

A STUDY OF SIMULATION PERFORMANCE BASED

ON EVENT ORDERINGS

HU YANJUN

NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A STUDY OF SIMULATION PERFORMANCE BASED

ON EVENT ORDERINGS

HU YANJUN

(B. Sci., Peking University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2003

ABSTRACT

 i

Abstract

A simulation protocol must adhere to a certain event ordering to produce correct

simulation results. However, different event orderings exploit various degrees of

parallelism and may require different amounts of memory. We have developed a

formal methodology to predict the event parallelism and memory requirement of

parallel simulation before implementation based on event orderings. This

methodology was previously validated using limited queuing network benchmarks.

This thesis focuses on the study and validation of this methodology using a

larger and more realistic application. We modeled and implemented an Ethernet

network simulator and used it to study the effects of event orderings on simulation

performance. The simulator is instrumented to obtain its event sequence and causal

relationships, and various event orderings are analyzed using a time space analyzer

that we have developed. The experimental results reveal that in a closed system, a

weaker event ordering exploits more parallelism without increasing memory usage.

We observed that in the Ethernet network simulator the upper bound on memory due

to event orderings is 86 −n , where n is the number of stations. Apart from

assessing the cost of event orderings, the methodology can also analyze the

performance of a simulation problem and the overhead of implementation. To study

the cost of implementation, we analyzed the conservative null message simulation

protocol and observed that much more memory is required to support

synchronization than for maintaining event orderings.

ACKNOWLEDGEMENT

 ii

Acknowledgement

 First, I would like to express my heartfelt thanks to my supervisor, Associate

Professor TEO Yong Meng, for his supervision through this project. He has

conscientiously provided me with careful guidance at every stage of my research,

offered various ideas whenever I ran into difficulties, and constructively corrected

some of my mistakes in the course of my work. I appreciate the fact that

participating in his projects has granted me many paths to develop my research and

analytical abilities greatly. His support enabled me to both learn and write what is

presented in this thesis. In addition, he has given me constructive suggestions on my

attitude to work, which is helpful to my career development.

 Another person who has made many contributions to this thesis is Bhakti

Stephen Onggo, a PhD student who is currently working on time and space analysis

of parallel simulation. Every time when I had some problems in my research he

would kindly offer his help to me. He explained certain difficult concepts and

definitions concisely to me.

I would also say thanks to Dr. Gary S. H. TAN for he inspired my research

interest in parallel and distributed systems in course CS5223 – distributed system.

Hand-on experience gained in the course project gave me an advantage in this study.

 Others that I would like to thank include Ng Yew Kwong, Hu Yu, Gozali Johan

Prawira and Dr. Li Ming, whom I enjoyed sharing discussions on parallel simulation

ACKNOWLEDGEMENT

 iii

and programming questions with.

 In addition my sincere appreciation is given to my lab fellows, Ameya Virkar,

Zhao Na, Zhang Gong, Liu Ming and Liu Peng for their generous help both in my

research and in my life, and for the pleasant and friendly environment of the

computer system lab.

Last but not least, I would like to convey my gratitude to the thesis examiners

for taking time from their busy schedules to assess my research work.

TABLE OF CONTENTS

 iv

Table of Contents

Abstract ...i

Acknowledgement..ii

Table of Contents...iv

List of Figures ...vi

List of Tables .. viii

Chapter 1 Introduction..1

1.1 Parallel Discrete-Event Simulation ..2

1.2 Related Works ..4

1.3 Event Ordering Based Approach..9

1.4 Research Contribution..17

1.5 Thesis Overview...18

Chapter 2 Methodology...20

2.1 Research Methodology...20

2.2 Tools ...24

2.2.1 CSIM..25

2.2.2 SPaDES/Java..26

2.2.3 TSA ..28

2.3 TSA Validation ...30

2.4 Summary ..35

Chapter 3 Ethernet Modeling and Implementation ...37

3.1 Problem ..37

3.2 Simulation Model...39

3.3 Simulation and Implementation ...42

3.3.1 Sequential...43

3.3.2 Parallel ...51

3.4 Verification ...54

3.5 Validation..56

TABLE OF CONTENTS

 v

3.5.1 Sequential Simulation ..57

3.5.2 Parallel Simulation...60

3.6 Events Instrumentation...60

3.7 Summary ..68

Chapter 4 Experimental Results and Analysis..69

4.1 Event Parallelism..69

4.1.1 Problem..69

4.1.2 Event Orderings ...72

4.1.3 Implementation ..76

4.1.4 Relationship between Different Parallelisms...79

4.2 Memory Requirement ..81

4.2.1 Problem..82

4.2.2 Event Orderings ...82

4.2.3 Implementation ..87

4.3 Performance Tradeoff...90

4.4 Summary ..92

Chapter 5 Conclusion ..93

References ...97

Appendix A: Run-time Report of Pipeline Simulation ..102

Appendix B: Events in Pipeline Simulation...103

Appendix C: Pseudo Code of Ethernet Simulation in SPaDES/Java...........................108

LIST OF FIGURES

 vi

List of Figures

Figure 1.1: A typical simulation process...13

Figure 2.1: Research approach..21

Figure 2.2: Simulation executive main loop with TSA instrumentation29

Figure 2.3: TSA validation methodology..31

Figure 3.1: State transit diagram of an Ethernet station..40

Figure 3.2: Processes and resources in simulation model of Ethernet..................42

Figure 3.3: Kernel class of Ethernet network simulation44

Figure 3.4: A station class ...45

Figure 3.5: Retransmission mechanism ..47

Figure 3.6: A frame class ..49

Figure 3.7: Collision handler ..50

Figure 3.8: Links in a 3-station Ethernet network ..52

Figure 3.9: Sequential and parallel implementation of frame passing..................53

Figure 3.10: Five types of events in Ethernet network simulator61

Figure 3.11: Control flow graph (CFG) of Ethernet simulator62

Figure 4.1: probΠ for Ethernet ..71

Figure 4.2: ordΠ changes with event orderings (frame size 1024 bytes)73

Figure 4.3: ordΠ changes with problem size (frame size 1024 bytes)74

Figure 4.4: ordΠ changes with frame size (n=40) ..75

Figure 4.5: ordΠ changes with frame size (partial event order)75

Figure 4.6: syncΠ for Ethernet...78

LIST OF FIGURES

 vii

Figure 4.7: Event and null message execution time changes with frame size......79

Figure 4.8: Relationships of different parallelisms (#station is 20)......................80

Figure 4.9: ordM increases linearly with problem size.......................................83

Figure 4.10: Worst case scenario for total event ordering84

Figure 4.11: Ethernet memory profile for partial event ordering86

Figure 4.12: syncM for Ethernet ..87

Figure 4.13: Time (ordΠ) and space (ordM) tradeoff ...91

LIST OF TABLES

 viii

List of Tables

Table 2.1: Event sequence with timestamps in Pipeline simulation32

Table 2.2: Performance results of Pipeline simulation ...32

Table 2.3: Causal relationships between events in Pipeline33

Table 2.4: Event execution sequences for all event orderings in Pipeline............35

Table 3.1: Validation of SPaDES/Java Ethernet simulator (fix value)58

Table 3.2: Validation of SPaDES/Java Ethernet simulator59

Table 3.3: Event types and their scheduling information in Ethernet simulator...65

Table 4.1: probΠ for Ethernet..71

Table 4.2: ordΠ for Ethernet ...73

Table 4.3: syncΠ for Ethernet ..77

Table 4.4: Comparison of three parallelisms in Ethernet simulation....................80

Table 4.5: ordM for Ethernet...82

Table 4.6: syncM for Ethernet..87

Table 4.7: Null message ratio changes with problem size89

Table 4.8: Memory requirement of Ethernet simulation.......................................89

CHAPTER 1 INTRODUCTION

 1

Chapter 1

Introduction

 Two major methods are used to understand real world problems and applications:

mathematics and simulation. Mathematics is a highly abstract method. It is general

but lacks the detailed information of the real world applications. On the other hand,

computer simulation is more application specific and can provide more detailed

information that aids in the understanding of the behavior of the real world systems.

Researchers in several areas like engineering, computer science, economics, and

military applications are particularly interested in using simulation to study the

potential behavior of some of their complex models prior to implementation [11].

Parallel simulation emerged with the development of parallel computer systems.

However, parallel simulations introduce much complexity in the management of

event synchronization and additional programming effort is required to exploit

parallelism efficiently. Many synchronization protocols have been proposed to

speedup parallel simulations but they incorporate different degrees of complexity [19,

27]. Synchronization protocols may need additional working memory to maintain

event causality during execution. Memory management in parallel simulation is also

CHAPTER 1 INTRODUCTION

 2

a main research interest [16, 21, 38].

This chapter is organized as follows. We first introduce parallel discrete-event

simulation (PDES). Next, we survey the related works on performance analysis of

parallel simulation. We finally present our performance study methodology based on

event ordering.

1.1 Parallel Discrete-Event Simulation

 PDES refers to the execution of a single discrete-event simulation program on a

parallel computer [13]. In the past two decades, PDES has attracted a considerable

amount of interest in the research community. This trend stems from the rapid

development in parallel processing in the period, along with the fact that simulations

involving large problem sizes and granularity often have poor performance when

they are run on sequential machines. It represents a kind of problem that contains

substantial amounts of parallelism but is very difficult to parallelize in practice.

The use of logical processes (LP) [22] and virtual time [16] has separated PDES

from other simulation categories. Most existing PDES implementation mechanisms

use a process-oriented methodology that strictly forbids processes to directly access

the shared state variables. Sequencing constraints must be maintained by these

strategies. The physical system is viewed as being composed of some number of

physical processes that interact at various points in simulated time. Hence the

simulator is organized as a set of LPs. One or more LPs can be mapped to a physical

CHAPTER 1 INTRODUCTION

 3

processor. All interactions between physical processes are modeled by time stamped

event messages sent between the corresponding logical processes. Each logical

process contains a portion of the state corresponding to the physical process it

models, as well as a local clock that denotes how far the process has processed. The

logical process methodology requires application programmers to partition the

simulator’s state variables into a set of disjoint states, and ensure that no simulator

event directly accesses more than one state.

 Simulation systems are divided into two categories in PDES: synchronous and

asynchronous. In synchronous systems events are synchronized by a global clock.

One iteratively determines which events are safe to process, and then processes them.

Barrier synchronizations are used to keep iterations (or components of a single

iteration) from interfering with each other. Because barrier synchronizations are

necessary, these algorithms are best suited for shared memory machines in order to

keep the associated overheads to a minimum [11]. However, in asynchronous

systems events occur at irregular time intervals. Asynchronous LP simulation relies

on the presence of events occurring at different simulated times that do not affect one

another. Concurrent processing of those events thus effectively accelerates sequential

simulation execution time.

PDES mechanisms generally fall into two categories of synchronization

protocols: conservative and optimistic. Conservative mechanism executes only safe

events. An LP blocks when no safe events can be executed. The typical conservative

CHAPTER 1 INTRODUCTION

 4

protocol is CMB null message protocol [5]. The obvious drawback of conservative

approaches is that they cannot fully exploit the parallelism available in the

simulation problem. From the programmer's point of view, the most serious

drawback of existing conservative simulation protocols is that the simulation

programmer must be concerned with the details of the synchronization mechanism in

order to achieve good performance. On the other hand, an optimistic mechanism

allows an unsafe event to be executed. An error-detection mechanism is required to

determine when an error has occurred, and then it will invoke a procedure to recover.

One advantage of optimistic approach is that it can exploit parallelism in situations

where causality errors may occur but actually do not. The typical protocol of

optimistic mechanism is Time Warp [15]. Because optimistic mechanisms need to

save system states frequently, they generally consume much more memory than

conservative protocols.

Although PDES remains an active area of research, it has not achieved industrial

widespread use [12]. There are several reasons for this fact. Firstly, the positive

results will easily find their ways to publication, so we tend to see a biased picture.

Secondly, the gained speedup is always attractive, but the effort spent on

programming is also quite substantial. Finally the positive results usually can only be

achieved by experts in certain fields.

1.2 Related Works

Much effort has been exploited to analyze the parallelism of a simulator either

CHAPTER 1 INTRODUCTION

 5

before or after parallel implementation [19, 27]. Performance analysis methods

generally fall into the following three categories: analytic method, simulation-based

method and critical path method.

Analytic methods usually use stochastic process, queuing theory or operational

laws. Some kinds of Markov chains underlie these analyses [25]. Felderman and

Kleinrock show that the average performance difference between synchronous and

asynchronous algorithm is less than)(log PO [8]. Tay et al. presents an analytical

model for evaluating the performance of Time Warp simulators [35]. Wang et al.

propose an analytical method to predict the parallelism of a simulation where causal

relationship among events is considered [43]. In general, the analytic methods are

faster than other methods, but the drawback is that it usually has unrealistic

assumptions.

The second performance analysis method is based on simulation, which

analyzes performance by directly simulating particular PDES protocols. Dickens and

Reynolds develop a model to study the performance of a system synchronized by a

windowing protocol [7]. The model extends the windowing protocol to allow

computation of conditional events and predicts the probability of a causal error. Lim

et al. describe three parallelism prediction tools for different synchronization

protocols [19]. However, the tools can only be applied to some conservative

protocols. Cavitt et al. propose a framework for identifying the factors affecting the

performance of simulation [4]. The identified factors can in turn give feedbacks to

CHAPTER 1 INTRODUCTION

 6

simulation hardware/software configuration. Marin et al. devise a simple automated

methodology to predict running time cost of discrete-event simulation [23]. However,

the methodology can only be used for BSP (Bulk-Synchronous Parallel) model. Teo

et al. concentrate on the performance analysis on a particular simulation library

SPaDES/C++ [36]. Rawling et al. analyze an existing sequential simulation in order

to predict concurrency speedup bounds for conservative parallel simulation [29]. The

model is based on real commercial VLSI simulations. Noble et al. explore the

performance of three synchronous discrete-event simulation algorithms: global clock

algorithm, conservative look-ahead algorithms and speculative computation

algorithm [26]. De Carvalho Klingelfus et al. developed an object oriented Ethernet

network simulation and model system to aid in the activity of element measurements,

error detection and performance analysis [6]. In summary, simulation-based method

usually uses one particular protocol or one particular category of protocols to model

applications. They require fewer assumptions than analytical method, but the method

has only limited usage, for there are so many protocols and applications to be

simulated.

Critical path analysis simulates event execution based on causal relationship and

builds critical path to analyze the simulation performance. Wong et al. proposes a

critical path-like analyzer to predict the memory used in a Chandy-Misra simulation

[48]. The analyzer can derive the parallelism directly from a path-like analyzer. Lim

et al. use a critical path analyzer to give the ideal maximum speedup for a simulation

model [19]. The critical path analysis assumes each physical processor to be an

CHAPTER 1 INTRODUCTION

 7

independent LP and there is unlimited number of processors. Wieland et al. use a

new technique to determine the critical path [46]. A metric called the earliest process

time (EPT) can be implemented either as a centralized algorithm or a distributed

algorithm. Critical path analysis is easy to understand but it cannot be used to

compare different protocols.

Fujimoto states that the performance of conservative strategies is closely related

with the degree to which processes can look ahead and predict future events [11].

For optimal protocols, state-saving overhead can seriously degrade performance. In

addition, optimistic algorithms usually use more memory than conservative ones.

Parallel simulation provides the potential to speedup simulations, but additional

memory is required by the parallel synchronization protocols. Specifically, for

conservative protocols, the additional memory is required to hold the null messages.

Optimistic protocols require additional memory to save the simulation states

periodically for possible rollback. Every processor in parallel simulation has only

limited space, so memory consumption is also an important issue that we should

address.

 There are many publications on the space aspect of parallel simulation [16, 21,

38]. But most publications concentrate only on the space management of some

particular synchronization protocols. For conservative approaches, much effort is

done to reduce the number of null messages, such as demand-driven null message

algorithm presented in [1]. For optimistic approaches, the focus is on reducing

CHAPTER 1 INTRODUCTION

 8

optimism while limiting the usage of space. The “artificial rollback” in [21] is such

an example. Many researchers examine the storage utilization of optimistic

mechanisms such as Time Warp. To support rollback, it is necessary to save the old

states of a logical process but there is no need to save the “ancient history” [13].

Hence these memories can be reutilized to save new state vectors. Several

approaches have been proposed to limit the amount of memory that is required to

perform the simulation in Time Warp.

The first one is fossil collection and global virtual time (GVT) [50]. The smallest

timestamp among all unprocessed event messages is called GVT. No event with

timestamp smaller than GVT will ever be rolled back, so storage used by such events

can be discarded. In addition, irrevocable operations (I/O for example) cannot be

committed until GVT passes the simulated time at which the operation occurs.

