot easily resolve such problem without the help of

constraints. In our system, we extract speaker and his speech from documents

according to some reliable verbs at first, such as “said”, “reported” [Siddharthan, 2003]

and then devise a set of constraints to resolve such problem, including must-links and

cannot-links. In this section we introduce the must-links constraints. Cannot-link

constraints about Speaker and Speech will be introduced in next section. RC_ML4

includes the following rules:

1) The speaker refers to first person pronouns appearing in his speech between

quotations if there is no number disagreement.

2) In a speech between quotations, each pair of first person pronouns or second

person pronouns without number disagreement is coreferential.

3) If two speeches appear in sequence in a document and the later speaker is a

pronoun, the later speaker refers to the former speaker.

4.2.2. Cannot-link

A cannot-link constraint specifies that two markables can never form a coreference pair.

Furthermore, they cannot belong to the same coreference chain. There are three

cannot-links in RC_CL:

Proper Names with Totally Different Surface Strings (RC_CL1)

The cannot-link constraint indicates that in a pair),(ji , if both are proper names and

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 56 -

their surface strings are totally different, they satisfy the cannot-link’s conditions and

cannot be in the same coreference chain. The “totally different” means there is no any

common token shared by both two markables.

Common Root Markable (RC_CL2)

The cannot-link constraint specifies that in a pair),(ji , if the two markables have a

common root markable, they cannot form a coreference pair and they cannot belong to

the same coreference chain. According to the cannot-link, a markable cannot link to its

nested noun phrases including its head noun phrase. And each pair of these nested

noun phrases also satisfies the conditions of RC_CL2. Although in testing part, each

pair of referring expression determined by decision tree or RC_ML cannot have a

common root markable because we skip those markables with a common root

markable with current anaphor when looking for the antecedent of it, it is still possible

that two markables with a common root markable belong to the same coreference

chain. For example, if A and B have a common root markable and (A-C) and (B-C) are

coreference pairs, in this case, A and B belong to the same coreference chain by error.

The purpose of RC_CL2 is to identify exactly such problem in a coreference chain.

Speaker and Speech (RC_CL3)

As we have explained in RC_ML3, the cannot-link constraint is to extract information

from speaker and his speech. It can be satisfied if a pair reaches the following

conditions:

1) A first person pronoun appearing in speech between quotations cannot refer

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 57 -

to the speaker if they disagree in number.

2) Those pronouns which are not first person pronouns appearing in speech

between quotations cannot refer to the speaker if the speaker is singular.

Gender Disagreement (RC_CL4)

The cannot-link constraint identifies two markables cannot link together if they

disagree in gender.

Semantic Class Disagreement (RC_CL5)

The cannot-link constraint identifies a pair cannot belong to the same coreference

chain if both markables disagree in semantic class. Because of the confusion between

organization and person name, we loosen the constraints on semantic classes (Our

system think organization and person agree in semantic class). Considering the

unreliability of semantic class information offered by our NLP pipeline, we give

RC_CL5 the lowest score, -0.25. It is even lower than some probabilities obtained

from the decision tree.

Number Disagreement (RC_CL6)

Like RC_CL4, the cannot-link constraint identifies a pair cannot belong to the same

coreference chain if two markables of it disagree in number. Number information is

not as reliable as gender information. Consequently, we give RC_CL6 a lower score

than RC_CL4.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 58 -

Article (RC_CL7)

The cannot-link constraint encodes rules that examine the articles used in i and j . In

our system, we use the article constraints defined by [Wagstaff, 2002]. There are three

rules about article in this cannot-link:

An indefinite markable cannot link backwards to a markable which is not a proper

name or a pronoun.

A definite markable cannot link backwards to a markable without articles, unless it is a

proper name or a pronoun or their head nouns match.

A markable without any articles cannot link backwards to a markable with articles,

unless it is a proper name or a pronoun.

4.2.3. Markable-level constraints

Markable-level constraints have two types: must-link-to-something (RC_MLS) and

cannot-link-to-anything (RC_CLA):

Must-link-to-something (RC_MLS)

As we know, pronoun should refer to something in a document, except some special

pronouns, such as “it”. For example:

Sentence 4.6: Although different models of the F-14 have been involved in these

mishaps, (it) is prudent to temporarily suspend routine flight operations for all F-14s in

order to assess the available information and determine if procedural or other

modifications to F-14 operations are warranted.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 59 -

In the sentence, the “it” does not refer to anything. Occasionally our system cannot

distinguish such case. In our system, must-link-to- something constraint applies to

three kinds of pronouns: singular third person pronoun (“he”, “she”, and their

corresponding possessive, accusative, reflexive pronouns), plural ambiguous pronoun

(“they” and its corresponding possessive, accusative, reflexive pronouns) and “it” with

its corresponding possessive, accusative, reflexive pronouns. If such pronouns cannot

find any antecedent in its preceding document, we will collect a set of antecedent

candidates according to specific rules and test these candidates from the nearest one to

the farthest one. Once a candidate is accepted as antecedent of the pronoun, the

remaining candidates are skipped.

The specific rules used in RC_MLS are more approximate and heuristic than pair-level

constraints. For singular person pronoun, in its preceding document, all markables

standing for a person are its antecedent candidates if there is no disagreement in gender

and in number. For plural ambiguous pronoun, in its preceding document, all plural

markables and markables standing for an organization are its candidates. For “it” and

its corresponding pronouns, all singular nonhuman markables are its candidates.

Cannot-link-to-anything (RC_CLA)

According to MUC-7 [MUC-7, 1997] Coreference Task definition, a coreference

relation only involves expressions which refer to a given entity. And up to now,

coreference task only deal with identical coreference relationship. Set/subset and

part/whole coreference relations have not been considered now. Accordingly, we can

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 60 -

filter some markables in advance which have no possibility to take part in a

coreference relation at all. Cannot-link-to-anything constraint specifies such markables.

In our system the following markables satisfy cannot-link-anything constraint’s

conditions: a markable only including figures which is not currency, percentage, date

or time, and common noun phrases beginning with “no”, figures or some quantitative

indefinite adjectives (Such as “few”, “little”, “some”, “any”, “many”, “much”,

“several”). And those markables which have the same head nouns with above

markables also satisfy the constraint’s conditions.

4.3. Multi-link Clustering Algorithm

The conflict resolution (it will be described in the next chapter) requires constraints to

be ranked reasonably. In our system, we give each pair-level constraint a suitable score

based on the reliability of the constraint (See Table 4.1). The score not only allow

ranking of all pair-level constraints, but can also be a critical criterion to complete the

conflict resolution. From Table 4.1, we see that must-link constraints have positive

scores and cannot-link have negative scores. Must-link-to-something constraint has a

relatively low score, only 0.5. This means must-link-to-something constraint is not as

reliable as the rules of decision tree. Cannot-link-to-anything constraint does not have

a specific score because it is a filter rule with the highest rank. It cannot be violated.

Among the links with specific scores, the link provided with the highest score, 999, is

similar to a hard constraint which cannot be violated. These scores as well as

probabilities offered by decision tree are the inputs to conflict resolution.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 61 -

Given the constraints definitions and their scores, we can describe how such ranked

constraints are embedded into a coreference system built with machine learning

approach. The rough algorithm is shown in Figure 4.1. In the algorithm, we filter those

markables satisfying cannot-link-to-anything’s conditions before main coreference

resolution. Then we build two tables, a must-link table and a cannot-link table. In the

main coreference resolution part, for each anaphor, we first form a cluster. Besides the

antecedent determined by the decision tree, we add into the cluster all markables which

must link to the anaphor through checking the must-link table. Then one by one, we

insert each member of the cluster into the existing coreference chains. Due to the

Type Name Score Description

RC_ML1 999 Proper name and string match
RC_ML2 899 Appositive
RC_ML3 850 Proper name and alias

Must Link

RC_ML4 999 Speaker and his speech

RC_CL1 -799 proper name with totally different strings
RC_CL2 -989 Common root markable
RC_CL3 -999 Gender disagreement
RC_CL4 -899 Speaker and his speech
RC_CL5 -0.5 Number disagreement
RC_CL6 -0.25 Semantic class disagreement

Cannot
Link

RC_CL7 -1 Articles

Must Link
to
Something

RC_MLS 0.5
"he","she","they","it" and their corresponding
pronouns must link to something before them

Cannot
Link to
Anything

RC_CLA /
Figures, common noun phrase beginning with figures,
indefinite adjective and "no" can not link to anything

Table 4.1
Ranked Constraints set used in our system

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 62 -

Algorithm Find-Antecedent (MARK : set of all markables)

;0:=i =:Coref Φ;

for iM MARK∈ do

 if =)(iMCLA ”true” then

 MARK := MARK \ }{ iM

 else

iML :={)(ijj ScoM : ji > && =),(ij MMML ”true” and jM MARK∈ }

iCL :={)(ijj ScoM : ji ≠ and =),(ij MMCL ”true” and jM MARK∈ }

 ;1: += ii

;1:=i

for iM MARK∈ do

 Uii MLCluster =: {)(ijj ScoM :the antecedent decided by coreference decision tree}

 for ij ClusterM ∈ do

=:Coref Add (Coref , ,, ij MM iCL , jCL , ijSco)

if iM Coref∉ and iM is corresponding pronoun to “he”, ”she”, ”they” or “it” then

{=iCluster)(ijj ScoM : =),(ij MMMLS ”true” and ji > and jM MARK∈ }

for ij ClusterM ∈ do

=:Coref Add (Coref , ,, ij MM iCL , jCL , ijSco)

;1: += ii

return Coref

Figure 4.1
The Algorithm of Coreference Chains Generation with Ranked Constraints. Coref is the set
of coreference chains existing. The four functions, ML, CL, MLS and CLA, check that
whether two markables satisfy must-link, cannot-link, must-link-to-something or cannot-
link-to-anything or not, respectively. Sco is the score of the constraint. Add function
includes the conflict resolution (described in next chapter).

