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Summary 
 
 
 
 

The return of property stocks is one of the main research areas in property stock 

performance. Some research supported the notion that accounting information had the 

ability to predict stock returns. Furthermore, a number of studies have documented the 

successes of artificial neural networks in forecasting time series and cross sectional 

financial data. Based on these studies, this work has tried to compare the forecast of 

Singapore property stock returns by neural networks with that by traditional regressions 

using accounting ratios as input variables. This work is the first to use neural networks to 

examine the performance of Singapore property stocks. In Singapore, although there are 

some works focusing on real estate stock performance, neural network techniques are 

relatively scarce.  

 

One objective of this work is to provide a practical method for investors or 

portfolio managers to predict stock returns since accurate forecast of stock returns is vital 

for the investors to pick stocks. Another objective of this work is to better identify the 

borderline at which neural networks can outperform traditional regression-based 

forecasting techniques because the opinions regarding the effectiveness of neural 

networks are mixed. Moreover, this work includes the Monte Carlo neural network 

method to improve the performance of neural network models.  

 



Summary 

 x

This work uses four different methods: OLS neural networks, logit neural 

networks, OLS and logit regressions to forecast company returns one year ahead. The 

independent variables are 52 accounting ratios and financial variables. For point 

prediction models, the dependent variable is a firm’s abnormal return, which measured as 

the firm’s actual return over the next fiscal year minus the return on the portfolio of all 

stocks in this sample during this period. For classification problems, the dependent 

variable is the probability of a firm having a return above or below the median return of 

the sample over the upcoming fiscal year. Six years of data are used to estimate the 

parameters of these models. 

 

The findings indicate that accounting ratios can serve as leading indicators of 

stock returns in the next year; classification models (logit regression models and logit 

neural networks) can outperform point estimation models (OLS regression models and 

OLS neural networks) for this research problem; logit neural networks can outperform all 

other three alternatives; Monte Carlo neural networks can improve the performance of 

neural networks in predicting stock returns.  
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Chapter 1: Introduction 
  
 

1.1 Background 

 

The performance of property related stocks is a widely researched topic in the real 

estate literature. In Singapore, there are some studies that focus on real estate stock 

performance. There are also research examined whether prices of listed property stocks 

reflected their corporate fundamental values (such as Sing et al. (2002); Sing (2001)). 

 

One of the main research areas of property stock performance is the returns of 

property stocks. Numerous researchers have examined whether real estate investment 

offers superior return (Sagalyn (1990), Titman and Warga (1986), Liu et al. (1995)). 

Recently, some research investigated the returns of real estate stocks using international 

data (e.g. Glascock et al. (2002), Ling and Naranjo (2002), Ooi and Liow (2002)). 

 

Traditionally, Ordinary Least Square (OLS) and logit regressions are used widely 

to predict stock returns. For example, some studies (e.g. Ou and Penman (1989), 

Holthausen and Larcker (1992), Brockman et al. (1997)) predicted stock returns using 

financial statement information by OLS stepwise regression model or logit stepwise 

regression model. Moreover, some research According to their results, the research 
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verified that annual financial statement information have predictability on the next year’s 

stock returns. 

 

 In recent years, artificial neural networks (ANNs) applications in finance for such 

tasks as pattern recognition, classification, and time series forecasting have dramatically 

increased. A number of studies have documented the successes and failures of ANNs in 

forecasting time series and cross sectional financial data.  

 

 Based on these studies, this work tries to compare the forecasts of Singapore 

property stock returns by neural networks with that by traditional regressions using 

accounting ratios as input variables. 

 

1.2 Objectives of the Work 

 

One objective of this work is to provide a practical method for investors or 

portfolio managers to predict stock returns. Accurate forecast of stock returns is vital for 

the investors to pick stocks. According to Elton and Gruber (1991), portfolio managers 

are generally stock pickers and only occasionally market timers. As stock pickers, their 

task is to pick (avoid) those stocks that are likely to outperform (under perform) other 

stocks of comparable risks.  

Since neural networks in finance has been increased greatly in recent years and 

the opinions regarding its effectiveness are mixed, another objective of this work is to 
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better identify the borderline at which neural networks can outperform traditional 

regression-based forecasting techniques by comparing neural network forecasts of 2-year 

portfolio returns of Singapore property stocks with the forecasts obtained OLS and logit 

regression techniques. 

 

Moreover, this work uses Monte Carlo neural network method to improve the 

performance of neural network models. Also, this work is the first to use neural networks 

to examine the returns of Singapore property stocks. 

 

1.3 Scope of the Work 

 

Because of the time limitation, this work could only concern Singapore property 

stocks instead of all Singapore stocks. And due to the data availability, this work only 

includes 13 of 20 Singapore property stocks. The other 7 Singapore property stocks have 

many missing variables. The input data are 52 accounting ratios and annual returns for 

each stock in the sample over the period 1992-2001. The most recent 6 years of data are 

rolled forward each year to forecast annual returns for 2000 and 2001. 
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1.4 Methodology  

 

This work uses four different methods: OLS neural networks, logit neural networks, OLS 

and logit regressions to forecast company returns of one year ahead. The independent 

variables are 52 accounting ratios and financial variables. For point prediction model, the 

dependent variable is a firm’s abnormal return, which measured as the firm’s actual 

return over the next fiscal year minus the return on the portfolio of all stocks in this 

sample during this period. For classification problems, the dependent variable is the 

probability of a firm having a return above or below the median return of the sample over 

the upcoming fiscal year. Six years of data are used to estimate the parameters of these 

models. Since previous research Ou and Penman (1989), Holthausen and Larcker (1992), 

Brockman, Mossman, and Olson (1997) proved that the data set had some predictability, 

a valid comparison between the regression and ANN forecasting techniques should be 

possible.  
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1.4.1 OLS Neural Networks and Logit Neural Networks 

 

The back propagation (BP) is used in this work since it is the most widely used in 

financial time series forecasting and it is the most common type of neural networks in 

time series forecasting.  In this work, back propagation neural networks which are 

constructed for point estimation are called OLS neural networks, while back propagation 

neural networks which are constructed for classification problems are called logit neural 

networks. The estimation procedures and subsequent trading strategies of neural 

networks for both OLS neural networks and logit neural networks are similar. 

 

1.4.2 Stepwise OLS Regression and Logit Regression 

 
In this work, six years of data are used to estimate the parameters of the within-

sample OLS model and Logit model. The estimation procedures for OLS and logit 

models are similar. First, all fundamental analysis variables initially enter the regression 

equation. A parsimonious subset of independent variables is selected in most cases by 

simply eliminating any explanatory variables with P-values greater than certain value 

(such as 5% or 10%) to ensure the proper number of selected independent variables. For 

example, the 5% criterion is adjusted downward to 4 or 3% if the step-wise procedure 

originally selects more than eight independent variables; if the above step-wise procedure 

selects only one or two variables, the cut-off criterion would be increased to 10% to 
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include more independent variables. In general, models with three to five independent 

variables tend to give the best forecasts in the validation period. 

 

1.5 Hypotheses 

 
(1) Accounting ratios can serve as leading indicators of stock returns in the next year. 

(2) Classification models (logit regression models and logit neural networks) can 

outperform point estimation models (OLS regression models and OLS neural 

networks) for problems at hand. 

(3) Neural networks can outperform the traditional OLS and logit regression models.  

(4) Monte Carlo neural networks can improve the performance of neural networks in 

predicting stock returns.  

 

1.6 Sources of Data  

 
This work examines the performance of 13 Singapore property companies on 

Singapore stock market over the period 1992-2001. Financial statement data and stock 

returns of individual firms over the sample period were extracted from Datastream. This 

work constructs data set of 52 annual accounting ratios and financial variables for each 

firm during each of the 10 years in this sample. Table 1.1 lists the 52 potential input 

variables considered in this work. The variables include most of the 68 accounting ratios 

in Ou and Penman(1989) (e.g. current and quick ratios, debt-equity ratios, return on 
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equity, etc., as well as annual percentage changes in many ratios). Moreover, since this 

work only studies property stocks, three ratios commonly used in the property stocks or 

finance literature (book value to market value, earnings–price, and the price–sales ratio) 

are also included in accounting ratios.  

 

Table 1.1 Accounting Ratios and Financial Variables Used as Inputs in Models 

No Ratios No Ratios 
1 current ratio 27 Operating profit before depreciation 
2 annual % change in 1 28 Annual % change in 27 
3 quick ratio 29 Pre-tax income to sales ratio 
4 annual % change in 3  30 Annual % change in 29 
5 Inventory turnover ratio 31 Sales to accounts receivable ratio 
6 annual % change in 5 32 Sales to inventory ratio 
7 inventories to total assets 33 Annual % change in 32 
8 Annual % change in 7 34 Sales to net working capital 
9 Annual % change in inventory 35 Annual % change in 34 

10 Annual % change in sales 36 Sales to fixed assets ratio 
11 Annual % change in depreciation 37 Annual % change in total assets 

12 
 
Annual % change in  dividend per share 38 

Annual % change in capital expenses to total 
assets  

13 Depreciation to fixed assets 39 Ratio 38 lagged one year 
14 Annual % change in 13 40 Operating income to total assets ratio 
15 Net working capital to total assets ratio 41 Annual % change in 40 
16 Annual % change in 15 42 Annual % change in long-term debt 
17 Total debt to equity ratio 43  Annual % change in net working capital 
18 Annual % change in 17 44 Earnings to price ratio 
19 Long-term debt to equity ratio 45  Book value to market value ratio 
20 Annual % change in 19 46 Price to sales ratio 
21 Equity to fixed assets ratio 47 Total debt to market value 
22 Annual % change in 21 48 Annual % change in 27  
23 Times interest earned ratio 49 Dividend yield 
24 Annual % change in 23 50 Annual % change in 49 
25 Sales to total assets ratio 51 Total debt total assets 
26 Annual % change in 25 52 Annual % change in 51 

 

 

For each company, accounting ratios are matched with common stock returns. 

Following Ou and Penman (1989) and Holthausen and Larcker (1992), the accounting 
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data are used with a 3-month lag to ensure that investors actually have access to the data 

at the time of the investment decision. This means that the accounting ratios are used to 

forecast 1-year-ahead returns that are calculated from months 4 to 15 following the 

publication of annual fiscal year accounting data. 

 

The initial sample size for this work is 20 observations; but many accounting 

ratios, and occasionally returns, are not available for some companies for the whole 

sample period. To obtain a usable data sample, a set of restrictive filters is imposed on 

companies. For inclusion in the sample, a company must:  

(1) have both annual accounting ratios and return data from 1992 to 2001; 

(2) have returns above or below median annual return of the sample at least once 

during 6 year period for the use of Logit model.  

These restrictions resulted in 7 observations being excluded from the sample.  

 

1.7 Organization of This Work 

This work is organized into six chapters. 

 

Chapter One provides an overview comprising the background, aim and scope of this 

work. The hypotheses for the work, sources of data and the methodology are also 

presented in this chapter. 
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Chapter Two reviews the relevant literature on (i) some local research on property stock 

performance, (ii) property stock return, (iii) neural networks in forecasting financial 

problems, and (vi) traditional regression techniques in stock returns forecast. 

 

Chapter Three explains the stepwise OLS and logit regression models and methodology 

used to obtain OLS and logit forecasts.  

 

Chapter Four describes the basic knowledge and steps to build the back propagation 

neural networks and presents the model and architecture of neural networks used to 

forecast stock returns. 

 

Chapter Five analyzes and compares the results in terms of portfolio profitability for the 

four forecasting techniques.  

 

Chapter Six summarizes the results and makes recommendations for future research.
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Chapter 2 :  Literature Review 
 

2.1 Introduction  

  

This work uses several different methods to forecast property stock returns of one 

year ahead. The thesis reviews not only local research on property stock performance and 

global property stock return, but also studies on neural networks in forecasting financial 

problems and traditional regression techniques in stock returns forecast. 

 

This chapter will be presented as follows. Section 2.2 reviews local research on 

real estate stocks.  In Section 2.3, the focus is on research of property stock returns. 

Section 2.4 reviews research using traditional regression techniques in forecasting stock 

returns. In Section 2.5, neural network models will be discussed in forecasting financial 

problems.  
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2.2 Local Research on Real Estate Stocks 

 

Liow (1997) analyzed the long term performance of Singapore 16 property stocks, 

and provided comprehensive evidence on the risk-return performance of Singapore 

property companies over an extended time period from 1975 to 1995.  It concluded that 

property stocks performed no better than the stock market, and poorer than the market on 

a risk-adjusted basis. Property stocks were also found to be highly correlated with the 

stock market and their performance was closed tied to the property market. Moreover, 

property firms failed to provide ex-post inflation protection. 

 

Liow (1998a) empirically examined the sustainable growth of Singapore property 

investment and development companies and the financial strategies employed by these 

firms in achieving financial stability and sustaining growth from 1986 to 1995. It found 

that the actual growth rates of many property firms are higher than their sustainable 

growth rates and the key financial determinants of sustainable growth for property 

companies are return on capital, earnings retention and debt-to equity ratio. These firms 

tended to rely on increasing financial leverage to sustain their high growth. However, the 

growth did not have a clear impact on the share price performance of the companies and 

shareholders’ returns. 
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Sing (2001) presented evidence of long-run contemporaneous relationships in 

Singapore’s property stock prices using co-integration methodology. The co-integration 

tests of the 20 property stocks in Singapore over a 17-year period revealed that 18 percent 

of the listed property stocks in Singapore established significant long-term pair-wise 

price convergence relationships. It was possible to predict the long-term price movement 

of a property stock by observing the price movement of another property stock. The weak 

form efficient market hypothesis was also not ruled out from the Johansen’s multivariate 

co-integration tests, where not more than 7 out of 17 possible co-integration equations 

were found to be significant at 5% level. Singapore’s property stock market was thus 

deemed to be highly, though not perfectly, efficient in the weak form. 

 

Sing et al. (2002) examined whether prices of 15 sample listed property stocks in 

Singapore reflected their corporate fundamental values over a ten-year period from June 

1989 to June 1999. Proxies for corporate fundamental values used in their study were 

earnings per share (EPS), dividends per share (DPS) and net asset values (NAV) of the 

individual property stocks listed in Singapore. It was found that the prices of only 9 of the 

15 sample stocks converged in a long run with their fundamental values. The results 

implied that institutional investors should pay more attention to the underlying 

performance of stocks, in particularly the EPS and NAV, in their stock selection process. 

 

Moreover, there are studies that examine the relationships of the stock market and 

property market. 
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Chan and Sng (1991) analyzed the overall price movement of property in the real 

estate market and property stocks in the securities market from 1979 to 1988, using 

property price and share price indices. The results showed that direct investments in real 

estate have higher quarterly returns and lower level of risk than investments in property 

stocks. They concluded that the returns are not significantly different and found that 

property stocks could be used as a proxy for real estate. 

 

Ong (1994), using Structural and Vector Autoregressive Approaches, established 

that a contemporaneous long term relationship between property stock price index, real 

estate price index and risk free interest rate existed for the period of analysis from 1976 to 

1993. He also concluded that current returns in property stock and the real estate returns 

were not dependent on the past returns, hence past returns were not a good indication of 

future returns. 

 

In another study, Ong (1995) re-examined the established practice of using 

property stocks as a proxy for real estate investment. By applying Co-Integration testing 

methodology to analyze the property stock and property indices in Singapore from 1977 

to 1992, the study showed that there was insufficient evidence to establish a long term, 

contemporaneous relationship between property stocks and real estate. The co-integration 

test shows clearly that although the real estate and property stock indices in Singapore are 

both first-difference stationary (making co-integration test possible), the linear 

combination between them is not integrated. The error terms from the co-integration are 

highly auto-correlated and non-stationary. 
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Ho & Cuervo (1999) looked into the dynamics of private housing prices in 

Singapore from the first quarter of 1985 to the fourth quarter of 1995. Employing the 

cointegration analysis, their paper showed that overall private housing price was 

cointegrated with real gross domestic product, prime lending rate and private housing 

starts. An error-correction mechanism was also incorporated in the estimation of changes 

in the overall private housing price to account for the short-run deviations from the 

equilibrium relationship among these variables.  

 

 Liow (1996) investigated the share prices of Singapore property companies in 

relation to their net asset values from 1980 to 1984. It was found that the share price of 

most property companies were above the book values of their net tangible assets. In 

testing the strength of relationships between the share price discount/premium and the 

property returns, there was evidence of significant co-movement between the two 

markets’ performance. 

 

Liow (1998b) investigated the relationship between property stock and direct 

property returns in the period 1975 to 1994. The results showed that property stock was 

highly correlated with the stock market and that property stocks returns led the property 

market by three to six months. 

 

Although neural networks were studied in models to housing price valuation in 

Singapore, for example, Tay and Ho (1992, 1994), there are no studies thus far using 
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neural networks to research on property stock performance. Therefore, this research is the 

first to use neural networks to predict the property stock returns in Singapore.  

 

2.3 Property Stock Returns 

 

One key issue is to examine whether real estate investment offers superior return. 

Focusing primarily on REITs in the US, earlier studies, such as Sagalyn (1990), 

concluded that REITs earned positive risk adjusted returns especially from the late 1970s 

to the mid-1980s. As pointed out by Titman and Warga (1986), these findings were often 

interpreted as evidence that real estate was a particularly good investment that investors 

should add to their portfolios. 

 

 However, recent studies have questioned the reported abnormal returns. In 

particular, Liu et al. (1995), in a critical review of the literature on real estate 

performance, suggested that superior real estate performance was an illusion arising from 

an omission of certain fundamental factors in the estimates of risks. They argued that any 

evidence that real estate continues to possess superior performance in the long run is 

likely to suffer from an inadequate or deficient pricing model.  

 

Several studies have also illustrated the importance of using multiple index 

models instead of single index models to determine the returns of real estate related 

stocks. In particular, Chan et al. (1990) found evidence of excess real estate returns, 
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especially in the 1980s, when a simple CAPM framework was employed. However, when 

the multifactor model was employed, the excess return evaporated. 

 

 Recently, research that examined the performance of real estate stock using 

international data was carried out. Glascock et al. (2002) used a modified version of 

Jensen’s alpha to measure the excess returns of publicly traded real estate firms in six 

Asian market economies, namely, Japan, Taiwan, Hong Kong, South Korea, Singapore 

and Thailand. Their results showed that, except for Taiwan, real estate stocks across the 

other five Asian markets do not exhibit excess returns behavior. They also noted that the 

risk characteristics of the real estate stocks changed with market conditions although the 

effects were not the same across different countries. 

