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Summary

There are two main contributions in this thesis, namely: (i) improving the accuracy of the Boundary
Element Method (BEM) in the analysis of electrostatic problems by using singular boundary elements,
and (ii) developing a fast algorithm, namely the Fast Fourier Transform on Multipoles (FFTM) for

rapid solution of the integral equation in the BEM.

It iswell known that the electric flux or surface charge density can become infinite at sharp corners and
edges, and standard boundary elements with shape functions of low order polynomials fail to produce

accurate results at these singular locations.

This thesis describes the formulation and implementation of new singular boundary elements to deal
with these corner and edge singularity problems. Thesesingular elements can accurately represent the
singularity behaviour of the edges and corners because they include the correct order of singularity in
the formulations of the shape functions. The main contribution here is the development of a general

methodol ogy for formulating singular boundary elements of arbitrary order of singularity.

It is demonstrated that the use of the singular elements can produce more accurate results than the
standard elements. Furthermore, it is also shown to be more accurate than the “regularized function
method” (for two-dimensional analysis) and h- mesh refinement method (for three-dimensional
analysis). The singular elements are also used in electromechanical coupling simulations of some
micro-devices. It is observed hat using the singular elements gives rise to larger deformation in
comparison to the standard elements. This indicates that ignoring the corner and edge singularities (as
in standard elements) in the electrostatic analysisis likely to underestimate the true deformation of the
micro-structures in the simulations. However, in terms of the pull-in voltage, the effect of the singular

elementsislesssignificant due to the pull-in phenomenon.

BEM generates a dense linear system, which requires O(na) and O(nz) operations if solved using

direct methods, such as Gaussian Elimination, and iterative methods, such as GMRES, respectively.

This obviously becomes computationally inefficient as the problem size n increases.

Vi



In this thesis, a fast algorithm, called the Fast Fourier Transform on Multipoles (FFTM) method, is
proposed and implemented for the rapid solution of the integral equation in the BEM. The speedup in
the algorithm is achieved by: (i) using the multipole expansion to approximate “distant” potential

fields, and (ii) evaluating the approximate potential fields by discrete convolution via FFT.

It is demonstrated that the FFTM provides relatively good accuracy, and is likely to be more accurate
than the Fast Multipole Method (FMM) for the same order of multipole expansion (at least up to the
second order). It is also shown that the FFTM has approximately linear growth in terms of
computational time and memory storage requirements. This means that it is as efficient as existing fast

methods, such as the FMM and precorrected FFT approach.

Vii
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Chapter 1: Introduction

I ntroduction

In the computational arena, researchers strive continuously to improve numerical simulations, both in
terms of accuracy and efficiency. The needs for better performance in numerical simulations are
forever in demands, as their roles in the design and development of new products become more
important. This is further promoted by the rapid increases in the size of the problems people are

solving.

One typical application is the simulations of Micro-Electro-Mechanical Systems (MEMS), also known
as Micro-System Technology (MST). MEMS is a new process technology, device concept and
application that generates new markets for the field of integrated micro-sensors and micro -actuators.
Some existing MEMS devices are pressure-sensing devices, inkjet print heads, airbag accelerometers,
micro-gyroscope, micro-optical devices, micro-fluidic systems and micro-actuators/motors. Every new
MEMS product is essentially a research project that has a long and expensive development cycle. To
improve on the situation, Computer-Aided-Design/Engineering (CAD/CAE) tools are often used [1-3],

which help MEMS designers to explore the unknown in hours instead of months. Some of the existing
b
design tools that are specially developed for MEMS designs are MEMCA D [4-6], IntelliCAD [7] and

SOLIDIS [8].

This thesis investigates the physical simulations of multiple coupled energy domains, where the two
coupling domains are the electrostatics and mechanical domains. Coupling arises when electrostatics
forces, which are generated by the applied electrical voltages, deform parts of the structures that in turn
induce mechanical restoring forces within the structures. Electromechanical coupling analysis is
required to solve for the self-consistent state, where the electrostatics forces counter-balance the
mechanical forces [9-15]. Boundary Element Method (BEM) is often employed to solve the
electrostatics analysis, whereas Finite Element Method (FEM) does the mechanical analysis. In this

study, we aim to improve the el ectrostatics analysis, both in term of the accuracy and efficiency.

Z MEMCAD. Conventor Inc., 4001 Weston Parkway, Cary, NC 27513. 1
IntelliCAD. IntelliSense Corp., Wilmington, MA 01887, USA.

‘SOLIDIS. ISE Integrated Systems Engineering AG, Zurich Switzerland.



Chapter 1: Introduction

1.1  Improving Accuracy of Electrostatics Analysis

The first part of this thesis aims to improve the accuracy of the electrostatics analysisin MEMS device

simulations. Generally, the major sources of errorsin BEM are:

D Modeling errors - Due to the simplifications made when transforming real physical problems
into numerical models. They can occur in geometrical modeling, applied boundary conditions

and material properties.

(2 Implementation errors - They arise from the numerical techniques used in the implementation
of BEM. One such error is due to the numerical integrations of the boundary integrals,

especially dealing with the singular integrals.

3) Discretization errors - This contributesto significant errorsin BEM analysis, which consist of
geometrical and variable discretization errors. The former is due to partitioning of boundary
domains into many smaller panels/elements, which in most cases do not represent the original
domains exactly. On the otherhand, variable discretization error arises because the basis
functions used for the variables (usually of low order polynomials) cannot adequately describe
the true solution. This is especially significant when the problem contains singularity
solutions, such as in fracture mechanics [16-23], and corner singularities in potential problems

[24-36).

This thesis aims to reduce the third source of errors, specifically to deal with the singularities that arise
from sharp corners and edges of electrical conductor [24, 25, 34]. In this thesis, we have adopted the
singular element method. Hence, the objective for the first part of the thesis is to develop and

implement singular boundary elements for two and three-dimensional electrostatics analysis.

1.2  Improving Efficiency of Solution Method

It is well-known that BEM generates a dense linear system, which requires O(n3) and O(nz)
operations if solved using direct methods, such as Gaussian Elimination, and iterative methods, such as
GMRES [37], respectively. This obviously becomes computationally inefficient when the problem

size n increases. Recent developments in the solution of dense linear system utilize the matrix-free

feature of the iterative methods, which only requires computing matrix-vector products that can be seen
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as a potential evaluation process. This important observation has led to the developments of numerous
fast algorithms. In general, these fast algorithms work by classifying the potential contributions into
“near” and “distant” regions, where the “near” contributions are computed exactly as in standard BEM,
while the “distant” ones are approximated. The various algorithms differ in the way the “distant”

potential contributions are computed. Two such fast agorithms are the Fast Multipole Method (FMM)

[38, 39, 40, 41, 42, 43, 44, 45] and the precorrected-FFT approach [46, 47, 48].

In this thesis, we propose an alternate fast algorithm that can also evaluate the dense matrix-vector
products rapidly. The core of the method lies on recognizing the fact that potential calculations using
multi pole expansions can be expressed as discrete convolutions, which are computed rapidly using Fast
Fourier Transform (FFT) agorithms [49]. We refer to it as the Fast Fourier Transform on Multipoles
(FFTM) method. Hence, the objective of the second part of the thesis is to develop and implement

FFTM for solving large three-dimensional el ectrostatics problems using BEM.

1.3 ThesisOrganization

This thesis comprises of two main parts. Chapters 3 to 5 are concerned with improving the accuracy of
the analysis, by using singular boundary elements. On the other hand, Chapters 6 and 7 discuss
improving the computational efficiency for solving the dense linear system generated by BEM, with

the development of FFTM.

Chapter 2 begins with an overview of the implementation of BEM for solving electrostatics problems.
Chapter 3 reviews on the existing methods that were employed to improve the BEM accuracy.

Chapters 4 and 5 describe the implementation and application of the singular element method in two
and three-dimensional electrostatics analysis, respectively. Both chapters begin with discussions on the
nature of the singularity problem. This is then followed by the formulation of the singular boundary
elements. The numerical techniques that are employed to evaluate the boundary integrals are also
discussed. Some examples are then solved to demonstrate the significant improvement in the accuracy
achieved by using the singular boundary elements. Finally, concluding remarks are given at the end of

both chapters.

In Chapter 6, we review some existing fast methods for solving large dense linear system of equations.

This discussion leads to Chapter 7, the main text of the second part of the thesis on the development of
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an alternate fast algorithm, namely FFTM. It begins with a detailed description of the algorithm, which
is followed by a simple complexity analysis. It isthen applied it to solve some numerical examples to
investigate the accuracy and efficiency of the method. Last but not least, in Chapter 8, we summarize
the main ideas and major contributions of this piece of work. Some recommendations on the future

work are also discussed in the chapter.

This thesis also includes several appendices, which are denoted alphabetically. Appendix A describes
the iterative solution method for dense linear system, namely GMRES, which is used extensively in
this thesis. Appendix B presents the closed form singularity solution for two-dimensional corners, and
also the numerical techniques used to determine the order of singularity for three-dimensional corners.
Appendix C discusses the numerical integration techniques used to evaluate the singular boundary
integrals. Appendix D describes a preprocessing program, which is implemented to identify and
classify the singular boundary elements automatically. Appendix E briefly describes the solution
method for the electromechanical coupling analysis. Finally, the real-valued version of multipole
expansion is derived, and recursive formulas for the associated Legendre and trigonometric functions

aregivenin Appendix F.
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BEM for Electrostatics Analysis

Electrostatics analysis is performed to solve for the surface charge density distributions induced on the
conductors due to applied electrical potentials. They are then used to compute the capacitance and
el ectrostatics forces, which are very important in the functioning of many MEMS devices. Capacitance
sensors, such as pressure sensors, accelerometers and micro-gyroscope, require the capacitance to be
computed accurately. Similarly, accurate evaluation of electrostatics force is essential since it is the
driving force of many micro-devices, such as comb-drive actuators, micro-optical switch devices,

micro-pumps/valves and micro-motors.

This chapter begins with the formulations of Boundary Integral Equation (BIE), both in the direct and
indirect approaches. Although indirect BIE is very effective in solving exterior problems, where
problem domains are infinite or semi-infinite, care must be exercised when applying the appropriate
boundary conditions. This issue is discussed in Section 2.2. Finaly, an overview on the

implementation of the BEM is presented in Section 2.3.

2.1  Formulations of Boundary Integral Equation
The governing equation for the electrostatics analysis of electrical conductors embedded in an infinite
homogeneous dielectric, such as free space, isthe Laplace equation,

N2f (x)=0, xI W 2.1)
where f (x) is the electrical potential at point x, and W corresponds to the domain in which (2.1) is

satisfied. The following sub-sections discuss the formulations of the BIE for (2.1).

211 Direct formulation by weighed residual technique
The direct boundary integral equation (DBIE) formulation, derived using weighted residual technique
together with Divergence theorem and Green’s identities, can be found in many BEM textbooks, such

as[50, 51]. DBIE for potential problem is generally given by
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where x and x{ denote the field and source points, respectively, and a(x) is generally known as the
jump term, which arises when x is moved to the boundary and is dependent on the geometry of the

boundary at x. G(x, x(l) isthe fundamental solution for potential problems and is given by

_1 1 .
G(x, xﬂ)— » In ||x - X‘H , for 2D analysis.

. (2.3)

R}

for 3D analysis.

where |x - x{ is the distance between point x and x¢. The second integral on the right hand side of

(2.2) exists only in the sense of Cauchy Principle Value (CPV) when x = x{. Generally, this integral
together with a (x) can be obtained indirectly by using the constant potential condition (analogous to

therigid body motion condition in elastostatic problem).

Although DBIE is widely regarded as the standard BEM formulation, it is not efficient in solving
exterior problems, as it requires a bounded problem domain. This implies that an artificially large
boundary is needed to represent the infinite boundary, which increases the problem size significantly.

Hence, for exterior problems, it is preferable to employ theindirect formulation.

212 Indirect formulation using surface layer sources

There are two possible kinds of sources that can exist on the surface of the electrical conductors when
subjected to applied potentials. They are the single layer (surface charge) and double layer (dipole)
sources. For purely Dirichlet problems, only the single layer source exists. In this case, the potential at

any point x in the problem domain Wis given by the Fredholm integral equations of the first kind,

f(x)= & (xd)de(xd), xi W 2.4)

where s (x@ is the surface charge distribution on the boundary G. Equation (2.4) is essentially based

on the principle of superposition, which states that the potential at X is generated by summing the
effects from all the surface charges that exist in the domain. Indirect boundary integral equation

(IDBIE) is then derived from (2.4) by taking point x to the boundary G, which is done in a limiting
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process (see appendix of [45]). This process however does not alter the governing equation, that is,

(2.4) is still valid when x is on the boundary.

213 Indirect formulation derived from direct formulation
This alternate formulation is presented because it reveals an important issue regarding the use of
IDBIE, which isnot obvious from (2.4). That is, (2.4) alone does not govern the electrostatics problem

completely.

For electrical conductors, the surface charge density is related to the normal potential flux by the

following relation,

)
s (x)=e o (2.5)

where e is the dielectric constant of the medium. For uniform Dirichlet problems, (2.2), after

substituting (2.5) and assuming e= 1.0, can be rewritten as,

8

a(x)f (x)= &

ol b -, 1S

G G

+§63(x, s (oot 1, o gl

G

IS
O O

(2.6)

FTo: gl

Q

where f, and G denote the potential and boundary of the i-th conductor, for i=1...m, respectively,
while f, and Gy corresponds to that on an artificially large surface that approximates the boundary at

infinity. By using the constant potential condition, the jump term is derived as

a00=-& 28 aefeg- T gopug o
=g S

Note that when x fals on the i-th conductor, the contributions from the other conductors to (2.7) are
zeros, and that from G is equal to -1. This observation comes from the property of the Green's
function, which states that

IG(x, x i-1 if xT W, apropertyof
: ( ©dG(X©: :

i
i . . . (2.8)
In 10 otherwise Green'sfunction

G [}

where W, corresponds to close domain bounded by i-th conductor’s surfaces, and since x always falls

within the domain bounded by G, hence its contribution is-1.
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It is also noted that

lim  &3(x, xds (x9ddx9 » G, (x,xd)c‘f(xd)de(x@:o (2.9)

|x-xffe ¥ S
since Gy (x, x4 ® Oas||x- x4, ® ¥, and (g (x§d&(x9 is afinite quantity as explained as follows.
G,

For a closed system, the total charges induced on the surfaces of the conductors and the infinite

boundary must be conserved, that is

& & (xddclx9+ &5 (xddax9 =0

o (2.10)
P a ¢ (x9ddx9=- ¢ (xgddx9=Q
mlg, G,

where Q is the total induced charge on the conductors' surfaces only, which is equal in magnitude to

the total charge induced on the infinite boundary.

Hence, combining (2.6) to (2.9), we obtain

f(x)-f, =& gBlx, xds (xgac(xd (2.11)

=g
Unlike the IDBIE presented in Section 2.1.2, this approach leads to two governing equations, namely
(2.10) and (2.11), that must be satisfied for exterior potential problems. However, there are three
unknowns (s, Q and f , ) in the two equations, which renders the problem undetermined. In order to
resolve the problem, either Q or f, need to be specified as applied boundary condition to eliminate

one of the unknowns. This issue on the appropriate choice of boundary conditions is discussed in the

following section.

