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Summary

Pattern discovery in unaligned DNA sequences is a fundamental problem

in both computer science and molecular biology. It has important appli-

cations in locating regulatory sites and drug target identification. This

thesis introduces two novel motif discovery algorithms based on the use of

constraint mechanism and constraint rules respectively. The key idea is

to convert sets of similar substrings on the DNA sequences into patterns,

as early as possible, using constraint mechanism or constraint rules. The

advantages are two folds. Firstly, the approach generates limited number

of patterns while still guaranteeing that the actual motifs are contained

in the pattern set. Secondly, the procedure for deriving patterns is very

cost-effective since it can be considered as that we use many “look ahead”

to speed up the procedure. Therefore, the algorithms have the advantages

of the high sensitivity of pattern-driven algorithms as well as the efficiency

of sample-driven algorithms.
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Chapter 1

Background

The history behind motif discovery in unaligned DNA sequences dates

back to 1970, when Hamilton Smith [18] discovered the Hind q restriction

enzyme. It may have been the first DNA pattern. This discovery provided

biological scientists with a new technological tool to study DNA sequences

in a more efficient manner.

Since the dawn of the 21st century, there has been a dramatic increase

in the number of completely sequenced genomes due to the efforts of both

public genome agencies and the pharmaceutical industries. Large-scale

genomics have become a fundamental tool for understanding an organ-

ism’s biology. Access to multiple complete genomic sequences helps biolo-

gists to formulate and test hypotheses about how genomes are organized

and evolved, as well as how a genome encodes the observed properties

of a living organism. Key questions being pursued include: what parts

of our genome encode the mechanisms for major cellular functions like

metabolism, differentiation, proliferation, and programmed death? How

do multiple genes act together to perform specialized functions? How is

our non-protein-coding DNA organized, and which parts of it are func-
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CHAPTER 1. BACKGROUND

tionally important? How do selective pressures act on the random pro-

cesses of gene duplication and mutation to give rise to complex constructs

like eyes, wings, and brains? Why do humans appear so different from

worms and flies, despite sharing so many of the same genes?

Until the 1990’s, molecular biologists could pursue questions about the

content and function of genomes only indirectly, or else at great cost. In-

direct techniques such as Giemsa staining and CoT-based measurement of

repetitive content [45] provided limited information about a genome. Full

sequence was available for only a few short regions found to be function-

ally significant, usually after a long and expensive process of localization

by (e.g.) linkage mapping, followed by cloning out and finally sequencing

a minimal region of interest. The cost and time required to sequence

DNA made sequencing a tool to be applied only at particular points, and

only once a region was shown to be important by other means.

More recently, high-throughput DNA sequencing has enabled a direct

approach to studying genomes. Using this new technology, biologists have

obtained progressively larger complete genomic sequences, from viruses

[11] to prokaryotes [36] to single-celled [19] and multicellular [1] eukary-

otes. Available genomes today include those of several higher metazoans,

including the fruit fly Drosophila melanogaster [31], the flowering plant

Arabidopsis thaliana [2], and, of course, Homo sapiens [3]. Armed with

substantially complete euchromatic sequences from these organisms, we

can now directly interrogate global properties like base frequencies and

repetitive content, obtain immediately the sequence of any potentially

interesting region, and perhaps most exciting compare corresponding

long stretches of genomic DNA in two or more organisms. Such analysis

encompass massive amounts of sequence, on a scale requiring computa-
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CHAPTER 1. BACKGROUND

tion that defies manual analysis. The need to automate analysis of long

or numerous genomic sequences gives rise to the field of computational

genomics.

In this work, we address a particular problem of computational ge-

nomics: how to discover which parts of a long DNA sequence encode

particular biological features, such as genes. Even when the whole se-

quence is available for inspection, finding these features reliably can be

surprisingly difficult. If we know little about the features being sought,

or their presence leaves only a weak imprint on the underlying sequence,

finding them may be theoretically intractable or practically beyond our

limited budget of computing time and space. This work focuses specifi-

cally on new techniques to find features that are difficult to find in theory

or simply intractable to existing search algorithms.

The algorithms that we introduce in this thesis are founded on two

novel techniques, constraint mechanism and constraint rules, which ex-

tract patterns from sets of similar strings. We show how to exploit the

power of them to find motifs efficiently. As a result, we can more readily

identify more interesting features and ultimately provide more knowledge

to biologists.

1.1 Road Map to the thesis

We begin by providing the reader with a brief guide to the content of the

thesis. Some readers may find the biological terms used in subsequent

sections and chapters unfamiliar; hereafter, we will both define such terms

at their point of first use and provide a glossary (see Appendix A) of terms

to collect the important definitions in one place.
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CHAPTER 1. BACKGROUND

Chapter 1 is devoted to background and significance. We first re-

view the nature of genomic DNA. Then we introduce interesting features

which our algorithms focus on. Finally we introduce the basic approach,

sequence similarity comparison, to identify sequence features.

Chapter 2 is devoted to review the existing research work on motif

finding. We first present the formal definition of planted motif finding

problem, then we analyze the critical techniques - motif models - used for

pattern extraction. Based on the analysis, we review the existing motif

finding algorithms. Finally we revisit the significance of our algorithms.

Chapter 3 introduces two novel algorithms, namely constraint mechanism-

based motif finding algorithm (CMMF) and constraint rules-based motif

finding algorithm (CRMF). We then show how to implement the algo-

rithms in practice.

Chapter 4 presents the experimental results on both synthetic data

and biological data. Based on the results, we compare CMMF with

CRMF, and we also compare our algorithms with other leading motif

finding algorithms.

Chapter 5 summarizes the merits as well as limitations of our work.

We propose the ways to extend the algorithms to achieve better perfor-

mance and pose the open problems as well.

1.2 Biological Background: DNA and Se-

quence Features

The first prerequisite to developing algorithms for finding features in ge-

nomic sequences is to understand what we are looking for and why. We

4



CHAPTER 1. BACKGROUND

therefore begin with a brief review of genomic DNA and its major features.

Readers seeking more background on genomic DNA or on molecular bi-

ology in general may wish to consult the standard text by Lewin [29] or

the gentler introduction by Joao Setubal and Joao Meidanis [40].

1.2.1 DNA and Genomic Sequence

The information encoded in genetic material, DeoxyriboNucleic Acid (DNA),

is responsible for establishing and maintaining the cellular and biochem-

ical functions of an organism. In most organisms, the DNA (see Figure

1.1) is an extended double-stranded polymer composed of a sequence of

nucleotides, also called bases. Four such bases - A(Adenine), C(Cytosine),

G(Guanine), and T(Thymine) - form the alphabet from which all natural

DNA is constructed. Abstractly, a DNA sequence is simply a string over

the alphabet {A,C,G,T}. We will use the terms “string” and “sequence”

interchangeably.

The sequence of bases of one DNA strand is complementary to the

bases of the other strand. This complementarity enables new DNA molecules

to be synthesized with the same linear array of bases in each strand as

an original DNA molecule. The process of DNA synthesis is called repli-

cation, which plays a critical role in passing on genetic information from

one generation to the next. Complementary bases forms base pairs. The

pairing is deterministic: A always pairs with T, while C pairs with G.

Thus, the sequence of one strand determines the sequence of its com-

plement, and we can describe a DNA sequence uniquely by only one of

its strands. Because of this pairing, bases are sometimes classified as

“weak” (A/T, joined by two hydrogen bonds) or “strong” (C/G, joined

by three hydrogen bonds). Another common classification of bases, this
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CHAPTER 1. BACKGROUND

Figure 1.1: Double Stranded DNA Model

time by chemical structure, is as purine (A/G) or pyrimidine (C/T). An

unspecified purine or pyrimidine is denoted by the characters R and Y

respectively.

DNA either swims within the cytoplasm of prokaryotic cells (e.g. bac-

teria and E.coli) or locates within the nucleus of eukaryotic cells (e.g.

plant and animal). An organism’s complete set of DNA sequence is its

genome. The differences in genomic sequence from one organism to an-

other within a species are quite small compared to the differences between

species, so it makes sense to talk about an entire species’ genome. For ex-

ample, the human genome, which is 3× 109 base pairs in length, is 99.9%

similar between individuals, while the genome of our closest relative, the

chimpanzee, is only 98% - 99% similar to ours [8].

An organism’s genome is organized into a small number of discrete

DNA molecules, called chromosomes. Bacteria typically have a single,
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circular chromosome a few million bases in length, while eukaryotic species

have anywhere from three to over 100 linear chromosomes of total length

ranging from tens of millions up to billions of bases.

An essential feature of DNA is that it is not static over time. Chem-

icals, radiation, and copying errors can all cause a DNA sequence to

mutate. Biologically common types of mutation include substitutions, in

which one base is replaced by another, and indels (insertions and dele-

tions), in which bases are added to or removed from a sequence. Different

types of mutation happen at different rates; for example, transition sub-

stitutions - those that replace A with G or C with T and vice versa -

are roughly twice as common [9] as other substitutions, which are called

transversion.

1.2.2 Regulatory Sites - a Feature of Genomic Se-

quence

Most sequence features fall broadly into three categories: genes, which

encode the active molecules that carry out the cell’s business; regulatory

sites, which control the behavior of genes; and repetitive elements. Our

algorithms focus on finding regulatory sites, which will be introduced in

detail at follows.

Regulatory sites control the behavior of genes. Precisely, regulatory

sites control when and where genes are expressed to produce their prod-

ucts. It is necessary to know genes before we illustrate regulatory sites.

Genes are the basic physical and functional units of heredity. A gene

is a specific sequence of bases, which encode instructions for building other

polymeric molecular species. A gene’s basic function is to have its DNA

7



CHAPTER 1. BACKGROUND

sequence transcribed into a corresponding (single-stranded) polymer of

RNA, or RiboNucleic Acid. The sequence of an RNA molecule is identical

to that of its originating gene, except that T bases are mapped not to T

but rather to a different base, U (Uracil).

Cells have regulatory mechanisms for controlling when and where

genes are expressed to produce their products. Sets of short stretches

of base pairs (signal regions) within the DNA are required to ensure that

gene expression is initiated at the correct nucleotide and that it termi-

nates at a specific nucleotide. The sequences that control the initiation

of gene expression usually precede the coding sequence, and termination

signal sequences follow it. Figure 1.2 illustrate how a structural gene in

prokaryotes is transcribed into mRNA [16], which then is translated into

protein. In prokaryotes, a contiguous DNA segment forms a structural

gene. Prokaryotic transcription entails the binding of RNA polymerase

to a promoter region, the initiation of transcription at the first nucleotide

of the gene, and the cessation of transcription at a termination sequence

that lies downstream from the coding region.

In this work, we focus on one particular form of regulation: control

of gene transcription by a class of proteins called transcription factors.

These proteins adhere to genomic DNA at binding sites, regions up to a

few tens of bases in length that contain factor-specific signal sequences.

