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Summary 

Various mechanisms have been developed to address the need to provide quality of 

service (QoS) in the Internet where mobile devices are becoming the norm. Integrated 

Services (IntServ) and Differentiated Services (DiffServ) are two approaches to 

provide QoS guarantees in the Internet. Designed for wired non-mobile networks, 

IntServ provides per-flow QoS and is deemed to be only suitable for edge networks 

while DiffServ provides aggregate QoS and is suitable for use in core networks. For 

mobile hosts, IPv6 has built-in capability to support IP level mobility, which we refer 

to as Mobile IPv6 (MIPv6), and IEEE802.11e provides QoS support at the MAC layer 

of IEEE802.11-based WLANs. In this thesis, we use the QoS support in the MAC 

layer provided by IEEE802.11e to guarantee QoS on the wireless last hop, and propose 

an end-to-end QoS architecture for mobile hosts that combines IntServ/DiffServ, 

MIPv6 and IEEE802.11e.  

In order to enhance the handoff performance of our QoS architecture, we also 

propose an approach to improve the handoff performance. It is found that the loss of 

Router Advertisement (RAD) messages of MIPv6 affects adversely the handoff 

performance. Therefore, the approach to improve handoff performance is assigning 

RAD messages higher priority to minimize the loss of RADs or totally eliminate the 

loss of RADs.  

Handoff performance is essential to a good mobile QoS architecture. In this thesis, 

we combine the approach of assigning RADs higher priority with another approach that 

the MN sends binding update (BU) messages of MIPv6 to the previous base station 

that it just visited to improve the handoff performance of our end-to-end QoS 

architecture for mobile hosts. The latter approach is based on the idea of signaling and 
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tunnel between the previous access router (PAR) and new access router (NAR) in Fast 

Handovers for Mobile IPv6 protocol. 

Simulation is conducted to evaluate the performance of the QoS architecture that 

combines IntServ/DiffServ, MIPv6 and IEEE802.11e and to verify the efficiency of 

these two approaches to improve the handoff QoS performance. Simulation results 

have shown the achievable end-to-end QoS and improved handoff QoS. 
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Chapter 1                                                     

Introduction 

1.1 Overview 

Although current Internet is a widely deployed network with hundreds of millions 

of hosts, an Internet Protocol (IP)-based network still operates as a best effort network. 

It processes traffic as quickly as possible, but does not provide a reliable data delivery. 

It also cannot ensure timely delivery and cannot provide any guarantees on data 

throughput. These limitations have not been a problem for traditional Internet 

applications such as email, file transfer and Web applications. However, for some new 

applications such as real-time and multimedia applications, they demand high data 

throughput as well as low delay and jitter. Therefore there is a strong interest in 

introducing quality of service (QoS) to current IP networks.  

The Internet Engineering Task Force (IETF) has proposed many service models 

and mechanisms to meet the demand for QoS [1][2]. Notable among them are the 

Integrated Services (IntServ)/RSVP model [3] and the Differentiated Services 

(DiffServ) model [4]. IntServ/RSVP model is characterized by resource reservation. 

The applications must set up paths and reserve resources before data are transmitted. 

RSVP [5][6] is such a signaling protocol for setting up paths and reserving resources. 

DiffServ model divides the traffic into a small number of classes, and packets in 

different classes receive differentiated services.  IntServ provides per flow QoS while 

DiffServ provides QoS based on per aggregate. They are not mutually exclusive of one 

another, on the contrary, they complement each other in a perfect way. Some work has 
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been done on integrating IntServ/DiffServ [7][32][34], and simulation results have 

reported that integrating IntServ and DiffServ can guarantee end-to-end QoS in wired 

networks[8].  

In recent years, the number of portable computing devices has increased 

tremendously, such as laptop computers, palmtop computers, Personal Digital 

Assistants (PDAs). In the coming future, a major part of personal communication, no 

matter whether it is voice, data, images or video, will be wireless. With the increasing 

deployment of the wireless networks, proliferation of mobile computing devices, and 

emergence of new multimedia applications, there is an increasing need to provide QoS 

to mobile devices.  

However, for a wireless network where hosts are likely to be mobile, the 

requirements of QoS are more difficult to achieve due to host mobility and the features 

of the wireless medium such as low bandwidth and high loss rate. The mobility 

management in the Internet world is dealt with Mobile IP. The next generation IPv6 

protocol has built-in capability to support IP level mobility, which we refer to as 

Mobile IPv6 (MIPv6) [9]. Mobile IPv6 is based on the best effort delivery model and 

has no consideration of QoS. Moreover, both IntServ/RSVP and DiffServ are designed 

for wired non-mobile networks and become invalid under host mobility. There has 

been some research on extending RSVP or DiffServ to wireless mobile networks. The 

protocols on extending RSVP to wireless mobile network include Mobile RSVP [10], 

multicast-based model [11], RSVP tunnel model with Mobile IP [12], Mobile IP with 

location registers [13], Mobile IPv6 and RSVP integration model [14], and flow 

transparency-based model [15][16]. Some studies on extending DiffServ to wireless 

mobile network are also based on providing signaling support in DiffServ networks 

[17][18][19].  
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All these studies have focused on providing handoff QoS when mobile hosts move. 

Even though these studies set up RSVP resource reservation paths efficiently, most of 

these solutions have no QoS mechanism enough to prevent service disruption at a new 

cell during handoff [16]. Moreover, these studies have been carried out on the network 

layer or higher layer. Inherited from the basic idea of layered network that considering 

the case in each separated independent layer, these studies have not considered the 

lower layer, whereby the perfect QoS on lower layer is assumed. However this is not 

true for the existing IEEE802.11-based wireless access networks. The current 

IEEE802.11 wireless LAN standard [20] does not support QoS in medium access 

control (MAC) layer. Even though the mobile hosts do not move, the QoS for mobile 

hosts cannot be guaranteed.  This led to the development of the IEEE802.11e wireless 

LAN standard [21] to provide QoS support in MAC layer. The basic 802.11 MAC 

protocol is the Distributed Coordination Function (DCF). In order to support QoS, 

Enhanced DCF (EDCF) is defined in the 802.11e MAC protocol. The QoS support in 

EDCF is realized with the introduction of Traffic Categories (TCs)[30]. 

Provision of QoS has been studied at various levels in the protocol hierarchy. The 

present thesis work will discuss the QoS provision to mobile hosts in a different 

perspective: combining QoS mechanisms of different levels, i.e. combining 

IntServ/DiffServ, MIPv6, and IEEE802.11e MAC protocol to provide the end-to-end 

QoS to mobile hosts.  

In this thesis, we will evaluate and compare the end-to-end QoS achieved by 

mobile nodes using combination of IntServ/DiffServ/MIPv6/IEEE802.11 with the case 

of IntServ/DiffServ/MIPv6/IEEE802.11e. We will study how the IntServ/DiffServ, 

MIPv6 and IEEE802.11/IEEE802.11e interoperate in detail and how the requested 

services in different domains are mapped to each other. We will also investigate the 
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end-to-end QoS achieved by mobile nodes after intra-domain and inter-domain 

movement.  

Furthermore, handoff performance is essential to a good mobile QoS model and 

there have been much work done on this.  As we have mentioned above, these QoS 

solutions do not have enough QoS mechanism to guarantee handoff performance[16]. 

Moreover, some of them are difficult to be implemented and some are costly. In this 

thesis, we will propose an approach to improve the handoff performance ― assigning 

Router Advertisement (RAD) messages of MIPv6 higher transmission priority 

supported by IEEE802.11e MAC protocol.  

In Fast Handover for Mobile IPv6 protocol, one key protocol operation is setting 

up a routing path between the previous access router (PAR) and new access router 

(NAR) to enable the mobile node (MN) to send and receive IP packets [23]. Based on 

this idea, we will let the MN send binding update (BU) messages of MIPv6 to the 

previous base station that it just visited to improve the handoff performance. In this 

thesis, we will combine these two approaches to improve the handoff performance of 

our QoS architecture. Simulation results will demonstrate that these two approaches 

are efficient to improve handoff performance.  

1.2 Thesis Contributions 

The major contributions of this thesis are as follows: 

• Proposing an end-to-end QoS architecture that combines IntServ/DiffServ, 

MIPv6, and IEEE802.11e[22]. Analyzing how the IntServ, DiffServ, MIPv6 

and IEEE802.11e in this architecture interoperate, how the QoS services in 

IntServ and DiffServ are mapped and how to realize the QoS services of 

IntServ/DiffServ in IEEE802.11e.  
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• Implementing the QoS architecture that combines IntServ/DiffServ, MIPv6, 

and IEEE802.11/IEEE802.11e with the Network Simulator (NS2). 

• Comparing the QoS achieved by the architecture of combining 

IntServ/DiffServ/MIPv6 and IEEE802.11 with the case of combining 

IntServ/DiffServ/MIPv6 and IEEE802.11e. Subsequently, demonstrating that 

the QoS can be guaranteed in the architecture of combining IntServ/DiffServ 

/MIPv6 and IEEE802.11e in the quantitative point of view[22]. 

• Proposing an approach to improve handoff performance ─ Assigning Router 

Advertisement (RAD) messages of MIPv6 higher priority to transmit[22]. It is 

found that the loss of RADs affects adversely handoff performance. Therefore, 

minimizing or totally eliminating the loss of RADs will improve the handoff 

performance significantly. We achieve this by assigning RADs a higher priority. 

Simulation results show that the handoff performance of MIPv6 with higher 

priority for RADs supported by the IEEE802.11e MAC outperforms the 

handoff performance with no priority for RADs.  

• Combining the approach of assigning RADs higher priority with the approach 

of sending BUs to the previous base station that proposed in Fast Handovers for 

MIPv6 to improve the handoff performance of our end-to-end QoS architecture. 

Conducting simulation to show how much improvement can be achieved by the 

combination of these two approaches. 

1.3 Thesis Organization 

The rest of the thesis is organized in a manner as follow:  
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Chapter 2 is an overview of existing QoS models/protocols: IntServ/RSVP, 

DiffServ, and QoS supported MAC protocol – IEEE802.11e wireless LAN standard. 

We will also introduce the mobility support protocol – Mobile IPV6 in this chapter.  

Chapter 3 gives a general description of the end-to-end QoS architecture that 

combines IntServ/DiffServ, MIPv6, and IEEE802.11e. We will describe how IntServ, 

DiffServ, IEEE802.11e, and MIPv6 interoperate, and how the services that they 

provide respectively are mapped.  

In chapter 4 we propose an approach to improve the handoff performance ─ 

assigning RAD messages of MIPv6 higher priority to transmit. We also introduce the 

method that the MN sends BU messages of MIPv6 to the previous base station that it 

just visited. 

