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Summary

This thesis discusses the issues of communication scheduling and priority map-

ping in CAN bus. In recent years, fieldbuses are widely adopted as the commu-

nication network in distributed control systems and other industrial applications.

Meanwhile, scheduling algorithms for fieldbuses are studied to improve the perfor-

mance of fieldbus. Priority-driven scheduling algorithms (fixed-priority or dynamic-

priority) are popular in fieldbus systems. However, due to the limited number of

priority levels in practical fieldbus, the performances of scheduling processes can

not be as effective as theoretical analysis under the condition of unlimited priority

levels. Although centralized scheduling schemes can avoid this problem, they are

not flexible and can not utilize native advantages of CAN bus.

This project proposes a new priority assignment scheme, the Dynamic Local

Priority (DLP) scheme, to solve the problem of limited number of priority levels

for CAN bus. In order to calculate and assign priorities to messages, a local priority

list (Network Node List, NNL) is maintained in every node on the CAN bus to store

the information of the message set. And the nodes can update the local NNL at

optimized time intervals and synchronize with other nodes on the bus. Theoretical

analysis shows that DLP scheme has performance closer to ideal non-preemptive

EDF scheduling than the schedulers implemented by other non-preemptive algo-

rithms.

And a new effective schedulability condition for non-preemptive EDF algorithm

is proposed, which can precisely test the schedulability of any given message set.

In addition, general scheduling algorithms in fieldbus, especially in CAN bus, are

v



analyzed and summarized. Most popular scheduling algorithms, including Rate

Monotonic (RM), Deadline Monotonic (DM) and Earliest Deadline First (EDF)

are studied.

Finally, a platform-independent scheduling simulator software is developed so

as to compare the performances of different scheduling algorithms for CAN bus.

And the simulation result shows that both the new schedulability condition and

DLP scheme are effective and have advantages over previous methods. When the

bus load is heavy, the DLP scheme can get about 20% better performance than

traditional fixed-priority scheduling algorithms.
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δ variance

µ mean

ν the bitrate of the bus

τi message i

τbit the time to transmit a bit on the bus
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Ci computation time or transmission time of message i
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Chapter 1

Introduction

In this chapter, the background and the purpose of the project are discussed. An

overview of communication scheduling is also given, and finally the structure of the

thesis is listed.

1.1 Background

Real-time systems have been developed for many years. In the earlier days, elec-

tric devices were mostly driven by analog components, which were always large

and inaccurate. And the prices of components were high and they were not easy

to maintain. With progress and achievements in microprocessor and semiconduc-

tor industry, analog devices were replaced by digital devices gradually, and heavy

mechanical controllers were changed to electronic controllers. At the same time,

systems are becoming more and more complex, involving large number of devices,

sensors, actuators and controllers. The automobile industry is a good example.

The first car, if we can call it a car, was simple and crude. It was composed of

only several basic components. But now in modern cars, we can find very complex

wire connections, various electronic devices, electronic control units to control the

engine, the brake, suspension and many other hydraulic and mechatronics systems.

Every system is relatively independent and could exchange information with oth-
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Chapter 1. Introduction 2

ers. They combine to form a whole complex real-time system, a distributed control

system (DCS).

When a car is running, the electronic control unit (ECU) for the engine will

compute the volumes of air and fuel that are needed in every stroke and send

commands to the engine. Another ECU monitors the status of the chassis, the

pressure of tyres, the condition of the road, the force sent to the brake. In fact,

there are hundreds of sensors and actuators in a modern vehicle, which are under

the control of one or even several ECUs. When working, such intelligent devices

exchange information constantly. This example reflects the infrastructure of most

modern DCSs: several controllers work independently, meanwhile communicate

with one another to maintain the running of the whole system.

1.1.1 Fieldbus

Since 1980s, microcontrollers become more powerful while their prices become

lower, thus making it possible to develop computer network systems with high

speed communication capacity. In order to implement information integration

and comprehensive automation of an enterprise, an industrial low-level network

is necessary. And it should be low cost with high reliability and able to support

multi-point digital communication. Fieldbus [28] [32] is developed to meet those

practical requirements.

Fieldbuses are special local area networks to connect distributed controllers,

intelligent sensors and actuators. A twisted pair of wires is the most popular trans-

mission media of fieldbuses while in some circumstances coaxial cable and optical

fiber are used. Most of fieldbuses use standard or a simplified model derived from

OSI (Open Systems Interconnection) Reference Model. Compared with traditional

LANs (such as Ethernet), they have some characteristics more suitable for real

time control and communications in DCS. For instance, the head of a message on

fieldbuses is normally much smaller, which decrease the cost of bandwidth waste.
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Meanwhile, because of the simplification of network model, fieldbuses has shorter

jitter time and less overhead than LANs. And some fieldbuses use special protocols

to improve the communication efficiency, such as CAN bus.

There are numerous kinds of fieldbus standards and techniques. And many

fieldbus standards are designed for a specific purpose or applied in certain indus-

trial fields. The foundation of SP50a fieldbus committee of the Instrument Soci-

ety of America (ISA) in 1980s indicated the start of the development of fieldbus

standard. At the beginning of 1990s, some companies created the Inter-operable

Systems Project (ISP) and other major SP50 companies formed the WorldFIP (Fac-

tory Instrumentation Protocol) standard group [32]. Later the ISP and WorldFIP

joined to form the Fieldbus Foundation and developed a new fieldbus technology,

Foundation Fieldbus (FF), which defines low speed (H1, 31.25kbps) and high speed

transmission (H2, 1Mbps). Nowadays, it has been a standard that is widely sup-

ported in the United States and Asia. At the same time, other fieldbus standards

were developed in Europe. Profibus, which has three main types: FMS (Flexible

Manufacturing Systems), DP (Distributed Peripherals) and PA (Process Automa-

tion), is a standard in Germany and popular in Europe.

Another important fieldbus standard is the CAN bus (Controller Area Net-

work), which was developed by Robert Bosch GmBH [5]. The CAN bus was de-

signed for automobile industry initially. It is a multi-master architecture with

asynchronous transmission. The CAN bus uses a non-destructive bitwise arbitra-

tion, which can successfully avoid communication collisions in the normal network

protocols, such as IEEE 802.3 Ethernet Protocol. It is widely accepted because of

its acceptable speed, high noise immunity, low cost per node, and relative degree

of determinism.

There are some other fieldbus standards. For example, HART (Highway Ad-

dressable Remote Transducer) is suitable for instruments. LON (Local Operating

Network) is used to interconnect components of widespread functionality and fac-

tory automation. Because of the low cost, high reliability and powerful features,
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fieldbuses are widely used in many industrial fields, such as integrated automation,

process control and measurement [30] [31]. Selection of fieldbus standard depends

on practical restrictions and requirements.

1.1.2 Scheduling

When an industrial network is set up, a very important issue is how to control

the message transmission on the bus. This is the task of message scheduling [24].

Broadly speaking, scheduling can be classified as clock-driven, priority-driven and

a hybrid of both (see Chapter 3 for details). In practical distributed real-time

systems, priority-driven scheduling schemes are widely adopted. In a uniprocessor

environment, task scheduling is the critical part of an operating system. And such

systems always adopt clock-driven or weighted clock-driven scheduling algorithms

[33]. However in distributed environments, due to the difficulty to synchronize

clock among distributed nodes, clock-driven scheduling is rarely adopted. In stead,

priority-driven scheduling algorithms are very popular in distributed systems [1].

Priority-driven scheduling algorithms can have either fixed (static) or dynamic

priority. Rate Monotonic and Deadline Monotonic algorithms are excellent fixed-

priority scheduling schemes while Earliest Deadline First algorithm is typical dynamic-

priority scheduling. And due to the limited bits of fieldbus for priority, the limited

number of priority levels could not guarantee the thorough utilization of scheduling

algorithms. Hence, an effective priority assignment is the necessary for the high

performance of the network.

1.2 The project and contribution

CAN bus has been widely used in various industrial fields for about 10 years.

However, to meet the requirement of increasingly complex and flexible system,

the CAN bus may have to be modified. The generic protocol of CAN bus is fix-
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priority scheduling. In order to thoroughly utilize current CAN controllers in use,

especially to improve the message transmission capacity of CAN bus, it is beneficial

to introduce dynamic-priority scheduling into CAN bus. Meanwhile, CAN 2.0A can

only provide limited bits for priority mapping. So an effective method to assign

priority is necessary for such dynamic-priority scheduling algorithms in CAN bus.

The main work and contribution of this project is:

1. a new priority assignment scheme, the Dynamic Local Priority (DLP) scheme,

is proposed to solve the problem of limited number of priority levels, so as to

improve the transmission performance of CAN bus, without compromising

the current CAN protocol.

In DLP scheme, a local priority list (Network Node List, NNL) is maintained

in every node on the CAN bus to store the information of the message set

and carry out the real-time priority update. Further more, nodes can update

the local NNL at optimized time intervals and synchronize with other nodes

on the bus. By this way, the limited priority levels of the given message set

can be utilized sufficiently, therefore improves transmission performance;

2. a new effective schedulability condition for non-preemptive Earliest Deadline

First algorithm (EDF) is proposed, which can precisely test the schedulabil-

ity of any given message set. In addition, general scheduling algorithms in

fieldbus, especially in CAN bus, are analyzed and summarized. Most popular

scheduling algorithms, including Rate Monotonic (RM), Deadline Monotonic

(DM) and EDF are studied;

3. a software simulation platform for CAN bus is developed, which can simulate

the communication of the network and carry out the schedulability test. The

architecture of the simulation platform is open, so that it is easy to add more

implementations of other scheduling algorithms to enable simulation to be

carried out.
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Theoretical analysis shows that DLP scheme has performance close to optimal

non-preemptive scheduling. And the new schedulability condition can give a nec-

essary and sufficient schedulability test. Simulation results show that both the

new schedulability condition and DLP scheme are effective and have advantages

over previous methods. In particular, when the CAN bus load is very heavy, the

DLP scheme can get about 20% better performance than traditional fixed-priority

schedulers.

1.3 Organization of the thesis

This thesis is organized as follows: Chapter 1 introduces the background and the

purpose of this thesis. Chapter 2 gives an overview of the CAN bus, including

its background, standard and application. Chapter 3 contains the discussion on

scheduling algorithms, including RM/DM, EDF and their derivatives. Chapter 4

gives the analysis of current schedulability conditions for non-preepmtive EDF

scheduling algorithm, and an new schedulability condition and corresponding al-

gorithm are proposed. Chapter 5 contains discussion on priority inversion and the

DLP scheme for CAN bus. Chapter 6 gives the implementation of simulation and

the analysis of experiment results. Finally, Chapter 7 summarizes this thesis.



Chapter 2

Controller Area Network

This chapter introduces Controller Area Network (CAN) bus. Topics of communi-

cation model, arbitration mechanism and error handling of CAN are discussed.

2.1 Background

In the field of computer communication, protocols of RS-232 and CCITT V.24

were widely used. However, they are peer-to-peer data communication standard

with low speed, and lack support to high level functions and operations between

CPUs. In addition, complex and large-scale applications require a great number

of sensors, actuators and controllers, which are distributed and far away from each

other. Therefore, a communication system is needed to meet the requirements of

low cost and high reliability in various working environments.

The Controller Area Network (CAN) [5] [10], a kind of fieldbus, was originally

developed by Robert Bosch in 1980s. It is a serial data communication protocol

to handle data exchanges between controllers and testing instruments in modern

automotive vehicles. Normally, dedicated communication media are required to

interconnect different control components because of the complexity of the control

functions implemented by engine control units, anti-lock brakes (ABS), anti-skid

controls and other controllers. However, with the increase in complexity and quan-
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tity of control components, the traditional peer-to-peer connection by wires and

connectors are not adequate. The invention of CAN provides an efficient way to

reduce the wiring complexity and makes it possible to interconnect several devices

using a common communication medium.

In automotive electronics, CAN could be found in engine control components,

sensors, ABS, including some cheap electronic devices, such as electric windows and

lamp clusters, to replace wiring harness otherwise required. As a matter of fact,

CAN was adopted and migrated from vehicles into machinery and automation.

Applications of CAN range from high-speed networks to low-cost multiplex wiring.

It has been applied widely in medical instrumentation, elevator controls, public

transportation systems and industrial automation control components.

After the invention of CAN bus, its development has never stopped. In 1991, the

CAN specification version 2.0 was released. The most important modification in

this version was the extension of the message format of CAN bus so as to meet the

requirement of assignment of message identifiers in a large address range. CAN 2.0

Part A follows the definition in CAN specification 1.2 so that the message format in

CAN specification 1.2 is still valid, while CAN 2.0 Part B describes both standard

and extended message formats and the extended format can contain nearly 229

different message identifiers. Nowadays, CAN bus is widely used in Europe and

many deviations based on CAN bus are developed to extend it to more application

fields.

2.2 Basic features

CAN bus is a kind of serial communication network. Because of some novel and

unique designs, compared with normal communication buses, the data communi-

cation of CAN is outstanding in reliability, flexibility, and real-time characteristics.

