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Summary 

This research has focused on a number of important issues related to the efficiency 

measurement in the presence of additional slack after Farrell efficiency is achieved. 

Firstly, we define our measure of efficiency and then investigate its properties and 

demonstrate its characteristics theoretically. In addition, we provide an effective method 

to capture the internal value information in the production systems which is usually 

omitted in the traditional efficiency measures. Furthermore, we show how the effect of 

weights factors on the efficiency and efficient frontier in our model. Finally, we 

compare our measure with other measures theoretically as well as empirically and find 

that there are some differences between our measure and others. We believe that the use 

of this measure is practical, in the sense that it requires little detailed information on the 

part of the analyst, and consistent, in the sense that – if a factor is deemed important 

enough to include in the analysis then its importance should be reflected in its 

contribution to the benefit of DMU activity.  

In addition, the ability to rank or differentiate the efficient units is of both theoretically 

and practically importance. One concern about these super-efficiency models is that 

they may not always be possible to determine their optimal value when the 

super-efficiency models are applied under other alternate returns to scale (RTS) 

conditions other than constant returns to scales (CRS). Another concern is that these 

super-efficiency measures cannot capture certain inherent relationships among the 

inputs and the outputs which can be known or predetermined beforehand. In this study, 

we discuss the use of the weighted super-efficiency measure which is derived from the 

weighted global efficiency measure. This super-efficiency measure is useful to 
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differentiate efficient units and motivate appropriate behavior. 

Furthermore, we have studied various approaches for incorporating undesirable factors 

in the DEA models under the assumption of variables return to scales. A new efficiency 

measure is oriented to both desirable factors and undesirable factors simultaneously on 

the basis of classification invariance so that the weighted global DEA model allows the 

expansion of desirable outputs and the contraction of undesirable outputs and all inputs 

with different proportions. The new approach can also be applied to situations when 

some inputs need to be increased to improve the performance. 

Finally, we have discussed the use of the weighted global efficiency measure in the 

production systems without inputs or outputs. And we have also developed a new 

super-efficiency measure which can be used to discriminate the relative performance 

among the efficient DMU. 

KEYWORDS: Data Envelopment Analysis; Value efficiency analysis; Weighted global 

efficiency; Super-efficiency; Undesirable factors; DEA model without inputs/outputs.  
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Chapter 1 

Introduction 

1.1 Data Envelopment Analysis 

Data Envelopment Analysis (DEA) is a creative model for efficiency evaluation based on 

mathematical programming theory. It uses the optimization method of mathematical 

programming to generalize Farrell (1957)’s single-output/single-input technical 

efficiency measure to multiple-input/multiple-output cases. DEA does so by constructing 

a single “virtual” output to a single “virtual” input relative efficiency measure. It is an 

extension of optimization techniques to solve resource allocation problems, and offers an 

alternative to classical statistical methods in extracting information from sample 

observation. DEA can be used to evaluate the relative efficiency of managerial 

performance among organizations with multiple inputs and multiple outputs. In DEA 

applications, these organizations are generally called Decision Making Units (DMUs), 

and they can either be industrial companies, government facilities, or service systems. 

DEA was first proposed by Charnes et al. (1978), and has experienced extensive 

extension in both theoretical development and empirical application. According to a 

recent bibliography compiled by Seiford (1996), there have been more than 700 papers 

published in major international journals on DEA since 1978. There are a number of 

models developed in DEA theory. Most of them are deterministic in nature. The 

milestone models include the CCR model (Charnes et al., 1978), the BCC model (Banker 

et al., 1984), and the Additive model (Charnes et al., 1985). DEA has been widely used in 

both public and private sectors, and in both business and non-profit organizations. The 

DEA study fields include education (public schools and universities), health care 
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(hospital, clinics, and physicians), banking, armed forces (recruiting, aircraft maintance), 

auditing, sports, market research, mining, agriculture, siting and spatial studies, retail 

outlets, transportation (ferries, highway maintenance), and public housing (Seiford, 

1996). DEA has indeed established itself as an important analytical tool whose 

acceptance in no longer in doubt.   

1.2 Motivations and Objectives  

The purpose of DEA is to empirically estimate the so-called efficient frontier based on the 

set of available DMUs. DEA provides the user with information about the efficient and 

inefficient units, as well as the efficiency scores and reference sets for inefficient units. 

The results of the DEA analysis, especially the efficiency scores, are used in practical 

applications as performance indicators of DMUs. As noted by Roll et al. (1991), the 

classical engineering approach to input-output analysis was to reduce the analysis of a 

multi-input, multi-output situation to that of examining the ratio of a single composite 

measure of output to a single composite measure of input. This requires that the user 

should specify a set of weights so that all inputs and all outputs are effectively measured 

in the same units. This allows it to be readily applied to non-engineering environments 

such as not-for-profit or public sector organizations. In DEA, the relative efficiency of a 

unit is still assessed by calculating the ratio of its weighted sum of outputs to its weighted 

sum of inputs. However, the weights attached to inputs and outputs are not specified a 

priori. Instead, they are selected by the program to show each unit in its most favorable 

light. As a result, the weights chosen by DEA in assessing one unit’s efficiency may be 

completely different from the weights selected for another unit. 

There is a modest literature on how the flexibility of choice of weights on inputs and 

outputs in DEA might be restricted. However, in general the large DEA research effort— 
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particularly in the applied studies—has hitherto paid relatively little attention to the 

analysis of the weights used to assess the efficiency of units. This omission is surprising 

bearing in mind the fundamental role weights play in determining the measured 

efficiency of the unit. 

The flexibility in choosing weights in DEA implies that (a) no a priori values or limits are 

set for the various weights and (b) the weights assigned to the different inputs and outputs 

will typically be different from one DMU to another. Traditionally, in most of the DEA 

literature, flexibility has been considered to be one of the major advantages of DEA when 

comparing it with other techniques to measure efficiency. If the weights are not 

constrained in any way, a DMU evaluated as inefficient by DEA cannot claim that its 

inefficiency arises because the set of weights selected for its inputs and outputs. The 

DMU must be a fortiori overall inefficient. However, such complete weight flexibility in 

DEA often leads to inappropriate estimates of efficiency. DMUs can attribute low enough 

weights to certain inputs and outputs so as to effectively ignore them. Therefore, the 

desire to incorporate restrictions on the weights attached to the input/outputs of DMUs is 

one of these areas of development in DEA and also is the main research topic in my 

research. Nowadays, weights restrictions and value judgments cover a considerable part 

of the DEA research literature without, however, showing any signs of saturation. The 

intention of incorporating value judgments is to incorporate prior views or information 

regarding the assessment of efficiency of DMUs. This prior information can be 

incorporated in a multitude of different ways having different implications on the 

assessed relative efficiency of DMUs.  

In addition, in recent years, a substantial amount of scholarly efforts has been devoted to 

the development of so-called super-efficiency measures for differentiating some of the 

efficient DMUs that have identical efficiency scores equal to one in the basic models. The 
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ability to rank or differentiate the efficient DMUs is of both theoretically and practically 

importance. Theoretically, the inability to differentiate the efficient units creates a 

considerable number of observations typically characterized as efficient, unless the sum 

of the number of inputs and outputs is small relative to the number of observations. 

Specialized units may be rated as efficient due to a single input or output, even though 

that input or output may be seen as relatively important. Thus this poses analytical 

difficulties to any post-DEA statistical inference analysis. In practice, further 

differentiation among efficient DMUs is also desirable and even necessary in many cases. 

One classical example of the application of the super-efficiency DEA model is the work 

by Lovell et al. (1994). In the Farrell tradition, ranking efficient units on the frontier was 

first researched by Andersen and Petersen (1993). Since then, other scholarly efforts 

attributed to this topic include the works by Doyle and Green (1993, 1994), Stewart 

(1994), Wilson (1995), Charnes et al. (1996), Tofallis (1996), Zhu (1996), Seiford and 

Zhu (1998, 1999), Tone (2002), Xue and Harker (2002) among others. However, one 

concern about these super-efficiency measures is that they may not always be possible to 

determine their value when the super-efficiency models are applied under other alternate 

returns to scale (RTS) conditions other than constant returns to scales (CRS). In other 

words, the mathematical program defining the super-efficiency measures may not have a 

feasible solution. This has been a concern in the literature since the introduction of the 

Farrell-based super-efficiency measure and was first noticed in Thrall (1996). Another 

concern is that these super-efficiency measures cannot capture certain inherent 

relationships among the inputs and the outputs.  

Furthermore, in DEA literature, a substantial amount of scholarly efforts has been 

devoted to address those production systems in which both desirable (good) and 

undesirable (bad) output and input factors may be present. Consider a paper mill 
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production where paper is produced with undesirable outputs of pollutants such as 

biochemical oxygen demand, suspended solids, particulates and sulfur oxides. If 

inefficiency exists in the production, the undesirable pollutants should be reduced to 

improve the inefficiency, i.e., the undesirable and desirable outputs should be treated 

differently when we evaluate the production performance of paper mills. However, in the 

standard DEA models, decreases in outputs are not allowed and only inputs are allowed 

to decrease. (Similarly, increases in inputs are not allowed and only outputs are allowed 

to increase.) If one treats the undesirable outputs as inputs, the resulting DEA model does 

not reflect the true production process. Similarly situations when some inputs need to be 

increased to improve the performance are also likely to occur.  

Finally, we discuss the efficiency evaluation in some complex production systems where 

input data (or output data) are unavailable, thus making performance evaluation based 

only on the output data (or input data). Although from an economic point of view it is 

difficult to accept a DEA model without inputs or outputs, the BCC model without inputs 

has been widely used in performance evaluation in many fields, e. g. Lovell (1995), 

Ozcan and Mccue (1996), and Lovell and Pastor (1995), (1997). In addition, Lovell and 

Pastor (1999) made a detailed analysis on some radial DEA models without inputs or 

without outputs from the theoretical perspective. Therefore, research on the DEA models 

without inputs/outputs is both theoretically and practically importance.  

1.3 Organization of the Thesis 

The rest of this thesis is organized as follows: Chapter 2 provides a review of the 

evolution and development on the use of weights restrictions and value judgements in 

data envelopment analysis. In Chapter 3 we first make a comparative research on the 

technical efficiency measures and then develop a new methodology to measure technical 
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efficiency, which satisfies two essential objectives: the introduction of a nonradial 

measure for measuring efficiency in the full input-output orientation and the introduction 

of a weighting scheme for inputs and outputs. In Chapter 4 we propose a weighted 

measure of super-efficiency which can be useful to differentiate efficient units. In 

Chapter 5, by using the classification invariance property, we apply our new measure to 

evaluate the specific production systems with undesirable factors (desirable or 

undesirable). In Chapter 6 we discuss the application of our new weighted global 

efficiency in DEA models without inputs/outputs and demonstrate some desirable 

characteristics theoretically and empirically. Finally, some concluding remarks and a 

summary of the works that we have done in this research are provided in Chapter 7.
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Chapter 2 

Literature Survey on Value Efficiency in DEA 

2.1 Introduction 

In this chapter, we first try to give a detailed description of the general structure of value 

efficiency problem. Then we review the evolution of the methodology of weights factors 

and related fields. In the second section, we introduce a basic DEA model. In the third 

section, alternative types of weights restrictions are presented as they arose from the 

application of DEA to real problems. The final section summaries our findings and 

provides some research directions for this research.  

2.2 General Structure of Value Efficiency Problem 

The DEA model was first developed by Charnes et al (1978) based on the seminal work 

of Farrell (1957). It requires comprehensive data on inputs and outputs for a set of 

homogenous decision making units. Using mathematical programming techniques, the 

model compares the efficiency of a chosen DMU with all possible linear combinations of 

other DMUs. Mathematically, assume that we have n  DMUs each consuming m  

inputs and producing s  outputs. Suppose that DMU0 ),( 00 yx  is the unit under 

evaluation, m
0m010 x,,xx +ℜ∈= )( L  is the vector of m  inputs consumed and 

s
s0 ,y,y y +ℜ∈= )( 001 L  is the vector of s  nonnegative outputs produced by this unit, 

where m
+ℜ  and s

+ℜ  represent vector set consisting of m  and s  nonnegative elements 

respectively. Let X  and Y  be the input and output matrices respectively, consisting of 

nonnegative elements and containing the observed input and output measures for all 
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DMUs. 
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where:  

  jry  is the amount of the rth output produced by DMUj; 

  rµ  is the weight given to rth output; 

  jix  is the amount of the ith input consumed by DMUj; 

  iν  is the weight given to ith input.  

Using the above formulation it is clear that DEA can be viewed as an extension of the 

simple ratio output-input analysis (Ganley and Cubbin, 1992; Boussofiane et al. 1991; 

Sherman, 1984). The efficiency of the DMU is defined as the ratio of a weighted sum of 

inputs to a weighted sum of inputs. However, instead of using an exogenously specified 

set of weights rµ  and iν , the technique searches for the set of weights which maximize 

the assessed efficiency of DMU0 (the DMU that is being evaluated) subject to the 

restrictions that it must be compared with all other DMUs using the same set of weights, 

and that none of the other DMUs can have an efficiency score higher than one. If, subject 

to these constraints, it is possible to find a set of weights for which the efficiency ratio of 

DMU0 is equal to one, DMU0 will be regarded as efficient; otherwise it will be regarded 
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as inefficient. The program is computed separately for each DMU, generating n sets of 

optimal weights which, in general, will vary from DMU to DMU. Thus DEA is a 

non-parametric approach to measuring the relative efficiency of organizations. As Banker, 

Charnes and Cooper (1984) explained, DEA does not prescribe an underlying functional 

form for the efficiency frontier or specific values for the weights in an a priori manner. 

The technique can therefore be said to be “empirically based”, in contrast to parametric 

and statistical approaches used for measuring efficiency.  

However, DEA calculations in above methods are traditionally value-free. The 

underlying assumption is that no output or input is more important than another, although, 

in the real world there generally exist some outputs or inputs which are less important 

than other outputs or inputs in the production systems. In DEA models, a DMU which, for 

example, is a superior producer of a less important output is diagnosed as efficient even if 

it performs poorly with respect to all other outputs. Hence, in the original DEA models, 

the efficiency scores are not necessarily good performance indicators. Here, we use 

Figure 2.1 to clarify our point. The example consists of five DMUs, each producing two 

 

Figure 2.1 Classical DEA 

Output 2 

Output 1 

DMU3 

DMU2 

DMU1 

DMU4 
DMU5 
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outputs and all consuming the same amount of one input. We can see that DMU1, DMU2 

and DMU3 are efficient while DMU4 and DMU5 are inefficient. Thus DMU1, DMU2 and 

DMU3 all receive an efficiency score of 1. Let us assume that for some reasons the 

Decision Maker (DM) considers output 1 to be much more important than output 2. In 

this case DMU1 would be far more preferred to DMU3. The DM might even prefer DMU5 

to DMU3, even though the former is inefficient. 

2.3 Review of Value Efficiency Problem 

2.3.1 Taxonomy and Annotation 

This Section reviews and summarizes some existing researches, both theoretical and 

empirical, on the value efficiency evaluation through imposing restrictions on weights. 

We identify four types of approach, and introduce a terminology to distinguish these 

approaches: 

 Direct restrictions on the weights; 

 Adjusting the observed input-output levels to capture value judgements; 

 Restricting the virtual inputs and outputs. 

These approaches are now outlined in turn. We will restrict the discussion to 

incorporating value judgements in the basic DEA model proposed by Charnes et al. 

(1978).  

a) Direct Restrictions on the Weights 

Following the DEA model (2.1), the following linear programming model illustrates 

some of the direct restriction on DEA weights typically found.  

  ∑
=

s

r
rr yµ  Maximize

1
0                                                   (2.2.a) 

subject to 
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0                                               (2.2.b) 
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s
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jrr L=≤−∑∑
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                                   (2.2.c) 
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i
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i
i β

ν
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+
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  rii µνγ ≥                                                                (2.2.f) 

iii vv ′≤≤ν                                                             (2.2.g) 

rrr uµu ′≤≤                                                            (2.2.h) 

  ενi ≥ , εµr ≥                                                           (2.2.i) 

( ) mT
m1 ν,,νν +ℜ∈= L  and ( ) s

21 µ,,µµ +ℜ∈= L  are the weight vectors of m  inputs and 

s  outputs, respectively, and are the variables of the model. The variables 

( )v,v,u,u,γ,β,α ,κ riiiiii ′′  are user-specified constants to reflect value judgements 

regarding the relative importance of the input or output factors. Constraints of type (2.2.d) 

and (2.2.e) can involve output rather than input weights. The five types of weights 

restrictions, (2.2.d) to (2.2.h), can essentially be divided into three categories and these 

are discussed in more detail next. 

The first type of restrictions is illustrated by (2.2.d) and (2.2.e), and is introduced to 

incorporate into the analysis the relative ordering or values of the inputs/outputs. We call 

it Assurance regions of type I (ARI). Thompson et al. (1990) termed restrictions (2.2.d) 

and (2.2.e) as “type I Assurance Regions” (ARI). Form (2.2.d) is similar to the type used 

in Thompson et al. (1986) and Kornbluth (1991). The use of restriction form (2.2.e) is 

more prevalent, reflecting marginal rates of substitution, although the upper bound or 

alternatively the lower bound is often omitted. Clearly, the bound values for ARI are 
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dependent on the scaling of the inputs and outputs, that is, they are sensitive to the units of 

measure of the related factors. Charnes et al. (1990) and Thompson et al. (1990) noted 

that when imposing ARI, there will always be at least one efficient DMU. Moreover, 

whether the output or input orientation is used, a DEA model incorporating ARI produces 

the same relative efficiency scores. This type of weights restriction is mainly based on the 

implementation of the economic notion of marginal rates of substitution in the context of 

the Charnes et al. (1978) and Charnes et al. (1985) definition. The setting of bounds for 

ARI in practical applications has been based either solely on expert opinion (Beasley 

1990, Kornbluth 1991), or expert opinion in conjunction with price/cost information 

(Thompson et al. 1990, 1992). 

The second type of restriction is depicted by (2.2.f). Thompson et al. (1990) termed 

relationships between the input and output weights as “type II Assurance Regions” 

(ARII). The linking of input and output weights is required in many DEA applications as 

it is the combination rather than the individual values of the variables that the efficiency 

measure should reflect. This is, clearly, the case for using ARII in Thanassoulis et al. 

(1995). It can be shown that ARII may render (2.2) infeasible. Moreover, a DEA model 

incorporating ARII does produce the same relative efficiency scores when switching 

from an input to an output orientation or vice versa. Similar to ARI, ARII is dependent on 

the scaling of the inputs and outputs. Methods for developing suitable ARII have not 

received much attention in the literature other than Thompson et al. (1994) in assessing 

world-wide major oil companies and Thanassoulis et al. (1995) in assessing output 

quality in health care. Thompson et al. (1994) relied on market prices obtained by 

corporately industry reports, whilst the Thanassoulis et al. (1995) approach is described 

in more detail next. For the purpose of Thanassoulis et al.’s assessment of the perinatal 

care units in England to recognize environmental impacts on mortality, they used a 
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standardized survival rate – namely survival rate of babies at risk – to reflect the quality of 

perinatal care medical outcomes. This variable was incorporated in the DEA model as 

two variables: “Babies at risk” is an input and “survivals” an output. Evidently, the 

weight on survivals ought to be linked to that of babies at risk as otherwise a unit could 

exploit its high number of survivals or low number of babies at risk to improve its 

efficiency rating irrespective of its actual survival rate. To ensure that the efficiency 

estimates obtained reflect the actual survival rate, when either survivals or babies at risk 

are given any weight, the authors suggest equal weights for the two related variables. 

