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i 

Summary 

 

Lithography is one of the key technology drivers for semiconductor manufacturing.  

As the feature size shrinks, maintaining adequate process latitude for the lithographic 

processes becomes challenging.  In this thesis, in-situ process monitoring and model-based 

control techniques are used to control the bakeplate temperature and resist thickness.  These 

are two important process variables that can affect the final critical dimension. 

A predictive controller is designed to perform a pre-determined heating sequence 

prior to the arrival of the photomask to eliminate the load disturbance induced by the 

placement of the cold photomask onto the bakeplate.  An order of magnitude improvement in 

the temperature error is achieved.  Using an array of in-situ thickness sensors and advanced 

control algorithms, a real-time thickness control strategy is implemented to control the resist 

thickness during softbake.  By manipulating the temperature distribution of the bakeplate in 

real-time, the resist thickness non-uniformity caused by prior coating process is reduced.  An 

average of 10 times improvement in the resist thickness uniformity is achieved across 

individual wafers and from wafer-to-wafer. 
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Chapter 1 

Introduction 

  

1.1    Challenges and Trends in the Semiconductor Industry 

 

The phenomenal growth of the semiconductor industry has been fueled by the 

increase in productivity year after year, of which a large part of the productivity gains has 

been the result of lithography improvements in terms of smaller feature sizes, tighter overlays 

and high-density chips.  There is a strong economic incentive for the semiconductor industry 

to continue to shrink the minimum feature sizes exponentially.  Not only can more transistors 

be packed in a VLSI chip; a decrease in the minimum feature size also results in a significant 

increase in the switching speed.  This in turn translates into a higher selling price for the 

faster device.  In semiconductor manufacturing, the ability to control the critical dimension 

(CD) and its uniformity is important.  Usually, CD control involves controlling the 

dimension of the smallest feature size in a device such as the gate linewidth.  Traditionally, 

gate CD control is most critical in lithography as any variation in the gate linewidth has a 

significant impact on the device speed and performance.   

According to the International Technology Roadmap for Semiconductor (ITRS) in 

1999, gate CD control of 10 nanometer (nm) is required at 100 nm technology node by year 

2005 [1].  The ITRS roadmap presents the industry-wide consensus on the R&D efforts 

needed to meet the challenges of semiconductor manufacturing at a specific minimum 
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linewidth (technology node).  By year 2014, it is estimated that gate CD control of 4 nm is 

required at the 35 nm technology node.  In addition to tighter process specifications, the 

industry is also moving towards 300-mm wafer high volume production.  This further 

escalates the demands on the manufacturing control for all the VLSI fabrication processes, as 

the control requirements have to be spread over a larger wafer area.  As the feature size 

approaches sub-100 nm, maintaining adequate and affordable lithographic process latitude 

that is necessary for post-etch CD control becomes an increasingly challenging and difficult 

task.  Advances in process control methodologies are necessary to achieve such a tight CD 

control [1].   

This Chapter is organized as follows.  Section 1.2 gives an overview of some of the 

important semiconductor processes involved in the VLSI chip fabrication.  The trend of the 

process control methodologies in semiconductor manufacturing is given in Section 1.3.  

Section 1.4 discusses the effects of temperature on the lithographic processes.  The scope of 

the thesis is given in Section 1.5 and Section 1.6 gives the thesis organization. 

 

 

1.2    Overview of Semiconductor Manufacturing Processes  

 

Semiconductor manufacturing is a complex and highly integrated industry involving 

several intermediate processes.  Figure 1.1 shows the process flow for fabricating a single 

MOS transistor.  For an advanced integrated circuit fabrication, there may be as many as 350 

or more processing steps involved [2].  Some of the critical processes directly influencing the 
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CD are lithography, etching and deposition processes [2, 3].  A brief description of these 

processes is given below. 

 

 

Figure 1.1: Major fabrication steps in MOS process flow. 

 

Lithography is the process that transfers the patterns of the desired circuit from the 

photomask onto a photosensitive resist film that is coated on top of the wafer substrate.  

Performed immediately after lithography is the etching process.  Etching selectively removes 

unwanted material from the wafer in areas that are not protected by the resist patterns to form 

permanent features on the wafer substrate.  Some of the commonly used etching techniques 

are plasma etching and Reactive Ion Etching (RIE).  Plasma etching relies on the chemical 

reaction of the feed gas to remove unwanted material while RIE uses both chemical reaction 

Oxidation
(Field Oxide) Lithography Oxide Etch Photoresist strip

Oxidation
(Gate Oxide)Polysilicon DepositionPolysilicon Mask and

EtchIon Implantation

Nitride Deposition Contact Etch Metal deposition and
Etch
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of the feed gas and physical reaction due to ion bombardment to remove unwanted material.  

Deposition is another important process that deposits a thin layer of material on the wafer.  

Chemical Vapor Deposition (CVD) process is one of the primary methods used to deposit 

thin and highly uniform films of nitrides, metals and oxide films on the wafer.  In CVD 

process, the reactant gases are introduced into the chamber.  The gases undergo chemical 

reaction with the heated wafer surface to form a thin film of material.  Different CVD 

processes are currently used, including Atmospheric Pressure CVD, Low Pressure CVD and 

Plasma Enhanced CVD.  

Process drifts in any of these processes will affect the final CD.  In the next section, 

an overview of the process control strategies to deal with process drifts in semiconductor 

manufacturing will be discussed. 

 

   

1.3    Overview of Process Control Methods 

 

The objective of any process control methods is to reduce variation of the process 

variables so as to ensure that the wafer-state parameters such as film thickness, CD, etc. is 

kept within tight process specifications.  In recent years, there has been a surge in research 

interest on process monitoring and control of key semiconductor manufacturing processes 

due to the need to fabricate VLSI chips with higher feature densities [1].  With total allowed 

wafer CD variation in the range of only a few nanometers, every nanometer of allowed 

variation must be carefully assigned in the error budget of each intermediate processing step.  

Allowing excessive variation in one particular process would impose an unachievable target 
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for other processes.  Higher manufacturing costs may result in the form of scrap, reduced 

yield and rework. 

The major elements of any process control systems are process monitoring and 

advanced process control techniques.  In this section, the process monitoring and control 

techniques in semiconductor manufacturing are reviewed. 

 

 

1.3.1    Process Monitoring  

 

The purpose of process monitoring is to provide critical information concerning the 

process variables that may be used for process diagnostic and feedback control.  

Traditionally, process monitoring was done in an off-line fashion, based on measurements 

that were available after several batches of wafers have been processed.  In recent years, 

there has been an increase in the application of in-situ sensors in semiconductor 

manufacturing processes due to advancement in the in-situ sensor technology.  Some 

examples of the in-situ sensors that have been developed for monitoring the semiconductor 

manufacturing processes are: ellipsometer [4] and reflection interferometers [5, 6] that 

measure film thickness, scatterometer that measures CD and particles [7, 8] and 

photospectrometer that measures the photoactive compounds in the resist film [9].   

State estimation algorithms such as Kalman filter and extended Kalman filter have 

also been implemented to estimate critical internal process variables from the available 

measurements [5, 10, 11].  Vincent et al. [5] uses extended Kalman filter to estimate the etch 

rate and Caroll et al. [11] estimates the development rate from the reflectance measurements 
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obtained by the reflection interferometers.  Palmer et al. [10] uses Kalman filter to obtain 

both the resist thickness and photoactive compound concentration indirectly from the 

photospectrometer.  To provide real-time approximation and prediction of the critical 

variables, sophisticated models such as neural networks have also been built off-line and 

implemented on-line for model-based monitoring of the semiconductor manufacturing 

processes [3, 12-14]. 

Another important component of an effective process control system is the process 

control technique itself.  In the next section, some of the process control approaches in 

semiconductor manufacturing are reviewed. 

 

 

1.3.2     Statistical Process Control  

 

Process drifts are inevitable during fabrication of the integrated circuits.  To keep the 

process within a tight specification, adjustment for unacceptable drift in the process variable 

is important.  One of the most widely used process control methodologies in semiconductor 

manufacturing is Statistical Process Control [15].  For Statistical Process Control (SPC), 

critical process observables are monitored using ex-situ metrology to identify abnormal level 

of variations in materials, equipments, parameters or procedures.  Any abnormal variations 

will be used to detect an “out-of-control” state.  When an “out-of-control” situation is 

detected in the process, sources of the process drift are identified and the process is re-

centered via engineering intervention or hardware cleanup to return it to the “in-control” 
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state.  Implementation of SPC is relatively simple and has been successfully implemented for 

stepper overlay control, plasma enhanced CVD and plasma etching processes [16-18].  

However, this approach can be costly and inefficient.  This is because SPC detects the 

process drifts by post examination of processed wafers and adjusts the process for the next 

batch of wafers when an “out-of-control” situation arises.  A large number of wafers can be 

potentially misprocessed before an “out-of-specification” condition is recognized and 

corrected.  The complexity of the SPC methodology also increases with shrinking error 

tolerances as the number of inputs that have to be monitored and controlled increases [16].  

Furthermore, in situation where process disturbance has a significant effect on the process 

variation, an open loop approach such as SPC may not be able to compensate for the process 

disturbance.  Hence in recent years, there has been a shift in the control methodology from 

SPC to more advanced process control techniques, which is the subject of this thesis.  

 

 

1.3.3    Real-time Feedback Control  

 

Production loss can be significantly reduced by diagnosing the onset of the process 

drifts on-line and taking a more timely corrective action.  One approach is to correlate the 

wafer-state parameters (e.g. film thickness, CD, etc.) to control variables (e.g. temperature, 

gas flows, exposure dose) for real-time feedback control.  In real-time feedback control, 

critical processing parameters are measured or inferred in real-time using in-situ sensors.  

These in-situ measurements are compared against a reference during process control.  Any 

deviation from the reference is compensated and reduced by the use of feedback control.  



 8 
 

 

Since more rapid feedback action takes place when an “out-of-specification” condition 

occurs, real-time feedback control reduces process variations, wafer scrap and production 

cost. 

Until recently, real-time feedback control technique is focused mainly on the 

equipments and is confined to simple single loop controllers [3, 19].  Increasingly, real-time 

feedback control is now being used to improve the fabrication processes [20-24, 27].  By 

implementing real-time feedback control, Rashap et al. [20] and Hankinson et al. [21] 

achieve a better control of the RIE process.  Using in-situ process signals and an adaptive 

nonlinear controller to compute the etch time in real-time, Rietman et al. [22] achieves good 

wafer-to-wafer control of the plasma etch process.  A model that predicts linewidth 

broadening caused by post-exposure delay (time delay between exposure and post exposure 

bake steps) and an automatic control system have also been employed to reduce CD variation 

induced by post-exposure delay [23].  Through real-time monitoring of the stepper overlay 

performance and predictive tuning of the stepper, Ku et al. reduces the downtime associated 

with manual tuning of the stepper [24].  In process control, a higher process capability index 

is desirable as it means that the percentage of process variables that fall outside the 

specification limits is lower.  Real-time feedback control improves the process capability [25, 

26].  Process capability of more than 50 % has been achieved by implementing feedback 

controller for CD and overlay [27].   

Another common form of real-time process control is endpoint detection [28-31].  

Endpoint detection uses the real-time process measurements to determine the termination of 

the process.  The in-situ sensors continuously monitor the process parameters so that the 

process is terminated when the in-situ measurements reach a certain setpoint or decision 
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criteria (known as endpoint).  Endpoint detection has been implemented for the develop, 

softbake, CVD and RIE processes with improved controllability.  Morton et al. uses the in-

situ ultrasonic sensor to monitor the resist thickness and its properties during the softbake and 

develop processes [28, 29].  These in-situ measurements are used to detect the endpoint of 

the softbake and develop processes.  Baker et al. [30] uses an in-situ surface micro-machined 

sensor to monitor the film thickness during the RIE process and terminates the etch process 

when the target thickness is reached.  Epitaxial film thickness measurements obtained using 

Emission Fourier Transform infrared spectroscopy has also been used to determine the 

endpoint of the CVD process [31].  Process monitoring during CVD also reduces the cost of 

other related processes such as pre-deposition wafer cleaning and post-deposition material 

characterization. 

 

 

1.3.4    Run-to-run Control 

 

Besides real-time feedback process control, run-to-run process control is another 

control methodology that has received a lot of attention recently.  In run-to-run control, 

feedforward and feedback information between consecutive processes are used in 

combination with a process model to keep the wafer-state parameters close to their target 

values.  The process model relates the equipment settings (e.g. deposition time) to the wafer-

state qualities of interests (e.g. film thickness) and is updated to track the process drifts.  

Measurement data taken immediately after the processing step is fed back to adjust the 
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process recipe in the equipment for the next run.  The measurements are also sent to the next 

equipment to adjust its recipe before any deviations from the target become worse.   

Run-to-run controller monitors the process on a run-to-run basis and makes small 

adjustment to the equipment to keep the wafer-state parameters on target.  This control 

approach is most applicable to processes where run-to-run performance is plagued by 

machine wear or equipment drifts.  Some of the common implementation of run-to-run 

controller are based on exponentially weighted moving average schemes, adaptive 

algorithms, modified internal control, robust control via worst case framework artificial 

intelligence control, predictor-corrector control self-tuning controller and linear model 

predictive control [3, 32].  Run-to-run controllers can also be evaluated by considering the 

model uncertainty from a probabilistic approach [33]. 

Run-to-run control has been implemented successfully for processes such as etching 

[34], photolithography sequence [35], RIE [21], CVD [36] and metal sputtering deposition 

[37] with improved yield and throughput.  Run-to-run control is often used together with 

real-time control system to control critical process variables.  The run-to-run controller 

determines the equipment settings based on the wafer-state characteristics of the previous 

run.  The real-time controller in the equipment adjusts the control variables to achieve the 

suggested equipment settings.  For example, the real-time controller has been integrated with 

a run-to-run controller to achieve good etch control for the RIE process [21].  The run-to-run 

controller determines the plasma variable setpoint based on the wafer characteristics of the 

previous run.  The real-time controller maintains the suggested plasma variables by 

manipulating the process inputs during the run.  The inclusion of a real-time controller keeps 
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the process in the target range for small disturbances and reduces the amount of work needed 

for the run-to-run controller.      

Given that lithography is the key technology driver in semiconductor industry, this 

thesis investigates the application of advanced process control methodologies to meet some 

of the challenges of advanced lithography; focusing particularly on temperature control.  This 

is because lithography involves several bake processes where temperature control is 

important.  In this thesis, in-situ process monitoring and model-based control techniques are 

used to control the bake process so as to achieve a temperature profile that is repeatable from 

run-to-run.  This is extended to control the resist thickness in real-time during the bake 

process.  A uniform resist thickness distribution across individual wafer and from wafer-to-

wafer (run-to-run) is achieved by manipulating the temperature distribution of the bakeplate 

based on the in-situ resist thickness measurements.  In the next section, the effects of 

temperature on the lithographic processes and the importance of temperature control are 

discussed. 

 

 

1.4  Temperature Effects in the Lithographic Processes 

 

Lithography is a manufacturing process that transfers two-dimensional microscopic 

patterns of the desired circuit from a photomask onto a photosensitive resist film that is 

coated on top of the wafer substrate.  It is also a significant economic factor, representing 

over 35 % of the chip manufacturing cost.  For an advanced integrated circuit, there can be as 
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many as 20 masking levels involving lithography [48].  Figure 1.2 shows the typical 

processing steps involved in lithography for a single masking level. 

 

 

 

 

Figure 1.2: Lithography process. 