In chapter 5 we design a simulation to evaluate and compare the end-to-end QoS 

achieved by the architecture of combining IntServ/DiffServ/MIPv6/IEEE802.11 with 

the case of combining IntServ/DiffServ/MIPv6/IEEE802.11e. Improvement on 

handoff QoS performance through two approaches described in chapter 4 is also 

evaluated by simulation. 

Finally the conclusion is given in chapter 6.  
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Chapter 2                                                               

Internet QoS Architectures and Mobile IPv6 

2.1 Introduction 

An overview of the existing Internet QoS architectures is presented in this chapter, 

i.e. the Integrated Services architecture, the Differentiated Services architecture and 

QoS supported MAC protocol ─ IEEE802.11e wireless LAN standard, as well as 

Mobile IPv6. We focus on their functionality, characteristics, advantages and 

disadvantages.  

The section 2.2 describes the Integrated Services (IntServ) architecture. Resource 

ReSerVation Protocol (RSVP) is also given in this section. The section 2.3 presents the 

Differentiated Services (DiffServ) architecture. Mobile IPv6 is expressed in section 2.4, 

followed by an introduction of IEEE802.11e wireless LAN standard in section 2.5.  

2.2 Integrated Services and RSVP 

The Integrated Services (IntServ) architecture introduces a set of extensions to the 

current Internet architecture in order to enable services that go beyond the traditional 

best effort service. QoS in terms of IntServ is associated with the time-of-delivery of 

packets and is characterized by parameters such as bandwidth, packet delay and packet 

loss rate [3]. 

IntServ architecture is based on per-flow resource reservation. In order to obtain 

resource assurance, an application must set up the resource reservation along its path 

before it can transmit traffic into the network. IntServ model proposes two service 
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classes besides Best Effort (BE) Service: Guaranteed Service (GS) for applications 

requiring strict delay bound and Controlled load (CL) Service for applications 

requiring reliable and enhanced best effort service. We will discuss these two kinds of 

services in detail in the next chapter.  

RSVP (the ReSerVation Protocol) is such a resource reservation signaling protocol 

developed for an application to set up a reservation before transmitting traffic. RSVP is 

the most complex among all the QoS technologies and provides a high level of QoS 

guarantee. The basic RSVP operation is illustrated in Fig 2.1 [24]: 

• The senders send PATH messages that contain the traffic specification (TSpec) 

information to the receivers to specify the characteristics of the traffic.  TSpec 

includes the following parameters: token bucket rate (r), token bucket size (b), 

peak rate (p), maximum datagram size (M), minimum policed unit (m). Each 

RSVP-enabled router along the downstream route toward the receivers 

establishes a “path-state” that includes the previous source address of the 

PATH messages. 

• After receiving the PATH messages, the receivers send a RESV message 

toward the senders along the reverse direction of the PATH messages to 

reserve resource. Besides the TSpec that describes the traffic flow, the RESV 

message includes a request specification (RSpec) that defines the desired QoS 

and a filter specification (filter spec) that characterizes the packets for which 

the reservation is being made (e.g. the transport protocol and port number). 

RSpec includes parameters as follows: service rate (R) and slack term (S) 

Together, the RSpec and filter spec represent a flow-descriptor that is used by 

routers to identify each reservation (a “flow” or a “session”). Guaranteed 
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service requires both the RSpec and the TSpec parameters; Controlled load 

service needs only TSpec. 

• When each RSVP router along upstream the path toward the senders receives 

the RESV message, it uses the admission control process to authenticate the 

request and allocate the necessary resources. If the request cannot be satisfied 

(due to lack of resources or authorization failure), the router returns an error 

back to the receivers. If accepted, the router sends the RESV upstream to the 

next router. When the last router receives the RESV and accepts the request, it 

sends a confirmation message back to the receiver. 

• When the senders or the receivers end an RSVP session, there is an explicit 

teardown process for a reservation. 

 
 
 
 
 

S1 

D2 

D1 

S2 

PATH messages
RESV messages
Flow 

 

Figure 2.1  Basic RSVP Operation 
 

IntServ is implemented by four components: the signaling protocol (RSVP), the 

admission control routine, the classifier and the packet scheduler. IntServ model can be 

logically divided into two parts (Figure 2.2): the control plane and the data plane [24]. 

The control plane sets up resource reservation and the data plane forwards data packets 

based on the reservation state.  
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QoS routing agent 

Reservation setup agent 

Resource reservation table 

Admission control 

Control plane 

Data plane 

   Packet scheduler       Classifier 

RSVP 

 

Figure 2.2 Integrated Services Model 
 

    Even though IntServ provides the means for end-to-end QoS, it is not widely 

deployed. The problems with the IntServ architecture are: 1) maintenance and control 

of per-flow states introduces severe scalability problems at the core networks, where 

there are millions of flows. Consequently, it is suitable for access network where the 

number of flows using reservation is modest; 2) the requirement on routers is high. All 

routers must implement RSVP, admission control, Multi-field (MF) classification and 

packet scheduling. 

2.3 Differentiated Services  

To solve the scalability and complexity problem of IntServ and RSVP, 

Differentiated Services (DiffServ) [4][25] is introduced. Scalability is achieved by 

offering services on aggregate basis rather than on per-flow basis. With DiffServ, 

traffic is divided into a small number of groups called forwarding classes. The 

forwarding class that a packet belongs to is encoded into a field in the IP packet header 

(TOS (Type-of-Service) octet in IPv4 header or Traffic Class octet in IPv6 header). 
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The TOS byte is divided into 6 bits Differentiated Service Code Point (DSCP) field 

and a 2-bit unused field [2]. 

 

Figure 2.3 Differentiated Services Code Points (DSCP) 
 

DiffServ is constructed by a combination of (i) marking packets with a DiffServ 

code point (DSCP) at boundary nodes, (ii) using the DSCP to determine how the nodes 

inside the domain forward packets, and (iii) conditioning the marked packets at 

boundary nodes. 

In DiffServ, externally observable forwarding treatments at a single node are 

described by the term per-hop behavior (PHB). Each PHB is represented by a 6-bit 

value DSCP. In DiffServ architecture, PHBs are used as the basic building blocks for 

resource allocation to different behavior aggregates. There are currently two standard 

PHBs that represent two service levels (traffic classes): Expedited Forwarding (EF) 

and Assured Forwarding (AF). 

 

Classifier 

Meter 

Shaper/ 
Dropper
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DiffServ  
Edge  
Router 
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Figure 2.4 DiffServ Routers 
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In a DiffServ network, the routers at the boundary of the network (boundary 

routers or edge routers) and routers inside the network (interior routers or core routers) 

have different responsibilities (Figure 2.4). The edge routers perform the complex 

classification and traffic conditioning functions while the core routers only forward the 

packets based on the forwarding classes in the packet header. 

DiffServ is quite different from IntServ. Firstly, resources are allocated to 

aggregated traffic rather than individual flows. In DiffServ, resources are allocated to 

individual classes that represent aggregated traffic. The performance assurance to 

individual flows in a forwarding class is provided through prioritization and 

provisioning rather than per-flow reservation. IntServ approach allocates resources to 

individual flows, which can run into tens of thousands in a large network. Secondly, 

there are only a limited number of service classes indicated by the DS field. Since 

service is allocated in the granularity of a class, the amount of state information is 

proportional to the number of classes rather than the number of flows. Therefore 

DiffServ is more scalable and suitable for the core network. Thirdly sophisticated 

classification, marking, policing and shaping operations are only needed at boundary 

of the networks. Core routers need only to implement Behavior Aggregate 

classification. Therefore, it is easier to implement and deploy DiffServ. 

2.4 Mobile IPv6 

The next generation Internet Protocol – IPv6 [27] has evolved from current IPv4 

protocol and is an improvement over IPv4. The size of IPv6 address is 128-bit versus 

32-bit of IPv4, which increases the address space by a factor of 296. Larger address 

space allows more levels of addressing hierarchy, which lead to more efficient network 

operations and network scaling. Another difference of IPv6 over IPv4 is that many of 



Chapter 2 Internet QoS Architectures and Mobile IPv6 

 

13

the optional fields in IPv4 have been moved into extension headers of IPv6, which 

allows for more efficient forwarding, less stringent limits on the length of options, and 

greater flexibility for introducing new options in the future. Moreover IPv6 includes 

many features for mobility support that are missing in current IPv4 such as Stateless 

Address Autoconfiguration [28] and Neighbor Discovery [29].  Improvement on 

Internet security is also one of the biggest differences between IPv6 and IPv4. All IPv6 

nodes are expected to implement strong authentication and encryption features to 

enhance Internet security. 

Mobile IPv6 (MIPv6) is designed to manage the mobility of mobile nodes between 

different IPv6 networks, possibly wireless [9]. It enables mobile nodes to maintain 

ongoing communications even when changing their points of attachment to the 

network. The three fundamental functional units within the protocol are the 

correspondent node (CN), the home agent (HA), and the mobile node (MN).  Each 

mobile node is identified by two IP addresses: home address and care of address (CoA). 

Home address is the mobile node’s constant IP address that does not change as it 

moves from one network to another. Care of address is an IP address temporarily 

assigned to a mobile node when it is visiting a foreign network. The mobile node can 

configure its care of address by using Stateless Address Autoconfiguration and 

Neighbor Discovery.  

Figure 2.5[26] shows the Mobile IPv6 architecture. In mobile IPv6 route 

optimization is a mandatory part of the protocol. When a mobile node remains in its 

home network, it communicates with correspondent nodes through its home address. 

When a mobile node moves to a new subnet, its home address is not valid anymore 

and it needs to acquire a new care of address in the visiting subnet. The mobile node 

registers this care of address with its home agent and correspondent nodes through 
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binding update (BU) messages. Once the correspondent nodes know the mobile node’s 

care of address they will send packets directly to mobile node’s care of address 

 

Figure 2.5 Mobile IPv6 Architecture 

 

The above brief overview of Mobile IPv6 operation contains three key components: 

router discovery, address notification and packet routing. 

2.4.1 Router Discovery 

Router discovery determines whether the mobile node is currently connected to its 

home network or a foreign network and whether the mobile node has moved from one 

network to another. The process is specified in IPv6 Neighbor Discovery 

document[29]. The base stations (BSs) periodically broadcast Router Advertisement 

(RAD) messages. After receiving RADs, The mobile node may perform location and 

movement detection by examining the network-prefix contained in a received 

advertisement. If any of these prefixes match the network-prefix of the mobile node’s 

current IP address, then the mobile node is still connected to the current network; 

otherwise, if none of the prefixes matches the network-prefix of the mobile node’s 

current IP address, then the mobile node has moved to other network. If the mobile 
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node has not received the periodic transmission of a RAD for some time, it may sent 

Router Solicitation to base stations to ask for a RAD.  

Router discovery also helps the mobile node obtain a care of address in the foreign 

network through Stateful Address Autoconfiguration or Stateless Address 

Autoconfiguration.  