The third type is absolute weights restrictions. These restrictions are illustrated by (2.2.g) 

and (2.2.h) and are mainly introduced to prevent the inputs or outputs from being over 

emphasized or ignored in the analysis. The value of the restriction is context dependent. 

For example, it may represent either the maximum or minimum cost of the associated 

factor. The bounds used in the restrictions are dependent on the normalization constant. 

There is a strong interdependence between the bounds on different weights. For example, 

setting an upper bound on one input weight imposes a lower bound on the total virtual 

input of the remaining variables and this in turn has implications for the values that the 

remaining input weights can take. It should be noted that when absolute weights 

restrictions are used in a DEA model, switching from an input to an output orientation 

produces different relative efficiency scores, and hence the bounds need to be set in light 

of the model orientation used. Finally, absolute weights restrictions may render model 

(2.2) infeasible. The key difficulty in using any one of the three types of weight 

restrictions outlined above is the estimation of the appropriate values for the constants in 

the restrictions, compatible with the value judgements to be reflected in the efficiency 

assessments. A number of methods have been developed to aid the estimation of such 

constants as is now outlined.  
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b) Adjusting Input-output Levels to Capture Value Judgements 

Two approaches can be found where transformed input-output data is used to simulate 

weights restrictions. They are those of Charnes et al. (1990) and Golany (1988); both 

methods derive the transformations with reference to the dual of (2.2). 

The first method is Charnes et al. (1990) “Cone-ratio” approach. In this method, an 

artificial data set is generated which produces the same relative efficiency scores as 

imposing ARI of the DEA model form (2.2.e). The primal cone ratio DEA model is as 

follows: 

  )(BYu  Maximize 0
T                                                    (2.3.a) 

subject to 

  1)( 0 =AXvT                                                            (2.3.b) 

  0(BY)uAXv TT ≤+− )(                                                  (2.3.c) 

  0≥u , 0≥v                                                            (2.3.d) 

where the matrices A and B are defined in relation to the matrices D and F above, that is 

they are equivalent alternative forms, with TTT DDDA 1)( −=  and TTT FFFB 1)( −= , 

which is shown in Charnes et al. (1990).  

Approaches are suggested such that the cones used in (2.3) can favor either specific 

inputs/outputs or individual DMUs. In the Charnes et al. (1990) bank application of the 

cone-ratio theory, cones that favored individual model banks were defined. For example, 

let us suppose that DMUa and DMUb, are considered as model banks. Suppose further 

that the optimal unrestricted DEA weights of DMUa are 11 av = , 22 av =  and of the 

DMUb, 11 bv = , 22 bv = . It can be deduced that these cones imply that the banks are being 

assessed under the marginal rates of substitution, as determined by the sets of optimal 

DEA weights for the model DMUs a and b. That is, 212121 // aa/vvbb ≤≤ . This gives the 
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following matrix: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

12

12

aa
bb

D                                                         (2.4) 

and from the stated matrix transformations we obtain 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

21

21

bb
aa

A                                                             (2.5) 

which can then be applied to the observed data to generate an artificial data set.  

The second method is the method proposed by Golany (1988) method is the second 

method. Golany sought to incorporate ordinal relationships of the form εννν ≥≥≥ 321  

among the DEA weights. Without allowing the weights to take a zero value, the relative 

efficiency scores obtained are the same as those obtained by transforming the 

input-output data to generate an artificial data set, by accumulating the related factors. 

However, Ali et al. (1993) pointed out that the data transformations proposed by Golany 

(1988) only provide suitable solutions for strict, not weak, ordinal relationships between 

DEA weights due to the weights being strictly positive. In addition, they noted that the 

weights themselves can be accumulated, rather than the data, to obtain the same relative 

efficiency scores as under the original weights restrictions. 

These artificial data sets have several advantages. Firstly, they allow the use of DEA 

software which does not otherwise offer weights restrictions facilities. Secondly, they 

allow zero or even negative observed data levels to be used. However, their disadvantage 

is that the data must be transformed and then once results are obtained it must be 

transformed back to the original form in order to interpret the results. This can prove more 

cumbersome than the direct application of weights restrictions to the original data where 

the software allows it. 
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c) Restricting Virtual Inputs and Outputs 

Wong and Beasley (1990) explored the use of such restrictions in DEA. Rather than 

restricting the actual DEA weights, the proportion of the total virtual output of DMU0 

devoted to output, i.e. the “importance” attached to output by DMU0, can be restricted to 

range between [ ]rr ζ,ξ , with rξ  and rζ  being determined by expert opinion, see 

Beasley (1990) for details. Thus, the restriction on the rth virtual output takes the form 

r
0

T
0rr

r ζ
yu
yuξ ≤≤                                                          (2.6) 

where 1=yuT  represents the total virtual output of DMU0. The total virtual input or 

output is included in the constraint (2.6) as a standardization mechanism that would 

facilitate the assignment of values to rξ , rζ  . A similar restriction can be set on the 

virtual inputs. Implementing this type of restriction is not straightforward, due to the fact 

that the implied restrictions on the DEA weights are DMU specific. Hence, several 

modifications have been suggested by Wong and Beasley (1990). 

The efficiency ratings obtained with restrictions applied on the virtual inputs/outputs are 

sensitive to the orientation of the model (input/output). Restrictions on the virtual 

input/output weights have received relatively little attention in the DEA literature. More 

research is necessary to explore the pros and cons of setting restrictions on the virtual 

inputs and outputs. Heretofore, there has been no attempt to compare methods for setting 

restrictions on the actual DEA weights with those restricting virtual inputs and/or outputs. 

This section has illustrated the rich variety of approaches to the use of weights restrictions 

in DEA. It is clear, however, that no overall approach to setting weights restrictions in 

DEA has been identified. Moreover, different approaches are likely to prove more 

appropriate in different contexts. For example, in a single input multi-output case, the 
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approach by Dyson and Thanassoulis (1988) may prove suitable, while in a case with 

strong expert identification of good DMUs, the approach by Charnes et al. (1990) may 

prove more appropriate.  

2.3.2 Results and Discussion 

The growing expansion of the weights restrictions methodology since its original 

development by Thompson et al. (1986) and Dyson and Thanassoulis (1988) gives 

encouraging signs regarding the contribution of the method in assessing performance. 

Taking account of the evolutionary stages of the method, it can be said that: 

 Weights restrictions are based on mathematical modifications of the Charnes et al. 

(1978) model that seek to encapsulate value judgements in the assessment of 

performance. 

 Weights restrictions do not seek to eliminate the fundamental tenet of the original 

DEA model, which the assessment of productive efficiency should allow DMUs 

freedom on the value attached to the input/output variables. 

 There is no all purpose method for translating value judgements into restrictions 

on DEA weights. 

 The mathematical and managerial implications of the introduction of value 

judgements in DEA models have yet to be explored in full. 

The interpretation of the efficiency rating as a measure of the radial contraction of inputs 

or radial expansion of outputs feasible under efficient operation breaks down under 

weights restrictions. The targets yielded by DEA models incorporating weights 

restrictions are not necessarily radial projections of the inefficient DMU onto the efficient 

frontier of the production possibility set. 

It is possible to think of developing systematic methods to capture progressively the 
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internal value in DEA assessments with the help of other methodologies. Moreover, it is 

also possible to incorporate the intrinsic values of production systems or the preferences 

of decision makers by setting weight restrictions in the function of the programming. This 

is in contrast to weights restrictions which are set in the constraints.  
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Chapter 3 

Value Efficiency: Weighted Global Measure 

3.1 Introduction 

Theoretical consideration of technical efficiency has existed in the economic literature 

since Koopmans (1951) defined technical efficiency as a feasible input/output vector 

where it is technologically impossible to increase any output (and/or reduce any input) 

without simultaneously reducing another output (and/or increasing any other input). 

Debreu (1951) and later Farrell (1957) developed indices of technical efficiency 

measured as the maximum radial reduction in all inputs consistent with equivalent 

production of observed output. After all inputs have been radially reduced, however, 

there may still exist additional slack in the use of some but not all inputs. As a result, a 

Farrell efficient producer may not be Koopmans efficient. (Färe and Lovell (1978), and 

Lovell (1993) provided useful discussions.). Interest in this early theoretical work on 

technical inefficiency was renewed in the late 1970s with the development of DEA, a 

Farrell-based mathematical programming approach to frontier estimation pioneered in 

Charnes et al. (1978) and extended in Banker et al. (1984) and Färe et al. (1985, 1994). 

(For more details about the strengths and weaknesses of DEA, see Cooper et al. (2000) 

and Thanassoulis (2001)) 

Potential problems arise with the DEA measure of inefficiency because it is not based on 

the conceptual notions of Koopmans. DMUs may be identified as efficient even though 

additional slack exists in some but not all of the inputs. As a result, the DEA measure may 

not capture all of the existing inefficiency. To solve this problem, Färe and Lovell (1978) 
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introduced the non-proportional Russell measure which identifies a producing unit as 

technically efficient if it does have any slack in any inputs. Rather than determing the 

maximum radial in all inputs holding output constant, the Russell measure minimizes the 

average weighted arithmetic mean of proportional reductions in all individual inputs. 

Thus, a Koopmans inefficient producing unit can be effectively identified. One problem 

with the Russell measure is the implicit assumption that all inputs equally affect the level 

of potential production. As will be shown, this can lead to distorted efficiency 

measurement. The main purpose of this chapter is to introduce the weighted global 

measure of technical efficiency that not only allows non-proportionate reduction in both 

input and output space but also introduces a weighting scheme for inputs and outputs 

which takes account of the characteristics of the DMUs.  

3.2 Comparative Research on Efficiency Measures 

Assume that we have n  DMUs each consuming m  inputs and producing s  outputs. 

Suppose that DMU0 ( )00 y ,x  is the unit under evaluation, m
0x +ℜ∈  is the vector of m  

inputs consumed and s
0y +ℜ∈  is the vector of s  outputs produced by this unit. Let 

nmX ×
+ℜ∈  and nsY ×

+ℜ∈  be the input and output matrices respectively, consisting of 

nonnegative elements and containing the observed input and output measures for DMUs. 

3.2.1 The Radial Efficiency Measures  

Farrell provided the first comprehensive measure efficiency as one minus the maximum 

equal-proportional reduction in all inputs that maintains observed output. Following 

Banker et al. (1984), the Farrell input measure of technical efficiency (FTE) (assuming 

variable returns to scale) for DMU0 ( 00 , yx ) can be calculated as 

  θFTE =                                                                 (3.1) 
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Following Banker et al. (1984), the Farrell measure (assuming variable returns to scale) 

for DMU0 ( 00 yx , ) can be calculated as: 

  θ  Minimize                                                            (3.2.a)  

subject to 

  1θ0,θxXλ 0 ≤≤≤                                                   (3.2.b) 

  0yYλ ≥                                                                (3.2.c) 

  0λ,1λT ≥=1                                                        (3.2.d) 

The Farrell measure is radial; for a given DMU, it determines the maximal amount by 

which input vector can be proportionally reduced while maintaining production of output 

vector. Note that the Farrell measure does not require comparison of a given input vector 

to an input vector that belongs to the identified efficient subset. A potential problem 

arises with the Farrell measure because inputs are radially reduced. Even after this 

reduction is achieved, there may still exist slack in the outputs and some but not all of the 

inputs. This is evident from the inequality constraints (3.2.b) and (3.2.c) in the use of 

either LP or DEA model. As a result, a Farrell efficient DMU may be technically 

inefficient in the Koopmans sense. This problem is illustrated in Figure 3.1. 

Referring to the diagram, assume that four DMUs A, B, C and D employ one input to 

produce one output. Based on the above postulates, the efficient frontier, the geometrical 

illustration of DEA efficiency, is identified as convex combinations of the observed 

production possibilities, which consists of line segments AB and BC. While D is 

technically and scale inefficient, A and C are technically efficient but scale inefficient. 

Only decision making unit B is technically and scale efficient. In this case, inclusion of 

the convexity constraint (3.2.d) leads to increasing returns to scale along AB and 

decreasing returns along BC. The variable returns to scale (VRS) model 
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Figure 3. 1 Measurement of Radial Efficiency 

presented above measures the technical efficiency of DMUD to be 
DG
IG , where the 

composite reference production possibility is labeled I. This measure can be considered to 

be pure technical efficiency measure since it allows variable returns to scale. By 

assuming constant returns to scale in production, the technical efficiency of DMUD would 

be measured to be 
DG
IG

DG
HG

≤ . It has been shown by banker et al. (1984), Färe at al. 

(1985) and Banker and Thrall (1992) that the measure of inefficiency obtained from the 

solution of the constant returns to scale DEA model consists of not only technical but also 

scale inefficiency.  

3.2.2 The Extended Radial Efficiency Measures 

A potential problem arises with the Farrell measure because Farrell efficiency of a DMU 

is determined either by maximizing outputs subject to given inputs level or minimizing 

inputs subject to given output levels. Thus, the difference in both efficiency measures is 

inevitable. Following the above analysis for DMUD in Figure 3.1, the technical efficiency 
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in output-oriented model is 
JE
JD  and the inefficiency is 

JE
DE . Therefore, we have no 

reason to be sure that the following equality will be satisfied: 
JE
JD

GH
DG

= . Therefore, two 

models can address this problem: Cooper et al. (1996) proposed a new efficiency measure 

which can consider both input and output inefficiency simultaneously and is the optimal 

function value of the following mathematical programming problem:  

  
δ
θ  Minimize                                                           (3.3.a) 

subject to 

  1θ0,θxXλ 0 ≤≤≤                                                   (3.3.b) 

  1δ,δyYλ 0 ≥≥                                                       (3.3.c) 

  0λ,1λT ≥=1                                                         (3.3.d) 

For a DMU to be efficient, two following conditions must be satisfied: (i) 1=∗∗ /δθ  and 

(ii) all the slacks must be zero in any optimal solution. The measure is rather different 

from and stronger than that of Banker et al. (1984) because of considering slacks in 

alternative optimal solutions.  

Alternatively, Joro et al. (1998) treat both output and input rows as objective rows. This 

leads to the following formulation:  

( )−+ ++= ssεδ  ZMaximize TT 11                                       (3.4.a) 

subject to 

0δ)xsXλ −=+ − 1(                                                      (3.4.b) 

0δ)ysYλ +=− + 1(                                                      (3.4.c) 

0λ,1λT ≥=1                                                         (3.4.d) 

0≥+s , 0s ≥− , 0ε ≥                                                  (3.4.e) 
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3.2.3 The Nonradial Efficiency Measures 

A potential problem arises with both the radial and extended radial efficiency measures 

because inputs are radially reduced (See Färe and Lovell (1978) for a further discussion). 

Even after this reduction is achieved, there may still exist slack in the outputs and some 

but not all of the inputs. This is evident from the inequality constraints (3.2.b) and (3.2.c) 

in the programming model. As a result, a Farrell efficient DMU may be technically 

inefficient in the Koopmans sense. This problem is shown in Figure 3.2, where two inputs 

x1 and x2 are to produce the same level of output y0. Using the original DEA model results 

in a piecewise linear y0 that consists of relevant segments AB, BD and DE. DMUC is the 

only Farrell inefficient DMU with excess usage in both inputs. DMUs A, B, D and E are 

identified as Farrell efficient. Note, however, that DMUs A and E are not Koopmans 

efficient since additional input slack exists in x1 and x2 respectively.  

 

Figure 3. 2 Radial and Koopmans Efficiency 

The potential problem of the Farrell measure arises when there exists slack in some but 

not all of the inputs after radial efficiency is achieved. Färe and Lovell (1978) not only 

recognized this problem but provided a solution by introducing the nonradial Russell 

measure of efficiency. The Russell measure of technical (RTE) efficiency is defined as 

B C ●
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  mθRTE T /)(1=                                                         (3.5) 

where ( )Tm1 θ,,θθ L=  represents the scalar for the thi  inputs. The Russell measure for 

each DMU can be calculated as the solution to the following linear program:  

  mθRTE  Minimize T /)(1=                                             (3.6.a) 

subject to 

  1θ0,xθXλ i0i ≤≤≤                                                  (3.6.b) 

  0yYλ ≥                                                                (3.6.c) 

  0λ,1λT ≥=1                                                        (3.6.d) 

The advantage of the Russell measure over the Farrell measure can be inferred from 

Figure 3.2 as discussed above, DMUA is Farrell efficient, achieving 1RTE = . This 

results because DMU is compared to itself in the solution of the DEA model (6). The 

Russell measure, on the other hand, allows non-radial contraction of inputs and hence, 

compares A to B. Solution to (3.6) results in a Russell measure 830RTE .= . This 

solution is obtained from 1θ1 =  and 3/2θ2 = , i. e. DMUA is efficient in the use of x1 

but inefficient in the use of x2 relative to DMUB. The Russell measure of efficiency for 

each DMU can be inferred from Figure 3.2, using the Russell measure, DMUB and 

DMUD are efficient, while DMUA, DMUC and DMUE are not.  

Correspondingly, the following three The Russell Graph Measure of technical efficiency 

was defined as a combination of the Input and Output Russell Measure of technical 

efficiency. For a given DMU, the value of this measure can be obtained from the 

following formulation:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
=

)(1
11
δ

θ
sm

1RGTE  Minimize T
T                                (3.7.a) 

subject to 
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  1θ0,θxXλ 0 ≤≤≤                                                   (3.7.b) 

  1,yYλ 0 ≥≥ δδ                                                      (3.7.c) 

  0λ,1λT ≥=1                                                        (3.7.d) 

where constraints 1)(0 ≤=≤ T
m1 θ,,θθ L  and 1δ,,δδ T

s1 ≥= )( L  are the requirements 

for dominance. In addition, the convexity constraint 1λT =1  would be included if T 

were not assumed to satisfy constant returns to scale.  

Although RGTE is well defined and it also satisfies the four basic properties listed by 

Cooper and Pastor, there are some difficulties with this measure. Firstly, it must be 

computed from a nonlinear programming problem whose solution is not easily obtained. 