 

The lithography sequence begins with priming the wafer substrate with 

hexamethyldisilazane (HMDS) to promote adhesion of the photosensitive resist to the 

substrate.  After HMDS priming, a thin film of resist is coated onto the substrate using a spin 

coating technique.  Liquid resist solution is dispensed onto the wafer in a spinner and spun at 

a very high speed.  The spinning of the wafer causes the centrifugal force, which together 

with gravity, forces the resist to flow to the edge of the wafer.  Surface tension induces the 

resist flow while viscous force resists the flow.  During the spin coating process, solvent in 

the liquid resist evaporates, resulting in a reduction of the resist film thickness.  This is 

followed by a softbake process, where the heat of the bakeplate removes the residual solvent 

in the resist film.  Using an exposure tool, the resist-coated subtrate is exposed to ultra-

violent (UV) radiation to project the desired patterns from the photomask onto the resist film.  

HMDS priming Resist coating Sotbake Exposure
(patterning)

Post-eposure
bakeDevelopPost-develop

bake
Etch
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A subsequent post-exposure bake reduces the  standing waves in the resist film.  In the case 

of the chemically amplified resist, it also activates critical chemical reaction.  The resist is 

next exposed to the developer solution which selectively dissolves the exposed resist for 

positive-tone resist, and vice-versa for the negative-tone resist.  Finally, a post-develop bake 

is performed to enhance the etch resistance of the resist patterns.  After the lithographic 

process, the wafer undergoes other fabrication processes such as etching, deposition, 

oxidation, etc.  Through a series of etching or deposition processes, the resist patterns formed 

during lithography are transformed into permanent features in the device.   

In lithography, any drifts and variations in the process variables such as exposure 

doses, temperature, resist thickness, developer concentration, etc. will affect the final CD [2, 

15, 48].  Among these process parameters, temperature is one of the most significant process 

parameters that can affect the CD.  The effect of temperature on CD has been studied 

extensively.  For every degree variation in the wafer temperature uniformity during the bake 

process, the CD can vary by as much as 20 nm [15].  A 9 % variation in CD per 1 °C 

variation in temperature has been reported for a Deep ultraviolet (DUV) resist [35].  As the 

width of the feature size continues to shrink, temperature uniformity specification becomes 

more stringent.  Table 1.1 shows the temperature requirements for different thermal 

processing steps in lithography [36].  For some critical bake processes such as post-exposure 

bake (PEB), temperature uniformity as stringent as ± 0.1 °C is required.  Therefore, 

temperature control is extremely critical to achieve good CD uniformity. 

To achieve the tight temperature specifications required by advanced lithography, one 

approach is to improve the design of the thermal processing equipment.  In Ramanan et al. 

[37], an exhaustive heat transfer analysis of the bake equipment is performed to gain insight 
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into the heat transport to the wafer during the baking process.  This is then used to aid in the 

design of the bakeplate so that good wafer thermal uniformity during baking can be achieved.  

Controlled cooling after the bake process is also important.  A chillplate has been introduced 

to improve the repeatability of the bake process [38].  Proximity cooling during photomask 

fabrication is used to improve the resist CD uniformity in Kushida et al. [39].  To enable 

more uniform resist bake for the photomasks and wafers, independently controlled, multiple-

zones bake systems that integrate the baking and cooling process have been designed to 

achieve better temperature control during the entire bake cycle [40, 41].  Integration of the 

baking and cooling processes eliminates the use of a robotic arm to transfer wafers between 

the bakeplate and chillplate.  This enables better temperature control throughout the bake 

cycle [40].  An iterative, self-optimizing algorithm is also developed to determine optimized 

bake recipes in Dress et al. [41].  

 

Table 1.1: Temperature sensitivity of the thermal processing steps. 

Thermal Step Purpose Temperature 

Range 

Precision 

Required 

HMDS bake Promote Adhesion Co15070 −  Co5±  

ARC bake Cure ARC Co18090 −  Co21−±  

Softbake  Drive off solvent, densify 

resist, stabilize thickness 
Co14090 −  Co1±  

Post – exposure bake  

(PEB) 

i-line resist: smooth standing 

waves 
Co18090 −  

 

Co15.0 −±  

PEB DUV resist: deblock exposed 

resist 
Co15090 −  Co5.012.0 −±

 

Post-develop bake Improve etch stability Co180120 −  Co1±  
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1.5 Scope of the Thesis 

 

In this thesis, the application of advanced control algorithm to meet the challenges of 

some aspects of advanced lithography is investigated.  This thesis addresses two areas: 1) 

Temperature control during photomask fabrication and 2) Real-time thickness control during 

the bake process. 

 

 

1.5.1    Temperature Control For Photomask Fabrication 

 

Lithography involves a complex transfer of features from the photomask onto the 

wafer by the exposure tool.  Every feature on the photomask has to be imaged onto the wafer 

within a predetermined tolerance.  With rapid scaling of the feature size, lithographic 

imaging is being pushed into a regime of non-linear amplification of photomask errors.  For 

example, a 10 nm CD error on the photomask may translate into a 14 nm resist errors on the 

wafer, after taking into account the reduction factor of the exposure tool.  As the feature size 

shrinks, photomask CD error takes an increasing larger portion of the total wafer CD error 

budget.  The photomask has been identified as the largest contributor to CD error for 0.25 

µm DUV lithography [42].  More accurate mask CD control and tightening mask 

specifications are therefore required.  According to the ITRS roadmap, mask CD control of 

10 nm and 4 nm are required by year 2002 and 2014 respectively [1].  

As in the thermal processing of the wafer, the ability to control temperature within a 

tight tolerance throughout the bake cycle is important during photomask fabrication.  Baking 
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is performed by placing the photomask on the bakeplate at a specified temperature for a 

given time.  When a photomask, originally at room temperature, is placed onto the bakeplate, 

the bakeplate experiences a sudden drop in temperature (load disturbance) due to heat 

transfer from the bakeplate to the cold photomask.  In response to this load disturbance, the 

heating elements of the bakeplate increase the heater powers sharply.  If the bakeplate 

controller is not well designed, there will be an overshoot in the bakeplate temperature before 

it can be returned to the desired temperature setpoint.  This temperature overshoot can cause 

statistically measurable shifts in CD.  Crisalle [43] reports a statistical increase in wafer CD 

ranging from 0.011 to 0.035 µm due to a temperature overshoot of 3 °C or more.  The mass 

of the photomask is much larger than the wafer.  The typical dimension of a wafer is 300 mm 

diameter and 1 mm thick while the dimension of a leading edge photomask is 6 inch by 6 

inch and 0.25 inches thick.  Due to the larger mass of the photomask, the amount of heat 

removed from the bakeplate by the cold photomask will be much greater, resulting in a larger 

load disturbance.  Hence the ability to reject the load disturbance effectively during 

photomask fabrication is even more critical.  

The author’s contribution in this research work is as follows.  A 

feedforward/feedback control strategy that is based on a linear programming method is 

implemented on a bakeplate to perform a pre-determined heating sequence prior to the arrival 

of the photomask.  This minimizes the load disturbance induced by the placement of the cold 

photomask on the bakeplate.  Compared to if only a feedback controller is implemented on 

the bakeplate, there is a substantial improvement in the integrated-square temperature error 

using this feedforward control strategy. 
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1.5.2  Real-time Thickness Control 

 

Resist thickness uniformity is another significant lithographic process parameter that 

can directly affect the CD distribution across the wafer.  The CD varies as a function of the 

resist thickness [15], as given in Figure 1.3.  Hence, the resist thickness has to be well 

controlled to achieve good CD uniformity.  

 

 

Figure 1.3:  Variations of CD with resist thickness 

 

In this thesis, the application of real-time thickness control during softbake to 

improve the resist thickness uniformity is investigated.  Prior to the softbake process, the 

wafer is spin coated with resist.  Typically, a non-uniform resist film is formed on top of the 

wafer at the end of the coating process.  In the conventional approach where the bakeplate 

temperature is maintained at a constant temperature during softbake, the resist film thickness 
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non-uniformity remains at the end of the softbake process.  In this work, a new technique is 

implemented to control the resist thickness in real-time during the softbake process.  This 

reduces the resist thickness non-uniformity at the end of the bake process.  Given the strong 

correlation of CD uniformity with resist thickness uniformity, reducing resist thickness non-

uniformity will improve CD control. 

 

The contributions on this work are as follow: 

 

1. It has been demonstrated that if the prior coating process results in a non-uniform 

resist film, conventional softbake approach of maintaining uniform temperature 

distribution across the bakeplate does not reduce the resist film non-uniformity. 

2. A new setup is made to implement a real-time thickness control strategy.  Using 

advanced control algorithms and in-situ resist thickness measurements, resist 

thickness non-uniformity of less than 1 nm is achieved at the end of the softbake 

process.  In addition to improvement in resist thickness uniformity across individual 

wafer, the softbake process is also made more repeatable.  There is an improvement 

in resist thickness uniformity from wafer-to-wafer as the same resist thickness 

trajectory is defined for all wafers. 
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1.6    Thesis Organization 

 

This thesis consists of 5 chapters and is organized in the following ways.  The first 

chapter covers the introduction, which discusses some of the challenges faced by the 

semiconductor industry and how the application of control methodologies can meet some of 

these technical challenges.  Chapter 2 describes an optimal feedforward control algorithm 

that improves the temperature uniformity of the bakeplate by rejecting the load disturbance 

caused by the placement of cold photomask onto the bakeplate.  Chapters 3 and 4 discuss the 

implementation of a real-time thickness control strategy that compensates for the resist 

thickness non-uniformity caused by the prior coating process.  Two control algorithms have 

been investigated.  The first control algorithm is the Generalized Predictive Control 

algorithm, whereby constraints on the bake temperature can be readily implemented and is 

covered in Chapter 3.  A simpler and faster implementation using Sliding Mode Control 

algorithm is investigated in Chapter 4.  Chapter 5 summarizes the research work conducted 

and gives recommendations for future work.   
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Chapter 2 
 
Constraint Feedforward Control for Photomask 

Thermal Processing 
 

 

2.1    Introduction 

 

With shrinking feature sizes, lithographic imaging tool is being pushed to its 

resolution limits where pattern transfer from the photomask to the wafer is non-linear.  

Hence, any CD error on the photomask will be non-linearly amplified onto the wafer.  As a 

result, mask CD error contributes to an increasingly larger portion of the wafer CD error 

budget and tighter CD control has to be imposed during photomask fabrication [42].  To meet 

the tightening mask specifications, temperature control during thermal processing of the 

photomask is critical.  There have been some researches on improving the mask CD 

uniformity through temperature control.  For example, Kushida et al. [39] improved the resist 

pattern CD uniformity by using proximity cooling during photomask fabrication.  

Independently controlled, multiple zones bake systems have been designed to enable more 

precise and uniform resist bake for the photomasks and wafers [40, 41].  The baking and 

cooling processes are integrated to eliminate the use of a robotic arm to transfer wafers 

between the bakeplate and chillpate; thereby enabling better temperature control throughout 

the entire bake cycle.  In this Chapter, a simple approach to improve the repeatability of the 

bake process is investigated.   



 21 
 

 

Thermal processing of the photomask is performed by placing the cold photomask 

(usually at room temperature) on the heated bakeplate for a given period of time.  The 

bakeplate is maintained at a constant temperature by a feedback controller that adjusts the 

heater power in response to the reading of the temperature sensor embedded near the surface 

of the bakeplate.  The placement of the cold photomask on the bakeplate creates a load 

disturbance to the bakeplate.  Consequently, the bakeplate temperature drops abruptly as heat 

is removed from the bakeplate by the photomask.  If the bakeplate is under feedback control 

only, the feedback controller of the bakeplate will respond to the sudden temperature drop by 

increasing the heater power sharply to reject this load disturbance.  Usually, this results in an 

overshoot of the bakeplate temperature that can affect the CD, before the feedback controller 

can return the bakeplate temperature to its setpoint [15, 43].  

The photomask has a large thermal mass.  Typical dimension of a leading edge 

photomask is a square cross section of 6 inch by 6 inch and a thickness of 0.25 inch, as 

compared to the wafer dimension of 300 mm diameter and 1 mm thick.  Due to its larger 

thermal mass, the loading effect due to the placement of the cold photomask is more severe 

with a larger temperature drop.  Therefore, a longer time is required for the bakeplate to 

recover to its original temperature setpoint in photomask thermal processing as compared to 

wafer processing.  To ensure repeatable processing temperature trajectory from photomask-

to-photomask, the bake system has to be at steady state before processing subsequent 

photomask.  Figure 2.1 shows the drop in the bakeplate temperature when a photomask is 

placed on the bakeplate without any feedback control.  The heater power is kept at a constant 

value.  With a substantial drop in bake temperature of more than 10 °C, it will take a long 

time for the bakeplate temperature to be restored to its setpoint.  In the case where the 
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feedback controller is not well-tuned, a large temperature overshoot might also occur.  

Usually, there is an error budget associated with processing of the photomask [44].  As the 

photomask goes through many processing steps, errors introduced in each step leads to errors 

in the final CD.  For a specified error tolerance, large errors in other processing steps can be 

compensated by reducing the temperature errors (deviation of the bakeplate temperature from 

its setpoint) introduced in the baking steps.  One approach is to minimize the temperature 

overshoot during the bake process. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Load disturbance to the bakeplate due to placement of the photomask. 

 

The load disturbance arises due to the transfer of heat from the bakeplate to the 

photomask.  It is largely dependent on the thermal mass of the photomask.  Therefore, prior 
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knowledge of the load disturbance is available.  For load disturbance with prior knowledge, 

the solution is to eliminate the load disturbance effectively before it takes effect on the 

bakeplate, which is the subject of this Chapter.  In this Chapter, an optimal predictive 

controller is designed to perform a pre-determined heating sequence prior to the placement of 

the photomask on the bakeplate.  This is part of a feedback/feedforward strategy to eliminate 

the load disturbance.  Experimental result shows a substantial improvement in the 

temperature performance of the bakeplate using the feedforward/feedback control strategy, as 

compared to the use of only a feedback controller.  In addition, this model-based control 

strategy is simple and can be implemented easily on any existing commercial bakeplates with 

only a slight modification.  Section 2.2 describes the experimental setup while Section 2.3 

and 2.4 present the formulation and implementation of the feedforward/feedback control 

respectively.  The conclusion of this research work is given in Section 2.5 

 

 

2.2    Experimental Setup for Photomask Thermal Processing 
 

An optimal feedforward/feedback control strategy is implemented for the baking of 

the quartz photomask on a multi-zones bakeplate.  Figure 2.2 shows the photograph of the 

bakeplate used for baking a 6 inch by 6 inch photomask.  The top view and cross section of 

the bakeplate is shown in Figure 2.3.  The bakeplate consists of a two dimensional 7 × 7 

array of independently controlled resistive heating elements with embedded resistance 

temperature detectors (RTDs) [40].  Each heating element consists of a thin aluminum square 

plate with the dimension of  1 inch by 1 inch  and 1/16 inch thick.  The aluminium plate is 
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supported by a shaft which is used to house a resistive (AC driven) catridge heater that 

delivers the heating power to the bakeplate.  The RTDs are located within 0.050 inches from 

the bakeplate surface, providing in-situ temperature measurements during the run.  The 

heating elements are disjoint with small air gaps of approximately 50 mils wide.  This 

reduces the amount of thermal coupling between the heating elements, thereby enhancing the 

controllability of the bake system.  The input to the heater (control signal) has a range of 0-10 

V.  This input voltage to the heater is varied to adjust the heater power, which in turn creates 

the change in the bakeplate temperature necessary to reject the load disturbance.  The number 

of zones of the bakeplate can be easily configured, depending on the application.  In this 

application, the bakeplate is configured as a single zone bakeplate.   

