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Vi

SUMMARY

This thesis presents the realisation of decentralised robust reliable
controller that uses local information for independent local control of
subsystems, each with sensors and actuators, in order to achieve pre-defined
specifications for robust stability, robust reliable structural seismic response
mitigation performance and control optimisation for uncertain faulty multi
degree of freedom (MDOF) systems. Using state-space Riccati-based approach
for linear systems, the decentralised controls use controller with flexible tuning
parameters to explicitly account for system variations in the masses, damping
and stiffnesses as well as device malfunctions of sensors and actuators.

Following global state-decentralisation into inter-connected local
subsystems, decentralised control consists of state feedback control to regulate
the local ‘uncoupled’ subsystem and a saturation control to account for the
coupling terms (or inter-connections) and excitations with noise-corrupted
partial state measurements. Step-by-step procedures are presented to design and
implement the decentralised robust reliable control strategy to reach the seismic
mitigation specifications. Simulation results for linear nominal and uncertain
faulty MDOF systems under seismic excitations show that decentralised robust
reliable saturation controls generally perform better than central linear quadratic
regulator (LQR), central robust reliable optimal controls, as well as decentralised
nominal saturation controls. Robust reliable controls perform consistently better
than nominal controls for both nominal and uncertain systems under both central

and decentralised control systems.
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CHAPTER 1

INTRODUCTION

1.1  Background

Advancement in high-strength materials, construction methodology, structural
analysis capability as well as rapid urbanisation and development have considerably
influenced urban structures, especially buildings and bridges. Hence, tall buildings
and more flexible structures, with low damping and varying dynamic properties along
different directions, are increasingly popular. Due to asymmetric and orthotropic
properties, these structures are often stronger and stiffer in the longitudinal direction,
but relatively weaker and softer in the lateral direction. However, these structures are
often subjected to various lateral motions due to natural phenomena like earthquakes,
wind and waves, as well as artificial phenomena like traffic loads, blast or impact
forces. At or close to resonances, the resulting structural vibrations may pose serious
problems of structural stability, integrity, safety and serviceability that result in
discomfort to occupants, malfunctioning of sensitive equipments and even structural
failure. The mitigation of these structural vibrations (forced or self-excited) is

therefore of immediate importance.

1.2 Seismic studies and hazard analysis

Earthquakes are violent ground motions that are tectonic or volcanic in nature,
as well as collapse or explosion-induced. Seismic ground motions consist of body
waves (namely, longitudinal compressive P waves and transverse shear S waves) and

surface waves (namely, Love waves and Rayleigh waves). The ground motions at




any location would be a probabilistic combination of all the motion waves (Loh and

Chung, 2002).

The size of earthquake is normally measured on the intensity scale for the
relative comparison of earthquake effects on a particular location, and the magnitude
scale for the absolute earthquake energy released. The most commonly used intensity
scale is the Modified Mercalli (MM) Scale (Wood and Neumann, 1931) and the most
commonly used magnitude scale is the Richter Magnitude Scale (Richter C., 1935).
Due to the large and variable velocities involved in strong motions, seismographs
used to measure ground motions are normally accelerometers distributed across
seismic regions. Actual earthquake records are derived from corrected seismograph
measurements to account for environmental influences, measurement spillover and

instrument variations.

Seismic hazard analysis is to estimate the largest earthquake that might occur
in a region, especially during the service life of a particular structure. This involves
assessing probabilistic earthquake occurrence and the return period as well as
important earthquake characteristics like peak motions, frequency content, duration
and attributes of strong pulses. During an earthquake, the resulting ground motions
actually reaching a particular structure would depend on earthquake magnitude,
distance to ruptured fault or excitation source, surrounding geology and local soil
properties. Design earthquakes can be derived from scaled historical earthquake
records, artificially generated strong motions from seismic hazard analysis, seismic
building codes (Maguire and Wyatt, 1999) as well as critical seismic excitation
methods (Takewaki, 2002). The variability of on-site conditions results in the wide

variety of design earthquakes, which needs to be representative of the seismic region.




Under the design earthquakes, the actual responses of a structure would
depend on its immediate ground motion, its dynamic properties and soil-structure
interaction. The structural seismic vibration demand must be checked to be within

safe specifications.

1.3 Seismic mitigation

When the seismic demand exceeds structural capacity, mitigation measures
must be taken. Mitigation can be achieved by modifying geometric layout, masses,
rigidities, energy-dissipating damping, and by providing passive or active counter
forces. In general, seismic mitigation involves robust earthquake-resistant design,
base isolation and structural control/retrofitting for new and current structures at both

member and global levels.

1.3.1 Robust earthquake-resistant design

The conventional perspective is to re-design a structure for seismic-resistance.
The criterion for robust design is to ensure that the seismic demand is satisfactorily
met by the modified structure for the duration of its service life, including the various
on-site uncertainties. Seismic analysis requires either peak seismic demands through
the response spectra analysis (Chopra, 2000, 2002), or time history analysis (Hart and
Wong, 2000) for both elastic and inelastic analyses, especially needed under severe
earthquakes. An equivalent static load approach for the seismic demand is often taken
to design for the maximum seismic force distribution, base shear and overturning
moment as well as interstory drift, plastic hinge formation and rotation. Under robust

design, the structural seismic demand can be met by modifying or changing the




structural configuration including modifying the surrounding soil properties,
foundation design as well as superstructure design, through varying, adding or
removing the use of different materials, layout, geometry, ties, supports and anchors.

Service loadings and distributions can also be altered.

Modifications of superstructure (herein termed 'structure’) to increase stiffness
and damping include lateral load resisting systems of shear walls, core walls, non-
sway frames, moment-resisting joints, braces, coupling elements and outriggers. The
frame-core wall system is a highly effective form of lateral resisting system (Zhou,
1994). Appropriate mass distribution would ensure that induced seismic loads are
minimised. However, the high variability of design earthquakes and the wider
earthquake excitation spectrum than wind and wave loadings limit the effectiveness of

robust design (Takewaki, 2001).

1.3.2 Base isolation

The concept of base isolation is to cut off or reduce the seismic motion
transferred to the structure above the isolation system, thus effectively minimising the
transmission of seismic excitation into the structure and reducing the seismic demand.
Hence, effective base isolation requires highly flexible base connections for large

deformation and/or large energy-dissipating hysteretic devices (Yang et al, 1995).

Base isolation measures include various forms of sliding systems, rollers,
horizontal pads over the foundation, lead core rubber bearings, energy absorbers of
solid, viscous hydraulic or pneumatic nature, and soft first story. Base isolation can
also be used together with robust designs as enhanced passive structural mitigation

measures considered to be a more mature technology (ATC-17, 1993). However,




modelling, constructional and maintenance difficulties as well as restrictions on the
effective isolation bandwidth of passive mitigation limit the effectiveness of passive

base isolation.

1.4 Structural control

The concept of seismic structural control or aseismic control involves the use
of additional devices to modify the structural dynamic properties or energy dissipation
capacity or both to ensure the assessed seismic demand is within the controlled
structural capacity as well as to meet design specifications for desired structural
responses. Structural control is generally considered when robust design and base
isolation cannot reach the seismic mitigation specifications. Control solutions can
also be extended to the upgrading, retrofitting and repair of existing structures. In
general, structural control consists of passive and active controls (Nishitani and Inoue
2001, Soong and Spencer 2002), depending on the type of devices used, amount of
external energy required and control algorithm or decision-making process using real-

time measured data.

1.4.1 Passive control

A passive control system modifies the mass, stiffness and damping to resist
seismic forces with no adaptation and no external power by using passive devices that
impart forces developed in response to the seismic structural motion. Passive devices
include braces and dynamic absorbers. Passive control is dominated by passive
energy dissipation (PED) or damping, which are inherently stable, cost effective and

does not interfere with the intrinsic dynamic properties such as mass, stiffness or




shape. Common passive damping devices include tuned mass or liquid dampers
(TMD, TLD), fluid sloshing dampers, friction dampers and visco-elastic dampers.
The drawbacks of passive damping are the effective bandwidth for aseismic control
below which detrimental seismic amplification would result, and its inability to adjust
to real-time dynamic conditions of widely variable spectrum, especially encountered

in severe seismic excitations.

1.4.2 Active control

Active control (Soong, 1990) is the real-time input of corrective actuation
forces, using external power sources, as determined by automatic decision-making
process (controller) based on the measurements of structural responses and/or seismic
motions. Hence, the active devices are adaptable to physical conditions through on-
line computations, the control algorithm or controller must be stabilising so that no
destabilising forces are imparted into the structure, and external power for injection of
mechanical energy into the structure and/or operations of the control devices is

necessary.

Kobori (1958, 1960) presented his seismic-response-control idea of
incorporating automatic control into the seismic-resistant design of structures for the
purpose of enhancing safety against severe earthquakes. Yao (1972) first
demonstrated and inspired the idea and practical active civil engineering structural
control schemes through the application of control theory to structural engineering.
Overview of structural control concepts and applications (Soong 1990, Y.Fujino et al
1996, Housner et al 1997, Spencer and Sain 1997, Nishitani and Inoue 2001) provides
full-scale applications and indicates the need for effective system integration,

structure-controller interaction and control strategy optimization for reliable cost-




effective performance. Garg et al (2001) reported the current research activities in
adaptive structures with emphasis on maximizing energy dissipation, adaptive

damping systems and distributed control techniques are emphasized.

Five fundamental engineering principles (Nishitani and Inoue, 2001) have

been proposed for the aseismic control of buildings:

1. To transfer the structural seismic energy to an auxiliary oscillator system (e.g.

dynamic absorbers)
2. To reduce the flow of input seismic energy into the structure (e.g. base isolation)
3. To subject the structure to additional damping (e.g. passive damping)
4. To prevent structural resonance due to seismic influence (e.g. robust design)
5. To apply computer-controllable forces to the structure (e.g. active control)

Passive mitigation measures, discussed in the previous sections, cover the first
four principles. Active control encompasses all five principles through the additions
of sensors, control algorithm and actuators to the seismically-excited structure.

Active control (Fig. 1.1.) is implemented as one of the following:

1. Open-loop or feedforward control: only measured excitations are used for
computations of the actuations, applicable when the dynamic structural responses

are exactly known

2. Closed-loop or feedback control: only measured structural responses are used for

actuations, applicable when excitations are not modelled or measured

3. Closed-open-loop control: both measured structural responses and measured

excitations are used for actuations




The ‘sensors’ herein means analogue devices to measure desired responses
and/or excitations. Sensors used include conventional transducers and strain gauges,
as well as piezoelectric, fibre optic, MEMS and other integrated sensory systems. The
analogue measurements of the sensors have to be converted into equivalent digital

signals using D/A converters for the processing by the digital controller.

The “controller’ herein means a control algorithm, where the basic task is to
find a control strategy that uses the sensor measurements to calculate the control
signal that is appropriate to send to the control devices (Fujino et al, 1996).
Controllers can be designed as instantaneous, analogue or digital with associated
sampling characteristics. In practice, digital controllers are preferred to analogue
controllers, and instantaneous controllers are implemented digitally, sometimes with

time delays (Ogata, 1994, 1996).

The *actuators’ herein means computer-operated analogue devices to execute
the computed control actuation signals. Actuators can be force-inserting (when
actuation strain is not a constraint), displacement-inserting (when actuation stress is
not a constraint) and energy-inserting or energy-dissipating (Utku, 1998).
Furthermore, actuators may be grouped into active, semi-active or hybrid. Active
actuators continuously impart actuations, usually using large amounts of external
power. Common active actuators include active mass drivers or dampers (Fujino et al
1996, Nishitani and Inoue 2001). Recently, desired fast response rate has prompted
the application of stacked piezoelectric actuators (Kamada et al 1997, 1998), which

overcome the actuation strain constraint by stacking piezoelectric actuators in layers.




1.4.3 Semi-active control

Semi-active control is active control through the use of semi-active actuators,
in which only a limited amount of external power is needed and only at specific
design occasions when the actuator characteristics or state is changed. Semi-active
actuators are cost effective with good performance and inherently stable, i.e. no
destabilising mechanical energy is injected into the controlled structure. Since
external energy is only used to operate the semi-active actuators, they consume much
less energy than active actuators and thus, more easily adopted for applications
(Barroso et al 2002, Lynch and Law 2002). Semi-active controls include active
variable stiffness (AVS) or damping (AVD), variable orifice or friction or viscous
dampers, controllable fluid (ER, MR) dampers and even piezoelectric actuators with

shunt damping (Fleming and Moheimani, 2003).

1.4.4 Hybrid control

Hybrid or composite control consists of a combination of active and passive
control systems and/or hybrid actuators under directional actuations. The idea is to
utilise the advantages of both active and passive control systems, while minimising
their disadvantages, to increase overall reliability and mitigation performance.
However, mechanical energy is injected into the structure, hence stability of the
controlled structure must be checked. Hybrid controls include base isolation with
active actuators (Yang et al, 1995) and hybrid mass dampers (HMD), some of which

operate as TMD in longitudinal direction and HMD in lateral direction.
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15 Literature review

The integration of the structural system with sensors and control devices poses
great demands on the controller or control strategy (Garg et al, 2001). The control
strategy is of prime importance, and needs to account for controlled stability,
performance and optimality (Anderson and Moore, 1989). Controllers can be
designed as linear or nonlinear. In linear controllers (Hart and Wong, 2000), the
output actuations are a linear function of the structure model and sensor input

measurements.

The performance of the controllers is often degraded in the presence of
uncertainties and component failures (Frank et al, 1994) as well as incomplete and
corrupted state information that can result in instability of the controlled structure.
Moreover, active control also adds to the complexity due to inherent instability from
the injection of destabilising mechanical energy due to deficient designs, especially in

aseismic control of large-scale structures with numerous sensors and actuators.

1.5.1 Robust controller against system uncertainties

Conventionally, system model parameters are assumed unchanged, hence
nominal throughout the service life of a structure. However, variable on-site
conditions of the structural system as well as the seismic loading environment would
cause uncertainties.  The system uncertainties arising from sources such as
unmodelled dynamics, non-linearities, disturbances and exogenous noises would
violate the assumed nominal model that does not take these into consideration.
Unmodelled dynamics can include variations in the masses, damping, stiffnesses,
geometric nonlinearities resulting from P-delta effects, and material plasticity ignored

in linearly elastic models. Under a controller based on nominal model, such system
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uncertainties would lead to unmodelled controlled structural behaviour that can cause

impaired performance and even instability.

Robust (insensitive) control against uncertainties is required for smooth
operations. The aim is to design a robust controller that simultaneously stabilizes the
closed-loop system (Choi et al 2001) and satisfying performance requirements (Xie et
al 1992). Full state feedback control (Kalman 1960, Doyle et al 1989), which
assumes perfect knowledge of the system states, has been studied extensively to
minimise system states and actuation energy simultaneously. The most popular full
state feedback controller is the linear quadratic regulator (LQR) (Anderson and
Moore, 1989). However, the system states are rarely fully available for use in a
control system. In addition, unmodelled noise fluctuations can occur in both the
system and measurements. Specifically, loop transfer recovery (LTR) is needed to
recover the original controlled structural properties of full state feedback control (Lu

et al, 1998).

Lin et al (1994) claimed that for robust stabilization, the system uncertainties
should take the form of a linear combination of the locations of the actuators
(otherwise known as matched uncertainties). For other forms of system uncertainties
(i.e. unmatched uncertainties), augmented controls are required (Krokavec et al 2000).
Accounting for unstructured uncertainties (i.e. bounded in the squared Lesbegue space
or L,-sense, of which the squared Hardy space norm H; is only a subset) would lead
to conservative controller design and inferior performance compared to that of
accounting for structured uncertainties (i.e. bounded in the L,-sense and with
knowledge of its structure in the state-space governing equation) (Maciejowski 1989).
Zames (1981) proposed an infinite Hardy space norm (H..)-control formulation using

Riccati equation for the sensitivity robustness problem. This leads to a class of
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solutions addressing the issue of stability, performance and optimality for linear
systems with unmatched and matched, structured and unstructured uncertainties (e.g.

Wang et al 2001), but no actuator failures and sensor uncertainty were considered.

1.5.2 Reliable controller against device malfunctions

Control devices, sensors and actuators, may suffer malfunctions or faults,
especially during severe earthquakes, when sensing or control connections might be
broken, interfaces with the structure dislocated and internal device failures occurred.
Failures can be either insipient (soft) or partial failures, or total (hard) or complete
failures of sensor(s) and/or actuator(s) (Frank et al, 1994). Sensor failures result in
inaccurate or incomplete measurement inputs for the controller. Actuator failures
result in inappropriate actuations and, in the case of active or hybrid actuators,
possible detrimental or destabilising mechanical energy to be injected into the

structure.

Robust control without consideration of possible failure of some actuators
would result in unsatisfactory performance or instability if some failure does indeed
occur. Hence, reliable (fault-tolerant) control against partial or complete breakdown
of system components has been addressed (Veillette et al 1992, Yang et al 2001).
However, solutions are feasible for only a class of reliable state feedback control with
guaranteed stability and H.--norm performance where actuator failures are confined to

a predefined subset of actuators (Seo et al 1996) with control optimality ignored.
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1.5.3 Decentralised controller

Conventionally, a global, centralised controller is used, i.e. all computations of
the actuations are performed by a single, global control algorithm using all sensor
input measurements. However, centralised control is generally not suitable for large-
scale control problems because computations increase faster than a linear rate with
increases in system dimensionality (Lunze 1992) and it represents a single point of
failure (Lynch and Law, 2001). Moreover, the performance of central control is
degraded in the presence of uncertainties and device failures (Frank et al 1994) under
severe earthquakes when power supplies failure and broken network connections
would likely occur. Possible breakdown of the central control coordination is highly
likely. Hence, there is practical interest and need to apply active control at the global
structural level and further decentralize control for more effective distributed control

of local subsystems (Cao et al 2000, Garg et al 2001, Lai et al 2002).

Decentralised controllers provide local subsystem controls using local
feedback information only (Siljak, 1991). In large-scale complex systems,
decentralised controllers with numerous, distributed sensing and control devices
(Lunze 1992, Magana and Rodellar 1998, Luo et al 2002, Lynch and Law 2002)
enable practical control distribution, reduced chance of catastrophic failure and less
stringent requirement for stability. The attainable benefits of using decentralised
control are high system performance under system uncertainties, greater stability
robustness, improved control system performance in non-linear systems, and system
installation modularity facilitating low-cost installations diagnostics and module
replacements (Lukas, 1986). Cao et al (2000) proposed a decentralized control
approach for two interconnected subsystems, where stability of the global structure

can only be guaranteed when each subsystem has at least one working sensor and
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actuator (Luo et al 2002). Magana and Rodellar (1998) have shown that a set of
simpler decentralised controllers can have performance similar to a single global
centralised controller under nominal conditions, and perform much better when

system uncertainties and device failures occur.

1.6 Objective and Scope

The objective of this study is to develop a decentralised high performance
robust reliable saturation controller that uses flexible tuning parameters and local
information for independent control of subsystems for global stability, robustness,

reliability and optimality for linear uncertain faulty systems under seismic excitations.
Under this objective, the scope of studies is as follows:

e Decentralised nominal saturation controller is designed for each subsystem,
derived from decentralisation of the global linear nominal system, to ensure global
closed-loop asymptotic stability with decentralised squared Hardy space norm
(Hz)-optimality and seismic mitigation (or disturbance rejection) under noise-

corrupted partial state measurement.

e Central robust reliable optimal controller is designed for global linear uncertain
faulty system to ensure robustness against both structured and unstructured norm-
bounded uncertainties as well as reliability against actuator failures confined to a

predefined subset under noise-corrupted partial state measurement.

e Decentralised robust reliable saturation controller is designed for each subsystem,
derived from decentralisation of the global linear uncertain faulty system, by
combining both decentralised nominal saturation control and robust reliable

control approaches.
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1.7  Organisation of Thesis

Chapter 2 provides the formulation of the decentralised nominal saturation
state feedback controller for nominal system without uncertainties under partial noise-
corrupted sensor measurements. Chapter 3 provides the formulation of the central
robust reliable controller for an uncertain system with admissible system uncertainties
and a pre-defined set of possible actuator failures, under partial noise-corrupted sensor
measurements. Chapter 4 develops the decentralised robust reliable saturation
controller by combining the decentralisation methodology and the robust reliable

control. Chapter 5 provides the conclusions and suggestions for further studies.

Closed-loop
Open-loop control
control b |
@ i
i Structural i
Earthquake ; Structure ,|  responses |
T L
! |
| |
! Actuators '
Sensors | Sensors |
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; AID !
! !
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D/A . | Controller | D/A |
................... ]

Figure 1.1: Schematic diagram of active control
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CHAPTER 2

DECENTRALISED NOMINAL CONTROLLER

2.1 Introduction

In this chapter, the decentralised nominal saturation controller is designed for
nominal linear systems without uncertainties under seismic excitation. The
decentralised controllers use only local information for independent local control of
subsystems. To cater for practical situations, the solution will be extended to account

for partial noise-corrupted sensor measurements.

Based on the global state formulation, decentralisation into subsystems is
performed where each subsystem contains at least one sensor and actuator pair. The
decentralised control consists of a state-feedback control to regulate the local
‘uncoupled’ subsystem and a saturation control to account for the coupling terms (or
inter-connections) and excitations. The former uses the closed-loop state-space
Riccati equation optimal solution based LQR control approach to derive the full state-
feedback gain for the undisturbed subsystem. The latter uses Lyapunov equation by
Lyapunov's Direct Method to formulate the saturation control with the objective of

attenuating the subsystem disturbances.

To account for noise-corrupted partial state feedback, observer-based control
is implemented using the separation principle. A nominal 2DOF system is used to
illustrate the effectiveness of decentralized control by comparing with results based
on centralized nominal control. To illustrate that the method works for larger
systems, a 20-DOF system is also presented where reduced order model is applied to

simplify the problem.
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2.2  Control Problem Formulation
2.2.1 Nominal Analytical Model
Consider an n-degree-of-freedom building structure subjected to one-

dimensional horizontal earthquake ground acceleration X (t). The global dynamic

equation of motion can be derived using extended Hamilton’s variational principle

(Meirovitch, 2000) as:

M. & (1)+C.& )+ K. O+ K, [V (H)]= FU®) - M,I%; (t) (2.1)

where £(t) e R" is the global displacement vector; U (t) e R™ is the nominal control
voltage vectors to m groups of actuators; M, € R™ is the global consistent mass
matrix; C, € R™ is the global nominal linear viscous damping matrices; K, € R™"
is the global nominal linear elastic stiffness matrices; Kn[\/(t)]ei}{” is the global

nonlinear n-vector stiffness force that is assumed to be a function of V(t), which is a

function of the system responses with bounded coefficients; F, = p.l. is the global
nominal control force distribution matrices, where p. € R™" is the global actuation
force distribution vector, I, e R™"is the global nominal actuation force per unit

voltage transformation matrices; and |1 eR" is the global earthquake excitation
influence vector.

For practical reasons, it is assumed that n >>m (assumption 1); that is, there
are fewer sensors and actuators pairs than the number of DOFs in the system. It is

also assumed (assumption 2) in this paper that X, (t) is bounded.
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2.2.2 Reduced-order State-Space Modelling

Under assumption 1, the global system described by (2.1), referred herein as
full-order model (FOM), needs to be model-reduced to make the system manageable
and for efficient design of U(t). Model reduction using load-dependent Ritz vectors
with Gram-Schmidt orthogonalisation (Chopra 2000, Krsyl et al 2001, Appendix:
Robust Model Reduction) can be adopted to derive a detectable and stabilisable
reduced-order model (ROM) with respect to known sensor and actuator locations. A
system is detectable if all unstable modes are measured by sensors and regulated by
the control algorithm. A system is stabilisable if all unstable modes are controlled by
actuators.

Using the nominal matrices, the following Ritz vector transformation is

derived:

¢=Yq (2.2)

where W € R™ s the Ritz vector transformation matrix; q e R" is the ROM global

displacement vector corresponding to the desired master degrees of freedom for
stabilisability and detectability.

Substituting (2.2) into (2.1), the ROM is given by:

M, (t)+C.at)+K,q)+¥ K, M@®)]=¥"FU @1®)-¥ M,IX, (1) (2.3)

where the reduced-order matrices are M, =¥'M,¥, C,=¥'C,¥, and
K, =¥'K.WY.

In the state space, (2.3) becomes a class of nominal systems with the following
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form:

X (t) = AX (1) + BU(t) + X, (t) + HX, (1),

Y (1) = CX (1) + n(t), (2.4)

Z(t) =CX (1)

q

where the ROM global state vector is X (t) :£ Je R of dimension (2rx1), input

vector is  U(t)=[u,,..,u, ] €R"™, measured output is Y(t)eR™ and

0
controlled/regulated output is Z(t) e R™, X, (t)= is the ROM
. - 0 I 2rx2r
global nonlinear stiffness component, A= 4 o e R,
-M,"K, -M,C,
0
B=| . |ewm C=(-M,K, -M,7C,)enr™ and
M, "W F,

0 : : ,
H= et € R*" are constant nominal system matrices. It is assumed that
-M,¥T™M|

the system characterized by (A, B) is stabilisable.

2.2.3 Nominal Subsystem Model
Global state-decentralisation is carried out by decomposing the global state

space model (2.4) completely into Ns (N, <r <m) coupled subsystems:
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X; (1) = Ay () + by (8) +hi X (1) + i Ay X; (1) + X (1),

V(0 =Cix )+ D.Cyx; 0+, () (25)
Z;(t) =Cyx (1) + _NZS_Cinj ®

where xi(t) is the ith subsystem state, us;(t) is nominal subsystem control voltage, xni(t)
is the subsystem nonlinear stiffness component, y; the noise-corrupted subsystem
measurement output, z; the subsystem controlled or regulated output, A; and C;; the
system, and measurement and regulated output matrices of the nominal subsystem, A;
and Cj the nominal system, and measurement and regulated output inter-coupling

matrices between subsystems i and j, Vi= ] (i,j=1..,N), b is the nominal

subsystem control input matrices, and h; is the subsystem excitation input matrix. The
nonlinear stiffness and coupling components defined in the last two terms of (2.5a)
are unknown but is assumed bounded (assumption 3) (Luo et al 2002).

The control task is to determine the decentralised nominal saturation feedback

controller u; (t) under noise-corrupted partial state measurement such that the closed-

loop subsystem for (2.5) is asymptotically stable with decentralised H,-optimality and
disturbance rejection, i.e. optimal seismic mitigation w.r.t. minimisation of structural

and control energies.

2.3  Decentralised Linear quadratic Regulator (LQR) Control for Nominal
Subsystem Model
Using the decentralised control methodology (Magana and Rodellar 1998), let

the decentralised nominal controller take the following form:
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uj; (t) = Gli (t) +Uy, (t) (2-6)

where U, (t) =—k;x (t) is the optimal regulation control for the undisturbed
subsystem without seismic excitations, in which kj; is the static full state feedback
control gain of subsystem i in the nominal layer (in this study denoted as layer 1) and
U, is the augmented saturation (user-defined bounds or limits on the controls) control
of the subsystem to account for interconnections between subsystems (inter-coupling)

and disturbances.

To determine ky;, define undisturbed and uncoupled subsystem from (2.5a):

X; (1) = Aux; (1) + by () (2.7)

where (A, ,b;) is assumed stabilisable. The Linear Quadratic Regulator (LQR) can be

used to design ki; by minimising the following subsystem performance index:
Jy = J:O (XiTQli X + GliT R, 0;; )jt (2.8)

where (A,,Q, ) is assumed detectable, and Qi; and Ry; are symmetric semi-positive-

definite and symmetric positive-definite energy-weights respectively. The solution to
(2.8) is considered as Hy-optimal. A solution is asymptotically stable when the
system state x; approaches zero equilibrium asymptotically. The sufficient condition

for minimising (2.8) is the subsystem algebraic Riccati equation (ARE, Soong 1990):

AﬁiT Pi + PiA — Rib; RliilbiT Pi+Q; =0 (2.9)
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where P is the symmetric positive-definite (s.p.d.) solution to give the optimal

nominal control gain as:

kli = Rli 71bi Pli (2'10)

2.4 Nominal Augmented Saturation Subsystem Control

The second component u; is the augmented saturation subsystem control.