Secondly, it is not readily understood because, as Cooper et al. 1998 note, RGTE is a 

weighted average of arithmetic and harmonic means. Therefore, based on this measure, 

Pastor et al. (1999) propose the Enhanced Russell Graph Measure as an alternative to this 

measure which, although closely related, avoids the mentioned difficulties. Instead of 

combining the input and output Russell measures in an additive way, as in (3.8), they 

define the following measure as the ratio between them: 

( ) ( )sδmθERGTE TT /1/1=                                              (3.8) 

In above definition, they separately average the input and the output efficiency and then 

combine these two efficiency component in a ratio form. The result is the following 

model:  

( ) ( )sδmθERGTE   Minimize TT /1/1=                                 (3.9.a) 

subject to 

  10,xXλ 0 ≤≤≤ θθ                                                   (3.9.b) 

  1,yYλ 0 ≥≥ δδ                                                      (3.9.c) 

  0λ,1λT ≥=1                                                        (3.9.d) 
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In attempt to define inefficiency based on the slacks, Russell (1985, 1988), Pastor (1996), 

Lovell and Pastor (1995), Torgersen et al. (1996), Cooper and Pastor (1997), Cooper and 

Tone (1997), Thrall (1997), Tone (2001) and others have proposed several formulae for 

finding a scalar measure. Here we discuss the efficiency measure proposed by Tone 

(2001) and the possible relationship between such measures with other nonradial 

efficiency measures. Consider an expression for describing a certain DMU0 )y ,(x 00  as  

  −+= sXλx0                                                            (3.10) 

  +−= sYλy0                                                            (3.11) 

where ++−− ℜ∈= m
T

m1 s,,ss )( L  and ++++ ℜ∈= s
T

s1 s,,ss )( L  denote the input excess and 

output shortfall of this expression, respectively, which are called slacks. Using −s  and 

+s , Tone (2001) defines the slack-based technical efficiency as follows: 

  
( )[ ]
( )[ ]0

0

/111

/111

ys
s

xs
mSTE

T

T

+

−

+

−
=                                                (3.12) 

The efficiency of the DMU can be obtained by solving the following fractional program:  

( )[ ]
( )[ ]0

0

/111

/111

ys
s

xs
mSTE  Minimize

T

T

+

−

+

−
=                                    (3.13.a) 

subject to 

  −+= sXλx0                                                          (3.13.b) 

  ++= sYλy0                                                          (3.13.c) 

  0λ,1λT ≥=1                                                       (3.13.d) 

0≥−s , 0≥+s                                                        (3.13.e) 

The above fractional program can also be obtained by transformation of (3.9). Thus, the 
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slack-based efficiency measure in (3.13) is equivalent to that in (3.9).  

3.2.4 The Weighted Nonradial Efficiency Measures 

The problem with the nonradial measures is shown in Figure 3.3, where the true (but  

 

Figure 3.3 Theoretical problem of the Russell measure 

unknown) isoquants are superimposed on the piecewise linear isoquants. The true 

isoquants were generated from the production function y 0. As seen from Figure 3.3, 

while all DMUs produce the same level of output, the efficient amount of output differs 

for all DMUs. DMUB, which is Koopmans efficient, can produce the least amount of 

output given its input usage. DMUE could have produced the most amount of output 

given its high level of input 1. This is interesting because the Russell measure identifies 

DMUA and DMUE to be equally efficient and more efficient than DMUC. As shown, 

DMUC is more inefficient than DMUA but more efficient than DMUB. Consequently, 

both the radial and nonradial measures fail to rank the DMUs properly. The failure of the 

nonradial measure can be attributed to the invalid assumption of equal weights when 

different inputs impact output differently in the production process. Thanassoulis and 

Dyson (1992) extended the Russell measure to allow unequal factor weights. Their model, 
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however, is motivated by the preferred target input and output levels; each DMU can 

assign weights based on its preferences. Ruggiero and Bretschneider (1998) extended the 

important model of Thanassoulis and Dyson to accommodate the excess slack inherent in 

the Farrell measure without assuming equal factor weights. Weights are not chosen to 

achieve preferred target level but rather to recognize the possibility of differential factor 

weights in the production process. The resulting Weighted Russell measure, can be 

defined as 

  θwWRTE T=                                                          (3.14) 

where ( )Tm1 w,,ww L= denotes the weight of input and satisfies 11 =wT . One important 

qualification of using the Weighted Russell measure is the necessity of determing the 

factor weights w  prior to measurement. One means of inferring the weights is a 

first-stage regression analysis. Alternatively, one could employ an LP model to constraint 

the ‘residuals’ to be one side. Allowing variable return to scale, the Weighted Russell 

measure of technical efficiency (WRTE) for each DMU can be calculated as the solution 

to the following linear programming: 

θwWRTE  Minimize T=                                              (3.15.a) 

subject to 

1θ0,θxXλ 0 ≤≤≤                                                  (3.15.b) 

  0yYλ ≥                                                               (3.15.c) 

  0λ,1λT ≥=1                                                       (3.15.d) 

Unlike the Farrell measure, this measure compares inefficient production possibilities to 

those production possibilities identified from the linear programming model to be 

relatively efficient. However, similar to the Russell measure, the weighted Russell 

measure does not make allowance for output slack.  

Prior to this research, Briec (1997) has introduced a new efficiency measure which not 
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only measures efficiency in full input-output space but also introduces a weighting 

scheme for inputs and outputs. This defines an orientation account of particularities of the 

market and characterizing the criteria of management chosen by the producer. The 

efficiency measure can be formulated as the optimal function value of the following 

programming: 

( )−+ ++= ssεδ  ZMaximize TT 11                                     (3.16.a) 

subject to 

0δ)xAIsXλ −=+ − (                                                 (3.16.b) 

0δ)yBIsYλ +=− + (                                                  (3.16.c) 

0λ,1λT ≥=1                                                      (3.16.d) 

0≥+s , 0s ≥− , 0ε ≥                                                (3.16.e) 

Basing upon the relationship between the proportional distance and radial efficiency 

measures, the above linear programming is identical to the DEA linear program. Hence, 

the new measure presented in Briec’s research generalizes the DEA method introduced 

by Charnes et al. (1978).  

3.3 The Weighted Global Measure of Efficiency 

Assume that we have n  DMUs each consuming m  inputs and producing s  outputs. 

Suppose that DMU0 ( )00 y ,x  is the unit under evaluation, m
0x +ℜ∈  is the vector of m  

inputs consumed and s
0y +ℜ∈  is the vector of s  outputs produced by this unit. Let 

nmX ×
+ℜ∈  and nsY ×

+ℜ∈  be the input and output matrices respectively, consisting of 

nonnegative elements and containing the observed input and output measures for DMUs. 

We also assume that there are no duplicated units in the data set. Then, following returns 

to variables, the production possibility set P  is defined as 
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{ }0λ1,λλY,yλX,x)y,(x T
0000 ≥=≤≥= 1P                             (3.17) 

Suppose that mT
m1 v,,vv +ℜ∈= )( L  and sT

s1 u,,uu +ℜ∈= )( L  are the weight vectors of 

m  inputs and s  outputs, respectively. We also assume that the input and output vectors 

satisfy 1uT =1  and 1vT =1 . Then the weighted global efficiency score of DMU0 

)( 00 y ,x  can be defined as the optimal solution of the following program:  

  
δu
θv  Minimize T

T

=Φ                                                  (3.18.a) 

subject to 

  1θ,θxXλ ≤≤= 0                                                   (3.18.b) 

  1δ,δyYλ ≥=                                                     (3.18.c) 

  0λ,1λT ≥=1                                                      (3.18.d) 

where T
m1 θ,θθ )( L=  and T

s1 δδδ ),,( L=  represent the scalar vector for the inputs and 

outputs respectively. Let an optimal solution of (3.18) be ( )∗∗∗∗ λ,δ,θ,Φ . It can be 

interpreted as ratio between the weighted efficiency of inputs and the weighted efficiency 

of outputs, which is a more straightforward interpretation than other measures listed 

before. Moreover, Φ  may be decomposed into an input component of weighted 

efficiency and an output one to better explain the efficiency of the DMU being evaluated. 

Based on the optimal solution, we define a DMU0 ( )00 y ,x  as being weighted global 

efficient as follows:  

DEFINITION 3.1 A DMU0 )y ,(x 00  is weighted global efficient if and only if 1Φ =∗ , that 

is, 1δ =∗  and 1θ =∗ .  

If the DMU0 ( )00 y ,x  is not weighted global Efficient, it is called weighted global 

Inefficient. Thus we also have 
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THEOREM 3.1 DMU0 ( )00 y ,x  is weighted global efficient if and only if the optimal value 

of objective function ∗Φ  is equal to unity. 

PROOF. Suppose that DMU0 ( )00 y ,x  is efficient, if )λ,δ,θ,(Φ ∗∗∗∗  is the optimal 

solution of (3.18) whose objective function value ∗Φ  is unity, from (3.18.a), we have 

∗∗ = δuθv TT                                                             (3.19) 

Since 1θ0 ≤≤ ∗  and 1δ ≥∗ , then the only condition to satisfy (3) is 1δθ == ∗∗ . 

Therefore, according to definition, DMU0 ( )00 y ,x  is efficient. This completes the proof. 

 

The above theorem shows that model (3.18) can not only determine efficient DMUs but 

also determine inefficiency of DMU as well as show how to improve the inefficient 

DMUs relative to those efficient ones. On the other hand, by means of the following 

change of variables: 

0

1
x
s

x
sx

θ
0

0
−−

−=
−

=                                                    (3.20) 

0

1
y
s

y
sy

δ
0

0
++

+=
+

=                                                     (3.21) 

It is easy to reexpress formulation (3.18) in terms of total slacks. The result is this new 

problem which provides an alternative expression of the weighted global measure 

connecting Φ  with the usual GEMs:  

( )
( )0

0

/1
/1

ysu
xsv

  Minimize T

T

+

−

+
−

=Φ                                          (3.22.a) 

subject to 

  −+= sXλx0                                                          (3.22.b) 

  ++= sYλy0                                                          (3.22.c) 

  0λ,1λT ≥=1                                                       (3.22.d) 
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0≥−s , 0≥+s                                                        (3.22.e) 

In a similar fashion, if we set all the inputs and outputs are equally important, then the 

above formulation is identical to the slack-based model proposed by Tone (2001).  

REMARK Färe and Lovell (1978) were the first ones who proposed a set of desirable 

properties that an ideal efficiency measure should satisfy, although these were enunciated 

for the particular case of an input oriented measure. Recently, Cooper and Pastor (1995) 

listed similar requirements for the DEA context and suggested some others. Next, we 

study the properties which the proposed weighted global measure satisfies. The following 

is true for the weighted global measure of efficiency Φ :  

PROPOSITION 3.2  The weighted global efficiency score ∗Φ  is units invariant, i. e. it is 

independent of the units in which the inputs and outputs are measured provided these 

units are the same for every DMU. 

PROOF. This propostion holds, since both the objective function and constraints are units 

invariant. This completes the proof.   

PROPOSITION 3.3 The weighted global measure of efficiency is strongly monotonic in 

inputs and in outputs.  

PROOF. Firstly, we are going to rate two units differing only in one input. Consider an 

observation DMU0 with vector of inputs ),,( 010 mxx L  and outputs ),,( 010 syy L , and 

another observation, DMUa with the same values for all inputs and outputs but input k, 

which has the value 0,0 >+= aaxx kka . We have to show that the optimal value of 

∗
aΦ  for the second observation, DMUa, is smaller than ∗

0Φ , the optimal value for the first 

unit. Throughout this proof let us use the fractional problems (P0) and (Pa) to evaluate 

DMU0 and DMUa, respectively, and let ( )∗∗∗∗
0000 λ,δ,θ,Φ  and ( )∗∗∗∗

aaaa λ,δ,θ,Φ  be the 

corresponding optimal solution. Let ( )∗∗∗∗∗∗
sa1ama1ana1a δ,,δ,θ,,θ,λ,,λ LLL  be a solution of 
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(Pa). Then, we can see that ( )∗∗∗∗∗∗
sa1ama1ana1a δ,,δ,θ',,θ',λ,,λ LLL , where ∗∗ ′= r0ra θθ , pr ≠ , 

and 0/ pp0pa xaθθ −′= ∗∗ , is a feasible solution for (P0) verifying the above requirement. 

Then it is easy to check that  ∗′aΦ  is greater than or equal to ∗
aΦ  and thus greater than 

∗
0Φ . So, we can conclude ∗∗ ≥ 0a ΦΦ .  

Following the notation above, let us now consider DMUa equal to DMU0 except for the 

output p, taking the value 0,0 >+= aayy kka , for DMUa. Now, we have to prove 

∗∗ Φ≥ 0aΦ . Let us start the proof by showing that any solution of the problem (Pa) gives a 

feasible solution of the problem (P0) with a smaller value of the objective function. Let 

( )∗∗∗∗∗∗
sa1ama1ana1a δ,,δ,θ,,θ,λ,,λ LLL  be a solution of (Pa). Then, we can see that 

( )∗∗∗∗∗∗ ′′ sa1ama1ana1a δ,,δ,θ,,θ,λ,,λ LLL , where ∗∗ ′= r0ra δδ , pr ≠ , and 0/ yaδδ p0pa +′= ∗∗ , is a 

feasible solution for (P0) verifying the above requirement. In particular, if the starting 

solution of (Pa) is an optimum, we find a solution of problem (P) with as associated value 

of the objective function less than ∗
aΦ , so we conclude ∗∗ Φ≥ 0aΦ . This completes the 

proof.   

PROPOSITION 3.4 Let ),( 00 ψyφx  with 1φ0 ≤≤  and 1≥ψ  be a DMU with the reduced 

inputs and enlarged outputs than ( )00 y ,x . Then, the weighted global efficiency score of 

),( 00 ψyφx  is not less than that of ( )00 y ,x .  

PROOF. Supposing that )λ,δ,θ,(Φ ∗∗∗∗  is the optimal solution of (3.18) when DMU0 

( )00 y ,x  is under evaluation. If 1φ0 ≤≤  and 1≥ψ , then ( )∗∗∗ λ ψ,δ φ,θ //  is a feasible 

solution of (3.18) when ),( 00 ψyφx  is being evaluated, because the constraints for the 

inputs and outputs are clearly satisfied and /φθθ ∗∗ ≤  as well as 1δ/ψδ ≤≤ ∗∗ . 

Therefore, we have 
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  [ ]
[ ]

∗
∗

∗

∗

∗
∗ Φ=≥=Φ′

δv
θu

ψδv
φθu

T

T

T

T

/
/                                           (3.23) 

Thus, the weighted global efficiency score ∗′Φ  of ),( 00 ψyφx  is not less than ∗Φ  of 

( )00 y ,x . This completes the proof.  

REMARK. One important qualification of using the weighted efficiency measure is the 

necessity of determining the factor weights prior to measurement. One method of 

estimation for this multi-output and multi-input production function is based on the 

multivariate technique of canonical correlation analysis. For more details see Vinod 

(1968). This method creates two variables, U and V, consisting of linear combinations of 

outputs and inputs respectively (specified in log form): 

mm11 lnxvlnxvV ++= L                                                (3.24) 

and 

  ss11 lnyulnyuU ++= L                                                 (3.25) 

The optimal weights ( )Tm1 v,,vv L=  and ( )Ts1 u,,uu L=  can be obtained by 

maximizing the correlation between U and V: 

  ( )V U, Corr Maximizeρ
vu,

=∗                                              (3.26) 

leading to estimates ( )Tm1 u,,uu ∗∗∗ = L  and ( )Ts1 v,,vv ∗∗= L . If the weights are precisely 

recognized, this new measure can adjust inputs and outputs at the same time. Because the 

proposed measure requires specification of weights, it should be considered 

semi-parametric.  

REMARK. In order to preserve the linearity and convexity of DEA through our model, the 

fractional program (3.18) can be transformed into a linear programming problem using 

the Charnes-Cooper transformation as follows: 
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0>t , 
t
θθ
′

= , 
t
δδ
′

= , 
t
λλ
′

= , ΦΦ ′=                                  (3.27) 

Then, (3.18) becomes the following linear program in t , θ ′ , δ′ and λ′ : 

  θuΦ  Minimize T ′=′                                                    (3.28.a) 

subject to 

  tθ0xθλX 0 ≤≤′=′ ,                                                  (3.28.b) 

  tδyδλY 0 ≥′′=′ ,                                                    (3.28.c) 

1δvT =′                                                                (3.28.d) 

  0λ,tλT ≥′=′1                                                        (3.28.f) 

Suppose that the optimal solution of (3.28) is ( )∗∗∗∗∗ ′′′′ t,λ,δ,θ,Φ , using (3.27), we can 

obtain an optimal solution of (3.18) as expressed by ( )∗∗∗∗ λ,δ,θ,Φ .  

3.4 Tracing Out the Efficient Frontier 

The intent of frontier estimation is to deduce empirically the production function in the 

form of an efficient frontier. That is, rather than knowing how to convert functionally 

inputs and outputs, these methods take the inputs and outputs as given, map out the best 

performers, and produce a relative notion of the efficiency of each. The problem with the 

existing methods is that they each measure efficiency in a conceptually suspect, albeit 

computationally effective, way. If the DMUs are plotted in their input/output space, then 

an efficient frontier that provides a tight envelope around all of the DMUs can be 

determined. The main function of this envelope is to get as close as possible to each DMU 

without passing by any others. A simple example of an efficient frontier (using variable 

returns to scale) is shown in Figure 3.4. Each DMU along the frontier is considered 

efficient while those falling below the frontier, (e.g., DMU5) are considered inefficient. 



Chapter 3 Value Efficiency: Weighted Global Measure 

    37     

The method of determining the efficiency score for DMU5 varies according to the 

technique employed. Of the two classic methods, the input-oriented or output-oriented 

methods, the efficiency score is determined, in effect, by determining the projection 

directly along the horizontal axis (holding outputs constant), or along the vertical axis 

(holding inputs constant). The method developed in this section determines the shortest 

projection from an inefficient DMU5 to the frontier, in both the input and output space.  

 

Figure 3.4 Efficient frontier and shortest projection 

This projection is more meaningful than either the input- or output-oriented projection as 

it permits the simultaneous movement of inputs and outputs.  

DEFINITION 3.2 Supposing that the optimal solution of (3.18) is )λ,δ,θ,(Φ ∗∗∗∗ , DMUk 

( )kk y,x ~~  can be expressed as follows:  

1θ0Xλxθx 0k ≤≤== ∗∗∗ ,~                                          (3.29) 

1δYλyδyk ≥== ∗∗∗ ,~
0                                              (3.30) 

0λ,1λT ≥= ∗∗~1                                                      (3.31)  

then DMUk ( )kk y,x ~~  is defined as the projection of DMU0 )y ,(x 00  onto the efficient 

Input 

Output 

Efficient Frontier 

DMU4 DMU3 

DMU2 

DMU1 

DMU5 

v = 0, u > 0 

v > 0, u > 0 

u = 0, v > 0 
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frontier. 

These relationships suggest that the efficiency of DMU0 )y ,(x 00  can be improved if the 

input values are reduced nonproportionally by the ratio ∗θ  while the output values are 

augmented by the ratio ∗δ . Thus, we have a method for improving an inefficient DMU 

that accords with Definition 3. 2. In the following theorem, we will show that the 

improved activity ( )kk y,x ~~  projects DMU0 onto the reference set Θ  and any 

nonnegative combination of DMUs in Θ  is weighted global efficient.  

THEOREM 3.5 Compared with all the other DMUs under evaluation, the projection 

DMUk ( )kk y,x ~~  is weighted global efficient.  

