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Summary 

In this thesis, we utilize linguistic knowledge to improve coreference resolution 

systems built through a machine learning approach. The improvement is the result of 

two main ideas: incorporation of multi-level ranked constraints based on linguistic 

knowledge and conflict resolution for handling conflicting constraints within a set of 

corefering elements. The method resolves problems with using machine learning for 

building coreference resolution systems, primarily the problem of having limited 

amounts of training data. The method provides a bridge between coreference 

resolution methods built using linguistic knowledge and machine learning methods. It 

outperforms earlier machine learning approaches on MUC-7 data increasing the 

F-measure of a baseline system built using a machine learning method from 60.9% to 

64.2%. 
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1. Introduction 

1.1. Coreference Resolution 

1.1.1. Problem Statement 

Coreference resolution is the process of collecting together all expressions which refer 

to the same real-world entity mentioned in a document. The problem can be recast as a 

classification problem: given two expressions, do they refer to the same entity or 

different entities. It is a very critical component of Information Extraction systems. 

Because of its importance in Information Extraction (IE) tasks, the DARPA Message 

Understanding Conferences have taken coreference resolution as an independent task 

and evaluated it separately since MUC-6 [MUC-6, 1995]. Up to now, there have been 

two MUCs, MUC-6 [MUC-6, 1995] and MUC-7 [MUC-7, 1997] which involve the 

evaluation of coreference task.  

In this thesis, we focus on the coreference task of MUC-7 [MUC-7, 1997]. MUC-7 

[MUC-7, 1997] has a standard set of 30 dry-run documents annotated with coreference 

information which is used for training and a set of 20 test documents which is used in 

the evaluation. They are both retrieved from the corpus of New York Times News 

Service and have different domains. 
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1.1.2. Applications of Coreference Resolution 

Information Extraction 

An Information Extraction (IE) system is used to identify information of interest from 

a collection of documents. Hence an Information Extraction (IE) system must 

frequently extract information from documents containing pronouns. Furthermore, in a 

document, the entity including interesting information is often mentioned in different 

places and in different ways. The coreference resolution can capture such information 

for the Information Extraction (IE) system. In the context of MUC, the coreference 

task also provides the input to the template element task and the scenario template task. 

However its most important criterion is the support for the MUC Information 

Extraction tasks. 

Text Summarization 

Many text summarization systems include the component for selecting the important 

sentences from a source document and using them to form a summary. These systems 

could encounter some sentences which contain pronouns. In this case, coreference 

resolution is required to determine the referents of pronouns in the source document 

and replace these pronouns.  

Human-computer interaction 

Human-computer interaction needs computer system to provide the ability to 

understand the user’s utterances. Human dialogue generally contains many pronouns 
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and similar types of expressions. Thus, the system must figure out what the pronouns 

denote in order to “understand” the user’s utterances.  

1.2. Terminology 

In this section, the concepts and definitions used in this thesis are introduced.  

In a document, the expressions that can be part of coreference relations are called 

markables. Markable includes three categories: noun, noun phrase and pronoun. A 

markable used to perform reference is called the referring expression, and the entity 

that is referred to is called the referent. Sometimes a referring expression is referred as 

a referent. If two referring expressions refer to each other, they corefer in the document 

and are called coreference pair. The first markable in a coreference pair is called 

antecedent and the second markable is called anaphor. When the coreference relation 

between two markables is not confirmed, the two markables constitute a possible 

coreference pair, and the first one is called possible antecedent and the second is 

possible anaphor. Only those markables which are anaphoric can be anaphors. All 

referring expressions referring to the same entity in a document constitute a 

coreference chain. In order to determine a coreference pair, a feature vector is 

calculated for each possible coreference pair. The feature vector is the basis of the 

classifier model. 

For the sake of evaluation, we constructed the system’s output according to the 

requirement of MUC-7 [MUC-7, 1997]. The output is called responses and the key file 

is offered by MUC-7 [MUC-7, 1997] keys. A coreference system is evaluated 
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according to three criteria: recall, precision and F-measure [Amit and Baldwin, 1998]. 

1.3. Introduction 

1.3.1. Related Work 

In coreference resolution, so far, there are two different but complementary approaches: 

one is theory-oriented rule-based approach and the other is empirical corpus-based 

approach.  

Theory-oriented Rule-based Model 

Theory-oriented rule-based approaches [ Mitkov, 1997; Baldwin, 1995; Charniak, 

1972] employ manually encoded heuristics to determine coreference relationship. 

These manual approaches require the information encoded by knowledge engineers: 

features of each markable, rules to form coreference pairs, and the order of these rules. 

Because coreference resolution is a linguistics problem, most rule-based approaches 

more or less employ theoretical linguistic work, such as Focusing Theory [Grosz et al., 

1977; Sidner, 1979], Centering Theory [Grosz et al., 1995] and the systemic theory 

[Halliday and Hasan, 1976]. The manually encoded rules incorporate background 

knowledge into coreference resolution. Within a specific knowledge domain, the 

approaches achieve a high precision (around 70%) and a good recall (around 60%).  

However, language is hard to be captured by a set of rules. Almost no linguistic rule 

can be guaranteed to be 100% accurate. Hence, rule-based approaches are subject to 

three disadvantages as follows: 
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1) Features, rules and the order of the rules need to be determined by knowledge 

engineers. 

2) The existence of an optimal set of features, rules and an optimal arrangement 

of the rules set has not been conclusively established. 

3) A set of features, rules and the arrangement of rules depend much on 

knowledge domain. Even though a set of features, rules and the arrangement 

can work well in one knowledge domain, they may not work as well in other 

knowledge domains. Therefore if the knowledge domain is changed, the set 

of features, rules and the arrangement of the rules set need to be tuned 

manually again.  

Hence considering these disadvantages, further manual refinement of theory-oriented 

rule-based models will be very costly and it is still far from being satisfactory for many 

practical applications.  

Corpus-based Empirical Model 

Corpus-based empirical approaches aree reasonably successful and achieve a 

performance comparable to the best-performing rule-based systems for the coreference 

task’s test sets of MUC-6 [ MUC-6, 1995] and MUC-7 [ MUC-7, 1997]. Compared to 

rule-based approaches, corpus-based approaches have following advantages: 

1) They are not as sensitive to knowledge domain as rule-based approaches. 

2) They use machine learning algorithms to extract rules and arrange the rules 

set in order to eliminate the requirement for the knowledge engineer to 
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determine the rules set and arrangement of the set. Therefore, they are more 

cost-effective. 

3) They provide a flexible mechanism for coordinating context-independent and 

context-dependent coreference constraints. 

Corpus-based empirical approaches are divided into two groups: one is supervised 

machine learning approach [Aone and Bennett, 1995; McCarthy, 1996; Soon et al., 

2001; Ng and Cardie, 2002a; Ng and Cardie, 2002; Yang et al., 2003], which recasts 

coreference problem as a binary classification problem; the other is unsupervised 

approach, such as [Cardie and Wagstaff, 1999], which recasts coreference problem as a 

clustering task. In recent years, supervised machine learning approach has been widely 

used in coreference resolution. In most supervised machine learning systems [e.g. 

Soon et al., 2001; Ng and Cardie, 2002a], a set of features is devised to determine 

coreference relationship between two markables. Rules are learned from these features 

extracted from training set. For each possible anaphor which is considered in test 

document, its possible antecedent is searched for in the preceding part of the document. 

Each time, a pair of markables is found, it will be tested using those rules. This is 

called the single-candidate model [Yang et al., 2003]. Although these approaches have 

achieved significant success, the following disadvantages exist: 

Limitation of training data 

The limitation of training data is mostly due to training data insufficiency and “hard” 

training examples.  
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Because of insufficiency of training data, corpus-based model cannot learn sufficiently 

accurate rules to determine coreference relationship in test set. In [Soon et al., 2001; 

Ng and Cardie, 2002a], they used 30 dryrun documents to train their coreference 

decision tree. But coreference is a rare relation [See Ng and Cardie, 2002]. In [Soon et 

al., 2001]’s system, only about 2150 positive training pairs were extracted from 

MUC-7 [MUC-7, 1997], but the negative pairs were up to 46722. Accordingly the 

class distributions of the training data are highly skewed. Learning in the presence of 

such skewed class distributions results in models, which tend to determine that a 

possible coreference pair is not coreferential. This makes the system’s recall drop 

significantly. Furthermore, insufficient training data may result in some rules being 

missed. For example, if within a possible coreference pair, one is another’s appositive, 

the pair should be a coreference pair. However, appositives are rare in training 

documents, and it cannot be determined easily. As a result, the model may not include 

the appositive rule. This obviously influences the accuracy of coreference system.  

During the sampling of positive training pair, if the types of noun phrases are ignored, 

it would result in “hard” training example [Ng and Cardie, 2002]. For example, the 

interpretation of a pronoun may be dependent only on its closest antecedent and not on 

the rest of the members of the same coreference chain. For proper name resolution, the 

string matching or more sophisticated aliasing techniques would be better for training 

example generation. Consequently, generation of positive training pairs without 

consideration of noun phrase types may induce some “hard” training instances. “Hard” 

training pair is coreference pair in its coreference chain, but many pairs with the same 
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feature vectors with the pair may not be coreference pairs. “Hard” training instances 

would lead to some rules which are hazardous for performance. How to deal with such 

limitation of training data remains an open area of research in the machine learning 

community. In order to avoid the influence of training data, [Ng and Cardie, 2002] 

proposed a technique of negative training example selection similar to that proposed in 

[Soon et al., 2001] and a corpus-based method for implicit selection of positive 

training examples. Therefore the system got a better performance. 

Considering coreference relationship in isolation 

 In most supervised machine learning systems [Soon et al., 2001; Ng and Cardie, 

2002a], when the model determines whether a possible coreference pair is a 

coreference pair or not, each time it only considers the relationship between two 

markables. Even if the model’s feature sets include context-dependent information, the 

context-dependent information is only about one markable, not both two markables. 

For example, so far, no coreference system cares about that how many pronouns 

appear between two markables in a document. Therefore only local information of two 

markables is used and global information in a document is neglected. [Yang et al., 

2003] suggested that whether a candidate is coreferential to an anaphor is determined 

by the competition among all the candidates. Therefore, they proposed a 

twin-candidate model compared to the single-candidate model. Such approach 

empirically outperformed those based on a single-candidate model. The paper implied 

that it is potentially better to incorporate more context-dependent information into 
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coreference resolution. Furthermore, because of incomplete rules set, the model may 

determine that (A, B) is a coreference pair and (B, C) is a coreference pair. But actually, 

(A, C) is not a coreference pair. This is a conflict in a coreference chain. So far, most 

systems do not consider conflicts within one coreference chain. [Ng and Cardie, 2002] 

noticed the conflicts. They claimed that these were due to classification error. To avoid 

such conflicts, they incorporated error-driven pruning of classification rule set to avoid. 

However Ng and Cardie, 2002 did not take the whole coreference chain’s information 

into account either. 

Lack of an appropriate reference to theoretical linguistic work on coreference 

Basically, coreference resolution is a linguistic problem and machine learning is an 

approach to learn those linguistic rules in training data. As we have mentioned above, 

training data has its disadvantages and it may lead to missing some rules which can be 

simply formulated manually. Moreover, current machine learning approaches usually 

embed some background knowledge into the feature set, hoping the machine could 

learn such rules from these features. However, “hard” training examples influence the 

rules-learning. As a result, such simple rules are missed by the machine.  

Furthermore, it is still a difficult task to extract the optimal features set. [Ng and Cardie, 

2002a] incorporated a feature set including 53 features, larger than [Soon et al., 

2001]’s 12 features set. It is interesting that such large feature set did not improve 

system performance and even degraded the performance significantly. Instead, 

[Wagstaff, 2002] incorporated some linguistic rules into coreference resolution directly 
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and the performance increased noticeably. Therefore, there is no 100% accurate 

machine learning approach. However, simple rules can make up for the weakness. 

Another successful example is [Iida et al., 2003] who incorporated more linguistic 

features capturing contextual information and obtained a noticeable improvement over 

their baseline systems. 

1.3.2. Motivation 

Motivated by the analysis of current coreference system, in this thesis, we propose a 

method to improve current supervised machine learning coreference resolution by 

incorporating a set of ranked linguistic constraints and a conflict resolution method.   

Ranked Constraints 

Directly incorporating linguistic constraints makes a bridge between theoretical 

linguistic findings and corpus-based empirical methods. As we have mentioned above, 

machine learning can lead to missing rules. In order to avoid missing rules and to 

encode domain knowledge that is heuristic or approximate, we devised a set of 

constraints, some of which can be violated and some of which cannot. The constraints 

are seen as ranked constraints and those which cannot be violated are provided with 

the infinite rank. In this way, the inflexibility of those rule-based systems is avoided. 

Furthermore, our constraints include two-level of information: one is pair level and the 

other is markable level. Pair-level constraints include must-link and cannot-link. They 

are simple rules based two markables. Markable-level constraints consist of 

cannot-link-to-anything and must-link-to-something. They are based on single 
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markable. And they guide the system to treate anaphors differently. All of them can be 

simply tested. And the most important is that the constraints avoid overlooking local 

information by using global information from the whole documents, while current 

machine learning methods do not pay enough attention to the global information. By 

incorporating constraints, each anaphor can have more than one antecedent. Hence the 

system replaces the single-link clustering with multi-link clustering (described in 

Chapter 4). For example, one of the constraints indicates that proper names with the 

same surface string in a document should belong to the same equivalence class.   

Conflict Resolution: 

As we mentioned above, in testing, conflicts may appear in a coreference chain. This 

should be reliable signal of error. In this thesis, we also proposed an approach to make 

use of the signals to improve the system performance. When conflict arises, the 

conflict is measured and a corresponding process is called to deal with the conflicts.  

Because of the use of conflict resolution, the ranked constraint’s reliability is reduced. 

Hence the constraints become more heuristic and approximate. As a result, the 

system’s recall is improved significantly (from 59.6 to 63.8) and precision is improved 

at the same time (from 61.7 to 64.1).  

We observed that by incorporating some simple linguistic knowledge, constraints and 

conflict resolution can reduce the influence of training data limitation to a certain 

extent. By devising multi-level constraints and using the coreference chain’s 

information, coreference relationship becomes more global, not isolated. In the 
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following chapter, we show how the new approach achieves the F-measure of 64.2 

outperforming earlier machine learning approaches, such as [Soon et al., 2001]’s 60.4 

and [Ng and Cardie, 2002a]’s 63.4.  

In this thesis, we duplicated Soon work as the baseline for our work. Before we 

incorporated constraints and conflict resolution, we added two more steps, head noun 

phrase extraction and proper name identification, into Natural Language Processing 

(NLP) pipeline. By doing so, the baseline system’s performance increases from 59.3 to 

60.9 and consequently achieves an acceptable performance. In Chapter 2, the two 

additions are described in detail. 

1.4. Structure of the thesis 

The rest of the thesis is organized as follows:  

Chapter 2 and Chapter 3 will introduce the baseline system’s implementation. Chapter 

2 will introduce the natural language processing pipeline used in our system and 

describe the two additional steps, noun phrase extraction and proper name 

identification, and the corresponding experimental result. Chapter 3 will introduce the 

baseline system based on [Soon et al., 2001] in brief. 

Chapter 4 and Chapter 5 will introduce our approach in detail. Ranked constraints will 

be introduced in Chapter 4. In this Chapter, we will give the types and definitions of 

constraints we incorporate in our system. Chapter 5 will describe the conflict 

resolution algorithm in detail. 

In Chapter 6, we will evaluate our system, by comparing it with some existing systems, 
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such as [Soon et al., 2001]. And we also show the contributions of constraints and 

conflict resolution respectively. At the end of this chapter, we will analyze the 

remaining errors in our system. 

Chapter 7 will conclude the thesis, highlight its contributions to coreference resolution 

and describe the future work.      
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2. Natural Language Processing Pipeline 

2.1. Markables Definition 

Candidate which can be part of coreference chains are called markable in MUC-7 

[ MUC-7, 1997]. According to the definition of MUC-7 [ MUC-7, 1997] Coreference 

Task, markables include three categories whether it is the object of an assertion, a 

negation, or a question: noun, noun phrase and pronoun. Dates, currency expression 

and percentage are also considered as markables. However interrogative "wh-" noun 

phrases are not markables.  

Markable extraction is a critical component of coreference resolution, although it does 

not take part in coreference relationship determination directly. In the training part, two 

referring expressions cannot form a training positive pair if either of them is not 

recognized as markable by the markable extraction component even if they belong to 

the same coreference chain. In the testing part, only markables can be considered as a 

possible anaphor or a possible antecedent. Those expressions which are not markables 

will be skipped. In this case markable extraction component performance is an 

important factor in coreference system’s recall. It also means markable extraction 

component performance determines the maximum value of recall.  
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2.2. Markables Determination 

In this thesis, a pipeline of natural language processing (NLP) is used as shown in 

Figure 2.1. It has two primary functions. One is to extract markables from free text as 

actually as possible and at the same time determine the boundary of those markables. 