Substituting (2.6) into (2.5a) yield the closed-loop linearly-controlled subsystem:

X0 =(A,

—biky ) (6) + BT () + &y, ) (2.11)

NS
where nominal subsystem disturbance vector is e, (t) = Z A () + X (1) +x, (1)
=1, j#i

When e, =0, (2.11) is asymptotically stable and Hy-optimal. When e, = 0, under
assumptions 2 and 3, e;(t) is bounded and an augmented controller U (t) can be

specifically designed for desired subsystem disturbance rejection (Magana and

Rodellar 1998). There exists a positive constant ¢,, which is known a priori such

i Ayx; (D)

JL j#i

that e, (1) <&, = +|hi$<’g(t)|max+|xni(t)|max (assumption 4).  For

max

example, ¢, can be derived from the uncontrolled responses under the target

excitation (Magana and Rodellar 1998). The nominal decentralised augmented

saturation controller of (2.6) can be expressed as:

(2.12)

0 (t) = Sgn(/uli (t))§1i’ |,U1i (t)| > 0y,
: 1y (1), |ﬂ1i (t)| <4
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where U;; (t) is a saturation controller that is limited by o,, in magnitude and g, (t) in

direction to maintain stability when e;; = 0; s, (t) is given as:

Hy (1) = =0 biT IE;1i Xi (2.13)

In (2.13), I5li is the s.p.d. solution of the following Lyapunov equation (Soong, 1990)

of the closed-loop subsystem (2.11):

(A —bik;; )T F~)1i +P (Aii —bik;; ) = _éli (2.14)

where éli is the symmetric semi-positive-definite disturbance energy-weight matrix.
From (2.6), since Uy, (t) is asymptotically stable and T, (t) maintains stability
of (2.11), u,(t) is asymptotically stable with decentralised Hj-optimality and

disturbance rejection with saturation control for a full-state feedback system. In
practice, full-state feedback may not be realizable. If the actual nominal subsystem
has partial state measurement with noise-corruption, then an observer-based control is

more appropriate.

2.5  Loop Transfer Recovery (LTR) based Decentralised Nominal Saturation
Controls
2.5.1 Needfor LTR

Practical situations necessitate that only corrupted partial state feedback is

available and (2.5) can be modified as follows:
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X; (8) = Ay x; (1) + by (1) + w (1),

y; (1) = Cix; (1) + 77, (1), (2.15)
z;(t) =C;x (1)
where w, (t) = { i A () +hK () + X (t) [ e R and

NS
7 (t) ={ Zcijxj(t)wyi (t)} e R" are assumed to be independent white noises, and

j=1, ji
C, # | indicates partial state measurement. Conventionally, (2.15) can be modified

in terms of the estimated state through an observer gain ks; based on the concept of

Kalman filter as follows:
X, (1) = Ay, (1) + bty (1) + Ky [y (6) = Cy %, (1)] (2.16)

Using the separation principle (Chen, 2000), the decentralised nominal LQR
control gain kj; and the observer gain kg; can be designed separately. It is well known
that the above observer-based feedback control of (2.16) would generally not
guarantee all the properties of the full state feedback LQR (Chen 2000) because the
open loop transfer function of both systems at the input point are different, resulting
in an error, denoted as Ei(s). To recover all the guaranteed LQR properties
corresponding to the full-state feedback, loop transfer recovery (LTR) technique
(Chen et al, 1991) is required to minimise the so-called subsystem LTR recovery
error, Eqi(s).

The objective of this section is to design kq; such that the observer-based
feedback control almost exactly matches the guaranteed properties of ki, which is

equivalent to minimizing Epnj(s). It is assumed that the local subsystem (2.15) is
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stabilisable, detectable, left invertible (inverse of transfer function matrix exists) and
of minimum phase (stable zeros and poles) in order for LTR solution to exist

(assumption 5).

2.5.2 CSS (Chen, Saberi, Sannuti) architecture-based control (Chen et al, 1991)

The control equation (2.15) can be re-cast into a simpler form where the
influence of the control signals bjusi(t) on the state is not directly reflected but
indirectly incorporated through the measured state y;(t). Hence, the CSS (Chen et al

1991) architecture based control law can be written as:

Vi = AV, +key (Y —Civy)

2.17
Uy ==KV, ( )

where Kk, e R*™ and v, e R*" is the CSS subsystem control state. The CSS

subsystem controller complex frequency response function (FRF) or transfer function

(TF) from y;(t) to u,,(t) is given by:
1 -1
Ci(s) =—ky ((Di +kf1iCii) K (2.18)

where @, =sl — A, and s is the frequency variable

The actual control input with partial corrupted state feedback yi(t) in terms of
the feedback estimated control input (2.15) is related by the transfer function L (i.e.
the achieved open-loop (without feedback considerations) transfer function of the

nominal subsystem at the input point):
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Li(s)=C4(s)C;® b, =k (q)iil +K ;G )71kfliCiiq)ibi (2.19)

However, if full state feedback is indeed available, the corresponding robust

reliable LQR achieved open-loop transfer function L¢; from xj(=y;) to us; would be
L. (s)=-k, @b, (2.20)
The difference between (2.19) and (2.20) is defined as the recovery error
E.i(s)=L,(s)—Lg(s) (2.21)

and the objective of the full-order CSS architecture based control is to design ks; such

that E,; (s) — 0. It can be easily shown that (2.21) simplifies to:

E.i(s)=—ky (SI - A +k; Gy )71bi (2.22)
To minimize E4;, consider an auxiliary subsystem given by
XA'i = AiiTii +CiiTUi + kliTWi
yi = ii
; 2.23
Zaux Zi _ biT )’“(‘i ( )
Ji = _kfliT ii

where X;, U,, W,, y, and Z, are the variables for state, control, excitation, sensor

measurement and controlled output of the auxiliary subsystem respectively.

The closed-loop transfer function from w, to Z; is given by:
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Tom = biT (sl - AiiT +CiikaliT )t kliT = _ErliT (s) (2.24)

Wi

Since ||E,, (s)||(_) =|

E.' (s)"(‘), any optimisation of the Hardy space norm (H-

control) method (Chen 2000) can be used to design ki to minimize the desired H-

norm of T,. based on the system described by (2.23), thus minimizing E, and

recovering the guaranteed decentralised nominal controller properties.
Therefore, the CSS-LTR concept is to replace x; with a subsystem state v;.

Equation (2.6) can be re-written as:
Uy; (1) = —kyv; (1) + U5 (1) (2.25)

where ki is given in (2.10) and s (t) in (2.13) is replaced by:

Hj (t)= -0y biT IS1iVi (2.26)

2.5.3 Implementation

Flowchart for the design of the decentralised nominal control for each nominal
subsystem is shown in Fig. 2.1. For pre-processing, Matlab is used to compute all
structural data, state-space model and control gains. Simulink is used to numerically
simulate the controlled system under earthquake excitation. For post-processing,

Matlab is used to process and plot all output responses and controls.

2.6 Numerical illustration
2.6.1 2DOF nominal system

In this section, a numerical example of a 2-DOF system under EI Centro
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earthquake scaled to 0.1g (Fig. 2.2) is used to illustrate the effectiveness of the
proposed layered decentralised control as opposed to central nominal LQR control.

The 2-DOF system with two actuators in state-space form with C, /M, =1.2567 and

K, /M, =157.92 (Hart and Wong, 2000) is given by:

X, 0 0 1 0 X, 00 0
X | 0 0 0 1 X2+00u1+ % +v(t)
X —-315.84 157.92 -25134 1.2567 | X 1 0\u, -1(°
X, 15792 -157.92 12567 —1.2567 \ X, 01 -1
Xl
Y| (—315.84 15792 -2.5134 1.2567 ) X, w(t)
y,) (15792 -157.92 12567 —1.2567) %
XZ

where v(t) and w(t) are the system and measurement noises.

For comparison purposes, a central LQR controller is designed for the global

nominal system with R =0.011 and Q =100C'C to give central control: U = -KX ,

. 31270 -15635 346 -—140 .
where LQR gain K= and LTR gain
—-15635 15635 -140 206
-0.8 4999 0

.
K, ] using (2.23) for the global system.

(-038
“(-08

After global state-decentralisation, the subsystem 1 is given below:
Xl
Xl

X, 0 0 X, 0 0).
R S ug+ X, + vy (1)
% ) (157.92 1.2567 )\ %, 1 -1

y, = (~315.84 —2.5134)[

X
+(157.92 1.2567)(ij +w, (t)

2

-16 0 —4999

N—

0 1
-315.84 -2.5134

X
Xy
X

X

=

7z, =(-315.84 - 2.5134)(

and the subsystem 2 is given below:

O .|t . + u; + Xg+V2(t)
X, ~157.92 —1.2567 )\ X, ) (157.92 1.2567 | %, 1 -1
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Xl X2
y, =(315.84 25134) ' |+(~157.92 —-1.2567 )

Jowmos

Xl 2

X2
z, =(-157.92 -1.2567) "

X2
Notice that the local regulated output z; is the undisturbed local acceleration.
The nominal controller parameters are R, =R, =001, Q,=100C, C,,,
Q,, =100C,,'C,,, &,=¢,=8, &,=6,=768 and Q,=Q, = diag(1,100) for
damping control emphasis. From (2.9) and (2.10), the control gains are

k,, = (31270 352) and k, =(15635 216). From (2.23), the LTR gains are
K.y =(~0.379 —499)" and k,,, =(~0.728 —499)" respectively for subsystems 1

and 2. Since the controller gain coefficients are constant and bounded, and all
disturbances are assumed bounded, then the controlled system responses are bounded.

Figures 2.3 and 2.4 show the drift, velocity drift and absolute acceleration for
subsystem 1 and 2 respectively. Table 2.1 shows the maximum response quantities of
the 2-DOF system under no control (Uncontrolled), central LQR control (LQR) and
nominal decentralised control (Decen-n). Without any control, the magnitudes of the
maximum inter-story drift, drift velocity and absolute acceleration are shown in
columns (2) and (5) for subsystems 1 and 2 respectively. Under global central LQR
control, the controlled responses are suitably mitigated, as shown in columns (3) and

(6) for subsystems 1 and 2 respectively.

With decentralised nominal saturation controls, as shown in columns (4) and
(7), the controlled responses and controls are comparable to that of the central LQR
controls. The results show that for the nominal 2DOF system, a set of simpler

decentralised nominal controllers can perform at least as good as a single global
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centralised controller under similar peak control magnitude. This agrees with the

findings of Magana and Rodellar (1998).

2.6.2 20DOF nominal system

Consider a nominal 20DOF shear-structural building model (Nishitani et al,
1998) with the following parameters: m;=m,=...=m;s=10%g, m2=7*10kg;
ki=k,=1.47GN/m,  k3=ks=1.372GN/m, ks=ks=1.274GN/m, k;=ks=1.176GN/m,
ko=k10=1.078GN/m, k11=k1,=0.98GN/m, k13=0.931GN/m, k14=0.882GN/m,
k15=0.833GN/m, ki16=0.784GN/m, k17=0.735GN/m, k;3=0.686GN/m, k19=0.637GN/m,
ko0=0.588GN/m. The natural frequencies of the first two modes of the 20D0F FOM

are: @, =2.68rad /s, w, =7.38rad/s. Sensors measure the absolute acceleration

at 10™ and 20™ DOFs. Actuators are limited to provide maximum control forces of
1000kN (Ohtori et al, 1998) and two groups of 5 actuators are each placed at the base

and 10" DOF respectively.

Reduced-order 2DOF model is derived using Ritz vectors with ROM natural

frequencies: w,, =2.68rad/s, w, =7.94rad/s. w,, is slightly larger than @, to

r

account for the influence of higher FOM modes. The 2DOF ROM is then used as the
design model for both central LQR controller and decentralised nominal saturation
controller following the procedure illustrated in section 2.6.1. The 2DOF ROM

system with two groups of actuators in state-space form is given by:
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X, 0 0 1 0 X 0 0
X, | 0 0 0 1 X, . 0 0 £UlJ
X, -7.2980 2.7761 -0.0730 0.0278 | X, -12.1596 -8.9808 |\ u,
X, 2.7761 -62.8417 0.0278 -0.6284 |\ X, 53.0676 -27.8441
0
40022 X, +Vv(t)
-1530

Xl
(ylj (-7.2980 2.7761 -0.0730 0.0278JX2

= +w(t)
Y, 2.7761 -62.8417 0.0278 -0.6284

Xy
X,

where v(t) and w(t) are the system and measurement noises.

For comparison purposes, a central LQR controller is designed for the global
nominal system with R =0.011 and Q =100C'C to give central control: U = —-KX ,

-608 5565 -8.6 57

where LQR gain K=
-490 -2930 -96 -3

J and LTR gain

K ( -14 -0.6 -69439 13620
f =

.
using (2.23) for the global system.
-06 -1.6 29848 —299330

After global state-decentralisation, the subsystem 1 is given below:

X 0 1 X, N 0 0 X, N 0 !
%, ) |\-7.2980 -0.0730 )\ , 2.7761 0.0278 )\ X, -12.1596 ) *

+ 0 X, +Vv,(t)
4022)°°¢ *

X3 X,
y, =(-7.2980 -0.0730) * |+(2.7761 0.0278 . +w, (1),

Xl 2
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Xl
z, =(-7.2980 -0.0730)

X

and the subsystem 2 is given below:

X, 0 1 X, N 0 0 X, N 0 J
%,) |\-62.8417 -0.6284 ) %, ) (27761 0.0278 ) X, -27.8441)*

0
X, +v,(t
+(-1530} o V20

Xl X2
y, =(2.7761 0.0278 ) +(-62.8417 -0.6284 o,

1 2

X2
z, =(-62.8417 -0.6284)

X2
Notice that the local regulated output z; is the undisturbed local acceleration.
The nominal controller parameters are R, =R, =001, Q,=100C,'C,,,
Q,, =100C,,'C,,, &,=¢,=8, &,=65,=768 and Q,=Q, = diag(1100) for
damping control emphasis. From (2.9) and (2.10), the control gains are

k,=(-729 -13) and k, =(-6282 —-66). From (2.23), the LTR gains are
ki, =(-12 —-6079)" and k., =(-2 -13921)" respectively for subsystems 1

and 2. Since the controller gain coefficients are constant and bounded, and all
disturbances are assumed bounded, then the controlled system responses are bounded.

Figures 2.5 and 2.6 show the inter-storey drift, drift velocity and absolute
acceleration for the 10" DOF and 20" DOF respectively. Table 2.2 shows the
maximum response quantities of the 10™ and 20" DOFs of the 20DOF system under
no control (Uncontrolled), central LQR control (LQR) and nominal decentralised
control (Decen-n).

The results show that without any control, the magnitudes of the maximum

inter-story drift, drift velocity and absolute acceleration are shown in columns (2) and




Chapter 2 Decentralised Nominal Controller 33

(5). Under global central LQR control, the controlled responses are suitably
mitigated, as shown in columns (3) and (6). With decentralised nominal saturation
controls, as shown in columns (4) and (7), the controlled responses are comparable to
the central LQR controlled responses. Hence, this reinforces the findings from the
2DOF system and also shows that decentralized nominal saturation controls work as

well using Ritz-ROM.
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Table 2.1: Maximum Responses of Nominal 2DOF system

Subsystem 1 Subsystem 2
No LQR Decen-n No LOR Decen-n
Cases | control (3) 4) control (6) (7
1) (2) ®)
Drift 1.94 0.01 0.01 1.18 0.005 0.005
(cm)
Drift 14.4 0.34 0.34 9.18 0.2 0.15
vel.
(cm/s)
Abs. 120.9 85.71 85.71 186.3 85.83 86.37
acc.
(cm/s?)
Table 2.2: Maximum Responses of Nominal 20DOF system
10" DOF 20" DOF
No LQR Decen-n No LOR Decen-n
Cases | control (3) 4) control (6) (7
1) (2) ®)
Drift 0.65 0.01 0.007 0.17 0.008 0.009
(cm)
Drift 2.73 0.52 0.27 1.35 0.33 0.41
vel.
(cm/s)
Abs. 101 85.58 85.82 141 86.62 85.68
acc.
(cm/s®)
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Figure 2.1: Flowchart for Design of Decentralised Nominal Saturation Control
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Figure 2.3: Subsystem 1 responses and controls for nominal 2DOF system
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CHAPTER 3

CENTRAL ROBUST RELIABLE CONTROLLER

3.1 Introduction

The previous chapter presents the solution for the decentralised nominal
control using LTR technique with LQR and saturation controllers for noise-corrupted
partial state feedback systems. In many practical situations, additional complexities
arise when uncertainties are present and some control sensors and actuators may fail
during service. This is addressed in this chapter where the robust reliable optimal

controller is proposed for linear uncertain systems under seismic excitation.

As in the previous chapter, full state feedback is considered. Firstly, the
system uncertainties are decomposed. Using closed-loop state-space Riccati-based
control approach, the full state-feedback gain is derived from the solution of the
formulated Algebraic Riccati Equation (ARE). The full state feedback gain is
formulated to be robust against both structured and unstructured norm-bounded
uncertainties as well as reliable against actuator failures confined to a predefined
subset. Secondly, to account for noise-corrupted partial state feedback, LTR-based
robust reliable control is implemented using the separation principle to account for
noise-corrupted partial state feedback under practical considerations. For illustration,
both the nominal and uncertain 2DOF systems under robust reliable optimal control,

central LQR control and decentralised nominal saturation control are presented.
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3.2 Control Problem Formulation
3.2.1 Analytical Model with Uncertainties
Consider an n-degree-of-freedom building subjected to one-dimensional

horizontal earthquake ground acceleration X (t). By modifying (2.1), the global

uncertain dynamic equation of motion inclusive of all uncertainties, perturbations and
disturbances can be derived using extended Hamilton’s variational principle

(Meirovitch, 2000) as:

M, & )+ (C, +AC, )5 1)+ (K, +AK ) ()= (F, + AR U () - M, (1 + A%, (1) (3.2)

where £(t) e R" is the global displacement vector; U (t) e R™ is the nominal control
voltage vectors to m groups of actuators; M, € R™ is the global consistent mass
matrix; C, e R™ and AC, e R™ are the global nominal and uncertain linear viscous
damping matrices; K, e R™ and AK, € R™ are the global nominal and uncertain
linear elastic stiffness matrices; F, = p_l. and AF, = p Al are the global nominal
and uncertain control force distribution matrices, where p. e R™ is the global
actuation force distribution vector, I, e R™" and Al, e R™" are the global nominal

and uncertain actuation force per unit voltage transformation matrices; and | € R"
and Al e R" are the global nominal and uncertain earthquake excitation influence
vectors.

In the state space, (3.1) becomes a class of uncertain systems with the

following form:
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X(t) = (A+ AAX(t) + Bu(t) + (H + AH )w(t),

y(t) = x(v), (3.2)

2(t) = (C + AC)x(t)

0
where Ae ®°"", C=(-M K, -M,’C, )e®"* and H =( |

j e R2™ are the

constant nominal system, regulated output influence and disturbance influence

matrices, respectively. Note that d=n for earthquake excitations. x(t) = (9 e R is

the full state vector, u(t) = [u,,...,u, ] € R™ is the control input vector, y(t) e R*" is
the vector of sensor measurements chosen here for full state measurements, z(t) € R’
the regulated output vector and w(t) e R the disturbance vector. Structured

uncertainties for the system are denoted as AA € R*™*" and the controller influence

0

matrix as B = a 4
M, F, + M, AF,

J e R*™™ . Unstructured uncertainties for the norm-

bounded Sensors and the disturbance input are
-1 -1 rx2n 0 2nxd -

AC :(— M, AK, —-M, ACS)eiR and AH = Al eR respectively,

where 0 <[AC|, <6, and 0<|AH||, <4, .

Formulating (3.2) in state space form of (3.1), the system and system

uncertainty matrices are:

A= 0 ! AA = ° 0 (3.3)
l=MK, -MC )T (=MAK, —MTAC, '

Without loss of generality, the components in AA can be decomposed

(Khargoneka et al 1990) as
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M, "AC, = D_F,(t)E,, M, 'AK_ = D,F, (t)E, (3.4)

where  Dg, Dy, Ec, Ex e ®™™ are known real constant matrices, and

Fe(t), Fe () e R™"  are bounded uncertain matrix with Lebesgue measurable

elements such that F_(t)" F.(t) <1 and F (t)" F (t) < 1. Hence,
AA = DF(t)E (3.5)

k c C() C

3.2.2  Assumptions
In addition to the assumption of full state feedback and no measurement noise
implied in (1b), the following assumptions are made in formulating the control

problem:

(a) The uncertainties have known bounds; that is, (CS+ACS)e[CS’,CS*J,
(K, +2K,)e|K, K|, (F.+AF.)e|r " and U eju-,u* | where C,”, C.",

K., K/, F,

F.", U  and U" are known quantities.

(b) The actuators can be divided into two mutually exclusive sets, where one set of

predefined actuators susceptible to failures is denoted by Q c {1 m} and the other

set of actuators that never fail is denoted by Q ={l,..,m}{—Q. The control input
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influence matrix can be decomposed as (Seo et al 1996):

B=B,+B, (3.7)

where B, e R*™ and B, € R*™™ are formed from B by zeroing out columns

corresponding to Q and Q respectively. Note that actuator failures can be either
partial failures if the actuator(s) or group(s) of actuators are operating at less than full
working capacity; or total failures if the actuator(s) or group(s) of actuators are not
working at all.

(c) (A/Bg) is stabilisable. That is, the unstable modes can be controlled by the
actuators.

(d) The vector of time-varying outputs of failed actuators ug (t) is bounded, i.e.

Ue (t) €[0,ug, ], where usy is the pre-defined actuator saturation function.

sat

3.2.3 Closed-loop System
Amongst the pre-defined set of possible actuators that may fail, let the actual

set of actuators that failed at time t be denoted as @, where @ — Q. By decomposing

B as B, +Bg, where B <Bg <B and 0< B, <Bg, and assuming a control law

with static feedback gain K, e R™":

u(t) = —K x(t) (3.8)

then the closed-loop system for (3.2) can be written as:
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X(t) = AX(t) + B,w (t),
y(t) = x(t), (3.9)
z(t) = C_x(t)

where A = A+AA-B_K., B, =(H+AH B,), C,=C+AC, w, =(w' ul],
in which w, (t) e R*" is augmented disturbance vector and u.(t) e R™ is the

control input vector with elements corresponding to working actuators being zero.

3.2.4 Control Tasks

The objective is to design a linear state feedback control law (3.8) for the
closed-loop system (3.9) with admissible uncertainties and allowable actuator failures
under assumptions stated in Section 3.2.2 such that despite the actuator faults, the

controller provides (a) robust a-degree relative asymptotic stability (i.e. the real part

of the eigenvalue of A is less than negative of a pre-defined positive value, «):
Re{A(A)}<-a<0 (3.10)

(b) robust augmented disturbance transmission that is H.—norm bounded within a

prescribed level ¢:

<5 (3.11)

0

C.(sl -A)"B,

|-rZWF ||oo -

and (c) H, optimal by minimizing the performance index:

J= j: [xT Qx+u’ Iiu}it (3.12)
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where Q:Q>0,Q e R is symmetric and semi-positive definite and

R:R>0,ReR™ is symmetric and positive definite. Note that (3.11) implies that

the control output is quadratically stable (Seo and Kim, 1996) despite actuator

failures, i.e.

2], < owe [,

3.3  Robust Reliable Optimal Full State-Feedback Control

3.3.1 Robust reliable control under system uncertainties

(3.13)

Obijectives (3.11-3.12) can be achieved for scalars « >0, 6 >0 and £>0 if

there exists a matrix P >0 such that (Wang et al 2001)

(A, +al) P+P(A, +a|)+§PBCBCTP+i5CCTCC <0
E

Assuming that K. can be expressed as

(3.14)

(3.15)

where £ > 0 is a pre-defined scalar used to scale K¢. Substituting (3.9) and (3.15)

into the LHS of (3.14) gives
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1

(A, +ad) P+P(A +al)+<PBB P+~
o &0

C.'C,

.
= A+AA—LBEBETP+05I P+P A+AA—iBEB;P+a|
23 2

;. |[P+—(C+AC)'(C+AC)
o &0 (3.16)

=(A+ad) P+AATP +P(A+al)+ PAA—%PBQBMTP

HT +AHT
+£P(H +AH Bw)( N J !
5
+§P[HHT+AHAHT+HAHT+AHHT+BwaT]P

+i5[cTc +ACTAC +CTAC +ACTC]
&

Using the inequality that for any rectangular matrices X and Y with scalar & >0

(Wang et al, 2001),
XX JéwT +(XYT+YXT)20 (3.17)

the following inequalities can be derived:

C'C+AC'"C+ACT'AC+CTAC

£(1+32)CTC+(1+i)ACTAC (3.18)
&

2

s(1+52)CTC+(1+i)5C2|

&,

for ¢, >0.
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BB,  +HH" + AHAHT + (HAHT + AHHT)

<B,B," +HH" +AHAHT +(53HHT +iAHAHTJ
&3
: 1 (3.19)
=B,B, +(l+&)HH" +(1+-—)AHAH'
€3
<B,B," +(1+&)HHT +(1+i)5h2|
&3
for &, >0.
—iPBEBETP <-PB_B_'P (3.20)
B
for 0< p<1.
AAT P + PAA < g/ AAAAT + L ppT (3.21)
€1

for ¢, >0. Let X = \/ZDTP—ﬁF(t)E where scalar ¢, >0. Then inequality

XTX >0 gives:

[ g4PD—ﬁETFT(t)][\/ZDTP—ﬁF(t)E >0 3.22)

Substitute (3.5) and (3.22) into (3.21) gives

AATP + PAA<ePTAP +1U (3.23)
€1
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where

0 0 T
T =DD" = L U,=E"E= B B 0 (3.24)
A 0 DD,"+DD.' A
k =k c~c c

Hence, substituting (3.18-3.20, 3.23) and the following expansion

BQ BQT = B(u BwT + BQ—w BQ—wT Bw BwT = BQ BQT - BQ—w BQ—«JT
] ] = ) ) . (3.25)
B;Bs =B;B; — B, ,Bs., B,B; =B;B; +B, ,Bg.,

into (3.16) gives
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(A+ad) P+AATP+P(A+al )+ PAA—%PBQBQ,TP

+§P[HHT +AHAHT + HAHT +AHHT +B,B," PP

+i5[cTc +ACTAC +CTAC +ACTC]
E

<(A+al) P+P(A+al)+&PBT ,B'P +giumA
1

—P(B,B,  +B, By, P+ % P(B,B, By B, P

+§P[(1+53)HHT +(1+i)5h2I}P
&

3

+i[(1+ £,)CTC+(1+ i)§C2I}+Q—Q
o)

&,

=(A+al) P+ P(A+al)+glPTAP+iUA

&
—p(B,B, P+ % P(B,B," )P

+§P[(1+53)HHT +(1+i)5h2I}P
&

3

(3.26)

+i[(1+ £,)CTC+(1+ i)5C2I}+Q
&0 £

2

_(1+ %)P(ng B,. P-Q
for Q > 0. From (3.26), for (3.14) to hold,

(A+al) P+P(A+al)+&PT,P JriuA

&

—p(B,B," )P +§P(BQBQT Jp +§P{(1+ g )HHT +(1+ i)éhzl}P (3.27)
&

3

+i{(1+ g,)C'C +(1+i)502|}+Q =0
&0 &

2

which can be cast in the algebraic Riccati equation (ARE) form as
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(A+al) P+P(A+al)-PRP+Q =0 (3.28)
where
R=B;B; —&T, —g{BQBQT +(L+&5)HHT +(1+i)5h2|} (3.29)
&3
— 1 1 . 1.,
Q=—U,+—|(1+&)C C+(0+—)o.I |+Q (3.30)
& &0 &,

To solve the ARE (3.28) implies Q >0 and R>0, hence the following

condition need to be satisfied:

g(i BBQT]>E{(51TA)+§{BQBQT +(L+g)HHT +(1+i)5h2|}} >0 (3.31)
&

3

a and o are selected based on user robustness specifications. Tuning scalars

€, &, &, and &, should be chosen to ensure that both R (3.29) and Q (3.30) are
positive-definite as well as selecting £ to achieve Hp-optimality given in (3.12). For
R>0, increase & and decrease ¢ and S. For Q >0, increase g, and Q; and

decrease ¢, and o .