The second approach is incremental and infrequent state savings. In conjunction

with fossil collection, there are many other mechanisms to save more memory. When

the state vector is large and only a part of it is modified by each event, incremental

state saving may be useful. Only changes to the state are recorded to reduce both

memory utilization and copying time. A drawback of this mechanism is that the

rollbacks become more expensive. An alternative approach is to save entire state

vectors, but reduce the frequency of state saving [20]. It decreases the time required

to perform state saving, but increases rollback overhead. This tradeoff suggests that

there may be an optimal state saving frequency that balances state saving overhead

CHAPTER 1 INTRODUCTION

 9

and re-computation costs [28].

The next method is rollback-based recovery mechanisms. With the

aforementioned mechanisms, when the system does run out of memory, there is no

recourse but to terminate the simulation. It is problematic because the “fault” may

lay with the Time Warp mechanism itself rather than the application program.

Several approaches have been developed to address this concern. Such mechanisms

include cancel-back [16] and artificial rollback [21] algorithm.

The last method is to limit memory by using the protocols with limited optimism.

If the simulation mechanism is too optimistic in executing the program, then the

program, as a result, will run out of memory. There are emerging approaches that use

limiting optimistic protocols [49].

1.3 Event Ordering Based Approach

Simulation protocols maintain a certain event ordering to produce correct

simulation results. Ordering of concurrent events in discrete-event simulation is an

important issue as it has an impact on modeling expressiveness, model correctness

and causal dependencies [32]. In sequential simulation, only one event ordering is

maintained by global FEL. In parallel simulation, every LP maintains its own FEL

and many events can be executed simultaneously. Synchronization protocols order

the events in an appropriate manner to guarantee that no causality errors occur.

Different event orderings are allowed to generate correct simulation results, but they

CHAPTER 1 INTRODUCTION

 10

give different degrees of parallelisms. In addition, each LP needs extra memory to

keep track of pending events in its future event list (FEL) to follow a certain event

ordering. Therefore different event orderings may require different amounts of

memory.

Teo et al. have developed a formal methodology to study how event ordering

influences the performance of parallel simulation [40]. The methodology can predict

the performance of parallel simulation before it is actually implemented. It executes

events based on causal relationship and event ordering to analyze event parallelism

and memory requirement of a simulator. It can compare the performance between

different event orderings, which is more general than simulation-based methods.

Because event orderings, not synchronization protocols, are taken into account, the

methodology requires less implementation than simulation-based performance

analysis methods.

Four simulation event ordering rules are formally defined with partial order set

theory: total event ordering, timestamp event ordering, time interval event ordering

and partial event ordering (Axiom 1 to Axiom 4).

AXIOM 1: Let �E, <par� be a poset, where E is a set of events. Under partial event

ordering, e1 happens before e2 (denoted by e1 <par e2), if:

• ¬(e <par e), for any event e ∈ E;

• e1 and e2 are events in the same process, and e1 comes before e2;

CHAPTER 1 INTRODUCTION

 11

• e1 is the sending event in process P1, and e2 is the corresponding receiving event

in process P1;

• if e1 <par e2 and e2 <par e3, then e2 <par e3.

AXIOM 2: Let �E, <par� be a poset, where E is a set of events. Assume that each e ∈

E can be stamped with a simulation time (denoted by ts(e)). Under total event

ordering, e1 happens before e2 (denoted by e1 <tot e2), if:

• ts(e1) < ts(e2), or

• ts(e1) = ts(e2) ∧ e1 has higher priority than e2.

AXIOM 3: Let �E, <par� be a poset, where E is a set of events. Assume that each e ∈

E can be stamped with a simulation time (denoted by ts(e)). Under timestamp event

ordering, e1 happens before e2 (denoted by e1 <ts e2), iff ts(e1) < ts(e2).

AXIOM 4: Let �E, <par� be a poset, where E is a set of events. Suppose that the

simulation duration can be divided into mutually exclusive time windows, {W1,

W2, …, Wn}, where Wi = Wj iff i=j. Assume that each e ∈ E can be placed in a Wi

with base time denoted by tw(e). Under time interval event ordering, e1 happens

before e2 (denoted by e1 <ti e2), iff tw(e1) < tw(e2).

The definitions in Axiom 1 and Axiom 4 are consistent with those by Lamport in

[17] where “happened before” relation is the same as partial event ordering. For

Axiom 1, e1 happens before e2 because the sending event will causally affect e2.

Partial event ordering is anti-symmetric, so if that e1 is a receiving event and e2 is

CHAPTER 1 INTRODUCTION

 12

the corresponding sending event, e2 will happen before e1 [40].

The event orderings in decreasing order of strictness are total event order,

timestamp event order, time-interval event order and partial event order. The

detailed definition of event orderings and proof of their strictness are illustrated in

[40]. The main difference among these four event orderings lies in the definition of

concurrent event. The methodology can be applied to all event orderings as long as

they are well defined.

The methodology is based on the typical steps of a simulation. A computer

simulation is a program that emulates the behavior of another system. A typical

modeling and simulation process contains three steps: physical system, simulation

model and implementation model as shown in Figure 1.1. Physical system represents

the real-world problem that one simulates. A simulation model is a logical model of

a physical system that defines the input parameters, output results, and other physical

system components to be simulated. There are three world views in simulation

model: event oriented, process oriented and activity scanning [13]. The physical

system and simulation model is independent of the implementation. Either sequential

or parallel implementation needs to be built on the simulation model.

CHAPTER 1 INTRODUCTION

 13

Figure 1.1: A typical simulation process

We divide the memory required by a simulator into three main parts: probM ,

ordM and syncM . probM denotes the memory to model the states of the physical

system, ordM denotes the memory required by future event list (FEL) to schedule

event execution based on the selected event ordering, and syncM denotes the

additional amounts of memory to implement a synchronization protocol on a specific

execution platform. Therefore, the total memory requirement of implementing a

simulation model on real machines with a particular implementation is

probM + ordM + syncM [40].

We measure probM by observing the queue size, and its upper bound is defined

as the total maximum queue length, i.e., �
=

≤
n

i
iprob QM

1

, where iQ is the maximum

queue size at service center i , and n is the number of service centers. For

simplicity, we only count the entry number for the queue. The actual probM is

dependent on the data structure of queue implementation.

Physical system

Simulation model

syncΠ syncM

probΠ probM

ordΠ ordM

Sequential
implementation

Parallel/distributed
implementation

Implementation
independent

Implementation
dependent

CHAPTER 1 INTRODUCTION

 14

ordM depends on the characteristics of system under study, i.e., event arrival

and service rates, and the event ordering adopted. The upper bound of ordM is

defined as the sum of all FEL lengths, i.e., �
=

≤
n

i
iord FELM

1

, where iFEL is the

maximum FEL size at service center i , and n is the number of service centers.

The actual value of ordM is dependent on the implementation of FEL.

syncM accounts for the additional memory used for synchronization. For

sequential implementation, 0=syncM . In optimistic protocol, memory is required

for state saving in anticipation of rollbacks. In the case of the null message protocol,

it can be defined as the total of the maximum buffer sizes required for maintaining

null messages. Therefore, for the conservative null message parallel simulation used

in SPaDES/Java [41], we can define �
=

≤
n

i
isync NMBM

1

, where iNMB is the

maximum null message buffer size at iLP , and n is the total number of LPs involved

in the simulation.

Event parallelism is defined as the average number of events executed per unit

time. Average event parallelism (Π) is different from speedup here. The range of Π

is],1[∞ . All events are assumed to take the same execution time and we need to

specify what one unit time is.

For sequential simulation the average event parallelism is one. However,

different types of events may take different execution time. When a sequential

simulation is mapped to the parallel environment, events can be executed

CHAPTER 1 INTRODUCTION

 15

simultaneously at different processors. The number of events per unit time will

increase, thus the parallelism will be larger than one for parallel simulation. However,

parallel simulation needs additional overhead for synchronization, such as null

message, which will decrease the parallelism.

Similar to the memory classification, the average event parallelism of a

simulator is also studied at three steps, namely: physical system, event ordering, and

implementation [27]. In the physical system level, events may happen concurrently.

Hence, physical system has parallelism which is called the inherent event parallelism

(probΠ). Discrete-event simulation compresses simulation time by applying a certain

event ordering. Different event orderings exploit different degrees of event

parallelism which is called event ordering parallelism (ordΠ). The communication

overhead and other implementation overhead are neglected, so event ordering

parallelism is optimal. At the implementation level, maintaining a certain event

ordering on a specific platform requires addition overhead of synchronization. We

refer this parallelism as the effective event parallelism (syncΠ).

Inherent event parallelism (probΠ) refers to the parallelism that exists in the

physical system. It is mainly determined by physical system factors, the traffic

intensity for example. In a physical system some service centers can execute events

concurrently. The dependency between events influences the inherent event

parallelism. Less dependency between events gives higher parallelism. The topology

between service centers can influence the inherent event parallelism because it will

CHAPTER 1 INTRODUCTION

 16

influence the dependency between events [27]. probΠ is measured from an

analytical method and it is defined as the sum of all LPs’ utilization, i.e.,

�
=

=Π
n

i
iprob U

1

, where iU denotes the utilization of iLP . Teo et al. has proved the

measurement from a common measure of program parallelism [37]

Different event ordering exploits different degrees of event parallelism. This

parallelism is referred to as ordΠ . As mentioned before, four simulation event

orderings are defined in the methodology representing four different degrees of

parallelism, i.e. total event ordering, timestamp event ordering, time-interval event

ordering and partial event orderings. This work can be extended to include other

event orderings. Both causal restriction and event ordering rules are considered in

the measurement of ordΠ . The detailed measurement of ordΠ is presented in

Chapter 2 when we present the implementation of the methodology.

At the implementation level, maintaining a certain event ordering on a specific

execution platform requires synchronization overhead, hence the implementation

may reduce ordΠ . We call this parallelism the effective event parallelism syncΠ .

Both of the implementation algorithm and execution platform (processor, network,

operating system, etc) may affect syncΠ . syncΠ is measured from the actual

simulation and the detailed measurement is presented in Chapter 2.

It is known that the total communication time or cost is dependent on the

interconnection topology of processors (LPs) used in parallel simulation. The effects

CHAPTER 1 INTRODUCTION

 17

of interconnection topology of a physical system on exploitable event ordering

parallelism are studied at [27]. Four synthetic benchmarks representing basic

queuing network topologies are implemented and studied: Linear Pipeline, Pipeline

with Feedback, Circular Pipeline and PHOLD. It is found that feedback channel

reduce ordΠ that can be exploited by relaxing the event ordering, i.e. the physical

system limits the amount of ordΠ exploitable by parallel simulation.

The degree of event parallelism is related to the granularity that the number and

size of events or tasks into which a problem is decomposed. The formal

methodology studies the performance (event parallelism and memory requirement)

from three levels. At the event ordering level, we study the performance of parallel

simulation with different event orderings. Each event is assumed to take one unit

time to execute. ordΠ is independent of the implementation. At the implementation

level, the granularity is considered and we normalize the event execution time to the

average execution time as presented in section 2.1.

1.4 Research Contribution

It is essential to understand the degree of event parallelism before substantial

programming effort is invested to develop a simulator [36]. If there is low degree of

parallelism in the system, the performance benefits of exploiting parallelism will be

low. In addition, every processor in a parallel system has only limited space capacity.

Therefore, it is also important to predict the memory consumption of a parallel

simulation before implementation. Teo. et al develop a performance analysis

CHAPTER 1 INTRODUCTION

 18

framework – time space analyzer (TSA) tool which implements performance

analysis based on event orderings [40, 42]. The methodology has previously been

validated with several limiting queuing network benchmarks such as LPIPE and

PHOLD.

In this thesis, we use a realistic application, Ethernet network, to further study

and validate the methodology. Our performance results are consistent with the

existing results [27, 40], i.e., a weak event ordering gives higher parallelism without

increasing memory usage in a closed system. Apart from assessing the cost of event

orderings, the methodology can also analyze the simulation performance of a

simulation problem and the overhead of implementation. To study the cost of

implementation, we analyzed the conservative null message simulation protocol and

observed that much more memory is required in implementation than for

maintaining event orderings. The relationship among performance results of these

levels is also discussed in this thesis.

1.5 Thesis Overview

 The rest of this thesis is organized as follows:

 Chapter 2 introduces our overall research methodology. We introduce the

implementation and validation tools used in our research, including CSIM,

SPaDES/Java, and TSA. We also validate TSA in detail with a simple Pipeline

example.

CHAPTER 1 INTRODUCTION

 19

 Chapter 3 introduces Ethernet network modeling and its implementation.

Ethernet network is introduced through three steps: physical system, conceptual

model and implementation. We specify the processes and resources in Ethernet

network simulator at the conceptual model. At implementation level, both the

sequential and parallel simulator are implemented and validated. Lastly, we

instrumented Ethernet network simulator to obtain event sequence, which will be

analyzed by TSA.

Chapter 4 illustrates the experimental results and analysis. Both time (event

parallelism) and space (memory requirement) are characterized at three levels:

physical system, event ordering and implementation. We also compare and discuss

the relationship among three levels. Next, the performance tradeoff is analyzed.

 Chapter 5 concludes the thesis and discusses future work.

CHAPTER 2 METHODOLOGY

 20

Chapter 2

Methodology

We discuss our research methodology in this chapter. An analytical method is

used to analyze the inherent event parallelism. TSA is used to analyze event

parallelism and memory requirement for different event orderings. We modeled and

implemented the Ethernet network simulator using the SPaDES/Java simulation

library and studied its performance. The implementation and validation tools used

include CSIM, SPaDES/Java, and TSA. TSA is validated in detail using a simple

Pipeline example.

2.1 Research Methodology

Figure 2.1 illustrates our overall research approach. The performance results

contain three steps. In step 1, we use an analytical model to obtain the inherent event

parallelism of a problem. In step 2, we use TSA to derive event parallelism and

memory requirement for different event orderings. Step 3 measures effective event

parallelism and memory for synchronization from the actual simulation.

CHAPTER 2 METHODOLOGY

 21

 Figure 2.1: Research approach

As presented in Chapter 1, the inherent event parallelism (probΠ) is measured in

terms of the sum of processors’ utilization. For an open system, the utilization of a

service center is defined as λ / µ , where λ is its arrival rate and µ is its service

rate. The utilization of an LP can also be calculated by the ratio of its mean service

3

Actual
measurement

Parallel
simulator

CSIM

Validation
Instrumentation

SPaDES/Java

TSA

Applications

Performance
results

Sequential
simulator

Event sequence

Event log file

1

Analytical
method

2

CSIM
simulator

CHAPTER 2 METHODOLOGY

 22

time to mean inter-arrival time.

For a closed system, such as Ethernet network, we can apply mean value

analysis (MVA) [14] to analyze the queuing characteristics of the problem. MVA

uses a number of fundamental queuing relationships to determine the mean values of

throughput, delay and queue size for closed queuing networks. Unlike the service

centers with finite service units, Ethernet network nodes are delay servers (centers)

where

• Infinite servers/dedicated servers queues on a service center;

• There is no waiting time but only service time for a service center.

Hence the mean response time is equal to mean service time for a delay center.

iiiiii USXRXQ ===

where iQ is the average queue size, iX is the throughput, iR is the mean

response time, iS is the mean service time and iU is the utilization of an LP. We

can observe that the utilization of a delay center is the mean number of jobs

receiving service. Therefore, the utilization of a delay center is equal to its average

service rate.

In step 2, a sequential Ethernet network simulator is developed using the

SPaDES/Java simulation library. We obtain the event sequence and causal

relationships from instrumentation of sequential Ethernet network simulator. All

CHAPTER 2 METHODOLOGY

 23

events are then recorded in an event log file. Every event is recorded with its detailed

information, such as event type, timestamp, the location, etc. The event sequence are

analyzed by TSA to derive event ordering parallelisms (ordΠ) and memory

requirement (ordM).

The CSIM simulation library is used to validate our model and implementation.

If Ethernet network simulation is developed correctly using SPaDES/Java, it will

produce the same simulation results as the one developed by CSIM [45].

In step 3, we implement the parallel Ethernet network simulator using the

SPaDES/Java simulation library. A conservative null message simulation protocol is

used to synchronize the parallel execution on different LPs. We measure the actual

execution of the parallel simulator to obtain the memory requirement for

synchronization (syncM), which is measured as the sum of maximum null message

buffer sizes in all LPs.

The effective event parallelism (syncΠ) is also measured from the actual

simulation. When event ordering parallelism is measured, we assume an event is

executed in one unit time and thus all events take the same execution time. However,

in actual simulation different types of events may have various execution times. With

reference to this, we measure the unit time (unitT) as the average event execution

time.

