
Analysis of Priority-based Packet Schedulers for Proportional Delay
Differentiation

Tan Chee-Wei

Bachelor in Electrical & Computer Engineering 2002

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Masters of Engineering

Department of Electrical and Computer Engineering

NATIONAL UNIVERSITY OF SINGAPORE

2002/2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Abstract

In this thesis, priority-based packet schedulers are analyzed in order to provide

relative and proportional delay differentiation. We investigate a Probabilistic Priority (PP)

scheduler that provides relative delay differentiation to different classes. We present an

integer PP algorithm and show that PP is a special scheme of applying lottery schedul-

ing to bandwidth allocation in a strict priority sense. We then propose a Multi-winner

PP (MPP) scheduler using multi-winner lottery scheduling to improve the throughput and

response time accuracy and a flexible ticket transfer algorithm to improve the deadline

violation probability in probabilistic scheduling. Finally, we investigate the issue of param-

eter assignment for an MPP scheduler and use our techniques to implement a prototype

Assured Forwarding (AF) mechanism in a network processor. Proportional Delay Differ-

entiation (PDD) has stricter requirement than relative delay differentiation. We study the

schedulability conditions of the Waiting Time Priority (WTP) packet scheduler on achiev-

ing multi-class PDD under load variation. Based on a necessary condition for positive

scheduler parameters in general N−class WTP, we derive a sufficient condition for WTP

to achieve PDD. The sufficiency therefore implies that PDD delay dynamics can be readily

employed. Hence, using these results, we can determine and re-adjust the load spacings

that have passed the necessary condition for positive scheduler parameters. The results ob-

tained also quantify the maximum operational target ratio achievable in WTP for a given

load distribution and allow us to relate results for WTP to the PDD model for general

2

N -class in a precise manner. Next, based on an inequality relationship between scheduler

parameters and target ratios, we propose a dynamic adjustment control technique to effi-

ciently enhance the computation of scheduler parameters that uses iterative methods. We

then evaluate the performance of this adjustment control mechanism. Lastly, we show that

WTP can achieve both PDD and absolute QoS requirements under certain schedulability

conditions by appropriate selection of scheduler parameters.

i

To My Mother

in gratitude and affection.

ii

Contents

List of Figures iv

List of Tables v

Symbols and Abbreviations vii

1 Introduction 1
1.1 Background . 1
1.2 Proportional Delay Differentiation . 2

1.2.1 Proportional Probabilistic Priority-based Scheduling 4
1.2.2 Waiting Time Dependent Priority-based Scheduling 5

1.3 Thesis Scope and Overview . 6

2 Related Work 7
2.1 PP Scheduler . 7
2.2 WTP Scheduler . 9

3 Proportional Probabilistic Priority Scheduling 11
3.1 Analysis of A PP Scheduler . 11

3.1.1 Basic PP Integer Algorithm . 11
3.1.2 Multi-winner PP (MPP) Integer Algorithm 15
3.1.3 Flexible Ticket Transfer Algorithm 16
3.1.4 Simulation Studies . 20

3.2 Achieving Assured Forwarding Using MPP 28
3.3 Router Architecture . 30
3.4 Efficient Implementation of MPP in IXP1200 31

3.4.1 Fast Algorithm for Scaling Uniform Distribution 31
3.5 Performance Study and Results . 33

4 Waiting Time Priority Scheduling 37
4.1 A Sufficient Feasibility Condition For PDD 37
4.2 Improvement to Iterative Computation of Scheduler Parameters 48

4.2.1 Load Dynamic Adjustment Control Technique 50

iii

4.3 Numerical Results . 51
4.3.1 Experiment 1: Comparison between maximum achievable target ra-

tios and load distributions . 51
4.3.2 Experiment 2: Using predefined iteration threshold 53
4.3.3 Experiment 3: Effectiveness of DAC to dynamic load variation . . . 57

5 Exact Schedulability Conditions of WTP 59
5.1 Maximum Delay Analysis Using General Traffic Specifications 59

5.1.1 Proof of Sufficiency . 61
5.1.2 Examples . 63
5.1.3 Proof of Necessity . 64

5.2 Comparison Of Delay Bound Between WTP and SP 65

6 Conclusion and Future Work 66
6.1 Conclusion . 66
6.2 Future Work . 68

7 List of Publications 72

Bibliography 74

A Appendix 79

iv

List of Figures

3.1 Comparison of network condition probabilities between PP, SP and MPP
with ticket transfer scheme under light load 24

3.2 Comparison of network condition probabilities between PP, SP and MPP
with ticket transfer scheme under heavy load 25

3.3 Average queueing delay under different traffic loads using Pareto on-off and
token bucket filter constrained traffic . 27

3.4 (a)Relative DiffServ Test-bed and Assured Forwarding framework configura-
tion (b) Block diagram of implementation on IXP1200 network processor . 34

3.5 Deadline violation probabilities . 35
3.6 Delay ratios between classes . 36

A.1 An interpretation of WTP and PDD using set diagrams. A point in a set
denotes a vector of N average delays for N -class system 80

v

List of Tables

3.1 Pseudo-code of Multi-winner Probabilistic Priority scheduling algorithm . . 17
3.2 Outline of ticket transfer algorithm . 19
3.3 Comparison of deadline violation probabilities under full utilization condition

(%) . 21
3.4 Comparison of average delay under full utilization condition (time units) . 21
3.5 Comparison of deadline violation probabilities under overloaded condition

(%) . 22
3.6 Comparison of average delay under overloaded condition (time units) . . . 22
3.7 U-Map scaling algorithm . 33

4.1 Outline of the Dynamic Adjustment Control algorithm 52
4.2 Comparison between maximum achievable target ratios S1 and load distri-

butions . 55
4.3 Estimation of predefined iteration threshold 55
4.4 Effect of predefined error in Gauss-Seidel algorithm on the predefined itera-

tion threshold . 55
4.5 No. of loops to satisfied Theorem 8 under different ratio targets (ri,i+1) . . 56
4.6 Infeasible load distributions that satisfy Theorem 5 but not Theorems 7 & 8 56
4.7 Comparison between infeasible and feasible load distributions that exceed

predefined iteration threshold. The values at the 40th, 80th and 120th loops
are shown. 56

4.8 Load variation for 3-class system. The entries denote the range of variation of
arrival rates and the number of times feasible, infeasible and falsely detected
loads are found . 58

4.9 Load variation for 4-class system. The entries denote the range of variation of
arrival rates and the number of times feasible, infeasible and falsely detected
loads are found . 58

vi

Acknowledgments

My sincere thanks to

Dr Tham Chen Khong for his support and feedback while I write this thesis. His

financial support for me to attend MMNS 2003 is also much appreciated.

Prof. Loh Ai Poh for teaching me patiently an interesting mathematical course.

Dr Mohan Gurusamy for sharing much networking knowledge with me. His patient

guidance in research and his rigorous attitude in pursuing research play a role of motivation.

Dr Jiang Yuming for providing invaluable comments to the work in Chap. 3.

Prof. John, Lui Chi Shing from the Chinese University Hong Kong for his useful

comments and advice in my research. His ability to describe challenging problems astounds

me greatly and his wisdom inspires me profoundly. His generous help is deeply appreciated.

Prof. Tay Yong Chiang who provided invaluable comments on my work and gave

me useful advice which I appreciate a lot.

Anonymous reviewers from IEEE conferences, ICON 2003 and MMNS 2003, who

helped to improve the quality of the work in Chap. 3. The IEEE ICNP 2003 anonymous

reviewers and Technical Program Committee members helped to improve the quality of

the work in Chap. 4. The coordinators of Intel Exchange Architecture (IXA) Network

Processor Education Program were kind to showcase the work in Chap. 3 online.

Tony Low Aik-Seng, Liu Yong, Yao Qi, Phua Kok-Soon, Tan Chong-Jin and Santos

Kumar Das for bringing fun and laughter to my graduate days.

Lin Ying who continuously encourages and supports me tremendously to finish all

the work and get me going, even in unusual difficult times.

vii

Symbols and Abbreviations

AF Assured Forwarding

BE Best Effort

CPU Central Processing Unit

DAC Dynamic Adjustment Control

DDP Delay Differentiation Parameter

DiffServ Differentiated Services

DSCP Differentiated Services Code Point

EF Expedited Forwarding

FIFO First-in-first-out

HOL Head-of-line

IP Internet Protocol

LRD Long Range Dependent

MDP Mean Delay Proportional

MPP Multi-winner Probabilistic Priority

MTU Maximum Transmission Unit

PDD Proportional Delay Differentiation

PHB Per Hop Behavior

PP Probabilistic Priority

QoS Quality of Service

RISC Reduced Instruction Set Computer

SP Strict Priority

viii

TCP Transport Control Protocol

TDP Time Dependent Priority

WTP Waiting Time Priority

Ai[t, t + τ] Actual traffic arrival of class i from time t to t + τ

A∗i [τ] Upper bound of traffic constraint of class i in interval τ

δi DDP for class i

bi Scheduler parameter for class i in WTP

pi Scheduler parameter for class i in PP/MPP

Cp Set of connections with priority p

di Maximum delay bound for class i

σi Maximum burst size or token bucket depth in class i

si Maximum transmission time of packet in class i

ρi Offered load for class i

W
SP
i Average delay of class i in SP scheduler

W
WTP
i Average delay of class i in WTP scheduler

λi Average arrival rate of class i

M/G/1 Kendall notation for Poisson input and generalized service distribution

xi Mean service time of class i

W0 Mean residual service time in M/G/1

Si Target ratio of average delay between class i and class N

ri,j Target ratio between class i and class j

Ri Regnier’s ith inequality

1

Chapter 1

Introduction

1.1 Background

In order to support the Quality-of-Service (QoS) requirement of an aplication, a

crucial network design issue is to decide what kind of network services should be provided.

According to the QoS guarantees offered, we divide network resources into three categories:

deterministic, statistical and best effort. Under deterministic services, deterministic QoS

guarantees are provided and enforced based on the contract made between a user and the

network. Under statistical services, statistical QoS guarantees are promised, but in many

cases, they may not be strictly enforced or actually enforceable. Under best effort services,

no QoS guarantee is supported. In recent years, several approaches have been proposed

to allow resources in a network to be used efficiently. Among them, the Differentiated

Services (DiffServ) approach is very promising because of its potential scalability to provide

real-time applications with QoS guarantees and best effort services within the Internet. In

the DiffServ architecture, individual flows with similar QoS requirements are aggregated,

1.2. PROPORTIONAL DELAY DIFFERENTIATION 2

and given the same treatment as described by a Per-Hop-Behavior (PHB) in terms of QoS

metrics such as average packet delay, packet loss and jitter. The routers do not keep per-flow

states and there is no complex resource signaling mechanism involved [2]. The Expedited

Forwarding (EF) PHB defines that premium traffic is guaranteed. In contrast, the Assured

Forwarding (AF) PHB guarantees only that the assured traffic is delivered with a higher

probability than the best-effort traffic; in the case of severe network congestion, the assured

traffic can still experience severe losses and high delay. It remains a challenge in designing a

framework to provide Assured Forwarding to data packets. The Proportional Differentiated

Services framework is leading current intensive research in meeting this challenge in data

networks [9].

1.2 Proportional Delay Differentiation

As most network providers are still unwilling to deploy large-scale QoS mechanisms

due to the complexity involved, recent research in DiffServ has focused on a simplified

approach, known as relative DiffServ [9]. The Class Selector PHB [24] which was recently

standardized by the Internet Engineering Task Force (IETF) follows this service approach

to provide a number of classes with increasing performance. The user has the flexibility to

choose the level of service it wishes to have under cost constraints. Dovrolis et al. [9, 10]

proposed a Proportional Delay Differentiation (PDD) model to provide ”tuning knobs” to

control the performance spacing and to have predictable service guarantees in a DiffServ

framework, independent of the class loads. In particular, PDD requires that the average

1.2. PROPORTIONAL DELAY DIFFERENTIATION 3

class delay of packet Wi, are spaced as

Wi

Wj

=
δi

δj
, 1 ≤ i, j ≤ N (1.1)

where the parameters δi are the Delay Differentiation Parameters, and they are ordered so

that classes with higher priorities provide lower delays, i.e. δ1 > δ2 > · · · > δN > 0.

A PDD model must be predictable such that differentiation is consistent (a higher

class is better or at least no worse than a lower class) and the differentiation is independent

of class loads. Second, the model must be controllable such that network operators can

select the appropriate level of spacing between classes based on their delay spacings. It was

shown in [9] for N > 2, the feasibility conditions for the PDD model are the following N−1

inequalities:
N∑

i=k

λiδi ≤
∑N

i=1 λiδi∑N
i=1 λiWi

SP

N∑

i=k

λiWi
SP , k = 2, . . . , N (1.2)

where Wi
SP denotes the average delay of class i in the Strict Priority (SP) scheduler and

λi denotes the average arrival rate of class i.

Packet scheduling is an important mechanism that provides QoS guarantees. The

scheduling discipline defines the order in which packets from different QoS categories are

served. In this thesis, we concentrate only on work conserving inter-class packet schedulers,

i.e., the server is never idle if there are arriving or buffered packets, and the packet that

is being served cannot be preempted by other packets from another class. We assume the

First-In-First-Out intra-class scheduling policy for each class. It is well known that the

Strict Priority (SP) scheduler provides large differentiation among classes. Under the SP

scheduler, packets in each priority class are served in a First-In-First-Out manner and a

packet is serviced if and only if there is no buffered packet from a higher priority class.

1.2. PROPORTIONAL DELAY DIFFERENTIATION 4

As such, the SP scheduler is unfair to all classes except the highest priority class and may

cause starvation in lower priority classes. In short, there is no degree of freedom in the

SP scheduler. To achieve proportional delay differentiation, we analyze two different kinds

of schedulers that also operate on the principle of priorities. The fundamental difference

between these two schedulers and the SP scheduler is that they provide a degree of freedom

to achieve delay differentiation. In other words, a high priority class will still always have

better performance than a low priority class on the average but the shortcomings of the SP

scheduler are overcome.