3.3.2 Robust reliable control under matched system uncertainties

0) —
For system where B takes the form [§] B #0, and the uncertainties are
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matched (or can be decomposed) in the manner

AK,=BAK,, AC,=BAC, (3.32)
the system uncertainties can be re-written as
AA=BA,, A, =(-AK, -AC,) (3.33)

in which A, e R™*", AC,, e R™" and AK, e R™". Following the same argument

in Section 3.3.1, it can be shown that

AATP 4+ PAA<e,PBT, BT P+1U, (3.39)
€1

where
T T Emk' Emc O
TmaA = DmkDPmk™ +DmcDme » Uma = T (3.35)
0 Emc Emc
in which
AC:m = Dmc ch (t)Emcl AKm = Dmk ka (t)Emk (336)

The ARE in (3.28) holds with
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R=B,B;' —&BT,.B’ —%{BQBQT +(L+&,)HHT +(1+£i)5h2|} (3.37)

Q
3

6:iUmA+i[(1+gz)CTC+(1+i)5czl}+Q (3.38)
&0 &

1 2

3.3.3 Robust reliable H,-optimal control

From (3.8), (3.12) can be written as
3= [T (@ + kTR et = [« Ot (3.39)

where Q =Q+KTRK . From (3.9) and (3.15), A, = A+ AA—% B.B.'P.

If (3.28) holds and since the closed-loop system is asymptotically stable as
guaranteed under (3.10) and Ac is stable, for (3.39) to be minimized, the following

Lyapunov equation must hold

ATP+PA =G (3.40)

under the condition that Qe R2™" is positive semi-definite matrix. Taking

R= 2B1 >0 and re-writing (3.15) as K; = R‘lBaT P, it can be shown through (3.40)

that

Q=—(Al P+PA, +PBzR !B P) (3.41)
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Objective (3.10) implies A. is negative definite and (3.14) implies P is s.p.d. to ensure
admissible solution of (3.28), then (5 >0. Adding the ARE in (3.28) with (3.40)

gives:

2aP —% P(8.B, P+ g P(B,B," JP+ % PB.B.'P

3.42
E T 1 2 1 T 1 2 ( )

+—=P|(1+&)HH +(1+—)0,l P+—|(1+&,)C C+(1+—)o."1 |[+Q=0
o &, &0 &£

2

The detectability of (A,@“ 2) is assumed for unstable modes to be reflected in

(3.12). This can be used to check whether H,-optimality has been achieved for the
robust reliable controller. Satisfying (3.42) therefore implies that under closed-loop
linear system conditions, (3.12) is satisfied such that the controller provides infinite
gain margin and at least 60° phase margin for all admissible uncertainties and
allowable actuator failures.

In addition to being fault-tolerant, if the allowable actuator failures can be
actively monitored, then fault compensation using state feedback (Tao et al 2001) can

be used to completely attenuate the effects of all failures.

3.4  Partial Noise-corrupted State Feedback Control
In this section, conditions for system (3.2) would be relaxed to include
corrupted partial state feedback, CSS LTR (Chen et al 1991) can be used to recover

the properties of the robust reliable LQR controller of the previous section.

3.4.1 LTR Problem

In the previous section where for the system described by (3.2), the robust
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reliable LQR control gain K in (3.8) can be computed using (3.15). Practical
situations necessitate that only corrupted partial state feedback is available and (3.2)

can be modified as follows:

X(t) = (A+ AAX(t) + Bu(t) + w(t),
y(t) = (C + AC)x(t) + 7(t), (3.43)
2(t) = (C + AC)x(t)

where w(t) e R*" and 7(t) e R" are independent white noises, and C = | indicates
partial state measurement. Conventionally, (3.43) can be modified in terms of the
estimated state through an observer gain K; based on the concept of Kalman filter,
noting that only nominal matrices are used since uncertainties AA and AC are not

measurable:

K(t) = AX(t) + Bu(t) + K ¢ [y(t) —CX(t)] (3.44)

It is well known that an observer-based feedback control would generally not
guarantee all the properties of the full state feedback LQR. This can be overcome by
using loop transfer recovery (LTR) technique where the objective is to design K such
that the observer-based feedback control almost or exactly matches the guaranteed
properties of K. under the following assumptions:

(@) (A,C) is detectable. That is, all the unstable modes are captured by the sensors.
(b) E[w(t)]=0 with E[w(t)w’ (r)]=Q,5(t-7), Q, =Q," >0.

(©) E[7(t)]=0 with E[z(t)n" (r)]=R,5(t-7), R, =R," >0.

(d) (A,Q,) isstabilisable.

(e) System (3.43) is left invertible and of minimum phase, i.e. no unstable closed right
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half plane poles (roots of the FRF denominator) and zeros (roots of the FRF

numerator) on the root locus plot. This is required for LTR to be realizable.

3.4.2 Full-order CSS architecture-based control

The control equation (3.43) can be re-cast in a simpler form where the
influence of the control signals Bu(t) on the state is not directly reflected but indirectly
incorporated through the measured state y(t). Hence, the full-order CSS (Chen et al

1991) architecture based control law can be written as:

v(t) = Av(t) + K¢ [y(t) - Cv],

u(t) =—Kv(t) (3.45)

where K, € R*™ and v e R*" is the CSS control state. The CSS controller transfer

function from y(t) to - u(t)is given by
1 -1
Cf(S)=KC(D +KfC Kf (346)
where @~ =sl — A and s is the frequency variable.
The actual control input with partial corrupted state feedback y(t) in terms of
the feedback estimated control input (3.45) is related by the transfer function L¢ (i.e.
the achieved open-loop transfer function L of the nominal plant at the input point)

1
L¢ (s)=Cy (S)CDB = Kc(tl)_l + Kfcf K ; COB (3.47)

However, if full state feedback is indeed available, the corresponding robust
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reliable LQR achieved open-loop transfer function L. would be
L.(s) =K. ®B (3.48)
The difference between (3.47) and (3.48) is defined as the recovery error
E.(s)=L.(s)—L;(s) (3.49)

and the objective of the full-order CSS architecture based control is to design K; such

that E,(s) — 0. Chen et al (1991) has shown that (3.49) can be simplified to

E,(s) = KC(CD_l +K; CTIB (3.50)

Based on (3.50), an auxiliary system can be created, described by

X=A"X+CT0+k W
j=%
: 3.51
Lo Z7=B'X (3.51)
0=-K,'X

which has the closed-loop transfer function from w to 7
T =BT (@7 +CTK{T) 1K, =E,' (s) (3.52)

Since |E, (5)"(.) :|

ErT (s)”(), any H-control method (Chen, 2000) can be

employed to design K; such that the desired H-norm of T,., and hence E; is

w
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minimized.

3.5  Computational implementation
Calculation of the robust reliable control gain and implementation follow the

flowchart shown in Fig. 3.1. For pre-processing, MATLAB™

is used to compute all
structural data, state-space model and control gains. SIMULINK™ is used to
numerically simulate the controlled system under earthquake excitation. For post-

processing, MATLAB is used to process and plot all output responses and controls.

3.6 Numerical illustration
3.6.1 2DOF uncertain system

A numerical example of a 2-DOF system under scaled El Centro earthquake to
0.1g (Fig. 2.2) is used to illustrate the effectiveness of the robust reliable optimal
control as opposed to central nominal full state-feedback LQR control and
decentralised nominal saturation control of Chapter 2. Consider the same 2-DOF

system with two actuators, but with allowable uncertainties below in state-space:

%) (1 0 0 0 0 0 1 0 Yx
x| o1 o 0 0 0 0 1| x,
%, | 10 0 1+a, 0 |[-31584 15792 —25134 1.2567 | %
%,) (0 0 0 1l+a,)\ 15792 -157.92 12567 -—1.2567 )%,
0 0 0
+a, 00 [ulj+ 0 Xy +V(t)
1 0\u,) |-1
0 1 -1

Xl
(ylj [—315.84 157.92 -25134 1.2567Jx2
_ac

= + w(t)
Y, 157.92 -157.92 1.2567 —1.2567

X
X,

where parameters a, € [-0.1,0.1], o, €[-11] and a, €[-11] are used to specify




Chapter 3 Central Robust Reliable Controller 58

uncertainties. System is nominal when «, =0, a; =1 and a. =1. Assume that

u.' =(0 0). The nominal central LQR and decentralised nominal saturation
controllers parameters are provided in section 2.6.1.

For a, =-0.1, oz =0.5 and a. =0.9, the central robust reliable optimal
controller parameters are « =0.5, =1, §=0.01, 5. =6, =0, ¢, =&, =&, =107,
£=10", Q=001 and B,=B,=05B. From (3.15) and (3.27), the robust

416020 —-205630 3430 -1640

reliable control gains are K, :( 21090 220080 1600 1880

); and using

: : -1 -1 -99999 0
section 3.4, LTR gains are K, =

-1 -2 0 —99999

The controlled responses using central LQR, decentralised nominal controls
(Decen-n) and robust reliable optimal controls (rrLQR) are shown in Figs. 3.2-3.3 for
the nominal 2DOF global system as well as in Figs. 3.4-3.5 for the uncertain 2DOF
global system, inclusive of uncontrolled responses. Tables 3.1 and 3.2 show the
maximum absolute peak responses of the nominal and uncertain 2DOF systems
respectively under central full state-feedback (LQR) controls, decentralised nominal
controls and robust reliable optimal controls. Under global central LQR control, the
controlled responses and controls are suitably mitigated, as shown in columns (2) and
(5) for subsystems 1 and 2 respectively. The LQR controls for uncertain system is
double that of the nominal system due to half actuator failure for linear state feedback.

With nominal decentralised saturation controls, as shown in columns (3) and
(6), the controlled responses are consistently better than that of the central LQR
controls for both nominal and uncertain systems. With robust reliable optimal
controls, as shown in columns (4) and (7), the controlled responses are consistently

better than both central LQR control and decentralized nominal saturation controls for
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both nominal and uncertain systems. Better control performance is achieved for
nominal system with lesser uncertainties and actuator failures. The controlled
absolute accelerations are comparable for all controls due to the emphasis on

acceleration control of the regulated outputs.

3.6.2 20DOF uncertain system

Consider the same 2DOF ROM for the 20DOF shear-structural building model

in section 2.6.2, but with allowable uncertainties below in state-space:

10 0 0 0 0 1 0
01 0 0 0 0 0 1| x,
%| |0 0 1+a, O |-7.2080 27761 -0.0730 0.0278 | X,
0

x
=

X, 0 0 l1+a, \ 27761 -62.8417 0.0278 -0.6284 ) X,
0 0 0
0 0 u
+ay Yl Xy +V(t)
-12.1596 -8.9808 |\ u, 4022
53.0676 -27.8441 -1530

Xl
(le (- 7.2980 2.7761 -0.0730 0.0278] X,
_aC

= + w(t)
Y, 27761 -62.8417 0.0278 -0.6284

Xl
XZ

Using the same uncertainty settings and controller parameters as section 3.6.1,

and from (3.15) and (3.27), the robust reliable control gains are

_( —493000 22682000 5000 227000
°(-3815000 -11930000 —-38000 —119000

]; and using section 3.4, LTR

~15 -1 —694410 136370 \'
1 —2 298450 —2993300)

gainsare K, = [

The controlled responses using central LQR, decentralised nominal controls
(Decen-n) and robust reliable optimal controls (rrLQR) are shown in Figs. 3.6-3.7 for

the nominal 20DOF global system as well as in Figs. 3.8-3.9 for the uncertain 20DOF
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global system, inclusive of uncontrolled responses. Tables 3.3 and 3.4 show the
maximum absolute peak responses for the 10" and 20" DOFs of the nominal and
uncertain 20DOF systems respectively under central full state-feedback (LQR)
controls, decentralised nominal controls and robust reliable optimal controls. The
uncontrolled responses of the 20DOF system is shown in Table 2.2. Under global
central LQR control, the controlled responses and controls are suitably mitigated, as
shown in columns (2) and (5) for 10™ and 20" DOF respectively.

With nominal decentralised saturation controls, as shown in columns (3) and
(6), the controlled responses are consistently better that of the central LQR controls.
With robust reliable optimal controls, as shown in columns (4) and (7), the controlled
responses are consistently better than both central LQR control and decentralized
nominal saturation controls for both nominal and uncertain systems. Better control
performance is achieved for nominal system with lesser uncertainties and actuator
failures.

The results show that for both nominal and uncertain systems with and without
Ritz model reduction, robust reliable optimal controls perform much better than both
central nominal LQR as well as nominal decentralised controls. In addition, robust
reliable optimal control performs better under the nominal system than under the
uncertain system, when system uncertainties and/or device failures do occur. Robust
reliable control system always outperforms nominal central and decentralised control
systems, hence illustrating that superior control performance is achieved at the
expense of greater controller design & implementation complexity. This agrees with
the findings of Wang et al (2001) that robust control performs better than nominal

controls when uncertainties do occur.
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Table 3.1: Peak Responses and Controls for Nominal 2DOF System

Subsystem 1

Subsystem 2

Cases LQR Decen-n rmLQR LOR Decen-n rrLQR
(1) (2) ®) (4) (©) (6) ()

Drift 0.01 0.01 0.0007 0.005 0.005 0.0003
(cm)
Drift 0.34 0.34 0.03 0.2 0.15 0.015
vel.

(cm/s)
Abs. 85.71 85.71 85.50 85.83 86.37 85.49
acc.

(cm/s®)

Control | 0.8489 0.8489 0.8541 0.8500 0.8556 0.8544
V)

Table 3.2: Peak Responses and Controls for Uncertain 2DOF System
Subsystem 1 Subsystem 2
Cases LOR Decen-n rrLQOR LOR Decen-n rrLQR
1) (2) (©) (4) ©) (6) ()

Drift 0.02 0.02 0.001 0.01 0.01 0.0007
(cm)
Drift 0.75 0.73 0.07 0.40 0.35 0.04
vel.

(cm/s)
Abs. 86.02 86.13 85.46 86.51 86.93 85.62
acc.

(cm/s®)

Control | 1.6903 1.6896 1.7069 | 1.7055 1.7064 1.7104
V)
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Table 3.3: Peak Responses for Nominal 20DOF System

10" DOF 20" DOF
Cases LQR Decen-n rmLQR LOR Decen-n rrLQR
1) (2) 3) (4) (©) (6) (7)

Drift 0.007 0.003 0.000001 0.004 0.004 0.0000005
(cm)

Drift 0.27 0.12 0.00006 0.17 0.18 0.00002
vel.

(cm/s)

Abs. 85.49 85.48 85.38 86.08 85.67 85.38
acc.

(cm/s?)

Table 3.4: Peak Responses for Uncertain 20DOF System
10" DOF 20" DOF
Cases LOR Decen-n rmrLQR LOR Decen-n rrLQR
(1) (2) 3) (4) ®) (6) ()

Drift 0.01 0.007 0.000003 0.008 0.009 0.000001
(cm)

Drift 0.52 0.27 0.0001 0.33 0.41 0.00005
vel.

(cm/s)

Abs. 85.58 85.82 85.46 86.62 85.68 85.48

acc.
(cm/s®)
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Start

\ 4

Input data: nominal
structural properties

\ 4

System uncertainties: aA,
TA! UA

A 4

Allowable actuator
failures: B, B

o [

A 4

Controller parameters: «>0, g >0,
0>0,6>0,6>0,6,>0,6>0

Existence conditions:
ARE, >0, R>0

\ 4

Robust reliable control
gain: K

A 4

Simulations and output
results

A 4

End

Figure 3.1: Flowchart for Robust Reliable Control Gain Calculation
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10

o

(A) lou0D

time(s)

Figure 3.2: Subsystem 1 responses and controls for nominal 2DOF system

-

(w) yua (sjw) Awoopan yua  (s/sjw) 29V sqv

(N) 10u0D

time(s)

Figure 3.3: Subsystem 2 responses and controls for nominal 2DOF system
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Figure 3.4: Comparisons of subsystem 1 responses under central LQR and
decentralised nominal controls and robust reliable optimal controls for uncertain
2DOF system — (a) drifts including uncontrolled drifts; (b) controlled drifts; (c)
velocity drifts including uncontrolled; (d) controlled velocity drifts; (e) absolute
acceleration; (f) controls
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Figure 3.7: Responses and controls for 20" DOF of nominal 20DOF system
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Figure 3.8: Comparisons of responses for 10" DOF of uncertain 20DOF system

under central LQR and decentralised nominal controls and robust reliable
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(c) velocity drifts including uncontrolled; (d) controlled velocity drifts; (e)
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Figure 3.9: Comparisons of responses for 20" DOF of uncertain 20DOF system

under central LQR and decentralised nominal controls and robust reliable

optimal controls —

(a) drifts including uncontrolled drifts; (b) controlled drifts;

(c) velocity drifts including uncontrolled; (d) controlled velocity drifts; (e)
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CHAPTER 4

DECENTRALISED ROBUST RELIABLE CONTROL

4.1 Introduction

The previous chapters present the solutions for the decentralised nominal
saturation control and the central robust reliable optimal control for corrupted partial
feedback systems. In this chapter, the decentralised robust reliable saturation
controller is proposed for linear uncertain systems under seismic excitation. By
combining the decentralisation methodology with the robust reliable optimal control,
the decentralised controllers use only local information for independent local robust

reliable control of uncertain subsystems.

As in the previous chapters, full state feedback is considered. Firstly, the
system uncertainties are decomposed. Using closed-loop state-space Riccati-based
control approach, the full state-feedback gain is derived from the solution of the
formulated ARE. The decentralised full state feedback gain is formulated to be robust
against both structured and unstructured norm-bounded uncertainties as well as
reliable against actuator failures confined to a predefined subset. Secondly, the
effects of subsystem inter-coupling and nonlinear stiffness are attenuated by
employing saturation control formulated using Lyapunov equation. Finally, to
account for noise-corrupted partial state feedback, observer-based robust reliable
control is implemented using the separation principle.  For illustration, the

decentralised controls of both nominal and uncertain 2-DOF systems are presented.




Chapter 4 Decentralised Robust Reliable Control 71

4.2 Control Problem Formulation
4.2.1 Analytical Model with Uncertainties
Consider an n-degree-of-freedom building subjected to one-dimensional

horizontal earthquake ground acceleration X (t). By modifying (2.1), the global

uncertain dynamic equation of motion inclusive of all uncertainties, perturbations and
disturbances can be derived using extended Hamilton’s variational principle

(Meirovitch, 2000) as:

M& (0)+(C, +AC, ) 1)+ (K, +AK, ) 1)+ K, [V ()] = (F. + AF U (1) - M,I%, (1) (4.1)

where £(t) e R" is the global displacement vector; U (t) e R™ is the nominal control
voltage vectors to m groups of actuators; M, € R™ is the global consistent mass
matrix; C, e R™ and AC, e R™ are the global nominal and uncertain linear viscous
damping matrices; K, e R™ and AK, € R™ are the global nominal and uncertain

linear elastic stiffness matrices; K, [V(t)]e R" is the global nonlinear n-vector
stiffness force that is assumed to be a function of V(t), which is a function of the
system responses with bounded coefficients; F, = pl. and AF, = p Al are the

global nominal and uncertain control force distribution matrices, where p, € R™ is

the global actuation force distribution vector, I, ¢ R™" and Al, e R™" are the global

nominal and uncertain actuation force per unit voltage transformation matrices; and
I e R" is the global earthquake excitation influence vector.

It is assumed (assumption 6) that the uncertainties have known bounds; that

is, (C,+aC,)elc..c.’| (K.+aK,)elk, K. |, (F+aF)e|r F7| and
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Ue[U‘,U*] where C,, C,", K7, K", F,, F", U™ and U"* are known

s ! S S c ' "¢ !

guantities.

4.2.2 Reduced-order State-Space Modelling

Under assumption 1, the global uncertain FOM can be model-reduced to make
the problem tractable and for efficient design of U(t). Model reduction using load-
dependent Ritz vectors with Gram-Schmidt orthogonalisation (Chopra 2000, Krsyl et
al 2001, Appendix: Robust Model Reduction) is performed to derive a detectable and
stabilisable reduced-order model (ROM) with respect to known sensor and actuator
locations.

Using both uncertain and nominal matrices of (4.1), the following Ritz vector

transformation (Sestieri, 2000) is derived:

¢=%.4 (4.2)

where W, e R™ is the Ritz vector transformation matrix of the uncertain FOM;

geR" is the ROM global displacement vector corresponding to the desired master

degrees of freedom for stabilisability and detectability.

Substituting (4.2) into (4.1), ROM is given by:

M.q )+ (C, +AC, )4 (t)+ (K, +AK, g (t)+ ¥ K, [V ()]

=¥ (F, +AF, U (t)- ¥ M,I%, () (43)

where the reduced-order matrices are M, =¥,'M.)¥,, C,=V¥,'C¥,,

AC, =%¥,'AC.¥,, K, =¥, K. ¥, and AK, =F," AK_ ¥, .
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In the state space, (4.3) becomes a class of uncertain systems with the

following form:

X (1) = (A+AA)X (1) +(B+ABM (t) + X, (t) + HX, (1),
Y (t) = (C + AC)X (t) + 7(t), (4.4)
Z(t) =(C +AC)X(t)

where ROM global state vector is X(t)=(gJe*R2r, input vector is
U(t)=[u,,..,u, | €R™, measured output is Y(t) e R"™ and controlled/regulated

0
output is Z(t) e R"; Xn(t):( J is the ROM global nonlinear

-M rilLIJuT Kn [V(t)]

. 0 |
stiffness component; A= . L |emEE,
-M r Kr -M r Cr

r r r

Jemz““’, C=(M,K, -M,7c,)enr™ and

0 . .
H :( T Je‘ﬂzr are  constant  nominal  system  matrices;
0 0 0
AA = 5 5 e R, AB = T e R and
-M,7AK, —M,"AC, M, ™, " AF,
AC = (— M,"AK, —M,AC, )e R™2" are uncertain system matrices; 7(t) € R™ are
independent white noises. Structured uncertainties for the system and the input are
AA and AB respectively. Norm-bounded unstructured uncertainty for the sensor
measurement is AC , where 0 < |AC||, <&,.

Fix two mutually exclusive groups of actuators, where one set of predefined

actuators susceptible to failures is denoted by Qc {l...,m} and the other set of
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actuators that never fail is denoted by Q={l,..,m}-Q. Then the following

decomposition (Seo and Kim 1996) can be performed (assumption 7):

B+AB =B, +B, (4.5)

where B, e R*™ and B; € R*™™ are formed from B by zeroing out columns
corresponding to Q and Q respectively. Then using (4.5), define B, : B;<B,<B
and B, :0<B_, <B, suchthat B, + B, =B+ AB, where @ is the set of actuators

that are still working and satisfies Q c @ ¢ {1,...,m}; w is the set of actuators that
actually fails and satisfies @ < Q. Note that actuator failures can be either partial
failures if the actuator(s) or group(s) of actuators are operating at less than full
working capacity; or total failures if the actuator(s) or group(s) of actuators are not
working at all.

Itis also assumed that (A, B;) is stabilisable (assumption 8).

4.2.3 Uncertain Subsystem Model
Decompose the global state space model (4.4) completely into Ns

(N, <r <m) coupled subsystems:

X, (t) = (A +AA, )Xi (t) + (b; + Ab, )UZi (t) +hx, () + i(Au +AA >(j () + x5 (1),
yi(t) = (Cii +AC; )Xi t+ _i(cij +AC; )Xj (t) +m; (1), (4.6)
Z;(t)= (Cii +AC; )Xi )+ i(cij +AC; )’<j )

j=1, j=i
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where x(t) is the ith subsystem state, u,i(t) is subsystem control voltage, xni(t) is the
subsystem nonlinear stiffness component; y; is noise-corrupted subsystem
measurement output; z; is subsystem controlled or regulated output; A;; and Cj; are the
nominal system, measurement and regulated output inter-coupling between
subsystems i and j, Vi= j (i, j=1,...,N,); b;is the nominal subsystem control input
matrices; h; is the subsystem excitation input matrix; the subsystem uncertainties

AA;, AA;, Ab,, AC,

i’

AC;; are bounded as described in assumption 6.

The control task is to determine the uncertain (denoted in this thesis as layer 2)

subsystem feedback control u,, (t) such that the closed-loop subsystem for (4.6) with

admissible uncertainties and allowable actuator failures (4.5) provides relative

asymptotic stability with robust reliable decentralised H_ -norm disturbance rejection

and Hy-optimality with saturation control.

4.3  Decentralised Robust Reliable Control for Uncertain Subsystem Model
Using the decentralised control methodology (Magana and Rodellar 1998), let

the decentralised nominal controller take the following form:

Uy (t) = Uy (t) + Ty (1) (4.7)

where U, (t) = -k, (t) is the optimal regulation control for the undisturbed

subsystem, ky; is the static robust reliable state feedback control gain of subsystem i in

uncertain layer 2 and U,; is the augmented saturation subsystem control.
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4.3.1 Decentralised Robust Reliable Control Problem
From (4.6), define the following subsystem i that is ground-excited, but

without inter-coupling and nonlinear stiffness as follows:

X (t) = (Au + AA; ), () + (b; + Ab, )d (t) + h, X, (1),
y; () = x; (1), (4.8)
2;(t) = (Cy +AC; x; (t)

where admissible subsystem actuator failure(s) can be derived with (4.5) to give

relevant subsystem control location matrices: b, b, b, and b, ; (A;,b,) is

Qi i @i
stabilisable, as implied under assumption 8. Following Khargoneka et al (1990), the

admissible bounded uncertainties AA, can be decomposed as follows:

AA; = DiF (DE (4.9)

where D,,E; are known real constant matrices with F,(t) is a bounded uncertain

matrix with Lebesgue measurable elements such that F, (t)" F(t) <1 .

Assume the following linear full state-feedback control law for (4.8):

Uy (1) = —Ky % (1) (4.10)

then the closed-loop system for (4.8) can be written as:

X; (8) = Ay X; (1) + By wi (1),
yi(®) = x (0, (4.11)
z;(t) = Cyx (t)




Chapter 4 Decentralised Robust Reliable Control 7

:(hi bwi)’ Cci :Cii +ACii’ We; Z(XgT u-IEi )T’

where A; = A; +AA, —bk,, B

ci
in which w, (t) e R*™ is the augmented subsystem excitation vector and
Ug (t) e R™ is the subsystem input vector with elements corresponding to working

actuators being zero.

The objective is to design a linear state feedback control law (4.10) for the
closed-loop system (4.11), such that despite the presence of admissible uncertainties
and allowable actuator failures, the controller provides (a) robust «;-degree subsystem

relative asymptotic stability, that is,
Re{1(A;)}<-a, <0 (4.12)

(b) robust subsystem augmented disturbance transmission that is H.—norm bounded

within a prescribed level ¢

T

- Cci (SI _Aci )_l Bci "

- <5 (4.13)

and (c) Hz-optimal by minimizing the subsystem performance index:
Jy = I: [XiTézi X; + ljziT ﬁZiGZi }jt (4.14)

where Qm :(52i >0 is symmetric and semi-positive definite and §2i ; I52i >0 iss.p.d.

Note that (4.13) implies that the control output is quadratically stable (Seo and Kim,

1996) despite actuator failures, i.e.
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[z, < olwail, (4.15)

4.3.2 Decentralised Robust Reliable Full State-Feedback Control

Objectives (4.12-4.13) can be achieved for scalars ; 20, 6 >0 and ¢, >0

if there exists a matrix P, > 0 such that (Wang et al 2001):

(Aci +al )T Py + Py (Am +a;l )"‘% P, B BciT P, +i§cciTCci <0 (4.16)
€
Assuming that ky; can be expressed as:
1
k2i __bai P2i (4-17)
23,

where g, >0 is a pre-defined subsystem scalar used to scale ky;. Substituting (4.11)

and (4.17) into the LHS of (4.16) gives:

1

&6

(Aci +a;l )T P, + Pzi(Aci +a;l )"‘% P, B BciT P, + CciTC

ci

.
1 1

:(Aii +AA; _z_ﬂibmme Py +0‘iIJ P, + PZi(Aii +AA; _Z_IBibaime P, +ai|j

e b M |p + - (c, +ac, T (C, + AC, ) (4.18)

5 2i i wi b T 2i €i§ i i il i '

wi

= (Au +a;l )T Py +AAiiT Py + Py (Au +a;l )+ P, AA, _ﬂi PZibaT.baiT Py

+%P2i [hihiT +bwibwiT ]PZi +i§[ciiTCii +ACiiTACii +CiiTACii +ACiiTCii]
€
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Using the inequality that for any rectangular matrices X and Y with scalar v >0

(Wang et al, 2001),
XX+ YV £ (XY T +YXT)20 (4.19)
1%
the following inequalities can be derived:

AAiiT P, + Py AA; < gliAAiiAAiiT + S P, PziT (4.20)

li

for &, >0. Let X, =,/¢,,D,' P, —ﬁ F. (t)E, where scalar &,; > 0. Then inequality

X, X, >0 gives:

l Eyi P2i Di _ﬁ EiT FiT (t)l &4 DiT P2i _ﬁ Fi (t)Ei JZ 0 (4-21)

Substitute (4.9) and (4.21) into (4.20) gives:

AAiiT Py + Py AA; <P TPy + iu Al (4.22)

gll
where

=DD.',U, =E'E, (4.23)

Ai i~ Ai i i

and,
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CiiTCii +ACiiTCii +ACiiTACii +CiiTACii

<(+ey, )CiiTCii + 1+ i)ACiiTACii

‘92|

<(l+¢,)C, C, +(1+ i)aczl

‘92|
for ¢, >0.