The other is to extract linguistic information which will be used in later coreference 

relationship determination. Our pipeline of natural language processing (NLP) imitates 

the architecture of the one used in [Soon et al., 2001]. Both pipelines consist of 

tokenization, sentence segmentation, morphological processing, part-of-speech tagging, 

noun phrase identification, named entity recognition, nested noun phrase extraction 

Tokenization & Sentence Segmentation 

Morphological Processing & POS tagging 

Noun Phrase Identification 

Nested Noun Phrases 
Extraction 

Name Entity 
Recognition 

Semantic Class Determination 

Head Noun Phrases Extraction 

Proper Name Identification 

Free text 

Markables

Figure 2.1 
The architecture of natural language processing pipeline.
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and semantic class determination. Besides these modules, our NLP pipeline adds head 

noun phrase extraction and proper name identification to enhance the performance of 

NLP pipeline and to compensate the use of a weak named entity recognition that we 

used. This will be discussed in detail later. 

2.2.1. Toolkits used in NLP Pipeline 

In our NLP pipeline, three toolkits are used to complete the task of tokenization, 

sentence segmentation, morphological processing, part-of-speech tagging, noun phrase 

identification and named entity recognition.  

LT TTT [Grover et al., 2000], a text tokenization system and toolset which enables 

users to produce a swift and individually-tailored tokenization of text, is used to do 

tokenization and sentence segmentation. It uses a set of hand-craft rules to token input 

SIML files and uses a statistical sentence boundary disambiguator which determines 

whether a full-stop is part of an abbreviation or a marker of a sentence boundary. 

LT CHUNK [LT CHUNK, 1997], a surface parser which identifies noun groups and 

verb groups, is used to do morphological processing, part-of-speech tagging and noun 

phrase identification. It as well as LT TTT [Grover et al., 2000] is offered by the 

Language Technology Group [LTG]. LT CHUNK [LT CHUNK, 1997] is a partial 

parser, which uses the part-of-speech information provided by a nested tagger and 

employs mildly context-sensitive grammars to detect boundaries of syntactic groups. It 

can identify simple noun phrases. Nested noun phrases, conjunctive noun phrases as 

well as noun phrases with post-modifiers cannot be recognized correctly. Consider the 
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following example: 

Sentence 2.1 (1): ((The secretary of (Energy)a1)a2 and (local farmers)a3)a4 have 

expressed (concern)a5 that (a (plane)a6 crash) a7 into (a ((plutonium) a8 storage) a9 

bunker)a10 at (Pantex) a11 could spread (radioactive smoke) a12 for (miles)a13. 

Sentence 2.1 (2):  (The secretary)b1 of (Energy)b2 and (local farmers)b3 have 

expressed (concern)b4 that (a plane crash)b5 into (a plutonium storage bunker)b6 at 

(Pantex)b7 could spread (radioactive smoke)b8 for (miles)b9. 

The sentence is extracted from MUC-7 [MUC-7, 1997] dryrun documents and it is 

shown twice with different noun phrase boundaries. The first sentence is hand-crafted 

and the second is the output of LT CHUNK. Among 13 markables, LT CHUNK tagged 

8 of them (a1, a3, a5, a7, a10, a11, a12, a13) correctly, missed 4 of them (a4, a6, a8, a9) 

and tagged one (a2,) by error. Among 4 missed markables, “a4” is a conjunctive noun 

phrase and a6, a8 as well as a9 are nested noun phrases. Among the errors, a2 is a noun 

phrase with post-modifier, “Energy”, and is tagged as b1. Fortunately, It is possible to 

extend it to a2 automatically, because besides the article, “The”, b1’s string matches 

with the string of a2’s head noun phrase, “secretary”. In the following sections, 

modules which can deal with such problems will be introduced.  

As for named entity recognition, in our system dryrun documents, we use the MUC-7 

NE keys. For formal documents, we use named entity recognizer offered by Annie 

[Annie], Annie [Annie] is an open-source, robust Information Extraction (IE) system 

which relies on finite state algorithms. Unfortunately, Annie’s performance is much 
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lower than the MUC standards. Tested on coreference task’s 30 dryrun document, its 

F-measure is only 67.5, which is intolerable for the coreference task. To make up for 

the weakness to a certain extent, we incorporated a module, proper name identification, 

into NLP pipeline. This module will be introduced in detail later.  

2.2.2. Nested Noun phrase Extraction 

Nested noun phrase extraction accepts the LT CHUNK’s output and extracts 

prenominals from the simple noun phrases tagged by LT CHUNK. According to [Soon 

et al., 2001], there are two kinds of nested noun phrases that need to be extracted: 

Nested noun phrases from possessive noun phrases: Possessive pronouns (e.g. “his” 

in “his book”) and the part before “’s” of a simple noun phrase (e.g. “Peter” in “Peter’s 

book”). 

Prenominals: For instance, in “a plutonium storage bunker”, “plutonium” and 

“storage” are extracted as nested noun phrases. 

After this model, a7 and a8 in above example which were missed by LT CHUNK can 

be recognized correctly. But according to the task definition of MUC-7 [MUC-7, 1997] 

coreference resolution, nested noun phrases can be included into coreference chain 

only if it is coreferential with a named entity or to the syntactic head of a maximal 

noun phrase. Therefore after getting coreference chains, those chains which consist of 

only nested noun phrases, but no named entity and syntactic head of a maximal noun 

phrase, will be deleted. 
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2.2.3. Semantic Class Determination 

This is an important component for later feature vectors computation. Most linguistic 

information is extracted from here. We use the same semantic classes and ISA 

hierarchy as [Soon et al., 2001]’s and we also incorporate WordNet 1.7.1’s synset 

[Miller, 1990] to get the semantic class for common nouns. The main difference is in 

the gender information extraction. Besides WordNet’s output, pronouns and 

designators (e.g. “Mr.”, “Mrs.”), we incorporate a woman name list and a man name 

list (See Appendix A). If a person’s name is identified by named entity recognition, we 

will search in name lists to see whether the name is a woman’s name, a man’s or 

neither. 

2.2.4. Head Noun Phrases Extraction 

Head noun phrase is the main noun without left and right modifiers in a noun phrase. 

The maximal noun phrase includes all text which may be considered a modifier of the 

noun phrase, such as post-modifiers, appositional phrases, non-restrictive relative 

clauses, prepositional phrases which may be viewed as modifiers of the noun phrase or 

of a containing clause. MUC-7 [MUC-7, 1997] required that the string of a markable 

generated by NLP pipeline must include the head of the markable and may include any 

additional text up to a maximal noun phrase. Because pre-processing cannot determine 

accurate boundaries of noun phrases, if the boundary of a markable is beyond its 

maximal noun phrase, the markable cannot be recognized as an accurate antecedent or 

anaphor by MUC Scorer program. But after noun phrase extraction (Shown in Figure 
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2.2), the new markable which is its head noun phrase can be recognized by MUC 

Scorer. Accordingly, head noun phrase extraction can form a screen for inaccurate 

boundary determination and improve system’s recall. For example: 

Sentence 2.2: The risk of that scenario, previously estimated at one chance in 10 

million, is expected to increase when current flight data are analyzed (later (this 

(year)1)2)3, according to a safety board memo dated May 2. 

The example is extracted from MUC-7 [MUC-7, 1997] dryrun document. In this 

example, boundary 3 is determined by NLP pipeline without head noun phrase 

extraction. Boundary 2 is determined by hand which can be recognized as an accurate 

referring expression by MUC Scorer and boundary 1 can also be accepted by Scorer. It 

is obvious that boundary 3 cannot meet Scorer’s requirement and it leads to missing a 

referring expression. But after head noun phrase extraction, “this year” (head noun 

phrase is “year”) is recovered. 

Another valuable contribution of noun phrase extraction is that it can improve system’s 

 
Algorithm Head-Noun-Phrase-Extraction ( MARKABLE : set of all markables) 

for MARKABLESEMCLASSii ∈)_(  do 

=:HeadNP the most right noun of i  
if HeadNP is different from i  then 

    SEMCLASSiSEMCLASSHeadNP _:_ =  

    })_({: SEMCLASSHeadNPHeadNPMARKABLEMARKABLE U=  

return MARKABLE  
 
 
Figure 2.2:  
The Noun Phrase Extraction Algorithm 
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performance noticeably by head noun string matching. Actually, in [Soon et al., 2001], 

String match is only for the whole markable’s string excluding articles and 

demonstrative pronouns. Consider the following sentence extracted from MUC-7 

[MUC-7, 1997] dryrun document: 

Sentence 2.3: Mike McNulty, the FAA air traffic manager at Amarillo International, 

said (the previous (aircraft) [count])1, conducted in late 1994, was a ``(manual 

[count])2 on a pad,'' done informally by air traffic controllers. 

The two “count”s between square brackets are coreferential. And markable 1 and 

markable 2 are determined by NLP pipeline without noun phrase extraction. Even 

though two markables’ boundaries can meet the requirement of MUC Scorer, 

coreference resolution cannot recognize their coreference relationship. It is partially 

because their string match value is negative (See Figure 3.1). But after noun phrase 

extraction, two “count”s are extracted as isolate markables respectively. According to 

the string match, their coreference relationship can be recognized correctly. This is 

why head noun phrase extraction can recover some coreference relations. Later, we 

will show that head noun phrase extraction can improve the system’s performance 

significantly –recall improved from 56.1 to 62.7 (Table 2.1). 

After adding head noun phrase extraction, there may be two markables with the same 

head noun appearing in a coreference chain or even two different coreference chains. 

In our system if two markables with the same head noun appear in coreference chains, 

the shorter markable will take the place of the longer. This is called head noun 

preference rule. If they are in different chains, the conflict resolution will be used. 
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Later we will describe it in detail in Chapter 5. 

2.2.5. Proper Name Identification 

We introduce the proper name identification into NLP pipeline because of two reasons: 

One has been mentioned in 2.2.1: Annie’s poor performance. Its score on the MUC-7 

[MUC-7, 1997] named entity task for coreference task’s 30 dryrun documents is only 

67.5 in F-measure (Recall is 73.1, precision is 79.6). It is far from the MUC-7 standard. 

Through reading its output, we find that we can adjust it to meet our requirement in 

such a way: 

Annie always remembers the named entity’s string exactly as it first appears in the 

document. Accordingly, Annie misses other different expressions of the named entity 

in the later document. For example, “Bernard Schwartz” is the first appearance of the 

person in the document and it is recognized as “PERSON” correctly, but the following 

“Schwartz”s are all missed by Annie. For another example, “Loral” is recognized as 

“ORGANIZATION” correctly, but the following named entities including “Loral” are 

missed, for example “Loral Space” is recognized as two named entities: “Loral” and 

“Space”. To obtain more named entities, we add a post-processing for Annie: for each 

named entity recognized by Annie, search for its aliases in the document and endow 

them the same named entity class with the one recognized by Annie. 
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The other reason incorporating proper name identification is due to nested noun phrase 

and head noun phrase extraction. As we know, proper name cannot be separated into 

sub noun phrases. But nested noun phrase and head noun phrase extraction still apply 

to those proper names which are not recognized as named entities. Consider the 

example: “Warsaw Convention”. Our named entity recognition does not recognize it as 

a named entity. Therefore “Warsaw” and “Convention” are extracted as markables by 

nested noun phrase extraction and head noun phrase extraction, respectively. 

 
Algorithm Proper-Name-Identification ( MARKABLE : set of all markables) 

for )_(),..,_( 11 SEMiiSEMii nn ∈ MARKABLE  && they are consecutive proper 

names connected by “&”,”/” or nothing do 

operNamePr =: { )_(),..,_( 11 SEMiiSEMii nn }; 

for )_( SEMjj ∈ operNamePr do 

    )_( SEMjj := )_( SEMjj ’s root markable with the same head noun; 

K =: the text covered by operNamePr ’s member and their interval string; 

;_:_ SEMiSEMK n=  

MARKABLE =: MARKABLE );_( SEMKKU  

for )_( SEMjj ∈ operNamePr do 

    if )_( SEMjj is not named entity then 

     MARKABLE =: MARKABLE /{ )_( SEMjj ,its including markables}; 

return MARKABLE ; 
 
 
Figure 2.3 
The Proper Name Identification Algorithm 
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Consequently, all “Warsaw Convention” in the document are extracted. Because of the 

string match and head noun phrase preference rule (mentioned in last section), all the 

“Convention”s form a coreference chain but all the “Warsaw Convention”s are missed. 

It causes system’s performance drop noticeably. Proper name identification is required 

to resolve such problems. Figure 2.3 shows the module’s algorithm. It recognizes the 

consecutive tokens tagged with “NNP” or “NNPS” as a markable without nested noun 

phrases and head noun phrases (“NNP” and “NNPS” are added by POS tagging. The 

token tagged with one of them should be a part of a proper name.). If there is a token, 

“&”or“/”, between two proper names, then combine the token and the two proper 

names to a proper name. In next section we will show through experimental result that 

proper name identification not only can make up the weakness of named entity 

recognition but also can improve the system’s performance.  

2.2.6. NLP Pipeline Evaluation 

In order to evaluate head noun phrase extraction and proper name identification, we 

tested four different NLP pipelines: NLP without noun phrase extraction and proper 

name identification, NLP with only noun phrase extraction, NLP with only proper 

name identification and NLP with both modules. All four NLP pipelines use LT TTT 

[Grover et al., 2000] to do tokenization and sentence segmentation procession, use LT 

CHUNK [LT CHUNK, 1997] to do morphological processing and POS tagging, and 

use Annie to do named entity recognition. They share the common nested noun phrase 

extraction and semantic class determination module. We take the four NLP pipeline’s 
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outputs as coreference resolution system’s input. There are three coreference resolution 

systems used in the experiment: duplicated Soon baseline system, our complete system 

with ranked constrains and conflict resolution, and the one chain system (all markables 

form a coreference chain). There are two sets of data used: MUC-7 [MUC-7, 1997] 30 

dryrun documents and MUC-7 [MUC-7, 1997] 20 formal documents. Unfortunately, 

we have no hand annotated corpora to test NLP pipeline. Therefore we cannot evaluate 

NLP pipeline’s performance directly. But the coreference scorer results can imply their 

performances. The result is shown in Table 2.1.  

dryrun (30) formal(20) 
System Variation 

R P F R P F 

Soon et al. / / / 56.1 65.5 60.4 
Ng and Cardie 2002a / / / 57.4 70.8 63.4 

Duplicated Soon Baseline       
None 49.2 74.0 59.1 51.0  70.8  59.3 
Proper Name only 49.3 74.3 59.2 51.0  71.7  59.6 
Head Noun Phrase only 57.1 64.7 60.3 58.9  60.1  59.5 
Head NP and Proper Name 57.4 64.7 60.9 59.6  62.3  60.9 

Our Complete System       
None 52.0 73.1 60.8 56.1  70.2  62.4 
Proper Name only 52.1 73.4 60.9 56.2  71.2  62.8 
Head Noun Phrase only 59.5 66.5 62.8 62.7  62.2  62.5 
Head NP and Proper Name 59.8 67.2 63.3 63.7  64.7  64.2 

One Chain       
Soon et al. / / / 87.5 30.5 45.2 
None 87.5 30.1 44.8 88.7  30.1  44.9 
Proper Name only 87.5 30.4 45.1 88.6  30.6  45.5 
Head Noun Phrase only 89.2 22.4 35.8 90.7  22.4  36.0 
Head NP and Proper Name 89.2 22.7 36.2 90.6  23.0  36.6 

 
Table 2.1: 
MUC-7 results of complete and baseline systems to study the contribution of head noun 
phrase extraction and proper name identification. Recall, Precision and F-measure are 
provided. “One chain” means all markables form one coreference chain. 
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Table 2.1 shows that both head noun phrase extraction and proper name identification 

can enhance the performance of NLP pipeline as well as coreference system’s 

performance. Head noun phrase extraction can make recall increase about 7.9 percent 

and proper name identification mostly improves the precision. If two modules are both 

used, then the result achieved is the best.  

Head noun phrase extraction’s contribution is reflected well from one chain system’s 

results. One chain system can tell us the maximum recall that coreference system can 

achieve based one NLP pipeline. And the higher recall means more markables can be 

extracted correctly by NLP pipeline. It reflects the capability of a NLP pipeline. From 

Table 2.1, we see that head noun phrase extraction improves recall about 2 % on both 

data sets. And the recall on formal data exceeds [Soon et al., 2001]’s by 3.2%.  For 

the other two systems, the recall increase is much higher, approximately 7 percent. 

Although the precision drops, the F-measures did not drop and sometimes even 

increases. 

As for proper name identification, we see that although recall does not change too 

much, all the precisions increase, and F-measures also increase a little bit. 

After adding the two modules, duplicated Soon baseline’s result (60.9) can beyond 

[Soon et al., 2001]’s (60.4). It shows that two modules not only can make up for the 

weakness of NLP pipeline (mostly because named entity recognition), but can also 

improve the performance. This is also true for our complete system. The best result 

(64.2) is achieved after adding the two modules, which is higher than most coreference 

systems, such as [Soon et al., 2001; Ng and Cardie, 2002a]. 
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The experiment shows that NLP pipeline is a critical for a coreference system. After 

adding the two modules, our duplicated Soon baseline system achieves an acceptable 

result (60.9). In this thesis, we take it as our departure point. In the later chapters, we 

will describe how to improve the performance of the baseline system through ranked 

constraints and conflict resolution.   
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3. The Baseline Coreference System 

Our system takes [Soon et al., 2001] as the baseline model. [Soon et al., 2001] is the 

first system machine learning system with comparable result to that of state-of-the art 

non-learning systems on data sets of MUC-6 [MUC-6, 1995] and MUC-7 [MUC-7, 

1997]. The system used a feature set including 12 features, decision tree trained by 

C5.0 and a right-to-left search for the first antecedent to determine coreference 

relationship. After adding head noun phrase extraction module and proper name 

identification module into our NLP pipeline, the duplicated Soon baseline system has 

achieved an acceptable result, 60.9, comparing to Soon et al.’s 60.4. In this chapter, we 

will describe the baseline system’s feature set, training approach and testing approach 

in brief. More details can be found in [Soon et al., 2001]. 