PROOF. Supposing that the DMUk ( )kk y,x ~~  is the projection of DMU0 )y ,(x 00  onto the 

efficient frontier, we use the following (14) to evaluate the efficiency of DMUk relative to 

all the other DMUs under evaluation:  

  
δu
θv  Minimize

T

T

~
~

~ =Φ                                                    (3.32.a) 

subject to 

  1θ0xθλxλX kkk ≤≤=+
~,~~~~~                                          (3.32.b) 

  1δ,yδλyλY kkk ≥=+
~~~~~~                                              (3.32.c) 

  0λ,0λ,1λλ kk
T ≥≥=+

~~~~1                                         (3.32.d) 

Suppose that the optimal solution of (3.32) is )λ,λ,δ,θ( k
∗∗∗∗ ~~~~ , from the constraints of 

(3.32), we have 

  okkkk xθθxθ)λλλX(λxλX ∗∗∗∗∗∗∗∗ ==+=+
~~~~~~~~~                            (3.33) 

  0kkkk yδδyδ)λλλY(λyλY ∗∗∗∗∗∗∗∗ ==+=+
~~~~~~~~~                            (3.34) 

( ) 1λλλλλ k
T

k
T =+=+ ∗∗∗∗∗ ~~~1~~1                                           (3.35) 
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Thus )λλλ,δδ,θθ( k
∗∗∗∗∗∗∗ +

~~~~  must be a feasible solution of (3.18), we also have 

  ∗

∗

∗∗

∗∗

≥
δu
θv

δδ[u
θθ[v

T

T

T

T

]~
]~

                                                      (3.36) 

Since 1θ0 ≤≤ ∗~  and 1δ ≥∗~ , then the only condition for (3.36) to be satisfied is 

1θ =∗~  and 1δ =∗~ , that is 1Φ =∗~ . Therefore, DMUk ( )kk y,x ~~  is weighted global 

efficient relative to all the DMUs under evaluation. This completes the proof.    

From the above definition and theorem, the weighted global measure can be expressed at 

point DMU0 )y ,(x 00  as a particular shortage function in the direction of )yδ ,x(θ 00
∗∗ . A 

similar viewpoint is developed by Chambers et al. (1995), Briec (1997) and Ruggiero and 

Bretschneider (1998). They introduce a function they term “input directional distance,” 

which is similarly related to the input distance function defined by Malmquist (1953). 

Now we focus on the particular relationship between the weighted global projection and 

the factor weights. Let us analyze the following several categories of cases:   

Assume that 1δuT = , the weighted global efficiency is identical to the Farrell weighted 

measure of efficiency defined by Ruggiero and Bretschneider (1998). Moreover, if 

assume that input weighting factors satisfy 1/2vv 21 == , the weighted global measure 

coincides with the nonradial measurement of technical efficiency defined by Färe and 

Lovell (1978). Furthermore, if we set 21 θθ = , then we can obtain the radial efficiency 

measure. If 21 vv <  the second input is reduced more than the first one, and the weighted 

global projection is more oriented to the direction of the X1-axis. If 21 vv > , the first input 

is reduced more than the second one, and the weighted global projection is more oriented 

to the direction of the X2-axis. Figure 3.5 illustrates the above differences. Assume that 

1θvT = , the weighted global efficiency coincides with the weighted Russell efficiency. If 

21 uu = , all outputs are equiproportionately increased. If 21 uu < , the second output is 
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increased more than the first one, and the weighted global projection is more oriented to 

the direction of the Y2-axis. If 21 uu > , then the first output is increased more than the 

second one, and the weighted global projection is more oriented to the direction of the 

Y1-axis. 

 

Figure 3.5 Effect of factor weights on the Input-oriented projection 

 

 

Figure 3.6 Effect of factor weights on the output-oriented projection 
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3.5 Comparison with Other Efficiency Measures 

In this section, we first compare our model with a Farrell-based efficiency measure 

proposed by Banker et al. (1984) which is regarded as one of the basic DEA models and 

point out remarkable differences among them.  

THEOREM 3.6. The weighted global efficiency score ∗Φ  of DMU0 in (5) is less than the 

weighted Russell efficiency score ∗η  in (19).  

PROOF. Suppose that the optimal solution of (19) is ( )∗+∗−∗∗ s,s,λ,η , let 

0xsηθ ∗−∗∗ −=                                                         (3.36) 

  0ys1δ ∗+∗ +=                                                           (3.37) 

Obviously, ( )∗+∗−∗∗ s,s,λ,η  makes ( )∗∗∗ λ ,δ ,θ  be the optimal solution of (3.18), then 

  ∗
∗+

∗−∗

∗+

∗−∗

∗

∗
∗ ≤

+
−

=
+
−

== ηv
/ysu1

/xsvηv
]/ys[1u
]/xs[ηv

δu
θvΦ T

0
T

0
TT

0
T

0
T

T

T

                 (3.38) 

Since 0s ≥∗−  and 0s ≥∗+ , then we have ∗∗ ≤ ηΦ . This completes the proof.   

THEOREM 3.7. A DMU0 )y ,(x 00  is weighted global efficient, if and only if it is weighted 

Russell efficient.  

PROOF. Suppose that DMU0 )y ,(x 00  is weighted Russell inefficient. Then, we have 

either 1η ≤∗  or ( 1η =∗  and 0,0)s(s (), ≠∗+∗− ). From (23), in both cases, we have 

1≤∗Φ  for a feasible solution of (5). Hence, DMU0 )y ,(x 00  is weighted global 

inefficient.  

On the other hand, suppose that DMU0 )y ,(x 00  is weighted global inefficient. Then, it 

holds (1,1))δ,(θ ≠∗∗ . By the statement (16) and (18), ( ∗η , 00 xθxηs ∗∗∗− −= , 

00 yyδs −= ∗∗+ ) is a feasible solution for (4), provided 0=−= ∗∗∗−
00 xθxηs , that is 

∗∗ = ηθ . There are two cases. 
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Case 1 ( 1== ∗∗ ηθ ) then 1δ >∗ , 0≥−= ∗∗+
00 yyδs . In this case, an optimal solution 

for (4) is weighted Russell inefficient.  

Case 2 ( 1≠= ∗∗ ηθ ), then an optimal solution for (4) is also weighted Russell inefficient.  

On the other hand, provided 0xθxηs 00 ≥−= ∗∗∗− , that is ∗∗ ≤ ηθ . In this case, an 

optimal solution for (4) is also weighted Russell inefficient.  

Therefore, weighted Russell inefficiency is equivalent to weighted global inefficiency. 

Since the definition of efficiency and inefficiency are mutually exclusive, we have proved 

the theorem. This completes the proof.   

3.6 An Illustrative Example 

To facilitate comparison, five measures were used to measure the efficiency of the DMUs 

using the observed data reported in Table 3.1. In calculating the weighted global measure, 

the true factor weights and the average factor weights were used in the linear programs 

respectively. All the results by applying model (3.18) are shown in the Table 3.2. 

Table 3. 1 Example data 

DMU 1 2 3 4 5 6 7 8 9 10 
Input 1 5 2 1 2 1 3 4 2 4 5 
Input 2 3 5 3 4 1 2 3 11 5 3 
Output 1 5 3.5 4 5 1 5 6 7 9 3 
Output 2 4 4 3.5 4.5 2 1.5 6.5 8 4 6.5 

Using standard efficiency models, we can show that four DMUs (DMU 1, 2, 4 and 10) are 

weighted global inefficient. Results for the weighted global measures of efficiency which 

consider the average weightings of inputs and outputs are displayed in Panel 1 of Table 

3.2. For each efficient DMU the efficiency score and the position in the ranking based on 

these scores are displayed. In addition, Panel 1 also shows the values of projections and 

reference units. The projection of DMU0 onto the efficient frontier can be expressed as a 

linear combination of other DMUs under evaluation. In the other panel the weights 
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factors are considered. It turns out that this measure yields not only different 

super-efficiency scores and thus different rankings but also different values of projection 

and different reference units. This is not surprising because the factors are equally 

important in the production process in Panel 1 while biased relative weights used in Panel 

2. Finally, we compared our measures with other measures in Table 3.3.  

Other application of such global measure can be found in performance measurement of 

Chinese investment funds. For more details, see Chen and Poh (2003). 

Table 3.2 Results for (3.18) with averagely weighted and weighted reference units 
Projection Points DMU Scores Ranks 
Input 1 Input 2 Output 1 Output 2 

Reference 
Units 

Panel 1: Average weighted 
1 0.6372 8 4 3 4 6 7 
2 0.5957 10 1.33 3 4.22 3.83 3(.89), 7(.11) 
4 0.9439 7 2 3.5 5 4.5 3, 7, 8, 9 
10 0.6000 9 4 3 4 6 7 
Panel 2: Weighted ( )( 678.0

2
322.0

1
470.0

2
530.0

1 XXYY =  
1  0.6683 8 4 3 4 6 7 
2  0.5757 10 1.51 3 4.34 4 3(.83), 7(.17) 
4  0.9239 7 2 3.5 5 4.5 3, 7, 8, 9 
10  0.6115 9 4 3 4 6 7 

 
Table 3.3 Results from different efficiency measures 

Type 1 2 3 4 5 6 7 8 9 10 
BCC 0.789 0.672 1 0.948 1 1 1 1 1 1 
RTE 0.717 0.667 1 0.944 1 1 1 1 1 0.900
STE 0.637 0.615 1 0.944 1 1 1 1 1 0.600
Ours 0.637 0.596 1 0.944 1 1 1 1 1 0.600
 

3.7 Conclusion 

In this study, we propose a weighted efficiency measure which focuses on inputs 

minimization and output maximization simultaneously. Firstly, we define our measure of 

efficiency and then investigate its properties and demonstrate its characteristics 

theoretically. In addition, we provide one effective method to capture the internal value 

information in the production systems which is usually omitted in the traditional 
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efficiency measures. Furthermore, we show how the effect of weights factors on the 

efficiency and efficient frontier in our model. Finally, we compare our measure with other 

measures theoretically as well as empirically and find that there are some differences 

between our measure and others.
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Chapter 4  

Value Super-Efficiency for Ranking Efficient Units 

4.1 Introduction 

Since the original publication, DEA has become a popular method for analyzing the 

efficiency of various organizational units, e. g. see Charnes et al. (1994). In recent years, a 

substantial amount of scholarly efforts has been devoted to the development of so-called 

super-efficiency measures for differentiating some of the efficient DMUs that have 

identical efficiency scores equal to one in the basic models. The ability to rank or 

differentiate the efficient DMUs is of both theoretically and practically importance. 

Theoretically, the inability to differentiate the efficient units creates a considerable 

number of observations typically characterized as efficient, unless the sum of the number 

of inputs and outputs is small relative to the number of observations. Specialized units 

may be rated as efficient due to a single input or output, even though that input or output 

may be seen as relatively important. Thus this poses analytical difficulties to any 

post-DEA statistical inference analysis. In practice, further differentiation among 

efficient DMUs is also desirable and even necessary in many cases. One classical 

example of the application of the super-efficiency DEA model is the work by Lovell et al. 

(1994).  

In the Farrell tradition, ranking efficient units on the frontier was first researched by 

Andersen and Petersen (1993). Since then, other scholarly efforts attributed to this topic 

include the works by Doyle and Green (1993, 1994), Stewart (1994), Wilson (1995), 

Charnes et al. (1996), Tofallis (1996), Zhu (1996), Seiford and Zhu (1998, 1999), Tone 
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(2002), Xue and Harker (2002) among others. However, one concern about these 

super-efficiency measures is that they may not always be possible to determine their 

value when the super-efficiency models are applied under other alternate returns to scale 

(RTS) conditions other than constant returns to scales (CRS). In other words, the 

mathematical program defining the super-efficiency measures may not have a feasible 

solution. This has been a concern in the literature since the introduction of the 

Farrell-based super-efficiency measure and was first noticed in Thrall (1996). Another 

concern is that these super-efficiency measures cannot capture certain inherent 

relationships among the inputs and the outputs.  

In this chapter we propose a weighted global measure of super-efficiency based on the 

weighted global measure of efficiency proposed in the Chapter 3. This super-efficiency 

measure differs from traditional radial measures of super-efficiency due to several 

aspects. Firstly, this measure considers both inputs minimization and output 

maximization simultaneously while traditional measures are usually determined either by 

maximizing outputs subject to given input levels or minimizing inputs subject to given 

output levels. Secondly, unlike the slacked-based measure of super-efficiency proposed 

by Tone (2002), our super-efficiency measure can deal with input and output slacks 

directly, as well as account for all sources of inefficiency, including radial and nonradial 

inefficiency in inputs and outputs. Finally, this measure presents a weighted global 

measure which recognizes the possibility of differential factor weights in production 

process and can be applied to situation where the relative worth of a subset (or subsets) of 

inputs and/or outputs is known or predetermined beforehand.   

This chapter is organized as follows: Section 4.2 proposes a weighted global measure of 

super-efficiency and investigates its desirable characteristics as well as its computational 

feasibility. In Section 4.3, we explore the super efficient frontier and discuss the 
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differences between our super projection and traditional radial projections onto the super 

efficient frontier. Furthermore, we compare our model with other super-efficiency 

models and demonstrate the rationalities of our model in Section 4.4. Finally, an 

illustrative example is illustrated in Section 4.5. Section 4.6 contains some concluding 

remarks.  

4.2 A New Value Super-efficiency Measure 

Following the above research, we suppose that DMU0 ( )00 y ,x  is an efficient unit under 

evaluation, m
0x +ℜ∈  is the vector of m inputs consumed and s

0y +ℜ∈  is the vector of s 

outputs produced by this unit. Similarly, let 1)(nm −×
+ℜ∈X  and 1)-(nm×

+ℜ∈Y  be the input 

and output matrices respectively, consisting of nonnegative elements and excluding the 

observed input vector and output vector of DMU0. The production possibility set 

)y,P/(x 00  can be redefined as 

( ){ }0λb,λB,λy ,λxy,xyx 0000 ≥≤≥≤= YX),P/( 00                        (4.1) 

Following the above section, the weighted global super-efficiency score Φ  for DMU0 

can be defined as follows:  

  
δu
θvΦ T

T

=                                                                 (4.2) 

where Φ  is the optimal solution of the following problem:   

  
δu
θv  Minimize T

T

=Φ                                                    (4.3.a) 

subject to 

  0X xθλ =                                                              (4.3.b) 

  0δyλ =Y                                                              (4.3.c) 

  0λ,bBλ ≥≤                                                         (4.3.d) 
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where ( )Ts1 δ,δδ L=  and ( )Tm1 θ,θθ ,L=  represent the scalar vectors for the outputs 

and the inputs respectively. Suppose that ( )∗∗∗∗ λ,θ,δ,Φ  is the optimal solution of (4.3), 

We have the following propositions: 

PROPOSITION 4.1  The weighted global super-efficiency score ∗Φ  is units invariant, i. 

e. it is independent of the units in which the inputs and outputs are measured provided 

these units are the same for every DMU. 

PROOF. This propostion holds, since both the objective function and constraints are units 

invariant. This completes the proof.  

PROPOSITION 4.2  Let ),( 00 ψyφx  with 1φ0 ≤≤  and 1ψ ≥  be a DMU with the 

reduced inputs and enlarged outputs than ( )00 y ,x . Then, the weighted global super- 

efficiency score of ),( 00 ψyφx  is not less than that of ( )00 y ,x .   

PROOF. Supposing that ( )∗∗∗∗ λ,δ,θ,Φ  is the optimal solution of (4.3) when DMU0 

( )00 y ,x  is under evaluation. If 1φ0 ≤≤  and 1≥ψ , then ( )∗∗∗ λ ψ,δ φ,θ //  is a feasible 

solution of (4.3) when ),( 00 ψyφx  is being evaluated, because the constraints for the 

inputs and outputs are clearly satisfied and /φθθ ∗∗ ≤  as well as 1δ/ψδ ≤≤ ∗∗ . 

Therefore, we have 

  ∗
∗

∗

∗

∗
∗ =≥=′ Φ

δv
θu

/ψδv
/φθuΦ T

T

T

T

                                                (4.4) 

Thus, the weighted global super-efficiency score ∗′Φ  of ),( 00 ψyφx  is not less than ∗Φ  

of ( )00 y ,x . This completes the proof.  

In order to preserve the linearity and convexity of DEA through our model, the fractional 

program (4.3) can be transformed into a linear programming problem using the 

Charnes-Cooper transformation as follows: 
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0>t , 
t
θθ
′

= , 
t
δδ
′

= , 
t
λλ
′

= , ΦΦ ′=                                   (4.5) 

Then, (4.3) becomes the following linear program in t , θ ′ , δ′ and λ′ : 

  θvΦ  Minimize T ′=′                                                    (4.6.a) 

subject to 

  0xθλ ′=′X                                                             (4.6.b) 

  0yδλ ′=′Y                                                             (4.6.c) 

1δuT =′                                                                (4.6.d) 

  0λ,btλB ≥′≤′                                                       (4.6.f) 

Let an optimal solution of (4.6) be )t,λ,δ,θ,Φ( ∗∗∗∗∗ ′′′′ . By using (4.5), we can obtain an 

optimal solution of (4.3) as expressed by )λ,δ,θ,(Φ ∗∗∗∗ .  

4.3 Exploring the Super-efficient Frontier 

Traditionally, when we apply DEA models and DMU under evaluation results as 

inefficient, we obtain single efficient reference point which Pareto dominates the DMU 

under evaluation. This point can also be interpreted as target point on the frontier such 

that inefficient DMU should adopt its output mix to became efficient. Here we also apply 

such concept to characterize the super-efficient frontier. In Anderson and Peterson model, 

the radially projected current position is generally not the same as the most preferred 

future position. Accordingly, when setting target point, the radial projection of an 

efficient DMU to the super-efficient frontier is too restrictive a technique because the 

current values of outputs (or inputs) are projected onto the super-efficient frontier by 

decreasing (or increasing) them in the same proportion. In our models, the 

super-efficiency of the efficient DMU is determined by adjusting each input to its given 

level unproportionally at the same time adjusting each output to its given level 
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unproportionally. Variables are aggravated until the boundary of the super-efficient 

frontier is achieved. Below, in Figure 4.1, we have illustrated such difference.  

 

Figure 4. 1 Super-efficient Frontier and Projection 

Suppose that four efficient DMUs, namely DMUA, DMUB and DMUC and DMUD, are 

composed of the original efficient frontier. Now the DMUB is under evaluation and thus 

excluded from the efficient frontier, then we may define the resulting efficient frontier 

ACD as the super-efficient frontier. The traditional projection, either B’ or B”, is 

inefficient relative to all the DMUs under evaluation because it is possible that a 

composition of other DMUs shows more efficient than the projection whereas our super 

projection is targeted at the efficient points on the original efficient frontier and thus still 

efficient relative to the rest DMUs under evaluation. 

We may define the super projection of the efficient DMU onto the super-efficient frontier 

of (4.3) as follows: 

DEFINITION 4.1  Supposing that the optimal solution of (4.3) is ( )∗∗∗∗ λ,δ,θ,Φ , the 

DMUk ( )kk y,x ~~  can be expressed as follows:  

∗∗ == λxθx 0k X~                                                         (4.7) 

Input 

Output 

Super‐efficient Frontier 

D

A

C
B

B’

B”
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∗∗ == λyδyk Y~
0                                                         (4.8) 

then DMUk ( )kk y,x ~~  is defined as the super projection of DMU0 onto the super-efficient 

frontier. 

PROPOSITION 4.3  Compared with all the other DMUs (excluding DMU0) under 

evaluation, the super projection DMUk ( )kk y,x ~~  is weighted global efficient.  

PROOF. Supposing that the DMUk ( )kk y,x ~~  is the super projection of DMU0 onto the 

super efficient frontier, we use the following (4.9) to evaluate the weighted efficiency of 

DMUk relative to all the other DMUs under evaluation:  

  
δv
θu  Minimize

T

T

~
~

~ =Φ                                                     (4.9.a) 

subject to 

  1θ0xθλxλ kkk ≤≤=+
~,~~~~~X                                            (4.9.b) 

  1δ,yδλyλ kkk ≥=+
~~~~~~Y                                               (4.9.c) 

  0λ,0λ,bλλB kk ≥≥≤+
~~~~                                            (4.9.d) 

We suppose that the optimal solution of (4.9) is ( )∗∗∗∗
kλ,λ,δ,θ ~~~~ , from the constraints of 

(4.9), we have 

  okkkk xθθxθ)λλλ(λxλ ∗∗∗∗∗∗∗∗ ==+=+
~~~~~~X~~~X                           (4.10) 

  0kkkk yδδyδ)λλλ(λyλ ∗∗∗∗∗∗∗∗ ==+=+
~~~~~~Y~~~Y                           (4.11) 

( ) bλλλBλλB kk ≤+=+ ∗∗∗∗∗ ~~~~~                                            (4.12) 

Thus )λλλ,δδ,θθ( k
∗∗∗∗∗∗∗ +

~~~~  must be a feasible solution of (4.3), we also have 

  ∗

∗

∗∗

∗∗

≥
δv
θu

δδv
θθu

T

T

T

T

~
~

                                                        (4.13) 

Since 1θ ≤≤ ∗~0  and 1δ ≥∗~ , then the only condition for (4.13) to be satisfied is 
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1θ =∗~  and 1δ =∗~ , that is 1Φ =∗~ . Therefore, DMUk ( )kk y,x ~~  is weighted global 

efficient. This completes the proof.    