—ﬂip.mloTP2i <—P,b_b_"P,

2i Mol Yol 2i Mol Yol
i

for 0< B <1.

Hence, substituting (4.20, 4.24, 4.25) and the following expansion:

bQi bQiT = bwi bwiT + bgiﬂoi bgiﬂmT bwi bwiT = bQi bQiT - bQi—wi bQi—wiT
bﬁi bﬁiT =bg; bBiT + bﬁi—aﬁ bﬁifaT bz br?iT = bﬁi bﬁiT - bﬁi—a?i bﬁi—aTiT
into (4.18) gives:
(Aii +al )T P, + AAiiT Py + Py (Au +al )"‘ P, AA; _ﬂi P,ibs; baiT P,

+%P2i [hihiT +ba)ibwiT:|P2i +i5|:ciiTCii +ACiiTACii +CiiTACii +ACiiTCii]
&,

= (Au +ail )T Py + Py (Au +a;l )+ &3Py Tai Py + iU A~ P (bﬁi bﬁiT )Pzi

1i

(4.24)

(4.25)

(4.26)

(4.27)

+ % P, (bQi bQiT )Pzi + % P, [hi hiT ]Pzi + %[(1"‘ &y )CiiTCii +(1+ %)502 I } +Q,;

2i

- (1 + %) P, (bQi—wi bQi—wiT )PZi -Qy

for Q,, > 0. From (4.27), for (4.16) to hold,
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(Aii +a;l )T Py + Py (Au +ail )+ &3Py Tai Py +£U A~ P (bﬁibﬁiT )Pzi

li

+ % P, (bQi bQiT )Pzi + % Py [hi hiT ]PZi + %{(1"‘ &y )CiiTCii +(1+ gi)é‘cﬁ +Q,; (4.28)
i 2i

which can be cast in the algebraic Riccati form as:

(Aii +ai|)T P, + Pzi(Aii +ol )_ PR, Py +62i =0 (4.29)
where
Ry = %bgi bﬁiT _‘91ibaiTAiba7iT _%[bQibQiT +h hiT] (4.30)
R 1 1 T 1 2
Qu=—Uy "‘_5 (L+&,)Cy Cyi +(A+—)0,71 |+Qy (4.31)
1i &;0; 2i

where Ry and Q,; are positive-definite design uncertainty weighting matrices; Ta; and
Ui are as defined in (4.23) and |AC, |, < &, with control law of (4.10) in which ky; is
given in (4.17).

Existence of admissible solution to the ARE implies Q,, > 0 and R,>0, hence

the following condition must be satisfied:

Q(ﬂi. bﬁi bﬁiT j > g{(gilTAi )+ % [bQi bQiT + hi hiT ]} >0 (4'32)
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a; and p, are selected based on user robustness specifications. Tuning
scalars &, &, and ¢, should be chosen to ensure that both R, and Q,; are positive-

definite as well as selecting f, to achieve decentralised H,-optimality given in (4.14).

4.3.3 Decentralised Robust Reliable H,-Optimal Control

From (4.10), (4.14) can be written as:
J 2i T _[Ow [XiT (ézi + kziT §2i k2i )Xi }jt = JOOO [XiTQZiXi }jt (4-33)

where QZi = QZi +k,,' ﬁZikZi . If (4.29) holds and since the closed-loop system (4.11)

is asymptotically stable as guaranteed under (4.12) and A. is stable, then for (4.33) to

be minimized, the following Lyapunov equation must hold:

Ay Py + Py A, = _Qm (4.34)

under the condition that Q, e R*™* is positive semi-definite matrix. ~Taking

R, =21 >0 and re-writing (4.17) as k, =R, 'b..' P, , it can be shown through

l

(4.34) that:

62i = _(A; Py + Py A, + Pyby; Is2i71b5iT P,) (4.35)
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Objective (4.12) implies A is negative definite and (4.16) implies Py is s.p.d. to
ensure admissible solution of (4.29), then 62i >0. Adding the ARE in (4.29) with

(4.34) gives:

wl =l

20,y — ﬂi Pai (bﬁi bs;' )Pzi + % Pai (bQi bey' )Pzi + % Pobibs Py

(4.36)
+ ? Pyi [(1+ 53i)hihiT ]Pzi + %[(1"‘ £5)Cy Cy + (L+ i)éciz I } +Qy 20

i~ 2i

The detectability of (A, ,QZi” ?) is assumed for unstable modes to be reflected

in (4.14). This can be used to check whether H,-optimality has been achieved for the
robust reliable controller. Satisfying (4.36) therefore implies that under closed-loop
linear system conditions, (4.14) is satisfied such that the controller provides infinite
gain margin and at least 60° phase margin for all admissible uncertainties and
allowable actuator failures.

By satisfying (4.29-4.31, 4.36), the uncertain layer linear feedback controller

with control gain (4.17) guarantees relative o, -degree asymptotic stability with robust

reliable decentralised H_-norm excitation rejection and H-optimality for subsystem

(4.8). In addition to being fault-tolerant, if the allowable actuator failures can be
actively monitored, then fault compensation using state feedback (Tao et al 2001) can

be used to completely attenuate the effects of all failures.

4.4  Augmented Saturation Subsystem Control
Based on the above, the closed-loop linearly-controlled subsystem of (4.6)

under robust reliable controls in view of (4.7) can be re-written as:
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X (t) = (Au +AA; —bk, )Xi (1) +b,;Uy () +e, (1),
y;i (t) = % (1), (4.37)
z;(t)= (Cii +AC; )Xi )

where the uncertain subsystem disturbance vector is

& Ug (t) .
e, ()= Y AX; () +x; )+ (b, b 50| When e,, =0, which corresponds to
j=1,j=i 9

(4.11), (4.37) is «, -degree asymptotically stable. When e,, # 0, under assumptions

7-8 and bounded arbitrary excitation X, and actuator failure signals u, ex(t) is a

bounded function such that the robust reliable augmented controller ., (t) in (4.7)

can be specifically designed for desired subsystem disturbance rejection (Magana and
Rodellar 1998).

It is assumed that positive subsystem constant ¢,, exists and given or known a

Ug (1)
e nf5)

(Assumption 9). For example, &, can be derived from the uncontrolled responses

ZS:Ainj(t)

JLivi

priori such that |e,(t) <5, = +[x )+

max max

under the target excitation (Magana and Rodellar 1998).
Under Assumption 9, the robust reliable decentralised augmented saturation

controller is given as:

0, (1) = {SQn(ﬂzi(t))éziv |/12i (t)| > 8, (4.38)

i (1), |,Uzi (t)| <0,

where u, (t) is a saturation controller that is limited by o&,, in magnitude and gz, (t)

in direction; s, (t) is given as:
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f () ==0,b IS2iXi (4.39)

where F~>2i is the s.p.d. solution of the following Lyapunov equation of the closed-loop

subsystem (4.37):

(Aii +AA; —bk, )T 52i +Py (Au +AA; —bk, ) = _in (4.40)

where Q,; is the symmetric semi-positive-definite disturbance energy-weighting

matrix.

4.5 LTR-based Decentralised Robust Reliable Saturation Controls

Following the LTR procedure in section 2.5, (4.6) can be modified as follows:

X; (1) = Ay (1) +bguy, (1) + wy, (1),

Yi () = Cix (t) + 77, (1), (4.41)
z;(t) =Cyx (1) + _NZS__Cinj )

NS

where  w,, (t) = {Apﬁixi (t) + by (€ + D %, )+ S (A +AA, K, () + %, (1) | e R*"

i=L, j#i
NS
and 77, (t) :[AC“Xi (t) + Z(Cij +ACU.)><J.(t)+77i (t)}eﬂ%’ are assumed to be
i=L, j#i

independent white noises, and C; = | indicates partial state measurement. Under

assumption 5, the full-order LTR-based control law for layer 2 can be written as:
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Vi = AV +K (Y —Civy)

(4.42)
Uy ==KV

where the CSS subsystem control state is v, € R*" and the LTR gain for layer 2 is
k., € R*™, which is derived following the procedure in section 2.5 by replacing
Key, ki, b, and E,;(s) with k;,;, k,,, b and E,, (s) respectively.

Replace (4.7) with the CSS-LTR subsystem state as follows:

Uy (1) = =Ky v; (1) + U (1) (4.43)

where ki is given in (4.17) and u,; (t) in (4.39) is replaced by:

Hy (1) =0 b’ ISZiVi (4.44)

2i~ ol

4.6  Computational implementation
Computation and implementation of the layered decentralized controls follow

the flowchart shown in Fig. 4.1. For pre-processing, MATLAB™

is used to compute
all structural data, state-space model and control gains. SIMULINK™ is used to
numerically simulate the controlled system under earthquake excitation. For post-

processing, MATLAB is used to process and plot all output responses and controls.

4.7 Numerical illustration
4.7.1 2DOF uncertain system

A numerical example of a 2-DOF system under scaled El Centro earthquake to




Chapter 4 Decentralised Robust Reliable Control 87

0.1g (Fig. 2.2) is used to illustrate the effectiveness of the decentralised robust reliable
saturation control as opposed to central nominal full state-feedback LQR control and
decentralised nominal saturation control of Chapter 2. Consider the same 2-DOF

system with two actuators, but with allowable uncertainties below in state-space:

10 0 0 0 0 1 0 Yx
01 0 0 0 0 0 1 |x,
% | |0 0 1+a, 0 |[-31584 157.92 -25134 1.2567 | X,
0

X, 0 0 l+a,)\ 15792 -157.92 1.2567 —1.2567 ) X,
0 0 0 ’
0 Ofu 0
+ + X +v(t
“8l1 o[uzj _y etV
0 1 -1

Xl
(ylj_ [—315.84 157.92 -25134 1.2567Jx2

+ w(t)
Y, 157.92 -157.92 1.2567 —1.2567

Xl

XZ
where parameters a, €[-0.1,0.1], a, €[-11] and o, €[-11] are used to specify
uncertainties. System is nominal when a, =0, a; =1 and a. =1. Assume that

u.' =(0 0). To illustrate the performance effectiveness, the nominal natural

frequencies encompass the PSD peaks of the El Centro excitation used.

After state decentralisation, the subsystem 1 is given below:

X, 1 0 0 1 X, 0 0 X, 0
o | = ot .|| T%| . W
X, 0 l+a,)|\—315.84 —25134 ) % ) (157.92 1.2567 \ X, 1
0
+ (_ng +Vv, (1)

y, = (-315.84 - 2.5134)(

)_(1] +a,(157.92 1.2567)()_(2 ] g (t),
X

Xl 2

Xl
7z, =(-315.84 -25134) "
Xl
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and the subsystem 2 is given below:

X, 1 0 0 1 X, 0 0 \x 0

o |~ N .|| T %], U2

X, 0 l+a,)|\—-157.92 -1.2567 \ X, ) (157.92 1.2567 | X 1
0

+(_JX‘Q +V,(t)

Xl X2
y, =a,(315.84 25134) * |+, (-157.92 —1.2567) 2 |+w,(t),

Xl 2

X2
z,=(-157.92 -1.2567) "
X

2
Notice that the local regulated output z; is the undisturbed local acceleration.
The nominal controller parameters are provided in section 2.6.1.

For a,=-0.1, ;=05 and «.=0.9, the robust reliable controller

parameters are o, =a,=05, p=p4,=001, 6 =0,=001, o,=0,=0,

g=¢6=10", g,=¢,=001, &, =¢, =001, & =¢&,=001, R, =R, =0.01,
Q, =Q,, =0.01I, T, =T, =diag(0,2), U,, = diag(997.5,0.0632),
U,, = diag(249.4,0.0158), by, =b,=b,,=h,=(0 05), &,=&,=8,
5,=6,=1768 and Q, =Q,, = diag(1100). From (4.17) and (4.29), the robust
reliable control gains are k,, = (5.02 0.04)*10°, k,, =(2.51 0.02)*10°; and using

section 4.6, LTR gains are k,,, = (—0.363 —249)" and k,,, = (~0.677 —249)".

The controlled responses using central robust reliable controls (rrLQR),
decentralised nominal controls (Decen-n) and decentralised robust reliable controls
(Decen-rr) are shown in Figs. 4.2-4.3 for the nominal 2DOF global system as well as
in Figs. 4.4-45 for the uncertain 2DOF global system, inclusive of uncontrolled

responses. Tables 4.1 and 4.2 show the absolute peak responses and controls of the
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nominal and uncertain 2DOF systems respectively under central full state-feedback
robust reliable (rrLQR) controls, decentralised nominal controls and decentralised
robust reliable controls. Under central robust reliable LQR controls, the controlled
responses and controls are suitably mitigated, as shown in columns (2) and (5) for
subsystems 1 and 2 respectively. Under nominal decentralised saturation controls, as
shown in columns (3) and (6), the controlled responses are consistently poorer than
that of the central robust reliable LQR controls for both nominal and uncertain
systems.

With decentralised robust reliable saturation controls, as shown in columns (4)
and (7), the controlled responses are comparable to central robust reliable control, and
consistently better than decentralized nominal saturation controls for both nominal
and uncertain systems. Better control performance is achieved for nominal system
with lesser uncertainties and actuator failures. The controlled absolute accelerations
are comparable for all controls due to the emphasis on acceleration control of the

regulated outputs. These results follow the findings from the previous two chapters.

4.7.2 20DOF uncertain system
Consider the same uncertain 2DOF ROM for the 20DOF shear-structural
building model in section 3.6.2. After global state-decentralisation, the subsystem 1

is given below:

X (1 0 0 1 X, N 0 0 X,
%, ) \0 1+a,)|-7.2980 -0.0730 )\ %, 2.7761 0.0278 ) X,

0 0
+ u, + X, +v(t
aB(-lZ.lS%J : [4022) o+ )

)

1 2

Xl X2
y, =a,(-7.2980 -0.0730 . +a,(2.7761 0.0278 . +w, (t),




Chapter 4 Decentralised Robust Reliable Control 90

Xl
z, =(-7.2980 -0.0730)

X

and the subsystem 2 is given below:

%) (1 0 0 LY, [ © 0 Yx
%,) |0 1+a,|\-62.8417 -0.6284)x,) (2.7761 0.0278 )\ X,

0 0
u, + X, +v,(t
aB(-27.8441j 2 (—1530} o V2 (1)

1 2

X X
y, = a,(2.7761 0.0278)(le +a, (-62.8417 - 0.6284)()_(2 ] +W, (1),

X2
z, =(-62.8417 -0.6284)

X2
The nominal controller and central robust reliable controller parameters are
provided in sections 2.6.2 and 3.6.2 respectively. The uncertainty settings and robust
reliable controller parameters follow section 4.7.1. From (4.17) and (4.29), the

decentralised  robust  reliable  control  gains are  k, =(-729 -13),
k,, =(~6282 —66); and using section 4.6, LTR gains are k,,, =(-12 —6079)'
and k,,, =(-2 -13921)",

The controlled responses using central robust reliable controls (rrLQR),
decentralised nominal controls (Decen-n) and decentralised robust reliable controls
(Decen-rr) are shown in Figs. 4.2-4.3 for the nominal 2DOF global system as well as
in Figs. 4.4-4.5 for the uncertain 2DOF global system, inclusive of uncontrolled
responses. Tables 4.1 and 4.2 show the absolute peak responses and controls of the
nominal and uncertain 2DOF systems respectively under central full state-feedback
robust reliable (rrLQR) controls, decentralised nominal controls and decentralised
robust reliable controls. Under central robust reliable LQR controls, the controlled

responses and controls are suitably mitigated, as shown in columns (2) and (5) for
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subsystems 1 and 2 respectively. Under nominal decentralised saturation controls, as
shown in columns (3) and (6), the controlled responses are consistently poorer than
that of the central robust reliable LQR controls for both nominal and uncertain
systems.

With decentralised robust reliable saturation controls, as shown in columns (4)
and (7), the controlled responses are comparable to central robust reliable control, and
consistently better than decentralized nominal saturation controls for both nominal
and uncertain systems. Better control performance is achieved for nominal system
with lesser uncertainties and actuator failures. The controlled absolute accelerations
are comparable for all controls due to the emphasis on acceleration control of the
regulated outputs.

The results show that for both linear nominal and uncertain systems, a set of
simpler decentralised controllers can have performance at least as good as a single
global centralised controller under similar peak control magnitude. Robust reliable
controls perform consistently better than nominal controls for both nominal and
uncertain systems under both central and decentralised control systems. By
combining decentralisation and robust reliable control approaches, the decentralised
robust reliable controls perform consistently better than decentralised nominal
controls, with comparable performance to central robust reliable controls, when
system uncertainties and/or device failures do occur. Hence, this agrees with the
findings of Lukas (1996) that the attainable benefits of decentralised control are high
system performance under system uncertainties, greater stability robustness and

improved control system performance.
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Table 4.1: Peak Responses and Controls for Nominal 2DOF System

Subsystem 1 Subsystem 2
Cases Decen-n Decen-rr rrLQR Decen-n Decen-rr
1) @) (4) ®) (6) ()
Drift 0.01 0.006 0.0003 0.005 0.0003
(cm)
Drift 0.03 0.34 0.03 0.015 0.15 0.015
vel.
(cm/s)
Abs. 85.50 85.72 85.50 85.49 86.37 85.79
acc.
(cm/s®)
Control | 0.8541 0.8489 0.8545 0.8544 0.8556 0.8574
V)
Table 4.2: Peak Responses and Controls for Uncertain 2DOF System
Subsystem 1 Subsystem 2
Cases | rrLQR Decen-n Decen-rr rrLQR Decen-n Decen-rr
1) ) ®) (4) (©) (6) ()
Drift 0.001 0.02 0.006 0.0007 0.01 0.0006
(cm)
Drift 0.07 0.73 0.06 0.04 0.35 0.03
vel.
(cm/s)
Abs. 85.46 86.13 85.6 85.62 86.93 85.93
acc.
(cm/s®)
Control | 1.7069 1.6896 1.7101 1.7104 1.7064 1.7168
V)
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Table 4.3: Peak Responses for Nominal 20DOF System

10" DOF 20" DOF
Cases rLQR Decen-n Decen-rr rLQR Decen-n Decen-rr
1) (2) 3) (4) ©) (6) (@)
Drift | 0.000001 0.003 0.0000007 | 0.000005 0.004 0.0000009
(cm)
Drift | 0.00006 0.12 0.00003 0.00002 0.18 0.00004
vel.
(cm/s)
Abs. 85.38 85.48 85.48 85.38 85.67 85.50
acc.
(cm/s?)
Table 4.4: Peak Responses for Uncertain 20DOF System
10" DOF 20" DOF
Cases rrLQR Decen-n Decen-rr rrLOR Decen-n Decen-rr
) 2) 3) (4) ©) (6) @)
Drift | 0.000003 0.007 0.000001 | 0.000001 0.009 0.000002
(cm)
Drift 0.0001 0.27 0.00006 0.00005 0.41 0.00008
vel.
(cm/s)
Abs. 85.46 85.82 85.48 85.48 85.68 85.51
acc.
(cm/s?)
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Figure 4.1: Flowchart for Decentralised Robust Reliable Saturation Control
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Figure 4.2: Subsystem 1 responses and controls for nominal 2DOF system
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CHAPTER 5

CONCLUSIONS AND FUTURE STUDIES

51  Conclusions

The decentralised robust reliable saturation controller is designed using the
state-space Riccati-based approach to achieve closed-loop controlled system stability,
robustness against system uncertainties, reliability against partial actuator failures and
optimality by minimisation of user-defined performance index for the controlled
linear uncertain faulty systems under seismic excitations. System uncertainties due to
variations in damping and stiffness, as well as actuator failures within a predefined set
are considered. Using state-space approach, the global system is state-decentralised
into inter-connected local subsystems for local decentralised controls. The
decentralised controllers use only local information for independent local control of
subsystems. Firstly, decentralised nominal saturation controllers are designed for
nominal system, followed by robust reliable controller for uncertain system, and
finally combining both approaches to derive the decentralised robust reliable

saturation controllers.

The decentralised nominal saturation control is designed for a nominal system.
It consists of LTR-based feedback control, under noise-corrupted partial state
measurements, to regulate the local ‘uncoupled’ subsystem and a saturation control to
account for the coupling terms and excitations. The former uses the closed-loop state-
space Riccati-based LQR control approach to derive the full state-feedback gain for
the undisturbed subsystem. The latter uses Lyapunov equation to formulate the
saturation control with the objective of attenuating the subsystem disturbances. The

results show that for both linear nominal 2DOF system and linear nominal 20DOF
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system under scaled El Centro excitation, a set of simpler decentralised nominal
controllers can perform at least as good as a single global central LQR controller

under similar peak control magnitude.

The central robust reliable optimal controller, consisting of closed-loop partial
state-feedback LTR-based control is designed for linear uncertain faulty system to be
robust against both structured and unstructured norm-bounded uncertainties as well as
reliable against actuator failures confined to a predefined subset. Under the partial
state-feedback control, the controlled structure is guaranteed user-defined relative
stability, robust and reliable H., 5-degree augmented disturbance rejection as well as
H, control optimality. The results show that for both linear nominal and uncertain
systems under scaled El Centro excitation, robust reliable optimal controls always
perform better than both central nominal LQR as well as decentralised nominal
saturation controls under similar peak control magnitude. In addition, robust reliable
optimal control performs better under linea nominal system than linear uncertain

system when system uncertainties and/or device failures do occur.

The decentralised robust reliable saturation control combines the
decentralisation methodology with the robust reliable optimal control, to use only
local information for independent local robust reliable control of uncertain
subsystems. The results show that for both linear nominal and uncertain systems, the
decentralised robust reliable controls perform much better than decentralised nominal
controls, with comparable performance to central robust reliable controls, even when
system uncertainties and/or device failures do occur. Robust reliable controls
consistently perform better than nominal controls for both linear nominal and

uncertain systems under both central and decentralised control systems.
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The decentralised controls would be useful for distributed aseismic controls
for large-scale uncertain linear systems under seismic excitations. The decentralised
robust reliable saturation controllers can be designed specifically to cater to user-
specifications and allows great design and control flexibility. This study would show
a direction towards exploring further decentralised application possibilities and
exploiting optimal decentralised control effectiveness and efficiency for aseismic
vibration control, especially when system variations and device malfunctions do

occur.

5.2 Future studies

Recommended further studies are as follows:

e Simultaneously and explicitly account for time delays, on-line detection, isolation
and compensation for controller and device malfunctions for reliable control with

actuator failures unconfined to predefined redundant set should be investigated.

e Coordination and applications of decentralised controllers with a variety of
different sensors and actuators for a variety of 2D and 3D subsystems with
different controller parameters under active, semi-active or hybrid controls need

further studies.

e The GIMC (Zhou and Zhang, 2001) architecture is a very promising innovation
allowing the dynamic balance of controlled performance and robustness according
to the current actual system conditions. Decentralised GIMC can be designed by
formulating both the decentralised nominal and robust reliable controllers into the
GIMC architecture to balance controlled stability, performance, robustness and

reliability.
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APPENDIX: MATLAB PROGRAMS

Chapter 2

% Model reduction: Chopra 1995
% vg68.m, nbeta8.m, test.m, nishitani.m
%

% Actual FOM:
ml=1e6; % kg
m2=7e5;

c=0;
k1=1.47e9; % N/m
k3=1.372€e9;
k5=1.274e9;
k7=1.176€9;
k9=1.078e9;
k11=0.98e9;
k13=0.931e9;
k14=0.882e9;
k15=0.833e9;
k16=0.784e9;
k17=0.735e9;
k18=0.686€9;
k19=0.637e9;
k20=0.588e9;

% discrete MDOF:
md=[ml m1 m1 ml mlmlmlmlmlmlmlmlmlmlmlmlmlmlmlm2];
kd=[kl k1 k3 k3 k5 k5 k7 k7 k9 k9 k11l k11 k13 k14 k15 k16 k17 k18 k19
k20];
%md=[m1 m1 ];
%kd=[k1 k1 7];
%cd=zeros(1, length(md));
cd=kd/100;
%
M=zeros(length(md));
K=zeros(length(md));
Cd=zeros(length(md));
for i1=1:length(md)
M@, D)=M(1, 1)+md (i) ;
if i==
K, 1)=K(i,i)+kd(i);
Cd(i,1)=Cd(i,i)+cd(i);
else
K(-1,i-1)=K(i-1,i-1)+kd(i);
K(i-1,1)=K(i-1,1)-kd(i);
K@, 1-1)=K(i, i-1)-kd(i);
K(i, 1)=K(i,i)+kd(i);
Cd(i-1,i-1)=Cd(i-1,i-1)+cd(i);
Cd(i-1,i1)=Cd(i-1,i1)-cd(i);
Cd(i,i-1)=Cd(i,i-1)-cd(i);
Cd(i,i1)=Cd(i,i)+cd(i);
end
end

disp(“Model Reduction retaining modal characteristics®);
[ev,w,msO]=vtb4_1(M,K);
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disp(“Mode shape 1: *);
%ms0(:,1)/ms0(20,1)

Y%pause

disp("Mode shape 2: *);
%ms0(:,2)/ms0(8,2)

%pause

disp(“Mode shape 3: ");
%ms0(:,3)/ms0(5,3)

%pause

f=w/2/pi; % natural freq (Hz)

%

% Chopra: Rayleigh-Ritz generalisation of froce dependent
0,

S=-M*ones(length(md),1);

dmodes=input("Enter the max mode to be included: *);

a=zeros(dmodes) ;
y=zeros(length(md),1,dmodes);
ms=zeros(length(md),1,dmodes);
msc=zeros(length(md),1,dmodes);
msb=[1;
for i=1:dmodes

if i==

y(:,:,1)=K\S;

ms(:,:, )=y, , D/sarey(z, 1, D) 7MY, 1, 1)),

else
v(:,:,1D)=K\M*ms(:,:,i-1);
a(i-1,i1)=ms(z,:,i-1)"*M*y(:,:,1);
msc(z,:,1)=y(z,:1,0);
for j=1:i-1

msc(:,:,i)=msc(:,i) - a@,i)*ms(:,:,j);

end
y(:, 1, 1)=msc(:,:,1);

ms(:,:, )=y, , D/sarey(z, 1, D)WY, 0, 1)),

end
msb=cat(2,msb,ms(:,:,1));

end

Mb=msb**M*msb;
Cb=msb*"*Cd*msb;
Kb=msb " *K*msb;

%Fb=msb"*F;

Hb=msb"*S;
[evb,wb,msOb]=vtb4_1(Mb,Kb);
w(1:dmodes)

wb

7

% Uncertainties: dM, dC, dK
% Sestieri

0/
disp("Uncoupled Ritz ROM: ");
Mbr=msOb**Mb*msO0b;
Cbr=msOb*"*Cb*ms0b;
Kbr=msOb**Kb*msOb;
%Fbr=msOb*"*Fb;

dM=0_1*M;
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dC=0.1*Cd;
dK=0.1*K;

M1b=Mb+msb " *dM*msb;
Clb=Cb+msb**dC*msb;
K1b=Kb+msb"*dK*msb;

disp("Ritz vectors on uncertainties®);
[evlb,wlb,mslb]=vtb4_1(Mlb,K1lb);
S1l=msb**S;
a=zeros(dmodes);
y=zeros(dmodes, 1,dmodes);
ms=zeros(dmodes, 1,dmodes) ;
msc=zeros(dmodes,1,dmodes);
mslb=[];
for i=1:dmodes

if i==

y(:,:,1)=K1b\S1;

ms(:,:,1)=y(:,:,1)/sqre(y(:, , 1) "*Mib*y(:,:,i));

else
y(:,:,1)=K1b\Mlb*ms(:,:,i-1);
a(i-1,i1)=ms(:,:,i-1)"*Mlb*y(:,:,i);
msc(:,:,)=y(:,:,1);
for j=1:i-1

msc(:,:,1)=msc(:,i) - a(@,i)*ms(:,:,j);

end
y(:,:,i1)=msc(:,:,i);

ms(:,:,1)=y(:,:,1)/sqre(y(:, , 1) "*Mib*y(:,:,i1));

end
mslb=cat(2,mslb,ms(:,:,1));

end

% Actual Ritz vector characteristics
w2b=wlb;

ms2b=msb*msi1b;
disp("ms2b()*(M+dM)*ms2b = 17);
M2b=ms2b**(M+dM)*ms2b;
C2b=ms2b*"*(Cd+dC)*ms2b;
K2b=ms2b"*(K+dK)*ms2b;

