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SUMMARY

One effective technique to mitigate the effect of fading is time and frequency

diversity. Besides that, in most scattering environments, antenna diversity is a prac-

tical, effective, and therefore widely used technique to reduce fading. The classical

approach is to employ multiple antennas at the receiver and perform combining or

selection and switching in order to improve the quality of the received signal.

Alamouti has proposed a simple transmit diversity scheme which improves the

signal quality at the receiver on one side of the link by simple processing across two

transmit antennas on the opposite side. The obtained diversity order is equal to

that achieved by maximal-ratio receiver combining (MRRC) with two antennas at

the receiver.

One assumption Alamouti made in his study is that channel information, in

the form of amplitude and phase distortion, is known perfectly to the receiver. In

practice, the issue of channel estimation is non-trivial, especially in a fading envi-

ronment, where the fading gain can change substantially from one bit to the next.

One may wish to find out how the performance of Alamouti’s scheme will be de-

graded when channel estimation is imperfect, and closed form expressions for the

bit error rate(BER) are also desirable. This thesis presents a new approach, based

on quadratic forms of a complex Gaussian random vector, to analytically obtain

the performance of various transmit diversity schemes under a variety of conditions.

Specifically, we derive closed form expression for the BER under the following cir-

vii



cumstances: perfect and imperfect channel estimation, spatial correlation, temporal

correlation, different modulation schemes (e.g. BPSK and QPSK), Number of Tx

and Rx antennas. It is also shown that the proposed approach can be used to ana-

lyze combinations of the above systems, e.g. QPSK modulated system with spatial

correlation. We give one example of the exact performance of a 2 Tx and 2 Rx

STBC system, with QPSK modulation, imperfect channel estimation and spatial

correlation.

The main result of this project is presented in Chapter 4, ”A Unified Approach

for the Performance Analysis of Unitary Space-Time Block Codes”.
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CHAPTER I

Introduction

1.1 Motivation

The Next-Generation wireless systems are required to have high voice quality and

provide high bit rate data services (up to 2 Mbits/s). The fundamental phenomenon

which makes reliable wireless transmission difficult is time varying multipath fad-

ing. Increasing the quality or reducing the effective error rate in a multipath fading

channel is extremely difficult. The improvement in SNR may not be achieved by

higher transmit power or additional bandwidth, as it is contrary to the requirements

of next generation systems. It is therefore crucial to effectively combat or reduce the

effect of fading at both the remote and the base station, without additional power

or bandwidth.

One effective technique to mitigate effect of fading is time and frequency diversity.

Beside that, in most scattering environments, antenna diversity is a practical, effec-

tive, and therefore widely used technique for reducing fading. The classic approach

is to install multiple antennas at the receiver and perform combining or selection

and switching in order to improve the quality of received signal. Nowadays, however,

the remote units are supposed to be small, lightweight, and elegant. It is, therefore,

not practical to install multiple antennas on the remote units. As a result, diversity

1
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techniques have almost exclusively been applied to base stations to improve their re-

ception quality. It is more economical to add equipment to base stations rather than

the remote units. For this reason, transmit diversity schemes are very attractive.

In [1], Alamouti has proposed a simple transmit diversity scheme which improves

the signal quality at the receiver on one side of the link by simple processing across

two transmit antennas on the opposite side. The obtained diversity order is equal

to applying maximal-ratio receiver combining (MRRC) with two antennas at the

receiver. The scheme may easily be generalized to two transmit antennas and M

receive antennas to provide a diversity order of 2M. This is done without any feedback

from the receiver to the transmitter and with small computation complexity. The

scheme requires no bandwidth expansion, as redundancy is applied in space across

multiple antennas, not in time or frequency.

One assumption Alamouti made in his study is that channel information, in the

forms of amplitude and phase distortion, is known perfectly to the receiver. In prac-

tice, the issue of channel estimation is non-trivial, especially in a fading environment

where the fading gain can change substantially from one bit to the next. One may

wish to find out how the performance of Alamouti’s scheme will be degraded when

channel estimation is imperfect, and closed form expression for BER is also desirable.

1.2 Thesis Objectives

The objective of this thesis is to study the impact of imperfect channel estimation

on the error performance of the Alamouti’s transmission scheme, and to derive closed

form BER for various Space-Time Block Code systems. In [2], Buehrer and Kumar

has derived a closed form expression for BER of a transmit diversity, block-fading,

BPSK modulated STBC system. Much effort, therefore, has been devoted to develop
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a unified approach to solve more complicated scenario.

1.3 Thesis Organization

Chapter 1 of this thesis starts off with an introduction to this project, and then

Chapter 2 gives a brief introduction to space time block codes, and Alamouti’s scheme

is illustrated by a 2× 2 antennas’ example, and then two pilot-aided channel estima-

tion strategies for this system are proposed, one based on the decorrelator concept,

the other based on the minimum mean square error (MMSE) concept. In both

cases, the importance of selecting a proper pilot sequence for channel estimation is

illustrated. In Chapter 3 various techniques to analyze effect of imperfect channel es-

timation are discussed. In Chapter 4, a unified approach for the performance analysis

of Unitary Space-Time Block Codes is proposed to solve more complicated problem,

and to derive closed form BER of several STBC systems. Chapter 5 concludes the

whole project, and discusses several problems left to be solved.

1.4 Thesis Contributions

In the project we propose a unified approach to analytically obtain the bit error

probability of various transmit diversity schemes under a variety of conditions. we

derive closed form expression for the BER under the following circumstances: perfect

and imperfect channel estimation, spatial correlation, temporal correlation, different

modulation schemes (e.g. BPSK and QPSK), Number of Tx and Rx antennas. It is

also shown that the proposed approach can be used to analyze combinations of the

above systems, e.g. QPSK modulated system with spatial correlation. We give one

example of the exact performance of a 2 Tx and 2 Rx STBC system, with QPSK

modulation, imperfect channel estimation and spatial correlation.



CHAPTER II

Space Time Block Codes

2.1 Introduction

In most situations, the wireless channel suffers attenuation due to destructive ad-

dition of multipaths in the propagation media and to interference from other users.

Diversity technique provides some less attenuated replica of the transmitted signal to

the receiver, which makes it easier for the receiver to reliably determine the correct

signal transmitted. Diversity can be provided using temporal, frequency, polariza-

tion, and spatial resources. Some interesting approaches for transmit diversity have

been suggested by Wittneben [3], [4] for base station simulcasting and later, inde-

pendently, a similar scheme was suggested by Seshadri and Winters [5] [6]. Later

Foschini introduced a multilayered space-time architecture [7]. More recently, space-

time trellis coding has been proposed [8] which combines signal processing at the

receiver with coding techniques appropriate to multiple transmit antennas.

In [1], Alamouti proposed a simple transmit diversity technique that can pro-

vide the same diversity order as maximal-ratio receiver combining (MRRC). One

assumption Alamouti made in his study is that channel information, in the forms of

amplitude and phase distortion, is known perfectly to the receiver. In practice, the

issue of channel estimation is non-trivial, especially in a fading environment where

4
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the fading gain can change substantially from one bit to the next. Recently a new

class of pilot assisted channel estimation schemes has been proposed in [9], where

pilot symbols are superimposed on the data symbols.

The objective of this investigation is to study the impact of imperfect channel

estimation on the error performance of the Alamouti’s transmission scheme. As in

[1], we consider a simple system consisting of two transmit and two receive antennae.