2.2  Boundary Conditionsfor Exterior Problems
221  Potential at infinity iszero, f, =0
For a system of m conductors, each at potential of f, and with charge Q;, for i=1...m, the electrostatics

potential energy can be expressed in terms of the potentials and capacitance [52]. The capacitance
defines the ability of the conductors to store electric charges. For a given configuration of conductors,

the total charge induced on i-th conductor isrelated to the potentials and capacitance by
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Q=4Cf,, i=l.m (212)
j=1

where C; corresponds to the self-capacitance, and C; are the induced capacitance that represents the

capacitive coupling between conductorsi andj, wherei, j=1...m,and i * j.
Suppose theinfinite boundary is also regarded as a conductor, then (2.12) becomes

Q=3 C,f, +Cuf,, i=Ll.m (213

j=1
where C,, istheinduced capacitance of the infinite boundary with respect to the i-th conductor. To

determine the self-capacitance C, , a unit voltage is applied on conductor i, while the others are set to

zeros (including the infinite boundary, that is, f, =0). From (2.13), the positive charges induced on

conductor i is equivalent to the self-capacitance of the conductor for the given configuration of
conductors, while the negative charges on the other conductors correspond to the induced capacitance.

Notice that by settingf, =0, (2.11) isreduced to (2.4).

222 Total induced chargeon infinite boundary iszero, Q=0
In most electrical circuitry, potentials are defined in a relative sense, usually with respect to the ground
that is assumed to be zero. Hence, (2.4) cannot be used directly since it only computes absolute

potential, which is usually not given. In other words, the assumption that f, =0 may not be

appropriate. In this case, one possible solution isto set Q = 0, implying that no electrical fluxes that
emit from the conductors can reach the infinite boundary. This assumption is obviously more
appropriate for problems where the conductors are packed closely together. One such scenario is when
a system of conductors is placed over an infinitely large planar ground. This can approximately be
seen in many MEMS devices, where microstructures are suspended over a large substrate (usually

grounded).
For such problems, the computational cost can be reduced significantly by using the method of images
[52] with the grounded plane placed at X,=0. This approach is based on the principle of superposition,

where the potential above the ground plane is induced by two sets of charges; namely the actual

charges above the ground plane, and its image charges that are mirrored about the ground plane. By
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setting the potential at the ground plane to zero explicitly defined the datum for the potential. In other
words, the potentials at all other field points are relative potential with respect to this datum potential.

The potential at point x dueto aunit chargeat x¢is

_ 1
a )_4peJ(x1 - )"+ (% - x8)"+ (x - X8
1

apes|(x, - xg +(x, - xg) + (x, +xg)’

(2.14)

The first term corresponds to the effect due the actual charge at position (xl, X5, x3) , and the second

term is that due to image charge, which has an opposite charge polarity and at the mirror position
(xl, X, x3) Equation (2.14) is modified Green's function, which is useful in this scenario because it
removes the necessity to model the large planar ground at x,= 0. Hence, using the modified Green's

function, more realistic simulations of the MEM S devices can be performed at a reasonable cost.

2.3  Implementation of BEM for Electrostatics Analysis
This section briefly summarizes the implementation of BEM for electrostatics analysis. Generally, it
comprises of the following steps: 1) boundary element discretization, 2) choosing the BEM schemes,

and 3) solving the dense linear system of equations generated by BEM.

231 Boundary element discretization
The starting point of the discretization process consists of approximeating the boundary by a set of N
curves (two-dimensional) or polygons (three-dimensional), often referred to as panels or elements, such
~ NE
that G=UG!5 , is the approximated boundary. Both the geometry and variables of the boundary
e=1
elements are then approximated in the following form as
0. (x)= & . () (2.15)
where J, (x) are the basis functions, X are the nodal values at the k -th node of the element, and ne is

the number of nodes on the element. Note that the basis functions for the geometry and variables need

10
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not be the same. But when they are identical, the element is referred to as iso-parametric element.

Equation (2.15) can be written more compactly as
. &
i(x)=a a,Q (x) (2.16)
i=1

where O(X) is represented as a linear combination of a set of N linearly independent expansion

functions Q, (x) that isweighed by U, at N discrete points.

After the discretization process, the DBIE givenin (2.2) and IDBIE in (2.4) become

% “ﬂ—oq(x@e(x g
=f(x)- 2 s, Qr (x _r 9 X )
Rix)=f (x) Ga Qi ( ﬂ)4pe||x_ qulEGIG( 9 (218)

where QL(X), QE(X) and Q; (x) are the expansion functions of f , g ands , respectively, and R(x)
is the residual error function that arises from the approximations in the discretization process. For
well-conditioned problems, R(x) is a good measure of the discretization errors, and hence the next

step is to minimize it. The simplest approach to carry out this task is to use the point collocation

scheme.

232 Collocation BEM
In this approach, the residual isforced to be zeroat N pointsin the solution domain, usually chosen to

coincide with the interpolation nodes. Hence, the collocation BEM equations for (2.17) and (2.18) are

a(xi)(xi):'(‘ﬁkak( q) GX X dG(XG)

" (2.19)
* Cﬁ 6,Q! (xdo(x', X@dG 9, fori=12.., N
)= 5‘5. s, Qf (x————ddx9, fori=12.. N (2.20)

& k=1 4pe||x - X‘H

1
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233 Solving denselinear system of equations

After applying the collocation BEM scheme and the boundary conditions in (2.19) and (2.20), the

problem isreduced a dense linear system of equations

Ax=b 2.21)

where A is a fully-populated N x N coefficients matrix, X is avector that contains all the unknowns,

and b isaknown vector as aresult of the applied boundary conditions.

Solving (2.21) by direct methods, such as Gaussian Elimination, require O(N 3) operations, which is
computationally expensive if N exceeds several thousands. To improve on the situation, iterative
methods were developed [53, 54], which require only O(NZ) operations. Generalized Minimal

RESidual (GMRES) is one such iterative solver that is most suitable for solving dense matrix equations
generated by BEM. A comprehensive discussion and implementation of GMRES is presented in
Appendix A. The computational cost can be further reduced by utilizing the matrix-free feature of the
iterative methods, which only requires computing matrix-vector products that correspond to potential
calculations. This important observation has led to the development of numerous fast algorithms, such

as FMM [38-45] and precorrected-FFT [46-48], which is only O(N) or O(N log N). A more detailed

literature review on the fast algorithms is given in Chapter 6, and in Chapter 7, we present an alternate

fast algorithm, the Fast Fourier Transform on Multipoles (FFTM).
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Approachesto Improve BEM Accuracy

As mentioned in Section 1.1, one major source of error in BEM comes from discretization of the
variables. This error is especially significant when low order basis functions are used in the problem
that contains singular solutions. This chapter reviews on the approaches that were developed to reduce

this error.

Broadly speaking, the methods that were developed to improve the accuracy to singular problems can
be classified into three major groups, namely the mesh refinement techniques, the singular elements
and singular function methods. Mesh refinement techniques tend to be less accurate than the other two
methods, because they are not specially designed to deal with the singularity problem. Rather, it isthe
nature of the adaptive algorithms that reveal and treat the singularities indirectly. This means that they
require no prior information about the singularities, which is an advantage over the other two methods.
The singular elements and singular function methods require prior knowledge of the locations of the
singularity fields. In addition, they also need to know the actual singularity behaviors, in terms of the
order of singularities and the singularity profiles (corresponding to the eigenvalues and eigenvectors of
the eigenproblem that is associated with a given geometry). The singular element method usually
needs to know the order of singularity (eigenvalues) only, whereas the singular function approach also
requires the singularity field variations (eigenfunctions). In general, the inclusion of the eigenfunctions
by the singular function method can produce more accurate solutions. However, the difficulty to derive
these eigenfunctions has limited the extension of the singular function method to three-dimensional

analysis.

In the following sections, the three methods will be discussed in greater details. It is remarked the
literature review here is far from being a complete one. Nevertheless, it should provide readers with

good overviews of the three approaches.

13
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3.1  Adaptive Mesh Refinement Techniques

Adaptive mesh refinement techniques are iterative in nature, where one is often required to solve a

given problem a few times before attaining a good solution. In general, they comprise of the following

three processes:

(0] Error estimation process: This estimates the discretization error of the solution, and provides
an error indicator for the refinement process, which is also used as a termination criterion for
theiteration.

(i) Mesh refinement process: Thisimproves the solution by the h-, p- and r-refinement schemes,
or their combinations.

(iii) Adaptive tactics process: This determines the elements to be refined by using the error

estimator in (i), and the mesh refinement schemein (ii) is then carried.

Mesh refinement is an intensively researched area, especialy during the late 1980’s and the early
1990's. Readers are referred to [55-57] for more detailed reviews on this topic. The following sub-
sections briefly discuss the error estimations and the mesh refinement processes. The adaptive tactics
process is not further elaborated, since the adaptive algorithms follow naturally once the choices of the

error estimation and the mesh refinement schemes were made.

311  Error estimations

Residual error type

As mentioned in Section 2.3.1, the residual of the BIE, as given in (2.17) and (2.18), is a good
indication of the variables errors, and is often used to estimate the variables errors by assuming the
variations of the residual functions on the element [58-64]. Figure 3.1 shows the residual interpolation
function for the linear element used by Dong and Parreira [64], where the residual Rs is obtained by

applying the residual equation at the midpoint of the linear element.

R(5) = Rs(1-£2) s

1

2

= £=0 §=1
Figure 3.1. Residual interpolation approximation for linear element.

@
3
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I nterpolation error type

“Exact” solution is assumed to be that obtained by using higher order interpolation functions. The
error estimator is the difference between the numerical and “exact” solutions [65-67]. Consider a
simple example as depicted in Figure 3.2. Suppose f(x) is approximated by piecewise linear
interpolation functions defined at some discrete points. Then fitting a cubic interpolation function

through three adjacent points gives the estimated variable error asindicated by the shaded regions.

Variable
error
BEM solution using
linear interpolation

3 High order cubic
o« —— interpolation

_______________________________________

Figure 3.2. Error estimation by higher interpolation function.

Boundary integral equation error type
Suppose f and q’, and f and g denote the exact solutions and the numerical solutions, respectively.
Substituting both sets of solutions into the boundary integral equation associated with the collocation

point x", and taki ng the difference gives [57]

ali )= g kel - (g Iel X8 g @

G fn ¢

where g =f " - f and €, =q - § arethe variable errors. Equation (3.1) is the BIE for the variable

errors. Hence, it can be solved using BEM if the residual of (3.1) is known or approximately

computed. Kawaguchi and Kamiya[68] presented a sample point error analysisto solve (3.1).

15
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3.12 M esh refinement schemes

Mesh refinement schemes determine how the elements are to be refined n order to improve the

numerical solutions. They can be classified intoh-, p-, r- versions, and also their combinations.

h- refinement schemes

The solution is improved by increasing the number of elements, while the order of interpolation
functions remains invariant (usually of low order polynomials). This refinement technique is simple to
implement in BEM. However, the coefficient matrix has to be rebuilt after every mesh refinement,
which makes this approach inefficient. To improve on the situation, the h- hierarchical refinement
schemes were proposed [63, 64, 65, 66, 67, 69], which used the h- hierarchical interpolation functions
to simulate the effects of the conventional h- refinement schemes, without having to physically
subdivide the elements. A comparison of the standard and h- hierarchical linear interpolation functions

isshownin Figure 3.3.

-1 £=0 1
(&) Initial interpolation function using standard linear shape functions.

-1 =0 1 -1 =0 1
(conventional type) (- hierarchical type)

(b Interpolation functions after first mesh refinerment.

DI |2l

(convenhona type) (- hierarchical type)

(c) Interpolation functions after second mesh refinement.

Figure 3.3. Standard versus h- hierarchical linear interpolation functions.

For the h- hierarchical approach, the previous set of interpolation functions is not affected by the
current mesh refinement, and hence the coefficient matrix formed in the previous analysis can be used
in the current analysis. This greatly improves the efficiency of the h- refinement scheme over the
conventional approach, but it was reported by Zhao and Wang [69] that the coefficient matrix becomes

ill-conditioned with increasing refinements.

16
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p- refinement scheme

In the p- refinement scheme, the element mesh remains unchanged, but the order of the interpolation
functions isincreased. The improvement in the solution is achieved because higher order interpolation
functions are more versatile in capturing the true solution. The conventional p- refinement scheme
used the Lagrange interpolation formula to generate polynomial interpolation functions. But just like
in the h- refinement scheme, this approach is inefficient. Hence, an alternate scheme was proposed,
which is of the “hierarchical type” [70, 71, 72]. There exist two types of p- hierarchical interpolation
functions, namely the Legendre polynomials[71, 72] in (3.2), and Peano’s functions [70] in (3.3):

1 dk2

_ 2 (k-l)]
| Lif K
N, == K* - b), whereks 2,andb{ | o (33)
k! 1 x if kodd

r- refinement scheme

The r- refinement scheme is also known as the mesh redistribution method [60, 61, 73, 74, 75]. In this
scheme, both the number of elements and the order of interpolation function remain invariant, but the
collocation nodes are relocated so as to minimize an object function, such as the maximum error norm
or the global error derived from theresidual of theintegral equation. In this sense, this approach can be
seen as an optimization process, which utilizes limited degree of freedoms to achieve the best
performance in term of accuracy. However, this scheme does not guarantee convergence to the exact
solution, since this cannot be achieved by simply rearranging the nodal points alone. On the other
hand, the exact solution can theoretically be attained by h- and p- schemes, by using infinitesimal

elementsfor the h- method, and infinite order of interpolation functions for the p- method.

Combination schemes

The above-mentioned schemes have their pros and cons. Hence, different combinations of these
schemes are employed to devise new schemes that make use of the advantages to compromise the
disadvantages. Two combined schemes were developed, namely the hp- [58, 76] and hr- [62, 77]

refinement schemes.

17
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3.2  Singular Elements Method

Singular elements have their interpolation functions modified from those of the standard elements,
mostly in an ad hoc manner, so that the singularity behavior of the field variablesis correctly described.
Usually only the first term of the singularity solution is considered. It is remarked that this approach is
not being widely used in the potential analysis [19, 24], but has received much greater attention in
fracture mechanics research [16-23]. Generally, two ways of deriving the singular shape functions

have been identified, namely modifying reference nodes, and modifying shape functions.

321 Maodifying reference nodes

The most widely used singular element based this approach is the traction singular elements, which is

1
used to model the — variation of the traction in the vicinity of the crack-tip or crack front. The idea

Jr

is to shift the middle node of a two-dimensional quadratic element to the quarter-point position, as

shown in Figure 3.4.

1 2 3 1—» 2 3
[ L @ L @ @
iz 2 LA 3L/
o1 r o1
77249 Lo gy

Figure 3.4. (a) Standard quadratic element, (b) Quarter-point quadratic element.

Substituting the quarter-point quadratic mapping function into the standard quadratic shape functions

produces the Jr effectinthe displacement field, that is,
u = A"+ A% + A (3.4)

1 1 -
where A =u', A :f[ 3u’ +4u’ - uf] and A’ =r[2ui1- 4u?+2u?], and Ul is the nodal

displacement at node j and in the i direction. The = singularity variation in the traction fields can be

Jr

obtained by modifying (3.4). Blandford et al. [16], and Martinez and Dominguez [17] simply multiply
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(3.4) by \/E to derive the singular shape functions for the traction field. Ariza et al. [18] further
r

extended this concept to three-dimensional fracture mechanics analysis. Some researchers went on to
employ this node shifting methodology to formulate singular elements for arbitrary order of singularity,
by determining the optimum location of the middle node, through some curve-fitting process [22, 78].