%F2b=ms2b " *F;

H2b=ms2b**S;
[evb3,w3b,ms3b]=vtb4_1(M2b,K2b);

7

% Control devices:
% Source: Benchmark sample controls

% ctrir_20.m
0f

%ndev_Tflr= [4 2 2 ones(1,17)]; % number of actuators on each

floor
ndev_flr= [10 zeros(1,9) 10 zeros(1,9)];

%K1 = diag(ndev_fIr); % multiple actuators per floor

Kl=zeros(length(md),2);
K1(1,1)=5;
Ki(length(md)/2+1,2)=5;

K2 = eye(length(md)); % each actuator is connected between 2

floors
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K2(1:(length(md)-1),2:1ength(md)) = K2(1:(length(md)-
1),2:1length(md))-eye((length(md)-1)); % force is = and opposite
%K2=[1 -1; O 1];

Max_frc = 700e3; % Maximum Force of Devices

Max_voltd = 10; % Maximum Voltage of Control Signal
gain_ctr = Max_frc/Max_voltd; % Gain

Bu = K2*Kl*gain_ctr; % output force gain matrix

Bub=msb"*Bu;
Bu2b=ms2b*"*Bu;

Max_wvoltd = 200;

% Decentralised Nominal Controls
% magana.m

%

m=1;

Af=[zeros(dmodes) eye(dmodes) ;-Mb\Kb -Mb\Cb];
xdof=dmodes;

Bf=[zeros(dmodes); Mb\Bub];
Hf=[zeros(dmodes,1); Mb\Hb];
CF=Af(xdof+1:2*xdof, :);%[zeros(2) eye(2)];
dAF=0*AT;

dBf=-0*Bf;

dHF=0*HF;

disp("Subsystem decentralized: ");
% address each of 4 quadrants:
Al=Af(1:xdof,1:xdof);
A2=Af(1:xdof,xdof+1:2*xdof);
A3=Af(xdof+1:2*xdof,1:xdof);
Ad=AF(xdof+1:2*xdof,xdof+1:2*xdof);
for i=1:xdof
for j=1:xdof
it i==j

Al (1,2,1)=A2(i,]);
Aii(2,1,i1)=A3(1,]j);
Aii(2,2,1)=A4(i,j);
else
Aij(1,1,1)=A1(i,j);
Aij(1,2,i)=A2(i,jJ);
Aij(2,1,1)=A3(,])
Aij(2,2,1)=A4(1,]))
end
end
B(:,:,D=[BF(, |) Bf(|+xdof i];
C(:,:z,1)=A1iI(2,:
Cij(:, .i)_AlJ(Z l)
H(:,: ,i):[Hf( ); Hf(|+xdof)]
end
dA=0*Ail;
dAij=0*Aij;
dB=-0*B;
dH=0*H;

% Classical LTR for K:

q2=[500 1e3 1le4]; % square of q

for i=1:dmodes
sys=ss(Ali(:,:,1),B(:,:,1),C(:,:,1),0);
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Lp=tf(sys); % plant tf
if zero(sys)>0
error("Unstable zeros => non-minimum phase®);
else
disp("Stable invariant zeros => minimum phase®);
end
Ps=tf(sys);
disp("Test for invertible plant:");
Psi=inv(Ps);
w=Psi*Ps
[num,den] = TFDATA(w,"Vv");
ifT residue(num,den)==
disp("plant invertible®);
else
error("plant Not invertible®);
end
disp("Verify invertible®);
disp("LTR recoverable®);

for k=1:length(q2)
Qe=g2(k)"2*B(:,:,1)*B(:,:,i)";
Re=eye(size(C(:,:,1)",2));
[Kt(z,:,k),Pt,E] = LQR(AII(:,:,1)7,C(:,:,1)7,Qe,Re);
KK(:, - ,K)=Kt(:,:,kK)";

end

KF(z,:,1)=KK(:,:,1);

disp("Simple LQR");

Q(:,:,1)=C(:,:,1)"*100*C(:,:,1); % control acceleration:

minimised
R(:,:,1)=1le-2;
Ke(z,:,D)=lgr(Aii(:,:,1),B(:,:,1),00:,:,1),R(:,:,1));

% Decentralized nonlinear control: Magana & Rondellar
Fi(z,:,0D)=A1i1(:,:,1)-B(,:,1)*Ke(:,:,1);
Pi(:,:,)=lyap(Fi(:,:,i),[1 0;0 100D);

d(i)=7.68;

e(i)=8;

end

disp("Simulink subsystems®);
[EQ,T]=elcent3;

disp("Simple LQR");

Qf=Cf"*100*eye(2)*Cf; % control acceleration: minimised
Rf=1e-2*eye(2);

Kcf=1qr(Af,Bf,QF,RF);

% Classical LTR for K:

for k=1:length(g2)
Qef=g2(k)"2*Bf*Bf";
Ref=1e-2*eye(size(Cf",2));
[Ktf(:,:,Kk),Pt,E] = LQRC(AF",Cf",Qef,Ref);
Ktt(:,:,K)=Ktf(:,:,K)";

end

KFf=Ktt(:,:,1);

disp("Simulink FOM system™);

%maganaST310303

maganaST310303b
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choice=input("Press Enter to plot graphs: °);
xdof=length(Af)/2;

dt=0.02;

%FsT=expm(Af*dt); % Uncon
%HAF=AF\(Fsf-eye(2*xdof));
WGT=AF\(FsT-eye(2*xdof))*Bf;

%HdsTF=HdF*HT;

% Evaluation in discrete time
%z0=zeros(2*xdof,1);

Tb=T;

Y%tspan=[0 Tb(length(Tb))];
%zuf=zeros(2*xdof, length(Th));
%for i=1:length(Th)

% if i==1

% zuf(:,i1)=z0;

% else

% zuf(:,i)=Fsf*zuf(:,1-1)+HdsT*EQ(i);
% end

%end

% Actual:

Trange=[Tb(1) Tb(length(Tb))];

dt=0.02;

s=zeros(length(md),1);

V=S;a=s;

delta=0.5; % gamma

beta=0.25;

%Fb=-Mb*ones(2,1)*EQ;
Fs=-M*ones(length(md),1)*EQ;
[t,zuf(1:length(md), :),zuf(length(md)+1: (2*length(md)), :),ddx]=nbeta8
(M,Cd,K,Fs,dt,Trange,s,Vv,a,delta,beta);

% Original DOF
xdof=length(md) ;

% Transmitted acceleration
zauf=[zuf(xdof+1:2*xdof, :) ;ddx] ; hFsF*zuf+HdsT*EQ;

% For absolute acceleration:
zauF(xdof+1:2*xdof, :)=zauF(xdof+1:2*xdof, : )+ones(xdof, 1)*EQ;

% Interpolate
for i=1:xdof

zulf(:,i1) = INTERP1(Tb,zuf(i,:),simoutfd(:,1));

zu2f(:,1) = INTERP1(Tb,zuf(xdof+i,:),simoutfd(:,1));

zu3f(:,1) = INTERP1(Tb,zauf(xdof+i,:),simoutfd(:,1));
end

disp("For Absolute acceleration: ");
EQFF INTERP1(Tb,EQ,simoutff(:,1));
EQfd INTERP1(Tb,EQ,simoutfd(:,1));

accf(:,1l:xdoF)=(msb*simoutff(:,8:9) ") "+EQFd*ones(l,xdof);
accd(:,1:xdofF)=(msb*simoutfd(:,8:9)")"+EQFd*ones(1,xdof);

dispff=(msb*simoutff(:,2:dmodes+1)")";
velff=(msb*simoutff(:,dmodes+2:2*dmodes+1)")";

dispfd=(msb*simoutfd(:,2:dmodes+1)")";
velfd=(msb*simoutfd(: ,dmodes+2:2*dmodes+1)")";




Appendix: Matlab Programs and Simulink Diagrams 131

% Drifts:
for i=1:xdof
if i==
% Inter-story drift
driftu(:,i)=zulf(:,i);
driftff(:,1)=dispff(:,i+1l);
driftfd(:,i)=dispfd(:,i+l);

% Inter-story velocity drift
dvelu(:,1)=zu2f(:,i);
dvelff(:,1)=velff(:,i);
dvelfd(:,i)=velfd(:,i);

else
% Inter-story drift
driftu(:,i1)=zulf(:,1)-zulf(:,i-1);
driftff(:, 1)=dispff(:,1)-dispff(:,i-1)
driftfd(:,1)=dispfd(:,1)-dispfd(:,i-1)

% Inter-story velocity drift

dvelu(:,1)=zu2f(:,i)-zu2f(:,i-1);
dvelff(:,i)=velff(:,i)-velff(:,i-1);
dvelfd(:,i)=velfd(:,i)-velfd(:,i-1);
end
end

nos30=0.9*length(velfd);
loc=1;
while loc~=0
loc=input("Enter storey location or 0 to end: ");
if loc==0 & length(loc)==1 ,break,end
%choice=input(“Compare inter-story drifts & abs acc");
disp("1lst subsystem: ");
disp("No control: (drift, drift vel., abs acc)");
max(abs(driftu(:,loc)))
max(abs(dvelu(:,loc)))
max(abs(zu3f(:,l1oc)))
disp("LQR control: (drift, drift vel., abs acc, control)");
max(abs(driftff(:,l1oc)))
max(abs(dvel ff(:,1oc)))
max(abs(accf(:,l10c)))
%max(abs(simoutfd(:,10)))
disp("Nominal control: (drift, drift vel., abs acc, control)");
max(abs(driftfd(:,l1oc)))
max(abs(dvelfd(:,l1oc)))
max(abs(accd(:,l10c)))
%max(abs(simoutfd(:,10)))

if loc==10
disp("10th DOF of 20DOF System®);
figure;
subplot(411);plot(simoutfd(l:nos30,1),driftu(l:nos30,loc), "-
" ,simoutfd(1:n0s30,1),driftfd(1:nos30, loc), " -
**  simoutff(1l:nos30,1),driftff(1:nos30,l0c), "-
0");grid; legend("Uncontrolled”, "Decen”, "FOM-LQR") ;
title(" ") ;xlabel("");ylabel ("Drift (m)");
subplot(412);plot(simoutfd(1l:nos30,1),dvelu(l:nos30, loc), "~
" ,simoutfd(1:nos30,1),dvelfd(1:nos30,l0c), " -
**  simoutff(1l:nos30,1),dvelff(1:nos30,lo0c), "~
0");grid;legend("Uncontrolled”, "Decen®, "FOM-LQR");
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title("");xlabel("");ylabel ("Velocity drift (mW/s)");
subplot(413);plot(simoutfd(1:nos30,1),zu3f(1:nos30,1), " -
" ,simoutfd(1:nos30,1),accd(1:nos30,loc), "--
" ,simoutff(1:n0s30,1),accf(1:nos30,loc), "~
-");grid;legend("Uncontrolled”, *Decen”, "FOM-LQR");
title("");xlabel("");ylabel ("Abs Acc (n/s/s)");

subplot(414);plot(simoutfd(1:nos30,1),simoutfd(1:nos30,4*dmodes+2), " -
" ,simoutff(1:n0s30,1),simoutfFF(1:nos30,4*dmodes+2), " --
");grid;legend("Decen®, "FOM-LQR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Control (V)");

elseif loc==20
disp("20th DOF of 20DOF System®);
figure;
subplot(411);plot(simoutfd(1l:nos30,1),driftu(l:nos30,loc), "-
" ,simoutfd(1:nos30,1),driftfd(1:nos30,loc), "-
**  simoutff(1l:nos30,1),driftff(1:nos30,lo0c), "-
0");grid;legend("Uncontrolled”, "Decen®, "FOM-LQR");
title(" ") ;xlabel("");ylabel ("Drift (m)");
subplot(412);plot(simoutfd(1:nos30,1),dvelu(l:nos30,loc), -
" ,simoutfd(1:nos30,1),dvelfd(1:nos30,l0c), "-
**  simoutff(1l:nos30,1),dvelfFf(1:nos30,loc), "-
0");grid;legend("Uncontrolled”, "Decen”, "FOM-LQR");
title("");xlabel("");ylabel("Velocity drift (mW/s)");
subplot(413);plot(simoutfd(l:nos30,1),zu3f(1:n0s30,1), "~
" ,simoutfd(1:nos30,1),accd(1:nos30,loc), "--
" ,simoutff(1:n0s30,1),accf(1:nos30,loc), "-
-");grid;legend("Uncontrolled”, "Decen”, "FOM-LQR");
title("");xlabel("");ylabel ("Abs Acc (n/s/s)");

subplot(414);plot(simoutfd(1:nos30,1),simoutfd(1:nos30,4*dmodes+3), "-
" ,simoutff(1:n0s30,1),simoutfFF(1:nos30,4*dmodes+3), " --
");grid;legend("Decen”, "FOM-LQR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Control (V)");

end

% plot only 1st 10s:
nos30=n0s30/2;

figure;

subplot(311);plot(simoutfd(1:700:n0s30,1),driftu(1:700:nos30,l1oc), -

" ,simoutfd(1:700:n0s30,1),driftfd(1:700:n0s30, loc), -

**  simoutff(1:700:n0s30,1),driftff(1:700:n0s30,l0c), "-

07);grid; legend("Uncontrolled”, "Decen-n*","LQR");
title("");;xlabel (") ;ylabel ("Drift (m)");

subplot(312);plot(simoutfd(1:700:n0s30,1),dvelu(1:700:n0s30,loc), -
" ,simoutfd(1:700:n0s30,1),dvelfd(1:700:n0s30, loc), "-
>, simoutff(1:700:n0s30,1),dvelfFf(1:700:nos30,l1oc), " -
0");grid;legend("Uncontrolled”, "Decen-n","LQR");
title("");xlabel (" ");ylabel("Velocity drift (m/s)");
subplot(313);plot(simoutfd(1:700:n0s30,1),zu3f(1:700:n0s30,1), "~
" ,simoutfd(1:700:n0s30,1),accd(1:700:n0s30, loc), "-
>, simoutff(1:700:n0s30,1),accf(1:700:n0s30,loc), "-
0");grid;legend("Uncontrolled”, "Decen-n","LQR");
title("");;xlabel ("time(s)");ylabel ("Abs Acc (n/s/s)");

figure;
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subplot(211);plot(simoutfd(1:700:n0s30,1),simoutfd(1:700:n0s30,4*xdof
+2),"-",simoutff(1:700:n0s30,1),simoutffF(1:700:n0s30,4*dmodes+2), " --
");grid;legend("Decen”, "FOM-LQR");

title(" ") ;;xlabel ("time(s)");ylabel("Control (V)");

subplot(212);plot(simoutfd(1:700:n0s30,1),simoutfd(1:700:n0s30,4*xdof
+3),"-",simoutff(1:700:n0s30,1),simoutfF(1:700:n0s30,4*dmodes+3), " --
");grid;legend("Decen”, "FOM-LQR");

title("");;xlabel ("time(s)");ylabel("Control (V)");

figure;

subplot(311);plot(simoutfd(1:700:n0s30,1),driftfd(1:700:n0s30,loc), "-
0" ,simoutff(1:700:n0s30,1) ,driftfF(1:700:n0s30,loc), *-
");grid;legend("Decen-n","LQR");

title("");;xlabel (") ;ylabel ("Drift (m)");ylim([-1.-4e-5 9e-6])

subplot(312);plot(simoutfd(1:600:n0s30,1),dvelfd(1:600:nos30,1oc), -
0" ,simoutff(1:600:n0s30,1),dvel fF(1:600:n0s30, loc), "-
");grid;legend("Decen-n","LQR");

title("");xlabel (" ") ;ylabel("Velocity drift (m/s)");ylim([-1le-4
2e-4])

subplot(313);plot(simoutfd(1:700:n0s30,1),accd(1:700:nos30,loc), "~
0" ,simoutff(1:700:n0s30,1),accf(1:700:nos30,loc), "-
");grid;legend("Decen-n","LQR");

title(" ") ;xlabel("time(s)");ylabel ("Abs Acc (m/s/s)");

figure;
subplot(311);plot(simoutfd(1:nos30,1),driftfd(1:nos30,loc), "-
0" ,simoutff(1:nos30,1),driftfFf(1:nos30,loc), "-");grid;legend("Decen-
n®,"LQR");
title("");;xlabel (" ") ;ylabel ("Drift (m)");ylim([-2e-5 9e-6])
subplot(312);plot(simoutfd(1:nos30,1),dvelfd(1:nos30,loc), -
0" ,simoutff(1:no0s30,1),dvelff(1:nos30,loc),"-");grid; legend("Decen-
n","LQR™);
title("");xlabel (" ");ylabel("Velocity drift (m/s)");ylim([-1le-4
2e-4])
subplot(313);plot(simoutfd(1:nos30,1),accd(1:nos30,loc), -
0" ,simoutff(1:nos30,1),accf(1l:nos30,loc),"-");grid; legend("Decen-
n","LQR™);
title("");;xlabel ("time(s)");ylabel ("Abs Acc (n/s/s)");

end

Chapter 3

% Magana decentralized control

% u(t) = LQRy + v(t): nonlinear controls
% ICSSD

% jml130403a.m

uncertain=0.1;

failure=0.5;

n=1;

m=1;

Ms=[1 0;0 1];

Ks=-[-7.2980 2.7761; 2.7761 -62.8417];
Cs=-[-0.0730 0.0278; 0.0278 -0.6284];
An=[zeros(2) eye(2);-Ms\Ks -Ms\Cs];
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xdof=length(An)/2;

Bn=[zeros(2); -12.1596 -8.9808; 53.0676 -27.8441];
eye(2)];

Hn=[0;0;4022;-1530];

Cn=An(xdof+1:2*xdof, :);%[zeros(2) eye(2)];
Dn=eye(2);

disp("Subsystem decentralized: ");
% address each of 4 quadrants:
Al=An(1:xdof,1:xdof);
A2=An(1:xdof,xdof+1:2*xdof);
A3=An(xdof+1:2*xdof,1:xdof);
Ad=An(xdof+1:2*xdof,xdof+1:2*xdof);
for i=1:xdof
for j=1:xdof
it i=Tj
ATI(L,1,1)=A1(1,]);
AII(1,2,1)=A2(i.j);
ATiI(2,1,1)=A3(1,]);
ATi(2,2,1)=A4(1,]);
else
ATJ(1,1,1)=A1(i,]);
AiJ(1,2,1)=A2(i.j);
AIj(2,1,1)=A3(1,]j);
AiJ(2,2,1)=A(1.]);

end
end
B(:,:,D)=[Bn(i,1);Bn(i+xdof,i)];
C(:,:,D)=A11(2,:,1);
Cij(z,:,1)=Aij(2,:,1);
H(C:, o, D)=[Hn(i) ;Hn(i+xdof)];

end

dA=-uncertain*Aii;
dAij=-uncertain*Aij;
dB=-0*B;

dH=0*H;

% Classical LTR for K:
q2=[500 1e3 le4]; % square of q
for i1=1:2
sys=ss(Ali(:,:,i),B(:,:,1),C(:,:,1),0);
Lp=tf(sys); % plant tf
if zero(sys)>0
error(“Unstable zeros => non-minimum phase®);
else

disp("Stable invariant zeros => minimum phase®);

end
Ps=tf(sys);
disp("Test for invertible plant:");
Psi=inv(Ps);
w=Psi*Ps
[num,den] = TFDATA(w,"Vv");
if residue(num,den)==
disp("plant invertible®);
else
error("plant Not invertible™);
end
disp("Verify invertible®);
disp("LTR recoverable®);

%[zeros(2);
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for k=1:length(q2)
Qe=q2(K)"2*B(:,:,i)*B(:,:,i)";
Re=eye(size(C(:,:,i1)",2));
[Kt(z,:,k),Pt,Et] = LORCATI(:,:,1)7,C(z,:,1)",Qe,Re);
K(:,:,k)=Kt(:,:,K)";

end

KF(:,:,1)=K(:,:,1);

% Decentralised Nominal Controls:

for k=1:l1ength(q2)
Qe=4*q2(k)"2*B(:,:,1)*B(:,:,1)";
Re=eye(size(C(:,:,i1)",2));
[Ke(:,:,k),Pt,Ee] = LQRCAII(:,:,1)",C(:,:,1)",Qe,Re);
K(:, o, k)=Kt(:,:,K)";

end

Kfn(z,:,1)=K(:,:,1);

disp("Simple LQR");

Q(:,:,1)=C(:,:,1)"*100*C(:,:,1); % control acceleration:
minimised

Rn(:,:,i)=1e-2;

Ken(:,:,D)=lgr(Aii(:,:,1),B(:,:,1),Q0(:,:,1),Rn(:, 1, 1));

% Decentralized nonlinear control: Magana & Rondellar
Fi(:,:,D)=A1i1(:,:,1)-B(,:,D*Ken(:,:,1);
Pi(z,:,i)=lyap(Fi(:,:,i),[1 0;0 100]);

d(i)=7.68;

e(i)=8;

end

disp("Simulink subsystems®);
[EQ,T]=elcent3;

disp("Simple LQR");

Qf=Cn"*100*eye(2)*Cn; % control acceleration: minimised
Rf=1le-2*eye(2);

Kcf=1qr(An,Bn,Qf,RF);

% Classical LTR for K:

for k=1:length(g2)
Qef=q2(k)”2*Bn*Bn*";
Ref=1le-2*eye(size(Cn",2));
[KEeF(:,:,k),Pt,ef] = LOR(An",Cn",Qef,Ref);
Ktt(:,:,K)=Ktf(:,:,K)";

end

Kff=Ktt(:,:,1);

disp("Robust Reliable LQR™);

% Uncertain:

WAF=[zeros(2) eye(2);-Ms\Ks -Ms\Cs];
disp("Uncertainties: general®);
dK=-uncertain*Ks;

[Dk,Ek]=1u(dK);

dC=-uncertain*Cs;

[Dc,Ec]=1u(dC);
dAf=[zeros(xdof,2*xdof); -dK -dC];
D=[zeros(xdof,2*xdof) ;Dk Dc];

E=[Ek zeros(xdof); zeros(xdof) Ec];
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Ta=D*D";
Ua=E"*E;

Af=An+dAf;

xdof=length(Af)/2;

Bf=(1-failure)*Bn; %[zeros(2); eye(2)];
Hf=Hn; %[0;0;-1;-1];
CF=Af(xdof+1:2*xdof, :);%[zeros(2) eye(2)];

%Bob=[0 0;1 0];
Bob=(1-failure)*Bn;
Bo=Bn-Bob;

disp("One actuator failure®);
Bw=Bo;

Bwb=Bob;
Df=Bwb(xdof+1:2*xdof,:);
Gf=ss(Af+dAf,Bwb,Cf,DT);
GFtf=tf(GF);
[numGF,denGF]=tfdata(Gftf);

alpha=0.5;

beta=1;

delta=0.01;

dc=0;

dh=0;

ep=1e-10; % critical: small
epl=le-2;

ep2=1le-2;

ep3=le-2;
%epd=1le-2;
Q=0.01*eye(2*xdof);

Qb=Ua/epl + [(1+ep2)*CF"*CF + (1+1/ep2)*dcr2*eye(2*xdof)]/ep/delta+Q;

eig(Qb);

if eig(Qb)>=0

else
error("Eig(Qb)<=0%);

end

%R=Bob*Bob"-epl*B*Ta*B" -

[Bo*Bo"+(1+ep3)*H*H"+(1+1/ep3)*dh2*eye(2) ] *ep/delta;

R=Bob*Bob*/beta-epl*Ta-

[Bo*Bo™+(1+ep3)*HF*HF"+(1+1/ep3)*dh"2*eye(2*xdof)]*ep/del ta;

it eig(R)>=0
else
error("Eig(R)<=0");
end
P = are(Af+alpha*eye(2*xdof), R, Qb);
Kcrr=Bwb*"*P/2/beta;

Ac=Af+dAf-Bwb*Kcrr;

if eig(Ac)<-alpha

else
error(“eig(Ac)>=-alpha”);

end

Bc=cat(2,HFf,Bwb);

Cc=Cf;

Tzwinf=normhinf(Ac,Bc,Cc,zeros(size(Cc,1),size(Bc,2)));

if Tzwinf<=delta
else
error("Tzwinf>delta");
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end

disp("H2 optimality®);
H2=2*alpha*P + P*[-
Bob*Bob*+ep/delta*(Bo*Bo " +(1+ep3) *HFf*HF"+(1+1/ep3)*dh"2*eye(2*xdof) )+
3/2/beta*Bwb*Bwb*]*P + [(1+ep2)*CF"*CFf +
(1+1/ep2)*dc2*eye(2*xdof)]/ep/delta+Q;
if eig(H2)<0

disp("No H2-optimality”);
else

disp("H2-optimality condition satisfied");
end

% Classical LTR for K:
g2=[1e5 1e8 1el0]; % square of q
for k=1:length(g2)
Qe=q2(k)"2*Bf*Bf";
Re=eye(size(Cf",2));
[Kt1(:,:,k),Ptl1,E1] = LQR(AF",Cf",Qe,Re);
Ki(:,:,k)=Kt1(:,:,k)";
end
Kfrr=K1(:,:,1);

disp("Simulink FOM system®);
maganaSTt130403a

0 ==

b ritz310303.m:

% Model reduction: Chopra 1995

% vg68.m, nbeta8.m, test.m, nishitani.m
Y%

PSS

% Actual FOM:
ml=1e6; % kg
m2=7e5;

c=0;
k1=1.47e9; % N/m
k3=1.372e9;
k5=1.274e9;
k7=1.176e9;
k9=1.078e9;
k11=0.98e9;
k13=0.931e9;
k14=0.882e9;
k15=0.833e9;
k16=0.784e9;
k17=0.735e9;
k18=0.686€9;
k19=0.637e9;
k20=0.588e9;

% discrete MDOF:

md=[ml m1 m1 ml mlmlmlmlmlmlmlmlmlmlmlmlmlmlmlm2];
kd=[kl k1 k3 k3 k5 k5 k7 k7 k9 k9 k11 k11 k13 k14 k15 k16 k17 k18 k19
k20];

%md=[m1 m1 ];

%kd=[k1 k1 ];

%cd=zeros(l, length(md));

cd=kd/100;
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%
M=zeros(length(md));
K=zeros(length(md));
Cd=zeros(length(md));
for i1=1:length(md)
M(i, D)=M(i, 1D)+md(i);
if i==
K@, 1)=K@i,1)+kd(i);
Cd(i,i1)=Cd(i,i)+cd(i);
else
K(i-1,i-1)=K(i-1,i-1)+kd(i);
K@i-1,1)=K(i-1,1)-kd(i);
K@, 1-1)=K(i, i-1)-kd(i);
K@, 1)=K(@i,i1)+kd(1);
Cd(i-1,i-1)=Cd(i-1,i-1)+cd(i);
Cd(i-1,i1)=Cd(i-1,i1)-cd(i);
Cd(i,i-1)=Cd(i,i-1)-cd(i);
Cd(i,i1)=Cd(i,i)+cd(i);
end
end

disp(“Model Reduction retaining modal characteristics®);
[ev,w,msO]=vtb4_1(M,K);
disp(“Mode shape 1: *);
%ms0(:,1)/ms0(20,1)

%pause

disp(“Mode shape 2: *);
%ms0(:,2)/ms0(8,2)

Y%pause

disp(“Mode shape 3: *);
%ms0(:,3)/ms0(5,3)

Y%pause

f=w/2/pi; % natural freq (Hz)

0 ==

% Chopra: Rayleigh-Ritz generalisation of froce dependent vectors:
0, ——

S=-M*ones(length(md),1);
dmodes=2; %input("Enter the max mode to be included: *);
a=zeros(dmodes);
y=zeros(length(md),1,dmodes);
ms=zeros(length(md),1,dmodes);
msc=zeros(length(md),1,dmodes);
msb=[];
for i=1:dmodes
if i==
y(:,:,1)=K\S;
ms(z, 1, D)=y(z, 1, D)/sqre(y(:, -, D)7 My (z,1,1));

else
y(:,:,1D)=K\M*ms(:,:,i-1);
a(i-1,i1)=ms(z,:,i-1)"*M*y(:,:,1);
msc(z,:,1)=y(z,:,1);
for j=1:i-1
msc(:,:,1)=msc(:,i) - a@,i)*ms(:,:,j);
end
y(:,z,1)=msc(z,:,1);
ms(z, 1, D)=y(z, 1, D)/sqre(y(:, -, D)7 My (z,1,1));

end
msb=cat(2,msb,ms(:,:,1));
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end