For convenience we will refer to this system as the 2 × 2 system. In the first part of

this investigation, we propose two pilot-aided channel estimation strategies for this 2

× 2 system, one based on the decorrelator concept, the other based on the minimum

mean square error (MMSE) concept. In both cases, we illustrate the importance of

selecting a proper pilot sequence for channel estimation. In the second part of this

investigation, we outline the approach that we will adopt in relating the performance

of the channel estimator to the pairwise error probability of the receiver.

2.2 Alamouti’s 2× 2 Scheme

Figure 2.1 shows the block diagram of Alamouti’s 2× 2 scheme. For comparison,

Figure 2.2 shows two branch MRRC diagrams. The his, i = 0, 1, 2, 3 represent the

fading gains in the four physical links. On the other hand, the nis are the noise

terms in these links. All the his and nis are zero mean complex Gaussian random

variables.

Let t and t + T be two consecutive transmission instants. The four symbols

transmitted by Tx Antenna 0 and Tx Antenna 1 at these two instants are related

to each other according to Table 2.1, where ∗ represents complex conjugation. The

corresponding received symbols at Rx Antenna 0 and Rx Antenna 1 are shown in

Table 2.2. Note that s0 and s1 are binary random variables with a sample space
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Figure 2.1: Two-branch transmit diversity scheme with two receivers

Figure 2.2: Two Branch MRRC
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{±1}. This stems from the fact that we assume binary PSK modulation.

tx antenna 0 tx antenna 1
Time t s0 s1

Time t + T −s1
∗ s0

∗

Table 2.1: The encoding and transmission sequence for the two-branch transmit di-
versity scheme

rx antenna 0 rx antenna 1
Time t r0 r2

Time t + T r1 r3

Table 2.2: Notations for received signals at two receive antennas

The received symbols in Table 2.2 have the signal structure:

r0 = h0s0 + h1s1 + n0 (2.1)

r1 = −h0s1
∗ + h1s

∗
0 + n1 (2.2)

r2 = h2s0 + h3s1 + n2 (2.3)

r3 = −h2s1
∗ + h3s

∗
0 + n3 (2.4)

If the fading gains his, i = 0, 1, 2, 3, are known to the receiver, then the received

symbols can be combined according to

s̃0 = h∗0r0 + h1r
∗
1 + h∗2r2 + h3r

∗
3 (2.5)

s̃1 = h∗1r0 − h0r
∗
1 + h∗3r2 + h2r

∗
3 (2.6)

If
∼
s0 > 0, the receiver decides that s0 = 1, else it decides that s0 = −1. Similarly,

if
∼
s1 > 0, the receiver decides that s1 = 1, else it decides that s1 = −1.

Figure 2.3 shows BER performance comparison of coherent BPSK with MRRC

and two-branch transmit diversity. Note that MRRC (1 Tx, 2 Rx ) and New scheme
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Figure 2.3: The BER performance comparison of coherent BPSK with MRRC and
two-branch transmit diversity in Rayleigh fading

(2 Tx, 1 Rx) are equivalent, and MRRC (1 Tx, 4 Rx ) and New scheme (2 Tx, 2

Rx) are equivalent; except a 3 dB gap between, because transmit power is split half

on two Tx for the new scheme.

2.3 Space-Time Block Codes from Orthogonal Designs

Alamouti [1] has discovered a remarkable scheme for transmission using two trans-

mit antennas. This scheme is much less complex than space-time trellis coding for

two transmit antennas but there is a loss in performance compared to space-time

trellis codes. Despite this performance penalty, Alamouti’s scheme is still appealing

in terms of simplicity and performance. The works in [10] then applied the classical

mathematical framework of orthogonal designs to construct space-time block codes.

It is shown that space-time block codes constructed in this way only exist for few

sporadic value of n. Subsequently, a generalization of orthogonal designs is shown to

provide space-time block codes for both real and complex constellations for any num-

ber of transmit antennas. These codes achieve the maximum possible transmission

rate for any number of transmit antennas using any arbitrary real constellation such
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as PAM. For an arbitrary complex constellation such as PSK and QAM, space-time

block codes are designed that achieve 1/2 of the maximum possible transmission rate

for any number of transmit antennas.The best tradeoff between the decoding delay

and the number of transmit antennas is also computed in [10]. Some schemes in [10]

will be discussed and analyzed in details in the later part of this thesis.

2.4 Two Pilot-aided Channel Estimation Strategies

The received signals in Section 2.2 can be written in matrix form1 as




r0

r1

r2

r3




=




s0 s2 0 0

s1 s3 0 0

0 0 s0 s2

0 0 s1 s3




∗




h0

h1

h2

h3




+




n0

n1

n2

n3




(2.7)

or

r = X ∗ h + n (2.8)

In a pilot-based channel estimator, the signal matrix X is known and the objective

is to estimate the fading gain vector h as accurately as possible from the receive vector

r

We propose two methods to estimate h.

Decorrelator Approach: The estimate of h is

ĥ = X−1r = h + X−1n (2.9)

and the error is

1Here we use capital letters to represent matrices, and bold small letters to represent vectors.
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e = ĥ− h (2.10)

Then the mean square estimation error is

ε2 =
1

2
trace{E[ee∗]} = N0 ∗ trace{X−1(X−1)∗} (2.11)

where N0 is noise power.

Since we assume BPSK modulation, there are 16 possibilities for the pilot symbol

matrix X. Naturally we would like to use the pilot pattern(s) that minimizes the

estimation error. It was found that half of these 16 patterns are non-invertible;

therefore they are irrelevant to this method. As for the remaining 8 patterns, they

yield the same mean squared estimation error.

The MMSE Approach: The decorrelator approach described above can be formu-

lated as ĥ = Tr, with T = X−1. In principle, we should always choose the transfor-

mation matrix T that minimizes the means square estimation error (MMSE). It can

be shown the optimal T matrix is

T = (ΦhX
∗)(XΦhX

∗ + Φn)−1 (2.12)

where Φh and Φn are the covariance matrices of the fading gains and noise terms

respectively. Then the corresponding mean squared estimation error is

ε2 =
1

2
trace{E[ee∗]} = trace((I−T ∗X)Φh(I−T ∗X)∗ + TΦnT

∗) (2.13)

where I is identity matrix. As in the decorrelator approach, we should use the pilot

pattern(s) X that minimize ε2. This time though, every possible pilot pattern X has

a valid T matrix associated with it.
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We plot in Figure 2.4 the mean square channel estimation error normalized with

total noise power:

ε2
0 =

ε2

4N0

(2.14)

(a factor of 4 is due to the fact that we add up noise components in all 4 links ) as

a function of the signal-to-noise ratio (SNR)

Γ =
trace{E[Xh(Xh)∗]}

4N0

=
ε2

s

4N0

(2.15)

( where ε2
s is defined as total received signal power ) of the system. In this study,

we assume all the links have the same power. For the decorrelator approach, we only

present the result for pilot patterns that are invertible. For the MMSE approach,

we present two sets of results, one for those pilot patterns that are invertible, and

another set for those that are not. It is observed that there is a big difference in

performance between the two sets of pilot patterns. If we compare the best results

obtained under the MMSE criterion against those obtained under the decorrelator

approach, we can conclude that there is not much of a difference between the two at

large SNR. There is a noticeable difference at low SNR though.

It is also noted that for both approaches with invertible patterns, normalized

estimation error will continuously decrease as SNR increases. In the extreme case

where SNR is infinitely large, estimation error will vanish. Therefore both approaches

are good estimators.

MMSE approach outperforms decorrelator approach in two aspects: (1) certain

patterns of pilot matrix achieve better estimation result, as shown in Figure 2.4. (2)

all patterns are usable, unlike decorrelator approach, where only invertible patterns

can be used.
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Figure 2.4: Comparison of the decorrelating and MMSE approaches for channel es-
timation.