 

 

Figure 2.2: Photograph of the bakeplate. 
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Figure 2.3:  Top view and cross-section of the bakeplate. 

 

 

2.3    Optimal Feedforward/Feedback Control Strategy 

 

In this section, the control strategy used to compensate for the load disturbance 

induced by the placement of the cold photomask on the bakeplate is developed.  The 

approach is to design a controller that, as best as possible, eliminates the loading disturbance 

on the bakeplate.  Figure 2.4 shows the proposed control system where )(sGc  is the transfer 

function of the existing feedback controller for the bakeplate and )(sG p  is the transfer 

function of the bakeplate relating the bakeplate temperature, T , and the heater input, u .  The 

heater input, u , comprises two components: feedback control signal, fbu , and feedforward 

control signal, ffu .  The load disturbance on the bakeplate, which translates into a sudden 

drop in bakeplate temperature, is denoted as d .  As can be seen in Figure 2.1, the load 

6 x 6 inch photomask

1 x 1 inch
heating element

Embedded
RTD

Resistive cartridge heater

Small air gaps between
the heating elements
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disturbance can be modeled as a step response as heat is removed by the large thermal mass 

photomask.  That is, the load disturbance, d , is the output of the disturbance model, )(sGd , 

with a step input such that V 1=du .  To reflect the control problem accurately, the load 

disturbance is incorporated at the output of the plant rather than at the input of the plant.  

Since the objective of this control strategy is to reject the load disturbance, only the 

feedforward controller is designed and discussed.  No modification is made to the existing 

feedback controller of the bakeplate, )(sGc , which is a PID controller. 

 

 
 

Figure 2.4: Feedforward/feedback control strategy for photomask thermal processing. 
 

 

From Figure 2.4, it is noted that the loading effect on the bakeplate temperature can 

be eliminated if the change in bakeplate temperature from its setpoint, T , is equal to the 

negative of the disturbance d , i.e. )()( sdsT −= .  This can be accomplished without any 

Existing

)(sGc
)(sGp

ffu

fbu u T
d

)(sGd

du

++ ++
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feedback control, i.e. 0=fbu , by adjusting the heater input (control signal) according to the 

relation 

 

(2.1)                                                 )()()()( 1 sdsGsusu pff
−−==  

 

This results in a non-causal feedforward control move where control moves are made before 

the actual placement of the photomask.  If the plant model, ( )sG p , is known prior to the run, 

the load disturbance can be eliminated.  In practice, the control signal, u , is subjected to 

saturation of the heater, ],0[ maxUu ∈ .  If the required control signal is outside the achievable 

bounds, it is not possible to generate the desired temperature change, T , that is needed to 

eliminate the disturbance, d .  A simple implementation strategy would be to calculate the 

perfect control moves using Equation (2.1), and then truncate at the upper bound of the 

achievable heater input voltage, maxU .  However, this approach will not result in an optimal 

solution. 

In this section, an optimal solution to the control problem is considered.  The problem 

is discretized in a sampled data format where the sampling index is denoted as k .  The goal 

is to find a pre-determined heating sequence, )(ku ff , that minimizes the maximum absolute 

temperature error between the bakeplate temperature and load disturbance, )(ke , for 

{ }Nk �,1,0∈  over a finite interval, N .  Minimization of the maximum temperature error is 

chosen as that will have the greatest impact on the recovery time.  This is a min-max control 

problem that can be expressed as 
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( ) { }
(2.2)                                                      )(max min

,,1,0],,0[ max
ke

NkUku �∈∈
 

 

where )()()( kdkTke += .  The solution automatically constrains the heater input, )(ku , to 

its pre-specified lower and upper limits of 0 and maxU  respectively.  This optimization 

problem is solved computationally by the use of a model.  The transfer function relating 

change in bakeplate temperature, T , to the heater input, u , is represented as an auto-

regressive model [45] such that 

 

)3.2(                                                       )()()()( 11 kuqBkTqA −− =  

 

where 1−q is the backward shift operator such that ( )1()(1 −=− kTkTq ), and the )( 1−qA and 

)( 1−qB polynomials are given as 

 

                                                      1)( 1
1

1 n
nqaqaqA −−− +++= �  

( )                                           )( 1
10

1 dnn
n qqbqbbqB −−−− +++= �  

 

where dnq−  denotes any possible time delay and the order of the polynomials is given by n .  

The coefficients ia  and ib  are obtained from the identification experiment in Section 2.4.  

The discrete-time representation given in Equation (2.3) can be expressed in a convolution 

model at sample time instant, k , such that 
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Over a finite interval, N , the input and output signals can be represented as finite-

dimensional vectors.  Expressed in a Vector-Matrix form, the relationship between the input 

vector, U, and output vector, T , over the interval, N , is given as 
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The optimization problem in Equation (2.2) can be formulated as a Linear Programming (LP) 

problem [46] and solved using a standard LP solver as follows. 

 

Letting 
{ }

|)(|max
,,1,0

kez
Nk �∈

= , the min-max problem given in Equation (2.2) is converted into 
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where  1)1( ×+N1  is a column vector with all its 1+N  entries equal to 1.  Also, 1  )1( ×+N0  is a 

column vector with all its 1+N entries equal to 0 while )1(1 +× N0  is a row vector with all its 

1+N entries equal to 0.  The first two constraints can be converted into vector form given as 

 

( ) D1T1DT
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where UT Ψ=  and D  is a column vector with 1+N  entries such that 

[ ]TNddd )(,),1(),0( �=D .  The superscript, T , denotes the transpose of a vector.  The 

optimal control sequence, U , is obtained by solving the following LP problem: 
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For any vectors v  and w , wv ≤ means every entry of v  is less than or equal to the 

corresponding entry of w.  For example, the constraint, max
1)1( UN ×+≤ 1U , means that every 

entries in the vector, U , is less than or equal to maxU .  That is, 

{ }NkUku ,,1,0  )( max
�∈∀≤ .   

 

 

2.4    Implementation of Constraint Feedforward Controller 

 

Before the constraint feedforward controller can be implemented, information about 

the plant and disturbance models, ( )sG p and ( )sGd , must be available.  When the photomask 

is placed on the bakeplate, it induces a load disturbance to the bakeplate and causes the 

bakeplate temperature to drop.  The load disturbance is determined as follows.  First, the 

input to the heater (control signal) is fixed by putting the controller in manual mode.  A 6 

inch by 6 inch photomask at around room temperature (~24 °C) is then placed on the 

bakeplate.  The sampling interval is 0.2 seconds.  The resultant load disturbance is modeled 

as the output of a transfer function with a step input.  By fitting the experimental data in the 

least squares sense, the disturbance model, )( 1−qGd , is identified as 
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This is obtained by selecting the smallest order of the )( 1−qA  and )( 1−qB polynomials that 

gives a reasonably good fit between the experimental and fitted data.  The system 

identification toolbox in MATLAB is used to aid in the selection of the suitable model.  

Figure 2.5 shows the drop in bakeplate temperature due to the placement of the photomask.  

The dashed line shows the calculated response using the identified disturbance model, 

)( 1−qGd .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Result of the identification experiment to obtain the disturbance model. 

 

The model of the bakeplate, )( 1−qG p , relating the change in bakeplate temperature, 

T , to the change in heater input, u , is similarly identified.  A pseudo random binary control 
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sequence [47] is injected into the bakeplate as shown in Figure 2.6 (b).  Using least squares 

estimation, the process model, )( 1−qG p , is identified as 

 

4321
1

50.083.078.011.21
0037.0

)( −−−−
−

−++−
=

qqqq
qG p  

 

The solid line in Figure 2.6 (a) shows the resulting change in bakeplate temperature while the 

dashed line shows the calculated response using the identified model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Result of the identification experiment to obtain the plant model. 
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Having obtained the model for the bakeplate and load disturbance, the optimal 

feedforward control signal, ffu , is computed.  At steady state, the feedback control signal, 

fbu , that is required to maintain temperature at 90°C is 0.5 V.  The control signal, 

fffb uuu += , is subjected to a heater input voltage constraint where 100 ≤≤ u .  This places 

a constraint of ( ) { }Nkku ff ,,1,0  9.5 5.0 �∈∀≤≤−  on the feedforward control signal.  

Figure 2.7 shows the computed feedforward control signal.  Note the control signal is 

brought to its maximum level and then to its minimum level in a bang-bang control type 

fashion.  This type of response and prediction would be difficult to determine using a trial 

and error hand tuning method without the use of a model.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7:  Optimal feedforward control signal 
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Figure 2.8 gives the comparison for the case with and without feedforward control 

when a 6 inch by 6 inch photomask is placed on the bakeplate.  The arrow in Figure 2.8 

indicates the time when the photomask is placed on the bakeplate.  The first two runs are for 

optimal feedforward control while the last run is for feedback control only.  Feedforward 

control signal is applied prior to the arrival of the photomask for the first two runs.  With 

only feedback control, the drop in bakeplate temperature is ≈3.5 °C.  In contrast, the drop in 

temperature is ≈0.5 °C with feedforward control.  There is a substantial improvement in the 

integrated-square temperature error (ISE) between the optimal predictive controller and the 

feedback controller.  The ISE for the first two cases of optimal feedforward control and a 

third case of feedback control are 3.25, 1.63 and 99.66 respectively.  Using the optimal 

feedforward controller, there is about 30  times improvement in the ISE.    

 

 

2.5    Conclusion 

 

An optimal feedforward control scheme has been designed and demonstrated to 

minimize the loading effect induced by the placement of a cold photomask on the bakeplate. 

The elimination of the loading effect is important to current and future generation of DUV 

resist, which is extremely sensitive to temperature variations.  Of more importance is the 

improvement in the thermal budget.  For a specified error budget, larger thermal errors in 

other processing steps can accommodated due to reduction in temperature errors in the 

baking steps.   
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The feedforward control strategy is based on a linear programming method of 

minimizing the worst-case deviation from the temperature setpoint during the loading effect.  

This results in a predictive controller that performs a pre-determined heating sequence prior 

to the arrival of the photomask in order to eliminate load disturbance induced by placement 

of the cold photomask on the bakeplate.  A significant improvement in the integrated-square 

temperature error between the predictive controller and the feedback controller is achieved.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8:  Comparison between runs with and without feedforward control. 
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Chapter 3 

Real-time Predictive Control of Resist Film 

Thickness Uniformity 

 

3.1    Introduction 

 

To form the resist patterns, the wafer substrate is spin-coated with a thin film of 

resist, followed by a softbake process to remove excess solvent in the resist film.  The desired 

patterns are then patterned onto the resist film by exposing the substrate with deep UV 

radiation.  During this exposure step, some of the incident light propagates through the resist 

film and reflects at the substrate-resist interface.  The phase difference between the incident 

and reflected light creates an interference effect within the resist film and the total amount of 

light absorbed by the resist film “swings” up and down as a function of the resist film 

thickness.  An example of such variation of the light absorption as a function of resist 

thickness, typically known as a swing curve, is shown in Figure 3.1.  As a result of this 

variation of light absorption in the resist film, the final CD also varies with resist thickness 

[48].  The CD can vary as much as 4 nm for every 1 nm change in resist thickness [49].  The 

resist thickness has to be well controlled to remain at the extrema of the swing curve where 

the sensitivity of CD to resist thickness variation is minimized [15].  With shrinking feature 

size, light of shorter exposure wavelength is used to pattern the resist-coated wafer.  As the 

amplitude and periodicity of the swing curve increases with decreasing exposure wavelength, 
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control of the resist thickness and its uniformity becomes increasingly more important [49].  

Furthermore, the industry is moving towards the use of 300-mm substrate for economic 

reasons; placing a stringent demand on all lithographic processes as the control requirement 

is spread over a larger area.  To meet the demanding requirement of advanced lithography, 

better control of the resist film and its properties will be required. 

 

 

 

 

 

 
 

 

Figure 3.1: An example of a swing curve. 

 

 

 

 

Figure 3.1: An example of a swing curve 

 

The spin coating process affects the uniformity of the resist film coating across the 

wafer.  Low spin speed can result in resist thickness profile, which increases towards the 

edge of the substrate.  High spin speed can result in the opposite effect.  For spin coating over 

topographical features, the resist uniformity is even more significant [50].  Already for the 
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200 mm substrate, resist thickness uniformity specification is met by having tight controls 

over important parameters such as relative humidity, chuck temperature, spin speed, exhaust, 

etc during spin coating [3, 15, 48].  With the use of a larger substrate, the specifications for 

these parameters become more demanding.  The complexity of the spin coating process also 

increases as the transition from laminar to turbulent flow now occurs at a lower spin speed; 

limiting the range of useful thickness for any fixed viscosity resist.  This transition to 

turbulent flow during spin coating is largely responsible for the increase in resist thickness 

non-uniformity at the edge of the wafer [51, 52].  However, it is sometimes necessary to spin 

the resist at higher speed to obtain the optimum resist thickness, as indicted by the extrema of 

the swing curve.  To achieve better control of the resist thickness, new coating technology 

and techniques have been investigated [52-55].  Gurer et al. [52] decoupled the convective 

and evaporation mass transfer mechanism during the spin coating process to improve the 

control of the resist film thickness and its uniformity.  A new coating technique using the 

rotary cup is investigated to provide a fringe-free coating for the photomask by Kushida et al. 

and Tokimitsu et al. [53, 54].  Resist coating by spray technology on high topography wafer 

structure is also investigated by Suriadi et al. [55].   

Besides the spin coating process, another important process that affects the resist 

thickness and its uniformity is the softbake process.  It is performed after the spin coating 

process to remove excess solvent from the resist film, reduce standing waves and relax the 

resist polymer chain into an ordered matrix.  As in all bake processes, temperature control 

[48, 56] during softbake is important.  Conventionally, the resist is baked at a fixed 

temperature with temperature control of ± 1 °C for consistent lithographic performance [48].  

In general, the resist thickness formed after the spin coating process will not be uniform.  If a 
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non-uniform resist film is formed during the resist coating process, experiments have shown 

that maintaining a uniform temperature profile across the bakeplate will not reduce the resist 

film non-uniformity.  In this Chapter, a new technique to monitor and control the resist 

thickness in real-time during the softbake process is investigated.  There have been some 

researches to control the resist thickness during the bake process through in-situ monitoring 

of the resist thickness and properties.  To study the bake mechanism, Paniez et al. [4] uses in-

situ ellipsomtery while Fadda et al. [57] uses contact angle measurements to monitor the 

resist thickness in real-time during the bake process.   Morton et al. [28, 29] uses in-situ 

ultrasonic sensors to monitor the change in the resist properties to determine if the resist has 

been sufficiently cured.  Metz et al. [6] uses in-situ multi-wavelength reflection 

interferometers to measure the resist thickness versus bake time to determine the optimum 

bake time.  In these approaches, the in-situ measurements are used to determine the 

completion of the bake process when certain conditions are satisfied, such as when the resist 

is sufficiently cured or if a specified resist thickness has been achieved.  