Mb=msb"*M*msb;
Cb=msb**Cd*msb;
Kb=msb " *K*msb;

%Fb=msb"*F;

Hb=msb**S;
[evb,wb,msOb]=vtb4_1(Mb,Kb);
w(1:dmodes)

wb

% ===

% Uncertainties: dM, dC, dK

% Sestieri
D [ ——

disp(“Uncoupled Ritz ROM: *);
Mbr=msO0b**Mb*msO0b;
Cbr=msOb*"*Cb*ms0b;
Kbr=msOb**Kb*msOb;
%Fbr=ms0Ob**Fb;

dM=0.1*M;
dC=0.1*Cd;
dK=0.1*K;

M1b=Mb+msb " *dM*msb;
Clb=Cb+msb**dC*msb;
K1b=Kb+msb"*dK*msb;

disp("Ritz vectors on uncertainties”);
[evlb,wlb,mslb]=vtb4 1(Mlb,K1lb);
S1=msb**S;
a=zeros(dmodes) ;
y=zeros(dmodes,1,dmodes);
ms=zeros(dmodes, 1,dmodes);
msc=zeros(dmodes,1,dmodes);
mslb=[];
for i=1:dmodes
if i==
y(:,:,1)=K1b\S1;
ms(z, 1, 0)=y(z, 1, 1)/sqre(y(:, 1, 1) *Mlb*y(:,:,1));

else
y(:,:,1)=K1b\Mlb*ms(:,:,i-1);
a(i-1,i1)=ms(:,:,i-1)"*Mlb*y(:,:,1);
msc(z,:,)=y(z,:,1);
for j=1:i-1
msc(:,:,1)=msc(:,i) - a,i)*ms(:,:,]);
end
y(z,z,i)=msc(z,:,1);
ms(z,:,0)=y(z, 1, 0)/sqre(y(:, 1, 1) "*Mlb*y(:,:,1));

end
mslb=cat(2,mslb,ms(:,:,1));

end

% Actual Ritz vector characteristics
w2b=wlb;
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ms2b=msb*ms1b

disp("ms2b()*(M+dM)*ms2b = 17);
M2b=ms2b**(M+dM)*ms2b;
C2b=ms2b"*(Cd+dC)*ms2b;
K2b=ms2b**(K+dK)*ms2b;

WF2b=ms2b**F;
H2b=ms2b"*S;

[evb3,w3b,ms3b]=vtb4_1(M2b,K2b);

0

choice=input("Press Enter to plot graphs: °);
xdof=length(Af)/2;

dt=0.02;

%Fsf=expm(Af*dt); % Uncon
%HAF=AF\(Fsf-eye(2*xdof));
WGT=AF\(FsT-eye(2*xdof))*Bf;

%HdsF=HdF~HF;

% Evaluation in discrete time
%z0=zeros(2*xdof,1);

Tb=T;

Y%tspan=[0 Tb(length(Tb))];
%zuf=zeros(2*xdof, length(Th));
%For 1=1:length(Thb)

% it i==1

% zuf(:,i1)=z0;

% else

% zuf(:,i)=Fsf*zuf(:,i1-1)+HdsT*EQ(i);

% end
%end

% Actual:

Trange=[Tb(1) Tb(length(Tb))];

dt=0.02;
s=zeros(2,1);
V=s;a=s;

delta=0.5; % gamma

beta=0.25;

Fs=-Ms*ones(2,1)*EQ;

[t,zuf(1:2,:),zuf(3:4,:),ddx]=nbeta8(Ms, (1-uncertain)*Cs, (1-

uncertain)*Ks,Fs,dt,Trange,s,v,a,delta,beta);

% Transmitted acceleration
zauf=[zuf(3:4, :);ddx] ; WFsF*zuf+HdsF*EQ;

% For absolute acceleration:

zauF(xdof+1:2*xdof, :)=zauf(xdof+1:2*xdof, :)+ones(2,1)*EQ;

% Interpolate
for i=1:xdof
zulf(:,i)
zu2f(:,1)
zu3f(:,1i)
end

INTERP1(Tb,zuf(i,:),simoutfd(:,1));
INTERP1(Tb,zuf(xdof+i,:),simoutfd(:,1));
INTERP1(Tb, zauf(xdof+i, :),simoutfd(:,1));

disp("Pick out DOFs = 10, 20%);
DOFchoice=zeros(dmodes,20);
DOFchoice(1,10)=1;
DOFchoice(2,20)=1;
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disp("Convert ROM responses to Actual responses:®);
% Actual relative acc:
simoutff(:,8:9)=(DOFchoice*msb*simoutff(:,8:9)")
simoutfd(:,8:9)=(DOFchoice*msb*simoutfd(:,8:9)")
simoutfdn(:,8:9)=(DOFchoice*msb*simoutfdn(:,8:9)
simoutfn(:,8:9)=(DOFchoice*msb*simoutfn(:,8:9)")";
simoutfnd(:,8:9)=(DOFchoice*msb*simoutfnd(:,8:9)")";
simoutfndn(:,8:9)=(DOFchoice*msb*simoutfndn(:,8:9)")";

% Actual relative vel:
simoutff(:,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutff(: ,dmodes+2:2*
dmodes+1)")";
simoutfd(:,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutfd(: ,dmodes+2:2*
dmodes+1)")";
simoutfdn(:,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutfdn(: ,dmodes+2:
2*dmodes+1) ") " ;
simoutfn(:,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutfn(:,dmodes+2:2*
dmodes+1)")";
simoutfnd(:,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutfnd(:,dmodes+2:
2*dmodes+1) ") " ;

simoutfndn(: ,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutfndn(:,dmodes+
2:2*dmodes+1)") " ;

% Actual relative displ:
simoutff(:,2:dmodes+1)=(DOFchoice*msb*simoutff(:,2:dmodes+1)")";
simoutfd(:,2:dmodes+1)=(DOFchoice*msb*simoutfd(:,2:dmodes+1)")";
simoutfdn(:,2:dmodes+1)=(DOFchoice*msb*simoutfdn(:,2:dmodes+1)")";
simoutfn(:,2:dmodes+1)=(DOFchoice*msb*simoutfn(:,2:dmodes+1)")";
simoutfnd(:,2:dmodes+1)=(DOFchoice*msb*simoutfnd(:,2:dmodes+1)")";
simoutfndn(:,2:dmodes+1)=(DOFchoice*msb*simoutfndn(:,2:dmodes+1)")";

NS wr

disp("For Absolute acceleration: °);

% uncertain FOM:

EQFF = INTERP1(Tb,EQ,simoutff(:,1));

EQfd = INTERP1(Tb,EQ,simoutfd(:,1));

EQfdn = INTERP1(Tb,EQ,simoutfdn(:,1));
simoutff(:,8:9)=simoutff(:,8:9)+EQFF*ones(1,2);
simoutfd(:,8:9)=simoutfd(:,8:9)+EQfd*ones(1,2);
simoutfdn(:,8:9)=simoutfdn(:,8:9)+EQfdn*ones(1,2);
% nominal FOM:

EQfn = INTERP1(Tb,EQ,simoutfn(:,1));

EQfnd = INTERP1(Tb,EQ,simoutfnd(:,1));

EQfndn = INTERP1(Tb,EQ,simoutfndn(:,1));
simoutfn(:,8:9)=simoutfn(:,8:9)+EQfn*ones(1,2);
simoutfnd(:,8:9)=simoutfnd(:,8:9)+EQFnd*ones(1,2);
simoutfndn(:,8:9)=simoutfndn(:,8:9)+EQfndn*ones(1,2);

% Drifts:
for i1=1:2
if i==

% Inter-story drift
driftu(:,i)=zulf(:,i);
drifeff(:, i)=simoutff(:,i+l);
driftfd(:,1)=simoutfd(:,i+l);
driftfdn(:,1)=simoutfdn(:,i+l);
driftfn(:,1)=simoutfn(:,i+l);
driftfnd(:,1)=simoutfnd(:,i+l);
driftfndn(:, i)=simoutfndn(:,i+l);

% Inter-story velocity drift
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driftu(:,i+2)=zu2f(:,i);
driftff(:,i+2)=simoutff(:,i+3);
drifefd(:, i+2)=simoutfd(:,i+3);
driftfdn(:, 1+2)=simoutfdn(:,i+3);
driftfn(:,i+2)=simoutfn(:,i+3);
driftfnd(:, i+2)=simoutfnd(:,i+3);
driftfndn(:, i+2)=simoutfndn(:,i+3);

else
% Inter-story drift
driftu(:,i)=zulf(:,1)-zulf(:,i-1);
driftff(:z,1)=simoutff(:,i+l)-simoutff(:,i);
driftfd(:,i)=simoutfd(:,i+l)-simoutfd(:,i);
driftfdn(:,1)=simoutfdn(:,i+1)-simoutfdn(:,i);
driftfn(:,i)=simoutfn(:,i+l)-simoutfn(:,i);
driftfnd(:,1)=simoutfnd(:,i+1)-simoutfnd(:,i);
driftfndn(:, i)=simoutfndn(:, i+1l)-simoutfndn(:,i);

% Inter-story velocity drift
driftu(:,i+2)=zu2f(:,i)-zu2f(:,i-1);
driftff(:,i+2)=simoutff(:, i+3)-simoutff(:,i+2);
driftfd(:, i+2)=simoutfd(:, i+3)-simoutfd(:,i+2);
driftfdn(:, i+2)=simoutfdn(:, i+3)-simoutfdn(:,i+2);
driftfn(:,i+2)=simoutfn(:, i+3)-simoutfn(:,i+2);
driftfnd(:,i+2)=simoutfnd(:, i+3)-simoutfnd(:,i+2);
driftfndn(:, i+2)=simoutfndn(:, i+3)-simoutfndn(:,i+2);
end
end

no30=0.9*length(simoutfd);

choice=1;
while choice~=0

disp(" (1) Subsystem 1: Quek-Compare inter-story drifts & abs
acc");

disp("(2) Subsystem 2: Quek-Compare inter-story drifts & abs
acc");

choice=input(“"Choose (1-4) to plot or (0) to end: ");

switch choice
case 1

%choice=input(“Compare inter-story drifts & abs acc");
disp("1st subsystem: ");
disp("No control: (drift, drift vel., abs acc)");
max(abs(driftu(:,1)))
max(abs(driftu(:,3)))
max(abs(zu3f(:,1)))
% Nominal:
disp("LQR control for Nominal FOM: (drift, drift vel., abs acc,

control)*");
max(abs(driftfn(:,1)))
max(abs(driftfn(:,3)))
max(abs(simoutfn(:,8)))
max(abs(simoutfn(:,10)))
disp("Nominal control for Nominal FOM: (drift, drift vel., abs

acc, control)™);
max(abs(driftfndn(:,1)))
max(abs(driftfndn(:,3)))
max(abs(simoutfndn(:,8)))
max(abs(simoutfndn(:,10)))
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disp("Robust Reliable control for Nominal FOM: (drift, drift
vel., abs acc, control)");

max(abs(driftfnd(:,1)))

max(abs(driftfnd(:,3)))

max(abs(simoutfnd(:,8)))

max(abs(simoutfnd(:,10)))

% Uncertain:

disp("LQR control: (drift, drift vel., abs acc, control)®);

max(abs(driftff(:,1)))

max(abs(driftff(:,3)))

max(abs(simoutff(:,8)))

max(abs(simoutff(:,10)))

disp(“Nominal control: (drift, drift vel., abs acc, control)");

max(abs(driftfdn(:,1)))

max(abs(driftfdn(:,3)))

max(abs(simoutfdn(:,8)))

max(abs(simoutfdn(:,10)))

disp(“Robust Reliable control: (drift, drift vel., abs acc,
control)®);

max(abs(driftfd(:,1)))

max(abs(driftfd(:,3)))

max(abs(simoutfd(:,8)))

max(abs(simoutfd(:,10)))

no30 =1.8305e+004;

disp("Complete for actual FOM®);
figure;

subplot(311);plot(simoutfd(1:650:n030,1),driftu(1:650:n030,1), -
" ,simoutfd(1:650:n030,1),driftfd(1:650:n030,1), "~
**  simoutff(1:650:n030,1),driftff(1:650:n030,1), " -
0");grid;legend("Uncontrolled”, "rrLQR", "LQR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Drift (m)");%ylim([-0.025
0.025])

subplot(312);plot(simoutfd(1:650:n030,1),driftfdn(1:650:n030,1), "-

" ,simoutfd(1:650:n030,1),driftfd(1:650:n030,1), "~

>, simoutff(1:650:n030,1),driftff(1:650:n030,1), " -

0");grid; legend("Decen-n*, "rrLQR","LQR");
title("");xlabel("time(s) ");ylabel ("Drift (m)");ylim([-1le-4 le-

4D

subplot(313);plot(simoutfd(1:650:n030,1),driftu(1:650:n030,3), -

" ,simoutfd(1:650:n030,1) ,driftfd(1:650:n030,3), " -

**  simoutff(1:650:n030,1),driftff(1:650:n030,3), "-

0");grid;legend("Uncontrolled”, "rrLQR", "LQR");
title("");xlabel("time(s) ") ;ylabel ("Drift velocity

(m/s)");ylim([-0.25 0.25])

figure;

subplot(311);plot(simoutfd(1:650:n030,1),driftfdn(1:650:n030,3), "~
" ,simoutfd(1:650:n030,1),driftfd(1:650:n030,3), " -
**  simoutff(1:650:n030,1),driftff(1:650:n030,3), "-
0");grid; legend("Decen-n", "rrLQR","LQR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Drift velocity
m/s)");ylim([-1e-3 1e-3])

subplot(312);plot(simoutfd(1:650:n030,1),simoutfdn(1:650:n030,8),"-
*,simoutfd(1:650:n030,1),simoutfd(1:650:n030,8), "--
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*,simoutff(1:650:n030,1),simoutff(1:650:n030,8), -
0");grid;legend("Decen-n*","rrLQR","LOR");
title(" ") ;xlabel("time(s)");ylabel (*"Abs Acc (n/s/s)");

subplot(313);plot(simoutfd(1:650:n030,1),simoutfdn(1:650:n030,10), " -
" ,simoutfd(1:650:n030,1),simoutfd(1:650:n030,10), " --
" ,simoutff(1:650:n030,1),simoutff(1:650:n030,10), " -
0");grid; legend("Decen-n*, "rrLQR","LQR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Control (V)");%ylim([-70
70D

disp("Actual FOM™);
figure;

subplot(411);plot(simoutfd(1:650:n030,1),driftfdn(1:650:n030,1), " -
" ,simoutfd(1:650:n030,1) ,driftfd(1:650:n030,1), " -
>, simoutff(1:650:n030,1),driftff(1:650:n030,1), " -
0");grid; legend("Decen-n*, "rrLQR", "LQR");
title(" ") ;xlabel("");ylabel ("Drift (m)");ylim([-1le-4 le-4])

subplot(412);plot(simoutfd(1:650:n030,1),driftfdn(1:650:n030,3), "-
" ,simoutfd(1:650:n030,1),driftfd(1:650:n030,3), " -
**  simoutff(1:650:n030,1),driftff(1:650:n030,3), "-
0");grid; legend("Decen-n*, "rrLQR","LQR");
title("");xlabel ("");ylabel ("Drift velocity (m/s)");ylim([-1le-3
le-3])

subplot(413);plot(simoutfd(1:650:n030,1),simoutfdn(1:650:n030,8),"-
*,simoutfd(1:650:n030,1),simoutfd(1:650:n030,8), "--
" ,simoutff(1:650:n030,1),simoutff(1:650:n030,8), "-
0");grid; legend("Decen-n", "rrLQR","LQR");
title(" ") ;xlabel("");ylabel (*"Abs Acc (n/s/s)");

subplot(414);plot(simoutfd(1:650:n030,1),simoutfdn(1:650:n030,10), " -
" ,simoutfd(1:650:n030,1),simoutfd(1:650:n030,10), " --
" ,simoutff(1:650:n030,1),simoutfF(1:650:n030,10), " -
-");grid;legend("Decen-n*, "rrLQR","LQR");

title(" ") ;xlabel("time(s)");ylabel ("Control (V)");

disp("Nominal FOM®);

figure;

subplot(411);plot(simoutfd(1:no30,1),driftfndn(1:n030,1),"-
" ,simoutfd(1:n030,1),driftfnd(1:n030,1),"--
" ,simoutff(1:n030,1),driftfFn(1:n030,1),"-.");grid;legend("Decen-
n*,"rrLQR", "LQR™);

title("");xlabel (") ;ylabel ("Drift (m)");ylim([-2e-5 1.5e-5])

subplot(412);plot(simoutfd(1:no30,1),driftfndn(1:n030,3), " -
" ,simoutfd(1:n030,1),driftfnd(1:n030,3),"--
*,simoutff(1:n030,1),driftfn(1:n030,3),"-.");grid; legend("Decen-
n°,"rrLQR","LQR");

title("");xlabel("");ylabel ("Velocity drift (m/s)");ylim([-
0.5e-3 1e-3])

subplot(413);plot(simoutfd(1:no30,1),simoutfndn(1:n030,8), "~
" ,simoutfd(1:n030,1),simoutfnd(1:n030,8), " —-
" ,simoutff(1:n030,1),simoutfn(1:n030,8),"-.");grid;legend("Decen-
n","rrLQR","LQR™);

title(" ") ;xlabel("");ylabel (*"Abs Acc (n/s/s)");

subplot(414);plot(simoutfd(1:no30,1),simoutfndn(1:n030,10), " -
" ,simoutfd(1:n030,1),simoutfnd(1:no30,10), " --
" ,simoutff(1:n030,1),simoutfn(1:n030,10),"-.");grid; legend("Decen-
n®,"rrLQR","LQR™);
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title(" ") ;xlabel("time(s) ") ;ylabel ("Control (V)");

case 2

disp("2nd subsystem: ");

disp("No control: (drift, drift vel., abs acc)");

max(abs(driftu(:,2)))

max(abs(driftu(:,4)))

max(abs(zu3f(:,2)))

% Nominal:

disp("LQR control for Nominal FOM: (drift, drift vel., abs acc,
control)");

max(abs(driftfn(:,2)))

max(abs(driftfn(:,4)))

max(abs(simoutfn(:,9)))

max(abs(simoutfn(:,11)))

disp("Nominal control for Nominal FOM: (drift, drift vel., abs
acc, control)");

max(abs(driftfndn(:,2)))

max(abs(driftfndn(:,4)))

max(abs(simoutfndn(:,9)))

max(abs(simoutfndn(:,11)))

disp("Robust Reliable control for Nominal FOM: (drift, drift
vel., abs acc, control)");

max(abs(driftfnd(:,2)))

max(abs(driftfnd(:,4)))

max(abs(simoutfnd(:,9)))

max(abs(simoutfnd(:,11)))

% Uncertain:

disp("LQR control: (drift, drift vel., abs acc, control)®);

max(abs(driftff(:,2)))

max(abs(driftff(:,4)))

max(abs(simoutff(:,9)))

max(abs(simoutff(:,11)))

disp("Nominal control: (drift, drift vel., abs acc, control)");

max(abs(driftfdn(:,2)))

max(abs(driftfdn(:,4)))

max(abs(simoutfdn(:,9)))

max(abs(simoutfdn(:,11)))

disp("Robust Reliable control: (drift, drift vel., abs acc,
control)");

max(abs(driftfd(:,2)))

max(abs(driftfd(:,4)))

max(abs(simoutfd(:,9)))

max(abs(simoutfd(:,11)))

no30 =1.8305e+004;

disp(“Complete for actual FOM™);
figure;

subplot(311);plot(simoutfd(1:650:n030,1),driftu(1:650:n030,2), "-

" ,simoutfd(1:650:n030,1) ,driftfd(1:650:n030,2), "~

**  simoutff(1:650:n030,1),driftff(1:650:n030,2), "-

0");grid;legend("Uncontrolled”, "rrLQR", "LQR");
title("");xlabel("time(s) ");ylabel ("Drift (m)");ylim([-0.1

0.1D

subplot(312);plot(simoutfd(1:650:n030,1),driftfdn(1:650:n030,2), "~
" ,simoutfd(1:650:n030,1),driftfd(1:650:n030,2), "~

**  simoutff(1:650:n030,1),driftff(1:650:n030,2), "-
0");grid;legend("Decen-n*, "rrLQR","LQR");
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title(" ") ;xlabel("time(s) ") ;ylabel ("Drift (m)");ylim([-7e-5 6e-

5D

subplot(313);plot(simoutfd(1:650:n030,1),driftu(1:650:n030,4), "-
" ,simoutfd(1:650:n030,1),driftfd(1:650:n030,4), " -
**  simoutff(1:650:n030,1),driftff(1:650:n030,4), " -
0");grid;legend("Uncontrolled™, "rrLQR", "LQR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Drift velocity (m/s)");

figure;

subplot(311);plot(simoutfd(1:650:n030,1),driftfdn(1:650:n030,4),"-

" ,simoutfd(1:650:n030,1),driftfd(1:650:n030,4),"-
**  simoutff(1:650:n030,1),driftfF(1:650:n030,4), " -
0");grid; legend("Decen-n*, "rrLQR","LQR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Drift velocity
m/s)");ylim([-1e-3 1e-3])

subplot(312);plot(simoutfd(1:650:n030,1),simoutfdn(1:650:n030,9), "

" ,simoutfd(1:650:n030,1),simoutfd(1:650:n030,9),"--
" ,simoutff(1:650:n030,1),simoutff(1:650:n030,9), -
0");grid;legend("Decen-n*, "rrLQR","LQR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Abs Acc (m/s/s)");ylim([-1

1D

subplot(313);plot(simoutfd(1:650:n030,1),simoutfdn(1:650:n030,11),

" ,simoutfd(1:650:n030,1),simoutfd(1:650:n030,11), " --
" ,simoutff(1:650:n030,1),simoutffF(1:650:n030,11), " -
0");grid;legend("Decen-n","rrLQR","LOR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Control (V)");%ylim([-100

1001)

disp(“Actual FOM®);
figure;

subplot(411);plot(simoutfd(1:650:n030,1),driftfdn(1:650:n030,2), "~

" ,simoutfd(1:650:n030,1) ,driftfd(1:650:n030,2), " -

**  simoutff(1:650:n030,1),driftff(1:650:n030,2), " -

0");grid;legend("Decen-n*, "rrLQR","LQR");
title("");xlabel("");ylabel ("Drift (m)");ylim([-1le-4 le-4])

subplot(412);plot(simoutfd(1:650:n030,1),driftfdn(1:650:n030,4), "-

" ,simoutfd(1:650:n030,1),driftfd(1:650:n030,4), "~
**  simoutff(1:650:n030,1),driftfF(1:650:n030,4), " -
0");grid; legend("Decen-n*, "rrLQR","LQR");

title("");xlabel (") ;ylabel ("Drift velocity (m/s)");ylim([-1le-3

le-3])

subplot(413);plot(simoutfd(1:650:n030,1),simoutfdn(1:650:n030,9), "

" ,simoutfd(1:650:n030,1),simoutfd(1:650:n030,9), " --

" ,simoutff(1:650:n030,1),simoutff(1:650:n030,9), -

0");grid; legend("Decen-n*, "rrLQR","LQR");
title("");xlabel("");ylabel ("Abs Acc (m/s/s)");

subplot(414);plot(simoutfd(1:650:n030,1),simoutfdn(1:650:n030,11),

" ,simoutfd(1:650:n030,1),simoutfd(1:650:n030,11),"--
" ,simoutff(1:650:n030,1),simoutffF(1:650:n030,11), " -
0");grid; legend("Decen-n", "rrLQR","LQR");

title(" ") ;xlabel ("time(s) ") ;ylabel ("*Control (V)*);%ylim([-1 1])

disp("Nominal FOM®™);
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figure;
subplot(41l);plot(simoutfd(1:no30,1),driftfndn(1:n030,2), " -
" ,simoutfd(1:n030,1),driftfnd(1:n030,2),"--
" ,simoutff(1:n030,1),driftfn(1:n030,2),"-.");grid; legend("Decen-
n®,"rrLQR","LQR™);
title("");xlabel("");ylabel ("Drift (m)");ylim([-1e-5 le-5])
subplot(412);plot(simoutfd(1:no30,1),driftfndn(1:n030,4), " -
" ,simoutfd(1:n030,1),driftfnd(1:n030,4),"--
" ,simoutff(1:n030,1),driftfn(1:n030,4),"-.");grid; legend("Decen-
n","rrLQR","LQR");
title("");xlabel("");ylabel ("Velocity drift (m/s)");ylim([-2e-4
5e-4])
subplot(413);plot(simoutfd(1:no30,1),simoutfndn(1:n030,9), -
" ,simoutfd(1:n030,1),simoutfnd(1:n030,9), " --
" ,simoutff(1:n030,1),simoutfn(1:n030,9),"-.");grid;legend("Decen-
n","rrLQR","LQR");
title(" ") ;xlabel("");ylabel ("Abs Acc (n/s/s)");ylim([-1 1])
subplot(414);plot(simoutfd(1:no30,1),simoutfndn(1:n030,11), " -
" ,simoutfd(1:n030,1),simoutfnd(1:n030,11), " --
" ,simoutff(1:n030,1),simoutfn(1:n030,11),"-.");grid; legend("Decen-
n*,"rrLQR","LQR");
title(" ") ;xlabel("time(s) ");ylabel ("Control (V)");ylim([-50
50D

end
end

Chapter 4

% Magana decentralized control

% u(t) = LQRy + v(t): nonlinear controls
% ICSSD

% jm200303.m, jm1l30403.m, jm1l50403a.m

% Aim: rrLQR, Decen-n, Decen-rr

uncertain=0.1;

failure=0.5;

n=1;

m=1;

Ms=[1 0;0 1];

Ks=-[-7.2980 2.7761; 2.7761 -62.8417];

Cs=-[-0.0730 0.0278; 0.0278 -0.6284];

An=[zeros(2) eye(2);-Ms\Ks -Ms\Cs];

xdof=length(An)/2;

Bn=[zeros(2); -12.1596 -8.9808; 53.0676 -27.8441]; %[zeros(2);
eye(2)1;

Hn=[0;0;4022;-1530];

Cn=An(xdof+1:2*xdof, :);%[zeros(2) eye(2)];

Dn=eye(2);

dAf=-uncertain*[zeros(xdof,2*xdof); An(xdof+1l:2*xdof,:)];
Bf=(1-failure)*Bn;

dBf=-failure*Bn;

disp("Subsystem decentralized: *);
% address each of 4 quadrants:
Al=An(1:xdof,1:xdof);
A2=An(1:xdof,xdof+1:2*xdof);
A3=An(xdof+1:2*xdof,1:xdof);
Ad=An(xdof+1:2*xdof,xdof+1:2*xdof);
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for i=1:xdof
for j=1:xdof
if i==j
Aii(1,1,1)=A1(i,]);
Ali(1,2,1)=A2(1,]);
Aii(2,1,i)=A3(i,]j);
Ali(2,2,1)=A4(1,]);
else
Aij(1,1,i1)=A1(i,]);
Aij(1,2,i1)=A2(i,]j);
Aij(2,1,i)=A3(i,j);
AiJ(2,2,1)=A4(1,]);
end

-
o/

end

dA=-uncertain*Aii;
dAij=-uncertain*Aij;
dB=-0*B;

dH=0*H;

% Classical LTR for K:
g2=[500 1le3 1le4]; % square of q
for i=1:2
sys=ss(Aii(:,:,1),B(:,:,1),C(:,:,1),0);
Lp=tf(sys); % plant tf
if zero(sys)>0
error("Unstable zeros => non-minimum phase®);
else
disp("Stable invariant zeros => minimum phase®);
end
Ps=tf(sys);
disp("Test for invertible plant:®);
Psi=inv(Ps);
w=Psi*Ps
[num,den] = TFDATA(w,"Vv");
if residue(num,den)==
disp("plant invertible®);
else
error("plant Not invertible®);
end
disp("Verify invertible™);
disp("LTR recoverable®);

for k=1:length(qg2)
Qe=g2(k)"2*B(:,:,1)*B(:,:,1)";
Re=eye(size(C(:,:,i1)",2));
[Kt(:,:,Kk),Pt,Et] = LOR(ATI(:,:,1)7,C(:,:,1)7,Qe,Re);
K(:,:,k)=Kt(:,:,K";

end

KF(:,:,1)=K(:,:,1);

disp("Robust Reliable LQR");
disp("Uncertainties: general™);
dK(:,:,1)=-uncertain*Ks(i,i);
[Dk(:,:,1),Ek(:, 2, 1)]=u(dK(:,:,1));

dC(:,:,i)=-uncertain*Cs(i,i);
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[Dc(:,:,1),Ec(:, -, i)]=lu(dC(:,:,1));
D(:,:,0)=[0 O;Dk(:,:,1) Dc(:,:,1)];
EC:,:,)=[EK(:,:,1) 05 0 Ec(:,:,i)];
Ta(:,:,1)=D(:,:,)*D(:,:,D)";
Ua(:,:,1)=E(:,:,D)"*E(:,:,1);
dA(:,:,1)=[zeros(n,2*n); dK(:,:,i) dC(:,:,1)];