3.1. Feature Vector 

 [Soon et al., 2001] proposed a feature set including 12 features, which contains 

propositional, lexical, grammatical and semantic information. The feature set is simple 

and effective, and it can lead to comparable result to that of non-learning systems. 

After [Soon et al., 2001], [Ng and Cardie, 2002a] extended [Soon et al., 2001]’s feature 

set to include 53 features. However, 53 features made the performance drop 

significantly. It proves that more features do not mean higher performance. 

Consequently in this thesis, we do not do any change to [Soon et al., 2001]’s feature 
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set but put our emphasis on ranked constraints and conflict resolution.  

Table 3.1 describes our system’s feature set based [Soon et al., 2001]’s. The features 

can be linguistically divided into four groups: positional, lexical, grammatical and 

semantic. The positional feature considers the position relation between two markables. 

The lexical features test the relation based on markables’ corresponding surface strings. 

The grammatical features can be divided into 2 sub groups. One determines the NP 

Feature Type Feature Description 

Positional   DIST 
The number of sentences between i and 
j. O is i and j are in the same sentence 

  STR_MATCH 
1 if i matches the string of j, else 
0.Articles and demonstrative pronouns 
are removed in advance Lexical 

  ALIAS 
1 if i is an alias of j or vice versa, else 0.i 
and j should be named entities with the 
same semantic class 

I_PRONOUN 1 if i is a pronoun, else 0 
J_PRONOUN 1 if j ,is a pronoun, else 0 
DEF_NP 1 if j is a definite noun phrase, else 0 

DEM_NP 
1 if j is a demonstrative noun phrase, 
else 0 

NP type 

PROPER_NAME 
1 if both i and j are proper names, else 0. 
Prepositions such as "of" or "and" are 
not considered 

NUMBER 1 if i and j agree in number, else 0 

GENDER 
2 if either i or j's gender is unknown, 
else 1 if i and j agree in gender, else 0 

Grammatical 

Linguistic 
constraints 

APPOSITIVE 1 if j is in apposition to i, else 0 

Semantic   SEMCLASS 

1 if i and j are in agreement if one is the 
parent of the other or they are the same, 
else 0 if neither semantic class is 
unknown, else compare their head noun 
strings, 1 if matched, 2 else.  

 

Table 3.1: 
Feature set for the duplicated Soon baseline system. i and j are two extracted markables. 
And i is the possible antecedent and j is the possible anaphor. 
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type, such as definite, indefinite, demonstrative NP, proper name. The other determines 

some linguistic constraints, such as number agreement, gender agreement. The 

semantic feature gives markable corresponding semantic class: person, male, female, 

organization, location, money, percent, date and time. The definition of each feature is 

listed in Table 3.1. More details can be found in [Soon et al., 2001]. 

3.2. Classifier 

3.2.1. Training Part 

In training part, most machine learning coreference systems used C4.5 [Quinlan, 1993], 

C5.0, an updated version of C 4.5 [Quinlan, 1993], or RIPPER [Cohen, 1995], an 

information-gain-based rule learning system. [Soon et al., 2001] used C5.0 to train its 

decision tree. In our system, C4.5 [Quinlan, 1993] is used to build the classifier and 

default setting for all C4.5 parameters is used, except the pruning confidence level. 

The pruning confidence level is equal to that of [Soon et al., 2001], 60.  

The main difference among machine learning coreference systems is the training 

example generation, especially positive training pair generation. 

Positive training pair generation can be divided into three approaches roughly. The 

simplest approach is to create all possible pairing in a coreference chain. We call the 

approach RESOLVE (because it is the way RESOLVE [McCarthy, 1996] used).  This 

approach may lead to too many “hard” training examples as we have mentioned above. 

Another approach, better than RESOLVE, is [Soon et al., 2001]’s approach. [Soon et 

al., 2001] only extracted the pairs consisting of two referring expressions immediately 
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adjacent in a coreference chain. Even though there will be less positive pairs, more 

accurate classifier can be obtained. The third approach is more sophisticated than 

former two. It introduces some rules into the selection of positive training pairs. For 

example, in [Ng and Cardie, 2002a], they used different generating ways for 

non-pronominal anaphor and pronoun anaphor. [Ng and Cardie, 2002] even used a 

more complex approach to generate positive training pair. It incorporates a rule learner 

into the positive training pair generation. By doing so, they discarded those pairs that 

do not satisfy rules learned from the training data.  

Ng and Cardie showed that the third approach can obtain the most accurate classifier. 

For simplicity, our system uses [Soon et al., 2001]’s approach to generate positive 

training pair. As to negative training pair generation, for each positive training pair, we 

extract the markables between the pair, excluding those markables which has the 

common part with the two referring expression of the positive training pair. Each of 

the extracted markables is paired with the positive training pair’s anaphor and to form 

a negative training pair. Using our NLP pipeline with head noun phrase extraction 

module and proper name identification module, we can extract 1532 positive training 

pairs which occupy 3.5% among total training pairs we get.  

Figure 3.1 shows the decision tree our system used. The tree learned from MUC-7 

data sets uses 12 features. In general, we see that STR_MATCH and GENDER are two 

most important features for coreference relationship determination. 
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3.2.2. Testing Part 

In testing part, [Soon et al., 2001] proposed a right-to-left search which is a good fit to 

the procession of how humans process documents.  

Documents are written with the assumption that a human will be reading them. Like 

humans, [Soon et al., 2001]’s system processes a document from the beginning to end. 

Whenever the system encounters a markable in the document, except the first 

markable, the system searches the markable’s antecedent from right to left till it finds 

one recognized by decision tree. If there is no antecedent found, the markable is 

considered non-anaphoric and the system moves on to the next markable.  

It should be noticed that the test processing should match with the generation of 

training pairs. In [Soon et al., 2001], positive pair is the adjustment referring 

expressions in a coreference chain, Therefore in testing processing, [Soon et al., 2001] 

uses the first antecedent recognized by decision tree as the anaphor’s antecedent. But 

in [Ng and Cardie, 2002a], positive pair is generated differently for non-pronominal 

anaphor and pronoun anaphor, Therefore in testing, [Ng and Cardie, 2002a] uses the 

best antecedent recognized by decision tree as the anaphor’s antecedent (“best” means 

the highest probability above 0.5). 

In our system, we use the right-to-left search. But in order to add constraints and 

conflict resolution, we make some modifications in testing processing, which will be 

described in detail in the following chapters.  
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STR_MATCH = 0: 
|   |   GENDER = 0: - (31.0/0.5) 
|   |   GENDER = 1: 
|   |   |   |   J_PRONOUN = 1: + (60.0/6.9) 
|   |   |   |   J_PRONOUN = 0: 
|   |   |   |   |   |   I_PRONOUN = 0: - (12.0/2.7) 
|   |   |   |   |   |   I_PRONOUN = 1: 
|   |   |   |   |   |   |   |   DIST <= 2 : + (24.0/8.9) 
|   |   |   |   |   |   |   |   DIST > 2  : - (5.0/1.7) 
|   |   GENDER = 2: 
|   |   |   |   ALIAS = 1: + (41.0/8.9) 
|   |   |   |   ALIAS = 0: 
|   |   |   |   |   |   J_PRONOUN = 0: 
|   |   |   |   |   |   |   |   APPOSITIVE = 0: - (27124.0/460.0) 
|   |   |   |   |   |   |   |   APPOSITIVE = 1: 
|   |   |   |   |   |   |   |   |   |   PROPER_NAME = 1: - (5.0/0.5) 
|   |   |   |   |   |   |   |   |   |   PROPER_NAME = 0: 
|   |   |   |   |   |   |   |   |   |   |   |   SEMCLASS = 0: + (1.0/0.4) 
|   |   |   |   |   |   |   |   |   |   |   |   SEMCLASS = 1: + (13.0/3.8) 
|   |   |   |   |   |   |   |   |   |   |   |   SEMCLASS = 2: - (2.0/0.5) 
|   |   |   |   |   |   J_PRONOUN = 1: 
|   |   |   |   |   |   |   |   SEMCLASS = 0: - (249.0/12.1) 
|   |   |   |   |   |   |   |   SEMCLASS = 2: - (1261.0/136.3) 
|   |   |   |   |   |   |   |   SEMCLASS = 1: 
|   |   |   |   |   |   |   |   |   |   NUMBER = 0: - (161.0/31.3) 
|   |   |   |   |   |   |   |   |   |   NUMBER = 1: 
|   |   |   |   |   |   |   |   |   |   |   |   I_PRONOUN = 1: + (9.0/1.7) 
|   |   |   |   |   |   |   |   |   |   |   |   I_PRONOUN = 0: 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   DIST <= 0 : + (52.0/17.1) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   DIST > 0 : - (43.0/21.0) 
STR_MATCH = 1: 
|   |   SEMCLASS = 0: + (3.0/1.6) 
|   |   SEMCLASS = 2: - (29.0/1.7) 
|   |   SEMCLASS = 1: 
|   |   |   |   DEM_NP = 1: - (5.0/1.7) 
|   |   |   |   DEM_NP = 0: 
|   |   |   |   |   |   DEF_NP = 0: + (466.0/56.7) 
|   |   |   |   |   |   DEF_NP = 1: 
|   |   |   |   |   |   |   |   NUMBER = 0: - (8.0/1.7) 
|   |   |   |   |   |   |   |   NUMBER = 1: + (146.0/36.4) 

 
Figure 3.1 
The decision tree classifier learned from MUC-7 dryrun 30 documents 
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4. Ranked Constraints 

The high-level goal of this thesis is to improve the machine learning coreference 

system effectively by incorporating linguistic background knowledge in the form of 

constraints. Some earlier systems have made such attempts. In [Ng and Cardie, 2002b], 

they used an anaphoricity classifier to filter those non-anaphoric markables before 

using coreference engine. In order to avoid the anaphoricity classifier’s 

misclassifications, they incorporated STR_MATCH constraint and ALIAS constraint 

on anaphoricity classifier. By doing so, they improved the result from 58.4 to 64.0 in 

F-measure. Another successful system incorporating constraints is [Wagstaff, 2002]. 

Before it, [Wagstaff and Cardie, 2000] had proved that incorporation of instance-level 

constraints into clustering algorithm can offer substantial benefits. Based on the former 

work [Cardie and Wagstaff, 1999] of viewing coreference resolution as a clustering 

task, [Wagstaff, 2002] incorporated instance-level hard constraints into coreference 

task and made a significant improvement. Both systems indicate that incorporation of 

linguistic constraints into coreference resolution can be a promising direction to 

improve the accuracy of the task.  

In this chapter, we will give the details of our ranked constraints. The four 

characteristics of the constraints set, linguistic-based, multi-level, ranked and 

compatible with supervised machine learning approach, will be introduced in Section 

4.1. Then we will present the definition of each constraint (Section 4.2). Finally, we 
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will discuss how to make the constraints cooperate with coreference system (Section 

4.3). And the evaluation results will be shown in Chapter 6.  

4.1. Ranked Constraints in coreference resolution 

In this thesis, we incorporate a set of constraints into a supervised machine learning 

coreference resolution [Soon et al., 2001]. The constraints have the following 

characteristics: linguistic-based, multi-level, ranked and compatible with supervised 

machine learning approach. 

4.1.1. Linguistic Knowledge and Machine Learning Rules 

Misclassification is inevitable in machine learning coreference resolution. There are 

three reasons  

Insufficient training data 

30 dryrun documents of MUC-7 [MUC-7, 1997] are used to train the coreference 

classifier in our system. Among the training data, there are only 1532 positive pairs 

which occupy about 3.4% in total training pairs. Obviously 1532 positive pairs are not 

sufficient enough to capture all rules, especially rare coreference rules, such as 

appositive rule. For example: 

Sentence 4.1: That's certainly how (Eileen Cook)a1 and ((her)a2 22-month-old 

daughter)b1, (Jessie)b2, see it. 

In this sentence, we see that a1 is not a pronoun but a2 is. Since their value of 
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STR_MATCH and GENDER are 0, 1, respectively, the decision tree (shown in Figure 

3.1) recognizes (a1-a2) as coreference pair. And next system thinks b1 and b2 are not 

coreferential because their STR_MATCH and GENDER are 0, 1, respectively and 

neither of them is pronoun. Instead, the system assigns a2 as b2’s antecedent. The 

determination is made by error because the decision tree ignores the fact that b1 and b2 

are appositive. The main reason may be that there are not sufficient positive training 

pairs to represent such appositive rule when two referring expressions in appositive 

relation agree in gender. But the rule is applied in test document. Therefore decision 

tree cannot recognize b1 and b2 correctly.  

Up to now, a decision tree with 100% accuracy is still unavailable. The highest 

precision achieved is approximately 70%. In the case of lack of sufficient training data, 

incorporating some easily-formulated constraints based on linguistic knowledge may 

be a promising idea to overcome misclassification. For instance, by adding the 

appositive must-link and nested NP cannot-link (they will be described in the next 

section), b1 and b2 are correctly recognized and a2 and b2’s error link is also removed 

successfully.     

“Hard” training example 

In general, different noun phrase types have different coreference rules. For pronoun, 

its antecedent should be the nearest antecedent in its preceding document. For proper 

name, its antecedent should be the nearest antecedent meeting the requirement of 

STR_MATCH or ALIAS. Somewhat disappointingly, more sophisticated situation 
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exists generally in coreference. For example: 

Sentence 4.2:``It means that (Bernard Schwartz)a1 can focus most of ((his)a2 time) on 

((his)a3 foster son)b1, (Peter)b2. (Bernard Schwartz)a4 is fatherly ,'' (he)c1 said. 

There are three referents: Bernard Schwartz, Peter and the speaker, “he”. In the 

sentence, a1, a2, a3, a4 refer to “Bernard Schwartz”, b1 and b2 refer to “Peter” and c1 

refers to the speaker. With regard to the decision tree shown in Figure 3.1, a1, a2, a3, 

a4, b2, and c1 form a coreference chain. In the coreference chain, (b1-b2) is missed 

and (b2-a3) as well as (a4-c1) are spurious. If we filter “hard” training examples 

according to the principle of proper name, it is possible to produce a classifier with 

higher accuracy for proper name. As a result, such spurious link as (b2-a3) would not 

appear in new coreference chains. But (a4-c1) is an exception. Although a4 is c1’s 

nearest antecedent and their semantic class, gender class are same, they are never 

coreferential. This case is too sophisticated for a machine learning approach to resolve 

without more linguistic knowledge. However it is easy, even obvious for a human. 

Because we know that a speaker is used to using the first person pronoun to refer to 

himself in his speech. Even in comparison to the most complex approach of training 

example generation (Such as [Ng and Cardie, 2002], they incorporated a rule learner to 

avoid “hard” training example as possible as they can), the rules offered by human are 

provided with more reliability than those learned by machine. Moreover, it is simpler 

and more effective to use constraints to resolve such problem in the testing part. 
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Unreliable feature value and lack of linguistic information  

In our system, the features are extracted automatically without any hand-craft 

information. Inevitably, features include some error linguistic information. The error 

features influence both training and testing. Suppose Sentence 4.2 appears in training 

documents. The classifier would learn that two markables are coreferential if they have 

appositive relation and agree in gender. Based on such classifier, link (b1-b2) in 

Sentence 4.1 would be recognized correctly. But if “Peter”’s gender is “unknown” in 

Sentence 4.2 (it is possible if “Peter” is not included in man name list), the classifier 

will miss the coreference rule again.  

Among 12 features, GENDER, SEMCLASS and NUMBER have the highest error rate 

(POS tagging and named entity recognizer should be responsible for it). Unfortunately, 

all of them still play important roles in coreference determination. Furthermore, these 

errors are almost stochastic. It is difficult for machine to capture their common 

characteristics between train data and test data. If a constraint only employs reliable 

features, it can be used to check the answers offered by decision tree. Incorporating 

such constraints not only can avoid overlooking some features but also can filter some 

errors made by unreliable features. Consider Sentence 4.1, appositive must-link gives 

feature APPOSITIVE preference on other features while avoiding error in gender. For 

example: 

Sentence 4.3: (Louis Gallois)1, (chief executive)2 of Aerospatiale, is unequivocal about 

how Europe compares to the U.S. in consolidating the aerospace and defense 

industries.  
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Markable 1 and markable 2 are coreferential because of appositive relation. But our 

named entity recognizer think “Louis Gallois” should be an organization, and semantic 

class determination module thinks “chief executive” is a person. As a result, their link 

is missed by decision tree because of the error semantic class of “Louis Gallois”. In 

our system, we give the appositive must-link a higher score to avoid such errors. 