To implement real-time thickness control during softbake, an array of in-situ 

thickness sensors is positioned above a multi-zones bakeplate to monitor the resist thickness 

at various sites on the wafer.  The bake temperature is also constrained during softbake to 

prevent decomposition of the photoactive compound [29, 48].  With these in-situ resist 

thickness measurements, the temperature profile of the bakeplate is controlled in real-time by 

manipulating the heater power distribution using the Generalized Predictive Control (GPC) 

algorithm.  This is an advanced control algorithm whereby constraints on the bakeplate 

temperature can be readily implemented.  Often, it results in a non-uniform temperature 

distribution.  This creates different solvent removal rates and densifications at various sites 
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on the wafer to give a uniform resist thickness distribution across the wafer.  For this 

research, not only are the in-situ resist thickness measurements used to detect the endpoint of 

the softbake process, they are also used together with the GPC algorithm to improve the 

resist thickness uniformity by manipulating the bakeplate temperature distribution in real-

time.  Resist thickness non-uniformity of less than 1 nm at a specified target thickness has 

been achieved, with an average of 10 times improvement in resist thickness uniformity at the 

end of the bake process.  With the stringent demand of advanced lithography, this ability to 

squeeze out the last few nanometers of the process is important.  This will also help to relax 

the tight specification imposed during the coating process.  Besides silicon wafers, the 

control strategy can also be applied to photomask and flat panel display manufacturing.   

The rest of the chapter is organized as follows.  Section 3.2 describes the 

experimental setup used for real-time thickness control during softbake.  The thickness 

estimation algorithm for monitoring the resist thickness uniformity is given in Section 3.3. 

The GPC controller is presented in Section 3.4 and the experimental results are discussed in 

Section 3.5.  Section 3.6 summarizes the research work on the real-time thickness control 

strategy using the GPC algorithm. 

 

 

3.2    Experimental Setup 

 

Typically, a non-uniform resist film is formed at the end of the spin coating process.  

Real-time thickness control is implemented during softbake to compensate for the resist 
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thickness non-uniformity formed during the prior coating process.  Figure 3.2 shows the 

schematics of the experimental setup used to control the resist thickness in real-time.  The 

cross section of the experimental setup is given in Figure 3.3.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Schematics of the experimental setup used to control the resist thickness in 

real-time. 
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Figure 3.3: Cross-section of the experimental setup. 
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sensors and computing unit is given in the following. 
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gives us the flexibility to control resist thickness through temperature manipulation at 

different locations on the bakeplate.  

 

Thickness Sensor 

 

During softbake, the resist-coated wafer is placed on the multi-zones bakeplate and 

the resist thickness at different sites on the wafer are monitored by an array of in-situ 

thickness sensors mounted directly above the bakeplate.  Three sites, each one inch apart, are 

monitored and controlled to demonstrate the control strategy (see Figure 3.3).   

The thickness sensor has a similar setup as the multi-wavelength development rate 

monitor in [58].  It comprises a broadband light source (LS-1), a spectrometer with the 

capability of monitoring the reflected light intensity at three sites simultaneously (SQ2000) 

and a bifurcated fiber optics reflection probe (R200) from OceanOptics�.  The reflection 

probe consisting of a bundle of 7 optical fibers (6 illumination fibers around 1 read fiber) is 

positioned above the wafer to monitor the resist thickness in real-time.  During softbake, light 

from the broadband light source is focused on the resist through the illumination fibers of the 

bifurcated reflection probe and the reflected light is guided back to the spectrometer through 

the read fiber of the probe.   

 

Computing Unit 

 

Reflectance measurements are acquired through the A/D converter and converted to 

resist thickness measurements using a thickness estimation algorithm in a Labview 
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environment.  The thickness estimation algorithm is discussed in greater details in Section 

3.3.  With the availability of the resist thickness measurements, the GPC algorithm computes 

the heater power distribution that is required to minimize the resist thickness non-uniformity 

between the the monitored sites.  Currently, the setup is for a 4-inch wafer (radius: 2 inches; 

3 points monitored).  This can be easily scaled to a 12-inch wafer (radius: 6 inches; 7 points 

monitored).  The number of thickness sensors and hence the amount of computation required 

for the 12-inch wafer is roughly doubled.  Figure 3.4 shows the photograph of the 

experimental setup with a 4-inch wafer placed on top on the multi-zones bakeplate.   

 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.4: Photograph of the experimental setup. 
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3.3    Resist Thickness Estimation 

 

In Figure 3.2, three thickness sensors enclosed by the dotted lines are used to provide 

in-situ resist thickness measurements during the bake process.  Each thickness sensor 

comprises a broadband light source and a bifurcated fiber optics reflection probe and is 

connected to a spectrometer [59].  

A thin film optical model is used to estimate the resist thickness from the reflectance 

signal, as shown in Figure 3.5 (a).  The model assumes normally incident light and 

homogenous thin resist film.  During wafer processing, light from the broadband light source 

is focused normally onto the resist-coated wafer through the illumination end of the 

bifurcated fiber optics reflection probe while the reflected light is guided back to the 

spectrometer through the read end of the reflection probe.  Some of the incident light reflects 

at the top resist-ambient interface while part of the incident light propagates through the 

resist film and reflects at the substrate-resist interface.  The additional optical path traveled 

creates a phase difference between the incident and reflected light.  Constructive or 

destructive interference, which depends on the wavelength of the incident light and resist 

thickness, occurs in the resist film.  Hence the reflectance signal, ),( mm yh λ , observed at the 

spectrometer also varies as a function of the resist thickness, my , and wavelength of the light 

source, λ .  In this thesis, the subscript, m , denotes the measurement data.  Figure 3.5(b) 

shows the typical variation of the reflectance signal with wavelengths for a particular resist 

thickness. 
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Figure 3.5: (a) Thin film optical model, and (b) variation of the reflectance measurement 

with resist thickness for a particular resist thickness. 
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and ( )*  denotes complex conjugation, my , is the resist thickness and λ is the wavelength of 

the incident light.  To account for any difference in magnitude between measured and 

calculated reflectance measurements, a scaling factor, p , is included in Equation (3.1) so 

that the calculated reflectance measurements is scaled to have the same peak-to-peak 

amplitude as that of the experimental reflectance measurements at each time instant.  Also, 

na, nr and ns are the refractive index of air, resist and silicon substrate respectively.  The 

refractive index varies a function of the wavelength, λ.  The variation of the refractive index 

with wavelengths is given by the Cauchy equation [61]: 

 

( ) sri
CB

An ii
ii  and for            

42
=++=

λλ
λ  

 

where Ai, Bi and Ci are the Cauchy parameters such that  Ar = 1.6116, Br = 2.33×103 

2−nm and Cr = 2.99×109 4−nm  for the Shipley 3612 resist.  For silicon wafer, the Cauchy 

parameters are 43.3=sA , 51033.1 ×=sB  2−nm  and 10109.1 ×=sC 4−nm .  The refractive 

index for air, an , is assumed to be constant and equal to 1 for all wavelengths.   

The resist thickness, my , can be obtained by analyzing the reflectance signal, 

),( myh λ , in Equation (3.1) over the range of wavelengths.  One approach is to estimate the 

resist thickness from the reflectance signal using Least Squares Estimation.  In this approach, 

Equation (3.1) is approximated by taking the Taylor series expansion such that  
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estimated resist thickness, *
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The change in resist thickness, my∆ , can be estimated using the least squares estimation 
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For this application, a broadband light source of wavelengths between 480 nm and 

850 nm is used to illuminate the wafer.  At each sampling instant, 1100 reflectance 

measurements are obtained at wavelengths between 480 nm and 850 nm such that 

1100=M , 4801 =λ nm and 850=Mλ nm.  At the start of the bake process, the initial 

thickness estimate, 0my , is obtained from the prior coating process.  Subsequently, the initial 

estimate, 0my , is updated with the previous value of *
my  at every sampling instant.  During 

the bake process, the resist thickness decreases with the bake time due to evaporation of the 

solvent in the resist film.  Therefore, the observed reflectance signal, ),( mm yh λ , also 

changes with the bake time.  Figure 3.6 shows the measured reflectance signal, ),( mm yh λ , 

plotted against the calculated reflectance signal, ),( myh λ , over the range of wavelengths.  

The solid line gives the experimental reflectance signal while the dashed line gives the 

calculated reflectance signal.  Using this approach, an estimated resist thickness of 1712.5 

nm is obtained from the reflectance signal.  
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Figure 3.6: Comparison between the measured and calculated reflectance signal. 

 

Besides the Least Squares Estimation approach discussed above, the measured 

reflectance signal, ( )mm yh ,λ , can be processed in several other ways to obtain the resist 

thickness, my .  In this section, two other data analysis techniques are investigated.  They are 

Nonlinear Least Squares Fit and Fringe Counting.  A comparison is made between these 

three data analysis techniques.  Each of these methods is a tradeoff between complexity, 

robustness and accuracy.  In the Nonlinear Least Squares Fit approach, the resist thickness, 

*
my , is obtained by solving the nonlinear least squares optimization problem given as: 
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where ( )mm yh ,λ  is the measured reflectance signal and ),( myh λ is given by Equation (3.1). 

The resist thickness, *
my , is taken to be that for which the minimum is achieved.  Numerical 

algorithm such as Levenberg-Marquardt can be used to solve the nonlinear optimization 

problem.  Among the three approaches, this approach is computationally most intensive.  The 

reflectance measurements are converted to resist thickness measurements at a rate of 1 s in 

the Nonlinear Least Squares Fit approach.  In the Least Squares Estimation approach, 

Equation (3.1) is linearized before solving the optimization problem in Equation (3.2).  This 

reduces the computation time and resist thickness can be obtained every 0.1 s.  Both Least 

Squares Estimation and Nonlinear Least Squares Fit methods require a good initial guess of 

resist thickness for the algorithms to work well.  This is usually not a problem as a 

reasonably good initial estimate of the resist thickness is obtained from the prior coating 

process.  Another approach that has been investigated is the Fringe Counting technique.  As 

shown in Figure 3.6, the reflectance signal varies with wavelengths in an approximately 

periodic fashion.  The distance between the peaks and valleys in the reflectance signal is a 

known function of the resist thickness.  By noting the distance between the peaks and valleys 

in the reflectance signal over the wavelength range, the resist thickness at each time instant 

can be determined.  Since only parts of the reflectance measurements are used, it is the fastest 

algorithm with a sampling rate of 0.02 s.  However, it is also most sensitive to measurement 

noise.   

To examine if smaller computational effort of the Fringe Counting and Least Squares 

Estimation methods comes at the expense of measurement accuracy, the relative accuracy of 

the resist thickness measurements using these two methods are compared with resist 

thickness measurements using the Nonlinear Least Squares Fit method.  Since no 
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approximation is made to Equation (3.1) in the Nonlinear Least Squares Fit approach, the 

resist thickness measurement obtained is most accurate.  Denoting the resist thickness 

measurement using the Nonlinear Least Squares Fit, Least Squares Estimation and Fringe 

Counting methods as nly , lsy  and  fry  respectively, the thickness error is assumed to be 

nlls yy −  for the Least Squares Estimation approach and nlfr yy −  for the Fringe Counting 

approach.  Figure 3.7 shows the thickness errors during a 4 minutes softbake at 90°C.  

Despite the approximation, the resist thickness estimated using the Least Squares Estimation 

method is almost the same as that using Nonlinear Least Squares Fit.  There is only a 

negligible average thickness difference of 0.06 nm, as compared to 8.7 nm using the Fringe 

Counting approach.  Therefore, Least Squares Estimation is most suited for real-time 

application in terms of accuracy and computation time and is used as the algorithm to 

provide in-situ resist thickness measurements during the bake process.  

 

 

 

 

 

 

 

 

 

 

Figure 3.7:  Comparison between the three thickness estimation algorithms 
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3.4    Generalized Predictive Control  

 

When the resist thickness measurements, my , are available, the Generalized 

Predictive Control (GPC) algorithm is used to compute the heater power distribution of the 

bakeplate that is required to achieve a better resist film thickness uniformity across the wafer.  

The reference thickness trajectory and the estimated resist thickness are the inputs to the 

control algorithm while heater power distribution needed to minimize the resist thickness 

non-uniformity is the output.  As baking the resist at excessively high temperature may lead 

to decomposition of the photoactive compound of the resist and result in degradation of the 

feature size, the bake temperature has to be constrained to an upper temperature bound 

during the softbake process [48].  This can be readily implemented in the GPC algorithm. 

GPC is a model-based predictive control algorithm that uses the process model to 

predict the plant output at future instants.  In this application, two process models are 

required for the prediction purposes.  One of them is the thickness model relating the change 

in the resist thickness to the change in the heater input.  It is used to predict the resist 

thickness over a prediction horizon.  The other process model is the thermal model that 

relates the change in the bakeplate temperature to the change in heater input.  This model is 

used to predict the bakeplate temperature to ensure that the bake temperature is constrained 

during the run.  The predictive nature of the GPC algorithm makes it a suitable algorithm for 

implementing the real-time thickness control strategy.  This is important, as solvent removal 

from the resist film is irreversible.   
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Before the GPC algorithm can be implemented, the process models have to be 

identified.  Section 3.4.1 discusses the identification of the two process models.  The control 

algorithm is covered in Section 3.4.2 and the simulations are performed for different design 

parameters in Section 3.4.3. 

 

3.4.1    Identification 

 

The thickness and thermal process models have to be identified before implementing 

the GPC algorithm.  For most industrial processes, it is sufficient to identify a first order 

model from the step response for the design of the GPC [62].  This is found to be adequate 

for our application as demonstrated by the experimental results.  The process is also fairly 

linear such that a linear controller such as GPC can be used to control the resist thickness 

effectively.  Resist thickness measurements at three sites were monitored and for each site, 

two experiments were conducted to identify the process models.  The sampling interval was 

chosen to be 1 second.  From this section onwards, to avoid confusion between the change in 

measurements and the absolute measurements, a subscript m  will be used to denote the 

actual measurements from the in-situ sensors.  For example, my  denotes the resist thickness 

measurement obtained from the in-situ thickness sensor and mT  is the temperature 

measurement obtained from the embedded RTD in the bakeplate. 

Figure 3.8 shows the identification results for Site 1.  In the first experiment, the resist 

thickness is monitored while the resist is baked at nominal processing temperature of 90 °C.  

The resist thickness and temperature are denoted as my′  and mT ′  in Figures 3.8(a) and (b) 

respectively.  For the second experiment, a step change in heater input, u , is made 25 
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seconds after the placement of the wafer on the bakeplate.  The change in resist thickness is 

monitored at the same location on a second wafer.  The resist thickness and temperature 

measurements are denoted as my ′′  and mT ′′  in Figures 3.8(a) and (b) respectively.  The change 

in resist thickness due to the step change in heater input is denoted as y  such that 

mm yyy ′−′′= .  

The change in bakeplate temperature due to step change in heater input is given as T  

where mm TTT ′−′′= .  Figures 3.8 (c) and (d) shows the change in resist thickness and 

bakeplate temperature due to the step change in heater input respectively.  Figure 3.8(e) 

shows the step change in heater input, u . The solid lines in (c) and (d) show the experimental 

values and the dashed lines show the calculated thickness and temperature from the identified 

first order plant models respectively. 

Using least squares estimation, the first order plus dead time thickness models are 

identified for all the three sites such that  
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where 15=d  for all the three sites.  The values of 1a and 0b  parameters for all the three sites 

are summarized in Table 3.1. 
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Figure 3.8: Identification experiments.  Plots of   (a) resist thickness, (b) temperature, (c) 

change in resist thickness where mm yyy ′−′′= , (d) change in temperature 

where mm TTT −′′= , and (e) change in heater input, u , with respect to time.  
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Table 3.1: Parameters of 1a and 0b  for all the three thickness models. 