1.2.1 Proportional Probabilistic Priority-based Scheduling

In this paper, we analyze the Probabilistic Priority (PP) scheduling discipline

within the framework of relative service differentiation. PP adopts a probabilistic relative

service model. At every service round, each class takes a bid. Since higher priority classes

have higher probabilities associated with them, in the long run, they will be served more

often than lower priority classes. Compared to Strict Priority (SP), this increases fairness

among classes and prevent the starvation of lower priority classes. We first show that PP

is a cross application of lottery scheduling in a strict priority sense to provide proportional

bandwidth sharing among classes. This in turn allows us to benefit from numerous tech-

niques presented in [32, 33] to control PP. The lottery and stride scheduling algorithms

are very well-known schedulers for statistical allocation of CPU resources [32, 33]. Lot-

tery scheduling randomizes resource allocation among clients whose shares of resources are

represented by tickets using policies such as ticket inflation and deflation. An allocation

is performed by holding a lottery, and the resource is granted to the client with the win-

1.2. PROPORTIONAL DELAY DIFFERENTIATION 5

ning ticket. Multi-winner lottery scheduling is a variant of lottery scheduling that produces

better throughput accuracy for many workloads. Based on this multi-winner concept, we

formulate a multi-winner PP algorithm to improve the response-time variability of PP. As

lottery scheduling is effectively stateless, a great deal of complexity is removed in compar-

ison to other proportional schedulers. The feasibility of using lottery scheduling in packet

forwarding has been analyzed in [11, 16, 34] but no work has been done to address its weak-

nesses at the packet level due to its probabilistic nature. The probabilistic relative service

model is only suitable for applications that are able to tolerate deadline violations of a few

packets. We propose a technique that is analogous to the idea of dynamically-controlled

ticket transfer which has been applied to graphics rendering and Monte-Carlo tasks [33] to

address this problem.

1.2.2 Waiting Time Dependent Priority-based Scheduling

In [9], the Waiting Time Priority (WTP) scheduling discipline was found to be

suitable to achieve PDD. WTP is based on Kleinrock’s Time-dependent Priority (TDP)

scheduling algorithm [18]. In the WTP algorithm, the service priority of a packet in class

i at time t is given by pi (t) = wi (t) bi, i = 1, . . . , N where wi (t) is the waiting time of the

packet at time t and bi is the weight of the delay class.

A packet’s priority increases linearly from zero with time, in proportion to a rate

assigned to the class [18]. Interestingly enough, a question was posed in [9]: Is there a work

conserving scheduler that satisfies PDD ? We answer that question in this thesis. Specif-

ically, Kleinrock’s Conservation Law [18] which states that the weighted sum of average

delay in a M/G/1 queueing model remains constant independent of the scheduling policy

1.3. THESIS SCOPE AND OVERVIEW 6

will be used in this paper to bridge the theoretical framework of PDD and WTP.

1.3 Thesis Scope and Overview

The rest of the thesis is organized as follows. In Chapter 3, we propose an efficient

integer PP algorithm and show that PP is indeed a cross application of lottery scheduling.

We use the multi-winner concept to generalize PP to improve its throughput accuracy and

reduce its response-time variation. We present a technique based on flexible ticket transfer

to reduce the deadline violation probability in times of congestion. Next, we investigate

parameter assignment and propose a framework to implement Assured Forwarding. Finally,

a performance study on a network processor-based router is presented.

In Chapter 4, we derive a sufficient condition for WTP to conform to the necessary

and sufficient conditions of the PDD model for general N classes. We also derive the

maximum target ratio achievable for a given system utilization achievable for N > 2. Next,

we derive an inequality relationship between scheduler parameters and target ratios and

then propose a Dynamic Adjustment Control (DAC) algorithm to identify infeasible load

distributions. The performance of the DAC is also evaluated.

In Chapter 5, we obtain the maximum delay bound of WTP using general traffic

specification and compare it with SP. We show a sufficient condition where all classes can

perform better than SP by tuning the scheduler parameters. We conclude the thesis in

Chapter 6.

7

Chapter 2

Related Work

In this chapter, we discuss related works on the PP and the WTP scheduler. We

also elaborate the motivations of our work in this thesis.

2.1 PP Scheduler

Jiang et al. proposed the Probabilistic Priority scheduler to address the short-

comings of SP [16]. The authors showed in [16, 17, 30] that this algorithm exhibits the

following properties that are very desirable to achieve service differentiation in a multi-

class network by (a) providing diverse delay differentiation between classes, (b) supporting

weighted max-min fairness among classes, (c) overcoming the starvation problem inherent

in SP, (d) supporting relative differentiated services, and (e) providing explicit bandwidth

reservation guarantees. However the problem of deadline violation probability associated

with probabilistic scheduling due to randomness in a relative differentiated services frame-

work was not addressed in these works. Reference [30] implemented PP on Linux machines

2.1. PP SCHEDULER 8

but their design prohibits dynamic control of the PP scheduler parameters and thus is not

scalable for large number of classes due to pre-calculation of all possible network states

which increase exponentially with the number of classes. No previous work shows how the

PP scheduler parameters are related to provide service differentiation which is essential be-

cause the scheduler parameters are the only tuning knobs available, hence, in this thesis, we

derive necessary and sufficient conditions that relate scheduler parameters with the concept

of relative service differentiation.

Earlier works in exploiting randomness to allocate bandwidth fairly include the

statistical matching technique in [1] and partially connected operation in [14]. Eggleston et

al. [11] investigated the benefits and drawbacks of using lottery queueing at the flow level

and the trade-off between packet re-ordering and the number of flows whereas this work on

PP assumes that class-aggregated flows are served in a FIFO order and lottery scheduling

is performed at the class level thus avoiding the problem of packet re-ordering. Our service

model also differs from theirs in that packets do not carry bid values. They used lottery

scheduling to manage queue lengths whereas we focus on the scheduling of Head-of-line

(HOL) packets. Another more recent related work to lottery scheduling is the Probabilistic

Packet Scheduling (PPS) [34] which provides different level of proportional service to TCP

flows. Their work applies the concept of ticket transaction and policies in lottery scheduling

to adaptive marking in an end-to-end connection set-up by accommodating flows traversing

multiple domains to exchange tickets between different currencies.

2.2. WTP SCHEDULER 9

2.2 WTP Scheduler

Dovrolis et al. [9, 10] showed that WTP approximates PDD in heavy load condi-

tions, even in short timescales. When the load tends to the system capacity, the delay ratios

of two consecutive classes tend to converge to the reciprocals of the corresponding increas-

ing rates of the priority functions. Based on Kleinrock’s analysis in [18], Sethuraman et al.

showed the solutions to minimizing response time variance for linear TDP and a recursive

formula to compute the scheduler’s parameters for the general N -class system under dif-

ferent loads. Similarly, Leung et al. [21] showed the exact solutions for two traffic classes.

In particular, the scheduler parameters do not depend on the load distribution but only

on the total utilization in the queuing system. They also proposed a numerical algorithm

to calculate the scheduler parameters dynamically so that WTP can achieve a feasible set

of DDPs based on feedback of current load conditions. The authors believed that certain

distributions of load, ρi’s will not lead to positive solutions of the scheduler parameters but

did not show exactly how. Eaasfi et al. also showed similar results for two traffic classes in

[12] and they also used iterative optimization technique to adapt the scheduler parameters

to load variance. In [13], Essafi et al. used genetic optimization algorithms to dynamically

adjust WTP for a finite number of classes with high accuracy. The authors also compared

this offline optimization approach with the numerical iterative algorithm in [21]. Several

issues related to feasibility conditions were raised in this paper. In particular, the authors

could not conclude whether the infeasibilities of certain load distributions are due to the

inaccuracy of the optimization algorithms or insufficient utilization. Our findings in this

thesis show that the reason is due to the inappropriate load distribution and not due to inac-

2.2. WTP SCHEDULER 10

curacy of the optimization techniques. A novel architecture known as CoreLite described in

[23] couples per hop proportional delay differentiation with end-to-end delay guarantees in

core stateless networks. The authors propose a Mean-delay Proportional (MDP) scheduler

and derive delay dynamics very similar to that of PDD. The main advantage of the CoreLite

architecture is that packets do not carry state information. Likewise, we also define in this

thesis the schedulability region of WTP where PDD dynamics is applicable.

Recently, Lee et al. [19] proposed a framework for admission control and dynamic

adaptation for achieving proportional delay differentiation in a web server. The web server

operator can specify ”fixed” performance spacings between each class and the proposed

dynamic algorithms attempt to classify clients to its ”lowest” admissible class so as to

achieve the lowest possible cost for each client. To provide differentiated services, the web

server attempts to achieve consistency and controllability independent of variations in class

load. Also, a central premise in the relative differentiated service model in [8] is that users

can dynamically search for a class which provides the desired QoS level. Hence a natural

question to ask is: How can the load on multi-class WTP scheduler be exactly characterized

to achieve PDD with low complexity ? How does load distribution relate to the performance

in computation of WTP scheduler parameters ? Earlier works in [20, 21] show that WTP

is not predictable for more than two traffic classes as it is dependent on load distribution

to certain extent. As such, making WTP controllable based on a given load distribution

is the focus of this thesis. To this end, we propose a measurement-based load Dynamic

Adjustment Control (DAC) algorithm to assure the feasibility of the PDD model using

WTP.

11

Chapter 3

Proportional Probabilistic Priority

Scheduling

In this chapter, we analyze the relationship between the PP scheduler and lottery

scheduling. Next, we develop algorithms to improve the PP scheduler and implement our

algorithms on network processor. We also derive relationships between scheduler parameters

for parameter assignment to achieve relative delay differentiation.

3.1 Analysis of A PP Scheduler

3.1.1 Basic PP Integer Algorithm

The work conserving Probabilistic Priority Scheduler is based on the Strict Pri-

ority scheduler with each queue being assigned a probability pi of getting served [16]. By

appropriate setting of a parameter pi ∈ [0, 1], i = 1, . . . N − 1 and pN = 1 in a multi-class

system, a class is selected with a probability corresponding to equation (3.1) for service at

3.1. ANALYSIS OF A PP SCHEDULER 12

every cycle. A class parameter of pi = 1 means that the class i definitely gets served when

polled if all higher priority classes are empty or not selected during the cycle. Hence PP

reduces to SP when pi = 1.0, i = 1, . . . N . In the following, we derive an integer algorithm

and show that it is indeed a cross application of lottery scheduling in the strict priority

sense. Lottery scheduling is a novel probabilistic CPU task scheduling mechanism that

assigns each task some number of tickets [33]. When a task is to be selected for execution,

a lottery is held, and the task holding the winning ticket is selected to run. On the average,

a task is expected to run in proportion to the number of tickets it holds.

First, consider a multi-class system of N priority levels with the highest priority

level denoted by 1. Let us define the weight of class i to share the server [16] as

ri = pi

i−1∏

j=1

(1− pj) (3.1)

Without loss of generality, assume that all classes in the group are busy so that the nor-

malized weight of class i among all classes is

r̂i∈Ω =
ri∑

j∈Ω rj
(3.2)

where Ω consists of all queues in the group. After rearranging all ri such that they share a

common denominator, we have

r̂i∈Ω =
xi∑

j∈Ω xj
(3.3)

where xj is the numerator of the normalized relative weight ri. It is easy to see that this

will also be true for all network conditions:

r̂i∈BQ =
xi∑

j∈BQ xj
, BQ ∈ Ω (3.4)

3.1. ANALYSIS OF A PP SCHEDULER 13

where BQ is the set of non-empty queues in Ω. The total number of possible network

conditions is equal to 2N − 1 but the most interesting set would be the total number

of possible network conditions with more than one non-empty queue which is equal to

M =
∑N−1

i=1

∑N−i
j=1 (

N − i

j

) = 2N −N − 1. From equation (3.4), we now have numerator

xi to calculate r̂i without having to store in advance r̂i for all possible combinations of

empty and non-empty queues with each combination corresponding to a particular instance

of Ω. This effectively removes both the need for fractional arithmetic in recalculation of

network states whenever pi changes dynamically and the restriction for a small set of all

possible network states. The integer algorithm of PP works without the need for a priori

network state computation. One instantly recognizes that the numerator for each class

corresponds to the number of tickets for each client in lottery scheduling. PP is analogous

to having sets of different numbers of tickets that are present in a service round with each

set corresponding to one of the network conditions in M . The winner is then selected from

this set at each service round. In lottery scheduling, there is no preference for the priorities

of the clients whereas PP defines that on every round, the winner of the lottery is searched

for in a strict priority sense, i.e. the highest priority class is the first client on the search

list. To set the p parameters such that the classes are served in a relative priority fashion,

we have the following theorem.

Theorem 1 A necessary and sufficient condition to assign average probability parameter

for each class for relative service differentiation, i.e. Class 1 being the highest priority class

has higher probability than class 2, is 1
N−i+1 < pi ≤ min

(
pi−1

1−pi−1
, 1.0

)
, i = 1, . . . , N .

Proof: We first give the proof for the sufficient condition. The inequality on the RHS can

3.1. ANALYSIS OF A PP SCHEDULER 14

be proved easily using ri < ri−1 and equation (3.1), and using the fact that pi is always less

than 1. To prove the inequality on the LHS, we use the RHS inequality and the fact that

pN = 1 to get pN−1

1−pN−1
> 1. Thus pN−1 > 1

2 . Again from the RHS inequality, pN−1 ≤ pN−2

1−pN−2

hence pN−2 > 1
3 . Finally we obtain p1 > 1

N for the highest priority class. Hence, in general,

pi > 1
N−i+1 which completes the proof for the LHS inequality.

Next, to prove the necessary condition, we have to show that the above theorem

holds for both inequalities. First, we look at the LHS inequality. Let us assume that for a

particular class i where 1 ≤ i ≤ N − 1, pi = 1
N−i+1 −4 where 0 < 4 < 1

N−i+1 . Then we

get

ri =
(

1
N − i + 1

−4
) i−1∏

j=1

(1− pj) (3.5)

Now, consider class i’s immediate lower priority class, class i + 1 with parameter pi+1.

Suppose that pi+1 = 1
N−(i+1)+1 + δ where δ is a positive real value. This would also imply

that we assume the theorem holds, i.e., Class i will have a higher probability of getting

served than Class i + 1. Now, let ri − ri+1, and we have

ri − ri+1 =
(

1
N − i + 1

−4
) i−1∏

j=1

(1− pj)−
(

1
N − i

+ δ

) i∏

j=1

(1− pj)

=
1

N − i + 1

i−1∏

j=1

(1− pj)−
i−1∏

j=1

(1− pj)4− 1
N − i

i−1∏

j=1

(1− pj)

− 1
N − i

(
1− pi

)
−

i∏

j=1

(1− pj)δ

=
−1

(N − i + 1)(N − i)

i−1∏

j=1

(1− pj)−
i−1∏

j=1

(1− pj)4− 1
N − i

(
1− pi

)

−
i∏

j=1

(1− pj)δ

< 0

(3.6)

3.1. ANALYSIS OF A PP SCHEDULER 15

The inequality is true for all positive real 4 and δ. In other words, we can select any 4 and

δ that would result in a violation of the service priority constraint. For the RHS inequality,

it is sufficient to show that it is impossible to find a positive δ that satisfies the following

inequality

δ <
1−4(N − i + 1)

N − i +4(N − i + 1)
− 1

N − i
(3.7)

for all positive 4, N and i which results from the RHS inequality of the above theorem.

Hence, we obtain a contradiction with our assumption that ri > ri+1.