The execution time of an LP in a parallel SPaDES/Java simulation includes the

CHAPTER 2 METHODOLOGY

 24

following several parts:

• Time used to execute event messages;

• Time used to execute null messages;

• Communication delay, time used to wait for messages from other LPs;

• Other delays.

The null messages and other execution delays are incurred due to the additional

implementation overhead. Quite a lot of factors may affect the event parallelism at

implementation level. To simplify the measurement, we consider only the execution

of events and null messages when measuring the execution time of an LP. From the

definition of event parallelism, average number of executed events per unit time, we

get the measurement of the effective event parallelism as follows:

�
�
�

�
�
	

=Π

unit

sync

T
T

Events#
 (Eq. 2.1)

where Events# is the number of all events in the problem and T is the execution

time (events and additional null messages) of the LP which has the longest execution

time compared to the others.

2.2 Tools

 The following tools are used in this study. The Ethernet network simulation is

written in SPaDES/Java and it is validated by CSIM. TSA analyzes the simulation

CHAPTER 2 METHODOLOGY

 25

performance for different event orderings.

2.2.1 CSIM

 CSIM is a simulation library in C language by Watkins [45] and it supports three

simulation worldviews, namely, event scheduling, three phase event scheduling and

process interaction. Three phase approach is different from event scheduling

approach by specifying the conditional events and scanning them in a new phase. C

has two major advantages over many other languages: portability and availability.

Objects in the real system are modeled in terms of entities and resources in

CSIM simulation library. Entities present active objects in the system such as

customers or processors. Entities have a close affiliation with events because they

are active. Entities are usually involved in several activities. A resource in the

real-world systems is usually some form of reusable asset such as the amount of free

storage in a computer system or a checkout in a supermarket. The principal

characteristic of a resource is that it has only limited capacity.

A simulator developed by CSIM usually has a better performance in comparison

with one by other simulation libraries. This is due to the higher efficiency of the C

language. However, CSIM does not support parallel simulation, so we cannot

measure effective event parallelism (syncΠ) and memory for synchronization

(syncM).

CHAPTER 2 METHODOLOGY

 26

2.2.2 SPaDES/Java

 SPaDES/Java (Structured Parallel Discrete-Event Simulation in Java) is an

object-oriented modeling toolkit for general-purpose simulations [41]. The

synchronization processes and mechanism are hidden from the simulationists. It

supports both sequential and parallel simulation. Parallel event synchronization is

facilitated through a hybrid carrier-null, demand-driven flushing conservative null

message mechanism.

 The SPaDES system adopts the approach of augmenting a general-purpose

language with essential constructs to support simulation modeling based on the

process-oriented modeling technology. The simulation programmer can concentrate

on modeling and be lifted from the burden of programming the complicated event

synchronization protocol and message passing mechanism.

SPaDES adopts a modified process-interaction modeling view called

process-oriented modeling view. In this view, entities in the real world are viewed as

a set of processes each encapsulating its own state and behaviors, and processes

interact with one another through message passing. Furthermore, it is necessary for a

process-oriented model to be mapped to an operational model that is suitable for

parallelization. The operational model of SPaDES is based on the virtual time

paradigm [16].

In the process-oriented view, real-world entities are categorized into permanent

CHAPTER 2 METHODOLOGY

 27

and temporary entities. A permanent entity, modeled as a resource, exists throughout

the simulation duration. A temporary entity, modeled as a process, is a process that

can be created dynamically at any point during the simulation and thus does not exist

throughout the simulation duration. A process can be in some states during its entire

simulation lifetime. In the operational model, resources are modeled as LPs and

processes are modeled as time-stamped event messages passed between LPs.

SPaDES/Java adopts RMI library to facilitate the message passing between

processors.

Resources are the permanent simulation entities present to provide services to

the active processes upon request. Each resource comprises of a default FIFO queue,

created when the resource is constructed, and whose function is to maintain the

arrival of processes to the resource according to their timestamp values, followed by

event priority. Each resource is really a collection set of service units, which is the

basic functional unit of a resource. When an active process requests for service at

any particular resource, the total number of service units required must be explicitly

mentioned. SPaDES/Java implements all the event lists using binary min-heaps. The

time complexity for inserting and removing a message is O(log n).

Using Java as the base language, SPaDES/Java is portable across all platforms.

It can support parallel simulation, so we can measure syncΠ and syncM .

SPaDES/Java is object-oriented, which facilitates the program development and

maintenance. However, one drawback of SPaDES/Java is that its performance is

CHAPTER 2 METHODOLOGY

 28

worse than CSIM. Java’s platform independence requires a Java virtual machine to

run on the local machine, thus sacrificing some degree of its performance. However,

in comparison with CSIM, SPaDES/Java is a better choice for our implementation.

2.2.3 TSA

Teo et al. originally implement TSA in C [40]. It can be instrumented to a

simulator by CSIM to derive the performance results. TSA measures probM , ordM ,

and ordΠ by analyzing the event sequence provided by a simulator. Java version

TSA is the translation of original C version TSA [42]. Java version TSA can be

instrumented to a simulator in SPaDES/Java.

TSA is designed to measure the performance results for different event orderings.

The input of TSA is an event sequence with its causal relationships from simulator.

Every event is recorded with its event type, its location and timestamp. Event

sequence is stored in a doubly-linked list. Because event sequence is obtained from a

sequential simulator, the events are automatically sorted by their timestamp.

Events are fetched into TSA in the order they are executed in a sequential

simulator. TSA executes these events in parallel by following a particular event

ordering. Each event is assumed to execute in one unit time. Figure 2.2 shows the

main loop in a sequential simulator with TSA instrumentation. The simulator invokes

TSA for each event that is removed from the future event list. Typically a simulator

advances its virtual time to the event’s timestamp. We record the event information

CHAPTER 2 METHODOLOGY

 29

(line 5) and then write the event to a log file or schedule it to the TSA routine (line

6).

1. While <<simulation is running>>{
2. <<remove top event e from future event list>>;
3. execute(e);
4. simulation_clock=timestamp of e;
5. TSA_record(e);
6. TSA_schedule(e);/event_log(e);
7. }

Figure 2.2: Simulation executive main loop with TSA instrumentation

TSA has two options to analyze event sequence: (a) It executes in parallel with

the simulation with one event scheduled to TSA immediately when the simulation

executes it; (b) TSA executes after the simulation by fetching events from a log file

and works as a post-execution instrumentation analyzer. We adopted the latter option.

For a large simulation that has a large execution time, we run the simulation once.

The event log file is used by TSA many times without rerunning the simulation.

Another benefit is that the event log file can be used to validate the instrumentation.

When TSA is initialized, it sets up four instrumentation classes representing four

simulation event orderings. Each class maintains two arrays: maxFEL and maxCEL,

with n slots, where n is the problem size. These two arrays keep track of the

maximum lengths of the FEL and CEL of each LP throughout the simulation. Each

class also records the critical path length. When the TSA-instrumented simulator is

running and a new customer arrives in the system, or an event has been scheduled in

a particular LP, a new event is created to record this change in state of the simulator.

When all LPs have at least one event in its event list, TSA advances its time by one

CHAPTER 2 METHODOLOGY

 30

time unit, i.e., increasing the critical path by one, and execute the top events

according to the defined event ordering rule.

After all events are analyzed, TSA computes probM , ordM and ordΠ as

defined below:

�
=

=
n

i
iprob CELM

1

max

�
=

=
n

i
iord FELM

1

max

ord
ord lengthpathcritical

events
__

#=Π

where events# is the number of all events and ordlengthpathcritical __ is the

critical path length of a particular event ordering.

2.3 TSA Validation

We validated TSA before it is used to analyze performance results. A simple

linear Pipeline (PL) example is used to validate TSA. PL is manually analyzed and

the corresponding event sequence is stored into an event log file. The causal

relationships between events and other event information are recorded in the file.

The file is small enough for us to analyze event sequence and manually derive the

performance results. Then the results are compared with the results generated by

TSA. Figure 2.3 illustrates our validation methodology.

CHAPTER 2 METHODOLOGY

 31

Figure 2.3: TSA validation methodology

A 2-LP Pipeline example is used as our validation program. A laundry with wash

point (0LP) and dry point (1LP) is such an example. There are four event types in

linear Pipeline: external arrival, internal arrival, external departure and internal

departure. Four messages are modeled to flow through the pipeline. The

inter-arrival-time is fixed to 7 time units and the service time in one LP is set to 8

time units. 0Message is scheduled to enter 0LP at simulation time 1. The runtime

information is listed in Appendix A, which is a “trace” of a simulation.

TSA

Performance
results

Event
sequence

Manually analysis

Pipeline

SPaDES/Java

Performance
results

Validation

CHAPTER 2 METHODOLOGY

 32

Message

ID
External
Arrival at

0LP

Internal
Departure
from 0LP

Internal
Arrival at

1LP

External
Departure
from 1LP

0message

1message

2message

3message

1e : 1

2e : 8

5e : 15

9e : 22

3e : 9

7e : 17

11e : 25

13e : 33

4e : 9

8e : 17

12e 25

14e : 33

6e : 17

10e : 25

15e : 33

16e : 41

Table 2.1: Event sequence with timestamps in Pipeline simulation

 Table 2.1 lists all the sixteen events with time stamps generated from PL

simulation. Every event is recorded with its message ID, timestamp, location, Event

type, next location and the antecedent event information as required by TSA.

Appendix B lists the detailed event information for all sixteen events in the log file.

 According to aforementioned measurement, probM is the sum of maximum

CEL lengths (maxCEL) of all LPs, ordM is the sum of maximum FEL lengths

(maxFEL) of all LPs and ordΠ is the ration of the number of events to the critical

path length of a particular event ordering. The results of probM , ordM and ordΠ

for PL are listed at Table 2.2.

Event ordering probM ordM Critical path length ordΠ

Partial
Time interval*

Time stamp
Total

2

3
3
3
3

10
11
12
16

1.60
1.45
1.33
1.00

*window size of time interval event ordering is 2 time units

Table 2.2: Performance results of Pipeline simulation

 Because 1message should wait in CEL [0] for the 0message to depart from

CHAPTER 2 METHODOLOGY

 33

0LP , the maxCEL[0] is equal to 1. 2Message should wait in CEL[1] for 1message

to depart from 1LP , so maxCEL[1] is equal to 1. Thus probM is the sum of

maxCEL[0] and maxCEL[1], which is 2. When a new message arrives at 0LP , it

will schedule its internal departure and next message’s external arrival, so maxFEL

[0] is equal to 2. Arrival at 1LP can only schedule one departure event, so maxFEL

[1] is equal to 1. Therefore, ordM is the sum of maxFEL[0] and maxFEL[1], which

is 3.

Let us analyze ordΠ now. Table 2.3 shows the event dependency information

of the 16 events, where “ 21 ee → ” means that 1e is the antecedent event of 2e .

Simulated time 0LP 1LP

1
8
9
15
17

25

33

21 ee →

52 ee →

43 ee →

95 ee →

117

87

ee

ee

→
→

1311

1211

ee

ee

→
→

1413 ee →

64 ee →

108 ee →

1512 ee →

1615 ee →

Table 2.3: Causal relationships between events in Pipeline

Table 2.4 lists the event execution sequence of the four simulation event

orderings. Whether an event can be executed in one step is determined by the causal

restriction and event ordering rules. First, the critical path length of total event

ordering is 16 since there are 16 events in the system. For total event ordering, only

one event can be executed at one step and there is no event parallelism, ordΠ is 1.

CHAPTER 2 METHODOLOGY

 34

Events can be executed under partial event ordering as long as they do not violate

causal restriction. In timestamp event ordering, if two events can be concurrently

executed at one step, they must reside in one time window. Therefore 9e and 10e

cannot be executed concurrently at step 6 under time interval event ordering

(window size is 2 time units), even though they can be concurrently executed under

partial event ordering. For timestamp event ordering, only two events with the same

timestamp can be executed concurrently in one step. 5e and 6e cannot be

executed concurrently at step 4 under timestamp event ordering because they have

different timestamps, even though they can be concurrently under time interval event

ordering.

CHAPTER 2 METHODOLOGY

 35

Step Partial event
ordering

Time interval
event ordering

Time stamp
event ordering

Total event
ordering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1e

2e

3e & 4e

5e & 6e

7e & 8e

9e & 10e

11e & 12e

13e & 14e

15e

16e

1e

2e

3e & 4e

5e & 6e

7e & 8e

9e

11e & 10e

12e

13e & 14e

15e

16e

1e

2e

3e & 4e

5e

7e & 6e

8e

9e

11e & 10e

12e

13e & 14e

15e

16e

1e

2e

3e

4e

5e

6e

7e

8e

9e

10e

11e

12e

13e

14e

15e

16e

Table 2.4: Event execution sequences for all event orderings in Pipeline

 We execute the Pipeline simulation and obtain the same event sequence. TSA

executes the event sequence and produces the same performance results as our

manual analysis method. Therefore, TSA implementation is validated.

2.4 Summary

We illustrated our overall research methodology in this chapter. An analytical

method was used to analyze the inherent event parallelism of a problem. TSA was

used to analyze the performance of parallel simulation based on event orderings. The

Ethernet network simulator was implemented using SPaDES/Java simulation library.

CSIM simulation library was used for validation. Lastly, a simple Pipeline example

CHAPTER 2 METHODOLOGY

 36

was used to validate our TSA implementation in detail.

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 37

Chapter 3

Ethernet Modeling and Implementation

We discuss the modeling and implementation of Ethernet network in this chapter.

Ethernet is currently the most-used LAN technology. There is no central control in

Ethernet network and all stations transmit data independently, so we expect a high

degree of event parallelism. Simulation plays a vital role in attempting to

characterize the behavior of Network applications [9].

3.1 Problem

 Ethernet is a branching broadcast communication system for carrying digital

data packets among locally distributed computing stations [24]. A station can be

attached anywhere to a passive coaxial cable, sometimes known as Ether, via a

device called a transceiver. Ethernet network is reliable because of its distributed

control - a single point failure can cause only partial interruption.

Ethernet uses CSMA/CD (Carrier Sense Multiple Access with Collision Detect)

protocol. Any Ethernet station having frames to send will attempt to do so after it

finds an empty cable. If two or more stations transmit frames simultaneously, there

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 38

will be a collision. Each station detects the collision, abort its transmission, wait a

random period of time, and then try again until its packet is successfully transmitted

or the transmission is considered to fail because the maximum number of

retransmission, 16, is reached. Binary exponential back-off algorithm is used to

determine the time (back-off) before a retransmission. The back-off in terms of the

number of slots (512 bit times) is defined by a uniformly distributed number

between],0[N , and

12 −= iN (1<= i <=10)

 = 1023 (10< i <=16)

where i is the number of transmissions made so far.

 The Ethernet network exists to move frames carrying application data between

computers. Hence the structure of a frame is central to the operation of the system.

Preceded by a start bit, a frame starts with the destination and source address, which

are both 6 bytes long. Following the address are 46 to 1,500 bytes of data. The last 4

bytes of a frame are the Frame Check Sequence or CRC. Only the address and data

part are accessible to software. The minimum frame size is 64 bytes and the

maximum frame size is 1518 bytes.

Simulation methods have been used to analyze the performance of Ethernet.

Watkins uses a simulation method to study Ethernet protocol efficiency in the steady

state [45]. He observes that an Ethernet network with larger frames has higher

protocol efficiency than one with smaller frames.

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 39

3.2 Simulation Model

 The input parameters, output, system states and components (processes and

resources) of Ethernet network are specified in our simulation model. The input

parameters are:

• Number of stations. This is the number of stations on the LAN.

• Frame size. This is the size of a frame in bytes with values from 64 bytes to 1024

bytes.

• Time between transmissions. This is the mean idle time after a frame has been

either transmitted or discarded (because 16 attempts have been made) until the

next transmission attempt.

The simulation outputs are:

• Transmit delay. This is the average time delay per successful frames.

• Protocol efficiency. This is the ratio of the number of successful frames to the

maximum number possible when the LAN is being operated at its maximum

rate.

There are two important objects in the Ethernet protocol – “Stations” which

communicate with each other on the channel and “Frames” with which they

communicate. There are five states for a station: “Idle”, “Wait”, “Listen”,

“Contention” and “Finish”. The state transit diagram of a station is shown in Figure

3.1. When the simulation is initialized, every station is in “Idle” state. A station goes

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 40

to “Wait” state if it wants to send a frame through the channel. If the channel is clear,

it transmits the frame to the cable immediately. Otherwise, it blocks until a clear

channel is found. After transmitting a frame, a station waits for 2-slot time. If no

collision occurs in this period of time, the package was transmitted successfully;

otherwise, the station has collided. If collision occurs, the station waits for a random

period of time, go back to “Wait” state and retransmit the frame. However, if the

number of retransmissions is larger than 16, the transmission fails and the station

goes back to “Idle” state and begin its next activation.