Position on the wafer 1a  0b  

Site 1 -0.9877 -0.5263 

Site 2 -0.9880 -0.5441 

Site 3 -0.9882 -0.5252 

 

 

Likewise, a first order thermal models relating the bakeplate temperatures and heater 

input voltage are identified at all the three sites such that 

10
1

1
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q

ke
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where 1=d  for all the three sites.  Table 3.2 summarizes the values of 1a and 0b  parameters 

for the three thermal models.  The values of 1a and 0b  in Table 3.1 and 3.2 will be used to 

predict the resist thickness and bakeplate temperature. 

 

Table 3.2: Parameters of 1a and 0b  for all the three thermal models. 

Position on the wafer 
1a  0b  

Site 1 -0.9832 0.3442 

Site 2 -0.9820 0.3580 

Site 3 -0.9813 0.3408 

 

 

The discrete process models are converted into continuous models.  The static gains 

and time constants of these continuous time process models are summarized in Table 3.3.  
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Table 3.3: Static gains, time constants and dead times of the process models. 

Thickness models  Thermal models   
Positions on 

the wafer 
Static 
gain 

(nm/V) 

Time 
constants

(s) 

Dead 
Time 

(s) 

Static 
gain 

(°C/V) 

Time 
constants 

(s) 

Dead 
time 
(s) 

 

Sensitivity 
(nm/°C) 

Site 1 -42.7 82.1 15 20.5 59.0 1.0 -2.08 

Site 2 -45.3 82.8 15 19.8 55.1 1.0 -2.28 

Site 3 -44.5 84.2 15 18.2 53.0 1.0 -2.45 

 

The last column in the Table 3.3 is obtained by dividing the values in 2nd column with 

the values in 5th column.  It shows the sensitivity of the resist thickness to bakeplate 

temperature, which ranges from -2.08 to -2.45 nm/°C.  The resist thickness sensitivity is used 

to determine the upper temperature bound, maxT .  In the next section, the control algorithm is 

discussed.  The choice of the reference and the temperature bounds on the bakeplate will be 

discussed in greater details in Section 3.4.3. 

 

 

 

3.4.2   Control Algorithm 

 

GPC has been well discussed in the literature [62-64].  An overview of the GPC 

algorithm is also given in Appendix A.  In this section, only the equations necessary for the 

implementation are stated. 

GPC is a model-based predictive control algorithm that computes an optimal control 

sequence, )]1(,),1(),([ −+∆+∆∆ Nkukuku �  by minimizing a quadratic objective function 

defined over a prediction horizon, N .  The aim is for the predicted future resist thickness, 
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)|(ˆ kjkym + , to follow the future reference thickness trajectory, )( jkr + , for 

dNjd +≤≤+1  where d  denotes the dead time of the thickness model and N is the 

prediction horizon.  To impose the temperature constraints during the softbake process, the 

optimal control sequence is computed by minimizing the quadratic objective function, J , 

given as 

 

(3.3)                      )]1([)]()|(ˆ[
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Subject to the temperature constraint 

 

     dNjdTkjkTT +≤≤+≤+≤ 1for                         )|(ˆ maxmin  

 

where ∆u and λ are the change in control signal and control weighting respectively.  The 

control signal in this application is the heater input voltage that is required to minimize the 

error between the predicted thickness, )|(ˆ kjkym + , and the reference, )( jkr + .  The 

objective function in Equation (3.3) also includes a term that penalizes the control effort, 

u∆ , by the choice of the control weighting, λ .  By choosing a small value for λ , more 

aggressive control moves will be made for the resist thickness to track the reference 

trajectory.  For our implementation, the design parameter of λ = 1 is chosen.  Given a 

relatively short softbake time of 1-5 minutes, a prediction horizon, N = 10, and control 

sampling of 1 s are chosen.  A longer prediction horizon improves the accuracy of the 

computed control sequence but at the expense of higher computational time.  For the 
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temperature constraint equation, )|(ˆ kjkT +  is the optimum j -step ahead prediction of the 

change in temperature of the bakeplate from the nominal bake temperature of 90 °C based on 

temperature measurements up to sampling instant, k .  The lower and upper bound on the 

change in temperature from the nominal temperature of 90 °C are given as minT  and maxT  

respectively.   

From Appendix A, the prediction of the resist thickness can be expressed as  
 

                                                                          ˆ fGuy +=  

where  
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The matrix,G , is step response coefficient matrix and f  is the free response of the 

thickness model.  Similarly, the prediction of bakeplate temperature, T̂ , can be expressed as  
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The matrix, G′ , is step response coefficient matrix and f ′  is the free response vector 

for the thermal model.  Computation of G′ and f′ are similar to that of G and f, except that 

the values of 1a , 0b  and d  are obtained from the identified first order thermal models.   

 With the prediction models, the control sequence is computed through optimization of 

the objective function given in Equation (3.3).  This requires the prediction of the resist 

thickness, )(ˆ jkym + .  If my  is the resist thickness measurement obtained from the in-situ 

thickness sensor, the change in resist thickness, y , is obtained by subtracting the measured 

resist thickness from the open loop thickness, my′ , i.e. mm yyy ′−= .  The open loop 

thickness trajectory, my′ , is the in-situ resist thickness measurements obtained when the 

bakeplate temperature is maintained at 90 °C.  In this case, there is no implementation of the 

real-time thickness control strategy.  An example of the open thickness trajectory is given as 

my′  in Figure 3.8(a).  Hence, the prediction of the resist thickness, )(ˆ jkym + , in Equation 

(3.3) can be written as 

 

)()|(ˆ)|(ˆ jkykjkykjky mm +′++=+  

 

and the objective function in Equation (3.3) can be expressed as  

 

(3.4)                            )]1([)]()|(ˆ[
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where )(')()( jkyjkrjky md +−+=+ .  This is subjected to the temperature constraint, 

dNjdTkjkTT +≤≤+≤+≤ 1for                               )|(ˆ                  maxmin  

 

Rewriting Equation (3.4), the optimal control sequence is obtained by minimizing the 

objective function 

 

(3.5)                                                )-()( uurfGurfGu TTJ λ++−+=  

 

Subject to the temperature constraints  

 

maxmin TT NN 1fuG1 ≤′+′≤  

 

where the vector 1N is a N×1 column vector with all its elements equal to 1.  The inclusion of 

the temperature constraints in the GPC algorithm ensures that the bakeplate temperature is 

constrained to an upper temperature bound of ( max90 T+ ) °C and a lower temperature bound 

of ( min90 T+ ) °C during real-time thickness control.  The minimization of Equation (3.5) can 

be solved using a commercial QP solver by formulating it as a standard Quadratic 

Programming (QP) problem, that is minimizing the objective function: 

 

02
1 fubHuu ++= TTJ   

 

Subject to the constraint 
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cRu <  
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3.4.3    Choice of Design Parameters 

 

For the implementation of the GPC algorithm, it is necessary to specify some of the 

important design parameters.  In this section, the selection of these design parameters is 

discussed. 

 

3.4.3.1    Reference Trajectory 

 

During softbake, resist thickness is monitored and the heater power distribution is 

computed every 1 second.  Although resist thickness can be estimated at a sampling rate of 

0.1 s, a sampling interval of 1 s is used to allow for additional time needed to compute the 

heater power distribution using the GPC algorithm.  During the first few seconds, the resist 

thickness increases before it decreases.  Similar phenomenon has been observed in Morton 

[29].  It is believed to be due to resist film softening at the glass transition temperature.  After 

the first few seconds, the resist thickness decreased due to the onset of solvent evaporation.  
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To avoid this initial peak in the resist thickness, the first control move is introduced at time, 

25=t s or at sampling instant, 25=k , after the resist thickness has started to decrease.   

The choice of reference trajectory is important for the implementation of the GPC 

algorithm.  In conventional softbake process where real-time thickness control strategy is not 

implemented, the wafer is baked at a constant temperature of 90 °C.  The monitored resist 

thickness measurement during this open loop run is stored as the open loop thickness 

trajectory, my' .  An example of the open loop thickness trajectory is shown in Figure 3.8 (a).  

To obtained the reference trajectory, the open loop thickness trajectory, my′ , is shifted 10 nm 

down at the site where the resist thickness is maximum at the start of the first control move, 

i.e. 10)()( −′= kykr m  for 25≥k .  Hence at the site where the resist thickness is maximum, 

the reference, dy , is a negative step such that 10−=dy .  

 

  3.4.3.2    Temperature Limits 

 

As discussed in Section 3.4.1, the resist sensitivity to temperature that is given in 

Table 3.3 can be used to determine the upper temperature limit, maxT , in Equation (3.3).  

Table 3.3 shows that the resist sensitivity ranges from -2.08 to -2.45 nm/°C.  To ensure that 

the resist thickness will track the reference thickness at any point on the wafer, the lowest 

resist sensitivity of -2.08 nm /°C is used in the selection of maxT .  When the resist sensitivity 

is -2.08 nm /°C, the bake temperature has to be increased by 4.8 °C in order for the resist 

thickness to decrease by 10 nm at steady state.  Therefore, the upper temperature constraint 

must be greater than 4.8 °C, i.e. 8.4max ≥T  to ensure that the resist thickness can track the 
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reference trajectory.  To allow for some inaccuracy in the process models, temperature is 

constrained to an upper temperature bound of 96 °C ( maxT  = 6 °C instead of 4.8 °C).  The 

bake temperature is constrained to a lower temperature bound of 86 °C (or CT o 
min 4 −= ).  

By allowing the bakeplate temperature to cool at a temperature lower than the nominal 

bakeplate temperature of 90 °C, the resist thickness, my , can decrease at a much slower rate 

than the reference thickness trajectory, r .    

 

 

3.4.3.3    Prediction Horizon and Control Weighting 

 

The prediction horizon, N , and control weighting, λ , are other important design 

parameters that have to specified in the GPC algorithm.  The choice of the control weighting, 

λ , determines the aggressiveness of the control effort.  Smaller value of λ  will result in 

more aggressive control actions while a larger value of λ  means less aggressive control 

actions.  Some simulations are performed to determine the choice of λ.  In simulation, the 

first control move is made at sampling instant, 25=k  or at time, 25=t  s for a sampling 

period of 1 s.  The reference, dy , is chosen to be a negative step with magnitude of 10 nm, 

i.e. 10)( −=kyd  for 25≥k .  The prediction horizon, N  is chosen so that N =10.  As 

discussed in the previous section, temperature constraints of 4min −=T  and 6max =T  are 

chosen. 

Figure 3.9 shows the simulation results for 10=N  and three different values of λ .  

In this simulation, y  is the change in resist thickness and u is the control signal that is 
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computed using the GPC algorithm to minimize the error between the simulated change in 

resist thickness and reference thickness.  The change in bakeplate temperature due to the 

change in heater input, u , is denoted as T .  The simulated changes in resist thickness, heater 

input voltage and temperature when 10 and 1 ,1.0=λ  are given by the dashed-dot, solid and 

dashed lines in Figures 3.9 (a)-(c) respectively.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Simulation results for different values of lambda, λ 

 
 

For 1=λ , the heater input in Figure 3.9 (b) increases rapidly at time, 25=t s, to a 

maximum heater voltage of 1.9 V.  With this set of parameters, the resist thickness tracks the 
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reference after about 65 seconds, with hardly any overshoot.  It is also noted in Figure 3.9 (c) 

that the bakeplate temperature, T , is saturated at the upper temperature bound for only 4 s.  

When 1.0=λ , the performance of the tracking of the reference trajectory is faster than that 

when 1=λ .  Due to more aggressive control actions, the resist thickness tracks the reference 

at 62 seconds.  However, the maximum heater input also higher at 3.6 V and the bakeplate 

temperature, T , reaches the upper temperature bound earlier and remains at the upper 

temperature bound for a longer time.  For 10=λ , the control actions are not aggressive 

enough, resulting in the resist thickness to fall below the reference.  This is illustrated in 

Figure 3.9 (a).  Comparing the simulation results for three sets of parameter, 1=λ and 

10=N  is preferred.  This is because it has better tracking performance than 10=λ .  At the 

same time, the bakeplate temperature when 1=λ  does not saturate at the upper temperature 

bound for as long as when 1.0=λ .  

 Figure 3.10 shows the simulation results for two sites, Site 1 and 2.  The solid and 

dashed lines in Figures 3.10(a)-(f) give the simulated values for Site 1 and 2 respectively.  As 

discussed in Section 3.4.3.1, the reference is obtained by shifting the open loop thickness 

trajectory downward by 10 nm.  In this simulation, the resist thickness at Site 1 is taken to be 

maximum while the resist thickness at Site 2 is minimum at the start of the first control 

move.  If the initial resist thickness non-uniformity (difference between the maximum and 

minimum resist thickness among the monitored sites) is 7.4 nm, the reference, dy , for Site 1 

and 2 are 10−=dy  and 6.2−=dy  respectively.  Figures 3.10 (a), (b) and (c) show the 

change in resist thickness, heater input and temperature respectively.  The absolute resist 

thickness, heater input and bakeplate temperatures are given in Figures 3.10(d), (e) and (f) 

respectively.  The steady-state heater input voltage needed to maintain the bakeplate 
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temperature at 90 °c is assumed to be 1 V such that the heater input, mu , is given as 

1+= uum .  Note that although the upper temperature bound of 6max =T °C, is specified for 

both sites, only the bakeplate temperature at Site 1 reaches the upper temperature bound, as 

shown in Figures 3.10 (c) and (f).    

 

 

3.5    Experimental Results 

 

Eleven experimental runs were conducted.  In all the experiments, commercial i-line 

resist, Shipley 3612 was spin coated at 2000 rpm onto a 4-inch wafer prior to the softbake 

process.  Resist thickness measurements at three sites on the wafer were monitored and the 

target thickness of 1665 nm was chosen.  Once the target thickness is reached, the wafer was 

removed from the bakeplate and chilled.  Three conventional softbake runs were conducted 

where the bakeplate was maintained at 90 °C.  Eight runs were conducted where heater 

power distribution of the bakeplate was manipulated using the GPC algorithm to reduce the 

resist thickness non-uniformity.  Temperature constraints of 6max =T °C and minT = − 4 °C 

were imposed.  Section 3.5.1 shows experimental result for a conventional softbake run while 

Section 3.5.2 gives the result with GPC control and summarizes the results for all eleven 

experimental runs. 
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Figure 3.10: Simulation results for two sites 
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3.5.1    Conventional Softbake  

 

For conventional softbake, temperatures at three sites were maintained at 90 °C.  

Throughout the softbake process, the resist thickness non-uniformity was measured.  Figure 

3.11 shows the experimental result of one of the conventional softbake runs.  

Figure 3.11 (a) shows the change in resist thickness during the bake process.  During 

the first few seconds, the resist thickness increased before it decreased due to the onset of 

solvent evaporation.  Figures 3.11(b) and 3.11(c) are the bakeplate temperature and heater 

inputs for all the monitored sites respectively.  The resist thickness non-uniformity is shown 

in Figure 3.11(d).  The initial resist thickness non-uniformity was 4.8 nm and final thickness 

non-uniformity at the chosen target thickness was 4.9 nm.  Therefore, resist thickness non-

uniformity remains at the end of the conventional softbake process if a non-uniform resist 

film is formed during the prior coating process. 
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Figure 3.11: Conventional softbake with bakeplate maintained uniformly at 90 °C: (a) 

thickness, (b) temperature, (c) heater input, and (d) resist thickness non-

uniformity profile of the three sites monitored.  Sites 1-3 are represented by 

the solid, dashed-dotted, and dashed lines, respectively.  
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3.5.2    Real-time Thickness Control with GPC Algorithm. 