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 63 -

existence of conflicts, it is not certain that the anaphor can be added into any of

coreference chains successfully. If an anaphor fails to be added into coreference chain

and it satisfies must-link-to-something constraint’s conditions, the coreference system

will use must-link-to-something constraints to build a new cluster for the anaphor and

then add each member of the cluster into coreference chains by the same way. Note

that each member of the new cluster is also checked by conflict resolution when trying

to add them into coreference chains. Inserting stops after we first find that a member of

the cluster is accepted by the coreference chain As a result, it is still not certain that the

anaphor which must link to something can be added into one chain successfully. The

processing of adding coreference pairs into coreference chains is very critical for

coreference chains generation. It not only filters out some error pairs, but also

rearranges current coreference chains in order to remove some error links existing in

current coreference chains and obtain back some missing links. By doing so, we can

achieve a reasonably high precision. In the next chapter, we will explain how it is done

in detail.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 64 -

5. Conflict Resolution

As we have mentioned above, coreference system built through machine learning

approach may encounter some contradictory pairwise classifications while generating

coreference chains. For example, classifier determines two links, (A-B) and (B-C),

whereas A and C are not coreferential actually. Most systems do not take such problem

into account except [Ng and Cardie, 2002]. They proposed an error-driven rule pruning

algorithm that optimizes the coreference classifier rule-set with respect to the

clustering-level coreference scoring function. But language is infamous for its

exception of rules. 100% accuracy rule-set does not exist. Therefore such contradictory

pairwise classification may still possible to appear in coreference chains. In this

chapter, we propose a new approach to resolve such contradictory pairwise

classifications. The approach with ranked constraints can achieve a reasonable result

that is better than most coreference systems.

In Section 5.1, we will define the concept of “conflict” used in this thesis. And we will

explain how the approach can improve the performance of the coreference system.

Next, we will give the details about the approach.

5.1. Conflict

A conflict appearing in a coreference chain is a contradictory pairwise classification as

we have mentioned above. (A-B) and (B-C) are determined as coreference pairs by

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 65 -

coreference system, whereas A and C are not coreferential actually. Consider the

following example extracted from the output of our baseline system on MUC-7

[MUC-7, 1997] formal documents:

Sentence 5.1:

``This deal means that (Bernard Schwartz)1 can focus most of (his)2 time on Globalstar

and that is a key plus for Globalstar because (Bernard Schwartz)3 is brilliant,'' said

(Robert Kaimowitz)4, (a satellite communications analyst)5 at Unterberg Harris in New

York.

In the example, 5 markables tagged belong to a common coreference chain in our

baseline system. (2-3) and (2-4) are recognized as coreference links. But we see that

markable 3 and 4 obviously refer to different entities. This is a conflict. The conflict is

caused by the error link between markable 2 and 4.

Human can distinguish a conflict easily, but it is not easy for a machine. How to decide

that two markables are not coreferential is the key of to detect a conflict. Using the

decision tree is one choice. But it is not reliable and it can even degrade the

performance of coreference system. Because decision tree is used to find the nearest

antecedent, other antecedents are difficult to be determined by decision tree. For

example, if a “Robert Kaimowitz” appears in the next sentence of Sentence 5.1. The

decision tree will determine that the “Robert Kaimowitz” is coreferential with

markable 4 because of string match. But the “Robert Kaimowitz” and markable 5 are

recognized as negative. If we use decision tree to detect conflict, markable 4, 5 and the

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 66 -

“Robert Kaimowitz” form a conflict. But there is no conflict existing among them at

all. As we can see, using decision tree to detect conflict is not desirable. In this thesis,

we use a set of ranked cannot-link constraints to detect conflicts in coreference chains.

If two markables in a coreference chain satisfy the conditions of any cannot-link

constraint, there is a conflict existing in the coreference chain.

Before we introduce the detailed algorithm of conflict resolution, we discuss that how

the conflict resolution can improve the performance of coreference system. See Figure

5.1:

There are actually two coreference chains in the figure. One is (1, 2, 3, 4, 5, 6, 7). The

other is (A, B, C). However, (a) shows the result of coreference system. We see that

there is an error link between 7 and A. According to the definition of recall and

precision [Baldwin, 1995] used in MUC-7 [MUC-7, 1997]:

1 2 3 4 5

6 7

A B C

1 2 3 4 5

6 7

A B C A B C

1 2 3 4 5

6 7

(a) (b) After adding link (4-6) (c) After conflict resolution

Figure 5.1:
An example of conflict resolution. Actually, there are two coreference chains. One is (1,
2, 3, 4, 5, 6, 7), the other is (A, B, C). (a) shows the coreference chains before inserting the
link between 6 and 7. The link draw by broken line is an error link determined by
coreference system. (b) is the case after addling link (4-6) and before conflict resolution.
(c) is the result after conflict resolution.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 67 -

∑
∑

−

−
=

)1|(|
|))(||(|

Re
i

ii

S
SpS

call

iS is the i-th coreference chain generated by the key offered by MUC-7 [MUC-7,

1997].)(iSp is a partition of iS relative to the response. And precision is computed

by switching the roles of the key and response in the above formulation.

According to the two formulations, (a)’s recall and precision are both 87.5%. After

adding the link (4-6), the recall increases into 100 % and the precision is about 88.9%.

As we can see, although there is no referring expression missed, the precision is still

below 100%. It is mainly because there are still some spurious links existing in the

chains. The conflict resolution is to rearrange current coreference chains. By remove

spurious links, the approach enhances the performance of coreference system. Figure

5.1 (c) shows the result of conflict resolution. We see that after adding the new link,

the system detects a conflict existing in coreference chain (1, 2, 3, 4, 5, 6, 7, A, B, C)

and call conflict resolution module to decide how to deal the conflict. In this example,

link (7-A) is cut. By doing so, the conflict disappears and the precision increases into

100% without any loss of recall.

As we can see, conflict resolution improves the performance of coreference system

through referring expressions rearrangement in a coreference chain with conflicts. The

approach contributes a lot to precision.

5.2. Main Algorithm

Each time a new coreference pair is inserted into coreference chains, conflict

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 68 -

resolution module will be called to detect conflicts and resolve conflicts. The module

checks every updated chain and the new chain just formed by the pair. If a conflict is

detected in a coreference chain, for each two referring expressions which satisfy one

cannot-link in the coreference chain, conflict resolution will find a path in the chain to

link the two conflicting referring expressions. Each path will cover some links in the

chains. As a result, those links covered by all paths consist of a common conflict path.

In the common conflict path, the link, which has the lowest score minus conflict score

(the sum of cannot-link pairs’ scores appearing in the chain), will be removed.

Consequently, all cannot-link constraints existing in the chain are separated in the link.

The conflicts are resolved and the chains are rearranged. In order to resolve a conflict

by removing only one link, we make some changes to coreference chain’s data

structure.

5.2.1. Coreference tree

Chain vs. Tree

In this thesis, we propose a concept of “coreference tree”, which is different from

“coreference chain”. Actually, coreference chain used in most systems is just an

equivalence class. The relationship between each two referring expressions is not

included in an equivalence class. It means that once a coreference pair is added into a

coreference chain successfully, the link of the pair is no longer used. A coreference

chain is maintained as a set of isolated referring expressions. All referring expressions

in a coreference chain do not link together until the document has come to the end and

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 69 -

all coreference chains are generated completely.

As we have explained above, conflict resolution involves a process of searching for a

path between two members in a cluster. Such a “coreference chain” cannot meet our

requirement. Therefore we use “coreference tree” instead of “coreference chain” (In

the remaining of the thesis, we will use “coreference tree” in place of “coreference

chain”).

The coreference tree includes the information of coreference links and these links’

scores. And for each link, if it is the only link in the coreference tree, the referring

expression in the preceding the other expression in the document is called the parent

and correspondingly the other expression is called child. If the link is not the only link,

the expression which is inserted into the tree earlier than the other is called parent. By

doing so, we give each link in a coreference tree a direction: the child expression links

to parent expression. Furthermore, we have mentioned in NLP part that before adding

a coreference pair into one coreference tree, the system will check each expression of

the pair to see whether among all existing coreference trees there is already a markable

which has a common head noun with the expression. If the system makes sure that the

expression has not existed in any coreference tree, the expression can be added into

one tree as a new member. We call the processing “existence check”. Existence check

guarantees that each expression only appears once in coreference trees. It means that it

is impossible that there is an expression simultaneously appearing in two difference

coreference trees. And there is no expression appearing twice in one coreference tree.

With the “One Appearance” guarantee, we can make sure that in any coreference tree,

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 70 -

each expression has only one parent or no parent at all. But for each parent, it has no

less than one child or has no child at all. After these definitions, a coreference chain

can be changed into coreference tree.

Coreference tree has the same characteristics with general trees. For each two members

in a tree, a path can be found. And removing any link can make the tree to be separated

into two parts. The two characteristics are the important foundations of our conflict

17 ”Bernard Schwartz”

102 ”Bernard Schwartz”

110 ”Bernard Schwartz”

54 ”Schwartz”

132 ”Schwartz”

150 ”Schwartz”

178 ”Schwartz”

215 ”Schwartz”

20 ”Loral’s Chairman”

24 ”he”

200 ”he”

232 ”he”

103 ”his”

RC_ML2: 899

DT: 0.682

RC_ML3: 850

RC_ML3: 850 DT: 0.682

RC_ML1: 999

RC_ML3: 850

RC_ML1: 999

RC_ML1: 999

RC_ML1: 999 RC_ML4: 999

DT: 0.883

Figure 5.2:
An example of coreference tree in MUC-7. Each rectangle stands for a referring
expression in the coreference tree. In each rectangle, markable ID and surface string are
given. The bold string beside arrow is the link type and corresponding score. “DT”
means decision tree result. The other types have been described in Table 4.1

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 71 -

resolution, which will be used in two subroutines, extending trees and merging trees.

An Example of Coreference Tree

If we view an equivalence class as a tree, the expressions in the class are nodes of the

tree and the similarity between two expressions is an edge.

An example of coreference tree on MUC-7 [MUC-7, 1997] is shown in Figure 5.2. The

example is extracted from the output of our complete system. It is desirable that the

tree is consistent with human knowledge. In Figure 5.2, we see that there is no link

beginning with a pronoun. And proper names are linked together according string

match or alias rule.

5.2.2. Conflict Detection and Separating Link

For simplicity, here we view the coreference tree as a graph without cycle. In the graph,

all members are separated into two groups: aS , bS . The algorithm to detect the conflicts

existing between the two groups and find the separating link is explained in Figure 5.3.

As we know, two members of a tree must have a path between them and only have one.