The basic features of CAN are:

• Multi-master and peer-to-peer communication: On the CAN bus, any node
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can be the master or slave and no host address is needed. By means of frame

filtering, it is simple to implement broadcast and peer-to-peer communica-

tions.

• Message with priority: On CAN bus, messages are encapsulated into frames

with priorities to meet real-time requirements of different messages. The

message with the highest priority could be transmitted in no more than 134µs.

• Non-destructive bus arbitration: When several nodes send messages to the

CAN bus simultaneously, messages with low priorities will abort automati-

cally, while the message with highest priority will be transmitted successfully

without any communication collision. Therefore the time cost in bus arbi-

tration is greatly reduced. And the network could endure even very heavy

network load without breakdown.

• Flexible transmission rate and distance: The transmission rate of CAN bus

is configurable. The longest distance could reach 10km if the bitrate is under

5kbps. And if the transmission rate reaches up to 1Mbps, the longest distance

will be 40m.

• Large network capacity: The maximum number of nodes in a CAN bus sys-

tem depends on the number of bits assigned to the node identifier. There are

2032 different frame identifiers (CAN 2.0A), while with CAN 2.0B extended

standard, the number of frame identifiers is 532676608. However, in practice,

the number of nodes is much smaller because of the limitations of the driving

capacity of hardware. Normally the number of nodes on CAN bus is less than

110.

• Short data length: The short data lengths (no more than 8 bytes in data

field) of CAN messages could reduce the transmission time and disturbance

during transmitting.

• Error detection and correction: With CRC error detection and error handling
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mechanisms,the probability of non-detected damaged frames is less than 4.7×

10−11 in CAN bus.

• Flexible communication medium: The communication medium of CAN could

be twisted wiring pair, multicore or coaxial cable or optical fibre. Network

designers have flexible choices in different environments.

To achieve design transparency and implementation flexibility, CAN has been

subdivided into different layers according to the ISO/OSI Reference Model:

• The Data Link Layer

– The Logical Link Control (LLC) sublayer

– The Medium Access Control (MAC) sublayer

• The Physical Layer

The above definition is adopted in CAN Specification 2.0 Part B. In Part A, the

LLC sublayer and the MAC sublayer are described as the Object Layer and the

Transfer Layer, respectively. Figure 2.1 [5] shows the layered structure of CAN and

corresponding functions.

The main functions of the LLC sublayer is to provide service for data trans-

mission and remote data request, frame acknowledging, overload notification and

recovery management. The MAC sublayer represents the kernel of the CAN proto-

col. It passes received messages to the LLC sublayers and accepts messages to be

transmitted from the LLC sublayer. The MAC sublayer is responsible for message

framing, arbitration, ackowledgements, error detection and signalling. It is not

allowed to redefine or modify the characteristics of the MAC sublayer.

The Physical Layer defines the electrical characteristics and how signals are

actually transmitted. It deals with the descriptions of bit timing, bit encoding and

synchronization. However, the Physical Layer is not defined in the CAN specifi-

cation, and this makes it flexible to choose different physical medium according to

the requirements of individual environments.
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Figure 2.1: CAN layers

2.3 Fundamental specifications

2.3.1 Communication model

The basic concept of CAN protocol is similar to the producer/consumer model in

the networking world, in which one node produces data on the bus and other nodes

consume. But there is one significant difference between CAN and other fieldbus

solutions: in the communication model of CAN, all nodes on the bus are equivalent.
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No bus master or arbitrator is required.

When data is transmitted on the bus, no node has the host address. Instead,

every message has a unique identifier in its data content to distinguish it from

others. The identifier of one message has two functions: the first is to define the

message content; and the second is to represent its priority, which determines the

result of arbitration process when transmitting.

When a node wants to transmit data to the bus, it will send the data to be

transmitted and an identifier to the CAN controller. The CAN controller then

encapsulates data and the identifier into one or several frames and sends them to

the buffer of the transmitter. Once the node gain the access to the bus, data in the

buffer will be transmitted to the bus and all other nodes on the bus will become

receivers. These nodes will test received frames to determine whether the data is

what they want to accept or not, based on the identifiers of the frames. All frames

they do not need will be discarded.

Because of the communication model described above, CAN can not only im-

plement the peer-to-peer communication, which means one single node accepting

data, but also perform broadcast and synchronized communication, which means

multiple nodes can accept the same frame using one single transmission. And the

advantage of this event-triggered transmission can keep the load utilization on the

bus low.

2.3.2 Frame types and formats

Two types of complementary logical values could be transmitted on the CAN bus:

dominant and recessive. The dominant is prior to the recessive, which means that

when dominant and recessive bits are sent to the bus by different nodes simulta-

neously, the final value on the bus will be dominant. For example, in case of a

wired-AND implementation of the bus, the dominant level would be represented

by a logical ’0’ and the recessive level by a logical ’1’. In the CAN specification, no
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definitions of the electrical characteristics of bus medium devices (such as electrical

voltage, light) are provided. Suggestions to device electrical characteristics of CAN

bus based on twisted wiring pair are given in ISO 11898:1993.

There are two different frame formats in CAN communication.† The difference

between them is the length of the identifer field. The standard format uses 11 bits

to represent the identifier while the extended format uses 29 bits. We will show

the detail below.

Four frame types exist in a message transfer of CAN protocol. The types and

corresponding functions are listed below.

• Data frame: to carry data from a transmitter to the receivers;

• Remote frame: Sent by a bus node to request the transmission of the Data

frame with the same identifier;

• Error frame: Sent by any node to detect a bus error;

• Overload frame: To provide an extra delay between the preceding and the

succeeding Data or Remote frames.

Figure 2.2 shows the format of a CAN frame, which could be a data frame or a

remote frame. And both those two types of frames could be in the standard format

or the extended format.

./01/ 2331045 6178/10/829385:; <29/12:385:; =0/0 385:; <><385:; ?9; 23310456<@385:;

A9/5131045BC0D5 A9/5131045 BC0D521EF51:20; 31045=0/0 31045

Figure 2.2: Data frame

†In the remaining part of this thesis, we suppose that all frame formats are consistent with
CAN specification 2.0B, In addition, wired-AND is applied, which means logical ’0’ represents
dominant level and logical ’1’ represents recessive level.
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The Start of Frame (SOF), a single dominant bit, marks the beginning of Data

frames and Remote frames. And its leading edge could be a signal to synchronize

the bus nodes.

SOF is followed by the Arbitration field. The format of the Arbitration field is

different for the standard format and the extended format. Figure 2.3 shows the

details. Almost all new CAN controllers can support both the standard format

and the extended format. Some of them support only the standard format, but

are 2.0B passive devices, which means they can tolerate other devices transmitting

frames in the extended format and still work correctly.

GHI JJKLM NOPQOMLRLQS
TUT VWX

YSKLMSZML[O RLQ\P
N
V]

Ŝ

X[OMS[\ RLQ\P VZMZ RLQ\P

GHI JJKLM NOPQOMLRLQS
TUT VWX

YSKLMSZML[O RLQ\P

S
J

Ŝ

X[OMS[\ RLQ\P VZMZ RLQ\P
N
V]

GTT J_ KLM NOPQOMLRLQS

`Za

`Ka

Figure 2.3: The difference between the standard format and the extended format.
(a) The standard format; (b) The extended format

The RTR bit (Remote Transmission Request) is also a part of the Arbitration

field. In Data frames the RTR bit is dominant. In Remote frames the RTR bit has

to be recessive.

The SRR bit (Substitute Remote Request) in the extended frames is always a

recessive bit, which replaces the position of RTR bit in standard frames. Therefore,

this bit could help to solve the collision when a frame in the standard format and

another frame in the extended format with the same base ID (the first 11 bits of

the identifier) are sent simultaneously: the standard frame has higher priority level.

The IDE bit (Identifier Extension bit) belongs to the Arbitration field for the

Extended format and is recessive. But it belongs to the Control field for the
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Standard format and it is dominant.

bcdefg chig

ijklfjm nopmq

chir

csls nopmq

chitfr chiu
vpwpfxpq yolw csls hpkzl{ ijqp

jf ivi nopmq
|fyolfslojknopmq

}lskqsfq njf~sl skq d�lpkqpq njf~sl

Figure 2.4: The format of the Control field

Figure 2.4 shows the format of the Control field in standard frames and extended

frames. The Control field has 6 bits. For the Extended format, the first two bits

(r1 and r0) are reserved, which means receivers could accept either dominant or

recessive bits of them. For the Standard format, the first bit is IDE bit, dominant

only. The other four bits are Data Length Code.

Following the Control Field is the Data field1 that can be from zero to eight

bytes in length.

The CRC (Cyclic Redundancy Code) field contains a 15-bit CRC sequence and

a CRC delimiter. In order to carry out the CRC calculation, a polynomial is

defined, the coefficients of which are given by the destuffed bit stream consisting

of SOF, the Arbitration field, the Control field, the Data field (if present) and

the 15 lowest coefficients are 0. This polynomial is divided (modulo-2) by the

generator-polynomial:

X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1

The remainder of this polynomial division is the CRC sequence. The algorithm
could be implemented as follows:

; CRC_RG(14, 0): A 15 bit shift register

; NXTBIT: The next bit of the bit stream

;

CRC_RG = 0;

REPEAT

CRCNXT = NXTBIT XOR CRC_RG(14);

1The Remote frame has no Data field.
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CRC_RG(14:1) = CRC_RG(13:0);

CRC_RG(0) = 0;

IF CRCNXT THEN

CRC_RG(14:0) = CRC_RG(14:0) XOR 0x4599H;

ENDIF

UNTIL (CRC sequence starts or ERROR occurs)

After transmitting the last bit of the Data field, the content of CRC_RG will be

transmitted as the CRC sequence.

The ACK (acknowledge) field consists of two bits: the ACK slot and the ACK

delimiter. The ACK slot in a message from a transmitter is recessive. When a

receiver has received the message correctly2, it will superscribe the recessive bit

of the transmitter by a dominant bit. The detection of this dominant bit by the

transmitter means that the message is transmitted correctly and is accepted by at

least one node. Another part of the ACK field, the ACK delimiter, is a recessive

bit.

The end of frame field (EOF) indicates the termination of the frame. In a Data

frame and a Remote frame, it is a flag sequence consisting of seven recessive bits.

2.3.3 Arbitration mechanism

CAN is a particular kind of carrier sense multiple access (CSMA) network. And its

arbitration mechanism is similar to that in the IEEE Standard 802.3 [35], which

is for 1-persistent CSMA/CD LAN. What CAN employs is a so-called carrier

sense multiple access with collision avoidance (CSMA/CA), which enforces a clear

medium access policy based on the priority of the messages to be transmitted.

The nodes that wish to transmit would keep monitoring the bus. Once they

detect that the bus is idle, they may start to transmit their messages from the

message identifier, bit by bit. At the same time, every transmitter compares the

level of the bit transmitted with the level monitored on the bus. If these levels

are equal the transmitter may keep transmitting. As mentioned previously, if a

2The CRC sequence is matched.
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Figure 2.5: The arbitration mechanism in CAN

dominant bit and a recessive bit are sent to the bus simultaneously, the resulting

bus value is a dominant bit. Therefore, if a transmitter that sends a recessive bit,

but detects a dominant level on the bus (situation where A and C lose in Figure

2.5), it loses arbitration and must abort transmitting any further information im-

mediately. What the lost node could do is to keep listening the bus until the bus

becomes idle again. Then it may send its message for another round of arbitration.

The arbitration process goes on and eventually only the message with the highest

priority (lowest identifier value) wins the arbitration.

The arbitration mechanism of CAN guarantees that neither information nor

time is lost. The node with the highest priority will continue to transmit without

any interruption. On the contrary, in the CSMA/CD used by Ethernet, if a collision

occurs on the bus, all colliding nodes have to terminate the transmission, wait for

a random period of time, and repeat the whole process all over again. There is no

random waiting in the arbitration process of CAN bus, which gives CAN a very

predictable behavior. And because of the avoidance of collision, the CAN protocol

can lead to very efficient utilization of the bus bandwidth.

2.3.4 Error handling and fault confinement

CAN bus has a network wide data check and error detection. When a message is

being transmitted on the bus, all nodes check it for errors even if they may not need

that message. If they receive the message correctly, they send a dominant bit in
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the ACK slot to notify the transmitter that the transmission is correct. Otherwise

an error signal will be sent to the transmitter.

There are five different error types:

• Bit Error: A node that is sending a bit on the bus also monitors the bus.

When the detected bus value is not equal to the intended value, a bit error

occurs. There are two exceptions: a dominant bit is detected when sending

a recessive bit of the Arbitration field or sending the ACK slot.

• Stuffing Error: Bit stuffing is a type of encoding whereby a bit of opposite

level is inserted into the bit stream when five consecutive bits of equal level

are transmitted on the CAN bus. The stuffing bits are removed at the receiver

end before the message is processed. Bit stuffing could help receivers on the

CAN bus to re-synchronize. The detection of six consecutive equal bit levels

in a message generates a stuffing error.