 

In this section, GPC with temperature constraints is investigated.  Eight experimental 

runs were conducted using the GPC algorithm.  The result of one of the runs using the 

constrained GPC algorithm is shown in Figure 3.12.  Resist thickness at three sites were 

monitored and made to follow a predefined reference trajectory at the sampling rate of 1 

second.  The monitored resist thickness and reference trajectory is shown in Figure 3.12(a).  

Figures 3.12 (b) and (c) show the corresponding bakeplate temperature and heater input 

respectively.  The resist thickness non-uniformity between the three sites was shown in 

Figure 3.12 (d).  As shown in Figure 3.12 (d), the resist thickness at three sites began with an 

initial thickness non-uniformity of 7.4 nm and converged to the specified target thickness 

after 155 seconds.  Final thickness non-uniformity was 0.9 nm.  While the wafer was 

supposed to be removed from the bakeplate after the resist thickness reached the target 

thickness, the experiment was allowed to continue in this example for illustration purposes.  

From Figure 3.12 (d), it can be shown that resist thickness non-uniformity of less than 1 nm 

was achieved after 100 s.   

Figure 3.13 summarizes the results of all the eleven experimental runs.  Runs #1−3 

are the conventional softbake runs where the bakeplate temperature is maintained at 90 °C.  

Runs #4−11 are the experiments where heater power distribution of the bakeplate is 

manipulated using the GPC algorithm to reduce resist thickness non-uniformity.  The 

diamond markers in Figure 3.13 show the initial thickness non-uniformity and the square 

markers show the thickness non-uniformity at the end of the softbake process.  The 

improvement of the thickness uniformity can be determined as 
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Improvement in thickness uniformity =
uniformity-non  thicknessFinal
uniformity-non  thicknessInitial

 

 

As shown in Figure 3.13, Runs #1−3 give no significant change in the resist thickness non-

uniformity at the end of the softbake process.  Runs #4−11 shows an average 9.8 times 

improvements in resist thickness uniformity.   
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Figure 3.12: GPC Control with temperature constraints: (a) thickness, (b) temperature, (c) 

heater input, and (d) thickness non-uniformity profile when three sites on the 

wafer are monitored. Sites 1-3 are represented by the solid, dashed-dotted, and 

dashed lines respectively.  The reference thickness trajectory is given by the 

dotted line.   
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Figure 3.13: Summary of the experimental runs. 

 

3.6    Summary 

 

Real-time thickness control has been implemented using an array of in-situ thickness 

sensors and predictive control strategy.  It has been demonstrated that by maintaining a non-

uniform temperature profile through manipulation of the heater power distribution, an 

average of 10 times improvement in resist thickness uniformity is obtained from wafer-to-

wafer (run-to-run) and across individual wafer.  Repeatable reduction in resist thickness non-

uniformity to less than 1nm at a given target thickness have been obtained.  The general 

control strategy may also be extended to similar applications where stringent film thickness 

uniformity is required. 
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Chapter 4 

Implementation of Real-time Thickness Control 

Using Sliding Mode Control 
 

4.1    Motivations 

 

In Chapter 3, it has been demonstrated that the implementation of real-time thickness 

control strategy during softbake process reduces the resist thickness non-uniformity across 

the wafer to less than 1 nm at the end of the bake process.  The thickness control strategy is 

implemented using a multi-zones bakeplate, in-situ thickness sensors and the Generalized 

Predictive Control (GPC) algorithm.  During the bake process, the GPC algorithm uses the 

in-situ resist thickness measurements to compute the heater power distribution of the 

bakeplate that is required to minimize the resist thickness non-uniformity.  To prevent 

decomposition of the photoactive compound in the resist film, constraints are imposed on the 

bakeplate temperature during softbake.  This results in a constrained GPC control problem 

which can be formulated as a Quadratic Programming (QP) problem where the optimization 

is solved using a commercial QP solver.  This approach has some disadvantages when the 

number of controlled sites increases.  For instance, if resist thickness at 49 sites have to be 

controlled during the bake process, tremendous time and effort will be required to identify 49 

different process models.  The computational time to solve the constrained GPC problem 

may be excessive.  Furthermore, a commercial QP solver is required for the computation of 
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the heater power distribution.  A simpler and faster implementation of the thickness control 

strategy is investigated in this Chapter.  The experimental setup is the same as that in Chapter 

3, except that a sliding mode control algorithm is used to compute the heater power 

distribution. 

Sliding mode control is a simple approach to robust control that achieves a certain 

performance level in the presence of model imprecision.  In the formulation of any control 

problem, there will always exist some discrepancies between the actual plant and the 

identified mathematical model that is used to represent the plant.  These model inaccuracies 

may arise from unmodelled dynamics from the sensors or actuators (which usually have a 

much faster dynamics and hence neglected during the modeling process) or as a result of 

approximating the complex plant behavior with a simplified mathematical model [65, 67].  In 

this application, a nominal process model is identified and used for all the controlled sites.  

Any discrepancies between the process models at different sites are treated as modeling 

inaccuracies.  To deal with the modeling inaccuracies, the sliding mode controller is 

characterized by a suite of feedback control laws and a decision rule.  The decision rule, 

termed as the switching function, uses some measure of current system behavior to determine 

which particular feedback controller is to be used at that time instant.  An ideal sliding mode 

controller switches between different control laws at an infinitely fast speed.  Using this 

approach, the closed loop response becomes totally insensitive to a particular class of 

uncertainty.   

In recent years, there have been some researches on the application of the intelligent 

control techniques such as fuzzy control and neural network in semiconductor manufacturing 

[12-14].  These techniques rely on the learning, in a prescribed manner, the input-output 
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behavior of the plant to be controlled and are usually applied in areas where the processes are 

ill-defined, complex, non-linear, time varying and stochastic.  In cases where model-based 

approaches yield high performance control, the value gained from applying such techniques 

may not be significant [65].  As demonstrated in Chapter 3, model-based predictive control 

algorithm such as GPC is capable of achieving good thickness control to less than 1 nm.  For 

this application, sliding mode control is chosen for its ability to achieve a good performance 

in the presence of arbitrary model inaccuracies and minimum implementation complexity 

[65].   

This Chapter is organized as follows.  Section 4.2 discusses the design and 

implementation of the sliding mode control in greater details.  The equations necessary for 

implementing the sliding mode controller are also derived in Section 4.2.  A comparison is 

made between the thickness control strategy using the sliding mode control design and the 

GPC algorithm in Section 4.3.  The experimental results of the thickness control strategy 

using the sliding mode control algorithm are discussed in Section 4.4 and a conclusion is 

given in Section 4.5.   

 

 

4.2   Control Structure 

 

In this Section, the control structure of the thickness control strategy using a sliding 

mode controller is discussed.  Figure 4.1 shows the control structure.  
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Figure 4.1: Control structure of the thickness control strategy using sliding mode control. 

 

As given in Chapter 3, y is the change in resist thickness from the open loop 

thickness trajectory and dy  is a negative step change from the open loop thickness trajectory 

such that dd Yy −=  where dY is the magnitude of the step change.  The open loop thickness 

trajectory is obtained when the resist is baked at a constant temperature of 90 °C.  In Figure 

4.1, e  denotes the resist thickness error given as yye d −= .  The switching function, σ , is a 

function of the thickness error such that ee λσ += �  where e�  is the time derivative of the 

thickness error and λ  is a design parameter.  Based on the switching function, the sliding 

mode controller switches between two control values such that the control signal, w , takes 

the values of only M  or M− .  The output of the sliding mode controller, w , is then used to 

determine the temperature setpoint of the bakeplate that is required to reduce the thickness 

error. 
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The process model relating the change in resist thickness, y , to the change in 

bakeplate temperature, T , is given as )(sG y  while the transfer function relating the change 

in bakeplate temperature, T , and temperature setpoint, w , is given as )(sGT .  If )(sGT  is a 

first order model with a unity steady state gain, the bakeplate temperature,T , will always be 

less than or equal to its setpoint, w .  Since the output of a sliding mode controller is bounded 

between the upper and lower bounds of M± , the bakeplate temperature is also bounded to 

M± °C from the nominal bake temperature of 90 °C.  The temperature constraints required 

in this application can thus be implemented.   

Typically, a feedback controller such as a PID controller is used to make the 

bakeplate temperature follow the temperature setpoint.  This results in a cascaded control 

loop structure, given in Figure 4.2.  The switching function,σ , given in Figure 4.1, involves 

differentiating the thickness error, e .  In practice, a pure derivative is not implemented 

because it will result in a large amplification of measurement noise.  The pure differentiator, 

s , is thus replaced by the term, 
1+fs

s
τ

, to filter out the measurement noise in Figure 4.2 
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Figure 4.2: Cascaded control loop structure. 

 

From Chapter 3, it is noted that there is a delay before the resist thickness responds to 

any changes in the bakeplate temperature.  Therefore, a first order plus dead-time thickness 

model is assumed such that 
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where 2k  is the static gain, 2τ  is the time constant and 2L  is the dead time of the thickness 

model.  The change in resist thickness which occurs only 2L  seconds after the change in 

bakeplate temperature is denoted as 1y .  Note that the static gain, 2k , is negative as an 

increase in bakeplate temperature will result in a decrease in the resist thickness. 

To provide the time-delay compensation, a smith predictor [66] is included such that  
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where y  is the output of the smith predictor, which gives the predicted change in resist 

thickness without the time delay.  For a control sampling of 0.1s, )10()( 21 Lkyky +=  where 

k  is the sampling index.  In designing the sliding mode controller, complete cancellation of 

the dead time by the smith predictor is assumed. 

The thermal model of the bakeplate relating the change in bakeplate temperature, T , 

and the heater input, u , is denoted as ( )sG1  in Figure 4.2.  A first order process model is 

assumed such that 

( )
( )  

1
)( 

1

1
1 +

==
τs
k

sU
sT

sG  

 

where 1k  is the static gain and 1τ  is the time constant.  A proportional controller, 1ck , is used 

to control the temperature of the bakeplate.  Another proportional gain 2ck  is included so the 

transfer function, )(sGT , has a unity steady state gain given by    

 

( )
( ) ( )4.2                                                 
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)(
3 +

==
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sGT  

 

where 3τ  is the time constant of the process model, )(sGT .   

Before implementing the sliding mode control design, the process models, ( )sG1  and 

( ) 2
2

sLesG − , have to be identified first.  Letting 1̂k  and 1̂τ  be the least squares estimates of 
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1k and 1τ  obtained in the identification experiment for the process model of ( )sG1 , the time 

constant, 3τ , and the proportional gain, 2ck , are given as 
11

1
3 ˆ1

ˆ
 

kkc+
= ττ  and 

11

11
2 ˆ

ˆ1

kk

kk
k

c

c
c

+
=  

respectively.  The identification experiment will be discussed in greater details in the next 

section.  

 

 

4.2.1     Identification 

 

Similar to the identification experiment in Chapter 3, two separate experiments were 

conducted to identify the process models, )(1 sG  and )(2 sG , in Figure 4.2.  In the first 

experiment, the resist was baked at the nominal processing temperature of 90 °C ( mT ′ , Figure 

4.3b) and the resist thickness ( my′ , Figure 4.3a) was monitored at a sampling interval of 0.1 s.  

In the second experiment, a 0.35 V step increase in heater input, u , was made 15 s into the 

bake process.  Measurements of the resist thickness, my ′′ , and bakeplate temperature, mT ′′ , 

were taken as shown in Figures 4.3(a) and (b) respectively.  The resulting changes in the 

resist thickness and temperature measurements due to the change in the heater input, u , are 

denoted as 1y  and  T  respectively such that mm yyy ′−′′=1  and mm TTT ′−′′= .  Figures 4.3 (c) 

and (d) show the decrease in resist thickness, 1y , and the increase in bakeplate temperature, 

 T , due to the step change in heater input, u  respectively.  The change in heater input, u , is 

shown in Figure 4.3(e). 
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Two discrete-time first order models were identified and converted to the continuous 

time thermal model, )(1 sG , and thickness model, 2)(2
sLesG − .  The estimated parameters of 

the thermal model, 1k  and 1τ , are given as 20ˆ  1 =k  VCo /  and 3.33ˆ 1 =τ s respectively.   

For the thickness model relating T  and 1y , the estimated parameters, 2k , 2τ  and 2L  

are 2.0ˆ 2 −=k  Cnm o/ ,  30.3 ˆ2 =τ s and 5ˆ
2 =L  s respectively.  Figures 4.3(c) and (d) show 

the comparison of the change in resist thickness and temperature calculated using the 

identified models with the experimental values.  Once the process models have been 

identified, the sliding mode control algorithm can be implemented.  In the next section, the 

necessary equations needed for implementation are discussed. 

 



 86

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Identification experiments.  Plots of   (a) resist thickness,  (b) temperature,  (c) 

decrease in resist thickness where mm yyy ′−′′=1 , (d) increase in bakeplate 

temperature where mm TTT ′−′′= , and (e) change in  heater input, u , with 

respect to time.  The solid lines in (c) and (d) show experimental values and 

the dashed lines show the calculated responses of the identified models. 
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4.2.2    Sliding Mode Control Algorithm 
 

In this section, the temperature limit, M , used in the sliding mode control algorithm 

is derived.  From Equation (4.1) and (4.2), the process model relating the change in resist 

thickness to the temperature setpoint is given as 
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In time domain, this process model can be expressed as 
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The switching function or sliding variable, σ, is defined as 

 

(4.4)                                                                           )()()( tetet λσ += �  

 

where )()()( tytyte d −=  is the thickness error.  The reference is denoted as )(tyd  and λ is a 

positive constant and a design parameter.  The associated sliding mode controller is chosen 

as 
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{ } (4.5)                                                                      )(sign)( tMtw σ−=  

 

where the signum function, ( ){ }tσsign , is defined as 
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The purpose of the control action is to ensure that the error trajectory, )(te , is driven 

towards the sliding surface, 0)( =tσ , within a finite time, σt  and remain there for t ≥ tσ in 

order to generate a sliding motion.  The reaching time, σt , is time when the sliding surface 

( 0)( =tσ ) is reached for the first time.  It gives a conservative estimate of the maximum time 

necessary to reach the sliding surface [67].   

The stability of the closed loop system and the tracking of the reference, )(tyd , can be 

analyzed by examining the Lyapunov function 
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)( 2
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32 <−= kt
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tV σττ
 

 

Differentiating Equation (4.4) and substituting Equation (4.3) gives 
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Differentiating Equation (4.6) and substituting Equations (4.5) and (4.7) gives 
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Since |)(|)}({)( ttsignt σσσ = and || 22 kk −= , )(tV� can be rewritten as 
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To enforce sliding mode for 0>t , M should be selected such that 0<V� .  From Equation 

(4.8), M  was chosen such that 
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When condition (4.9) is satisfied, sliding mode is enforced and the error trajectory will reach 

the sliding surface ( )0)( =tσ within a finite time.  After sliding mode occurs in the manifold 

0)( =tσ , the tracking error )(te  decays exponentially with a time constant equal to λ/1  

[67].  This means that once the system is on the sliding surface, the system response only 

depends on the design parameter, λ . 

The temperature limit, M , that is used for implementation can be derived as follows.  

In this application, the desired thickness trajectory is chosen to be a negative step of 

magnitude dY  such that  
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(4.10)                      0for              0)( and 0)(  ,)( >==−= ttytyYty dddd ���  

At += 0t , 0)( =ty  and 0)( =ty�  such that dYe −=+ )0(  and 0)0( =+e� .  From Equation 

(4.4), dYe λλσ −== ++ )0()0( .  Also, from Equation (4.5), Mw =+ )0( since 0)0( <+σ .  