Transcription factors often bind at sites within a few hundred bases at

the start of a gene, where they influence how frequently the RNA poly-

merase complex initiates transcription of that gene. These sites are called

enhancer/repressor regions. If a transcription factor causes the gene to be

expressed at a higher level, it is said to be an enhancer; if it causes a lower

level of expression, it is a repressor. Figure 1.3 illustrates how a repressor

8
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upstream region downstream region

Figure 1.2: Prokaryotic Transcription. Schematic representation of a
prokaryotic structural gene. The promoter region (p), the site of initi-
ation and direction of transcription (the right-angled arrow), and the ter-
mination sequence for RNA polymerase (t) are depicted. A prokaryotic
structural gene is transcribed into mRNA and then directly into protein.

protein binds to a regular binding site to block the transcription.

Transcription factors are often activated in response to changes in the

cell’s environment, especially changes in the amounts of various chemi-

cals (including other gene products). These proteins can therefore orches-

trate the cell’s transcriptional response to changing external conditions as

well as carrying out “programs” such as cell division, differentiation, or

death in response to particular chemical signals. The exact mechanism by

which transcription factors transduce these changes varies. Many factors

form (or block formation of) protein complexes that contact the RNA

polymerase directly, increasing or decreasing its affinity for binding to a

gene’s promoter and initiating transcription [29]. Factors may also alter

the conformation of the DNA to which they bind, again changing the

binding affinity of the polymerase [38, 39].
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Figure 1.3: Schematic representation of a bacterial transcription unit.
Transcription is catalyzed by RNA polymerase. In Figure A, the repressor
protein (R) binds to the regular binding site and blocks transcription. In
Figure B, the repressor protein can not bind to the binding site due to
some chemical changes, thus RNA polymerase can transcribe the gene.

Multiple transcription factors can act on a single gene, in which case

several different binding sites may cluster near that gene. The factors’

actions are not necessarily independent; in general, they may form a

complex cis-regulatory logic that permits fine control over when and how

strongly a gene is expressed. At this time, few examples of cis-regulatory

logic have been worked out in detail; the work of Yuh et al. in sea urchin

development [53] illustrates the complexity possible in such logic.

Transcription factor binding sites, while clearly are important se-

quence features. Unfortunately, they are difficult to identify in raw ge-

nomic sequence. We know that sites are likely to occur in clusters in the

promoter regions of genes, typically within a few hundred to a few thou-

sand bases of the transcription start site. However, significant sites may

be found elsewhere, including the introns of genes [23] and locus control

regions that may be ten kilobases (ten thousand bases) or more away
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from the genes they regulate [14]. In general, we cannot assume much

a priori about what binding sites look like - their sequence patterns are

too dependent on the particular factor that they bind. Certain types of

transcription factor may require binding sites with known structure, such

as a DNA palindrome for some homodimeric factors, but such structures

are far from universal.

Finally, we note that even if all the sites for a given transcription fac-

tor had identical sequence (which is not the case), the sequence pattern

is usually short enough that it may occur purely by chance in the back-

ground sequence, at a place where no protein actually binds. Programs

to find new transcription factor binding sites in genomic sequences are

therefore challenged not only by a lack of identifying characteristics for

these sites but also by confusions between true binding sites and chance

occurrences of their sequence patterns.

1.3 Finding Sequence Features based on Se-

quence Similarity

We now come to the vital problem of identifying features in raw DNA

sequence. There is well-known conjecture that in the industry of biology

that, if two DNA sequence are highly similar, we can infer that they share

similar function. Consequently, researchers of bioinformatics can find

interesting sequence features through comparing the similarity between

two or more biological sequences.

The similarity between the occurrences of a feature is due to its con-

servation, or lack of change, over evolutionary time. Although all DNA

11
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sequences are subject to mutation, natural selection ensures that we ob-

serve today only those individuals whose ancestors’ reproductive fitness

was not limited by strongly deleterious mutations. Many mutations to

genes or regulatory elements can render them dysfunctional, causing the

organism carrying these mutations to die or to have fewer viable off-

spring. In contrast, mutations in nonfunctional sequence can accumulate

freely with no effect on reproductive fitness. We therefore expect that

the organisms we see today exhibit fewer mutations, or equivalently more

conservation, in their functional sequences than in their background se-

quence.

Sequence alignment is a quantitative measure of similarity. Suppose

that some ancestral DNA sequence s0 evolves by mutation along two

separate lineages, creating present-day sequences s1 and s2. If we knew

the entire mutation history of s1 and s2, we could match up those bases

in each sequence that derive from the same ancestral base of s0. Figure

1.4 shows such a matching, or alignment, of two sequences, written as a

series of columns in which bases deriving from the same ancestor appear

in the same column. If, as in this example, the sequences are subject to

indels, the alignment contains gaps, represented in the figure by columns

containing dashes “−”, where bases in one sequence do not correspond

to any part of the other sequence.

The goodness of alignment is defined by
∑

i δ(s1[i], s2[i]), where δ(x, y)

is a similarity function between x and y, each is a single base or a single

space. e.g., δ(x, y) = 2,−1,−1,−1 for match, dismatch, delete and in-

sert respectively. In the example illustrated in Figure 1.4, We can check

that the optimal alignment has the maximal score. An optimal align-

ment between two sequences can be computed using global alignment, in

12
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..

.
ACGGGTTCCAGTAC

..

.

..

.
A*GGGT aCCAGCTAC

..

.

..

.
ACGGcTTCCtCGTAC

..

.

..

.
A-GGGTACCAGC - TAC

..

.

..

.
ACGGCTTCCT -CGTAC

..

.

S0 :

S1 :

S2 :

S1 :

S2 :

Optimal
Alignment

True
Mutation
History

Figure 1.4: Example of a optimal alignment between two DNA sequences
s1 and s2 with a common ancestor s0. In the true mutation history, lower-
case letters indicate substitutions, while underlined bases and “∗” indicate
insertions and deletions. In the optimal alignment, some spaces, indicated
by “−”, are introduced to match as much as letters in the two sequences.
Note that the best alignment of the sequences is historically incorrect. The
two bases, indicated by arrow, do not derive from the same ancestral base.

particular the Needleman- Wunsch dynamic programming algorithm [33].

Features are always embedded in long genomic sequences. Compared

with features, background sequences are either wholly unrelated or so ill-

conserved as to be unalignable. To find short and well-conserved features

in long background sequences, we can use local alignment, in particular

the Smith-Waterman dynamic programming algorithm [47], which ignore

the background sequence and measuring only the similarity between fea-

tures.

As shown in the Figure 1.4, even the optimal alignment may not reflect

the true history of two sequences. The fact is that, the history of modern

genomic sequence is unknown, and what we can do is to plausibly guess

at the true matching of bases by finding an optimal alignment.

13
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Sequence similarity forms the basis to find interesting features in long

genomic sequences. Similar substrings between sequences are considered

as possible occurrences of a feature. Based on such substrings, we de-

rive the possible feature and verify it globally against all background

sequences.

14



Chapter 2

A Survey of Motif Finding

Algorithms

In this chapter, we first formalize the motif finding problem. Then we

analyze the critical techniques - motif models - used for pattern extraction,

and discuss their strengths and limitations respectively. Based on the

analysis, we review the existing motif finding algorithms. Finally we

revisit the significance of our algorithms. Note that we focus specifically

on the widely studied problem of finding regulatory motifs in genomic

sequence by ungapped multiple local alignment.

2.1 Problem Definition

A motif is a conserved DNA sequence pattern recognized by a transcrip-

tion factor or by other cellular machinery. The conservation of a regula-

tory motif across organisms or across genes allows us to identify it through

similarity search. However, since regulatory motifs are so short and are

imperfectly conserved, limited occurrences of a motif by themselves may

15
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not provide significant evidence of conservation. For example, consider

the problem of finding two occurrences of a conserved 20-mer motif that

differ by only five substitutions, in a pair of 1-kb background sequences

that are randomly generated with equal base frequencies. The expected

number of 20-mer matches with at most five substitutions appearing by

chance in the background is about 3.67, so two occurrences of the motif

would be indistinguishable from the background. Unless we can localize

the motif to a very much smaller region, the only way to demonstrate its

significance is to find additional occurrences in other sequences.

Following Buhler & Tompa [7], the formal definition of the motif dis-

covery problem can be as follows.

Planted (l, d) - Motif Problem: Consider a set E of t nucleotide se-

quences each of length n. Suppose there is a fixed but unknown nucleotide

sequence M (motif) of length l which is implanted in every sequence of E.

The motif discovery problem is to determine M given E. More precisely,

the problem is to compute M such that every sequence in E contains a

length-l substring which has at most d mismatches when compared with

M .

Note that there are two widely used consensus based motif models,

where the motif consists of instances which are mutated occurrences of

the motif skeleton. One is FM model [35] where each of the t sequences

contains one instance of an (l,d)-motif. The other one is VM model [35]

where again each sequence contains exactly one instance, only now each

position of the instance is mutated, independently of all other positions,

with probability ρ. Due to our work concentrate on the first model, it is

used in the above formulation of motif problem.

16
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2.2 Motif Models: Strengths and Limita-

tions

It is always difficult to identify all the occurrences of a conserved motif

without any information of the motif, especially in the case of substan-

tive background sequences. Most existing algorithms capture the motif

skeleton, an estimated motif, through collecting partial occurrences as a

start, then we try to find additional occurrences against the whole back-

ground to restore the motif. Obviously the procedure of extracting out

the motif skeleton from partial occurrences plays an critical role in decid-

ing the accuracy of these algorithms. And this procedure is more often

called as pattern extraction. Many different pattern extraction methods

exist for multiple sequences [17]. However what we focus on are not these

methods themselves, but several underlying motif models commonly used

in these methods. They are consensus model, the profile or weight ma-

trix model (WMM) and multiprofile model. We also introduce constraint

based model used in our algorithms.

It is assumed that the occurrences of a motif may differ only by sub-

stitutions, not by indels (insertions or deletions) in the above four models.

This assumption reflects (1) the limitations of many computational tech-

nologies for finding motifs and (2) the fact that biologically interesting

motifs are frequently ungapped. Some known motifs consist of a small

number of ungapped segments with intervening variable-length spacers

[26, 41]; such motifs can be modelled as a collection of ungapped consen-

sus whose occurrences always appear near each other with gaps of varying

length.

17



CHAPTER 2. A SURVEY OF MOTIF FINDING ALGORITHMS

2.2.1 Consensus Model

The consensus model is a simple combinatorial description of a motif.

In this model, the motif is considered as a consensus sequence. Each

occurrence of the motif is a copy of the consensus sequence, perhaps with

a few substitutions. Given multiple occurrences of a motif, the consensus

sequence can be formed as follows. The consensus at each position of

multiple sequences is defined as the base which occurs most often at

the position. In the case that two or more bases have equal highest

occurrences at a position, the consensus can be chosen randomly from

these bases. And the consensus sequence consists of the consensuses at

each position as illustrated in Figure 2.1.

5 occurrences of a motif Consensus Sequence

C A T C A A T

T G C T A A T

T G T A C A T

T G G C A C T

T G T T G A T

T G T C A A T

Figure 2.1: A consensus model inferred from five occurrences of a motif.
The most frequent base in each position of the occurrences becomes the
base of the consensus at the position. If two or more bases appear equally
often in a given position, as with T and C in the fourth position, the
choice of the consensus base at that position is arbitrary.