For each expression of aS which forms a cannot-link with any member of bS , we find

the path between the two members. Next the corresponding cannot-link’s score is

recorded also. The system sums up all scores to obtain the oreConflictSc between the

two groups. And all paths are combined to obtain theCommonPath (including the

links covered by all paths). Among all links in theCommonPath , the link, which is

with the lowest score after adding the oreConflictSc (oreConflictSc is negative

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 72 -

Algorithm Conflict-Detection (aS , bS : markable groups; ScoNoncutting : a

threshold defined in advance)

oreConflictSc :=0; CommonPath :=Φ

for iM ∈ bS do

 for jM ∈ aS do

if =),(ji MMCL ”true” then

 Path :=),(ji MMFindPath

 CommonPath := PathCommonPath ∩

 oreConflictSc :=),((ji MMCLScoreoreConflictSc +)

LinkSeparating :=Φ; LinkScoreSeparating := 9999

for)(ii ScoLink ∈CommonPath do

 if LinkScoreSeparating > iSco then

 LinkScoreSeparating = iSco ;

 LinkSeparating := iLink ;

 else

 if LinkScoreSeparating == iSco && LinkSeparating ≠Φ then

 if Distance(LinkSeparating)< Distance (iLink) then

 LinkScoreSeparating = iSco ;

 LinkSeparating := iLink ;

if LinkScoreSeparating + oreConflictSc < ScoNoncutting then

 return LinkSeparating ;

else
 return Φ;

Figure 5.3
The Algorithm to detect conflict and find separating link.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 73 -

because cannot-link’s score is negative. Consequently, we add not subtract), will be

considered for removal. If there is more than 1 link with the lowest score, the distance

between two members of the link in the document is taken into consideration. The link

with greater distance will be chosen as LinkSeparating . In order to make a choice

between to cut and not to cut, we give the system a threshold, ScoNoncutting , in

advance. If the LinkSeparating is still stronger than the threshold, then the system

decides not to cut this tree. As we have mentioned above, for a tree, cutting any link

can separate the tree into two parts. Partitioning a tree is equivalent to find a separating

link. After separating, all objecting expressions to the new expression are separated

from it. As a result, it costs only one link to resolve a conflict.

We use an example to explain the Conflict Detection (Figure 5.4). In the example,

markable 140 is the only expression of aS . After checking the cannot-link table, there

 17 “Bernard Schwartz”

102 “Bernard Schwartz”

110 “Bernard Schwartz”

54 “Schwartz”

132 “Schwartz”

20 “Loral’s Chairman”

24 “he” 103 “his”

140 “William Gates”

141 “Chairman”

RC_ML2:899 RC_ML3:850

RC_ML3:850

RC_ML3:850

RC_ML1:999

RC_ML2:899

DT:0.682 DT:0.682

DT:0.883

Figure 5.4
An example of extending coreference tree. 140 is the new expression for the tree. (54, 102,
110, 17, 132) is 140’s objective set and 140’s objective score is -3995. Objective common
path is (20-141-140). The link to be removed is (20-141).

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 74 -

are 5 expressions (54, 102, 110, 17, 132) in bS objecting to markable140 because of

RC_CL1. Therefore the objecting set is (54, 102, 110, 17, 132) and the oreConflictSc

is -799*5=-3995. For 54, the path between it and markable140 is (54-17-20-141-140).

Like 54, we can find other paths between remaining objecting expressions and 140. In

the 5 paths, they share 3 links, (17-20), (20-141) and (141-142). Therefore the

CommonPath is (17-20-141-140). Among the three links, link (20-141) has the

lowest score (3994.117). Hence link (20-141) is LinkSeparating . After removing link

(20-141), the conflict disappears. Here the conflict resolution makes a right decision.

5.2.3. Manipulation of Coreference Tree

The generation of coreference trees includes 4 manipulations: creating, extending,

separating and merging. They are used in “Add” function in the algorithm of

Coreference Chains Generation with ranked constraints (Figure 4.1) Figure 5.5.

Creating Coreference Tree

If the existence check tells the system that both members in a pair do not appear in any

current coreference tree, the system begins to create a new coreference tree which only

includes the pair. The expression with smaller markable ID will be the parent of the

other. Then Conflict-Detection (see Figure 5.3) is called to check the new coreference

tree. Here, aS and bS include the two members of the pair, respectively. If

Conflict-Detection does not return null, the new tree is removed from coreference

trees.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 75 -

Add (Coref , ,, ij MM iCL , jCL , ijSco)

Figure 5.5:
The Add function of the algorithm of Coreference Chain Generation.

The coreference pair (,, ij MM)

ExistenceCheck (,, ij MM Coref)

Creating
Coreference

Tree

Neither exists in Coref

One of them
exists in

Coref

Both exist in

different Coref tree

Extending
Coreference

Tree

Conflict Detection Conflict Detection

Separatelink
is found

Separatelink
is null

Remove
the
new

corefere

Separating
the

coreference
tree on the

link

Insert
successfully

Insert
successfully

Merging
Coreference

Tree

Conflict Detection

Separatelink
is found

Separatelink
is null

Separating
the

coreference
tree on the

link

Merging

Separatelink
is found

Separatelink
is null

The separatelink is (,, ij MM)

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 76 -

Extending Coreference Tree

If existence check tells the system that one member of a pair belongs to one

coreference tree but the other does not appear in any coreference tree, the system calls

extending subroutine to add the new member to the coreference tree including the

other member already. The new member will be added into the tree as one child of the

other member which has already existed in the tree. Next, the conflict resolution will

be called to check the updated tree. Because our system will call conflict resolution to

check a tree each time a new expression is inserted into the tree, there is no conflict

among expressions excluding the new member which is just inserted. Therefore the

conflict resolution only checks the conflicts between the new member and other

expressions. If LinkSeparating is found, our system calls separating subroutine to

separate the tree.

Merging Coreference Trees

Merging coreference trees is similar to extending coreference tree. If two members of a

pair exist in two different coreference trees, the merging subroutine will be called to

deal such problem. Given a pair (A, B) which leads to a merging process, let TA and

TB be the trees of A and B, respectively. At first, we link A and B temporarily. Then

call Conflict-Detection to detect the conflicts existing between the TA and TB. After

that, remove the temporary link (A-B) between two trees. If LinkSeparating is exactly

(A-B), nothing will be done in the merging processing. If LinkSeparating belongs to

TA, the system separate TA on LinkSeparating at first and then add the part

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 77 -

including A into TB. The same process is done when LinkSeparating belongs to TB.

It should be noticed that we should change some of the tree’s links before adding them

into another tree. In order to guarantee tree structure, we should change some links’

directions. Given two trees TA and TB, we need to add TA into TB on link (A-B). In

link (A-B), B belonging to TB should be parent of the link. If A belonging to TA has a

parent in TA already, there would appears two parents of A in the new TB after adding

TA into TB. Therefore before adding TA into TB, we search the path from A to TA’s

root and reverse directions of all links on the path. It means to exchange parent and

 B1
A1

A2

A3

A4

B2

B3

B4

B5

B6

B7

B8 B9

A1

A2

A3

A4

B2

B3

B4

B5

B6

B7

B8 B9

B1

(TA) (TB)

(TA’) (TB’)

L

Figure 5.6:
An example of merging coreference trees. TA and TB are two trees. Link L
leads to the merge of the two trees. After merging, two new trees are generated,
TA’ and TB’.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 78 -

child roles in each link. By doing so, the new tree is still a tree. Consider the following

example:

Two trees (TA and TB) need to merge on the link L. Among expressions in TA, A1 is

objected by B8 and B7. Its path is (A1-A3-B3-B7) and score is S1. A2 is objected by

B9. Its path is (A2-A1-A3-B3-B7-B9) and score is S2. Then the common path for TA

is (A1-A3-B3-B7) and the objecting score to TA is S1+S2. After checking each links

score minus (S1+S2) in the common path, we find the link (B3-B7) is the weakest.

Hence we separate TB on (B3-B7) at first and get Ttemp and TB’. Ttemp includes B3.

Before we add Ttemp into TA, we reverse the links, (B3-B2) and (B2-B1), covered by

the path from B3 to root B1 (B3-B2-B1). After changing their directions, we add

(a1)

(a2)

(b1) (c1)

(b2) (c2)

Figure 5.7:
Examples of separating coreference tree. The bold line is considered to be removed. (a1),
(b1) and (c1) show the trees before separating. (a2), (b2) and (c2) show the trees after
separating.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 79 -

Ttemp into TA on L. And make A3 to be B3’s parent. The result of this merging is TA’

and TB’, which is shown in Figure 5.6.

Separating Coreference Tree

Given a coreference tree and a link of the tree, we can cut the tree into two parts on the

link. There are three cases when separating a tree on a specific link. See Figure 5.7.

The first case is shown in Figure 5.7 (a1) and (a2). The bold line is separating link,

which includes the root expression of the tree. And the root has only one sub-tree

 17 “Bernard Schwartz”

102 “Bernard Schwartz”

110 “Bernard Schwartz”

54 “Schwartz”

132 “Schwartz”

20 “Loral’s Chairman”

24 “he” 103 “his”

RC_ML2:899 RC_ML3:850

RC_ML3:850

RC_ML3:850

RC_ML1:999

DT:0.682 DT:0.682

140 “William Gates”

141 “Chairman”

RC_ML2:899

(a)

(b)

Figure 5.8:
The result of separating the tree with conflict shown in Figure 5.4. The link between 20
and 141 has been removed. And two trees are generated as shown in (a) and (b).

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 80 -

linked by the bold line. After separating, the root becomes isolate point and

consequently it is removed from coreference trees. And remaining part takes place of

the old one. The second case is shown in Figure 5.7 (b1) and (b2). One member of the

bold line is a leaf. Consequently after removing the separating link, the leaf is also

removed from coreference trees. The third case (Figure 5.7 (c1), (c2)) is that after

removing the bold line, each part is still a tree.

For example shown in Figure 5.4, after removing link (20-140), two new trees generate.

The result after separating processing is shown in Figure 5.8.

We observed that after rearranging the expressions in current coreference tree, we

obtain a more accurate result.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 81 -

6. Evaluation

Our coreference resolution approach is evaluated on the standard MUC-7 [MUC-7,

1997] data set. For MUC-7 [MUC-7, 1997], 30 dryrun documents annotated with

coreference information are used as training data. There are also 20 formal documents

from MUC-7 [MUC-7, 1997]. For testing, we use the formal data as our input. The

performance is reported in terms of recall, precision, and F-measure using the

model-theoretic MUC scoring program. Our ranked constraints and conflict resolution

produce scores which are higher than those of the best MUC-7 coreference resolution

system and earlier machine learning systems, such as [Soon et al., 2001] and [Ng and

Cardie, 2002a]. And F-measure increases with regard to our duplicated Soon baseline

system from 60.9 to 64.2 for MUC-7/C4.5.

In this chapter, we will describe our experimental results as well as those of some

earlier machine learning systems. Next, we will discuss the contributions to

coreference system of ranked constraints and conflict resolution, respectively. In the

last section, the errors remaining in our coreference system will be analyzed.