• CRC Error: Every receiver calculates the 15-bit CRC code when receiving

a message and compares it with the received CRC field in the message. If

they are not equal, a CRC error occurs.

• Form Error: If the receiver finds that there are one or more illegal bits in

a predefined field of the received frame, a form error occurs.

• Acknowledgement Error: If a transmitter does not nonitor a dominant

bit during the ACK slot, an acknowledgement error occurs. This error means

that an error may be detected by receivers or the ACK slot has been corrupted

or that no receivers exist on the network.

When a node detects an error condition, it signals this by transmitting an

Error frame. The transmitter could react accordingly. CAN protocol has very

efficient mechanism to handle errors and fault confinements. Every node on the

bus may be in one of three states: error active, error passive and bus off. And

every node has two counts: transmit error count and receive error count to keep
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track of the number of errors detected during transmission and reception of frame,

respectively. The value of the counts effects the state of a node. More details about

error handling of CAN can be found in [5].

2.4 Summary

In this chapter, an overview of Controller Area Network is given. After a brief

introduction of the background and development of CAN bus, we introduce the

fundamental principles of CAN including network layer model, message format

and error handling. In addition, some other hardware-related features of CAN can

be found in Appendix B. We use MSCAN12 module of Motorola 68HC12BC32

microcontroller as the example to analyze the buffer storage, message filtering and

bus timing of CAN bus.

In the next chapter, an in-depth discussion of the scheduling algorithms and

their application in CAN bus will be given.
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Scheduling Algorithms

This chapter gives an overview of communication scheduling algorithms. Several

priority-driven scheduling algorithms are studied, including their corresponding

schedulability tests. Their implementations in CAN bus are introduced too.

3.1 Background and problem formulation

In this section, the definitions of messages in network are given. The problems to

be solved are proposed.

Scheduling is derived from the design of operating systems [33]. In a modern

uniprocessor operating system, multiprogramming is common. Several or even tens

of tasks may run simultaneously. One essential task of the system is to arrange a

feasible schedule to guarantee the running of all possible tasks, allocating memory,

and applying for I/O and CPU time. From another point of view, scheduling is

to allocate resources to tasks [38]. In one system, every hardware component is

one type of resources of the system, such as memory, CPU, I/O, interrupts, etc.

Generally speaking, resources in a system are always limited compared with the

requirements of tasks, and therefore tasks need to compete for them [19][24].

20
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3.1.1 Definitions and assumptions

For the purpose of describing and characterizing real-time systems and methods

for scheduling, it is necessary for us to give general definitions used in this thesis.

Definitions

A task is a unit of work that is scheduled and executed by the system. It requires

CPU time and other resources from the system. In a uniprocessor environment,

for instance, when an application begins to run, the corresponding process (i.e.,

a task), will be loaded into memory. During its run time, it may suspend its

execution to wait for external interrupts or I/O events, occupy or require more

memory. When it finishes running, all resources that it obtains from the system

will be released. Some tasks may be periodic, which means they can occur at a fixed

time interval. Tasks can also be aperiodic. Those tasks have no fixed time interval.

However, among aperiodic tasks some may be sporadic. They may repeat later, but

no fixed time intervals exist and their maximum intervals may have no boundaries.

But in most practical situations, we could use Minimum Interval Time (MIT) to

characterize such tasks, and therefore the worst case situation could be studied.

Within the study of network communication, the only resources are the network

channels. The tasks are the messages sent by nodes in the network. Accordingly,

messages may be periodic, aperiodic or sporadic. In the following part of this thesis,

task has the same meaning with message without any particular declaration.

The release time of a message is the time instant that the message becomes

available in a node and ready to be transmitted. In actual real-time system, when

a message is released, the system needs extra time to handle it. For instance, gen-

erating information and moving the message into transmitting queue need extra

time. Such extra time between the release and the time instant of beginning trans-

mitting is called jitter. Since jitter time depends on system design and when a

system is given it will be a random variable with fixed upper bound, it contributes
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only a constant item in the schedulability analysis. Therefore, in order to simplify

the analysis, without specific declaration, jitter will be ignored in this thesis. The

response time of a message is defined as the length of time taken from its release

time to the instant when it completes transmission and reaches the destination.

The deadline of a message is defined to be the time instant that the message

must finish the transmission and arrive at its destination. This is the definition

of the absolute deadline. Meanwhile, relative deadline is widely used in analysis,

which is defined as the length of time taken from the release time of the message

to the absolute deadline.

�
�

�
�

�

Figure 3.1: The relationship of timing parameters

Figure 3.1 shows the timing parameters relative to a message, where T refers to

the period, J refers to the jitter time, R here refers to the response time, C refers

to the transmission time, or the computation time in some articles and D refers to

the relative deadline.

Assumptions

In an ideal industrial network, we need several assumptions to simplify our analysis.

In the later sections, we will remove some of these assumptions.

The assumptions are:

• The messages on the network are independent. Releases of a certain message

do not depend on the initiation or completion of other messages;

• All messages are periodic or sporadic. The period of a periodic message

should be a constant during working, and MITs of sporadic messages work
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as their periods in the following analysis;

• The length of a certain message is constant, although different messages may

have different lengths;

• The bit rate of the network is a constant and does not vary with time. There-

fore, the transmission time Ci for a certain message is also a constant for a

given message. Suppose ν is the bit rate of the network, and L is the length

in bit of the message, we will then get C = L/ν;

• The relative deadline Di of a message should be less than or equal to its

period Ti. And as a preliminary condition, Ci should be less than or equal to

Di, i.e. Ci ≤ Di ≤ Ti;

• Jitter time and the cost of content-switching are ignored.

From the above assumptions we could use τi(Ti, Di, Ci), 1 ≤ i ≤ n to charac-

terize n messages completely. Here τi denotes any periodic or sporadic message, Ti

is its period, Di is its relative deadline and Ci is its transmission time. Message τi

is released at time kTi, k ≥ 0 and its deadline is Di + kTi. In some papers maybe

τi(Ti, Di, Ci, Oi), 1 ≤ i ≤ n is used to represent a message set, where Oi is the

phasing offset relative to 0, 0 ≤ Oi < Ti. Therefore, the jobs corresponding to

message τi are released at time Oi + kTi, k ≥ 0. The job ready at time Oi + kTi

has Oi + Di + kTi as its deadline. Although the existence of Oi may cause the

possible variation of algorithms, when we discuss the worst case schedulability of

the message set, Oi is always ignored. That is, we suppose that all messages are

released simultaneously at time instant 0.

A message set τi(Ti, Di, Ci), i = 1, . . . , n is schedulable if for all 1 ≤ i ≤ n, the

maximum response time ri of message τi is not greater than the deadline Di. A test

to validate whether a given message set is schedulable or not is called schedulability

test.
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Static and dynamic scheduling There are several commonly used schedul-

ing approaches, such as clock-driven, priority-driven, and weighted round-robin

scheduling [24]. For instance, many operating systems choose weighted round-

robin scheduling, while in communication systems, priority-driven scheduling is

adopted widely. And the priority-driven scheduling algorithm may be static or dy-

namic. If the priorities of messages could not be changed when the system starts,

the scheduling is static, or has fixed priority. If the priorities of messages may vary,

it is said to be dynamic. One advantage of static priority scheduling is its simplic-

ity. It is very easy to implement and system overhead caused by it is relatively

low. However, compared with dynamic priority scheduling, it may not achieve

high bandwidth utilization. That is, if a message set is not feasible to be scheduled

by a static priority scheduling algorithm, it may be feasible if a dynamic priority

scheduling algorithm is applied.

Preemptive and non-preemptive If the system allows the task with higher

priority to interrupt the running of current task with low priority, we can say that

the system is preemptive. But in some cases, if a task is running, the system does not

allow other tasks to interrupt it, regardless of their possible higher priority levels.

Such system is non-preemptive. Normally in operating systems, whether real-time

or not, task scheduling is preemptive. The system can store the status of the

task with low priority when preemption occurs. When the task with high priority

finishes, the system could continue to execute the interrupted task. However, if

tasks are messages, for instance, in a distributed system, communications between

nodes rely on the message transmissions, and the cost of preemption is relatively

high. If preemption is allowed, the system has to stop the transmission of the

message with low priority when a message with high priority comes. After that,

the message with low priority can resume the transmission. This policy may be

difficult to implement in practice, because it requires the capability of resumption

of the aborted messages. For a network packet, the only way is to re-transmit
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the whole content. Hence, much network bandwidth is wasted. Therefore, a non-

preemptive scheduling is normally used.

3.2 Static priority algorithms

In this section, two typical static priority algorithms, Rate Monotonic and Deadline

Monotonic, are introduced and the analysis of schedulability is given.

3.2.1 Rate Monotonic Algorithm

Rate Monotonic Algorithm(RMA) was first studied in [23]. The author provided

the analysis of this famous algorithm in a hard real-time environment. Although

there are several restrictions in RMA, it is a popular static scheduling algorithm

that is widely adopted in applications because of its simplicity and easy implemen-

tation.

In addition to the assumptions listed in section 3.1.1, RMA requires two more

assumptions:

• The relative deadline of a message is same with its period, Di = Ti, which

means the message must finish transmitting before the next release of it;

• The position of message in the message set is due to its priority. Since we

use the period as the priority and short period represents high priority, we

get ∀ 1 ≤ i ≤ j ≤ n, Ti ≤ Tj.

When analyzing the schedulability of a set of messages, if the messages are re-

leased at random time instants, there are so many different cases that it is impossi-

ble to get all the potential results. In order to simplify the analysis and meanwhile

to meet the most general requirements, worst case conditions are considered.

The critical instant of a message τi is defined to be the time instant at which a

message released will have the longest response time. A critical instant zone of a
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message is the time interval between the critical instant and the end of the response

to the corresponding message. When a message is released simultaneously with all

other messages with higher priorities, a critical instant for it occurs.

A message set is schedulable using RMA if every message could meet its deadline

when it is released at a critical instant. Suppose for n tasks, the utilization of the

system is:

U =
n
∑

i=1

Ci

Ti

,

which could be the processor utilization factor for an operating system, or could be

considered as the network bandwidth utilization if the task set has only messages.

C.J. Liu gave a sufficient condition of schedulability for Rate Monotonic Algo-

rithm in [23], which is:

U =
n
∑

i=1

Ci

Ti

≤ n(21/n − 1). (3.1)

From equation 3.1 we can calculate the worst case utilization bound of a message

set. If the corresponding utilization is less than n(21/n − 1), the message set must

be feasible. When n → ∞, n(21/n − 1) → ln 2 ' 0.693.

However, the above schedulability condition is sufficient but not necessary. In

practice, some message sets that have a higher data utilization than the bound

computed by equation 3.1 could be successfully scheduled, even if the data utiliza-

tion may be around 0.90. Therefore, more accurate schedulability condition need

to be studied. To help the analysis, several notations [20] are given:†

Wi(t) =
i
∑

j=1

Cj ·

⌈

t

Tj

⌉

,

Li(t) = Wi(t)/t,

Li = min
0<t≤Ti

Li(t),

L = max
1≤i≤n

Li.

†Note: dxe(x ≥ 0) denotes the smallest integer greater than or equal to x, and bxc(x ≥ 0)
denotes the greatest integer smaller than or equal to x. That is, dxe = n, n − 1 < x ≤ n and
bxc = n, n ≤ x < n + 1, n is integer.
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Here Wi(t) represents the cumulative time demands on the system made by the

message τ1, . . . , τi over [0, t], when all messages are released simultaneously at time

instant 0, hence 0 is the critical instant.

With the help of above notations, we can write the sufficient and necessary con-

ditions for the schedulability test of Rate Monotonic Algorithm as in the following

theorem [20]:

Theorem 1 Given a message set of τ1, . . . , τn, if Rate Monotonic Algorithm is

applied, τi could be feasible for all phasing offsets if and only if Li ≤ 1, and the

entire message set could be feasible if and only if L ≤ 1.

The minimum range of t to test the schedulability should be [0, Ti]. Actually,

only finite number of points in that range need to be tested. Since the function of

dt/Tie is a monotonically increasing step function, we can find that the function

dt/Tie/t is strictly decreasing except for a finite set of values of t. When t is a

multiple of the periods Tj, 1 ≤ j ≤ i, the function has a local minimum and is left

continuous and jumps to a higher value to the right. Such discontinuous points are

the testing points. Therefore, instead of testing the continuous range [0, Ti], only

the local minimums of function Li(t) at such testing points need to be checked.

Let

Si = {k · Tj|j = 1, . . . , i; k = 1, . . . , bTi/Tjc}.

The elements of Si are the testing points for message τi. Now we redefine Li as

following:

Li = min
t∈Si

Li(t).

Hence the theorem 1 could be modified as following:

Theorem 2 Given a message set of τ1, . . . , τn, if Rate Monotonic Algorithm is

applied, τi could be feasible for all phasing offsets if and only if

Li = min
t∈Si

Wi(t)/t ≤ 1,
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and the entire message set could be feasible if and only if

L = max
1≤i≤n

Li ≤ 1.