One could measure the conservation of a motif by the number of sub-

stitutions between each occurrence and the consensus sequence.

Strength. Consensus model is the simplest model. Given multiple occur-

rences, it extract a single pattern - consensus sequence. In most cases, it

is effective in the sense that the base that appears most frequently in each

18
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position has the highest likelihood to be the original base of the motif.

Limitation. Consensus model risks missing the actual motif. This hap-

pens in the situation that the base at any position of the motif is badly

conserved in its occurrences.

2.2.2 Weight Matrix Model

The consensus model is uninformative due to that it does not reveal

either how strongly the consensus base in each position is conserved or the

distribution of non-consensus bases. However, all these information are

described in the weight matrix model (WMM), also called profile model.

WMM is a probabilistic model, which models a motif of length l as a 4× l

matrix M , where the entry at position M [p, q] gives the probability that

an occurrence of the motif contains a base q (q = A,C,G,T ) in its pth

position. Each column of the matrix therefore sums to one as illustrated in

Figure 2.2. The distribution of bases in different positions are independent

of each other. Given a length-l sequence s, let s[i] denotes the base at its

ith position. Based on the weight matrix, the probability that M produces

a particular length-l motif instance m is : Pr[ m | W ] =
l∏

i=1

W [ m[i], i ].

Given a set of motif occurrences M , the weight matrix W [ M ] can be

easily computed by calculating the frequency of each base in each position.

The weight matrix of the five motif occurrences in Figure 2.1 is shown in

Figure 2.2.

The matrix W [ M ] is the best description of M in the sense of

maximum likelihood. It is the WMM W that maximizes the likelihood

L[ W [M ] | M ] =
∏

m∈M

Pr[ m | W ]. And the likelihood L[ W [M ] | M ] is

also a useful score by which to measure the extent of conservation of the
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5 occurrences of a motif Weight Matrix

1 2 3 4 5 6 7

A 0 0.2 0 0.20.60.8 0

C 0.2 0 0.20.40.20.2 0

G 0 0.8 0.2 0 0.2 0 0

T 0.8 0 0.60.4 0 0 1

C A T C A A T

T G C T A A T

T G T A C A T

T G G C A C T

T G T T G A T

Figure 2.2: A weight matrix model (WMM). It is inferred from the five
motif occurrences in Figure 2.1. Entries corresponding to the consensus
base at each position are identified in bold face. Unlike the consensus
model, the WMM captures the frequencies of both consensus base and non-
consensus bases, and it remains well-defined even when the consensus base
is ambiguous, as in the fourth position.

motif.

If the motif occurs in random background sequences with a base dis-

tribution P , a better scoring function for the set M of motif occurrences

is the likelihood ratio LR(M), defined as

LR(M) =
L[ W (M) | M ]

L[ P | M ]

where

L[ P | M ] =
∏

m∈M

Pr[ m | P ]

The likelihood ratio, while is not strictly a measure of conservation, is

a principled way to account for the background base distribution when

scoring a motif. The ratio adjusts for the background distribution by

recognizing that, if base i appears frequently in the background, then a

collection of strings with a high frequency of i’s is more likely to occur

purely by chance, and is therefore less significant as a putative motif, than

one with few i’s.

Strength. WMM is a probabilistic model, which captures the frequencies
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of each base in each position. It is the best description of M in the

sense of maximum likelihood. In addition, the impact of the background

distribution can be taken into account for measuring the conservation.

Limitation. Instead of extracting a specific motif, WMM provides the

information to infer the likelihood that any length-l string is the actual

motif. However, it is possible that the model is biased on wrong bases in

some positions in the situation that mutations occur preferentially on a

small subset of positions of its occurrences. To get the model best reflect

the actual motif, the initial model need be refined using the technique -

expectation maximization (EM, [4, 28]). Unfortunately, the refinement

procedure involves huge computational cost.

2.2.3 Multi-positional Profile Model

Multi-positional profile model utilize a “corrective” system to modify a

motif occurrence to the actual motif. This model is introduced by Keich

and Pevzner [24], and it is successfully deployed in the algorithm MUL-

TIPROFILER to find motif effciently. Multi-positional profile model is

different from consensus model as well as weight matrix model in the

sense that it is applied to a set of strings which include both motif occur-

rences and background strings, instead of a pure set of motif occurrences.

Given a motif occurrence m, a set S of strings which have hamming dis-

tance no greater than 2d are identified from the background sequences to

aid in modifying m. Usually the random substrings, also called noises,

of background sequences dominate the set S. However the use of multi-

positional profiles is able to make the noises widely distributed while the

motif occurrences stay centralized. Thinking chemically, this measure is
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like that we make the purities obvious through diluting the impurities.

An example are shown at Figure 2.3.

5 occurrences of a motif

and 5 noises

m1 G T T A T a g

m2 t g T c c G T

m3 G t a A T G a

m4 G t c A T G T

m5 a C T g T a c

n1 a g t c t g t

n2 g c t a a a g

n3 g t t a g a c

n4 g t a c c t g

n5 c a t a g t t

1,2 ... 6,7

a g 2

g t 3

g a 1

a c 2

t g 1

t t 1

...

The bipositional profile

m GTTATGT

m1 GTTATag

corr ---------GT

Modification of m1

to generate motif m

Figure 2.3: Multi-positional profile model inferred from sample sequences
which consist of the five motif occurrences in the Figure 2.1 and additional
five random sequences. The motif skeleton is m = GTTATGT . There
are five motif occurrences in the sample sequences: m1,· · · ,m5. And five
random sequences are also included: n1,· · · ,n5. Note that pairs consisting
of the two rightmost bases of random sequences are widely distributed in
5 areas:ac,ag,gt,tg,tt. While those pairs consisting of the two rightmost
bases of motif occurrences are concentrated on only three areas:ag,ga,gt,
and mainly on the last area.

The application of multi-positional profile model is based on the as-

sumption that a motif occurrence(reference sequence) has been found.

The choice of sample sequences to which multi-positional profile model

is applied is based on a simple principle, that is any one in the sample

sequences should agree with the motif occurrence except on at most α

positions. In the case of an (l,d)-motif, α = 2d is the choice to strike

the balance between allowing as many as motif occurrences into sample
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sequences and decreasing the noise.

The subsequence of a string, which is typically nonconsecutive, is de-

noted as stringlet. A k-stringlet is defined in terms of its k positions in

a string and their content. For example, the string ATGTAT contains

the 3-stringlet −T −−AT . The stringlet which is used to correct a motif

occurrence mi should be disjoint from mi in the sense of that it differs

from mi in all its positions. For details, you may wish to consult the

paper [24].

Strength. Multi-positional profile model allows one to detect subtle con-

sensus sequences that escape detection by the standard profiles.

Limitation. Since its application involves all the occurrences of the motif

and a large amount of noises, the computational cost of deriving a motif

is huge. In addition, the hope for deriving the actual motif rely on the

distribution of noises. More specifically, its success rely on the uniform

distribution of stringlets of sample sequences which correspond to the

mutated positions of the reference sequence. In the situation that those

stringlets are centralized, the model will fail.

2.2.4 Constraint based Model

Constraint based model generate possible motif skeletons which satisfy

the pre-defined constraints. As its name show, the key element of this

model is constraints. And constraints are formed based on the features

of various motif finding problems. In the case of (l,d)-motif problem, the

constraint which qualify a motif is that its every occurrence has at most

d substitutions relative to the motif. Precisely, the hamming distance

between a motif m and every motif occurrence mi should be no greater
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than d: dist(m,mi) ≤ d. Figure 2.4 show the example to apply this model

to the 5 motif occurrences in Figure 2.1. Compared with consensus model,

constraint based model try to find all possible motif skeletons instead of

the most likely one indicated by a set of motif occurrences.

5 occurrences of a motif Motif m with dist(m,mi)   2d

T G T C A A T

≤

m1 C A T C A A T

m2 T G C T A A T

m3 T G T AC A T

m4 T GG C AC T

m5 T G T T G A T

Figure 2.4: Constraint based model inferred from the five motif occur-
rences in Figure 2.1. There exists only one motif in this case. Unlike
the consensus model where the base in the fourth position is arbitrarily
selected due to C and T has the same frequency, the only choice for the
position is C so that the constraint dist(c,mi), 1 ≤ i ≤ 5 is met.

With the help of constraint mechanism and constraint rules, which

is to be introduced in Chapter 3, this model can be both reliable and

economic in the sense that actual motifs are never missed and all patterns

are generated in a cost-effective way.

Strength. Given a set of motif occurrences, constraint based model never

fails to include the actual motif in its derived pattern set. The complexity

is low even we apply an exhaustive search to find all the centers of limited

number of motif occurrences. Furthermore, with the help of constraint

rules, the complexity can be reduced to the theoretical limit in that motifs

are enumerated straightforwardly.

Limitation. This model may generate too many patterns. It involves

much computational cost to filter out “noises” among the huge pattern
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set. However, there exist efficient filtering technique to overcome this

flaw, which is addressed in Chapter 3.

2.3 Motif Finding Algorithms

A number of algorithms have been proposed to find motifs in DNA se-

quences. These algorithms can be classified into two categories: enumer-

ation and local search.

Enumerative algorithms, also called pattern driven algorithms, usually

test all 4l length-l patterns to find the high-scoring patterns according to

some metrics. Enumerative algorithms include methods by Brzama et al.

[6], Staden [42], Pesole et al. [34], Wolfertstetter et al. [52], van Helden

et al. [49] and Tompa [48].

While enumerative algorithms are guaranteed to find the highest-

scoring motif in the input, searching through all 4l length-l patterns

exhaustively becomes impractical for large l. One way to lower these

methods’ high cost is to enumerate partial motifs much smaller than the

desired length, then try to assemble them into full-length motifs. This

strategy is implemented by the TEIRESIAS algorithm by Rigoutsos and

Floratos [37]. However the drawback is that the running time is exponen-

tial in the motif length l. Thus its implementation is almost impractical,

especially for the currently fast-growing DNA database.

In order to come up with some practical solution to the motif finding

problem, motif finders resort to the heuristic approach of local search.

Local search methods guess an initial model of the motif, then iteratively

make small changes to the model that improve its score with respect to

the input sequences. The model eventually converges to a local maximum
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whose score cannot be improved by further iteration but which is not

guaranteed to be the globally highest-scoring motif. Local search meth-

ods increase their chances of finding the globally best motif by guessing

many different initial models, iteratively improving each one, and finally

reporting the highest-scoring motif resulting from any guess. Iterative

improvement of the likelihood score can be performed numerically by ex-

pectation maximization (EM) or seminumerically by greedy search over

models or by Gibbs sampling.

Local search is the technique of choice for sample-driven algorithms.

Local search is used to limit the search based on the patterns appearing in

the sequences from the sample. Sampe-driven algorithms include methods

by Bailey and Elkan [5], Fraenkel et al. [13], Li et al. [30], Gelfand et al.

[15], Buhler and Tompa [7], Hertz and Stormo [21], Lawrence et al. [27],

Lawrence & Reilly [28] and Pevzner & Sze [35].