However, it was pointed by Qian and Hasebe [ 79] that this approach is erroneous, because the behavior

in the vicinity of the singular point is still A regardless of where the middle node is shifted in a

quadratic element.

3.22 Modifying shapefunctions
In this approach, the shape functions for the displacement and the traction are usually derived in an ad
hoc manner. Jia and Shippy [20] presented the following shape functions for the displacement and

traction fields, respectively.

—1+§1+_—ﬁ+— 1+x)
:(2+J_)\/h-_x- (1+J_)1+x) (3.5
g@gﬁ— fx)

o1 +J_ +— +X
R Tl T AR
= [2+v2)- [L+2fTx (36)

N2 =-1 JE+(1+JE)\/M_X

where the traction shape functions are derived from (3.5) by dividingN? and N? by ./1+x and N}

by JHTX . They also commented that the formulation of the singular shape functions was by no

means unique. In fact, they developed four different sets of singular shape functions for the traction
variable; the one presented above was chosen based upon numerical experiments. They later further

extended their work to the three-dimensional crack problemsin [21].
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3.3  Singular Function Method

For two-dimensional potential problems, it iswell known that the potential field in the vicinity of sharp

corner isgiven by the asymptotic series

f(r,q):f0+g_air" f; (I iq)v asr® 0. (8.7

i=1
where (r,q) is the polar coordinates centred at the corner, | , and fi(l iq) are the eigenvalues and
eigenfunctions that can be obtained analytically by separation of variables [52], and a, are the

unknown coefficients dependent on the applied boundary conditions. In general, the singular function
method employs the truncated version of (3.7) in the solution process. There also exist many different

types of singular function methods, and only some of them are discussed in the following sub-sections.

3.3.1 Subtraction of singularities

This approach removes the singularities from the solution so that the remaining variable field &
smooth, and hence can be solved accurately by the standard methods, such as FDM, FEM and BEM.
Wigley [28] did it in an iterative manner, which he called the subtraction of singularities approach. A
similar method was also proposed by Igarashi and Honma [25], which they called the regularized

function method.

Olson et al., on the other hand, developed the Integrated Singular Basis Function Method (ISBFM)
[27]. The main difference between this approach and Wigley’s method isthat it is not iterative. Thisis
achieved by using the following relation to generate the additional equations, which is derived from the

Green’ stheorem.

Mg - 42%4G=0, fori=12..N,. (3.9)
(4]

Ny
where (=u- é_ a;g; and g, =r' f(I iqi) . The Lagrange multipliers are employed to impose the
i=1

essential boundary conditions. They later presented a boundary integral version of the ISBFM [26], in

which the solution in the whole domain is solely approximated by the singular basis functions.
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3.3.2 Boundary approximation methods

The problem domain is first divided into several sub-domains according to the singularity locations. In
each singular sub-domain, specia functions that can account for the singularities are employed,
whereas the standard methods are used in the non-singular regions. Finally, the solution is obtained by

enforcing the compatibility conditions at the sub-domains inter-boundaries.

Li et al. [29-33] proposed a combined method that used Ritz-Galerkin in the singular sub-domains, and
FEM in the rest of the solution domains. In general, the asymptotic seriesin (3.7) are chosen to be the
basis functions for the Ritz-Galerkin method. The compatibility conditions at the inter-boundaries are
then enforced in a least squares sense [29], by hybrid-combined methods [30, 31], penalty-combined

methods [32] and also their combinations [33].

34  Commentson the Three Approaches

34.1 Meshrefinement techniques

The mesh refinement techniques are iterative in nature, where a problem often has to be solved a
number of timesin order to arrive at the “correct” solution. The number of iterations depends on the
convergence tolerance, and the refinement scheme employed. It is also dependent on the smoothness
of the solution. For problemsthat contain singular solutions, it is expected to require more iterations to
attain convergence. Hence, the computational cost may become too expensive to handle for singular

problems.

Global error is often taken as the convergence criterion, such as the residual norms. However, “small”
global error does not necessarily correspond to “small” local error. Thisis especially truein singularity
problems where the local errors, in the vicinity of the singular regions, remain large despite small
global error. In other words, the solutionsin the singular regionsare still poorly represented even when

the convergence criterion is satisfied.

34.2  Singular element method
Singular elements incorporate the singular variations in their shape functions, often in a rather ad-hoc
manner, by either modifying the reference nodes, or modifying the shape functions. Although the

singular shape functions do not exactly describe the asymptotic solution, they are still able to produce
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accurate solution, especially in the singular regions. This is because the solution in the singular region
is usually dominated by the singular term of the asymptotic solution, which can be accurately

represented by the singular shape functions.

The singular elements are used only in the regions where singularity solution is expected, and hence the
exact singularity locations must be known a priori. Fortunately, this does not pose a difficult problem
for the types of singularities investigated in this study, as they are due to sharp corners and edges,
which can be identified easily using a pre-processing program. The geometry dependence also
indicates that different singular elements have to be formulated to handle different types of singularity
fields. Hence, this complicates the implementation of the singular elements method in three-

dimensional analysis, as presented in Chapter 5.

3.4.3  Singular functions method

This approach has not been widely adopted by the engineering community. One possible reason is
because the closed form singularity solutions for many practical engineering applications, such as
fracture in a bi-material interface, are not available. Likewise, there is aso no report of three-
dimensional singularity analysis using this approach. In our opinion, it is very difficult and tedious to

implement this method to solve three-dimensional singularity problems.

344 Method adopted in thisthesis

In this thesis, we have adopted the singular element method for the following reasons. The singular
function approach is first eliminated because no closed form singularity solution exists for three-
dimensional problems. Although the singularity solution can be approximated numerically, its
implementation is practically too tedious. On the contrary, the other two approaches were already
being employed in three-dimensional singularity problems. Bactold et a. [76] employed the hp-
adaptive mesh refinement technique to solve electrical potential problems, and singular elements were
used extensively in the three-dimensional fracture mechanics analysis. Finally, the singular element

method is preferred in this study because of its superior accuracy over the mesh refinement method.
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Two-Dimensional Singular Elements

Two-dimensional analysisis first conducted as a preliminary investigation. This chapter begins with a
general formulation of the two-dimensional singular elements of an arbitrary order of singularity. This
is followed by a discussion of the numerical treatments of the singular integrals. Two numerical
examples are then used to demonstrate the accuracy of the singular elements, namely the co-axial
conductor and parallel conductor problems. The numerical results show that the present approach

givesvery accurate solutions. The effect of the size of the singular element is also investigated.

4.1  Formulation of Two-Dimensional Singular Elements

The solution to the two-dimensional Laplace equation is generally given by the asymptotic series in
(3.7). For the specific case where uniform Dirichlet boundary condition is applied at the corner, the
series solution becomes

¥ o ..
f(r,q):f0+éakry singkyﬂg (4.1

k=1

I-I-O:

Q

wherey is the interior angle bounded by the adjacent boundaries G, and G, as shown in Figure 4.1,
and f | corresponds to the applied potential at the corner. From (4.1), it is easily seen that the normal
potential gradient E—fn becomes singular for re-entrant corner, that isy > p, where the first term of the
seriesissingular.

Dommain £2

Cok

Figure 4.1. Two-dimensional potential field with asingular corner at O.
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411  General formulation of singular element
Suppose the normal potential gradient is approximated by the first three terms of the seriesin (4.1), i.e.

T ooqrr+a +are (4.2)
fn

where Qs is generaly known as the generalized flux intensity factor, A and B are some constant
coefficients, s is the order of singularity (possibly negative in value), and a and b are positive

exponents. The values of s, aand b are dependent on the angle of the corner. | particular, for

p

0<y <2p,itisobserved that s:y—— 1, az&

-1 and bzi- 1. Now by letting r = Lh, where L
y

is the length of the element, and h is the intrinsic coordinate 0£h £1, (4.2) can be expressed in the

local co-ordinates as

E—fn =Q,L°hs+ A'h2 +B'h® (4.3)

where A" =®A and B" = L°B are again constants.

It is important to note that the singular coefficient Q. is retained in the formulation to ensure that the

flux intensity factor is consistent for the two singular elements adjacent to the corner. Using the

standard approach of formulating shape functions, the following requirements on the potential gradient

are specified as

h® 0, E®¥
fn
qf
=0. —= 4.4
h =0.5, o d, (4.49)
qf
h =1.0, —=
"

where g, and g, are the variable unknowns at the respective nodal positions. The first requirement is

met naturally due to the singular term in (4.3). Applying the other two requirements and then solving

for A" and B' gives

L €i1 0. €2 U & 1
_e,,2a-b _ 1_ ]'l,:IL QS + e _ 2a—b l’,\ﬂZ + §+ 2a—b _ 1Hq3
é a el a 4.5)
. _€l-27°u 22 0 é 1 1

e
B =e————(L°Q, + & + -
éZél»b _ 13 Qs gza»b _ 1ldq2 81_ 2a-b Hq3

Substituting them back into (4.3) gives
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i .

an = Qs + Na, + NJa, (4.6)

where N;®isthe set of singular shape functions defined as

3. €2%c-1 0, €2%°. 10 i

NS_ hS+ _ 2 a_ ,LS

S R P j*J" é2a’b-1léhf)

S 2a a

Ni=segh? -] @7)
$ 1 g é 1 (o

NS:"+—’ a _

; ? 2“-1u31 82“'-1§q

41.2  Specific formulation for y =3p/2
To date, many MEMS devices have simple geometry, usually “rectangular” with right-angled corners
and edges. This special case is considered here, that is, y = 3p/2. Substituting this value into (4.2)

givess=-1/3,a = 1/3, b = 1. Hence, the singular shape functionsin (4.7), as plotted in Figure 4.2, are

1

. .
\y :}h'5 - 2.58740h3 +1.58740th
t

1
3

1

el
N§:3.4O483§n3—h

o:

H (4.8)
]

NS =-1.70241h* + 2.70241h

N1

(]

11 Ns
/

d 02 : 06 ) i

-1-

Figure 4.2. Singular shape functionsfor s=-1/3,a=1/3andb = 1.

The singular shape functions derived above are used only in the variations of the potential gradients for
those elements with either node 1 or 3 falling on a re-entrant corner. These elements are known as the

singular boundary elements.

25



Chapter 4. Two-Dimensional Singular Elements

4.2  Numerical Integration of Boundary Integrals

This section deals with the numerical integration of the boundary integrals that arise from the

implementation of BEM. The types of boundary integralsto be dealt with are of the following forms:

= (‘p(X@G(x xG)dG(xG) (4.99)

G
1, = 35 (T8 g (a.9b)
G fin

where q(x) corresponds to the normal potential gradient, which is possibly singular, and f (x) isthe

potential, which is always represented by a quadratic variation. The integrals are usually transformed
to the intrinsic co-ordinate, which are convenient forms to be evaluated by Gaussian quadrature

schemes, asfollows

I, = (‘j\lq(x)G(x,xXJ(xldx (4.10a)
I, = é‘j\lf (x)ﬂGST);’X)p(x]dx (4.10b)

where N; (x) and N, (x) denote the shape functions for the potential and potential gradient variables,

2
respectively, and |J \/agj)((l E% is the Jacobian of transformation. In the following sub-
@ [

sections, we describe the techniques used to compute (4.10a) and (4.10b) for different situations.

421 Non-singular integral

When the integrand is nonsingular within the integration limits, the standard Gaussian quadrature

(specifically known as Gauss-Legendre [80]) is used, which approximates the integral with the formula

1 n
of (x )dx » é_ w, f(xi) (4.11)
-1 i=1

where n is the number of integration points, which also corresponds to the order of the Gaussian
quadrature formula, and x; and w, denote the abscissa and weights of the ith Gauss point of the n-

order formula, respectively.
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422  Singular integral dueto fundamental solution only
When the collocation point x falls on the element, (4.10a) and (4.10b) become singular due to the

singular nature of the fundamental solution. The technique used to treat this singularity for (4.10a)

includes a coordinate transformation, which transforms the Euclidean length |x - x4 into the
following general form [50]

[x- x4 =hréh) 4.12)
where R(h) isnonsingular. Hence, the fundamental solution G(x,x) becomes

1 1 é
—In——= él +In 4.13
2 |x- x4 20¢g gh_g §§( )Qﬂ @19

Equation (4.104) is then separated into two components, with one containing the logarithm singularity,
and the other is nonsingular. The nonsingular part can be evaluated using the standard Gaussian

guadrature, while the singular one can be evaluated with logarithmic Gaussian quadrature [50].

The singular treatment for (4.10b) is as follows. For the case when i = j, the integra in (4.10b)
becomes strongly singular and exists only in the sense of the Cauchy Principal Vaue. Thisintegral can

be obtained indirectly by using the constant potential condition, which gives

N

_ o]

g¢=- a g (4.149)
j=Litj

where g{ denotes the (i, j) entry of the coefficient matrix generated with (4.10b). On the other hand,
wheni® j, the singularity in the integrand is removed by the zeros of the shape functions N; (x) which

satisfy the Kronecker delta property, that is,

| JOfit ]
N )=d, i 4.15
k)=, i1ifi=j 19

423 Singular integral dueto singular shape function only

Thissingular integral occursonly in (4.10a), when N, (x) isthe singular shape function N;’ derived in

(4.8). Strictly speaking, only the singular term h*® needs special treatment. In this case, the singular

integral to be dealt with is of the form
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| = %(m)g G(x,x )3 (| ox (4.16)
-1

A simple way to treat this singular integral is to use the variable transformation, X :E(:HZ )2 -1,

which transforms (4.16) into

1 ..2S
1= 20 [ar2) e (x,2 Yol oz (4.17)
€2g
which isno longer singular since s:p—- 1>- %for0<y <2p.
y

424  Singular integral dueto fundamental solution and singular shape function

This situation also only occurs in (4.10a), when the collocation point falls on the singular node of the
singular element. The first task is to deal with the logarithmic singularity in the fundamental solution,
which is done by using the same technique discussed in Section 4.2.2. After the appropriate

transformations, the resulting integral becomes

|ng_3J(h jdh +Of |n§eR(X g (4.18)

However, ffh) and f(x) may still be singular due to the singular shape functions. In this case, the

second integral is handled in the same way as described in Section 4.2.3. As for the first integral, the

transformation h =z 2 isused, thereby giving

h)|n§%%J(h)|dh = af (2 )4z |n§ezi§J (2 )oz 4.19)

in which the Jacobian of transformation, dh =2zdz , is used to remove the weak singularity of the

shape function.

4.3  Numerical Examples

431  Coaxial conductor example

This example concerns the capacitance extraction of a sguare coaxial transmission line, as shown in
Figure 4.3. Only aquarter of the problem is analyzed due to symmetry. This problem is also known as

the Dirichlet-Laplace problem on the l-shape domain [25], and it is one of the commonly used
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benchmark problem for singularity analysis. This is an interior (closed domain) problem, and hence

the direct BEM is used.

T
i
i
i
1.0 : Sph=0 Domain Q
I
i
i

Bbh="0

e T

Fy

1.0

1.0

Figure 4.3. One quarter of the square coaxial conductor problem.

It is clear that sharp corner is actually a geometrical idealization, when the radius of curvature of the
“corner” is very small compared the overall dimensions of the structure. The question of how small
this radius should be is raised here. Hence, this example is first used to study the sharp corner

idealization.