The proof of this can be found in [20].

3.2.2 Deadline Monotonic Algorithm

Although RMA could work well in most circumstances, it has some inconvenient

restrictions. One severe constraint is that it requires the deadline of a message

to be equal to its period. But in practical hard real-time environments, that is

not always true. Messages may be required to arrive at the destination a little or

much earlier to leave time to the system for handling or to compensate for extra

delay during transmitting. A popular algorithm to handle messages with deadlines

different from the periods is the Deadline Monotonic Algorithm (DMA).

Suppose the message set τi(Ci, Di, Ti), 1 ≤ i ≤ n, and Ci ≤ Di ≤ Ti. The

Deadline Monotonic algorithm uses a similar priority assignment scheme as RMA.

In this case, the priorities assigned to messages are inversely proportional to the

relative deadline [22]. Thus, the message with shorter deadline gets the higher

priority. And when the deadline and the period are equal for every message in the

set, the priority order of DMA is totally same with that of RMA.

Deadline Monotonic priority assignment is an optimal static priority scheme

[22]. That is, if any static priority scheduling algorithm can schedule a message

set, then a deadline monotonic algorithm will also schedule the message set.

Schedulability tests

Schedulability tests for Deadline Monotonic Algorithm introduced in [3][4] are

founded upon the concept of critical instants [23]. Since messages are supposed

to be released simultaneously, the worst case condition occurs. One schedulability
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test is given by [3]:

∀ i : 1 ≤ i ≤ n :
Ci

Di

+
Ii

Di

≤ 1 (3.2)

where Ii represents the interference of all messages with higher priorities than

message τi and is given by:

Ii =
i−1
∑

j=1

⌈

Di

Tj

⌉

Cj. (3.3)

If equation 3.2 is written as Ci + Ii ≤ Di, then the condition that makes a message

τi schedulable is that the sum of its transmission time (computation time) and

the interference caused by higher priority messages must be no more than Di.

The condition above is sufficient, but not necessary. The reason is due to the

calculation of the interference time Ii. Some messages with higher priorities may

be released before Di and completed after Di. Therefore, Ii may be greater than

the actual interference encountered by τi before Di. Considering the above case, a

more accurate representation of Ii is given by:

Ii =
i−1
∑

j=1

[⌊

Di

Tj

⌋

Cj + min

(

Cj, Di −

⌊

Di

Tj

⌋

Tj

)]

. (3.4)

Equation 3.2 with Ii defined by 3.4 is still sufficient but not necessary in the general

case. In [3], an even more complex representation of Ii is given.

Response time

Another way to analyze the schedulability is from the worst case response times of

messages [2][6]. Using the time model shown in figure 3.1, the worst case response

time ri of message τi could be expressed as following:

ri = Ci + Bi + Ii

where Ci is the transmission time or computation time, Bi is the worst case blocking

time of message τi due to the priority ceiling protocol or other concurrency control

protocols, and Ii is the worst case inference. In order to make message τi feasible
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we must have ri ≤ Di. The total interference Ii is given by:

Ii =
i−1
∑

j=1

⌈

ri

Tj

⌉

Cj.

Combining above the two equations, we get:

ri = Ci + Bi +
i−1
∑

j=1

⌈

ri

Tj

⌉

Cj.

However, it is noticed that the unknown term ri appears on both sides of the

above equation. To solve the above equation, an simple iterative algorithm could

be used. Let rm
i be the mth approximation of the true value of ri, and we get the

iterative expression of the above equation:

rm+1
i = Ci + Bi +

i−1
∑

j=1

⌈

rm
i

Tj

⌉

Cj. (3.5)

When calculating ri, the iteration begins with r0
i = 0, and terminates when

rm+1
i = rm

i . It is very easy to get that rm+1
i ≥ rm

i , and therefore if rm+1
i > Di

the iteration could be stopped. And it is shown in [16] that when the total uti-

lization is ≤ 100% the iteration must converge.1 And the above solution could be

used in a more general area. In fact, it could be used to solve any static priority

driven scheduling problem, either Rate Monotonic Algorithm or Deadline Mono-

tonic Algorithm because the above discussion does not mention the specific priority

assignment algorithm. When the priority assignment scheme is given, equation 3.5

could be used to calculate response times of a specific message set to check whether

it is feasible or not.

If preemption is not allowed, such as in CAN bus environment, when applying

Deadline Monotonic Algorithm, response time can be used to do the schedulability

test of a given message set. If response time of every message on the bus can be

1Please note here we suppose preemption is allowed. In a non-preemptive environment, ri is
not guaranteed to be converged even if the total utilization is ≤ 100%.
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less than or equal to its deadline, this message set is feasible.

Suppose that jitter time exists and ignore any errors, the response time of

message τi on CAN bus can be expressed as the following [36]:

ri = Ji + Ci + wi (3.6)

where Ji is the queuing jitter of message τi, Ci is the transmission time of the

message τi, and the term wi represents the worst case queuing delay - the longest

time between placing the message in the priority-ordered queue and the starting of

transmission of the message. This is given by:

wm+1
i = Bi +

i−1
∑

j=1

⌈

wm
i + Jj + τbit

Tj

⌉

Cj,

where the term Bi is the worst-case blocking time of message τi, and is equal to the

longest time taken to transmit a lower priority message. τbit is the time to transmit

a bit on the bus. Assuming that in the message set, ∀1 ≤ i ≤ j ≤ n, priority of

message τi is higher than that of message τj. If τi is the lowest priority message

then Bi is zero. Hence Bi is given by:

Bi = max
i<j≤n

(Cj).

If we let ν denotes the bitrate of the CAN bus, we get τbit = 1/ν. As mentioned

earlier, C = L/ν, where L is the possible maximum length of a message on CAN

bus, as shown in table 3.1. The extra length of a message except the data field is

47 bits long. Meanwhile, bit stuffing should not be ignored. Among all fields in

a CAN message, the Arbitration field, Control field, Data field and CRC field are

subjected to bit stuffing. Therefore, Ci is given by:

Ci =

(⌊

34 + 8
⌈

li
8

⌉

5

⌋

+ 47 + 8

⌈

li
8

⌉

)

.
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Table 3.1: The possible maximum length of CAN message τi

Field Length(bit)
SOF 1
Arbitration 12
Control 6
Data 8 · dli/8e
CRC 16
ACK 2
EOF 7
Intermission 3

Bit stuffing
⌊

34+8·dli/8e
5

⌋

li is the original data length in bit of message τi.

When every item is determined, equation 3.6 could be used to calculate the response

times of messages on CAN bus. If ∀i, 1 ≤ i ≤ n, ri ≤ Di is met, the message set is

feasible.

3.3 Dynamic priority algorithms

As opposed to static priority algorithms, where messages get their priority only once

and never change during the running of the system, dynamic priority algorithms

assign different priority to a message for every release.

There are several dynamic priority algorithms. The most famous one is the

Earliest Deadline First (EDF) algorithm. This priority assignment scheme assigns

priorities to messages according to their absolute deadline, the earlier the deadline,

the higher the priority. If preemption is allowed and messages are independent,

EDF is said to be optimal, that is, the EDF algorithm could generate a feasible

schedule of a message set τi, 1 ≤ i ≤ n, if and only if the message set has feasi-

ble schedules [24]. For non-preemptive scheduling, it is shown in [38] that EDF

performs better than other simple heuristics.

EDF is not the only optimal dynamic priority algorithm. The latest release

time (LRT) algorithm (or reverse EDF algorithm), which treats release times as
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deadlines and deadlines as release times and schedules messages backwards, is also

optimal for preemptive and independent tasks.

Another well-known dynamic priority algorithm is the Least Slack Time First

(LST) algorithm.2 At any time instant t, the slack (or laxity) of a message τi

with absolute deadline di is equal to di − t minus the time required to complete

the transmission of the remaining part of message τi. The LST algorithm assigns

message priorities based on their slacks: the smaller the slack, the higher the

priority. And if preemption is allowed and messages are independent, it can also be

shown that the LST algorithm is optimal [22]. Compared with the EDF algorithm,

the LST algorithm requires that the computation times of tasks be known. In many

cases this is a disadvantage because the actual computation time of a task are often

not known until it completes, and also we could not get the exact slack times of the

tasks. However, when we consider the message transmission in industrial network,

the maximum length of messages on the bus is either fixed or can be predicted if the

communication protocol is given. For example, in CAN bus, the maximum length

of a data field could not exceed 8 bytes, so that the total length of a data frame

will never exceed 111 bits long (CAN 2.0A standard in regardless of bit stuffing).

And in most cases, the message length for a particular type is determined when

the system is set up.

Another issue here is that if EDF scheduling is applied, one problem is that

the value of the absolute deadlines of messages will increase to infinity with the

running of the system time. But in practice, limited bits are not enough to store

such values of the messages. Therefore the priority mapping problem occurs (refer

to chapter 5 for details). But in the LST algorithm the slack time of a message is

limited to the relative deadline of a message, and therefore it is easy to implement

the priority mapping. This issue is the main topic of the next chapter.

2It is also called the Minimum Laxity First (MLF) algorithm.
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3.4 Summary

In this section, the typical priority-driven scheduling algorithms are introduced,

including Rate Monotonic Algorithm, Deadline Monotonic Algorithm and Earliest

Deadline First Algorithm. And issues of schedulability test are studied. Some nec-

essary and sufficient conditions are given and their confinements in non-preemptive

environments are analyzed.

In the next chapter, schedulability condition for non-preemptive scheduling will

be examined. And a new effective schedulability condition will be given including

the corresponding algorithm.



Chapter 4

A New Schedulability Condition

for Non-Preemptive Scheduling

In this chapter, a new sufficient and necessary schedulability condition for non-

preemptive scheduling is given. And the corresponding algorithm is presented.

4.1 Previous work on schedulability condition

Suppose all time cost of context switching and other extra load (such as time cost in

preemption or resumption) are ignored, then the basic idea of schedulability under

deadline scheduling policy is straightforward; at any time instant t, every message

in the message set should meet its deadline. Therefore ∀t > 0, the overall amount

of time in [0, t] to transmit all messages that arrive during [0, t] with deadlines ≤ t

should not be greater than t. So define a function dxe+ = n, if n− 1 ≤ x < n, n =

1, 2, . . ., and dxe+ = 0 for x < 0,then we get the following sufficient and necessary

condition for schedulability test of EDF algorithm [39]:

Theorem 3 When deadline scheduling policy is applied, if preemption is allowed

and messages are independent, a set of n messages τi = (Ti, Ci, Di), i = 1, 2, . . . , n,

35
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are schedulable if and only if

∀t ≥ 0,
n
∑

i=1

⌈

t − Di

Ti

⌉+

· Ci ≤ t. (4.1)

Suppose the system is initialized at time t = 0, then for any message τi, during

[0, t], there are at most d(t − Di)/Tie
+ releases of τi with deadline ≤ t, and the

corresponding time to transmit those messages is d(t − Di)/Tie
+Ci. Therefore for

the whole message set, the maximum time to transmit all possible releases during

[0, t] is
∑n

i=1d(t − Di)/Tie
+Ci. This proves the necessary condition of the above

theorem. And the sufficient condition could be proven by contradiction.

However, in the form of equation 4.1, Theorem 3 could not be used directly

to check the schedulability of a message set, because it is required to verify the

inequality over a continuous and infinite period [0,∞). Two points could resolve

this difficulty. First, using the same method in the analysis of Theorem 1, we

can notice that the left-hand side of the inequality 4.1 is a piecewise function.

Therefore, the set of testing points is discrete and consists of the discontinuous

points in [0,∞). Second, there exists a point tmax such that if the total data

utilization of the network
∑n

i=1 Ci/Ti ≤ 1, the inequality of Theorem 3 could

always be met for ∀t ≥ tmax. Hence, only a finite number of testing points need to

be checked when applying Theorem 3 to test the schedulability of a message set,

which means it is possible to execute such test by a computer. Therefore, Theorem

3 could be modified as following:

Theorem 4 When deadline scheduling policy is applied, if preemption is allowed

and messages are independent, a set of n messages τi = (Ti, Ci, Di), i = 1, 2, . . . , n,

are schedulable if and only if

1.
n
∑

i=1

Ci

Ti

≤ 1,

2. ∀t ∈ S,

n
∑

i=1

⌈

t − Di

Ti

⌉+

· Ci ≤ t (4.2)
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where S =
⋃n

i=1 Si, Si = {Di + nTi, n = 0, 1, . . . b(tmax − Di)/Tic}, and tmax =

max{D1, . . . Dn, (
∑n

i=1(1 − Di/Ti)Ci)/(1 −
∑n

i=1 Ci/Ti)}.

The complete proof could be found in Appendix A.