Although sample-driven algorithms has relatively low computational

cost, local search needs to be taken with caution in the case of subtle

signal. The problem is that the approach may eventually find a local

optimal motif rather than the best motif in the situation that it is difficult

to distinguish the motif instances from noises that are similar to the motif

just by chance.

PROJECTION (Buhler and Tompa, [7]) and MULTIPROFILER (Ke-

ich and Pevzner, [24]) may be the best currently available algorithms on

motif finding. The former one first uses the weight matrix model intro-

duced in Section 2 to derive initial motif model from sets of substrings,

then it use expectation maximization [4] to change the initial model to

the one that has a locally maximum-likelihood. The later one uses the

multi-positional profile model introduced in Section 2. Both algorithms
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are able to find subtle motifs more reliably than previous algorithms. The

following is a brief introduction of their performance. Details are given

in Chapter 4.

PROJECTION succeeds in 16 out of 20 times in finding the same

(15,4)-motif implanted in twenty 2000 bp sequences while all previous

algorithms failed to find. However, MULTIPROFILER not only success-

fully finds the same motifs in more than 99% of the time, but also finds

motifs implanted in twenty 3000 bp sequences in more than 98% of the

time. The performance level has been pushed forward greatly by these

two algorithms.

2.4 Significance of the Thesis Revisited

Armed with some knowledge on existing motif finding algorithms , we

revisit the significance of this work. Most motif finding algorithms either

pursue high sensitivity at the price of high computational cost (pattern-

driven algorithms), or reduce search cost at the price of limiting the

search’s sensitivity (sample-driven algorithms). In this work, we develop

two constraint based algorithms which have the best of both worlds. Pre-

cisely, the algorithms have the advantages of high sensitivity of pattern-

driven algorithms as well as the efficiency of sample-driven algorithms.

The high sensitivity of the algorithms is realized through the use of

constraint based model introduced in Section 2. Given a set of motif oc-

currences, the model guarantees the actual motif is included in its derived

patterns. The efficiency of the algorithms is realized through the cost-

effective pattern extraction methods and the advanced pattern filtering

techniques.
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Experimental results on synthetic data have shown that our algo-

rithms outperform those leading motif finding algorithms.
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Chapter 3

Finding Motif using Constrain

Based Method

In this chapter, we present two novel algorithms for the planted (l,d)-motif

problem, namely CMMF (constraint mechanism-based motif finding algo-

rithm) and CRMF (constraint rules-based motif finding algorithm). Both

algorithms are based on the use of constraint based motif model intro-

duced in Chapter 2.2. What distinguish CMMF and CRMF is that they

implement the constraint based motif model using two different tech-

niques, namely constraint mechanism and constraint rules. Intuitively,

constraint mechanism is a general mechanism that is able to convert any

set of strings into corresponding patterns. In contrast, each constraint

rule is a refined constraint mechanism, whose capability is limited to con-

vert some specific sets of strings, however with enhanced efficiency.

This chapter is organized as follows. Section 1 gives some preliminary

definitions to be used throughout this chapter. Then, Section 2 introduces

the constraint mechanism, including both the naive version and the im-

proved one with heuristics. Section 3 introduces the algorithm CMMF
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that exploits the constraint mechanism to discover motifs. Section 4 and

5 are devoted to introduce constraint rules and constraint rules-based

algorithm CRMF.

3.1 Preliminaries

This section gives definitions and some simple results that will be useful

later.

Both constraint mechanism and constraint rules we will develop later

take three length-l strings as input, and the output is a set of strings

which have hamming distance at most d to every input string. Based on

this principle, we have the following definitions.

Let S = {s1, s2, s3} be a set of three length-l strings s1, s2, s3. For

any two sequences si and sj of length l, dist(si, sj) is defined to be the

hamming distance between si and sj, that is, the number of mismatches

between si and sj. Let dist(s, S) =
∑

i=1,2,3 dist(s, si) be the distance

from a length-l string s to a set of strings S. Given a set S, then a

string s is a center string ( also called a center for simplicity ) of S iff

dist(s, si) ≤ d for i = 1, 2, 3. By way of contrast, sm is a median string

of S iff there is no string s
′
with dist(s

′
, S) < dist(sm, S).

With the above definitions, we can clarify the purpose of constraint

mechanism more clearly. Given any set S, the constraint mechanism

derives all possible centers of S. Let C(S) be the complete set of cen-

ters of S, that is, C(S) = {c | dist(c, si) ≤ d, 1 ≤ i ≤ 3}. i.e., con-

sider a set S = {s1 = ccccaaaaaaaaaaa, s2 = aaaaggggaaaaaaa, s3 =

aaaaaaaaattttaaa}. When d = 4, the only center of S is aaaaaaaaaaaaaaa.

Therefore C(S) ={aaaaaaaaaaaaaaa}.
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We can also think of a set S as a 3×L base matrix. Then we refer to

the columns of this matrix as columns of the set of strings. For any string

s of length l, we use s[p], 1 ≤ p ≤ l, to denote the base at position p in

s. Note that, given a set S, a median string can be easily computed by

choosing, in every column, a base occurring most often. If a base is chosen

in this way, we call it the majority vote; it is, however, not necessarily

unique.

Any column o can be put in one of the following 3 types: (A) three

bases differ from each other, e.g., s1[o] 6= s2[o], s1[o] 6= s3[o] and s2[o] 6=
s3[o]; (B) two of them are the same while the other is different, e.g. s1[o] =

s2[o],s1[o] 6= s3[o]; (C) three bases are the same, e.g. s1[o] = s2[o] = s3[o].

For type B, we further define Bi for i = 1, 2, 3 as the column type where

si[o] differs from the other two bases in column o.

3.2 Constraint Mechanism

This section introduces the basic algorithm to implement constraint based

model (introduced in Chapter 2.2), constraint mechanism. We also present

heuristic improvement for the basic algorithm.

Constraint mechanism is the engine to extract patterns. Given any set

of three strings, it is able to derive all possible local patterns (centers).

It has two features: 1. It is efficient in the sense that most strings it

generates in the course of pattern extraction are centers. 2. It is accurate

in the sense that, it guarantees that the actual motif is included in the

derived patterns.
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3.2.1 The Basic Algorithm

The idea of our strategy for deriving centers of any given set S is to start

with its median string, which has the minimum distance with S. Then

we recursively try all the ways to mutate the median string to develop all

possible centers. Constraints serve to restrict the way that the candidate

center is mutated.

In the mutating procedure, a mutation is defined as that the current

base at a particular position is replaced by the other base. Thus the mu-

tating procedure can be considered as a combination of mutations without

any two mutations happening at the same position. In what follows, it is

implicit that mutations never happen at ever-mutated positions.

Algorithm 1 outlines a recursive procedure for deriving centers of any

given set S. It is based on the bounded search tree paradigm that is

frequently successfully applied in the development of fixed-parameter al-

gorithms [22, 10, 12]. A parameter s is initialized to a median string sm

and a parameter p is initialized to 0. In each recursive call, we mutate

the string s using different ways and in each way at most one mutation

is permitted which happen only at the pth position or a latter position.

In this way, we can avoid either running into the situation that two or

more mutations happening at the same position or finding the same center

multiple times. The mutating procedure is realized through the recursive

call of the algorithm. For the correctness of the algorithm we need the

following simple constraint.

CONSTRAINT 1. Given a set of strings S, assuming no or a few

mutations have happened on its median string sm. If the resulting string

s
′
m has distance greater than 3d to the set S, then it is impossible to
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Algorithm 1 Algorithm D, recursive procedure CM ( s, p )

Global variables: a set of 3 strings S = { s1, s2, s3 } and a set of centers
C.
Input: center seed s and position p.
(D0) If dist(s, S) > 3d , then stop ;
(D1) If dist(s, si) ≤ d, ∀i = 1, 2, 3, then insert s into C ;
(D2) For every position i ∈ {p, . . . , l} do

B := {b | b 6= s[i]};
For every base b ∈ B do

s
′
:= s ;

s
′
[i] := b ;

CM(s
′
, i + 1)

generate centers by further mutating s
′
m.

PROOF. We find that it is sufficient to concentrate on unchanged po-

sitions of the string s
′
m in that mutations never happen at ever-mutated

positions. Any mutation will either maintain or increase the distance

between s
′
m and S. The reason is as follows. The distance dist(sm, S)

can be measured columnwisely. In each unchanged position, s
′
m inherits

from sm the base that causes the minimum number of mismatches with

S. Therefore, if dist(s
′
m, S) > 3d, the further mutated string s

′′
m will also

have distance greater than 3d. It follows that s
′′
m cannot be a center of

S. 4

Correctness. We have to show that Algorithm D can find all possible

centers of any given set of strings S.

Starting from a median string sm, which has the minimum distance

dis to the set S, Algorithm 1 recursively tests if the string is a center

or not, then it tries all the ways to move around to strings which have

distance dis or dis+1 to the set S. It stops until it moves “too far away”

from the set S. In this way, all the strings that have distance no greater

than 3d are scanned and tested. Therefore the resulting center set should
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Algorithm 2 The refined instruction of D2 in Algorithm 1.

For every position i ∈ {p, . . . , l} do
If ith column of the set S is of type A do

If dist(s, S) ≤ 3d do
B := {b | b 6= s[i]};
For every base b ∈ B do

s
′
:= s;

s
′
[i] := b;

CM(s
′
, M)

If ith column of the set S is of type B do
If dist(s, S) < 3d do

B := {b | b 6= s[i]};
For every base b ∈ B do

s
′
:= s;

s
′
[i] := b;

CM(s
′
, M)

If ith column of the set S is of type C do
If dist(s, S) < 3d− 2 do

B := {b | b 6= s[i]};
For every base b ∈ B do

s
′
:= s;

s
′
[i] := b;

CM(s
′
, M)

consist of all possible center strings.

3.2.2 Heuristic Improvement

The algorithm’s performance depends on the efficiency of instruction D2.

The goal is to refine this instruction to achieve better performance. The

refined instruction D2 is shown in Algorithm 2.

In each recursive call, instruction D2 will be performed upon the com-

mon condition that the string s has distance at most 3d to the set S. In

instruction D2, the string s is mutated in (l − p + 1) ways, and each of

them is in the form that a mutation happen at or between positions from

p to l. However, some of these ways can be avoided through the use of

the following three constraints. In addition, with the new instruction D2,
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we can avoid the execution of D0. These constraints are developed based

on the observation of the features of different column type introduced in

Section 1. We refer to the type of a position of a string s as the type of

the corresponding column of the set S for the convenience of explanation.

CONSTRAINT 2. Given a set of strings S, assuming no or a few

mutations have happened on its median string sm. If the resulting string

s
′
m has distance greater than 3d to the set S, then it is impossible to

generate centers by further mutating s
′
m’s positions of type A.

Proof. Constraint 2 can be simply induced from Constraint 1.

CONSTRAINT 3: Given a set S, assuming no or a few mutations

have happened on its median string sm. If the resulting string s
′
m has

distance greater than (3d − 1) from the set S, then it is impossible to

generate centers by further mutating s
′
m’s positions of type B.