Besides unreliable feature values, lack of linguistic information is a factor of 

misclassification. In Sentence 4.2, the 12 features set cannot distinguish the difference 

between (a4-c1) and (a1-a2) using the feature vector. This is because information about 

speaker and his speech is not included in features set. The reason why we make use of 

constraints instead of adding more features into feature set is that more features would 

bring more feature errors into the system. And the relation among features would be 

more complex. Consequently, such feature set would confuse the machine learning 

processing.  

In conclusion, the misclassification of coreference classifier is due to insufficient 

training data, “hard” training example, unreliable feature value and lack of linguistic 

information. It can be resolved by applying linguistic background knowledge in the 

form of constraints to a certain extent. Moreover constraints apply linguistic 

knowledge in a more effectively and simpler way. It results in a more robust and 

error-tolerant coreference system. 

4.1.2. Pair-level Constraints and Markable-level Constraints 

In [Wagstaff, 2002], they proposed a set of 10 pair-level hard constraints, including 9 
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cannot-links and one must-link. In this thesis, we expand constraints set to include 

markable-level constraints. Markable-level constraint is a kind of constraint applied to 

one markable in isolate, but not to a pair of markables. The constraint captures the 

common characteristics of some markables, such as anaphoricity, such as 

cannot-link-to-anything. By using it, we keep away from redundantly presenting 

cannot-link constraints on each pair formed by a markable which never takes part in 

coreference relationship. Another advantage is that some constraints cannot be 

represented by pair-level constraints. Must-link-to-something is such a markable-level 

constraint used in our system. It is difficult to be transferred to must-link or cannot-link. 

For example, “he” is the third person pronoun. It is supposed to have an antecedent. 

But it is hard to say “he” must link to a specific markable.  

4.1.3. Un-ranked Constraints vs. Ranked Constraints 

Theory-oriented rule’s inflexibility has been noted for a long time. It is because that 

language is infamous for its exceptions to rules. If a rule is violated by an actual text, 

then the rule will force the system to make an incorrect decision. However, 

machine-learning approach is better than theory-oriented rule due to its flexibility. 

How to incorporate constraints to a coreference system built through machine learning 

without any harm to its flexibility? In this thesis, we devise a set of constraints which 

is general enough to be used in a large range of knowledge domains. And we give each 

constraint a score to avoid forcing system to make incorrect decision when it is 

violated. Furthermore, when a constraint is violated, the conflict resolution technique 
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(described in Chapter 5) can help coreference system to make a correct decision 

according to corresponding scores. 

By doing so, there is no need to ensure the 100% accuracy of each constraint. 

Constraints can be more heuristic and approximate. Even in a set of constraints, one 

constraint can violate other constraints in some special case. For example: 

Sentence 4.4: “(McDonald's Chief Financial Officer)1, (Jack Greenberg)2”.  

Markable 1 and markable 2 are both proper names. Besides appositive must-link, this 

pair meets the requirement of a cannot-link, which defines that two proper names with 

totally different strings cannot be coreferential. According to the rank of each 

constraint, we can resolve such a conflict as explained in the next chapter. Suppose that 

the constraints have no score at all, we should consider removing one of them and 

ignore their great contribution in coreference resolution.  

4.1.4. Unsupervised and Supervised approach 

In this thesis, instead of popular single-link clustering, we view coreference as a 

multi-link clustering based on both classification and linguistic rules. Therefore we 

allow unsupervised learning approach and supervised learning approach to work 

harmoniously in coreference resolution. 

Single-link clustering 

In [Cardie and Wagstaff, 1999], they viewed coreference as clustering. Each cluster is 

an equivalence class including the referring expressions which refer to a common 
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entity. Although in recent years, the most popular approach is supervised machine 

learning approach and not the clustering approach, the testing part of supervised 

machine learning approach seems like a special clustering algorithm, a 

classification-based single-link clustering algorithm. Single-link means that each 

anaphor only has one antecedent in a document. Consider the following example: 

Sentence 4.5:  

<S>While the state-owned French companies' rivals across the Atlantic have been 

``extremely impressive and fast'' about coming together in mergers, European 

companies, hobbled by political squabbling and red tape, have lagged behind, 

(Gallois)1 said.</S> 

<S>…</S> 

<S>``I think in the second step, we will have to consolidate at the level of the big 

groups,'' (he)2 said.</S>  

<S>The competition is even tougher for Aerospatiale in that the U.S. dollar has 

weakened 10 percent against the French franc last year, giving U.S. companies what 

(Gallois)3 called a ``superficial'' advantage.</S> 

Markable 1, 2 and 3 form a coreference chain. The part between “<S>” and “</S>” is a 

sentence determined by sentence segmentation. The example includes four sentences. 

According to the decision tree shown in Figure 3.1, link (2-3) can be recognized 

correctly because they agree in gender and their distance is no more than one sentence. 

But link (1-2) is missed because their distance is beyond the limitation in decision tree. 
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Here the single-link clustering model should be responsible for the missing pair. The 

single-link clustering model assumes that the current anaphor’s antecedents, excluding 

the nearest one, have been in the coreference chain. It means that there are enough cues 

to introduce these antecedents into the coreference chain before testing current anaphor. 

According to the assumption, in Sentence 4.5, markable 1 should be found by 

markable 2, not by markable 3. However the assumption does not take noun phrase 

types into account. Besides distance, two markable’s types also influence the intensity 

of their link. In Sentence 4.5, markable 1 and 3 are both proper names and markable 2 

is pronoun. Therefore it is easier to find link (1-3) than link (1-2). In this case, 

single-link clustering results in some missing pairs. 

Multi-link clustering based classification and constraints 

Actually, one anaphor can have more than one antecedent. Therefore it is reasonable to 

take a current anaphor as a seed of a new cluster and add all markables which have 

direct links with it into the new cluster. Consider Sentence 4.5 again. Suppose that 

markable 3 is the current anaphor, its new cluster should include not only markable 2 

but also markable 1. Markable 2 can be added into the cluster by decision tree’s 

determination because it is the nearest antecedent to markable 3. But for markable 1, 

the rules of coreference decision tree are not reliable enough. Considering generation 

of training examples, a positive pair is formed by two adjacent referring expressions in 

a coreference chain. Therefore rules learned from training data are only suited to find 

the nearest antecedent. For those farther antecedents, they may not be good.  
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Coreference relation is distance-sensitive. Increasing distance can cause coreference 

link intensity to drop quickly. Accordingly, the rules, which are used to find farther 

antecedents, should be provided with higher reliability than those of decision tree. In 

this thesis, we make use of must-links to find farther antecedents. In Sentence 4.5, 

markable 1 is found by RC_ML1 (It is a must-link belonging to our must-links set. We 

will give its definition later). Besides high reliability, constraints are easy to be 

combined into a right-to-left-search also. Each time no more than two markables are 

tested based on a rule whether it belongs to constraints set or decision tree. By using 

the mixed rules, we view coreference task as a multi-link clustering task based on 

machine learning classification as well as linguistic rules.  

Clustering is an unsupervised machine learning approach while classification is a 

supervised machine learning approach. By incorporating constraints, we make 

clustering and classification work harmoniously within a coreference system. Our 

experimental results show that incorporating constraints improves both recall and 

precision significantly. We will describe it later. 

4.2. Ranked Constraints Definition 

In this section, we give the detail of the ranked constraints used in our system. In this 

thesis we incorporate 4 groups of constraints to coreference system built through 

machine learning approach. They are: must-link (RC_ML), cannot-link (RC_CL), 

must-link-to- something (RC_MLS), and cannot-link-to-anything (RC_CLA).  
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4.2.1. Must-link 

A must-link constraint specifies that two markables should belong to the same 

coreference chain. There are four must-links in RC_ML: 

Proper Names and String Match (RC_ML1) 

The must-link indicates that in a pair ),( ji , if both markables are proper names and 

their strings match or one is the other’s abbreviation, they can form a coreference pair 

and belong to the same coreference chain. We have included the proper name 

information and the result of string match in the feature vector. Therefore the must-link 

can be represented as the following: in a possible coreference pair’s feature vector, if 

both PROPER_NAME and STR_MATCH are “1”, or PROPER_NAME is “1” and one 

is the other’s abbreviation, they form a coreference pair and belong to the same 

coreference chain. 

Appositive Noun Phrases (RC_ML2) 

The must-link constraint indicates that in a pair ),( ji , if j  is in apposition to i , then 

they form a coreference pair. It is difficult to detect appositive noun phrases correctly 

in a document. In our system, we use a set of rules to detect appositive noun phrases. 

We assume that in an appositive pair: one should be proper name, and the other should 

not be proper name; between i  and j , there should be a comma and there is not any 

verb or conjunction; both markables should in the same sentence. In addition, we make 

use of two patterns to enhance the capability of detecting appositive noun phrases. One 
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is “ i (person), j , said(say)”, the other is “ i , j .”. Appositive is a very important rule 

because it is the only rule representing coreference relationship between proper name 

and common noun phrase in our system. Actually, common noun phrases’ coreference 

resolution is more difficult than that of proper names and pronouns. In error analysis, 

we will discuss the problem again. 

Alias and String Match (RC_ML3) 

The must-link constraint indicates that in a pair ),( ji , if both are proper names and i is 

an alias of j , but not abbreviation, or vice versa, they form a coreference pair. Like 

RC_ML1, we make use of the feature vector to obtain the parameters of RC_ML3. By 

doing so, the must-link (RC_ML3) is represented as the following: in a possible 

coreference pair’s feature vector, if PROPER_NAME and ALIAS are both “1”s, and 

the pair cannot meet the requirement of RC_ML1, they form a coreference pair and 

belong to the same coreference chain. 

Speaker and Speech (RC_ML4) 

In general, those pronouns in speech between double quotation marks have to be 

transferred before referring to the antecedent which is not in the speech, because the 

sentences in the speech belong to a different domain (different speakers) from those 

sentences out of the speech. Consider singular first person pronoun appearing in 

speech between double quotation marks, they should refer to the speaker, even though 

the speaker’s surface string is “he” or “she” ( In general, “he”, “she” and “I” should 

refer to different persons). More interestingly, singular third person pronoun appearing 
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in the speech between quotations refers to different person from the speaker “he” or 

“she”. In this case, machine cannot easily resolve such problem without the help of 

constraints. In our system, we extract speaker and his speech from documents 

according to some reliable verbs at first, such as “said”, “reported” [Siddharthan, 2003] 

and then devise a set of constraints to resolve such problem, including must-links and 

cannot-links. In this section we introduce the must-links constraints. Cannot-link 

constraints about Speaker and Speech will be introduced in next section. RC_ML4 

includes the following rules: 

1) The speaker refers to first person pronouns appearing in his speech between 

quotations if there is no number disagreement. 

2) In a speech between quotations, each pair of first person pronouns or second 

person pronouns without number disagreement is coreferential. 

3) If two speeches appear in sequence in a document and the later speaker is a 

pronoun, the later speaker refers to the former speaker. 

4.2.2. Cannot-link 

A cannot-link constraint specifies that two markables can never form a coreference pair. 

Furthermore, they cannot belong to the same coreference chain. There are three 

cannot-links in RC_CL: 

Proper Names with Totally Different Surface Strings (RC_CL1) 

The cannot-link constraint indicates that in a pair ),( ji , if both are proper names and 
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their surface strings are totally different, they satisfy the cannot-link’s conditions and 

cannot be in the same coreference chain. The “totally different” means there is no any 

common token shared by both two markables. 

Common Root Markable (RC_CL2) 

The cannot-link constraint specifies that in a pair ),( ji , if the two markables have a 

common root markable, they cannot form a coreference pair and they cannot belong to 

the same coreference chain. According to the cannot-link, a markable cannot link to its 

nested noun phrases including its head noun phrase. And each pair of these nested 

noun phrases also satisfies the conditions of RC_CL2. Although in testing part, each 

pair of referring expression determined by decision tree or RC_ML cannot have a 

common root markable because we skip those markables with a common root 

markable with current anaphor when looking for the antecedent of it, it is still possible 

that two markables with a common root markable belong to the same coreference 

chain. For example, if A and B have a common root markable and (A-C) and (B-C) are 

coreference pairs, in this case, A and B belong to the same coreference chain by error. 

The purpose of RC_CL2 is to identify exactly such problem in a coreference chain.  

Speaker and Speech (RC_CL3) 

As we have explained in RC_ML3, the cannot-link constraint is to extract information 

from speaker and his speech. It can be satisfied if a pair reaches the following 

conditions: 

1) A first person pronoun appearing in speech between quotations cannot refer 
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to the speaker if they disagree in number. 

2) Those pronouns which are not first person pronouns appearing in speech 

between quotations cannot refer to the speaker if the speaker is singular. 

Gender Disagreement (RC_CL4) 

The cannot-link constraint identifies two markables cannot link together if they 

disagree in gender. 

Semantic Class Disagreement (RC_CL5) 

The cannot-link constraint identifies a pair cannot belong to the same coreference 

chain if both markables disagree in semantic class. Because of the confusion between 

organization and person name, we loosen the constraints on semantic classes (Our 

system think organization and person agree in semantic class). Considering the 

unreliability of semantic class information offered by our NLP pipeline, we give 

RC_CL5 the lowest score, -0.25. It is even lower than some probabilities obtained 

from the decision tree. 

Number Disagreement (RC_CL6) 

Like RC_CL4, the cannot-link constraint identifies a pair cannot belong to the same 

coreference chain if two markables of it disagree in number. Number information is 

not as reliable as gender information. Consequently, we give RC_CL6 a lower score 

than RC_CL4. 



Incorporation of constraints to improve machine learning approaches on coreference resolution 

 - 58 - 

Article (RC_CL7) 

The cannot-link constraint encodes rules that examine the articles used in i and j . In 

our system, we use the article constraints defined by [Wagstaff, 2002]. There are three 

rules about article in this cannot-link: 

An indefinite markable cannot link backwards to a markable which is not a proper 

name or a pronoun. 

A definite markable cannot link backwards to a markable without articles, unless it is a 

proper name or a pronoun or their head nouns match. 

A markable without any articles cannot link backwards to a markable with articles, 

unless it is a proper name or a pronoun. 

4.2.3. Markable-level constraints 

Markable-level constraints have two types: must-link-to-something (RC_MLS) and 

cannot-link-to-anything (RC_CLA): 

Must-link-to-something (RC_MLS) 

As we know, pronoun should refer to something in a document, except some special 

pronouns, such as “it”. For example: 

Sentence 4.6: Although different models of the F-14 have been involved in these 

mishaps, (it) is prudent to temporarily suspend routine flight operations for all F-14s in 

order to assess the available information and determine if procedural or other 

modifications to F-14 operations are warranted. 
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In the sentence, the “it” does not refer to anything. Occasionally our system cannot 

distinguish such case. In our system, must-link-to- something constraint applies to 

three kinds of pronouns: singular third person pronoun (“he”, “she”, and their 

corresponding possessive, accusative, reflexive pronouns), plural ambiguous pronoun 

(“they” and its corresponding possessive, accusative, reflexive pronouns) and “it” with 

its corresponding possessive, accusative, reflexive pronouns. If such pronouns cannot 

find any antecedent in its preceding document, we will collect a set of antecedent 

candidates according to specific rules and test these candidates from the nearest one to 

the farthest one. Once a candidate is accepted as antecedent of the pronoun, the 

remaining candidates are skipped. 

The specific rules used in RC_MLS are more approximate and heuristic than pair-level 

constraints. For singular person pronoun, in its preceding document, all markables 

standing for a person are its antecedent candidates if there is no disagreement in gender 

and in number. For plural ambiguous pronoun, in its preceding document, all plural 

markables and markables standing for an organization are its candidates. For “it” and 

its corresponding pronouns, all singular nonhuman markables are its candidates. 

Cannot-link-to-anything (RC_CLA) 

According to MUC-7 [MUC-7, 1997] Coreference Task definition, a coreference 

relation only involves expressions which refer to a given entity. And up to now, 

coreference task only deal with identical coreference relationship. Set/subset and 

part/whole coreference relations have not been considered now. Accordingly, we can 
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filter some markables in advance which have no possibility to take part in a 

coreference relation at all. Cannot-link-to-anything constraint specifies such markables. 

In our system the following markables satisfy cannot-link-anything constraint’s 

conditions: a markable only including figures which is not currency, percentage, date 

or time, and common noun phrases beginning with “no”, figures or some quantitative 

indefinite adjectives (Such as “few”, “little”, “some”, “any”, “many”, “much”, 

“several”). And those markables which have the same head nouns with above 

markables also satisfy the constraint’s conditions. 

4.3. Multi-link Clustering Algorithm 

The conflict resolution (it will be described in the next chapter) requires constraints to 

be ranked reasonably. In our system, we give each pair-level constraint a suitable score 

based on the reliability of the constraint (See Table 4.1). The score not only allow 

ranking of all pair-level constraints, but can also be a critical criterion to complete the 

conflict resolution. From Table 4.1, we see that must-link constraints have positive 

scores and cannot-link have negative scores. Must-link-to-something constraint has a 

relatively low score, only 0.5. This means must-link-to-something constraint is not as 

reliable as the rules of decision tree. Cannot-link-to-anything constraint does not have 

a specific score because it is a filter rule with the highest rank. It cannot be violated. 