For non-preemptive EDF scheduling, in [39] a schedulability condition is de-

scribed as following: when preemption is not allowed and messages are independent,

the message set is schedulable in worst case if and only if the following conditions

are met:

1.
n
∑

i=1

Ci

Ti

≤ 1,

2. ∀t ∈ S,
n
∑

i=1

⌈

t − Di

Ti

⌉+

· Ci + Cp ≤ t (4.3)

where Cp is the length of the longest possible non-realtime message, S =
⋃n

i=1 Si,

Si = {Di + nTi, n = 0, 1, . . . b(tmax − Di)/Tic}, and tmax = max{D1, . . . Dn, (Cp +
∑n

i=1(1 − Di/Ti)Ci)/(1 −
∑n

i=1 Ci/Ti)}.

4.2 Further analysis

The author in [39] asserts that inequality 4.3 is a necessary and sufficient condition.

However, that conclusion is not always true in non-preemptive environment. Let

us examine the following example: to do the schedulability test of a given message

set, which contains two periodic messages and their properties as listed in Table

4.1.

Table 4.1: The example of non-preemptive EDF scheduling

Message T C D
τ1 3 1 1.5
τ2 4 2 3

The given message set is, τ1 = (T1, C1, D1) = (3, 1, 1.5) and τ2 = (T2, C2, D2) =
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(4, 2, 3). Using equation 4.3, we first check the total data utilization, and get

2
∑

i=1

Ci/Ti =
1

3
+

2

4
' 0.833 < 1.

Since no non-real-time message exists, Cp = 0, and tmax = 6. Therefore, S1 =

{1.5, 4.5}, S2 = {3}, and S = S1 ∪ S2 = {1.5, 3, 4.5}. Applying the inequality 4.3,

it is easy to verify that ∀t ∈ S,
∑2

i=1d(t − Di)/Tie
+Ci ≤ t. Thus, according the

above schedulability conditions we say that the given message set is schedulable.

But the simulation of the real scheduling process in Figure 4.1 shows that the

given message set is not always schedulable. It is found that message τ1 misses its

deadline at time instant t = 10.5.
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Figure 4.1: The example of non-preemptive EDF scheduling

Because preemption is not allowed, when message τ1 is released at t = 9, al-

though it has an earlier deadline (d1 = 9 + D2 = 10.5) than message τ2 which

was released at t = 8 (d2 = 8 + D2 = 11), message τ1 is blocked until τ2 finishes

transmission at t = 10. Consequently, message τ1 misses its deadline at t = 10.5.

Further more, even if we use t = 10.5 to examine the inequality 4.3, we find

that the inequality still can be met, although the message set is shown to be

unschedulable.

This example shows that the sufficient condition of 4.3 is not held. The proof

of the sufficient condition in [39] omits the possible priority inversion in non-

preemptive environments. But the necessary condition is always true. That is,
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the above schedulability condition is necessary but not sufficient.

4.3 A new schedulability condition

In order to find a more effective method to check the schedulability conditions in

non-preemptive environments, we can consider heuristic methodologies. W. Zhao

studied heuristic algorithms for scheduling tasks with time and resource constraints

[38]. However, periodic tasks are not considered in his work. In the case of net-

work message transmission, tasks are periodic or sporadic messages, and the only

resource constraint is the bus.

Define the feasible time for a message as the time instant at which the message

could begin to transmit definitely without any blocking or interference. We propose

the following lemma to test the schedulability of a message set.

Lemma 1 The message is schedulable if and only if for every release of message

τij, 1 ≤ i ≤ n, j = 0, 1, . . ., the response time rij = Fi + Ci is always less than

or equal to its absolute deadline dij = Rij + Di, where Fi is the feasible time of

message τi, and Rij is the jth release time of message τi.

The proof of Lemma 1 is straightforward: the definition of schedulable requires

rij ≤ dij for message τi. If every message in the set is schedulable, we can say

that the message set is schedulable. Obviously, the worst case upper bound on

the temporal axis to test the schedulability is tmax = LCM(Ti, 1 ≤ i ≤ n), i.e.

tmax is the least common multiple of the periods of all messages in the message

set. So when tmax is determined, only limited points on the temporal axis are

needed to be checked according to Lemma 1. Hence, a simple algorithm to check

the schedulability is possible to be implemented.

Let us examine the following example shown in figure 4.2.

Suppose d1 ≤ d2 ≤ d3, hence Priority(τ1) ≥ Priority(τ2) ≥ Priority(τ3), and

before the release of τ1, the bus is idle. Therefore the feasible time of τ1, namely F1
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Figure 4.2: Feasible times of messages

is equal to its release time Ri. And the response time of τ1 is r1 = F1 + C1. So the

next feasible time for all the other messages should be F2 = F1+C1. During the time

period [F1, F2), both message τ2 and message τ3 are released. Since preemption is

not allowed, both τ2 and τ3 are blocked by τ1. After the transmission of τ1, although

message τ3 is released before message τ2, since Priority(τ2) ≥ Priority(τ3), τ2 will

get the bus. The next feasible time of the bus is then adjusted according to the

current feasible time, F3 = F2+C2. After τ2 finishes transmitting, we check [R1, F3)

again and find that τ3 is still blocked. Then τ3 gets the bus and begin to transmit.

From the analysis of above procedures, we can generalize the heuristic algorithm

shown in Figure 4.3.

Where routine release message() returns the message set M that contains mes-

sages released during time period [F, F ′). When given the message set S, the

algorithm could check whether S is schedulable or not.

However, some problems still exist in above algorithm. For example, in order

to utilize the algorithm in real-time environments, the overhead of it should be

as low as possible. In Figure 4.3 tmax = LCM(Ti, 1 ≤ i ≤ n). If the periods of

messages are chosen improperly, tmax may be too high to be acceptable because

the upper bound tmax depends on the particular message set. For instance, if most

relative deadlines in the message set are large prime numbers, the result of tmax

may be very large so that the schedulability test will cost very long time. Q. Zheng
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Input: Message set S = {τi, 1 ≤ i ≤ n};
Output: schedulable; /* Boolean */

Method:

tmax = LCM(Ti, 1 ≤ i ≤ n);
F = F ′ = 0;
schedulable=TRUE;
while (F < tmax && schedulable) {

if ((M = release message(F, F ′)) 6= φ) {
i = highest priority in set(M);
F = F ′;
F ′ = F + Ci;
di = Ri + Di;
if (F ′ > di)

schedulable=FALSE;
}
else {

R = next minimum release(M, F );
i = highest priority in set(R);
F = Ri;
F ′ = Ri;

}
}
return schedulable;

Figure 4.3: The heuristic algorithm for non-preemptive EDF

proposed an approximate upper bound in [39]:

tmax = max{D1, . . . Dn, (Cp +
n
∑

i=1

(1 − Di/Ti)Ci)/(1 −
n
∑

i=1

Ci/Ti)}.

But from the analysis in this chapter, it shows that tmax is not applicable for non-

preemptive scheduling. More effective methods may be needed to optimize the

calculation of tmax and then reduce the overhead. But consider in most industrial

applications, most nodes in a network share similar characteristics. For example,

it is very common that several nodes use the same type of sensors and actuators

and work at the same frequency. Therefore, there may be very limited number of

different frequencies, or periods. In that case, LCM of those periods is feasible to

be as the upper bound of tmax in schedulability test.
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4.4 Summary

This chapter gives a thorough analysis of schedulability condition for non-preemptive

scheduling algorithm. And a new schedulability condition is proposed to do the

precise schedulability test of a given message set.

In the next chapter, issues of priority mapping are studied. And DLP scheme

is proposed to solve the priority inversion for limited priority level condition.



Chapter 5

Dynamic Local Priority Scheme

This chapter discusses scheduling schemes and priority mapping issues in bus

scheduling. Priority inversion may arise due to limited priority levels. And a

new scheme is proposed to solve this difficulty.

5.1 Scheduling schemes

Generally speaking, there are two typical schemes to handle the scheduling process

in distributed environments: centralized scheduling or distributed scheduling. The

advantages and disadvantages of each scheme are discussed in this section.

5.1.1 Centralized scheduling

Some centralized scheduling schemes could solve the scheduling problems of CAN

bus, such as FTT-CAN (Flexible Time Triggered communication on CAN) protocol

[29] [18] and the planning scheduler scheme [11]. Those schemes are so-called

centralized scheduling scheme because a master node on the bus is required to

control the message scheduling of the bus.

When FTT-CAN protocol is applied, at a fixed time interval, which is called

elementary cycles (EC), the master node on the bus broadcasts a periodic message

43
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to the bus to indicate the beginning of the EC. And that broadcast message con-

tains the information about which nodes should send messages in the current EC.

Therefore, the nodes that are informed by the master node will send messages to

the bus during the rest of the EC. And the bus arbitration is solved by the native

arbitration mechanism of CAN bus.

The planning scheduler scheme uses a similar idea to FTT-CAN protocol. There

are plans in the scheduler. And each plan consists of a fixed number of ECs with

fixed duration. The messages’ periods and their transmission deadlines should be

an integer multiple of the EC duration. The master node dispatches the schedule

of message transmitting in one EC according to the current plan in it. When a

plan is given, the scheduler works like a static scheduler. When the current plan is

finished, a new plan will be built and loaded into the scheduler. So the scheduling

information gets undated dynamically, and flexibility is guaranteed.

By adjusting the duration of EC, FTT-CAN and planning scheduler schemes

could get a tradeoff between the overheads and the efficiency. However, the most

serious problem in the above methods is: there must be a master node on the bus

to work as the centralized scheduler. For an environment that only one controller

exists and all others are devices, such schemes may work well. However, a practical

industrial system is normally a distributed control system. If there are tens of

controllers and each of them is identical on the bus, it will be difficult to choose

the master node. Moreover, if the master node is down, the whole network would

not work.

5.1.2 Distributed scheduling

Unlike centralized scheduling schemes, distributed scheduling does not require a

master node in the network. Every node in the network competes for the right

to transmit messages in the network individually. They are not controlled by a

centralized scheduler. Normally such scheduling algorithms are implemented in
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hardware and are the essential characteristics of the network, such as LAN (802.3

Ethernet) protocol or Token Ring (802.5) protocol.

The native CAN protocol, using an effective arbitration mechanism to con-

trol the distributed scheduling of message transmission, is a fixed-priority scheme.

However, as we discussed in the previous chapter, fixed-priority scheme could not

utilize all potential capacities of the network. Although for most real-time appli-

cations the fixed-priority scheme is competent, in a heavily loaded environment it

is necessary to improve the schedulability of the network. In the past, the imple-

mentation of dynamic priority schemes has some problems, such as increase cost

and overhead due to the complexity of algorithms that could result in a low speed

of CAN controllers. But, in recent years as the speed of microcontrollers becomes

faster and faster, this overhead costs very little CPU resources. And to avoid the

necessity of modifying hardware, a new application layer, which controls the real-

time priority assignment, could be implemented in the real-time system that work

between applications and the MAC layer of the CAN protocol. Therefore dynamic

priority schemes could be realized in CAN network.

Cena and Valenzano [7] proposed DPQ (Distributed Priority Queue) and PP

(Priority Promotion) mechanisms to modify the original CAN protocol in order to

get arbitration fairness and to guarantee the upper bound of transmission time.

Later they proposed a new CAN-like network model fastCAN [8], which uses two

unidirectional physical channels, to improve the network performance.1 Livani,

Kaiser and Jia proposed a hybrid bus scheduling algorithm [25] which tried to

combine the advantages of TDMA (time-division multiple-access) and dynamic

Least-Laxity-First scheduling. However, one disadvantage of the above methods is

that they all use the extended identifier format of CAN frame. As we mentioned,

transmitting frames of extended format wastes more bus bandwidth and reduces

the ratio of effective data of a frame.

1Since fastCAN modifies the CAN model substantially, the discussion of fastCAN exceeds the
boundary of this thesis. For more details of fastCAN, please refer to [8].
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5.2 Limited priority levels

Normally, our schedulability analysis is based on unlimited priority levels, which

means that we can allocate as many priorities as we can to messages. However, in

reality, it is impossible to get unlimited priority levels.

In CAN bus, the Arbitration Field of CAN2.0A frame format is 11 bits long [5].

In CAN 2.0B extended frame format, the Arbitration Field has 29 bits, therefore

more bits can be used to represent priority levels. However, in CAN2.0B extended

frame format, the efficiency of the real network bandwidth utilization is lower than

that in standard frame format. Suppose the length of a frame in the standard

format is 44 + 8n bits, where n is the byte length of the Data field. On the other

hand, the length of a frame in the extended format is 64+8n bits. Suppose n = 8,

the maximum length. It is clear that the same data field of a frame in the standard

format occupies 59.3% of the total frame, but only 50% in the extended format.

For n = 4, the ratios of the length of the data field to the total length of the frame

are 42.1% and 33.3%, respectively (Here the potential bit stuffing of the frame is

ignored). If most data packages in the network are in short length, the effective bus

utilization in two frame formats will be in big difference. Therefore, many solutions

to CAN scheduling suppose that the data frames are based on the standard format

so as to get higher effective utilization of the bus bandwidth.