4.4 Comparison with Other Super-efficiency Measures 

In this section, we compare our model with a Farrell-based super-efficiency measure 

proposed by Anderson and Peterson (1993) as well as a slack-based super-efficiency 

measure proposed by Tone (2002), and point out remarkable differences among them. 

For more details about the comparison between the Farrell-based super-efficiency and the 

Slack-based super-efficiency, see Tone (2002). 

4.4.1 Anderson and Petersen Farrell-based model 

This model can be described, in the input-oriented general model, as follows: 

  η  Minimize                                                            (4.14.a) 

subject to 

  0
- ηxsλ =+X                                                          (4.14.b) 

  0ys-λ =+Y                                                           (4.14.c) 

  0λ,bBλ ≥≤                                                         (4.14.d) 

  0s ≥− , 0s ≥+                                                         (4.14.e) 

where −s  and +s  represent input and output slack vectors, respectively. Let an optimal 

solution of (4.14) be ( )∗+∗−∗∗ s,s,λ,η . For an efficient DMU0 ( )00 y,x , Farrell-based 

efficiency score ∗η  is not less than unity, and this value indicates Farrell-based 

“super-efficiency”. However, the subproblems for some “extreme points” (Thrall 1996) 

may become infeasible when the super-efficiency models are applied under variable 

returns to scale (VRS). Previous researches on this topic in the DEA literature have 
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basically concluded that in case of infeasibility in the super-efficiency DEA models, the 

ranking of the whole set is impossible and, consequently, it is suggested that the use of the 

super-efficiency DEA models should be restricted under alternate RTS assumption. 

Regarding this measure we also have the following proposition: 

PROPOSITION 4.4 The Anderson and Peterson model returns the same super-efficiency 

score ∗η  for any DMU represented by )/ηαs(x0
∗∗−−  for the range 1α0 ≤≤ .  

This contradicts our common understanding that a reduction of input values usually 

increases super-efficiency. This irrationality is caused by the fact that this model deals 

only with the radial measure and neglects the existence of input slacks as represented by 

∗−s .Furthermore, if we set 1δvT = , ηθ = , then (4.3) can be equivalent to (4.14). Thus, 

we also have the following relationships between (4.3) and (4.14).  

LEMMA 4.5 Let us define 

  0,00 ==
⎭
⎬
⎫

⎩
⎨
⎧

≥
−

= ∗−∗−
∗−

∗
∗   sifs

s
1)x(η minimizeτ 0                     (4.15) 

Then, ( )∗∗∗+∗∗−∗∗∗ =+== λλ ,/ys1δ ,/xsτ-ηθ 00  is a feasible solution for (4. 3). 

PROOF. From (4.15), we have 1θ ≤  and 1δ ≥ , hence the solution ( )∗∗∗ λ ,δ ,θ  satisfies 

the constraints of the weighted super-efficiency model.  

THEOREM 4.6 The weighted global super-efficiency score ∗Φ  of DMU0 in (4.3) is less 

than the Farrell-based super-efficiency score ∗η  in (4.14).  

PROOF. Suppose that the optimal solution of (4.14) is ( )∗+∗−∗∗ s,s,λ,η , let 

0xsηθ ∗−∗∗ −=                                                         (4.16) 

  0ys1δ ∗+∗ +=                                                          (4.17) 

Obviously, ( )∗+∗−∗∗ s,s,λ,η  makes ( )∗∗∗ λ ,δ ,θ  be the optimal solution of (4.3), then 
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  ∗
∗+

∗−∗

∗+

∗−∗

∗

∗
∗ ≤

+
−

=
+
−

== η
/ysv1
/xsuη

]/ys[1v
]/xs[ηu

δv
θuΦ

0
T

0
T

0
T

0
T

T

T

                     (4.18) 

Since 0s ≥∗−  and 0s ≥∗+ , then we have ∗∗ ≤ ηΦ . This completes the proof.  

4.4.2 Tone’s Slack-based Super-efficiency Model 

In Tone’s slack-based super-efficiency model, we assume that the DMU0 ( )00 y,x  is 

SBM-efficient. Let ( )00 y ,x  be the projection of DMU0 ( )00 y,x  in the production 

possibility set, the super-efficiency of DMU0 ( )00 y,x  can be defined as the objective 

function value ∗κ  of the following program:  

( )
)/yy(

/xx
m
sκ  Minimize

00
T

00
T

1
1

×=                                          (4.19.a) 

subject to 

  0xλ ≤X                                                              (4.19.b) 

  0yλ ≥Y                                                              (4.19.c) 

  0xx ≥0 , 0yy ≤< 00                                                  (4.19.d) 

  0λ,bBλ ≥≤                                                        (4.19.e) 

If we set ( )Tm100 α,,αα,αxx L==  and ( )Ts100 β,,βββyy L== , , then Tone’s 

slack-based super-efficiency model can be converted to be  

  
β
α

m
sκ  Minimize T

T

1
1

×=                                                 (4.20.a) 

subject to 

  1α,αxsλ 0
- ≥=+X                                                  (4.20.b) 

  1β0,βys-λ 0 ≤≤=+Y                                             (4.20.c) 

  0λ,bBλ ≥≤                                                         (4.20.d) 
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  0s ≥− , 0s ≥+                                                         (4.20.e) 

Let an optimal solution of (4.20) be ( )∗+∗−∗∗∗ s,s,β,α,κ . Comparing (4.3) and (4.20), we 

have 

THEOREM 4.7 The weighted global super-efficiency score ∗Φ  in (4.3) is less than the 

slack-based super-efficiency score ∗κ  in (4.20).  

PROOF. Suppose that the optimal solution of (4.20) is ( )∗+∗−∗∗∗ s,s,β,α,κ , let  

0xsαθ ∗−∗∗ −=                                                         (4.21) 

  0ysβδ ∗+∗∗ +=                                                         (4.22) 

Obviously, ( )∗+∗−∗∗∗ s,s,β,α,κ  makes ( )∗∗∗∗ λ ,δ ,θ,Φ  be the optimal solution of (4.3), 

then 

  ∗
∗

∗

∗+∗

∗−∗

∗

∗
∗ =⋅≤

+
−

⋅=⋅= κ
β
α

m
s

]/ysβ[
]/xsα[

m
s

δ
θ

m
sΦ T

T

0
TT

0
TT

T

T

1
1

11
11

1
1                 (4.23) 

Since 0s ≥∗−  and 0s ≥∗+ , then we have ∗∗ ≤ κΦ . This completes the proof..  

4.5 An Illustrative Example 

We will now demonstrate how the efficient DMUs are ranked in different models: our 

Weighted Super-efficiency model, the Anderson and Peterson model and Tone 

Slack-based Super-efficiency model. Following variables return to scales, the constraint 

bBλ ≤  becomes 1λT =1 . Let us consider the example in Table 4. 1 with ten DMUs, two 

outputs and two inputs. Using standard efficiency models, we can show that four DMUs 

(DMU 3, 4, 5 and 7) are efficient. Results for the weighted global measures of 

super-efficiency which consider the average weightings of inputs and outputs are 

displayed in Panel 1 of Table 4.2. For each efficient DMU the super-efficiency score and 

the position in the ranking based on these scores are displayed. In addition, Panel 1 also 
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Table 4. 1 Example data 

DMU 1 2 3 4 5 6 7 8 9 10 
Input 1 4 12 8 6 2 3 3 8 4 6 
Input 2 6 8 2 6 8 9 7 12 10 5 
Output 1 2 3 2 4 2 1 2 3 1 2 
Output 2 1 1 2 2 3 2 4 1 3 2 

shows the values of projections and reference units. The projection of DMU0 onto the 

efficient frontier can be expressed as a linear combination of other DMUs under 

evaluation. The other Panel contains the super-efficiency scores and rank numbers 

obtained when the weighting factors are considered by assuming that the production 

function is represented as 6.04.07.03.0 XXYY = . It turns out that this measure yields not 

only different super-efficiency scores and thus different rankings but also different values 

of projection and different reference units. This is not surprising because the factors are 

equally important in the production process in Panel 1 while biased relative weights used 

in Panel 2. For each efficient DMU the super-efficiency score and the position in the 

ranking based on these scores are displayed. In addition, Panel 1 also shows the values of 

projections and reference units. The projection of DMU0 onto the efficient frontier can be 

expressed as a linear combination of other DMUs under evaluation. The other Panel 

contains the super-efficiency scores and rank numbers obtained when the weighting 

Table 4. 2 Result from the weighted global model of super-efficiency 

Projection Points DMU Scores Ranks 
Input 1 Input 2 Output 1 Output 2 

Reference 
Units 

Panel 1: Average weighted 
3 1.250 1 6 6 4 2 4 
4 0.667 4 3 7 2 4 7 
5 1.108 2 3 7 2 4 7 
7 1.034 3 2 8 2 3 5 
Panel 2: Value-added  
3  1.324 1 3 7 2 4 7 
4  0.581 4 3 7 2 4 7 
5  0.912 3 3 7 2 4 7 
7  1.154  2 2 8 2 3 5 
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expressed as a linear combination of other DMUs under evaluation. The other Panel 

contains the super-efficiency scores and rank numbers obtained when the weighting 

factors are considered by assuming that the production function is represented as 

6.04.07.03.0 XXYY = . It turns out that this measure yields not only different 

super-efficiency scores and thus different rankings but also different values of projection 

and different reference units. This is not surprising because the factors are equally 

important in the production process in Panel 1 while biased relative weights used in Panel 

2.  

We will next examine efficient DMUs and their projections in the input-oriented 

Anderson and Peterson model and Tone’s Slack-based Super-efficiency model. The 

results including super-efficiency scores, ranks and projections from applying these two 

models are shown in Panel 1 and Panel 2 of Table 4.3, respectively. As expected, the 

super-efficiency scores both in Andersen and Peterson model and Tone model are greater 

than the weighted super-efficiency scores and thus lead to different rankings among the 

efficient DMUs. Moreover, when using Andersen and Peterson model, the mathematical 

programming defining the super-efficiency scores for DMU4 and DMU7 can not have a 

feasible solution. This represents the potential drawback of the traditional Farrell-based 

super-efficiency. At the same time, the super efficiencies are undervalued because there 

still exist relatively large input slacks against their projections which are composed of a 

positive combination of their reference units. This means that their super-efficiency 

scores are evaluated by referring to points far apart from the efficient portions of the 

production possibility set. On the other hand, although the slack-based super-efficiency 

score ∗κ  drops from the Farrell- based super-efficiency score ∗η , it increases from the 

weighted super-efficiency score ∗Φ  due to still not completely incorporating all the 

input/output slacks. 
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Table 4.3 Results from Andersen and Peterson’s model and Tone’s model 

Projection Points (Slacks) DMU Scores Ranks 
Input 1 Input 2 Output 1 Output 2 

Reference 
Units 

Panel 1: The Anderson and Peterson’s Model  
3  2.500 1  6 (14) 5 (0) 2 (0) 2 (0) 10 
4  Inf.  *       
5  1.500 2  3 (0) 7 (5) 2 (0) 4 (1) 7 
7  Inf. *       
Panel 2: The Tone’s Slack-based Model 
3  1.750 1  8(2) 5 2 2 10 
4  1.290 2  6 6 2. 2 2 1, 2, 3, 5 
5  1.250 3  3 7 2 3 (1) 7 
7  1.171 4  3 7 2 2.8 (1.2) 3, 5 

4.6 Conclusion 

The ability to rank or differentiate the efficient units is of both theoretically and 

practically importance. As illustrated by the application work by Lovell et al. (1994): 

“The primary benefit of this approach is the ability to make finer distinctions between 

efficient DMUs and to produce a logarithmic MDEA distribution of relative performance 

scores that are approximately normally distributed”. Thus the super-efficiency DEA 

model has the extraordinary potential to overcome the analytical difficulties arising in the 

post-DEA analysis. However, one concern about these super-efficiency models is that 

they may not always be possible to determine their optimal value when the 

super-efficiency models are applied under other alternate returns to scale (RTS) 

conditions other than constant returns to scales (CRS). Another concern is that these 

super-efficiency measures cannot capture certain inherent relationships among the inputs 

and the outputs which can be known or predetermined beforehand.  

In this study, we propose a weighted super-efficiency measure which focuses on inputs 

minimization and output maximization simultaneously. This super-efficiency measure is 

useful to differentiate efficient units and motivate appropriate behavior. Firstly, we define 
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our measure of super-efficiency and then investigated its properties and demonstrate its 

characteristics theoretically. In addition, we shows how to calculate the measure in a 

linear program setting when it is actually applicable in the sense that the measure exists, i. 

e. the defining programs have a feasible solution. Finally, we compare our measure with 

other super-efficiency measures theoretically as well as empirically and find that there are 

some differences between our measure and others.  
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Chapter 5  

Modeling Undesirable Factors in Value Efficiency 

5.1 Introduction 

DEA was originally developed by Charnes et al. (1978) and extended by Banker et al. 

(1984) as a method for evaluating the relative efficiency of Decision Making Units 

(DMUs) that essentially perform the same task using similar multiple inputs to produce 

similar multiple outputs. Since the original publication, DEA has become a popular 

method for analyzing the efficiency of various organizational units, e. g. see Charnes et al. 

(1994). In recent years, a substantial amount of scholarly efforts has been devoted to 

address those production systems in which both desirable (good) and undesirable (bad) 

output and input factors may be present. Consider a paper mill production where paper is 

produced with undesirable outputs of pollutants such as biochemical oxygen demand, 

suspended solids, particulates and sulfur oxides. If inefficiency exists in the production, 

the undesirable pollutants should be reduced to improve the inefficiency, i.e., the 

undesirable and desirable outputs should be treated differently when we evaluate the 

production performance of paper mills. However, in the standard DEA models, decreases 

in outputs are not allowed and only inputs are allowed to decrease. (Similarly, increases 

in inputs are not allowed and only outputs are allowed to increase.) If one treats the 

undesirable outputs as inputs, the resulting DEA model does not reflect the true 

production process. Similarly situations when some inputs need to be increased to 

improve the performance are also likely to occur. For example, in order to improve the 

performance of a waste treatment process, the amount of waste (undesirable input) to be 
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treated should be increased rather than decreased as assumed in the standard DEA 

models.  

As so far, there are at least five methods for dealing with undesirable outputs in the DEA 

framework. The first method is just simply to ignore the undesirable outputs. The second 

is to treat the undesirable ones as outputs and to adjust the distance measurement in order 

to restrict the expansion of the undesirable outputs (see the weak disposability model in 

Färe et al., 1989). The third is to treat the undesirable outputs as inputs. However, all 

these three methods do not reflect the true production process. The fourth is to treat the 

undesirable outputs in the non-linear DEA model developed by Färe et al. (1989) and 

used to model the paper production systems where the desirable outputs are increased and 

the undesirable outputs are decreased. The fifth is to apply a monotone decreasing 

transformation to the undesirable outputs and then to use the adapted variables as outputs, 

e. g. Seiford and Zhu (2002) applied a linear monotone decreasing transformation. Since 

the use of linear transformation preserves the convexity relations, it is a good choice for 

DEA models. However, DEA calculations in above methods are traditionally value-free. 

The underlying assumption is that no output or input is more important than another, 

although, in the real world there generally exist some undesirable outputs or inputs which 

are less important than other outputs or inputs in the production systems. In DEA models, 

a DMU which, for example, is a superior producer of a less important undesirable output 

is diagnosed as efficient even if it performs poorly with respect to all other outputs. Hence, 

in the original DEA models, the efficiency scores are not necessarily good performance 

indicators. Here, we use Figure 5.1 to clarify our point. The example consists of five 

DMUs, each producing two outputs (one desirable and another undesirable) and all 

consuming the same amount of one input. We can see that DMU1, DMU2 and DMU3 are 

efficient while DMU4 and DMU5 are inefficient. Thus DMU1, DMU2 and DMU3 all  
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Figure 5.1 Classical DEA 

receive an efficiency score of 1. Let us assume that for some reasons the Decision Maker 

(DM) considers the desirable output to be much more important than the undesirable 

output. In this case DMU1 would be far more preferred to DMU3. The DM might even 

prefer DMU5 to DMU3, even though the former is inefficient. 

In this chapter we will first briefly illustrate the last two methods for treating the 

undesirable outputs in DEA framework. Then based on the linear monotone decreasing 

transformation, we treat both desirable and undesirable outputs differently in the 

weighted global DEA framework in which both radial inefficiency and nonradial 

inefficiency are incorporated. Furthermore, factor weights for both inputs and outputs 

(desirable and undesirable) are also incorporated in such DEA framework.  