On the other hand, decorrelator approach also has two advantages over MMSE

approach: (1) it is easy to implement, and we need only to compute X−1, while

MMSE approach requires greater computational complexity. (2) normalized estima-

tion error is linearly changing with SNR, and this fact makes system design more

easily.

Once the receiver obtains channel estimates at the pilot symbol instants, inter-

polation is used to obtain estimates of the fading gains that affect the data symbols.

For brevity, the details are not provided here.



CHAPTER III

MIMO Systems with STBC

3.1 Introduction

One assumption Alamouti made in his study is that channel information, in the

forms of amplitude and phase distortion, is known perfectly to the receiver. In prac-

tice, the issue of channel estimation is non-trivial, especially in a fading environment

where the fading gain can change substantially from one bit to the next. Given im-

perfect channel estimates from pilot symbol assisted modulation (PSAM), one may

wish to find how estimation error can affect bit error performance of STBC. The

author has done a literature survey on how others deal with this problem. The fol-

lowing sections reviews other’s findings, as well as the author’s attempt to make use

of these results to achieve his goal.

3.2 Pairwise Error Probability

[11] describes a simple technique for the numerical calculation, within any desired

degree of accuracy, of the pairwise error probability (PEP) of space-time codes.

This method applies also to the calculation of E[Q(
√

ξ)] for a non-negative random

variable whose moment-generating function φξ(s) = E[exp(−sξ)] is known.

13
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Consider the computation of the expectation

P , E[Q(
√

ξ)] (3.1)

where Q(x) = P (ν > x), with real Gaussian random variable with mean zero and

unit variance, and ξ is a nonnegative random variable (independent of ν). A simple

method is advocated to obtain the value of P based on numerical integration. Assume

that the MGF of ξ

φξ(s) , E[exp(−sξ)] (3.2)

is known. In this case, we have

E[Q(
√

ξ)] = P (∆ < 0) =
1

2πj

∫ c+j∞

c−j∞

φ∆(s)

s
ds (3.3)

where ∆ = ξ − ν2 . It is straightforward to obtain

φ∆(s) = E[exp(−s∆)]

= φξ(s)φν2(−s)

= φξ(s)(1− 2s)−1/2

(3.4)

Hence,

E[Q(
√

ξ)] =
1

2πj

∫ c+j∞

c−j∞

φξ(s)

2s
(1− 2s)−1/2ds (3.5)

Here we assume that c is in the region of convergence (ROC) of φ∆(s)

Finally we use a Gauss-Chebyshev numerical quadrature rule to obtain a nu-

merical result. Then it can be applied to the calculation of PEP error performance

analysis of a multiple-antenna fading channel in two cases of fading distribution.

1) Independent fading (IF): we assume that the transmitted symbols in a code-

word are affected by independent fading realizations. 2) Block fading (BF): we

assume that the transmitted symbols in a codeword are affected by the same fading

realization. In both cases, the PEP can be expressed as in (3.1) by suitably defining
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the random variable ξ. We assume t transmit and r receive antennas, and a code

with block length N .

A. Independent Fading Channel

The discrete-time low-pass equivalent channel equation can be written as

yi = Hixi + zi, i = 1......N (3.6)

where Hi ∈ Cr×t is the ith channel gain matrix, xi ∈ Cr×t is the ith transmitted

symbol vector (each entry transmitted from a different antenna), yi ∈ Cr×t is the ith

received sample vector each entry received from a different antenna), and zi ∈ Cr×t is

the ith received noise sample vector (each entry received from a different antenna).

We assume that the channel gain matrices Hi are element-wise independent and

independent of each other with [Hi]jk ∼ Nc(0, 1), i.e., each element is circularly

Gaussian distributed with mean zero and variance E[|[Hi]jk|2] = 1. Also, the noise

samples are independent with [z]i ∼ Nc(0, N0).

It is straightforward to obtain the PEP as follows:

P (X → X̂)

= P (
N∑

i=1

{||yi −Hix̂i||2 − ||yi −Hixi||2} < 0)

= P (
N∑

i=1

{||Hi(xi − x̂i) + zi||2 − ||zi||2} < 0)

= E

[
Q

(√√√√ 1

2N0

N∑
i=1

||Hi(xi − x̂i)||2
)]

(3.7)

B. Block-Fading Channel

Here we assume that the channel gain matrices Hi coincide and are equal to H:
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under this assumption, the channel equation can be written compactly as follows:

Y = HX + Z (3.8)

where H ∈ Cr×t, X = (x1...xN) ∈ Ct×N , Y ∈ Cr×N , and Z ∈ Cr×N . We assume

independent and identically distributed (i.i.d.) entries

[H]ij ∼ Nc(0, 1) E[|[Hi]jk|2] = 1

and i.i.d. [Z]ij ∼ Nc(0, N0). We obtain, after straightforward calculations

P (X → X̂) = E

[
Q

(
||H∆||√

2N0

)]
(3.9)

where ∆ , X − Ĥ

C. Evaluation of the Moment-Generating Function

Setting

ξ ,





√
1

2N0

∑N
i=1 ||Hi(xi − x̂i)||2 IF channel

||H∆||√
2N0

BF channel

(3.10)

Then we can evaluate the PEP by resorting to (3.1).

D. In case of imperfect channel estimation

In (3.7) and (3.9), H need to be replaced by Ĥ, which is the estimated version

of H.

3.3 Imperfect Channel Estimation in Single Antenna Sys-
tem

Consider a single Tx and single Rx system:

r = hs + n (3.11)
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where h is channel gain, s is transmitted signal (assuming BPSK modulation), n is

AWGN, and r is the received signal.

Given ĥ, channel estimate from PSAM, the receiver makes decision by doing the

following:

z = Re[ĥ′r] (3.12)

If the transmitted bit is +1, then an error is made if the real part of the decision

variable z is negative. Since ĥ and r are correlated, zero mean, Gaussian random

variables, we can use a standard result for the probability of this event[12]

Pb =
1

2

(
1−

√
Re[ρ]2/(1− Im[ρ]2)

)
(3.13)

where ρ is the correlation coefficient between ĥ and r.

In the case of optimum filter, the correlation coefficient is real, then the error

probability becomes:

Pb(k) = (1− ρ)/2 (3.14)

A detailed analysis of PSAM can be found in [13]. Then the author wishes to

extend this result to MIMO systems with STBC.

3.4 Imperfect Channel Estimation in MIMO System with
STBC

According to Appendix C.2 in [12], a method has been used in evaluating bit

error probability in the general case of diversity reception. This method is as follows:

consider a complex Gaussian Random Variable

z =
L∑

i=1

XkYk
∗

= zr + jzi

(3.15)
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where the random variable (Xk, Yk) are correlated, complex-correlated, zero-mean,

Gaussian, and statistically independent, but identically distributed with any other

pair (Xk, Yk),and phase of z is

Θ = tan−1(
zi

zr

) (3.16)

Probability density function of the phase Θ can be derived according to [24]. Note

that for this to be applied, the following conditions must be satisfied:

mxx = E(|Xk|2), identical for all k (3.17)

myy = E(|Yk|2), identical for all k (3.18)

mxy = E(XkYk
∗), identical for all k (3.19)

For a PSK modulated system, the phase Θ is the decision variable. For BPSK,

particularly, zr,the real part of z, is the decision variable.

It is clear that section 3.3 made use of this result by setting L = 1, i.e., there is

only one pair.

It can be shown that this result can also be applied to receiver diversity system.