Suppose CAN2.0A frame format is adopted, we can have at most 211 priority

levels which seem enough in most applications. But the actual priority levels that

we can use are far less. There are two reasons for this: first, the highest 7 bits

could not be recessive. Therefore 24 priority levels could not be used. Second,

in the network, every nodes or devices connecting to the bus must have a unique

identifier to avoid communication chaos. Suppose we can use 5 bits to represent

those identifiers, which means the maximal number of the devices is 25 = 32. Hence,

only 6 bits (26 = 64) are left to represent priorities. Therefore, when assigning

priorities to messages, messages with long deadlines may get the same priority
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with those with short deadlines. Then when the system is running, a message

with shorter deadline may be blocked when it is prevented from transmitting by a

message with longer deadline. And we say that a priority inversion occurs whenever

a message with lower priority (longer deadline) begins transmitting before some

ready messages with higher priorities (shorter deadlines).

The relative schedulability bound of RMA

Consider the sufficient schedulability condition of Rate Monotonic Algorithm, i.e.

if the data utilization of the message set U =
∑n

i=1 Ci/Ti ≤ n(21/n − 1), then the

message set is schedulable. And when n → ∞, n(21/n−1) → ln 2 ' 0.693. However,

that is only for unlimited priority levels. When the number of priority levels is

limited, the condition changes. In [17], issues on priority mapping into limited

priority levels in fixed-priority scheduling algorithms were discussed. Suppose there

are m priority levels, {L1, L2, . . . , Lm}, where Li is assigned a message period. If

a message has a period T such that Li−1 < T ≤ Li, it will be assigned priority Li.

The approximate utilization bound is below:

U =











ln(2G) + 1 − G when G > 1/2

G when G ≤ 1/2

where G is the grid granularity defined as G = min{(Li−1 + 1)/Li,∀i, 1 ≤ i ≤ m}

[21].

Introducing a constant ratio r = 1/G, and comparing the schedulability bound

with ln 2, which is the bound with unlimited priority levels, the relative schedula-

bility RS is defined as follows:

RS =











[ln(2/r) + 1 − 1/r]/ ln 2 when r < 2

1/(r · ln 2) when r ≥ 2
(5.1)

It is easy to find that when the number of priority levels reduces, the relative
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schedulability deteriorates according to equation 5.1. For example, suppose the

shortest and longest periods of the message set are 1ms and 100, 000ms, respec-

tively. And the bus supports up to n priority levels. Therefore, L0 = 1ms, and

Ln = 100, 000ms. To simplify the computation, we have L1/L0 = L2/L1 = · · · =

Ln/Ln−1 = r. So we get r = (Ln/L0)
1/n. Applying equation 5.1, Figure 5.1 shows

the relation between relative schedulability and the number of priority levels, where

n is from 21 = 2 to 28 = 256.

Figure 5.1: The effect of limited priority levels

From Figure 5.1, we see that when the number of priority levels reduces, the

relative schedulability drops sharply. When the number of priority levels is less

than 16, the relative schedulability will be less than 0.6, i.e. when the number of

messages approaches infinity, the utilization should be less than 0.6 ln 2 = 0.416,

which is quite low and unacceptable. For CAN bus, if 64 priority levels are applied,

the result seems acceptable; the relative schedulability is equal to 0.978. And for

fixed-priority scheduling algorithms, the priorities of messages are assigned before

the network runs. If the priority mapping algorithm is chosen carefully, the priority

levels can be used sufficiently. That is, if the priority levels are enough, messages

with different periods or deadlines will be assigned different priorities.
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5.3 DLP scheme

If dynamic priority scheduling algorithms are applied, the priority inversion and

the problem of limited priority levels are completely different with those in RMA.

In dynamic scheduling algorithms, message priorities are assigned according

to a function of their deadlines or latency time. Considering the Earliest Deadline

First scheduling, a message with shorter deadline will get a higher priority. But the

message deadlines may vary in a rather large range, from one or two milliseconds

to tens of seconds. And normally their distribution along the temporal axis is not

uniform. Therefore, when doing priorities mapping, it is possible that some priority

levels are crowd while some are not used. For example, suppose 10 messages are in

the system, and the system has 10 priority levels, 1 to 10. In a certain time instant,

their deadlines are shown in Table 5.1, and the distribution of those deadlines in

temporal axis is shown in the Figure 5.2.

Table 5.1: Sample message information

Deadline d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

(ms) 10 25 30 42 44 46 48 50 95 100
Assigned priority 1 3 3 5 5 5 5 5 10 10
Expected priority 1 2 3 4 5 6 7 8 9 10
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Figure 5.2: Point distribution in the temporal axis

When assigning priorities to messages, two methods can be used. The first one

is to scale to temporal axis with equal size time slot, such as MTS (Mixed Traffic

Scheduling) algorithm [41]. Here we consider the part to handle high speed mes-

sages only. The priority assignment result according to MTS is shown in Table 5.1.

From Figure 5.2 we find that there are 10 priority levels, but only 4 of them are

used, although each message has a different deadline from others. Five deadlines,
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d4 to d8, are assigned into the same priority level, but 6 priority levels are wasted.

Consequently, since messages with longer deadlines have the same priorities as

those with shorter deadlines, when the system runs, priority inversion may occurs.

Also, the capability of priority levels is not used sufficiently either.

The second method was proposed in [9]. To improve the efficiency and reduce

priority inversion, a logarithmic quantization of message deadlines was applied.

That means that the scale unit of the temporal axis is not a constant, but expo-

nentially increasing. By defining a basic length δ0, the length of every section Ii

increases exponentially and is an integral multiple of δ0. Therefore, nearer dead-

lines could get a finer resolution and further deadlines get coarse one. Figure 5.3

shows the temporal axis in logarithmic EDF algorithm.

0δ
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Figure 5.3: The temporal axis with logarithmic quantization

The logarithmic EDF algorithm could improve the performance, especially when

the transmission rate is not very high. M.D. Natale [9] indicated that the ap-

proximate CPU load was below 3% at 125kbps. However, there are two major

restrictions. First, the author supposed that the length of messages was fixed, 8

bytes long. But in real industrial network, message lengths are always varying.

Therefore, if the priority-updating procedure still executes every 0.86ms, the net-

work bandwidth will be wasted. Second, the capability of priority levels is still

not utilized sufficiently. Under some special conditions, the assigned priorities of

messages may be crowded into a short period in the temporal axis.

In order to solve the above restrictions, a new priority mapping and scheduling

scheme called DLP (Dynamic Local Priority) is proposed. In DLP, it is expected

to assign ideal priority levels to the message set shown in Table 5.1.
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5.3.1 The description of DLP

The fundamental concept of the algorithm is straightforward. Since it’s difficult

to assign the priority in a distributed environment, we can collect the information

in the network so that the message priority could be assigned locally. Actually,

this thought is not acceptable in a distributed system that has thousands of nodes,

because the overhead to maintain a copy of local information is terribly high [34].

But for CAN 2.0A bus, as what we describe above, there are only 5 bits to represent

the unique identifiers of messages, therefore the maximal number of nodes is limited

to 32. So the overhead is also limited.

This DLP scheme is an extension of EDF scheduling. In order to calculate and

assign priorities to messages, their periods and deadlines should be easy to obtain

and update for every node on the bus. Hence, each node on the bus maintains a

linked list locally, which is called NNL (Network Node List), to store such infor-

mation and adjusts the sequence in the list dynamically according to current bus

time and deadlines of messages.

Using DARTS method (Design Approach for Real-Time Systems) proposed in

[13][14], we could design the structure of the algorithm. The state transmission

diagram (STD) of the local scheduler is shown in figure 5.4.

The basic states of the local scheduler includes Initialization, Idle, Priority

updating, Send and Receive. Signals and events trigger the transmissions between

states. The following sections describe the approach in details.

5.3.2 Initialization

When connecting to the network for the first time, every node should initialize

the connection and build its NNL, which records the priority levels of all nodes

connected to the network. At the beginning of the initialization, the NNL in a

node has the information of its own only. One node will broadcast its message

information, i.e. its period and deadline. Such broadcast message causes other
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Figure 5.4: The STD of the local scheduler

nodes to reply and send their information. Then every node will receive messages

from all the other nodes in the network and check whether such information is in

its NNL or not. If it already exists, the node will ignore this message. Otherwise,

it will insert such information into its NNL according to the ascending sequence of

deadlines and send out the information of its own as the reply. When every node

finishes building its NNL, the procedure of initialization ends and the system could

run. Suppose there are n nodes on the bus, n(n− 1)/2 + 1 broadcast messages are

needed to generate the initial NNL of every node. The algorithm for initialization

procedure is shown in Figure 5.5.

In order to assist nodes on the bus to build NNL, the message information

should be encapsulated into one frame to broadcast on the bus. The format of this

broadcast message is shown in Figure 5.6.

Since the last 5 bits in the arbitration field act as the unique identifier of a

node, the first 6 bits of the broadcast message are blank, i.e. dominant, so that

such messages could get the highest priority to access to the network. The data
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Input: Message information: info local, info new;
Output: NNL; /* The Network Node List */

Method:

purge(NNL); /* Empty the old NNL table */
insert(info local,NNL);
send(broadcast, info local);

while (! init finish) {
/* init finish is a boolean variable to indicate */
/* the end of the initialization process */

if (new node added()) {
insert(info new,NNL);
send(reply, info local);

}
}
return NNL;

Figure 5.5: The algorithm of Initialization procedure
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Figure 5.6: The format of broadcast message

field contains the message information: the first 2 bytes represent the period of

a certain kind of message, and another 2 bytes represent its relative deadline. If

one bit represents one millisecond, the minimal relative deadline will be 1ms, and

the maximum value will be 216 = 64Kms, which is enough for most practical

applications on industrial networks. The total length of a broadcast message is

79 bits. If the task set in the bus needs more precise time resolution, we can use

4 bytes to represent the period and deadline, and change the time unit to one or

several microseconds.

When a new node is added into the bus after the initialization, this node will

send out a broadcast message first. When the other n nodes get the message, they
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will send a reply message, just like the procedure of initialization. And they do

this only after they are idle so as to avoid interrupting their current work. Since

those n nodes have the information of each other, every one of them needs to send

the reply message only once. The total number of messages is 2n + 1.

Lag time

Since the network environment is distributed, it is not easy to determine when the

procedure of initialization will finish and nodes should begin their practical data

transmission. However, a simple estimation model can be built according to the

specification of DLP scheme.

Suppose that the bus transmission rate is νMbps, the length of a broadcast

message is l bits, and there is n nodes on the bus. In initialization stage, the max-

imum number broadcast messages is n(n − 1)/2 + 1. Therefore the corresponding

broadcasting time should be

Ti =
l

ν
·

[

n(n − 1)

2
+ 1

]

µs.

If node n + 1 is added into the bus, 2n + 1 broadcast messages will be generated

on the bus. So the corresponding transmission time should be

Tn =
l

ν
· (2n + 1) µs.

Suppose lag time is the time period of a node that the node should wait after

booting up to build NNL list, we get

Tlag = Tb + Ti,

where Tb is the boot-up time of device controller, which is dependent on the

design of the controller and may be different from one another. Generally speak-
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ing, device controllers with operating system inside need more time to boot up.

For example, if the microcontroller is in x86 architecture and uses MS-DOS, it

needs normally several seconds to boot up, load OS kernel and begin to run ap-

plication program. However, if no operating system is used and firmware is in

internal/external EEPROM or flash memory, the boot-up time is of the order of

microseconds. For example, boot-up time of Zilog microcontroller series is 18 sys-

tem clocks [40]. When the external clock is 20MHz, the boot-up time is less than

4µs. And nowadays in industrial market, CAN controller is normally integrated

into simple microcontrollers in non-x86 architecture, so that Tb has very small

contribution to Tlag.

As we mention above, in DLP case, 5 out of 11 bits in Arbitration Field

(CAN2.0B standard format) are used to represent the unique identifier of a node,

so the maximum number of nodes on the bus is limited to 32. Give ν = 1Mbps,

l = 79bits, we get Ti = 39.184ms, Tn = 4.977ms. Since Tb is in millisecond level,

we can let Tlag = 100ms for every node, which is safe enough for nodes to build

their local NNLs.

5.3.3 Priority updating

For periodic messages, after the procedure of initialization, every node has the

complete information in its NNL. The NNL of a node is shown in Table 5.2, which

assigns priorities to items according to their deadlines. The item with shortest

deadline will get the first position in it, and ∀ 1 ≤ i < j ≤ n, we have di ≤ dj.

Table 5.2: NNL in a node

No. Period Deadline Priority
1 T1 d1 1
2 T2 d2 2
· · · · · · · · · · · ·
n Tn dn n

Suppose the nodes update the priorities locally at every fixed slice time l. When
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updating the NNL, d∗
i = di − l will be computed as the new deadline of message

τi. If d∗
i < 0, then let the new deadline be d∗

i = d∗
i + Ti. Then the item slides in

the table to arrive at the new position, which is corresponding to its new priority.