Among the links with specific scores, the link provided with the highest score, 999, is 

similar to a hard constraint which cannot be violated. These scores as well as 

probabilities offered by decision tree are the inputs to conflict resolution.  
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Given the constraints definitions and their scores, we can describe how such ranked 

constraints are embedded into a coreference system built with machine learning 

approach. The rough algorithm is shown in Figure 4.1. In the algorithm, we filter those 

markables satisfying cannot-link-to-anything’s conditions before main coreference 

resolution. Then we build two tables, a must-link table and a cannot-link table. In the 

main coreference resolution part, for each anaphor, we first form a cluster. Besides the 

antecedent determined by the decision tree, we add into the cluster all markables which 

must link to the anaphor through checking the must-link table. Then one by one, we 

insert each member of the cluster into the existing coreference chains. Due to the  

Type Name Score Description 

RC_ML1 999 Proper name and string match 
RC_ML2 899 Appositive 
RC_ML3 850 Proper name and alias 

Must Link 

RC_ML4 999 Speaker and his speech 

RC_CL1 -799 proper name with totally different strings 
RC_CL2 -989 Common root markable 
RC_CL3 -999 Gender disagreement 
RC_CL4 -899 Speaker and his speech 
RC_CL5 -0.5 Number disagreement 
RC_CL6 -0.25 Semantic class disagreement 

Cannot 
Link 

RC_CL7 -1 Articles 

Must Link 
to 
Something 

RC_MLS 0.5 
"he","she","they","it" and their corresponding 
pronouns must link to something before them 

Cannot 
Link to 
Anything 

RC_CLA / 
Figures, common noun phrase beginning with figures, 
indefinite adjective and "no" can not link to anything 

 

Table 4.1 
Ranked Constraints set used in our system 
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Algorithm Find-Antecedent ( MARK : set of all markables) 

;0:=i  =:Coref Φ; 

for iM MARK∈ do 

 if =)( iMCLA ”true” then 

  MARK := MARK \ }{ iM  

    else 

iML :={ )( ijj ScoM : ji >  && =),( ij MMML ”true” and jM MARK∈ } 

iCL :={ )( ijj ScoM :  ji ≠  and =),( ij MMCL ”true” and jM MARK∈ } 

     ;1: += ii  

;1:=i  

for iM MARK∈ do 

 Uii MLCluster =: { )( ijj ScoM :the antecedent decided by coreference decision tree} 

 for ij ClusterM ∈  do 

=:Coref Add  (Coref , ,, ij MM iCL , jCL , ijSco )   

if iM Coref∉  and iM is corresponding pronoun to “he”, ”she”, ”they” or “it” then 

{=iCluster )( ijj ScoM : =),( ij MMMLS ”true” and ji > and jM MARK∈ } 

for ij ClusterM ∈  do 

=:Coref Add  (Coref , ,, ij MM iCL , jCL , ijSco )   

;1: += ii  

return Coref  

Figure 4.1 
The Algorithm of Coreference Chains Generation with Ranked Constraints. Coref is the set 
of coreference chains existing. The four functions, ML, CL, MLS and CLA, check that 
whether two markables satisfy must-link, cannot-link, must-link-to-something or cannot-
link-to-anything or not, respectively. Sco is the score of the constraint. Add function 
includes the conflict resolution (described in next chapter). 
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existence of conflicts, it is not certain that the anaphor can be added into any of 

coreference chains successfully. If an anaphor fails to be added into coreference chain 

and it satisfies must-link-to-something constraint’s conditions, the coreference system 

will use must-link-to-something constraints to build a new cluster for the anaphor and 

then add each member of the cluster into coreference chains by the same way. Note 

that each member of the new cluster is also checked by conflict resolution when trying 

to add them into coreference chains. Inserting stops after we first find that a member of 

the cluster is accepted by the coreference chain As a result, it is still not certain that the 

anaphor which must link to something can be added into one chain successfully. The 

processing of adding coreference pairs into coreference chains is very critical for 

coreference chains generation. It not only filters out some error pairs, but also 

rearranges current coreference chains in order to remove some error links existing in 

current coreference chains and obtain back some missing links. By doing so, we can 

achieve a reasonably high precision. In the next chapter, we will explain how it is done 

in detail. 
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5. Conflict Resolution 

As we have mentioned above, coreference system built through machine learning 

approach may encounter some contradictory pairwise classifications while generating 

coreference chains. For example, classifier determines two links, (A-B) and (B-C), 

whereas A and C are not coreferential actually. Most systems do not take such problem 

into account except [Ng and Cardie, 2002]. They proposed an error-driven rule pruning 

algorithm that optimizes the coreference classifier rule-set with respect to the 

clustering-level coreference scoring function. But language is infamous for its 

exception of rules. 100% accuracy rule-set does not exist. Therefore such contradictory 

pairwise classification may still possible to appear in coreference chains. In this 

chapter, we propose a new approach to resolve such contradictory pairwise 

classifications. The approach with ranked constraints can achieve a reasonable result 

that is better than most coreference systems. 

In Section 5.1, we will define the concept of “conflict” used in this thesis. And we will 

explain how the approach can improve the performance of the coreference system. 

Next, we will give the details about the approach. 

5.1. Conflict 

A conflict appearing in a coreference chain is a contradictory pairwise classification as 

we have mentioned above. (A-B) and (B-C) are determined as coreference pairs by 
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coreference system, whereas A and C are not coreferential actually. Consider the 

following example extracted from the output of our baseline system on MUC-7 

[MUC-7, 1997] formal documents: 

Sentence 5.1:  

``This deal means that (Bernard Schwartz)1 can focus most of (his)2 time on Globalstar 

and that is a key plus for Globalstar because (Bernard Schwartz)3 is brilliant,'' said 

(Robert Kaimowitz)4, (a satellite communications analyst)5 at Unterberg Harris in New 

York. 

In the example, 5 markables tagged belong to a common coreference chain in our 

baseline system. (2-3) and (2-4) are recognized as coreference links. But we see that 

markable 3 and 4 obviously refer to different entities. This is a conflict. The conflict is 

caused by the error link between markable 2 and 4.  

Human can distinguish a conflict easily, but it is not easy for a machine. How to decide 

that two markables are not coreferential is the key of to detect a conflict. Using the 

decision tree is one choice. But it is not reliable and it can even degrade the 

performance of coreference system. Because decision tree is used to find the nearest 

antecedent, other antecedents are difficult to be determined by decision tree. For 

example, if a “Robert Kaimowitz” appears in the next sentence of Sentence 5.1. The 

decision tree will determine that the “Robert Kaimowitz” is coreferential with 

markable 4 because of string match. But the “Robert Kaimowitz” and markable 5 are 

recognized as negative. If we use decision tree to detect conflict, markable 4, 5 and the 
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“Robert Kaimowitz” form a conflict. But there is no conflict existing among them at 

all. As we can see, using decision tree to detect conflict is not desirable. In this thesis, 

we use a set of ranked cannot-link constraints to detect conflicts in coreference chains. 

If two markables in a coreference chain satisfy the conditions of any cannot-link 

constraint, there is a conflict existing in the coreference chain. 

Before we introduce the detailed algorithm of conflict resolution, we discuss that how 

the conflict resolution can improve the performance of coreference system. See Figure 

5.1:  

There are actually two coreference chains in the figure. One is (1, 2, 3, 4, 5, 6, 7). The 

other is (A, B, C). However, (a) shows the result of coreference system. We see that 

there is an error link between 7 and A. According to the definition of recall and 

precision [Baldwin, 1995] used in MUC-7 [MUC-7, 1997]:  

1 2 3 4 5 

6 7 

A B C

1 2 3 4 5

6 7

A B C A B C 

1 2 3 4 5 

6 7 

(a)  (b) After adding link (4-6) (c) After conflict resolution 

Figure 5.1: 
An example of conflict resolution.  Actually, there are two coreference chains. One is (1,
2, 3, 4, 5, 6, 7), the other is (A, B, C). (a) shows the coreference chains before inserting the 
link between 6 and 7. The link draw by broken line is an error link determined by 
coreference system. (b) is the case after addling link (4-6) and before conflict resolution. 
(c) is the result after conflict resolution. 
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iS  is the i-th coreference chain generated by the key offered by MUC-7 [MUC-7, 

1997]. )( iSp  is a partition of iS relative to the response. And precision is computed 

by switching the roles of the key and response in the above formulation.  

According to the two formulations, (a)’s recall and precision are both 87.5%. After 

adding the link (4-6), the recall increases into 100 % and the precision is about 88.9%. 

As we can see, although there is no referring expression missed, the precision is still 

below 100%. It is mainly because there are still some spurious links existing in the 

chains. The conflict resolution is to rearrange current coreference chains. By remove 

spurious links, the approach enhances the performance of coreference system. Figure 

5.1 (c) shows the result of conflict resolution. We see that after adding the new link, 

the system detects a conflict existing in coreference chain (1, 2, 3, 4, 5, 6, 7, A, B, C) 

and call conflict resolution module to decide how to deal the conflict. In this example, 

link (7-A) is cut. By doing so, the conflict disappears and the precision increases into 

100% without any loss of recall. 

As we can see, conflict resolution improves the performance of coreference system 

through referring expressions rearrangement in a coreference chain with conflicts. The 

approach contributes a lot to precision.  

5.2. Main Algorithm 

Each time a new coreference pair is inserted into coreference chains, conflict 
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resolution module will be called to detect conflicts and resolve conflicts. The module 

checks every updated chain and the new chain just formed by the pair. If a conflict is 

detected in a coreference chain, for each two referring expressions which satisfy one 

cannot-link in the coreference chain, conflict resolution will find a path in the chain to 

link the two conflicting referring expressions. Each path will cover some links in the 

chains. As a result, those links covered by all paths consist of a common conflict path. 

In the common conflict path, the link, which has the lowest score minus conflict score 

(the sum of cannot-link pairs’ scores appearing in the chain), will be removed. 

Consequently, all cannot-link constraints existing in the chain are separated in the link. 

The conflicts are resolved and the chains are rearranged. In order to resolve a conflict 

by removing only one link, we make some changes to coreference chain’s data 

structure.  

5.2.1. Coreference tree 

Chain vs. Tree 

In this thesis, we propose a concept of “coreference tree”, which is different from 

“coreference chain”. Actually, coreference chain used in most systems is just an 

equivalence class. The relationship between each two referring expressions is not 

included in an equivalence class. It means that once a coreference pair is added into a 

coreference chain successfully, the link of the pair is no longer used. A coreference 

chain is maintained as a set of isolated referring expressions. All referring expressions 

in a coreference chain do not link together until the document has come to the end and 



Incorporation of constraints to improve machine learning approaches on coreference resolution 

 - 69 - 

all coreference chains are generated completely. 

As we have explained above, conflict resolution involves a process of searching for a 

path between two members in a cluster. Such a “coreference chain” cannot meet our 

requirement. Therefore we use “coreference tree” instead of “coreference chain” (In 

the remaining of the thesis, we will use “coreference tree” in place of “coreference 

chain”). 

The coreference tree includes the information of coreference links and these links’ 

scores. And for each link, if it is the only link in the coreference tree, the referring 

expression in the preceding the other expression in the document is called the parent 

and correspondingly the other expression is called child. If the link is not the only link, 

the expression which is inserted into the tree earlier than the other is called parent. By 

doing so, we give each link in a coreference tree a direction: the child expression links 

to parent expression. Furthermore, we have mentioned in NLP part that before adding 

a coreference pair into one coreference tree, the system will check each expression of 

the pair to see whether among all existing coreference trees there is already a markable 

which has a common head noun with the expression. If the system makes sure that the 

expression has not existed in any coreference tree, the expression can be added into 

one tree as a new member. We call the processing “existence check”. Existence check 

guarantees that each expression only appears once in coreference trees. It means that it 

is impossible that there is an expression simultaneously appearing in two difference 

coreference trees. And there is no expression appearing twice in one coreference tree. 

With the “One Appearance” guarantee, we can make sure that in any coreference tree, 
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each expression has only one parent or no parent at all. But for each parent, it has no 

less than one child or has no child at all. After these definitions, a coreference chain 

can be changed into coreference tree.   

Coreference tree has the same characteristics with general trees. For each two members 

in a tree, a path can be found. And removing any link can make the tree to be separated 

into two parts. The two characteristics are the important foundations of our conflict 

17  ”Bernard Schwartz”

102  ”Bernard Schwartz”

110  ”Bernard Schwartz”

54  ”Schwartz” 

132  ”Schwartz” 

150  ”Schwartz” 

178  ”Schwartz” 

215  ”Schwartz” 

20  ”Loral’s Chairman” 

24  ”he” 

200  ”he” 

232  ”he” 

103  ”his” 

RC_ML2: 899 

DT: 0.682 

RC_ML3: 850 

RC_ML3: 850 DT: 0.682 

RC_ML1: 999 

RC_ML3: 850 

RC_ML1: 999 

RC_ML1: 999 

RC_ML1: 999 RC_ML4: 999 

DT: 0.883 

 
Figure 5.2: 
An example of coreference tree in MUC-7. Each rectangle stands for a referring 
expression in the coreference tree. In each rectangle, markable ID and surface string are 
given. The bold string beside arrow is the link type and corresponding score. “DT”
means decision tree result. The other types have been described in Table 4.1 
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resolution, which will be used in two subroutines, extending trees and merging trees. 

An Example of Coreference Tree  

If we view an equivalence class as a tree, the expressions in the class are nodes of the 

tree and the similarity between two expressions is an edge.  

An example of coreference tree on MUC-7 [MUC-7, 1997] is shown in Figure 5.2. The 

example is extracted from the output of our complete system. It is desirable that the 

tree is consistent with human knowledge. In Figure 5.2, we see that there is no link 

beginning with a pronoun. And proper names are linked together according string 

match or alias rule.  

5.2.2. Conflict Detection and Separating Link 

For simplicity, here we view the coreference tree as a graph without cycle. In the graph, 

all members are separated into two groups: aS , bS . The algorithm to detect the conflicts 

existing between the two groups and find the separating link is explained in Figure 5.3. 

As we know, two members of a tree must have a path between them and only have one. 

For each expression of aS which forms a cannot-link with any member of bS , we find 

the path between the two members. Next the corresponding cannot-link’s score is 

recorded also. The system sums up all scores to obtain the oreConflictSc  between the 

two groups. And all paths are combined to obtain theCommonPath  (including the 

links covered by all paths). Among all links in theCommonPath , the link, which is 

with the lowest score after adding the oreConflictSc  ( oreConflictSc  is negative 
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Algorithm Conflict-Detection ( aS , bS : markable groups; ScoNoncutting : a 

threshold defined in advance) 

oreConflictSc :=0; CommonPath :=Φ 

for iM ∈ bS do 

 for jM ∈ aS do 

if =),( ji MMCL ”true” then 

     Path := ),( ji MMFindPath  

     CommonPath := PathCommonPath ∩  

     oreConflictSc := ),(( ji MMCLScoreoreConflictSc + ) 

LinkSeparating :=Φ; LinkScoreSeparating := 9999 

for )( ii ScoLink ∈CommonPath  do 

 if LinkScoreSeparating > iSco then 

  LinkScoreSeparating = iSco ; 

  LinkSeparating := iLink ; 

 else 

  if LinkScoreSeparating == iSco && LinkSeparating ≠Φ then 

   if Distance( LinkSeparating )< Distance ( iLink ) then 

    LinkScoreSeparating = iSco ; 

    LinkSeparating := iLink ; 

if LinkScoreSeparating + oreConflictSc < ScoNoncutting  then 

 return LinkSeparating ; 

else 
 return Φ; 

Figure 5.3 
The Algorithm to detect conflict and find separating link.  
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because cannot-link’s score is negative. Consequently, we add not subtract), will be 

considered for removal. If there is more than 1 link with the lowest score, the distance 

between two members of the link in the document is taken into consideration. The link 

with greater distance will be chosen as LinkSeparating . In order to make a choice 

between to cut and not to cut, we give the system a threshold, ScoNoncutting , in 

advance. If the LinkSeparating  is still stronger than the threshold, then the system 

decides not to cut this tree. As we have mentioned above, for a tree, cutting any link 

can separate the tree into two parts. Partitioning a tree is equivalent to find a separating 

link. After separating, all objecting expressions to the new expression are separated 

from it. As a result, it costs only one link to resolve a conflict.  

We use an example to explain the Conflict Detection (Figure 5.4). In the example, 

markable 140 is the only expression of aS . After checking the cannot-link table, there 

 17  “Bernard Schwartz”

102 “Bernard Schwartz”

110 “Bernard Schwartz”

54  “Schwartz” 

132  “Schwartz” 

20  “Loral’s Chairman”

24  “he” 103  “his” 

140  “William Gates” 

141  “Chairman” 

RC_ML2:899 RC_ML3:850 

RC_ML3:850

RC_ML3:850

RC_ML1:999

RC_ML2:899 

DT:0.682 DT:0.682 

DT:0.883 

 
Figure 5.4 
An example of extending coreference tree. 140 is the new expression for the tree. (54, 102, 
110, 17, 132) is 140’s objective set and 140’s objective score is -3995. Objective common 
path is (20-141-140). The link to be removed is (20-141).  
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are 5 expressions (54, 102, 110, 17, 132) in bS objecting to markable140 because of 

RC_CL1. Therefore the objecting set is (54, 102, 110, 17, 132) and the oreConflictSc  

is -799*5=-3995. For 54, the path between it and markable140 is (54-17-20-141-140). 