2.4.2 Address Notification 

Address notification is the process by which a mobile node informs both its home 

agent and various correspondent nodes of its current care of address. The messages 

used for notification include binding update, binding acknowledgment and binding 

request: 

• A binding update message is used by a mobile node to announce that it has 

changed its point of attachment to the Internet or to renew an existing 

binding which is about to expire.  

• A binding acknowledgement message is sent as a reply to a binding update if 

the “acknowledgement required”-flag in the binding update was set.  

• If the correspondent node’s binding to a mobile node is about to expire, the 

correspondent node may ask the mobile node to renew that binding by 

sending binding request message. 

Above three types of Mobile IPv6 address notification messages are encoded as 

options to be carried within an IPv6 Destination Options Header. Therefore, these 

messages are only examined by the last destination and not by any intermediate routers 

along the path.  
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2.4.3 Packet Routing 

When a mobile node is connected to its home network, it sends and receives 

packets just as stationary node. When a mobile node is connected to a foreign network, 

packet routing is divided into two cases: 

1) Packets are routed to the mobile node 

Correspondent nodes have binding caches that contain the currently valid bindings.  

Each time when a correspondent node is about to send a datagram, it first checks if it 

has a binding for the destination. If the binding exists, the correspondent node sets the 

IPv6 destination address to the mobile node’s home address. The routing header is 

initialized to contain a single route segment, containing the mobile node’s care of 

address. If the binding does not exist, the packet will be intercepted by the mobile 

node’s home agent and tunneled to the mobile node’s current care of address. 

2) Packets are routed from the mobile node 

The mobile node must be able to determine a router that can forward packets 

generated by itself and then uses standard IP routing to deliver each packet to its 

destination. For all IPv6 routers that are required to implement router discovery, a 

mobile node can select any router from which it has received RADs and configures its 

routing table to send all packets to that router. 

2.5 IEEE802.11e Wireless LAN Standard 

IEEE802.11 wireless LAN standard is being accepted widely and rapidly for many 

different environments today. It can be considered as a wireless version of Ethernet, 

which supports best effort service [30]. However, the interest in wireless networks 

supporting QoS has recently grown. Accordingly, a new protocol was developed to 
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enhance the current 802.11 MAC protocol to support applications with QoS 

requirements, which is named 802.11e. 

The basic 802.11 MAC protocol is the Distributed Coordination Function (DCF) 

that works as listen-before-talk scheme, based on a CSMA/CA (the Carrier Sense 

Multiple Access /Collision Avoidance) mechanism. The base stations deliver MAC 

Service Data Units (MSDUs) after detecting that there is no other transmission in 

progress on the wireless medium. However, if two base stations detect the channel as 

free at the same time, a collision occurs. In order to reduce the probability of such 

collisions, a base station performs a backoff procedure before starting a transmission. 

It has to keep sensing the channel for an additional random time after detecting the 

channel as being idle for a minimum duration called DCF Inter-frame Space (DIFS). 

Only if the channel remains idle for this additional random time period, the base 

station is allowed to initiate the transmission. The duration of this random time is 

determined as a multiple of a slot time. Each base station maintains a Contention 

Window (CW), which is used to determine the number of slot times a base station has 

to wait before transmission. The CW size increases when a transmission fails. After 

any unsuccessful transmission attempt, another backoff is performed with a doubled 

size of the CW. The CW value shall be increased exponentially from a CWmin value 

until up to a CWmax value during each retransmission. This reduces the collision 

probability in case there are multiple base stations attempting to access the channel.  

It can be seen from the basic DCF mechanism above, that at least two parameters 

can be used to provide channel access differentiation: the defer time DIFS and CW, 

based on which the random backoff timer is generated. Lower DIFS and CW values 

give higher priority for channel access [31]. Instead of treating all traffic with a single 

DIFS value and a single (CWmin, CWmax) set, EDCF defines that the channel access has 
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up to eight Traffic Categories (TCs)[30], each with its own Defer Time called 

Arbitrary Distributed Inter-Frame Space (AIFS) and CWmin/CWmax values. MSDUs are 

now delivered through multiple backoff timers within one base station, each backoff 

timer parameterized with TC-specific parameters (Figure 2.6). One or more user 

priorities can be assigned to one TC and normally packets belonging to the same 

priority share one buffering queue. 

After introducing the multiple backoff within one base station in EDCF, there exist 

two levels of channel access contention: internal contention among traffic of different 

priorities inside the same base station and external contention among traffic from 

different base stations. Different values of defer timer and backoff timer are used to 

enable prioritized channel access for different traffic. Higher priority traffic will most 

probably obtain the channel first and lower priority traffic will have to backoff [31]. 

 

 

One Backoff in DCF                    Multiple Backoff in EDCF 

 

           Figure 2.6  Internal Contention of Different Traffic Categories 
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2.6 Summary 

In this chapter we described IntServ/RSVP, DiffServ, IEEE802.11e MAC protocol 

and mobile IPv6. These models/protocols are the important components of the QoS 

architecture that we will study in the following chapters. In the next chapter, we will 

introduce an end-to-end QoS architecture for mobile host that combines 

IntServ/DiffServ, MIPv6, and IEEE802.11e. 
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Chapter 3                                                                  

An End-to-End QoS Architecture for Mobile Hosts:  

IntServ/DiffServ with Mobile IPv6 and IEEE802.11e  

3.1 Introduction 

In the previous chapter, we have discussed the QoS architectures – IntServ and 

DiffServ, QoS supported Mac protocol ─ IEEE802.11e wireless LAN standard, and 

mobility management protocol ─ Mobile IPv6. In this chapter, we will propose an end-

to-end QoS architecture for mobile hosts. Some work has been done on providing QoS 

for mobile hosts based on integrated network, which includes core networks and 

access networks. For example, Sangheon Pack and Yanghee Choi proposed an end-to-

end QoS provisioning architecture in mobile network [40], which consists IntServ 

model and DiffServ model. This work has been focused on providing handoff QoS in 

diverse mobility situations. V. Rexhepi, G. Karagiannis and G. heijenk proposed a 

framework for QoS & mobility that integrated various QoS architectures and mobility 

protocols [41]. There are some other studies on providing QoS in wired backbone cum 

wireless network, we will not mention them one by one. These studies have all been 

carried out on the network layer or higher layer. They have not considered the lower 

layer, or just assumed the perfect QoS on lower layer. However this is not true for the 

existing IEEE802.11-based wireless access networks. The current 802.11 MAC 

protocol does not support QoS. Even though the mobile hosts do not move, QoS for 

mobile hosts cannot be guaranteed at the last wireless hop. QoS assurances are only as 

good as their weakest link, which means every segment of the route must have QoS 
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support in order to guarantee end-to-end QoS. In order to compensate the limitation of 

IEEE802.11 wireless LAN standard, the 802.11 Working Group developed the 

IEEE802.11e wireless LAN standard which can provide QoS support in MAC layer. In 

this chapter, an end-to-end QoS provisioning architecture that combines 

IntServ/DiffServ, MIPv6, and IEEE802.11e is proposed[22].  

This chapter is organized such that the integration of IntServ and DiffServ are 

described first in section 3.2, followed by the description about combination of 

IntServ/DiffServ, MIPv6 and IEEE802.11e in section 3.3, and ending with the 

discussion about services mapping among IntServ, DiffServ and IEEE802.11e in 

section 3.4. 

3.2 Integration of IntServ and DiffServ   

As be mentioned above, both IntServ and DiffServ architectures are designed to 

deploy QoS on the current best effort Internet. IntServ and DiffServ are fundamentally 

different QoS mechanisms. IntServ provides QoS to individual connections while 

DiffServ provides QoS to aggregates. However they are not mutually exclusive of one 

another, they complement each other nicely. The framework for Integrated Services 

operation over Differentiated Services [32] views the two architectures as 

complementary technologies for deploying end-to-end QoS, e.g. using IntServ at the 

access networks will enable the hosts to request and reserve resources for per flow by 

means of RSVP, and using DiffServ in the core networks will avoid the RSVP 

scalability and complexity problems. 

The reference network for the proposed IntServ/RSVP over DiffServ framework 

described in RFC2998 is shown in Figure 3.1 [34]. 
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Figure 3.1  The reference network for the IntServ/DiffServ Framework 

 

The above IntServ/DiffServ framework includes a DiffServ domain in the middle 

and two RSVP/IntServ domains in the edge of large network. In this framework, both 

sending and receiving hosts use RSVP to communicate the quantitative QoS 

requirements of QoS-aware applications running on the hosts [32]. RSVP signaling 

messages travel end-to-end between sending hosts and receiving hosts to support 

RSVP/IntServ outside the DiffServ domain. DiffServ domain may be RSVP-aware or 

RSVP-unaware. When DiffServ domain is RSVP-unaware, the routers in DiffServ 

domain pass RSVP messages transparently. When DiffServ domain is RSVP-aware, 

RSVP-aware routers in DiffServ domain may perform per flow signaling and 

admission control. In this thesis, we will mainly study the case when DiffServ domain 

is RSVP-unaware. 

In the above IntServ/DiffServ architectural framework, the routers in IntServ 

networks are standard RSVP/IntServ routers, performing per-flow RSVP signaling, 

admission control, policing and scheduling.  Border routers (BR) residing at the border 

of the RSVP/IntServ network are also standard RSVP/IntServ routers. In addition to 

basic function of RSVP/IntServ routers, BRs might perform some additional functions 

related to IntServ/DiffServ interoperability such as communicating with the Bandwidth 

Broker (BB) in DiffServ domain.  The DiffServ Core routers are standard DiffServ 
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routers that should apply appropriate PHB to packets based on their DS code point. 

They may do some limited traffic conditioning. The DiffServ Edge Router (ER) 

interconnects the DiffServ domain either to RSVP/IntServ domains or to other 

DiffServ domains. The functions of ER include traffic conditioning between peering 

domains, interoperating with RSVP/IntServ domains and tunneling RSVP messages. 

Integration of IntServ and DiffServ is an efficient solution to provide QoS in 

traditional wired network. Simulation results have demonstrated that end-to-end QoS 

requirement of end applications can be met when IntServ is run over a well-

provisioned DiffServ [8].  It becomes more difficult to introduce QoS in an 

environment of mobile hosts and wireless networks due to scarce resources. Therefore, 

IntServ/DiffServ interoperation would be more valuable if it is to be applied in a 

wireless environment. 