5.2 Traditional DEA Models with Undesirable Outputs 

Assume that we have n  DMUs each consuming m  inputs to produce s  desirable 

outputs and r undesirable outputs. We also suppose that DMU0 ( )b
0

g
00 y,y ,x  is the unit 

under evaluation, m
0x +ℜ∈  is the vector of m  inputs consumed this unit while 
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sg
0y +ℜ∈  and rb

0y +ℜ∈  are the vectors of s  desirable outputs and r undesirable outputs 

produced by this unit, respectively. Let nmX ×
+ℜ∈  and nr)(sY ×+

+ℜ∈  be the input and 

output matrices respectively, consisting of nonnegative elements and containing the 

observed input and output measures for all DMUs. The DEA data domain is expressed as  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡
−

X
Y
Y

X
Y b

g

                                                         (5.1) 

where gY  and bY  represent the desirable (good) and undesirable (bad) output matrices, 

respectively. Obviously, we wish to increase the desirable outputs gY  and to decrease 

the undesirable outputs bY  to improve the performance. However, in the standard BCC 

model, both gY  and bY  are supposed to increase to improve the performance. In order 

to improve the desirable output and to decrease the undesirable outputs, Färe et al. (1989) 

modify the BCC model into the following nonlinear programming problem:   

  ( )bTgTT sssεα  Maxmize ++− +++ 111                                  (5.2.a) 

subject to  

  0xsXλ =+ −                                                           (5.2.b) 

  g
0

gg αysλY =− +                                                        (5.2.c) 

  b
0

bb y
α
1sλY =− +                                                       (5.2.d) 

  0λ,1λT ≥=1                                                        (5.2.e) 

  0s0s,0s bg ≥≥≥ ++− , , 0ε ≥                                      (5.2.f)  

Similarly, based upon classification invariance, Seiford and Zhu (2002) show that an 

alternative to model (5.2) can be developed to preserve the linearity and convexity in 

DEA. They multiply each undesirable output by “−1” and then find a proper translation 

vector w to let all negative undesirable outputs be positive. The data domain of (5.1) now 
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becomes 

⎥
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                                                         (5.3) 

where 0wYY bb >+−= . Based on (5.3), undesirable factors can be formulated in the 

following programming problem:  

  ( )bTgTT sssεβ  Maxmize ++− +++ 111                                  (5.4.a) 

subject to  

  0xsXλ =+ −                                                           (5.4.b) 

  g
0

gg βysλY =− +                                                        (5.4.c) 

  b
0

bb yβsλY =− +                                                        (5.4.d) 

  0λ,1λT ≥=1                                                        (5.4.e) 

  0s0s,0s bg ≥≥≥ ++− , , 0ε ≥                                      (5.4.f) 

Note that (5.4) expands desirable outputs and contracts undesirable outputs as in the 

non-linear DEA model (5.4). Therefore, under the context of the BCC model, this 

research provides an alternative method in dealing with desirable and undesirable 

factors in DEA 

5.3 Modeling Undesirable Factors in Weighted Global Framework 

Following Seiford and Zhu, we propose a new model that its objective function is linear 

and also both desirable and undesirable outputs are treated differently and simultaneously. 

Besides we will prove that by this model efficient DMUs can be determined. Supposing 

that ( ) mT
m1 V,,VV +ℜ∈= L  is the weight vector of m  inputs while 

( ) sT
S1g U,,UU +ℜ∈= L  and ( ) rT

r1b U,,UU +ℜ∈= L  are the weight vectors of s  
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desirable outputs and k  undesirable outputs respectively. We also assume that the input 

and output vectors satisfy 1VT =1  and 1UU b
T

g
T =+11 , respectively. The weighted 

global efficiency score of DMU0 ( )b
0

g
00 y,y,x  can be formulated as the objective function 

value of the following programming problem: 

θV
δUδU

Φ  Maximize T

bT
b

gT
g +

=                                          (5.5.a) 

subject to 

  1θ0,θxXλ 0 ≤≤=                                                  (5.5.b) 

  1δ,yδλY gg
0

gg ≥=                                                   (5.5.c) 

  1δ,yδλY bb
0

bb ≥=                                                  (5.5.d) 

  0λ,1λT ≥=1                                                        (5.5.e) 

where ( )Tg
s

g
1

g δ,δδ ,L=  and ( )Tb
r

b
1

b δ,,δδ L=  represent the scalar vectors for the 

desirable outputs and the undesirable outputs, respectively, whereas ( )Tm1 θ,,θθ L=  

represents the scalar vector for the inputs.  

REMARK: One important qualification of using the weighted efficiency measure is the 

necessity of determining the factor weights prior to measurement. One method of 

estimation for this multi-output and multi-input production function is based on the 

multivariate technique of canonical correlation analysis. For more details see Vinod 

(1968), Ruggiero and Bretscheider (1998) and Chen and Poh (2003).  

REMARK: In order to preserve the linearity and convexity of DEA through our model, (5) 

can be transformed into a linear program using the Charnes-Cooper transformation in a 

similar way to the CCR model (see Charnes et al. 1978). Let 

0t > , 
t
θθ
′

= , 
t
δδ

g
g ′
= , 

t
δδ

b
b ′
= ,

t
λλ
′

= , ΦΦ ′=                      (5.6) 
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Then, (5) becomes the following linear programming in t , θ ′ , gδ′ , bδ′ and λ′ : 

bT
b

gT
g δUδUΦ  Maximize ′+′=′                                         (5.7.a) 

subject to  

  1θV T =′                                                               (5.7.b) 

  tθ0,xθλX 0 ≤′≤′=′                                                (5.7.c) 

  tδ,yδλY gg
0

gg ≥′′=′                                                 (5.7.d) 

  tδ,yδλY bb
0

bb ≥′′=′                                                (5.7.e) 

  0, ≥≥′=′ t0λ,tλ1T                                               (5.7.f) 

Let the optimal solution of (5.7) be ( )∗∗∗∗∗∗ ′′′′Φ′ t,λ,δ,δ,θ, bg . By using (5.6), we can 

obtain the optimal solution of (5.5) as expressed by ( )∗∗∗∗∗Φ λ,δ,δ,θ, bg . Based on this 

optimal solution, we determine a DMU as being weighted global efficient as follows:   

DEFINITION 5.1 (Weighted global efficiency). If the optimal solution ( )∗∗∗∗∗ λ,δ,δ,θ,Φ bg  

of (5) satisfies 1Φ =∗ , then DMU0 ( )b
0

g
00 y,y,x  is weighted global efficient. Otherwise, 

the DMU0 ( )b
0

g
00 y,y,x  is weighted global inefficient. 

Note that (5.5) not only expands desirable outputs and contracts undesirable outputs as 

in the non-linear DEA model (5.2) and BCC model (5.4), but also contracts inputs 

simultaneously. The following theorem ensures that the optimized undesirable output 

)(0
b
0

bb yδwy ∗−=  can not be negative:   

THEOREM 5.1 Given a translation vector w , suppose the scalar vector ∗bδ  is the 

optimal value of (5.5), we have wyδ b
0

b ≤∗ .  

PROOF. Note that all outputs now are non-negative. Let ∗bδ  be an optimal solution 

associated with ∗β . Since 1λT =∗1 , therefore ∗∗ ≤ bb
0

b yyδ , where ∗by  is composed 

from (translated) maximum values among all bad outputs. Note that wyy b
0

b
0 +−= ∗ , 
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where ∗by  is composed from (original) minimum values among all bad outputs. Thus, 

wyδ b
0

b ≤∗ . This completes the proof.   

Since 1θ0 ≤≤ ∗ , 1δ g ≥∗  and 1δ b ≥∗ , so it is clear that the optimal value of objective 

function is non-negative and not less than unity. We always have 

THEOREM 5.2 DMU0 ( )b
0

g
00 y,y,x  is weighted global efficient if and only if the optimal 

value of objective function ∗Φ  is equal to unity. 

PROOF. Suppose that DMU0 is weighted global efficient, if ( )∗∗∗∗ λ,δ,δ,θ bg  is the 

optimal solution of (5.5) whose objective function value ∗Φ  is unity, from (5.5.a), we 

have 

∗∗∗ += bT
b

gT
g

T δUδUθV                                                   (5.8) 

Since 1θ0 ≤≤ ∗ , 1δ g ≥∗  and 1δ b ≥∗ , then the only condition to satisfy (5.8) is 

1δδθ bg === ∗∗∗ . Therefore, according to DEFINITION 1, DMU0 ( )b
0

g
00 y,y,x  is 

weighted global efficient. This completes the proof.  

The above theorem not only shows that model (5.5) can discriminate the efficient DMUs 

from the inefficient ones but also show how to improve those inefficient DMUs relative 

to the combinations of the efficient DMUs.  

THEOREM 5.3 For an inefficient DMU0 with ( )b
0

g
00 y,y,x  input and output combination, 

figurative DMUF with )yδ  ,yδ  ,x(θ b
0

bg
0

g
0

∗∗∗  input and output (including desirable and 

undesirable) combination is weighted global efficient.  

PROOF. Supposing that the DMUF ( )b
0

bg
0

g
0 yδ  ,yδ  ,xθ ∗∗∗  is the figurative DMU of DMU0  

( )b
0

g
00 y,y,x , we use the following (5.9) to evaluate the efficiency of DMUF  relative to all 

the DMUs under evaluation:  
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θV

δUδU
Φ  Maximize

T

bT
b

gT
g

~

~~
~ +
=                                          (5.9.a) 

subject to 

  1θ,xθλxλX FFF ≤≤=+
~0~~~                                           (5.9.b) 

  1δ,yδλyλY gg
F

g
F

g
F

g ≥=+
~~~~                                          (5.9.c) 

1δ,yδλyλY bb
F

b
F

b
F

b ≥=+
~~~~                                          (5.9.d) 

  0λ,0λ,1λλ FF
T ≥≥=+

~~~~1                                         (5.9.e) 

Supposing that the optimal solution of (5.9) is ( )∗∗∗∗∗∗Φ F
bg λ,λ,δ,δ,θ, ~~~~~~ , from the 

constraints of (5.9), we can have 

  0FFFF xθθxθ)λλλX(λxλX ∗∗∗∗∗∗∗∗ ==+=+
~~~~~~~                          (5.10) 

  g
0

ggg
F

g
FF

g
F yδδyδ)λλλY(λyλY ∗∗∗∗∗∗∗∗ ==+=+

~~~~~~~                       (5.11) 

  b
0

bbb
F

b
F

b
F

b
F

b yδδyδ)λλλ(YλyλY ∗∗∗∗∗∗∗∗ ==+=+
~~~~~~~                     (5.12) 

  ( ) 1λλλλλ F
T

F
T =+=+ ∗∗∗∗∗ ~~~1~~1                                         (5.13) 