When the priority updating process finishes, the node will update the priorities of

corresponding local messages in the queue or buffer. Since the maximal number of

nodes in the bus is limited, simple insert algorithms can be used. And in order to

improve the efficiency, the operation to NNL is always from the bottom to the top,

i.e. from item n to item 1 of the table. The basic algorithm for priority updating

is shown in Figure 5.7.

Input: NNL, l; /* The old NNL and slice time */
Output: NNL; /* The updated NNL */

Method:

i = number(NNL); /* Get how many items in NNL */
while (i > 0) {

for (every item τi in NNL) {
copy(τ ∗

i , τi);
d∗

i = di − l;
if (d∗

i < 0)
d∗

i = d∗
i + Ti;

delete(τi, NNL);
insert(τ ∗

i , NNL);
}

}
return NNL;

Figure 5.7: The algorithm of Priority Updating procedure

The DLP scheme copes with the priority assignment matter only, and does not

affect the arbitration mechanism of CAN bus. It does not carry out the schedu-

lability test of given message set. However, it can work together with scheduling

algorithms to guarantee the schedulability. But higher CPU load is needed.

Since the priority updating mechanism is implemented in individual nodes on

the bus, we must guarantee that all the distributed nodes are synchronized. Con-

sidering the hardware and other differences between nodes, an external clock source

is a better choice to provide the universal clock synchronization signals. A sim-
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ple algorithm proposed in [12] can synchronize clocks by using limited network

bandwidth.

5.3.4 Implementation

Current CAN controller chipsets are designed for fixed-priority scheduling, and

normally the arbitration field of messages would not be modified once the system

begins to run. Therefore, in order to use the algorithm proposed in this chapter, it is

necessary to add extra features to the chipset. One way is to modify the hardware

design of the chipset itself. That is straightforward but the cost is quite high.

Currently chipsets with CAN feature are widely used, so that the cost to replace

them with new chipset may be too high to be affordable. In addtition, many other

problems may be introduced, such as compatibility and interoperability. However,

there still have two methods to solve the problem.

1. Every CAN controller in a node works with another low-cost microcontroller

(such as Intel MSC51 series), which acts as the bridge between CAN controller

and the system controller and is transparent to both sides. Firmware runs

in it to control the communication scheme of the node. The advantage is no

any other extra load with be introduced into the controller of the node, and

firmware is easy to update. The disadvantage is that new hardware is added

into the system and minor modification of current design is needed;

2. With the assistance of current multitask real-time systems, software solution

could be implemented. In the system kernel, a single process keeps running

and acts as the handler to cope with tasks related to message sending, receiv-

ing, priority updating and NNL initialization. By optimizing the parameters

of the handler, it is expected to keep the overhead of local CPU under an

acceptable bound. The advantage is no hardware modification is needed.

But system load will be increased, and normally the upgrade to real-time

operating system costs a lot.
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5.4 Summary

In this chapter several issues related to limited priority levels in practical applica-

tions are discussed. First, the effect of the deterioration of schedulability is given.

Second, problems of priority inversion due to limited priority levels is discussed.

Lastly, an effective priority mapping scheme is proposed and analyzed to utilize

the limited priority levels sufficiently.

The next chapter will give the simulation of CAN bus scheduling and the anal-

ysis of the result.



Chapter 6

Simulation and Result Analysis

This chapter presents the implementation and simulation results of the algorithms

discussed in the previous chapters. The results focus on the performance of the

algorithms in a network environment implemented by CAN bus.

Two ways can be used to test the schedulability of a message set: using the

schedulability conditions and the simulation of the working of the network. The

following parts of this section gives the experimental results under the above two

tests separately.

6.1 The schedulability conditions

In the following experiment, unless otherwise stated, the experimental data set is

generated according to the criteria in [9]. Suppose the bitrate of the CAN network

is 250Kbps and the packet size is fixed at 8 bytes. The parameters of the first

experimental environment are shown in Table 6.1.

There are 1000 message sets per testing point (12000 for total), and each mes-

sage set consists of messages in three categories: periods in the range (3ms, 12ms),

(30ms, 120ms) and (250ms, 1s), uniformly distributed. The ratios of deadline to

period are Gaussian distributed with µ = 0.8 and δ = 0.2. The following tests

59
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Table 6.1: The data set information

Timestamp 1036612124
Bitrate 250 Kbps
Testing points 12

lowest 5%
delta 5%

Number of message sets 1000
Number of messages per set 30
Length of data field 64 bits (8 bytes)
Length of other fields 47 bits
Ratio of Deadline to Period 60%–100%

ignore sporadic messages, but it is easy to implement if we use minimum interval

time (MIT, see chapter 3) as their period.

6.1.1 Deadline Monotonic

Figure 6.1 and Figure 6.2 show the differences of the three schedulability condition

tests for DM algorithm discussed in Chapter 3. Please note that the network

utilization shown on the x-axis is only the actual data utilization, while the real

network utilization is higher because of the protocol overhead of CAN bus.

Figure 6.1 shows the case when preemption is allowed. Here message frames

are still in CAN format, but the native arbitration mechanism in CAN protocol

is not used. That means that a message with a higher priority than current bus

holder’s priority could get the bus immediately, and after its transmission, the

suspended message could resume. No extra overhead is introduced. The curves

marked with ’Basic’, ’Advanced’ and ’Iterated’ are calculated by equation 3.3,

equation 3.4 and equation 3.6, separately. We can see that the differences of the

ratio of schedulable message sets of three algorithms are obvious. At the first

several testing points, percentages of schedulable sets calculated by DM iterated

algorithm is more than 20% higher than the percentages of schedulable sets in

corresponding points calculated by DM basic algorithm and more than 15% higher

than those calculated by DM advanced algorithm.

When preemption is not allowed, the simulation result are shown in figure 6.2.
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Figure 6.1: Percentage of schedulable message sets using DM, preemptive is al-
lowed.

From the figure we can see that the performance of DM iterated algorithm becomes

even better. The percentage of schedulable sets of DM iterated algorithm is even

30% higher than the other two.

One point needed to be explained: in both Figure 6.1 and Figure 6.2, we can

find that from the curves, the percentage of schedulable sets at the testing points

with low data utilization may be lower than that on points with high data utiliza-

tion. This is due to the difference between data utilization and the real network

utilization. For example, if the length of a data stream is 1 bit, when encapsulating

the data stream into CAN frame, if variable length of data field is allowed, the data

field will be 8 bits long (1 byte), otherwise the data field will be even 64 bits long

(8 bytes). And the message set with low data utilization always has many data

streams with very short data (less than 64 bits long). Therefore the real network

utilization may be higher.
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Figure 6.2: Percentage of schedulable message sets using DM, preemptive is not
allowed.

6.1.2 Earliest Deadline First

We carry out two EDF schedulability condition tests, traditional method calculated

by Equation 4.3 and the algorithm in Figure 4.3. Table 6.2 shows the difference of

the results calculated by the above two methods. From the table we can see that

percentage of schedulable sets calculated by the new schedulability condition is a

little bit lower than that by traditional algorithm. Such a result is expected, since

the traditional algorithm takes a necessary but not sufficient condition test, which

may enlarge the range of schedulable sets. Meanwhile the new condition takes a

necessary and sufficient schedulability test, which is more accurate.

Table 6.2: The difference between the results of two EDF algorithms.

Algorithm 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

Traditional 0.956 0.943 0.92 0.855 0.775 0.653 0.538 0.386 0.211 0.141 0.075 0.024

New method 0.956 0.943 0.918 0.854 0.773 0.650 0.534 0.379 0.208 0.138 0.072 0.023

Figure 6.3 shows the difference of the results between non-preemptive DM and

non-preemptive EDF algorithms. We can see that when the data utilization is
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equal to or less than 0.50, the percentage of schedulable sets by EDF algorithms

is about 10% to 15% higher than that by DM algorithm. Alternatively, if a given

percentage of schedulable sets is considered, the data utilization is improved by 5%

to 10% in the range 0.2–0.5.

Figure 6.3: The difference between DM iterated, EDF traditional, and EDF heuris-
tic, non-preemptive

6.2 The scheduling simulation model

The scheduling simulation model is shown in Figure 6.4. At least two methods

could be used to implement the model. The best simulation method is to set up a

real network via CAN bus. Several nodes are connected to the bus and simulation

programs are running on each node to collect information of the scheduling process.

However, due to the hardware cost and other uncertain factors, a pure software

platform could be used to simulate the running of the network as an alternative

solution. Although the results of software simulation may be not as accurate as

those from the real network, the performance of the proposed algorithm could be
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Figure 6.4: The simulation model

assessed by comparing the results of different algorithms in the same simulation

environment.

Table 6.3: The simulation data set, workload of drilling machine

High-speed messages
Type Class Period/MIT Deadline # of message
Fingers Periodic 125.0µs(8kHz) 50.0µs 4
Joints Periodic 166.7µs(6kHz) 66.6µs 6
Carriage Periodic 250.0µs(4kHz) 100.0µs 2
Drill Periodic 500.0µs(2kHz) 200.0µs 2
Sensors Aperiodic 2s 30.0µs 2

The scheduling simulator, stsimu, is written in pure C/C++, console-based

and therefore platform-independent. In this simulator, no system timer is used.

Instead, a global counter works as the bus clock, hence the speed of simulation is

increased greatly. An open framework for scheduling simulation is developed, so

it is easy to add more modules to test some other scheduling algorithms. In order

to test the correctness of the implementations of scheduling algorithms in stsimu,

we use the data set in [41], which is the workload of a drilling machine with an

attached robot arm to move workpieces as in table 6.3, to do the simulation before

we use the data sets of our own. And we get similar results with those in [41].
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Therefore, we can guarantee that the implementations of scheduling algorithms in

the thesis are correct.

6.2.1 The structure of the scheduling simulator

The scheduling simulator is composed of several independent modules. Because

of the console-based user interface, the main() function of the program works as

a parser to analyze the input parameters, and then call the simulation procedure

st simu() (Figure 6.5).

CDEF GHIH JKLE
MEI GHIHNEI KFJOPHIKOF
QREDHRE LOS JKLE

TOR EHUV IENIKFSDOKFIW JKFKNVX
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Figure 6.5: The data flow diagram of procedure st simu()

The procedure st simu() open the data file and gets the data set information.

After polling the input parameters to find out which algorithm is required to run.

the procedure tests the schedulability of the message set one by one for every testing
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point by calling procedure simulating(). And the result will be stored in log file.
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Figure 6.6: The data flow diagram of procedure simulating()

Figure 6.6 shows the diagram of procedure simulating(). This procedure tests

the given message set in the range of (0, TIME LIMIT) and returns a boolean value to

indicate whether the message set is schedulable or not. The procedure can update

priorities dynamically if the simulation is for EDF algorithms.

6.2.2 Simulation results

The first example of simulation uses the data set shown in Table 6.1. The horizonal

axis represents the data utilization. Figure 6.7 shows the simulation result of

percentages of schedulable sets under different DM and EDF priority assignment

schemes.

When Deadline Monotonic Algorithm is applied, we consider the case that the
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Figure 6.7: The comparison between DM and EDF

number of priority levels is unlimited (DM ideal) and the case that it is limited

when simulating in CAN bus (DM CAN). According to [41], we use 9 bits of

identifier as the priority. In Chapter 5 we discussed the effect of limited number of

priority levels, and when more than 64 priority levels are applied the deterioration

of performance is trivial. The simulation results in this given data set support

the above analysis: there are no difference between DM ideal and DM CAN as

shown in Figure 6.7. However, the performance is limited by the DM itself. The

percentage of schedulable sets of DM is 10% to 15% less than that of EDF. The

result of EDF under DLP mechanism is as good as that of EDF ideal (no limit of

priority levels) from Figure 6.7. DLP mechanism maintains a priority table locally,

and the number of priority levels is only limited by the allocated memory to store

the table. Generally speaking, it is unlimited too.

In the second example, the data set uses network utilization, which can reflect

the closer effects of real network environments, instead of data utilization used in

the first example. In this data set, there are 21 testing points on the axis of network

utilization, from 60% to 100% with step of 2%. And the ratio of deadline to period
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is Gaussian distributed with µ = 0.5 and δ = 0.1. Other information is same with

that in table 6.1. The simulation result is shown in Figure 6.8.

Figure 6.8: The comparison between DM and EDF

We can see that when network utilization is lower than 0.70, there is almost

no difference between DM and EDF algorithms. With the increase of network

utilization, the percentage of schedulable sets by DM algorithms drops much faster

than that by EDF algorithms. Particularly, when network utilization is equal to

86%, the percentage of schedulable sets by EDF is as twice as that by DM. And

it is shown in Figure 6.8 that when network utilization is applied, DLP algorithms

still have the same result with EDF ideal.

6.2.3 Analysis of DLP scheme

The comparison of the performance of different priority assignment schemes under

EDF is workload-dependent. The most persuasive test is practical workload in real

world. We choose the data set which is generated according to [9]. The simulation

results are shown in Figure 6.9, which uses data utilization, and Figure 6.10, which
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Figure 6.9: Comparison of three EDF algorithms, data utilization

Figure 6.10: Comparisons of three EDF algorithms, network utilization

uses network utilization. In each figure there are three curves using priority assign-

ment of EDF MTS, EDF by logarithmic quantization and EDF DLP, separately.