3.3 Combination of IntServ/DiffServ, Mobile IPv6 and 

IEEE802.11e 

In the previous subsection, we have discussed the QoS provision by the integration 

of IntServ and DiffServ in wired network. Now we discuss the QoS provided to mobile 

hosts that are linked by means of a wired backbone. As discussed above, Integration of 

IntServ and DiffServ can provide end-to-end QoS in wired network, 802.11e MAC 

protocol can support QoS in MAC layer, and Mobile IPv6 is the most perfect mobility 

management protocol at present. Therefore we propose an end-to-end QoS 

provisioning architecture that combines IntServ/DiffServ, mobile IPv6, and 

IEEE802.11e in wired backbone cum wireless network.  
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Figure 3.2  An End-to-End QoS Architecture for Mobile Hosts 
               

Figure 3.2 shows an end-to-end QoS provisioning architecture that composes three 

parts: a wired core network (DiffServ network), two wired access networks 

(IntServ/RSVP networks) and several wireless access networks (IEEE802.11e-based 

access networks).  

The DiffServ network is composed of bandwidth broker, edge routers, core routers 

and translators. Bandwidth broker is an agent responsible for managing resources for 

QoS services in DiffServ domain. It can be a router or a software entity. Resource 

management includes intra-domain resource management that deals with allocation of 

resources within a network or a domain, and inter-domain resource management that is 

concerned with provisioning and allocating resources at network boundaries between 

two domains. Edge router classifies, meters packets and marks DSCP field in the 

packets. Core router forwards the received packets according to PHBs. Translator 

plays an interface role between IntServ region and DiffServ region. It can be a router 

or a small program. Translator maps services and passes information between IntServ 

network and DiffServ network. 
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The access networks use IntServ/RSVP model. The routers in IntServ network are 

general routers capable of RSVP messages. Access routers that reside the border of 

IntServ networks are routers that act as base stations for mobile hosts. 

In the wireless access networks, IEEE802.11e MAC protocol is used to support 

QoS for mobile hosts. 

The mobility of mobile hosts includes intra-domain mobility and inter-domain 

mobility. Intra-domain mobility means that a mobile host moves within one access 

network and from one cell to another adjacent cell. Inter-domain mobility means that a 

mobile host moves from an access network to another access network.   
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Figure 3.3  Mobile Host’s Intra-Domain Mobility 
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Figure 3.4  Mobile Host’s Inter-Domain Mobility 
                

Intra-domain mobility is shown in Figure 3.3 and inter-domain mobility in Figure 

3.4. During intra-domain mobility the edge router through which the traffic goes into 

core network does not change while during inter-domain mobility the traffic goes into 

core network through other edge router.  

IntServ and DiffServ can provide QoS in wired network. For wireless network, 

IEEE802.11e MAC protocol can provide QoS support for mobile host through 

assigning different flow different priority to transmit in MAC layer.  

3.4 Services Mapping  

The primary issue in integrating IntServ, DiffServ and IEEE802.11e is services 

mapping not only between IntServ and DiffServ but also between IntServ/DiffServ and 
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IEEE802.11e. In this subsection, we will firstly describe the services provided by 

IntServ and DiffServ. IEEE802.11e protocol does not provide explicit QoS services, it 

provides QoS guarantee by assigning different transmission priority to different traffic. 

After that, we will illustrate service mapping among IntServ, DiffServ, and 

IEEE802.11e. 

3.4.1 Services Provided by IntServ 

In addition to the best effort service, IntServ model provides two services: 

Guaranteed service (GS) and Controlled-load service (CL). 

1) Guaranteed Service 

Guaranteed Service (GS) guarantees that datagrams will arrive within the 

guaranteed delivery time and will not be discarded due to queue overflows, provided 

that the flow’s traffic stays within its specified traffic parameters[36].  The service 

provides assured level of bandwidth or link capacity for the data flow. The GS service 

controls only the maximum delay, it does not control the minimum delay or minimize 

the jitter. The delay consists of the fixed delay and the queuing delay.  The fixed delay 

includes transmission delay, propagation delay etc., which is a property of the chosen 

path and is determined not by GS but by the setup mechanism. Only queuing delay is 

determined by GS service. GS service imposes a strict upper bound on the end-to-end 

queuing delay as data flows through the network. The delay bound is usually set large 

enough even to accommodate cases of long queuing delays. 

2) Controlled-load Service 

Controlled-load (CL) service does not accept or make use of the specific QoS 

parameters such as packet loss and delay as control parameters. Instead, acceptance of 

a request for controlled-load service is defined to imply a commitment by the network 

elements to provide a service closely equivalent to that provided to uncontrolled (best 
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effort) traffic under lightly loaded conditions[37]. The goal of this service is to provide 

the same QoS under heavy loads as under unloaded conditions. Although there is no 

specified strict bound on delay, it ensures that a very high percentage of packets do not 

experience delays much greater than the minimum transmission delay and do not 

experience congestion loss. 

3.4.2 Services Provided by DiffServ 

DiffServ provides Expedited Forwarding (EF) PHB and Assured Forwarding (AF) 

PHB besides Best Effort (BE). 

1) Expedited Forwarding (EF) PHB 

The EF PHB provides a low loss, low latency, low jitter, assured bandwidth, and 

end-to-end service. This service has also been described as Premium Service. Loss, 

latency and jitter are due to the queuing experienced by traffic while transiting the 

network. Therefore, providing low loss, latency and jitter for some traffic aggregate 

means that there are no queues (or very small queues) for the traffic aggregate[38]. In 

order to ensure that there is almost no queuing delay for these premium packets, the 

aggregate of the EF traffic’s maximum arrival rate must be less than its configured 

minimum departure rate at every transit node.  

When implementing EF PHB, some means must be included to limit the damage 

that EF traffic could inflict on other traffic. Packets exceeding this limit must be 

shaped or discarded by traffic conditioners to bring the traffic into conformance. 

2) Assured Forwarding (AF) PHB 

Assure Forwarding (AF) PHB group is a means to offer different levels of 

forwarding assurances for IP packets[39]. This service provides a reliable service for 

customers even during network congestion. The assured service traffic is considered 

in-profile if the traffic does not exceed the bit rate allocated for the service; otherwise, 
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the excess packets are considered out-of-profile. The in-profile packets should be 

forwarded with high probability. However, the out-of-profile packets are delivered 

with lower priority than the in-profile packets[8].  

Assured Forwarding PHB group provides forwarding of packets in four 

independently forwarded AF classes. Within each AF class, a packet is assigned one of 

different levels of drop precedence. Each class is allocated a configurable minimum 

amount of buffer space and bandwidth. In the case of network congestion, the drop 

precedence determines the relative importance of the packets within the AF classes.  

There are no strict timing requirements (delay or delay jitter) associated with the 

forwarding of AF packets. 

3.4.3 Services Mapping  

1) Services Mapping between IntServ and DiffServ  

IntServ service types are specified by a set of parameters known as TSpec (Traffic 

Specification) while DiffServ service types are specified by the DiffServ Code Points 

(DSCPs). When combining IntServ with DiffServ, IntServ services must be mapped 

into DiffServ network. The mapping procedures include [35]: 

• Selecting the appropriate PHBs in the DiffServ domain for requested service in 

the IntServ domain (when the PHB has been selected for a particular IntServ 

flow, it is necessary to assign an appropriate DSCP to packets from this flow); 

• Performing appropriate policing, shaping and marking at the edge router of the 

DiffServ domain; 

• Taking into account the resource availability in the DiffServ domain, perform 

admission control for traffic coming from the IntServ domain. 

When a PHB is selected for a particular IntServ flow specified by TSpec, it is 

necessary to assign an appropriate DSCP code to packets from this flow. To ensure 
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that QoS can be achieved for IntServ flows when running over a DiffServ domain, 

appropriate service mapping should be selected.  

Both IntServ and DiffServ define different services that can be used by different 

types of applications. As we discussed above, the EF service in DiffServ provides a 

low loss, low latency, low jitter and assured bandwidth end-to-end service, which is 

nearly equivalent to GS service in IntServ that offers strict assurance of both 

throughput and delay. These two kinds of services are suitable for real time 

applications such as Voice over IP (VoIP), which is called non-adaptive applications. 

On the other hand, the AF service in DiffServ is a means to offer different levels of 

forwarding assurances for IP packets. It could implement the function of CL service in 

IntServ that requires services tightly approximate to BE service under unloaded 

network conditions. AF service and CL service can support adaptive applications such 

as one-way voice or video, which request soft QoS guarantees for their operation, i.e. 

they may be tolerant in terms of delay bounds and jitter. Both Best Effort services in 

IntServ and DiffServ do not guarantee any bandwidth and only get the available 

bandwidth. They are associated with applications requiring no QoS like file transfer or 

e-mail. Therefore GS service is mapped to EF service, CL service is mapped to AF 

service and BE service is still BE service. 

2) Services Mapping between IntServ/DiffServ and IEEE802.11e 

The services in IntServ and DiffServ are not supported in wireless mobile 

environment. Therefore in order to guarantee end-to-end QoS for mobile host, these 

services have to be mapped to the ways that support different QoS requirements in 

MAC layer. In the IEEE802.11e MAC protocol, there are eight traffic categories (TCs) 

with different priority. MAC Service Data Units (MSDUs) are delivered through 

multiple backoff timers that are determined by TC-specific parameters. In order to 
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satisfy different QoS requirements, the IntServ Guaranteed Service (GS) class is 

mapped to TCs of higher priority, Controlled Load (CL) class is mapped to TCs of 

medium priority and the Best Effort (BE) class is mapped to TCs of the lower priority. 

Now we summarize services mapping in the following table. 

Table 3-1 Services mapping 
IntServ DiffServ IEEE802.11e 

Guaranteed Service Expedited Forwarding TCs of higher Priority 

Controlled-load Service Assured Forwarding TCs of medium Priority 

Best effort Service Best effort Service TCs of lower Priority 

 

3.5 Summary 

In this chapter we proposed an end-to-end QoS architecture for mobile host, which 

combines IntServ/DiffServ, mobile IPv6, and IEEE802.11e. We introduced how its 

components interoperate and how the services that provided by every component are 

mapped. However, we only illustrate that this architecture could provide end-to-end 

QoS for mobile host from the concept. We will evaluate this QoS architecture through 

simulation in chapter 5.  
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Chapter 4                                                       

Improvement on Handoff QoS of the Architecture that 

Combines IntServ/DiffServ, MIPv6 and IEEE802.11e  

4.1 Introduction 

In the above description of the end-to-end QoS architecture for mobile hosts that 

combines IntServ/DiffServ with Mobile IPv6 and IEEE802.11e, we have illustrated 

that every segment of QoS “chain” in this architecture can provide QoS support, and 

so the total end-to-end QoS can be guaranteed. However we have not yet discussed the 

QoS performance of our proposed architecture during handoff. Handoff performance is 

a significant factor in evaluating wireless networks. As we mentioned in chapter 1, 

there have been several schemes to provide handoff QoS when mobile hosts move. 