Like 54, we can find other paths between remaining objecting expressions and 140. In 

the 5 paths, they share 3 links, (17-20), (20-141) and (141-142). Therefore the 

CommonPath  is (17-20-141-140). Among the three links, link (20-141) has the 

lowest score (3994.117). Hence link (20-141) is LinkSeparating . After removing link 

(20-141), the conflict disappears. Here the conflict resolution makes a right decision.  

5.2.3. Manipulation of Coreference Tree 

The generation of coreference trees includes 4 manipulations: creating, extending, 

separating and merging. They are used in “Add” function in the algorithm of 

Coreference Chains Generation with ranked constraints (Figure 4.1) Figure 5.5. 

Creating Coreference Tree 

If the existence check tells the system that both members in a pair do not appear in any 

current coreference tree, the system begins to create a new coreference tree which only 

includes the pair. The expression with smaller markable ID will be the parent of the 

other. Then Conflict-Detection (see Figure 5.3) is called to check the new coreference 

tree. Here, aS and bS  include the two members of the pair, respectively. If 

Conflict-Detection does not return null, the new tree is removed from coreference 

trees. 
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Add  (Coref , ,, ij MM iCL , jCL , ijSco ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5: 
The Add function of the algorithm of Coreference Chain Generation. 
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Extending Coreference Tree 

If existence check tells the system that one member of a pair belongs to one 

coreference tree but the other does not appear in any coreference tree, the system calls 

extending subroutine to add the new member to the coreference tree including the 

other member already. The new member will be added into the tree as one child of the 

other member which has already existed in the tree. Next, the conflict resolution will 

be called to check the updated tree. Because our system will call conflict resolution to 

check a tree each time a new expression is inserted into the tree, there is no conflict 

among expressions excluding the new member which is just inserted. Therefore the 

conflict resolution only checks the conflicts between the new member and other 

expressions. If LinkSeparating is found, our system calls separating subroutine to 

separate the tree.  

Merging Coreference Trees  

Merging coreference trees is similar to extending coreference tree. If two members of a 

pair exist in two different coreference trees, the merging subroutine will be called to 

deal such problem. Given a pair (A, B) which leads to a merging process, let TA and 

TB be the trees of A and B, respectively. At first, we link A and B temporarily. Then 

call Conflict-Detection to detect the conflicts existing between the TA and TB. After 

that, remove the temporary link (A-B) between two trees. If LinkSeparating is exactly 

(A-B), nothing will be done in the merging processing. If LinkSeparating  belongs to 

TA, the system separate TA on LinkSeparating  at first and then add the part 
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including A into TB. The same process is done when LinkSeparating  belongs to TB. 

It should be noticed that we should change some of the tree’s links before adding them 

into another tree. In order to guarantee tree structure, we should change some links’ 

directions. Given two trees TA and TB, we need to add TA into TB on link (A-B). In 

link (A-B), B belonging to TB should be parent of the link. If A belonging to TA has a 

parent in TA already, there would appears two parents of A in the new TB after adding 

TA into TB. Therefore before adding TA into TB, we search the path from A to TA’s 

root and reverse directions of all links on the path. It means to exchange parent and 

 B1 
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Figure 5.6: 
An example of merging coreference trees. TA and TB are two trees. Link L 
leads to the merge of the two trees. After merging, two new trees are generated, 
TA’ and TB’. 
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child roles in each link. By doing so, the new tree is still a tree. Consider the following 

example:  

Two trees (TA and TB) need to merge on the link L. Among expressions in TA, A1 is 

objected by B8 and B7. Its path is (A1-A3-B3-B7) and score is S1. A2 is objected by 

B9. Its path is (A2-A1-A3-B3-B7-B9) and score is S2. Then the common path for TA 

is (A1-A3-B3-B7) and the objecting score to TA is S1+S2. After checking each links 

score minus (S1+S2) in the common path, we find the link (B3-B7) is the weakest. 

Hence we separate TB on (B3-B7) at first and get Ttemp and TB’. Ttemp includes B3. 

Before we add Ttemp into TA, we reverse the links, (B3-B2) and (B2-B1), covered by 

the path from B3 to root B1 (B3-B2-B1). After changing their directions, we add 

 

(a1) 

(a2) 

(b1) (c1)

(b2) (c2)
 

Figure 5.7: 
Examples of separating coreference tree. The bold line is considered to be removed. (a1), 
(b1) and (c1) show the trees before separating. (a2), (b2) and (c2) show the trees after 
separating.  
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Ttemp into TA on L. And make A3 to be B3’s parent. The result of this merging is TA’ 

and TB’, which is shown in Figure 5.6.     

Separating Coreference Tree 

Given a coreference tree and a link of the tree, we can cut the tree into two parts on the 

link. There are three cases when separating a tree on a specific link. See Figure 5.7. 

The first case is shown in Figure 5.7 (a1) and (a2). The bold line is separating link, 

which includes the root expression of the tree. And the root has only one sub-tree 
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Figure 5.8: 
The result of separating the tree with conflict shown in Figure 5.4. The link between 20 
and 141 has been removed. And two trees are generated as shown in (a) and (b).  
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linked by the bold line. After separating, the root becomes isolate point and 

consequently it is removed from coreference trees. And remaining part takes place of 

the old one. The second case is shown in Figure 5.7 (b1) and (b2). One member of the 

bold line is a leaf. Consequently after removing the separating link, the leaf is also 

removed from coreference trees. The third case (Figure 5.7 (c1), (c2)) is that after 

removing the bold line, each part is still a tree. 

For example shown in Figure 5.4, after removing link (20-140), two new trees generate. 

The result after separating processing is shown in Figure 5.8.  

We observed that after rearranging the expressions in current coreference tree, we 

obtain a more accurate result. 
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6. Evaluation 

Our coreference resolution approach is evaluated on the standard MUC-7 [MUC-7, 

1997] data set. For MUC-7 [MUC-7, 1997], 30 dryrun documents annotated with 

coreference information are used as training data. There are also 20 formal documents 

from MUC-7 [MUC-7, 1997]. For testing, we use the formal data as our input. The 

performance is reported in terms of recall, precision, and F-measure using the 

model-theoretic MUC scoring program. Our ranked constraints and conflict resolution 

produce scores which are higher than those of the best MUC-7 coreference resolution 

system and earlier machine learning systems, such as [Soon et al., 2001] and [Ng and 

Cardie, 2002a]. And F-measure increases with regard to our duplicated Soon baseline 

system from 60.9 to 64.2 for MUC-7/C4.5. 

In this chapter, we will describe our experimental results as well as those of some 

earlier machine learning systems. Next, we will discuss the contributions to 

coreference system of ranked constraints and conflict resolution, respectively. In the 

last section, the errors remaining in our coreference system will be analyzed.  

6.1. Score 

As we have mentioned in Chapter 3, we use C4.5 to learn a classifier based on MUC-7 

[MUC-7, 1997] 30 dryrun documents. The annotated corpora produce 44133 training 

pairs, of which about 3.5% are positive pairs. By using 60% pruning confidence, we 
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get a decision tree shown in Figure 3.1.  

Based on MUC-7 20 formal documents, results of our system are shown in Table 6.1.  

For comparison, Table 6.1 shows some other coreference systems’ best performances 

given out in corresponding papers. [Soon et al., 2001] achieved 60.4 in F-measure 

based on a set of 12 features and a classifier learned by C5.0. [Ng and Cardie, 2002a] 

improved upon [Soon et al., 2001]’s model by expanding the feature set from 12 

features to 53 features, and introducing a new training instance selection approach and 

a new search algorithm that searches for antecedent with highest coreference likehood 

value. They increased their F-measure from 61.6 to 63.4 for MUC-7/C4.5 by using a 

hand-selected features set instead of all 53 features. [Ng and Cardie, 2002b] 

incorporated an anaphoricity classifier into [Ng and Cardie, 2002a]’s model. And in 

order to overcome the loss in recall caused by the anaphoricity classifier, they also 

incorporated two constraints, STR_MATCH and ALIAS, to increase F-measure from 

MUC-7 formal 
System 

R P F 
Soon et al.(2001) 56.1 65.5 60.4 
Ng and Cardie (2002a) 57.4 70.8 63.4 
Ng and Cardie (2002b) 59.7 69.3 64.2 
Ng and Cardie (2002) 54.2 76.3 63.4 
Yang et al. (2003) 50.1 75.4 60.2 
Ng and Cardie (2003) 53.3 70.3 60.5 
Duplicated Soon Baseline 59.6  62.3  60.9  
Ranked Constraints (RC) 63.5 64.5 64.0  
RC and Conflict Resolution 63.7  64.7  64.2  

  

Table 6.1: 
Results for MUC-7 formal data in terms of recall, precision and F-measure. Results in
boldface indicate the best results obtained for a particular data set and decision tree by using
a particular constraints group and conflict resolution.
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58.4 to 64.2. [Ng and Cardie, 2002] is another attempt to improve coreference model. 

By using a new positive sample selection approach and error-driven pruning, they 

achieved 63.4 in F-measure. [Yang et al., 2003] proposed a promising twin-candidate 

model instead of single-candidate model although their score drops behind those of 

former systems. And [Ng and Cardie, 2003] focused the resolution of weakly 

supervised learning for coreference task through self-training or an EM with feature 

selection. The six coreference systems are only machine learning-based systems we 

could find, which reported their scores based on MUC-7 formal data with F-measure 

above 60%. 

From Table 6.1, we see that our complete coreference system with ranked constraints 

and conflict resolution has achieved a recall of 63.7% and a precision of 64.7%, 

yielding a balanced F-measure of 64.2%. The F-measure is the highest score among 

those of the systems listed in Table 6.1. And with regard to our duplicated Soon 

baseline system, the recall increases 4.1% from 59.6% to 63.7% and the precision 

increases 2.4% from 62.3% to 64.7%, resulting in a significant increase of 3.3% in 

F-measure. It is interesting to note that the complete system achieves the highest recall 

among all the systems in Table 6.1, but the lowest precision compared to others. One 

reason for the highest recall is that our NLP pipeline includes two additional modules: 

head noun phrase extraction and proper name identification (the corresponding 

experimental results are shown in Table 2.1). It makes the recall of duplicated Soon 

baseline system is higher by 3.5% than [Soon et al., 2001]’s. The other reason is that 

our must-links and must-link-to-something introduce some spurious links into the 
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system. The corresponding experimental results will be shown in next section. For the 

lowest precision, one reason is the decision tree we use. Our baseline system and our 

complete system use a common decision tree listed in Figure 3.1. We see that the 

precision of our baseline system is very low already. Therefore the low precision in our 

complete system has no relation to ranked constraints and conflict resolution.  

Furthermore, higher recall tends to result in lower precision. However, the F-measure 

increased showing that the sacrifice of precision is tolerable. 

A closer examination of the results is shown in Table 6.2. In the table, three systems 

are evaluated. Besides our duplicated Soon baseline system and the complete system, 

MUC-7 dryrun MUC-7 formal 
System 

R P F R P F 
Duplicated Soon Baseline 57.4 64.7 60.9 59.6  62.3  60.9 
  Only Pronoun 13.3 70.2 22.3 10.6  60.0  18.0 
  Only Proper Name 25.1 84.9 38.7 29.6  81.4  43.4 
  Only Common Noun phrases 26.7 52.0 35.2 26.8  49.3  34.7 

Ranked Constraints (RC) 59.5 66.7 62.9 63.5  64.5  64.0 
  Only Pronoun 15.9 62.9 25.4 13.9  55.6  22.3 
  Only Proper Name 26.9 86.1 41.0 31.8  82.3  45.8 
  Only Common Noun phrases 26.3 57.0 36.0 26.5  54.1  35.6 

RC and Conflict Resolution 59.8 67.2 63.3 63.7  64.7  64.2 
  Only Pronoun 15.9 63.1 25.4 13.9  55.6  22.3 
  Only Proper Name 26.9 86.1 41.0 31.8  82.5  46.0 
  Only Common Noun phrases 26.4 57.2 36.1 26.7  54.4  35.8 

 
Table 6.2 
Results for baseline and complete systems to study the effects of ranked constraints and 
unsupervised conflict resolution. For each of the NP-type-specific runs, the overall 
coreference performances are measured by restricting anaphor to be of the specified 
type. 



Incorporation of constraints to improve machine learning approaches on coreference resolution 

 - 85 -  

Pronoun

10.0

20.0

30.0

40.0

50.0

60.0

70.0

R P F R P F

MUC-7 dryrun MUC-7 formal

Proper Name

20.0

30.0

40.0

50.0

60.0

70.0

80.0

R P F R P F

MUC-7 dryrun MUC-7 formal

Common Noun Phrase

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

R P F R P F

MUC-7 dryrun MUC-7 formal

Overall

55.0

60.0

65.0

70.0

R P F R P F

MUC-7 dryrun MUC-7 formal

Baseline

RC

RC and CR

 

Figure 6.1 
Results for the effects of ranked constraints and unsupervised conflict resolution on 
overall NP types, pronouns, proper names and common noun phrases. 
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in order to evaluate the effects of ranked constraints and conflict resolution (CR), 

respectively, we make a coreference system which replaces CR with a simple conflict 

resolution. In the simple conflict resolution, coreference system gives up inserting a 

referring expression into a coreference tree if the expression is objected by some 

members of the tree. The system can evaluate the effect of ranked constraints without 

the influence of CR. Table 6.2 shows that both ranked constraints and CR have a 

positive effect on coreference system built through machine learning approach. And 

they improve recall without any loss in precision. 

In the first chart of Figure 6.1, we see that the ranked constraints make a significant 

contribution to both recall and precision of baseline coreference system: recall 

increased with regard to baseline from 57.4% to 59.5% for 30 dryrun documents, and 

from 59.6% to 63.5% for 20 formal documents, respectively; precision increases 3% 

for dryrun and 2.2% for formal, respectively. As a result, F-measure increases from 

60.9% to 62.9% for dryrun, and from 60.9% to 64.0% for formal. In contrast to the 

system including both ranked constraints and CR, the simple conflict resolution works 

not so well as our CR: 0.2% loss in both recall and precision for formal, 0.3% loss in 

recall with 0.5% loss in precision for dryrun, respectively. We see that after adding CR 

to our coreference system, F-measure increases about 0.4% and 0.2% for dryrun and 

formal, respectively. 

In an attempt to gain additional insight into the effects on different noun phrase types,   

we show the performances on pronouns, proper names and common nouns (Table 6.2). 

The last three charts of Figure 6.1 give us more intuitionistic knowledge of the effects 
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of ranked constraints and our CR on different noun phrase types. After adding ranked 

constraints, except for the precision of pronoun and the recall of common noun phrase, 

the results of different noun phrase types indicate an improving trend. In particular, all 

F-measures increase along with the addition of ranked constraints and CR. As to the 

loss of the precision of pronoun after adding constraints to baseline, it is caused by 

must-link-to-something. And the loss of common noun phrase’s recall after adding 

constraints to baseline is because of cannot-link-to-anything’s effect. We will discuss 

about it in the error analysis. 

6.2. The contribution of constraints 

One factor that affects the performance of our system is the incorporation of ranked 

constraints. As we have explained above, there are four groups of constraints used in 

our system. It is interesting to find out the contribution of each group on coreference 

dryrun
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62.061.4
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65.0
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F 60.9 61.7 61.4 60.0 62.0 

Baseline ML CL CLA MLS
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F 60.9 61.5 61.7 60.5 62.6 

Baseline ML CL CLA MLS

Figure 6.2 
Results of coreference systems to study the contribution of each constraints group 
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task. In order to evaluate it, we apply one group at each time. The results are shown in 

Figure 6.2.  

6.2.1. Contribution of Each Constraints Group 

In the figure, ML stands for must-link constraint group including four must-links as 

defined in Chapter 4. Cannot-link group, CL, includes all cannot-links defined in 

Chapter 4. CLA stands for cannot-link-to-anything and MLS means must-link-to- 

something. In Figure 6.2, we see that the recall lines of dryrun data and formal data 

have the similar figure. The precision lines of the two data sets are similar to each 

other also. As we know, the dryrun data and the formal data of MUC-7 [MUC-7, 1997] 

belong to the different knowledge domains. The dryrun data is a set of documents 

about aircraft accident. However, the formal data is a set of documents about launch 

event. Therefore based on documents with different knowledge domains, similar lines 

indicate some domain-independent characteristics of the four constraint groups. From 

the figure, we see that ML and MLS increase recall with regard to baseline, but with 

the loss of precision. In contrast to ML and MLS, CL and CLA have the capability to 

improve precision, but with the drop of recall. In particular, the CL’s contribution to 

precision is outstanding comparing to other constraint groups. As a result, recall drops 

precipitously on both data sets. Similar to CL, ML’s contribution to recall is significant 

among all constraints groups, but ML also makes the precision drops quickly. It is 

interesting to note that recall and precision are pairwise opposite. We are satisfied to 

see that three of four groups improve the F-measure with regard to the baseline system, 
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especially MLS, which makes F-measure increase 1.1% and 1.7% for dryrun and 

formal, respectively. 