3.1.2 Multi-winner PP (MPP) Integer Algorithm

Multi-winner lottery scheduling is a generalization of the basic lottery scheduling

technique that produces better throughput accuracy and smaller response-time variation

[33]. Instead of selecting a winner per round, Nw winners are selected with only the first

winner being randomly selected and each winner is guaranteed the use of the resource

for one quantum. The set of Nw consecutive quanta allocated by a single multi-winner

lottery is referred to as a super-quantum. Due to the probabilistic nature of PP, the highest

priority class can exhibit substantial variability over small time scales which can cause its

HOL packet to miss its deadline if sufficient numbers of service round are given to its lower

priority classes instead. At worst, this may cause buffer overflow and incoming high priority

packets to be dropped. This necessitates incorporating a deterministic mechanism in PP

to achieve predictable behavior at small time scales. We use the multi-winner concept to

extend the original PP integer algorithm as shown in Table 3.1. In this paper, we use a fixed

value of Nw = 20. The ordering of the winners in MPP is based on a fixed permutation that

3.1. ANALYSIS OF A PP SCHEDULER 16

goes in a round robin fashion, starting from the first winner and followed by its immediate

lower priority class. This integer algorithm requires a total of 2N − 1 uniform distributions

of integer random numbers for N classes. This is analogous to the total number of tickets

differing in every service round of lottery scheduling. Waldspurger et al. [32] provides a

multiplicative linear congruential Park-Miller pseudo random number generator in MIPS

assembly language code but we use a generic algorithm U-map described later to scale

uniform distributions without using multiplication assembly language instructions. In our

algorithm, each super-quantum is reset back to 0 when the network condition changes which

would happen very often if the system is highly loaded. This implies that MPP is able to

reduce the throughput error and response-time variability. Through extensive simulations

under heavy load conditions, we observe that the super-quantum is reset on an average of

about 85% of the total time. Hence Nw does not have a significant impact on the reduction

rate of throughput error. The advantage of MPP over PP appears to be small for 8 classes

but by keeping the number of classes small, we can increase the number of winners to

provide stricter throughput guarantees within a class.

3.1.3 Flexible Ticket Transfer Algorithm

In the previous section, we described an extension of PP to achieve throughput

guarantee. In this section, we aim to reduce the time given up to the lower priority classes

by the higher priority classes (”slack” in probabilistic scheduling) by setting a rate of ap-

proaching strict prioritization using the relationship between delays of different classes. In

particular, we use the following propositions of average delay of class i, Wi proved in [30]

to affect pi.

3.1. ANALYSIS OF A PP SCHEDULER 17

Table 3.1: Pseudo-code of Multi-winner Probabilistic Priority scheduling algorithm

/* Start with segregation groups in a strict priority manner*/

1. if (Segregation Group > 1)

2. get Group with highest priority

3. get numerator vector of selected Group=(x1, x2, . . . , xN)

4. for all busy queues j ∈ Ω in Group

5. n winners=
⌈∑

j∈Ω xj/min (x1, x2, . . . , xj)j∈Ω

⌉

6. get denominator=
∑

j∈Ω xj

7. if (class parameter list 6= P (1, 1, . . . , 1))

8. get random number

9. random number =U-map(random number, denominator)

10. else dequeue packet using strict priority

11. intra space=denominator/n winners

/* Select next winner within super-quantum*/

12. while(intra cnt 6= 0)

13. winner=random number+intra space*intra sched[intra cnt]

/*handle wrap around of numerator space*/

14. if(winner ≥ denominator)

15. winner − = denominator

16. if(++intra cnt==n winners)

17. intra cnt=0

18. for all busy queues j ∈ Ω in Group

19. if(queuej → sum > winner)

20. dequeue packet of queuej

3.1. ANALYSIS OF A PP SCHEDULER 18

(1) As pj ↑ [0 → 1]1 for j < i, Wi is continuously and monotonically increasing.

(2) As pi ↑ [0 → 1], Wi is continuously and monotonically decreasing.

(3) As pj ↑ [0 → 1] for j > i, Wi is nearly constant under congested network conditions.

Let us define the initial parameter ri for class i that satisfies the relationship r1 ≥ r2 · · · ≥

ri ≥ · · · ≥ rN for the multi-class system where r1 is the highest priority class. Such assign-

ment means that the probability of higher priority class is larger. This algorithm consists of

the following two steps. The first step is to reduce the probability of a lower priority class

after it has been served by transferring some probability to its immediate higher priority

class. Note that the transfer of tickets from the class served to its immediate higher priority

class will create a snowball effect that will cause the highest priority class to be eventually

served while still using probabilistic scheduling. The second step is to preserve as much as

possible the priority allocation that is defined at the start of the algorithm by transferring

probability starting from the lowest priority class even though it has not been served to the

immediate higher priority class of the class being served if the first step persists. Eventually

the class that continuously gets served will lose its bid after the probabilities of all lower

priority classes have been depleted.

From the algorithm shown in Table 3.2 and equation (3.1), we can make the

following propositions:

(a) If pi+1 < pi

1−pi
≤ 1 and 4i of probability to be served is transferred from class i to class

i− 1, p̂i decreases, p̂i−1 increases, and p̂j , j 6= i, i− 1 remains constant.

(b) If pi+1 = pi

1−pi
≤ 1, and 4k of probability to be served is transferred from class k,

i < k ≤ L to class i− 1, p̂j ↑
[
porig

j → 1
]
, j ≤ i where porig

j is the original PP parameter of

1Following [30], the notation ”x ↑ [0 → 1]” means ”x increases from 0 to 1”.

3.1. ANALYSIS OF A PP SCHEDULER 19

Table 3.2: Outline of ticket transfer algorithm

At each service round, suppose classes 1 to L, corresponding to a particular network

condition BQ ∈ M = 2N −N − 1 where N is the total number of classes, are busy,

1. If class i, 1 < i ≤ L, gets served, then r
′
i = max (ri −4i, ri+1), and

r
′
i−1 = min (ri−1 +4i, 1.0), such that r

′
i ≥ ri+1, i.e. transfer 4i of probability being

served to the immediate next higher priority level with ri 6= 0.

2. If ri = ri+1, then r
′
k = (rk −4k)

+, i < k ≤ L where k is the lowest priority class in

BQ that satisfies rk 6= 0, and r
′
i−1 = min (ri−1 +4k, 1.0), i.e. transfer 4k of probability

being served to the immediate next higher priority class i− 1.

3. If the highest priority class is served or the network condition BQ changes, r
′
i = ri, i.e.

reset all class parameters back to their original ri.

3.1. ANALYSIS OF A PP SCHEDULER 20

class j.

Proposition (a) states that only the probabilities of the class served and its immediate higher

priority class will change while the other classes will maintain the original PP configurations

at the initial stages after the algorithm begins while proposition (b) states that higher class

priority will approach the configuration of SP, i.e. p̂j → 1, p̂j 6= 0, 1 < j ≤ i if the situation

where the highest priority class HOL packet is not served while class i is constantly being

served persists. Therefore, from proposition (1) and (2), the average delays of classes

with higher priorities than class i will decrease monotonically over time while those classes

with lower priorities than class i will increase monotonically over time. We introduce an

additional parameter4i to provide a dynamic feed-forward mechanism based on the current

workload or the slack of the corresponding high priority HOL packet. This user-tunable

class parameter 4i can be a function of the class’s burstiness or the higher priority classes’

backlog. It provides a way for static PP to approach SP in a configurable length of time so

that the HOL packet of higher priority classes will not exceed its deadline unnecessarily.

3.1.4 Simulation Studies

In this section, we consider scenarios with high traffic loads and tight deadlines

for each class. For each class, we use long range dependent (LRD) traffic modeled as

Pareto On-off processes with shape parameter 1.3 since aggregated traffic in real DiffServ

networks is LRD in nature. The mean service time is taken to be the unit of time and the

service times of packets in each class follow the same exponential distribution with mean

1.0 units. Results are averaged over 106 time unit simulation windows unless otherwise

indicated. Throughout this paper, we use λi and ρi to denote the arrival rate and traffic

3.1. ANALYSIS OF A PP SCHEDULER 21

Table 3.3: Comparison of deadline violation probabilities under full utilization condition
(%)

PP/Lottery MPP MPP w/ ticket xfer SP
Class 1 0.114 0.069 0.036 0.000
Class 2 0.172 0.082 0.068 0.010
Class 3 4.297 1.680 0.646 0.410
Class 4 23.513 17.883 11.451 9.647
Class 5 34.696 27.678 21.410 14.609
Class 6 57.679 45.020 35.453 27.650
Class 7 91.627 88.020 64.952 58.243
Class 8 94.831 90.671 67.316 100.000

Table 3.4: Comparison of average delay under full utilization condition (time units)

PP/Lottery MPP MPP w/ ticket xfer
Class 1 1.350 1.170 1.201
Class 2 1.990 1.460 1.450
Class 3 4.920 3.550 3.471
Class 4 55.290 45.640 37.400
Class 5 198.490 214.620 120.810
Class 6 555.440 402.180 240.080
Class 7 6719.060 3726.320 1973.990
Class 8 22243.940 19847.430 7240.370

intensity of class i respectively. In Table 3.3, the arrival rates for all classes are the same,

i.e. ρi = 0.125 so the system is not overloaded, i.e. ρ = 1.0. Each class has the same

parameter i.e. pi = 0.6, i 6= N . To compare the performance between the various schemes,

we use deadline violation probability in Table 3.3 and Table 3.5 as a performance metric.

The deadlines for class 1 to N are arbitrary selected as 11, 16.5, 22, 27.5, 33, 38.5, 44, and

49.5 time units respectively. The probability transfer quantum is the same for all classes,

i.e. 4i = min (0.15, ri).

The simulation experiments were run for a sufficiently long time and were repeated

several times to get accurate values within 95% confidence interval. We use different random

3.1. ANALYSIS OF A PP SCHEDULER 22

Table 3.5: Comparison of deadline violation probabilities under overloaded condition (%)

PP/Lottery MPP MPP w/ ticket xfer SP
Class 1 0.104 0.082 0.062 0.000
Class 2 0.259 0.152 0.083 0.013
Class 3 6.960 2.302 1.552 0.988
Class 4 31.518 29.204 19.566 12.514
Class 5 50.316 43.976 34.253 20.460
Class 6 88.226 76.638 61.668 40.547
Class 7 99.492 99.835 90.286 83.241
Class 8 99.701 99.756 93.508 100.000

Table 3.6: Comparison of average delay under overloaded condition (time units)

PP/Lottery MPP MPP w/ ticket xfer
Class 1 1.390 1.180 1.180
Class 2 2.220 1.490 1.490
Class 3 5.350 3.610 3.550
Class 4 64.720 48.400 24.400
Class 5 185.490 160.470 146.640
Class 6 539.960 521.950 486.590
Class 7 10083.030 10502.340 11348.750
Class 8 29159.260 24863.400 23929.430

3.1. ANALYSIS OF A PP SCHEDULER 23

seed values for packet generation in each run window and we record the average of ten

windows in total. Results in Table 3.3, 3.4, 3.5 and 3.6 indicate that ticket transfer algorithm

does not have an adverse effect on low priority class though it discriminates against them

by allowing high priority classes to be selected as fast as possible. Table 3.4 and Table 3.6

show that the average delays in all classes except for Class 7 in Table 3.6 is smaller for

the case of MPP with ticket transfer. Since we use different random seeds for generation

of packets at each run, the results do not indicate that MPP with ticket transfer provides

the smallest possible delays for all classes. Later simulated results in a smaller class system

would show that the lowest priority class suffers longer delay using MPP with ticket transfer

as compared to PP and MPP. Rather, our simulated results in the tables only suggest that

this mechanism improves deadline violation probability and delays of lower priority classes

and not necessarily all the lower priority class on the average as opposed to intuition which

we shall investigate next.

We now consider the ticket transfer algorithm used in a 4-class system to evaluate

its effectiveness. Each class has parameter p1 = 0.5, p2 = 0.55, p3 = 0.6 and p4 = 1.0.

Note this parameter assignment provides lower priority classes with higher probabilities of

being serviced than in previous simulations. Fig. 3.1 and Fig. 3.2 show the probabilities of

all possible network conditions occurring in the system for SP, PP and MPP with ticket

transfer schedulers at both short (103 time units) and long timescales (106 time units)

with respect to packet service times. Each network condition is binary-coded as follows:

bit 0 corresponds to the highest priority class, class 1 hence 0101B implies that only class

1 and 3 are present. Note that the network condition is a function of offered loads and

3.1. ANALYSIS OF A PP SCHEDULER 24

Figure 3.1: Comparison of network condition probabilities between PP, SP and MPP with
ticket transfer scheme under light load

scheduling mechanism. We also compare the Pareto on-off traffic model with the token

bucket-constrained traffic model with a bucket depth of 17 time units which exhibits short

bursts.

Note that, in contrast to intuition, the deadline violation probability of the lowest

priority class is improved significantly when the ticket transfer algorithm is used because

higher priority classes are assured to get transmitted within short timescale and this implies

that the probability of network conditions containing these high priority classes occurring

within a longer time frame will be smaller than that in comparison to normal PP scheduling.

From Fig. 3.1, Fig. 3.2 and Fig. 3.3, we can make the following observations:

• We found that MPP with ticket transfer can always achieve smaller average delay and

deadline violation probability than PP and MPP scheme for most classes. Its deadline

violation probability of the lowest priority class can be better than SP.

3.1. ANALYSIS OF A PP SCHEDULER 25

Figure 3.2: Comparison of network condition probabilities between PP, SP and MPP with
ticket transfer scheme under heavy load

3.1. ANALYSIS OF A PP SCHEDULER 26

3.1. ANALYSIS OF A PP SCHEDULER 27

Figure 3.3: Average queueing delay under different traffic loads using Pareto on-off and
token bucket filter constrained traffic

• Generally the delay of token bucket-constrained traffic lies in between the M/G/1

delay bounds derived in [30]. But the heavy-tailedness of Pareto on-off, for eg. with a

shape parameter of 1.3, and burst rate 0.25 can cause the delay to exceed the M/G/1

delay bound.

• The ticket transfer algorithm has an evident impact on reducing the mean delay of

all classes except the lowest priority class. This is due to: (a) the probability of

the network condition 12 (1100B) that contains only the two lowest priority classes

becomes higher, and (b) the probability of the network condition 15 (1111B) that

contains all classes becomes smaller, and in both cases, they approach that of SP.

3.2. ACHIEVING ASSURED FORWARDING USING MPP 28

Both (a) and (b) increase the probability of the lower classes being serviced. Since

the algorithm differentiates that higher priority classes are served as fast as possible

when network conditions containing them appear, the mean delays of higher priority

classes will therefore be much smaller than PP.

3.2 Achieving Assured Forwarding Using MPP

We consider 8 QoS classes and we configure a MPP scheduler to have 2 segregation

groups AF1 and AF2. Each group has the last parameter pAF1
4 = pAF2

4 = 1. In each

group, the AF classes are assigned parameters pAFi
1 < pAFi

2 < · · · < pAFi
4 , i = 1, 2. The

following theorem ensures that this parameter assignment guarantees AF classes to obtain

better statistical relative delay service differentiation than its immediate lower priority class.