Take a system of 1 Tx and 2 Rx antennas for example, the signals received at two

receivers are:

r0 = h0s0 + n0 (3.20)

r1 = h1s0 + n1 (3.21)

Assume perfect estimation, the receiver combining scheme for two branch MRRC is

as follows:

s̃0 = h0
∗r0 + h1

∗r1

= (|h0|2 + |h1|2)s0 + h0
∗n0 + h1

∗n1 (3.22)
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Because the two pairs (h0, r0), (h1, r1) match the criteria mentioned above, we can

use that method to determine BER.

Consider Alamouti’s scheme of 2 Tx and 1 Rx in [1], the signals received in two

intervals are:

r0 = h0s0 + h1s1 + n0 (3.23)

r1 = −h0(s1)
∗ + h1(s0)

∗ + n1 (3.24)

Assume perfect estimation, the receiver combining scheme for s0 is,

s̃0 = h0
∗r0 + h1r1

∗

= (|h0|2 + |h1|2)s0 + h0
∗n0 + h1n1

∗ (3.25)

We find that (3.22) and (3.25) is actually equivalent, which is supported by

simulation result. The only difference is a 3-dB gap, because in Alamouti’s scheme,

transmit power is split half at two transmitters.

Therefore, given perfect channel estimates, Alamouti’s transmit diversity scheme

can also be analyzed using the above method.

If channel estimation is imperfect in Alamouti’s scheme,

s̃0 = ĥ∗0r0 + ĥ1r1
∗ (3.26)

which is no longer equivalent to (3.25). Therefore the above method is no longer

applicable and other approaches are needed. Such an approach is presented in the

next chapter, which presents a unified approach to evaluating the performance of

STBC in the presence of channel estimation error with both spatial and temporal

correlation, as well as with different modulation schemes.



CHAPTER IV

A Unified Approach for the Performance Analysis

of Unitary Space-Time Block Codes

4.1 Introduction

Space-time block coding (STBC) has recently emerged as a promising technique

to exploit transmit antenna diversity. In [1], Alamouti proposed a simple transmit di-

versity technique that can provide the same diversity order as maximal-ratio receiver

combining (MRRC). Tarokh [10], using the theory of orthogonal designs, generalized

these results to an arbitrary number of transmit antennas and constructed codes

able to achieve the full diversity promised by multiple transmit and receive anten-

nas. The work in [15] reviews the encoding and decoding algorithms for various codes

and provide simulation results demonstrating their performance.

The appeal of STBC is that when the codes satisfy certain orthogonality proper-

ties, there exist simple maximum likelihood decoding algorithms based only on linear

processing at the receiver. A critical assumption for optimal linear decoding, also

made in [1],[8], and[10], is that channel state information (CSI), both amplitude and

phase distortion, is known perfectly to the receiver. The main motivation behind

this thesis is to evaluate the performance of optimal linear decoding in the presence

of imperfect channel state information. In addition, we consider cases where there is

20
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spatial correlation (between transmit antennas), temporal correlation (between the

fading gains of symbols within one block), different modulation schemes (e.g., BPSK

and QPSK), different number of Tx and Rx antennas, and varying code rates.

Recent work on the performance evaluation of STBC includes [11], which com-

putes the exact pairwise error probability (PEP) of STBC with perfect CSI. In prac-

tice, the issue of channel estimation is non-trivial, especially in a fading environment

where the fading gain can change substantially from one symbol to the next. In

[16], an approach based on the quadratic form of a complex Gaussian random vec-

tors (CGRV), is used to compute the pairwise error probability for any coherently

demodulated system in arbitrarily correlated Rayleigh fading. The work in [17] also

computes the pairwise error probability for space-time codes under coherent and

differentially coherent decoding. All of these works assume perfect CSI.

In [2],the authors use the quadratic form of the CGRV to analyze the BER of

STBC under imperfect channel estimation. This approach, introduced in the next

section, deals with block fading, binary modulation and no spatial correlation. In

this work, we propose a unifed approach to compute the BER for unitary STBC

with imperfect channel estimation, spatial correlation between transmit antennas,

temporal correlation between consecutive symbols, different modulation schemes,

and different antenna configurations and code rates. We also indicate how the unified

approach can be used to analyze space-time-frequency block codes [18] [19]. This

demonstrates the well known fact that the quadratic form of the CGRV is a powerful

tool in the performance analysis of digital communication systems [20].

For completeness, we mention alternatives when no channel information is avail-

able at the receiver. The PEP of decoding of STBC with differentially coherent

processing was analyzed in [17] using the quadratic form of a CGRV. The work in
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[21] have proposed differential space-time codes (DSTC) based on unitary matrices

with a group structure, resulting in a space-time group code. These codes can be

decoded without channel knowledge but at a of 3dB cost in signal-to-noise ratio

(SNR).

We point out that the tools used in our analysis are well-known and have been

applied to similar problems. The primary contribution of this paper is the application

of these tools to deal with channel estimation errors, spatial correlation, and temporal

correlation in a unified manner.

This chapter is organized as follows. Section 4.2 introduces the system model and

our assumptions. Section 4.3 provides an introduction to the quadratic form of a

CGRV. Section 4.4 applies this technique to STBC systems with spatial correlation,

temporal correlation, BPSK and QPSK modulation, varying number of Tx and Rx

antennas, and some of their combinations.

4.2 System Model and Assumptions

The STBC system of interest has t transmit antennas and r receive antennas, and

a complex symbol alphabet with n symbols. The ith antenna radiates with power Pi

per signaling interval and so the total transmit power is P =
∑t

i=1 Pi. The received

sampled signal zjn for the jth receive antenna at time n is given by

zjn =
t∑

i=1

√
Pihjkskn + njn (4.1)

where njn is a sample of circularly symmetrical Gaussian noise with variance N0,

hjn is the complex channel gain from transmit antenna k to receive antenna j. The

channel between a transmit and a receive antenna is modelled as a frequency non-

selective flat Rayleigh-fading process.
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Most analysis assume that the channel state information is perfectly known to

the receiver, which is generally impractical. If we estimate the channel using ei-

ther a decorrelating (zero-forcing) or MMSE approach, the channel estimate can be

modelled as

ĥ = h + e (4.2)

where h is the actual channel gain and the error term e is a zero mean complex

Gaussian variable with variance inversely proportional to estimation power, and e is

independent of h.

The works in [22] and [21] have proposed differential space-time codes (DSTC),

which can be demodulated without channel knowledge, at a loss of 3 dB in SNR.

DSTCs are based on unitary matrices with a group structure, forming a space-time

group code. [17] has shown that both approaches, differential detection and coherent

detection with perfect channel estimation can be analyzed using quadratic form of

a CGRV. Later we will show that this approach can even be applied in the case of

imperfect channel estimation.

4.3 Quadratic Form of a CGRV

In digital communications, we often encounter the evaluation of probability dis-

tribution of a generic quadratic form of CGRV. Here, we give the mathematical

derivation of the probability distribution of this quadratic form. The approach is

described in [20].