 

In another study, Ling and Naranjo (2002) examined the return performance of 600 

publicly trade real estate companies in 28 countries over the 1984 to 1999 time period. 

Based on single and multifactor specifications, they found substantial variations in mean 

real estate returns and standard deviations across countries. Using the standard Treynor 

ratio, they observed substantial variation across countries in excess real estate returns per 

unit of systematic risk. However, they detected little evidence of abnormal risk-adjusted 

returns at the country level. Their overall results indicated the existence of a strong 

worldwide factor in international real estate returns, as well as a highly significant 

country-specific factor.  
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Ooi and Liow (2002) investigated the performance of real estate stocks listed in 

seven emerging markets in Asia, namely Hong kong, Indonesia, Malaysia, Singapore, 

South Korea, Taiwan and Thailand. Whilst the risk-adjusted returns of real estate stocks 

vary across the markets and over time, they did not find any evidence of superior returns. 

Using panel regressions, they examined the determinants of the risk-adjusted returns at 

the firm level. The empirical evidence suggested that interest rates, market condition, 

market-to-book value, dividend yield and market diversification had significant influence 

on the risk-adjusted returns of real estate stocks in Asian. Firm size, leverage, and 

development exposure, however, did not appear to have any significant impact on the 

risk-adjusted returns.  

2.4 Traditional Regression Techniques in Forecasting Stock 

Returns (OLS and Logit Regression) 

 

As traditional techniques, OLS and logit regression are used widely in the prediction 

of stock returns. Here, I will only concentrate on two papers (Ou and Penman (1989), 

Holthausen and Larcker (1992)) which predicted stock returns using financial statement 

information by logit regression models. This work is related to these two previous 

studies. 

 

Ou and Penman (1989) documented the existence of significant abnormal returns to a 

trading strategy that was based on the prediction of the sign of unexpected annual 

earnings-per-share (EPS), where unexpected EPS was determined from the assumption 



Chapter 2 

 18

that annual EPS follow a random walk (with drift) process. Their prediction model for the 

sign of unexpected EPS was developed using logit, where the independent variables were 

traditional financial statement ratios. Ou and Penman’s trading strategy took a long 

(short) position in the common stocks of firms where the prediction model indicated that 

unexpected earnings were likely to be positive (negative). They documented an average 

market-adjusted return over the 1973-1983 period associated with this trading strategy of 

8.3% for a 12-month holding period and 14.5% for a 24-month holding period. The 

independent variables used by Ou and Penman were the 68 financial accounting ratios. 

Ou and Penman (1989, p.328) concluded, based on this result as well as other extensive 

empirical analyses, that ‘… financial statements capture fundamentals that are not 

reflected in prices’. Others who have examined the ability of financial ratios to earn 

subsequent excess returns include O’Conner (1973), Wansley et al. (1983) and Reingnum 

(1988). 

 

Holthausen and Larcker (1992) examined the ability of accounting information to 

generate profitable trading strategies by developing a model to directly predict the sign of 

subsequent one-year excess return measures.  They developed logit models, which were 

based on accounting ratios, to predict three different measures of 12-month excess returns 

which cumulated from the fourth month following the company’s fiscal year-end. The 

three excess return metrics are: (i) market-adjusted returns, (ii) excess returns computed 

using the Capital Asset Pricing Model (CAPM), and (iii) size-adjusted returns. They 

dropped eight of the 68 ratios of Ou and Penman (1989) because there were considerable 

missing observations in their sample period. Their work is similar to that of Ou and 
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Penman (1989), but rather than basing trading strategy on a model which predicts 

unexpected earnings, their trading strategy was based on the prediction of excess return 

measures directly. The results suggested that a trading strategy based on a model which 

predicted excess returns directly is able to earn significant abnormal returns in the 1978-

1988 period. Their overall results supported the contention of Ou and Penman that 

financial statement items can be combined into one summary measure to yield insights 

into the subsequent movement of stock prices.  

2.5 Artificial Neural networks in Finance 

 
Artificial neural networks (ANNs) are universal and highly flexible function 

approximators first used in the fields of cognitive science and engineering. In recent 

years, neural network applications in finance for such tasks as pattern recognition, 

classification, and time series forecasting have dramatically increased. ANNs’ primary 

advantage over more conventional econometric techniques lies in their ability to model 

complex, possibly non-linear processes without assuming any prior knowledge about the 

underlying data-generating process (see, e.g. Hill et al., 1994; Darbellay & Slama, 2000; 

Balkin & Ord, 2000; Tacz, 2001). The non-linearity may take the form of a complex non-

linear relationship between the independent and dependent variables, the existence of 

upper or lower thresholds for the influence of independent variables, or differences 

between forecasting up or down movements of the dependent variable. The fully flexible 

functional form makes them particularly suited to a financial application where non-

linear patterns are clearly present but an adequate structural model is conspicuously 
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absent. The researcher does not need to know the type of functional relationship that 

exists between the dependent and independent variables (Darbellay & Slama, 2000). 

 

Numerous studies have documented the successes and failures of ANNs in 

forecasting time series and cross sectional financial data. A good summary of the 

literature is provided by Adya and Collopy (1998). Moreover, some research also gave 

some suggestion to improve the performance of ANNs. I will review these literatures in 

the following. 

 

 

 

2.5.1 The Benefits of ANNs in Forecasting 

 

Since construction and implementation of neural network models is considerably 

more difficult and time consuming than using simpler regression-type models, forecasters 

may want to build ANNs models only if there is a strong prior belief that additional 

complexity is warranted (Balkin & Ord, 2000; Darbellay & Slama, 2000). Many 

published studies generally showed that ANNs dominate traditional forecasting 

techniques, such as ordinary least squares regression, logit regression, or discriminant 

analysis.  

Tay & Ho (1992) introduced the theory of artificial neural networks (ANN) and 

discussed its application to the valuation of residential apartments. They also compared 



Chapter 2 

 21

the performance of the back propagation neural network (BP) model in estimating sale 

prices of apartments against the traditional multiple regression analysis (MRA) model. 

Finally, they concluded that the neural network model was an easy-to-use, black-box 

alternative to the MRA model. 

 

Refenes et al. (1993) tested ANNs in the domain of stock ranking. Comparisons with 

multiple regression indicated that the proposed network gave better fitness on the test 

data over multiple regression by an order of magnitude. The network outperformed 

regression on the validation sample by an average of 36%.  

 

In a study of bankruptcy classification, Udo (1993) reported that ANNs performed, 

as well as, or only slightly better than, multiple regression although this conclusion was 

not confirmed by statistical tests.  

 

Wilson and Sharda (1994) and Tam and Kiang (1990, 1992) developed ANNs for 

bankruptcy classification. Wilson and Sharda (1994) reported that although ANNs 

performed better than discriminant analyses, the differences were not always significant. 

The authors trained and tested the network using three sample compositions: 50% each of 

bankrupt and non-bankrupt firms, 80% of non-bankrupt and 20% of bankrupt firms, and 

90% of non-bankrupt and 10% of bankrupt firms. Each sample was tested on a 50/50, 

80/20, and 90/10 training set yielding a total of nine comparisons. The ANNs 

outperformed discriminant analysis on all but one sample combination for which 

performance of the methods was not statistically different. 
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Tam and Kiang (1990, 1992) compared the performance of ANNs with multiple 

alternatives: regression, discriminant analysis, logistic, k Nearest Neighbour, and ID3. 

They reported that the ANNs outperformed all comparative methods when data from one 

year prior to bankruptcy was used to train the network. In instances where data for two 

years before bankruptcy was used to train, discriminant analysis outperformed ANNs. In 

both instances, an ANN with one hidden layer outperformed a linear network with no 

hidden layers. 

 

 In a similar domain, Salchenberger et al. (1992) and Coats and Fant (1992) used 

ANNs to classify a financial institution as failed or not. Salchenberger et al. (1992) 

compared the performance of ANNs with logit models. The network performed better 

than logit models in most instances where the training and testing sample had equal 

representation of failed or non-failed institutions. The ANNs outperformed logit models 

in a diluted sample where about 18% of the sample was comprised of failed institutions' 

data.  

 

Coats and Fant (1993) used the Cascade Correlation algorithm for predicting 

financial distress. Comparative assessments were made with discriminant analysis. The 

ANNs outperformed discriminant analysis on samples with large percentages of 

distressed firms, but failed to do so on those with a more equal mix of distressed and non-

distressed firms. 
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Tay and Ho (1992, 1994) introduced the theory of artificial neural networks (ANN) 

and discussed its application to the valuation of residential apartments. They also 

compared the performance of the back propagation neural network (BP) model in 

estimating sale prices of apartments against the traditional multiple regression analysis 

(MRA) model. Finally, they concluded that the neural network model was an easy-to-use, 

black-box alternative to the MRA model. 

 

One previous research, which bears close resemblance to this work, was Olson and 

Mossman (2002). They compared neural network forecasts of one-year-ahead Canadian 

stock returns with the forecasts obtained using ordinary least squares (OLS) and logistic 

regression (logit) techniques. Their results indicated that back propagation neural 

networks, which considered non-linear relationships between input and output variables, 

outperformed the best regression alternatives for both point estimation and in classifying 

firms expected to have either high or low returns. The superiority of the neural network 

models translated into greater profitability using various trading rules. Classification 

models out performed point estimation models, but four to eight output categories 

appeared to give better results for both logit and neural network models than either binary 

classification models or models with 16 classification categories. 

 

 

This current research can be differentiated from the Olson and Mossman (2002). 

Firstly, I employ only 13 Singapore property stocks data and do not test the profitability 
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of different methods under various trading rules. Secondly, I also include The Monte 

Carlo neural network method to improve the performance of ANNs in forecasting. 

 

2.5.2 Some Failure in ANNs’ Forecasting 

 

However, some researchers questioned whether ANNs had been over sold as a 

miracle forecasting technique and a subsequent strand of literature documents that ANNs 

often under perform naive financial models, such as the random walk or a buy and hold 

strategy. 

 

Callen et al. (1996) used an ANN model to forecast accounting earnings for a sample 

of 296 corporations trading on the New York stock exchange. The resulting forecast 

errors were shown to be significantly larger (smaller) than those generated by the 

parsimonious Brown-Rozelf and Griffin-Watts (Foster) linear time series models. Their 

study confirmed the conjecture by Chatfield (1993) that neural network models are 

context sensitive. In particular, their study shows that neural network models are not 

necessarily superior to linear time series models even when the data are financial 

seasonal and non-linear. 

 

 Church & Curram (1996) compared the performance of ANNs and econometric 

model in predicting the decline in the growth rate of consumers’ expenditure in the late 

1980s. It is found that the neural network models describe the decline in the growth of 
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consumption since the late 1980s as well as, but no better than, the econometric 

specifications included in the exercise, and are shown to be robust when faced with a 

small number of data points.  

 

Episcopos and Davis (1995) compared the forecasting performance of EGARCH-M 

and neural network models for predicting daily US dollar foreign exchange series. They 

found that both outperform the random walk, but neither was consistently better than the 

other. 

 

2.5.3 Some Suggestions for the Improvement of ANNs’ Forecasting 

 

Some research also provided suggestions to improve the performance of ANNs on 

finance forecasting.  For example, Hill et al. (1994) suggest that ANNs are likely to work 

best for high frequency financial data and Balkin and Ord (2000) also stress the 

importance of a long time series of observations to insure optimal results from training 

neural networks.  

 

Tacz (2001) found that neural networks outperform naive models in forecasting 

Canadian GDP growth at time horizons of 1 year, but not over shorter intervals. A 

possible reason is that there is considerable noise in the quarterly observations, so that 

only longer-run forecast horizons can pick up the non-linear dependence in the data.  
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Qi (2001) also finds that nonlinearities help in forecasting US GDP and recessions 

because business cycles may be asymmetric between up and down cycles. For many 

financial forecasting problems, classification models work better than point prediction 

(Leung et al. 2000; Brooks, 1997) and that contention will be tested in this paper.  

 

Finally, Brooks (1997) and Qi (2001) have pointed out the continually changing 

nature of financial relationships so that ANNs are more likely to out perform traditional 

techniques when the input data is kept as current as possible. This can be done by 

recursive modeling, meaning that the researcher adds new observations and drops the 

oldest observations each time a new time series forecast is made. 

 

In conclusion, based upon this review of the literature, ANNs are expected to 

perform better than traditional regression techniques in this forecasting situation, but 

neither approach dominates the other. Therefore, this research tries to investigate the 

borderline at which neural networks begin to out perform traditional regression-based 

forecasting techniques. 
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Chapter 3: Stepwise OLS Regression and Logit 
Regression Models Forecasting 

 

3.1 Introduction 

 
Traditionally, OLS or logit regressions are used widely in prediction of stock 

returns (e.g. Ou and Penman (1989), Holthausen and Larcker (1992), Brockman et al. 

(1997), Olson and Mossman (2002)). This chapter will explain the stepwise regression 

and logit regression models and methodology used to obtain OLS and logit forecasts.  

 

This chapter is organized as follows. Section 3.2 reviews the basic concepts and 

limitations of stepwise regression models. For classification problems, Section 3.3 

introduces logit regression models. In Section 3.4, stepwise OLS and logit regression 

models are fitted to the property stock forecast using annual accounting ratios.  
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3.2 Stepwise Regression Models 

3.2.1 Basic Concepts in Stepwise Regression Models 

 
Since there are a larger number of independent variables in this research, I use 

Stepwise regression models to estimate. I will illustrate this method here. With a lot of 

independent variables, the computer is programmed to introduce independent variables 

one at a time in order to determine the sequence that makes 2R increase the fastest. Only 

the independent variables that are the most powerful by this criterion are retained in the 

final model. 

 

An important assumption behind the method is that some input variables in a 

multiple regressions do not have an important explanatory effect on the response. If this 

assumption is true, then it is a convenient simplification to keep only the statistically 

significant terms in the model. 

 

The basic procedure involves (1) identifying an initial model, (2) iteratively 

"stepping," that is, repeatedly altering the model at the previous step by adding or 

removing a predictor variable in accordance with the "stepping criteria," and (3) 

terminating the search when stepping is no longer possible given the stepping criteria, or 

when a specified maximum number of steps has been reached. The following topics 

provide details on the use of stepwise model-building procedures.  
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The Initial Model in Stepwise Regressions 

 

The initial model is designated the model at Step 0. The initial model always 

includes the regression intercept (unless the No intercept option has been specified.). For 

the backward stepwise and backward removal methods, the initial model also includes all 

independent variables specified to be included in the design for the analysis. The initial 

model for these methods is therefore the whole model.  

 

For the forward stepwise and forward entry methods, the initial model always 

includes the regression intercept (unless the No intercept option has been specified.). The 

initial model may also include 1 or more independent variables specified to be forced into 

the model. If j is the number of independent variables specified to be forced into the 

model, the first j independent variables specified to be included in the design are entered 

in the model at Step 0. Any such independent variables that are not eligible would be 

removed from the model during subsequent Steps.  

 

Independent variables may also be specified to be forced into the model when the 

backward stepwise and backward removal methods are used. As in the forward stepwise 

and forward entry methods, any such independent variables that are not eligible would be 

removed from the model during subsequent Steps. 
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The Forward Entry Method 

 

The forward entry method is a simple model-building procedure. At each Step 

after Step 0, the entry statistic is computed for each independent variable eligible for 

entry in the model. If no independent variable has a value on the entry statistic which 

exceeds the specified critical value for model entry, then stepping is terminated, 

otherwise the independent variable with the largest value on the entry statistic is entered 

in the model. Stepping is also terminated if the maximum number of steps is reached.  

 

The Backward Removal Method 

 

The backward removal method is also a simple model-building procedure. At 

each Step after Step 0, the removal statistic is computed for each independent variable 

eligible to be removed from the model. If no independent variable has a value on the 

removal statistic which is less than the critical value for removal from the model, then 

stepping is terminated, otherwise the independent variables with the smallest value on the 

removal statistic is removed from the model. Stepping is also terminated if the maximum 

number of steps is reached.  
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The Forward Stepwise Method 

 

The forward stepwise method employs a combination of the procedures used in 

the forward entry and backward removal methods. At Step 1 the procedures for forward 

entry are performed. At any subsequent step where 2 or more independent variables have 

been selected for entry into the model, forward entry is performed if possible, and 

backward removal is performed if possible, until procedure can be performed and 

stepping is terminated. Stepping is also terminated if the maximum number of steps is 

reached.  

 

The Backward Stepwise Method 

 

The backward stepwise method employs a combination of the procedures used in 

the forward entry and backward removal methods. At Step 1 the procedures for backward 

removal are performed. At any subsequent step, where 2 or more independent variables 

have been selected for entry into the model, forward entry is performed or backward 

removal is performed, until procedure can be performed and stepping is terminated. 

Stepping is also terminated if the maximum number of steps is reached.  
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Entry and Removal Criteria 

 

Either critical F values or critical p values can be specified to be used to control 

entry and removal of independent variables from the model. If p values are specified, the 

actual values used to control entry or removal of independent variables from the model is 

1 minus the specified p values. The critical value for model entry must exceed the critical 

value for removal from the model. A maximum number of steps can also be specified. If 

not previously terminated, the stepping stops when the specified maximum number of 

steps is reached.  

 

3.2.2 Some Limitations of Stepwise Regression Models 

 
Although stepwise regressions (forward or backward) maybe useful for exploring 

the data, it is a brute-force technique. In letting the computer rather than theory dictates 

the form of the model, one can end up with theoretically important variables dropped 

from the model. In general, it seems preferable that model specification be guided by 

theory instead of some mechanical rule. 

 

Stepwise regressions are additionally frowned on by many statisticians because it 

violates the logic of hypothesis testing. Instead of testing a theory, one typically concocts 

an ad hoc explanation that seems consistent with a model arrived at mechanically by 
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stepwise regressions. Statistical tests are then inappropriate and invalid. One common 

problem in multiple regression analysis is the multi-collinearity of the input variables. 

The input variables may be as correlated with each other as they are with the response. If 

this is the case, the presence of one input variable in the model may mask the effect of 

another input. Stepwise regressions used as a canned procedure is a dangerous tool 

because the resulting model may include different variables depending on the choice of 

starting model and inclusion strategy. 

 

However, the stepwise regression model is viewed as an effective model if some 

of the pitfalls that exist in stepwise regressions are avoided. To avoid these pitfalls, Foster 

and Stine (2002) provided three modifications to standard regressions are required: (1) 

use interactions to capture non-linearities, (2) use Bonferroni to pick variables to include, 

and (3) use the sandwich estimator to get robust standard errors. The authors also 

explained what each of these three modifications is and why they are necessary. If all 

three of these are done, they end up with a procedure that can be used on almost any data 

set. 