6.1. Score

As we have mentioned in Chapter 3, we use C4.5 to learn a classifier based on MUC-7

[MUC-7, 1997] 30 dryrun documents. The annotated corpora produce 44133 training

pairs, of which about 3.5% are positive pairs. By using 60% pruning confidence, we

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 82 -

get a decision tree shown in Figure 3.1.

Based on MUC-7 20 formal documents, results of our system are shown in Table 6.1.

For comparison, Table 6.1 shows some other coreference systems’ best performances

given out in corresponding papers. [Soon et al., 2001] achieved 60.4 in F-measure

based on a set of 12 features and a classifier learned by C5.0. [Ng and Cardie, 2002a]

improved upon [Soon et al., 2001]’s model by expanding the feature set from 12

features to 53 features, and introducing a new training instance selection approach and

a new search algorithm that searches for antecedent with highest coreference likehood

value. They increased their F-measure from 61.6 to 63.4 for MUC-7/C4.5 by using a

hand-selected features set instead of all 53 features. [Ng and Cardie, 2002b]

incorporated an anaphoricity classifier into [Ng and Cardie, 2002a]’s model. And in

order to overcome the loss in recall caused by the anaphoricity classifier, they also

incorporated two constraints, STR_MATCH and ALIAS, to increase F-measure from

MUC-7 formal
System

R P F
Soon et al.(2001) 56.1 65.5 60.4
Ng and Cardie (2002a) 57.4 70.8 63.4
Ng and Cardie (2002b) 59.7 69.3 64.2
Ng and Cardie (2002) 54.2 76.3 63.4
Yang et al. (2003) 50.1 75.4 60.2
Ng and Cardie (2003) 53.3 70.3 60.5
Duplicated Soon Baseline 59.6 62.3 60.9
Ranked Constraints (RC) 63.5 64.5 64.0
RC and Conflict Resolution 63.7 64.7 64.2

Table 6.1:
Results for MUC-7 formal data in terms of recall, precision and F-measure. Results in
boldface indicate the best results obtained for a particular data set and decision tree by using
a particular constraints group and conflict resolution.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 83 -

58.4 to 64.2. [Ng and Cardie, 2002] is another attempt to improve coreference model.

By using a new positive sample selection approach and error-driven pruning, they

achieved 63.4 in F-measure. [Yang et al., 2003] proposed a promising twin-candidate

model instead of single-candidate model although their score drops behind those of

former systems. And [Ng and Cardie, 2003] focused the resolution of weakly

supervised learning for coreference task through self-training or an EM with feature

selection. The six coreference systems are only machine learning-based systems we

could find, which reported their scores based on MUC-7 formal data with F-measure

above 60%.

From Table 6.1, we see that our complete coreference system with ranked constraints

and conflict resolution has achieved a recall of 63.7% and a precision of 64.7%,

yielding a balanced F-measure of 64.2%. The F-measure is the highest score among

those of the systems listed in Table 6.1. And with regard to our duplicated Soon

baseline system, the recall increases 4.1% from 59.6% to 63.7% and the precision

increases 2.4% from 62.3% to 64.7%, resulting in a significant increase of 3.3% in

F-measure. It is interesting to note that the complete system achieves the highest recall

among all the systems in Table 6.1, but the lowest precision compared to others. One

reason for the highest recall is that our NLP pipeline includes two additional modules:

head noun phrase extraction and proper name identification (the corresponding

experimental results are shown in Table 2.1). It makes the recall of duplicated Soon

baseline system is higher by 3.5% than [Soon et al., 2001]’s. The other reason is that

our must-links and must-link-to-something introduce some spurious links into the

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 84 -

system. The corresponding experimental results will be shown in next section. For the

lowest precision, one reason is the decision tree we use. Our baseline system and our

complete system use a common decision tree listed in Figure 3.1. We see that the

precision of our baseline system is very low already. Therefore the low precision in our

complete system has no relation to ranked constraints and conflict resolution.

Furthermore, higher recall tends to result in lower precision. However, the F-measure

increased showing that the sacrifice of precision is tolerable.

A closer examination of the results is shown in Table 6.2. In the table, three systems

are evaluated. Besides our duplicated Soon baseline system and the complete system,

MUC-7 dryrun MUC-7 formal
System

R P F R P F
Duplicated Soon Baseline 57.4 64.7 60.9 59.6 62.3 60.9
 Only Pronoun 13.3 70.2 22.3 10.6 60.0 18.0
 Only Proper Name 25.1 84.9 38.7 29.6 81.4 43.4
 Only Common Noun phrases 26.7 52.0 35.2 26.8 49.3 34.7

Ranked Constraints (RC) 59.5 66.7 62.9 63.5 64.5 64.0
 Only Pronoun 15.9 62.9 25.4 13.9 55.6 22.3
 Only Proper Name 26.9 86.1 41.0 31.8 82.3 45.8
 Only Common Noun phrases 26.3 57.0 36.0 26.5 54.1 35.6

RC and Conflict Resolution 59.8 67.2 63.3 63.7 64.7 64.2
 Only Pronoun 15.9 63.1 25.4 13.9 55.6 22.3
 Only Proper Name 26.9 86.1 41.0 31.8 82.5 46.0
 Only Common Noun phrases 26.4 57.2 36.1 26.7 54.4 35.8

Table 6.2
Results for baseline and complete systems to study the effects of ranked constraints and
unsupervised conflict resolution. For each of the NP-type-specific runs, the overall
coreference performances are measured by restricting anaphor to be of the specified
type.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 85 -

Pronoun

10.0

20.0

30.0

40.0

50.0

60.0

70.0

R P F R P F

MUC-7 dryrun MUC-7 formal

Proper Name

20.0

30.0

40.0

50.0

60.0

70.0

80.0

R P F R P F

MUC-7 dryrun MUC-7 formal

Common Noun Phrase

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

R P F R P F

MUC-7 dryrun MUC-7 formal

Overall

55.0

60.0

65.0

70.0

R P F R P F

MUC-7 dryrun MUC-7 formal

Baseline

RC

RC and CR

Figure 6.1
Results for the effects of ranked constraints and unsupervised conflict resolution on
overall NP types, pronouns, proper names and common noun phrases.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 86 -

in order to evaluate the effects of ranked constraints and conflict resolution (CR),

respectively, we make a coreference system which replaces CR with a simple conflict

resolution. In the simple conflict resolution, coreference system gives up inserting a

referring expression into a coreference tree if the expression is objected by some

members of the tree. The system can evaluate the effect of ranked constraints without

the influence of CR. Table 6.2 shows that both ranked constraints and CR have a

positive effect on coreference system built through machine learning approach. And

they improve recall without any loss in precision.

In the first chart of Figure 6.1, we see that the ranked constraints make a significant

contribution to both recall and precision of baseline coreference system: recall

increased with regard to baseline from 57.4% to 59.5% for 30 dryrun documents, and

from 59.6% to 63.5% for 20 formal documents, respectively; precision increases 3%

for dryrun and 2.2% for formal, respectively. As a result, F-measure increases from

60.9% to 62.9% for dryrun, and from 60.9% to 64.0% for formal. In contrast to the

system including both ranked constraints and CR, the simple conflict resolution works

not so well as our CR: 0.2% loss in both recall and precision for formal, 0.3% loss in

recall with 0.5% loss in precision for dryrun, respectively. We see that after adding CR

to our coreference system, F-measure increases about 0.4% and 0.2% for dryrun and

formal, respectively.

In an attempt to gain additional insight into the effects on different noun phrase types,

we show the performances on pronouns, proper names and common nouns (Table 6.2).

The last three charts of Figure 6.1 give us more intuitionistic knowledge of the effects

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 87 -

of ranked constraints and our CR on different noun phrase types. After adding ranked

constraints, except for the precision of pronoun and the recall of common noun phrase,

the results of different noun phrase types indicate an improving trend. In particular, all

F-measures increase along with the addition of ranked constraints and CR. As to the

loss of the precision of pronoun after adding constraints to baseline, it is caused by

must-link-to-something. And the loss of common noun phrase’s recall after adding

constraints to baseline is because of cannot-link-to-anything’s effect. We will discuss

about it in the error analysis.

6.2. The contribution of constraints

One factor that affects the performance of our system is the incorporation of ranked

constraints. As we have explained above, there are four groups of constraints used in

our system. It is interesting to find out the contribution of each group on coreference

dryrun

60.0

62.061.4
61.7

60.9

55.0

60.0

65.0

R 57.4 60.1 56.2 55.9 58.6

P 64.7 63.4 67.8 64.7 65.8

F 60.9 61.7 61.4 60.0 62.0

Baseline ML CL CLA MLS

formal

62.6

60.5

61.7

61.5
60.9

55.0

60.0

65.0

R 59.6 62.2 58.3 58.9 62.1

P 62.3 60.8 65.6 62.2 63.2

F 60.9 61.5 61.7 60.5 62.6

Baseline ML CL CLA MLS

Figure 6.2
Results of coreference systems to study the contribution of each constraints group

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 88 -

task. In order to evaluate it, we apply one group at each time. The results are shown in

Figure 6.2.

6.2.1. Contribution of Each Constraints Group

In the figure, ML stands for must-link constraint group including four must-links as

defined in Chapter 4. Cannot-link group, CL, includes all cannot-links defined in

Chapter 4. CLA stands for cannot-link-to-anything and MLS means must-link-to-

something. In Figure 6.2, we see that the recall lines of dryrun data and formal data

have the similar figure. The precision lines of the two data sets are similar to each

other also. As we know, the dryrun data and the formal data of MUC-7 [MUC-7, 1997]

belong to the different knowledge domains. The dryrun data is a set of documents

about aircraft accident. However, the formal data is a set of documents about launch

event. Therefore based on documents with different knowledge domains, similar lines

indicate some domain-independent characteristics of the four constraint groups. From

the figure, we see that ML and MLS increase recall with regard to baseline, but with

the loss of precision. In contrast to ML and MLS, CL and CLA have the capability to

improve precision, but with the drop of recall. In particular, the CL’s contribution to

precision is outstanding comparing to other constraint groups. As a result, recall drops

precipitously on both data sets. Similar to CL, ML’s contribution to recall is significant

among all constraints groups, but ML also makes the precision drops quickly. It is

interesting to note that recall and precision are pairwise opposite. We are satisfied to

see that three of four groups improve the F-measure with regard to the baseline system,

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 89 -

especially MLS, which makes F-measure increase 1.1% and 1.7% for dryrun and

formal, respectively.