The group segregation property states that in PP, the service discipline among segregation

groups is exactly the Strict Priority discipline hence the first AF group is guaranteed to

have better service than the second group in terms of delay [16]. By means of segregation,

this framework (a) provides more isolation among high priority classes that demand low

delay and deadline violation probability, and low priority classes that require at least best

effort service, and (b) reduces the number of classes within a group as this means a smaller

number of network conditions within each group therefore we can configure more number

of winners within each super-quantum, i.e. smaller spacing between consecutive winners

to improve the response time variability in multi-winner scheduling. Since each group is

based on MPP scheduling, there is fairness in the resource allocation within each group by

means of fair distribution to excess capacity [16]. The ticket transfer algorithm is used in

3.2. ACHIEVING ASSURED FORWARDING USING MPP 29

the first segregation group to provide improved deadline violation probability and average

delay. Since we do not consider admission control, we expect some form of policing to limit

the burst size and amount of bandwidth admitted to each class to prevent starvation if a

non-conforming flow enters the node.

Theorem 2 An assignment of average probability parameter for each class where 1/2 <

p1 < p2 · · · < pN = 1 satisfies the priority hierarchy for relative service differentiation.

Proof: Define ri as in equation (3.1) and qi as the average queue length of class i. At steady

state, we want higher priority classes to have shorter backlogs. Hence using the relationship

that ri
r1
∝ qi

q1
, we can use Little’s theorem [18] to show that pi = λiQi−1

k=1(1−pk)
PN

j=1 λj
, i = 1, . . . , N .

Since pi−1 = λi−1Qi−2
k=1(1−pk)

PN
j=1 λj

therefore pi−1

pi
= λi−1

λi
(1− pi−1) which can be further sim-

plified to pi−1λi

(
1
pi

+ λi−1

λi

)
= λi−1. Since the highest priority class gets served with the

highest probability, its average departure rate must be the greatest among all classes, i.e.

λ1 > λ2 · · · > λN > 0. Thus we have pi−1

(
1
pi

+ λi−1

λi

)
> 1. Rearranging the term leads

to pipi−1

pi−pi−1
> λi

λi−1
hence pi−1 < pi. Thus the theorem is implied. Since this assignment is

independent of the number of classes in the system, p1 > 1
2 .

Theorem 3 For the special case of pi−1

1−pi−1
≤ 1 and pi → pi−1

1−pi−1
, i = 2, . . . , N − 1, then all

classes in the system are served with equal probability, i.e. ri → 1
N , i = 1, . . . , N .

Proof: Using the RHS inequality of Theorem 1, in the event that pi → pi−1

1−pi−1
subject

to pi−1

1−pi−1
≤ 1, then we obtain pi−1 < pi < p1

1−(N−1)p1
. Since pN−1 < pN = 1, thus

p1

1−(N−1)p1
< 1. Now, if p1 → 1

N , then pi → 1
N−i+1 hence we obtain ri → 1

N , i = 1, . . . , N

Theorem 4 If proportional delay differentiation is used, the average departure rate of each

class is proportional to its average probability of getting served.

3.3. ROUTER ARCHITECTURE 30

Proof: We use the proportional delay constraint ri
rj

= δj

δi

qi
qj

defined in [9] where ri is defined

in equation (3.1), δi is part of the proportional delay target ratio and qi is the instantaneous

backlog of class i. Together with the conservation of probability
∑N

i=1 ri = 1, we can show

that r1 =
(∑N

j=1
δ1
δj

qj

q1

)−1

. Since p1 = r1 then pi =
(

δ1
δi

qi

q1

)(∏i−1
k=1(1−pk)

∑N
j=1

(
δ1
δj

qj

q1

))−1

,

i = 1, . . . , N . At steady state, we obtain pi = λiQi−1
k=1(1−pk)

PN
j=1 λj

, i = 1, . . . , N . Using

equation (3.1), we prove the theorem.

3.3 Router Architecture

Understanding the nature and constraint of each component in the network pro-

cessor is the very first step taken in programming MPP packet schedulers because these

schedulers operate at those fabrics that are at the center of fast packet routing. It is crucial

that programmability does not outweigh the performance gain of parallel processing in the

process of packet forwarding by designing suitable QoS algorithms at line speed [3]. The In-

tel IXP1200 network processor2 consists of a StrongARM processor core and 6 parallel RISC

processors (microengines). Each microengine supports hardware-based multi-threading [15]

and all processors run at 200MHz. StrongARM and microengines have access to off-chip 8

Mbytes of 32-bit wide SRAM, 128 Mbytes of 64-bit wide SDRAM memory, and 32-bit wide

on-chip Scratchpad memory. A set of media access controller chips implement 10 Ethernet

ports (8× 100Mbps + 2× 1Gbps). MPP schedulers reside in the data plane. Initialization

and computation intensive sub-tasks in the algorithms, and performance monitoring are

offloaded on the StrongARM processor.
2We use Intel network processor IXM1200 c-PCI hardware based on IXP1240 chipset.

3.4. EFFICIENT IMPLEMENTATION OF MPP IN IXP1200 31

3.4 Efficient Implementation of MPP in IXP1200

We implemented our proportional bandwidth guaranteed probabilistic priority

multi-class framework proposed in the previous section on Intel IXP1200 network pro-

cessor. To convert the class parameter pi to tickets in lottery scheduling, all the assigned

parameters pi within a group are normalized to their least common multiple. For a large

number of classes, we use Euclid’s Greatest Common Divisor algorithm to speed up compu-

tation in the StrongARM core before supplying the scheduler’s parameters in a numerator

vector string to the microengines. For an 8-class system at an egress port, all the class

parameters are stored in only two SRAM memory words with each parameter pi occupying

8 bits thus the smallest probability being addressable is 1
256 which offers relatively high

computational granularity. In comparison, earlier implementation [30] will require over 100

Bytes of parameters’ storage and larger memory access overheads. Clearly, our approach

reduces memory access overhead drastically and accommodates more classes in a multi-port

setting.

3.4.1 Fast Algorithm for Scaling Uniform Distribution

The StrongARM is elected to run a periodic task of generating uniform pseudo-

random numbers in the SRAM. When the microengines require a random number for com-

putation, they simply do a table lookup. This table has to be updated often by StrongARM

to prevent a microengine from reading the same entry twice. However, we note that too

high a refreshing frequency will lead to a higher latency for a microengine’s SRAM read

operation to this shared table due to increased contention between StrongARM and micro-

3.4. EFFICIENT IMPLEMENTATION OF MPP IN IXP1200 32

engines. Numerous techniques exist for scaling uniform random numbers. An exact scaling

method would convert the random number from an integer to a floating-point number be-

tween 0 and 1, multiply it by X, and then convert the result back to the nearest integer [33].

Alternatively, 32-bit random numbers in a particular uniform distribution, Uniform[0, X]

can be obtained by dividing any random 32-bit wide number in the range 0 to 232− 1 by X

and keeping the remainder under the assumption that X ¿ 232 − 1 [33]. Due to the signif-

icant computation overhead of integer division (measured as 378 cycles and independent of

the value size of X), this method is not scalable without a pseudo random number genera-

tion co-processor. From the observation that each bit in any 32-bit uniformly distributed

random number has an equal chance of being a ”1” or ”0”, we use a simple generic bit-

wise algorithm to map this uniform random number into another equally uniform random

number, effectively scaling Uniform
[
0, 232 − 1

]
to Uniform [0, X]. This algorithm shown

in Table 3.7 first performs the AND operation, and then re-claims those bits lost in the

AND operation, ignoring bits which are outside the desired range. It is noteworthy that

the instruction cycle count for this algorithm depends on the value size of X, i.e. we can

trade-off computational granularity with speed. For X less than 255, this algorithm takes

41 instruction cycle counts. In the worst case, mapping a full 32-bit value of X requires a

maximum of 173 instruction cycle counts but the gain is already an exponential increase in

computational granularity to approximately 232 − 1.

3.5. PERFORMANCE STUDY AND RESULTS 33

Table 3.7: U-Map scaling algorithm

int result = 0;
int comparator = denominator & random_number;
if(comparator == 0) comparator = denominator;
while(comparator)
{
result | = (comparator & random_number);
comparator >>= 1;
}
if(result > denominator) result = denominator ^ result;
return result;

3.5 Performance Study and Results

We implemented our proportional bandwidth guaranteed probabilistic priority

multi-class framework proposed in the previous section on Intel IXP1200 network processor

[15]. In this section, we evaluate its performance. In our experiments, we use token bucket

metering to characterize the service and allocate a pre-calculated buffer space for each class.

We present here the results in terms of mean delay and deadline violation probability. The

topology of the experimental test-bed is shown in Fig. 3.4. All network links are full-duplex

and have a capacity of 100 Mbps. We classify the traffic generated as Assured Forwarding

(AF) and Best-Effort (BE). We implement 8 QoS classes with DiffServ Codepoints (DSCP)

classification using our framework with two segregation groups. Each priority class in AF

has marking 0x2e, 0x0a, 0x12, 0x1a, 0x22, 0x0c, 0x14, and 0 respectively. Class 1 and 2

traffic is sent from Sender 1 with the rest of the traffic in Class 3 to 8 from Sender 2. All

flows are independent Poisson processes with exponentially distributed packet lengths and

have the same mean sending rate and mean packet size. In order to simulate congestion,

we use one IXP1200 (IXP Router 2) to generate high volume of traffic at the Gigabit out-

3.5. PERFORMANCE STUDY AND RESULTS 34

Figure 3.4: (a)Relative DiffServ Test-bed and Assured Forwarding framework configuration
(b) Block diagram of implementation on IXP1200 network processor

put which is in turn forwarded to the Fast Ethernet output port on the other IXP1200

(IXP Router 1) which runs the MPP scheduler algorithm. Additional cross-traffic is also

generated in the background to vary the congestion load pattern. All traffic terminates at

Receiver.

The parameters for the framework are as shown in Fig. 3.4. The deadline violation

probabilities of class 1 and class 2 are shown in Fig. 3.5. As expected, the deadline violation

probabilities of class 1 and class 2 of MPP with ticket transfer scheme lie in between that of

normal PP and SP. At low load, the deadline violation probability is very close to that of SP.

Fig. 3.6 shows the average delay ratio between classes of the MPP with ticket transfer scheme

measured within an interval of 1 hour. As the traffic load increases, the delay differences

between classes become wider. Thus, with appropriating setting of the class parameter as

described in section 4, higher priority classes get better delay differentiation at medium to

high load. We also observe that the packet loss for each class in our experiments is strictly

increasing as the priorities get lower. Note in Fig. 3.6 that the delay spacing between the

3.5. PERFORMANCE STUDY AND RESULTS 35

Figure 3.5: Deadline violation probabilities

last class in AF1 and the first class in AF2 is quite small. However, MPP scheduler observes

the strict priority rule between segregation groups hence we can expect packet loss and

deadline violation probability of the first class in AF2 to be higher.

In order to compare the impact of packet sizes on the performance of the MPP with

ticket transfer scheme with PP scheme under congested conditions, we repeated the same

experiments with different packet size distributions. The observed experimental results

were largely similar to those obtained above but we note that for large packet size close to

MTU, the benefit of the ticket transfer algorithm is not so obvious because, at high load,

the time for a single packet transmission becomes longer thereby increasing the probability

of the network condition where all classes’ HOL packets are present as is in the case of SP.

Nevertheless, the queuing delays in this case are still not as high as those for SP or the PP

scheme. In summary, the MPP with ticket transfer scheme is good when the primary goal

3.5. PERFORMANCE STUDY AND RESULTS 36

Figure 3.6: Delay ratios between classes

is to provide relative delay differentiation as in SP while ensuring that deadlines of higher

priority classes are not unnecessarily violated, and also meeting specific timing requirements,

for eg. small delay bounds for high priority classes as in absolute QoS.

37

Chapter 4

Waiting Time Priority Scheduling

In this chapter, we bridge the mathematical framework of WTP and PDD by

deriving a sufficient condition for WTP to achieve PDD. We also develop technique to

efficiently compute the WTP scheduler parameters.

4.1 A Sufficient Feasibility Condition For PDD

We first review some mathematical backgrounds of the WTP scheduler. The avid

reader will recognize that all the assumptions made in the analysis here are based on related

works [9, 21, 27]. Assuming Poisson arrival λi and general service time characterized by xi

and x2
i , Kleinrock [18] has shown that the average waiting time of WTP is

Wp =
(Wo/1− ρ)−∑p−1

i=1 ρiWi[1− (bi/bp)]

1−∑N
i=p+1 ρi[1− (bp/bi)]

, p = 1, . . . , N (4.1)

where Wo = (1/2)
∑N

i=1 λix2
i is the expected residual service time, bi, i = 1, . . . , N is the

4.1. A SUFFICIENT FEASIBILITY CONDITION FOR PDD 38

scheduler parameter and the system utilization denoted by ρ is equal to
∑N

i=1 ρi where

ρ = λixi.

For the general case of N classes, Leung et al. [21] has derived the following

necessary condition for positive scheduler parameters to exist:

Theorem 5 (Leung et al.) A necessary condition to have positive solutions of the bi’s is

R(1) > 0 and R(N) < 0 where R(i) = W0
1−ρ−

∑i−1
k=1 ρkWk−

(
1−∑N

k=i+1 ρk

)
Wi, i = 1, . . . , N .

Using the above condition, we can easily determine if a given delay proportional

differentiation can be achieved or not. However, if a given delay ratio cannot be achieved,

the above theorem does not tell us exactly what the current load spacing can offer. Since

Theorem 5 is a necessary condition for positive solutions of bi’s, there exist some load

distributions that will pass the test and yet still be infeasible because the constraint that

bi+1 > bi is not observed. For example, a load distribution of ρ1 = 0.43, ρ2 = 0.29 and

ρ3 = 0.2 in a 3-class WTP with a target ratio of 2 between each class will satisfy Theorem 5

but the scheduler parameters obtained are b1 = 1, b2 = 1.27 and b3 = 0.68. By feasibility of

a load distribution for general N−class, we mean that positive solutions of bi’s that satisfy

the constraint bi+1 > bi can be found. If a given delay proportional differentiation cannot

be achieved, it is also unknown how one can tune the existing load distribution and still

achieve it. For example, a small reallocation of ρ1 = 0.42, ρ2 = 0.29 and ρ3 = 0.21 will yield

a feasible solution. Also, computing R(1) and R(N) involves iterative calculation of all N

average delays. In the later part, we will show that Theorem 5 is equivalent to the average

delay of the lowest priority class being smaller and the average delay of the highest priority

class being higher than that of strict prioritization thus calculation is greatly simplified.

4.1. A SUFFICIENT FEASIBILITY CONDITION FOR PDD 39

First, we extend the above theorem to provide more insights between load spacing and

N -class system.