The quadratic form of an N ×1 CGRV x is a real valued random variable z given

by

z = x′Mx (4.3)

where x′ denotes the hermitian (i.e., complex conjugate transpose) of x, M is a
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certain N ×N hermitian matrix, R is the N ×N correlation matrix of x, i.e.,

R = E[xx′] (4.4)

To find the probability distribution function (PDF) of z, we first determine the

characteristic function of z, denoted as Φz(s):

Φz(s) = E{e−sz}

= 1
π3|R|

∫
e−sx′Mxe−x′R−1xdx

= 1
|sM−R−1||R|

= 1
|sMR−I|

(4.5)

where |R| denotes the determinant of the matrix R. The PDF of z is then

f(z) =





∑n
i=1− ki

λi
e
− z

λi , z < 0

∑N
i=n+p+1

ki

λi
e
− z

λi , z > 0

(4.6)

where λi for 1 ≤ i ≤ n are the negative eigenvalues of MR, λi for n + p ≤ i ≤ N are

the positive eigenvalues and all other λi are zero eigenvalues. The coefficients ki are

the residues of Φz(s) evaluated at λi. For distinct eigenvalues, ki = Πk 6=i
λi

λi−λk
. The

probability that z < 0 is then

Pr(z < 0) =
∫ 0

−∞f(z)dz

=
∫ 0

−∞
n∑

i=1

− ki

λi
e
− z

λi dz

=
n∑

i=1

−λi(− ki

λi
)e
− z

λi

∣∣0−∞

=
n∑

i=1

ki

(4.7)

In the preceding analysis we have assumed that the eigenvalues of MR are distinct.

However, when the eigenvalues of MR are not distinct, one can simply go back to

(4.5), take the inverse Laplace transform to obtain the PDF of z, and then integrate

to find the BER theoretically.
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4.4 Application of Quadratic Forms of a CGRV

Now we use the approach outlined in the previous section to analyze various

scenarios in STBC systems by showing that the desired decision statistic can be

written in the form of (4.3) by identifying the appropriate CGRV x and the hermitian

matrix M .

4.4.1 Perfect Estimation

The BER performance of a STBC with perfect channel estimation has been stud-

ied before. Here we re-derive it, using the quadratic form.

Consider the model of Alamouti [1] where we have 2 Tx and 1 Rx antennas and

block fading. The output of the matched filter is

z1 =

√
P1

2
h1s1 +

√
P2

2
h2s2 + n1 (4.8)

z2 =

√
P1

2
h2s

∗
1 −

√
P2

2
h1s

∗
2 + n2 (4.9)

where h1 and h2 are the channel gains experienced by the signals from antennas 1

and 2 respectively, and P1 and P2 are the transmit power for the first and second

transmit antennas respectively.

With perfect channel estimates, the decision statistic for s1 is

ŝ1 = h1
∗z1 + h2z

∗
1

= h1
∗
(√

P1

2
h1s1 +

√
P2

2
h2s2 + n1

)

+ h2

(√
P1

2
h2s

∗
1 −

√
P2

2
h1s

∗
2 + n2

)∗

=

(√
P1

2
|h1|2 +

√
P1

2
|h2|2

)
s1 + h∗1n1 + h2n

∗
2

(4.10)

Assuming BPSK, it can be shown that the probability of bit error is

Pe = Pr(error|s1 was sent) = Pr{<{ŝ1} < 0} = Pr{x′Mx < 0} (4.11)
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where x is given by

x = [ h1 n1 h2 n2 ]′ , (4.12)

the corresponding correlation matrix R is

R =




1 0 0 0

0 σ2
n 0 0

0 0 1 0

0 0 0 σ2
n




(4.13)

and M can be formed as

M =




√
P√
2

1
2

0 0

1
2

0 0 0

0 0
√

P√
2

1
2

0 0 1
2

0




(4.14)

It turns out that the eigenvalues of MR repeat twice, and so we should go back to

(4.5), take the inverse Laplace transform to get the PDF of z, and integrate to obtain

bit error probability. The error probability is again equal to sum of the residues of

Φz(s) evaluated at the negative eigenvalues. Fig. 4.1 shows both the simulated and

theoretical BER for this STBC system with perfect estimation.

4.4.2 Imperfect Channel Estimation

We now deal with imperfect channel estimation using the quadratic form of a

CGRV. With imperfect channel estimates ĥ1 and ĥ2 , we form the decision statistics
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for s1 as

ŝ1 = ĥ∗1z1 + ĥ2z
∗
1

= (h1 + e1)
∗
(√

P1

2
h1s1 +

√
P2

2
h2s2 + n1

)

+ (h2 + e2)

(√
P1

2
h2s

∗
1 −

√
P2

2
h1s

∗
2 + n2

)∗

=

(√
P1

2
|h1|2 +

√
P1

2
|h2|2 + h1e

∗
1 + h∗2e2

)
s1

+

√
P1

2
h2e

∗
1s2 −

√
P1

2
h∗1e2s2 + h∗1n1 + h2n

∗
2 + e∗1n1 + e2n

∗
2

(4.15)

where the channel estimation error is modelled as ĥi =hi+ei and ei is a Gaussian

random variable with power inversely related to the channel estimation accuracy σ2
e

= 1
SNRCH

.

Assuming BPSK, the probability of bit error is

Pe = Pr{<{ŝ1} < 0} = Pr{x′Mx < 0} (4.16)

where the CGRV x given by

x = [ h1 n1 e1 h2 n2 e2 ]′ (4.17)

has correlation matrix R given by

R =




1 0 0 0 0 0

0 σ2
n 0 0 0 0

0 0 σ2
e 0 0 0

0 0 0 1 0 0

0 0 0 0 σ2
n 0

0 0 0 0 0 σ2
e




(4.18)
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and M is given by

M =




√
P√
2

1
2

√
P√
8

0 0
√

P√
8

1
2

0 1
2

0 0 0
√

P√
8

1
2

0
√

P√
8

0 0

0 0
√

P√
8

√
P√
2

1
2

√
P√
8

0 0 0 1
2

0 1
2

√
P√
8

0 0
√

P√
8

1
2

0




(4.19)

Here we have assumed that the two TX antennas are placed far enough apart to

ensure no spatial correlation, the channel has unit power, and the two Tx antennas

have equal transmit power, i.e., P1 = P2 = P .

Note that some entries of the R and M given here are different from those in

Buehrer and Kumar’s paper [2]. If the values for R and M in [2] are used, the

theoretical value for final BER does not seem to match with simulation. The reason

is, the first entry on the diagonal of R in [2] should be
√

P1 instead of P1, and other

entries should also be changed accordingly.

The analysis above is verified by simulating a STBC system with 2 Tx and 1 Rx

(equal transmit power on both Tx antennas), and with imperfect channel estimation

(estimation SNR = 10 dB). Fig. 4.1 shows that both the theoretical and simulated

BER match quite well. The BER with perfect channel estimation is also shown to

contrast the effect of channel estimation error.

Fig. 4.2 shows the impact of channel estimation error on BER. For each received

SNR, BER performance of perfect estimation is also plotted for comparison. It shows

that when estimation SNR is above 20 dB, the performance gap is negligible. It is

also noted that as received SNR gets lower, channel estimation error matters less.
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Figure 4.1: Effect of imperfect channel estimation on 2 × 1 STBC (channel estSNR
= 10 dB)
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Figure 4.2: Impact of imperfect channel estimation(circle for perfect estimation and
triangle for imperfect estimation)
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4.4.3 Spatial Correlation and Imperfect Channel Estimation

If the two TX antennas are placed close to each other, there will be spatial

correlation, i.e. h1 and h2 are no longer uncorrelated. We model this as follows:

generate a Gaussian random variable h1, and then generate h2 as

h2 = ρh1 +
√

1− ρ2g (4.20)

where g is another complex Gaussian random variable independent of h1 but with

the same mean and variance, and ρ is correlation between h1 and h2 and 0 < ρ < 1.

Here instead of (4.17), we let x be

x = [ h1 n1 e1 g n2 e2 ]′ (4.21)

where e1 and e2 are estimation errors for h1 and h2 respectively, referring to Section

4.2.