6.2.2. Contribution of Each Combination of Constraints Group

To get more insight into the contribution of constraint groups on coreference task, we

measure the overall performance of the coreference system with each combination of

the four constraint groups. The results are shown in Table 6.3 and Figure 6.3. From

Figure 6.3, we see that the recall lines and precision lines between dryrun data and

formal data are also similar to each other. For both dryrun and formal data set, the

combination of ML and MLS contributes maximum to recall among all the

combination, and the combination of ML, CL and CLA contributes the most to

precision. As expected, in comparison to all coreference systems with different

combinations of four constraint groups, the combination including all constraint

groups achieves the best F-measure of 63.3% and 64.2% for dryrun and formal data

sets, respectively. The results prove that strategies employed to combine the available

linguistic knowledge play an important role in machine learning approaches to

coreference resolution.

Analysis of ML

Among the 16 system with different combinations of constraint groups, we compare

the systems with ML to those without ML (See Figure 6.4). It is interesting to note that

after adding ML, we see significant gains in recall and F-measure on each system.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 90 -

MUC-7 dryrun MUC-7 formal
No ML CL CLA MLS

R P F R P F

1 57.4 64.7 60.9 59.6 62.3 60.9
2 √ 60.1 63.4 61.7 62.2 60.8 61.5
3 √ 56.2 67.8 61.4 58.3 65.6 61.7
4 √ 55.9 64.7 60.0 58.9 62.2 60.5
5 √ 58.6 65.8 62.0 62.1 63.2 62.6
6 √ √ 58.6 65.8 62.0 62.1 63.2 62.6
7 √ √ 58.0 68.1 62.6 61.0 66.1 63.4
8 √ √ 61.9 63.6 62.7 64.9 61.2 63.0
9 √ √ 54.4 67.9 60.4 57.6 65.6 61.4
10 √ √ 58.6 63.4 60.9 61.6 60.7 61.2
11 √ √ 58.5 66.0 62.0 61.1 63.8 62.4
12 √ √ √ 57.3 69.1 62.6 60.8 66.5 63.5
13 √ √ √ 61.2 64.4 62.8 64.9 61.2 63.0
14 √ √ √ 60.5 66.3 63.2 63.7 64.2 64.0
15 √ √ √ 57.2 66.1 61.3 60.4 63.9 62.1
16 √ √ √ √ 59.8 67.2 63.3 63.7 64.7 64.2

Table 6.3
Results for each combination of four constraint groups, ML, CL, CLA and MLS

64.2

60.9

5
5

6
0

6
5

7
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
o
r
m
a
l

63.3
60.9

5
0

5
5

6
0

6
5

7
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d
r
y
r
u
n

Figure 6.3:
Results for each combination of four constraint groups, ML, CL, CLA and MLS.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 91 -

RecallnoML

ML

Precision

F-measure

Ba
se

lin
e

C
L

C
LA

M
LS

C
L+

C
LA

C
L+

M
LS

C
LA

+M
LS

C
L+

C
LA

+M
LS

Ba
se

lin
e

C
L

C
LA

M
LS

C
L+

C
LA

C
L+

M
LS

C
LA

+M
LS

C
L+

C
LA

+M
LS

dryrun formal

RecallnoCL

CL

Precision

F-measure

B
as

el
in

e

M
L

C
L

A

M
L

S

M
L

+C
L

A

M
L

+M
L

S

C
L

A
+M

L
S

M
L

+C
L

A
+M

L
S

B
as

el
in

e

M
L

C
L

A

M
L

S

M
L

+C
L

A

M
L

+M
L

S

C
L

A
+M

L
S

M
L

+C
L

A
+M

L
S

dryrun formal

Figure 6.4
Results of coreference system with different combination of constraint groups to study the
effect of ML and CL on performance of coreference system.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 92 -

RecallnoCLA

CLA

Precision

F-measure

B
as

el
in

e

M
L

C
L

M
L

S

M
L

+C
L

M
L

+M
L

S

C
L

+M
L

S

M
L

+C
L

+M
L

S

B
as

el
in

e

M
L

C
L

M
L

S

M
L

+C
L

M
L

+M
L

S

C
L

+M
L

S

M
L

+C
L

+M
L

S

dryrun formal

RecallnoMLS
MLS

Precision

F-measure

B
as

el
in

e

M
L

C
L

C
L

A

M
L

+C
L

M
L

+C
L

A

C
L

+C
L

A

M
L

+C
L

+C
L

A

B
as

el
in

e

M
L

C
L

C
L

A

M
L

+C
L

M
L

+C
L

A

C
L

+C
L

A

M
L

+C
L

+C
L

A

dryrun formal

Figure 6.5
Results of coreference system with different combination of constraint groups to study the
effect of CLA and MLS on performance of coreference system.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 93 -

Our results provide direct evidence for the claim that our constraints can resolve the

problems due to training data insufficient and “hard” training examples. And the

experiment shows that ML is the most useful group to improve the coreference

system’s performance.

Analysis of MLS

MLS has the similar function to ML. After adding MLS, we observe reasonable

increases in recall for both data sets in comparison to those systems without MLS.

F-measure also increases except the system with only CL. Somewhat disappointingly,

after adding MLS into it, F-measure drops for both data sets. It may be caused by strict

cannot-link definition. MLS is the most approximate constraint group in our system.

Its contribution is mainly to increase recall through adding pronouns into coreference

trees, even if pronouns’ antecedents are determined by error. Consequently MLS brings

more conflicts into coreference trees. On the other hand, cannot-links detect such

conflicts in coreference trees and choose a link to cut. Without must-links, each

conflict must lead to a separating process. It influences the accuracy of conflict

resolution. As a result, precision drops precipitously, which kills the increase of recall.

Therefore F-measure drops too.

Analysis of CL

CL cannot improve those systems without ML but with MLS (See Figure 6.3 and Table

6.3) has. We have analyzed the combination of CL and MLS. For another system with

the combination of CL, CLA and MLS, in contrast to the combination of CLA and

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 94 -

MLS, the F-measure drops 0.2%. Except the two systems, CL still contributes

something to the performance of coreference system.

Analysis of CLA

If original system does not have any must-constraints group, such as must-links or

must-link-to-something, CLA results in the worse performance, which is even worse

than that of the baseline in F-measure (Comparing to baseline system, F-measure drops

0.9% and 0.5% on dryrun data and formal data, respectively. Comparing to the system

with only CL, after adding CLA, F-measure drops 0.5% on dryrun data). Accordingly,

its positive effect on coreference task is based on a reasonable recall. We see that the

F-measure of the system without CLA is 62.8% and 63% for dryrun and formal data

sets, respectively. With adding CLA, F-measure increases 0.5% and 1.2% for dryrun

and formal, respectively.

As we can see, the four groups of constraints can be divided into two types: One is

must-constraints and the other is cannot-constraints. Must-constraints improve recall

with the loss of precision. And cannot-constraints improve precision with the loss of

recall. Combination of them can achieve a balance between recall and precision. As a

result, we can yield a satisfiactory F-measure.

6.2.3. Contribution of Each Constraint in ML and CL

In our system, ML includes 4 constraints and CL, 7. We add each must-link into the

baseline system to see its contribution in isolate. As to cannot-link, we use the system

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 95 -

with ML, CLA and MLS constraint groups and conflict resolution as our baseline to

test each cannot-link in isolate. The results are shown in Table 6.4.

Must-links

Table 6.4 shows that each must-link can contribute a little bit to the performance of

coreference system. Among four must-links, RC_ML1 and RC_ML4 increase

F-measure without any loss in either recall or precision. The results provide the

evidence for the score determination in ranked constraints. RC_ML1 and RC_ML4 are

the most reliable constraints. Therefore they are provided with the highest score. For

dryrun formal
System

R P F R P F

Baseline 57.4 64.7 60.9 59.6 62.3 60.9

Only RC_ML1 57.7 64.8 61.0 60.2 62.6 61.4

Only RC_ML2 57.9 64.8 61.2 60.4 62.2 61.3

Only RC_ML3 58.1 64.6 61.2 60.2 62.4 61.3

Only RC_ML4 58.2 64.9 61.3 60.2 62.5 61.3

ML+CLA+MLS+CR 60.5 66.3 63.2 63.7 64.2 64.0
Only RC_CL1 60.1 67.0 63.4 63.6 64.4 64.0

Only RC_CL2 60.3 66.3 63.1 63.7 64.4 64.0

Only RC_CL3 60.3 66.3 63.2 63.7 64.3 64.0

Only RC_CL4 60.2 66.1 63.0 63.8 64.3 64.0

Only RC_CL5 60.3 66.1 63.1 63.7 64.3 64.0

Only RC_CL6 60.3 66.5 63.3 63.7 64.4 64.1

Only RC_CL7 60.5 66.3 63.2 63.7 64.2 64.0

Our complete system 59.8 67.2 63.3 63.7 64.7 64.2

Table 6.4
Results of coreference system to study the effect of each constraint. Must-link constraint
group is tested based on our duplicated Soon baseline system. And cannot-link
constraint group is based on the system with ML, CLA and ML three constraint groups
and conflict resolution

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 96 -

RC_ML2 and RC_ML3, RC_ML2 results in drop of 0.1% in precision for formal data

and RC_ML3 results in drop of 0.1% in precision for dryrun data. However, they still

improve F-measure in both data sets. Therefore the two must-links are provided with a

little lower score than RC_ML1 and RC_ML4. Consider RC_ML2’s contribution to

common noun phrase coreference resolution, RC_ML2’s score is set to be higher than

that of RC_ML3. Table 6.4 also lists the result of the coreference system with the

whole ML set based on duplicated Soon baseline system. The system with the whole

set outperforms those systems with only one must-links on both data sets.

Cannot-link

For cannot-link, the contribution to F-measure of single cannot-link is not desirable in

comparison to the contribution of complete cannot-links set. For dryrun data, only

RC_CL1 and RC_CL6 improve F-measure with regard to the corresponding baseline,

and RC_CL3 and RC_CL7 do not cause any loss in F-measure and precision. All the

remaining cannot-links make F-measure drop. And RC_CL4 and RC_CL5 even cause

drop in both recall and precision. For formal data, only RC_CL6 contribute 0.1% to

F-measure. The other cannot-links maintain the baseline’s performance. In our

complete system, we use the whole CL set and achieve the best results comparing to

those systems with only one cannot-links. We also evaluate the performance of the

system with each combination of the seven cannot-links. Our results show that besides

the whole set, some other sets of the 7 cannot-links also achieve the best result for a

specific input. For dryrun, using RC_CL6 can get the best result, the combination of

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 97 -

RC_CL1 and RC_CL2 can also do it. For formal, the combination of RC_CL1,

RC_CL2, RC_CL4 and RC_CL6 can get the F-measure of 64.2%. However, we use

the whole CL set to ensure the constraints group to be general enough to suit different

knowledge domains.