Therefore we might combine these schemes with our QoS architecture to provide end-

to-end QoS for mobile hosts no matter they stay within one subnet or roam to other 

subnets. However, these schemes provide handoff QoS by means of extending RSVP 

to mobile environment. RSVP is almost the most complicated QoS technology for 

applications and for network elements, therefore these handoff QoS schemes are also 

complicated. Implementing them in real wireless network is either difficult or costly. 

Here we consider the methods to improve handoff QoS performance from the 

viewpoint of mobile IPv6 itself. In this chapter, we propose an approach that assigns 

router advertisement (RAD) messages of mobile IPv6 higher transmission priority[22], 

which is carried out on MAC layer and supported by QoS feature of IEEE802.11e. 

Then we use this approach, and combine another approach that the MN sends binding 
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update (BU) messages of mobile IPv6 to the previous base station that it just visited, to 

improve the handoff performance of our QoS architecture. 

Firstly we will describe the factors that affect the handoff performance and 

introduce some existing approaches to improve the handoff performance in section 4.2. 

In section 4.3 we will describe the effect of losing RADs on handoff performance. 

Then we will provide a solution to eliminate the loss of RADs – by assigning RADs 

higher priority to transmit. 

4.2 Handoff Procedure 

When a mobile node performs a handoff between different IP subnets it must 

perform three basic steps: movement detection, forming a new care-of address and 

sending BUs to HA and CNs to redirect the data flow. In a nutshell, a mobile node 

detects that it has moved to a new subnet by analyzing RADs periodically broadcasted 

by the base station. The mobile node can also request the base station to send RADs by 

sending a router solicitation. After receiving RADs, the mobile node first needs to 

verify the uniqueness of its link-local address. It performs duplication address 

detection (DAD) on its link-local address. Then the mobile node may obtain a new 

care of address through stateless or stateful address autoconfiguration. Once it has 

obtained a new care of address, it may perform DAD for this new care of address. 

However, DAD takes quite long time with respect to the handoff latency. Therefore, 

the mobile node should perform DAD in parallel with its communications, or choose 

not to perform it [33]. Once the new care of address construction is done, the mobile 

node sends BUs to its HA and CNs to update its binding cache.  

Handoff latency includes the time to discovery the new prefix on the new subnet, 

the time to form the new care of address, and the time to notify HA and CNs about the 
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new locality of the MN. In order to reduce the handoff latency, it is very important to 

minimize the movement detection delay, CoA forming delay and flow redirection 

delay. 

As to CoA forming delay, besides the time to perform DAD, it is said that the long 

random wait time for getting a care of address is another factor that leads to CoA 

forming delay. The random wait time is introduced to avoid synchronization. A shorter 

random wait times is recommended to decrease this delay [42].  

When a MN gets a new CoA, it sends BU messages to HA and CNs to indicate its 

new CoA. If the HA and/or CNs are far from the MN, even if the MN’s movement is 

small, BU messages have to travel across several IP networks to reach HA and CNs. 

This will lead to long handoff latency. Moreover, before the BU messages reach CNs, 

CNs do not know the change of MN’s address, and so they still send packets to the 

previous address, which will cause these packets dropped. Here we adopt the idea of 

signaling and tunnel between previous access router (PAR) and new access router 

(NAR) in Fast Handovers for MIPv6[23] to solve this problem. The key operation of 

Fast Handovers protocol involves setting up a routing path between the PAR and the 

NAR to enable the MN to send and receive IP packets. After the PAR receives a Fast 

Binding Update message from the MN, it can forward the packets to MN on the tunnel 

between the PAR and the NAR. In this thesis, we also let the MN send BUs indicating 

the new CoA to the previous base station that it just visited to reduce the handoff 

latency and handoff packet drop. In the chapter 5, we will show how much 

improvement this method can be achieved quantitatively through simulation.  
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4.3 Improving Handoff QoS Performance by Assigning 

RADs Higher Priority    

Now we focus on the first step of handoff procedure —movement detection. Base 

stations (BSs) sent router advertisements (RADs) message periodically. When a 

mobile node enters into the coverage area of a base station, at some point of time it 

receives a RAD message from this new base station. The mobile node maintains a base 

station (BS) list that includes the base stations from which it received RADs. The BS 

list needs to be updated. When a mobile node receives a RAD from a base station, it 

will check its BS list. If this base station is not in the BS list, the mobile node will 

begin to do handoff to attach itself to the new base station and add a entry for this new 

base station. If this base station is already in the BS list, the mobile node refreshes the 

lifetime entry of this base station. In this way, a handoff per each received RADs from 

a different base station while the mobile node moves within overlapping coverage area 

of two base stations is avoided[43]. 

The problem arises when some RADs are dropped due to congestion in the wireless 

channel. The loss of RADs will cause the problem that the mobile node cannot detect 

its movement to a new link instantly. Moreover, when the mobile node is in the 

overlap area of two base stations, the loss of some RADs could lead to the situation of 

unnecessary handoffs due to the lack of refreshment of the BS list. The mobile node 

may switch between two base stations repetitively, which is usually called ping-pong 

handoff. This ping-pong handoff between two base stations may lead to large handoff 

latency and affects the handoff performance seriously.  

IEEE802.11e MAC protocol can transmit different traffic with different priority. In 

order to eliminate the loss of RADs, we use this QoS feature of IEEE802.11e to assign 
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RADs a higher priority to transmit. We will minimize or totally eliminate the loss of 

RADs by this way and improve the handoff performance. 

Now we will investigate the drop of RADs with no priority and with higher priority. 

Here we mainly consider the RADs that are dropped in IFQ (Interface Queue) due to 

congestion. The data transmission rate of wireless channel is 1M, and the saturated 

bandwidth of wireless channel is around 0.8 ~ 0.9M.  

Figure 3.5 shows the comparison of the probability of dropping RADs between 

with higher priority for RADs and with no priority for RADs.  

 

 

Figure 4.1 The probability of dropping RADs in IFQ varying with network load 
 

From the figure we can see that if we do not assign the RADs priority, when the 

network is under medium load (less than 0.6M), the probability of dropping RADs is 

about 3%, i.e. the RADs are dropped slightly; when the network load is more than 

0.6M, the probability of dropping RADs becomes larger. When the network load is in 
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congestion, the probability of dropping RADs is more than 30%, which will worsen the 

handoff performance seriously. If we assign RADs message higher priority to transmit, 

there are not dropped RADs even though the network is under congestion. 

In the next chapter, we will discuss the effect of assigning RADs higher priority on 

handoff performance in detail.   

4.4 Summary 

In this chapter, we proposed an approach to improve the handoff performance, 

which is assigning router advertisement (RAD) messages of mobile IPv6 higher 

transmission priority. We combined this approach with another approach that the MN 

sends binding update (BU) messages of mobile IPv6 to the previous base station to 

improve the handoff performance of our end-to-end QoS architecture proposed in 

chapter 3. We will examine the efficiency of these two approaches through simulation 

in next chapter.  
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Chapter 5                                                        

Simulation Studies 

5.1 Introduction 

In the previous chapters, we have already discussed the end-to-end QoS 

architecture that combines IntServ/DiffServ, mobile IPv6 and IEEE802.11e. We have 

also proposed an approach of assigning RADs higher priority and combined this 

approach with another approach of sending BUs to the previous base station to 

improve the handoff performance of our QoS architecture. In this chapter, we will 

conduct simulation to evaluate the end-to-end QoS provided by this architecture and to 

examine how much the handoff performance can be improved through these two 

approaches. The purposes of our simulation are: 

1) Evaluate and compare the end-to-end QoS of the architecture that combines 

IntServ/DiffServ, MIPv6, and IEEE802.11 with that of the architecture that 

combines IntServ/DiffServ, MIPv6, and IEEE802.11e. The end-to-end QoS is 

studied through following cases: when mobile nodes stay in home network, after 

intra-domain handoff, and after inter-domain handoff[22]. 

2) Study and compare the handoff performance of the QoS architecture of no 

priority for RADs with that of higher priority for RADs supported by the 

IEEE802.11e MAC protocol[22]; 

Study and compare the handoff performance of the QoS architecture of BUs sent 

to the previous base station that mobile node just visited with that of no BUs 

sent to the previous base station. 
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This chapter will begin with a description of simulation overview, including 

simulation tools, performance criteria, simulation scenarios, and simulation 

configurations etc. After that, we will do simulation on different scenarios and analyze 

the simulation results. 

5.2 Simulation Overview 

5.2.1 QoS Models in Simulation System 

Our simulation is based on the Network Simulator 2 (NS2)[44], which is 

developed by University of California at Berkeley and Lawrence Berkeley National 

Laboratory and widely used by the networking community to analyze IP networks. 

Besides the basic NS2 system, our simulation system comprises RSVP model, 

DiffServ model, Mobile IPv6 model and IEEE802.11e model. In order to make 

simulation results closer to real situation and more persuasive, we are not intending to 

develop new models in this study, but to use off the shelf and robust models that have 

been verified by other researchers as reliable and stable. 

• RSVP model for NS2 implementation [45] is taken from University of 

Bonn. This RSVP/NS model uses Weighted Fair Queuing (WFQ) to 

enforce bandwidth guarantee. It includes soft state with freely adjustable 

refresh intervals, FF reservation style, gathering of statistics in the links and 

nodes, and interfaces to parameter based and measurement based admission 

control. It also includes the possibility of reserving a portion of a link's 

bandwidth for RSVP messages to avoid the loss of RSVP messages[46]. 

• DiffServ support has been added to NS in 2000 [47]. The model has been 

developed by Nortel Networks since 1998. This model follows the DiffServ 

architecture in that a node can have Edge or Core capabilities. It includes 
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many of the popular PHBs, Meters, and Policers available at the IETF 

today. This model has been found to provide suitably similar results in 

comparison with real world DiffServ products.  

• MobiWan is software package based on NS2 to simulate mobile IPv6 

[48][49]. It has been developed by MOTOROLA Labs Paris in 

collaboration with INRIA PLANETE Team. MobiWan has developed a set 

of NS Agents that simulate the Mobile IPv6 and IPv6 protocols. It can 

support local mobility (within a single administrative domain) and global 

mobility (across domain boundaries). In MobiWan, NS addressing is 

brought from 3 levels to 4 levels, which makes configuration of the 

network easier. 

• IEEE802.11e model we use is developed by He DaJiang and Shen Qi, from 

Institute for Infocomm Research of A*STAR in Singapore. So far, they 

have implemented EDCF in NS2. The exact values for the QoS parameters 

are used according to IEEE802.11e wireless LAN Standard. 

The above four models are developed by different institutes under different 

versions of NS. They are not interoperable directly each other. Therefore we have to 

modify them to make them compatible. It is involved and time-consuming work. Here 

we just state the main modification and do not present the details one by one. The main 

modification include:  

1) These four models work with different version of NS. Therefore, the first task 

is to make them workable with the same version of NS. In our simulation, we 

use NS 2.1b6. 
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2) Add translator in DiffServ domain, which is attached to edge router. Translator 

is responsible for integrating IntServ and DiffServ model, including translating 

messages and mapping services between IntServ domain and DiffServ domain. 