Proof. The underlying reason is that a mutation happening at a type-B

position will increase s
′
m’s distance to the set S by at least 1. It is proved

in what follows. Without loss of generality, in each column of the set

of strings S, the 4 bases can be categorized according to the number of

their occurrences. In a type-B column, there exist one base with two

occurrences, one base with one occurrences and other two bases with no

occurrences. Assuming a mutation happen in a type-B position, it means

that the current base (with two occurrences) is replaced either by the one

with one occurrence or by one of the two bases with no occurrences. This

causes the number of mismatches between s
′
m and S increased by either

1 or 2.

If dist(s
′
m, S) > 3d − 1, the further mutated median string s

′′
m will

have distance dist(s
′′
m, S) > 3d. It follows that s

′′
m cannot be a center of
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S. 4

CONSTRAINT 4: Given a set S, assuming no or a few mutations

have happened on its median string sm. If the resulting string s
′
m has

distance greater than (3d − 3) from the set S, then it is impossible to

generate centers by further mutating s
′
m’s positions of type C.

Proof. The underlying reason is that a mutation happening at a type-C

position will increase s
′
m’s distance to the set S by at least 3. Similar to the

proof of Constraint 2, the 4 bases in a type-C column can be categorized

into two categories: one base with three occurrences, the other three bases

with no occurrences. Assuming a mutation happen in a type-C position,

it means that the current base ( with three occurrences) is replaced by

one of the three bases with no occurrences. This causes the number of

mismatches between s
′
m and S increased by 3.

If dist(s
′
m, S) > 3d − 3, the further mutated median string s

′′
m will

have distance dist(s
′′
m, S) > 3d. It follows that s

′′
m can not be a center of

S. 4

With the use of the above constraints, we can avoid some of the calls

of the recursive procedure which are destined to generate no centers.

In addition, most of computational cost of the algorithm are related

to checking constraints. We use a few hamming distance tables during

the recursive procedure to enhance its performance. Details are follows.

Before starting the recursion, we build a table containing the distances

of the media string sm to all the three given strings. During each recur-

sion, the table of distances can be easily kept updated since at most one

mutation is allowed, and the copy of the updated table will be passed to

the next recursion for further use. In this way, all the constraints can be
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efficiently checked.

3.3 CMMF - Constraint Mechanism-based

Motif Finding Algorithm

The basic idea of CMMF is to find a set of three motif instances implanted

in three sequences of E so that actual motifs can be derived as local

patterns, then all derived patterns are checked to identify those actual

motifs. Note that unlike most of the existing motif discovery algorithms,

we are able to infer the centers (motif candidates) using the constraint

mechanism without knowing the complete set of motif instances. Below,

we describe the algorithm in detail.

Let I = {I1, . . . , It} be the set of implanted motif instances. The

motif discovery problem can be simplified as finding three elements of

the set I. This can be accomplished by the use of techniques related

to finding cliques (a clique is a set of vertices such that there exists an

edge between every pair of the vertices) in multipartite graph. These

techniques have been applied by Pevzner and Sze [35] to develop the

WINNOWER algorithm. To facilitate the application of the clique finding

techniques, we need to represent the motif finding problem in a simple

geometric framework first. Recall that E = {E1, . . . , Et} is the set of t

sequences which are implanted with the motif M . Given the parameter

l (the length of the motif) and the parameter d (the maximum number

of mismatches), we can construct a graph G(E, l, d) as follows. For every

position p in the sequence Ei, we construct a vertex Eip representing the

length-l substring starting at position p in Ei. Connect vertex Eip with

vertex Ejq by an edge if i 6= j and the hamming distance between Eip
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Algorithm 3 CMMF

1: Q ← ∅;
2: Choose 3 sequences E1, E2, E3;
3: for each E1i ,E2j and E3k (1 ≤ i, j, k ≤ n− l) do
4: if the distance between any two edges is no greater than 2d then
5: Build clique cli = { E1i, E2j, E3k } ;
6: CLIQUE CONVERSION( cli );
7: end if
8: end for

and Ejq does not exceed 2d.

Since every sequence in E contains a motif instance of M , let p =

{p1, . . . , pt} be the set of positions where pi is the position of the motif

instance in sequence Ei. Let V = {E1p1 , E2p2 , . . . , Etpt} be the subset

of vertices in G(E, l, d) representing the t motif instances. Every pair

of vertices in V should have an edge in the G(E, l, d) graph, therefore,

the set V corresponds to a clique of size t in G(E, l, d). In most existing

algorithms, the (l, d)-motif problem is formulated as finding large cliques

in a graph. There are two approaches to find cliques of size t. One

approach is to explore the forest of edges (Hertz and Stormo [20]). The

other approach is to remove edges that surely are not contained in large

cliques (Vingron and Argos [50]; Vingron and Pevzner [51]; Pevzner and

Sze [35]). No matter which approach to be used, the cost of finding

cliques of size t is inevitably huge. However, in our algorithm, finding

large cliques of size t is no longer the goal. Instead, finding a 3-clique

(size-3 clique) which consist purely of motif instances is the target. The

algorithm is illustrated in Algorithm 3 through finding all the cliques in

the first three sequences.

After extracting the centers from a 3-clique through the use of con-

straint mechanism, we need to test if each center is an actual motif. The
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details of center testing will be given in Section 6. In summary, the

CMMF starts from identifying the complete set of 3-cliques in the three

sequences, which can be randomly chosen from E. Then constraint mech-

anism is used to convert every clique into a set of centers and test if any

of them is an actual motif. To do it in a memory-effective way, once a

clique is identified, the constraint mechanism can be applied, followed by

the verification of the resulted centers. In this way, nothing except the

motifs will be kept in the memory.

3.4 Constraint Rules

In this section, we present another way to implement constraint based

motif model. It is based on the use of constraint rules.

Compared with the constraint mechanism, a constraint rule targets

at handling special sets of strings with enhanced efficiency, while still

guaranteeing to find all the centers. The underlying reason for the differ-

ence is that the constraint mechanism need to test quite a few strings to

identify centers among them, however constraint rules enumerate centers

straightforwardly.

To some extent, each constraint rule can be considered as a “refined”

constraint mechanism for special sets of strings. Section 2 demonstrated

the constraint mechanism, that is, Algorithm D recursively tests if the

string is a center or not, then it moves around to its neighborhood string.

In this way, all the feasible centers are generated. In contrast, constraint

rules can straightforwardly generate all centers. To do this, all it need is

the apriori knowledge that, for each center, which combination of muta-

tions transform the median string to the center.
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Table 3.1: Base selection rules for computing a median string

Column Type Chosen Base
A b1

B1 b2

B2 b1

B3 b1

C b1

Each constraint rule can only deal with a special type of string sets.

In our implementation, we distinguish different types based on the two

criteria: First, three pairwise hamming distances dist(si, sj),1 ≤ i, j ≤ 3;

Second, number of columns of type A. The reason is that, the other

information, namely number of columns of type C and Bi(1 ≤ i ≤ 3 ),

can be determined given the above information.

At what follows, we use an example to illustrate how the constraint

mechanism is refined to a constraint rule for handling a specific type of

string sets. The refinement process will be general enough to be applicable

to any case.

Refinement. Consider S = {s1, s2, s3} be a set of three length-l sequences

such that dist(s1, s2) = 2d − 1,dist(s1, s3) = 2d − 1,dist(s2, s3) = 2d − 2

and number of type-A columns of the set S is 2. Such a string set has

(2d + 5) corresponding centers. At what follows, we will identify those

combinations of mutations leading to these centers.

Without loss of generality, let bi denote a base that occurs in the string

si at a column, and b0 denote a base with no occurrences at a column. A

median string can be computed according to the rules listed in Table 3.1.

With a determinate median string, the next step is to identify concrete

combinations of mutations that change the median string to centers. Let
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Table 3.2: Combinations of mutations leading to centers. Every cell in
the first column presents a combination of mutations. And the blank cell
means no mutations, namely, the media string sm itself is a center. The
second column presents the hamming distance between mutated median
string s

′
m and si, in the form of {dist(s

′
m, s1), dist(s

′
m, s2), dist(s

′
m, s3)}.

The third column shows the number of unique centers a combination of
mutations can yield.

Mutation dist nc

{d− 1, d, d} 1
A[b1 ⇐= b2] {d, d− 1, d} 2
A[b1 ⇐= b3] {d, d, d− 1} 2
A[b1 ⇐= b0] {d, d, d} 2
A[b1 ⇐= b2]
A[b1 ⇐= b3] {d, d, d} 2(d− 1)
B1[b2 ⇐= b1]

bi ⇐= bj, denote a mutation in the form that the base bi is replaced by

the base bj. Let Y [mutation] specify the location of a particular mutation

is at the type-Y column of the median string. e.g., a mutation, in the

form that the current base b1 is substituted by the base b2 in a type-B2

column, can be denoted as B2[b1 ⇐= b2]. The resulted changes of the

mutation to the hamming distances between the median string sm and

the string si is that, both dist(sm, s1) and dist(sm, s3) increase by 1, while

dist(sm, s2) decrease by 1. Note that, given a mutation form Y [bi ⇐= bj],

the number of possible mutations of this form can be decided, that is, it

equals to the number of non-mutated columns of type Y . This forms the

basis to calculate the number of centers which a combination of mutation

forms can possibly yields.

Table 3.2 lists those combinations leading to centers. The hamming

distance between a string s and every string in S can be easily computed

if the base of s in each position is known as bi, i ∈ {0, 1, 2, 3}. Thus,

the hamming distance from the median string sm or the mutated median
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A A B1 B1 B1 B2 B2 B3 B3 C C C C C C Column Type

A A T T T T T T T T T T T T T Median String Sm
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                  A [ b1 <== b2 ] &

 Mutation :  A [ b1 <== b3 ] &

               B1[ b2 <== b1 ]

C
e
n
t
e
r
s

Planted (15,4)-motif Problem:
Given string set S such that dist(S1,S2)=7,dist(S1,S3)=7,dist(S2,S3)=6

and with two type-A columns, derive its centers using the constraint rule.

Figure 3.1: Center Collection

string s
′
m to the three strings in the set S can be computed. In Figure

3.1, we provide a concrete example, and show how to use the constraint

rule provided in Table 3.2 to derive all the centers in this case.

We can use the above method to identify the combinations of muta-

tions that lead to centers for any type of string sets. A constraint rule

incorporates these combinations as a package so that it is able to convert

a particular type of string sets into centers straightforwardly. Compared

with constraint mechanism, the efficiency of constraint rules has been im-

proved greatly due to that those combination of mutations which do not

lead to centers have been eliminated.
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Table 3.3: Number of centers for those types of string sets which we
choose to refine the constraint mechanism to constraint rules.