A non-dimensional variable R, which is defined as the ratio of the curvature radius r to the
characteristic length of the conductor L, isintroduced. A very fine mesh, using the standard quadratic
element, is used to solve for the cases with R = 0.1, 0.05, 0.02 and 0.01. The computed capacitance is
then compared with the exact solution for the idealized case, which is C* = 2.55852 [25] (scaled by

4pe). The capacitance and the normal potential gradient are related by

s —e (4.20)
C= (‘} dG (4.22)
Ga
where s is the surface charge density on the conductor and eis the dielectric constant of the medium.
C is obtained by summing all the surface charges on the conductor that has a potential equal to one.

Therelative error is computed and plotted in Figure 4.4.

From Figure 4.4, it is noted that the relative error is very small (< 19%) for all the cases considered. A

best fit equation for the relationship between the relative error and R is obtained, and is given by
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Relativeerror =- 273.92R ® +73.548R? +3.2465R (4.22)
For small values of R, this relationship can be approximated by the linear term alone. In this study,
which is directed towards accurate numerical analyses of micro-devices, the ratio R is probably of the
order from 1x10° to 1x10°. This means that the relative error induced when making the sharp corner
idealization is also of that order of magnitude. Hence, the sharp corner idedlization is a valid

assumption in this study, as the error induced is usually less than the tol erance needed.

1
= 3 + 2+

0.8
2
S
© 0.6
-
(]
(0]
=
T 0.4
©
o

0.2

O T T T T
0 0.02 0.04 0.06 0.08 0.1
R

Figure 4.4. Theresults for the sharp corner idealization with different radius of curvature R values.

Next, this example is solved using the standard BEM with (i) constant, (ii) linear, (iii) quadratic
elements (no singular treatment for these three cases), and (iv) quadratic with singular elements
(present formulation). The relative error is again computed and plotted in Figure 4.5 as a function of
the number of elements M. The results of Igarashi and Honma [25], employing the regularized

function method, are also included.

From Figure 4.5, it is easily seen that the present formulation produces excellent accuracy in
comparison to the rest. It is also noted that its convergence rate is approximately the same as the
standard elements, whereas the regularized function method has a faster convergence rate. However,
the present singular element is very accurate even for very coarse meshes. Generaly, it is more
accurate than the regularized function method by about two orders of magnitude. The generalized
intensity factor Qs of (4.2), which are obtained directly from the nodal variable, are tabulated in Table

4.1. These values compare very well with the results reported by Igarashi and Honma [25], and that
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obtained by the linear extrapolation method on a very fine mesh, as shown in Figure 4.6. The results

aretabulated in Table 4.1, and they show good agreement.

1.0E+02
—=&— constant elements
_A_ H
1 OE+01 linear elements
—*— quadratic elements
__ LOE+001 —+— singular elements
S (present formulation)
5 —e— regularized function
S 10E-011 method
()
=
8
(0] | 4
o 1.0E-02
1.0E-03 1
1.0E-04 T
1.00E+01 1.00E+02 1.00E+03

No. of elements, M

Figure 4.5. Convergence of the capacitance for coaxial conductor problem.

1.3
195 Elux intensity factor = 0.2102r + 1,125

1.27

1.157 w o o
194 v

1.1

1.05 1

Flux intensity factor

0.95 1

0.9 . . . . . .
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

distance from the corner, r

Figure 4.6. Extraction of the flux intensity factor Qsby extrapolation method.

Table4.1. Generalized flux intensity factor Qsfor different meshes and methods.

Number of elements, M Coefficients, Qs

16 1.12172

32 1.12313

64 1.12348

128 1.12363

256 1.12374
Linear Extrapolation 1.1250
256 (c.f.[25]) 1.1280
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Next, the effect of using different values for a and b, but retaining the singularity exponent sis

examined. Two cases are considered as follows:

1
(1) a=0andb=1, thatis gh)=fh 3 +A+Bh

} . il L
NS =jh 3 - 151984 +051984hylL 3

t p
N5 =2(1- h) (4.23)
N:=oh-1

1
2 a=landb=2 thatis gh)=fh 3 +Ah+Bh?

Wl
Wl

- 4.03968h +3.03968h YL

NF = Ih

f b
N3 =4(i-h) (4.24)
N$ =h(ch - 1)

This study is carried out in order to determine whether the first term of the series, which contains the
singularity, is the only term of importance to the computations. The two set of shape functions are

givenin Figures 4.7(a) and 4.7(b), respectively.

@) - (b)
Figure 4.7. Singular shape functionsfor (a) s=-1/3,a=0andb=1,and (b) s=-1/3,a=1andb=2.

Figure 4.8 shows the surface charge density distribution on the interior conductor from point cto b in
Figure 4.3, for the three sets of shape functions and with 32 elements. The three curves are observed to
coincide amost exactly with one another. This suggests that the first term in the series is indeed of

primary importance and is solely responsible for the vast improvement in the numerical results.
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8
; l ——a=1/3, b=1

——a=0, b=1
67 ——a=1, b=2

Surface charge density
N

0 T T T T

0 0.2 0.4 0.6 0.8
Distance from corner, r

Figure 4.8. Distribution of surface charge density along interior conductor for different set of singular

shape functions.

4.3.2 Parallel conductor example

Most simulations of electrostatics actuation in micro-devices are exterior problems, that is, the problem

domain isinfinite. Hence, the present formulation is extended to exterior problems, where the indirect

BEM approach is used. This example can be viewed as two infinitely long conductors placed parallel

to each other, and separated by a distance D. Figure 4.9 shows the cross-sectional view of the

conductors. Inthis example, apart from the capacitance, the resultant force acting on the left conductor

is also computed.

1.0

d B h

1.0

4

g

Figure 4.9. Parallel conductors with sguare cross-section.

Electrostatics pressure p is related to the surface charge density s by

(4.25)

where eis the dielectric constant of the medium. The electrostatics force F acting along a straight

boundary G of the conductor surfaceis hence given by
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F=0QpdG (4.26)
G
and it actsin the outward normal direction to the boundary.

For the present analysis, the number of elements used for each side of the conductors is denoted by M.

The “exact” solution is approximated using a very fine mesh of standard quadratic elements with

M=100.
1.0E+02
—B— constant elements
—a—linear elements
1.0E+01 4
—x— quadratic elements
¥ 1OE+00 1 —e—singular elements
. (present formulation)
o
o
o  LOEOL-
=
8
o)
X 10502
1.0E-03 1 \\\
1.0E-04 r
1.00E+00 1.00E+01 1.00E+02

No. of elements, M

Figure 4.10. Convergence behavior of capacitance for parallel conductor problem.

10E+02
—B— constant elements
—&—linear elements
—— i
L0E+01 L_E\B\E\E guadratic elements
o —e—singular elements
X .
S K\\ (present formulation)
S
=
)
o  L1OE+00 -
2
5
©
]
o
10501 1 \\
10E-02 .
1.00E+00 1.00E+01 1.00E+02

No. of elements, M

Figure 4.11. Convergence behavior of resultant force acting on the left conductor.
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The convergence behaviors for the capacitance and resultant force are plotted in Figures 4.10 and 4.11,
respectively, for the various types of elements under investigation. Again, the singular element
formulation produces accurate results when compared to the standard elements. However, it is noted

that the results for the capacitance are generally more accurate than those for the forces.

This observation can be explained as follows. Recall that the surface charge density s is the primary
unknown variable in the boundary integral equation. Hence, the implementation of the BEM will

minimizethe error of s. Suppose the numerical solution for s isexpressed as

S \mericat =S san +S (4.27)

Exact Error

Hence, relative error for s and the capacitance are simply given by

Error® = >&rr (4.28)

S Exact

Cﬁ Error dG

Error¢ =32 (4.29)

@ Exacth
G

On the other hand, the electrostatics force is a quantity that is derived from s by using (4.25) and

(4.26). The numerical solution for the electrostatics pressureis

_ _1 2
Prumerica = Pexact + Peror = %(S Exact *S Error) (430)
_1 2 _1 ( 2)
where Pexact = 2_85 Exact and Peror = E 2s Exact® Error +S Error /*

Therelative error for the electrostatics pressureisthen

.2
Error P = pError - 2S Error +§% Error g (431)

pExact S Exact S Exact @

Similarly, the relative error for the el ectrostatics force can be expressed as
N 2

d% ExactS Error +s Error )dG

ErrorF =32 - (4.32)
G Exact dG
G

A comparison of (4.28) and (4.31) reveals that the relative error for the pressure is at least two times

larger than the error for the surface charge density. Hence, in general, this means that the computed
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force is expected to be less accurate than the capacitance. Furthermore, notice that s . may be

m

greater than s at some parts on the boundary and smaller at others. This means that s can be

Exact Error

positive or negative along the whole boundary. Due to the randomness of s the relative error of

Error ?
the capacitance may still be small even when the surface charge density distribution is not correctly
represented. This is probably the main reason for the standard elements, namely the constant, linear
and quadratic elements, to give good results for the capacitance even though they do not capture the

singularity behaviour at the corners properly. However, thisis not the case for the electrostatics force.

2
Error

From (4.32), the error in the force comprises two components, namely 2s ands . The

Exacts Error

first component may again be small due to randomness in s But the second component is

Error *
positive definite (unless the exact solution is obtained), and when integrated over the boundary may not
be small. Hence, in order to obtain good results for the computed force, it is important that the surface
charge distribution be accurately represented in the first place, by treating the corner singularity

problem.

433 Biased element distribution effect for M =3

From Figure 4.8, it is noted that the singularity region is confined to a small part in the vicinity of the
corner, and the remaining part of the field variable has arelatively flat distribution. This suggests that
the accuracy can be improved by using an appropriately biased distribution of elements along the edge.
In other words, for fixed number of element used, a small singular element is used for the singularity

region, and alarge quadratic element is used for the remaining part.

lengthof singular element

is introduced
length of squareconductor

A parameter known as the bias ratio B.Sis defined as B.S =

and isvaried from 1/3 (no biasfor M = 3) to 0.1. The length of the edge of the conductor hereis equal
to 1 and is discretized into 3 elements. This study is carried out for different distances between the
conductors, namely, D = 0.2, 0.3, 0.5, 1.0 and 2.0. The estimated “exact” solutions are obtained from
the numerical results of a fine mesh (M = 100). The results are normalized with respect to the “exact”
solutions, and are plotted in Figure 4.12 for different values of the distance D between the parallel

conductors.
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The intersections of the curves with the dashed line indicate the bias ratios that produce the most
accurate results for the respective cases. Notice that only two of the curves cut the dashed line, namely
for D = 0.2 and D = 0.3. This meansthat the optimum biasratio is likely to vary with distance D. This
behaviour can be explained as follows. First, it is noted that the sides bc and eh in Figure 4.9 resemble
paralel plates. For the paralel plate, the electric field (and hence the surface charge density) is
uniform in the inner portion, with some fringing effects near the edges. These fringing effects diminish
asthe parallel plates move closer to each other. Likely, the singular region also becomes smaller asthe

distance between the two parallel conductors decreases.
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Figure 4.12. Effect of biased element distribution on accuracy of resultant force for different distances.

From Figure 4.12, it is also observed that there is no intersection for D = 0.5, 1.0 and 2.0. In fact for
these three cases, the best results are obtained when thereisno bias at all. This seemsto suggest that if
the distance between the conductors is greater than the nominal size of the conductors, there is no need
to have a biased distribution of elements. The reason for this is that the surface charge distribution in
the inner portion is no longer very flat when D is relatively large. Hence, three elements are not
sufficient to approximate the actual distribution closely. In this case, better accuracy can only be
obtained by using more elements. In Figure 4.13, the surface charge density distributions on the side

bc for D = 0.2, 1.0 and 2.0 are plotted. The distributions are normalized with respect to the surface
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charge density at the centre of bc. It is observed that the distributions are consistent with the earlier

comments, where the inner portion becomes flatter asD decreases.

Normalized surface charge distributior

Distance along side bc

Figure 4.13. Normalized surface charge distribution on side bc for D = 0.2, 1.0 and 2.0.

44  Conclusion for Two-Dimensional Singular Elements

In this chapter, a singular element approach has been presented for the analysis of corner singularities
in two-dimensional potential problems. The shape functions of the singular element are formulated to
incorporate the singular behaviour of the normal potential gradient. This method requires only a minor
modification in the formulation of the boundary element equations, by using the singular shape
functions in (4.8), instead of the standard quadratic shape functions, when either node 1 or 3 of the

element coincides with a corner.

This method has been applied to two numerical examples, namely the coaxial conductor example
(interior problem), and the parallel conductor example (exterior problem). The results are very
accurate in comparison with the standard elements, namely, constant, linear and quadratic elements.
Furthermore, for the first example, this method also shows better accuracy over the ‘regularized
function method’ by Igarashi and Honma [25]. In conclusion, this method is capable of producing
accurate results, in terms of the capacitance, force per unit length and also the generalized flux intensity
factor, even for coarse meshes. Furthermore, the generalized flux intensity factor, Qs of (4.2), is

computed directly in the analysis with only little extra effort needed.
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However, the evaluation of the boundary integral for the singular element is more complicated. The
computational effort for this singular element integral is estimated to be four to five times more than
that required by the standard quadratic element. However, this extra effort can be easily compensated
by the reduction in the total number of elements used, since for a given accuracy, this method requires

much fewer elements than when using standard el ements.
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Three-Dimensional Singular Elements

The two-dimensional results motivate us to extend the singular element method to three-dimensional
analysis. However, it is shown in here that this extension is not trivial. The complication arises due to
the additional dimension, where two-dimensional corners (represented as points) now become edges in
the three-dimensional context, and in addition, there are three-dimensional corners that are formed

when the edges meet or terminate.

This chapter is organized as follows. Section 5.1 covers the aspects of identifying the singular features
that can exist in a ‘rectangular’ structure, and defining the different types of singular elements needed.
Unlike in the two-dimensional case, the singular fields for these three-dimensional corners cannot be
expressed in closed forms. Numerical methods have to be employed to approximate the singular
solutions, which are presented in Section 5.2. In Section 5.3, we present the core of this chapter, that is
concerned with the formulation of the singular shape functions. A general methodology for
formulating arbitrary singular element is first described, followed by the specific implementation for
the various singular elements that are identified in Section 5.1. The numerical integration of the
boundary integrals, where two sources of singularities can exist is also discussed. The singular
elements are used to solve some numerical examples to evaluate the performance of these singular
elements. It is shown that they can improve the accuracy of the results for capacitance and
electrostatics forces quite significantly. We also investigate the effects of using the singular elements

on the functionality of some MEMS devices. Finally, some concluding remarks are provided.

5.1 Identifying Singular Features

This section describes the identification of the different types of singular elements that exist in a
“rectangular” structure. The first part identifies the singularity features in the structure, namely the
edges and corners, and based on the different combinations of the singular features, the various types of

singular element are defined.
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5.1.1 Identify singular edgesand corners

In this study, we confine ourselves to structures that are ‘rectangular’, that is, the edges and corners are
right-angled. This is an important special case because many of the MEMS structures are generally
‘rectangular’. Figure 5.1 shows a typical ‘rectangular’ structure, where different types of edges and

cornersareidentified. The aim hereisto determine the singular featuresin the given structure.

Legend
— : sinpular adpe
------ : non-smpdlar edgs
B : stronglysingular corner

& . weokly singulor comer.

A &  non-sinpalar comers

Figure 5.1. A “rectangular” structure with identified edges and corners.

To determine whether an edge or a corner is singular, we usually have to solve for the eigenvalue of

that geometry. In general, only the smallest eigenvalue a , is of interest, because |, = (- amin)

n
corresponds to the order of singularity for the potential gradients and surface charge density, in the

vicinity of the edges and corners, whena ;. <1. The two-dimensional results of the singularity field

analysis (see Appendix B.1) can be used directly for the re-entrant edges (continuous solid lines in

Figure 5.1).