3) Change the flat address format in wired network in NS2 to hierarchical address 

format in order to be compatible to MobiWan (simulation platform of mobile 

IPv6). 

5.2.2 Performance Criteria 

In this simulation we use goodput, end-to-end delay, delay jitter, packet drop ratio 

as QoS performance criteria and use handoff latency, handoff packet drop to evaluate 

the handoff performance. The performance of flows that require GS, CL and BE 

services (we call them GS flow, CL flow and BE flow respectively) will be compared 

and evaluated using these criteria. 

• Goodput (kbps): how much data the receiver receives per second.  

• Delay (s): the time that a packet needs to travel through the network from the 

sender to the receiver. 

• Average flow delay (s): the average of all packets delay in the flow; 

• Delay jitter (s): the difference between the maximum delay and the minimum 

delay; 

• Packet drop ratio (%): the rate at which packets are dropped while traversing 

through the network 

• Handoff latency (s): the time that elapses between the last packet received by 

mobile node via the old base station and the first packet received by mobile 

node via the new base station after a handoff. 

• Handoff packet drop (pkt): the number of packets lost due to handoff. 
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5.2.3 Simulation Scenario 

In order to achieve the simulation objectives, our simulation will include three 

parts: 

Part 1: Simulation study on the handoff performance of the QoS architecture 

In this part we will investigate the improvement on handoff performance through 

two approaches: assigning RADs higher priority and sending BUs to the previous base 

station that the mobile node just visited. This part includes two scenarios: 

• Scenario 1: The mobile node firstly moves from one cell to adjacent cell within 

the same subnet, and then moves to other subnet. In this case, we will compare 

handoff performance of the QoS architecture of BUs sent to the previous base 

station that the mobile node just visited with that of no BUs sent to the previous 

base station. 

• Scenario 2: The mobile node moves from original location to adjacent cell 

within the same subnet. The interest of this case is to compare handoff 

performance of the QoS architecture of no priority for RADs with that of higher 

priority given to RADs supported by IEEE802.11e under different simulation 

conditions. 

Part 2: Simulation study on the end-to-end QoS provided by the QoS architecture 

In this part we will evaluate and compare the end-to-end QoS provided by the 

architecture of IntServ/DiffServ/MIPv6/IEEE802.11 with that provided by the 

architecture of IntServ/DiffServ/MIPv6/IEEE802.11e, We will also investigate the 

end-to-end QoS obtained by the mobile node after intra-domain handoff and inter-

domain handoff. This part also includes two scenarios: 

• Scenario1: The mobile node is connected to home agent and does not move. 

Here, we compare the QoS obtained by GS, CL and BE flows using a 
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combination of IntServ/DiffServ/MIPv6/IEEE802.11 with the case of 

IntServ/DiffServ/MIPv6/IEEE802.11e; 

• Scenario2: The mobile node firstly moves to the adjacent base station within 

one subnet, and then moves to other subnet. In this scenario, we study the end-

to-end QoS obtained by the mobile node after intra-domain and inter-domain 

handoff. 

Part 3: Simulation study on a more practical situation 

In this part, we will simulate on a more practical scenario, which comprises more 

sources, more mobile nodes and different traffic types. We will study the average end-

to-end QoS obtained by more mobile nodes, which includes average end-to-end QoS 

before movement, after intra-domain handoff and after inter-domain handoff. 

5.2.4 Simulation Configuration and Parameters 

Access Network1

Access Network2

Core Network/
DiffServ Domain

Wireless
Domain1

Wireless Domain2

 

Figure 5.1  Basic simulation configuration 
 

The simulation in this thesis is based on the basic simulation configuration shown 

in Figure 5.1, which comprises five domains: two access networks, one core 

network/DiffServ domain, and two wireless domains. In the following sections, 

simulation will be studied in three parts. In parts 1 and 2, access network1 is IntServ 

domain that includes two RSVP-sources, access network2 is a best effort domain that 
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includes one best effort source. In part 3, two access networks are IntServ domains 

with more sources. The links inside IntServ Domain and the links that connect IntServ 

domain with DiffServ domain are RSVP-link on which the resources are reserved. The 

links inside DiffServ domain and the links that connect the DiffServ with wireless 

domain are DiffServ-link on which the packets are forwarded based on their DSCP (in 

DiffServ model in NS, the DiffServ-link is simplex-link).  

During simulation, we assume sources are fixed nodes, and destinations are mobile 

nodes. Now we list the common parameters and traffic management in simulation. The 

individual parameters will be listed in every simulation scenario. 

Table 5-1 The common parameters 
Packet size 1000bytes 

Link delay (in core network) 25ms 

Link delay (in access network) 1ms 

Bandwidth (in wired network) 1M 

Bandwidth (in wireless LAN) 1M 

 

Table 5-2 Traffic management 
 IntServ/RSVP domain DiffServ domain 

Admission control Param* Token Bucket 

Buffer management DropTail RED 

Scheduler WFQ Priority 

Param* ― A parameter-based “Simple Sum” algorithm[45] 

5.3 Simulation Study – Part 1: Simulation study on the 

handoff performance of the QoS architecture 

In this part we will investigate the improvement on handoff performance through 

two approaches: assigning RADs higher priority and sending BUs to the previous base 

station that the mobile node just visited. 
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In order to investigate the efficiency of each approach and the ultimate handoff 

performance after two improvements, we will combine two approaches to study the 

handoff performance in the simulation study. That is, we compare the handoff 

performance of the QoS architecture of BUs sent to the previous base station with that 

of no BUs sent to the previous base station under the condition that RADs have been 

assigned higher priority. Additionally, we compare the handoff performance of the 

QoS architecture of higher priority for RADs with that of no priority for RADs under 

the condition that the BUs have been sent to the previous base station.  

 

S1(GS)

S3(BE)

S2(CL)

Access
Network1/IntServ

Doamin

Access Network2

Core Network/
DiffServ Domain

Wireless
Domain1

Wireless Domain2

ER

ER

ER

CR

BS1(HA)

BS4

BS5

BS2

BS3

Intra-domain
Movement

Inter-domain
Movement

translator

MN

  

Figure 5.2  Simulation Configuration1 

5.3.1 Scenario 1: Improvement on Handoff Performance by Sending BUs 

to the Previous Base Station 

Improvement on handoff performance by sending BUs to the previous base station 

that the mobile node just visited will be studied in this scenario. Simulation 

configuration is shown in Figure 5.2. 
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The wireless domains are IEEE802.11e wireless LAN. The base station BS1 is the 

home agent of the mobile node. In this case, the mobile node is not originally 

connected to its home agent BS1, but connected to BS2. The mobile node firstly 

moves from BS2 to BS3, then to BS4.  

Firstly, we investigate how many packets are tunneled from the previous base 

station that MN just visited to the current base station. Then we will compare the intra-

domain handoff latency and inter-domain handoff latency of BUs sent to the previous 

base station with that of no BUs sent to the previous base station. After that we will 

evaluate the improvement on intra-domain handoff performance and inter-domain 

handoff performance by sending BUs to the previous base station. 

 

 

Figure 5.3 Packets tunneled from the previous base station that the mobile node 
just visited to the current base station 
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Figure 5.4 Intra-domain handoff latency varying with network load 

 

 

 

Figure 5.5 Inter-domain handoff latency varying with network load 
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Figure 5.6 Improvement on intra-domain and inter-domain handoff latency with 
sending BUs to the previous base station 

 

Figure 5.3 shows the number of packets tunneled from the previous base station 

that mobile node just visited to the current base station. If the BUs are not sent to the 

previous base station, these packets will be dropped. 

Figure 5.4 and 5.5 show that the intra-domain and inter-domain handoff latency is 

reduced remarkably by sending BUs to the previous base station, comparing to the 

condition that no BUs is sent to the previous base station. 

Figure 5.6 shows that the improvement on intra-domain handoff latency is more 

than 95% while the improvement on inter-domain handoff latency is less than 90%. 

The reason is that BUs will travel a very short way to the previous base station that 

mobile node just visited in case of intra-domain movement, while they will travel 

longer way in case of inter-domain movement. 

From the above simulation results, it can be seen that the intra-domain and inter-

domain handoff latency are notably reduced through sending BUs to the previous base 
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station that mobile node just visited. Moreover, it was found that there is almost not 

packet dropped due to handoff when sending BUs to the previous base station, which 

tunnels the packets to the current base station. Therefore, we use handoff latency as 

criterion to evaluate the handoff performance in the following simulation. 

5.3.2 Scenario 2: Improvement on Handoff Performance by Assigning 

RADs Higher Priority 

In this scenario, we will compare handoff performance of the QoS architecture of 

no priority for RADs with that of higher priority given to RADs supported by 

IEEE802.11e under different simulation conditions. Simulation configuration is shown 

in Figure 5.2. 

The wireless domain is IEEE802.11e wireless LAN. In this case, the mobile node 

is originally connected to its home agent BS1, and moves from BS1 to BS2 within the 

wireless domain1.  

We will compare handoff performance of no priority for RADs with that of higher 

priority for RADs under the following conditions: different network load, different last 

wired link delay, different overlap between base stations, and different speed of the 

mobile node.  

1. Handoff performance varying with network load 

In this case, the speed of mobile node is 4m/s, the distance between base stations is 

450m [43], and the last wired link delay is 1ms. Every source rate changes from 

100kbps to 400kbps simultaneously, so the total source rate varies from 300kbps to 

1200kbps. 
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Figure 5.7 Handoff latency varying with network load 
 

From Figure 5.7 it can be seen that the handoff latency increases remarkably from 

the medium network load (around 600kbps) if higher priority for RADs is not assigned. 

When assigning higher priority for RADs, the increase of handoff latency can almost 

be ignored (less than 100ms). 

2. Handoff performance varying with last wired link delay 

The last wired link delay represents the “distance” between base stations and 

between the CNs and MNs [43]. In this case, the speed of mobile node is 4m/s, and the 

distance between base stations is 450m. The three source rates are 400kbps 

respectively. The network is in heavy congestion.  

The last wired link delay ranges from 1ms to 900ms. 
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Figure 5.8 Handoff latency varying with last wired link delay 
 

From Figure 5.8 we can see, with higher priority for RADs, the handoff latency 

increases with the last wired link delay steadily. The values of handoff latency with no 

priority for RADs are greatly larger than the values with higher priority for RADs in 

every point. Moreover, handoff latency with no priority for RADs is unpredictable. The 

handoff latency becomes very long when the RADs are dropped seriously at some 

point.  