Type of S: D(S), nA number of centers
D(S) nA

2d, 2d, 2d 0 1
2d, 2d, 2d− 1 1 1
2d, 2d, 2d− 2 0 d + 1

2 1
2d− 1, 2d− 1, 2d− 1 1 4

3 6
2d− 1, 2d− 1, 2d 0 1

2 2
0 3d + 1

2d− 1, 2d− 1, 2d− 2 2 2d + 5
4 12

2d− 2, 2d− 2, 2d− 2 Too many centers
0 d2 + 1

2d− 2, 2d− 2, 2d 2 2d
4 6

2d− 2, 2d− 2, 2d− 1 Too many centers
2d, 2d− 1, 2d− 2 1 d + 1

3 3

Note that there exist many cases where the output may contain too

many centers. Refining the constraint mechanism for such cases costs

too much. To strike a balance between the heavy effort on refining the

constraint mechanism and the enhanced efficiency of pattern extraction

procedure, we choose to refine the constraint mechanism for limited types

of string sets. The choice of these types is based on the following two cri-

teria: First, these types can cover most string sets on which constraint

mechanism is applied; Second, the number of derived centers for such a

type of string sets is tractable, e.g. less than certain threshold. Accord-

ingly, for finding motifs in randomly distributed background sequence, we

consider those types of string sets in which pairwise hamming distances

range from (2d− 2) to 2d and number of the corresponding centers does
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not exceed 20. The list of these types as well as corresponding number of

centers are given in Table 3.3.

3.5 CRMF - Constraint Rules-based Motif

Finding Algorithm

This section describes the algorithm CRMF which fully exploit the power

of constraint rules.

Not as general as constraint mechanism, every constraint rule focuses

on a particular type of string sets. And we just generate constraint rules

for limited cases. Thus we can no longer expect these constraint rules

can handle any set of three strings. The natural solution is to apply

constraint mechanism to those cases where constraint rules are not ap-

plicable. However, there exists a better way to fully exploit the power

of constraint rules given the assumption that every sequence contains at

least one motif instance.

The idea is to find a set of three motif instances which can be converted

into centers using constraint rules. Let a planted clique denotes a clique

comprised of only motif instances. Assuming a planted 3-clique have

been found, but unfortunately, centers can not be generated by existing

constraint rules. Then, we can extend this clique to a planted 4-clique

by incorporating one more motif instance. If still unlucky, no constraint

rules are applicable to any three motif instances in the clique. We keep

on extending the planted clique in this way until we find at least one

set of three motif instances in the clique falls to any case listed in Table

3.3. Then the clique can be converted into centers using Algorithm 4:

Apply the constraint rule to convert the three motif instances into a set
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of centers, test every center locally to see if it satisfies the constraint

that the hamming distance between the center and every other motif

instance in the clique should be at most d. Those centers passing the

testing process successfully are the centers of the clique. And they will

be further tested globally to identify the actual motifs.

As a clique expands, the chance of conversion will increase linearly.

Assuming a n-clique expands to (n + 1)-clique, the chance of conversion

will increase by ( 3
n−2

) due to that the number of size-3 sets of strings in

the clique increase from C3
n to C3

n+1. It indicates that most cliques are

converted into centers when their sizes are small. This is the main reason

why the algorithm is faster than all existing solutions.

By a convertible clique, we mean 3 vertices of the clique meet a

application requirement of a constraint rule so that it can be converted

into centers through using constraint rules. In the luckiest case, even the

size of the clique is only 3, we already can find a convertible planted clique

and extract the actual motif.

Intuitively, CRMF algorithm begins with finding a set Q consisting

of all the 2-cliques(cliques of size 2) in the first two sequences E1 and

E2. Then, we iteratively enlarge the cliques in Q with the remaining

sequences in E. For the enlarged cliques which are convertible, we imme-

Algorithm 4 Clique Conversion Algorithm

1: CLIQUE CONVERSION ( cli )
2: Generate the set C of centers through applying a constraint rule to 3

strings in cli;
3: for each center c in C do
4: if c has distance greater than d to any string in cli then
5: Remove c as from C ;
6: end if
7: end for
8: Report C as the center set of the clique cli ;
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diately convert them into centers and test if they are actual motifs. The

remaining enlarged cliques are inserted into Q. The process is iterated

until Q is empty or we finished processing all t sequences in E. If some

t-cliques are still remained in Q after the whole process, we can force the

conversion through using constraint mechanism, and the centers of the

t-clique are the actual motifs directly. However, this case rarely happens.

The whole procedure is illustrated in Algorithm 5. Experiments on syn-

thetic data have shown that those constraint rules are very powerful in

converting cliques. Even in the difficult case of (15,4)-motifs implanted

in twenty length-3000 sequences, all cliques can be converted into centers

before their size reach 11. While in cases, such as (15,4)- and (9,2)-motifs

implanted in twenty length-600 sequences, all cliques can be converted

before their size reach 7.

The cliques of size 3 can be considered as seed cliques. The whole

procedure can be considered as the iterative extending cliques by incor-

porating vertices and then filtering cliques through using constraint rules.

And the actual motif is ensured to be preserved either in the form of a

center or in the form of a clique which consists of a subset of motif in-

stances.

3.6 Implementation Issues

A naive implementation of the rules-based algorithm is not efficient and

uses much memory. This section demonstrates a number of techniques

implemented to reduce the computational cost and to employ memory

efficiently.
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Algorithm 5 CRMF Algorithm

1: Q ← ∅;
2: for each E1i and E2j (1 ≤ i, j ≤ n− l) do
3: if dist(E1i, E2j) ≤ 2d then
4: {E1i, E2j} is a 2-clique in G(E, l, d) and

Insert {E1i, E2j} to Q;
5: end if
6: end for
7: for each m = 3 . . . t do
8: if Q = ∅ then
9: Break;

10: end if
11: for each (m− 1)-clique cli in Q and each vertex Emj do
12: Remove cli from Q;
13: if cli = cli ∪ {Emj} is a m-clique in G(E, l, d) then
14: if cli is a convertible clique then
15: CLIQUE CONVERSION( cli );
16: else
17: Insert cli into Q;
18: end if
19: end if
20: end for
21: end for
22: for each remaining t-clique cli in Q do
23: Compute the motif of cli by Constraint Mechanism
24: end for

3.6.1 Hamming Distance Matrix

Similar to the dot-matrices used by Vingron and Pevzner [51], the ham-

ming distance matrix between sequences Ei and Ej can be considered

simply as a matrix, where the entry at position (p, q) denotes the ham-

ming distance between the vertices Eip and Ejq (definition for vertex is

given in Section 3). For simplicity, the hamming distance matrix is de-

noted as the HD matrix below. Due to the fact that an edge may appear

in many cliques, hamming distances between two vertices may be com-

puted many times in the course of finding cliques. To avoid the redundant

computation of hamming distances, we store those hamming distances in
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HD matrices.

Apart from reducing the computational cost, HD matrices also save

the memory resource. In the case where the sequences in E are long,

the number of cliques may be a lot. For instance, suppose the sequences

in E are of length n. Then, the number of possible cliques in the first

m sequences E1,E2, . . . , Em can be as big as O( (n − l + 1)m). Instead

of storing all cliques, we can just store the HD matrices for every pair of

these m sequences. Then, the cliques in the m sequences can be recovered

one by one by scanning the HD matrices. By this method, we only need

to store
(

m
2

)
HD matrices, which takes O(

(
m
2

)
(n− l + 1)2 )space.

3.6.2 Clique Conversion Threshold

In some cases, a clique may generate so many centers that the cost for

validating these centers exceeds the total cost for extending it and then

testing less centers of the extended ones. Therefore, we add the clique

conversion threshold T to prevent such cases from happening. Precisely,

if the number of centers converted by a clique is greater than T times the

size of the clique, we will extend the clique instead of converting it into

too many centers. Experiments show that an appropriately chosen value

for T can reduce the running time effectively.

3.6.3 Duplicated Centers Elimination

Statistics show that above 10 percent of derived centers are duplicates

in case of randomly distributed background sequences. To avoid redun-

dant center testing, hashing is used to eliminate these duplicates. The

hash function we choose is related to integer encoding (Myers [32]). Let
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s = s1s2 · · · sl be a DNA sequence of length l, si ∈ {a, c, g, t}. Let

Φ(a),Φ(c),Φ(g) and Φ(t) be numbers 0, 1, 2 and 3 respectively. The

hash function is
∑l

i=1 Φ(si)4
i−1. The number of buckets required is 4l.

Observe that the size of this hash table increases exponentially in the

sequence length l. To control the memory usage of the hash table, in

our implementation, we choose to hash the first 9 bases of a center to

generate a hash key K. The details are below. For every center, we hash

its left-most 9 bases to generate a hash key K and hash right-most (l−9)

bases to generate a value V . If V exists in the Bucket K, the center is

a duplicate; otherwise, we store the value V in the Bucket K and state

that this is a new center.

3.6.4 Center Testing

In our implementation, we use two center testing methods.

[Method 1]. The first method is to find one similar substring of a center

in each sequence. However, if it fails in any sequence, it will deny that

the center is an actual motif and the testing procedure will stop at once.

In this way, most of centers can be filtered out without testing them

against all sequences. However, this method is based on the assumption

that every sequence contain at least one motif instance. This method is

suitable when the motif is well conserved in every nucleotide sequence.

[Method 2]. The second method is to find all similar substrings of a center

in all the sequences. According to a predefined threshold, we determine

the center is actual or not. The threshold can simply be the sum of the

estimated number of random similar substrings and the expected number
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of motif instances. This method is applicable to most cases although it

is a little slower than the first one.

Both methods make use of the Pigeon Hole principle to speed up the

searching of similar substrings. The principle has been used by Sung

and Lee [46] to develop fast probe selection algorithm. Below is the key

lemma.

Lemma 1: If there exist length-l strings p and q such that dist(p, q) ≤ d,

then we can find length-k substrings p′ = p[i . . . i + k − 1] and q′ =

q[i . . . i + k − 1] such that dist(p′, q′) ≤ v where v = bdk
l
c.

Proof. Given p and q where dist(p, q) ≤ d, there are at most d mis-

matches between p and q. These mismatches are distributed across l
k

pairs of length-k substrings (p[ik . . . (i+1)k−1], q[ik . . . (i+1)k−1]) in p

and q, for i = 0, 1, . . . , l
k
. By the Pigeon Hole principle, at least one pair

of the length-k substrings has at most v = bdk
l
c mismatches. The lemma

follows. ◦

A length-l center c can be divided into d l
k
e length-k substrings ci

where ci = c[ik . . . (i+1)k−1] for all i = 0, 1, . . . , b l
k
c−1 and cb l

k
c = c[l−

k . . . l−1]. Similarly, any length-l substring s can be divided into length-k

substrings si for all i = 0, . . . , d l
k
e − 1. Below, to simplify the discussion,

we assume l is divisible by k. By Lemma 1, only if dist(ci, si) < v for

some i ∈ {0, . . . , l
k
}, it is possible that dist(c, s) ≤ d. Based on this idea,

those length-l substrings, which are for sure not similar to the center c,

can be filtered out. The center testing algorithm based on the above idea

is shown in Algorithm 6. For any two length-k substrings s1 and s2, we

say they form a hit if dist(s1, s2) ≤ v. The testing procedure can be

speeded up greatly by building a hashing table which stores positions of
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Algorithm 6 Center Testing Algorithm

1: CENTER TEST( center c )
2: for each sequence Ei ∈ E do
3: Compute dist(c, s) for those s in Ei whose dist(ci, si) ≤ v
4: if disc(c, s) ≤ d then
5: Report center c successfully finds a ”similar substring” in se-

quence Ei;
6: end if
7: end for
8: Report those centers who successfully finds a ”similar substring” in

every sequence Ei ∈ E as motifs;

hits in sample sequences for all 4k length-k substrings.