3.3 Logit Regression Models  

 
Logistic regressions, more commonly called logit regressions, are used when the 

dependent variable is dichotomous (i.e., binary or 0-1). The independent variables may be 

quantitative, categorical, or a mixture of the two.  
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3.3.1 The Logistic Function 

The basic form of the logistic function is  

ze
P −+
=

1
1                                (3.1) 

where Z is the independent variable and e is the base of the natural logarithm, equal to 

2.718828… If I view (3.1) as an estimated model, so the P is an estimated probability. A 

property of the logistic function, as specified by (3.1), is that when Z becomes infinitely 

negative, ze− becomes infinitely large, so that P approaches 0. When Z becomes 

infinitely positive, ze− becomes infinitely small, so that P approaches unity. When 

0=Z , 1=− ze , so that 5.0=P .  

 

 If the numerator and denominator of the right side of (3.1) are multiplied by ze , 

the logistic function in (3.1) can be written alternatively as  

        z

z

e
eP
+

=
1

                                 (3.2) 

 

3.3.2 The Multivariate Logistic Function  

 
Suppose that Z  is a linear function of a set of independent variables: 

nni XXXZ ββββ ++++= ....22110                   (3.3) 

Note that Z is not a response variable in this equation. This express can be substituted for 

Z in the Eq. (3.1): 
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)....( 221101
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nn XXXe
P ββββ ++++−+
=                           (3.4) 

All the basic properties of the logistic function are preserved when this substitution is 

done. The function still range between 0 and 1 and achieves its maximum rate of change, 

with respect of change in any of the iX , at 5.=P .  

 

3.3.3 The Odds and the Logit of P 

 
The logit of P is derived from the logistic function (3.1). From (3.1) it follows that  

z

z

z e
e

e
P −

−

− +
=

+
−=−

11
111                                (3.5) 

Dividing (3.1) by (3.5) yields 

Ze
P

P
=

−1
                                             (3.6)            

Taking the natural logarithm (base e ) of both sides of (3.6), I obtain 

Z
P

P
=

−1
log                                           (3.7) 

 

The quantity )1/( PP − is called the odds, and the quantity ))1/(log( PP − is called the log 

odds or the logit of P . The definition of the odds corresponds to everyday usage. For 

example, one speaks the odds of winning a gamble on a horse race as, say, “75:25”, 

meaning .75/(1-.75) or, equivalently, 75/(100-75). Alternatively, one speaks of “three-to-

one” odds, which is the same as 75:25. 
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With these definitions, and with the expression in (3.3) substituted for Z , (3.7) can be 

written alternatively as  

nn XXX
P

P ββββ ++++=
−

....
1

log 22110                    (3.8) 

XXXP nββββ ++++= ....log 22110                        (3.9) 

 Eq. (3.8) and (3.9) are in the familiar form of an ordinary multiple regression 

equation. This is advantageous, because some of the statistical tools developed for 

multiple regressions can be applied to logit regression too. 

3.3.4 Fitting the Logit Regression Models 

 
To fit the logit regression models, I use the method of maximum likelihood.  To 

illustrate this method, let us consider a very simple model: 

bXaLogitP +=                                      (3.10) 

which can be written alternatively as  

)(1
1

bXae
P +−+
=                                        (3.11) 

 

Suppose that this original dependent variable is Y , which for individuals is either 0 or 1. 

Denote the first individual by subscript 1. For this individual ),(),( 11 YXYX = , then, I 

have that 

)(1 11
1

bXae
P +−+
=                                       (3.12) 

Similarly, for individual 2, 
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)(2 21
1

bXae
P +−+

=                                      (3.13) 

and so on for the remaining individuals in the sample. 

Let us consider individual 1 in more detail. I have from (3.12) that  

11 )1Pr( PY ==                                        (3.14) 

where Pr denotes “probability that”. Therefore,  

11 1)0Pr( PY −==                                    (3.15)   

I can combine (3.14) and (3.15) into one formula: 

)1(
111

11 )1()Pr( YY PPY −−=                               (3.16) 

Similarly 

)1(
222

22 )1()Pr( YY PPY −−=                              (3.17) 

And so on up to )Pr( nY , where n denotes the number of sample cases.  

If I assume simple random sampling, these n probabilities are independent. Then the 

probability, or likelihood, of observing the particular sample data is  
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where ∏ is the product symbol (analogous to the summation symbol ∑ ), and where 

),( baL indicates that the likelihood function, L , is a function of the unknown parameters, 
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a and b . Note that iX and iY are observed data and therefore constants in the equation, 

not unknown parameters. 

 It is also useful to derive a formula for log L : 

]}
1

1log[)1(]
1

1log[{),(log )()( ii bXaibXai e
Y

e
YbaL +−+− +

−+
+

= ∑           (3.19) 

In getting from (3.18) to (3.19), I make use of the rules 

yxxy logloglog += and xyx y loglog = . 

 

I wish to find the values of a and b that maximize ),( baL . Because Llog is a 

monotonically function of L , maximizing L is equivalent to maximize Llog . I maximize 

Llog by taking the partial derivative of Llog first with respect to a and second with 

respect to b , and then equating each derivative separately to zero, yielding two equations 

in two unknowns, a and b . These equations are then solved for a and b by numerical 

methods. 

 

3.3.5 Goodness of Fit 

 
In multiple regressions analyses, the traditional indicator of goodness of fit is 2R , 

which measures the proportion of variation in the dependent variable that is explained by 

the independent variables. In the case of logit regressions, one could also calculate the 

proportion of variation in the dependent variable that is explained by the independent 

variables, but in this case it is impossible for the observed values of the dependent 
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variable, which are either 0 or 1, to conform exactly to the fitted values of P . The 

maximum value of this proportion depends on the mean and variance of P .  

An alternative measure of goodness of fit may be derived from likelihood 

statistic. Let 0L denote the likelihood for the fitted intercept model, and let 1L denote the 

likelihood for the fitted test model. Define pseudo- 2R as 

n

n

L
LL

Rpseudo /2
0

/2
102

1
)/(1

−
−

=−                         (3.20) 

where n is the sample size. The minimum value of this quantity is zero when the fit is as 

bad as it can be (when 01 LL = ), and the maximum value is one when the fit is as good as 

it can be (when 11 =L ). This definition of pseudo- 2R was suggested by Cragg and Uhler 

(1970). Unfortunately there is no formal significance test that utilizes this measure. 

 Another definition suggested by McFadden (1974) is simply  

nLLRpseudo /2
10

2 )log/(log1−=−                       (3.21)   

Eviews presents this measure, denoted by 2
McFR . Like 2R , 2

McFR also range between 1 and 

0. Another comparatively simple measure of goodness of fit is the count 2R , which is 

defined as  

nsobservatioofnumber total
spredictioncorrect  ofnumber Rcount 2 =                       (3.22)    

There are several difficulties with these measures of pseudo- 2R , some of which have 

already been mentioned. First, there are several different measures available, which can 

give rather different numerical results when applied to the same data set. Second, there is 

little basis for choosing one measure over the other. Third, statistical tests that utilize 

pseudo- 2R are not available for any of the measures. For these reasons, many authors do 
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not present values of pseudo- 2R when reporting results form logit regression analyses. 

Therefore, this research also does not provide pseudo- 2R . 

 

3.4 Forecasting Using Stepwise OLS Regression Models and 

Stepwise Logit Model 

 
In this study, six years of data are used to estimate the parameters of the within-

sample OLS model and logit model. The independent variables of both models are 52 

accounting ratios and financial variables calculated at the beginning of each fiscal year 

with the 3-month lag as discussed in Chapter 1. The dependent variable in OLS models is 

a firm’s market-adjusted abnormal return, which is measured as the firm’s actual return 

over the next fiscal year minus the return on the portfolio of all stocks in the sample 

during this period. For logit model, the dependent variable is the probability of a firm 

having an abnormal return above or below the median of the sample over the upcoming 

fiscal year.  

 

The estimation procedures for OLS and logit models are similar. First, the 

dependent variable is estimated using step-wise OLS or logit regressions, depending upon 

the type of forecast desired (point estimation or classification). All fundamental analysis 

variables initially enter the regression equation. A parsimonious subset of independent 

variables is selected in most cases by simply eliminating any explanatory variables with 

P-values greater than 5% for the 6-year estimation period. The exceptions are best 

illustrated by some examples. In some estimation periods, return on sales and return on 
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equity have coefficients of similar magnitude and significance, but they have opposite 

signs. This indicates co-linearity, so one of the variables is dropped and step-wise 

regression is re-applied to the remaining variables. Also, based upon forecasting results in 

the validation year, the 5% criterion is adjusted downward to 4 or 3% if the step-wise 

procedure originally selects more than eight independent variables. If the above stepwise 

procedure selects only one or two variables, the cut-off criterion is increased to 10% to 

include more independent variables. In general, models with three to five independent 

variables tend to give the best forecasts in the validation period. 

 

 

3.4.1 Forecasting Using Stepwise OLS Regression Models  

 
The model uses stepwise OLS regressions to select independent variables and estimate 

abnormal returns over 6-year periods. Abnormal returns for each company observation 

are:    

∑
=

− ++=−=
n

j
itjtjmtitit VrrR

1
1 εβα                     (3.23) 

where itR  is the market-adjusted abnormal return for stock i in fiscal year t calculated as 

the actual return for stock i ( itr  ) minus the mean return ( mtr  ) as it is measured by the 

average return for all property stocks in this sample in period t, jβ are the estimated OLS 

coefficients, α  is a constant, and itε  are error terms for each regression. The 1−jtV  

represent the n statistically significant inputs selected from the all potential beginning-of-
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the-fiscal-year input variables denoted by the time subscript 1−t  to indicate that they are 

known at the end of the previous period and not updated during fiscal year t. One-year 

ahead abnormal returns ( 1+tR ) are forecasted by substituting the next year’s beginning 

fiscal year jtV  ratios into Eq.(3.23), while keeping α  and jβ  the same as in the former 

period. This procedure is used to forecast the returns for year 2000 and 2001. 

 

3.4.2 Forecasting Using Stepwise Logit Regression Models  

 
The second model of this research is stepwise logit regressions, where the 

probability ( itP  ) that firm i  in year t will have an abnormal return above that of the 

median firm is given by: 

∑
=

− ++=−
n

j
itjtjitit VPP

1
1)1/log( εβα                    (3.24)                        

Notation and methodology are the same as in Eq. (3.23). Any number of classification 

categories can be used, such as four, eight, and 16 different ranking classes, but this study  

only considers two different ranking classes based upon the magnitude of each stock’s 

annual abnormal returns. According to Eq.(3.4),  

itzit e
P −+

=
1

1    

where ∑
=

− ++=
n

j
itjtjit Vz

1
1 εβα , then, I could calculate the probability ( itP ). Similarly, 

one-year ahead probability ( )1( +tiP ) that  firm i will have an abnormal returns are 
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forecasted by substituting the next year’s beginning fiscal year jtV  ratios into Eq.(3.24), 

while keeping α  and jβ  the same as in the former period. 

 

3. 5 Summary 

 This chapter reviews the basic concepts and limitations of stepwise regression 

models and logit regression models. And then, stepwise OLS regression models and logit 

regression models are fitted to the property stock forecast using annual accounting ratios.  
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Chapter 4 : Neural Networks in Forecasting Stock 
Returns 

 

4.1 Introduction 

 
Artificial neural networks (ANN) have attracted much interest in financial 

engineering as the cost of computing technology has declined. Typical applications in 

finance include portfolio selection /diversification, risk rating of mortgages and fixed 

income investments, index construction, simulation of market behavior, identification of 

economic explanatory variables, and economy forecasting. Back propagation (BP) neural 

networks are the most common type of neural networks in time series forecasting. So, 

this chapter will focus on the application of BP neural networks.  

 

This chapter is organized as follows. Section 4.2 reviews the basic concepts and 

strengths and weaknesses of neural networks. Since most neural networks used in 

economic analyses are BP neural networks, Section 4.3 introduce the methods of the BP 

neural networks building. In Section 4.4, the BP neural networks are fitted to the property 

stock forecast using annual accounting ratios.  

4.2 Basic Concepts and Strengths & Weakness of ANNs 

  

 Before looking at the application process, let us establish some basic concepts. 

ANNs are defined as an information processing technology inspired by studies of the 
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brain and nervous system (Medsker et al. 1996). It is a data model that has the ability to 

learn to recognize complicated patterns without being programmed with specific 

preconceived rules.  

 

4.2.1 Some Basic Concepts 

 
 In building an artificial neural network, the builder must be familiar with some 

concepts. The key concepts are as follow: 

Processing Elements: 

An ANN is composed of artificial neurons (neurodes, or nodes); these are 

processing elements. Each of the neurons receives input(s), processes the input(s), and 

delivers a single output(s). This process is shown in Fig. 4.1. The inputs can be raw data 

or output of other processing elements. The outputs can be the final product, or it can be 

an input to another neurons. Between inputs and outputs, weights express the relative 

importance of each input to a processing element. Through the repeated adjustments of 

weights, the network learns. 
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Fig.4.1 A Neural Processing Element 

 

 

Network Structure: 

Similar to biological networks, an ANN can be organized in several different 

ways (topologies); that is, the neurons can be interconnected in different ways. Three 

representative architectures are associative memory systems, hidden layer and double 

layer. In this study, I use hidden layer structure. 

 

Learning 

An ANN learns from its mistakes. The usual process of learning (or training) 

involves three tasks: compute outputs, compare outputs with desired answers, and adjust 

the weights and repeat the process. The learning process usually starts by setting the 

weights randomly. The difference between the actual output and the desired output is 

called error. The objective is to minimize error, or even better to reduce it to zero. The 

reduction of error is done by incrementally changing the weights. 
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Summation Function 

The summation function determines the weighted average of all the input elements to 

each processing element. A summation function multiplies the input values ( Xs ) by the 

weights (Ws ) and totals them together for a weighted sum, Y . For N inputs i into one 

processing element j , I have  

∑
=

=
n

i
ijii WXY

1
                             (4.1) 

 

Transformation Function: 

 The summation function computes the internal stimulation, or activation level, of 

the neurons. Based on this level, the neuron may or may not produce an output. The 

relationship between the internal activation level and the output may be linear or 

nonlinear. Such relationships are expressed by a transformation function. Therefore, 

transformation functions are mathematical formulas that determine the output of a 

processing neuron. They are also referred to as transfer, squashing, activation, or 

threshold functions. The purpose of the transfer function is to prevent outputs from 

reaching very large values which can ‘paralyze’ neural networks and thereby inhibit 

training. Although there are  some kinds of transformation functions such as the 

hyperbolic tangent, step, ramping and arc tan, the majority of current neural network 

models use the sigmoid (S-shaped) function,  

yt e
Y −+
=

1
1                    (4.2) 

where tY  is the transformed value of Y . 
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Learning algorithms: 

An important consideration in ANN is the appropriate use of algorithms for 

learning (or training). Such algorithms are called learning algorithms (or paradigms), and 

more than a hundred of them are known. The taxonomy of these algorithms has been 

proposed by Lippman (1989), who distinguishes between two major categories based on 

the input format: binary-valued input or continuous-valued input. Each of these can be 

further divided into two categories: supervised learning and unsupervised learning. 

Supervised learning uses a set of inputs for which the appropriate (desired) output 

are known. In unsupervised learning, only input stimuli are shown to the networks. The 

network organizes itself internally, so that each hidden processing element responds 

strategically to a different set of input stimuli. 

 

4.2.2 ANN Strengths and Weaknesses 

 
Neural Network technology has significant advantages over traditional rule in 

some applications. Neural networks are less sensitive to error term assumptions and they 

can tolerate noise, chaotic components, and heavy tails better than most other methods 

(Master, 1993). Other advantages include greater fault tolerance. Since there are many 

processing nodes, each with primarily local connections, damage to a few nodes or links 

does not bring the system to a halt. Moreover, neural networks have good adaptability 

compared to expert systems due to the large number of interconnected processing 

elements that can be ‘trained’ to learn new patterns (Lippman, 1999). By learning 



Chapter 4 

50  

through interaction with their environment, ANNs are particularly well suited for pattern 

recognition.  

 However, neural networks have their own weaknesses. Since the scope of training 

is always to some extent limited by economics and time, networks that contradict 

accepted theory run the risk of lacking generality, functioning well only on data with a 

structure similar to that of the training set. Furthermore, some neural network systems 

lack explanation facilities. Justifications for results are difficult to obtain because the 

connection weights do not usually have obvious interpretations. Also, most neural 

networks can not guarantee an optimal solution to a problem, a completely certain 

solution, or sometimes even lack repeatability with the same input data.  

 

4.3 Back propagation Neural networks Building 

 

  The BP neural network is used in this study since it is the most widely used in 

financial time series forecasting and it is the most common type of neural network in time 

series forecasting.  Also, the BP network is the most common multi-layer network 

estimated to be used in 80% of all applications (Caudill, 1992). Other neural networks 

less common in time series forecasting include recurrent networks, probabilistic networks 

and fuzzy neural networks. Hornik et al. (1989) showed that the standard BP network 

using an arbitrary transfer function can approximate any measurable function in a very 

precise and satisfactory manner, if a sufficient number of hidden neurons are used. 



Chapter 4 

51  

Hecht-Nielsen (1989) also demonstrated that a three-layer BP network can approximate 

any continuous mapping.  

    

 Therefore, the objective of this part is to provide the overview of a step by step 

methodology to design a neural network for forecasting financial time series data. First, 

the architecture of a BP neural network is briefly discussed. This is followed by an 

explanation of an eight-step procedure for designing a neural network including a 

discussion of tradeoffs in parameter selection and some common pitfalls.  

 

4.3.1 Architecture of a BP Neural networks 

 
BP neural networks consist of a collection of inputs and processing units known 

as neurons. The neurons in each layer are fully interconnected by connection strengths 

called weights which, along with the network architecture, store the knowledge of a 

trained network. In addition to the processing neurons, there is a bias neuron connected to 

each processing unit in the hidden and output layers. The bias neuron has a value of 

positive one and serves a similar purpose as the intercept in regression models. The 

neurons and bias terms are arranged into layers; an input layer, one or more hidden 

layers, and an output layer. The number of hidden layers and neurons within each layer 

can vary depending on the size and nature of the data set. 