3. Handoff performance varying with the overlap between base stations BS1 and 

BS2 

In this case, the speed of mobile node is 4m/s, the last wired link delay is 1ms, and 

the source rate is 400kbps for each source respectively. The network is in heavy 

congestion. The overlap of BS1 and BS2 ranges from 100m to –25m (25m away each 

other). 

 



Chapter 5 Simulation Studies 

 

52

 

Figure 5.9 Handoff latency varying with overlap between base stations BS1 and 
BS2 

 
Figure 5.9 shows that with higher priority for RADs, the handoff latency is quiet 

low (around 50ms) when two base stations overlap and the handoff latency almost 

does not change as the overlap increases. With no priority for RADs, the handoff 

latency is much longer. At some points, the handoff latency sharply increases. The 

reason for this phenomenon is that the RADs are dropped seriously in these points. 

4. Handoff performance varying with the speed of the mobile node 

In this case, the distance between base stations is 450m, the last wired link delay is 

1ms, and the three source rates are 400kbps respectively. The network is in heavy 

congestion. 

The speed of the mobile node ranges from 1m/s to 60m/s. 
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Figure 5.10 Handoff latency varying with the speed of the mobile node 
 

From Figure 5.10 it can be seen that with higher priority for RADs, the handoff 

latency keep quiet low, and the handoff latency almost does not change with the 

change of speed. With no priority for RADs, the handoff latency becomes longer. 

Similarly, the handoff latency dramatically increases at some points.  

Figure 5.7 to 5.10 show that the loss of RADs of MIPv6 affects the handoff 

performance seriously. The handoff latency with higher priority for RADs is much 

shorter than that with no priority for RADs. Moreover, it can be observed from Figure 

5.8 to 5.10 that the trend of the curve with no priority for RADs is unpredictable, on 

which exists some jitter points. The reason is that RADs are dropped seriously in these 

points. 

These figures show that handoff latency is remarkably improved and keeps quiet 

low when the loss of RADs is eliminated through assigning them higher priority. 
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5.4 Simulation Study – Part 2: Simulation study on the end-

to-end QoS provided by the QoS architecture 

S1(GS)

S3(BE)
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MN
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Access Network2

Core Network/
DiffServ Domain

Wireless
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Figure 5.11  Simulation configuration 2 
 

In this part we will evaluate and compare the end-to-end QoS provided by the 

architecture of IntServ/DiffServ/MIPv6/IEEE802.11 with that provided by the 

architecture of IntServ/DiffServ/MIPv6/IEEE802.11e. We will also investigate the 

end-to-end QoS obtained by the mobile node after intra-domain handoff and inter-

domain handoff.  

In this part, sources S1 and S2 are in Access Network1/IntServ domain, which will 

use RSVP to reserve resources for every flow. Source S3 is in Access Network2/best 

effort domain. S1 generates GS flow, S2 generates CL flow and S3 generates BE flow. 

This part also includes two scenarios. 
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5.4.1 Scenario 1: Compare the End-to-End QoS Provided by the 

Architecture of IntServ/DiffServ/MIPv6/IEEE802.11 with that Provided by  

the Architecture of IntServ/DiffServ/MIPv6/IEEE802.11e 

In this scenario, one mobile node (MN) stays at its home network in wireless 

domain1. Firstly, We will set wireless networks as IEEE802.11 wireless LAN. Then 

we will change them to IEEE802.11e wireless LAN. We will compare the end-to-end 

QoS obtained by the GS, CL and BE flow in these two cases. 

In this simulation, we increase three source rates from 100kbps to 400kbps 

simultaneously. The bandwidth is 1Mbps. The saturated bandwidth of wireless channel 

is about 0.8M with IEEE802.11, and it is about 0.9M with IEEE802.11e. The reason is 

that since EDCF in IEEE802.11e uses smaller Contention Window (CW) for high 

priority traffic, its average backoff time gets smaller and waiting time gets less, so the 

saturated bandwidth is larger than the one with IEEE802.11. 

We will use goodput, average flow delay, packet drop rate, and delay jitter as QoS 

performance criteria. 

From Figure 5.12, it can be seen that goodput of GS flow can be guaranteed with 

IEEE802.11e support while cannot be guaranteed with IEEE802.11 when the network 

is in congestion. The goodput of CL flow decreases slightly with IEEE802.11e while 

decreases largely with IEEE802.11 under congestion. The goodput of BE flow with 

IEEE802.11e deteriorates when the network is in congestion. Note that the goodput of 

BE flow with IEEE802.11e is still better than the one with IEEE802.11 when every 

source rate is 300Kbps (total is 900Kbps). The reason is that the saturated bandwidth 

of wireless channel is 0.9 M with IEEE802.11e, which is more than the one with 

IEEE802.11. 
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Figure 5.12 Goodput of GS, CL, BE flow vs. network load with IEEE 802.11 and 
with IEEE 802.11e 
 

 
Figure 5.13 Average flow delay of GS, CL, BE flow vs. network load with 
IEEE802.11 and with IEEE802.11e 

 



Chapter 5 Simulation Studies 

 

57

 

 
Figure 5.14 Packet drop rate of GS, CL, BE flow vs. network load with 
IEEE802.11 and with IEEE802.11e 

 

 
Figure 5.15 Delay jitter of GS, CL, BE flow vs. network load with IEEE802.11 
and with IEEE802.11e 
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Figure 5.13 shows that the average flow delay of GS flow remains very small with 

IEEE802.11e while it deteriorates with IEEE802.11 when network is in congestion. 

The delay of CL flow also keeps very small with IEEE802.11e even when network is 

in congestion. 

From Figure 5.14, we can see that the packet drop rate of GS flow is always zero 

with IEEE802.11e. The packet drop rate of CL flow keeps lower with IEEE802.11e 

than that with IEEE802.11 when network is in congestion. 

Figure 5.15 shows that the delay jitter of GS flow remains very small (almost zero) 

with IEEE802.11e. The one of CL flow also remains lower with IEEE802.11e. 

From the above figures, it can be seen that with the IEEE802.11e, the goodput of 

GS flow can be guaranteed and the packet drop rate of GS is zero. The delay and delay 

jitter of GS flow remain quiet low. Although we have not set a delay bound for GS 

flow, the delay of GS flow almost keeps unchanged when the network load varies from 

light load to heavy load. Therefore, we can claim that the strict requirement of GS flow 

on maximum delay can be achieved. The goodput, packet drop rate, delay and delay 

jitter of CL flow with IEEE802.11e change slightly when the network is in heavy 

congestion. The performance of CL flow under heavy network load is equivalent to the 

one under light network load. Therefore, it can be concluded that the end-to-end QoS 

obtained by GS and CL flow in the architecture that combines IntServ/DiffServ, 

MIPv6 and IEEE802.11e can be guaranteed. 

5.4.2 Scenario 2: End-to-End QoS after Intra-Domain and Inter-Domain 

Handoff 

In this scenario, the mobile node firstly moves to adjacent cell within the same 

subnet, and then moves to adjacent subnet. We will compare the end-to-end QoS 
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obtained by GS, CL and BE flow after the intra-domain and inter-domain handoff in 

terms of goodput, packet drop rate, average flow delay and delay jitter.  

The simulation results in this scenario are divided into two parts: the end-to-end 

QoS under light network load and under heavy network load. We set each source rate 

to 100k (total rate is 300k) when the network is under light load, and set every source 

rate to 400k (total rate is 1200k) when network is under heavy load (the network is in 

congestion). 

1.  End-to-end QoS after intra-domain and inter-domain handoff under light 

network load 

 

Figure 5.16 Goodput of GS, CL and BE flow after handoff under light network 
load 
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Figure 5.17 Average flow delay of GS, CL and BE flow after handoff under light 
network load 

 

 
Figure 5.18 Delay jitter of GS, CL and BE flow after handoff under light network 
load 
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Packet drop rate of GS, CL and BE flow after handoff under light network load is 

zero respectively. Here, we will not figure them. 

Figure 5.16 shows that the goodput of GS, CL and BE flow before handoff is equal 

to every source rate. After intra-domain handoff and inter-domain handoff, the 

goodput of these three flows increases slightly. The reason is that some packets are 

tunneled from the previous base station to the current base station after handoff.  

Figure 5.17 and 5.18 show that the average flow delay increases slightly and delay 

jitter increases largely after intra-domain handoff and inter-domain handoff. It is 

because that the tunneled packets from the previous base station travel longer to MN.  

 

2.  End-to-end QoS after intra-domain and inter-domain handoff under heavy 

network load 

 

Figure 5.19 Goodput of GS, CL and BE flow after handoff under heavy network 
Load 
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Figure 5.20 Average flow delay of GS, CL and BE flow after handoff under heavy 
network load 

   

 
Figure 5.21 Delay jitter of GS, CL and BE flow after handoff under heavy 
network load 
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Figure 5.22 Packet drop rate of GS, CL and BE flow after handoff under heavy 
network load 

 
Figure 5.19 ~ Figure 5.22 show the end-to-end QoS obtained by the mobile node 

under heavy network load. Before handoff, the goodput of GS flow is equal to source 

rate, the goodput of CL flow is slightly less than the source rate, and the goodput of 

BE flow decreases greatly. After intra-domain handoff and inter-domain handoff, the 

fact that some packets tunneled from the previous base station to the current base 

station results in the slight increase of goodput of these three flows. The average flow 

delay and delay jitter increase more under heavy network load than that under light 

network load after intra-domain handoff and inter-domain handoff. The packet drop 

rate remains unchanged after handoff. 
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5.5 Simulation Study – Part 3: Simulation Study on a More 

Practical Situation 
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Figure 5.23 Simulation configuration 3 – more practical situation 

 
In the previous simulation, we only set one mobile node and three CBR sources 

(one for GS, one for CL and one for BE flow), which is an ideal condition. Now we 

will simulate a more practical situation, i.e., more source nodes, more mobile hosts and 

different traffic types. We will study the average end-to-end QoS obtained by multiple 

mobile nodes.  

Figure 5.23 shows a more practical situation. In this configuration, there are still 

five domains: two Access networks/IntServ networks, one core network/DiffServ 

network, and two wireless domains. Wireless domains are IEEE802.11e wireless LAN. 

There are 10 sources in every access network respectively. 20% of sources generate 

GS flow, 40% generate CL flow, and 40% generate BE flow. Namely, in access 
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network 1, sources S1, S2 generate GS flow, sources S3 ~ S6 generate CL flow, and 

sources S7 ~ S10 generate BE flow. In access network 2, sources S11, S12 generate 

GS flow, sources S13 ~ S16 generate CL flow and sources S17 ~ S20 generate BE 

flow. That is, altogether there are 4 sources that generate GS flow, 8 sources that 

generate CL flow and 8 sources that generate BE flow. 