6.2.2. Contribution of Each Combination of Constraints Group 

To get more insight into the contribution of constraint groups on coreference task, we 

measure the overall performance of the coreference system with each combination of 

the four constraint groups. The results are shown in Table 6.3 and Figure 6.3. From 

Figure 6.3, we see that the recall lines and precision lines between dryrun data and 

formal data are also similar to each other. For both dryrun and formal data set, the 

combination of ML and MLS contributes maximum to recall among all the 

combination, and the combination of ML, CL and CLA contributes the most to 

precision. As expected, in comparison to all coreference systems with different 

combinations of four constraint groups, the combination including all constraint 

groups achieves the best F-measure of 63.3% and 64.2% for dryrun and formal data 

sets, respectively. The results prove that strategies employed to combine the available 

linguistic knowledge play an important role in machine learning approaches to 

coreference resolution. 

Analysis of ML 

Among the 16 system with different combinations of constraint groups, we compare 

the systems with ML to those without ML (See Figure 6.4). It is interesting to note that 

after adding ML, we see significant gains in recall and F-measure on each system. 
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MUC-7 dryrun MUC-7 formal 
No ML CL CLA MLS

R P F R P F 

1      57.4 64.7 60.9 59.6  62.3  60.9 
2 √     60.1 63.4 61.7 62.2  60.8  61.5 
3  √   56.2 67.8 61.4 58.3  65.6  61.7 
4    √  55.9 64.7 60.0 58.9  62.2  60.5 
5     √ 58.6 65.8 62.0 62.1  63.2  62.6 
6 √ √   58.6 65.8 62.0 62.1  63.2  62.6 
7 √   √  58.0 68.1 62.6 61.0  66.1  63.4 
8 √     √ 61.9 63.6 62.7 64.9  61.2  63.0 
9  √ √  54.4 67.9 60.4 57.6  65.6  61.4 
10  √   √ 58.6 63.4 60.9 61.6  60.7  61.2 
11    √ √ 58.5 66.0 62.0 61.1  63.8  62.4 
12 √ √ √  57.3 69.1 62.6 60.8  66.5  63.5 
13 √ √  √ 61.2 64.4 62.8 64.9  61.2  63.0 
14 √   √ √ 60.5 66.3 63.2 63.7  64.2  64.0 
15  √ √ √ 57.2 66.1 61.3 60.4  63.9  62.1 
16 √ √ √ √ 59.8 67.2 63.3 63.7  64.7  64.2 

 

Table 6.3 
Results for each combination of four constraint groups, ML, CL, CLA and MLS 
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Figure 6.3: 
Results for each combination of four constraint groups, ML, CL, CLA and MLS. 
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Figure 6.4 
Results of coreference system with different combination of constraint groups to study the
effect of ML and CL on performance of coreference system. 
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Figure 6.5 
Results of coreference system with different combination of constraint groups to study the
effect of CLA and MLS on performance of coreference system. 
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Our results provide direct evidence for the claim that our constraints can resolve the 

problems due to training data insufficient and “hard” training examples. And the 

experiment shows that ML is the most useful group to improve the coreference 

system’s performance. 

Analysis of MLS 

MLS has the similar function to ML. After adding MLS, we observe reasonable 

increases in recall for both data sets in comparison to those systems without MLS. 

F-measure also increases except the system with only CL. Somewhat disappointingly, 

after adding MLS into it, F-measure drops for both data sets. It may be caused by strict 

cannot-link definition. MLS is the most approximate constraint group in our system. 

Its contribution is mainly to increase recall through adding pronouns into coreference 

trees, even if pronouns’ antecedents are determined by error. Consequently MLS brings 

more conflicts into coreference trees. On the other hand, cannot-links detect such 

conflicts in coreference trees and choose a link to cut. Without must-links, each 

conflict must lead to a separating process. It influences the accuracy of conflict 

resolution. As a result, precision drops precipitously, which kills the increase of recall. 

Therefore F-measure drops too. 

Analysis of CL 

CL cannot improve those systems without ML but with MLS (See Figure 6.3 and Table 

6.3) has. We have analyzed the combination of CL and MLS. For another system with 

the combination of CL, CLA and MLS, in contrast to the combination of CLA and 
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MLS, the F-measure drops 0.2%. Except the two systems, CL still contributes 

something to the performance of coreference system. 

Analysis of CLA 

If original system does not have any must-constraints group, such as must-links or 

must-link-to-something, CLA results in the worse performance, which is even worse 

than that of the baseline in F-measure (Comparing to baseline system, F-measure drops 

0.9% and 0.5% on dryrun data and formal data, respectively. Comparing to the system 

with only CL, after adding CLA, F-measure drops 0.5% on dryrun data). Accordingly, 

its positive effect on coreference task is based on a reasonable recall. We see that the 

F-measure of the system without CLA is 62.8% and 63% for dryrun and formal data 

sets, respectively. With adding CLA, F-measure increases 0.5% and 1.2% for dryrun 

and formal, respectively.  

As we can see, the four groups of constraints can be divided into two types: One is 

must-constraints and the other is cannot-constraints. Must-constraints improve recall 

with the loss of precision. And cannot-constraints improve precision with the loss of 

recall. Combination of them can achieve a balance between recall and precision. As a 

result, we can yield a satisfiactory F-measure.  

6.2.3. Contribution of Each Constraint in ML and CL 

In our system, ML includes 4 constraints and CL, 7. We add each must-link into the 

baseline system to see its contribution in isolate. As to cannot-link, we use the system 
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with ML, CLA and MLS constraint groups and conflict resolution as our baseline to 

test each cannot-link in isolate. The results are shown in Table 6.4.  

Must-links 

Table 6.4 shows that each must-link can contribute a little bit to the performance of 

coreference system. Among four must-links, RC_ML1 and RC_ML4 increase 

F-measure without any loss in either recall or precision. The results provide the 

evidence for the score determination in ranked constraints. RC_ML1 and RC_ML4 are 

the most reliable constraints. Therefore they are provided with the highest score. For 

dryrun formal 
System 

R P F R P F 

Baseline 57.4 64.7 60.9 59.6 62.3  60.9 

Only RC_ML1 57.7 64.8 61.0 60.2 62.6  61.4 

Only RC_ML2 57.9 64.8 61.2 60.4 62.2  61.3 

Only RC_ML3 58.1 64.6 61.2 60.2 62.4  61.3 

Only RC_ML4 58.2 64.9 61.3 60.2 62.5  61.3 

ML+CLA+MLS+CR 60.5 66.3 63.2 63.7 64.2  64.0 
Only RC_CL1 60.1 67.0 63.4 63.6 64.4  64.0 

Only RC_CL2 60.3 66.3 63.1 63.7 64.4  64.0 

Only RC_CL3 60.3 66.3 63.2 63.7 64.3  64.0 

Only RC_CL4 60.2 66.1 63.0 63.8 64.3  64.0 

Only RC_CL5 60.3 66.1 63.1 63.7 64.3  64.0 

Only RC_CL6 60.3 66.5 63.3 63.7 64.4  64.1 

Only RC_CL7 60.5 66.3 63.2 63.7 64.2  64.0 

Our complete system 59.8 67.2 63.3 63.7 64.7  64.2 

 
Table 6.4 
Results of coreference system to study the effect of each constraint. Must-link constraint 
group is tested based on our duplicated Soon baseline system. And cannot-link 
constraint group is based on the system with ML, CLA and ML three constraint groups 
and conflict resolution 
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RC_ML2 and RC_ML3, RC_ML2 results in drop of 0.1% in precision for formal data 

and RC_ML3 results in drop of 0.1% in precision for dryrun data. However, they still 

improve F-measure in both data sets. Therefore the two must-links are provided with a 

little lower score than RC_ML1 and RC_ML4. Consider RC_ML2’s contribution to 

common noun phrase coreference resolution, RC_ML2’s score is set to be higher than 

that of RC_ML3. Table 6.4 also lists the result of the coreference system with the 

whole ML set based on duplicated Soon baseline system. The system with the whole 

set outperforms those systems with only one must-links on both data sets. 

Cannot-link 

For cannot-link, the contribution to F-measure of single cannot-link is not desirable in 

comparison to the contribution of complete cannot-links set. For dryrun data, only 

RC_CL1 and RC_CL6 improve F-measure with regard to the corresponding baseline, 

and RC_CL3 and RC_CL7 do not cause any loss in F-measure and precision. All the 

remaining cannot-links make F-measure drop. And RC_CL4 and RC_CL5 even cause 

drop in both recall and precision. For formal data, only RC_CL6 contribute 0.1% to 

F-measure. The other cannot-links maintain the baseline’s performance. In our 

complete system, we use the whole CL set and achieve the best results comparing to 

those systems with only one cannot-links. We also evaluate the performance of the 

system with each combination of the seven cannot-links. Our results show that besides 

the whole set, some other sets of the 7 cannot-links also achieve the best result for a 

specific input. For dryrun, using RC_CL6 can get the best result, the combination of 
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RC_CL1 and RC_CL2 can also do it. For formal, the combination of RC_CL1, 

RC_CL2, RC_CL4 and RC_CL6 can get the F-measure of 64.2%. However, we use 

the whole CL set to ensure the constraints group to be general enough to suit different 

knowledge domains. 

6.3. The contribution of conflict resolution 

The contribution of conflict resolution is not as significant as that of ranked constraints. 

But it is interesting to note that our conflict resolution is an approach which can 

increase recall and precision simultaneously. 

As we have explained above, conflict resolution is an approach based on cannot-links 

set and it improves performance of coreference system through rearrangement of 

current coreference trees. In comparison to simple conflict resolution, it usually would 

not cause the loss in recall. And after adjusting some links in a coreference tree, it 

improves precision and even recall. As a result, F-measure increases too. Our 

experimental results are shown in Table 6.2. We see that with regard to the system 

using simple conflict resolution, incorporating conflict resolution makes recall increase 

0.3% and 0.2% for dryrun data and formal data, respectively. And the precision 

increases 0.5% and 0.2% for dryrun and formal. As a result, F-measure increases 0.4% 

and 0.2% for the two data sets, respectively. Furthermore, there is not any loss in recall 

or precision in pronoun, proper name and common noun phrase’s corresponding 

coreference resolution. It is a desirable result. 

In an attempt to gain additional insight into the contribution of conflict resolution in 
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our coreference system, we follow the processing of conflict resolution in dryrun data 

and formal data. We find that in the 50 documents of dryrun and formal data, 

separating subroutine of conflict resolution is called for 102 times in 26 documents and 

merging subroutine is called for 19 times, in 16 documents. 65 of 102 separating 

processing and 11 of 19 merging happen in dryrun. In comparison to formal, dryrun 

data encounters more conflicts than formal data. As a result, on dryrun data, the 

improvement (0.4% in F-measure) made by conflict resolution with regard to the 

simple conflict resolution is more than that of formal data (0.2% in F-measure). In 

order to evaluate the accuracy of conflict resolution, we track the 20 documents of 

formal. Significantly, all 37 separating processes choose the right links to cut. Among 

8 merging processes, 7 are done correctly. In particular, 2 of the 7 merging processes 

employ separating processes. Such merging processes cut one of coreference trees at 

first and then combine the other coreference tree with one part just produced by cutting. 

It is more complex than a simple merging procession without cutting. Our results show 

that the conflict resolution can deal with such problem correctly without any 

supervised learning. For the only one wrong merging taking place in formal data, it is 

shown in the following example: 

Sentence 6.1: ``Satellites give (us)a1 an opportunity to increase the number of 

(customers)b1 (we)a2 are able to satisfy with the McDonald's brand,'' said McDonald's 

Chief Financial Officer, Jack Greenberg. ``It's a tool in our overall convenience 

strategy.'' 

The merging between tree “a”(a1-a2) and tree “b”(the tree including b1) happens 
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because there is no conflict between the two trees detected by cannot-links. Therefore, 

such error can be resolved introducing more elaborate cannot-links into the coreference 

system.  

As we have mentioned above, if a conflict is detected, the conflict resolution is able to 

decide whether the conflict is true or false. If true, system calls separating subroutine 

to cut the tree. If false, system can ignore the conflict. In order to evaluate the 

capability of distinguishing true conflict and false conflict, we also search the conflicts 

which are skipped in formal data. There are 51 such conflicts found. And 7 of them 

happen in merging processes and the remaining happen in separating processes. We see 

that 45 of 51 conflicts which are determined as false correctly by conflict resolution. 

All error determinations belong to the separating processing. The main reason is 

information insufficiency. For example: 

Sentence 6.2: The (National Association of Broadcasters)1, which represents television 

and radio stations, has said the new satellite services would threaten local radio 

stations. (Broadcasters)2 lobbied the FCC to delay issuing the license because of the 

threat of competition, Margolese said. 

In the sentence, markable 2 is recognized as alias of markable 1 by error. Although 

they disagree in number, the conflict is skipped because must-link on alias has the 

preference to cannot-link on number disagreement. It is the error of alias determination 

which causes the failure of conflict resolution. And if the number information had 

higher accuracy, such conflict would not be skipped by error. 
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Another reason is that the rank of constraint also influences the accuracy of conflict 

resolution. For example: 

Sentence 6.3:  ``Since 1989-1990, there has not been another channel launched with 

this kind of immediate growth curve,'' said (Thomas S. Rogers)a1, the (president)a2 of 

(NBC Cable)a3, a (member)a4 of the executive committee in charge of the History 

Channel. 

Sentence 6.4:  ``Satellites give us an opportunity to increase the number of customers 

we are able to satisfy with the McDonald's brand,'' said (McDonald's Chief Financial 

Officer)b1, (Jack Greenberg)b2. 

In Sentence 6.3, a3 and a4 satisfy the conditions of RC_ML2. Although a3 and a1 

satisfy the conditions of RC_CL1, such conflict is skipped because RC_ML2 has 

higher score than RC_CL1. Unfortunately, devising a set of optimal score setting for 

general usage is impossible. Consider Sentence 6.4, b1 and b2 exactly form such 

example that RC_ML2 exceeds RC_CL1. In our system, we use a set of approximate 

optimal score setting for constraints. Such scores are determined based on human 

background knowledge. How to determine scores for constraints by machine is our 

future work.  

As we can see, cannot-links have a significant effect on the accuracy of conflict 

resolution. And we find that for dryrun and formal, there are more than 50% 

documents which have not used conflict resolution at all. If we incorporate more 

cannot-links into the system, the conflict resolution will play a more important role on 
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performance improvement. But it would also bring more difficulties in arranging the 

score of each constraint. Additional research on it is required in the future. 

6.4. Error analysis 

In [Soon et al., 2001], they have analyzed the errors made by their machine learning 

system. They classed errors into two groups: missing links (false negative) and 

spurious links (false positive). False negative causes recall errors and false positive 

causes precision errors. For missing links, they listed six types of errors caused by 

inadequacy of current surface features, errors in noun phrase identification, errors in 

semantic class determination, errors in part-of-speech assignment, errors in apposition 

determination and errors in tokenization. For spurious links, they also give out six 

Approach Errors 

Errors in head noun phrase extraction 
NLP 

Errors in conjoint noun phrase identification 

Errors in Proper Name Identification 

Errors in Alias determination 

Errors in apposition determination 
ML 

indefinite proper name 

non-anaphoric pronoun "it" 
MLS 

Errors in antecedent determination of plural pronoun 

Using reliable features 
CL 

Language Exception 

CLA Number antecedent missing 

Conflict between constraints 
CR 

reliable features used in constraints 

Distant pronouns with same surface strings  
Baseline The same common noun phrases but they don't refer to 

anything 

 
Table 6.5: 
Errors in our complete system. 
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types. They are caused by pronominal modifier string match, different entities with 

same strings, errors in noun phrase identification, errors in apposition determination 

and errors in alias determination. In this thesis, we focus our error analysis on those 

errors made by ranked constraints and conflict resolution. As another improvement 

made by head noun extraction and proper name identification, we also analyze the 

errors made by them. We randomly extract some formal documents from MUC-7 

[MUC-7, 1997] and classes the errors according to different reasons. Breakdowns of 

such errors made by our new approach are shown in Table 6.5. 

6.4.1. Errors Made by NLP 

Our NLP pipeline simply takes the most right noun in a markable as head noun phrase. 

It leads to partially missing some compound noun phrases (including more than one 

token in head noun phrase). For example: 

Sentence 6.5(1): When not focused on other nations' military bases, American spy 

satellites have been studying a dusty habitat of the humble (desert (tortoise)b1)a1 in an 

effort to help scientists preserve this threatened species.  

Sentence 6.5(2): (Desert (tortoise)b2)a2 research is one of six environmental projects 

overseen by the CIA as part of a pilot program to use intelligence technology for 

ecological pursuits. 

Compound noun phrase, “desert tortoise”, is separated into two parts by our nested 

noun phrase and head noun phrase extraction. Although our system can recognize the 

coreference pair (a1-a2), the link is replaced by (b1-b2) due to head noun phrase 



Incorporation of constraints to improve machine learning approaches on coreference resolution 

 - 103 - 

preference. But the link (b1-b2) is a spurious link to coreference system because they 

are not markables at all. As a result, (a1-a2) is missed. 