Then )λλλ,δδ,δδ,θθ( F
bbgg ∗∗∗∗∗∗∗∗∗ +

~~~~~  must be a feasible solution of (5.5), we also 

have 

  ∗

∗∗

∗∗

∗∗∗∗ +
≥

+

θV
δUδU

θθ[V

δδ[Uδδ[U
T

bT
b

gT
g

T

bbT
b

ggT
g

]~
]~]~

                           (5.14) 

Since 1θθ0 ≤≤ ∗∗~ , 1δδ gg ≥∗∗~  and 1δδ bb ≥∗∗~ , the only condition for (5.14) to be 

satisfied is 1θ =∗~ , 1δ g =∗~  and 1δ b =∗~ , that is 1Φ =∗~ . Therefore, the DMUF 

( )b
F

g
FF yy,x ,  is weighted efficient relative to other DMUs under evaluation. This 

completes the proof.   

THEOREM 5.4 If ( )b
0

g
00 y,y ,x  is weighted global efficient, for 0α > , then ( )b

0
g
00 yα,αy,xα  

is also weighted global efficient.  



Chapter 5 Modeling Undesirable Factors in Value Efficiency 

    69     

PROOF. It is obvious.  

THEOREM 5.5 Let ),,( 0
bg

00 yψyφx ϕ  with 1≤φ , 1≥ψ and 1≥ϕ  be a DMU with the 

reduced inputs and enlarged outputs(enlarged desirable outputs and reduced 

undesirable outputs) than )y,y,(x b
0

g
00 . Then, the weighted global efficiency score of 

),,( 0
bg

00 yψyφx ϕ  is not greater than that of )y,y ,(x b
0

g
00 . 

PROOF. Suppose that ( )∗∗∗∗∗ λ,δ,δ,θ,Φ bg  is the optimal solution of (5.5) for DMU0 

( )b
0

g
00 y,y ,x . If 1≤φ , 1≥ψ  and 1≥ϕ , then ( )∗∗∗∗ λ,/δ ψ,δ φ,θ bg ϕ//  is a feasible 

solution of (5.5) when ),,( 0
bg

00 yψyφx ϕ  is being evaluated, because the constraints for the 

inputs and outputs are clearly satisfied. Since /φθθ ∗∗ ≤≤0 , ∗∗ ≤≤ gg δ/ψδ1  and 

∗∗ ≤≤ bb δ/δ ϕ1 , therefore, we have 

  ∗
∗

∗∗

∗

∗∗
∗ =

+
≤

+
=′ Φ

θU
δVδV

/φθU
/δV/ψδV

Φ T

bT
b

gT
g

T

bT
b

gT
g ϕ

                      (5.15) 

Thus, the weighted efficiency score of ),,( 0
bg

00 yψyφx ϕ  is not greater than that of 

)y,y ,(x b
0

g
00 . This completes the proof.   

Comparing our model with Seiford and Zhou’s model, we have the following theorems: 

THEOREM 5.6 The weighted global efficiency score ∗Φ  of DMU0 )y,y ,(x b
0

g
00  in (5.5) 

is not less than the BCC efficiency score ∗β  in (5.4).  

PROOF. Suppose that the optimal solution of (5.5) is ( )∗+∗+∗−∗∗ bg s,s,s,λ,β , let 

0xsθ ∗−∗ −= 1                                                          (5.16) 

  g
0

gg ysβδ ∗+∗∗ +=                                                     (5.17) 

b
0

bb ysβδ ∗+∗∗ +=                                                      (5.18) 

Obviously, ( )∗+∗+∗−∗∗ bg s,s,s,λ,β  make ( )∗∗∗∗ λ,δ ,δ ,θ bg  be the optimal solution of 

(5.5), then 
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]/xs[1V
]y/s[βU]/ys[βU

θV
δUδU

Φ
0

T

b
0

bT
b

g
0

gT
g

T

bT
b

gT
g

∗−

∗+∗∗+∗

∗

∗∗
∗

−

+++
=

+
=          (5.19) 

that is, 

]1
]]

0
T

b
0

bT
b

g
0

gT
g

/x[sU
y/[sU/y[sUβ

Φ ∗−

∗+∗+∗
∗

−

++
=                                  (5.20) 

Since 0s ≥∗− , 0s g ≥∗+  and 0s b ≥∗+ , we have ∗∗ ≥ βΦ . This completes the proof.   

THEOREM 5.7 The weighted global efficiency for DMU0 )y,y ,(x b
0

g
00 in (5.5) is 

equivalent to the BCC efficiency for that in (5.4).   

PROOF. Suppose that DMU0 )y,y ,(x b
0

g
00  is BCC inefficient. Then, we have either 

1β ≥∗  or ( 1β =∗  and 0,0,0)ss(s bg (),, ≠∗+∗+∗− ). From (5.20), in both cases, we have 

1Φ ≥∗  for a feasible solution of (5.5). Hence, DMU0 )y,y ,(x b
0

g
00  is weighted global 

inefficient. On the other hand, suppose that DMU0 )y,y ,(x b
0

g
00  is weighted global 

inefficient in (5.5). Then, it holds (1,1,1))δ,δ,(θ bg ≠∗∗∗ . According to statements (5.16), 

(5.17) and (5.18), )yβyδs,yβyδs,xθxs,(β b
0

b
0

bbg
0

g
0

gg
00

∗∗∗+∗∗∗+∗∗−∗ −=−=−=   is a 

feasible solution for (5.4). Provided 0=−= ∗∗−
00 xθxs , that is 1θ =∗ , there are two 

cases:  

Case 1 ( 1δ1,δ bg ≥= ∗∗ ) then 0yβys g
0

g
0

g =−= ∗∗+ , 0yβyδs b
0

b
0

bb ≥−= ∗∗∗+ . In this case, 

DMU0 )y,y ,(x b
0

g
00  in (5.4) is BCC inefficient.  

Case 2 ( 1δ1,δ bg =≥ ∗∗ ) then 0yβys b
0

b
0

b =−= ∗∗+ , 0yβyδs g
0

g
0

gg ≥−= ∗∗∗+ . In this case, 

DMU0 )y,y ,(x b
0

g
00  in (5.4) is also BCC inefficient.  

Finally, provided 0xθxs 00 ≥−= ∗∗− , that is 1θ0 ≤≤ ∗ . In this case, DMU0 )y,y ,(x b
0

g
00  

in (5.4) is also BCC inefficient. Therefore, the BCC inefficiency is equivalent to the 

weighted global inefficiency. Since the definitions of efficiency and inefficiency are 
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mutually exclusive, we have proved the theorem. This completes the proof.    

The above discussions can also be applied to situation when some inputs need to be 

increased rather than decreased to improve the performance. In this case, we rewrite data 

domain as 

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=⎥

⎦

⎤
⎢
⎣

⎡
− d

c

g

X
X

Y

X
Y

                                                        (5.21) 

where cX  and dX  represent inputs to be increased and decreased, respectively. Next 

multiply dX  by “−1” and then find a proper translation vector Z to let all negative dX  

be positive. The data domain of (5.21) becomes 

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=⎥

⎦

⎤
⎢
⎣

⎡
− d

c

g

X
X

Y

X
Y

                                                        (5.22) 

Based upon (5.22), we suppose that s
S1 ]U,,[UU +ℜ∈= L  is the weight vectors of s  

outputs while m
m1C ]V,,[VV +ℜ∈= L  and r

r1d ]V,,[VV +ℜ∈= L  are the weight vector 

of m  desirable inputs and r  undesirable inputs respectively. We also assume that the 

weight factors for both inputs and outputs satisfy 1VV d
T

c
T =+11  and 1UT =1 , 

respectively. 

δU
θVθVΦ  Minimize T

dT
d

cT
c +

=                                          (5.23.a) 

subject to  

  1θ0,xθλX cc
0

cc ≤≤=                                               (5.23.b) 

1θ0,xθλX dd
0

dd ≤≤=                                               (5.23.c) 

  1δ,δyYλ 0 ≥=                                                      (5.23.d) 

  0λ,1λT ≥=1                                                       (5.23.e) 
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where mTc
m

c
1

c ]θ,[θθ +ℜ∈= ,L  and rTd
r

d
1

d ]θ,[θθ +ℜ∈= ,L  represent the scalar vectors 

for desirable inputs and undesirable inputs, respectively, whereas +ℜ∈= s
T

s1 ]δ,,[δδ L  

represents the scalar vector for outputs.  

5.4 A Numerical Example 

We will now demonstrate how the undesirable factors are addressed differently in 

efficiency evaluation using our models and others. Let us consider the example in Table 

5.1 with ten DMUs, two inputs and three outputs (two desirable outputs and one 

undesirable output). Here in this example, we do not consider the different factor weights 

in the inputs and outputs, that is, we regard all the inputs and outputs are equally 

important in the production system. 

Table 5. 1 Example Data 

DMU 1 2 3 4 5 6 7 8 9 10 
Input 1 5 2 1 2 4 3 4 4 4 5 
Input 2 3 5 3 4 4 2 3 11 5 3 
Desirable output 1 5 3.5 4 5 1 5 6 7 9 3 
Desirable output 2 4 4 3.5 3.5 2 1.5 6.5 3 4 6 
Undesirable output 4 3 4 4.5 4 1 4 5 4 4 
Adjusted 2 3 2 1.5 2 5 2 1 2 2 

The results obtained by applying different models are displayed in Table 5.2. For each 

measure the efficiency scores and the positions in the ranking based on these scores are 

displayed. Column 2 shows the optimal value to the model (1)a when the undesirable 

output is not included. When we ignore undesirable factor, four DMUs were deemed as 

efficient. Column 3 contains the results obtained from (1)b where the undesirable output 

is treated as input. It turns out that this model yields not only different efficiency scores 

but also a different ranking. The efficiency scores resulting from Seiford and Zhou model 

based upon classification invariance 06YY bb .+−=  of undesirable output are displayed 

in the Column 4. The results are not greatly different from the those resulting from model 
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Table 5.2 Efficiency scores and rankings for the ten DMUs 

DMU Model (1)a Model (1)b ∗β in Model (4) ∗Φ in Model(5) 
1 1.226 (8) 1.226 (8) 1.226 (8) 1.674 (8) 
2 1.125 (7) 1.000 (1-5) 1.000 (1-5) 1.000 (1-5) 
3 1.000 (1-4) 1.000 (1-5) 1.000 (1-5) 1.000 (1-5)  
4 1.094 (6) 1.094 (7) 1.094 (7) 1.381 (6) 
5 3.250 (10) 3.250 (10) 1.844 (10) 4.450 (10) 
6 1.000 (1-4) 1.000 (1-5) 1.000 (1-5) 1.000 (1-5) 
7 1.000 (1-4) 1.000 (1-5) 1.000 (1-5) 1.000 (1-5) 
8 1.286 (9) 1.286 (9) 1.286 (9) 2.971 (9) 
9 1.000 (1-4) 1.000 (1-5) 1.000 (1-5) 1.000 (1-5) 
10 1.083 (5) 1.083 (6) 1.054 (6) 1.571 (7) 
Mean 1.306 1.294 1.150 1.705 
(1)a The undesirable output is ignored in the BCC model.  
(1)b The undesirable output is treated as inputs in the BCC model. 

(1)b where the undesirable output is treated as input. The last column shows the efficiency 

scores and the positions in the ranking based on these efficiency scores. Comparing the 

results from the Seiford and Zhu model with those from our model, we find that 

efficiency in both models is equivalent and our efficiency scores of the inefficient DMUs 

increase greatly from those obtained from Seiford and Zhou model due to considering 

both radial inefficiency and nonradial inefficiency. The most notable examples are that 

DMU5 lost over 100% efficiency and the ranking of DMU4 and DMU10 is totally 

reversed. 

5.5 Conclusion  

In this paper, we have studied various approaches for incorporating undesirable factors in 

the DEA models under the assumption of variables return to scales. A new efficiency 

measure is oriented to both desirable factors and undesirable factors simultaneously on 

the basis of classification invariance so that the weighted global DEA model allows the 

expansion of desirable outputs and the contraction of undesirable outputs and all inputs 

with different proportions. The new approach can also be applied to situations when some 

inputs need to be increased to improve the performance. 
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Chapter 6  

Value Efficiency in DEA Models without Inputs/Outputs 

6.1 Introduction 

DEA measures the relative efficiency of comparable entities called Decision Making 

Units (DMUs) essentially performing the same task using similar multiple inputs to 

produce similar multiple outputs (Charnes et al. 1978). The purpose of DEA is to 

empirically estimate the so-call efficient frontier based on the set of available DMUs. 

DEA provides the user with information about the efficient and inefficient units, as well 

as the efficiency scores and reference sets for inefficient units. The results of the DEA 

analysis, especially the efficiency scores, are used in practical applications as 

performance indicators of DMUs. However, in some complex production systems, input 

data (or output data) is unavailable, thus making performance evaluation be based only 

on the output data (or input data). Adolphson et al. (1991) firstly noted that it is possible 

to use DEA models without inputs or outputs for such broader perspective and justified 

that the presence of the convexity constraint in the BCC model (Banker et al. 1984) 

provides the technical grounds of the model change. Actually prior to this research, 

Thompson et al. (1986) adopted an input-oriented CCR model with unique constant 

output to determinate the optimal location of a superconducting supercollider in the state 

of Texas in a case study. Although from an economic point of view it is difficult to 

accept a DEA model without inputs or outputs, the BCC model without inputs has been 

widely used in performance evaluation in many fields e. g. Lovell (1995), Ozcan and 

Mccue (1996), and Lovell and Pastor (1997a), (1997b). These applications provide solid 

empirical support of the methodology suggested in this paper. In addition, Lovell and 
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Pastor (1999) make a detailed analysis on some radial DEA models without inputs or 

without outputs from the theoretical perspective. Therefore, research on the DEA 

models without inputs/outputs is both theoretically and practically importance.  

The reminder of this chapter is organized as follows. Section 6.2 briefly introduces the 

standard output-oriented BCC model without inputs. Basing on this model, in Section 

6.3, we introduce the weighted global efficiency measure and discuss a set of desirable 

properties that the new measure satisfies; we also compare our new measure with the 

traditional BCC measure and discuss the importance of the global projection based on 

this efficiency measure. Section 6.4 discusses the validity of super-efficiency in the 

BCC model without outputs and then proposes a new procedure to discriminate 

super-efficiency scores among the efficient DMUs. In Section 6.5 we include an 

example to illustrate the performance of the measure. Finally, Section 6.6 offers some 

concluding remarks. 

6.2 The Traditional BCC Model without Inputs/Outputs 

We want to deal with n DMUs with the output matrix mn
jiyY ×

+ℜ∈= )( , 

( nj ,,1L= ; mi ,,1L= ), where  j indexes the DMUs under evaluation and i  indexes 

the outputs of each DMU under evaluation. We define the production possibility set P as 

follows:  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==≥=≤= ∑∑
==

m,1,in;,1,j0,λ,1λ,yλyy j

n

1j
j

n

1j
jiji0,i0, LLP           (6.1) 

where iy ,0  is the thi  output of the thj0  DMU, named DMU0, which we want to 

evaluate. Hence the formulation of the data envelopment analysis problem for an 

output-oriented BCC model without inputs is 
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∑
=

++
m

1i
iSεδ  Maximize                                                  (6.2.a) 

subject to 

m,1,i,δySyλ i0,i

n

1j
jij L==− +

=
∑                                      (6.2.b) 

∑
=

=≥=
n

1j
jj n,1,j0,λ,1λ L                                        (6.2.c) 

0ε,0Si >≥+                                                         (6.2.d) 

where +
iS  is slack in the ith  output, ε  is an arbitrarily small positive number, and jλ  

is an intensity variable. This is a simplified version of the output-oriented BCC model 

(Banker et al. 1984). Actually, it corresponds to the BCC model with unique constant 

inputs or without inputs. Lovell and Pastor (1999) have demonstrated the equivalence of 

these two models as follows:   

PROPOSITION 6.1 An output-oriented (input-oriented) BCC model with a single 

constant input (output) is equivalent to an output-oriented (input-oriented) BCC model 

without inputs (outputs). 

PROOF. We can always assume that the constant input is at least 1, since a rescaling of 

any variable does not affect the optimal efficiency score obtained by means of any radial 

DEA model. Therefore the restriction associated with a single constant input is 

1λn

1j j ≤∑ =
. The presence of the convexity constraint 1λn

1j j =∑ =
 converts the 

proceeding restriction into a redundant restriction and so it can be deleted. This 

completes the proof.  

For observed DMU0, the envelopment problem seeks the maximum equiproportionate 

expansion in all outputs that is feasible without violating best practice as defined by the 

m+1 function constraints in the problem. The solution to the maximization problem 
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provides a comprehensive performance measure for DMU0, provided that the output 

slacks are small. The optimal value of the objective satisfies 1δ ≥∗ . The optimal 

solution ( 1δ =∗  and 0Si =∗+ ) suggests that the DMU under evaluation is BCC 

efficient, since it is impossible to expand all the outputs equiproportionately with a same 

scalar δ  to the level which does not exceed the best practice in the observed DMUs. 

The optimal solution 1δ >∗  means that the DMU under evaluation is BCC inefficient, 

since it is possible to expand all the outputs simultaneously with the same proportion to 

i0,yδ∗ . Thus the larger the value of ∗δ , the weaker the performance. 

6.3 Measuring Efficiency in DEA Model without Inputs/Outputs 

In this section, we discuss the weighted global efficiency issues by focusing our 

attention on an output-oriented DEA model without inputs. A similar discussion is also 

valid for an input-oriented DEA model without outputs. 

6.3.1 Definition of the New Measure 

First, we change the constraints of (6. 2) as follows: 

i0,
i0,

i
ii0,

n

1j
jij )y

y
S(δSδyyλ

+
+

=

+=+=∑                                       (6.3) 

Let 
i0,

i
i y

S
δδ

+

+= , we define the efficiency score of DMU0 as the optimal objective 

function value *δ  of the following programming: 

T
m1 ]δ,,[δδ  Maximize L=                                            (6.4.a) 

subject to 

m1,i1,δ,yδyλ ii0,i

n

1j
jij ,L=≥=∑

=

                                 (6.4.b) 
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n,1,j0,λ,1λ j

n

1j
j L=≥=∑

=

                                       (6.4.c) 

The objective function of above formulation is to increase each output with different 

scalar. Whenever performance is evaluated on the basis of more than one outputs, 

conflicts are bound to arise. For a production system, an increase in one output leads to a 

decrease in another output because the overall resources for producing these two outputs 

are constant. Does its performance improve or decline? The answer depends on the two 

magnitudes in question, and on how the two outputs are weighted. Therefore, if we 

suppose that iw  is the weight for the ith output as well as satisfies 1wm

i i =∑ =1
, then 

(6.4) can be converted to the following programming:  

∑
=

=
m

1i
iiδwδ  Maximize                                                 (6.5.a) 

subject to 

m1,i1,δ,yδyλ ii0,i

n

1j
jij ,L=≥=∑

=

                                 (6.5.b) 

n,1,j0,λ,1λ j

n

1j
j L=≥=∑

=

                                       (6.5.c) 

This is our new formulation of an output-oriented weighted global DEA model. 

Compared with the BCC efficiency measure, the new efficiency measure not only 

considers both radial and nonradial inefficiency, but also incorporates the weight factors 

for the outputs. Thus, we also refer to it as a Weighted Global Efficiency Measure 

(WGEM). One important qualification of using the weighted global measure is the 

necessity of determining the factor weights wi prior to measurement. Here we do not 

discuss how to determine the factor weights, for more detail see Ruggiero and 

Bretschneider (1998). Let the optimal solution of (6. 5) be ( )∗∗∗
ji λ,δ,δ , we determine a 

DMU as being weighted global efficient as follows:  
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DEFINITION 6.1 (Weighted global efficiency). If the optimal solution ( )∗∗∗
ji λ,δ,δ  of (6.5) 

satisfies 1δδ i == ∗∗ , then DMU0 is weighted global efficient. Otherwise, the DMU0 is 

weighted global inefficient. 

It is evident for an increasing value function δ  that 1δ >  if and only if the DMU0 is 

weighted global inefficient. The greater the efficiency scores, the poorer the 

performances. 

6.3.2 Properties of the Weighted Global Efficiency Measure 

Färe and Lovell (1978) were the first ones who proposed a set of desirable properties 

that an ideal efficiency measure should satisfy, although these properties were 

enunciated for the particular case of an input oriented measure. Recently, Cooper and 

Pastor (1995) listed similar requirements for the DEA context and suggested some 

others. Next, we 

discuss some properties which the proposed weighted global measure satisfies. The 

following propositions are true for the weighted global measure of efficiency: 

PROPOSITION 6. 2 The weighted global efficiency score *δ  is units invariant, i. e. it is 

independent of the units in which outputs are measured provided these units are the 

same for every DMU. 

PROOF. This proposition holds, since both the objective function and constraints are 

units invariant.  

PROPOSITION 6. 3 If the weighted global efficiency score of DMU0 satisfies 1=*δ , 

then DMU0 is Koopmans efficient.  

PROOF. This property is also a consequence of the definition of weighted global 

efficiency, since observation DMU0 is Koopmans efficient if, and only if, all slacks are 

zero.  
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PROPOSITION 6.4 The weighted global measure of efficiency is strictly monotonic in 

outputs. 

PROOF. Consider an observation DMU0 with outputs ( )m0,0,1 y, ,y L , and another 

observation DMUa with the same values for all outputs but the rth output, which has 

value 0,,0, >∆∆+= rrrra yy . We need to show that the weighted global efficiency 

score ∗aδ  for the second observation DMUa is greater than the weighted global 

efficiency score ∗0δ  for the first observation DMU0. Denote by ( )ma,a,1 y, ,y L  the 

outputs of the second observation, where iia yy ,0, =  for all ri ≠  and rrra yy ∆+= ,0, . 

Throughout this proof let us use the model (6. 5) to evaluate DMU0 and DMUa and thus 

obtain the optimal solutions ( )∗∗∗∗ 000
jri

0 λ,δ,δ,δ  and ( )∗∗∗∗ a
j

a
r

a
i

a λ,δ,δ,δ  for DMU0 and 

DMUa, respectively. If the both observations have the same projection onto the efficient 

frontier it follows that riδδ i
a
i ≠= ∗∗ ,0 , and rarr

a
r yδδ ,

0 /∆−= ∗∗ . ( )∗∗∗∗ 000
jri

0 λ,δ,δ,δ  is 

a feasible solution for (Pa) and thus verifying the above requirement. This completes the 

proof.  

PROPOSITION 6.5 Let ),,( ,0 mm0,11 yφyφ L  with m),1,(i  φi L=≥1  be a DMU with the 

enlarged outputs relative to DMU0 ( )m0,0,1 y, ,y L . Then, the weighted global efficiency 

score of ),,( ,0 mm0,11 yφyφ L  is not greater than that of ( )m0,0,1 y, ,y L . 

PROOF. Suppose that ( )∗∗∗
ji λ,δ,δ  is the optimal solution of (6.5) for DMU0 ( )b

0
g
00 y,y ,x . 

If ( )m,1,i φi L=≥1 , then ( )∗∗
jii λ,/φδ  is a feasible solution of (6.5) when 

),,( ,0 mm0,11 yφyφ L  is being evaluated, because the constraints for the inputs and outputs 

are clearly satisfied. Since ∗∗ ≤≤ iii δφδ /1 , therefore, we have 

  ∗

=

∗

=

∗∗ =≤=′ ∑∑ δδw]/φ[δwδ
m

1i
ii

m

1i
iii                                       (6.6) 
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where ∗′δ  represents the weighted global efficiency score of ),,( ,0 mm0,11 yφyφ L . 

Therefore, the weighted efficiency score of ),,( ,0 mm0,11 yφyφ L  is not greater than that 

of ( )m0,0,1 y, ,y L . This completes the proof.   

6.3.3 Comparing Weighted Global Efficiency with BCC Efficiency 

The relationship between the BCC efficiency and the weighted global efficiency is 

demonstrated by the following propositions. 

PROPOSITION 6.6 The weighted global efficiency of DMU0 in (6. 5) is equivalent to the 

BCC efficiency of DMU0 in (6. 2).   

PROOF.  (i) Suppose that ( )∗∗
ji

* λ,δ,δ  is the optimal solution of (6.5). If DMU0 is 

weighted global efficient, according to DEFINITION 1, we have 1δδ i
* == ∗ . Then the 

constraints of (6.5) must satisfy: 

m,1,i,yδyλ
n

1j
i0,

*
ijij L==∑

=

∗                                            (6.7) 

n,1,j,0λ,1λ *
j

n

1j

*
j L=≥=∑

=

                                         (6.8) 

If we set 1δ =∗  and 0=∗+
iS , obviously, ( )∗+∗∗

ij S,λ,δ  is also a feasible solution of 

(6.2). If ∗+
iS  and ∗δ  can be further expanded, that is, 0≠∗+

iS and 1δ ≠∗ , this will 

contradict condition that ∗
jλ  must satisfy (6.7) and (6.8). On the other hand, since 

0≥∗+
iS  and 1δ ≥∗ , ∗+

iS  and ∗δ  cannot become small. Therefore, ( )∗+∗∗
ij S,λ,δ  is the 

optimal solution of (6.2), as well as satisfies 0Si =∗+  and 1δ =∗ . That means that 

DMU0 is also BCC efficient. 

(ii) Suppose that DMU0 is BCC efficient, then the optimal solution ( )∗+∗∗
ij S,λ,δ  of (6.2) 

must satisfy 0=∗+
iS  and 1δ* = . Thus the solution ( )*

j
*
i

* λ,δ,δ  must not only satisfy 
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constraints (6.7) and (6.8). Just proved as above, ( )∗∗∗
ji λ,δ,δ  is not only a feasible 

solution of (6.5) but also the only optimal solution of (6.5). According to DEFINITION 1, 

we know that the corresponding DMU0 is also weighted global efficient. Therefore, the 

weighted global efficiency of DMU0 in (6.5) is equivalent to the BCC efficiency of 

DMU0 in (6.2). This completes the proof.  

PROPOSITION 6.7 The weighted global efficiency score ∗δ  of DMU0 in (6. 5) is not less 

than the BCC efficiency score ∗δ  of DMU0 in (6. 2). 

PROOF. Suppose that the optimal solution of (6.2) is ( )∗∗∗
ij S,λ,δ  ( mi ,,1L= , 

nj ,,1L= ). According to (6. 3), we have 

i0,

i
i y

S
δδ

∗+
∗∗ +=                                                            (6.9) 

It can be observed from (6. 9) that, ( )∗∗∗
ij S,λ,δ  makes ( )∗∗∗

ji λ,δ,δ  the optimal solution 

of (6. 5). Then we have  

∑∑
=

∗+
∗

=

∗+
∗∗

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

m

1i i0,

ii
m

1i i0,

i
i y

Swδ
y
Sδwδ                                (6.10) 

Since 0≥∗+
iS , from (6.10), we have ∗∗ ≥ δδ . Therefore, the weighted global 

efficiency score *δ  of DMU0 in (6.5) is not less than the BCC efficiency score ∗δ  of 

that in (6.2). This completes the proof.  

6.3.4 Global Projection Analysis onto Efficient Frontier 

The intent of frontier estimation is to deduce empirically the production function in the 

form of an efficient frontier. That is, rather than knowing how to convert functionally 

inputs and outputs, these methods take the inputs and outputs as given, map out the best 

performers, and produce a relative notion of the efficiency of each. The problem with the 

existing methods is that they each measure efficiency in a conceptually suspect, albeit 
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computationally effective, way. In the traditional BCC model without inputs, the radial 

projection of an efficient DMU onto the efficient frontier is a too restrictive technique 

because the current output values are projected onto the efficient frontier by increasing 

them in the same proportion. Whereas in our model, the efficiency of an inefficient 

DMU is determined by increasing each output to its given level which mostly depends 

on the weight factors assigned to different outputs. Thus, this projection is more 

meaningful than the radial projection as it incorporates the effects of weight factors 

assigned to outputs. Here, we focus on the differences between the global projection 

obtained in our model and radial projection obtained in traditional BCC model by 

evaluating a simple production system set with only two outputs and without inputs, see 

Figure 6.1. 

 

Figure 6.1 Illustration of different projections onto efficient frontier 

In Figure 6.1, an inefficient DMU E can be projected onto the efficient frontier which 

consists of four efficient DMUs, i. e. A, B, C, and D. Assume that 21 θθ = , the weighted 

global efficiency in (6.5) coincides with the BCC efficiency in (6.2), that is, these two 

models have the same projections onto the efficient frontier. The outputs are 

Output 1 

Output 2 

B 

C

D 

A 

E’ 

w2 > w1 

Efficient Frontier 

O 

w1 > w2 

E 
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equiproportionately increased. Assume that 21 θθ ≠ , if 21 ww ≥ , the first output is 

increased more than the second one and the global projection is more oriented to the 

direction of the Output 1-axis. Thus the inefficient DMU E can be projected onto the 

DMU B. Compared with the radial projection (E’), the global projection has the higher 

value in output 1 and lower value in output 2. Conversely, if 21 ww ≤ , the second output 

is increased more than the first one and the global projection is more oriented to the 

direction of the Output 2-axis. Correspondingly, the projection on the efficient frontier 

will be DMUC (point C). 

Therefore, we may define the global projection of the inefficient DMU onto the efficient 

frontier of the model (6. 5) as follows: 

DEFINITION 6.2. Suppose that the optimal solution of (5) is ( )∗∗∗
ji λ,δ,δ , let 

m,1,i,1δ,yλyδy i

n

1j
jiji0,iki L=≥== ∗

=

∗∗ ∑~                            (6.11) 

n,1,j,0λ,1λ j

n

1j
j L=≥= ∗

=

∗∑                                        (6.12) 

then DMUk ( )kmk1 y,,y ~~ L  is defined as the weighted global projection of DMU0 onto the 

efficient frontier. 

These relationships suggest that the efficiency of DMU0 can be improved if the outputs 

are augmented unequalproportionally. Thus we have a method for improving an 

inefficient DMU that accords with DEFINITION 6. 2 in the following proposition. 

PROPOSITION 6.8 The global projection of DMU0 onto the efficient frontier is weighted 

global efficient compared with all the other DMUs under evaluation. 

PROOF. Supposing that DMUk is the global projection of DMU0 onto the efficient 

frontier, we use the following (6.13) to evaluate the weighted global efficiency of DMUk 

relative to all the DMUs under evaluation: 
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∑
=

=
m

1i
iiδwδ  Maximize ~~

                                               (6.13.a) 

subject to 

m,1,i,yδyλyλ kii

n

1j
ki1njij L==+∑

=
+