In wireless networks, every wireless subnet has two base stations. There are 20 

mobile nodes, MN1, MN2, … , MN20. Source Si and mobile node MNi is a source-

destination pair, i.e., S1 and MN1, S2 and MN2, … S20 and MN20 are source-

destination pairs. The initial locations of all mobile nodes are in the cell of the base 

station BS1, i.e., BS1 is the home agent of these 20 mobile nodes. 

We use CBR traffic as GS flow, Exponential (on/off) traffic as CL flow, and TCP 

traffic as BE flow [50]. 

Table 5-3 Different traffic type 
GS flow (CBR traffic) Every source rate = 64kbps 

CL flow (EXP traffic) TON = 500ms, TOFF = 300ms; Every source rate = 64kbps 

BE flow (TCP traffic)  Window size = 75 

  

5.5.1 Scenario 1:  Average End-to End QoS Obtained by the Mobile Nodes 

before Movement 

In this scenario, mobile nodes stay in their home network and do not move. We 

will compare the average goodput, delay, and delay jitter obtained by GS, CL, and BE 

flows when the number of mobile nodes changes. As the number of mobile nodes 

increase from 5 to 20, the number of working sources also increases from 5 to 20 

correspondently. Among working sources, the probability of different sources which 

generate GS, CL, BE flow is 20%, 40%, 40% respectively.  The following table shows 

the detail that working sources vary with the number of mobile nodes. 
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Table 5-4 Source rate with different number of the mobile nodes 
The 

number 
of MNs 

The working sources Source rate 

5 S1, S3, S4, S7 and S8 work:  
S1 generates GS flow,  
S3 and S4 generate CL flow,  
S7 and S8 generate BE flow. 

of GS flow: 64kbps 
 

of CL flows: 128kbps

10 S1, S2, S3, S4, S5, S6, S7, S8, S9 and S10 work: 
S1and S2 generate GS flow,  
S3, S4, S5 and S6 generate CL flow,  
S7, S8, S9 and S10 generate BE flow. 

of GS flows: 128kbps
 

of CL flows: 256kbps 

15 S1 to S10, and S11, S13, S14, S17, S18 work: 
S1, S2, S11 generate GS flow,  
S3, S4, S5, S6, S13 and S14 generate CL flow,  
S7, S8, S9, S10, S17 and S18 generate BE flow. 

of GS flows: 192kbps
 

of CL flows: 384kbps

20 All sources S1 to S20 work: 
S1, S2, S11 and S12 generate GS flow,  
S3, S4, S5, S6, S13, S14, S15 and S16 generate  
CL flow,  
S7, S8, S9, S10, S17, S18, S19 and S20 generate 
BE flow. 

of GS flows: 256kbps
 

of CL flows: 512kbps

 

 

 

Figure 5.24 Average goodput of GS, CL and BE flows varying with the number of 
mobile nodes 
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Figure 5.25 Average flow delay of GS, CL and BE flows varying with the number 
of mobile nodes 

 

 

Figure 5.26 Average delay jitter of GS, CL and BE flows varying with the number 
of mobile nodes 
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Figure 5.24, 5.25, and 5.26 show the average goodput, delay and delay jitter 

obtained by different flows when the number of mobile nodes varies from 5 to 20. 

These figures show that the number of mobile nodes has little effect on the end-to-end 

QoS obtain by GS flows and CL flows when the number of mobile nodes is modest. 

When the number of mobile node increases to 20, the goodput of CL flows has a little 

loss and delay also increase slightly. The reason is that the total source rate is large at 

this time and the network has already been under heavy load. The goodput of BE flows 

(TCP traffic) decreases with the increase of the source rates of GS and CL flows. This 

is because that TCP traffic is adaptive traffic, which can adjust traffic according to the 

state of network. The delay and delay jitter of BE flows also increase notably as the 

network load increases. 

5.5.2 Scenario 2: Average End-to-End QoS Obtained by the Mobile Nodes 

after Intra-Domain and Inter-Domain Handoff 

In this scenario, we will study the end-to-end QoS obtained by GS, CL and BE 

flows after intra-domain and after inter-domain handoff. Firstly, mobile nodes do intra-

domain handoff, move from the base station BS1 to BS2. Then mobile nodes do inter-

domain handoff, move from the base station BS2 to BS3. Simulation is divided into 

two parts: under light network load and under heavy network load. 

1. Average end-to-end QoS obtained by mobile nodes after intra-domain and 

inter-domain handoff under light network load 

We set 10 mobile nodes in this case. Accordingly, we let 10 sources in access 

network1 work. Therefore, the total source rate of GS (CBR) flows is 128kbps, and 

that of CL (EXP) flows is 256kbps. 
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Figure 5.27 Average goodput of GS, CL and BE flow after handoff under light 
network load 

 

 

Figure 5.28 Average flow delay of GS, CL and BE flows after handoff under light 
network load 
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Figure 5.29 Average delay jitter of GS, CL and BE flows after handoff under light 
network load 

 

Figure 5.27, 5.28 and 5.29 show that the average goodput of GS(CBR), CL(EXP) 

flows increases slightly after intra-domain handoff and inter-domain handoff. The 

reason is that some packets are tunneled from the previous base station to the current 

base station after handoff. The average flow delay increases slightly and average delay 

jitter also increases largely after intra-domain handoff and inter-domain handoff. The 

reason is that tunneled packets experience longer delay to mobile nodes. The decrease 

of average goodput of BE (TCP) flows after handoff is more than the decrease of that 

of GS and CL flows. The average flow delay and delay jitter of BE flows increase 

greatly after handoff. This is because the TCP traffic is adaptive traffic. It will adjust 

the window size and retransmit the packets when some packets are lost during handoff.  
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2. Average end-to-end QoS obtained by mobile nodes after intra-domain and 

inter-domain handoff under heavy network load 

In this case we set 20 mobile nodes, and all 20 sources work. Therefore, the total 

source rate of GS (CBR) flows is 256kbps, and that of CL (EXP) flows is 512kbps. 

Figure 5.30, 5.31, and 5.32 show that the average goodput of GS and CL flows 

increases slightly after intra-domain handoff and inter-domain handoff, which is 

similar to the situation under light network load. The average flow delay and average 

delay jitter under heavy network load increase more than that under light network load 

after intra-domain handoff and inter-domain handoff. The performance of BE flows 

deteriorates under heavy network load. 

The simulation results in this scenario show that average end-to-end QoS obtained 

by GS and CL flows can also be guaranteed under the condition with more sources, 

more mobile nodes and different traffic types. 

 

Figure 5.30 Average goodput of GS, CL and BE flows after handoff under heavy 
network load 
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Figure 5.31 Average flow delay of GS, CL and BE flows after handoff under 
heavy network load 

 

 

Figure 5.32 Average delay jitter of GS, CL and BE flows after handoff under 
heavy network load 
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5.6 Summary 

In this chapter, we conducted simulations to evaluate the end-to-end QoS 

achievable by the architecture that combines IntServ/DiffServ, MIPv6, and 

IEEE802.11e wireless LAN standard. Simulation results show that the end-to-end QoS 

in terms of goodput, delay, and packet drop rate, and delay jitter can be guaranteed in 

the cases that mobile nodes are in their home network, after intra-domain handoff, and 

after inter-domain handoff. 

We also designed simulations to examine the efficiency of the two approaches on 

improving handoff QoS performance ― assigning RADs higher priority and sending 

BUs to the previous base station. Simulation results have shown that these two 

approaches can improve the handoff QoS performance effectively. By sending BUs to 

the previous base station, the packet drop due to handoff is almost eliminated, and the 

handoff latency is shortened by 85% ~98%. By assigning higher priority for RADs, the 

handoff latency decreases dramatically. 
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Chapter 6                                                    

Conclusion 

6.1 Summary of Existing Work 

The increasing popularity of real-time multimedia Internet applications and the 

rapid growth of mobile systems indicate that the future Internet architecture will have 

to support various applications with different QoS requirements, regardless of whether 

they are running on fixed or mobile terminals. The main contributions of this thesis 

work involve proposing an end-to-end QoS architecture for mobile hosts that combines 

IntServ/DiffServ, Mobile IPv6 and IEEE802.11e and proposing an approach to 

improve the handoff performance of this QoS architecture, which is assigning RAD 

messages of MIPv6 higher transmission priority.  

Handoff performance is a significant factor in evaluating a QoS architecture for 

mobile hosts. Therefore, besides the approach of assigning RADs higher priority, we 

also made use of the approach of sending BUs to the previous base station that mobile 

nodes just visited, which come from the idea that signaling and tunnel between 

previous access router (PAR) and new access router (NAR) in Fast Handovers for 

MIPv6. We combined these two approaches to improve the handoff performance of 

our QoS architecture.  

We conducted simulations to evaluate and compare the proposed QoS architecture 

that combines IntServ/DiffServ, Mobile IPv6 and IEEE802.11e with the existing QoS 

architecture for mobile hosts that combines IntServ/DiffServ, Mobile IPv6 and 
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IEEE802.11. We also examined how much the handoff performance was improved 

through these two approaches. 

Simulation results conducted on five different scenarios show: 1) end-to-end QoS 

in terms of goodput, average flow delay, delay jitter and packet drop ratio cannot be 

guaranteed just from the use of IntServ over a DiffServ backbone with MIPv6 and 

IEEE802.11 at the wireless last hop, because IEEE802.11 does not provide QoS 

support. The QoS achieved at wired part is void at the wireless last hop. When 

IEEE802.11e is deployed at the last hop, the packet drop ratio is almost zero and end-

to-end delay is very low for GS flow, the packet drop ratio and delay are also small for 

CL flow, but the performance of BE flow become worse as more resources are 

channeled to satisfy the QoS of the other two classes. Therefore, the end-to-end QoS 

for GS and CL flows are guaranteed. 2) end-to-end QoS could also be guaranteed after 

intra-domain and inter-domain handoff for the GS and CL flows. 3) Handoff latency is 

reduced by 85% ~ 98% and packet drop due to handoff is almost zero when sending 

BUs to the previous base station that mobile node just visited. 4) Handoff performance 

is also improved dramatically after RADs are given higher priority to transmit under 

heavy network load conditions. 

6.2 Future Work 

For our end-to-end QoS architecture for mobile hosts, we combine 

IntServ/DiffServ and IEEE802.11e with basic Mobile IPv6. Although the combination 

of two approaches that assigns RADs higher priority and sends BUs to the previous 

base station can improve the handoff performance efficiently, some work could be 

done to better improve handoff performance by incorporating other handoff 

optimization for MIPv6, such as FMIPv6 (Fast Handovers for Mobile IPv6)[23] and 
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HMIPv6 (Hierarchical Mobile IPv6)[51]. Therefore, we could integrate 

IntServ/DiffServ and IEEE802.11e with FMIPv6 and/or HMIPv6 to further improve 

the handoff performance of the end-to-end QoS architecture. 
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