Bob(:,:,1)=(1-failure)*B(:,:,i); %[0; 0.5];
Bo(:,:,1)=B(:,:,1)-Bob(:,:,1);

disp("One actuator failure®);
Bw(:,:,i1)=Bo(:,:,i);

Bwb(:,:,1)=Bob(:,:,1);
%dB(:z,:,1)=Bwb(:,:,1);

alpha=0.5;
beta=1;
delta=0.01;
dc=0;

dh=0;
ep=1e-10; % critical: small
epl=1le-2;
ep2=1le-2;
ep3=1le-2;
epd=1le-2;
Q=0.01*eye(2);

Qb(:,:,1)=Va(:,:,i)/epl + [(L+ep2)*C(:,:,i)"*C(:,:,i) +
(1+1/ep2)*dc2*eye(2)])/ep/del ta+Q;
eig(Qb(:,:,i));
if eig(Qb(:,:,1))>=0
else
error("Eig(Qb)<=0");
end
R(:,:,1)=Bob(:,:,i1)*Bob(:,:,i)"/beta-epl*Ta(:,:,i)-
[Bo(:,:,1)*Bo(:,:,i)"+(A+ep3)*H(:,:,1)*H(:,:, i) "+(1+1/ep3)*dh2*eye(2
)1*ep/delta;
if eig(R(:,:,1))>=0
else
error("Eig(R)<=0%);
end
P(:,:,1) = are(Aii(:,:,i)+alpha*eye(2), R(:,:,1), Qb(:,:,1));
Ke(z,:,1)=Bwb(:,:,1)"*P(:,:,1)/2/beta;

Ac(:,:,D)=ANi(:,:,1)+HdA(, -, 1D)-Bwb(:,:,i)*Ke(:,:,1);
if eig(Ac(:,:,i))<-alpha
else

error("eig(Ac)>=-alpha®);
end
Bc(:,:,i)=cat(2,H(:,:,1),Bw(:,:,1));
Cc(:,:,1)=C(:,:,1);

Tzwinf(:,1)=normhinf(Ac(:,:,i1),Bc(:,:,1),Cc(:,:,1),zeros(size(Cc(:,:,
i1).1),size(Bc(:,:,1).2)));
if Tzwinf(:,i)<=delta
else
error("Tzwinf>delta®);
end

disp("H2 optimality”);
H2(:,:,1)=2*alpha*P(:,:,1) + P(:,:,D)*[-
Bob(:,:,i1)*Bob(:,:,i) "+ep/delta*(Bo(:,:,1)*Bo(:,:,1)"+(1+ep3)*H(:,:,i
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Y*H(:, -, 1) "+(1+1/ep3)*dh"2*eye(2))+3/2/beta*Bwb(:, - ,1)*Bwb(:,:,1)"]*P
(., 1) + [(A+ep2)*C(z,:,1)"*C(z,1,0) +

(a+

min

end

dis
[EQ
dis
Qf=
Rf=
KcF

% C
for

end

1/ep2)*dcr2*eye(2)]/ep/delta+Q;
if eig(H2(:,:,1))<0

disp("No H2-optimality®);
else

disp("H2-optimality condition satisfied");

end

% Decentralized nonlinear control: Magana & Rondellar
Fi(:,:,0)=Ai1i(:,:,1)-B(,,1)*Ke(:,:,1);
Pi(z,:,i)=lyap(Fi(:,:,i),[1 0;0 100]);

d(i1)=7.68;
e(i)=8;

% Decentralised Nominal Controls:
for k=1:length(q2)

Qe=4*q2(k)"2*Bwb(:,:,i)*Bwb(:,:

Re=eye(size(C(:,:,1)",2));

L1)7;

[Kt(:,:,k),Pt,Ee] = LOR(ATI(z,:,1)7,C(z,:,1)7,Qe,Re);

K(z,:,k)=Kt(z,:,k)";
end
Kfn(:z,:,1)=K(:,:,1);

disp("Simple LQR");
Q(:,:,1)=C(z,:,1)"*100*C(:,:,1);
imised

Rn(:,:,i)=1le-2;

% control

acceleration:

Ken(:,:,D)=Igr(Aii(:,:,1),Bwb(:,:,1)/Ffailure,Q(:,:,1),Rn(:,:,1));

p("Simulink subsystems®);
,T]=elcent3;

p("Simple LQR");

Cn"*100*eye(2)*Cn; % control acceleration:

le-2*eye(2);
=Iqr(An,Bn,Qf,RF);

lassical LTR for K:
k=1:l1ength(g2)
Qef=q2(k)”2*Bn*Bn*";
Ref=1le-2*eye(size(Cn",2));

[KEeF(:,:,k),Pt,ef] = LOR(An",Cn",Qef,Ref);

Ktt(:, :,k)=Ktf(:,:,k)";

Kff=Ktt(:,:,1);

dis
% U

p("Robust Reliable LQR");
ncertain:

WAF=[zeros(2) eye(2);-Ms\Ks -Ms\Cs];

dis
dK=

p("Uncertainties: general®);
-uncertain*Ks;

[Dk,Ek]=lu(dK);

dc=
[Dc

-uncertain*Cs;
,Ec]=1u(dC);

dAf=[zeros(xdof,2*xdof); -dK -dC];
D=[zeros(xdof,2*xdof) ;Dk Dc];
E=[Ek zeros(xdof); zeros(xdof) Ec];

minimised
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Ta=D*D";
Ua=E"*E;

Af=An+dAf;

xdof=length(Af)/2;

%Bf=Bn; %[zeros(2); eye(2)];

Hf=Hn; %[0;0;-1;-1];
CF=Af(xdof+1:2*xdof, :);%[zeros(2) eye(2)];

%Bob=[0 0;1 0];
Bob=(1-failure)*Bn;
Bo=Bn-Bob;

disp("One actuator failure®);
Bw=Bo;

Bwbf=Bob;
Df=Bwbf(xdof+1:2*xdof,:);
Gf=ss(Af+dAf,Bwbf,Cf,Df);
GFtf=tf(GF);
[numGF,denGF]=tfdata(Gftf);

alpha=0.5;

beta=1;

delta=0.01;

dc=0;

dh=0;

ep=1e-10; % critical: small
epl=le-2;

ep2=1le-2;

ep3=le-2;
%epd=1le-2;
Q=0.01*eye(2*xdof);

Qb=Ua/epl + [(1+ep2)*CF"*CF + (1+1/ep2)*dcr2*eye(2*xdof)]/ep/delta+Q;

eig(Qb);

if eig(Qb)>=0

else
error("Eig(Qb)<=0%);

end

%R=Bob*Bob"-epl*B*Ta*B" -

[Bo*Bo"+(1+ep3)*H*H"+(1+1/ep3)*dh2*eye(2) ] *ep/delta;

R=Bob*Bob*/beta-epl*Ta-

[Bo*Bo™+(1+ep3)*HF*HF"+(1+1/ep3)*dh"2*eye(2*xdof)]*ep/del ta;

it eig(R)>=0
else
error("Eig(R)<=0");
end
P = are(Af+alpha*eye(2*xdof), R, Qb);
Kcrr=Bwbf**P/2/beta;

Ac=Af+dAf-Bwbf*Kcrr;

if eig(Ac)<-alpha

else
error(“eig(Ac)>=-alpha”);

end

Bc=cat(2,Hf,BwbT);

Cc=Cf;

Tzwinf=normhinf(Ac,Bc,Cc,zeros(size(Cc,1),size(Bc,2)));

if Tzwinf<=delta
else
error("Tzwinf>delta");
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end

disp("H2 optimality®);
H2=2*alpha*P + P*[-
Bob*Bob*+ep/delta*(Bo*Bo " +(1+ep3) *HFf*HF"+(1+1/ep3)*dh"2*eye(2*xdof) )+
3/2/beta*Bwbf*Bwbf"]*P + [(1+ep2)*CF"*CF +
(1+1/ep2)*dc2*eye(2*xdof)]/ep/delta+Q;
if eig(H2)<0

disp("No H2-optimality”);
else

disp("H2-optimality condition satisfied");
end

% Classical LTR for K:
g2=[1e5 1e8 1el0]; % square of q
for k=1:length(g2)
Qe=q2(k)"2*Bf*Bf";
Re=eye(size(Cf",2));
[Kt1(:,:,k),Ptl1,E1] = LQR(AF",Cf",Qe,Re);
Ki(:,:,k)=Kt1(:,:,k)";
end
Kfrr=K1(:,:,1);

disp("Simulink FOM system®);
maganaST150403a

0 ==

b ritz310303.m:

% Model reduction: Chopra 1995

% vg68.m, nbeta8.m, test.m, nishitani.m
Y%

PSS

% Actual FOM:
ml=1e6; % kg
m2=7e5;

c=0;
k1=1.47e9; % N/m
k3=1.372e9;
k5=1.274e9;
k7=1.176e9;
k9=1.078e9;
k11=0.98e9;
k13=0.931e9;
k14=0.882e9;
k15=0.833e9;
k16=0.784e9;
k17=0.735e9;
k18=0.686€9;
k19=0.637e9;
k20=0.588e9;

% discrete MDOF:

md=[ml m1 m1 ml mlmlmlmlmlmlmlmlmlmlmlmlmlmlmlm2];
kd=[kl k1 k3 k3 k5 k5 k7 k7 k9 k9 k11 k11 k13 k14 k15 k16 k17 k18 k19
k20];

%md=[m1 m1 ];

%kd=[k1 k1 ];

%cd=zeros(l, length(md));

cd=kd/100;
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%
M=zeros(length(md));
K=zeros(length(md));
Cd=zeros(length(md));
for i1=1:length(md)
M(i, D)=M(i, 1D)+md(i);
if i==
K@, 1)=K@i,1)+kd(i);
Cd(i,i1)=Cd(i,i)+cd(i);
else
K(i-1,i-1)=K(i-1,i-1)+kd(i);
K@i-1,1)=K(i-1,1)-kd(i);
K@, 1-1)=K(i, i-1)-kd(i);
K@, 1)=K(@i,i1)+kd(1);
Cd(i-1,i-1)=Cd(i-1,i-1)+cd(i);
Cd(i-1,i1)=Cd(i-1,i1)-cd(i);
Cd(i,i-1)=Cd(i,i-1)-cd(i);
Cd(i,i1)=Cd(i,i)+cd(i);
end
end

disp(“Model Reduction retaining modal characteristics®);
[ev,w,msO]=vtb4_1(M,K);
disp(“Mode shape 1: *);
%ms0(:,1)/ms0(20,1)

%pause

disp(“Mode shape 2: *);
%ms0(:,2)/ms0(8,2)

Y%pause

disp(“Mode shape 3: *);
%ms0(:,3)/ms0(5,3)

Y%pause

f=w/2/pi; % natural freq (Hz)

0 ==

% Chopra: Rayleigh-Ritz generalisation of froce dependent vectors:
0, ——

S=-M*ones(length(md),1);
dmodes=2; %input("Enter the max mode to be included: *);
a=zeros(dmodes);
y=zeros(length(md),1,dmodes);
ms=zeros(length(md),1,dmodes);
msc=zeros(length(md),1,dmodes);
msb=[];
for i=1:dmodes
if i==
y(:,:,1)=K\S;
ms(z, 1, D)=y(z, 1, D)/sqre(y(:, -, D)7 My (z,1,1));

else
y(:,:,1D)=K\M*ms(:,:,i-1);
a(i-1,i1)=ms(z,:,i-1)"*M*y(:,:,1);
msc(z,:,1)=y(z,:,1);
for j=1:i-1
msc(:,:,1)=msc(:,i) - a@,i)*ms(:,:,j);
end
y(:,z,1)=msc(z,:,1);
ms(z, 1, D)=y(z, 1, D)/sqre(y(:, -, D)7 My (z,1,1));

end
msb=cat(2,msb,ms(:,:,1));
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end

Mb=msb"*M*msb;
Cb=msb**Cd*msb;
Kb=msb " *K*msb;

%Fb=msb"*F;

Hb=msb**S;
[evb,wb,msOb]=vtb4_1(Mb,Kb);
w(1:dmodes)

wb

% ===

% Uncertainties: dM, dC, dK

% Sestieri
D [ ——

disp(“Uncoupled Ritz ROM: *);
Mbr=msO0b**Mb*msO0b;
Cbr=msOb*"*Cb*ms0b;
Kbr=msOb**Kb*msOb;
%Fbr=ms0Ob**Fb;

dM=0.1*M;
dC=0.1*Cd;
dK=0.1*K;

M1b=Mb+msb " *dM*msb;
Clb=Cb+msb**dC*msb;
K1b=Kb+msb"*dK*msb;

disp("Ritz vectors on uncertainties”);
[evlb,wlb,mslb]=vtb4 1(Mlb,K1lb);
S1=msb**S;
a=zeros(dmodes) ;
y=zeros(dmodes,1,dmodes);
ms=zeros(dmodes, 1,dmodes);
msc=zeros(dmodes,1,dmodes);
mslb=[];
for i=1:dmodes
if i==
y(:,:,1)=K1b\S1;
ms(z, 1, 0)=y(z, 1, 1)/sqre(y(:, 1, 1) *Mlb*y(:,:,1));

else
y(:,:,1)=K1b\Mlb*ms(:,:,i-1);
a(i-1,i1)=ms(:,:,i-1)"*Mlb*y(:,:,1);
msc(z,:,)=y(z,:,1);
for j=1:i-1
msc(:,:,1)=msc(:,i) - a,i)*ms(:,:,]);
end
y(z,z,i)=msc(z,:,1);
ms(z,:,0)=y(z, 1, 0)/sqre(y(:, 1, 1) "*Mlb*y(:,:,1));

end
mslb=cat(2,mslb,ms(:,:,1));

end

% Actual Ritz vector characteristics
w2b=wlb;
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ms2b=msb*ms1b;
disp("ms2b()*(M+dM)*ms2b = 17);
M2b=ms2b**(M+dM)*ms2b;
C2b=ms2b"*(Cd+dC)*ms2b;
K2b=ms2b**(K+dK)*ms2b;
WF2b=ms2b**F;

H2b=ms2b**S;
[evb3,w3b,ms3b]=vtb4_1(M2b,K2b);

choice=input("Press Enter to plot graphs: ");
xdof=length(Af)/2;

dt=0.02;

%FsT=expm(Af*dt); % Uncon
%HAF=AF\(Fsf-eye(2*xdof));
WGT=AT\(FsT-eye(2*xdoT))*Bf;

%HdsF=HdF*HTf;

% Evaluation in discrete time
%z0=zeros(2*xdof,1);

Tb=T;

%tspan=[0 Tb(length(Tb))];
%zuf=zeros(2*xdof, length(Tb));
%for i=1:length(Th)

% if i==

% zuf(:,1)=2z0;

% else

% zuf(:,1)=Fst*zuf(:,1-1)+HdsT*EQ(i);
% end

%end

% Actual:

Trange=[Tb(1) Tb(length(Tb))];

dt=0.02;

s=zeros(2,1);

V=S;as=s;

delta=0.5; % gamma

beta=0.25;

Fs=-Ms*ones(2,1)*EQ;
[t,zuf(1:2,:),zuf(3:4,:),ddx]=nbeta8(Ms, (1-uncertain)*Cs, (1-
uncertain)*Ks,Fs,dt,Trange,s,Vv,a,delta,beta);

% Transmitted acceleration
zauf=[zuf(3:4, :);ddx] ; WFsT*zuf+HdsT*EQ;

% For absolute acceleration:
zauF(xdof+1:2*xdof, :)=zauf(xdof+1:2*xdof, :)+ones(2,1)*EQ;

% Interpolate
for i=1:xdof

zulf(:,i1) = INTERP1(Tb,zuf(i,:),simoutfd(:,1));

zu2f(:,1) = INTERP1(Tb,zuf(xdof+i,:),simoutfd(:,1));

zu3f(:,i1) = INTERP1(Tb,zauf(xdof+i,:),simoutfd(:,1));
end

disp("Pick out DOFs = 10, 20%);
DOFchoice=zeros(dmodes,20);
DOFchoice(1,10)=1;
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DOFchoice(2,20)=1;

disp("Convert ROM responses to Actual responses:®);
% Actual relative acc:
simoutff(:,8:9)=(DOFchoice*msb*simoutff(:,8:9)")";
simoutfd(:,8:9)=(DOFchoice*msb*simoutfd(:,8:9)")";
simoutfdn(:,8:9)=(DOFchoice*msb*simoutfdn(:,8:9)")";
simoutfn(:,8:9)=(DOFchoice*msb*simoutfn(:,8:9)")";
simoutfnd(:,8:9)=(DOFchoice*msb*simoutfnd(:,8:9)")";
simoutfndn(:,8:9)=(DOFchoice*msb*simoutfndn(:,8:9)")";

% Actual relative vel:
simoutff(:,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutff(:,dmodes+2:2*
dmodes+1)")";

simoutfd(: ,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutfd(:,dmodes+2:2*
dmodes+1)")";
simoutfdn(:,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutfdn(: ,dmodes+2:
2*dmodes+1)") " ;
simoutfn(:,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutfn(: ,dmodes+2:2*
dmodes+1)")";
simoutfnd(:,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutfnd(: ,dmodes+2:
2*dmodes+1) ") " ;
simoutfndn(:,dmodes+2:2*dmodes+1)=(DOFchoice*msb*simoutfndn(: ,dmodes+
2:2*dmodes+1)")";

% Actual relative displ:
simoutff(:,2:dmodes+1)=(DOFchoice*msb*simoutff(:,2:dmodes+1)")";
simoutfd(:,2:dmodes+1)=(DOFchoice*msb*simoutfd(:,2:dmodes+1)")";
simoutfdn(:,2:dmodes+1)=(DOFchoice*msb*simoutfdn(:,2:dmodes+1)")";
simoutfn(:,2:dmodes+1)=(DOFchoice*msb*simoutfn(:,2:dmodes+1)")";
simoutfnd(:,2:dmodes+1)=(DOFchoice*msb*simoutfnd(:,2:dmodes+1)")";
simoutfndn(:,2:dmodes+1)=(DOFchoice*msb*simoutfndn(:,2:dmodes+1)")";

)-
)--
)-
)-

disp("For Absolute acceleration: ");

% uncertain FOM:

EQFF = INTERP1(Tb,EQ,simoutff(:,1));

EQfd = INTERP1(Tb,EQ,simoutfd(:,1));

EQfdn = INTERP1(Tb,EQ,simoutfdn(:,1));
simoutff(:,8:9)=simoutff(:,8:9)+EQFFf*ones(1,2);
simoutfd(:,8:9)=simoutfd(:,8:9)+EQfd*ones(1,2);
simoutfdn(:,8:9)=simoutfdn(:,8:9)+EQfdn*ones(1,2);
% nominal FOM:

EQfn = INTERP1(Tb,EQ,simoutfn(:,1));

EQfnd = INTERP1(Tb,EQ,simoutfnd(:,1));

EQfndn = INTERP1(Tb,EQ,simoutfndn(:,1));
simoutfn(:,8:9)=simoutfn(:,8:9)+EQFfn*ones(1,2);
simoutfnd(:,8:9)=simoutfnd(:,8:9)+EQFfnd*ones(1,2);
simoutfndn(:,8:9)=simoutfndn(:,8:9)+EQFfndn*ones(1,2);

% Drifts:
for i1=1:2
if i==

% Inter-story drift
driftu(:,i)=zulf(:,i);
driftff(:,1)=simoutff(:,i+l);
driftfd(:,1)=simoutfd(:,i+l);
driftfdn(:,i)=simoutfdn(:,i+l);
driftfn(:,i)=simoutfn(:,i+l);
driftfnd(:,i)=simoutfnd(:,i+l);
driftfndn(:, i)=simoutfndn(:,i+l);
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end

% Inter-story Drift velocity
driftu(:,i+2)=zu2f(:,i);

drifeff(:, i+2)=simoutff(:,i+3);
driftfd(:, i+2)=simoutfd(:,i+3);
driftfdn(:, i+2)=simoutfdn(:,i+3);
driftfn(:,i+2)=simoutfn(:,i+3);
driftfnd(:, i+2)=simoutfnd(:,i+3);
driftfndn(:, i+2)=simoutfndn(:,i+3);

else

% Inter-story drift
driftu(:,i1)=zulf(:,1)-zulf(:,i-1);
driftff(:,i)=simoutff(:,i+l)-simoutff(:,i);
driftfd(:,i)=simoutfd(:,i+1)-simoutfd(:,i);
driftfdn(:,1)=simoutfdn(:,i+1)-simoutfdn(:,i);
driftfn(:,i)=simoutfn(:,i+l)-simoutfn(:,i);
driftfnd(:,1)=simoutfnd(:,i+1)-simoutfnd(:,i);
driftfndn(:, i)=simoutfndn(:, i+l)-simoutfndn(:,i);

% Inter-story Drift velocity
driftu(:,i+2)=zu2f(:,i)-zu2f(:,i-1);
driftff(:,i+2)=simoutff(:,i+3)-simoutff(:,i+2);
driftfd(:, i+2)=simoutfd(:, i+3)-simoutfd(:,i+2);
driftfdn(:, i+2)=simoutfdn(:, i+3)-simoutfdn(:,i+2);
driftfn(:,i+2)=simoutfn(:, i+3)-simoutfn(:,i+2);
driftfnd(:, i+2)=simoutfnd(:, i+3)-simoutfnd(:,i+2);
driftfndn(:, i+2)=simoutfndn(:, i+3)-simoutfndn(:,i+2);

no30=0.8*length(simoutfd);

choice=1;
while choice~=0

vel.

disp(" (1) Subsystem 1: Quek-Compare inter-story drifts & abs
acc");

disp("(2) Subsystem 2: Quek-Compare inter-story drifts & abs
acc");

choice=input(“"Choose (1-4) to plot or (0) to end: ");

switch choice

case 1

%choice=input(“Compare inter-story drifts & abs acc®);
disp("1st subsystem: ");

disp("No control: (drift, drift vel., abs acc)");
max(abs(driftu(:,1)))

max(abs(driftu(:,3)))

max(abs(zu3f(:,1)))

% Nominal:

disp("Robust Reliable control for Nominal FOM: (drift, drift
abs acc, control)");

max(abs(driftfn(:,1)))

max(abs(driftfn(:,3)))

max(abs(simoutfn(:,8)))

max(abs(simoutfn(:,10)))

disp("Nominal control for Nominal FOM: (drift, drift vel., abs

acc, control)®);

max(abs(driftfndn(:,1)))
max(abs(driftfndn(:,3)))
max(abs(simoutfndn(:,8)))
max(abs(simoutfndn(:,10)))
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disp(“Decen-rr control for Nominal FOM: (drift, drift vel., abs

acc, control)®);
max(abs({driftfnd(:,1)))
max(abs(driftfnd(:,3)))
max(abs(simoutfnd(:,8)))
max(abs(simoutfnd(:,10)))
% Uncertain:
disp("Robust Reliable control: (drift, drift vel., abs acc,

control)");
max(abs(driftff(:,1)))
max(abs(driftff(:,3)))
max(abs(simoutff(:,8)))
max(abs(simoutff(:,10)))

disp("Nominal control: (drift, drift vel., abs acc, control)”

max(abs(driftfdn(:,1)))

max(abs(driftfdn(:,3)))

max(abs(simoutfdn(:,8)))

max(abs(simoutfdn(:,10)))

disp("Decen-rr control: (drift, drift vel., abs acc,

control)");

max(abs(driftfd(:,1)))

max(abs(driftfd(:,3)))

max(abs(simoutfd(:,8)))

max(abs(simoutfd(:,10)))

disp("Complete for actual FOM™);
figure;
subplot(311);plot(simoutfd(1:n030,1),driftu(1:n030,1), " -
*,simoutfd(1:n030,1),driftfd(1:n030,1), " -
** , simoutff(1:no30,1),driftff(1:no30,1),"-
0");grid; legend("Uncontrolled”, "Decen-rr","rrLQR");
title(" ") ;xlabel("time(s) ") ;ylabel ("Drift (m)");ylim([-0.025
0.025])
subplot(312);plot(simoutfd(1:no30,1),driftfdn(1:n030,1), " -
" ,simoutfd(1:n030,1),driftfd(1:n030,1), "-
**  simoutff(1:no30,1),driftff(1:no30,1),"-0");grid; legend("Decen-
n®,"Decen-rr*,"rrLQR");

);

title("");xlabel("time(s) ") ;ylabel ("Drift (m)");ylim([-2e-4 2e-

4D
subplot(313);plot(simoutfd(1:n030,1),driftu(1:n030,3), -
" ,simoutfd(1:n030,1),driftfd(1:n030,3), "-
** ,simoutff(1:no30,1),driftff(1:n030,3), " -
0");grid; legend("Uncontrolled”, "Decen-rr*","rrLQR");
title(" ") ;xlabel("time(s) ") ;ylabel ("Drift velocity (n/s)");

figure;
subplot(311);plot(simoutfd(1:no30,1),driftfdn(1:n030,3), "-
" ,simoutfd(1:n030,1),driftfd(1:n030,3), "-
>, simoutff(1:no30,1),driftff(1:n030,3),"-0");grid; legend("Decen-
n®,"Decen-rr*,"rrLQR");
title(" ") ;xlabel("time(s) ") ;ylabel ("Drift velocity
m/s)");ylim([-1e-3 3e-3])
subplot(312);plot(simoutfd(1:n030,1),simoutfdn(1:n030,8), "~
" ,simoutfd(1:n030,1),simoutfd(1:n030,8),"--
" ,simoutff(1:n030,1),simoutff(1:n030,8),"-0");grid;legend("Decen-
n*,"Decen-rr”,"rrLQR");
title(" ") ;xlabel("time(s) ") ;ylabel (*"Abs Acc (m/s/s)");
subplot(313);plot(simoutfd(1:no30,1),simoutfdn(1:n030,10), "~
" ,simoutfd(1:n030,1),simoutfd(1:n030,10), " --
" ,simoutff(1:n030,1),simoutff(1:n030,10),"-0");grid; legend("Decen-

n®,"Decen-rr*, "rrLQR");
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title(" ") ;xlabel("time(s) ") ;ylabel ("Control (V)");

disp(“Actual FOM®);
figure;
subplot(41l);plot(simoutfd(1:no30,1),driftfdn(1:n030,1), "~
" ,simoutfd(1:n030,1),driftfd(1:n030,1), "-
** ,simoutff(1:no30,1),driftff(1:no30,1),"-0");grid; legend("Decen-
n®,"Decen-rr*,"rrLQR");
title("");xlabel("");ylabel ("Drift (m)");ylim([-0.8e-4 0.5e-4])
subplot(412);plot(simoutfd(1:no30,1),driftfdn(1:n030,3), " -
" ,simoutfd(1:n030,1),driftfd(1:n030,3), "-
**  simoutff(1:no30,1),driftfF(1:n030,3),"-0");grid; legend("Decen-
n®,"Decen-rr*,"rrLQR");
title(" ") ;xlabel("");ylabel ("Drift velocity (m/s)");ylim([-1le-3
3e-3D
subplot(413);plot(simoutfd(1:n030,1),simoutfdn(1:n030,8),"-
" ,simoutfd(1:n030,1),simoutfd(1:n030,8), " --
" ,simoutff(1:n030,1),simoutff(1:n030,8),"-0");grid;legend("Decen-
n®,"Decen-rr-, "rrLQR");
title("");xlabel("");ylabel ("Abs Acc (n/s/s)");
subplot(414);plot(simoutfd(1:n030,1),simoutfdn(1:n030,10), " -
" ,simoutfd(1:n030,1),simoutfd(1:n030,10), " --
" ,simoutff(1:n030,1),simoutff(1:n030,10),"-0");grid; legend("Decen-
n","Decen-rr*, "rrLQR");
title(" ") ;xlabel("time(s) ") ;ylabel ("Control (V)");

disp("Nominal FOM®™);
figure;
subplot(41l);plot(simoutfd(1:no30,1),driftfndn(1:n030,1), "~
" ,simoutfd(1:n030,1),driftfnd(1:n030,1),"--
" ,simoutff(1:n030,1),driftfn(1:n030,1),"-.");grid; legend("Decen-
n*,"Decen-rr*,"rrLQR");
title("");xlabel("");ylabel ("Drift (m)");ylim([-1le-4 le-4])
subplot(412);plot(simoutfd(1:no30,1),driftfndn(1:n030,3), "~
" ,simoutfd(1:n030,1),driftfnd(1:n030,3),"--
" ,simoutff(1:n030,1),driftfn(1:n030,3),"-.");grid; legend("Decen-
n®,"Decen-rr*,"rrLQR");
title("");xlabel (") ;ylabel ("Drift velocity (m/s)");ylim([-1le-3
3e-3])
subplot(413);plot(simoutfd(1:no30,1),simoutfndn(1:n030,8), -
" ,simoutfd(1:n030,1),simoutfnd(1:n030,8), " -
" ,simoutff(1:n030,1),simoutfn(1:n030,8),"-.");grid;legend("Decen-
n*,"Decen-rr*,"rrLQR");
title("");;xlabel("");ylabel ("Abs Acc (m/s/s)");
subplot(414);plot(simoutfd(1:n030,1),simoutfndn(1:n030,10), " -
" ,simoutfd(1:n030,1),simoutfnd(1:n030,10), " --
" ,simoutff(1:n030,1),simoutfn(1:n030,10),"-.");grid; legend("Decen-
n*,"Decen-rr*,"rrLQR");
title(" ") ;xlabel("time(s) ") ;ylabel ("Control (V)*");

case 2

disp("2nd subsystem: *);

disp("No control: (drift, drift vel., abs acc)");

max(abs(driftu(:,2)))

max(abs(driftu(:,4)))

max(abs(zu3f(:,2)))