For three-dimensional corners, the solid angle j is a good indication of the singularity nature of the
corner, where it is expected to be singular if ] <2p(j = 2p corresponds to a smooth surface). Based
on this simple observation, two singular corners are identified in Figure 5.1, namely the strongly and
weakly singular corners, denoted by the squares and diamonds markers in Figure 5.1. In contrast, the
corners that are marked with triangles and circles are nonsingular. In fact, they should be more
appropriately identified as ‘ zero’ corners, because theoretically no charge can exist at these locations.
However in this study, only the singular features are specially treated because they are possibly the

main source of errorsin the electrostatics analysis.
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5.1.2 Identify possibletypesof singular elements
Based on the geometry in Figure 5.1, five different types of singular elements are defined, asillustrated

in Figure 5.2.

y ’ Standard Sngular
L] ‘ Quadratic Edge

]

Sngular Singular
y ﬂ Cornerl Corner2

LI B
‘ ngular Singular

Corner3 Cornerd

Figure 5.2. Boundary element mesh of “rectangular” structure with various types of singular
elements.

The different types of singular elements arise because of the way in which the singularity fields vary on

the elements. This is in turn dependent on the numbers and types of edges and corners that fall on

them. Hence, this provides a unique way of identifying the various types singular elements. The

definitions for the singular elements are asfollows:

D Sngular Edge: Contains only one singular edge. The order of singularity (edge singularity)
remains the same along this edge.

(2 Singular Cornerl: Containsthe strongly singular corner with the two adjacent singular edges.
The singularity order increases along the edge towards the singular corner.

3) Singular Corner2: Contains only the weakly singular corner, and the field is only weakly
singular at the corner.

4 Singular Corner3: Contains only one singular edge and the weakly singular corner. In this
case, the singularity order varies along the edge towards the singular corner.

(5) Singular Corner4: Contains only one singular edge and a non-singular corner. In this case,

the singular field decays along the edge towards the non-singular corner.

After identifying these five types of singular elements, the next task is to formulate the singular shape
functions for these elements. But prior to that, the order of singularities for the singular edges and

corners must be obtained.
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5.2  Extraction of the Order of Singularities
In Section 5.1.1, one singular edge (re-entrant edges) and two singular corners (the strongly and weakly
singular corners) were identified. In this section, we will determine the order of singularities for these

singular features.

52.1 Singular edge
The two-dimensional corner actually corresponds to the ‘plane-strain’ (dimension is infinite in the out-
of-plane direction) approximation of the three-dimensional edge. Hence, the results from the two-

dimensional singular field analysis can be used directly for the three-dimensional singular edges. From

the two-dimensional study, the order of singularity for the right-angled singular edgesis| . =

wlk

522 Strongly singular corner
This type of corner is formed when three singular edges meet. Figure 5.3 shows the geometry of this

corner and its problem domain G for the eigen-problem.

‘ N
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49)

Figure 5.3. (a) Geometry of strongly singular corner, (b) Plot of eigen-problem domain in (q, f)
plane.

It is noted that this type of corner had previously been studied extensively by Fichera[34], Beagles and
Whiteman [35], and Bazant [36]. Fichera obtained a lower bound for the order of singular for the
potential field as

a,,, >0.433% (5.1)
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On the other hand, Bazant reported a value of a,_, =0.455, using the finite difference approach.
Finally, Beagles and Whiteman summarized their results as follows

a’, »04525 with0.4335<a  <0.4542. (5.2)

in

where a :ni is the ‘exact’ solution suggested, which was extrapolated from the results obtained with

n

various mesh sizes. In thisstudy, the suggested value a :nin is used, which gives the order of singularity

for this particular corner tobe | ., =0.5475 .

523 Weakly singular corner
This weakly singular corner corresponds to the diamond markers in Figure 5.1. The eigen-problem
domain G, together with the boundary conditions, is depicted in Figure 5.4(b), and only half of it is

required due to symmetry.
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Figure 5.4. (a) Geometry of weakly dngular corner, (b) Plot of eigen-problem domain in (q, f)
plane.
The boundary conditions imposed at f = 0 and p are due to the symmetry condition, and for those
boundaries that fall on the conductor surfaces, U = 0. However, the boundary condition imposed at q =
0 is not obvious. First, this boundary is a fictitious one, which actually corresponds to a point in the
original spherical coordinates system. Hence, it is expected that U is single-valued along this
boundary, that is, U=U* is itself an unknown. In this case, the problem is not well-posed since the

given boundary value problem (BVP) is not fully constrained. However, it is observed that W 0 at

fla
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the point (g, f) = (0, p/2) due to the symmetry condition. This supplements the extra condition needed

to define the problem completely.

The governing equation for the three-dimensional eigen-problem of the potential analysis is (see

Appendix B.2 for the derivation)

D, +af@ +)1u =0, (.f)i G

u=0, (@f)i 16, (53
U o

—=0, (g.f)1 1G,

o (a.f )7 1

where a (a + 1) isthe eigenvalue for the given problem, | is the identity operator and Dy is the L aplace-
Beltrami operator defined as

1 T 6, 1 7T
D, = ——— L 5.4
a sinqﬂgsqﬂqg sn’q Tf 2 54

The objective here is to determine the smallest eigenvalue amm(a min +1) that satisfies (5.3). Due to
the simple geometry of the domain G, the finite difference method is used to solve this eigenvalue
problem. However, the variable U and more importantly its derivatives are not well behaved near the

point 8% %9 because of the singularity ray that passes through it. The order of singularity for this
e

2

ray isidentical to that of the singular edge, whichis a . Thismeans that both the first and second

1
wilnN

order partial derivatives of U are singular at that point, and finite difference method fails to give
accurate results when used directly to solve (5.3). To overcome this problem, the regularization

technique suggested by Bazant [36] is used, which assumes

Uf.f)=t*ua.f) (55)

where t =Jm F;O a? PO T corresponds to the radial distance from the singularity point.
e

Hence, the point singularity of the origina variable U is explicitly extracted by the transformation in
(5.5), so that the new variable u is nonsingular throughout the problem domain G. Substituting (5.5)
into (5.3) and (5.4) gives

F1u+F2:]]—:+F3E+F4‘"—+F Tu =0 (5.6)

aif g 2 T 2
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where

é U
F,=a(l+a) ?sn*q+ac(a .- 1)&in®qc ot o gﬂ_to
g eﬂqg 2

4 ﬂzt NELY: ﬂtu
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The finite difference method is now used to solve for the eigenvalues of the modified eigen-problem.
The discretized finite difference domain of eigen-problem and the modified boundary conditions are

depicted in Figure 5.5.
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Figure 5.5. Discretized finite difference domain and boundary conditions for the modified eigen-
problem.
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The Neumann boundary conditions are modified using (5.5), that is,

i Tu agu po
_— 0 p _- ? - —= 57
fi 1§ 4g &7
U fu aguze po
—=0 b —=- - == 5.7b
fla T t7 & 2s &7
Finally, applying the finite difference method leads to the linear system of equations,
M(u)u=0 (5.8)

where M isthe eigen-matrix withu = a(1+a), and u isthe vector of the nodal unknowns. A non-trivial
solution of u exists if and only if the determinant of M(u) is zero. In Appendix B.2, two methods of
solving (5.8) are presented. For this problem, method B (conversion to non-homogenous equations) is
used, because small scanning interval for a can be obtained using the results from Bazant [36]. It is
noted that some of the cases were already studied by Bazant (data points in Figure 5.6(b)). By using

these known solutions and fitting the data with a best-fit curve (as depicted in Figure 5.6(b)) an

estimate of the eigenvalueisderivedasa . » 0.871.
12
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Figure 5.6. (a) A general right-angled corner with varying y angle. (b) Plot of the eigen-values
Amin Versus differenty .

Finaly, the results for the smallest eigenvalue using different meshes are plotted in Figure 5.7, and by
extrapolating these results gives a = =0.8896 , which gives the order of singularity for this weakly

singular cornertobe | ., =0.1104 .

47



Chapter 5: Three-Dimensional Singular Elements

0.98 A
0.96 A
Amin

0.94 1

0.92 1

0.9 1

y =-12.648x? + 2.5351x + 0.8896
0.88 T T T T T

0 0.01 0.02 0.03 0.04 0.05 0.06
UNns

Figure 5.7. Extraction of singularity order for weakly singular corner.

5.3  Formulation of Three-Dimensional Singular Elements

In this section, we present the formulations of the singular shape functions for the 9-node and 8-node
singular elements. The 8node singular elements are also derived in consideration of the serendipity
element. It iswell known that the serendipity element can be as accurate as the 9-noded Lagrangian

element, even though it does not satisfy the complete quadratic form.

53.1 General methodology for formulating singular elements
A general methodology for formulating singular elements, with arbitrary order of singularities, is first

presented. Thisapproach consists of the following three steps.

Step 1. Approximating the singular solution
The first step is to approximate the variation of the potential flux on the singular elements, which

comprises singular and nonsingular parts. Generally, it can be expressed in the following form:

f(rl’rZ): S Cisfis(rl’r2)+g C?sfjns(rl’rz) (5.9
j=1

[e}=]

|
S

where fis(rl,rz) and fj”s(rl,rz) are the singular and nonsingular functions respectively, and

¢’ andc{® are the unknown coefficients. Here, r, and r,, correspond to the intrinsic coordinates of the

element. The number of terms for the two parts depends on the nunmber of nodes that are located

directly on the singularity, but they must satisfy the equality, n,+n_ =n, where n is the number of

nodes on the element, which is8 or 9. Two reguirements should satisfy by (5.9), and they are:



Chapter 5: Three-Dimensional Singular Elements

0] The singular functions should closely approximate the actual singular fields. This requires the
orders of singularities to be correctly included at the appropriate singular nodes. Although, it
seems desirable to have the singularity variations (the eigenvectors) incorporated in the
singular functions, they generally violate the second requirement, which is the compatibility
condition.

(i) The singular elements should be compatible, that is, the field variable must be continuous at
inter-element boundaries. This is necessary because the surface charge density or the electric
flux is expected to be continuous on smooth surfaces. However, from the mathematical
viewpoint, this compatibility condition need not be enforced in the BEM, as for example when

using the constant boundary elements.

This step is the most difficult part of the process. The two requirements stated above complicate the
task of finding appropriate functions for (5.9). But once the functions are formed, the rest of the steps

follow naturally.

Step 2: Solving for the singular coefficients, ¢’

The next task is to solve for the coefficients in terms of the nodal unknowns. The singular coefficients
are solved first, and this is done by applying the nodal conditions at the singular nodes. In the vicinity

of the singular region, the nonsingular part has negligible effect, and hence (5.9) is reduced to
85 S~ S
f (rl- rz) »a ¢y (r11 rZ)hi (rl , I’2) (5.10)
i=1
where f°(r,,r,) is conveniently expressed as g*(r,,r,)h (r,,r,), with g*(r,,r,) being a nonsingular

function, and h (r,,r,) is the singularity form that existsin f(r,,r,). Then, dividing (5.10) with an

appropriate de-singularizing term h; (r1 , rz) gives

f(rlvrz) :stg?(rP r2)+ g c? gis(rlvrz)hi (rl! rz)

(5.11)
h; (rler) i=1it ] h; (r11r2)

Note that (5.11) gives the generalized flux intensity factor j | at the appropriate singular node j, which
is related to the coefficients ¢’. By considering the flux intensity factors at all the singular nodes,

exactly ns equations are generated, which allows ¢ be solved uniquely intermsof j °, fori =1,..,n..
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Finally, by substituting ¢’ back into (5.10), and gathering the terms with identical j ° together, the

singular functionsin (5.10) can be rewritten as

fo(r.r,)= 5.] pi(rr) (5.12)

i=1

where p;(r ( 1 2) formsthe singular part of the shape functions of the singular element.

Step 3: Solving for the nonsingular coefficients, ¢™®

Next, (5.12) is substituted back into the (5.9) to give

f (rl' rz) = és i iS pis (r1' r2)+ g Cjnsfjns(rl! I‘2) (5.13)
i=1 j=1

Here, we aim to solve for the nonsingular coefficients ¢{*. The procedure is exactly the same as in

S

Step 2, except the nodal values a the nonsingular nodes j [° correspond to the actual physical

S

quantities. However, in this case, ¢* would be functionsof j [* and | , since the singular part may

be nonzero a the nonsingular nodes. Again, a sufficient number of equations is available to solve for
the coefficients ¢{° uniquely. Finally, substituting the results back into (5.9) gives the complete set of

shape functionsfor the singular element,

)=& i *[os(r, )]+aJ qr=(r,.r,) (5.14)

i=1
Here the terms in the square brackets are the singular shape functions for the singular nodes, which
comprise singular p*(r,,r,) and nonsingular q™(r,,r,) parts, and q™(r,,r,) are the shape functions
for the nonsingular nodes. Note that Step 2 and 3 can be incorporated into commercial software with

symbolic computation abilities, such asMathematica and Maple.

532 Formulating the sngular elements
The three-step process described above is used to formulate the shape functions for the various singular
elements identified in Section 5.1. However, only the first step is presented here for all the singular

elements, because it isthe vital step that determines the shape functions. Note also that the expressions
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presented in this section are for the 9node elements only. Those for the 8node elements can be

derived similarly by dropping the highest order term in the nonsingular part of the expressions.

Edge singular element
Without loss in generality, suppose the element is singular along the edge r, =0, as shown in Figure

5.8. One possible singularity solution is of the following form

— g ° (rl 1 r2) ns
flr,r,) ==—224 £7(r,r, ) (5.15)
r©
where
g%(r,r,)=c2 +csr +clr?
1772 1 2'1 3'1
fr (rl’ r, ) = Clnsrz +C;Sr1r2 + Cgsrzz + CZS r1r22 + Cgsrlzrz + Cgs r12 r22
1
and | . ==.
3
ri
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Figure 5.8. () Locations of Edge singular elements, and (b) Edge singular element definitions.

Basically in (5.15), the generalized flux intensity factor j ° assumes a quadratic variation along the
singular edge. The nonsingular function also assumes a quadratic form, in which the terms are selected
so that compatibility conditions along the element boundaries are satisfied. At the inter-element
boundaries, the solution must be of the following forms:

(iii) quadratic along theedge r, =1, that is,
f(r,)=a, +ar, +a,r? (5.16a)
(iv) two-dimensional singular form at the edgesr, =0andr, =1, that is,

b T
f(r,) == +byr, +b,r} (5.16b)
r E

2

wherea’'s and b's are constant coefficients.

T This two-dimensional singularity form is chosen because it blends naturally with the standard quadratic function. 51
Furthermore, the two-dimensiona analysis shows that this singularity form can be as accurate as the actua singularity
form, asgivenin Section 4.1.1.
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To check for the compatibility conditions: Whenr, =1, (5.15) becomes
£72(r) = (e + e +op )+ (es +e +oi)r, + (e + o + 0P )r (5.17)

which is aquadratic form. When r, =0andr, =1, (5.15) are reduced, respectively, to

CS
f(rz): +¢°r, +c°rf (5.18a)
I’2

£(r,)= w e v e e + (o + o + e k2 (5.18h)
2

which also satisfy the required singularity form.

Up to this point, it is shown that the singular solution in (5.15) is feasible. Proceeding with Step 2 and

3 leadsto the sets of shape functionsfor the Edge singular element.