Figure 3.1: State transit diagram of an Ethernet station

Y

Y

Wait 2 slots

Failure

Next activation

N

Random
time later

Continue wait

N

Y

Collision?

Clear channel?

#Retrains>16?

Idle

Successful

N

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 41

There are three states for a frame: “Arrival”, “Transit” and “Departure”. The

“Transit” state can be modeled implicitly after the “Arrival” state and before the

“Departure” state. When a frame arrives at a station, it passes through it without

delay. All frames contend for the clear channel in Ethernet network. A station must

wait for an empty channel to transmit frames. The frame transmission time

(frame-size divided by LAN-speed) cannot be neglected, so a frame cannot be

modeled as one process. We model two processes for a frame: frame head (the first

bit of a frame) and frame tail (the last bit of a frame). Every time a station wants to

transmit frames, it schedules the frame head activation immediately, but schedules

the frame tail activation frame transmission time later. When a frame arrives at a

station which is in the “Listen” state (within 2-slot time after transmission), the

transmission is flagged as failed. The station then goes to “Contention” state and

corrupts the frame(s) it sent.

A station is also modeled as a resource in parallel simulation. Frame head or tail

stays at a station for a period of time equal to the neighbour delay time (distance

between two neighbouring stations divided by signal transmission speed 2*108 m/s).

There is no need to model conditional event list (CEL) for a station resource because

it is a delay center where infinite service units are available. The station process

always stays at a station resource and does not move, while a frame moves between

stations.

In summary, there are 4 objects in our conceptual model of Ethernet network as

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 42

shown in Figure 3.2: station process, station resource, frame head process and frame

tail process. The frame head and tail are modeled separately. Frame head arrival at a

station means the arrival of the frame. Frame tail departure from a station refers to

the departure of the frame. If a frame is corrupted within 2 slot time, the frame’s tail

will be rescheduled to transmit immediately. Otherwise, the transmission is flagged

as successful.

Figure 3.2: Processes and resources in simulation model of Ethernet.

3.3 Simulation and Implementation

At the implementation level, some assumptions are made about our simulated

Ethernet network. Firstly, we assume there is a straight cable without any branches.

All stations are equally distributed along the cable. The channel is noiseless and the

station is reliable. Frames travel along the cable from the source station in both

Station 1 Station 3 Station n Station 2

……

Package sent by station 3

Boundary station Boundary station

2. Station resource

1. Station process

3. Frame head 4. Frame tail

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 43

directions and are absorbed at the cable ends. The time between transmissions is

exponentially distributed. Protocol efficiency is required with all stations working

continuously, i.e. no idle periods. Ethernet standards specify a maximum delay of

51.2 µ s (slot size) but this is supposed to include the transmit delay through

repeaters. The length of cable is assumed to have the maximum delay equally

distributed throughout its entire length (approximately 10 km), which is the product

of the slot size (51.2 µ s) and the signal transmission speed (2*108 m/s).

3.3.1 Sequential

We implemented the simulator with SPaDES/Java and validated it with the C

simulator developed by Watkins [45]. There are two classes of active objects in

Ethernet network: station and frame. In addition, one kernel class is used to initialize

the simulation parameters, start the simulation and print the simulation results. The

simulation terminates when the simulated time exceeds a specified duration. The

kernel class is also responsible for initially activating the station classes. The kernel

class is listed in Figure 3.3.

1: import spades_Java.*;
2:
3: //EthernetKernel.java
4: // Executive instance
5: public class EthernetKernel extends Executive{
6: :
7: Resource Service[];
8: //station process
9: Station station[];
10: :
11: //define parameters for Ethernet
12: double LAN_Speed; /* LAN speed in bps */
13: double cable_length; /* Cable length in meter */
14: int num_stations; /* Number of users in the LAN */
15: int frame_size; /* Frame size in bytes */

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 44

16: double duration; /* Simulation duration in ms */
17: :
18: public void init(){
19: :
20: <<Initialize Ethernet parameters>>
21: :
22: <<Initialize resource>>
23: :
24: //Active station process
25: for (int i=0, i<num_stations, i++){
26: :
27: station[j]=new Station(“Station “+j,this);
28: <<Initialize station[i]>>
29: mapProcess(station[j],Service[j]);
30: activate(station[j], 0);
31: :
32: }
33: }
34: public static void main(String[] args){
35: EthernetKernel ek = new EthernetKernel();
36: ek.initialize(args.length, args);
37: ek.startSimulation(duration);
38: <<Print simulation results>>
39: }
40: }

Figure 3.3: Kernel class of Ethernet network simulation

Once a station entity has been created it exists permanently for the life of the

simulation and is involved in a succession of transmission attempts. The following

pseudo code describes the behavior of a station class.

1: import spades_Java.*;
2: Class Station extends SProcess{
3: :
4: int successful; /* Number of frames sent */
5: int number_retrans; /* Number of retransmission so far */
6: Aframe[] end; /* Frames transmitted out */
7: <<Initialize other Station parameters>>
8: :
9: public void execute(){
10: switch(phase){
11: case Idle:{
12: <<Set phase to Wait>>
13: wait(0.0);
14: break;
15: }
16: case Wait:{
17: if <<Channel is clear>> {
18: <<Create and transmit frames>>
19: <<Set phase to Listen>>

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 45

20: wait(2*slot_time);
21: }else{
22: //continue waiting
23: susPend();
24: }
25: break;
26: }
27: case Listen:{
28: if <<Frame is or will be successfully
29: transmitted>>{
30: if <<Both frames transmitted>>{
31: <<Set phase to Finish>>
32: wait(0.0);
33: }else{
34: <<Wait until 2 frames left>>
35: <<Set phase to Finish>>
36: susPend();
37: }
38: }else{
39: <<Retransmit this frame>>
40: }
41: break;
42: }
43: case Contention:{
44: <<Set phase to Wait>>
45: wait(0.0);
46: break;
47: }
48: case Finish:{
49: <<Reset this station>>
50: <<Set phase to Idle>>
51: wait(0.0);
52: break;
53: }
54: }
55: }
56: }

Figure 3.4: A station class

The station class follows straightly from the state transit diagram of a station in

Figure 3.1. A station needs to record the number of frames it sent out (Line 4) and

number of retransmissions so far in this station (Line 5). If a clear channel is found,

the station transmits two (one for boundary station) frames in both directions. The

station schedules the frame head’s arrival at its neighbouring station neighbour delay

time later. In the mean time, the station schedules the frame tail’s departure from

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 46

itself frame transmission time later. The station also needs to record frames that it

sent (Line 6) because it is necessary for a station to identify the frames it sent when a

collision occurs. After transmitting two frames, the station will listen for 2 slot size

time. If no other frames arrive at this station in this period of time, the transmission

is successful. If both frames have been transmitted, the station will go to “Finish”

state and prepare for another transmission some idle time (exponentially distributed)

later. Otherwise the station will suspend itself and wait for another frame’s departure.

However, if some frame(s) arrive at this station in 2 slot size time, the transmission

is considered to fail.

Once a collision has occurred a time delay must be calculated after which a

retransmission can be attempted. However, if the maximum number of attempts has

already been made, the transmission request must be rejected. The function

retrans_time() in Figure 3.5 calculates the retransmission time according to binary

exponential back-off algorithm. The actual retransmission is performed with

retransmit(), which is called in phase “Listen” after the two-slot delay.

1: class Station extends SProcess {
2: :
3: void retransmit(Station this_station){
4: /*Have maximum number of attempts been made?*/
5: if (<<Number of retransmission = 16>>){
6: <<Set phase to Finish>>
7: wait(noise_burst*1.005);
8: }else{
9: <<Set phase to Contention>>
10: /*Wait for a random and restransmit*/
11: wait(retrans_time(this_station));
12: }
13: }
14: :
15: float retrans_time(int this_station){
16: int t;

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 47

17: int num;
18: float maximum;
19: number_retrans++;
20: num = number_trans;
21: if (num>10){
22: num=10;
23: }
24: maximum=2^num;
25: t=(int)uniform(0,maximum);
26: return slot_size*t;
27: }
28: :
29:
30: public void execute(){
31: switch(phase){
32: :
33: case Listen:{
34: if <<Frame is or will be successfully
35: transmitted>>{
36: :
37: }else{
38: <<Retransmit this frame>>
39: }
40: break;
41: }
42: :
43: }
44: }

Figure 3.5: Retransmission mechanism

It is necessary for a station class to determine when it interacts with a frame

class. If a station cannot find a clear channel in “Wait” state, it will be passivated

until a departure frame clears the channel. When the last frame has left the station

and is propagating down the cable the station must be reactivated so that the next

transmission can be made. Note that in the case of very short frames of less than 128

bytes, this would not be performed because by the time the station had been

activated after the initial two-slot delay both frames would already have been

transmitted.

Now let us look at the frame class. The following pseudo code outlines the

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 48

frame class.

1: import spades_Java.*;
2: Class Aframe extends SProcess{
3: :
4: int source; /* The sender station of the frame */
5: int direction; /* The direction of propagation */
6: int arr_sta; /* The station arriving at */
7: int dep_sta; /* The station leaving from */
8: <<initialize other parameters of a frame>>
9: :
10: public void execute(){
11: switch(phase){
12: case Arrival:{
13: int this_stn=this.arr_stn;
14: if (<<The arrival station is in Listen state>>
15: and <<The station is not corrupted>>){
16: invalidate_frame(this_stn);
17: }
18:
19: if (<<Frame going to left>>){
20: <<Flag a frame passing by from left>>
21: if (<<Frame not at end of cable.>>){
22: wait(neighbour_delay);
23: }else{
24: terminate();
25: }
26: }else{//Frame going to right
27: <<Flag a frame passing by from right>>
28: if (<<Frame not at end of cable.>>){
29: wait(neighbour_delay);
30: }else{
31: terminate();
32: }
33:
34: break;
35: }
36: case Departure:{
37: if (<<This is the frame’s source station>>){
38: <<Flag a frame has been transmitted>>
39: if (<<Finished both frames>>){
40: if (<<Frame not corrupted>> and
41: <<Station is not in Listen state>>){
42: reactivate(<<This station>>);
43: }
44: }
45: }
46:
47: if (<<Frame is going to left>>){
48: <<Frame passing by decrease by 1>>
49: if (<<Frame can be sent to left>>){
50: wait(neighbour_delay);
51: }else{
52: terminate();
53: }
54: }else{//Frame is going to right

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 49

55: <<Frame passing by decrease by 1>>
56: if (<<Frame can be sent to right>>){
57: wait(neighbour_delay);
58: }else{
59: terminate();
60: }
61: }
62:
63: if (<<Channel is clear after this departure>>
64: and <<This station suspends>>){
65: reactivate(<<this station>>);
66: }
67:
68: break;
69: }
70: }
71: }

Figure 3.6: A frame class

An arriving frame schedules its possible arrival at its neighbouring stations and

increases the number of frames passing by the station. If the station happens to be a

boundary station, the frame will be terminated. When a frame departs from a station,

it will first test whether the station is the frame’s source station. If it is, the frame

will be flagged to be transmitted. If the frame is not corrupted, we will activate the

station to transmit another frame. The departing frame will schedule its departure

from neighbouring station and decrease the number of frames passing by the station.

If the station is a boundary station, the frame will be terminated.

We have seen before that a station needs to suspend to wait for a frame’s

activation. The activation of the waiting station is suspended if the channel is busy.

Only a departure event can make the channel clear, so the channel will be checked

after every departure event. The waiting station will be reactivated if a departure

event makes the channel clear (Line 65). Another interaction occurs when the last

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 50

frame is sent out and the station is reactivated to make the next transmission (Line

42).

When a frame arrives at a station that is in “Listen” state, it will collide with the

station. The corrupted frames will be passivated (extracted from FEL) and be

rescheduled to occur some noise time (noise_burst) later. The pseudo code to handle

collisions is listed in Figure 3.7.

1: Class Aframe extends SProcess{
2: :
3: public void execute(){
4: switch(phase){
5: case Arrival:{
6: int this_stn=this.arr_stn;
7: if (<<The arrival station is in Listen state>>
8: and <<The station is not corrupted>>){
9: invalidate_frame(this_stn);
10: }
11: :
12: void invalidate_frame(int station){
13: <<Mark this station’s transmission to be fail>>
14: if <<Station transmit frame left>>{
15: //remove from FEL
16: passivate(<<Left frame>>);
17: <<Left frame>>.wait(noise_burst);
18: }
19: if <<Station transmit frame right>>{
20: passivate(<<Right frame>>);
21: <<Right frame>>.wait(noise_burst);
22: }
23: }
24: :
25: }

Figure 3.7: Collision handler

If all stations are activated to occur at simulation time 0 at the initial stage, each

station will try to transmit two (one for boundary station) frames in both directions.

Then the simulation will run according to the aforementioned mechanism. The

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 51

whole pseudo source code of Ethernet network simulation is presented in Appendix

C.

As CSMA/CD protocol is the essential part of Ethernet, it is implemented in our

simulator. But some other researchers choose to eliminate the implementation of

CSMA/CD protocol to reduce the implementation complexity [44].

3.3.2 Parallel

In SPaDES/Java, every LP maps to a resource. A resource maintains its own

future event list and executes events from its own event list. Null message

synchronization protocol is used to ensure event causality. A station is mapped to a

resource in Ethernet network simulation. Null message protocol used in

SPaDES/Java requires that users statically specify the links that indicate which LP

may communicate with which other LPs. Obviously there are links between two

neighbouring stations. Additional links exist from one LP to itself because the frame

head’s arrival is scheduled by itself. Therefore the station in Ethernet network is

self-transitive. Both null messages and event messages transmit through links. The

links for a 3-station Ethernet network are illustrated in Figure 3.8.

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 52

Figure 3.8: Links in a 3-station Ethernet network

An event message enters an LP’s output link only when the LP executes a

process’ arrival event. SPaDES/Java incurs two activities for an arrival event. One is

to schedule the process’ departure event in local FEL. Another is to call the process’

execution and send the process to its output channel. The scheduled departure event

in FEL is in fact a dummy event with the departure timestamp and the process name.

When the dummy event is executed, it will remove the actual departure event in the

output link and send the event to its neighbour LP. The neighbouring LP then puts

the process’ arrival event to its FEL. This is the mechanism SPaDES/Java transmits

an event between two linked LPs.

SPaDES/Java provides the same primitives for sequential and parallel

simulation. Hence it is easy to use the sequential simulation codes for parallel

execution. One difference that exists between sequential and parallel implementation

is frame passing through a station. Frame transmits from one station to its neighbour

after neighbour delay time. This delay is modeled by calling wait() primitive in

1LP 2LP 2LP

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 53

sequential implementation. Global FEL then sorts all processes. The sequential

implementation of frame passing is shown in Figure 3.9a.

Figure 3.9: Sequential and parallel implementation of frame passing

However, this approach cannot be applied to parallel simulation because arrival

events at two neighbouring stations are located at different LPs. The transmission

delay between two stations is now modeled as the service time delay in resource.

Hence a station resource is modeled as a delay center where a frame can get service

immediately when it arrives at a station. The response time of all delay centers is

zero and the transmission delay from one station to its neighbour is also zero. The

work() primitive is called to schedule its arrival at neighbour delay when a message

Station[i+1] Station[i]
Boundary Station Boundary Station

wait(t)
(a) Sequential

Station[i+1] Station[i]
Boundary Station

work(t)
(b) Parallel

Boundary station

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 54

arrives at a station. This mechanism is a little more complicated than the mechanism

used in sequential implementation. However, the two approaches are equivalent.

Figure 3.9b illustrates the parallel implementation of message transmitting between

stations.

3.4 Verification

Simulation verification ensures that the simulator program implements

conceptual model correctly [30]. In this study, the Ethernet simulator is developed

with a special-purpose simulation language SPaDES/Java, not one general purpose

higher order language such as PASCAL or FORTRAN. A simulation

language/library will usually provide the sub-model for each simulation function

(e.g., time-flow mechanism, process and resource manager, random number and

random variants generators, and integration routines). Therefore, using a special

purpose simulation language will not only reduce the programming time, but also

increase the probability of having a correct program.

The simulation library, SPaDES/Java, has preciously been verified by other

queuing network applications [40, 41, 42]. Here we only illustrate the verification of

the Ethernet simulator.