~~~~~                                 (6.13.b) 

∑
=

+ =+
n

1j
1nj 1λλ ~~                                                       (6.13.c) 

    1δi ≥
~                                                                 (6.13.d) 

n,1,j  0;λ  0,λ 1nj L=≥≥∀ +
~~                                          (6.13.e) 

where kiy~  is the thi output of DMUk and 1nλ +
~  is an intensity variable for DMUk. If the 

optimal solution of (6.13) is ( )∗
+

∗∗∗
1nji λ,λ,δ,δ ~~~~

, then, by incorporating (6.11) and (6.12), 

the constraints of (6.13) can be converted to 

i0,iikii

n

1j
jij1nj

n

1j
ki1njij yδδyδ)yλλλ(yλyλ ∗∗∗

=

∗∗
+

∗

=

∗
+

∗ ==+=+ ∑∑ ~~~~~~~~                (6.14)  

∑ ∑
= =

∗∗
+

∗∗
+

∗ =+=+
n

1j

n

1j
j1nj1nj 1)λλλ(λλ ~~~~~                                      (6.15) 

we know )δδ,λλλ( iij1nj
∗∗∗∗

+
∗ +

~~~~  is also a feasible solution of (6.5), thus we have 

∑∑
==

≤
m

1i

*
ii

*
i

m

1i

*
ii δwδδw ~                                                    (6.16) 

Since 1δi ≥∗~  and thus ∗∗∗ ≥ δδδ ii
~ , the only condition to satisfy (6.16) is 1δi =∗~ . 

According to DEFINITION 1& 2, the projection of DMU0 onto the efficient frontier is 

efficient compared with all the DMUs under evaluation. This completes the proof.  
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6.4 Super-efficiency Based on Weighted Global Measure 

In this section, we continue to discuss the super-efficiency issues under the assumption 

that DMU0 is weighted global efficient, i.e. 1δ =∗ . Let 0,Y jj)(y 1)-(nm
ji ≠ℜ∈= ×

+  be 

output matrices, consisting of nonnegative elements and excluding the observed output 

vector of DMU0. The production possibility set i0,/yP  can be redefined as follows:  

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
==≥=≤= ∑∑

≠
=

≠
=

m,1,in;,1,j0,λ,1λ,yλyyy j

n

jj
1j

j

n

jj
1j

jiji0,i0,i

00

LL,0P/     (6.17) 

The corresponding BCC super-efficiency score sδ  of DMU0 can be obtained in the 

following programming: 

sδ  Maximize                                                          (6.18.a) 

subject to 

miyδyλ i
s

n

jj
1j

jij

0

,,1,,0 L==∑
≠
=

                                       (6.18.b) 

n,1,j0,λ,1λ j

n

jj
1j

j

0

L=≥=∑
≠
=

                                      (6.18.c) 

Following the above sections, suppose that iw  is the weight for the ith output and 

satisfies 1wm

i i =∑ =1
, then the weighted global super-efficiency score sδ  for DMU0 

can be defined as follows:   

∑
=

=
m

1i

s
ii

s δwδ  Maximize                                               (6.19.a) 

subject to 

miδyδyλ s
ii

s
i

n

jj
1j

jij

0

,,1,10,,0 L=≤≤=∑
≠
=

                           (6.19.b) 
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n,1,j0,λ,1λ j

n

jj
1j

j

0

L=≥=∑
≠
=

                                      (6.19.c) 

Compared (6.19) with (6.18), we have the following proposition: 

PROPOSITION 6.9 The weighted global super-efficiency score ∗sδ of DMU0 in (6.19) is 

not less than the BCC super-efficiency score ∗sδ in (6.18).  

PROOF. The proof is analogous to the proof of PROPOSITION 6. 7.   

The effects of weighting factors on outputs in super global projection is similar to that in 

global projection. Now we focus on the difference between the global projection and the 

super global projection. Unlike global projection, the super projection is to project an 

efficient DMU onto the efficient frontier which is composed of all the DMU excluding 

the one under evaluation. Thus the efficient DMU is more efficient than its projection 

onto the efficient frontier because the outputs of the efficient DMU should be decreased 

nonproportionally to reach the efficient frontier. Below, in Figure 6.2, we have 

illustrated such difference. 

 

Figure 2. Super-efficient frontier and super global projection 
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6.5 A Numerical Example 

In this section, we compare the BCC model without inputs with our model using an 

example in reality. We restrict our comparisons only within the above two models. This 

example in Table 6.1 consists of nine DMUs with three outputs as listed below: y1 = 

Profitability Ratio (%); y2 = Return on Asset (%); y3 = Return on Equity (%).  

Table 6.1 A numerical example 

DMU 1 2 3 4 5 6 7 8 9 
y1 4.21 7.73 8.68 9.60 7.22 8.34 3.09 12.54 2.57 
y2 15.44 15.44 5.39 15.74 4.17 5.00 9.34 8.13 4.63 
y3 6.07 25.06 4.39 22.54 5.33 2.84 18.37 5.76 9.10 
 

Table 6.2 exhibits the traditional BCC efficiency scores, their ranks, along with the 

projected point )y(δ i•
∗ , output slacks )(Si

∗+  and the reference set }0λ{y j >
∗ .  From 

Table 6.2, we can see that three out of nine DMUs, i. e. DMU2, DMU4, and DMU8, are 

BCC efficient relative to all the DMUs. The rest are regarded as BCC inefficient DMUs. 

We also apply (6.5) to these DMUs and obtain their weighted global efficiency scores 

and corresponding ranks, along with the projected point )y(δ ii •
∗  and the reference set 

}0λ{y j >
∗ , all are shown in Table 6.3. Next, we compare results obtained for BCC 

Table 6.2 Results of applying (2) 

Projected Points (Slacks) 
DMU Scores Ranks 

1•
∗ yδ  2•

∗ yδ  3•
∗ yδ  

Reference 
Set 

1 2.366 8 9.96 14.81 14.36(6.13) #4, #8 
2 1.000 1-3 7.73 15.44 25.06 #2 
3 1.434 5 12.45(0.64) 7.73 6.30 #4, #8 
4 1.000 1-3 9.60 15.74 22.54 #4 
5 1.662 7 12.00 6.93(2.61) 8.86 #4, #8 
6 1.504 6 12.54(0.61) 7.52(1.49) 4.27 #8 
7 1.364 4 4.22(3.51) 12.74(2.70) 25.06 #2 
8 1.000 1-3 12.54 8.13 5.76 #8 
9 2.754 9 7.08(0.65) 12.75(2.69) 25.06 #2 
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efficiency measure with those obtained for weighted global efficiency measure. 

Obviously, both measure agree to in the classification of the efficient DMUs. BCC 

efficient DMU2, DMU4, and DMU8 remained at the efficient status under the weighted 

global efficiency evaluations, as claimed by PROPOSITION 6.6. Moreover, as expected 

by PROPOSITION 6.7, the weighted global efficiency score ∗δ  is not less than the BCC 

efficiency score ∗δ . The most notable examples are that the weighted global efficiency 

scores of DMU3, DMU5 and DMU6 in (6.5) more than double the BCC efficiency scores 

in (6.2) respectively since the later ones are radial measures and take no account of 

slacks while the global efficiency scores contain the effects of slacks. We will now 

examine this difference in the case of DMU3 in more detail. The BCC model for DMU3 

gives the solution ∗+
•

∗
•

∗
•

∗ ++= Syλyλyδ 88443 . Thus, the projected point •
∗

3yδ has 

slacks T  S )0,0,64.0(=∗+  against the referent =+ •
∗

•
∗

8844 yλyλ T  )30.6,73.7,09.13(  

which is on the efficient frontiers. For comparison, the weighted global efficiency model 

for DMU3 gives a different solution 4i42i23i3i yλyλyδ ∗∗∗ += . Thus, the projected point 

3ii yδ ∗  has slacks against the referent =+ ∗∗
4i44i2 yλyλ T  )78.23,59.15,68.8( . 

Table 6.3 Results of applying (6.5) 

Global Efficiency Scores Projected Points DM
U ∗

1δ  ∗
2δ  ∗

3δ  ∗δ  Ranks 
1•

∗ yδ1  2•
∗ yδ2  3•

∗ yδ3  Reference Set

1 2.280 2.514 3.713 2.836 5 9.60 15.74 22.54 #4 
2 1.000 1.000 1.000 1.000 1-3 7.73 15.44 25.06 #2 
3 1.000 2.893 5.417 3.103 6 8.68 15.59 23.78 #2, #4 
4 1.000 1.000 1.000 1.000 1-3 9.60 15.74 22.54 #4 
5 1.071 3.703 4.702 3.158 7 7.73 15.44 25.06 #2 
6 1.000 3.108 8.534 4.214 9 8.34 15.54 24.24 #2, #4 
7 3.107 1.685 1.227 2.006 4 9.60 15.74 22.54 #4 
8 1.000 1.000 1.000 1.000 1-3 12.54 8.13 5.76 #8 
9 3.735 3.340 2.477 3.184 8 9.60 15.74 22.54 #4 

Finally, in order to discriminate the relative efficiency among efficient DMUs, i. e. 

DMU2, DMU4 and DMU8, we apply (6.18) to evaluate the super efficiency of these 
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efficient DMUs relative to all the DMUs excluding the DMU under evaluation. Results 

for the weighted global measure of super-efficiency which consider the average 

weightings of outputs are displayed in Table 6.4. For each efficient DMU the 

super-efficiency score and the position in the ranking based on these scores are 

displayed. The super efficiency scores for these three global efficient DMUs, as well as 

rank among them, are shown in Table 6.4. From Table 6.4, we can see that DMU4 is 

closer to the efficient frontier (denoted by a combination of DMU2 and DMU8) than 

DMU2, thus its super-efficiency score is greater than that of DMU2. Therefore, the 

ranking order for these three global efficient DMUs is DMU8 > DMU2 > DMU4. For 

comparison, we also apply the output-oriented Anderson and Peterson model to address 

the same problem. The resulting super-efficiency scores and ranks are shown in Table 

6.4. As expected, the super-efficiency scores in Andersen and Peterson model is less 

than the weighted global super-efficiency scores. 

Table 6.4 Illustration of the two super-efficiency measures 

Weighted global super-efficiency   BCC Super-efficiency 
DMU ∗s

1δ  ∗s
2δ  ∗s

3δ  ∗sδ  Ranks  ∗sδ  Ranks 

2 1.000 0.900 0.851 0.917 2  0.751 3 
4 0.871 0.920 1.000 0.930 3  0.730 2 
8 0.680 0.811 1.000 0.830 1  0.674 1 

6.6 Conclusion 

In this chapter, we have discussed the weighted global efficiency measure by 

formulating a new nonradial model without inputs and demonstrated theoretically and 

empirically that the weighted global efficiency score obtained from our model is not less 

than the traditional BCC efficiency score because our efficiency measure considers not 

only radial inefficiency but also the nonradial inefficiency. On the other hand, the 

weighted global efficiency is also equivalent to BCC efficiency obtained from the 
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traditional DEA model without inputs. Next, we have discussed how to improve the 

efficiencies of those inefficient DMUS to be efficient by analyzing their global 

projection onto the efficient frontier. Finally, we have developed a new super-efficiency 

measure which can be used to discriminate the relative performance among the efficient 

DMU.
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Chapter 7  

Conclusion 

7.1 Summary of the Research 

In this study, we propose a weighted efficiency measure which focuses on inputs 

minimization and output maximization simultaneously. Firstly, we define our measure 

of efficiency and then investigate its properties and demonstrate its characteristics 

theoretically. In addition, we provide an effective method to capture the internal value 

information in the production systems which is usually omitted in the traditional 

efficiency measures. Furthermore, we show how the effect of weights factors on the 

efficiency and efficient frontier in our model. Finally, we compare our measure with 

other measures theoretically as well as empirically and find that there are some 

differences between our measure and others. We believe that the use of this measure is 

practical, in the sense that it requires little detailed information on the part of the analyst, 

and consistent, in the sense that – if a factor is deemed important enough to include in 

the analysis then its importance should be reflected in its contribution to the benefit of 

DMU activity.  

In addition, the ability to rank or differentiate the efficient units is of both theoretically 

and practically importance. One concern about these super-efficiency models is that 

they may not always be possible to determine their optimal value when the 

super-efficiency models are applied under other alternate returns to scale (RTS) 

conditions other than constant returns to scales (CRS). Another concern is that these 

super-efficiency measures cannot capture certain inherent relationships among the 

inputs and the outputs which can be known or predetermined beforehand. In this study, 
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we discuss the use of the weighted super-efficiency measure which is derived from the 

weighted global efficiency measure. This super-efficiency measure is useful to 

differentiate efficient units and motivate appropriate behavior. First of all, we define our 

measure of super-efficiency and then investigated its properties and demonstrate its 

characteristics theoretically. Second, we shows how to calculate the measure in a linear 

program setting when it is actually applicable in the sense that the measure exists, i. e. 

the defining programs have a feasible solution. Finally, we compare our measure with 

other super-efficiency measures theoretically as well as empirically and find that there 

are some differences between our measure and others. 

Furthermore, we have studied various approaches for incorporating undesirable factors 

in the DEA models under the assumption of variables return to scales. A new efficiency 

measure is oriented to both desirable factors and undesirable factors simultaneously on 

the basis of classification invariance so that the weighted global DEA model allows the 

expansion of desirable outputs and the contraction of undesirable outputs and all inputs 

with different proportions. The new approach can also be applied to situations when 

some inputs need to be increased to improve the performance. 

Finally, we have discussed the use of the weighted global efficiency measure in the 

production systems without inputs or outputs. In this chapter of research, firstly, we have 

demonstrated theoretically and empirically that the weighted global efficiency score 

obtained from our model is not less than the traditional BCC efficiency score because 

our efficiency measure considers not only radial inefficiency but also the nonradial 

inefficiency. On the other hand, the weighted global efficiency is also equivalent to BCC 

efficiency obtained from the traditional DEA model without inputs. Secondly, we have 

discussed how to improve the efficiencies of those inefficient DMUS to be efficient by 

analyzing their global projection onto the efficient frontier. Finally, we have developed a 



Chapter 7 Conclusion 

    94     

new super-efficiency measure which can be used to discriminate the relative 

performance among the efficient DMU. 

7.2 Contributions 

This research has focused on a number of important issues related to the efficiency 

measurement in the presence of additional slack after Farrell efficiency is achieved. 

Most analyses of efficiency provided evidence on the Farrell measure of inefficiency but 

provide little if any discussion on remaining slack. First, as shown in the research, the 

Farrell measure may be a poor measure of producer performance in the presence of slack. 

As a solution to this problem, the non-radial global measure is introduced. One 

contribution of this research is to show that the weighted global measure may not 

perform better than the traditional measures if inputs and outputs do not have equal 

factor weights in the production process. The second contribution of this research is the 

development of an alternative programming model that not only simultaneously allows 

non-radial reduction in inputs and augmentation in outputs, but only incorporates 

unequal factor weights. This new measure of technical inefficiency, called the Weighted 

Global measure, combines econometric production function estimation as part of a first 

stage and incorporates the resulting weights into a linear programming model. 

Comparison analysis suggest that the weighted global measure outperforms the existing 

measures in cases where inputs and outputs are not equally productive and provides 

similar measures in all other cases. This new technique places more structure on the 

production correspondence by combining econometric and linear programming 

techniques. The weighted global measure is useful for future empirically analyses where 

excess slack exists after radial efficiency is achieved.  
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7.3 Future Research 

Our future research will focus on how to capture the judgments and preferences of 

decision makers using a general framework, not only of static production systems but 

also of dynamic and stochastic framework. The combination of our current works and 

future works will be regarded as systematic research on value efficiency. On the other 

hand, we also investigate the value efficiency in the field of finance and investment, in 

which very little research is conducted by the scholars in data envelopment analysis 

domain. Thus the empirical application of value efficiency will extend the application of 

DEA.  

Another area in my further development is the relationship of value efficiency to the 

mission and objectives of the organization. The specification of inputs and outputs 

defines the nature and scope of the organization as a system of DMUs, and indeed an 

essential criterion of homogeneity for admittance of a DMU to a DEA study is the 

acceptance of the set of inputs and outputs. However, the definition of this set is 

insufficient to reflect the values and priorities of the organization. The weights 

associated with the inputs and outputs represent the rates of substitution or relative 

values of variables and it is thus the weights that need to relate to the mission and 

objectives of the organization. Moreover, free weights can lead to an inversion of the 

value system as in the study of perinatal care units, Thanassoulis et al. (1995), where the 

weight placed on a “very satisfied mother” was lower than that placed on a “satisfied 

mother” in terms of the perceived quality of treatment. This could be a fruitful area of 

development in my coming research. 
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