The probability p that dist(ci, si) ≤ v equals
∑v

i=0 Ci
k(

3
4
)v(1

4
)l−v. Thus,

in every sequence of length n, the expected number of similar substrings

indicated by ci is (n− k + 1)p. Every center c has l
k

length-k substrings.

Therefore the number of substrings whose hamming distances with center

c need to be computed is l
k
(n − l + 1)p per sequence. Compared with

the brute force approach through which we need to compute hamming

distances between every substring (n − l + 1 in total) and the center c,

we get the complexity reduced by 100(1− lp
k
)%.
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Experimental Results

In this chapter, we investigate CRMF and CMMF’s capability of finding

motifs in both synthetic and real-life data. All the experiments were

taken on a 2.4GHz P4 CPU. The generation of synthetic data follows the

rationale of (l,d)-motif problem with randomly distributed background

sequences. First, we chosen a length-l motif consensus m by picking l

bases at random. Second, we generate a motif instance by randomly

choosing d positions of m and mutate the base at each chosen position

to a different, randomly chosen base. Through repeating the second step

t times, we can get t motif instances. Third, we construct t background

sequences of length n using n×t randomly chosen base. Finally, we assign

each motif instance to a random position in a background sequence, one

motif instance per sequence.

In Section 1, the synthetic (15,4)-motifs which are implanted in twenty

sequences of length-n, where n is a parameter to determine the difficulty of

motif finding, are designed to test the performance of CMMF and CRMF.

And the comparison are also presented. In Section 2, we compare the per-

formance of CRMF with other leading motif finding algorithms, such as
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PROJECTION and MULTIPROFILER over some widely accepted chal-

lenging motif finding problems. In Section 3, we present the statistical

limits of (l,d)-motif finding to prove that CRMF already reach the per-

formance limit. In Section 4, we test the algorithms using some biological

samples.

4.1 Performance of CMMF and CRMF on

Synthetic Data

The comparison is to show the superiority of constraint rules relative to

the constraint mechanism. It is assumed that every sequence contains at

least one motif instance. Therefore we choose Method 1 ( see Chapter

3.6.4) to test centers.

To compare the performances of both CMMF and CRMF, we apply

them to find (l,d)-motifs, with l and d are fixed, implanted in background

sequences of increasing length. Precisely, we apply the two algorithms

to find the (15,4)-motif implanted in twenty length-n sequences, where

n range from 500 to 3000. Due to that both CMMF and CRMF can

find all implanted motifs with success rate 100%, we do not present the

experimental results in terms of commonly used performance coefficient,

which mainly measures algorithm accuracy. Instead, the performance is

measured using running time. Their performances are shown in Figure 4.1

in terms of running time. The running time of both algorithms increase

exponentially with the increasing sequence length. It is explicit that the

running time of CRMF is always as almost half as that of CMMF. It

indicates that the derived constraint rules from constraint mechanism
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has improved the performance almost by a half, while without sacrificing

accuracy.

Performance Comparison between CMMF and CRMF
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Figure 4.1: The Performance Comparison between CMMF and CRMF.
The performance of two algorithms are shown when exploring the (15,4)-
motifs implanted in twenty n-bp sequences. Average running time are
taken over 5 independent experiments.

Given a specific motif problem, the determinant parameter of CRMF’s

performance is the clique conversion threshold T , introduced in Chapter

3.6.2. Experiments show that a careful chosen T have positive impact on

the performance.

Note that the maximum number of centers a constraint rule can gen-

erate is 17 based on Table 3.3. So when T reaches 4, it is implied most

of constraint rule are allowed to be applied in the phrase of small clique

size. We therefore chose value 1,2,3,4 for T to observe the variance of

algorithm performance. The results are shown in Figure 4.2. The per-

formance difference with different T is not distinct since their running

time always differ by only seconds or tens of seconds. However, it is still

explicit that the performance of CRMF is maximized when conversion

threshold T equals 3.
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CRMF Performance with different T
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Figure 4.2: The Performance of CRMF with varying clique conversion
threshold T . CRMF is tested against (15,4)-motifs implanted in twenty
n-bp sequences. Average running time in the case of a specific sequence
length are taken over 5 independent experiments. CRMF achieved the
best performance when T is set to 3.

4.2 Challengeing Problems on Simulated Data

Keich and Pevzner [25] has systematically studied the limits of motif find-

ing algorithms. “Subtle motif” is used to describe a motif that is almost

indistinguishable from random motifs in the statistical sense. As for (l,d)-

motif problem, “subtle motif” is the consequence of too long background

sequences. When the length n of background sequences reach certain

point, the motif becomes too subtle and one is then likely to encounter

random motifs which are at least as significant statistically as the im-

planted motif itself. In this section, we explored the underlying cause of

motif subtleness statistically. Then we show the robust performance of

our algorithm on handling those extremely challenging problems.

Let pd =
d∑

i=0

Ci
l (

3
4
)i(1

4
)l−i be the probability that a given length-l string

s occurs with up to d substitutions at a given position of a random se-

quence. Then the expected number of length-l motifs that occur with up
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Table 4.1: Average performance of CRMF on synthetic data. Each row in
the table shows the average performance of CRMF over five independent
experiments for finding a subtle (l, d)-motif implanted in twenty length-n
sequences. T is the clique conversion threshold used in each five exper-
iments. E

′
(l, d, n) ([7]) is the expected number of random (l, d)-motifs

generated in the sequences. And nM is the average number of detected
motifs. All the experiments were taken on a 2.4GHz P4 CPU.

l d n E
′
(l, d, n) T nM Time(s)

9 2 600 2.6 5 2.2 3
11 3 600 5.7 4 6.2 9
15 4 3000 1.02 3 1 992
15 4 4000 3.96 3 4.4 3271

to d substitutions at least once in each of t random length-n sequences

is approximately E(l, d, n) = 4l(1 − (1 − pd)
n−l+1)t. This expectation is

only an estimate due to that overlapping occurrences of a given consensus

string do not occur independently in the background.

Using the above formula, we can identify some challenging problems.

For instance, twenty random length-600 sequences, with no planted motif,

are expected to contain more than one (9,2)-motif and more than four

(11,3)-motifs by chance.

We ran CRMA on sets of challenging planted (l,d)-motif problems.

The algorithm’s performance on these sets is also reported in Table 4.1,

including the expected number of motifs E
′
(l, d, n), the average running

time TIME and the chosen clique conversion threshold Threshold. Due

to that one motif has implanted into the background sequence, the ex-

pected motifs E
′
(l, d, n), including the planted one and random ones,

should be (E(l, d, n) + 1). Table 4.1 presents only the performance re-

sults of CRMA associated with the appropriate choice of Threshold which

minimizes the running time in each case. The results confirmed that our

algorithm never failed to include the actual motif in the set of detected
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motifs. Moreover, the number of detected motifs by our algorithm is very

close to E
′
(l, d, n)+1. This means that the algorithm can find the planted

motif together with all the random motifs.

4.3 Benchmarking

CONSENSUS (Hertz and Stormo [20]), GibbsDNA (Lawrence et al. [27])

and MEME (Bailey and Elkan [5]) successfully detected (15, 3)-motifs im-

planted in twenty 600 bp (abbreviation for base pair) sequences, but they

all failed to find the (15, 4)-motifs implanted in twenty 600 bp sequences.

Both WINNOWER and SP-STAR (Pevzner and Sze [35]) succeeded in

solving the above motif problem, but SP-STAR failed to solve the (15,

4)-motifs implanted in 1000 bp sequences and WINNOWER failed to

work on the (15, 4)-motifs implanted in twenty 1300 bp sequences. PRO-

JECTION (Buhler and Tompa [7]) succeeded in 16 out of 20 times in

detecting the same (15, 4)-motif implanted in twenty 2000 bp sequences.

And PROJECTION also solved the difficult planted (14, 4)-, (16, 5)- and

(18, 6)-motifs implanted in twenty 600 bp sequences. However it failed

to solve more difficult planted (9, 2)-, (11, 3)-, (13, 4)-, (15, 5)-, or (17,

6)-motifs.

MULTIPROFILER (Keich and Pevzner, [24]) can successfully detect

in more than 99% of the time the (15, 4)-motifs implanted in 2000 bp

sequences. It also can detect more than 98% of such motifs implanted

in twenty 3000 bp sequences. In the case of a (9,2)-motif implanted

in twenty 600 bp sequences, it included the implanted motif among the

patterns with success rate 100% which are extracted according to a score

function, while PROJECTION succeeded in only 16 out of 20 cases using
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a same score function.

The above data shows that MULTIPROFILER is the best in terms of

the sensitivity and reliability among existing motif discovery algorithms.

We compared our algorithm with MULTIPROFILER. As shown in the

results we present, it is implicit that our algorithm always has success

rates of 100%. Since MULTIPROFILER has success rates close to 100%

in most cases, we focus on the comparisons of running time between them.

For (15,4)-motifs implanted in twenty 2000 bp sequences, MULTIPRO-

FILER found them in about 75 minutes(on a 500 MHz G4), while we

are able to detect them in 3 minutes(on a 2.4GHz P4). For (15,4)-motifs

implanted in twenty 3000 bp sequences, MULTIRPOFILER found them

in about 3 hours(on a 500 MHz G4), however we are able to detect them

in 13 minutes(on a 2.4GHz P4). For (9,2)-motifs implanted in twenty 600

bp sequences, MULTIPROFILER included them among the patterns in

less than a minute(on a 500 MHz G4), whereas we are able to do it in

3 seconds(on a 2.4GHz P4). Moreover, we can detect the (15, 4)-motif

implanted in twenty 4000-long sequences in less than one hour. The detail

is given in Table 4.1.

4.4 Finding Motifs in Realistic Biological

Data

In algorithm CRMF, both techniques, namely clique extension and Method

1 for center testing, are based on the assumption that each sequence con-

tains at least one motif instance. So the existence of more than one

motif instance(invaded samples) in each sequence is tolerated by CRMF.

However, the existence of none motif instances (corrupted samples) in
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any sequence is not tolerated by CRMF, which is exactly the algorithm’s

weak point.

In algorithm CMMF, if Method 2 for center testing is deployed, in-

vaded samples as well as corrupted samples can be tolerated. The only

prerequisite for CMMF’s success is that each of the three sequences used

to build 3-cliques contains at least one motif instance. However, this pre-

requisite cannot be guaranteed when it handling corrupted samples. One

approach to overcome this shortcoming is to iterate CMMF so that the

chance of selecting 3 sequences each of which contains motif instances

is increased. Assume T
′

out of T sequences contain at least one motif

instance in a sample, if we iterate CMMF m times, with randomly cho-

sen 3 sequence to build 3-cliques every time, the probability that none of

iterations succeed is : 1 − (1 − (T
′

T
)3)m. Therefore, given T

′
and T , we

can set an appropriate value for m so that the success rate can be kept

at a high level. These modifications have been made for CMMF so that

it can find biological motifs effectively.