Then R is same as in (4.18) and M is now

M =




√
P√
2
(1 + ρ2) 1

2

√
P√
8
(1 + ρ)

√
P√
2
ρq ρ

2

√
P√
8
(ρ− 1)

1
2

0 1
2

0 0 0
√

P√
8
(1 + ρ) 1

2
0

√
P√
8
q 0 0

√
P√
2
ρq 0

√
P√
8
q

√
P√
2
q2 q

2

√
P√
8
q

ρ
2

0 0 q
2

0 1
2

√
P√
8
(ρ− 1) 0 0

√
P√
8
q 1

2
0




(4.22)

where ρ is spatial correlation and q =
√

(1− ρ2).

Using the quadratic form approach, Fig. 4.3 shows both the simulated and the-

oretical BER when ρ = 0.8. Fig. 4.4 shows that effect on the BER as the spatial

correlation ρ increases.
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Figure 4.3: Simulated and theoretical BER of 2 × 1 STBC with spatial correlation
(ρ = 0.8) and imperfect channel estimation (estSNR=10dB)
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4.4.4 Temporal Correlation

If the fading is not constant during the whole data blocks, (4.8) and (4.9) should

be modified as

z1 =

√
P1

2
h10s1 +

√
P2

2
h20s2 + n1 (4.23)

z2 =

√
P1

2
h21s

∗
1 −

√
P2

2
h11s

∗
2 + n2 (4.24)

where h10 and h20 (h11 and h21)are fading gains in the first (second) time interval

from Tx 1 and Tx 2 respectively to the receive antenna. The temporal correlation

model, similar to the spatial correlation model used previously, is

h11 = ρ1h10 + g1

√
1− ρ2

1

h21 = ρ2h20 + g2

√
1− ρ2

2

(4.25)

where g1 (g2) is another CGRV independent of h10 (h20) but with the same mean

and variance, and ρ1 (ρ2) is correlation between h11 and h10 (h21 and h20) and 0 <

ρ1, ρ2 < 1.

To find out the effect of temporal correlation, we still use the Linear Maximum

Likelihood (LML) decoder as in static fading. In temporal correlation case, we have

4 observed fading gains (assuming perfect), two in each time interval. To apply

LML, we arbitrarily choose fading gains in one time interval, and assumes those in

the other symbol interval are the same. For example, we choose fading gains in the

first time interval, then LML decoder works as:

ŝ1 = h10
∗z1 + h20z

∗
2 (4.26)

ŝ2 = h∗20z1 − h10z
∗
2 (4.27)
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Figure 4.5: Effect of temporal correlation on LML (by simulation)

Fig. 4.5 shows performance of LML decoder when temporal correlation ρ = 1

(static fading), 0.8, 0.6, 0.4. It is clear that the error performance becomes very bad

as ρ decreases. We can conclude that LML decoder is not a good choice in a fast

fading environment. Various decoders for temporal correlation are discussed in the

next section.

4.4.5 Various Decoders for Temporal Correlation

The work in [15] deals with decoding of STBC on time-varying Rayleigh-fading

channels. Several detectors, such as the ML detector, decision-feedback detector, and

zero-forcing linear detector, are discussed in [15]. The ML detector has the best BER

performance over all, but it is time consuming and theoretical analysis is difficult.

A linear detector attempts to make decision about s1 and s2 separately. In other

words we wish to choose C so that

y = C ∗ z (4.28)

decouples s1 and s2, where z = [z1, z
∗
2 ]

T is received vector.

From [15], for Zero Forcing detector, C is chosen as,
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C =
|h10h

∗
11 + h20h

∗
21|

h10h∗11 + h20h∗21




(|h11|2 + |h20|2)−1/2
0

0 (|h10|2 + |h21|2)−1/2







h∗11 h20

h∗21 −h10




(4.29)

Substituting (4.29),(4.23)and (4.24) into (4.28) yields,

y = |h10h
∗
11 + h20h

∗
21|




(|h11|2 + |h20|2)−1/2
0

0 (|h10|2 + |h21|2)−1/2







s1

s2


 + n̂

(4.30)

where n̂ is the product term of C and original AWGN. It is clear that decision

statistics for s1 and s2 are indeed decoupled. It should also be noted that ZF detector

cannot completely decouple s1 and s2 in the presence of channel estimation noise.

Theoretical results for zero-forcing detector with perfect channel estimation are

provided in [15]; but it is no longer applicable in the presence of channel estimation

error. As mentioned before, [16] also proposes a quadratic form approach to solve for

the pairwise error probability for any coherent demodulated systems in arbitrarily

correlated Rayleigh fading, but channel estimation error is not covered.

We wish to find out a new detector for temporal correlation, which should satisfy

the following conditions: 1) able to carry out theoretical analysis for imperfect chan-

nel estimation; 2) has comparable performance as ZF detector. Inspired by LML

detector and matched filter , and with the aim of increasing received SNR, we in-

troduce a new detector, namely Decoupling Zero Forcing (DZF), which has better

performance than the ZF detector at low SNR but worse at higher SNR.

For DZF, given imperfect channel estimates, we form decision statistics for s1

and s2 as

ŝ1 = ĥ∗10z1 + ĥ21z
∗
2 (4.31)
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ŝ2 = ĥ∗20z1 − ĥ11z
∗
2 (4.32)

The quadratic form approach can be used to derive the theoretical BER for this new

detector under channel estimation errors, while it does not seem to be possible for

the ZF and ML detectors.

To analyze BER of s1, letting the CGRV x be given by

x = [ h10 e10 n1 h20 e20 n2 h11 e11 h21 e21 ]′ (4.33)

where eij represent estimation error for channel hij.

the correlation matrix R is given by

R = diag
([

1 σ2
e σ2

n 1 σ2
e σ2

n 1 σ2
e 1 σ2

e

])
(4.34)

and the matrix M is given by

M =




√
P√
2

√
P√
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P√
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0 0 0 0 0 0
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P√
8

0 1
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8

0 0 0 0 0 0
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0 0 0 0 0 0 0 0
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We test the DZF with 2 cases, 1). ρ1 = ρ2 = 0 (so that the fading in the two

symbol intervals is uncorrelated); 2). ρ1 = ρ2 = 0.5 (general case). Fig. 4.6 shows

that both the theoretical and simulation performance of the proposed detector match

quite well for the above two cases.
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Fig.4.7 shows that BER will go up as temporal correlation decreases, for both

ZF and DZF. It is also interesting to note that the cross-over point of DZF and

ZF move to the right as temporal correlation decreases, which means that DZF will

outperform ZF in a fast fading environment.

Fig.4.8 compares the performance of DZF and ZF, with both perfect and im-

perfect channel estimates. It shows that, with perfect estimation, DZF has lower

BER than ZF at low SNR, but there is a cross-over point (around 6 dB), when the

ZF starts to do better than DZF. With imperfect estimation, this cross-over point

moves to the higher end (around 9 dB). This shows that DZF is more robust against

estimation error, compared to the ZF detector.

The explanation for their performance is as follows: ZF decoder tries to reduce

inter-symbol interference (ISI), while DZF attempts to increase signal to noise ratio.

At lower SNR, additive Gaussian noise dominates, therefore DZF outperforms ZF.

At high SNR, however, ISI dominates, as a result, ZF performs better than DZF

after a intersection.