6.3. The contribution of conflict resolution

The contribution of conflict resolution is not as significant as that of ranked constraints.

But it is interesting to note that our conflict resolution is an approach which can

increase recall and precision simultaneously.

As we have explained above, conflict resolution is an approach based on cannot-links

set and it improves performance of coreference system through rearrangement of

current coreference trees. In comparison to simple conflict resolution, it usually would

not cause the loss in recall. And after adjusting some links in a coreference tree, it

improves precision and even recall. As a result, F-measure increases too. Our

experimental results are shown in Table 6.2. We see that with regard to the system

using simple conflict resolution, incorporating conflict resolution makes recall increase

0.3% and 0.2% for dryrun data and formal data, respectively. And the precision

increases 0.5% and 0.2% for dryrun and formal. As a result, F-measure increases 0.4%

and 0.2% for the two data sets, respectively. Furthermore, there is not any loss in recall

or precision in pronoun, proper name and common noun phrase’s corresponding

coreference resolution. It is a desirable result.

In an attempt to gain additional insight into the contribution of conflict resolution in

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 98 -

our coreference system, we follow the processing of conflict resolution in dryrun data

and formal data. We find that in the 50 documents of dryrun and formal data,

separating subroutine of conflict resolution is called for 102 times in 26 documents and

merging subroutine is called for 19 times, in 16 documents. 65 of 102 separating

processing and 11 of 19 merging happen in dryrun. In comparison to formal, dryrun

data encounters more conflicts than formal data. As a result, on dryrun data, the

improvement (0.4% in F-measure) made by conflict resolution with regard to the

simple conflict resolution is more than that of formal data (0.2% in F-measure). In

order to evaluate the accuracy of conflict resolution, we track the 20 documents of

formal. Significantly, all 37 separating processes choose the right links to cut. Among

8 merging processes, 7 are done correctly. In particular, 2 of the 7 merging processes

employ separating processes. Such merging processes cut one of coreference trees at

first and then combine the other coreference tree with one part just produced by cutting.

It is more complex than a simple merging procession without cutting. Our results show

that the conflict resolution can deal with such problem correctly without any

supervised learning. For the only one wrong merging taking place in formal data, it is

shown in the following example:

Sentence 6.1: ``Satellites give (us)a1 an opportunity to increase the number of

(customers)b1 (we)a2 are able to satisfy with the McDonald's brand,'' said McDonald's

Chief Financial Officer, Jack Greenberg. ``It's a tool in our overall convenience

strategy.''

The merging between tree “a”(a1-a2) and tree “b”(the tree including b1) happens

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 99 -

because there is no conflict between the two trees detected by cannot-links. Therefore,

such error can be resolved introducing more elaborate cannot-links into the coreference

system.

As we have mentioned above, if a conflict is detected, the conflict resolution is able to

decide whether the conflict is true or false. If true, system calls separating subroutine

to cut the tree. If false, system can ignore the conflict. In order to evaluate the

capability of distinguishing true conflict and false conflict, we also search the conflicts

which are skipped in formal data. There are 51 such conflicts found. And 7 of them

happen in merging processes and the remaining happen in separating processes. We see

that 45 of 51 conflicts which are determined as false correctly by conflict resolution.

All error determinations belong to the separating processing. The main reason is

information insufficiency. For example:

Sentence 6.2: The (National Association of Broadcasters)1, which represents television

and radio stations, has said the new satellite services would threaten local radio

stations. (Broadcasters)2 lobbied the FCC to delay issuing the license because of the

threat of competition, Margolese said.

In the sentence, markable 2 is recognized as alias of markable 1 by error. Although

they disagree in number, the conflict is skipped because must-link on alias has the

preference to cannot-link on number disagreement. It is the error of alias determination

which causes the failure of conflict resolution. And if the number information had

higher accuracy, such conflict would not be skipped by error.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 100 -

Another reason is that the rank of constraint also influences the accuracy of conflict

resolution. For example:

Sentence 6.3: ``Since 1989-1990, there has not been another channel launched with

this kind of immediate growth curve,'' said (Thomas S. Rogers)a1, the (president)a2 of

(NBC Cable)a3, a (member)a4 of the executive committee in charge of the History

Channel.

Sentence 6.4: ``Satellites give us an opportunity to increase the number of customers

we are able to satisfy with the McDonald's brand,'' said (McDonald's Chief Financial

Officer)b1, (Jack Greenberg)b2.

In Sentence 6.3, a3 and a4 satisfy the conditions of RC_ML2. Although a3 and a1

satisfy the conditions of RC_CL1, such conflict is skipped because RC_ML2 has

higher score than RC_CL1. Unfortunately, devising a set of optimal score setting for

general usage is impossible. Consider Sentence 6.4, b1 and b2 exactly form such

example that RC_ML2 exceeds RC_CL1. In our system, we use a set of approximate

optimal score setting for constraints. Such scores are determined based on human

background knowledge. How to determine scores for constraints by machine is our

future work.

As we can see, cannot-links have a significant effect on the accuracy of conflict

resolution. And we find that for dryrun and formal, there are more than 50%

documents which have not used conflict resolution at all. If we incorporate more

cannot-links into the system, the conflict resolution will play a more important role on

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 101 -

performance improvement. But it would also bring more difficulties in arranging the

score of each constraint. Additional research on it is required in the future.

6.4. Error analysis

In [Soon et al., 2001], they have analyzed the errors made by their machine learning

system. They classed errors into two groups: missing links (false negative) and

spurious links (false positive). False negative causes recall errors and false positive

causes precision errors. For missing links, they listed six types of errors caused by

inadequacy of current surface features, errors in noun phrase identification, errors in

semantic class determination, errors in part-of-speech assignment, errors in apposition

determination and errors in tokenization. For spurious links, they also give out six

Approach Errors

Errors in head noun phrase extraction
NLP

Errors in conjoint noun phrase identification

Errors in Proper Name Identification

Errors in Alias determination

Errors in apposition determination
ML

indefinite proper name

non-anaphoric pronoun "it"
MLS

Errors in antecedent determination of plural pronoun

Using reliable features
CL

Language Exception

CLA Number antecedent missing

Conflict between constraints
CR

reliable features used in constraints

Distant pronouns with same surface strings
Baseline The same common noun phrases but they don't refer to

anything

Table 6.5:
Errors in our complete system.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 102 -

types. They are caused by pronominal modifier string match, different entities with

same strings, errors in noun phrase identification, errors in apposition determination

and errors in alias determination. In this thesis, we focus our error analysis on those

errors made by ranked constraints and conflict resolution. As another improvement

made by head noun extraction and proper name identification, we also analyze the

errors made by them. We randomly extract some formal documents from MUC-7

[MUC-7, 1997] and classes the errors according to different reasons. Breakdowns of

such errors made by our new approach are shown in Table 6.5.

6.4.1. Errors Made by NLP

Our NLP pipeline simply takes the most right noun in a markable as head noun phrase.

It leads to partially missing some compound noun phrases (including more than one

token in head noun phrase). For example:

Sentence 6.5(1): When not focused on other nations' military bases, American spy

satellites have been studying a dusty habitat of the humble (desert (tortoise)b1)a1 in an

effort to help scientists preserve this threatened species.

Sentence 6.5(2): (Desert (tortoise)b2)a2 research is one of six environmental projects

overseen by the CIA as part of a pilot program to use intelligence technology for

ecological pursuits.

Compound noun phrase, “desert tortoise”, is separated into two parts by our nested

noun phrase and head noun phrase extraction. Although our system can recognize the

coreference pair (a1-a2), the link is replaced by (b1-b2) due to head noun phrase

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 103 -

preference. But the link (b1-b2) is a spurious link to coreference system because they

are not markables at all. As a result, (a1-a2) is missed.

Our NLP pipeline often misses conjoint noun phrases. It tends to recognize a conjoint

noun phrase as two separated noun phrases. Such shortage leads to several errors. For

example:

Sentence 6.6(1): ((Ruth Ann Aldred)b1 and (Margaret Goodearl)c1)a1, both of who were

once supervisors at a Hughes plant in California, accused the company of lying about

the testing of components for missiles and fighter planes.

Sentence 6.6(2): Since their evidence resulted in the government recovering money,

the False Claims Act law says ((Aldred)b2 and (Goodearl)c2)a2 are due part of the fine.

According to MUC-7 [MUC-7, 1997] Coreference Task definition, “a1” and “a2”

should be a markable without nested markables, respectively. Our NLP pipeline cannot

recognize them. Instead, b1, b2, c1 and c2 are recognized by NP identification. As a

result, (a1-a2) becomes a missing link. And two spurious links (b1-b2) and (c1-c2),

appear.

6.4.2. Errors Made by ML

Obviously, must-link constraints mainly lead to spurious links. Some common noun

phrases beginning with uppercase letter are often recognized as proper names by

part-of-speech tagging. If such common noun phrases satisfy our RC_ML1, they will

be tagged as coreferential pair with highest score. In a document’s title, such problem

often appears. The errors in alias and apposition determination are similar to those

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 104 -

explained in [Soon et al., 2001]. For example, in Sentence 6.3, “NBC Cable” and

“member” are recognized as apposition, which results in series of problems. Alias

determination is also difficult. For example, “American Airlines” and “American

Eagle” are different entities. But they have the common part “American”. It results in

the spurious link between them. Another errors made by must-links is “indefinite

proper name”. In general, proper name should refer to a specific entity. But there are a

lot of exceptions. Such as “American”, it not only can refer to one person born in

America, but also can refer to a group of people living in U.S. Our must-link cannot

distinguish such proper names which have the same surface strings, but have different

referents.

6.4.3. Errors Made by MLS

MLS is similar to ML. It brings spurious links into system. Our results show that we

can deal well with “he”, “she” and corresponding pronouns. The main errors are about

“it” and plural pronouns. See Sentence 6.7:

Sentence 6.7: ``(It)'s been good for both companies,'' said Buddy Burns, Wal-Mart's

manager of branded food service.

The “it” in the sentence does not refer to anything. It is non-anaphoric. Our system

cannot determine the anaphoricity of “it”. As a result, some non-anaphoric “it” are

forced to link some antecedents. Other frequent errors are about plural pronouns. As

we have mentioned above, our NLP pipeline is not good at recognition of conjoint

noun phrases. It is more difficult for a plural pronoun to search an antecedent. For

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 105 -

example:

Sentence 6.8: (Wei Yen and Eric Carlson)a1 are leaving to start (their)a2 own Silicon

Valley companies, sources said.

In the sentence, due to the miss of a1, a2 cannot be correctly linked to a1.