9-node element:
N, =- W+ (2r1 - 1)(1- rl)rz[(Zr2 - 1) +4a(l- rz)]
N = (o - ) aaf )
N3 :(Zrl : )rl (2r2 - 1)r2
N, (2I’1 1)(1' rl)(2r2 - 1)[‘2
N, 4 r_' El) Lo 40- 1) [(2r, - 1) +4a(1- 1,)] (5.19)
N, =4(zrf- - 1)
N, =4@- r)r,(2r, - ),
Ny =- 42, - 21- r,)a- r,)r,
N, =16(L- r,)r,(1- r,)r,
8node element:
N =2 g - )2 ) 2]
N =22 g2 ) 20)
Ny =nn[(, - 1)- 20- 1,
N, =- (- n)rf(2n - ) +20- 1, (5.19b)
Ng ( ) (1 rl)rer

(1 rz)rz
1- 1),

ar
4
4( L )

ZZZ
1

where a :(2)' £
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Cornerlsingular element

This element contains two singular edges and a strongly singular corner located at node 1, as shown in

Figure 5.9(b).
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Figure 5.9. (a) Locations of Cornerl singular elements, and (b) Cornerl singular element
definitions.

In this case, the singular part of (5.9) contains one strongly singular corner and two edges singularity
forms. Considering the corner singularity, in the vicinity of the corner node, the corner singularity field

isdominant, and has the general form

fs|  »cir'af() (5.20)

r®eo
Here c; is the generalized flux intensity factor, r =,r>+r? isthe radia distance from the corner
node 1, and f(q) describes the variation of the singular field on the element, which is essentially the

solution of the eigenproblem for the strongly singular corner. Then it is also noted that when

q® Oand% with r1 0, the field is also singular, which is of the edge singularity form. Hence, by

extracting these edge singularitiesfrom f (q) (5.20) gives

t(a)=(snq)'*(cosa) " ola) (521)
where (sinq)"E and (cosq)"E account for the edge singularities along r, =0 and r, =0,
respectively, and g(q) is expected to be a nonsingular function. Substituting (5.21) back into (5.20),

and also recognizing that sinq :rTZ and cosq :rTl,gives
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e e
&2 B2 gh) (522

fs » c:1sr.(-| at2 ) T T
reo g "o

Finally, to ensure that the compatibility requirements are satisfied along r, =1 and r, =1, (5.22) is
forced to be zero along these two edges by assuming the simple form of gfg)=(1- r,)1- r,). Hence,
(5.22) becomes

fs _Cs rgl (1_ I"1)(1_ r‘2) (523)

M g ol
reo E E
re=r;

where g, =-1 o, +21 . =0.1192 .

The two edge singularity forms follow that given in (5.15) closely, where the generalized flux intensity
varies quadratically along the two singular edges. However, it is desirable that these edge singularity
fields vanish in the vicinity of the corner node, because these effects are already included in the corner

singularity givenin (5.23). Hence, the appropriate choices for the edge singularity forms are

_ (C§ +C;l, )rz
L®0 e

(5.24a)

(5.24b)

As for the nonsingular function, it turns out that the only choice that will enforce the compatibility

conditions at the inter-element boundariesis
f " (rl' r2) = C:[]Srlrz + Cgs I’lr22 + Cgs r12|'2 + CZSrerZZ (525)

Therefore, the complete singularity representation for thisCorner1 singular element is

g s s s s
f(r r ): s T 1(]-' rl)(l' rz) + (Cz +03r2)r2 + (C4 +C5r1)r1
172 C‘I' leple I e l'e 526
P P I ro (5.26)
+ nsr ro+ ns 2 + ns, 2 + ns, 2.2
Cohl, TGNy +CaI I +C4T T,

The singular expression satisfies the compatibility conditions at r, =1andr, =1, since the solutions

along the two edges are
f (rl, r2) :M + (c§ +c® +c )r2 + (c3S +C) +cy )r22 (5.27a)
r,©
f(rl): (CzsrTEcs) + (C4S + Clns + Clzws )r + (CSS + Cgs + C:S )rlz (5.27b)
1

which are the same singularity form as (5.16b).
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The shape functions for the Corner1 singular element are thus given as:

9-node element:
re (1' rl)(l' rz)_ 4b1r1(1' rl) _ 4blrz(l' rz)
rErE re e

+anr 2[(1 rl)( )(4b1+b 8@) b1(2' - rz)]
N, :M - (2r1 - 1)r1r2[(2r2 - 1)+ 431(1' rz)]

N. =

1

re
N, =(2r, - 1), (2r, - 1),
_(or,-2)r, r
N, = e r,(er, - l)rz[(zrl - 1)+ 4a,(1- rl)] (5.289)

4(1 rl) 4(1 rl)rer[(er )+4a1(1_ rZ)]
N, —4(2r D, (tr, ),

N, = 4(1- r)r(2r, - 1),
Nig w 4(1 rz)rlrz[(zrl' )+4a1(1' rl)]
Ng :16I’1(11- rl)rz(l' rz)

8-node element:

N, = rgl(l' rl)(l' rz)_ 4b1(1' rl)rl - 4b1(1- rZ)rz

er,e I I
+4o,r,1,(2-1,- 1,)
N, = (2r; ;El)rl -, - 1)- 20 r,)a- 2a)]
N, =r.r,[(r, - 1)- 2(1- 1, )]
o= 2 ) o) 2a,)] (5280

Ns = 4(1 rl) 4(1 rl)rlrz

2

Ne = 4r, (1- 1),
N, = 4(1' rl)rer

1-r, )
N, :—4( r|:)2 - 4 (1- 1),
1

a3,

where a,=(2)¢, a,=(2)® and b, = b, =aZ\fa,, by=ab.

Corner2 singular element
This element contains only one weakly singular corner, which isat node 1, as shown in Figure 5.10. In
the vicinity of the corner node, the singular solution has a similar form as (5.20), which is the corner

singularity form. The function f (q) needs to be compatible with the adjacent elements at the four

element’ s edges.
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Figure 5.10. (@) Locations of Corner2 singular elements, and (b) Corner2 singular element
definitions.

The compatibility conditions require the expression to be:
(0] quadratic along the edgesr, =1andr, =1, asin (5.16a), and
(i) of two-dimensional singular form along the edgesr, =0andr, =0, asin (5.16b).
Onepossible expression is
t)=(i- ) red) (5.29)

which gives the corner singularity as

= ¢ (5.30)

The nonsingular solution istaken to be

f(r,r.)=c™r, +c™r, +c™rr, +c™r?
(1 2) 1 "2 2 1 3 '1°2 4 "2 (531)

ns, 2 ns 2 ns,2 ns,.2.2
+CS If.l +CG r1r2 +C7 r1 r2+CB If.l r2

which is the complete quadrilateral form without the constant term. Hence, the complete singular

expression for thiselement is

) )l pc,)
f (rl’ r ) = ClS (1 i r|)£:lz- : )+ Cfsrz + C;srl + Cgsrlrz (5.32)

+CES r22 + Cgsrlz + Cgs rer2 + C;S r12r2 + Cgsrlz r22

It istrivial to show that (5.32) satisfy the compatibility conditions at all the element edges. Hence, the

sets of shape functions are:
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9-node element:
) )

rlcz
+4(l' rl)(l' rz)(z' a)_eé'lrz
e

=-(2r, - 9r,(2r, - 2)1-1,)
. :(2r1 1), (2r, - 2,
(2r1 )(1 rl)(2r2 r
=-40-r)r(er, - -,
—4(2I’1 )rl(l I’2)I’2
4(1 rn(er, - 2r,
-4{2r, - 11121,
16 (1' rl)rl(l rz)rz

)

IC2

efr et ) v 22

N (1' r )[2(1' r1)+(2r2 - 1)]
=nr; [(2I‘1 - 1)' 2(1' r )]
47" (1' rl)rZ [(zrl - 1)' 2(1' r )]
s =4(1- r)n(-r,)

Ng =4r, (1' P! )I‘2

N; = 4(1' rl)rer

Ns =4(1' rl)(l' I )l‘2
where a=(05)'*>and b=+a.

N

1

& 2-ao (r+r2)

a b g 2

4=

N,
N
N 2
N )

N,
Ng
N,

8node element:

3

Z Z 2 2
N

Corner3 singular element

This element contains one singular edge and one weakly singular corner,

r, = 0 and node 1, respectively, as depicted in Figure 5.11.

Fi

u
u
u

(5.333)

(5.33b)

which is assumed to be at

Carmeri 4
sEagar ! 7 .
elements 44 O )
\ o o
1 ¥ = -
- - =
/.-'{ L 3 1
" i o 4
/ Wty T
. singtdar .:.mg:mr
| Feakly singular Carrer 5!
' corngy
& = 8- -
1 5 2 -
Lal ik
Figure5.11. (@) Locations of Corner3 singular elements, and (b) Corner3 singular element

definitions.
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The corner singularity form is identical to (5.20), and the field is singular when g ® 0. The corner

singularity takesthe form

Sr92
s|  2Gf
f @0 le g(q) (534)
2
where g, =-1,+1 . =0.22293 . Since this element always has Corner2 singular element as its

neighbour at r, =0, for compatibility, g(g) is taken to be (1- rl(“'“))(l- i Cz)), which gives the

corner singularity as

:ﬂ(l_ 1) )1 rfre)) (5.35)

r®0 rZ'E

fS

The edge singularity assumes the form in (5.24b), which again vanishes at the corner, and the

nonsingular function isidentical to that in (5.15). Therefore, the complete singular expressionis

S92 s s
f(r r ): Cir (1_ e cz))(1_ r(1+'”))+ (Cz +C3l’1)r1
R ! 2 rle (5.36)
2 2 .
+Clnsr +Cnsrr +C"Sr2+C”Srr2+C”Sr2r +Cnsr2r2
2 2712 3 2 4 12 51 2 6 1 2

In this case, the compatibility conditions are identical to (5.16), except at r, =0, where the order of
singularity is | ,. Itisagain trivial to show that (5.36) satisfies the compatibility requirements. The

sets of shape functions are asfollow:

9-node element:

% (1— pllea) )(1— i °2)) 4a,(1- 0.5, JL- 1),
) I, _ I

+ 2(2' az)(l' rl)r2 {23-1 (33-1 - b1(2' &, ))rl (1' rz)
+agn (2r, - 1)- agg(L- 1.}

N,

N, = %;Elyl' (2r1 - 1)r1r2 [(Zrz - 1)"'43-1(1' P! )]

N, =(2r, - Ir,(2r, - 1),

N, =-(2r, - 2)(1- r,)2r, - I)r, (5.37a)
Ns = M' 4(1' rl)rer [(Zrz - 1)+4ai (1' P )]

re
Ng = 4(2I’1 - 1)r1(1' P} )rz
N7 = 4(1' rl)rl (2!’2 - 1)
Ng =-4(2r, - 1)1- r,)a- r,)r,
N, :16(1— rl)rl(l- r, )r2
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8-node element:
N, = re (1' r1(1+|m))(1' rz(1+I CZ))_ 433(1' O-Saz)(l' rl)rl
1= re re
+ 433(1' 0.5a, )(1' rl)rZ[rl + ai(l_ I )]

no=E o e 2f o 2a)

2

N, =rr,[(2r, - 1)- 21-1,)
N, =- (- r)r,[(er, - 1)+ 21- r,)] (5.37h)
N, :—4(1;|:1)r1 - 41- 1)),

Ng :4r1(1- rz)r2
N7 :4(1' rl)rlrz
Ny :4(1' rl)(l' rz)rz

where a, = (2) ¢, a,=(2)'**, a, =(2)% and b, =+[a,.

Corner4 singular element
Finaly, the last singular element is considered in Figure 5.12. In this element, there & only one

singular edge along r, =0, and this singularity field dies down as it approaches the “zero” corner at

node 1.
.l'z*
Carperd Fara d ; ! Y
sirgrdar coreer [0, 8] 5]
GG
B 85 Zere 07 o ]
[l
Szl
Gage
¥ T— T E—
5 7 Kl
(&} by

Figure5.12. (@) Locations of Corner4 singular elements, and (b) Corner4 singular element
definitions.

Theoretically, the field is zero along the edger, = 0. But, as mentioned in the beginning, this zero field
effect is not being specially treated. Hence, along this edge, the field is assumed to be the normal
quadratic form. The edge singularity formisagain that asin (5.24b), and the nonsingular part is

ns — ADNS ns ns,. 2 ns 2 ns,2 ns,.2.2
f (rl’ rz)_cl r2 +C2 r1r2 +C3 r2 +C4 rer +CS r1 r2 +C6 r1 r2 (5 38)

+ C?S (0'5 -n )(1' rl)

where the last term provides the quadratic field along the edge r, = 0.
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This gives the complete singular expression as

t(rr,) = (Cf+C§r1)r

= LH+CSr, H et r, +

rae

ns. 2

ns 2
+C4 r.1r2 +C5 rl r2+C6 r1 r2 +C7

Hence, the sets of shape functions are:
9-node element:

(2r1 5 1)r1

N
N, =- (2, - 1)1- r,)er, - 1),
N 4(1— rl)r1

5 b
2

N :4(2rl - 1)I’1 (1' I )I‘2
N, =4(- r,)r,(2r, - 2,
Ns = '4(21'1X1' rl)(l' rz)rz
N, =16(L- r,)r,(1- 1, )r,

8node element:
N1 = (1' rlX]" rz)(l' 2(I'1+ rz))
N2 (2r1|' 1)r1

r,©

s =l 2[(2[’1- 1)' 2(1' rz)]

1
—

Ns :4(1' rl)(l' rz)rz

where a=(2)'c.

This completes the entire formulation of shape functions for the various singular elements.

N, =(2r, - 7)1- r,)2r, - 1)1- 1,)
N

- (2rl - 1)r1r2[(2r2 - 1)+4a(1- rz)]

N
N4 =- (1' rl)rZ [(zrl - 1)+ 2(1' rz)]
N

ns,. 2,2

ns, 2

SR P

ns

(0.5 -n )(1— rl)

- 4(1' rl)rer[(er - 1)+ 4a(1' ry )]

-, (2rl - 1)+ 2(1- rz)(l- 2a)]

(5.39)

(5.40a)

(5.40b)

It is

remarked that the derived shape functions are not unique, since different functions can be assumed for

the variations of the fields on the element, for example g(q) in (5.22). However they are reasonably

simple forms that correctly describe the singularity behaviours at the singular nodes, and also satisfy

the compatibility conditions along the element edges. Hence, they are expected to be effective in

capturing the singularity fieldsin the vicinity of sharp corners and edges.
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54  Numerical Integration of Boundary Integrals

This section deals with the numerical integration of the boundary integrals that arise from the

implementation of the indirect BEM formulation. The boundary integral is generally of the form

"UNK,x,)

=0 L2243 (x, ,x, Jdx,d 541
Def gl H o

where N(xl,xz) is the shape function that describes the surface charge density function s (xtI)
|x- x4 isthe Euclidean length of (x- x@ and |3(x,,x,) is the Jacobian of transformation that maps
the element from the global coordinates to the intrinsic coordinates.

Four situations can occur in (5.41), namely,

(i) theintegrand is nonsingular,

(i) only the fundamental solution is singular, that is, the collocation point falls on the standard
elements,

(iii) only the shape function is singular, that is, the element is asingular element, and

(iv) both (ii) and (iii) occur together, that is, the collocation point falls on asingular element.

The rest of this section briefly discusses the numerical techniques used to evaluate the four types of

integrals above.