Theorem 6 For N classes of traffic, let Si be the target ratio of the average waiting time

of class i traffic to that of class N traffic. Then for a maximum achievable target ratio S1

in any system load distribution to exist, both S1 and the total system utilization must satisfy

S1 <

(
1− ρ

)−2

Proof: From Theorem 5, we have R(1) = W0
1−ρ −

(
1 − (ρ − ρ1)

)
W1. Since R(1) > 0,

therefore W0 > (1 − ρ)(1 − ρ + ρ1)W1. Similarly, using the conservation law principle [18]

where W0
1−ρ = 1

ρ

∑N
i=1 ρiWi,

R(N) =
W0

1− ρ
−

N−1∑

k=1

ρkWk −WN

=
W0

1− ρ
−

(
ρ

1− ρ
W0 − ρNWN

)
−WN

= W0

(
1

1− ρ
− ρ

1− ρ

)
+ WN (ρN − 1)

= W0 − (1− ρN) WN

(4.2)

Since R(N) < 0, therefore W0 − (1− ρN) WN < 0 and we get W0 < (1− ρN)WN .

Hence

(1− ρ)(1− ρ + ρ1)W1 < W0 < (1− ρN)WN (4.3)

Since W0 > 0 hence we obtain (1− ρ)(1− ρ + ρ1)W1 < (1− ρN)WN . Following [21], let us

define Si = Wi
WN

. Hence we have

1
S1

>
(1− ρ)(1− ρ + ρ1)

1− ρN
(4.4)

4.1. A SUFFICIENT FEASIBILITY CONDITION FOR PDD 40

After rearranging the terms, we have

S1

(
1− ρ

)
ρ1 + ρN < 1− S1

(
1− ρ

)2

(4.5)

Since the terms on the LHS of the inequality is always positive for a stable system,

i.e. ρ < 1, the terms on the RHS of the inequality must be strictly positive. Hence

S1 <

(
1− ρ

)−2

(4.6)

Remarks: The implication of the above theorem is that to build any system using WTP

scheduler, it is necessary that the total system utilization has to be sufficient for a desired

maximum achievable target ratio between any two classes to exist regardless of the number

of classes and load distribution in the system. For example, to achieve a target ratio

of S1 = 10, then the system regardless of the number of classes has to be at least 68%

utilized so as to achieve the desired waiting-time spacing. Only after this fundamental

requirement has been satisfied, then there exists the feasibility regions that are dependent

on load distribution and the number of classes. In [21], the authors have shown that the

system has to be at least 90% utilized in order to satisfy S1 = 10 for two classes. Note

that the fundamental requirement that the minimum system utilization of 68% has already

been satisfied by the constraint of a minimum system utilization of 90%. Though for a total

system utilization of 68%, a 2-class system can never achieve a ratio of 10 whereas a 3-class

system can achieve close to S1 = 10 with a load distribution of ρ1 = 0.001, ρ2 = 0.678 and

ρ3 = 0.001 (Service time is normalized to 1 so system load utilization is 0.68). On the other

hand, if the system utilization is at most 67%, a target ratio of S1 = 10 can never exist for

any load distributions or number of classes. The physical interpretation of equation (4.6) is

4.1. A SUFFICIENT FEASIBILITY CONDITION FOR PDD 41

the maximum operational ratio that WTP can achieve for a given system utilization under

light, moderate or heavy load condition.

Lemma 1 For N classes of traffic, let Si be the target ratio of the average waiting time of

class i traffic to that of class N traffic. Then the target ratio for class i can be achieved

only if the target ratios for all classes satisfy

S1

N∑

i=1

ρiWi
SP

W1
SP

<
N∑

i=1

ρiSi <
N∑

i=1

ρiWi
SP

WN
SP

, i = 1, . . . , N

where Si < S1, i = 2, . . . , N and the system load distribution satisfies

S1 <
W1

SP

WN
SP

Proof: For N classes of traffic, the constraint in equation (4.4) must be satisfied. Since

W1 ≥ W2 ≥ · · · ≥ WN hence by definition, S1 ≥ S2 ≥ · · · ≥ SN . Now, again using the

conservation law principle, we have

W0

1− ρ
=

1
ρ

N∑

i=1

ρiSiWN (4.7)

Letting W0 = 1−ρ
ρ

∑N
i=1 ρiSi and substituting in equation (4.3), we get

S1ρ(1− ρ + ρ1) <
N∑

i=1

ρiSi <
ρ

1− ρ
(1− ρN) (4.8)

Furthermore, using the conservation law, it can be shown that

ρ

1− ρ

(
1− ρN

)
=

N∑

i=1

ρiWi
SP

WN
SP

ρ

(
1− ρ + ρ1

)
=

N∑

i=1

ρiWi
SP

W1
SP

4.1. A SUFFICIENT FEASIBILITY CONDITION FOR PDD 42

1− ρN(
1− ρ

)(
1− ρ + ρ1

) =
W1

SP

WN
SP

Substituting them into equations (4.4) and (4.8), we prove the lemma.

Remarks: The implication of the above lemma is that we just need to check the boundary

condition for the maximum delay spacing between the highest priority and the lowest prior-

ity class to obtain a spectrum of achievable delay spacings between all classes. Moreover, if

this maximum waiting-time ratio is achievable, the scheduler parameters bi’s, i = 1, . . . , N

are guaranteed by Theorem 5 to be positive for feasible load distributions. To obtain a

high delay ratio, it is necessary that the system utilization ρ is large and both ρ1 and ρN is

small. The theorem also implies that strict prioritization achieves the largest possible delay

differentiation.

Another implication is, given that the system utilization remains unchanged, we

are able to increase the achievable maximum waiting-time ratio by demoting some of high-

est priority class, class N traffic to lower priority classes or promoting some of the lowest

priority class, class 1 traffic to higher priority classes. It is often that the delay ratio spacing

increases faster for the latter case where the following corollary elaborates.

Corollary 1 If the maximum waiting-time target ratio is large, it increases faster when

some traffic from the lowest priority class switches to higher priority classes as compared

to the case when some traffic from the highest priority class switches to the lower priority

classes.

Proof: Let us consider the first case where some lowest priority traffic moves to higher

4.1. A SUFFICIENT FEASIBILITY CONDITION FOR PDD 43

priority classes. Let Smax
1 = 1−ρN

(1−ρ)(1−ρ+ρ1) . Taking partial derivatives, we obtain

∂Smax
1

∂ρ1
= − 1− ρN

(1− ρ) (1− ρ + ρ1)
2

Similarly for the second case where some highest priority traffic moves to lower priority

classes, we get

∂Smax
1

∂ρN
= − 1

(1− ρ) (1− ρ + ρ1)

The negative signs denote that Smax
1 increases as ρ1 or ρN decreases. Since 1 − ρ + ρ1 is

strictly less than 1, 1
(1−ρ)(1−ρ+ρ1) ¿ 1

(1−ρ)(1−ρ+ρ1)2
. Hence if Smax

1 is large, both ρ1 and ρN

are relatively small. Thus ‖∂Smax
1

∂ρ1
‖ > ‖∂Smax

1
∂ρN

‖ when ρN is very small.

Corollary 2 Consider a system with N classes. For a given load distribution and given

the same waiting-time target spacing ri,i+1, i = 1, . . . , N −1, between classes, the maximum

waiting-time target ratio rmax
i,i+1 is

rmax
i,i+1 =

(
(1−ρN)

(1−ρ)(1−ρ+ρ1)

) 1
N−1

Proof: For the above system configuration, S1 = (ri,i+1)
N−1. Putting this into equation

(4.4), we obtain (ri,i+1)
N−1 < (1−ρN)

(1−ρ)(1−ρ+ρ1) . Thus

ri,i+1 <

(
(1− ρN)

(1− ρ) (1− ρ + ρ1)

) 1
N−1

(4.9)

Hence the corollary is proved. Alternatively, we can also find the maximum number of

classes required to support a given waiting-time ratio which is

N < 1 +
(

logeri,i+1

)−1

loge

(
1−ρN

(1−ρ)(1−ρ+ρ1)

)
.

A consequence of Lemma 1 is that certain distribution of ρi’s will not lead to a

positive solution of bi’s due to the constraint that bi+1 > bi. In such cases, the system

4.1. A SUFFICIENT FEASIBILITY CONDITION FOR PDD 44

cannot achieve the waiting time ratios. To determine only the feasible load distributions

for PDD, we have the following theorem.

Theorem 7 A sufficient condition for the feasibility of a set of N average class delays using

WTP that conforms to the PDD model for ρ < 1 is

W1
WTP

W1
SP

<

∑N
i=k λiW

WTP
i∑N

i=k λiWSP
i

≤ WN
WTP

WN
SP

, k = 2, . . . , N

where
PN

i=k λiW
WTP
iPN

i=k λiW SP
i

are the N − 1 Regnier’s inequalities [27].

Proof: Using the substitution δi = Si/S1, equation (1.2) can be expressed as

N∑

i=1

λiSi ≤
∑N

i=k λiSi∑N
i=k λiWi

SP

N∑

i=1

λiWi
SP , k = 2, . . . , N (4.10)

It can further be shown that equation (4.10) is equivalent to

∑k−1
i=1 λiWi∑k−1

i=1 λiWi
SP

≤
∑N

i=k λiWi∑N
i=k λiWi

SP
, k = 2, . . . , N (4.11)

Assuming the same packet size distribution for all classes, i.e. x = 1, and by

definition of Si = Wi
WTP

/WN
WTP , the LHS inequality of equation (4.8) can be expressed

as

W1
WTP

W1
SP

<

∑N
i=1 λiWi

WTP

∑N
i=1 λiWi

SP

Rearranging, we have

W1
WTP

WSTP
1

<

∑N
i=2 λiWi

WTP

∑N
i=2 λiWi

SP

which is exactly the case of equation (4.11) for k = 2.

and the RHS inequality of equation (4.8) can be expressed as

WN
WTP

WN
SP

>

∑N
i=1 λiWi

WTP

∑N
i=1 λiWi

SP

4.1. A SUFFICIENT FEASIBILITY CONDITION FOR PDD 45

or equivalently,
∑N−1

i=1 λiWi
WTP

∑N−1
i=1 λiWi

SP
<

WN
WTP

WN
SP

.

Similarly, this is exactly the case of equation (4.11) for k = N .

Moreover, by the conservation law,
∑N

i=1 λiWi
WTP =

∑N
i=1 λiWi

SP hence it fol-

lows that Theorem 5 is equivalent to being that both the average delay of the highest

priority class in WTP must necessarily be larger than that of the SP scheduler and the

lowest priority class in WTP must necessarily be less than that of the SP scheduler.

Using equation (4.10), WTP conforms to the necessary and sufficient feasibility

conditions of the PDD model if and only if

W1
WTP

W1
SP

<

∑N
i=k λiW

WTP
i∑N

i=k λiWSP
i

≤ WN
WTP

WN
SP

, k = 2, . . . , N (4.12)

Notice that the Regnier’s inequalities [27] are defined as
∑N

i=k λiWi∑N
i=k λiWi

SP
≥ 1 , k = 2, . . . , N

and therefore WN
WTP

WN
SP ≥ 1 as expected.

Since the necessary condition of Theorem 5 is a subset of PDD model in equation

(4.10), equation (4.12) characterizes the set where the feasible average delays of PDD are

mapped to the average delays that satisfies theorem 5 in WTP. Note that in the case of

N = 2, from equation (4.4) or (4.12), we obtain ρ > 1 − 1
S1

which is the main result of

theorem 1 in [20, 21, 12] for the necessary and sufficient conditions to achieve the specified

performance ratio S1 in a 2-class system.

We conclude that the feasibility condition for WTP to achieve PDD is dependent

on the class load distribution and the total system utilization for the general case of N > 2.

4.1. A SUFFICIENT FEASIBILITY CONDITION FOR PDD 46

This allows us to relate results for WTP to the PDD model for general N -class in a precise

manner. The result for the case of two traffic classes in the PDD model has been proved to

be similar to that of WTP where feasibility is dependent only on the total system utilization

[9, 20]. The derivation of Theorem 7 is based on the same assumption as the derivation of

the PDD model, i.e., the N classes have the same packet size distribution hence if Theorem

7 is satisfied then WTP exhibits the delay dynamics in the PDD model [9] which we list

below for completeness sake. Based on Theorem 7, we elaborate the following statement

in [21]: Even though the system utilization ρ remains unchanged, it is still possible that

certain distributions of ρi’s will not lead to a positive solution of bi’s. Specifically, the

system can search for positive solutions of bi’s to achieve the target waiting-time ratio if

the load distribution ρi, i = 1, . . . , N and the average delay of each class satisfies equation

(4.12) by using PDD delay dynamics.

Corollary 3 If Wi, i = 1, . . . , N falls in the schedulability region defined by equation (4.12),

Property 1: Increasing the input rate of a class, increases (in the wide sense 1) the average

delay of all classes.

Property 2: Increasing the rate of a higher class causes a large increase in the average

class delays than increasing the rate of a lower class.

Property 3: Decreasing the delay differentiation parameter of a class increases (in the

wide sense) the average delay of all other classes, and decreases (in the wide sense) the

average delay of that class.

Suppose that the class load distribution changes from λn to λ
′
n with λ

′
i = λi − ε,

1Increasing a function f(x) in the wide sense means df(x)
dx

≥ 0.

4.1. A SUFFICIENT FEASIBILITY CONDITION FOR PDD 47

λ
′
j = λj + ε, and λ

′
k = λk for all k 6= i, j(ε > 0). Let W ′

n be the average delay in class n

when the class load distribution is λ
′
n.

Property 4: If i > j then W ′
n ≤ Wn for all n = 1, . . . , N . Similarly, if i < j then W ′

n ≥ Wn

Property 5: If i > j then W
′
j ≥ Wi. Similarly, if i < j then W

′
j ≥ Wi.

It is possible to obtain a special case of Theorem 7 that has physical implication.

Corollary 4 For a feasible load spacing, if the target ratios of all consecutive classes in

WTP are less than the consecutive ratios of average delays in SP, the average delays of all

classes in WTP satisfy PDD.

Proof: We prove the result in a converse manner. Assume that all the average delays in

WTP satisfy PDD, i.e., they satisfy equation (4.12). We first prove that the result is true

for the highest priority class and its immediate low priority class, i.e. Class N−1, since this

result follows immediately in equation (4.12) for k = N − 1. For the case of 2 ≤ k ≤ N − 2

in equation (4.12), we see that a constrained ordering of the Regnier’s inequalities such that

Ri < Ri+1, i = 2, . . . , N − 2 where Ri denotes the Regnier’s inequality at k = i, that is

repeatedly applied to equation (4.12) from k = N − 2 to k = 2 would therefore yield the

desired result.