6.4.4. Errors Made by CL

As we have mentioned above, such errors are almost due to inaccurate information of

number, semantic class and so on. For example, two “Monday” appear in a document.

One of them is tagged as “DATE” but the other is “unknown”. As a result, they

disagree in number (we take all “DATE”,”MONEY” and “PERCENTAGE” as

“plural”). Fortunately, our conflict resolution skips such error. Other errors are due to

the language exception. For example:

Sentence 6.9: And why not, since 75 percent of (McDonald's) diners decide to eat at

(its) restaurants less than five minutes in advance? `` (They) want to be the first sign

you see when you get hungry,'' said Dennis Lombardi, an analyst at Chicago-based

market researcher Technomics Inc.

In the sentence, “McDonald’s”, “its” and “They” refer to the same entity. It is

interesting to note that “it” and “they” can refer to each other although they disagree in

number obviously.

6.4.5. Errors Made by CLA

Our CLA removes those figures which are not recognized as DATE, TIME, MONEY

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 106 -

or PERCENTAGE. Such rule does not take into account the errors made by named

entity recognition. For example, two “1992” appearing in the same document refer to

the same year. But one “1992”’s semantic class is unknown. The “1992” is removed.

Consequently, a link is missed by the error in CLA.

6.4.6. Errors Made by CR

The errors made by CR have been explained in last section. In conclusion, unsuitable

score setting is the main reason which leads to errors in conflict resolution.

6.4.7. Errors Made by Baseline

There are two kinds of errors which have no relation to ranked constraint and conflict

resolution. We class them as errors made by baseline system. The first error is about

pronoun. It is that pronouns with the same surface string tend to link together. For

example:

Sentence 6.10(1): ``Satellites give us an opportunity to increase the number of

customers (we) are able to satisfy with the McDonald's brand,'' said McDonald's Chief

Financial Officer, Jack Greenberg.

Sentence 6.10(2): ``When (we) come to Wal-Mart for diapers, we come here,'' said

Cook, 31, sitting at a table in the McDonald's inside the North Brunswick, New Jersey,

store.

We see that two sentences are both speeches, but with different speakers. The two

“we” should not refer to each other obviously. But due to “STR_MATCH”’s important

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 107 -

role in coreference determination, they are linked together in our system.

Another error is also resulted from “STR_MATCH”. For example:

Sentence 6.11(1): But with no customers expected until 1998, the need for nearly $2

billion in (investment) and numerous competitors lurking in the shadows, Globalstar's

prospects would not appear to be valuable to the average Lockheed shareholder.

Sentence 6.11(2): ``Any service that is based on satellites is going to be a fertile area

for our (investment),'' he said.

Although the two “investment” are over almost the whole document, they are

recognized as coreference pair because of string match. It is a common phenomenon in

our system. Common noun phrases coreference resolution is more difficult than that of

proper name and pronoun. It needs more semantic information to see the inside

relation between them. Simple string match cannot resolve the coreference problem of

common NP. This problem is a remaining challenge for us.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 108 -

7. Conclusion

7.1.1. Two Contributions

We investigate two methods to improve the coreference system built through machine

learning approach. Based on the two methods, we increase F-measure of our baseline

system from 60.9% to 64.2%.

Multi-level Ranked Constraints

First, we propose a set of linguistic-based, multi-level and ranked constraints which is

compatible with supervised machine learning approach. We also make some changes

in search algorithm. We use a multi-link clustering algorithm to replace the single-link

clustering algorithm. With the set of constraints, the coreference system produces

significant gains in both recall and precision and corresponding increases in F-measure.

The set of constraints includes four kinds of constraints: must-link,

must-link-to-something, cannot-link and cannot-link-to- anything. The first two

constraints can be called must-constraints and the remaining two can be called

cannot-constraints. Must-constraints improve recall, but at the cost of precision loss.

Cannot-constraints behave in an opposite way. They improve precision with the loss of

recall. The combination of must-constraints and cannot-constraint makes our system

achieve the best result of 64.0% in F-measure, which is higher than that of baseline

system about 3.1%. Our results show that the set of constraints resolves some

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 109 -

problems in using machine learning for building coreference resolution systems,

primarily the problem of having limited amounts of training data. The constraints also

provide a bridge between coreference resolution methods built using linguistic

knowledge and machine learning methods.

Conflict Resolution

We also propose conflict resolution for handling conflicting constraints within a set of

corefering elements. In order to detect conflicts and remove conflicts in a coreference

chain, first we use the data structure “coreference tree” to replace the “coreference

chain”. Coreference tree retains the information of relation among referring

expressions. For each referring expression in a coreference tree, we record the parent

who introduced the expression into the coreference tree. Second, we use cannot-links

to detect conflicts in a coreference tree. Lastly, after a conflict is detected, the

resolution is to cut the separating link which has the lowest score. By using the tree

structure, cannot-links and the separating link finding algorithm, the conflict resolution

provides better performance compared to simple conflict resolution, which gives up

inserting a link once a conflict is encountered. In contrast to the simple conflict

resolution, our conflict resolution increases F-measure 0.2%. Furthermore, the conflict

resolution is able to increase both recall and precision.

7.1.2. Future Work

The work of the thesis suggests some possible directions of future work.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 110 -

There are still many ways to expand the constraints set. Up to now, our system

includes 4 must-links, 7 cannot-links, 1 must-link-to-something and 1 cannot-link-to-

anything. Adding more constraints into the four groups and introducing new types of

constraints into the set of constraints are both promising directions.

As we have mentioned before, how to provide an optimal score for each constraints is

a challenge for future research. In our system, the score is determined based on human

knowledge and the score is approximately optimal. Making machine decide the rank of

constraints is another task for future work.

In the error analysis, we see that common noun phrase coreference resolution still

require improvement in our system. Common noun phrase coreference resolution

requires more linguistic knowledge and semantic information. Up to now, our system

only offers 12 features. And among them, only one indicates some semantic

information. Expanding the feature set will not only help the common noun phrase

coreference resolution, but also help us generate more useful constraints. Furthermore,

it may be useful to employ more theoretical linguistic work, such as Focusing Theory

[Grosz et al., 1977; Sidner, 1979], Centering Theory [Grosz et al., 1995] and the

systemic theory [Halliday and Hasan, 1976].

Another aspect that requires improvement is the NLP pipeline. How to improve the

accuracy of NLP pipeline requires further research for the state-of-the-art coreference

resolution systems.

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 111 -

Appendix A : Name List

A.1 Man Name List

Aaron Bevil Elias Gillam Jeremy Machutus

Abacuck Blaise Eliass Godfrey Jerman Manasses

Abraham Botolph Eliza Goughe Jermanus Mark

Adam Brian Elizeus Gregory Jerome Marmaduke

Adlard Cadwallader Ellis Griffin Jervais Martin

Adrian Cesar Ely Griffith Jesper Mathew

Alan Charles Emanuel Guy Jesse Matthew

Albert Christian Emery Halius John Maurice

Alexander Christopheer Emmanuel Hamond Joice Melchior

Allan Christopher Emmett Hansse Jonathan Meredith

Alveredus Chroferus Enoch Harman Joos Michael

Ambrose Chroseus Erasmus Harmond Joosus Miles

Anchor Ciriacus Evan Harry Jordan Mike

Andrew Clement Everard Hector Joseph Morgan

Annanias Conrad Faustinus Helegor Joshua Nathaniel

Anthony Cornelius Felix Heneage Josias Newton

Archibald Court Ferdinand Henry Jossi Nicholas

Archilai Cuthbert Frances Hercules Jucentius Ninion

Arnold Cutlake Francis Hieronimus Julius Noe

Arthur Daniel Fulk Holland Justin Oliver

Augustin David Gabriel Howel Justinian Osmund

Augustine Denton Garnett Howell Kenelm Ottewell

Augustus Didimus Garret Hugh Kyle Owen

Barnabas Digory Garrett Humphrey Lambert Owin

Barnard Dionisius Gawen Humphry Lancelot Paschall

Bartholomew Drugo Gawin Ingram Laurence Pasco

Bartram Dudley Gentile Isaac Lawrence Pasquere

Basil Ebulus Geoffrey Isaacs Leonard Paul

Bellingham Edi George James Lewis Peter

Benedict Edmund Gerrard Jankin Lionel Philip

Benjamin Edward Gervase Jasper Lodowick Phillip

Bennett Edwin Gilbert Jeffery Lucas Pierce

Bertram Eli Giles Jenkin Ludwig Polidore

Pompey Rees Rowland Simon Tobias William

Prospero Reginald Ryan Stephen Tristram Williams

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 112 -

Quivier Richard Salamon Steven Valentine Wombell

Ralph Robert Sampson Symon Vincent Wymond

Randall Roger Samuel Thadeus Walter Zacharias

Randel Roland Sander Theodosius Warham Zachary

Randolph Roman Sean Thomas Watkin

Reece Rook Silvester Timothy Wilfred

A.2 Woman Name List

Agnes Dionise Gartheride Laura Petronella

Alice Dolora Georgette Lauren11 Phillipa

Amanda Dorothea Grace Lettice Prudence

Amie Dorothy Gwenhoivar Luce Rachel

Ann Ebotte Heather Lucretia Rawsone

Anna Edith Helen Lucy Rebecca

Annabella Effemia Helena Mable Rosanna

Anne Eleanor Hellen Magdalen Rose

Ashley Elena Isabel Magdalena Samantha13

Aveline Elianora Isabella Magdalene Sarah

Barbara Elinor Jane Margaret Sibil

Beatrice Elizabeth Janikin Margareta Sibill

Blanche Ellen Jennette Margarete Stephanie

Bridget Ellena Jennifer Margarita Susanna

Brittany Ellois Jessica Margerie Susannah

Cassandra Ely Joan Margery Susanne

Catherine Emily Joane Maria Suzanna

Cecily Emma Jocatta Marian Sybil

Charity Etheldreda Jocosa Marion Tabitha

Christiana Ethelreda Johanna Martha Thomasina

Christina Ethelrede Jone Mary Thomazine

Cicilia Faith Joyce Matilda Ursula

Constance Florence Judith Megan Venetia

Danielle Frances Juliana Mildred Winefred

Dionis Francisca Katherine Nicole Winifred

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 113 -

Appendix B: MUC-7 Sample

B.1 Sample MUC-7 Text

<DOC>
<DOCID> nyt960905.0652 </DOCID>
<STORYID cat=a pri=u> A6992 </STORYID>
<SLUG fv=taf-z> BC-TWA-CRASH-NYT </SLUG>
<DATE> &LR; </DATE>
<NWORDS> 09-05 </NWORDS>
<PREAMBLE>
BC-TWA-CRASH-NYT
ROUGH SEAS PARALYZE SEARCH FOR PLANE WRECKAGE
(sw)
By ANDREW C. REVKIN
c.1996 N.Y. Times News Service
</PREAMBLE>
<TEXT>
<p>
 SMITHTOWN, N.Y. &MD; On the 50th day after the crash of Trans World
Airlines Flight 800, senior investigators said that persistent
rough seas off the coast of Long Island had paralyzed efforts to
collect the remaining wreckage of the shattered jumbo jet.
<p>
 But some of the most coveted pieces of wreckage were still
missing, he said, including many parts of the center fuel tank,
which sat under a group of seats that many investigators say were
the likely center of the explosion.
</TEXT>
<TRAILER>
NYT-09-05-96 2017EDT
</TRAILER>
</DOC>