To test the performance of our algorithm, we examined orthologous se-

quences from a variety of organisms taken from regions upstream of four

types of genes: preproinsulin, dihydrofolate reductase(DHFR), gametic

lethal(GAL) and yes-associated protein(YAP). Experiments on finding

exact known motifs have been successfully conducted in the above sam-

ples. However, in Table 4.2, we only present length-15 motifs found by

our algorithm to demonstrate its flexibility. The details of the above

biological examples can be found in [44] and [49].
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Table 4.2: Performance on biological data. We only look for (15,2)-
motifs. Input Size is the total number of base pairs in samples. Reference
motifs are either established biological motifs or those found by alternative
algorithms. (1) was taken from Stormo and Hartzell ([44]), (2) from van
Helden and Andre [49].

Sequence Input Size Found motif of length 15 Published motif Ref.
Preproinsulin 7689 tgcAGACCCAGCAcc AGACCCAGCA (1)

CCTCAGCCCCctgcc CCTCAGCCCC (1)
DHFR 800 taaATTTCacGCCAa ATTTCnnGCCA (1)

cgtggGGGCGGGGCC GGGCGGGGCC (1)
gaTTCGCGCCAAACT TTCGCGCCAAACT (1)

GAL 5600 CGGtagCCGcaacaa CGGnnnCCG (2)
YAP 12800 attgtgaTTACTAAt TTACTAA (2)
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Chapter 5

Conclusions and Open

Problems

In this thesis, we have described two algorithms CMMA and CRMA for

finding motifs using constraint based methods. They were designed to ef-

ficiently solve problems from the planted (l,d)-motif model. Experiments

on synthetic data show our algorithms outperform the existing motif find-

ing algorithms in terms of both reliability (how well does it find motifs)

and complexity (at what cost).

The complexity of both algorithms mainly depends on the number of

cliques generated in the whole procedure. So its performance can be fur-

ther improved by generating fewer cliques, however, at the risk of losing

the cliques which consists of motif instances. We are looking for appropri-

ate approaches to apply constraint rules which generate fewer cliques with

success rates kept high, although not 100%. In addition, our algorithms

are developed based on FM mode (Stormo [43]) where each sequence con-

tains one instance of an (l, d)-motif. Further work is needed to make it

work on synthetic data in VM mode (Pevzner and Sze [35]) where each
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sequence contains one instance, each position of which is mutated with

probability p.

Although the constraint based method have reached the theoretical

limit for solving extremely difficult synthetic problems, the major ques-

tions about the methods focus on how to extend it to accommodate more

features of real biological motif-finding problems. In particular, we pose

the following three questions. Firstly, is it possible to build cliques whose

vertices may be from the same partition(sequence) so that the multiple

motif occurrences in single sequences in invaded samples can be better

utilized? Secondly, how to extend CRMF to handle corrupted biological

samples? Finally, can we any extend it to find motifs whose instances

contain insertions and deletions, or contain spacers (sequences of N’s)?
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Appendix A

Glossary

• ALIGNMENT: a correspondence between two or more sequences. Each

column of an alignment matches up corresponding bases from each par-

ticipating sequence. If a base in one sequence does not match any base

in the other sequence, that base is matched to a gap character “−”.

• AMINO ACIDS: the building blocks of proteins. A group of 20 differ-

ent kinds of small molecules that link together in long chains to form

proteins.

• BACKGROUND SEQUENCE: genomic sequence lacking any biolog-

ically meaningful feature, usually assumed to be under no selective pres-

sure and, in sufficiently diverged organisms, to be completely uncorre-

lated.

• BASES: “letters” that spell out the genetic code. In DNA, the code let-

ters are A, T, G, and C, which stand for the chemicals adenine, thymine,

guanine, and cytosine, respectively. In RNA, thymine is replaced by

uracil.

• BASE PAIR: two bases which form a “rung of the DNA ladder”. In

base pairing, adenine always pairs with thymine, and guanine always
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pairs with cytosine.

• BINDING SITE: a short DNA or RNA sequence to which a molecule

specifically binds. In DNA, the molecule is often a transcription factor.

• CHROMOSOME: a structure of compact intertwined molecules of DNA

found in the nucleus of cells. Chromosome contain the cell’s genetic in-

formation. Humans normally have 46 chromosomes.

• CIS-REGULATORY LOGIC: a set of regulatory sites in genomic se-

quence that collectively determine a gene’s level of expression. A com-

plete functional description of a gene’s cis-regulatory logic is rare in the

literature.

• COMPLEMENTARY STRANDS: the two polymeric strands of the

DNA double helix, held together by hydrogen bonds between comple-

mentary A-T and C-G base pairs. Because of base pair complementarity,

the sequence of one strand predicts the sequence of the other.

• COMPUTATIONAL GENOMICS: an academic discipline at the in-

terface of computer science and molecular biology, devoted to automated

analysis and annotation of large amounts of genomic sequence.

• CONSENSUS SEQUENCE: in multiple alignments and motifs, a de-

scription of aligned sequences by a single sequence whose jth position

contains that base occurring most frequently in the jth column of the

alignment or motif.

• CONSERVATION: the maintenance of a sequence with few or no changes

over time because of evolutionary pressure, particularly selective pres-

sure against mutations deleterious to its function. Conserved sequences

in two organisms or two parts of the same organism can often be identi-

fied by their similarity.
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• DNA: DeoxyriboNucleic Acid, the chemical inside the nucleus of a cell

that carries the genetic instructions for making living organisms.

• ENHANCER: One of the necessary regulatory elements of a gene. An

enhancer is a site on DNA to which a complex of transcription factors

bind to affect the availability of the promoter to RNA polymerase. A

gene may have multiple enhancers; contrast repressor.

• ENHANCER REGION: the DNA sequence roughly 200 to 1000 bases

upstream of a gene’s transcription start site; a common location for

transcriptional enhancer and repressor elements other than the core pro-

moter.

• EUKARYOTIC: an organism that uses a membrane to enclose its nu-

cleus and organelles in its cells. e.g. plant and animal; contrast prokary-

otic.

• EXPRESSED: of a gene, transcribed (and possibly translated) into its

active end product.

• EXON: The region of a gene that contains the code for producing the

gene’s protein. Each exon codes for a specific portion of the complete

protein. In some species (including humans), a gene’s exons are sepa-

rated by long regions of DNA (called introns or sometimes ”junk DNA”)

that have no apparent function; contrast intron.

• GAP: in an alignment, a run of one or more columns in which bases of

one sequence are not aligned to any base of another.

• GENE: the functional unit of the genome; the functional and physi-

cal unit of heredity passed from parent to offspring. Genes are pieces

of DNA, and most genes contain the information for making a specific

protein.
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• GENE EXPRESSION: The process by which proteins are made from

the instructions encoded in DNA.

• GENOME: the complete collection of an organism’s DNA; all the se-

quence that must be copied when a cell replicates.

• HOMOLOGOUS: having the same evolutionary origin but serving dif-

ferent functions. See orthologous and paralogous.

• INDEL: an mutation in which a base is inserted or deleted from a se-

quence.

• INTRON: A noncoding sequence of DNA that is initially copied into

RNA but is cut out of the final RNA transcript; contrast exon.

• LOCAL ALIGNMENT: alignment in which only a substring of each

sequence, rather than the entire sequence, participates in the alignment.

• LOCUS CONTROL REGION: a regulatory region, not in the pro-

moter or enhancer region of a particular gene, that may control the

expression of several genes up to tens of kilobases away.

• MOTIF: a pattern appearing (perhaps with small differences) in multi-

ple sequences. Motifs in genomic sequence often derive from conserved

transcription factor binding sites.

• MOTIF FINDING: the process of locating the occurrences of a hidden

motif in one or more genomic sequences.

• MUTATION: a change in a sequence, usually caused on a small scale

by insertion, deletion, or replacement of a base. In most cases, DNA

changes either have no effect or cause harm, but occasionally a mutation

can improve an organism’s chance of surviving and passing the beneficial

change on to its descendants.
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• NUCLEOTIDE: often used synonymously with base; A nucleotide con-

sists of a base plus a molecule of sugar and one of phosphoric acid.

• ORTHOLOGOUS: of sequences in two or more organisms, deriving

from the same sequence in the organisms’ evolutionary common ancestor.

Contrast paralogous.

• PARALOGOUS: of sequences in a single organism, deriving from a

single ancestral sequence by duplication, as with families of duplicated

genes. Contrast orthologous.

• PROKARYOTIC: of cells, lacking a nuclear envelope. Bacteria and

archaea are prokaryotic cells; contrast eukaryotic.

• PROMOTER: the part of a gene that contains the information to turn

the gene on or off. The process of transcription is initiated at the pro-

moter.

• PROMOTER REGION: the sequence between 0 and about 200 bases

upstream of a gene’s transcription start site, containing the basal pro-

moter and possibly one or more regulatory sites.

• PROTEIN: a long polymer of covalently linked amino acids. Pro-

teins perform almost all enzymatic and most structural and regulatory

functions in living cells; their function is determined by their three-

dimensional folded shape.

• PURINE: an A or G base, denoted R in sequences.

• PYRIMIDINE: a C or T base denoted Y in sequences.

• REGULATORY MECHANISM: any means by which a cell controls

the expression of its genes. Common regulatory mechanisms include

control of transcription, selective degradation of RNA and protein, and

RNA structures such as hairpins that affect the rate of translation.
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• REGULATORY SITE: any site in genomic sequence that affects the

expression of a nearby gene. Regulatory sites are typically binding sites

for transcription factors or other proteins.

• REPETITIVE ELEMENT: any sequence that occurs multiple times

in a genome. Types include duplications and interspersed repeats.

• REPRESSOR: a genomic sequence element that acts to decrease tran-

scription of a gene, usually by attracting a transcription factor that

directly or indirectly hinders recruitment of the polymerase complex;

contrast enhancer.

• RNA: RiboNucleic Acid, a chemical similar to a single strand of DNA.

RNA delivers DNA’s genetic message to the cytoplasm of a cell where

proteins are made.

• RNA POLYMERASE: a macromolecular complex that transcribes DNA

into RNA.

• SEQUENCE FEATURE: a substring of a genomic sequence with an

identifiable present or past function.

• SUBSTITUTION: a mutation in which one base changes into another.

• TRANSCRIPTION: The synthesis of an RNA copy from a sequence

of DNA; the first step in gene expression. Contrast translation.

• TRANSCRIPTION FACTOR: a protein that modifies the rate at

which a gene is transcribed. Transcription factors often work by directly

or indirectly contacting the RNA polymerase complex, but they may

also work in other ways, e.g. by temporarily bending the DNA near a

gene.
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• TRANSITION: a substitution mutation in genomic sequence that changes

one purine to another or one pyrimidine to another; contrast transver-

sion.

• TRANSLATION: the process by which the information coded in a se-

quence of m-RNA is translated into a sequence of amino acids in a pro-

tein.

• TRANSVERSION: a substitution mutation in genomic sequence that

changes a purine to a pyrimidine or vice versa; contrast transition.
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