Firstly, the development is to start with a simplified version of the model and

then to refine it in a number of steps. In the first step, the modeling of the

complicated frame collisions and the resulting retransmission strategy is completed

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 55

ignored. Then the retransmission strategy can be incorporated in a second step and

the necessary data collection and analysis functionality in a third step. The parallel

Ethernet simulator was developed in the last step. This multistage development and

verification limit the errors in a short development period and avoids the major

revision to the simulator.

Secondly, the code was reviewed by people other than the author to check the

model logic.

Thirdly, the simulator produced a trace file which consists of detailed event

execution representing the step-by-step progress of the simulator over the simulation

time. The trace file recorded the detail information for every event generated from

the simulator, including the customer ID, event’s timestamp and the LP. The trace

file is similar to the one listed in Appendix A. This method allows detection of subtle

errors. The trace file displayed that some events may occur but not be scheduled to

TSA in the later instrumentation stage. It turned out the causal relationship between

events are not correctly maintained by TSA.

Fourthly, one test program is written to check the execution of Ethernet

simulator. The purpose of using test program is to guarantee that the following

conditions are correctly held:

1. The timestamp of every message into one LP is always larger than its

timestamp out of the LP;

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 56

2. The arrival time of every message to the receiver LP is always larger than its

departure time from the sender LP;

3. The number of messages in FEL is always larger than or equal to zero;

4. Finally, the number of messages into an internal LP is equal to the number of

messages away from it;

Some extreme-conditions are also tested in every stage of the Ethernet simulator

development. For example, we test the case where only two stations in the Ethernet

network contend the channel. Such an extreme condition will allow us to check the

correctness of the collision and retransmission modeling easily.

Finally, the state of the simulated system, i.e., the contents of the event list, state

variables, statistical counters were printed and checked with the model logic.

3.5 Validation

The aim of validation in a simulation study is to ensure confidence in the study’s

results. A model is sound and dependable if it accomplishes what is expected [10].

Developing a simulation model is an iterative process with successive refinements at

each stage. Hence validation occurs at several stages in a simulation project. Our

experiments are validated at two stages. One existing Ethernet model by CSIM [45]

is used to validate our implementation using SPaDES/Java. We assume that the

CSIM model is itself validated [31]. In order to validate the sequential

implementation, we compare our simulation results with those by the CSIM model.

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 57

Next, we validate the parallel implementation.

3.5.1 Sequential Simulation

Binary exponential back-off algorithm uses uniformly distributed number

generation to calculate retransmission delay. We also assume an exponentially

distributed mean idle time between transmissions. CSIM and SPaDES/Java use

different pseudo random number seed value for generating random variants. In the

first step the fix value [30] validation is used and the random mechanism is excluded

from the simulator.

 Let us look at the validation process in detail now. We generate simulation

results from both the CSIM version and the sequential SPaDES/Java version.

Comparison between the two simulation results is used to validate our

implementation. In fix value validation, all model input and internal variables are

fixed and we can check the model results against hand calculated values. Firstly, the

random variant is replaced in the binary exponential back-off algorithm by changing

the back-off in terms of the number of slots to 2
)1(+n . The delay time between

frame corruption and retransmission also increases with number of retransmissions.

Next, the mean idle time between transmissions is fixed at 0.1 ms. All stations are

initialized to activate at different times, i.e., increment of 0.1 ms, 0 ms for station 0,

0.1 ms for station 1, 0.2 ms for station 2, and so on. The simulation duration is 100

seconds. Because of the fine simulation resolution, this generates about 108 events

during this period of simulated time.

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 58

Table 3.1 shows the comparison of simulation results between CSIM model and

sequential SPaDES/Java model. The output of transmit and efficiency is already

defined in the simulation model (section 3.2). The two programs produce the same

simulation results. Therefore the SPaDES/Java model is validated by the CSIM one.

Parameters CSIM SPaDES/Java
#Stations Frame size

(bytes)
Transmit

delay (ms)
Efficiency

(%)
Transmit

delay (ms)
Efficiency

(%)
10

128
256

0.15
0.12

83.0
96.0

0.15
0.12

83.0
96.0

20

128
256

0.24
0.26

83.1
90.9

0.24
0.26

83.1
90.9

30

128
256

0.84
0.42

76.6
89.5

0.84
0.42

76.6
89.5

Table 3.1: Validation of SPaDES/Java Ethernet simulator (fix value)

 The simulator output, transmit delay and efficiency, in Table 3.1 is only used for

validation because we use fix value method to validate the Ethernet simulator.

 Although we exclude the effect of random variants in the two simulation

libraries, two implementations may schedule simultaneous events to occur at

different orders. To save future events, CSIM uses a tertiary tree while SPaDES/Java

uses a binary minheap. Heap-based sort is unstable because two simultaneous events

may not keep their original order after sorting. This prevents problems to be

completely validated.

 In the second step, we validated sequential SPaDES/Java Ethernet simulator by

comparing our simulation outputs with those by Watkins’ model. Because simulation

modeling normally requires repeatability, random number generator can always

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 59

produce the same sequence of random numbers starting with the same initial

condition (seed). Therefore we use the same number stream for both the CSIM

simulator and SPaDES/Java simulator to compare the simulation outputs. The two

simulation outputs are listed in Table 3.2. The mean idle time is 0 and the simulation

time is 1000 ms.

Parameters CSIM SPaDES/Java
#Stations Frame size

(bytes)
Transmit

delay (ms)
Efficiency

(%)
Transmit

delay (ms)
Efficiency

(%)
10

1024
256

1.13
0.52

92.8
91.0

1.13
0.52

92.8
91.0

20

1024
256

4.42
1.92

88.9
79.4

4.42
1.92

88.9
79.4

60

1024
256

15.4
12.6

85.4
62.3

15.4
12.6

85.4
62.3

200

1024
256

35.3
28.7

80.3
60.0

35.3
28.7

80.3
60.0

Table 3.2: Validation of SPaDES/Java Ethernet simulator

Our simulation results are the same as those generated by Watkins’ and higher

than those from other studies [18, 34]. Different model assumptions are used in [18,

34] and the performance results are obtained from theoretical analysis. For example,

they suppose “that n stations are contending for the channel and suppose that each

station transmits during a contention mini-slot with probability p.” Their results are

derived directly from the paper of Metcalfe and Boggs [24]. Many simulation and

theoretical studies of Ethernet assume a simple distribution for the arrival of packets.

Poisson distribution is usually used. However, real network traffic often consists of

heavy load that are divided by long period light traffic [2].

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 60

As in Watkins’ model, our Ethernet network simulator assumes there is no idle

period, i.e. network load is continuous and heavy. Therefore the network throughput

and efficiency are higher.

3.5.2 Parallel Simulation

A similar method is exploited to validate the parallel implementation. Ethernet

simulation results of parallel SPaDES/Java version are compared with CSIM version.

Finally we produced the same simulation results between CSIM version and parallel

SPaDES/Java version as in Table 3.2 and thus validate the parallel implementation.

3.6 Events Instrumentation

We instrumented the Ethernet network simulator to obtain event sequence and

causal relationships. There are five types of events in Ethernet network simulation,

shown in Figure 3.10: (1) External Arrival: A frame arrives from external

environment to the Ethernet network. An external arrival event is scheduled only if a

station finds a clear channel to transmit frames; (2) Internal Arrival: A frame arrives

at an intermediate station from the neighbouring station, scheduled by its

neighbouring station; (3) Boundary Arrival: A frame arrives at a boundary station

from its neighbor, scheduled by its neighbor’s arrival event; (4) Internal Departure:

A frame departs from one intermediate station, scheduled either by this frame’s

external arrival event or its internal departure from the neighbouring station; (5)

Boundary Departure: A frame departs from one boundary station, scheduled by

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 61

neighbor’s internal departure.

Figure 3.10: Five types of events in Ethernet network simulator

A station loops over some states, but can stay only at one state at any particular

point of the simulation time. Hence every station process has only one event in the

LP’s FEL and it does not change with event orderings. Therefore we do not consider

events for station activation. We concentrate on the activation of frames and the

interaction between stations and frames in our experiments.

TSA requires that one knows all the causal relationships between events so that

one can analyze the performance based on causal restriction. We record every event

together with its antecedent event. An event can be executed only after its antecedent

event has been executed according to causal restriction.

It is complicated to find causal antecedent events for external arrival events. A

station will schedule an external arrival event when it is in “Wait” state and a clear

channel is available. We check back from this point to find which other events may

be the antecedent event of an external event in Ethernet’s control flow graph (CFG),

1

2 3 4 5

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 62

shown in Figure 3.11. The following six paths give the possible antecedent events of

an external arrival event.

Figure 3.11: Control flow graph (CFG) of Ethernet simulator

“Wait”

Non-clear

Clear*

“Listen”

Collision

Finished

Non-finished

“Contention”

“Finish”

“Idle”

Frame Process

Departure event
that clear channel

in a station

Departure that
finishes a station’s
transmission after 2

slot time

Arrival at a
listening station

Departure that
finishes a station’s
transmission in 2

slot time

1
2

3

4

5
6

Station Process

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 63

• Path 1: The channel becomes clear after a frame has departed. The departure

event will then reactivate the station that is suspended on the “Wait” state. The

departure event thus becomes the antecedent event of such an external arrival

event.

• Path 2: A frame arrives at a listening station and collides with the station. The

station will try to retransmit its frame(s) if the number of retransmissions is less

than 16. If the channel happens to be empty when the station returns to “Wait”

state, an external arrival event will be scheduled. Hence the arrival event that

makes the station collided becomes the antecedent event of an external arrival

event in this circumstance.

• Path 3: In the initial configuration all stations will find clear channel and transmit

frames immediately. There is no antecedent event for such an external arrival

event.

• Path 4: A successfully-transmitted frame will depart from its source station after

2 slot size time if the frame size is not less than 128 bytes. After the last frame is

departed, the station will successfully finish this transmission and go to “Finish”

state. If the station finds a clear channel immediately in the next loop of

transmission, it will schedule one external arrival event. Hence the departure

event will be the antecedent event of the next loop’s external arrival event.

• Path 5: The situation is similar to path 4 except that the departed frame size is

less than 128 bytes. When the frame departs from its source station, the station is

still within 2-slot time and at “Listen” state. The station will go to “Finish” state

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 64

when 2-slot time passed from its initial transmission. If the station finds a clear

channel immediately in the next loop of transmission, it will schedule one

external arrival event. This departure event thus becomes the antecedent event of

next loop’s external arrival event.

• Path 6: If a frame arrives at a listening station, it will collide with the station. If

the number of retransmissions so far is already 16, the transmission of the station

is considered to fail and the station will go to “Finish” state. Similar to path 4

and path 5, if the station finds a clear channel immediately in the next loop of

transmission, it will schedule one external arrival event. Therefore the corrupted

arrival event becomes the antecedent event of next loop’s external arrival event.

Collision occurs both in path 2 and in path 6. The difference between the two

situations relies on the number of retransmissions. The number of retransmissions is

less than 16 in path 2, so the station goes back to “Wait” state to retransmit. But in

path 6, 16 retransmissions flag a failed transmission and the station goes to “Finish”

state. Frame transmission is successful both in path 4 and in path 5. But frame size is

less than 128 bytes in path 4 and larger than or equal to 128 bytes in path 5.

The five basic event types are classified in detail to 11 event types according to

our analysis. Table 3.3 lists all of them and their scheduling information.

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 65

Event Type Scheduling Comment

External Arrival 1p

kA
1*2

21

p
k

t

p
k

t

D

A

→

→

Collision may reschedule
the departure less than 2t

Internal Arrival 1

312 p

k
tp

k AA →

Schedule arrival at its
neighbour

Internal Arrival 2 2p

kA
20

20

31

p
n

p
m

p
k

t

Acollision

Acollision

A

→→

→→

→

Collision and
retransmission (path2) or
next loop transmission
(path6) is successful

Boundary Arrival 1 nullA pn
k → Frame will stop transmit in

boundary station
Boundary Arrival 2 pn

m
pn

k AcollisionA →→0

Internal Departure 1

312 p

k
tp

k DD →

Schedule departure from its
neighbour

Internal Departure 2 2p

kD
20

20

31

p
n

p
m

p
k

t

A

A

D

→

→

→

Path1

Internal Departure 3
2p

kD
2

2

31

p
n

idletime

p
m

idletime

p
k

t

A

A

D

 →

 →

→

Path4 or path5 for an
internal station

Boundary Departure 1 nullD pn
k →

Boundary Departure 2 pn
m

pn
k AD →0 Path 1

Boundary Departure 3
1p

kD
1

21

p
m

idletime

p
k

t

A

D

 →

→

Path4 and path5 for a
boundary station

* 1p
kA refers to frame k arrival on service center 1p , and similarly D refers to

departure event. 1t is neighbour delay time and 2t is frame transmission time

Table 3.3: Event types and their scheduling information in Ethernet simulator

Let us explain the scheduling relationships of the 11 types of events. External

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 66

arrival 1p
kA schedules both the frame’s arrival event to neighbouring station 2p

kA

and the frame’s departure event from source station 1p
kD . 2p

kA will be executed

neighbor delay time (1t) later because the head of the frame will take that period of

time to arrive at its neighbouring station. 1p
kD will be executed frame-trans-time (2t)

later because it takes a frame that period of time to pass through a station.

There are two other kinds of arrival events for a frame: internal arrival and

boundary arrival. Internal arrival means the arrival of a frame at an intermediate

station and boundary arrival means the arrival at a boundary station. Internal arrival

event schedules its arrival at neighbouring station 1t later (internal arrival 1). If this

arrival event incurs a collision and the collided station finds a clear channel in the

next transmission, other two external arrival events will be scheduled (internal

arrival 2). Similarly, there are two event types (boundary arrival 1 and boundary

arrival 2) for boundary arrival events.

A frame’s internal departure event schedules its departure from neighbouring

station 1t time later (internal departure 1). If a frame departs from a boundary

station, no new events will be scheduled (boundary departure 1). If the departure

event clears the channel where a station is suspended, the station will be reactivated

and schedule two new frames immediately (internal departure 2). When the last

uncorrupted frame departs from its source station (internal station), the transmission

is flagged to be successful and the station will go to “Finish” state. If the station can

find a clear channel in the first transmission of next activation, it will schedule two

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 67

new frames (internal departure 3).

Similarly, there are three types of events for boundary departure event. A frame

departing from a boundary station won’t schedule new events (boundary departure 1).

If a departure event clears the channel in a suspended boundary station, the station

can schedule one new frame immediately (boundary departure 2). If a successful

frame departs from its source station, which is a boundary station, it will schedule its

departure from its neighbouring station 1t later and also flag a successful

transmission. Then the boundary station returns to “Finish” state and attempts a new

transmission. If it finds a clear channel immediately, a new frame will be scheduled

(boundary departure 3).

There are three special departure events corresponding to path 1, 4 and 5 in

Ethernet’s CFG. However, one departure event belong s to one path for one frame

can depart from only one station in one particular state:

� Path 1: This station is in “Wait” state;

� Path 4: This station is in “Finish” state;

� Path 5: This station is in “Listen” state.

Path 3 in Figure 3.10 corresponds to the initial configuration in Ethernet

network simulation where every station’s FEL length is set to 2 (1 for boundary

station). We instrumented a sequential Ethernet network simulator to obtain list of

events. Sometimes we are not certain about which type an event is going to be when

CHAPTER 3 ETHERNET MODELING AND IMPLEMENTATION

 68

it is just obtained from FEL. We need to wait until a station’s next transmission to

confirm its type.

3.7 Summary

We introduced in this chapter, our Ethernet model and its implementation. The

Ethernet network was presented from three levels: problem, conceptual model and

implementation. In the conceptual model, we discussed the activation of stations and

frames. The simulator is implemented using SPaDES/Java and validated using a

CSIM model. Lastly we presented how to instrument and obtain event sequence

from Ethernet network simulation.

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 69

Chapter 4

Experimental Results and Analysis

 The experimental results and analysis are introduced in this chapter. Average

event parallelism and profile of memory requirement are based on that required by

the physical system, as a result of different event orderings and the overhead of

simulation synchronization. Both event parallelism and memory requirement are

illustrated from three steps. Lastly, we present the performance tradeoff.

4.1 Event Parallelism

As presented in Chapter 1, the event parallelism is defined as the average

number of events executed per unit time. Event parallelism is measured from three

steps in our experiments: physical problem, event orderings and implementation.

4.1.1 Problem

Event parallelism existing in the problem is referred to as the inherent event

parallelism (probΠ). As illustrated in Chapter 1, probΠ is measured as the sum of all

service centers’ utilization. The utilization of a service center is defined as µλ / ,

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 70

where λ is the arrival rate and µ is the service rate of the service center. We can

directly measure these values in our simulator, calculate the utilization for all

stations, and then obtain probΠ .