 

BP networks are a class of feed forward neural networks with supervised learning 

rules. Feed forward refers to the direction of information flow from the input to the 
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output layer. Inputs are passed through the neural networks once to determine the output. 

Supervised learning is the process of comparing each of the network’s forecasts with the 

known correct answer and adjusting the weights based on the resulting forecast error to 

minimize the error function. 

 

 Neural networks are similar to linear and non-linear least squares regression and 

can be viewed as an alternative statistical approach to solving the least squares to 

minimize the sum of squared errors. The bias term is analogous to the intercept term in a 

regression equation. The number of input neurons is equal to the number of independent 

variables while the output neuron(s) represent the dependent variables(s). Linear 

regression models may be viewed as a feed forward neural network with no hidden layers 

and one output neurons to the single output neuron are analogous to the coefficients in a 

linear least squares regression. Networks with one hidden layer resemble nonlinear 

regression models. The weights represent regression curve parameters. 

 

4.3.2 Steps in Designing a Neural Network Forecasting Model 

 

 Kaastra and Boyd (1996) presented an eight-step design methodology, including 

variable selection, data collection, data preprocessing, training, testing and validation 

sets, neural network paradigm, evaluating criteria, neural network training and 

implement. In this study I follow their suggestions to build the neural networks. The 
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procedure is usually not a single-pass one, but may require visiting previous steps 

especially between training and variable selection. 

 

Step 1: Variable Selection 

Success in designing a neural network depends on a clear understanding of the 

problem. Knowing which input variables are important in the market being forecasted is 

critical. However, economic theory can help in choosing variables which are likely 

important predictors and the very reason for relying on a neural network is for its 

powerful ability to detect complex nonlinear relationships among a number of different 

variables. At this point in the design process, the concern is about the raw data from 

which a variety of indicators will be developed. These indicators will form the actual 

inputs to neural networks. In this study, following the  Ou and Penman (1989) 

methodology, the data set of about 50 annual accounting ratios and financial variables are 

constructed for each firm during each of the 10 years in this sample. 

 

Step 2: Data Collection 

 The researcher must consider not only cost and availability when collecting data 

for the variables chosen in the first step, but also the quality of the data. All data should 

be checked for errors by examining day-to-day changes, ranges, logical consistency (e.g. 

high greater than or equal to close, open greater or equal to low) and missing 

observations. Missing observations, which often exist, can be handled in a number of 

ways. All missing observations can be dropped or a second option is to assume that the 

missing observations remain the same by interpolating or averaging from nearby values. 
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Dedicating an input neuron to the missing observations by coding it as a one if missing 

and zero otherwise is also often done. 

 

Step 3: Data Preprocessing 

 Data preprocessing refers to analyzing and transforming the input and output 

variables to minimize noise, highlight important relationships, detect trends, and flatten 

the distribution of the variable to assist the neural network in learning the relevant 

patterns. Since neural networks are pattern matchers, the representation of the data is 

critical in designing a successful network. The data preprocessing for presenting to the 

neural network needs for the dataset to be stationary although normality is not imperative. 

The input and output variables for which the data was collected are rarely fed into the 

network in a raw form. At the very least, the raw data must be scaled between the upper 

and lower bounds of the transfer functions (usually between zero and one or negative one 

and one).  

 

 Two of the most common data transformations in both traditional and neural 

network forecasting are first differencing and taking the natural log of a variable. First 

differencing, or using changes in a variable, can be used to remove a linear trend from the 

data. Logarithmic transformation is useful for data which can take on both small and 

large values and is characterized by an extended right hand tail distribution. Another 

popular data transformation is to use ratios of the input variables. Ratios highlight 

important relationships (e.g. hog/corn, financial statement ratios) while at the same time 

conserving degrees of freedom because fewer input neurons are required to code the 
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independent variables. In this study, I transform the raw data into various accounting 

ratios as the independent variables. 
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Step 4: Training, Testing and Validation Sets 

 A common practice is to divide the time series into three distinct sets called 

training, testing and validation (out-of sample) sets. The training set is the largest set and 

is used by the neural networks to learn the patterns present in the data. The testing set, 

ranging in size from 10% to 30% of the training set, is used to evaluate the generalization 

ability of a supposedly trained network. The researcher would select the network(s) 

which perform best on the testing set. A final check on the performance of the trained 

networks is made using the validation set. The size of the validation set chosen must 

strike a balance between obtaining a sufficient sample size to evaluate a trained network 

and having enough remaining observations for both training and testing. The validation 

set should consist of the most recent contiguous observations.  

 

It is recommended that the training and testing sets be scaled together since the 

purpose of the testing set is to determine the ability of the network to generalize. 

However, by no means, should the validation set be scaled with either the training or 

testing sets since this biases the integrity of the validation set as a final and independent 

check on the neural networks. In actual use, the researcher has no way of knowing the 

exact range of future values, but only has a reasonable estimate based on the range of the 

training and /or testing sets. In this study, training and testing sets are data from 1993 to 

1998 and the validation set is data of 1999. 
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Step 5: Neural Network Paradigms 

 There are an infinite number of ways to construct a neural network. 

Neurodynamics and architecture are two terms used to describe the way in which a neural 

network is organized. The combination of neurodynamics and architecture define the 

neural network’s paradigm. Neurodynamics describe the properties of an individual 

neuron such as its transformation function and how the inputs are combined. A neural 

network’s architecture defines its structure including the number of neurons in each layer 

and the number and type of interconnections.  

 

 The number of input neurons is one of the easiest parameters to select once the 

independent variables have been preprocessed because each independent variable is 

represented by its own input neuron. This section will address the selection of the number 

of hidden layers, hidden layer neurons, output neurons and the transfer functions. 

 

The hidden layer(s) provide the network with its ability to generalize. In theory, a 

neural network with one hidden layer with a sufficient number of hidden neurons is 

capable of approximating any continuous function. In practice, neural networks with one 

and occasionally two hidden layers are widely used and have performed very well. 

Increasing the number of hidden layers also increases computation time and the danger of 

over fitting which leads to poor out-of-sample degrees of freedom. In other words, it has 

relatively few observations in relation to its parameters and therefore it is able to 

memorize individual points rather than learn the general patterns. Therefore, it is 

recommended that all neural networks should start with preferably one or at most two 
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hidden layers. If a four-layer neural network (i.e. two hidden layers) proves 

unsatisfactory after having tested multiple hidden neurons using a reasonable number of 

randomly selected starting weights, then the research should modify the input variables a 

number of times before adding a third hidden layer. Both theory and virtually all 

empirical work to date suggest that networks with more than four layers will not improve 

the results (Kaastra & Boyd, 1996). 

 

 Despite its importance, there is no ‘magic’ formula for selecting the optimum 

number of hidden neurons. Therefore, researchers fall back on experimentation. 

However, some rules of thumb have been advanced. Katz (1992) indicated that an 

optimal number of hidden neurons will generally be found between one-half to three 

times the number of input neurons. Ersoy (1990) proposed doubling the number of 

hidden neurons until the network’s performance on the testing set deteriorates. Selecting 

the ‘best’ number of hidden neurons involves experimentation. Three methods often used 

are the fixed, constructive and destructive. Regardless of the method used to select the 

range of hidden neurons to be tested, the rule is to always select the network that 

performs best on the testing set with the least number of hidden neurons. When testing a 

range of hidden neurons it is important to keep all other parameters constant. Changing 

any parameter in effect creates a new neural network with a potentially different error 

surface which would needlessly complicate the selection of the optimum number of 

hidden neurons. 
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 Deciding on the number of output neurons is somewhat more straightforward 

since there are compelling reasons to always use only one output neuron. Neural 

networks with multiple outputs, especially if these outputs are widely spaced, will 

produce inferior results as compared to a network with a single output (Master, 1993). A 

neural network trains by choosing weights such that the average error over all output 

neurons is minimized. For example, a neural network attempting to forecast one month 

ahead and six month ahead cattle future prices will concentrate most of its effort on 

reducing the forecast with the largest error which is likely the six-month forecast. As a 

result, a relatively large improvement in the one-month forecast will not be made if it 

increases the absolute error of the six-month forecast by an amount greater than the 

absolute improvement of the one-month forecast. The solution is to have the neural 

networks specialize by using separate networks for each forecast. Specialization also 

makes the trial and error design procedure somewhat simpler since each neural network 

is smaller and fewer parameters need to be changed to fine tune the final model. 

 

 Linear transformation functions are not useful for nonlinear mapping and 

classification. Levich and Thomas (1993) and Kao and Ma (1992) found that financial 

markets are nonlinear and have memory suggesting that nonlinear transformation 

functions are more appropriate. Transformation functions such as the sigmoid are 

commonly used for time series data because they are nonlinear and continuously 

differentiable which are desirable properties for network learning. In this work, the 

transformation function applied is sigmoid. 
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Step 6: Evaluation Criteria 

 The most common error function minimized in neural networks is the sum of 

squared errors. Other error functions offered by software vendors include least absolute 

deviations, least fourth powers, asymmetric least squares and percentage differences.  

These error functions may not be the final evaluation criteria since other common 

forecasting evaluation methods such as the mean absolute percentage error (MAPE) are 

typically not minimized in neural networks. 

 

 In the case of commodity trading systems, the neural network forecasts would be 

converted into buy/sell signals according to a predetermined criterion. For example, all 

forecasts greater than 0.8 or 0.9 can be considered buy signals and all forecasts less than 

0.2 or 0.1 as sell signals. The buy/sell signals are then fed into a program to calculate 

some type of risk adjusted return and the networks with the best risk adjusted return (not 

the lowest testing set error) would be selected. Low forecast errors and trading profits are 

not necessarily synonymous since a single large trade forecasted incorrectly by the neural 

networks could have accounted for most of the trading system’s profits. 

 

Step 7: Neural networks Training 

 Training a neural network to learn patterns in the data involves iteratively 

presenting it with examples of the correct known answers. The objective of training is to 

find the set of weights between the neurons that determine the global minimum of the 

error function. Unless the model is over fitted, this set of weights should provide good 

generalization. The BP network uses a gradient descent training algorithm which adjusts 
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the weights to move down the steepest slope of the error surface. Finding the global 

minimum is not guaranteed since the error surface can include many local minima in 

which the algorithm can become ‘stuck’. A momentum term and five to ten random sets 

of starting weights can improve the chances of reaching a global minimum. This section 

will discuss when to stop training a neural network and the selection of learning rate and 

momentum values. 

 

Number of Training Iterations 

 There are two schools of thought regarding the point at which training should be 

stopped. The first stresses the danger of getting trapped in a local minimum and the 

difficulty of reaching a global minimum. The researcher should only stop training until 

there is no improvement in the error function based on a reasonable number of randomly 

selected starting weights (Master, 1993). The point at which the network does not 

improve is called convergence. The second view advocates a series of train-test 

interruptions (Deboeck, 1994 and Mendelsohn, 1993). Training is stopped after a 

predetermined number of iterations and the network’s ability to generalize on the testing 

set is evaluated and training is resumed. Generalization is the idea that a model based on 

a sample of the data is suitable for forecasting the general population. The network for 

which the testing set error bottoms out is chosen since it is assumed to generalize the 

best.  

 

The criticism of the train-test procedure is that additional train-test interruptions 

could cause the error on the testing set to fall further before rising again or it could even 
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fall asymptotically.  In other words, the research has no way of knowing if additional 

training could improve the generalization ability of the network especially since weights 

are randomized. The advantage of the convergence approach is that one can be more 

confident that the global minimum was reached. Replication is more difficult for the 

train-test approach given that starting weights are usually randomized and the mean 

correlation can fluctuate wildly as training proceeds. However, both schools of thought 

agree that generalization on the validation set is the ultimate goal and both use testing 

sets to evaluate a large number of networks. The point, at which the two approaches 

depart, centers on the notion of overtraining versus over fitting. The convergence 

approach states that there is no such thing as overtraining, only over fitting. Over fitting 

is simply a symptom of a network that has too many weights. The solution is to reduce 

the number of hidden neurons (or hidden layers if there is more than one) and /or increase 

the size of the training set. The train-test approach attempts to guard against over fitting 

by stopping training based on the ability of the network to generalize. 

 

Learning Rate and Momentum 

 A BP network is trained using a gradient descent algorithm which follows the 

contours of the error surface by always moving down the steepest slope. The objective of 

training is to minimize the total squared errors, defined as follows:  
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where E is the total error of all patterns, hE represents the error on pattern h , the index 

h ranges over the set of input patterns, and i refers to the i th output neuron. The variable 
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hit  is the desired output for the i th output neuron when the h th pattern is presented, the 

hiO  is the actual output of the i th output neuron when pattern h is presented. The 

learning rule to adjust the weight between neuron i and j is defined as: 

)1()( hihihihihi OOOt −−=δ                                 (4.2) 
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where n is the presentation number, hiδ is the error signal of neuron i for pattern h , and 

ε is the learning rate. The learning rate is a constant of proportionality which determines 

the size of the weight changes. The weight change of a neuron is proportional to the 

impact of the weight from that neuron on the error. The error signal for an output neuron 

and a hidden neuron are calculated by Eq. (4.3) and (4.4), respectively. 

 

 During training, a learning rate that is too high is revealed when the error function 

is changing wildly without showing a continued improvement. On the other hand, a very 

small learning rate is evident when there is very little or no improvement in the error 

function and more training time. In either case, the researcher must adjust the learning 

rate during training or ‘brainwash’ the network by randomizing all weights and changing 

the learning rate for the new run through the training set. One method to increase the 

learning rate and thereby speed up training time without leading to oscillation is to 

include a momentum term in the BP learning rule. The momentum term determines how 

past weight changes affect current weight changes. The modified BP training rule is 

defined as follows: 
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)()()1( nwOnw ijhjhiij ∆+=+∆ αδε                          (4.5) 

where α is the momentum term, and all other terms are as previously defined. 

 

  The momentum term suppresses side-to-side oscillations by filtering out high-

frequency variations. Each new search direction is a weighted sum of the current and the 

previous gradients. Such a two-period moving average of gradients filters out rapid 

fluctuations in the learning rate. Momentum values that are too great will prevent the 

algorithm from following the twists and turns in weight space. McClelland and 

Rumelhart (1986) indicate that the momentum term is especially useful in error spaces 

containing long ravines that are characterized by steep, high walls and a gently sloping 

floor. Without a momentum term, a very small learning rate would be required to move 

down the floor of the ravine which would require excessive training time. By dampening 

the oscillations between the ravine walls, the momentum term can allow a higher learning 

rate to be used. 

 

 Most neural network software programs provide default values for learning rate 

and momentum that typically work well. Initial learning rates used in previous work vary 

widely from 0.1 to 0.9. Common practice is to start training with a higher learning rate 

such as 0.7 and decrease as training proceeds. Many neural network programs will 

automatically decrease the learning rate and increase momentum values as convergence 

is reached. 
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 Step 8: Implementation 

The implementation step is listed as the last one, but in fact requires careful 

consideration prior to collecting data. Data availability, evaluation criteria, and training 

times are all shaped by the environment in which the neural networks will be deployed. 

Most neural network software vendors provide the means by which trained networks can 

be implemented either in the neural network program itself or as an executable file. If 

not, a trained network can be easily created in a spreadsheet by knowing its architecture, 

transformation functions, and weights. Care should be taken that all data transformations, 

scaling, and other parameters remain the same from testing to actual use. 

 

 An advantage of neural networks is their ability to adapt to changing market 

conditions through periodic retraining. Once deployed, a neural network’s performance 

will degrade over time unless retraining takes place. However, even with periodic 

retraining, there is no guarantee that network performance can be maintained as the 

independent variables selected may have become less important.  

 

 It is recommended that the frequency of retraining for the deployed network 

should be the same as used during testing on the final model. However, when testing a 

large number of networks to obtain the final model, less frequent retraining is acceptable 

in order to keep training times reasonable. A good model should be robust with respect to 

retraining frequency and will usually improve as retraining takes place more often. 
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4.3 Forecasting Property Stock Return Using the Monte Carlo 

BP Neural Networks 

 
Six years of data are used to estimate the parameters of the within-sample neural 

network models. The independent variables are the accounting ratios and financial 

variables calculated at the beginning of each fiscal year with the 3-month lag as discussed 

in Chapter 1. In point-prediction models, the dependent variable is a firm’s abnormal 

return. For classification problems, the dependent variable is the probability of a firm 

having a return above or below the median of the sample over the upcoming fiscal year.  

 

4.3.1 Architecture of BP Neural Networks in Forecasting 

 
The architecture of OLS neural networks and Logit neural networks are the same. 

By iterating within sample and examining the error terms, the neural network readjusts 

the input weights ( hjβ ) and output weights ( hφ ) to minimize within-sample root mean 

square error for point prediction models. It maximizes the classification rate of correct 

predictions for classification models. I used the extended delta bar delta learning rule to 

back propagation the mean squared error from the output layer back to each neuron in the 

input layer. For this rule, the input weights (which are analogous to OLS or logit 

parameters) are adjusted at each of k iterations by  
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where the change in input weight at each iteration is  
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Iterations continue until the portion of the error back propagated to each individual 

neuron ( k
he ) based on )1( −k

hjβ parameter values reaches some tolerable level, or until the 

maximum number of iterations is reached. The learning rate coefficient ( cL ) was set 

equal to 0.3 and the momentum coefficient ( )m was set equal to 0.4 for all models. These 

coefficients control the speed of gradient decent around a local optimum.  

 

In addition, an 'F offset of 0.1 was added to the (.)F squashing function at the 

each iteration to avoid saturation or closing down the learning process too soon. For all 

time periods, the number of hidden layers was fixed at one. The number of hidden 

neurons was set using a rule commonly used by other researchers, where H is the sum of 

input plus output variables divided by two. In event of a non-integer result, H was always 

around upward. In this study, all neural network models are estimated using Matlab 6.1. 

An epoch size of 30 was set for all models. This means that 30 training set observations 

were selected randomly and examined for error. Input weights were then adjusted and 

another 30 random observations were selected with weights changed using the extended 

delta bar delta learning rule. Based on the results from the validation sample, a maximum 

of 10,000 iterations provide a reasonable tradeoff between the problems of under-fitting 

and over-fitting the data. 
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4.3.2 The Model of OSL Neural Networks and Logit Neural Networks 

 
Back propagation neural networks can be constructed for the point estimation and 

classification problems. I define neural networks for point estimation as OLS neural 

networks and for classification problems as logit neural networks. The estimation 

procedures and subsequent trading strategies for both point prediction and classification 

problems are similar in neural networks. 