B.2 Sample MUC-7 Key

<DOC>

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 114 -

<DOCID> nyt960905.0652 </DOCID>
<STORYID cat=a pri=u> A6992 </STORYID>
<SLUG fv=taf-z> BC-<COREF ID="3" MIN="CRASH"><COREF
ID="1">TWA</COREF>-CRASH</COREF>-NYT </SLUG>
<DATE> &LR; </DATE>
<NWORDS> <COREF ID="79">09-05</COREF> </NWORDS>
<PREAMBLE>
BC-<COREF ID="2" TYPE="IDENT" REF="3" MIN="CRASH"><COREF ID="0"
TYPE="IDENT" REF="1">TWA</COREF>-CRASH</COREF>-NYT
<COREF ID="9" MIN="SEAS">ROUGH SEAS</COREF> PARALYZE <COREF
ID="11" MIN="SEARCH">SEARCH FOR <COREF ID="13"
MIN="WRECKAGE"><COREF ID="7">PLANE</COREF>
WRECKAGE</COREF></COREF>
(sw)
By ANDREW C. REVKIN
c.1996 N.Y. Times News Service
</PREAMBLE>
<TEXT>
<p>
 SMITHTOWN, N.Y. &MD; On the 50th day after <COREF ID="4"
TYPE="IDENT" REF="2" MIN="crash">the crash of <COREF ID="6"
TYPE="IDENT" REF="7" MIN="Flight 800"><COREF ID="5" TYPE="IDENT"
REF="0">Trans World
Airlines</COREF> Flight 800</COREF></COREF>, senior investigators said that
<COREF ID="8" TYPE="IDENT" REF="9" MIN="seas">persistent
rough seas</COREF> off the coast of Long Island had paralyzed <COREF ID="10"
TYPE="IDENT" REF="11" MIN="efforts">efforts to
collect <COREF ID="12" TYPE="IDENT" REF="13" MIN="wreckage">the
remaining wreckage of <COREF ID="14" TYPE="IDENT" REF="6" MIN="jet">the
shattered jumbo jet</COREF></COREF></COREF>.
<p>
 But some of the most coveted pieces of wreckage were still
missing, <COREF ID="68" TYPE="IDENT" REF="66">he</COREF> said, including
many parts of the center fuel tank,
which sat under a group of seats that many investigators say were
the likely center of <COREF ID="69" TYPE="IDENT" REF="55">the
explosion</COREF>.
</TEXT>
<TRAILER>
NYT-<COREF ID="78" TYPE="IDENT" REF="79">09-05-96</COREF> 2017EDT
</TRAILER>
</DOC>

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 115 -

Bibliography

[Amit and Baldwin, 1998] Bagga Amit and Breck Baldwin. 1998. Algorithms for

scoring coreference chains. In Proceedings of the Seventh Message

Understanding Conference(MUC-7).

[Annie] Annie. http://www.aktors.org/technologies/annie/

[Aone and Bennett, 1995] Chinatsu Aone and Scott W. Bennett. 1995. Evaluating

automated and manual acquisition of anaphora resolution strategies. In

Proceeding of the 33th Annual Meeting of the Association for Computational

Linguistics, Pages 122-129.

[Baldwin, 1995] Breck Baldwin. 1995. CogNiac: A discourse processing engine. Ph.D.

Thesis, University of Pennsylvania, Department of Computer and Information

Sciences.

[Cardie and Wagstaff, 1999] Clarie Cardie and Kiri Wagstaff. 1999. Noun phrase

coreference as clustering. In Proceedings of the 1999 Joint SIGDAT Coreference

on Empirical Methods in Natural Language Processing and Very Large Corpora ,

82-89, Association for Computational Linguistics, 1999.

[Charniak, 1972] Charniak, Eugene. 1972. Towards a model of children’s story

comprehension. AI-TR 266, Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, 1972.

[Cohen, 1995] W. Cohen. 1995. Fast Effective Rule Induction. In Proceedings of the

Twelfth International Conference on Machine Learning.

[Deemter and Kibble, 2000] Kees van Deemter and Rodger Kibble. 2000. On

Coreferring: Coreference in MUC and related annotation schemes. Computational

Linguistics, 26(4).

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 116 -

[Grosz et al., 1977] B. J. Grosz. The representation and use of focus in a system for

understanding dialogs. In Proceedings of the Fifth International Joint Conference

on Artificial Intelligence, pages 67-76, 1977.

[Grosz et al., 1995] B. J. Grosz, A. K. Joshi, and S. Weinstein. 1995. Centering: a

framework for modeling the local coreference of discourse. Computational

Linguistics, 21(2):203-226.

[Grover et al., 2000] Claire Grover, Colin Matheson, Andrei Mikheev, and Marc

Moens. 2000. LT TTT - A Flexible Tokenization Tool. In Second International

Conference on Language Resources and Evaluation, LREC'00, 2000. http://www.

ltg.ed.ac.uk/software/ ttt/.

[Halliday and Hasan, 1976] M. Halliday and R. Hasan. 1976. Cohesion in English.

Longman.

[Iida et al., 2003] Ryu Iida, Kentaro Inui, Hiroya Takamura and Yuji Matsumoto. 2003.

Incorporating Contextual Cues in Trainable Models for Coreference Resolution.

EACL Workshop “The Computational Treatment of Anaphora”, 2003.

[LT CHUNK, 1997] LT CHUNK. 1997. http://www.ltg.ed.ac.uk/software/chunk/

index.html.

[LTG] LTG Software. http://www.ltg.ed.ac.uk/software.

[McCarthy, 1996] Joseph F. McCarthy. 1996. A trainable approach to coreference

resolution for Information Extraction. Ph.D. thesis. University of Massachusetts.

[Miller, 1990] George A. Miller. 1990. WordNet: An on-line lexical database.

International Journal of Lexicography, 3(4):235-312.

[Mitkov, 1997] Ruslan Mitkov. 1997. Factors in anaphora resolution: they are not the

only things that matter. A case study based on two different approaches. In

Proceedings of the ACL’97/EACL’97 Workshop on Operational Factors in

Practical, Robust Anaphora Resolution.

[MUC-6, 1995] MUC-6. 1995. Coreference task definition (v2.3, 8 Sep 95). In

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 117 -

Proceedings of the Sixth Message Understanding Conference (MUC-6), pages

335-344.

[MUC-7, 1997] MUC-7. 1997. Coreference task definition (v3.0, 13 Jul 97). In

Proceedings of the Seventh Message Understanding Conference (MUC-7).

[Ng and Cardie, 2002a] Vincent Ng and Claire Cardie. 2002a. Improving machine

learning approaches to coreference resolution. In Proceedings of the 40th Annual

Meeting of the Association for Computational Linguistics, Pages 104-111.

[Ng and Cardie, 2002b] Vincent Ng and Claire Cardie. 2002b. Identifying anaphoric

and non-anaphoric noun phrases to improve coreference resolution. In

Proceedings of 19th International Conference on Computational

Linguistics(COLING-2002).

[Ng and Cardie, 2002] Vincent Ng and Claire Cardie. 2002. Combining sample

selection and error-driven pruning for machine learning of coreference rules. In

Proceedings of the 2002 Conference on Empirical Methods in Natural Language

Processing (EMNLP-02), pp. 55-62 Philadelphia. PA, July, 2002.

[Ng and Cardie, 2003] Vincent Ng and Claire Cardie. 2003. Weakly Supervised

Natural Language LearningWithout Redundant Views. Human Language

Technology Conference of the North American Chapter of the Association for

Computational Linguistics (HLT-NAACL 2003), Association for Computational

Linguistics, 2003.

[Ng and Cardie, 2003] Vincent Ng and Claire Cardie. 2003. Bootstrapping Coreference

Classifiers with Multiple Machine Learning Algorithms. In Proceedings of the

2003 Conference on Empirical Methods in Natural Language Processing

(EMNLP-2003), Association for Computational Linguistics, 2003.

[Quinlan, 1993] Quinlan, John Ross. 1993. C4.5: Programs for Machine Learning.

Morgan Kaufmann, San Francisco, CA.

[Siddharthan, 2003] Advaith Siddharthan. 2003. Resolving Pronouns Robustly:

Plumbing the Depths of Shallowness. In Proceedings of the Workshop on

Incorporation of constraints to improve machine learning approaches on coreference resolution

 - 118 -

Computational Treatments of Anaphora, 11th Conference of the European Chapter

of the Association for Computational Linguistics (EACL 2003).

[Sidner, 1979] Candace L. Sidner. 1979. Towards a computational theory of definite

anaphora comprehension in English discourse. TR 537, M.I.T. Artificial

Intelligence Laboratory, 1979.

[Soon et al., 2001] Wee Meng Soon, Hwee Tou Ng and Daniel Chung Yong Lim. 2001.

A machine learning approach to coreference resolution of noun phrases.

Computational Linguistics, 27(4), Page 507-520.

[Vilain, 1995] M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and L. Hirschman. 1995.

A model-theoretic coreference scoring scheme. In Proceedings of the Sixth

Message Understanding Conference (MUC-6), pages 45-52, San Francisco, CA.

Morgan Kaufmann.

[Wagstaff, 2002] Kiri Wagstaff. 2002. Intelligent Clustering with Instance-Level

Constraints. Ph.D. Dissertation.

[Wagstaff and Cardie, 2000] Kiri Wagstaff and Claire Cardie. 2000. Clustering with

instance-level constraints. In Proceedings of the Seventeenth International

Conference on Machine Learning (ICML2000), p. 1103-1110.

[Yang et al., 2003] Xiaofeng Yang, Guodong Zhou, Jian Su and Chew Lim Tan. 2003.

Coreference Resolution Using Competition Learning Approach. In Proceedings of

41th Annual Meeting of the Association for Computational Linguistics (ACL03),

Pages176-183.