54.1 Nonsingular Integral
When the integrand is nonsingular, the two-dimensional Gauss-L egendre quadrature schemes can be
used. It is essentialy the product formula of the one-dimensional Gauss-Legendre quadrature rule

[81], which is given by the formula

éql f (Xl’xz)dxldxz » g-l g f (Xi 1Xj )Nin (542)
i=1 j=1

where x; and x; are the abscissae of the Gauss-Legendre formula, w; and w ; are the corresponding
weighing coefficients, and nl1 and n2 are the numbers of Gauss points used in X; and X directions,

respectively.
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54.2 Singular integral dueto fundamental solution only

The evaluation of this singular integral is itself a research topic. Numerous methods have being
developed to improve its accuracy. Broadly speaking, they can be classified into two groups, namely
the weighted Gaussian quadrature formulae, and the transformation techniques. The former methods
compute new sets of abscissas and weights, where the singularity is moved to the weights [82-84]. On
the other hand, the transformation techniques utilize the Jacobian of transformations to remove or
weaken the singularity. One well-known approach is the transformation of triangular elements into
squares [85], which is referred as the regularization transformation. A study by Aliabadi and Hall [86]
showed that this is a very accurate and efficient method. Another similar approach is the polar

coordinate transformation [87], where the rectangular intrinsic coordinates (x l,xz) are replaced by the

polar coordinate system (r ,q), with the singular point at origin. Other types of transformations
include the polynomial transformation [88, 89] and co-ordinate multi-transformations [90, 91].

The regularizing transformation technique [85] is used here to resolve this singular integral. The
element is first sub-divided into two or more triangles, depending on the collocation point location.

These triangles are considered as degenerate squares, which are then mapped into square elements

using the following mapping functions.

= (L, + LK +Lx@ +Lx@ | fori=1,2. (5.43)
where xi(’) isthe triangle corner that coincides with the collocation point, and xi(z) and x i(3) correspond

to the other two corners of the triangle, and

L 22(1' hl)(l' hz)v L, =%(1+h1)(1' hz)v

1 1 (5.44)
L3=z(l+hl)(l+h2), L4=Z(1' hl)(1+h2)
After applying the bilinear transformation, (5.41) becomes
T j11 |J hlyh X 1']
|:§!“f( ,)——"4dh ch (5.45)
A PR TR

where f(x, X, )|J( 1X,)| is anonsingular function, T is the number of sub-triangles

): N(Xl’xz
pe

depending on the collocation point, and |Jh (hl,h2)| :c(l+h2) is the Jacobian of transformation that
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maps x onto h, and it cancels the singularity so that the integrand in (5.45) is smooth

1
[x- x4
throughout the integration domain. Here, ¢ is a constant that also depends on the location of the
collocation point. Since the integrals are no longer singular, the standard Gaussian quadrature scheme
can be used. The mapping functions and values of T and c for the various cases, where the collocation
points fall on different nodes, are summarized in Appendix C.1. Figure 5.13 shows this process for the

case where the collocation point at node 1.

T2
7 i
4 S .
1,1 4 a0 &
A @ " g
a |
i

I"‘,’ B é’j ??I ]:?
S0 \ 1
(-1, -'1) 1,-1) v

— o

% ; T2
Collocation point at 4]

node 1

Figure 5.13. Regularization transformation process for collocation point at node 1.

54.3 Singular integral dueto singular shapefunction only
This integral occurs when the integrating element is singular, that is, N (xl,xz) in (5.41) isasingular

function. This can be rewritten as

11

| = C‘x‘};(xl,x2 )h(xl,xz)dxldx2 (5.46)
-1-1
where g(xl,xz):%p(xl,le is a nonsingular function, and an(xl,xz) is the nonsingular

part of the singular shape function associated with the singularity form h(xl,xz). According to the

shape functions derived in the previous section, these are

(i) h, :ﬁ fori=1or2. (5.479)
+X,)'

rgl

@ h, = FENEE (5.47b)
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(5.47¢)

rgz

—
<
~
>
11

fori =lor2 (5.47d)

and 1 :%1/(1+x1)2 FLex, ) .

Since all these singularities exist only along the boundaries, the Gauss-Jacobi quadrature formula [80]
is particularly suitable for evaluating such weakly boundary singular integrals. The one-dimensional

Gauss-Jacobi formulais given by

dl-x)a(1+x)bf(x)dx »éﬂ f(z,)v, (5.48)

where z; and v ; are the abscissae and weights of the Gauss-Jacobi formula, and a and b are weakly

singular exponents, with value greater than -1.0. However, for numerical stability, a should be greater
than -0.98 [80]. The Gauss-Jacobi scheme, together with the Gauss-Legendre scheme, are use to

evaluate the integral in (5.46) with singularity forms given by (5.47a)-(5.47d). For example, if

h :;I fori =1or 2, then (5.46) is evaluated as
(1+Xi) :
11 n n2
I = Aap bk, x, Ni+x, ) = dx,dx, » § & g@j ,zi)/vjv -, fori=lor 2 (5.49)
S1-1 i=1 j=1

where the Gauss-Jacobi quadrature is used in the i-direction, and the Gauss-Legendre quadrature is
used in the j-direction. Similar approaches are used for the singularity form in (5.47b) and (5.47d), by
choosing the correct schemes in the appropriate directions. As for (5.47¢), which is only singular at

one point, this point singularity can be removed by expressing the integral as

11 . n2
I = Cx‘j<(xl,x2)(1+xi)'b dx,dx, » é é k@j,zi)/vjv i, fori=1lor2 (5.50)
-1-1 i=1 j=1

b
where k(xl,xz)zw. Theterm (1+xi )b de-singularizes the weakly singular effect due
r c2

1 . .
to r'T , Since b ischosen to be 0.98.
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54.4  Singular integral dueto fundamental solution and singular shape function
This situation occurs when the collocation point falls on a singular element, where both the
fundamental solution and the shape functions are singular. In this case, the integral is more

conveniently rewritten as

11
NN\

_ ®e 1 0
' —_glﬂ(xlaxz)gwgl (%, )b, dx, (5.51)

where g(x,,x,) isagain a nonsingular function, and h (x,,x,) is one of the singular functions given

2

in the above sub-section. To remove these singularities completely, the following techniques are used.

First, the stronger singularity due to the fundamental solution is removed by using the regularizating

transformation technique discussed in Section 5.4.2. After the transformation, (5.51) becomes

114 N
I= é— mfg(xl’XZ)C(lﬁ-hZ)Hhi (XI!XZ )dhldhz (5.52)
%, 00k xS

where the function in the square bracket is nonsingular as (1+h2) cancels the singularity in _1

[x- x4
However, h(xl,xz) may still be weakly singular along the boundaries. |If h(xl,xz) is nonsingular,

then the integration is carried out as usual by using Gauss-L egendre schemes. However, if it contains

the edge singularity form as

h (x,,x,)=(1- h, ) *(@+h,) % (-h,) *1+h,) (553
where c,,c,,d, andd, correspond to the orders of singularity of h (x,,x,), the Gauss-Jacobi
formulas, with a = ¢y, b = ¢, for h1 anda=dy, b=d,for h2 can then be used to evaluate the singular
integral. Thisapproach fully exploits the capability of the Gauss-Jacobi formulae to deal with integrals
that contain only wesk singularities. Furthermore, if h (xl,xz) is of the point singularity form, the

technique used in Section 5.4.3 can be employed. The final forms of the integrals and the appropriate

Gaussian Quadrature formulas for the different singular forms h (x1 ,xz) at different collocation nodes

are presented in Appendix C.2.
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55  Numerical Examples

Using the singular shape functions and the appropriate techniques to evaluate the boundary integrals,
the singular element method is implemented in a three-dimensional BEM code. In this section, some
numerical examples are presented to demonstrate the accuracy of these singular elementsin evaluating,
(i) the capacitance, and (ii) the electrostatics force for electrostatics problems. The 8node singular
elements are denoted as quadsng8, while 9-node singular elements as quadsng9. Theresults reveal that
the singular elements can produce very accurate results. The improvement is most likely due to the
fact that the singular elements can describe the true surface charge distributions (and hence the
electrostatics force distributions) more accurately in the singularity regions. Electromechanical

coupling analyses are also conducted to investigate the effects of using singular elements on the

functionality of some micro-devices, namely micro-beam switches, acomb -drive and a micro-mirror.

551 Capacitance extraction problems

Two examples, involving self-capacitance extraction, are used to determine the accuracy of the singular
elements in obtaining the capacitance of (i) a cube and (ii) an L-shaped conductor. These two
examples are chosen because they contain the types of singularity features that are studied here.

Furthermore, they are used as test problems by Tausch and White [92] to evaluate the accuracy of their
mesh refinement method. In fact, the “exact” capacitance for the two examples are derived from [92],

by extrapolating their mesh refinement results.

Cube example
This example, as depicted in Figure 5.14, is discretized with uniform square panels, and it contains

both Edge and Corner1 singular elements. The“exact” capacitanceis estimated to be 73.51 pF.

|

Figure 5.14. Discretization of cube example.
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Therelative percentage errors with respect to the ‘ exact’ solution are given in thelog-log plot in Figure
5.15, where the horizontal axis corresponds to the problem size n. This plot also includes the results

from[92], which employed the adaptive h- mesh refinement technique using constant elements.

1.005+00 \
’§‘ 1.00E-01 A
5 —B— constant
'-'H) —o—linear
=
%5 —&— quadratic
[ad ~ 4
1.00E-02 quadsng8
—>—quadsng9
—6—mesh
refinement
1.00E-03 T
1.00E+02 1.00E+03 1.00E+04

Problem size, n

Figure 5.15. Relative percentage errors for the capacitance of cube example. “Exact” solution is
73.51 pF.

It is obvious from Figure 5.15 that the singular elements produce very accurate results, even for the
coarsest mesh density considered here (only four elements along each edge). In generdl, it is more
accurate than the other standard elements by at least one order of magnitude. It is also noted that the
singular element approach has the same convergence rate as the standard elements. On the other hand,
the adaptive mesh refinement technique has a better convergence behaviour. However, its results are
still much less accurate than the singular element approach because the singularity solutions at the
sharp corners and edges cannot be adequately represented by low-order polynomial elements.
Furthermore, in order for the mesh refinement approach to attain convergence, it usually has to solve a
number of progressively larger problems, which can be quite xpensive. From this example, it is
shown that the singular shape functions for the Edge and Cornerl singular elements are feasible and

accurate, at least in terms of capacitance extraction.
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L-shape example

The geometry of this exampleis shown in Figure 5.16, which contains the Edge, Corner1, Corner2 and

Corner3 singular elements. The“exact” solution is estimated to be 112.15 pF.

[T ] T 7Y

[ L]

/

Figure 5.16. Discretization of the L-shaped example.

Likewise, the relative percentage errors for the various elements and the adaptive mesh refinement
technique are plotted in Figure 5.17. It is again seen that the singular element approach produces very

accurate results.

1.00E+00

S

1.00E-01 1 —¢— constant
—B—linear

—A— quadratic

Relative Error [%)]

1.00E-02 1 —+—quadsng8

—>—quadsng9
—e—mesh
refinement
1.00E-03 T
1.00E+02 1.00E+03 1.00E+04

Problem size, n

Figure 5.17. Relative percentage errors for the capacitance of the cube example. “Exact” solution
is112.15 pF.



Chapter 5: Three-Dimensional Singular Elements

Biased element distribution effect

Very often, more accurate results can be obtained by using the r-mesh refinement technique near the
singularity regions, because the influence of the singularity is usually quite localized. For geometrical
induced singularities, which are easily identified from the geometry such as the solid angles, the mesh
refinement can be done manually at the preprocessing stage. The cube example (with five elements
along each edge) is used to study the biased element distribution effect. The bias ratio R is defined to
be the ratio of the largest element length (at the center of the cube) to the smallest element length (near
to the edges and corners), and is taken to be 1.0, 2.0, 3.0, 4.0 and 5.0 in the present computations.

Figure 5.18 shows the meshes for the various R values, and the corresponding results are presented in

Figure 5.19.

R=4.0 R=50
Figure 5.18. Surface meshes for different biased ratio R., ranging from 1.0 to 5.0.

It is noted that the r-mesh refinement technique tends to work more consistently for the standard
elements. However, their convergence rates decrease with increasing value of R, which suggests that
further increasing the bias ratio has little or no effect on the results. This observation is consistent with
the general observation that the r-mesh refinement approach does not guarantee that the solution
converges to the exact one, simply because this cannot be achieved by just rearrangement of the

elements alone.

On the other hand, the singular element solutions are better for low bias ratios, and then deteriorate
with increasing bias ratios. This observation can be explained as follows. It isrecalled that singular

elements are used only in the singularity regions, while the standard quadratic elements are used
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elsewhere. The singular elements are expected to capture the rapidly varying singularity fields
accurately, whereas the standard quadratic elements can describe the regular fields that are remote from
the singularity regions. In order for the singular elements to perform at their optimum, it is necessary
that the size of the singular elements be comparable with the actual singularity regions. To be more
explicit, consider the situation where the singular elements are much larger than the actual singularity
regions. Inthiscase, it isobvious that the singular shape functions, specifically the nonsingular parts,
are inadequate to represent the actual solutions. On the other hand, if the singular elements are too
small, the standard quadratic elements adjacent to them have to represent part of the singularity fields.
The major source of error isthen due to theinability of the standard quadratic elements to represent the
rapidly varying solutions near the singularity regions. This is probably the scenario for this cube
example with large bias ratios. The important question to ask here is: when is element-biasing useful,
or what determines the sizes of the singularity regions? One possible factor that affects the size of the
singularity regions is the proximity between the conductors. A study is conducted in the next section

with respect to the electrostatics force analysis.
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Figure 5.19. Relative percentage errors for the capacitance of the cube example with biased ratio
R=1.0, 20, 3.0,4.0and 5.0.
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55.2 Electrostaticsforce analysis

Many microelectromechanical systems are actuated by electrostatics forces, which are otherwise
practically too small for macro-applications. The electrostatics force is directly proportional to the
square of the surface charge density. Hence, this provides another motivation for performing
electrostatics analysis accurately. This section evaluates the usefulness of the singular elements with
the cube example, which is now placed over an infinite ground plane at some distance d. The resultant
electrostatics force induced on the face of the cube that is closest to the ground plane, which has the
largest magnitude, is calculated in this study. The analysis is conducted for three different distances,
namely d = 1.0, 0.5and 0.2. Notethat the ‘exact’ solutions are approximated from the extrapol ation of

the uniform mesh refinement results.

Convergence behaviors using uniform meshes
This analysis studies the convergence behaviour of the various elements using uniform meshes. The
convergence behaviors for the various elements for different distance d are plotted in Figures 5.20-

5.22.