% Nominal:

disp("Robust Reliable control for Nominal FOM: (drift, drift
vel., abs acc, control)”);

max(abs(driftfn(:,2)))

max(abs(driftfn(:,4)))
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max(abs(simoutfn(:,9)))
max(abs(simoutfn(:,11)))

disp(“Nominal control for Nominal FOM: (drift, drift vel., abs

acc, control)™);
max(abs(driftfndn(:,2)))
max(abs(driftfndn(:,4)))
max(abs(simoutfndn(:,9)))
max(abs(simoutfndn(:,11)))

disp(“Decen-rr control for Nominal FOM: (drift, drift vel., abs

acc, control)®);
max(abs(driftfnd(:,2)))
max(abs(driftfnd(:,4)))
max(abs(simoutfnd(:,9)))
max(abs(simoutfnd(:,11)))
% Uncertain:
disp("Robust Reliable control: (drift, drift vel., abs acc,

control)*™);
max(abs(driftff(:,2)))
max(abs(driftff(:,4)))
max(abs(simoutff(:,9)))
max(abs(simoutff(:,11)))

disp("Nominal control: (drift, drift vel., abs acc, control)");

max(abs(driftfdn(:,2)))

max(abs(driftfdn(:,4)))

max(abs(simoutfdn(:,9)))

max(abs(simoutfdn(:,11)))

disp("Decen-rr control: (drift, drift vel., abs acc,

control)");

max(abs(driftfd(:,2)))

max(abs(driftfd(:,4)))

max(abs(simoutfd(:,9)))

max(abs(simoutfd(:,11)))

disp("Complete for actual FOM®);
figure;
subplot(311);plot(simoutfd(1:n030,1),driftu(1:n030,2), " -
" ,simoutfd(1:n030,1),driftfd(1:n030,2), " -
**  simoutff(1:no30,1),driftff(1:n030,2),"-
0");grid;legend("Uncontrolled”, "Decen-rr=,"rrLQR");
title(" ") ;xlabel("time(s) ") ;ylabel ("Drift (m)");
subplot(312);plot(simoutfd(1:no30,1),driftfdn(1:n030,2), "-
" ,simoutfd(1:n030,1),driftfd(1:n030,2), "-
**  simoutff(1:no30,1),driftff(1:n030,2),"-0");grid; legend("Decen-
n","Decen-rr*, "rrLQR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Drift (m)");ylim([-1le-4 le-

4D

subplot(313);plot(simoutfd(1:no30,1),driftu(1:n030,4), " -
" ,simoutfd(1:n030,1),driftfd(1:n030,4), " -
** ,simoutff(1:no30,1),driftff(1:n030,4),"-
0");grid; legend("Uncontrolled”, "Decen-rr*, "rrLQR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Drift velocity
(m/s)");ylim([-0.4 0.4]D)

figure;

subplot(311);plot(simoutfd(1:no30,1),driftfdn(1:n030,4), " -
" ,simoutfd(1:n030,1),driftfd(1:n030,4), "-
**  simoutff(1:no30,1),driftff(1:no30,4),"-0");grid; legend("Decen-
n®,"Decen-rr*,"rrLQR");

title(" ") ;xlabel("time(s) ") ;ylabel ("Drift velocity
m/s)");ylim([-1e-3 2e-3])
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subplot(312);plot(simoutfd(1:n030,1),simoutfdn(1:n030,9),"-
" ,simoutfd(1:n030,1),simoutfd(1:n030,9), " --
*,simoutff(1:n030,1),simoutff(1:n030,9),"-0");grid;legend("Decen-
n®,"Decen-rr*,"rrLQR");
title("");;xlabel("time(s) ") ;ylabel ("Abs Acc (m/s/s)");
subplot(313);plot(simoutfd(1:n030,1),simoutfdn(1:n030,11), " -
" ,simoutfd(1:n030,1),simoutfd(1:n030,11),"--
" ,simoutff(1:n030,1),simoutffF(1:n030,11),"-0");grid; legend("Decen-
n*,"Decen-rr*,"rrLQR");
title(" ") ;xlabel ("time(s) ") ;ylabel ("*Control (V) *);%ylim([-2 2])

disp("Actual FOM™);
figure;
subplot(41l);plot(simoutfd(1:no30,1),driftfdn(1:n030,2), " -
" ,simoutfd(1:n030,1),driftfd(1:n030,2), "-
**  simoutff(1:no30,1),driftff(1:n030,2),"-0");grid; legend("Decen-
n","Decen-rr*, "rrLQR");
title(" ") ;xlabel (") ;ylabel ("Drift (m)");ylim([-1.2e-4 le-4])
subplot(412);plot(simoutfd(1:no030,1),driftfdn(1:n030,4), " -
" ,simoutfd(1:n030,1),driftfd(1:n030,4), " -
**  simoutff(1:no30,1),driftff(1:no30,4),"-0");grid; legend("Decen-
n®,"Decen-rr-, "rrLQR");
title("");xlabel("");ylabel ("Drift velocity (m/s)");ylim([-1le-3
2e-3]D)
subplot(413);plot(simoutfd(1:n030,1),simoutfdn(1:n030,9),"-
" ,simoutfd(1:n030,1),simoutfd(1:n030,9),"--
" ,simoutff(1:no30,1),simoutffF(1:n030,9),"-0");grid;legend("Decen-
n®,"Decen-rr*,"rrLQR");
title("");xlabel("");ylabel ("Abs Acc (m/s/s)");
subplot(414);plot(simoutfd(1:no30,1),simoutfdn(1:n030,11), " -
" ,simoutfd(1:n030,1),simoutfd(1:n030,11), " —-
" ,simoutff(1:n030,1),simoutff(1:n030,11),"-0");grid; legend("Decen-
n®,"Decen-rr*,"rrLQR");
title(" ") ;xlabel("time(s) ");ylabel ("Control (V) ");%ylim([-1 1])

disp("Nominal FOM™);
figure;
subplot(411);plot(simoutfd(1:n030,1),driftfndn(1:n030,2),"-
" ,simoutfd(1:n030,1),driftfnd(1:n030,2),"--
" ,simoutff(1:n030,1),driftfn(1:n030,2),"-.");grid; legend("Decen-
n*,"Decen-rr*,"rrLQR");
title(" ") ;xlabel("");ylabel ("Drift (m)");ylim([-5e-5 5e-5])
subplot(412);plot(simoutfd(1:n030,1),driftfndn(1:n030,4),"-
" ,simoutfd(1:n030,1),driftfnd(1:n030,4),"--
" ,simoutff(1:n030,1),driftfn(1:n030,4),"-.");grid; legend("Decen-
n®,"Decen-rr*,"rrLQR");
title(" ") ;xlabel("");ylabel ("Drift velocity (m/s)");ylim([-
0.5e-3 1e-3])
subplot(413);plot(simoutfd(1:no30,1),simoutfndn(1:n030,9), -
" ,simoutfd(1:n030,1),simoutfnd(1:n030,9), " —-
" ,simoutff(1:n030,1),simoutfn(1:n030,9),"-.");grid;legend("Decen-
n®,"Decen-rr*,"rrLQR");
title("");xlabel("");ylabel ("Abs Acc (m/s/s)");
subplot(414);plot(simoutfd(1:no30,1),simoutfndn(1:n030,11), " -
" ,simoutfd(1:n030,1),simoutfnd(1:no30,11),"--
" ,simoutff(1:n030,1),simoutfn(1:n030,11),"-.");grid; legend("Decen-
n®,"Decen-rr*,"rrLQR");
title(" ") ;xlabel("time(s) ") ;ylabel ("Control (V) ");%ylim([-1 1])

end
end
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Chapter 2

APPENDIX: SIMULINK DIAGRAMS

Global FOM under Decentralised Nominal controls
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Chapter 3

Global FOM under Robust Reliable Optimal controls
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Chapter 4
Global FOM under Decentralised Robust Reliable controls
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Robust Model Reduction

80bjectives

1. Derive effective reduced-order model (ROM) for desired DOFs

2. Equivalent responses at desired DOFs of ROM to actual full-order model (FOM)
with system uncertainties

3. Retain modal characteristics of FOM within ROM

4. Robust input-output decoupling into equivalent subsystems with physical outputs
under equivalent disturbances
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8Derivation of equations of motion
Using Principle of Virtual Work assuming conservation of energy,
External work done on element = Internal work done by element

subjected to the equilibrium criterion by the Theorem of Minimum Work:
Element deformation to keep strain energy minimum

Stress equations of motion:

oy + fi = pli; where i is the plane of orientation and j is the direction

Charge equation of electrostatics:

Di,i =0

where o, f, p, u, D are stresses, body forces, density, displacement and electric flux
density

ij,i

Giving: [(oy; - pii,)du;dV + [(D; ;54)dV, =0
\% Vp

Where ¢ is electric potential, V is the material volume and V, is the piezoelectric
volume

Applying the divergence theorem,
j(puj5uj)dv +J.(pij5dj'i)dV + j(Di5¢,i)o|vp = j(niaijauj)dm j(niDi5¢)o|Ap
\% \% A

Vp Ap

Strain vector & can be denoted by the engineering strain tensor g; as

Substituting &; =%(ui'j +U;;) and E; =—¢, gives
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[ (pti;0u,)aV + [ (o0e,)dV - [(D,GE AV, = [(T,ou;)dA+ [(Qdg)dA,

v v Vp A Ap

where T; are the tractions applied on the surface A and Q is the electrical charge
applied on the surface of the piezoelectric A,

Nodal forces are included within the integral of external forces.

§Structural Mechanics (Meirovitch 2000)

Any continuum structural mechanics involves the formulation and solution of
equilibrium equations, constitutive stress-strain relations and kinematic strain-
displacement relations subjected to the constraints of boundary conditions and
compatibility.

In statics, two approaches are widely-used for structural analysis - differential
equation approach and variational mechanics approach. Of these, the most popular is
the displacement method of FEA and its corresponding principle of minimum
potential energy.

In dynamics, the dynamic forces or kinetic energy has to be accounted for. Using
D'Alembert's principle, dynamic problems can be solved in Newtonian form with the
addition of resultant dynamic forces to the static formulation. Hamilton's principle is
applied to generalise the approach for any conservative coordinate system. In the
most general form, the extended Hamilton's principle can be applied for the
combination of conservative and unconservative systems.

8Fundamentals of Finite Element Method

Discretization of structure into distinct elements interconnected by nodes where
compatibility is assumed and equilibrium is imposed. In this study, a regular static
mesh is assumed.

Nodal-interior displacement relationship using shape function:

{u} ={NHs}

where u is the elemental interior displacement, N is the interpolation shape function
and ¢ is the nodal displacement which would be derived by controlled dynamic
solution.

The elemental global coordinates are in x and y. Isoparametric element in local
coordinates & and n is used together with the Lagrange polynomial:

Lnodes—l — (é_51)"'(5_§|71)(§_§|+1)"'(§_§n)
! (6Z| _51)---@1 _fl—l)(gl _‘§|+1)---(‘§| _fn)

where nodes is the number of nodes per element, | is the interpolation from each node
of the element.

Strain-displacement relationship is

{¢}={BHs}

where B is the strain-displacement matrix derived by appropriate derivative of the
shape function, assuming that & is constant for the present time step.

The electric field across the member and into the plane is
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{E} ={AH®}
where E is the electric field column vector in three orthogonal directions, A is the
field-potential matrix and @ is the electric potential.

Using extended Hamilton’s variational principle,
t2

S[(T-U+W)dt=0
t1

where T is the kinetic energy scalar, U is the potential energy scalar and W is the work
done by external sources.

The equilibrium equation for a piezoelectric-coupled element is:

R i e

0 0f]-o 0 0fj-d| Ky Kyl-@ F,

where My, is the structural element mass matrix, C,, is the structural element damping
matrix, Ky, is the structural element stiffness, K,4 & Ky, are the piezoelectric element
coupling matrices, Kgs is the dielectric element matrix, Fy, is the mechanical nodal

load vector, Fq is the electrical nodal charge vector, & is the mechanical nodal
displacement vector and ¢ is the electrical nodal potential vector.

The elemental consistent mass matrix is
{M.}=[(eNTN)dV
\Y

and the diagonal lumped mass matrix is derived by summing each row elements into
each diagonal element.

The structural element stiffness matrix is
{K,,}=[(BTCB)dV
\Y

with the orthogonal properties "M, 7 =1 and 'K,z =A, where y is the basis
of eigenvectors and A is diagonal matrix of eigenvalues in the order of y.

Rayleigh (classical) damping is assumed for structural element damping matrix to
inherit orthogonality:
{Cuu} = OC{M uu}+ ﬂ{Kuu}

where « and S are the mass and stiffness weightings respectively.

§Equation of motion
The elemental equation of motion is

M HXH{C L HX I +{K HX ) = {f F+{K  HD,,
where X. is the elemental nodal displacement vector, @, is the elemental actuator
potential and f, is the elemental nodal load vector.

By appropriate ordering of all elements of the global structure, the structural equation
of motion under ground excitations and actuated by axial and bending moment control
IS
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. . [
IMHXFHHCHXFHKHX}={F}+{M }—{M }{0}(2}+{Wf}={F}

where
XI={OH B ={x1... % 61... 6.} is structural displacement vector in global coordinates
with n global nodes

M,
{M}{ 0 [M]

matrix and M, the global moment of inertia

C is the global damping matrix

K is the global mechanical stiffness matrix

ws is the global wind load vector, which is assumed zero

{7} is the seismic ground acceleration

{F} is the global shearing force applied by the stacked actuators
{M,} is the global moment applied by the stacked actuators

{F} is the lumped global external force vector

} is the square composite mass matrix with My, the global mass

§System description
Equation of motion of coupled global linear uncertain system of FOM is:

(M +AM )X +(C+AC)X +(K +AK)X = F

This represents a set of N linear coupled equations in N global degrees of freedom in
the FOM which is assumed to be the exact representation of the actual structure. Note
that X (&,t) is a function of both space and time.

8Global system uncoupling for classical damping (Sestieri 2000)

Following the modal synthesis method for the direct problem (Sesteiri 2000), make
this assumption:

X(¢,t) =¥(S)a(t)

that X (&,t) is variable separable into the linear combination of a spatial component
Y (&) and a time-varying component q(t).

8Nominal system uncoupling

Consider the nominal system only with global equation of motion:
MX +CX +KX =F

Make the following assumption: X (&,t) = #(&£)q(t)

For the undamped homogeneous problem: MX + KX =0

Solve the eigen-problem: (K — M )p=0

To derive the natural frequencies and modeshapes: A = diag{®,”, &, ....@,°} and

¢ = [¢1¢2¢N]

Modal orthonormal conditions transform the nominal coupled equation of motion into
uncoupled system:

G+ CH+AG=9g"F
where ¢'C¢ = diag{2¢,@,},i=1,2,...,N.
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Consider the full coupled uncertain system:

(M +AM)X +(C+AC)X +(K +AK)X = F

Applying the assumed X (&,t) = ¢(&)G(t), derive the following coupled system:
(I +AI\7I)§+(¢TC¢+AC3)§+(/A\+AK)G =¢'F

where AM = ¢"AMg, AC = ¢"AC¢ and AK = ¢" AK¢ are still coupled. This
implies that the time-varying component is also spatial-varying, i.e. G(&,t).

8System uncertainties uncoupling
Apply same modal synthesis only to the coupled system uncertainties as the nominal
system. Make the following assumption:

4.t =4(a)

Consider the undamped homogeneous problem:

(I +AI\7I)G+(/A\+AI€)G:O

Solve the eigen-problem:

A+ AR )- 21+ aM ) — 0

Derive the natural frequencies:

A =diag{w,’,0,’,...,0,"}

and modeshapes:

¢ = [¢1¢2 ¢N ]

for uncoupling the coupled system uncertainties.

Modal orthonormal conditions transform the coupled system uncertainties into the
uncoupled system:

G+Cq+Aq=¢"¢"F

where 5T(I +AI\7I)¢7 =1,C =¢7T(¢TC¢+A6)¢7 and A:JT(/A\JrAK)q;.

8Full global uncertain system uncoupling

With (M +AM )X +(C + AC)X + (K +AK )X = F , assume X (&,t) = W(£)q(t) , then
the uncoupled uncertain system with N uncoupled equations is:

G+Cq+Aq=""F

with natural frequencies A = diag{w,’,®,’,...,», "} and modeshapes

Y (&)= ¢(§)¢7(§) with general element v, = ZN:¢”(Z,S aswell as C = diag{2¢,m,},

i=1,2,...,N.
Note that the above decoupling is exact w.r.t. the FOM and no modal truncation has
occurred yet.

8§Dynamic model reduction

Static reduction (Guyan 1965) enables exact model reduction in statics or zero
frequency only. Errors would accumulate towards non-zero and higher frequencies.
Hence, dynamic reduction techniques are required. These are comprised of modal
synthesis techniques and frequency response function (FRF) approaches (Sestieri
2000). Modal synthesis has the advantages of good accuracy at lower modes and
being more computationally efficient, but has the disadvantage that accuracy
deteriorates towards higher and neglected modes. FRF approaches have the
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advantage of better dynamic characteristics across desired frequency range than
modal synthesis, but have the disadvantage of computational inefficiency. In this
study, the modal synthesis method is chosen for both its simplicity and effectiveness
at lower modes especially required in seismic vibration control.

The Improved Reduced System (IRS) method (O’Callahan 1989) adds an extra term
to static reduction to transform the neglected inertia forces. The System Equivalent
Reduction Expansion Process (SEREP) (Kammer et al 1987) is a reduction
transformation based on a subset of the modes of the full-order model with the
selected modes at the retained degrees of freedom. The iterated IRS (Friswell et al
1998) is an iterative scheme for improving IRS and is proved to converged into the
SEREP transformation. The dynamic condensation method (Qu et al 2001) is also an
iterative method for deriving the reduction factor in the transformation in relation to
the physical space of the actual model. However, the above does not directly address
the modal excitation influence on the reduced model and some require iterations.
Hence, the model reduction technique based on new modal participation factors
(Nishitani et al 1998) is used.

8lterative dynamic condensation method (Qu 2002)

Consider the nominal system only with global equation of motion:

MX +CX + KX =F

where C is the classical damping matrix diagonalisable by mode decomposition:
C=aM + K

In model reduction, the total DOFs in X can be split into master (retained, kept) DOFs
Xm and slave (deleted) DOFs X:

Mmm Mms Xm + _Cmm Cms Xm + Kmm Kms xm _ Fm

_Msm Mss_ Xs _Csm Css Xs Ksm Kss Xs - Fs

It can be proven that C does not affect dynamic condensation matrix which is also
independent of the external force Fs. Hence,

Mow Mo [ X0l [Kan  Kas [[Xn] _[Fa

_Msm Mss_{xs}+_Ksm Kss}{xs}_{o}

Expanding the second row gives:

X, =K M X, +M X, + K X,)

Assume:

X =0and X, =0

Then:

X, =-K 'K, X =ROX_

where R = —K_"'K_ is the Guyan (1965) static condensation matrix which is

exact only for static problems with heavy dependence on the selection of X, &
decreasing accuracy and increasing reduction errors as structural natural frequencies
increase.

The reduced model is given by:

MPX, +COX, +KPX, =F

where the reduced system and excitation matrices are as follows:

M I(QO) =M mm T [R(O)]T Msm +M msR(O) + [R(O)]T M ssR(O)
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KF(QO) = Kmm +[R(O)]T Ksm + KmsR(O) +[R(O)]T KSSR(O)
FO =F, +[ROTF,

In order to recover the dynamic properties lost in static condensation to improve
accuracy and reduce reduction residual, the condensation matrix R®, i=0,...,N (N is
the desired terminal iterative step) is modified as follows:

Free vibration of the undamped reduced model is:

MOX, +KPX, =0

Hence,

X, =-MOT'KOX,
Differentiating twice X,:

X, =ROX

__ROMOTKOX,

Replacing the assumptions of X =0 and X, = 0 with the above into:
X, =K M, X, +M X, + K, X,,)

This gives:

X, = Kss‘l{[M w M ROIMOT KO —K }xm

Hence, the iterated dynamic condensation matrix R®, i=0,...,(N-1) is as follows:
i+ - i iy [2
R(( V= Kss 1{[Msm + MssR()IM F(z)] KF(QO) - Ksm}
Repeat iteration to desired degree of accuracy, then the dynamic reduced model is:
M éi“’l) X + Cé”l) X +K éi+l) X = FREHl)
m m m
where the final reduced system and excitation matrices are derived as above.

Note that the above iterated dynamic condensation scheme (Qu 2002) is similar to the
iterated LTR procedure for the recovery of LQR properties for LQG controllers. The
iteration can be replaced by optimal recovery to pre-specified desired degree of
accuracy using optimal control techniques (Chen et al 1991, Chen 2002 course).

8Dynamic model reduction (Nishitani et al 1998)

Consider the uncertain system with global equation of motion:

(M +AM )X +(C+AC)X +(K +AK)X = F

Assume that the retained master degrees of freedom is X, = [X], s=1,....S, where S
is the maximum number of master DOFs. Assume that the lowest S modes are chosen
to be retained.

Let r e R, where R is the set of retained DOFs.

Let s e 2, where u is the set of retained modes.

Partition the modeshapes of the full-order system:

\P — |:‘//rs lr//rs:|
l//Fs l//ﬁ

Perform modal truncation by retaining vy, .
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Using the dynamic property for every r:

DBy =1

Derive the new participation factors g, .

Use the derived ., find the reduced-order model modeshapes ¥ = {7, }:

v, = By,

Then, the reduced-order uncertain system is:
M, X, +C, X, +K X, =F,
where

For a controlled uncertain system:
(M +AM )X +(C +AC)X +(K +AK)X = (b +Ab)u + F
where control input is u € R™, nominal control location matrix b and variation is Ab.

The full-order uncoupled uncertain system is:
G+Cq+Aq=F +¥" (b+Ab)u

The reduced-order uncertain system is:
M, X, +C, X, +K X, =F +b,u
where

b, = (¥ )W (b+Ab)

8Model reduction using force-dependent Ritz vectors (Chopra 1995/2000, Soh &
Law 2001)
Consider the nominal system only with global equation of motion:

MX +CX +KX =F

where F(t) = SZ,(t), S is the seismic force distribution vector and Z is the seismic
acceleration.

Let X (&,t) = D(E)G(t), where (&) e R™ s the transformed spatially-varying
modeshape matrix and (t) is the time-varying vector.

8Generation of force-dependent Ritz vectors with Gram-Schmidt
orthogonalisation (Chopra 1995/2000)
Apply the following procedure to derive ®(&) for the retention of the lowest r modes:

Determine the first Ritz mode-shape vector ¢,:

Derive virtual displacement vector y; by solving:
Ky, =S
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Perform normalisation to be mass orthonormal to derive the first mode-shape vector:

4, = Y1
l (le My, )1/2

Determine the other Ritz mode-shape vectors ¢, , i=2,...,r:

Derive virtual displacement vector y; by solving:
Ky; = Mg,

The virtual displacement vector y; is composed of a vector q;i to be determined and a
linear combination of previous mass orthonormal Ritz vectors ¢, , j=1,...,i-1:

~ i-1

Yi = ¢i + z aji¢

j=1
where a;; is determined using modal orthogonality property such that:
a; = ¢jT My,
Then vector ¢3i iS given by:
. i-1
¢i =Y - Zaji¢

j=1

Perform normalisation to be mass orthonormal to derive the ith Ritz mode-shape
vector:

A~

¢,
=7
™)
Assembling:
o) ={s} i=1,...r.

The transformed system is:
MG+Ca+Kg=F
where

M =® M is coupled and non-diagonal, hence apply Ritz vector generalization
again for diagonal ROM mass

C=0TCd is diagonal for classical damping, but non-diagonal for non-classical
damping, where off-diagonal terms need to be accounted for

K=d KO

F=0O'F

Transform ¢(t) into the actual reduced displacement X,(t):

X, (t) =@ .4(t)

where @, is sub-matrix of (&) that corresponds to the reduced-order degrees of
freedom.

§Uncertain systems
Consider the uncertain system with global equation of motion:

(M +AM )X +(C+AC)X +(K +AK)X = F
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If the variation matrices can be measured or specified, the generalized Ritz vector
method can be performed first on the nominal system, then again on the system
uncertainties using the nominal transformation Ritz vectors. Since the uncertain
system is still not mass normalised, perform the method again on the system
uncertainties and combine accordingly as done in Sestieri 2000.

If the variation matrices are arbitrary, the nominal transformation Ritz vectors would
serve as approximation and there would not be mass normalisation. However, if the
variations are bounded, the sensitivity error can be minimised with approximate mass
normalisation with robust transformation Ritz vectors.

Let the actual and Ritz approximated modal participation factors be T", and f“n for the
nth mode. Noting that:

S= il‘nM‘Pn ~ ianch
n=1 n=1

where f“n =¢,'S and J Ritz vectors are included.
Define Ritz approximation error for J Ritz vectors as:
J ~
E,=S-) T ,MO,
n=1
Use the error norm as a measure of the degree of Ritz approximation:
S'E,
e, =—
S'S

8Selection of master DOFs (Qu et al 2001)

Note that the selection of the reduced degrees of freedom significantly affect the
accuracy of the reduction. The retained (master) degrees of freedom must satisfy the
following conditions: low stiffness-to-inertia ratios, controlled by actuators, observed
by sensors and/or be of interest to active control (Qu et al 2001). The first condition
shows the structure design would influence model reduction. The second and third
conditions highlight the need for good or optimal placement of sensors and actuators.
The last condition would relate to the active control specifications.

8Optimal Sensor and/or Actuator Selection and Placement (Roh et al 1997, Lim
1997, Abdullah et al 2001)

The problem of sensor and/or actuator selection involves determination of a suitable
measure of optimality and the constraints which include the number of available
sensors and actuators, the geometry and capacity as well as the feasible placements.
These can be performed sequentially or simultaneously for sensors or actuators or
both. Normally, the placement problem is treated together with the minimisation of
the control gains.

For discrete placement of sensor/actuator pairs, assumed to be collocated — i.e.

C =B", Abdullah et al 2001 has studied this with GA together with optimisation of
LQR control gains. The optimality measure is the trace of LQR ARE solution. Roh
et al proposed the novel modal degree of controllability (MDOC) as the optimality
measure which minimises the control energy required and interpreted as the relative
regulation performance for a specific mode. The above studies address the
optimisation on the time domain. Lim 1997 has proposed a novel placement strategy




Appendix: Robust Model Reduction 175

based on the Hankel singular value (HSV) weighted by disturbance rejection
specifications associated with all combinations of sensor-actuator pairs. A placement
selection table based on the HSV performance measure can be constructed and used
for optimal selection of either sensors or actuators or both.