We can see that the percentage of schedulable sets by EDF MTS is lower than that
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by EDF LOG and EDF DLP in both figures. The EDF LOG is very close to EDF

DLP but still a little lower.

The overhead of the EDF LOG algorithm is mainly due to the real-time cal-

culation based on logarithmic temporal quantization to update the deadlines of

messages. And such burden to CPU always exists. For the DLP algorithm, the

overhead mainly exists in initialization process, because the real-time calculation

to update deadlines in the DLP algorithm is much simpler than that in the EDF

LOG algorithm. Therefore, the average load to CPU under the DLP algorithm

should be less than that under the EDF LOG algorithm when other conditions are

same.

However, the above simulation result is based on the ideal condition by ignoring

all jitter, content-switching and other overhead. Under real network conditions and

environments, the performance may be not as high as we have in the experiment.

And the factors that restrain the application of DLP mechanism may be the scale of

the network, network synchronization and the initialization process of the system.

For example, there is still some work to do to optimize the initialization process to

decrease the initialization time of NNL.

6.3 Summary

In this chapter, a simulation model is set up and the results of simulation are

analyzed. Several scheduling algorithms, including DM, EDF and their derivations,

are compared under preemptive and non-preemptive environments, especially in

CAN bus. In the end, the analysis of DLP mechanism is given and shows that

DLP is an effective mechanism for priority assignment.

In the next chapter, the conclusion and a discuss on further work is proposed.
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Conclusion

Issues of message scheduling algorithms in CAN bus are discussed in this thesis.

Priority-driven scheduling algorithms are very popular in CAN bus and its native

arbitration mechanism is a fixed priority scheme. Several important priority-driven

scheduling algorithms are introduced, including fixed priority algorithms (RM/DM)

and dynamic priority algorithms (EDF/MLF). And the schedulability condition

tests are studied. As an improvement of non-preemptive EDF scheduling test, a

new schedulability condition is proposed. Meanwhile, the priority mapping problem

is studied thoroughly. In order to reduce the effect of limited priority levels and

corresponding priority inversion, a new priority assignment scheme, dynamic local

priority (DLP), is proposed.

In order to check the models proposed in this thesis, software platforms are

constructed. From the results and analysis in chapter 6 we can find that both

the new schedulability condition and the DLP scheme reach the level that we

expect. The heuristic algorithm is shown to satisfy the sufficient and necessary

schedulability condition. Unlike the schedulability condition tests of DM and EDF

shown in [39], which contain some approximate upper-bound items, the heuristic

algorithm can give a precise conclusion whether a set of messages is schedulable or

not. DLP scheme introduces a local priority table, and hence it solves the problem

of limited number of priority levels. Compared with MTS and EDF logarithmic
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priority assignment schemes, the performance of DLP scheme is closer to that of

ideal EDF. And the implementation of DLP scheme is simple. Only an extra

software layer is needed between the application layer and the network layer (MAC

layer).

However, there are some restrictions in the work. First, using LCM of the data

set as tmax may not economical and the computation work may be very heavy.

Second, the data set in experiments is generated randomly and may be not proper

in practical distributed systems. Therefore, a more accurate model to generate data

set for experiments is needed. Third, the DLP scheme is tested only on a software

platform, not on a real network environment. All overloads are neglected. The

real performance may be not as good as that in simulation results. If conditions

permit, an experiment in real network environment is necessary to test the practical

efficiency of DLP scheme.

The further work includes two aspects: first, do more experiments under differ-

ent conditions to test the algorithms; second, try to implement the proposed ideas

in this thesis to a more general network environments. Since the rapid pace of de-

velopment in computer and network technology, more and more new techniques and

interface standards occur in recent years, such as IEEE 1394 and USB 2.0. Those

two communication interfaces and corresponding protocols could provide very high

transmission speed (maximum speed 400Mbps and 480Mbps, respectively) with-

out adding too much additional cost. It is necessary to keep an eye on such new

techniques and their applications in industrial fields.
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Appendix A

Proof of Theorem 4

Theorem 4 When deadline scheduling policy is applied, if preemption is allowed

and messages are independent, a set of n messages τi = (Ti, Ci, Di), i = 1, 2, . . . , n,

are schedulable if and only if

1.
n
∑

i=1

Ci

Ti

≤ 1,

2. ∀t ∈ S,

n
∑

i=1

⌈

t − Di

Ti

⌉+

· Ci ≤ t (A.1)

where S =
⋃n

i=1 Si, Si = {Di + nTi, n = 0, 1, . . . b(tmax − Di)/Tic}, and tmax =

max{D1, . . . Dn, (
∑n

i=1(1 − Di/Ti)Ci)/(1 −
∑n

i=1 Ci/Ti)}.

Proof: The condition 1 is the preliminary conditions of scheduling.
∑n

i=1 Ci/Ti

is the maximum total utilization of the message set. If it is greater than 1, the bus

is always overloaded under whatever conditions.

To prove condition 2, we use Theorem 3. d(t − Di)/Tie
+Ci is piecewise function,

and changes only on the set S ′
i = {Di + nTi, n = 0, 1, . . . }, therefore, we only need

to check the inequality of Theorem 3 on the set S ′ =
⋃n

i=1 S ′
i.

∵ ∀t ≥ max{Di, i = 1, . . . , n},

d(t − Di)/Tie
+ ≤ 1 + (t − Di)/Ti.
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Let

t′ =

∑n
i=1 (1 − Di/Ti) Ci

1 −
∑n

i=1 Ci/Ti

,

we get

n
∑

i=1

dt − Di/Tie
+ Ci ≤

n
∑

i=1

(1 + (t − Di)/Ti))Ci

=
n
∑

i=1

(Ci/Ti)t +
n
∑

i=1

(1 − Di/Ti)Ci

=
n
∑

i=1

(Ci/Ti)t + (1 −
n
∑

i=1

(Ci/Ti))t
′

= t′ +
n
∑

i=1

(Ci/Ti)(t − t′)

∵

∑n
i=1(Ci/Ti) ≤ 1, and if t ≥ t′,

n
∑

i=1

dt − Di/Tie
+ Ci ≤ t′ + (t − t′) = t.

∴ Let tmax = max{D1, . . . , Dn, t′}, whenever t ≥ tmax, inequality A.1 is always

met. Therefore, the set of testing points becomes S =
⋃n

i=1 Si, Si = {Di +nTi, n =

0, 1, . . . b(tmax − Di)/Tic}.

2



Appendix B

Hardware-related Topics of CAN

In the CAN specification, no clear hardware-related definitions are given. Although

different CAN controllers or integrated microcontrollers use different ways to im-

plement, they all share common functionality from one controller to another. In

this chapter, we use the CAN module of Motorola 68HC12BC32 microcontroller

(MSCAN12) as an example to discuss these features [26].

B.1 Buffer storage

The message buffer could assist the communication process and reduce the cost

of time. Different ways are implemented by different CAN controllers, integrated

or stand-alone. For example, the Philips 82C200 CAN controller [37], which is a

simple controller, has only two message buffers: a single 10 byte transmission buffer

and a 10 byte double-buffered receive buffer. This controller works as a memory-

mapped I/O device, raising interrupts to the microcontroller or accepting signals

from it. In contrast, Intel 82527 CAN controller [15] uses dual-ported RAM to

exchange data with the microcontroller, mapping permanently message identifiers

to slots. And the analysis in [36] shows that Intel 82527 controller has a very much

better worst-case timing performance than the Philips 82c200 controller.

MSCAN12 module utilize a sophisticated message buffer mechanism to imple-
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Figure B.1: The user model for message buffer organization of MSCAN12

ment the message storage. It has two receive buffers, which are mapped into a

single memory area (see Figure B.1), and three transmit buffers. This scheme

could guarantee that any node could send out a stream scheduled messages with-

out releasing the bus between two messages, and multiple messages are allowed to

be set up in advance in order to optimize the real-time performance.

B.2 Message filtering

A simple CAN controller has to receive all messages transmitted on the bus and

leave the task of message selection to software. This can pose a heavy burden

to the controller since every time a message is received, regardless of whether

it is intended for the application or not, a software interrupt routine is invoked.

This mechanism may cause a lot of code and processing overhead, resulting in

deteriorating performance of the application or even the system.

One effective way to reduce such overheads is to provide an elementary message

filtering mechanism to select messages automatically, accept the intended only and

reject the rest. Message filtering is based on the whole identifier. There should be

mask registers in a CAN controller that allow any identifier bit to take effect or to

be set ’do not care’ when filtering a message. Therefore, the controller could select
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particular message groups or subsets by means of mask registers. Normally, CAN

controllers should provide programmable mask registers. At least one identifier

acceptance register and one identifier mask register are needed. In old CAN con-

trollers, such as Philips 8x592 microcontroller and the Motorola 68HC05X family,

the filter has only one 8-bit acceptance register and one corresponding 8-bit mask

register. They could only filter messages of CAN2.0A standard format. In fact,

since they have only eight bits in the mask register, the last 3 bits of the 11-bit iden-

tifier of standard format are ignored when doing the matching test. In MSCAN12

module of Motorola 68HC12BC32 microcontroller, on the contrary, there are eight

8-bit acceptance registers and eight 8-bit mask registers. Four identifier accep-

tance modes could be set to organize filter as two 32-bit, four 16-bit, eight 8-bit

acceptance filters or disable filter, and therefore high flexibility could be achieved.

Multiple-layer message filtering can be implemented in MSCAN12.
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Figure B.2: 16-bit maskable acceptance filters in MSCAN12

Figure B.2 shows the case that four 16-bit acceptance filters are used, so as to

verify the 11 bits of the identifier and the RTR bit of CAN 2.0A message, or the 14

most significant bits of the identifier of CAN 2.0B message. Meanwhile the figure

shows how the first 32-bit filter bank (CIDAR0-3, CIDMR0-3) produces filter 0 and

1 hits. Similarly, the second filter bank (CIDAR4-7, CIDMR4-7) produces filter 2

and 3 hits. These hits could raise receive interrupt to inform the software that the

intended message has arrived.
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B.3 Bus timing

The Nominal Bit Rate of the network is given by:

fNBT =
1

tNBT

where tNBT is the Nominal Bit Time, the time to transmit a bit on the bus.

tNBT is divided into four separate non-overlapping time segments: SYNC SEG,

PROP SEG, PHASE SEG1 and PHASE SEG2. Therefore, we get:

tNBT = tSY NC SEG + tPROP SEG + tPHASE SEG1 + tPHASE SEG2

Every segments above is an integer multiple of a unit of time called a time quantum,

tQ. A time quantum is the atomic unit of time handled by a CAN controller.

Hence, tQ is equal to the period of CAN system clock, which is derived from

the microcontroller (MCU) system clock or oscillator by way of a programmable

prescaler (Baud Rate Prescaler). Figure B.3 [27] shows the relationship between

CAN system clock and the CAN bit period.
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Figure B.3: the relationship between CAN system clock and CAN bit period

The duration of the segment SYNC SEG is fixed to one tQ. But the other
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segments are programmable. Let

tSEG1 = tPROP SEG + tPHASE SEG1

tSEG2 = tPHASE SEG2

The duration of the propagation segment PROP SEG may be between 1 to 8 times

of tQ. If one sample per bit is selected, the duration of segment PHASE SEG1 may

be between 1 to 8 times of tQ, and if three samples per bit are selected, it may be

between 2 to 8 times of tQ. The duration of the segment PHASE SEG2 should be

equal to the maximal value between PHASE SEG1 and the Information Processing

Time (IPT). Normally, the total number of time quantum in a bit time should be

between 8 to 25.

The nominal start of a bit is the beginning of the SYNC SEG segment. During

this period, the incoming edge of a bit is expected. Due to the the non-destructive

arbitration of CAN protocol and the requirement for in-frame acknowledgement,

PROP SEG segment is necessary to guarantee that nodes on the bus may not begin

to sample the bus value until the transmitted bit values from all the transmitting

nodes have reached all nodes. If it is needed to re-synchronize the bus timing,

nodes could adjust the duration of PHASE SEG2 segment. One parameter named

Synchronization Jump Width (SJW) defines the number of time quanta that can

be used to compensate for the phase shifts. With the minimum value of 1, the

width can not exceed 4 tQ and it should not exceed the duration of PHASE SEG1

segment.
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Figure B.4: Bus timing registers

In most CAN controllers, there are 8-bit registers to control the bus timing

characteristics for CAN communication. The structures of the two bus timing
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registers are shown in figure B.4. They could be used to set the prescaler, bit

sample point, SJW, and the value of tSEG1 and tSEG2. The bit SAML determines

the sample point, at which point the nodes should sample the bus. If SAML=0

one sample is chosen. If SAML=1 then three sample points are chosen, and the

most frequently sampled value is taken as the bit value.

The detailed references and examples of the calculation of bit timing parameters

for MSCAN12 module can be found in [26] and [27].