 

OSL Neural Networks 

OSL neural networks corresponding to point- prediction problems can be 

represented by Eq. (4.6) as follows: 

∑ ∑
= =

− +++=−=
H

h

n

j
itjthjhhmtitit VFrrR

1 1
1)( εβγφα                       (4.6)  

where itR  is the abnormal return for stock i in fiscal year t  calculated as the firm’s actual 

return ( itr ) minus the return on the portfolio of all stocks in the sample ( mtr ) as measured 

by the average return for stocks in the sample in period t. H is the total number of hidden 

units or neurons in the hidden layer between inputs and outputs. hγ is input threshold 

terms, hjβ are weights from the accounting ratio inputs to the hidden layer, while the 

hφ parameters are weights from the hidden layer to the output layer. 1−jtV  represents the 

inputs in the beginning of the fiscal year and denotes by the time subscript 1−t  to 

indicate that they are known at the end of the previous period and not updated during the 

fiscal year t . α is a constant, and itε  are error terms. Basically independent variables are 
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put through a transformation or squashing function as represented by (.)F . For this 

purpose, following the research of Olson and Mossman (2002), this is the hyperbolic 

tangent function constrained to lie within the interval from -1 to +1.Denoting  

∑
=

−+=
n

j
jyhjh Vz

1
1 )( βγ  

in Eq.(4.6), the hyperbolic transformation or activation function is  

))exp()/(exp())exp()(exp()( zzzzzF −+−−=  

                                     

 

Logit Neural Networks 

 Similarly, logit neural networks corresponding to classification problems can be 

represented as follows: 

∑ ∑
= =

− +++=−
H

h

n

j
itjthjhhitit VFPPLog

1 1
1 )())1/(( εβγφα                        (4.7) 

where itP  is that firm i in year t will have an abnormal return above that of the median 

firm. And the right-hand side of Eq.(4.7) is the same as that of Eq.(4.6). However, 

Eq.(4.7) is used to estimate probabilities for an abnormal return to lie within a two-class 

condition. 
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4.4.3 The Monte Carlo Neural Networks 

 
To improve the performance of neural networks models, this study uses the 

Monte Carlo neural networks method. According to the characteristics of neural 

networks, most neural networks can not guarantee an optimal solution to a problem, a 

completely certain solution, or sometimes even lack repeatability with the same input 

data. Therefore, I implement the Monte Carlo method to decrease the variance of results.  

 

The steps of this Monte Carlo process are shown in the following: first, a neural 

network is trained for an observation company with the input data from year 1993 to 

1999 period. Then I simulated a predicted abnormal return of that company in 2000 with 

the input data of year 2000. Second, I repeated these training and simulation process 30 

times with the same input data. Here, I assume that the distribution of output of the neural 

networks follows a normal distribution. Then, I averaged 30 predicted abnormal returns 

as that company’s abnormal return in year 2000. Similarly, I can obtain that company’s 

abnormal return in year 2001. 

 

4.5 Summary 

This chapter reviews the basic concepts, strengths and weaknesses of neural 

networks and introduces the BP neural networks which are the most popular neural 

networks used in economic analyses. Then, the BP neural networks are fitted to the 

property stock forecast using annual accounting ratios.  
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Chapter 5: Comparison and Analysis 
 

 

5.1 Introduction  

 

After four different methodologies (OLS neural networks, logit neural networks, 

OLS and logit regressions) were developed to forecast the company returns of one year 

ahead, this chapter shows and analyzes the results in terms of portfolio profitability for 

the four forecasting techniques.  

 

This chapter is organized as follows. Section 5.2 presents the empirical results of 

stepwise OLS regressions and stepwise Logit regressions. Section 5.3 shows the 

empirical results of OLS neural networks and Logit neural networks. In Section 5.4, the 

results of four techniques are compared and analyzed in term of portfolio profitability. 

Section 5.5 concludes the chapter.  
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5.2 Empirical Results of Regressions  

 
Both the stepwise OLS regression models and logit regression models presented 

in 3.3.1 and 3.3.2 were estimated by SPSS. The results of in terms of predictive accuracy 

of the abnormal returns are shown for each company in observation in this subsection. In 

this Chapter, the error of predicted abnormal return is equal to actual abnormal return 

minus predicted abnormal return. 

 

5.2.1 Results of Stepwise OLS Regressions 

  Table 5.1 summarizes the predicted abnormal returns and error of all 13 

companies using OLS forecasting techniques for the years 2000 and 2001.  

 

Table 5.1 Predicted Abnormal Return Results by OLS Regressions 

Name of Companies 2000 Error 2001 Error 
BONVEST HOLDINGS   0.1427 -0.2566 0.0121 -0.0786 
BUKIT SEMBAWANG EST -0.1511 0.1880 -0.2407 0.5427 
CHEMICAL INDL. (FE) 1.7614 -1.8318 0.3597 -0.1966 
CITY DEVELOPMENTS  -0.0491 -0.0109 0.1532 0.0077 
HONG FOK CORPORATION   0.3034 -0.1930 0.0400 -0.2085 
KEPPEL LAND  -0.6539 0.6235 0.0190 0.0775 
MCL LAND  0.3614 -0.3948 -1.8293 2.1950 
ORCHARD PARADE HDG -0.0519 -0.1876 -0.3150 0.4155 
SINGAPORE LAND  0.5428 -0.1467 0.6006 -0.3792 
UNITED OVERSEAS LAND  0.4330 0.1189 0.5234 -0.1634 
WING TAI HOLDINGS -0.2213 -0.0047 0.7001 -0.4378 
CAPITALAND  -0.2637 0.2653 0.0212 -0.0710 
MARCO POLO DEV 0.0648 0.1629 0.4861 -0.2010 
Average 0.1340 -0.1286 0.0618 0.0703 
Max 1.7614 0.6235 0.7001 2.1950 
Min -0.6539 -1.8318 -1.8293 -0.5177 
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From Table 5.1, the average errors of predicted abnormal returns are -0.1286 and 

0.0703 for year 2000 and 2001 respectively. However, the range of errors of predicted 

abnormal returns are from -1.8318 to 0.6235 in 2000 and from -0.5177 to 2.1950 in 2001. 

 

5.2.2 Results of Stepwise Logit Regressions 

Table 5.2 summarizes the predicted abnormal returns and error of all 13 

companies using OLS forecasting techniques for the years 2000 and 2001.  

 

Table5.2 Predicted Abnormal Return Results by Logit Regressions 

Name of Companies 2000 Error 2001 Error 
BONVEST HOLDINGS   1.0000 -1.0000 0.0000 0.0000 
BUKIT SEMBAWANG EST 0.0000 1.0000 1.0000 0.0000 
CHEMICAL INDL. (FE) 0.0000 0.0000 1.0000 0.0000 
CITY DEVELOPMENTS  1.0000 -1.0000 1.0000 0.0000 
HONG FOK CORPORATION   1.0000 0.0000 0.0133 -0.0133 
KEPPEL LAND  0.0000 0.0000 No Value No Value 
MCL LAND  1.0000 -1.0000 0.1471 0.8529 
ORCHARD PARADE HDG 0.0035 -0.0035 0.0000 1.0000 
SINGAPORE LAND  1.0000 0.0000 0.5247 0.4753 
UNITED OVERSEAS LAND  0.9954 0.0046 1.0000 0.0000 
WING TAI HOLDINGS 1.0000 -1.0000 0.9973 0.0027 
CAPITALAND  0.0000 1.0000 0.0000 0.0000 
MARCO POLO DEV 0.8712 0.1288 1.0000 0.0000 

 

 As shown in Table 5.2, it is observed that the logit regression technique is not 

applicable to the data of Keppel Land Company in 2001. Even though P-value is adjusted 

downward to 90%, the stepwise regressions still selected no independent variables. This 

means that the data set of Keppel Land Company do not include independent variables 

which can explain its dependent variable with proper P-value for the estimation period, 

1995 to 2000. 
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  Moreover, in logit regressions, for the error of predicted abnormal returns, the 

value closer to 0, the better are the results. According to this characteristic, it is found the 

error of 7 out of 13 companies is less than 0.2 in 2000 while 9 out of 12 is less than 0.1 in 

2001. 

 

5.3 Results of the Monte Carlo Neural Networks 

As explained in 4.4.3 where neural networks could improve the stability of the 

performance of neural networks by reducing the errors of outputs, this point will be 

shown in this subsection. The results of all observation companies using The Monte 

Carlo neural networks are presented in Appendix 1-14.  

 

For example, I will only examine the predicted abnormal return results of MCL 

land Company. From Table 5.3, for OLS neural networks, the average errors of predicted 

abnormal returns are only 0.0602 and 0.3386 for year 2000 and 2001 respectively. 

However, the range of errors of predicted abnormal returns are from -0.9867 to 0.9294 in 

2000 and from -0.5801 to 1.3003 in 2001. Moreover, for logit neural networks, the 

average errors of predicted abnormal returns are only -1.4823 and 0.8818 for year 2000 

and 2001 respectively, while the range of errors of predicted abnormal returns are from -

1.9451 to -1.0110 in 2000 and from 0.0356 to 0.9986 in 2001. This similarity could be 

found in the predicted results of all other companies using The Monte Carlo neural 

networks. 
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Table 5.3 Predicted Abnormal Return Results of MCL LAND by The Monte Carlo 

Neural networks 

Methods OLS Neural networks Logit Neural networks 
Number 2000 Error 2001 Error 2000 Error 2001 Error 

1 0.5163 -0.5498 -0.3736 0.7393 0.3586 -1.3586 0.0095 0.9905 
2 -0.0089 -0.0245 0.3989 -0.0332 0.0648 -1.0648 0.0015 0.9986 
3 -0.6233 0.5898 -0.1404 0.5062 0.9384 -1.9384 0.0280 0.9720 
4 -0.3103 0.2768 0.2001 0.1656 0.0123 -1.0123 0.1573 0.8428 
5 -0.2472 0.2137 -0.0044 0.3701 0.0120 -1.0120 0.0108 0.9892 
6 -0.5309 0.4974 -0.7330 1.0987 0.5406 -1.5406 0.1221 0.8779 
7 0.3563 -0.5309 0.3502 0.0155 0.5821 -1.5821 0.0069 0.9932 
8 -0.6209 0.5874 0.4784 -0.1127 0.2338 -1.2338 0.3119 0.6882 
9 0.8757 -0.9092 0.5710 -0.2052 0.3463 -1.3463 0.0342 0.9659 

10 -0.9628 0.9294 0.0416 0.3241 0.0202 -1.0202 0.1276 0.8725 
11 0.2471 -0.2805 -0.1586 0.5244 0.8591 -1.8591 0.0126 0.9874 
12 -0.7638 0.7304 0.0420 0.3237 0.7677 -1.7677 0.0445 0.9555 
13 0.7874 -0.8208 0.0428 0.3230 0.3052 -1.3052 0.0080 0.9920 
14 0.8535 -0.8870 0.1637 0.2020 0.3257 -1.3257 0.4352 0.5649 
15 -0.1022 0.0688 -0.2727 0.6384 0.4814 -1.4814 0.0705 0.9295 
16 -0.8085 0.7751 0.4565 -0.0907 0.4814 -1.4814 0.0220 0.9781 
17 -0.1700 0.1365 0.1385 0.2273 0.5624 -1.5624 0.0372 0.9628 
18 0.1650 -0.1985 -0.0959 0.4617 0.9291 -1.9291 0.0790 0.9210 
19 -0.1855 0.1521 -0.5097 0.8754 0.3133 -1.3133 0.3119 0.6882 
20 -0.6946 0.6611 -0.0618 0.4275 0.8540 -1.8540 0.0345 0.9655 
21 0.9533 -0.9867 0.7627 -0.3970 0.2090 -1.2090 0.9645 0.0356 
22 -0.8705 0.8371 -0.5525 0.9182 0.1861 -1.1861 0.0126 0.9874 
23 -0.7947 0.7613 0.9458 -0.5801 0.9103 -1.9103 0.0556 0.9444 
24 -0.0054 -0.0280 0.7075 -0.3418 0.8990 -1.8990 0.0488 0.9512 
25 0.8620 -0.8955 0.0350 0.3307 0.9138 -1.9138 0.0175 0.9825 
26 -0.8340 0.8006 0.5179 -0.1522 0.0110 -1.0110 0.0173 0.9827 
27 0.2235 -0.2569 -0.1894 0.5552 0.0322 -1.0322 0.0091 0.9909 
28 -0.3897 0.3562 -0.5128 0.8785 0.6262 -1.6262 0.3226 0.6774 
29 0.0089 -0.0424 -0.5007 0.8664 0.7470 -1.7470 0.1565 0.8435 
30 0.1249 -0.1583 -0.9345 1.3003 0.9451 -1.9451 0.0782 0.9218 

Average -0.0983 0.0602 0.0271 0.3386 0.4823 -1.4823 0.1182 0.8818
Max 0.9533 0.9294 0.9458 1.3003 0.9451 -1.0110 0.9645 0.9986
Min -0.9628 -0.9867 -0.9345 -0.5801 0.0110 -1.9451 0.0015 0.0356
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5.3.1 Results of OLS Neural networks 

Table 5.4 shows the predicted abnormal returns and errors of all observation 

companies using The Monte Carlo OLS neural networks forecasting techniques for the 

years 2000 and 2001.  

Table 5.4 Predicted Abnormal Return Results by OLS Neural Networks 

Name of Companies 2000 Error 2001 Error 
BONVEST HOLDINGS   0.0017 -0.1157 -0.0259 -0.0406 
BUKIT SEMBAWANG EST 0.2079 -0.1709 0.1392 0.1629 
CHEMICAL INDL. (FE) -0.0229 -0.0476 0.1141 0.0490 
CITY DEVELOPMENTS  0.1086 -0.1687 0.0049 0.1561 
HONG FOK CORPORATION   0.0763 0.0341 0.1486 -0.3171 
KEPPEL LAND  -0.0783 0.0479 0.0953 0.0012 
MCL LAND  -0.0983 0.0649 0.0271 0.3386 
ORCHARD PARADE HDG -0.0525 -0.1869 0.1050 -0.0045 
SINGAPORE LAND  -0.1080 0.5041 0.0964 0.1250 
UNITED OVERSEAS LAND  0.1021 0.4499 0.2353 0.1246 
WING TAI HOLDINGS -0.0188 -0.2072 -0.1310 0.3933 
CAPITALAND  0.0856 -0.0841 -0.0723 0.0225 
MARCO POLO DEV -0.0312 0.2589 0.0530 0.2321 
Average 0.0132 0.0291 0.0607 0.0956 
Max 0.2079 0.5041 0.2353 0.3933 
Min -0.1080 -0.2072 -0.1310 -0.3171 

 

From Table 5.4, the average errors of predicted abnormal returns are 0.0291 and 

0.0956 for year 2000 and 2001 respectively. Moreover, the range of errors of predicted 

abnormal returns are from 0.5041 to -0.2072 in 2000 and from 0.3933 to -0.3171. 

Compared to the results of OLS regression models in Table 5.1, the results of OLS neural 

networks are generally better. 

 



Chapter 5 

78 

5.3.2 Results of Logit Neural Networks 

Table 5.5 shows the predicted abnormal returns and error of all observation 

companies using The Monte Carlo logit neural networks forecasting techniques to 

forecast the Singapore property stock returns 1-year-ahead. 

 

Table 5.5 Predicted Abnormal Return Results by Logit Neural Networks  

Name of Companies 2000 Error 2001 Error 
BONVEST HOLDINGS   0.0000 0.0000 0.2431 -0.2431 
BUKIT SEMBAWANG EST 0.4686 0.5314 0.7668 0.2332 
CHEMICAL INDL. (FE) 0.9800 -0.9800 0.5046 0.4954 
CITY DEVELOPMENTS  0.5415 -0.5415 0.4943 0.5057 
HONG FOK CORPORATION   0.4950 0.5050 0.4026 -0.4026 
KEPPEL LAND  0.1046 -0.1046 0.4873 0.5127 
MCL LAND  0.4823 -0.4823 0.1182 0.8818 
ORCHARD PARADE HDG 0.5550 -0.5550 0.5730 0.4270 
SINGAPORE LAND  0.4016 0.5984 0.3934 0.6066 
UNITED OVERSEAS LAND  0.9978 0.0022 0.9953 0.0047 
WING TAI HOLDINGS 0.4475 -0.4475 0.5559 0.4441 
CAPITALAND  0.7181 0.2819 0.6756 -0.6756 
MARCO POLO DEV 0.5826 0.4174 0.8036 0.1964 

 

 

5.4 Comparison and Analysis 

This research compares the forecasting performance of back propagation neural 

networks with traditional regression techniques using fundamental accounting data as an 

input to forecast 1-year-ahead Singapore property stock returns. Forecasts are judged 

primarily on the basis of trading rule profit. Profitability is what matters to most market 

participants; so trading rule profit is a better measure of the usefulness of a forecasting 
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model than statistical measures of forecast error (e.g. mean squared error, mean absolute 

error, or mean absolute percentage error).  

 

In this study, trading rule profit is the portfolio return, or the returns in percentage 

from a stock selection strategy using four different forecasting techniques, including OLS 

regressions, logit regressions, OLS neural networks and logit neural networks. According 

to the forecast of 2000 and 2001 year return by each different technique, I will select 

property stocks with positive abnormal returns or higher probability to out perform 

median stocks to construct an equal weighted portfolio. Then, each portfolio is assumed 

to be held for a two-year period. The holding or selling the stocks of the portfolio is 

adjusted yearly according to the forecast of 1-year-ahead return suggested by each 

technique. At the end, the annual abnormal return of each portfolio ( pR2000 , pR2001 ) in 

2000 and 2001 is calculated, which consists of the average abnormal returns for all 

selected stocks ( iR2000 ).  