Before presenting the probΠ results, we first determine the parameters of the

simulated Ethernet network. Workload characterization consists of a description of

the workload by means of quantitative parameters and functions. The objective of

workload characterization is to derive a model that is able to show, capture, and

reproduce the behavior of the workload and its most important features [3]. The

number of stations is varied from 10 to 40. Most applications use frames with size of

2 to the power of an integer value. Hence we vary the frame size from 128 to 1024

bytes.

Many simulation and theoretical studies of Ethernet assume a simple

distribution for the arrival of packets. Poisson distribution is usually used. However,

the work load in real networks is rarely Poisson distributed. Usually there are some

bursts of heavy load that are divided by long time light traffic [2]. Hence we do not

assume a particular distribution for the arrival of frames and set the mean idle time to

be 0, which represents a heavy and constant load state where every station always

has data to transmit.

The detailed probΠ results for Ethernet network are shown in Table 4.1.

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 71

probΠ Frame size
(bytes) 10 stn 20 stn 30 stn 40 stn

128
256
512

1,024

9.2
9.3
9.4
9.5

15.9
17.1
17.8
18.4

22.3
22.9
25.6
27.0

28.1
30.6
33.7
35.3

Table 4.1: probΠ for Ethernet

0

10

20

30

40

128 256 512 1024

Frame size (bytes)

10 stn

20 stn

30 stn

40 stn

Figure 4.1: probΠ for Ethernet

Figure 4.1 shows how probΠ changes with number of stations and frame size.

probΠ increases when more stations exist in the system, for more stations create the

potential for more concurrent stations in Ethernet network simulator. probΠ also

increases slightly with frame size. A frame with larger frame size spends more time

passing through a station and thus reduce the service rate (µ) of stations. The

service rate then influences the utilization of stations and increases the probΠ .

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 72

4.1.2 Event Orderings

 Events occurring at different physical times are executed chronologically in

sequential simulation. Even two concurrent events in the physical system are

processed sequentially in the simulation before parallel computers were introduced.

Parallel simulation can relax this restriction and use other event orderings to generate

correct simulation results, as long as it does not violate the event causality. We have

already introduced how TSA measures ordΠ in Chapter 2. Now let us look at ordΠ

results for Ethernet network simulation.

We use the same input parameters that we used while presenting inherent event

parallelism in section 4.1.1. The number of stations is varied from 10 to 40 and

frame size is varied from 128 bytes to 1024 bytes. The mean idle time between

transmissions is set to be 0. The window size of time interval event ordering (TI) is

set to be 0.002 ms. We estimate the window size to be the transmission delay

between two neighbouring stations. If there are 25 stations and the cable length is 10

km, the transmission delay will be
()

()sm

km

/10*2
125

10
8

− , approximately 0.002

ms. The simulation terminates when simulation time exceeds 100,000 ms. The

results of our experiment are based on the average of five replications of Ethernet

network simulation. Figure 4.2 shows the detailed ordΠ results.

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 73

Parameter ordΠ

#Station Frame
size

(bytes)

Partial
event order

(PAR)

Time interval
event order

(TI)

Time stamp
event order

(TS)

Total
event order

(TOT)

10
128
256
512

1,024

6.2
6.4
6.5
6.8

3.5
3.6
3.7
3.9

2.2
2.3
2.3
2.4

1.0
1.0
1.0
1.0

20

128
256
512

1,024

12.5
12.9
13.4
14.1

7.3
7.4
7.7
8.2

4.6
4.7
4.9
5.1

1.0
1.0
1.0
1.0

30

128
256
512

1,024

20.5
20.7
21.1
22.1

11.9
11.9
12.1
12.8

7.5
7.5
7.7
8.1

1.0
1.0
1.0
1.0

40

128
256
512

1,024

27.9
29.0
29.5
30.7

16.2
16.6
16.9
17.8

10.4
10.5
10.7
11.3

1.0
1.0
1.0
1.0

Table 4.2: ordΠ for Ethernet

0

10

20

30

40

TOT TS TI PAR

Event ordering

10 stn
20 stn
30 stn
40 stn

Figure 4.2: ordΠ changes with event orderings (frame size 1024 bytes)

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 74

Figure 4.2 demonstrates that the event orderings significantly influence ordΠ .

Partial event ordering (PAR) achieves high parallelism while time stamp (TS) event

ordering can exploit only little parallelism. Partial event ordering considers only the

causal restriction between events while time interval event ordering and time stamp

event ordering have additional ordering rules to restrict the number of concurrent

events, thus limiting the event parallelism. A weaker event ordering exploits high

parallelism in a closed system, which is consistent with the results by Teo et al [40].

0

10

20

30

40

10 20 30 40

#Station

TOT
TS
TI
PAR

Figure 4.3: ordΠ changes with problem size (frame size 1024 bytes)

 ordΠ increases almost linearly with number of stations as shown in Figure 4.3.

More stations potentially allow more concurrent events and thereby give higher

parallelism.

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 75

0

10

20

30

40

128 256 512 1024

Frame size (bytes)

TOT
TS
TI
PAR

Figure 4.4: ordΠ changes with frame size (n=40)

0

10

20

30

40

128 256 512 1024

Frame size (bytes)

10 stn
20 stn
30 stn
40 stn

Figure 4.5: ordΠ changes with frame size (partial event order)

Figure 4.4 and 4.5 show that ordΠ increases slightly with the frame size. It can

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 76

be interpreted by analyzing the event dependency in Ethernet network simulator.

There are three dependences between events in Ethernet network simulator:

1) The dependency between events representing transmission (arrival or departure)

between neighbouring stations. Since the cable length and the signal

transmission speed are constant in our simulator, the dependency is determined

by the number of stations.

2) The dependency between events representing a frame’s external arrival and its

departure from the source station. The time delay is the frame transmission time,

which is determined by frame size when the LAN speed is fixed to 10Mbps.

3) The dependency between external arrival events and their possible antecedent

events. Since the antecedent event of an external arrival event usually occurs at

its previous transmission, the time delay for the dependency is mainly

determined by the mean idle time.

 Frame size can influence the time delay between a frame’s external arrival and

its departure from the source station (Category 2). The time delay is long for a large

frame, therefore it is less likely for the departure event to block and wait for its

antecedent event (the external arrival event). Therefore, a larger frame size gives

slightly higher ordΠ .

4.1.3 Implementation

As illustrated in Chapter 2, effective event parallelism (syncΠ) is measured from

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 77

actual simulation. It is measured as ()unitTT
Events# , where Events# is the

number of all events in the simulated problem, T is the execution time (only events

and null messages) of the LP which has the longest execution time compared to the

others, and unitT is the average event execution time (Eq. 2.1).

The Tembusu cluster (64 Intel PIII 1.4 GHz dual processors, each with 1 GB

RAM, connected via a 1G Bps Myrinet switch) is used in our experiments. We map

one LP per node in the cluster and terminate the simulation when the simulation time

exceeds 100,000 ms. The results are listed at Table 4.3.

Parameters
#Station Frame size

(bytes)

#Events
(610×)

#Null
messages
(610×)

T (s)
unitT

(ms)
syncΠ

5

128
256
512

1,024

18.3
9.9
5.3
3.3

221.5
164.8
135.1
123.3

290.6
208.3
114.0
95.4

0.039
0.041
0.033
0.037

2.4
2.0
1.5
1.3

10

128
256
512

1,024

29.7
17.7
11.0
7.4

936.4
765.9
660.2
605.3

419.4
335.6
216.2
179.0

0.041
0.043
0.043
0.042

2.9
2.3
2.2
1.7

15

128
256
512

1,024

45.9
29.0
18.2
11.9

2215.8
1997.0
1582.2
1452.6

545.5
397.2
304.8
271.2

0.044
0.043
0.043
0.042

3.7
3.1
2.6
1.9

20

128
256
512

1,024

88.6
43.9
27.6
18.1

4362.0
3293.7
2899.4
2674.6

871.0
554.5
484.5
386.2

0.047
0.047
0.048
0.044

4.7
3.7
2.8
2.1

Table 4.3: syncΠ for Ethernet

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 78

0

1

2

3

4

5

128 256 512 1,024

Frame size (bytes)

5 stn
10 stn
15 stn
20 stn

Figure 4.6: syncΠ for Ethernet

Figure 4.6 shows how syncΠ changes with frame size and the number of

stations. Just like the inherent event parallelism and event ordering parallelism, more

stations give higher effective event parallelism. There are potentially more

concurrent events with larger number of LPs in the system. We also observe that

larger frame size exploits less parallelism. Effective event parallelism is influenced

by the ratio of events execution time to null messages execution time. The number of

executed events will decrease when frame size is increased because the time a frame

takes to transmit on the channel will increase. However, the lookahead of null

messages (neighbour delay) will stay constant because the number of stations does

not change. A large frame size increase the average time delay between two events,

and hence increase the number of null messages. Therefore, the ratio of event

execution time to null message execution time will decrease and thus effective event

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 79

parallelism will decrease. Figure 4.7 compares the event execution time (T-event)

and null message execution time (T-nullmsg) change with frame size (bytes). The

number of stations is 10.

0

500

1000

1500

2000

2500

128 256 512 1024

Frame size (bytes)

E
xe

cu
tio

n
tim

e
(s

)

event execution time
null msg execution time

Figure 4.7: Event and null message execution time changes with frame size

4.1.4 Relationship between Different Parallelisms

We have measured the event parallelism from three steps: problem, event

orderings and implementation. In this section, we establish the relationships between

the parallelisms of the three steps.

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 80

#Station Frame size (bytes) probΠ ordΠ syncΠ

10

128
256
512

1,024

9.2
9.3
9.4
9.5

6.2
6.4
6.5
6.8

2.9
2.3
2.2
1.7

20

128
256
512

1,024

15.9
17.1
17.8
18.4

12.6
12.9
13.4
14.1

4.7
3.7
2.8
2.1

Table 4.4: Comparison of three parallelisms in Ethernet simulation

Table 4.4 illustrates that all of the three parallelisms will increase with the

number of stations.

0

5

10

15

20

128 256 512 1,024

Frame size (bytes)

P
ar

al
le

lis
m

Problem
Event orderings
Implementation

Figure 4.8: Relationships of different parallelisms (#station is 20)

Figure 4.8 illustrates the relationship of three parallelisms and the detailed

results are presented in Table 4.4. We assume that the event ordering used in the null

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 81

message synchronization protocol in SPaDES/Java is partial event ordering. We

observe that probΠ is higher than ordΠ and ordΠ is higher than syncΠ . Clearly,

maintaining a certain event ordering decreases the event parallelism existing in the

problem. In addition, when one particular synchronization protocol is used in a

specific platform, it is implemented to maintain event causality according to certain

event ordering rules. Hence the event parallelism will decrease due to the additional

implementation overhead. The event parallelism after implementation (syncΠ) is

much less than that to maintain event orderings (ordΠ). A large number of null

messages deteriorate the performance of parallel Ethernet network simulator greatly.

We also observe that probΠ and ordΠ increase with frame size but syncΠ

decreases with frame size. The reasons for this result have been presented when the

results were interpreted separately in previous sections.

4.2 Memory Requirement

 We divided the memory required to support a simulator into three main

components, namely, memory to model the states of the physical system (probM),

memory required by the event list to schedule event execution based on the selected

event ordering (ordM), and additional memory to implement the synchronization

protocol (syncM).

 TSA can measure the probM and ordM by following particular event ordering

rules. syncM is implementation dependent, so we measure it from the actual

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 82

simulation.

4.2.1 Problem

 The station in Ethernet is a delay center where no events need to wait [14]. Two

or more events can pass through the station simultaneously. Therefore, probM is

zero for Ethernet simulation.

4.2.2 Event Orderings

ordM results for Ethernet simulation are presented in Table 4.5.

Parameter ordM

#Station Frame
size

(bytes)

Partial
event order

(PAR)

Time interval
event order

(TI)

Time stamp
event order

(TS)

Total
event order

(TOT)

10
128
256
512

1,024

52
52
52
52

52
52
52
52

52
52
52
52

52
52
52
52

20

128
256
512

1,024

112
112
112
112

112
112
112
112

112
112
112
112

112
112
112
112

30

128
256
512

1,024

172
172
172
172

172
172
172
172

172
172
172
172

172
172
172
172

40

128
256
512

1,024

232
232
232
232

232
232
232
232

232
232
232
232

232
232
232
232

Table 4.5: ordM for Ethernet

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 83

0

50

100

150

200

250

10 20 30 40

#Station

Figure 4.9: ordM increases linearly with problem size

Figure 4.9 shows that the ordM increases linearly (86 −n) with problem size

n . Surprisingly, ordM is constant for different event orderings and frame sizes. A

strong event ordering exploits more event ordering rules than necessary to follow the

causality restriction in a closed system where the maximum number of jobs is known

before implementation. The worst case scenario where ordM achieves its maximum

value occurs at the very beginning of Ethernet simulation, which will be explained in

detail in the following paragraphs.

At the initial stage of Ethernet simulation, every frame is transmitted in two

directions except the frame sent by a boundary station. Hence there are two frames

waiting for transmission, i.e., FEL has two entries. Boundary stations have only one

entry because they can only send frames in one direction. Therefore, ordM is

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 84

22 −n in the initial configuration as shown in Figure 4.10.

Figure 4.10: Worst case scenario for total event ordering

 Worst case scenario occurs when every station wants to transmit frames at

simulation time 0. The external arrival of a frame will schedule two events in FEL

(refer to Table 3.2): the frame head’s arrival at neighbouring station and the frame

tail’s departure from its source station. After every station finishes executing its

Frame waits to transmit
in 2 directions

Station k Station k+1

FEL FEL

FEL FEL

1 external arrival schedule 2 events

Collision

FEL

next activation will
schedule 2 frame’s

external arrival events

(a) Initial configuration

(b) All external arrival events are executed

(c) After neighbour delay time

Station k Station k+1

Station k Station k+1

FEL

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 85

external arrival event, there will be 4 entries in its FEL except boundary stations,

which have two entries in their FELs. Hence ordM is 44 −n after simulation time

0 as shown in Figure 4.10b.

 After the initial execution of all external arrival events, there will be 2n-2 frames

transmitted in the channel. No doubt all frames will collide with each other. In

addition, all stations are equally distributed on the channel in our simulated Ethernet,

so the delays between neighbouring stations are the same. After the delay time has

passed, every frame will arrive at their neighbouring stations, which are all in the

“Listen” state then. The collision arrival will schedule this station’s next activity loop

by scheduling two external arrival events in its FEL. It will also schedule its next

arrival at the neighbor’s neighbour, so the entries in this station’s FEL will increase

by 2. Hence there will be 6 entries in all internal stations after all the arrivals are

executed at the same time. For a boundary station, there are only 2 entries in FEL,

because it will absorb the arrival frames and only schedule one external arrival for

next activity loop. Now ordM is 86 −n as shown in Figure 4.10c.

 After the worst scenario, ordM begins to decrease because more and more

frames arriving at a boundary station will be absorbed. The sum of entries in all

FELs will decrease. In the next transmission, some stations will compete for the

channel again with CSMA/CD protocol resolving collision and guaranteeing

fairness.

CSMA/CD protocol gives priority to a station which has consecutive frames to

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 86

send. Figure 4.11 shows the memory profile for partial event ordering over time. It

shows that ordM decreases soon after the aforementioned worst case. It remains at a

small value around 10 after the system goes to a steady state. In the steady state one

station usually dominates the channel and transmits a large amount of frames in a

period of time. Other stations have to wait during that time interval. Then in other

time intervals, there will be another station dominating the channel and transmitting

large number of frames. This is the reason why ordM is always small in the steady

state.

1 3 5 7 9 20 40 60 80 10
0

30
0

50
0

70
0

90
0

20
00

40
00

60
00

80
00

10
00

0

30
00

0

50
00

0

70
00

0

90
00

0

Wall clock time (steps)

N
o.

 o
f e

nt
ri

es

*#station is 20, frame size is 1024 bytes

Figure 4.11: Ethernet memory profile for partial event ordering

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 87

4.2.3 Implementation

syncM is measured as the sum of maximum buffer size for null messages in all

LPs. This is the additional memory used for implementation. We monitor the actual

parallel simulator execution and use the simulation-based method to measure syncM .