It was proposed in [9] to deploy the SP scheduler in routers for short time intervals

to measure the average delays of the SP scheduler W
SP
i that would result in a SP scheduler

in order to access the feasibility condition of PDD. From Corollary 4, we see that this similar

mechanism can be used to determine the achievable ratios for WTP to achieve PDD.

4.2. IMPROVEMENT TO ITERATIVE COMPUTATION OF SCHEDULER
PARAMETERS 48

4.2 Improvement to Iterative Computation of Scheduler Pa-

rameters

In the previous section, we examined the relationship between WTP and PDD

under all load conditions. In this section, we want to show that the ratio of consecutive

scheduler parameters will always be more than the consecutive target ratio values. This

helps to increase the efficiency of computation using iterative methods by detecting infeasible

load distributions that satisfy Theorem 5 as early as possible. We use the Gauss-Seidel

numerical algorithm in [20, 21] to solve the set of nonlinear equations and we set the

maximum iteration count to be 200 with a predefined error threshold, ε = 10−3 for all

computations, unless otherwise stated.

Theorem 8 For ρ < 1, the feasibility condition of WTP satisfies the following N − 1

inequalities

bp

bp+1
<

Wp+1

Wp
, p = 1, . . . , N − 1

Proof: For N = 2, let rt = W1/W2 then from [21], b2/b1 = ρ/
(
ρ− 1 + 1

rt

)
and hence

b2

b1
= rt

(
ρ

ρrt − rt + 1

)

But ρrt − rt + 1− ρ = (ρ− 1)(rt − 1) and since ρ < 1 and rt > 1 thus

b2

b1
> rt

For general N classes, Kleinrock has derived in [18] the relationship between the expected

time, Vi for ith customers (for i > p) that arrive and get served before the pth packet does,

4.2. IMPROVEMENT TO ITERATIVE COMPUTATION OF SCHEDULER
PARAMETERS 49

Wp, p = 1, . . . , N .

Vi = Wp

(
1− bp

bi

)
i > p, p = 1, . . . , N − 1 (4.13)

After rearranging, we have bp/bi = (Wp − Vi) /Wp and since none of ith customers that

arrive and are buffered gets dequeued within the interval Wp − Vi, i.e. Wp − Vi < Wi thus

bp

bi
<

Wi

Wp
i > p, p = 1, . . . , N − 1 (4.14)

Since for all i > p, p = 1, . . . , N , all the (N − 1)(N − 2)/2 inequalities with i > p + 1 can

be inferred from the N − 1 inequalities with i = p + 1 hence the N(N − 1)/2 inequalities in

equation (4.14) are equivalent to the following N − 1 inequalities

bp

bp+1
<

Wp+1

Wp
, p = 1, . . . , N − 1 (4.15)

A direct implication of Theorem 8 is that we are able to check if a given measured

load distribution which has fulfilled Theorem 5 is feasible or not after the first few iterations

of any numercial algorithm for example, the genetic optimization algorithm in [12] or Gauss-

Seidel iteration method [20, 21] to solve the set of non-linear equations in equation (4.1)

for the scheduler parameters. The rate of convergence to Theorem 8 can also be used

as a means for comparison of the effectiveness between various numerical algorithms. In

particular, the initial values of the scheduler parameters are the inverse of the target average

delay values thus ratios of consecutive feasible scheduler parameters will increase to be larger

than the initial values after a certain number of loops whereas ratio of infeasible scheduler

parameters can be detected since it does not satisfy Theorem 8 at any iteration. As a

comparison, for a load distribution of ρ1 = 0.43, ρ2 = 0.29 and ρ3 = 0.2 in a 3-class WTP

with a target ratio of 2 between each class ,the violation that bi+1 < bi is only detected

4.2. IMPROVEMENT TO ITERATIVE COMPUTATION OF SCHEDULER
PARAMETERS 50

after the Gauss-Seidel algorithm runs to completion after the maximum iteration count,

i.e. 200 loops in our case, whereas this violation could be detected by setting a predefined

iteration threshold less than the maximum iteration count and checking whether Theorem

8 is violated. Empirical studies using the Gauss-Seidel method show that the ratios of

feasible scheduler parameters usually converge to values that satisfy Theorem 8 after 40

loops. Hence a predefined iteration threshold of 40 can be set to detect infeasible load

spacings.

4.2.1 Load Dynamic Adjustment Control Technique

We now present an efficient Dynamic Adjustment Control (DAC) technique that

enhances the computation of scheduler parameters. Solving the non-linear set of equations

is a very computational intensive task in packet scheduling. As mentioned earlier, we need

to identify those infeasible load distributions that satisfy Theorem 5 before using them

as input for any iterative methods so that routers do not waste resources in computing

infeasible scheduler parameters. To achieve this, the pseudo-code of the algorithm given in

Table 4.1 is proposed.

Line 5 checks whether the total system utilization is adequate to provide for a

desired target ratio. If the system is underutilized, the desired maximum target ratio S1

has to be reduced. Line 7 computes the scheduler parameters using iterative methods if

Thereom 5 in line 6 is satisfied and infeasible load distributions are simply identified after

a predefined iteration threshold of 40. The complexity involved is only N − 1 comparisons

once the predefined iteration threshold is reached. If the load distribution is not feasible, the

load distribution is slightly re-adjusted to satisfy Theorem 7 in line 18. The computational

4.3. NUMERICAL RESULTS 51

complexity to verify Theorem 7 is O(N) since N − 2 Regnier’s inequalities have to be

computed and compared. If computational budget is not tight, we can first compute the

feasibility of the load distribution using Theorem 7. If it does not satifsy Theorem 7, we

adjust the load spacing until Theorem 7 is satisfied and thereafter we compute the scheduler

parameters using the iterative algorithm. The re-adjustment of load distribution can be

made by relaxing certain desired target ratios between classes to obtain different average

delays that satisfy Theorem 7. Alternatively, the router precomputes equation (4.12) and

informs the sources that certain class selection parameters are not available.

4.3 Numerical Results

In this section, we present the results of our experiments.

4.3.1 Experiment 1: Comparison between maximum achievable target

ratios and load distributions

In [13], the authors attempt to use offline genetic algorithm to compute scheduler

parameters for a 4-class system with equal load distribution at ρ = 0.7 and ρ = 0.75 for

a consecutive target ratio of 2 but could not conclude whether the infeasibility is due to

insufficient system utilization or inaccuracy of the genetic algorithm. Using equation (4.9),

we could compute the maximum achievable consecutive target ratio which turns out to be

1.796 and 1.951. We conclude that by Theorem 6, the system utilization is adequate but the

load distribution is not feasible for a target ratio of 2. Next, we consider a 3-class system

at a low load of ρ = 0.6. To achieve ri,i+1 = 2, we know by Theorem 6 that at ρ = 0.6,

4.3. NUMERICAL RESULTS 52

Table 4.1: Outline of the Dynamic Adjustment Control algorithm

At each periodic computation, measure the load in each class 1 to N ,

Input ρi, xi, x2
i, Si for i = 1, . . . , N

1. begin

2. init IterativeAlgo();

3. LoopThres= 40; Load=FEASIBLE; /* FEASIBLE=0, INFEASIBLE=1 */

4. ρ =
∑N

i=1 ρi;

5. if(S1 < 1/(1− ρ)2)

6. if(Theorem 5()==TRUE)

7. while(IterativeAlgo())

8. if(iteration loop==LoopThres and Theorem 8()==TRUE)

9. continue;

10. else return (Load=INFEASIBLE);

11. end

12. end/* End IterativeAlgo() */

13. else

14. reduce TargetRatio();/* Inadequate total system utilization */

15. end

16. if(Load==INFEASIBLE)

17. while(Theorem 7()==FALSE)

18. re-adjust Load();/* Infeasible load distribution */

19. end

20. end

21. end

4.3. NUMERICAL RESULTS 53

some load distributions can satisfy this target ratio since the maximum target ratio is 4.

However, it is hard to satisfy both Theorem 5 and 7 when the load in Class 1 and 3 is too

high hence by Corollary 1 we see that by moving some of Class 1’s load to Class 2 or Class

3’s load to Class 2 as shown in Table 4.2, the target ratio between each class can be met.

However, this may not be satisfactory in all cases, since we know from the delay dynamics of

the PDD model that moving some of Class 1’s load to Class 2 increases the average delays

of all classes.

4.3.2 Experiment 2: Using predefined iteration threshold

To illustrate the effectiveness of a predefined iteration threshold using Gauss-Seidel

algorithm, we select the load distributions that satisfy Theorem 5. We consider three classes

of traffic. The arrival process of class i (i = 1, 2, 3) is Poisson with a load of ρi. The number

of packets is generated to be at least 50,000 for each class in each set of experiment. The

mean service time is taken to be the unit of time and the service times of packets in each class

follow the same exponential distrbution with unit mean. We first vary the load distribution,

and show the number of loops that satisfy Theorem 8 and the scheduler parameters obtained

in Table 4.3. As observed, feasible load distributions seldom take more than 40 loops to be

larger than the target ratios.

Table 4.4 illustrates that the predefined error threshold parameter in the Gauss-

Seidel algorithm has no effect on the number of loops executed to satisfy Theorem 8 although

the total number of loops executed decreases significantly as the error threshold ε gets larger.

In other words, the rate of convergence to ratios that satisfy Theorem 8 is independent of the

parameters of the Gauss-Seidel algorithm. Table 4.5 shows that consecutive target ratios

4.3. NUMERICAL RESULTS 54

affect the rate of convergence. As consecutive target ratio increases, more number of loops

are executed before Theorem 8 is satisfied. Table 4.6 shows some infeasible load distribution.

We use R2 to denote the Regnier’s inequality at k = 2. As a ballpark estimate, if the load

is measured as in Table 4.6, the Gauss-Seidel Algorithm with predefined iteration threshold

executes 40× 7 = 280 loops before declaring that the load distributions are infeasible while

the normal Gauss-Seidel Algorithm executes 200 × 7 = 1400 loops hence the savings in

computation is around 80%.

It is probable that some feasible load distributions will take more number of loops

than the predefined iteration threshold to converge to satisfy Theorem 8 so rejecting a load

distribution based on a hard threshold is not foolproof. However, we verify by simulation

that, as time progresses, consecutive scheduler parameter ratios will tend to converge to

values that satisfy Theorem 8 notwithstanding that it may take rather long for some feasible

load distributions, for example as shown in Table 4.7. In the case of infeasible load distri-

butions, this convergence is nonexistent. Hence, to identify infeasible load distribution, a

better method would be to make use of this property of convergence and compare the N−1

inequalities at two predefined iteration thresholds.

We conclude from these experiments that the rate of convergence to Theorem

8 using the Gauss-Seidel algorithm is rather effective for most load distributions. For a

relative accurate error threshold (10−3), the rate of convergence takes approximately 10%

of the total computation time.

4.3. NUMERICAL RESULTS 55

Table 4.2: Comparison between maximum achievable target ratios S1 and load distributions

Load distribution S1 Satisfied Thm. 5 Satisfied Thm. 6
0.2-0.2-0.2 3.333 No No

0.15-0.35-0.1 4.000 No No
0.1-0.4-0.1 4.5 Yes Yes

0.05-0.5-0.05 5.278 Yes Yes

Table 4.3: Estimation of predefined iteration threshold

Load distribution Loops Loops to satisfy Thm. 8 b1 b2 b3

0.4-0.3-0.25 68 7 1 2.131 4.635
0.4-0.25-0.3 195 23 1 2.135 4.650
0.4-0.24-0.31 200 36 1 2.141 4.658
0.4-0.29-0.26 78 9 1 2.132 4.638
0.4-0.31-0.24 61 7 1 2.123 4.631
0.4-0.35-0.2 43 5 1 2.126 4.620
0.35-0.2-0.4 41 3 1 2.146 4.664
0.3-0.25-0.4 16 1 1 2.146 4.644
0.35-0.4-0.2 18 1 1 2.126 4.603
0.2-0.45-0.3 7 1 1 2.135 4.576

Table 4.4: Effect of predefined error in Gauss-Seidel algorithm on the predefined iteration
threshold

Load distribution Loops Loops to satisfy Loops Loops to satisfy
(ε = 10−2) Thm. 8 (ε = 10−2) (ε = 10−1) Thm. 8 (ε = 10−1)

0.4-0.3-0.25 45 7 22 7
0.4-0.25-0.3 128 23 61 23
0.4-0.24-0.31 200 36 100 36
0.4-0.29-0.26 52 9 25 9
0.4-0.31-0.24 40 7 20 7
0.4-0.35-0.2 29 5 14 5
0.35-0.2-0.4 27 3 13 3
0.3-0.25-0.4 11 1 5 1
0.35-0.4-0.2 12 1 6 1
0.2-0.45-0.3 5 1 3 1

4.3. NUMERICAL RESULTS 56

Table 4.5: No. of loops to satisfied Theorem 8 under different ratio targets (ri,i+1)

Ratio target Loops to satisfy
(0.4-0.29-0.21) thm. 8 (ε = 10−3)

1.1 3
1.7 9
2.0 13
2.7 17
3.0 17
3.5 17

Ratio target Loops to satisfy
(0.35-0.3-0.3) thm. 8 (ε = 10−3)

1.1 1
2.0 3
3.0 5
4.0 7
5.0 9
5.5 13

Table 4.6: Infeasible load distributions that satisfy Theorem 5 but not Theorems 7 & 8

Load distribution Loops r1,2, r2,3 at 40th Loop R2 W3/WSP
3

0.46-0.29-0.2 200 −0.468,−2.067 5.887 5.802
0.46-0.2-0.29 200 −0.460,−2.764 5.393 5.332
0.49-0.2-0.26 200 −0.394,−3.075 5.619 5.366
0.45-0.3-0.2 200 −2.968,−0.700 5.84..42 5.84..41
0.45-0.2-0.3 200 −0.486,−2.660 5.31..96 5.31..95

0.45-0.29-0.21 200 −0.486,−2.660 5.796 5.769
0.41-0.23-0.31 200 3.085, 1.284 5.799 5.439

Table 4.7: Comparison between infeasible and feasible load distributions that exceed pre-
defined iteration threshold. The values at the 40th, 80th and 120th loops are shown.

Load distribution r1,2, r2,3 (40th) r1,2, r2,3 (80th) r1,2, r2,3 (120th)
0.41-0.23-0.31 (infeasible) 3.085, 1.284 18.453, 0.165 −1.901,−1.071
0.42-0.29-0.21 (feasible) 2.641, 1.789 2.563, 1.878 2.161, 2.534

4.3. NUMERICAL RESULTS 57

4.3.3 Experiment 3: Effectiveness of DAC to dynamic load variation

It is difficult to preallocate load distribution in advance so we want to evaluate

the effectiveness of the DAC in detecting infeasible load spacings in dynamic load variation.

We consider Long Range Dependent (LRD) traffic modeled as Pareto On-off processes with

shape parameter 1.9 since aggregated traffic in real DiffServ networks is LRD in nature.