To conclude, the proposed DZF detector performs better than traditional ZF in

fast fading channel, and is more robust against estimation error. Moreover, perfor-

mance of DZF can be precisely analyzed by our unified approach. The weakness of

DZF is that, it shows bad performance at high SNR, with some error floor. There-

fore, given certain conditions(received SNR, channel estimation error, and temporal

correlation, etc), one can switch between DZF and ZF to get better BER perfor-

mance.
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Figure 4.6: Theoretical and simulation performance for DZF with temporal correla-
tion (i.i.d fading) and imperfect channel estimation (estSNR=10dB)
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Figure 4.8: Performance comparison for DZF (by analysis)and ZF (by simulation)
detectors with perfect and imperfect estimation

4.4.6 QPSK and Imperfect Channel Estimation

A QPSK symbol is basically two orthogonal BPSK symbols and (4.15) gives the

decision statistics for both BPSK and QPSK. We can compare the two situations to

get some hints on how to solve the QPSK case.

For BPSK, assume s1 = 1 and s2 = 1 are sent, then (4.15) gives

ŝ1 =

(√
P1

2
|h1|2 +

√
P1

2
|h2|2

)
+

h1e
∗
1 + h∗2e2 +

√
P1

2
h2e

∗
1 −

√
P1

2
h∗1e2 +

h∗1n1 + h2n
∗
2 + e∗1n1 + e2n

∗
2

(4.36)

An error is made if Re[ŝ1] < 0, and that is the BER for BPSK system. For QPSK,

assume s1 = 1+j and s2 = 1 + j are sent (with the same bit energy as BPSK). Then
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(4.15) gives

ŝ1 =

(
(

√
P1

2
|h1|2 +

√
P1

2
|h2|2

)
(1 + j) +

(
h1e

∗
1 + h∗2e2 +

√
P1

2
h2e

∗
1 −

√
P1

2
h∗1e2

)
(1 + j) +

h∗1n1 + h2n
∗
2 + e∗1n1 + e2n

∗
2

= Z1 + Z2 ∗ j

(4.37)

where Z1 and Z2 are real and imaginary part of ŝ1 respectively.

Then, the bit error probability for QPSK is,

BER =
1

2
(Pr[Z1 > 0&Z2 < 0] + 2 ∗ Pr[Z1 < 0&Z2 < 0] + Pr[Z1 < 0&Z2 > 0])

=
1

2
((Pr[Z1 > 0&Z2 < 0] + Pr[Z1 < 0&Z2 < 0]) +

(Pr[Z1 < 0&Z2 < 0] + Pr[Z1 < 0&Z2 > 0])

=
1

2
(Pr[Z1 < 0] + Pr[Z2 < 0])

(4.38)

Considering the symmetrical structure between Z1 and Z2, we can conclude that,

Pr[Z1 < 0]=Pr[Z2 < 0]. Therefore (4.38) becomes

BER = Pr[Z1 < 0] (4.39)

From (4.37),

Z1 =

(√
P1

2
|h1|2 +

√
P1

2
|h2|2

)
+

<
[(

h1e
∗
1 + h∗2e2 +

√
P1

2
h2e

∗
1 −

√
P1

2
h∗1e2

)
(1 + j)

]

+ <[h∗1n1 + h2n
∗
2 + e∗1n1 + e2n

∗
2]

(4.40)

Comparing Z1 of QPSK with Re[̂(s)1] of BPSK in (4.21), we find that only difference

is that, Z1 has a multiple of (1+j) in the second summation term. (1+j) has a
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Figure 4.9: BPSK and QPSK modulation, with imperfect estimation
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√
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(4.41)

Fig. 4.9 shows both the theoretical and simulated BER for the 2 × 1 system

with QPSK modulation and imperfect channel estimation. The BPSK system is

also plotted for comparison (with the bit energy kept constant for fair comparison).

For MPSK modulation, our unified approach will lead to pair-wise symbol error

probability and therefore give bounds on the BER.

4.4.7 Number of TX and RX Antennas

To achieve diversity, we can use 2 Tx antennas and M Rx antennas where M is

any positive integer. Starting from the original 2×1 STBC system, whenever we add

one more Rx antenna, the receiver receives one more copy of the transmitted signals,
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and we can then construct M and R accordingly. Therefore, this 2×M system can

also be analyzed using the quadratic form approach discussed above. Examples are

given in this subsection and in a later part of the paper.

From [10], as far as square matrices are concerned (i.e. number of Tx and Rx

antennas are equal), real orthogonal designs only exist of sizes 2×2, 4×4, and 8×8,

while complex orthogonal design only exist for size 2 × 2. As long as we have an

orthogonal design, we can always write the decision statics in the form of (4.3), and

the quadratic form approach can be applied.

4.4.8 Rate 3/4 Code from Complex Orthogonal Designs

The work in [10] presented some generalized complex linear processing orthogonal

designs for transmission for general number of transmit and receive antennas. [23]

gives examples of some complex space-time block codes for four Tx Antennas. We

now take the n = 3 example from [10], and show that this rate 3/4 complex orthogonal

code can also be analyzed using our unified approach. The rate 3/4 code is given by:

X =




x1 x2 x3/
√

2

−x2
∗ x1

∗ x3/
√

2

x3
∗/
√

2 x3
∗/
√

2 (−x1 − x1
∗ + x2 − x2

∗)/2

x3
∗/
√

2 −x3
∗/
√

2 (x2 + x2
∗ + x1 − x1

∗)/2




(4.42)

Assuming perfect CSI, to decode x1, we form the decision statistic as

ŝ1 = h1
∗z1 + h2z

∗
1 −

1

2
(h3z3

∗ + h3
∗z3) +

1

2
(h3

∗z4 − h3z4
∗)

=
(|h1|2 + |h2|2 + |h3|2

)
s1 + W1

(4.43)

where z1, z2, z3, andz4 are the received signals at the 4 symbol intervals and W1

represents the sum of noise product terms.
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Figure 4.10: Rate 3/4 code, QPSK modulation, with perfect and imperfect estima-
tion

Note that the transmitted signals are decoupled. The decision statistics for s2

and s3 are similar. Comparing (4.10) and (4.43), we see that they are both sum of

Gaussian products, where quadratic form method is applicable. The techniques in

the previous sections indicate how to build the CGRV x and the M matrix when

there is imperfect channel estimation and different modulation schemes.

Fig. 4.10 shows both simulation and theoretical BER for this rate 3/4 code

(QPSK modulation), with and without channel estimation error.

4.4.9 Space-Time-Frequency Block codes

Space-Frequency Block codes (SFBC) [18] are very similar to STBC, with the

main difference being that,in SFBC, the encoding technique is carried out across

space and frequency.

Consider a 2 Tx 1 Rx antenna SFBC system, where the data symbol on each of

the two carrier frequencies f0 and f1 are transmitted in two symbol periods. Then

the received signals on carrier frequencies f0, f1 at time t is exactly same as (4.8) and

(4.9). Therefore SFBC systems can also be analyzed with our unified approach, in

the exactly same way as STBC. The benefit of SFBC is apparent in fast, frequency
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non-selective fading.

Space-Time Frequency block codes (STFBC) [19] combine advantages of SFBC

and STBC, and can be used in fast, frequency selective fading. With appropriate

modifications, our unified approach may also be used to analyze this case.

4.4.10 Application to Combination of Situations

The previous sections discuss several scenarios where the quadratic form approach

can be utilized to obtain closed form expressions for the BER of unitary transmit

diversity systems. We can combine these techniques to solve more complicated prob-

lems. Consider a 2 × 2, QPSK modulated STBC system, with imperfect channel

estimation and a spatial correlation of 0.8. Since the 2× 2 system is just a receiver

diversity version of a 2× 1 system, we can consider the 2× 1 system first, and then

add another branch. Making use of the methods discussed in previous sections, we

form M for 2× 1 system as,

M21 =




√
P√
2
(1 + ρ2) 1

2
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8
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2
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(4.44)

Defining M0 as the all zero 6× 6 matrix, the M matrix for the 2× 2 system is

M22 =




M21 M0

M0 M21


 (4.45)

Fig. 4.11 shows that the analytical results for the 2×2 system resulting from the

combination of issues discussed above match well with simulation results.