∑
=

=
n

i
ip R

n
R

1
20002000

1       (5.1)                               

Then, the total abnormal return for 2 year holding period of the portfolio ( TPR ) is 

equal to  

)1)(1( 20012000 ppTP RRR ++=      (5.2) 
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Table 5.6 Real Abnormal Returns of All Observation Companies 

Name of Companies 2000( iR2000 ) 2001( iR2001 ) 
BONVEST HOLDINGS   -0.1140 -0.0665 
BUKIT SEMBAWANG EST 0.0370 0.3020 
CHEMICAL INDL. (FE) -0.0704 0.1631 
CITY DEVELOPMENTS  -0.0601 0.1609 
HONG FOK CORPORATION   0.1104 -0.1685 
KEPPEL LAND  -0.0304 0.0965 
MCL LAND  -0.0335 0.3657 
ORCHARD PARADE HDG -0.2394 0.1005 
SINGAPORE LAND  0.3961 0.2214 
UNITED OVERSEAS LAND  0.5520 0.3600 
WING TAI HOLDINGS -0.2260 0.2623 
CAPITALAND  0.0016 -0.0498 
MARCO POLO DEV 0.2277 0.2851 

 

 

5.4.1 Portfolios Constructed by OLS Regressions 
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Fig.5.1 Predicted Abnormal Return Results in 2000 by OLS Regressions  

 

 

I select the stocks with positive predicted abnormal returns to construct a 

portfolio. From the Fig.5.1, I will select 7 stocks out of 14 observations, including 
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Bonvest Holdings, Chemical INDL. (FE), Hong Fok Corporation, MCL Land, Singapore 

Land, United Overseas Land and Marco Polo Development. 
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Fig.5.2 Predicted Abnormal Return Results in 2001 by OLS Regressions  

 

 

Similarly, according to Fig.5.2, for year 2001 the portfolio can be constructed by 

these several stocks: Bonvest Holdings, Chemical INDL. (FE), City Developments, Hong 

Fok Corporation, Keppel Land, Singapore Land, United Overseas Land, Wing Tai 

Holdings, Capitaland and Marco Polo Development. 
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5.4.2 Portfolios Constructed by Logit Regressions 
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Fig.5.3 Predicted the Probability of Abnormal Results in 2000 by Logit Regressions  

 

For logit regression models, I select the stocks with probability that out perform 

the median firm higher than 0.6. According to this rule, the equal weighted portfolio in 

2000 can be constructed by these companies, Bonvest Holdings, City Developments, 

Hong Fok Corporation, MCL Land, Singapore Land, United Overseas Land, Wing Tai 

Holdings and Marco Polo Development. 
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Fig.5.4 Predicted the Probability of Abnormal Results in 2001 by Logit Regressions  
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Likely, the portfolio in 2001 could select these stocks: Bukit Sembawang Est, 

Chemical INDL. (FE), City Developments, United Overseas Land, Wing Tai Holdings 

and Marco Polo Development. 

 

5.4.3 Portfolios Constructed by OLS Neural networks 
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Fig.5.5 Predicted Probability Abnormal Results in 2000 by OLS Neural networks 

 

As for OLS regression models, I select the stocks with positive predicted returns 

to form portfolio for OLS neural network models. Therefore, according to Fig.5.5, Bukit 

Sembawang Est, City Developments, Hong Fok Corporation, United Overseas Land and 

Capitaland are selected for the portfolio in 2000. 

 



Chapter 5 

84 

-0.03

0.14 0.11

0.00

0.15
0.10

0.03

0.11 0.10

0.24

-0.13
-0.07

0.05

-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30

B
O

N
V

E
S

T
H

O
LD

IN
G

S
  

B
U

K
IT

S
E

M
B

A
W

A
N

G
E

S
T

C
H

E
M

IC
A

L
IN

D
L.

 (F
E

)

C
IT

Y
D

E
V

E
LO

P
M

E
N

TS
 

H
O

N
G

 F
O

K
C

O
R

P
O

R
A

TI
O

N
 

K
E

P
P

E
L 

LA
N

D
 

M
C

L 
LA

N
D

 

O
R

C
H

A
R

D
P

A
R

A
D

E
 H

D
G

S
IN

G
A

P
O

R
E

LA
N

D
 

U
N

IT
E

D
O

V
E

R
S

E
A

S
LA

N
D

 

W
IN

G
 T

A
I

H
O

LD
IN

G
S

C
A

P
IT

A
LA

N
D

 

M
A

R
C

O
 P

O
LO

D
E

V

 
Fig.5.6 Predicted Probability Abnormal Results in 2001 by Logit Neural networks 

 

Similarly, according to the Fig.5.5, the portfolio in 2001 selects the stocks: Bukit 

Sembawang EST, Chemical INDL. (FE), Hong Fok Corporation, Keppel Land, MCL 

Land, Orchard Parade HDG, Singapore Land, United Overseas Land and Marco Polo 

Development. 

 

5.4.4 Portfolios Constructed by Logit Neural networks 
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Fig.5.7 Predicted Probability Abnormal Results in 2000 by Logit Neural networks 
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Using logit regression models, I select the stocks with probability bigger than 0.6, 

which means that the firms have 0.6 probability to out perform the median firm. 

According to this rule, the equal weighted portfolio in 2000 can be constructed by three 

companies, Chemical INDL. (FE), United Overseas Land and Capitaland.  
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Fig.5.8 Predicted Probability Abnormal Results in 2001 by Logit Neural Networks 

 

 Similarly, the portfolio in 2001 select companies, Bukit Sembawang Est, United 

Overseas Land, Capitaland and Marco Polo Development. 

 

5.4.5 Comparison of the Performance of 4 Portfolios  

As mentioned before, forecasts of these four techniques are judged primarily on 

the basis of trading rule profit. Profitability is what matters to most market participants; 

so trading rule profit is a better measure of the usefulness of a forecasting model than 

statistical measures of forecast error (e.g. mean squared error, mean absolute error, or 

mean absolute percentage error).  
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Table 5.7 shows the abnormal return results of 4 portfolios constructed according 

to different forecasting techniques.  

 

Table 5.7 the Abnormal Returns of Portfolios in 2 Year Holding Period 

Forecasting Techniques 

2000* 
( pR2000 ) 

2001* 
( pR2001 ) 

Total Return in 2 
Years( TPR )** 

 
OLS Regressions 0.1526 0.1264 1.2984 

 
Logit Regressions 0.1066 0.2556 1.3894 

 
OLS Neural Networks 0.1282 0.1532 1.3011 

 
Logit Neural Networks 0.1610 0.2243 1.4215 

* is calculated according to equation 5.1; ** is calculated according to equation 5.2. 

  

A feature of logit estimation is that it makes a nonlinear transformation of the 

input data that decreases the influence of outliers. Therefore, if outliers and noisy data are 

a problem, logit should outperform OLS; while if the magnitude of actual past returns are 

important, OLS should outperform logit.  

 

For this forecasting problem, classification estimation seems better suited than 

point estimation. The total returns in 2 year period of logit regressions and logit neural 

networks models are 1.3894 and 1.4215 respectively. These are better than those of OLS 

regressions and OLS neural network models, although logit models use less information 

than the OLS model because the dependent variable takes on a value of zero or one, 

instead of the whole range of possible positive and negative market-adjusted abnormal 

returns.  These results are also consistent to the findings in Olson and Mossman (2002).  
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Moreover, the results also indicate that the logit neural networks, which consider 

non-linear relationship between input and output variables, out performs the 

corresponding logit regressions. Total return in 2 year period for portfolio by logit neural 

networks is 1.4215, which is larger compared to that of 1.3849 for the logit model. 

Therefore, this superiority of logit neural network models translates into greater 

profitability in the trading rules.  

 

5.5 Summary 

Similar to previous results using Canadian stocks (Olson and Mossman, 2002), 

this study shows that classification models outperform point estimation models for the 

research problems. Moreover, in classification models logit neural networks outperform 

the logit regression models. 

 

Therefore, it have been shown that investors should prefer classification models to 

point estimation models and choose logit neural network models instead of traditional 

logit models.  Moreover, the results supported the Monte Carlo neural networks which 

improve the stability of the neural network performance by reducing the errors of outputs. 
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Chapter 6 Summary and Conclusion 
 

6.1 The Significance of this Work 

 
Similar to previous results using US stocks and Canadian stocks (Brockman, 

Mossman, and Olson (1997); Olson and Mossman (2002)), this work also shows that 

fundamental analysis leads to abnormal returns in Singapore property and accounting 

ratios could be leading indicators of stock returns in the next year. 

 

Moreover, like previous study of Olson and Mossman (2002), this work indicates 

that classification models outperform point estimation models for problems at hand. In 

classification models logit neural networks out perform the logit regression models. 

Therefore, investors are advised to prefer classification models to point estimation 

models and choose logit neural network models instead of traditional logit models to pick 

stocks. Then, the investors can pick (avoid) those stocks that are likely to out perform 

(under perform) other stocks.  

 

Furthermore, this work helps to better identify the borderline at which neural 

networks can out perform traditional regression-based forecasting techniques. Based on 

the review of the literature, ANNs might be expected to perform better than traditional 

OLS and logit regression techniques in forecasting stock returns, but neither approach 

dominates the other. This work compares neural network forecasts of one-year-ahead 

Singapore property stock returns with the forecasts obtained using OLS regression and 
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logit regression techniques. Then, it is found logit neural networks out perform all other 

three methods, OLS neural networks, OLS regression and logit regression.  

 

This work uses Monte Carlo neural network method to improve the stability of 

the performance of neural networks by reducing the variance of outputs. According to the 

characteristics of neural networks, most neural networks can not guarantee an optimal 

solution to a problem or sometimes even lack repeatability with the same input data. The 

findings indicate that the Monte Carlo neural networks reduce the errors of output by 

averaging the predicted output value.  

 

In addition, this work is the first to use neural networks to examine the performance of 

Singapore property stocks. In Singapore, although there are some works focusing on real 

estate stock performance (Liow (1997 and 1998a); Sing (2001); Sing et al.(2002); Chan 

and Sng (1991); Ong (1994 and 1995) ), neural network techniques are used relatively 

scarcely.  

 

6.2 The Limitation of this Work 

 
Applying the techniques of the research of Olson and Mossman (2002) in Singapore 

real estate stock, this work uses six years data to estimate the parameters of models. 

However, due to the availability of the data, I can only get the data set from 1992 to 

2001, so the portfolios were constructed for only 2 years period. It is better if a longer 

period portfolio could be constructed to investigate the performance of neural networks 
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and traditional regressions. Moreover, due to the time limitation, this work only studied 

Singapore property stocks. It is preferable if this thesis could include all Singapore stocks 

into this sample to compare the performance of four techniques. 

 

6.3 Recommendation for Future Works 

The Monte Carlo neural network method can be further studied on how much time of 

Monte Carlo is preferable for logit neural networks and OLS neural networks 

respectively. In this work, it seems logit neural networks converge faster than OLS neural 

networks using Monte Carlo method (see Appendix 1 to 13).  

 

Moreover, the techniques used here represent but a small sample of infinitely many 

alternatives that could potentially lead to superior results. Changes could be made at the 

data collection stage by adding additional variables; different significance levels could be 

used to select explanatory variables, and alternative neural network architectures could be 

considered. 

 

Furthermore, as mentioned a little in the limitation of this work, if time and data 

available, future studies could include as many as possible Singapore stocks and 

construct portfolios with longer period to compare neural networks and regression 

techniques. 
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APPENDIXES 
 
 

Appendix 1 Neural Network Results of Bonvest Holdings  

 
Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error 2001 Error 2000 Error 2001 Error 

1 -0.9331 0.8191 -0.1607 0.0942 0.6919 -1.6919 0.2278 -1.2278 
2 -0.7706 0.6566 0.3383 -0.4048 0.1206 -1.1206 0.1835 -1.1835 
3 0.9641 -1.0780 -0.1750 0.1085 0.3392 -1.3392 0.1825 -1.1825 
4 -0.3528 0.2388 0.1374 -0.2039 0.0036 -1.0036 0.3315 -1.3315 
5 -0.7433 0.6293 -0.1661 0.0996 0.4822 -1.4822 0.1705 -1.1705 
6 0.0355 -0.1495 -0.4587 0.3922 0.3392 -1.3392 0.2278 -1.2278 
7 -0.6617 0.5477 0.0190 -0.0855 0.4822 -1.6919 0.1850 -1.1850 
8 -0.3528 0.2388 -0.1565 0.0900 0.4822 -1.6919 0.2690 -1.2690 
9 0.0184 -0.1323 -0.1661 0.0996 0.4822 -1.6919 0.1050 -1.1050 

10 0.3554 -0.4694 -0.4773 0.4108 0.0445 -1.0445 0.0485 -1.0485 
11 0.9753 -1.0893 -0.1034 0.0369 0.0335 -1.0335 0.4090 -1.4090 
12 -0.9790 0.8650 0.5066 -0.5731 0.5177 -1.5177 0.1315 -1.1315 
13 -0.8825 0.7685 0.8595 -0.9260 0.9116 -1.9116 0.2225 -1.2225 
14 0.9554 -1.0694 0.0445 -0.1110 0.9910 -1.9910 0.3285 -1.3285 
15 -0.3647 0.2507 -0.4456 0.3791 0.1695 -1.1695 0.2205 -1.2205 
16 0.8533 -0.9673 -0.3873 0.3208 0.9820 -1.9820 0.2818 -1.2818 
17 0.9152 -1.0292 -0.1661 0.0996 0.9980 -1.9980 0.4595 -1.4595 
18 -0.2426 0.1286 0.2885 -0.3550 0.3236 -1.3236 0.5685 -1.5685 
19 0.4226 -0.5366 -0.0338 -0.0327 0.6642 -1.6642 0.1821 -1.1821 
20 -0.6732 0.5592 0.1239 -0.1904 0.7462 -1.7462 0.2465 -1.2465 
21 -0.7851 0.6711 0.0190 -0.0855 0.9360 -1.9360 0.0055 -1.0055 
22 0.3200 -0.4339 0.3383 -0.4048 0.8480 -1.8480 0.4188 -1.4188 
23 0.9041 -1.0180 0.0192 -0.0857 0.0013 -1.0013 0.1275 -1.1275 
24 -0.4201 0.3061 0.2881 -0.3546 0.9435 -1.9435 0.2470 -1.2470 
25 0.8710 -0.9850 -0.7877 0.7212 0.6000 -1.6000 0.2995 -1.2995 
26 0.3382 -0.4521 0.2638 -0.3303 0.9877 -1.9877 0.5947 -1.5947 
27 0.9353 -1.0493 0.0445 -0.1110 0.2750 -1.2750 0.2065 -1.2065 
28 -0.4141 0.3001 -0.0720 0.0055 0.2785 -1.2785 0.2875 -1.2875 
29 -0.3295 0.2155 -0.3873 0.3208 0.5047 -1.5047 0.0180 -1.0180 
30 0.0930 -0.2070 0.0748 -0.1413 0.4639 -1.4639 0.1060 -1.1060 
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Appendix 2 Neural Network Results of Bukit Semawang EST 

 

Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error 2001 Error 2000 Error 2001 Error 

1 0.0071 0.0299 -0.2788 0.5808 0.3502 0.6499 0.7585 0.2415 
2 0.9580 -0.9211 0.1232 0.1788 0.7694 0.2307 0.8458 0.1543 
3 0.1864 -0.1495 0.2354 0.0667 0.2664 0.7337 0.7962 0.2038 
4 0.3508 -0.3138 0.1514 0.1507 0.4640 0.5360 0.8835 0.1166 
5 -0.0392 0.0762 0.2416 0.0604 0.4554 0.5447 0.9575 0.0425 
6 0.0026 0.0344 0.1960 0.1060 0.3875 0.6125 0.8010 0.1990 
7 0.2648 -0.22780 -0.0664 0.3685 0.2815 0.7185 0.9590 0.0410 
8 0.1982 -0.1613 0.1751 0.1269 0.3506 0.6495 0.5142 0.4858 
9 0.7687 -0.7317 -0.0500 0.3520 0.3830 0.6170 0.5995 0.4005 

10 -0.0877 0.1247 0.0205 0.2815 0.8642 0.1358 0.9800 0.0200 
11 0.3764 -0.3394 0.0563 0.2457 0.3104 0.6896 0.5987 0.4014 
12 0.0872 -0.0503 0.4790 -0.1770 0.7758 0.2242 0.8695 0.1305 
13 -0.4387 0.4756 0.8251 -0.5231 0.4000 0.6000 0.8566 0.1434 
14 0.0640 -0.0271 0.3981 -0.0960 0.2310 0.7690 0.9575 0.0425 
15 0.3602 -0.3233 -0.1478 0.4499 0.2880 0.7120 0.7592 0.2409 
16 0.4185 -0.3816 -0.0136 0.3157 0.3815 0.6185 0.8030 0.1970 
17 0.4542 -0.4173 0.6063 -0.3043 0.7460 0.2540 0.9005 0.0995 
18 0.2528 -0.2159 0.3595 -0.0574 0.9285 0.0715 0.5575 0.4425 
19 0.0682 -0.0313 -0.2749 0.5769 0.5655 0.4345 0.6005 0.3995 
20 0.2885 -0.2516 0.1467 0.1553 0.3500 0.6500 0.7685 0.2315 
21 0.6210 -0.5841 0.0765 0.2256 0.2675 0.7325 0.8319 0.1681 
22 0.6215 -0.5845 0.0004 0.3016 0.2650 0.7350 0.8460 0.1540 
23 0.4212 -0.3842 -0.0839 0.3859 0.1268 0.8732 0.7415 0.2585 
24 0.3602 -0.3233 0.4016 -0.0995 0.9165 0.0835 0.6200 0.3800 
25 -0.4568 0.4938 -0.0098 0.3118 0.3552 0.6448 0.8550 0.1450 
26 -0.6818 0.7187 0.4215 -0.1195 0.4950 0.5050 0.8800 0.1200 
27 -0.1271 0.1641 0.0165 0.2855 0.9319 0.0681 0.6220 0.3781 
28 0.4328 -0.3959 -0.2779 0.5799 0.3565 0.6435 0.5300 0.4700 
29 0.1492 -0.1122 0.0847 0.2173 0.3565 0.6435 0.6500 0.3500 
30 0.3548 -0.3178 0.3629 -0.0609 0.4398 0.5603 0.6600 0.3400 
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Appendix 3 Neural Network Results of Chemical INDL. (FE) 

 
Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error 2001 Error 2000 Error 2001 Error 

1 0.9249 -0.9953 0.5390 -0.3759 1.0000 -2.0000 0.3123 0.6877 
2 0.3536 -0.4240 -0.5339 0.6969 1.0000 -2.0000 0.9959 0.0041 
3 -0.4571 0.3867 0.7486 -0.5855 1.0000 -2.0000 0.0229 0.9772 
4 0.3431 -0.4135 0.5981 -0.4350 1.0000 -2.0000 0.0810 0.9190 
5 0.8288 -0.8992 0.9433 -0.7803 1.0000 -2.0000 0.2139 0.7861 
6 0.0676 -0.1380 0.5226 -0.3595 1.0000 -2.0000 0.9580 0.0420 
7 -0.6502 0.5798 0.4490 -0.2859 1.0000 -2.0000 0.0450 0.9550 
8 0.1245 -0.1949 0.2637 -0.1007 1.0000 -2.0000 0.0263 0.9737 
9 0.1338 -0.2042 -0.2991 0.4622 1.0000 -2.0000 0.4335 0.5665 