The input configuration is the same that we measure syncΠ .

syncM Frame size
(bytes) 5 stn 10 stn 15 stn 20 stn

128
256
512

1,024

579
674

1,127
1,310

2,433
2,834
4,284
6,029

5,092
7,371
8,549

14,205

10,036
12,532
15,389
28,127

Table 4.6: syncM for Ethernet

128
256

512
1024

5

10

15

20

0

6000

12000

18000

24000

30000

Frame size (bytes)

#stn

Figure 4.12: syncM for Ethernet

Figure 4.12 illustrates how syncM changes with number of stations and frame

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 88

size. As we stated before, syncM accounts for the memory to hold incoming null

messages in an LP. Hence the maximum number of null messages between two

executed events determines syncM . Lookahead greatly influence the number of null

messages in a parallel SPaDES/Java simulator. A large lookahead can decrease the

number of null messages greatly. A small lookahead, on the other hand, can greatly

increase the number of null messages. In Ethernet simulation, the lookahead is the

time of transmission delay between two neighbouring stations. The cable length is

constant, so more stations in Ethernet will decrease the transmission delay between

two neighbouring stations. Therefore, a large number of stations mean a small

lookahead. A small lookahead will increase the number of null messages. Hence

syncM , the memory used to hold null messages, will increase with number of

stations.

Similarly, a large-size frame has a long time interval between its source

departure event and its external arrival event. The number of null messages will

increase when a long time interval exists between two events. Therefore, a large

frame requires more syncM than a small frame. Null messages deteriorate the

performance seriously, which is shown in Table 4.7. The NMR (null message ratio)

is defined as the ratio of the number of null messages to the total number of event

messages and null messages.

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 89

#Station Null message ratio (%)

5
10
15
20

97.7
98.3
98.8
99.0

*Frame size: 256 bytes, simulation time: 100,000 ms

Table 4.7: Null message ratio changes with problem size

We can see that the number of null messages is already very high even when the

problem size is small. A four-station Ethernet simulating for one second (simulation

time) requires about 1,000,000 additional null messages to synchronize the parallel

simulation. In addition, the NMR is also high. There are average 50 null messages

for every event message.

Parameter Memory usage
#Station Frame size (byte) probM ordM syncM

10

128
256
512

1,024

0
0
0
0

52
52
52
52

2,433
2,834
4,284
6,029

20

128
256
512

1,024

0
0
0
0

112
112
112
112

10,036
12,532
15,389
28,127

Table 4.8: Memory requirement of Ethernet simulation

Detailed memory consumption of Ethernet is illustrated in Table 4.8. We count

ordM for conservative protocol from actual monitoring. ordM is the same as other

event orderings, i.e., 6n-8. We observe that much more memory is required for

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 90

implementation than for maintaining event orderings.

4.3 Performance Tradeoff

This study successfully validated the methodology with the Ethernet application.

Our experimental results are consistent with the existing results of queuing network

benchmarks [27, 40]. This time space analysis is found to be applicable to both

larger and realistic applications.

High speedup may require more memory usage in parallel simulation. Efficient

implementation of a synchronization protocol exploits a higher parallelism while

keeping the required memory under a certain level. Therefore, it is important to

analyze the time-space tradeoff for performance tuning. In the Ethernet network

simulator the event parallelism increases with the number of stations either in event

ordering level (ordΠ) or in implementation level (syncΠ). However, by increasing the

number of stations in the system, more memory is expended. Thus, there is a tradeoff

between event parallelism and memory requirements with number of stations either

in event ordering level or in implementation level.

If only event ordering is considered, Figure 4.13 shows that a weaker event

ordering exploits higher event parallelism (ordΠ) without increasing the amount of

memory requirement (ordM) in Ethernet network simulator. The number of nodes is

40. A stricter event ordering is believed to impose more event ordering rules than

necessary to follow causality restriction. Therefore, the parallelism gain can be

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 91

achieved only by relaxing the event ordering rules.

0

10

20

30

40

TOT TS TI PAR

Event ordering

128-byte frm
256-byte frm
512-byte frm
1024-byte frm

0

100

200

300

400

TOT TS TI PAR

Event ordering

128-byte frm
256-byte frm
512-byte frm
1024-byte frm

Figure 4.13: Time (ordΠ) and space (ordM) tradeoff

In implementation level, Figure 4.6 and Figure 4.12 show that small frame size

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

 92

can provide a good balance between effective event parallelism (syncΠ) and memory

used for synchronization (syncM).

4.4 Summary

 This chapter presented and analyzed the performance results of Ethernet

network simulator in detail. The event parallelism and memory usage were analyzed

from three levels: problem, event orderings and implementation. The inherent event

parallelism was analyzed with an analytical method. TSA was used to measure event

parallelism and memory requirement due to event orderings. We then parallelized the

Ethernet simulation using SPaDES/Java to measure the performance in

implementation level. We also discussed the relationships between performances of

these three levels. Lastly, performance tradeoff, which can be used for performance

tuning, is analyzed.

CHAPTER 5 CONCLUSION

 93

Chapter 5

Conclusion

Teo et al. have developed a formal methodology to evaluate event parallelism

and memory requirement in parallel simulation before implementation. The

advantage of this methodology is that one can predict parallelism and memory

consumption before much effort is expended to parallelize a simulator. If we find

that a simulator has little parallelism, no efforts need to be wasted to implement it. In

addition every computer has limited capacity, so the memory consumption is also an

important issue we should address in parallel simulation. Processors with at least the

upper bound of the memory can guarantee that the parallel program can be executed.

 Simulation protocol adheres to a certain event ordering to produce the

simulation results correctly. Different event orderings produce different degrees of

parallelism. In addition, to maintain a particular event ordering, one needs to save

some pending events in its event list. Various amounts of memory may be required

for different event orderings. Four simulation event orderings were formally defined

with partial order set theory in the methodology. They are partial event ordering,

time interval event ordering, time stamp event ordering and total event ordering.

CHAPTER 5 CONCLUSION

 94

This methodology has previously been validated using limited queuing network

benchmarks.

In this thesis, we used Ethernet as an application to further validate and assess

the application of this methodology. Ethernet is a large and complicated system.

Usually there are hundreds of computers attached to the channel. We therefore

expect much parallelism in the system. It is valuable to evaluate such a system

before it is actually implemented.

The conceptual model of our Ethernet simulator is the same as one existing

Ethernet model by CSIM, which can not only simplify the developing process but

also reduce the validation effort. SPaDES/Java was used to develop both the

sequential and parallel simulator.

After developing and validating the Ethernet simulator, we instrumented the

simulator to get the detail information of event generated from the simulator. A time

space analyzer tool was used to analyze these information to get the event

parallelism and memory consumption results.

Our experimental results reveal that a weaker event ordering exploits more event

parallelism without increasing memory usage, which is consistent with the previous

results of benchmark studies. We observed that in the Ethernet network simulator the

upper bound on memory to maintain event orderings is 6n-8, where n is the number

of stations. Therefore, this study successfully validates the time space analysis

CHAPTER 5 CONCLUSION

 95

methodology. We studied in detail the relationship between event orderings and the

performance of parallel simulations. Performance tradeoff analysis can be used for

tuning the performance of parallel simulations.

Apart from assessing the cost of event orderings, we also used this methodology

to analyze the performance of a simulation problem and the overhead of

implementation. An analytical method is used to study the event parallelism inherent

in the problem. To study the cost of implementation, we analyzed the conservative

null message simulation protocol in SPaDES/Java and observed that much more

memory is required to support synchronization than for maintaining event orderings.

The relationship among performance results of these levels is also discussed in this

thesis.

However, there are also some deficiencies in this research. One disadvantage in

using Ethernet is its unique implementation. It was modeled as a closed system and

had no queue [45]. This has two implications. First, we could not evaluate probM . At

the design stage of this study, we chose Ethernet because it is one complex

real-world application. In addition, Watkins’ existing model can simplify the

development and validation effort. Ethernet simulator failed to validate Mprob

because Ethernet was modeled as a closed system and had no queue [45]. The

performance (event parallelism and memory requirement) at the problem level has

been well studied in previous studies [40, 42]. Second, the dependencies between

events become more complicated if there is no queue to hold the incoming events.

CHAPTER 5 CONCLUSION

 96

Therefore, we needed to expend much effort to maintain these dependencies. The

arrival and departure events of a frame in Ethernet also have no direct dependencies.

They are both pre-determined when the frame enters into the Ethernet system. If the

frame is successfully transmitted, the time interval between the two events is

determined by frame size and LAN speed if the frame is not corrupted. Otherwise,

we cannot determine the time interval.

Another deficiency is that the protocol used in parallel SPaDES/Java is

inefficient due to high overhead of null messages. Optimization of the conservative

protocol in SPaDES/Java is required.

Ethernet simulator is used in this study to validate the methodology and

parameters of the TSA. It failed to validate Mprob because there is no internal queue

presented in Ethernet network. Mprob has been well studied in previous studies [40,

42]. It is found that Mprob is dependent on the characteristic of problem, such as

number of service centers and traffic intensity.

REFERENCES

 97

References

[1] Bain W.L. and Scott D.S., “An Algorithm for Time Synchronization in
Distributed Discrete Event Simulation”, Proc. Of the SCS Multi-conference
on Distributed Simulation, 19, 3, pp. 30-33, February 1988.

[2] Boggs D.R., Mogul J.C. and Kent C.A., “Measured Capacity of an Ethernet:

Myths and Reality” Tech. Rep. 88/4, Digital Western Research Laboratory,
April 1988.

[3] Calzarossa M., Massari L. and Tessera D., “Workload Characterization

Issues and Methodologies”, Performance Evaluation, pp. 459-484, 2000.

[4] Cavitt D.B., Overstreet C.M. and Maly K.J., “A Performance Analysis Model

for Distributed Simulations”, Winter Simulation Conference, pp. 629-636,
1996.

[5] Chandy K.M. and Misra J., “Distributed Simulations: A Case Study in

Design and Verification of Distributed Programs”, IEEE Trans. on Software
and Engineering. SE-5, 5, pp. 440-452, Sep. 1979.

[6] de Carvalho Klingelfus A.L. and Godoy W. Jr., “Mathematical modeling,

performance analysis and simulation of current Ethernet computer networks”,
5th IEEE International Conference on High Speed Networks and Multimedia
Communications, pp. 380 -382, 2002.

[7] Dickens P.M. and Reynolds P.F. Jr., “A Performance Model for Parallel

Simulation”, Proceedings of Winter Simulation Conference, pp. 618-626,
Dec. 1991.

[8] Felderman R. and Kleinrock L., “An Upper Bound on the Improvement of

Asynchronous Versus Synchronous Distributed Processing”, Distributed
Simulation 1990. Society for Computer Simulation, pp. 131-136, January
1990.

[9] Floyd S. and Paxson V., “Difficulties in Simulating the Internet”,

IEEE/ACM Transactions on Networking, Vol.9, No.4, pp. 392-403, August,
2001.

REFERENCES

 98

[10] Forrester J.W., “Industrial Dynamics”, MIT Press, Cambridge,
Massachusetts, 1961.

[11] Fujimoto R.M., “Parallel Discrete Event Simulation”, Communication of the

ACM, 33, 10, pp. 31-53, 1990.

[12] Fujimoto R.M. "Parallel Discrete Event Simulation: Will the Field Survive?",

ORSA Journal on Computing (feature article), Vol. 5, No. 3, pp. 213-230,
summer 1993.

[13] Fujimoto R.M., “Parallel and Distributed Simulation Systems”, John Wiley

& Sons, Inc., 2000.

[14] Jain R., “The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation, and Modeling”, New
York, Wiley, 1991

[15] Jefferson D.R., “Virtual Time”, ACM Trans. Prog. Lang. and Syst. 7, 3, pp.

404-425, July 1985.

[16] Jefferson D.R., “Virtual Time II: Storage Management in Distributed

Simulation”, Proceedings 9th annual ACM symposium on Principles of
Distributed Computation, pp. 75-90, 1990.

[17] Lamport L., “Time, Clocks, and the Ordering of Events in a Distributed

System”, Communication ACM, 21, 7 (July), pp. 558-565, 1978.

[18] Leon-Garcia A. and Widjaja I., “Communication Networks, Fundamental

Concepts and Key Structures”, McGraw Hill, 2000.

[19] Lim C.C., Low Y.H., Gan B.P., Jain S., Cai W., Hsu W.J. and Huang S.Y.,

“Performance Prediction Tools for Parallel Discrete-Event Simulation”.
Workshop on Parallel and Distributed Simulation, pp. 148-155, 1999.

[20] Lin Y-B. and Lazowska E.D., “Reducing the State Overhead for Time Warp

Parallel Simulation”, Technical Report 90-02-03, Dept. of Computer Science
and Engineering, University of Washington, Seattle, Washington, Feb. 1990.

[21] Lin Y-B. and Preiss B., “Optimal Memory Management for Time Warp

Parallel Simulation”, ACM Trans. on Modeling and Computer Simulation, 1,
4, pp. 283-307, October 1991.

REFERENCES

 99

[22] Lin Y-B. and Fishwick P.A., “Asynchronous parallel discrete event
simulation”, IEEE Transactions on Systems, Man and Cybernetics,
26(4):397-412, 1996.

[23] Marin M., "Towards Automated Performance Prediction in

Bulk-Synchronous Parallel Discrete-Event Simulation", Proceedings of the
XIX International Conference of the Chilean Computer Science Society, pp.
112-118, 1999.

[24] Metcalfe R.M. and Boggs D.R., "Ethernet: Distributed Packet Switching for

Local Computer Networks", Comm, ACM, pp. 395-404, 1976.

[25] Nicol D. and Fujimoto R.M., “Parallel Simulation Today”. Annals Oper. Res.

53, pp. 249-286, 1994.

[26] Noble B.L., Peterson G.D. and Chamberlain R.D., “Performance of

Synchronous Parallel Discrete-Event Simulation”, Proc. of 28th Hawaii Int'l
Conf. on System Sciences, Vol. II, pp. 185-186, January 1995.

[27] Onggo B.S.S. and Teo Y.M., “Performance Trade-off in Distributed

Simulation”, Proceedings of the 6th IEEE International Workshop on
Distributed Simulation and Real Time Applications (DS-RT 2002), pp.
77-84, IEEE Computer Society Press, Fort Worth, Texas, USA, October
2002.

[28] Preiss B.R., MacIntye I.D. and Loucks W.M., “On the Trade-off between

Time and Space in Optimistic Parallel Discrete-Event Simulation”, Proc. 6th
Workshop on Parallel and Distributed Simulation, pp. 33-42, Jan. 1992.

[29] Rawling M., Francis R. and Abramson D., “Potential Performance of Parallel

Conservative Simulation of VLSI Circuits and Systems”, Proceedings of 25th
Annual Simulation Symposium, pp. 71-81, Apr. 1992.

[30] Robert G. Sargent, “Simulation Model Verification and Validation”,

Proceeding of the 1991 Winter Simulation Conference, 1991.

[31] Robinson S., “Simulation Model Verification and Validation: Increasing The

Users' Confidence”, Proceedings of the Winter Simulation Conference, pp.
53-59, Dec. 1997.

[32] Ronngren R. and Liljenstam M., “On Event Ordering in Parallel Discrete

Event Simulation”, 13th Workshop on Parallel and Distributed Simulation
May 01 - 04, pp. 38-45, Atlanta, Georgia, 1999.

REFERENCES

 100

[33] Saunders S., “Data Communications Gigabit Ethernet Handbook”,
McGraw-Hill, 1998

[34] Tanenbaum A.S., “Computer Networks”, Third Edition, Prentice Hall, 1996.

[35] Tay S.C., Teo Y.M. and Ayani R., "Performance Analysis of Time Warp

Simulation with Cascading Rollbacks", Proc. of 12th Workshop on Parallel
and Distributed Simulation (PADS'98), pp.30-37, IEEE Computer Society
Press, Canada, May 1998.

[36] Teo Y.M. and Tay S.C., "Performance Evaluation of a Parallel Simulation

Environment", Proceedings of the 32nd Annual Simulation Symposium, pp.
86-93, IEEE Computer Society Press, San Diego, USA, April 1999.

[37] Teo Y.M., Wang H. and Tay S.C., “A Framework of Analyzing Parallel

Simulation Performance”, Proceedings of the 32nd Annual Simulation
Symposium, pp. 102-109, IEEE Computer Society Press, San Diego, USA,
April 1999.

[38] Teo Y.M. and Tay S.C., "Performance and Granularity Control in the

SPaDES Parallel Simulation System", Proceedings of the 4th International
Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN),
pp. 94-99, IEEE Computer Society Press, Perth, Australia, June 1999.

[39] Teo Y.M. and Onggo B.S.S., “A Methodology for Space Analysis of

Discrete-event Simulation”, Technical Report, Department of Computer
Science, National University of Singapore, June 2001.

[40] Teo Y.M., Onggo B.S.S. and Tay S.C., “Effect of Event Orderings on

Memory Requirement in Parallel Simulation”, Proc. of the 9th International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pp. 41-48, 2001.