For sliding mode control, the control law is continuous until the system first reaches the 

sliding surface at σtt = , i.e. ( ) Mtw =  for σtt ≤<0 .  After sliding mode has started at 

σtt = , the control law becomes discontinuous as the ideal sliding mode controller switches 

infinitely fast between M and M−  to remain on the sliding surface.  Substituting ( ) Mtw =  

for σtt ≤<0 , with initial condition of 0)0( =+y  and 0)0( =+y�  in Equation (4.3),    
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and 
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Substitute Equations (4.10) − (4.12) into Equation (4.7) and integrating ( )tσ�  from 0=t + to 

σt  gives 
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where )0( +σ  is a function of the initial thickness error given as dYλσ −=+ )0( .  

It can be shown that the temperature limit, M , calculated using Equation (4.13) also 

satisfy the sliding mode condition given in (4.9).  From Equation (4.9), the following 

condition must be true in order to enforce sliding mode. 

 

0t                           0)(0 >∀>− tMM  

 

( ) ( ) ( ) ( ) )14.4(                         
111

)(  where
32322

32
0 	

	



�
�
�


�
+		




�
��


�
−+++= tytytyty

k
tM dd ττ

λ
ττ

λττ
����  

 

Substituting Equations (4.10) to (4.12) into 0M given in Equation (4.14) for σtt ≤<0 ,  
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Let 32 βττ =  where 1>β  and substitute it into above equation 
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Since ( ) ( )ββλτβλτ −>− 33 1  and 		
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Hence, as long as 
2

1
τ

λ >  where 32 βττ = , the sliding mode can be enforced.  The 

sliding mode controller takes into account the uncertainty in the plant parameters to achieve 

“perfect” tracking of the desired thickness trajectory for all plants within the uncertainty 

region.  To prevent decomposition of the resist, the bake temperature is constrained to 

M±90 °C.  For implementation, the temperature limit, M , is calculated using Equation 

(4.13) by specifying the reaching time, σt , for the set of plant parameters that requires the 

largest temperature limit, M , to reach the sliding surface within a finite time.  In the next 

section, the choice of design parameters is discussed in greater details. 

 

4.2.3    Implementation 

 

To filter out the measurement noise, the pure differentiator, s , is replaced by the 

term,
1+fs

s
τ

. To ensure that the inclusion of the filter will not have a significant effect on 

the closed loop response, the time constant, fτ , should be sufficiently small so that the filter 

has a much faster dynamics than the plant.  For implementation, fτ =0.25 s is chosen through 



 93

trial and error.  Another important design parameter is the selection of the proportional gain 

for the bakeplate.  The proportional gain, 26.01 =ck , is chosen so that the time constant 

between w  and T is fast (≈one fifth of the time constant of )(1 sG ).  Choosing a proportional 

gain 26.01 =ck  gives 2.12 =ck  and 4.53 =τ  s. 

The actual processes at different sites are likely to differ from one another and from 

the process models identified in Section 4.2.1.  For simplicity, the parameters of the thermal 

model of the bakeplate, ( )sG1 , are assumed to be constant and equal to 1̂k and 1̂τ .  As a 

nominal thickness model, )(2 sG , is used for all the controlled sites, a 10% uncertainty in 

 2k and 2τ  is assumed such that 222
ˆ1.1ˆ9.0 kkk ≤≤  and 222 ˆ1.1ˆ9.0 τττ ≤≤ . This determines 

the choice of another important design parameter, λ .  In Section 4.2.2, it is shown that 

2

1
τ

λ > is required to ensure the enforcement of the sliding mode.  Therefore, to ensure 

sliding mode is enforced for all plants within a 10% model uncertainties, λ is chosen such 

that 
2ˆ9.0

1
τ

λ > or 037.0>λ .  The percentage of model uncertainty depends on the particular 

equipment setup.  The sliding mode control technique will still work for a different model 

uncertainty, as long as it is adequate for its application.  Also, λ = 0.25 is chosen so that the 

system will slide along the sliding surface towards the reference with a time constant of 

s 41 =λ . 

Once these design parameters have been chosen, simulations can be performed to 

examine the behaviour of the system for different 2k  and 2τ  parameters, the effects of digital 

implementation of a continuous sliding mode control and incomplete cancellation of the time 

delay by the smith predictor.  These will be discussed in the Appendix B.  In the next section, 
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a comparison is made between the implementation of the real-time thickness control strategy 

using the sliding mode control and GPC algorithm.   

 

 

4.3    Comparison with GPC Algorithm 

 

For both sliding mode control and GPC algorithms, the choice of the upper and lower 

temperature limits is important during implementation of the real-time thickness control 

strategy.  The temperature bounds are imposed during implementation of the thickness 

control strategy to prevent decomposition of the photoactive compound in the resist.  In the 

GPC algorithm, the upper temperature bound is determined by the lowest resist sensitivity.  

For this application, the resist sensitivity ranges from -2.08 nm/°C to -2.45 nm/°C.  For this 

set of resist sensitivities, the upper temperature bound is fixed at 96 °C ( )6max =T  for every 

runs when the reference is negative step of 10 nm.  For the sliding mode control algorithm, 

the temperature limit is determined by the control requirement to ensure convergence to the 

sliding surface within a finite time, σt .  The temperature bound is not only dependent on the 

reference, dy  , it is also dependent on σt .  If a bake process is short, σt has to be smaller to 

ensure that resist thickness at all sites convergence to the reference trajectory before the 

completion of the bake process.  Hence, for the same reference, the temperature limit will be 

different for different choice of σt .  For example, if the reference is a negative step of 10 nm, 

the temperature limit, M , that is required for convergence when st 35=σ , st 60=σ  and 

st 90=σ  is =M 8.8 °C, 6.7 °C and 6.0 °C using Equation (4.13) respectively.  If st 90=σ  
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is chosen for the sliding mode implementation, the bake temperature will be constrained to 

between 84 °C and 96 °C.  If the first control move is made 15 s after the placement of the 

wafer on the bakeplate, the resist thickness will first reach the sliding surface at time, 

st 105≤ .  The reaching time, σt , is a conservative estimate of the maximum time necessary 

to reach the sliding surface [67].   The actual time the resist thickness first reaches the sliding 

surface and start tracking the reference trajectory might be less than 90 s after making the 

first control move.  In comparison, the resist thickness will start to track the reference after 

65 s when the upper temperature limit in the GPC algorithm is chosen to be 96 °C (see 

Figure 3.9 in Section 3.4.3.3).  To ensure that the time that the resist thickness tracks the 

reference using the sliding mode implementation is comparable to that using the GPC 

algorithm, a shorter reaching time such as st 60=σ  may be chosen.  In that case, the upper 

temperature bound has to be set at a slightly higher value of 96.7 °C. 

One of the motivations for using the sliding mode control algorithm is to provide a 

simpler and faster implementation of the thickness control strategy to make it suitable for 

real-time application.  Using functions from the MATLAB toolbox (tic.m, toc.m) on a 450 

MHz, Pentium III processor, a comparison of the computation time using the Generalized 

Predictive Control (GPC) and sliding mode control algorithm can be made.  While the QP 

problem takes 12.1 ms to compute the control signal for one site, the time to find a solution 

for sliding mode control is only 0.16 ms. We observe an 75 times improvement in 

computation time.  In the experiment, two sites on the wafer were monitored and controlled 

at a sampling interval of 0.1 s.  In practice, more sites have to be controlled to achieve good 

performance.  For example, it was found that 49 independently temperature controlled sites 

are desirable for temperature control [40].  In this case, thickness at 49 sites can be 
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controlled.  The computation time required for the GPC and sliding mode controller will then 

be about 0.6 s (49 × 12.1 ms) and 0.008 s (49 × 0.16 ms) respectively.  It is clear that the 

GPC algorithm cannot meet the 0.1 s sampling required.   

The 49-zones bakeplate [40] was built for a photomask mask of 6 × 6 inch.  If we 

scale it up to a 12-inch wafer, then about 154 sites have to be controlled.  In this case, the 

computational intervals for the GPC and sliding mode control are about 1.9 s and 0.025 s 

respectively.  The 1.9 s is the time required just for the numerical calculation using the GPC 

algorithm.  It does not include the time required for the thickness estimation nor the software 

interface, which would then result in sampling interval greater than 1.9 s.  Thus, the sliding 

mode approach is better in terms of computation time and is more suitable for real-time 

application.  In terms of tracking performance, the experimental result shows the tracking 

performance using sliding mode control algorithm and GPC algorithm are comparable.  At 

the end of the bake process, resist thickness non-uniformity of less than 1 nm was also 

achieved.   

 

4.4    Experimental Results 

 

To demonstrate the control strategy, the resist thickness at two sites were monitored 

and made to track a reference trajectory using in-situ thickness sensors and the sliding mode 

control algorithm.  The first control move was made 15 s after the placement of the wafer.  

The parameters used in the experiment have been discussed earlier and are now summarized 

in Table 4.1. 
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Table 4.1: Summary of the parameters. 

)/(1̂ VCk o  20 

)/(ˆ
2 Cnmk o  -2.0 

)/(1 CVk o
c  0.26 

2ck  1.2 

)(1̂ sτ  33.3 

)(ˆ2 sτ  30.3 

)(3 sτ  5.4 

)(2 sL  5.0 

)(stσ  35 

)( 1−sλ  0.25 

 

Figure 4.4 shows the first experimental run for 60 s.  At the end of the 60 s bake, the 

wafer was removed from the bakeplate.  The initial thickness error, ( )+0e , at Site A and B on 

the wafer are 2.5 nm and 5.4 nm respectively.  Using the parameters in Table 4.1 and 

Equation (4.13) gives 2.2=M  and 7.4=M  for Site A and Site B respectively.  Figure 

4.4(b) shows the bakeplate temperature for both sites and Figure 4.4(c) shows the control 

signal of the sliding mode controller, w , which determines the temperature bounds for the 

bakeplate.  By having the sliding mode controller in the outer control loop, the bake 

temperature for each site is constrained to an upper bound of M+90 °C (92.2 °C for Site A 

and 94.7 °C for Site B).  Notice in Figure 4.4(c), the control signal, w, switches from the 



 98

upper temperature bound to the lower temperature bound at 5.42=t s or 27.5 s after the first 

control move.  This is less than the specified worst case σt that is chosen to be 35 s after the 

first control move.  Figure 4.4(d) shows the heater input, u .  At the end of the softbake 

process, the resist thickness at the two sites converged to the target thickness of 1680 nm at 

60=t s. 

For a non-repeatable coating process where the resist thickness and its non-uniformity 

varies from wafer-to-wafer, a real-time thickness control strategy helps to improve the 

repeatability of the process in terms of resist thickness requirements.  Figure 4.5 shows the 

results of another experimental run.  Site A and B has an initial error of 7.9 nm and 3.3 nm 

respectively.  The temperature limit, M , is calculated such that 9.6=M  for Site A and 

2.9=M  for Site B.  Again, Site A and B first reaches the sliding surface at s 9.43=t  and 

s 7.45=t  respectively; i.e. 28.9 s (Site A) and 30.7 s (Site B) after the first control move.  

Again, this is less than the specified worst case σt  of 35 s.  In this run, the resist thickness 

and its non-uniformity prior to the softbake process is different from the previous run.  At the 

end of the softbake process, the resist thickness at the two monitored sites converged to the 

same target thickness of 1680 nm and the resist thickness difference between the two sites 

was reduced.  In both experimental runs, chattering phenomenon exist as the sliding mode 

controller switches between the two control limits of ± M.  However, as long as resist 

thickness non-uniformity between different sites is less than 1 nm, chattering phenomenon is 

still acceptable for this application.  Modification of the control law to eliminate chattering 

phenomenon may reduce the tracking precision of sliding mode control.     
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4.5    Conclusion 

 

Real-time thickness control has been implemented using an array of in-situ thickness 

sensors and a sliding mode control algorithm.  The sliding mode control algorithm is used to 

compute the heater power distribution needed to reduce the resist thickness non-uniformity.  

In addition to improvement in the resist thickness uniformity across individual wafers, the 

softbake process is also made more repeatable as the same thickness trajectory is defined for 

all wafers; resulting in an improvement in the resist thickness uniformity from wafer-to-

wafer.  There is about a 75 times improvement in the computation time using this approach.  

This general control strategy is simple and may also be extended to similar applications 

demanding stringent film thickness uniformity. 
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Figure 4.4. Sliding mode control for Run #1.  Plots of (a) resist thickness, (b) temperature, 

(c) control signal, and (d) heater input with respect to time when resist 

thickness at Site A and B are monitored.  Site A and B are represented by the 

solid and dashed lines respectively. The reference thickness trajectory is given 

by the dotted line in (a).    
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Figure 4.5: Sliding mode control for Run#2.  Plots of (a) resist thickness, (b) temperature, 

(c) control signal, and (d) heater input with respect to time when resist 

thickness at Site A and B are monitored.  Site A and B are represented by the 

solid and dashed lines respectively.  The reference thickness trajectory is 

given by the dotted line in (a).   
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Chapter 5 

Conclusion 
 

 

5.1 Review of Objectives and Summary of Results 

 

The trend in the semiconductor industry is towards to the use of more advanced process 

control methods to meet the tightening process specifications with the continual shrinking of 

the feature sizes.  This thesis examines the application of advanced control algorithm to meet 

the challenges of some aspects of advanced lithography, particularly on the bake process.  

Advanced control is applied to two areas: photomask thermal processing and real-time 

thickness control.  In this Section, the results are summarized.  The scope for future 

developments is looked into in the next section. 

In Chapter 2, an optimal predictive controller is designed to effectively eliminate the 

loading effects induced by the placement of cold photomask on the bakeplate and improve 

the bake process repeatability.  Due to large thermal mass of the photomask, the placement of 

the cold photomask on the bakeplate result in a great drop in the bakeplate temperature (load 

disturbance).  The predictive controller is part of a feedforward-feedback control scheme 

where the feedforward control is based on a linear programming method of minimizing the 

worst-case deviation from the temperature setpoint during loading effect.  By predicting the 

impact of load disturbance and increasing the heater power prior to the placement of the cold 

photomask onto the bakeplate, the feedforward controller can reject the load disturbance 

induced by placement of the cold substrate. With the effective rejection of the load 
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disturbance by the feedforward controller, the feedback controller is able to maintain the 

bakeplate temperature at the setpoint during the bake process.  This approach seeks to 

improve the repeatability of the temperature response from wafer-to-wafer and from plate-to-

plate (matching).  A significant improvement in the bakeplate temperature error is achieved 

using the optimal predictive controller as compared to the conventional approach of using 

only the feedback controller for temperature control of the bake process. 

 In Chapter 3 and 4, a real-time thickness control strategy is implemented for the 

softbake process to achieve good resist thickness uniformity across the wafer and from 

wafer-to-wafer.  The approach is to use an array of in-situ thickness sensors positioned above 

a multi-zones bakeplate to monitor the resist thickness.  With these in-situ thickness 

measurements, the temperature profile of the bakeplate is controlled in real-time by 

manipulating the heater power distribution using suitable control algorithm.  Often, it results 

in a non-uniform temperature distribution and creates different solvent removal rates and 

densifications at various locations on the wafer to give a uniform thickness distribution 

across the wafer.  Resist thickness non-uniformity of less than 1 nm has been achieved.  In 

Chapter 3, the Generalized Predictive Control (GPC) algorithm is used to compute the heater 

power distribution needed to minimize the resist thickness non-uniformity.  To obtain a 

simpler and faster implementation of the real-time control strategy, sliding mode control 

algorithm is used for the implementation of the thickness control strategy in Chapter 4.  Like 

the implementation using the GPC algorithm, resist thickness uniformity of less than 1 nm is 

also achieved.  In addition to that, there is about a 75 times improvement in the computation 

time using this approach over the GPC algorithm.  Besides improvements in the resist 

thickness uniformity across individual wafers, the softbake process is also made more 
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repeatable as the same thickness trajectory is defined for all wafers; resulting in an 

improvement in the resist thickness uniformity from wafer-to-wafer.   