10 -0.8264 0.7560 -0.2985 0.4616 0.4029 -1.4029 0.9755 0.0245 
11 0.7518 -0.8222 0.9386 -0.7756 1.0000 -2.0000 0.9526 0.0474 
12 0.7600 -0.8304 0.9967 -0.8336 1.0000 -2.0000 0.1145 0.8855 
13 -0.7183 0.6479 -0.7913 0.9544 1.0000 -2.0000 0.1441 0.8560 
14 -0.1615 0.0911 -0.1399 0.3030 1.0000 -2.0000 0.5445 0.4555 
15 -0.1369 0.0665 -0.5355 0.6986 1.0000 -2.0000 0.7475 0.2525 
16 0.1672 -0.2376 0.5216 -0.3585 1.0000 -2.0000 0.7850 0.2151 
17 -0.1348 0.0644 0.9809 -0.8178 1.0000 -2.0000 0.7050 0.2950 
18 0.8852 -0.9556 -0.9181 1.0812 1.0000 -2.0000 0.0285 0.9715 
19 0.1227 -0.1931 -0.0585 0.2216 1.0000 -2.0000 0.9730 0.0270 
20 0.9336 -1.0040 -0.5362 0.6993 1.0000 -2.0000 0.3081 0.6920 
21 0.0073 -0.0777 0.9435 -0.7804 1.0000 -2.0000 0.9935 0.0065 
22 -0.8407 0.8776 0.8645 -0.7014 1.0000 -2.0000 0.0121 0.9879 
23 -0.3158 0.3528 -0.8345 0.9975 1.0000 -2.0000 0.8795 0.1206 
24 0.1488 -0.1118 -0.5737 0.7368 1.0000 -2.0000 0.7260 0.2740 
25 0.0225 0.0145 -0.15798 0.3211 1.0000 -2.0000 0.0475 0.9525 
26 -0.4108 0.4478 0.1599 0.0032 0.9979 -1.9979 0.9900 0.0100 
27 -0.9601 0.9971 0.1290 0.0341 1.0000 -2.0000 0.9600 0.0400 
28 -0.7184 0.7554 -0.6380 0.8011 1.0000 -2.0000 0.2335 0.7665 
29 -0.2643 0.3013 0.1410 0.0221 0.9995 -1.9995 0.0822 0.9179 
30 -0.6658 0.7027 -0.2737 0.4367 0.9995 -1.9995 0.8460 0.1540 
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Appendix 4 Neural Network Results of City Development  

 
Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error 2001 Error 2000 Error 2001 Error 

1 0.4018 -0.4619 0.1393 0.0216 0.7670 -1.7670 0.5126 0.4874 
2 0.1738 -0.2339 -0.1450 0.3060 0.5751 -0.0336 0.4855 0.5145 
3 0.0176 -0.0777 -0.4390 0.5999 0.7414 -0.7414 0.5073 0.4928 
4 0.0480 -0.1081 -0.4543 0.6153 0.9053 -0.9053 0.4010 0.5990 
5 0.0704 -0.1305 -0.0327 0.1937 0.5890 -0.5890 0.0860 0.9140 
6 0.5756 -0.6356 -0.0849 0.2459 0.9369 -0.9369 0.4802 0.5199 
7 0.2519 -0.3119 0.0499 0.1110 0.8226 -0.8226 0.6187 0.3813 
8 -0.0641 0.0041 0.3372 -0.1762 0.5558 -0.5558 0.4070 0.5930 
9 -0.5123 0.4522 -0.4797 0.6407 0.5785 -0.5785 0.4310 0.5690 

10 -0.3703 0.3102 -0.4593 0.6202 0.6526 -0.6526 0.6640 0.3361 
11 0.1568 -0.2169 0.1307 0.0302 0.4387 -0.4387 0.4005 0.5995 
12 0.0713 -0.1314 0.0823 0.0786 0.5872 -0.5872 0.4431 0.5570 
13 0.0758 -0.1359 0.1007 0.0602 0.5088 -0.5088 0.1600 0.8400 
14 0.6784 -0.7384 0.2916 -0.1306 0.4040 -0.4040 0.6608 0.3392 
15 -0.3913 0.3313 0.2153 -0.0543 0.5211 -0.5211 0.3095 0.6905 
16 0.0399 -0.1000 -0.2978 0.4587 0.5585 -0.5585 0.6893 0.3108 
17 0.0397 -0.0997 0.1105 0.0504 0.7852 -0.7852 0.7245 0.2755 
18 0.6155 -0.6756 0.0647 0.0962 0.7575 -0.7575 0.4589 0.5411 
19 0.2743 -0.3344 0.3680 -0.2071 0.6812 -0.6812 0.7500 0.2500 
20 -0.2153 0.1553 -0.0032 0.1641 0.5725 -0.5725 0.0000 1.0000 
21 0.0971 -0.1572 0.1066 0.0543 0.1390 -0.1390 0.5530 0.4470 
22 0.0675 -0.1275 -0.1865 0.3474 0.1433 -0.1433 0.9250 0.0750 
23 0.1569 -0.2170 -0.0031 0.1641 0.6232 -0.6232 0.6393 0.3607 
24 -0.0828 0.0227 0.0449 0.1161 0.3775 -0.3775 0.4965 0.5035 
25 0.0480 -0.1081 -0.0565 0.2175 0.4870 -0.4870 0.9095 0.0905 
26 0.7665 -0.8266 0.2481 -0.0872 0.4427 -0.4427 0.5674 0.4326 
27 0.3522 -0.4123 -0.0131 0.1741 0.3770 -0.3770 0.6284 0.3716 
28 -0.0641 0.0041 0.8715 -0.7106 0.0272 -0.0272 0.3360 0.6640 
29 -0.0922 0.0321 -0.6519 0.8129 0.5788 -0.5788 0.4142 0.5858 
30 0.0713 -0.1314 0.2916 -0.1306 0.1096 -0.1096 0.1694 0.8307 
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Appendix 5 Neural Network Results of Capitaland  

 
Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error 2001 Error 2000 Error 2001 Error 

1 0.9461 -0.9446 -0.1746 0.1249 0.1120 0.8880 0.6330 -1.6330 
2 0.0509 -0.0494 -0.1205 0.0707 0.7778 0.2222 0.8875 -1.8875 
3 0.8144 -0.8129 -0.0074 -0.0424 0.9127 0.0873 0.8065 -1.8065 
4 0.2303 -0.2287 -0.0063 -0.0435 0.7189 0.2811 0.8717 -1.8717 
5 -0.9142 0.9158 -0.6998 0.6501 0.6667 0.3334 0.8521 -1.8521 
6 0.1451 -0.1435 0.1051 -0.1549 0.2742 0.7259 0.9470 -1.9470 
7 0.7518 -0.7503 0.3848 -0.4346 0.9370 0.0630 0.6250 -1.6250 
8 -0.7991 0.8006 -0.0156 -0.0342 0.4170 0.5830 0.5937 -1.5937 
9 0.7022 -0.7006 -0.0077 -0.0421 0.7424 0.2577 0.7740 -1.7740 

10 -0.1590 0.1606 -0.2597 0.2099 0.9755 0.0245 0.6785 -1.6785 
11 0.9766 -0.9751 -0.5901 0.5403 0.6667 0.3333 0.3439 -1.3439 
12 -0.9005 0.9021 -0.7896 0.7398 0.8060 0.1940 0.3840 -1.3840 
13 0.4004 -0.3988 0.2813 -0.3311 0.7390 0.2610 0.9190 -1.9190 
14 0.7705 -0.7690 -0.2057 0.1560 0.9147 0.0854 0.4105 -1.4105 
15 -0.5255 0.5271 -0.1712 0.1214 0.0800 0.9200 0.6705 -1.6705 
16 -0.7426 0.7441 0.7804 -0.8302 0.9969 0.0031 0.8500 -1.8500 
17 0.6651 -0.6636 0.1261 -0.1759 0.7396 0.2604 0.6020 -1.6020 
18 0.1463 -0.1447 -0.1205 0.0707 0.8580 0.1420 0.4327 -1.4327 
19 -0.9835 0.9851 0.4337 -0.4835 0.6183 0.3818 0.6331 -1.6331 
20 -0.4400 0.4415 -0.1712 0.1214 0.5793 0.4207 0.3588 -1.3588 
21 -0.1362 0.1377 0.1261 -0.1759 0.6577 0.3423 0.6620 -1.6620 
22 -0.8136 0.8152 -0.0074 -0.0424 0.8537 0.1463 0.8450 -1.8450 
23 -0.0689 0.0705 0.0832 -0.1330 0.9606 0.0395 0.7932 -1.7932 
24 0.9867 -0.9852 -0.6998 0.6501 0.9665 0.0335 0.7500 -1.7500 
25 -0.2375 0.2391 0.2046 -0.2544 0.8005 0.1995 0.4260 -1.4260 
26 0.7174 -0.7159 -0.5739 0.5241 0.9745 0.0255 0.8780 -1.8780 
27 0.3292 -0.3276 -0.0156 -0.0342 0.9373 0.0628 0.6380 -1.6380 
28 0.6933 -0.6918 -0.0077 -0.0421 0.0850 0.9150 0.7450 -1.7450 
29 -0.5964 0.5980 -0.0411 -0.0086 0.9186 0.0814 0.7095 -1.7095 
30 0.5589 -0.5574 -0.0075 -0.0423 0.8558 0.1442 0.5480 -1.5480 
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Appendix 6 Neural Network Results of Hong Fok Corporation  

 

Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error 2001 Error 2000 Error 2001 Error 

1 -0.9255 1.0359 -0.1248 -0.0437 0.2304 0.7696 0.2014 0.7986 
2 -0.6583 0.7688 -0.0842 -0.0843 0.7406 0.2594 0.1238 0.8762 
3 0.9821 -0.8717 0.8806 -1.0491 0.5295 0.4705 0.2234 0.7766 
4 0.8816 -0.7712 -0.9802 0.8117 0.8395 0.1605 0.0624 0.9377 
5 0.6153 -0.5049 0.8810 -1.0495 0.9543 0.0458 0.2476 0.7525 
6 0.6987 -0.5882 -0.0902 -0.0783 0.5920 0.4080 0.2155 0.7845 
7 -0.3815 0.4919 -0.2127 0.0442 0.8029 0.1972 0.1752 0.8249 
8 0.4781 -0.3677 0.4428 -0.6113 0.0230 0.9770 0.2180 0.7820 
9 0.9975 -0.8871 -0.1364 -0.0321 0.8211 0.1789 0.4975 0.5025 

10 -0.0001 0.1105 -0.2100 0.0415 0.0110 0.9890 0.5466 0.4534 
11 -0.8858 0.9962 0.8716 -1.0401 0.1515 0.8485 0.9240 0.0760 
12 0.1651 -0.0547 -0.0316 -0.1369 0.9932 0.0068 0.8294 0.1707 
13 -0.3263 0.4367 -0.9157 0.7472 0.4984 0.5016 0.7456 0.2544 
14 0.2043 -0.0939 0.0262 -0.1946 0.0587 0.9414 0.0353 0.9647 
15 -0.3333 0.4437 0.7859 -0.9544 0.0081 0.9920 0.6385 0.3615 
16 -0.9743 1.0847 0.3006 -0.4691 0.0576 0.9425 0.7175 0.2825 
17 -0.9314 1.0418 -0.3517 0.1832 0.2332 0.7669 0.1375 0.8625 
18 0.2908 -0.1804 -0.4814 0.3130 0.7406 0.2594 0.6135 0.3865 
19 0.1283 -0.0179 -0.1008 -0.0676 0.6845 0.3155 0.9500 0.0500 
20 -0.2323 0.3427 0.8784 -1.0469 0.0389 0.9612 0.4755 0.5245 
21 -0.0224 0.1329 0.8280 -0.9965 0.8395 0.1605 0.4124 0.5876 
22 -0.5553 0.6657 0.8721 -1.0405 0.9543 0.0458 0.4998 0.5002 
23 0.9607 -0.8503 0.5111 -0.6796 0.2060 0.7940 0.0150 0.9850 
24 0.2627 -0.1523 -0.3504 0.1819 0.9303 0.0697 0.6080 0.3920 
25 0.9664 -0.8560 -0.0450 -0.1235 0.8029 0.1972 0.5855 0.4145 
26 0.3190 -0.2086 -0.1089 -0.0596 0.0250 0.9750 0.2759 0.7242 
27 0.8595 -0.7491 0.9929 -1.1614 0.9988 0.0012 0.0455 0.9545 
28 0.8636 -0.7532 0.6930 -0.8615 0.9977 0.0023 0.0145 0.9855 
29 -0.2951 0.4055 0.2036 -0.3721 0.0102 0.9898 0.5169 0.4832 
30 -0.8622 0.9726 -0.4858 0.3173 0.0762 0.9238 0.5270 0.4731 
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Appendix 7 Neural Network Results of Keppel Land  

 
Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error 2001 Error 2000 Error 2001 Error 

1 0.5025 -0.5330 0.1535 -0.0570 0.0212 -1.0212 0.4848 0.5152 
2 -0.7311 0.7007 -0.8764 0.9729 0.0195 -1.0195 0.4523 0.5477 
3 0.4821 -0.5125 0.2182 -0.1217 0.1349 -1.1349 0.4848 0.5152 
4 0.3148 -0.3452 0.0114 0.0851 0.0220 -1.0220 0.4848 0.5152 
5 -0.1996 0.1692 -0.2132 0.3097 0.0910 -1.0910 0.4848 0.5152 
6 -0.0840 0.0536 0.1439 -0.0475 0.0041 -1.0041 0.4848 0.5152 
7 -0.6080 0.5775 0.3562 -0.2597 0.0383 -1.0383 0.4195 0.5805 
8 -0.1753 0.1449 0.4636 -0.3671 0.1389 -1.1389 0.9059 0.0941 
9 0.1311 -0.1615 0.8832 -0.7867 0.1440 -1.1440 0.4848 0.5152 

10 -0.1396 0.1091 0.3565 -0.2600 0.5422 -1.5422 0.4848 0.5152 
11 -0.2645 0.2341 0.2740 -0.1775 0.3218 -1.3218 0.4848 0.5152 
12 0.0932 -0.1236 -0.1395 0.2360 0.3109 -1.3109 0.4848 0.5152 
13 0.0277 -0.0582 0.7426 -0.6461 0.0067 -1.0067 0.4848 0.5152 
14 -0.6505 0.6200 -0.5004 0.5969 0.0338 -1.0338 0.4848 0.5152 
15 0.7415 -0.7719 0.4219 -0.3254 0.0500 -1.0500 0.4848 0.5152 
16 0.1680 -0.1984 -0.2022 0.2987 0.0280 -1.0280 0.4848 0.5152 
17 -0.0306 0.0002 0.2964 -0.1999 0.3385 -1.3385 0.2375 0.7625 
18 0.1617 -0.1921 0.2339 -0.1375 0.0613 -1.0613 0.4847 0.5153 
19 -0.3976 0.3672 -0.1148 0.2113 0.0660 -1.0660 0.4848 0.5152 
20 -0.3404 0.3099 -0.7180 0.8145 0.2580 -1.2580 0.4848 0.5152 
21 -0.1261 0.0957 0.1908 -0.0943 0.0292 -1.0292 0.4848 0.5152 
22 0.3653 -0.3957 0.2950 -0.1985 0.2071 -1.2071 0.4848 0.5152 
23 -0.1723 0.1419 0.4797 -0.3832 0.0254 -1.0254 0.4848 0.5152 
24 -0.3334 0.3030 0.7388 -0.6423 0.0897 -1.0897 0.4848 0.5152 
25 -0.0483 0.0178 -0.1451 0.2416 0.0849 -1.0849 0.4848 0.5152 
26 -0.1931 0.1627 -0.5976 0.6941 0.0119 -1.0119 0.4848 0.5152 
27 -0.2495 0.2191 0.6451 -0.5486 0.0212 -1.0212 0.4848 0.5152 
28 -0.5439 0.5134 0.5453 -0.4489 0.0195 -1.0195 0.4848 0.5152 
29 -0.2118 0.1814 -0.5907 0.6872 0.0047 -1.0048 0.4848 0.5152 
30 0.1628 -0.1933 -0.4928 0.5893 0.0136 -1.0136 0.4848 0.5152 
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Appendix 8 Neural Network Results of Marco Polo DEV.  