[41] Teo Y.M. and Ng Y.K., “SPaDES/Java: Object-Oriented Parallel

Discrete-Event Simulation”, Proceedings of the 35th Annual Simulation
Symposium, pp. 222-229, IEEE Computer Society Press, San Diego, USA,
April 2002

[42] Teo Y.M., Ng Y.K. and Onggo B.S.S., “Conservative Simulation using

Distributed-Shared Memory”, Proceedings of the 16th ACM/IEEE/SCS
Workshop on Parallel and Distributed Simulation, pp., IEEE Computer
Society Press, Washington, USA, May 2002.

REFERENCES

 101

[43] Wang H., Teo Y.M. and Tay S.C., “An Analytic Method for Predicting
Simulation Parallelism”, Proceedings of the 33rd Annual Simulation
Symposium, pp. 211-218, IEEE Computer Society Press, Washington D.C.,
USA, April 2000.

[44] Wang J. and Keshav S., “Efficient and Accurate Ethernet Simulation”,

Proceedings of the 24th Conference on Local Computer Networks (LCN `99),
Oct. 1999.

[45] Watkins K., “Discrete Event Simulation in C”, McGraw-Hill, 1992.

[46] Wieland F., Som T., Reiher P., Wedel J. and Jefferson D., “A Critical Path

Tool for Parallel Simulation Performance Optimization”, Proceedings of the
25th Hawaii International Conference on System Sciences, pp. 196-206, Jan.
1992.

[47] Willinger W., Taqqu M.S., Sherman R. and Wilson D.V., “Self-Similarity

Through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the
Source Level”, ACM SIGCOMM'95. Computer Communication Review,
25:100-113, 1995.

[48] Wong Y.C. and Hwang S.Y., “Prediction of Memory Consumption in

Conservative Parallel Simulation”, Proceedings 9th Workshop on Parallel
and Distributed Simulation, pp. 199-202, 1995.

[49] Yamaguchi Y., Osawa N. and Yuba T., “3D Animation Based on Dynamic

System Modeling for Parallel Discrete Event Simulation Systems”, 9th
European Simulation Symposium (ESS’97), pp. 259-263, Oct. 1997.

[50] Young C.H. and Wilsey P.A., “Optimistic Fossil Collection for Time Warp

Simulation”, Proceedings of the 29th Hawaii International Conference on
System Sciences, Vol. 1, pp. 364-372, Jan. 1996.

APPENDIX A: RUN-TIME REPORT OF PIPELINE SIMULATION

 102

Appendix A: Run-time Report of Pipeline Simulation

Schedule event: 0 with timestamp: 1.0

Starting SPaDES/Java sequential simulation

Message 0 arrive the 0 LP. At timestamp: 1.0
Schedule event: 1 with timestamp: 8.0
Service time: 8.0
Message 0 leaves the 0 LP. At timestamp: 9.0

Message 1 arrive the 0 LP. At timestamp: 8.0
Schedule event: 2 with timestamp: 15.0
!!!!!! delayed
Service time: 8.0
Begin service at time: 9.0
Message 1 leaves the 0 LP. At timestamp: 17.0

Message 0 arrive the 1 LP. At timestamp: 9.0
Service time: 8.0
Message 0 leaves the 1 LP. At timestamp: 17.0

Message 2 arrive the 0 LP. At timestamp: 15.0
!!!!!! delayed
Service time: 8.0
Begin service at time: 17.0
Message 2 leaves the 0 LP. At timestamp: 25.0

Message 1 arrive the 1 LP. At timestamp: 17.0
Service time: 8.0
Message 1 leaves the 1 LP. At timestamp: 25.0

Message 2 arrive the 1 LP. At timestamp: 25.0
Service time: 8.0
Message 2 leaves the 1 LP. At timestamp: 33.0

Elapsed time: 151.0 milliseconds
Current simulation ended

APPENDIX B: EVENTS IN PIPELINE SIMULATION

 103

Appendix B: Events in Pipeline Simulation

*EXTARR=External Arrival, INTARR=Internal Arrival, EXTDEP=External
Departure, INTDEP=Internal Departure.

1e :

****** Message 0 arrives LP 0 at timestamp: 1.0 ******
The Event Type: EXTARR
The Event ID: 0
The Event lp: 0
The ante Event Type: EXTARR
The ante Event ID: -1
The ante Event lp: -1
The Event startTime: 1.0
The Event anteTime: 0.0
The Event nextLp: 0
**

2e :

****** Message 1 arrives LP 0 at timestamp: 8.0 ******
The Event Type: EXTARR
The Event ID: 1
The Event lp: 0
The ante Event Type: EXTARR
The ante Event ID: 0
The ante Event lp: 0
The Event startTime: 8.0
The Event anteTime: 1.0
The Event nextLp: 0
**

3e :

****** Message 0 leaves LP 0 at timestamp: 9.0 ******
The Event Type: INTDEP
The Event ID: 0
The Event lp: 0
The ante Event Type: EXTARR
The ante Event ID: 0
The ante Event lp: 0
The Event startTime: 9.0
The Event anteTime: 1.0
The Event nextLp: 1
**

APPENDIX B: EVENTS IN PIPELINE SIMULATION

 104

4e :

****** Message 0 arrives LP 1 at timestamp: 9.0 ******
The Event Type: INTARR
The Event ID: 0
The Event lp: 1
The ante Event Type: INTDEP
The ante Event ID: 0
The ante Event lp: 0
The Event startTime: 9.0
The Event anteTime: 9.0
The Event nextLp: 1
**

5e :

****** Message 2 arrives LP 0 at timestamp: 15.0 ******
The Event Type: EXTARR
The Event ID: 2
The Event lp: 0
The ante Event Type: EXTARR
The ante Event ID: 1
The ante Event lp: 0
The Event startTime: 15.0
The Event anteTime: 8.0
The Event nextLp: 0
**

6e :

****** Message 0 leaves LP 1 at timestamp: 17.0 ******
The Event Type: EXTDEP
The Event ID: 0
The Event lp: 1
The ante Event Type: INTARR
The ante Event ID: 0
The ante Event lp: 1
The Event startTime: 17.0
The Event anteTime: 9.0
The Event nextLp: 1
**

7e :

****** Message 1 leaves LP 0 at timestamp: 17.0 ******
The Event Type: INTDEP
The Event ID: 1

APPENDIX B: EVENTS IN PIPELINE SIMULATION

 105

The Event lp: 0
The ante Event Type: INTDEP
The ante Event ID: 0
The ante Event lp: 0
The Event startTime: 17.0
The Event anteTime: 9.0
The Event nextLp: 1
**

8e :

****** Message 1 arrives LP 1 at timestamp: 17.0 ******
The Event Type: INTARR
The Event ID: 1
The Event lp: 1
The ante Event Type: INTDEP
The ante Event ID: 1
The ante Event lp: 0
The Event startTime: 17.0
The Event anteTime: 17.0
The Event nextLp: 1
**

9e :

****** Message 3 arrives LP 3 at timestamp: 22.0 ******
The Event Type: EXTARR
The Event ID: 3
The Event lp: 0
The ante Event Type: EXTARR
The ante Event ID: 2
The ante Event lp: 0
The Event startTime: 22.0
The Event anteTime: 15.0
The Event nextLp: 0
**

10e :

****** Message 1 leaves LP 1 at timestamp: 25.0 ******
The Event Type: EXTDEP
The Event ID: 1
The Event lp: 1
The ante Event Type: INTARR
The ante Event ID: 1
The ante Event lp: 1
The Event startTime: 25.0

APPENDIX B: EVENTS IN PIPELINE SIMULATION

 106

The Event anteTime: 17.0
The Event nextLp: 1
**

11e :

****** Message 2 leaves LP 0 at timestamp: 25.0 ******
The Event Type: INTDEP
The Event ID: 2
The Event lp: 0
The ante Event Type: INTDEP
The ante Event ID: 1
The ante Event lp: 0
The Event startTime: 25.0
The Event anteTime: 17.0
The Event nextLp: 1
**

12e :

****** Message 2 arrives LP 1 at timestamp: 25.0 ******
The Event Type: INTARR
The Event ID: 2
The Event lp: 1
The ante Event Type: INTDEP
The ante Event ID: 2
The ante Event lp: 0
The Event startTime: 25.0
The Event anteTime: 25.0
The Event nextLp: 1
**

13e :

****** Message 3 leaves LP 0 at timestamp: 33.0 ******
The Event Type: INTDEP
The Event ID: 3
The Event lp: 0
The ante Event Type: INTDEP
The ante Event ID: 2
The ante Event lp: 0
The Event startTime: 33.0
The Event anteTime: 25.0
The Event nextLp: 1
**

14e :

APPENDIX B: EVENTS IN PIPELINE SIMULATION

 107

****** Message 3 arrives LP 1 at timestamp: 33.0 ******
The Event Type: INTARR
The Event ID: 3
The Event lp: 1
The ante Event Type: INTDEP
The ante Event ID: 3
The ante Event lp: 0
The Event startTime: 33.0
The Event anteTime: 33.0
The Event nextLp: 1
**

15e :

****** Message 2 leaves LP 1 at timestamp: 33.0 ******
The Event Type: EXTDEP
The Event ID: 2
The Event lp: 1
The ante Event Type: INTARR
The ante Event ID: 2
The ante Event lp: 1
The Event startTime: 33.0
The Event anteTime: 25.0
The Event nextLp: 1
**

16e :

****** Message 3 leaves LP 1 at timestamp: 41.0 ******
The Event Type: EXTDEP
The Event ID: 3
The Event lp: 1
The ante Event Type: EXTDEP
The ante Event ID: 2
The ante Event lp: 1
The Event startTime: 41.0
The Event anteTime: 33.0
The Event nextLp: 1
**

APPENDIX C: PEEUDO CODE OF ETHERNET SIMULATION IN SPADES/JAVA

 108

Appendix C: Pseudo Code of Ethernet Simulation in

SPaDES/Java

26: package Ethernet;
27: //Import SPaDES/Java library and other packages
28: import spades_Java.*;
29:
30: //EthernetKernel.java
31: // Executive instance
32: public class EthernetKernel extends Executive{
33: :
34: Resource Service[];
35: //station process
36: Station station[];
37: :
38: //define parameters for Ethernet
39: double LAN_Speed; /* LAN speed in bps */
40: double cable_length; /* Cable length in meter */
41: int num_stations; /* Number of users in the LAN */
42: int frame_size; /* Frame size in bytes */
43: double duration; /* Simulation duration in ms */
44: :
45: public void init(){
46: :
47: //Initialize Ethernet parameters
48: LAN_Speed = 10000000;
49: cable_length = 10000;
50: num_stations = 20;
51: frame_size = 1024;
52: idle_time = 0;
53: duration = 100000;
54: :
55: <<Initialize resource>>
56: :
57: for (int i=0, i<num_stations, i++){
58: :
59: station[j]=new Station(“Station “+j,this);
60: <<Initialize station[i]>>
61: mapProcess(station[j],Service[j]);
62: activate(station[j], 0);
63: :
64: }
65: }
66: public static void main(String[] args){
67: EthernetKernel ek = new EthernetKernel();
68: ek.initialize(args.length, args);
69: ek.startSimulation(duration);
70: <<Print simulation results>>
71: }
72: }
73:
74: // Station.java
75: // Models a station that transmits frames to channel in Ethernet
76: class Station extends SProcess {
77: EthernetKernel ek;
78: int successful; /* Number of frames sent */
79: int number_retrans; /* Number of retransmission so far */
80: Frame[] end; /* Frames transmitted out */
81: :
82: <<Initialize other Station parameters>>
83: :
84: public Station(String n, EthernetKernet h){
85: super();
86: name = toString().toCharArray();

APPENDIX C: PEEUDO CODE OF ETHERNET SIMULATION IN SPADES/JAVA

 109

87: ek = h;
88: :
89: }
90: :
91: public Boolean channel_clear(){
92: if (<<No frames passing left>> and <<no frame passing righ>>)
93: return true;
94: else
95: return false;
96: }
97: :
98: void retransmit(Station this_station){
99: /*Have maximum number of attempts been made?*/
100: if (<<Number of retransmission is larger or equal to 16>>){
101: <<Set phase to Finish>>
102: wait(noise_burst*1.005);
103: }else{
104: <<Set phase to Contention>>
105: /*Wait for a random and restransmit*/
106: wait(retrans_time(this_station));
107: }
108: }
109: :
110: /*Calculate time delay after a collision - binary exponential*/
111: float retrans_time(int this_station){
112: int t;
113: int num;
114: float maximum;
115: number_retrans++;
116: num = number_trans;
117: if (num>10){
118: num=10;
119: }
120: maximum=2^num;
121: t=(int)uniform(0,maximum);
122: return slot_size*t;
123: }
124: :
125: public void execute(){
126: switch(phase){
127: case Idle:{
128: <<Set phase to Wait>>
129: wait(0.0);
130: break;
131: }
132: case Wait:{
133: if (channel_clear()){
134: <<Create & transmit frames to two directions>>
135: <<Set phase to Listen>>
136: wait(2*slot_time);
137: }else{
138: susPend();//continue waiting
139: }
140: break;
141: }
142: case Listen:{
143: if <<Frame is or will be successfully transmitted>>{
144: if <<Both frames have been transmitted>>{
145: <<Set phase to Finish>>
146: wait(0.0);
147: }else{
148: <<Wait until 2 frames left this station>>
149: <<Set phase to Finish>>
150: susPend();
151: }
152: }else{
153: <<Retransmit this frame>>
154: }

APPENDIX C: PEEUDO CODE OF ETHERNET SIMULATION IN SPADES/JAVA

 110

155: break;
156: }
157: case Contention:{
158: <<Set phase to Wait>>
159: wait(0.0);
160: break;
161: }
162: case Finish:{
163: <<Reset this station>>
164: <<Set phase to Idle>>
165: wait(0.0);
166: break;
167: }
168: }
169: }
170: }
171:
172: // Aframe.java
173: // Models frames transmitted between stations in Ethernet
174: class Aframe extends SProcess {
175: EthernetKernel ek;
176: int source; /* The sender station of the frame */
177: int direction; /* The direction of propagation */
178: int arr_sta; /* The station arriving at */
179: int dep_sta; /* The station leaving from */
180: <<initialize other parameters of a frame>>
181: :
182:
183: public Aframe(String n, EthernetKernel h)
184: {
185: super();
186: name = toString().toCharArray();
187: ek = h;
188: }
189: :
190: void invalidate_frame(int station){
191: <<Mark this station’s transmission to be fail>>
192: if <<Station transmit frame left>>{
193: passivate(<<Left frame>>);//remove from FEL
194: <<Left frame>>.wait(noise_burst);
195: }
196: if <<Station transmit frame right>>{
197: passivate(<<Right frame>>);
198: <<Right frame>>.wait(noise_burst);
199: }
200: }
201: :
202: public void execute(){
203: switch(phase){
204: case Arrival:{
205: this_stn=this.arr_stn;
206: if (<<The arrival station is in Listen state>> and
207: <<The station is not corrupted>>){
208: invalidate_frame(this_stn);
209: }
210:
211: if (<<Frame going to left>>){
212: <<Flag that a frame passing by from left>>
213: if (<<Frame not at end of cable.>>){
214: wait(neighbour_delay);
215: }else{
216: terminate();
217: }
218: }else{//Frame going to right
219: <<Flag that a frame passing by from right>>
220: if (<<Frame not at end of cable.>>){
221: wait(neighbour_delay);
222: }else{

APPENDIX C: PEEUDO CODE OF ETHERNET SIMULATION IN SPADES/JAVA

 111

223: terminate();
224: }
225:
226: break;
227: }
228: case Departure:{
229: if (<<This station is the frame’s source station>>){
230: <<Flag that a frame has been transmitted>>
231: if (<<This station finished both frames>>){
232: if (<<Frame not corrupted>> and
233: <<Station is not in Listen state>>){
234: reactivate(<<This station>>);
235: }
236: }
237: }
238:
239: if (<<Frame is going to left>>){
240: <<Frame passing by decrease by 1, reset flag>>
241: if (<<Frame can be sent to left>>){
242: wait(neighbour_delay);
243: }else{
244: terminate();
245: }
246: }else{//Frame is going to right
247: <<Frame passing by decrease by 1, reset flag>>
248: if (<<Frame can be sent to right>>){
249: wait(neighbour_delay);
250: }else{
251: terminate();
252: }
253: }
254:
255: if (<<Channel is clear after this departure>> and
256: <<This station waits a clear channel>>){
257: reactivate(<<this station>>);
258: }
259:
260: break;
261: }
262: }
263: }