In this experiment, we use fixed-size packets and packets with bimodal distribuition (64

bytes and 1500 bytes). The number of packets is generated to be at least 50,000 for each

class. The mean service time for a packet is taken to be the unit of time and the monitoring

timescale is 100 packet transmission times. The consecutive target ratio between each class

is 2. We use ρi{i = 1, 2, 3} to denote load distribution. We consider a 3-class and a 4-

class system and the starting load vectors are ρi{0.45, 0.29, 0.21} and ρi{0.35, 0.2, 0.3, 0.1}

respectively. We keep the total system utilization constant at ρ = 0.95 but each load

variation in Class 2 and 3 is uniformly distributed with a mean of 0.01 and occurs at every

50 packet transmission times. At each monitoring timescale, we measure the load and

compute the scheduler parameters when the load distribution is feasible.

In the first part, we use a single hard threshold of 40 loops . Table 4.8 and 4.9 show

the number of infeasible load spacings detected and the number of feasible load spacings

that are wrongly identified as infeasible for a 3-class and 4-class system respectively. Note

that all the infeasible load distributions listed in the tables are observed to satisfy Theorem

5. In the second part, we repeat the setting but we use the method of two thresholds spaced

at 40 loops apart and observe that no feasible load spacing is identified wrongly. Also, as

observed from Table 4.8 and 4.9, the number of feasible load distributions increases as the

4.3. NUMERICAL RESULTS 58

variance of load variation in each class increases, i.e. the range of variation in each class is

larger, for example ρ1 varies from 0.01 to 0.5086 as compared to ρ1 from 0.4516 to 0.6436 in

Table 4.8. It is also observed from extensive empirical studies that as the number of classes

increases, the probability of an infeasible load distribution occurring increases rapidly.

Table 4.8: Load variation for 3-class system. The entries denote the range of variation of
arrival rates and the number of times feasible, infeasible and falsely detected loads are found

Class 1 Class 2 Class 3 Feasible Infeasible False
0.01− 0.5086 0.1990-0.4899 0.1100-0.4100 4473 284 5

0.4516− 0.6436 0.1990-0.2865 0.1100-0.2100 0 4757 0

Table 4.9: Load variation for 4-class system. The entries denote the range of variation of
arrival rates and the number of times feasible, infeasible and falsely detected loads are found

Class 1 Class 2 Class 3 Class 4 Feasible Infeasible False
0.2100− 0.3500 0.1511-0.2500 0.2600-0.3500 0.0693-0.1500 699 4274 2
0.3620− 0.4825 0.1500-0.2087 0.2500-0.2968 0.0500-0.1050 0 4971 0

Since infeasible load distributions occur quite frequently in dynamic load, we con-

clude that there is a necessity to identify these infeasible load distributions as quickly as

possible. The proposed load dynamic adjustment control technique can efficiently termi-

nate Gauss-Seidel algorithm computation when these infeasible load distributions satisfy

Theorem 5.

59

Chapter 5

Exact Schedulability Conditions of

WTP

In the previous chapter, we have shown that the ratios of the WTP scheduler

parameters play a significant role in obtaining average delays to achieve PDD. Likewise, an

interesting and natural question to ask would be: How would the WTP scheduler parameters

affect the maximum delay bound in each class ? This chapter analyzes the WTP scheduler

in the context of maximum delay bound.

5.1 Maximum Delay Analysis Using General Traffic Specifi-

cations

We assume that each connection j is assigned a priority p with 1 ≤ p ≤ P . We

use Cp to denote the the set of connections with priority p. Note that we do not follow

the priority convention in the previous chapter but our priority convention follows that in

5.1. MAXIMUM DELAY ANALYSIS USING GENERAL TRAFFIC
SPECIFICATIONS 60

[22] for easy comparison, i.e., a lower class index indicates a class of higher priority. All

connections in Cp have the same delay bound dp, with dp < dq for p < q. Hence, the priority

of a connection is high if the maximum delay bound is small.

We use the traffic specifications defined in [22] to describe the actual traffic arrival

from connection j where Aj [t, t + τ] provides the actual arrivals from connection j in time

interval [t, t + τ]. The traffic specification uses three parameters to characterize the traffic

from a connection j: the period Tj , the burst size Bj , and the maximum transmission time

of a packet sj . Following [22],

Aj [t, t + τ] ≤ A∗j [0, τ] (5.1)

and the characterization for the traffic models as:

s∗j =

Â∗j (t) = Bjsj + b t
Tj
csj for discrete traffic specifications

Ã∗j (t) = Bjsj + t
sj

Tj
for continuous traffic specifications

Since with continuous traffic specifications the packets on a connection j are in-

finitesimally small, we define the maximum transmission time of packets by s∗j for all j ∈ N

as follows:

s∗j =

sj for discrete traffic specifications

0 for continuous traffic specifications

For each priority level p, we define sp = maxj∈Cpsj and s∗p = maxj∈Cps
∗
j . We use

the term priority-P busy period to denote a busy period that is generated by connections

with all priorities p ∈ P , and we denote by BP
1 the first priority-P busy period where all

connections j ∈ ⋃
q∈P Cq transmit according to their rate-controlling function A∗j , that is,

BP
1 = mint>0

P∑

q=1

∑

j∈Cq

A∗j (t)− t = 0 (5.2)

5.1. MAXIMUM DELAY ANALYSIS USING GENERAL TRAFFIC
SPECIFICATIONS 61

With these definitions, we give the necessary and sufficient schedulability condi-

tions for WTP-schedulers.

Theorem 9 A set N of connections, where each connection j ∈ N is characterized by

(A∗j , dp) is WTP-schedulable for all Aj < A∗j if and only if for all priorities p and for all

0 ≤ t ≤ BP
1 − dp, there exists a τp with τp ≤ dp − s∗p such that:

tp + τp ≥
P∑

q=1

∑

j∈Cq

A∗j

(
tp + (1− bp

bq
)τp

)
+ maxq∈P smax

q − s∗p (5.3)

5.1.1 Proof of Sufficiency

For WTP, we obtain in [25] the workload for all τp, 0 ≤ τp ≤ δp,

W p,tp(tp + τp) =
P∑

q=1

∑

i∈Cq

Ai

(
tp − τ̂p, tp + (1− bp

bq
)δp

)
+ R(tp − τ̂p)− (τ̂p + τp) (5.4)

The condition for stability of a work-conserving packet scheduler is given by:

lim
t→∞

∑N
j=1 A∗j (t)

t
< 1 (5.5)

From the definition of the traffic constraint A∗j in [22],

∑

j∈Cp

Aj [t− τ̂ , t] ≤
∑

j∈Cp

A∗j (τ̂) (5.6)

Hence, we obtain

P∑

q=1

∑

i∈Cq

Aj

(
tp − τ̂p, tp + (1− bp

bq
)δp

)
≤

P∑

q=1

∑

i∈Cq

A∗j

[
τ̂p + (1− bp

bq
)δp

]
(5.7)

Since the remaining nonpreemptable transmission time of priority-r traffic (r ∈ P)

at time t − τ̂p is maximal if traffic with maximum transmission time1 of a lower service

1For discrete traffic specifications, the traffic will result from a single packet.

5.1. MAXIMUM DELAY ANALYSIS USING GENERAL TRAFFIC
SPECIFICATIONS 62

priority starts transmission at t− τ−, we obtain:

R(t− τ̂p) ≤ maxq∈P sr (5.8)

With equations (5.6), (5.7) and (5.8), we can give the following bound for W p,tp(t+

τp) as

W p,tp(t + τp) ≤
P∑

q=1

∑

i∈Cq

A∗j

(
τ̂p + (1− bp

bq
)δp

)
+ maxq∈P smax

q − (τ̂p + τp) (5.9)

By choice of τ̂p, we know that A∗j [τ̂p + (1− bp

bq
)δp] ≥ 0 since we can select τ̂p such

that τ̂p ≥ |(1− bp

bq
)δp|.

Now,

δp = s + min{z | W p,tp(tp + z) = s, z ≥ 0} (5.10)

where smin ≤ s ≤ smax is the transmission time of the packet.

Thus, to avoid deadline miss, for all P and all tp ≥ 0, we obtain with condition

Theorem 9 that there exists a 0 ≤ τp ≤ dp − smin such that W p,tp(tp + τp) ≤ 0. Hence

there exists a τ
′′ ≤ dp − s∗k such that W p,tp(tp + τ

′′
) = s∗p. Therefore, with equation (5.10),

the tagged packet begins transmission at time t + τ
′′
. Since the packet has at most a

transmission time of s∗p, the tagged packet does not cause a deadline violation.

Hence

W p,tp(t + τp) ≤
P∑

q=1

∑

i∈Cq

A∗j

(
τ̂p + (1− bp

bq
)δp

)
+ maxq∈P smax

q − (τ̂p + τp) ≤ smin
p for all p

(5.11)

5.1. MAXIMUM DELAY ANALYSIS USING GENERAL TRAFFIC
SPECIFICATIONS 63

5.1.2 Examples

For discrete traffic models, it is typically not feasible to simplify the conditions

in the Theorem 9. However, for the continuous traffic specification, the conditions can be

simplified as follows. Let us assume that there is only one connection p in each priority set

Cp. In this case, we can rewrite the condition in Theorem 9 as:

tp

(
1−

P∑

j=1

sj

Tj

)
+ τp

(
1−

P∑

j=1

(1− bp

bq
)
sj

Tj

)
≥

P∑

j=1

Bjsj + maxq∈P sq (5.12)

Clearly, for fixed τp the condition is satisfied for all tp ≥ 0 if it is satisfied for t = 0.

Thus, for
∑P

j=1
sj

Tj
< 1, the connections are schedulable if dp is set to:

dp ≥
∑P

j=1 Bjsj + maxq∈P sq(
1−∑P

j=1(1− bp

bq
) sj

Tj

) for all p = 1, 2, . . . , P (5.13)

Using the leaky bucket-contrained model (σ, ρ), assume that there is no restriction

on the packet size smin
p ,i.e. smin

p = 0, and a single connection per class,

t + τp ≥
P∑

q=1

[
σq + ρq

(
t + τp(1− bp

bq
)
)]

+ maxq∈P smax
q (5.14)

⇒

t

(
1−

P∑

q=1

ρq

)
+ τp

(
1−

P∑

q=1

ρq(1− bp

bq
)
)
≥

P∑

q=1

σq + maxq∈P smax
q (5.15)

For fixed τp, the condition is satisfied for all t ≥ 0 if it is satisfied for t = 0, Thus

for
∑P

q=1 ρq(1− bp

bq
) ≤ 1,

dp ≥
∑P

q=1 σq + maxq∈P smax
q

1−∑P
q=1 ρq(1− bp

bq
)

(5.16)

where
∑P

q=1 ρq ≤ 1.

5.1. MAXIMUM DELAY ANALYSIS USING GENERAL TRAFFIC
SPECIFICATIONS 64

5.1.3 Proof of Necessity

Let us assume that the condition in Theorem 9 does not hold, that is, there exists

a priority p and a time interval [tp, tp + dp − s∗p] within a priority-p busy period such that

for all 0 ≤ τp ≤ dp − s∗p:

tp + τp <
P∑

q=1

∑

j∈Cq

A∗j

(
tp + (1− bp

bq
)τp

)
+ maxq∈P s ∗maxq − s∗p (5.17)

Now assume a scenario where the WTP-scheduler is empty before time 0−, and

at time 0− traffic from connection i ∈ Cr with si = maxr∈P sr arrives. Suppose that,

starting at time 0, all connections j with priorities p or higher transmit the maximum

traffic permitted by their rate-controlling functions A∗j with one exception: the last packet

arrival before tp from a connection k with k ∈ Cp and s∗k = s∗p is delayed until time tp. If

the delayed packet from connection k ∈ Cp with arrival time tp has not started transmisson

at time tp + τp, then the traffic that arrives in time interval [0−, tp + τp] and is transmitted

before the delayed packet consists at least of:

• si = maxq∈P , the transmission time of traffic that arrived at time 0−

• A∗j (tp) − s∗p with j ∈ Cp, the traffic from priority p that arrived in time interval [0, t]

excluding the packet with arrival time t

• A∗j (tp + τp) with j ∈ Cq and q < p, the high priority traffic which arrives in time

interval [0, tp + τp)

Here we do not assume that t ≤ Bp
1 − dp, i.e., in time interval [0, t], the WTP

scheduler could be empty or transmit traffic from classes that have higher priorities. How-

ever, in the best case, the WTP scheduler is always transmitting traffic in the time interval

5.2. COMPARISON OF DELAY BOUND BETWEEN WTP AND SP 65

[0−, t + τ]. Hence, we obtain the following lower bound for W p,t(t + τ), the workload that

is transmitted before the delayed packet:

W p,t(t + τ) >
P∑

q=1

∑

j∈Cq

A∗j

(
tp + (1− bp

bq
)τp

)
+ maxq∈P s ∗maxq − (t + τ) (5.18)

With our assumption in equation 5.17, we obtain that W p,t > 0 in the entire time interval

[t, t + dp − s∗p]. Thus if the packet from connection k arrives at time t has a transmission

time of s∗p, a deadline violation occurs for this packet at [t, t + dp − s∗p].

5.2 Comparison Of Delay Bound Between WTP and SP

In [22], the delay bound for SP using the continuous traffic model is:

dp ≥
∑p

q=1 σq + maxq>psq

1−∑p
j=1 ρj

(5.19)

If WTP wishes to tolerate deadline miss much better than SP for all classes, we

can define a constraint for a set of scheduler parameters as follows:

Theorem 10 Any class p for p = 1. . . . , P in WTP can tolerate deadline miss better than

SP if

P∑

q=1

bp

bq
ρq >

(
1/(

p∑

q=1

σq + maxq∈P smax
q)

)(P∑

q=p+1

(σq + maxq∈P smax
q ρq)+

p∑

q=1

σq

p+1∑

j=P

ρj −
p∑

q=1

ρq

p+1∑

j=P

σj

) (5.20)

Proof: Assuming that the packet size distributions in each class are equal, then maxq∈P smax
q

is equal to maxq>ps
max
q . Using the constraint dWTP

p < dSP
p and after some algebraic

manipulations, we get equation (5.20). Now, we have a sufficient condition that is feasible

for the range of bp/bq defined in Theorem 10.

66

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we showed that PP is a special scheme of lottery scheduling in the

strict priority sense and this enabled us to generalize the basic PP algorithm into a Multi-

winner PP algorithm which ensures that high priority classes get served within deterministic

time quanta. MPP improved the throughput accuracy and response-time variability hence

improving the convergence rate to steady state. We proposed a ticket transfer algorithm

to overcome the problem of the highest priority class from missing its deadline at small

time scales. Simulations showed that MPP with ticket transfer surpassed normal PP and

SP using models of bursty traffic class aggregation. Our algorithm provided even lower

deadline violation probability and mean delay to most classes than normal PP. We used the

segregation group property and MPP scheduling with ticket transfer to build a framework

for relative service differentiation in Assured Forwarding and derive appropriate priority

assignment rules for relative delay differentiation. We then presented the performance of

6.1. CONCLUSION 67

this framework on high-speed programmable routers.