44

0 2 4 6 8 10 12
10

−3

10
−2

10
−1

SNR (in dB)

bi
t e

rr
or

 p
ro

b.

combo, simu
combo,theo

Figure 4.11: 2×2 QPSK modulated system with spatial correlation (estSNR=10dB)

4.5 Conclusion

In this chapter, we propose a unified approach to analytically obtain the bit er-

ror probability of various transmit diversity schemes under a variety of conditions.

Closed form expressions for the BER are derived under a variety of circumstances

including imperfect channel estimation, spatial correlation, temporal correlation, dif-

ferent modulation schemes (e.g. BPSK and QPSK), different number of Tx and Rx

antennas and their combinations. We give one example of the exact performance with

2 Tx and 2 Rx antenna STBC system, with QPSK modulation, imperfect channel

estimation and spatial correlation.



CHAPTER V

Conclusion

5.1 Conclusion

Diversity techniques provide a less attenuated replica of the transmitted signal to

the receiver, which makes it easier for the receiver to reliably determine the correct

signal transmitted. Diversity can be provided using temporal, frequency, polariza-

tion, and spatial resources.

Alamouti proposed a simple transmit diversity technique that can provide the

same diversity order as maximal-ratio receiver combining (MRRC). One assumption

Alamouti made in his study is that channel information, in the forms of amplitude

and phase distortion, is known perfectly to the receiver. In practice, the issue of

channel estimation is non-trivial, especially in a fading environment where the fading

gain can change substantially from one bit to the next.

The objective of this thesis is therefore to study the impact of imperfect channel

estimation on the error performance of the Alamouti’s transmission scheme.

In the first phase of this project, we consider two pilot-aided channel estimation

strategies for this 2 × 2 system, one based on the decorrelator concept, the other

based on the minimum mean square error (MMSE) concept. In both cases, we

illustrate the importance of selecting a proper pilot sequence for channel estimation.

45
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Buehrer and Kumar used an approach, based on Hermitian quadratic forms, to

find the closed form expression for BER of STBC, given imperfect channel estimation.

Buehrer and Kumar’s approach, however, only deals with block fading, with BPSK

modulation and without spatial correlation. The second phase of this project is to

extend their method to solve more complicated scenarios.

Several issues are considered: perfect estimation, spatial correlation, temporal

correlation, different modulation schemes (e.g. BPSK and QPSK), Number of Tx

and Rx antennas. It is shown that the extended quadratic form approach can be

used to obtain closed form expression for BER of the above systems. Furthermore,

quadratic form can also solve some combinations of the above situations.

There are two cases that the quadratic form approach can not solve, namely,

decorrelator detector and MMSE detector in time varying fading channel. It is

found that these two problems can be modelled as product of two quadratic forms,

where the two random vector are correlated. If probability density function of this

product term can be obtained, then bit error probability of the above two detector

can be expressed in closed form.

5.2 Future Works

As described in Chapter 4, quadratic form has been extended to solve various

scenario for STBC systems. However, there are some other problems still left to be

solved. This chapter is devoted to the two unsolved problem.

5.2.1 MMSE in Time Varying Fading Channel

In [24], three methods for detecting an Alamouti Space time block code over

Time-Varying Rayleigh fading channels were proposed.

Take a system of 2 Tx and 1 Rx Antenna for example. The receiver observations
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r1 and r2 corresponding to the two symbol periods are given by:




r1

r2
∗


 =




h1 h2

h̃∗2 −h̃∗1


 ∗




x1

x2


 +




n1

n2
∗


 (5.1)

or with obvious notations:

r = Hx + n (5.2)

A. The Maximum Likelihood (ML) Detector Because of the white Gaussian noise,

the joint ML detector chooses the pair of symbols x to minimize:

||r −Hx||2 (5.3)

B. The Decision-Feedback Detector The decision-feedback detector uses a decision

about x1 to help make a decision about x2.

C. The zero Forcing linear Detector

A linear detector computes:

y = Cr (5.4)

then makes a decision about xi based solely on yi, for i = 1,2, where C is set as:

C =
|h1h̃

∗
1 + h2h̃

∗
2|

h1h̃∗1 + h2h̃∗2




(|h̃1|2 + |h2|2)−1/2 0

0 (|h̃2|2 + |h1|2)−1/2







h̃∗1 h2

h̃∗2 −h1


 (5.5)

Substituting (5.5) to (5.2) yields:

y = |h1h̃
∗
1 + h2h̃

∗
2|




(|h̃1|2 + |h2|2)−1/2 0

0 (|h̃2|2 + |h1|2)−1/2


 x + ñ (5.6)

Then [24] gives analytical results of BER for ZF detector and lower bound BER

for DF detector. Note that [24] assumes perfect channel estimation.

The author proposes another detector, names Minimum Mean Square Error

(MMSE) detector, which has better performance than ZF detector.
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Figure 5.1: Performance comparison for various detectors in time-varying fading

For MMSE, the basic concept is to choose T, such that mean square error is

minimized. Define:

H =




h1 h2

h̃2
∗ −h̃1

∗


 (5.7)

and Eb as bit energy,EN as noise power, then

T = EbH
∗(EbHH∗ + ENI)−1 (5.8)

where I is identity matrix and (.)∗ denotes conjugate transpose of a matrix.

Figure 5.1 plots the BER performance of ML, ZF and MMSE, assuming the

channel is completely uncorrelated between two symbol intervals, which means that,

there is no correlation between h1 and h̃1, h2 and h̃2. The scenario is similar when

the correlation is between 0 and 1. When correlation is 1, i.e. the fading is static,

the three detectors have same performance.

Though MMSE detector outperforms ZF detector, it is difficult to analyze its

BER performance. the problem is even more complicated when channel estimation is

imperfect. The same problem exists for Zero-Forcing detector, which will be discussed

in the next section.
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5.2.2 Imperfect Channel Estimates for Zero-Forcing Detector

[24] discusses how to analyze BER performance of Zero-Forcing detector, given

perfect estimation. The method is no longer applicable if channel estimation is

imperfect. Here we try to analyst this problem.

We form decision statistics for x1 as:

x̂1 =
1

ĥ10ĥ∗11 + ĥ20ĥ∗21

(ĥ∗11r1 + ĥ20r
∗
2)

=
1

|ĥ10ĥ∗11 + ĥ20ĥ∗21|2
(ĥ∗10ĥ11 + ĥ∗20ĥ21)(ĥ

∗
11r1 + ĥ20r

∗
2)

=
1

|ĥ10ĥ∗11 + ĥ20ĥ∗21|2
Z1Z2 (5.9)

where ĥij is the estimated version of hij, and Z1 = ĥ∗10ĥ11 + ĥ∗20ĥ21, Z2 =ĥ∗11r1 + ĥ20r
∗
2

It is clear that Z1 and Z2 are of quadratic form. So the problem now is, given

the product of two quadratic form random variable, what is its probability density

function? It is easily shown that decision in section (5.2) can be simplified to the

similar form.

If the two random variable vector in Z1 and Z2 (refer to Chapter 4 )are indepen-

dent of each other, then we can derive PDF of Z1Z1 from that of Z1 and Z2. But

here the two vectors are obvious correlated, therefore it seems a difficult problem in

mathematics.
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