 
Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error 2001 Error 2000 Error 2001 Error 

1 -0.3052 0.5329 -0.2640 0.5491 0.5234 0.4766 0.1854 0.8146 
2 0.0410 0.1868 0.1153 0.1698 0.7396 0.2604 0.9440 0.0560 
3 0.3184 -0.0907 0.1777 0.1074 0.2663 0.7338 0.8333 0.1667 
4 0.9711 -0.7434 -0.0305 0.3156 0.5657 0.4343 0.8330 0.1670 
5 -0.3494 0.5771 -0.0869 0.3720 0.6406 0.3595 0.8690 0.1310 
6 0.0111 0.2166 0.3375 -0.0524 0.4516 0.5485 0.7118 0.2883 
7 -0.4561 0.6838 -0.3527 0.6378 0.3758 0.6242 0.9677 0.0324 
8 0.5994 -0.3717 0.0729 0.2122 0.8731 0.1270 0.8923 0.1078 
9 0.9046 -0.6768 0.1375 0.1476 0.8474 0.1527 0.5294 0.4707 

10 0.0023 0.2254 -0.1567 0.4418 0.0287 0.9713 0.4558 0.5442 
11 0.2126 0.0151 0.3443 -0.0592 0.9625 0.0375 0.9116 0.0884 
12 0.2083 0.0194 0.0353 0.2497 0.6815 0.3186 0.9221 0.0779 
13 -0.8564 1.0841 0.1743 0.1108 0.7036 0.2965 0.8280 0.1720 
14 0.3595 -0.1318 0.3607 -0.0756 0.6667 0.3334 0.4987 0.5014 
15 0.5215 -0.2938 0.1792 0.1059 0.3631 0.6369 0.8429 0.1572 
16 -0.2065 0.4343 0.4021 -0.1170 0.7784 0.2216 0.9272 0.0729 
17 0.1706 0.0572 0.1695 0.1156 0.9051 0.0950 0.9317 0.0684 
18 -0.6902 0.9180 -0.3001 0.5851 0.5274 0.4727 0.7555 0.2445 
19 -0.3270 0.5547 -0.0941 0.3792 0.7592 0.2408 0.7500 0.2500 
20 -0.1219 0.3496 0.4934 -0.2084 0.1068 0.8932 0.9662 0.0338 
21 0.3871 -0.1594 0.2542 0.0309 0.7449 0.2551 0.8550 0.1450 
22 -0.3146 0.5424 -0.5679 0.8530 0.5936 0.4064 0.9280 0.0720 
23 -0.1530 0.3807 0.4277 -0.1426 0.0632 0.9368 0.9530 0.0471 
24 0.1871 0.0407 -0.1996 0.4846 0.7014 0.2986 0.5304 0.4696 
25 -0.0354 0.2632 0.3638 -0.0787 0.5047 0.4954 0.9310 0.0690 
26 -0.0674 0.2952 0.0176 0.2674 0.5047 0.4954 0.8253 0.1747 
27 0.0137 0.2140 0.0891 0.1959 0.4651 0.5350 0.7222 0.2778 
28 -0.8757 1.1035 0.6386 -0.3535 0.9337 0.0663 0.8330 0.1670 
29 -0.9441 1.1719 -0.8738 1.1589 0.5754 0.4246 0.9757 0.0243 
30 -0.1419 0.3696 -0.2743 0.5594 0.6266 0.3734 0.9980 0.0020 
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Appendix 9 Neural Network Results of MCL Land  

 
Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error 2001 Error 2000 Error 2001 Error 

1 0.5163 -0.5498 -0.3736 0.7393 0.3586 -1.3586 0.0095 0.9905 
2 -0.0089 -0.0245 0.3989 -0.0332 0.0648 -1.0648 0.0015 0.9986 
3 -0.6233 0.5898 -0.1404 0.5062 0.9384 -1.9384 0.0280 0.9720 
4 -0.3103 0.2768 0.2001 0.1656 0.0123 -1.0123 0.1573 0.8428 
5 -0.2472 0.2137 -0.0044 0.3701 0.0120 -1.0120 0.0108 0.9892 
6 -0.5309 0.4974 -0.7330 1.0987 0.5406 -1.5406 0.1221 0.8779 
7 0.3563 -0.5309 0.3502 0.0155 0.5821 -1.5821 0.0069 0.9932 
8 -0.6209 0.5874 0.4784 -0.1127 0.2338 -1.2338 0.3119 0.6882 
9 0.8757 -0.9092 0.5710 -0.2052 0.3463 -1.3463 0.0342 0.9659 

10 -0.9628 0.9294 0.0416 0.3241 0.0202 -1.0202 0.1276 0.8725 
11 0.2471 -0.2805 -0.1586 0.5244 0.8591 -1.8591 0.0126 0.9874 
12 -0.7638 0.7304 0.0420 0.3237 0.7677 -1.7677 0.0445 0.9555 
13 0.7874 -0.8208 0.0428 0.3230 0.3052 -1.3052 0.0080 0.9920 
14 0.8535 -0.8870 0.1637 0.2020 0.3257 -1.3257 0.4352 0.5649 
15 -0.1022 0.0688 -0.2727 0.6384 0.4814 -1.4814 0.0705 0.9295 
16 -0.8085 0.7751 0.4565 -0.0907 0.4814 -1.4814 0.0220 0.9781 
17 -0.1700 0.1365 0.1385 0.2273 0.5624 -1.5624 0.0372 0.9628 
18 0.1650 -0.1985 -0.0959 0.4617 0.9291 -1.9291 0.0790 0.9210 
19 -0.1855 0.1521 -0.5097 0.8754 0.3133 -1.3133 0.3119 0.6882 
20 -0.6946 0.6611 -0.0618 0.4275 0.8540 -1.8540 0.0345 0.9655 
21 0.9533 -0.9867 0.7627 -0.3970 0.2090 -1.2090 0.9645 0.0356 
22 -0.8705 0.8371 -0.5525 0.9182 0.1861 -1.1861 0.0126 0.9874 
23 -0.7947 0.7613 0.9458 -0.5801 0.9103 -1.9103 0.0556 0.9444 
24 -0.0054 -0.0280 0.7075 -0.3418 0.8990 -1.8990 0.0488 0.9512 
25 0.8620 -0.8955 0.0350 0.3307 0.9138 -1.9138 0.0175 0.9825 
26 -0.8340 0.8006 0.5179 -0.1522 0.0110 -1.0110 0.0173 0.9827 
27 0.2235 -0.2569 -0.1894 0.5552 0.0322 -1.0322 0.0091 0.9909 
28 -0.3897 0.3562 -0.5128 0.8785 0.6262 -1.6262 0.3226 0.6774 
29 0.0089 -0.0424 -0.5007 0.8664 0.7470 -1.7470 0.1565 0.8435 
30 0.1249 -0.1583 -0.9345 1.3003 0.9451 -1.9451 0.0782 0.9218 
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Appendix 10 Neural Network Results of Orchard Parade HDG 

 
Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error Number 2000 Error Number 2000 Error 

1 -0.8962 0.6567 0.6802 -0.5797 0.7132 -1.7132 0.4279 0.5722 
2 -0.8325 0.5931 -0.0986 0.1992 0.5631 -1.5631 0.0310 0.9691 
3 -0.5418 0.3024 0.2834 -0.1829 0.3927 -1.3927 0.7893 0.2108 
4 0.7684 -1.0078 0.1016 -0.0011 0.8540 -1.8540 0.8875 0.1125 
5 -0.3454 0.1060 0.1484 -0.0478 0.3908 -1.3908 0.6338 0.3663 
6 -0.0642 -0.1752 0.3224 -0.2219 0.5275 -1.5275 0.6105 0.3895 
7 0.3495 -0.5889 0.5669 -0.4664 0.2461 -1.2461 0.3532 0.6468 
8 -0.0957 -0.1437 -0.3098 0.4103 0.2166 -1.2166 0.6159 0.3841 
9 0.2694 -0.5088 -0.6917 0.7922 0.5286 -1.5286 0.6730 0.3270 

10 0.0730 -0.3124 0.3180 -0.2175 0.7885 -1.7885 0.1820 0.8180 
11 -0.7322 0.4928 -0.9304 1.0309 0.6624 -1.6624 0.9322 0.0679 
12 -0.7193 0.4799 0.2032 -0.1027 0.9397 -1.9397 0.6373 0.3628 
13 0.1977 -0.4371 0.9403 -0.8398 0.2410 -1.2410 0.7790 0.2211 
14 0.2441 -0.4835 0.8577 -0.7572 0.2214 -1.2214 0.5833 0.4167 
15 -0.3813 0.1418 0.7315 -0.6310 0.2777 -1.2777 0.6824 0.3177 
16 0.4902 -0.7296 -0.6018 0.7023 0.6169 -1.6169 0.6680 0.3320 
17 0.5451 -0.7845 0.1118 -0.0113 0.2500 -1.2500 0.6030 0.3971 
18 0.0041 -0.2436 0.7368 -0.6363 0.6684 -1.6684 0.7560 0.2440 
19 0.5192 -0.7586 -0.1458 0.2463 0.4842 -1.4842 0.3633 0.6368 
20 0.3025 -0.5419 -0.8202 0.9207 0.5105 -1.5105 0.2892 0.7108 
21 -0.7647 0.5253 0.2716 -0.1711 0.8861 -1.8861 0.7841 0.2159 
22 -0.2083 -0.0312 -0.9404 1.0409 0.5304 -1.5304 0.3140 0.6861 
23 -0.5667 0.3273 0.7649 -0.6644 0.8274 -1.8274 0.2778 0.7222 
24 0.6440 -0.8834 0.2351 -0.1346 0.3258 -1.3258 0.6646 0.3355 
25 0.0310 -0.2704 0.0304 0.0701 0.8092 -1.8092 0.8266 0.1734 
26 -0.0423 -0.1972 -0.7446 0.8451 0.5521 -1.5521 0.1898 0.8102 
27 0.3560 -0.5954 0.8772 -0.7767 0.5286 -1.5286 0.4826 0.5174 
28 -0.4056 0.1662 0.3323 -0.2318 0.3549 -1.3549 0.6452 0.3548 
29 0.1694 -0.4088 -0.0923 0.1928 0.8037 -1.8037 0.5253 0.4747 
30 0.0573 -0.2967 0.0123 0.0883 0.9397 -1.9397 0.9841 0.0160 
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Appendix 11 Neural Network Results of Singapore Land  

 
Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error 2001 Error 2000 Error 2001 Error 

1 -0.6515 1.0476 -0.1679 0.3893 0.4918 0.5082 0.1639 0.8362 
2 -0.1417 0.5378 0.6513 -0.4299 0.4025 0.5976 0.9754 0.0246 
3 0.4153 -0.0192 0.1206 0.1007 0.7887 0.2113 0.3711 0.6289 
4 0.3107 0.0854 -0.5711 0.7925 0.5371 0.4629 0.2655 0.7345 
5 -0.4711 0.8672 -0.0071 0.2285 0.1356 0.8644 0.2510 0.7490 
6 -0.3189 0.7150 0.3397 -0.1184 0.5176 0.4824 0.0639 0.9362 
7 -0.3275 0.7236 0.7822 -0.5608 0.5309 0.4691 0.1168 0.8832 
8 -0.6833 1.0794 -0.0953 0.3167 0.3626 0.6374 0.1873 0.8128 
9 -0.2037 0.5998 -0.0269 0.2483 0.0347 0.9654 0.8947 0.1053 

10 -0.6875 1.0836 0.7213 -0.4999 0.2484 0.7517 0.4138 0.5863 
11 0.5283 -0.1322 0.9990 -0.7777 0.1272 0.8729 0.3005 0.6995 
12 -0.1224 0.5185 0.1538 0.0676 0.2416 0.7584 0.2788 0.7212 
13 0.0752 0.3209 0.4778 -0.2564 0.6423 0.3577 0.5195 0.4805 
14 -0.5735 0.9696 -0.6492 0.8706 0.1923 0.8077 0.4475 0.5525 
15 -0.3208 0.7169 0.4858 -0.2645 0.2908 0.7092 0.1533 0.8468 
16 0.2720 0.1241 0.1114 0.1100 0.3210 0.6790 0.8023 0.1977 
17 0.3705 0.0256 -0.8010 1.0223 0.3332 0.6668 0.5465 0.4535 
18 -0.0615 0.4576 0.7431 -0.5218 0.2785 0.7215 0.1395 0.8606 
19 0.1018 0.2943 0.4910 -0.2697 0.8714 0.1286 0.3831 0.6169 
20 -0.2799 0.6760 0.4840 -0.2627 0.5394 0.4606 0.5547 0.4453 
21 -0.1417 0.5378 0.5722 -0.3508 0.4863 0.5137 0.5110 0.4890 
22 0.0571 0.3390 -0.2523 0.4737 0.6997 0.3003 0.3033 0.6967 
23 0.0764 0.3197 -0.7502 0.9715 0.3270 0.6730 0.6557 0.3444 
24 0.2341 0.1620 0.6298 -0.4084 0.4380 0.5620 0.3482 0.6518 
25 -0.6833 1.0794 -0.0707 0.2921 0.2130 0.7870 0.1979 0.8021 
26 0.6233 -0.2272 -0.7822 1.0035 0.2729 0.7271 0.3837 0.6164 
27 -0.6383 1.0344 -0.2207 0.4420 0.6470 0.3530 0.6935 0.3065 
28 0.0002 0.3959 0.1858 0.0356 0.5515 0.4485 0.3133 0.6867 
29 0.1234 0.2727 0.1874 0.0340 0.3669 0.6331 0.5676 0.4325 
30 -0.1224 0.5185 -0.8505 1.0718 0.1585 0.8415 0.0000 1.0000 
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Appendix 12 Neural Network Results of United Overseas Land  

 
Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error Number 2000 Error Number 2000 Error 

1 -0.7756 1.3276 -0.1611 0.5211 0.9999 0.0001 1.0000 0.0000 
2 -0.7515 1.3035 0.8752 -0.5153 0.9992 0.0008 1.0000 0.0000 
3 -0.2710 0.8230 -0.1777 0.5376 0.9999 0.0001 0.9867 0.0133 
4 0.2964 0.2556 -0.5861 0.9461 0.9993 0.0007 0.9994 0.0006 
5 -0.7976 1.3496 0.4311 -0.0711 0.9997 0.0003 1.0000 0.0000 
6 0.4435 0.1085 0.3171 0.0429 1.0000 0.0000 1.0000 0.0000 
7 0.8906 -0.3387 0.4590 -0.0990 0.9997 0.0004 0.9990 0.0010 
8 0.8005 -0.2485 0.6912 -0.3312 0.9996 0.0004 0.9992 0.0008 
9 0.3415 0.2105 0.2752 0.0848 0.9983 0.0017 0.9998 0.0002 

10 0.5937 -0.0418 0.5785 -0.2185 1.0000 0.0000 0.9995 0.0006 
11 0.9231 -0.3712 -0.1081 0.4680 1.0000 0.0000 0.9989 0.0011 
12 0.1788 0.3731 0.7753 -0.4153 0.9998 0.0002 0.9984 0.0016 
13 -0.0801 0.6321 0.6941 -0.3341 0.9995 0.0005 0.9939 0.0061 
14 -0.0158 0.5678 0.8029 -0.4429 0.9989 0.0011 0.9939 0.0061 
15 -0.1953 0.7473 0.1163 0.2437 0.9955 0.0046 0.9983 0.0017 
16 -0.5952 1.1471 -0.4651 0.8250 0.9959 0.0041 0.9928 0.0072 
17 -0.8559 1.4079 -0.1675 0.5274 0.9983 0.0017 0.9923 0.0077 
18 -0.2174 0.7694 0.9522 -0.5922 1.0000 0.0000 0.9884 0.0116 
19 0.7206 -0.1686 0.4623 -0.1024 0.9999 0.0001 0.9839 0.0161 
20 -0.5335 1.0855 0.7276 -0.3677 0.9951 0.0049 0.9939 0.0061 
21 0.9731 -0.4211 0.4372 -0.0773 1.0000 0.0000 0.9984 0.0016 
22 -0.1693 0.7213 -0.7085 1.0685 0.9999 0.0001 0.9977 0.0023 
23 -0.3234 0.8754 0.1122 0.2477 0.9973 0.0027 1.0000 0.0000 
24 -0.3361 0.8881 0.6055 -0.2455 0.9996 0.0004 0.9993 0.0008 
25 -0.2648 0.8168 0.6168 -0.2568 0.9993 0.0008 0.9973 0.0028 
26 0.8665 -0.3145 -0.5288 0.8888 1.0000 0.0000 0.9917 0.0083 
27 0.9138 -0.3618 -0.4732 0.8331 0.9963 0.0037 0.9978 0.0022 
28 0.8334 -0.2815 -0.2604 0.6205 0.9999 0.0001 0.9838 0.0163 
29 0.3864 0.1656 0.2315 0.1285 0.9770 0.0230 0.9772 0.0229 
30 0.0838 0.4682 0.5350 -0.1750 0.9863 0.0137 0.9994 0.0006 
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Appendix 13 Neural Network Results of Wing Tai Holdings  

 
Methods OLS Neural Networks Logit Neural Networks 
Number 2000 Error Number 2000 Error Number 2000 Error 

1 0.1890 -0.4150 -0.9254 1.1877 0.6444 -1.6444 0.7710 0.2291 
2 -0.2856 0.0596 0.5966 -0.3343 0.1360 -1.1360 0.9820 0.0180 
3 0.1948 -0.4207 -0.9436 1.2059 0.3530 -1.3530 0.0763 0.9238 
4 0.1148 -0.3408 0.8939 -0.6316 0.6069 -1.6069 0.9465 0.0535 
5 -0.3387 0.1127 -0.3996 0.6619 0.8200 -1.8200 0.0289 0.9711 
6 -0.3836 0.1576 -0.8325 1.0948 0.3530 -1.3530 0.0026 0.9975 
7 -0.1493 -0.0766 0.6818 -0.4195 0.3582 -1.3582 0.4501 0.5499 
8 0.1368 -0.3628 0.2958 -0.0335 0.0776 -1.0776 0.9712 0.0289 
9 0.7377 -0.9636 0.9838 -0.7215 0.2993 -1.2993 1.0000 0.0000 

10 0.0707 -0.2967 0.0543 0.2081 0.3434 -1.3434 0.9991 0.0010 
11 0.0395 -0.2655 0.9688 -0.7065 0.7190 -1.7190 0.5036 0.4965 
12 -0.2376 0.0116 -0.1803 0.4426 0.1580 -1.1580 0.9427 0.0574 
13 -0.0293 -0.1967 -0.5032 0.7655 0.2832 -1.2832 0.8813 0.1187 
14 0.6298 -0.8558 -0.8564 1.1180 0.7253 -1.7253 0.4400 0.5600 
15 0.0169 -0.2429 -0.9787 1.2410 0.5042 -1.5042 0.0389 0.9612 
16 -0.2444 0.0184 0.4774 -0.2150 0.3300 -1.3300 0.6398 0.3603 
17 -0.1036 -0.1224 -0.8486 1.1109 0.6471 -1.6471 0.4611 0.5389 
18 0.0728 -0.2987 -0.7034 0.9658 0.2855 -1.2855 0.0135 0.9865 
19 -0.0095 -0.2165 -0.5152 0.7775 0.6608 -1.6608 0.0498 0.9503 
20 0.2993 -0.5253 0.7935 -0.5312 0.2964 -1.2964 0.9820 0.0180 
21 -0.9451 0.7191 0.3366 -0.0743 0.4703 -1.4703 0.9720 0.0280 
22 -0.4246 0.1987 0.9760 -0.7137 0.4635 -1.4635 0.9664 0.0337 
23 0.1374 -0.3634 -0.9810 1.2433 0.2585 -1.2585 0.7435 0.2565 
24 0.1303 -0.3563 -0.9439 1.2062 0.5823 -1.5823 0.0110 0.9890 
25 -0.2095 -0.0165 -0.9958 1.2582 0.4795 -1.4795 0.3780 0.6220 
26 -0.0685 -0.1575 -0.1795 0.4419 0.3029 -1.3029 0.8750 0.1250 
27 -0.3592 0.1332 -0.9567 1.2190 0.6860 -1.6860 0.6591 0.3409 
28 -0.6486 0.4226 -0.0496 0.3119 0.4173 -1.4173 0.1235 0.8765 
29 0.3504 -0.5764 0.2822 -0.0199 0.5089 -1.5089 0.0975 0.9025 
30 0.7528 -0.9788 0.5222 -0.2599 0.6541 -1.6541 0.6710 0.3290 

 

 