Next, we showed the fundamental mathematical relationship between WTP and

PDD. We also derived a relationship between the maximum waiting-time target ratio and

total system utilization in WTP which is independent of the number of classes and load dis-

tribution. Based on the necessary condition for positive solutions of scheduler parameters,

we derived a sufficient condition for the general case of N classes that enabled the aver-

age delays in WTP to conform to the PDD model. The sufficient condition thus obtained

provided bounds for the Regnier’s inequalities and therefore implies that PDD delay dy-

namics can be readily used to search for positive solutions of scheduler parameters in WTP.

Furthermore, we obtained a relationship where consecutive scheduler parameter ratios for

feasible load distributions are always larger than consecutive target ratios. Based on this,

we proposed a measurement-based DAC algorithm using WTP for multi-class delay differ-

entiation. The main advantage of this extension in comparison to earlier work is that we are

able to determine infeasible load distributions quickly and efficiently. The performance of

the DAC algorithm was analyzed and we verified by simulations that consecutive scheduler

parameter ratios of most feasible load distributions will converge rather quickly to be larger

than consecutive target ratios using Gauss-Seidel algorithm. The rate of convergence can

be useful as a measure for the effectiveness of various numerical algorithms in computing

WTP scheduler parameters. A summary overview of the mathematical relationship between

WTP and PDD is illustrated in the appendix.

Last but not least, we obtained the worst case delay bound for WTP for the general

case of P classes. We showed that, as in the analysis of average delay, we had a degree

6.2. FUTURE WORK 68

of freedom provided by the set of scheduler parameters to adjust the delay bound of each

class. Recently, some researchers introduce a framework that combines the concept of PDD

with absolute QoS requirement [5, 6] known as Quantitative Assured Forwarding (QAF). In

QAF, service differentiation is enforced over the duration of a busy period [5, 6]. The QAF

concept requires tight QoS mechanism to achieve stringent performance metrics, in other

words, QoS mechanism must be able to provide proportional and absolute differentiation

on losses, delays and throughputs to multiple classes of traffic. In this thesis, we showed

that WTP can achieve both proportional delay differentiation and maximum delay bound

requirement under certain schedulability conditions by appropriate selection of scheduler

parameters. What we have analyzed in details are the delay differentiation mechanism and

hence, this may be a first step in using WTP to provide only QAF delay differentiation in

terms of proportional and absolute performance metrics.

6.2 Future Work

We conclude this thesis by outlining areas that may have potential interest for

future research work.

It is possible to derive interesting results using the necessary and sufficient condi-

tion to adjust the PP scheduler parameters for relative service differentiation. Specifically,

it is difficult to obtain a closed form solution to the average queueing delay for each class

of the PP scheduler in terms of the PP scheduler parameters pi, but the authors in [17]

proposed two approaches to estimate the average queueing delays using a decomposition

method. These two approaches relate the estimated queueing delay for each class in the PP

6.2. FUTURE WORK 69

scheduler with pi, hence, a meaningful extension to the necessary and sufficient condition

would be to obtain the lower and upper average delay bounds that a class suffers within its

corresponding parameter range. The delay bounds so obtained would significantly contrast

the use of probabilistic priority as opposed to strict priority. As the delay bound of each

class in the SP scheduler fluctuates with load variation, it would be worth determining if

the necessary and sufficient condition of the PP scheduler parameters pi for relative delay

differentiation can better that of the SP scheduler. We have not attempted in this thesis

to derive how the PP scheduler parameters can be tuned such that PDD can be achieved.

However, if the feasible region of pi that satisfies PDD exists, we can conjecture that it will

lie within the necessary and sufficient region for relative delay differentiation that we have

sketched out in this thesis since PDD is a form of relative delay differentiation that has

a stricter requirement for consistent fixed ratio spacing. Hence, a potential research area

might be to define a relationship for pi that satisfies both Theorem 1 and equation (1.2).

Alternatively, we can also repeat the estimation approach as described earlier to obtain a

relationship between pi and the estimated queueing delays using the decomposition method.

This approach may not satisfy equation (1.2), but is nonetheless straightforward, and if the

set of pi so obtained satisfies Theorem 1, then we can conclude that we have a set of pi that

approximates PDD reasonably.

Also, the algorithms proposed for MPP with ticket transfer are still probabilistic

in nature. The algorithms proposed could be altered with other deterministic techniques

for example in the way that lottery scheduling has been improved using stride scheduling

and hierarchical stride scheduling [33] in order to strike a balance between the randomness

6.2. FUTURE WORK 70

of probabilistic scheduling and meeting hard deadlines.

A question that is worth pursuing is the impact of class selection from random

number of users on our load DAC algorithm for WTP scheduler. The purpose of the load

DAC algorithm is to facilitate the router in computing positive WTP scheduler parameters

while class selection is an external factor that is highly dependent on the type of guarantees

that the network can offer. Hence, it would be interesting to show how a user can be

dissatisfied by the constraint that all or some of the nodes in the network use WTP scheduler

and the DAC algorithm. There are already some research works that try to solve this

problem. In [19], game theories are combined with the WTP scheduler to solve the problem

of class selection. However, results are only available for the 3-class system. Repeating their

experiments using our DAC algorithm and their dynamic adaptation algorithms for the

general N -class system may be a possible research area to provide robust end-to-end class

selection algorithms. Also, by combining the conditions for achieving PDD and maximum

delay bounds obtained in this thesis, we could attempt to observe the performance of the

WTP scheduler in comparison to the QAF framework in [5, 6]. For this purpose, the region

of possible scheduler parameters have already been characterized in this thesis. The next

possible extension to QAF is to couple a dropping mechanism which is the primary role of

buffer management that works with the WTP scheduler.

Analyzing the rate of convergence of the WTP scheduler parameter ratios for other

numerical algorithms and testing the DAC algorithm for other non-Poisson traffic models

will have to be examined. Other optimization-based numerical algorithms that could be

used to compute the WTP scheduler parameters include the steepest descent algorithm and

6.2. FUTURE WORK 71

the Netwon-Rapson method. It would then be necessary to determine what the conditions

for the existence of a solution are. Since the DAC algorithm is based on load measurement,

a natural question to ask is: How to choose a limited number of measurements for best

estimation resolution and quality ? This question can be worth pursuing to help reduce

the overhead of iterative computation in the router. Furthermore, it would be desirable to

translate the number of loops in Gauss-Seidel algorithm into actual CPU cycles consumed

by the DAC mechanism. These experiments can be measured accurately in high-speed

programmable network processor such as Intel IXP1200 so as to determine the scheduling

overhead of WTP. We note that devising good technique to reduce the cost of deploying

intensive computational mechansim in the DiffServ networks remains an important open

problem.

72

Chapter 7

List of Publications

The following papers have been accepted:

1. C.W. Tan and C.K. Tham, “Proportional Bandwidth Guaranteed Probabilistic

Priority Scheduling for Assured Forwarding”, Proceedings of IEEE High Speed

Networking Workshop 2003, San Francisco, California, Mar 2003

2. C.W. Tan and C.K. Tham, “Efficient Implementation of Relative Differentiated

Services using Proportional Probabilistic Priority”, to appear in Proceedings of IEEE

International Conference on Networks (ICON 2003), Sydney, Australia, 28 Sept - 1

Oct 2003.

3. C.W. Tan and C.K. Tham,“Achieving Relative Differentiated Services using

Proportional Probabilistic Priority Scheduling on Network Processor”, to appear in

Proceedings of 6th IFIP/IEEE International Conference on Management of

Multimedia Networks and Services (MMNS 2003), Belfast, Northern Ireland, 7-10

Sept 2003.

73

The following paper is in preparation:

C.W. Tan and C.K. Tham,“Achieving Relative Differentiated Services using Proportional

Probabilistic Priority Scheduling on Network Processor”, Computer Communications

Journal, Elsevier Science, 2004

C.W. Tan and C.K. Tham, “Load Characterization of Waiting Time Priority Scheduler

for Multi-class Proportional Delay Differentiation”, Computer Networks Journal, Elsevier

Science, 2004

74

Bibliography

[1] T. Anderson, S. Owicki, J. Saxe and C. Thacker, High-speed switch scheduling

for local-area networks, Proc. ACM Transaction on Computer Systems, Nov 1993

[2] S. Blake, D. Black, M. Carlson, E. Davis, Z. Wang and W. Weiss, An

architecture for differentiated services, Dec 1998, IETF RFC 2475

[3] W. Bux, Wolfgang, Ton, Andreas and Ronald, Technologies and building blocks

for fast packet forwarding, IEEE Communications Magazine, Jan 2001

[4] S. Chaudhry and A. Choudhary, Time dependent priority scheduling for

guaranteed QoS systems, Proc. IEEE ICCCN 97, Sep 1997

[5] N. Christin and J. Liebeherr, A QoS architecture for quantitative service

differentiation, IEEE Communications, vol. 41(6), pp. 38-45, Jun 2003

[6] N. Christin, J. Liebeherr and T.F. Abdelzaher, A Quantitative Assured

Forwarding Service, Proc. IEEE INFOCOM 2002, Jun 2002

[7] D.D. Clark, S. Shenker and L. Zhang, Supporting real-time applications in an

integrated services packet network: architecture and mechanism, Proc. ACM

SIGCOMM, 1992

BIBLIOGRAPHY 75

[8] C. Dovrolis and P. Ramanathan, Dynamic class selection: from relative

differentiation to absolute QoS, Proc. IEEE ICNP 2001, Nov 2001

[9] C. Dovrolis, D. Stiliadis and P. Ramanathan, Proportional differentiated services

: Delay differentiation and packet scheduling, Proc. ACM SIGCOMM, Sep 1999

[10] C. Dovrolis, Proportional differentiated services for the Internet, Ph.D. Thesis

University of Wisconsin-Madison, 2000

[11] J. Eggleston and S. Jamin, Differentiated services with lottery scheduling, Proc.

Int’l Workshop on Quality of Service (IWQoS’01), Jun 2001

[12] L. Essafi, G. Bolch and A. Anders, An adaptive waiting time priority scheduler

for proportional differentiation model, Tech. Report TR-I4-00-06 University of

Erlangen-Nuernburg, Sep 2000

[13] L. Essafi, G. Bolch and H.D. Meer, Dynamic priority scheduling for proportional

delay differentiated services, Tech. Report TR-I4-01-03 University of

Erlangen-Nuernburg , Mar 2001

[14] L. Huston and P. Honeyman, Partially connected operation, Proc. Second

USENIX Symposium on Mobile and Location-independent Computing, Apr 1995

[15] Intel IXP 1200 Network Processor: Microcode Programmer’s Reference Manual

Revision 11, Part No. 278304-011 March 2002

[16] Y. Jiang, C.K. Tham and C.C. Ko, A probabilistic priority scheduling discipline

for multi-service networks, Computer Communications 25 (13) 2002 pp.

1243-1254, 2002

BIBLIOGRAPHY 76

[17] Y. Jiang, C.K. Tham and C.C. Ko, Delay analysis of a probabilistic priority

scheduling discipline, European Trans. Telecommun., 2002

[18] L. Kleinrock, Queueing Systems: Vol.2, Computer applications, John Wiley &

Sons, 1976

[19] S.C.M. Lee, J.C.S. Lui and D.K.Y. Yau, Admission control and dynamic

adaptation for a proportional-delay DiffServ-enabled web server, Proc. ACM

SIGMETRICS, Jun 2002

[20] M.K.H. Leung, J.C.S. Lui, D.K.Y. Yau, Characterization and performance

evaluation for proportional delay differentiated services, Proc. IEEE ICNP 2000,

Nov 2000

[21] M.K.H. Leung, J.C.S. Lui, D.K.Y. Yau, Adaptive Proportional Delay

Differentiated Services: Characterization and Performance Evaluation, Proc.

IEEE/ACM Trans. Networking, Vol. 9, No. 6, Dec 2001

[22] J. Liebeherr, D. Wrege and D. Ferrari, Exact Admission Control for Networks

with a Bounded Delay Service, Proc. IEEE/ACM Trans. Networking, Vol. 4, No.

6, Dec 1996

[23] T. Nandagopal, N. Venkitaraman, R. Sivakumar and V. Barghavan, Delay

differentiation and adaptation in core stateless networks, Proc. IEEE INFOCOM

2000, 2000

[24] K. Nicholas, S. Blake, F. Baker and D.L. Black, Definition of the differentiated

services field (DS Field) in the IPv4 and IPv6 Headers, IETF RFC 2474, Dec

1998

BIBLIOGRAPHY 77

[25] H.T. Ngin and C.K. Tham, Achieving Proportional Delay Differentiation

Efficiently, Proc. IEEE ICON, Sep 2002

[26] R. Pan, B. Prabhaker and K. Psounis, CHoKe, a stateless active queue

management scheme for approximating fair bandwidth allocation, Proc. IEEE

INFOCOM 2002, Mar 2002

[27] J. Regnier, Priority assignment in integrated services networks, Tech. rep.

LIDS-TH-1565, Massachusetts Institute of Technology, Dec 1986

[28] J. Sethuraman, M. Squillante, Optimal stochastic scheduling in multi-class

parallel queues, Proc. IEEE ACM SIGMETRICS , 1999

[29] I. Stoica, Stateless Core: A scalable approach for Quality of Service in the

Internet, Ph.D. Dissertation, CMU-CS-00-176, 2000

[30] C.-K. Tham, Q. Yao and Y. Jiang, Achieving differentiated services through

multi-class probabilistic priority scheduling, Computer Networks,40, pp. 577-593,

2002

[31] L. Thiele, S. Chakraborty, M. Gries and S. Kuenzli, Design space exploration of

network processor architectures, Proc. First Workshop on Network Processors at

the 8th International Symposium on High-Performance Computer Architecture

(HPCA8), Feb 2002

[32] C. Waldspurger and W. Weihl, Lottery scheduling: Flexible proportional-share

resource management, Proc. the First USENIX Symposium on Operating Systems

Design and Implementation (OSDI), Nov 1994

[33] C. Waldspurger, Lottery and stride scheduling: Flexible proportional-share

BIBLIOGRAPHY 78

resource management, Ph.D. Thesis, Massachusetts Institute of Technology, Sep

1995

[34] M. Zhang, R. Wang, L. Peterson and A. Krishnamurthy, Probabilistic packet

scheduling: Achieving proportional share bandwidth allocation for TCP flows,

Proc. IEEE INFOCOM 2002, Jun 2002

79

Appendix A

Appendix

80

Figure A.1: An interpretation of WTP and PDD using set diagrams. A point in a set
denotes a vector of N average delays for N -class system