Both feedforward control and real-time resist thickness control are model-based 

control technique.  An accurate model must be obtained before they can work well.  This will 

be the main problem for implementing these two techniques in the semiconductor industry 

 

 

 

5.2    Scope for Future Developments 

 

The focus of this thesis is on the bake process involved in lithography.  The same 

experimental setup and control strategy can also be extended to the development process.  

This is because the development process is also a strong function of temperature.  In order to 

implement this for the development process, it is important to be able to monitor the 

development process on-line.  While commercial development rate monitor is available, a 

more advanced data analysis is required to estimate the resist thickness from the reflectance 

signals during development.  This is because reflectance signal used for resist thickness 

measurement may be distorted due to the topography of wafers, absorbing resist residue in 

developer, developer layer and many other factors [68].  Given that the development process 

is the last step in formation the resist patterns, the ability to control the development process 

through real-time manipulation of development temperature can reduce CD variations.   

In the real-time thickness control application, the control algorithm manipulates the 

bakeplate temperature so that a non-uniform temperature distribution will result in a uniform 
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resist thickness distribution.  This idea can be extend to control the CD since CD is a function 

of resist thickness.  Similarly, the resist thickness can be manipulated in real-time so that a 

non-uniform resist film can give rise to a more uniform CD distribution.  This can help to 

compensate for any CD variation caused by variations of other process variables.   

Also, the research work done on the photomask thermal processing can also be 

extended to wafer processing.  For thermal processing of the wafer, the wafer will rest on the 

pins for proximity baking.  There is a small air gap between the wafer and the bakeplate 

surface.  If there is no warpage, this air gap will be uniform.  The load disturbance caused by 

placement of the wafer on the bakeplate will be the same from run-to–run.  However, if the 

wafer warps for a particular run, the air gap between the wafer and the bakeplate will not be 

uniform.  Hence, the load disturbance due to the placement of this wafer will be different 

from other runs.  The shape of the load disturbance can be used to provide information of the 

wafer warpage and corrective actions can be taken to prevent warpage for subsequent runs.  

This is important as wafer warpage is expected to be more critical with the use of large wafer 

size.  
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Appendix A 

 

Overview of Generalized Predictive Control 

(GPC) algorithm 

 
 

GPC is a model-based predictive control algorithm that computes an optimal control 

sequence, )]1(,),1(),([ −+∆+∆∆ Nkukuku �  by minimizing a quadratic objective function 

defined over a prediction horizon, N .  A major element of the GPC algorithm is the use of 

the process model to calculate the predicted plant output at future instants.  In this 

application, two process models are identified.  One of them is the thickness model relating 

the change in the resist thickness to the change in the heater input.  It is used to predict the 

resist thickness over a prediction horizon.  The prediction of the resist thickness sequence, 

)(ˆ kjkym +  for dNdj ++=   ,2 ,1 � , is separated into two parts: free response and forced 

response, as shown in Figure A.1.  The free response corresponds to the prediction of the 

resist thickness due to past control sequence, )( jku −∆  for 0>j , while the forced response 

corresponds to the prediction of the resist thickness based on future optimal control 

moves, )( jku +∆  for Nj <≤0 .  
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Figure A.1: Free and forced responses 

 

The other process model is the thermal model that relates the change in the bakeplate 

temperature to the change in heater input.  This model is used to predict the bakeplate 

temperature to ensure that the bake temperature is constrained during the run.  With the resist 

thickness and temperature measurements predicted over the prediction horizon, the optimal 

control sequence, )(, ),1( ),( Nkukuku +∆+∆∆ � , is computed by the GPC algorithm by 

minimizing the quadratic objective function, J   
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where ∆u and λ are the change in control signal and control weighting respectively.  The 

control signal in this application is the heater input voltage that is required to minimize the 

error between the predicted thickness, )|(ˆ kjkym + , and the reference, )( jkr + . Also, 

)|(ˆ kjkT +  is the optimum j -step ahead prediction of the change in temperature of the 

bakeplate from the nominal bake temperature of 90 °C based on temperature measurements 

up to sampling instant, k .  The lower and upper bound on the change in temperature from 

the nominal temperature of 90 °C are given as minT  and maxT  respectively.   

In the presence of the temperature constraints, the solution has to be obtained using 

more computationally taxing numerical algorithms.  Although a sequence of control moves 

are computed, only the first control signal of the sequence, )(ku∆ , is used at each sampling 

instant.  A new control sequence is recomputed when a new resist thickness measurement is 

available. 

In the GPC algorithm, the process model is always required for the prediction of the 

plant output.  An Integrated Controller Auto-Regressive Moving Average (CARIMA) model 

is assumed such that 

 

(A.2)                                     
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 where )(ke is the zero mean white noise, d  is the dead time and 1−q  is the backward shift 

operator.  The control signal and model output are given as )(ku  and )(ky  respectively.  In 

this application, the control signal is the heater input voltage while the model output may be 
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either the resist thickness or the bakeplate temperature.  The polynomials in the backward 

shift operator, )( 1−qA and )( 1−qB  are given as:  
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where an  and bn  are the order of the polynomials.  For simplicity, )( 1−qC =1 is chosen.    

 

Consider the Diophantine equation: 
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where jE  and jF  are polynomials with degrees of 1−j  and an  respectively.  The 

polynomials, )( 1−qE j  and )( 1−qF j , can be obtained recursively by dividing 1 by )(
~ 1−qA  

until the remainder of the division can be factorized as )( 1−− qFq j
j .  

 

Multiplying Equation (A.2) by j
j qqE )( 1−∆  gives 

 

(A.3)       )()()1()()()()()(
~ 11111 jkeqEdjkuqBqEjkyqEqA jjj ++−−+∆=+ −−−−−  

 
Using the Diophantine equation, Equation (A.3) can be written as  

 

)()()1()()()())(1( 1111 jkeqEdjkuqBqEjkyqFq jjj
j ++−−+∆=+− −−−−−  
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This can be rewritten as 

 

(A.4)              )()()1()()()()()( 1111 jkeqEdjkuqBqEkyqFjky jjj ++−−+∆+=+ −−−−  

 

As the degree of the polynomial, 1)( 1 −=− jqE j , the noise terms in Equation (A.4) are all in 

the future.  The best prediction of )( jky +  is therefore given as: 
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which can also be written as 
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Continuing the division of 1 by )(
~ 1−qA until the remainder is now factorized as )( 1

2
2 −− qFq  

gives 
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Hence for a first order plant, the polynomials, )( 1−qE j and )( 1−qF j can be computed as 
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Also, )()( 1
0

1 −− = qEbqG jj  is a polynomial with degree 1−j  such that 
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Substituting Equations (A.6) and (A.7) into Equation (A.5), the prediction of the resist 

thickness, )(ˆ jky +  for dNjd +≤≤+1 , can be expressed as 
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In vector form,  
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The matrix,G , is made up of N  columns of the plant’s step response coefficient, ig  for 

1, ,1 ,0 −= Ni � .  The free response vector, f , is the part of the response that does not 

depend on the future control actions.  From Equation (A.9), the free response, )( jdkf ++ , 

for Nj ≤≤1  is given as 
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It can be shown in the following that the free response in Equation (A.10) is not dependent 

on the future control.  For a first order plant, 
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Subtracting the above two equations and re-arranging it gives  

 
 )1()2(ˆ)1(ˆ)1()(ˆ 11 −∆+−++−+−=+ kubdkyadkyadky  

 
Similarly, 
 
 

)2()3(ˆ)2(ˆ)1()1(ˆ 11 −∆+−++−+−=−+ kubdkyadkyadky  

 

As shown above, )(ˆ dky +  is dependant only on past control action, )1( −∆ ku , and 

)1(ˆ −+ dky depends on )2( −∆ ku .  Therefore, the free response )( jdkf ++ given in 

Equation (A.10) does not depend on future control moves. 

Similarly, the prediction of bakeplate temperature, T̂ , can be expressed as  
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Appendix B 

Simulation Results of Sliding Mode Controller 

 

Simulations are performed to examine the system behaviour for different plant 

parameters.  The chattering phenomenon are also discussed here. 

 

B.1    Different plant parameters 

 

Figure B.1 shows the simulation result of the system response for a nominal thermal 

model, )(1 sG , where 11 k̂k = and 11 τ̂τ = , and three different thickness models, )(2 sG , such 

that the plant parameters are within a 10 % uncertainty range, i.e. 222
ˆ1.1ˆ9.0 kkk ≤≤  and 

222 ˆ1.1ˆ9.0 τττ ≤≤ .  The reference is chosen to be a negative step such that 5.2)( −=tyd nm 

0>∀t .  The first control move is made at 15=t s.  Among all the thickness models within 

the 10% uncertainty region, the thickness model with the parameters, 

2222 ˆ1.1 and ˆ9.0 ττ == kk , has the smallest static gain and the slowest dynamics.  Therefore, 

to ensure that all the plants will reach the sliding mode surface within a finite time, σt , this 

set of parameter is chosen in the calculation of the temperature limits, M , in Equation 

(4.13).  By specifying 35=σt s after the first control move and considering the parameters of 
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the thickness model to be 2222 ˆ1.1 and ˆ9.0 ττ == kk , 2.2=M  is obtained from Equation 

(4.13).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1:  Simulation results for different 2k  and 2τ parameters. 
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Figure B.1 (a) shows the decrease in the resist thickness, y  in response to the control 

signal, w .  The solid lines in Figures B.1 (a) and (e) show the simulated change in resist 

thickness and switching function for the plant parameters,  ˆ1.1 22 kk = and 22 ˆ9.0 ττ =  

respectively.  Figures B.1 (b) is the corresponding control signal.  The dashed lines in Figures 

B.1 (a) and (e) show the simulated change in resist thickness and switching function for the 

plant parameter, 2222 ˆ and ˆ ττ == kk  respectively.  The corresponding control signal is 

shown in Figure B.1 (c).   For the plant parameters, 2222 ˆ1.1 and ˆ9.0 ττ == kk , the simulated 

change in resist thickness and switching function is represented by the dashed-dotted lines in 

Figures B.1 (a) and (e) respectively.  The control signal is shown in Figure B.1 (d).   

Note that for the plant parameters, 2222 ˆ1.1 and ˆ9.0 ττ == kk , the sliding surface 

( 0=σ ) is first reached at 35=t s after the first control move or at time, 50=t s.  This is 

expected as the temperature limit, M , is obtained by assuming this set of parameters.  After 

the sliding surface is first reached at 50=t s, the sliding mode controller, w , switches 

infinitely fast between M and M− .  For the plant parameters,  ˆ1.1 22 kk = and 22 ˆ9.0 ττ = , 

the resist thickness tracks the reference, )(tyd , in the shortest time as this set of parameter 

has the largest gain and fastest dynamics.  In this case, the sliding surface is first reached at 

36=t s.  For the nominal thickness model where 2222 ˆ and ˆ ττ == kk , the sliding mode is 

first reached at 42=t s.  Therefore, it can be seen that by specifying σt  using 

2222 ˆ1.1 and ˆ9.0 ττ == kk  in the calculation of M , we can ensure that all the plants within 
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the uncertainty region will reach the sliding surface within the specified time, st 50=  or 

st 35=σ . 

B.2    Digital Implementation 

 

In most sliding mode control application, chattering is a very common phenomenon.  

Chattering describes the undesirable system oscillations caused by system imperfections or 

digital implementation of the continuous sliding mode control.  In this section, the impact of 

digital implementation of a continuous time controller is discussed.  To implement a 

continuous control law digitally, a zero order hold (ZOH) is typically used such that 

)()( kwtw = for ss TktkT )1( +<≤  where sT  is the sampling interval and )(kw is the 

computed control signal at sampling instant, k .  

Figure B.2 shows the response of the nominal thickness model when the continuous 

sliding mode control law is implemented digitally at the sampling interval of 1 s.  Figure 

B.2(b) shows that when the continous sliding mode controller is implemented directly with a 

ZOH at 1=sT s, control signal switches between M±  with finite frequency. Also, the 

switching function σ  does not remain zero after the sliding mode surface is first reached at 

42=t s.  As a result, the resist thickness, y , will not be able to track the reference, )(tyd  at 

the end  of 60s.  As shown in Figure B.2(a), there is a steady-state error of about 0.1 nm as a 

result of digitial implementation of the continous sliding mode control law.  One approach to 

reduce the chattering phenomenon due to the digital implementation of the continous sliding 

mode control algorithm is to reduce the sampling interval, sT .  For our application, 1.0=sT s 

is chosen.  
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Figure B.2: Chattering due to digital implemetntation with 1=sT  s. 

 

Figure B.3 shows the simulation result for the nominal thickness model with 

1.0=sT s.  In continous sliding mode control, the controller switches between the two control 

limits at infinite frequency to keep the system on the sliding surface.  However, for digitial 

implemementation with the introduction of ZOH, this infinite switching is not achievable.  

Hence, it is no longer possible to achieve the result that an ideal sliding mode controller can 

achieve.  One solution is to increase the sampling frequency so that the resulting signal will 

once again approach the ideal sliding mode control signal.  As shown in Figure B.3, this can 

be achieved when 1.0=sT  s is chosen. 
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Figure B.3:  Simulation of the system response with 1.0=sT  s. 

 

B.3    Unmodelled delay 

  

For a time-delay system, a smith predictor is included to compensate for the dead-

time in the thickness model so that the controller can be designed for a system without any 

time delay.  The sliding mode control design assumes a complete cancellation of the delay 

using smith prediction.  In this section, the  effect of incomplete cancellation of the delay by 

the smith predictor is discussed. 

Figure B.4 (a) shows the tracking of the resist thickness when there is an unmodeled 

delay of 1 s and 5 s.  The solid line shows the resist thickness when there is a 1 s delay and 
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the dash line is the resist thickness when there is a 5 s delay.  As a result of the unmodelled 

delay, the system response is oscillatory and the amplitude of the oscillation increase with the 

unmodelled delay.  The control signal, w , for an unmodeled a delay of 1 s and 5 s, is shown 

in Figures B.4(b) and (c) respectively.  As shown in Figures B.4 (b) and (c), the controller is 

not able to switch between the two control limits of M  and M− at an infinite frequency like 

an ideal sliding mode controller. 

 

Figure B.4: Chattering due to unmodeled delay for 22
ˆ1.1 kk =  and 22 ˆ9.0 ττ = . 
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Another source of chattering is due to unmodelled dynamics.  An ideal sliding mode 

controller tries to achieve “perfect” performance in the presence of arbitrary parameter 

inaccuracies by switching between different control  laws at a very fast speed, resulting in 

extremely high control activity.  The high control activity may excite the neglected dynamics 

from the sensors or actuators and cause chattering phenomenon.  To eliminate chattering, 

modification of the control laws has to be made to achieve effective trade-off between 

tracking performance and parametric uncertainty.  However, in specific applications, 

particularly those involved in the control of electric motors and drives, the unmodified 

control laws has also been used directly.  Given that tracking precision is important for  our 

application, the ideal sliding mode control is implemented even though this might give rise to 

some chattering phenomenon. 
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