Our NLP pipeline often misses conjoint noun phrases. It tends to recognize a conjoint 

noun phrase as two separated noun phrases. Such shortage leads to several errors. For 

example: 

Sentence 6.6(1): ((Ruth Ann Aldred)b1 and (Margaret Goodearl)c1)a1, both of who were 

once supervisors at a Hughes plant in California, accused the company of lying about 

the testing of components for missiles and fighter planes. 

Sentence 6.6(2): Since their evidence resulted in the government recovering money, 

the False Claims Act law says ((Aldred)b2 and (Goodearl)c2)a2 are due part of the fine. 

According to MUC-7 [MUC-7, 1997] Coreference Task definition, “a1” and “a2” 

should be a markable without nested markables, respectively. Our NLP pipeline cannot 

recognize them. Instead, b1, b2, c1 and c2 are recognized by NP identification. As a 

result, (a1-a2) becomes a missing link. And two spurious links (b1-b2) and (c1-c2), 

appear. 

6.4.2. Errors Made by ML 

Obviously, must-link constraints mainly lead to spurious links. Some common noun 

phrases beginning with uppercase letter are often recognized as proper names by 

part-of-speech tagging. If such common noun phrases satisfy our RC_ML1, they will 

be tagged as coreferential pair with highest score. In a document’s title, such problem 

often appears. The errors in alias and apposition determination are similar to those 
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explained in [Soon et al., 2001]. For example, in Sentence 6.3, “NBC Cable” and 

“member” are recognized as apposition, which results in series of problems. Alias 

determination is also difficult. For example, “American Airlines” and “American 

Eagle” are different entities. But they have the common part “American”. It results in 

the spurious link between them. Another errors made by must-links is “indefinite 

proper name”. In general, proper name should refer to a specific entity. But there are a 

lot of exceptions. Such as “American”, it not only can refer to one person born in 

America, but also can refer to a group of people living in U.S. Our must-link cannot 

distinguish such proper names which have the same surface strings, but have different 

referents. 

6.4.3. Errors Made by MLS    

MLS is similar to ML. It brings spurious links into system. Our results show that we 

can deal well with “he”, “she” and corresponding pronouns. The main errors are about 

“it” and plural pronouns. See Sentence 6.7: 

Sentence 6.7: ``(It)'s been good for both companies,'' said Buddy Burns, Wal-Mart's 

manager of branded food service. 

The “it” in the sentence does not refer to anything. It is non-anaphoric. Our system 

cannot determine the anaphoricity of “it”. As a result, some non-anaphoric “it” are 

forced to link some antecedents. Other frequent errors are about plural pronouns. As 

we have mentioned above, our NLP pipeline is not good at recognition of conjoint 

noun phrases. It is more difficult for a plural pronoun to search an antecedent. For 
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example:  

Sentence 6.8: (Wei Yen and Eric Carlson)a1 are leaving to start (their)a2 own Silicon 

Valley companies, sources said. 

In the sentence, due to the miss of a1, a2 cannot be correctly linked to a1. 

6.4.4. Errors Made by CL    

As we have mentioned above, such errors are almost due to inaccurate information of 

number, semantic class and so on. For example, two “Monday” appear in a document. 

One of them is tagged as “DATE” but the other is “unknown”. As a result, they 

disagree in number (we take all “DATE”,”MONEY” and “PERCENTAGE” as 

“plural”). Fortunately, our conflict resolution skips such error. Other errors are due to 

the language exception. For example: 

Sentence 6.9: And why not, since 75 percent of (McDonald's) diners decide to eat at 

(its) restaurants less than five minutes in advance? `` (They) want to be the first sign 

you see when you get hungry,'' said Dennis Lombardi, an analyst at Chicago-based 

market researcher Technomics Inc. 

In the sentence, “McDonald’s”, “its” and “They” refer to the same entity. It is 

interesting to note that “it” and “they” can refer to each other although they disagree in 

number obviously. 

6.4.5. Errors Made by CLA    

Our CLA removes those figures which are not recognized as DATE, TIME, MONEY 
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or PERCENTAGE. Such rule does not take into account the errors made by named 

entity recognition. For example, two “1992” appearing in the same document refer to 

the same year. But one “1992”’s semantic class is unknown. The “1992” is removed.  

Consequently, a link is missed by the error in CLA.  

6.4.6. Errors Made by CR   

The errors made by CR have been explained in last section. In conclusion, unsuitable 

score setting is the main reason which leads to errors in conflict resolution. 

6.4.7. Errors Made by Baseline  

There are two kinds of errors which have no relation to ranked constraint and conflict 

resolution. We class them as errors made by baseline system. The first error is about 

pronoun. It is that pronouns with the same surface string tend to link together. For 

example: 

Sentence 6.10(1): ``Satellites give us an opportunity to increase the number of 

customers (we) are able to satisfy with the McDonald's brand,'' said McDonald's Chief 

Financial Officer, Jack Greenberg. 

Sentence 6.10(2): ``When (we) come to Wal-Mart for diapers, we come here,'' said 

Cook, 31, sitting at a table in the McDonald's inside the North Brunswick, New Jersey, 

store. 

We see that two sentences are both speeches, but with different speakers. The two 

“we” should not refer to each other obviously. But due to “STR_MATCH”’s important 
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role in coreference determination, they are linked together in our system. 

Another error is also resulted from “STR_MATCH”. For example: 

Sentence 6.11(1): But with no customers expected until 1998, the need for nearly $2 

billion in (investment) and numerous competitors lurking in the shadows, Globalstar's 

prospects would not appear to be valuable to the average Lockheed shareholder. 

Sentence 6.11(2): ``Any service that is based on satellites is going to be a fertile area 

for our (investment),'' he said.  

Although the two “investment” are over almost the whole document, they are 

recognized as coreference pair because of string match. It is a common phenomenon in 

our system. Common noun phrases coreference resolution is more difficult than that of 

proper name and pronoun. It needs more semantic information to see the inside 

relation between them. Simple string match cannot resolve the coreference problem of 

common NP. This problem is a remaining challenge for us. 
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7. Conclusion 

7.1.1. Two Contributions 

We investigate two methods to improve the coreference system built through machine 

learning approach. Based on the two methods, we increase F-measure of our baseline 

system from 60.9% to 64.2%. 

Multi-level Ranked Constraints 

First, we propose a set of linguistic-based, multi-level and ranked constraints which is 

compatible with supervised machine learning approach. We also make some changes 

in search algorithm. We use a multi-link clustering algorithm to replace the single-link 

clustering algorithm. With the set of constraints, the coreference system produces 

significant gains in both recall and precision and corresponding increases in F-measure. 

The set of constraints includes four kinds of constraints: must-link, 

must-link-to-something, cannot-link and cannot-link-to- anything. The first two 

constraints can be called must-constraints and the remaining two can be called 

cannot-constraints. Must-constraints improve recall, but at the cost of precision loss. 

Cannot-constraints behave in an opposite way. They improve precision with the loss of 

recall. The combination of must-constraints and cannot-constraint makes our system 

achieve the best result of 64.0% in F-measure, which is higher than that of baseline 

system about 3.1%. Our results show that the set of constraints resolves some 
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problems in using machine learning for building coreference resolution systems, 

primarily the problem of having limited amounts of training data. The constraints also  

provide a bridge between coreference resolution methods built using linguistic 

knowledge and machine learning methods.  

Conflict Resolution   

We also propose conflict resolution for handling conflicting constraints within a set of 

corefering elements. In order to detect conflicts and remove conflicts in a coreference 

chain, first we use the data structure “coreference tree” to replace the “coreference 

chain”. Coreference tree retains the information of relation among referring 

expressions. For each referring expression in a coreference tree, we record the parent 

who introduced the expression into the coreference tree. Second, we use cannot-links 

to detect conflicts in a coreference tree. Lastly, after a conflict is detected, the 

resolution is to cut the separating link which has the lowest score. By using the tree 

structure, cannot-links and the separating link finding algorithm, the conflict resolution 

provides better performance compared to simple conflict resolution, which gives up 

inserting a link once a conflict is encountered. In contrast to the simple conflict 

resolution, our conflict resolution increases F-measure 0.2%. Furthermore, the conflict 

resolution is able to increase both recall and precision. 

7.1.2. Future Work 

The work of the thesis suggests some possible directions of future work. 
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There are still many ways to expand the constraints set. Up to now, our system 

includes 4 must-links, 7 cannot-links, 1 must-link-to-something and 1 cannot-link-to- 

anything. Adding more constraints into the four groups and introducing new types of 

constraints into the set of constraints are both promising directions.  

As we have mentioned before, how to provide an optimal score for each constraints is 

a challenge for future research. In our system, the score is determined based on human 

knowledge and the score is approximately optimal. Making machine decide the rank of 

constraints is another task for future work. 

In the error analysis, we see that common noun phrase coreference resolution still 

require improvement in our system. Common noun phrase coreference resolution 

requires more linguistic knowledge and semantic information. Up to now, our system 

only offers 12 features. And among them, only one indicates some semantic 

information. Expanding the feature set will not only help the common noun phrase 

coreference resolution, but also help us generate more useful constraints. Furthermore, 

it may be useful to employ more theoretical linguistic work, such as Focusing Theory 

[Grosz et al., 1977; Sidner, 1979], Centering Theory [Grosz et al., 1995] and the 

systemic theory [Halliday and Hasan, 1976]. 

Another aspect that requires improvement is the NLP pipeline. How to improve the 

accuracy of NLP pipeline requires further research for the state-of-the-art coreference 

resolution systems. 
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Appendix A : Name List 

A.1 Man Name List 

Aaron Bevil Elias Gillam Jeremy Machutus 

Abacuck Blaise Eliass Godfrey Jerman Manasses 

Abraham Botolph Eliza Goughe Jermanus Mark 

Adam Brian Elizeus Gregory Jerome Marmaduke

Adlard Cadwallader Ellis Griffin Jervais Martin 

Adrian Cesar Ely Griffith Jesper Mathew 

Alan Charles Emanuel Guy Jesse Matthew 

Albert Christian Emery Halius John Maurice 

Alexander Christopheer Emmanuel Hamond Joice Melchior 

Allan Christopher Emmett Hansse Jonathan Meredith 

Alveredus Chroferus Enoch Harman Joos Michael 

Ambrose Chroseus Erasmus Harmond Joosus Miles 

Anchor Ciriacus Evan Harry Jordan Mike 

Andrew Clement Everard Hector Joseph Morgan 

Annanias Conrad Faustinus Helegor Joshua Nathaniel

Anthony Cornelius Felix Heneage Josias Newton 

Archibald Court Ferdinand Henry Jossi Nicholas 

Archilai Cuthbert Frances Hercules Jucentius Ninion 

Arnold Cutlake Francis Hieronimus Julius Noe 

Arthur Daniel Fulk Holland Justin Oliver 

Augustin David Gabriel Howel Justinian Osmund 

Augustine Denton Garnett Howell Kenelm Ottewell 

Augustus Didimus Garret Hugh Kyle Owen 

Barnabas Digory Garrett Humphrey Lambert Owin 

Barnard Dionisius Gawen Humphry Lancelot Paschall 

Bartholomew Drugo Gawin Ingram Laurence Pasco 

Bartram Dudley Gentile Isaac Lawrence Pasquere 

Basil Ebulus Geoffrey Isaacs Leonard Paul 

Bellingham Edi George James Lewis Peter 

Benedict Edmund Gerrard Jankin Lionel Philip 

Benjamin Edward Gervase Jasper Lodowick Phillip 

Bennett Edwin Gilbert Jeffery Lucas Pierce 

Bertram Eli Giles Jenkin Ludwig Polidore 

Pompey Rees Rowland Simon Tobias William 

Prospero Reginald Ryan Stephen Tristram Williams 
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Quivier Richard Salamon Steven Valentine Wombell 

Ralph Robert Sampson Symon Vincent Wymond 

Randall Roger Samuel Thadeus Walter Zacharias

Randel Roland Sander Theodosius Warham Zachary 

Randolph Roman Sean Thomas Watkin  

Reece Rook Silvester Timothy Wilfred  

 

A.2 Woman Name List 

Agnes Dionise Gartheride Laura Petronella 

Alice Dolora Georgette Lauren11 Phillipa 

Amanda Dorothea Grace Lettice Prudence 

Amie Dorothy Gwenhoivar Luce Rachel 

Ann Ebotte Heather Lucretia Rawsone 

Anna Edith Helen Lucy Rebecca 

Annabella Effemia Helena Mable Rosanna 

Anne Eleanor Hellen Magdalen Rose 

Ashley Elena Isabel Magdalena Samantha13 

Aveline Elianora Isabella Magdalene Sarah 

Barbara Elinor Jane Margaret Sibil 

Beatrice Elizabeth Janikin Margareta Sibill 

Blanche Ellen Jennette Margarete Stephanie 

Bridget Ellena Jennifer Margarita Susanna 

Brittany Ellois Jessica Margerie Susannah 

Cassandra Ely Joan Margery Susanne 

Catherine Emily Joane Maria Suzanna 

Cecily Emma Jocatta Marian Sybil 

Charity Etheldreda Jocosa Marion Tabitha 

Christiana Ethelreda Johanna Martha Thomasina 

Christina Ethelrede Jone Mary Thomazine 

Cicilia Faith Joyce Matilda Ursula 

Constance Florence Judith Megan Venetia 

Danielle Frances Juliana Mildred Winefred 

Dionis Francisca Katherine Nicole Winifred 
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Appendix B: MUC-7 Sample 

B.1 Sample MUC-7 Text 

<DOC> 
<DOCID> nyt960905.0652 </DOCID> 
<STORYID cat=a pri=u> A6992 </STORYID> 
<SLUG fv=taf-z> BC-TWA-CRASH-NYT </SLUG> 
<DATE> &LR; </DATE> 
<NWORDS> 09-05 </NWORDS> 
<PREAMBLE> 
BC-TWA-CRASH-NYT 
ROUGH SEAS PARALYZE SEARCH FOR PLANE WRECKAGE 
(sw) 
By ANDREW C. REVKIN 
c.1996 N.Y. Times News Service 
</PREAMBLE> 
<TEXT> 
<p> 
   SMITHTOWN, N.Y.  &MD;  On the 50th day after the crash of Trans World 
Airlines Flight 800, senior investigators said that persistent 
rough seas off the coast of Long Island had paralyzed efforts to 
collect the remaining wreckage of the shattered jumbo jet. 
<p> 
   But some of the most coveted pieces of wreckage were still 
missing, he said, including many parts of the center fuel tank, 
which sat under a group of seats that many investigators say were 
the likely center of the explosion. 
</TEXT> 
<TRAILER> 
NYT-09-05-96 2017EDT 
</TRAILER> 
</DOC> 
 

B.2 Sample MUC-7 Key 

<DOC> 
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<DOCID> nyt960905.0652 </DOCID> 
<STORYID cat=a pri=u> A6992 </STORYID> 
<SLUG fv=taf-z> BC-<COREF ID="3" MIN="CRASH"><COREF 
ID="1">TWA</COREF>-CRASH</COREF>-NYT </SLUG> 
<DATE> &LR; </DATE> 
<NWORDS> <COREF ID="79">09-05</COREF> </NWORDS> 
<PREAMBLE> 
BC-<COREF ID="2" TYPE="IDENT" REF="3" MIN="CRASH"><COREF ID="0" 
TYPE="IDENT" REF="1">TWA</COREF>-CRASH</COREF>-NYT 
<COREF ID="9" MIN="SEAS">ROUGH SEAS</COREF> PARALYZE <COREF 
ID="11" MIN="SEARCH">SEARCH FOR <COREF ID="13" 
MIN="WRECKAGE"><COREF ID="7">PLANE</COREF> 
WRECKAGE</COREF></COREF> 
(sw) 
By ANDREW C. REVKIN 
c.1996 N.Y. Times News Service 
</PREAMBLE> 
<TEXT> 
<p> 
   SMITHTOWN, N.Y.  &MD;  On the 50th day after <COREF ID="4" 
TYPE="IDENT" REF="2" MIN="crash">the crash of <COREF ID="6" 
TYPE="IDENT" REF="7" MIN="Flight 800"><COREF ID="5" TYPE="IDENT" 
REF="0">Trans World 
Airlines</COREF> Flight 800</COREF></COREF>, senior investigators said that 
<COREF ID="8" TYPE="IDENT" REF="9" MIN="seas">persistent 
rough seas</COREF> off the coast of Long Island had paralyzed <COREF ID="10" 
TYPE="IDENT" REF="11" MIN="efforts">efforts to 
collect <COREF ID="12" TYPE="IDENT" REF="13" MIN="wreckage">the 
remaining wreckage of <COREF ID="14" TYPE="IDENT" REF="6" MIN="jet">the 
shattered jumbo jet</COREF></COREF></COREF>. 
<p> 
   But some of the most coveted pieces of wreckage were still 
missing, <COREF ID="68" TYPE="IDENT" REF="66">he</COREF> said, including 
many parts of the center fuel tank, 
which sat under a group of seats that many investigators say were 
the likely center of <COREF ID="69" TYPE="IDENT" REF="55">the 
explosion</COREF>. 
</TEXT> 
<TRAILER> 
NYT-<COREF ID="78" TYPE="IDENT" REF="79">09-05-96</COREF> 2017EDT 
</TRAILER> 
</DOC> 
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