It is again obvious that the use of singular elements can produce more accurate results than using the
standard elements alone. However, the results for the constant elements improve as the distance d
decreases, whereas the situation is the opposite for the singular elements. This observation can be

explained as follows. It is expected that the centre portion of the cube’'s face generate a uniform

electric field with the ground plane. As the distance d decreases, the size of this uniform field grows,
which means that a larger portion of the face of the cube has a more or less constant surface charge

density. Hence, constant elements can produce good results for smaller values of d. Also, an increase
in the size of the uniform field indicates an equivalent decrease in the singularity region. Hence, for
the coarse mesh cases, the singular elements are too large to be able to capture the true surface charge
distribution accurately (which partly consists of the uniform field). However asthe mesh isrefined, the
singular element results improve significantly, while thisis not the case for the constant elements. This
is simply because the true fields can be captured more accurately in both the uniform and singularity
regions, by the quadratic elements and singular elements, respectively. For the constant elements, the

uniform field remains accurate, but the singularity region is still poorly represented. To further
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illustrate this point, the surface charge density distributions for the face of the cube are plotted for

various distancesin the Figure 5.23.
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Figure 5.20. Relative percentage errors for the electrostatics force on the cube face at distance
d=1.0.
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Figure 5.21. Relative percentage errors for the electrostatics force on the cube face at distance
d=05.
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Figure 5.22. Relative percentage errors for the electrostatics force on the cube face at distance

d=0.2
Figure 5.23(a) depicts the general surface charge distribution that one expects, where the centre portion
shows a relatively uniform distribution that becomes rapidly varying as it approaches the edges and

corners. Figures 5.23(b)-(d) show the contour plots of the distributions for the different distances,

namely, ford = 1.0, 0.5 and 0.2, respectively.
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Figure5.23. (a) A genera surface charge distribution, (b) contour plots of surface charge
density distributionsatd = 1.0, (¢) d = 0.5, and (d) d = 0.2.
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The density of the contour lines signifies the rate at which the surface charge density is varying. Itis
obvious from the figures that the size of the uniform/singularity fields for d = 0.2 is significantly
larger/smaller than the two other cases. This is consistent with the eplanation given above. On the
other hand, the difference is not obvious between distributions for d = 1.0 and d = 0.5. This seems to

suggest that the surface charge distributions remain similar beyond a certain distance.

Biased elements distribution effects at different distances from ground plane

In light of the above analysis, it is noted that the uniform mesh refinement technique is not an efficient
approach, as the additional elements used within the uniform field have negligible effect on the
solution. The more favourable approach is the r-mesh refinement technique. However, the questions
of “when is element biasing necessary?’, and “how much is required?’, still remain to be answered.
The following study aims to draw a general relationship between the distance d and the bias ratio R
required to give an optimal solution with the singular element approach, at least for this cube example.
The biased meshes are those used in the previous analysis, as depicted in Figure 5.18. The results are
normalized with respect to their corresponding ‘exact’ solutions, and are plotted in Figure 5.24. The
points at which the various curves cut the normalized line (dashed line) give the optimal bias ratios that
produce the ‘exact’ solutions. Table 5.1 summarizes the optimal bias ratios for the various distances

using the quadsng8 and quadsng9 elements.
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Figure 5.24. The normalized results for the biased elements study for different distance d from
the ground plane.
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From Table 5.1, it is observed that larger bias ratios are required as the distance d decreases. Thisis
again consistent with the observations noted earlier. Another interesting observation seen in Figure
5.24 is that the 8-node singular element seems to be less sensitive to over-biasing (when the bias ratio
is larger than the optimal value) in this example. The figure shows clearly that the results for the 9
node singular element deteriorate much faster than the results for the 8&node singular elements when
the elements are over-biased. Hence, this makes the 8-node singular elements more favourable than 9-
node ones, especially considering that their shape functions are simpler, and they are computationally

less expensive (with only 8 nodes per element).

Table 5.1. Optimal biased ratios for the singular elements for different distances.

Optimal biased ratio, R

Distance, d
Quadsng8 Quadsng9
10 22 23
05 37 33
0.2 45 38

55.3 Electromechanical coupling analysis

Electrostatics force is one common driving force used to actuate micro-parts in some MEMS devices.
Electromechanical coupling arises when electrostatics forces, which are induced by the applied
voltages, deform parts of the structures. The deformation, on the other hand, is governed by the
stiffness of the structures. In general, the deformed structures may result in further changes in the
surface charge distribution, and thus the electrostatics forces acting on the structures. Hence, the
coupling analysis requires one to solve for a self-consistent equilibrium state, in which the

electrostatics forces are exactly counter-balanced by the mechanical forces due to the stiffness of the

structure.

The multilevel Newton method [15] is employed to solve for the self-consistent equilibrium state. This
method requires an electrostatics solver that computes the surface charges, which are then used to
compute the electrostatics forces for an applied voltage. It aso requires a mechanical solver that
calculates the structural deformation when subjected to the electrostatics forces. In this study, an in-
house code is used for the electrostatics solver, while a commercial general-purpose finite element
software package ABAQUST is used for the mechanical analysis. The electromechanical coupling

analysisis more clearly described in Appendix E.

+ ABAQUS. HKS Hibhitt, Karlssoon & Sorensen, Inc. 1080 Main Street, Pawtucket, USA. 75
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In this section, three typical micro-devices, namely, the micro-beam switch, the comb-drive actuator
and the micro-mirror are analyzed. In the micro-beam examples, which include a cantilever beam and
adoubly-clamped beam, the effects of the force distribution on the pull-in voltage are examined. Inthe
comb-drive example, the comb-finger levitation problem is addressed, in which the deflection profile
of the comb-finger is important. Finaly, in the micro-mirror example, the tilting angles of the mirror

arestudied. These examples are have been used earlier in [12-15].

Four different types of boundary elements are used here, namely, the constant, linear, quadratic and
quadratic-singular elements. The first three types are the standard elements, with the names denoting
the order of the polynomial of the basis functions used for the surface charge variations on the element.
The quadratic-singular element corresponds to the case where standard quadratic elements are used for
the non-singular regions and singular elements for the singular regions. It is mentioned here that the
problem sizes for the various types of elements are different for the boundary element analysis, where
the quadratic/quadratic-singular elements are usually about four times larger than the constant/linear
elements. This makes the comparisons less meaningful, since the former types of elements are
expected to produce more accurate results simply because of the larger degree of freedoms.

Nevertheless, the results for the constant and linear elements are also included for completeness sake.

Asfor the finite elements, the 27 node solid elements are used for all cases.

Micro-beam examples

Micro-beams are often used as on/off switches in micro-devices. Typically, the beam is placed over
the substrate (usually grounded and coated with a layer of dielectric to prevent short-circuiting) with a
small gap between them. When a voltage is applied on the beam, electrostatics forces are exerted on
the beam causing it to bend towards the substrate. As the voltage increases, the forces increase rapidly
and deflection of the beam increases non-linearly. This continues until a critical voltage at which the
beam collapses abruptly onto the substrate. This critical voltage is known as the pull-in voltage, which

isan important parameter that defines the on/off states of the micro-switch.

In this example, the micro-beam has dimensions of 100x2x1 nm. The gap between the beam and the
substrate is assumed to be 1 nm, with a 0.3 nmthick dielectric coating. The pull-in voltage is attained

when the beam reaches a certain displacement profile and deflects in an unstable manner towards the
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substrate. Two situations are considered here, namely, when the beam is fixed only at one end

(cantilever beam), and when both ends are fixed (doubly-clamped beam) [13-15].

ground plane
g

micro-beam

®

Figure 5.25. (a) Discretization of cantilever micro-beam example, (b) Deflection profile of beam
before pull -in voltage, with magnification of 20.

ground plane

micro-hearm

()

b

Figure 5.26. Discretization of doubly-clamped micro-beam example, (b) Deflection profile of
beam before pull -in voltage, with magnification of 20.
Figures 5.25 and 5.26 show the discretized mesh, and the beam deflection profiles for the cantilever
and doubly-clamped beams, respectively. The meshes for the two problems are not identical, as mesh
refinements are employed at different regions appropriately. The maximum deflections (at the free end

for the cantilever beam and the mid-span for the double-clamped beam) at different applied voltages

7
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for the various elements are plotted in Figures 5.27 and 5.28, respectively. The pull-in voltages are

summarized in Table 5.2.
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Figure 5.27. Variation of maximum deflection with applied voltage for different elements in
cantilever micro-beam.
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Figure 5.28. Variation of maximum deflection with applied voltage for different elements in
doubly-clamped micro-beam.
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Table 5.2. Pull-in voltages for the beam examples for different_elements.

Pull-in voltage (V)

Element type
Cantilever Double-clamped
Constant 6.80 44.2
Linear 6.63 43.2
Quadratic 6.51 424
Quadratic-singular 6.40 41.9

From Table 5.2, it is noted that the pull-in voltages are not significantly different for different elements.
Compared to the quadratic-singular, the constant element shows differences of 5-7%, linear elements 3-
4%, and quadratic element only 1-2%. The results essentially demonstrate the ability of the various
standard elements to capture the actual surface charge distributions, where the higher-order elements
obviously perform better. It seems that the corner and edges singularity effects, through the surface
force distributions, are not significant as far as the pull-in voltage is concerned. One of the possible
reasons is the rapidly changing gradient of the curve near the pull-in voltage. This effect is due to the
highly nonlinear relationship between the induced electrostatics force and the gap between the beam
and the substrate. From Figures 5.27 and 5.28, it is first noted that the differences in the curves are
diverging before the pull-in phenomenon sets in.  Specifically, the differences in the maximum
deflection build up gradually to more than 20 % for the constant element, and about 14 % and 8 % for
the linear and quadratic elements, respectively. However, in the pull-in zone, the curves are parallel to
each other because the beam deflects rapidly with small increments in the applied voltage. This makes

the choice of elements less important once the beam isin the pull-in zone.

Comb-finger levitation problem

Levitation [93] is a parasitic phenomenon that is often encountered in comb-drive designs. Generally,
this effect appears in problems that contain more than two conductors. Consider the simplified model
shown in Figure 5.29, which consists of only three comb fingers, each of dimensions 20x1x1 mm and
suspended at 1 mmover a ground plane. The central finger, which is grounded and fixed at its left end,

bends upward under the levitation force, when the two outer fingers (assumed to be fixed) are
connected to an external voltage source. Figure 5.30 shows the maximum deflection of the central

finger versusthe applied voltages for the various elements used.
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Figure 5.29. (a) Discretization of comb-finger levitation example, (b) Deflection profile of comb-
finger at 200 V, with magnification of 10.
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Figure 5.30. Comb-finger maximum deflections versus applied voltages for the various elements.
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From Figure 5.30, it is noted that the maximum deflections of the finger are quite different for the
different types of elements. Again, with reference to the results of the quadratic-singular element, the
differences in the deflections at the tip of the central finger for the various elements at different applied
voltages are tabulated in Table 5.3. It is observed that the differences in terms of deflections are more
significant than that for the pull-in voltages for the micro-beam examples. Hence, this example reveals
that the distribution of the forces can have significant effect on the deflection profile, especially on

slender beam-like structures.

Table 5.3. Percentage differences in the deflections at the tip of the central finger, with respect to
the results of quadratic-singular, for the various standard elements.

Applied voltage Differencesin deflections of central finger (%)
V) Constant Linear Quadratic
50 30.4 10.8 6.02
100 28.8 11.0 7.02
150 27.4 11.7 7.12
200 254 125 8.18

Micro-mirror example

This example is similar to the problem discussed in [12]. The geometry of the problem together with
the discretization is depicted in Figure 5.31(a). The mirror plate (10 nmin the diagonal length and 0.4
mm thick) is fixed at the ends of two torsional arms. Two electrodes (6 x 3 x 1 mm) slightly above the
ground plane are placed at 1.5 nm underneath the mirror. A voltage is applied on one of the electrodes
(driving source) with all the other conductors held at zero volts. This has the effect of tilting the mirror
towards the driving electrode. In this example, the important results are the tilting angles of the mirror,
which are obtained fromthe displacements at the tips of the mirror. The general deflection profile of
the mirror is shown in Figure 5.31(b). Figure 5.32 shows the tilting angles of the mirror under different
applied voltages for the various elements. The percentage differences with respect to the quadratic-

singular solutions for the standard elements are computed and tabulated in Table 5.4.

This example also shows some differences in the tilting angles of the mirror obtained by using different
types of elements. It isnoted that the differences grow quickly as the applied voltagesincrease. Thisis
again believed to be due to the highly nonlinear relationship between the induced electrostatics force

and the gap between the conductors. This observation is consistent with the results for the micro-beam

examples, before the pull-in zone.

81



Chapter 5: Three-Dimensional Singular Elements

electrodes

ground plane

(@

()

Figure 5.31. () Discretization of micro-mirror, (b) Deflection profile of micro-mirror at 350 V,
with magnification of 5.
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Figure 5.32. Mirror tilting angles versus applied voltages for the various elements.
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Table5.4. Percentage differencesin tilting angles of micro-mirror for different elements.

Applied voltage Differencesin tilting anglesof themirror (%)
Constant Linear Quadratic
100 12.4 8.05 5.03
150 12.8 8.07 5.04
200 13.3 8.17 5.09
250 14.3 8.41 5.26
300 16.2 9.49 5.56
350 23.7 12.1 7.32

5.6 Conclusion for Three-Dimensional Singular Elements

New singular elements have been devel oped for three-dimensional boundary element analysis of corner
and edge singularities in potential problems. The singular elements can represent the correct
singularity behaviours in the vicinity of the edges and corners, because the singular features are
incorporated in their shape functions. Two sets of singular elements are formulated, namely the 8-node

and 9-node elements.

It is demonstrated that the singular boundary element can produce more accurate results for the
capacitance calculations than the standard elements (shape functions of low order polynomials), and
the h- mesh refinement method [92]. For the two examples studied here, the accuracy is shown to be
better by more than one order of magnitude. In terms of electrostatics forces, the singular elements are
also more accurate than the standard elements, though less sgnificant compare to capacitance
calculations. However, in thiscase, it isimportant to note that the singular elements give a much faster

convergence rate with increasing number of elements than the standard elements.

Numerical solutions can often be mproved, without increasing the problem size, by using biased
elements, that is the r- mesh refinement method. This technique works more consistently for the
standard elements, as the solutions are observed to improve when smaller elements are used near the
singular regions. However, this is generally not the case when singular elements are used. It is
observed that there exists an optimum bias ratio that produces possibly the most accurate solution for a
given number of elements. This optimal situation is achieved when the size of the singular elementsis
comparable with the actual size of the singular regions. Hence, it is expected that the optimum bias
ratio will vary with the proximity between conductors, as this determines the actual size of the

singularity regions. It is also noted that the optimum bias ratio is different for the 8-node and 9-node
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singular elements. From the biased element distribution study, it is observed that the 8-node elements
tend to be less sensitive to the biasing effects than the 9-node ones. This additional feature, together
with the obvious fact that 8node elements are computationally cheaper than 9node elements (one
degree of freedom less for each element), with comparable accuracy, makes them more favourable than

the 9-node elements.

The singular elements are also used in the electrostatics analysis of the electromechanical coupling
simulations of some micro-devices. It is observed that the use of the quadratic-singular elements can
give better results for the deflection profiles. In general, the standard elements tend to give smaller
deformations than the singular elements. This indicates that ignoring the geometrical singularities (as
in standard elements) is likely to underestimate the true displacements. However, the differencesin the

pull-in voltages are relatively small, as demonstrated in the micro-beam example.
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Reviews of Fast Algorithmsfor BEM

Recent developments in fast algorithms have rekindled the interests in solving large problems using
BEM, because of the linear growth in the computational complexities. These fast algorithms work by
approximating the dense matrix-vector product, which is the key step in the projection type of iterative
methods for solving the linear. The coefficient matrix is usualy not formed explicitly, but
approximated by sparse representation. This means that it is also cheaper in terms of computational
storage. However, it is important to realize that the improvement in the computational efficiency is

achieved by compromising the accuracy. This chapter reviews some of the existing fast algorithms.

6.1 Fast Multipole Method

Fast Multipole Method (FMM) was developed by Greengard and Rohklin [39, 44] for solving potential
fields in particle systems in astronomy studies. Nabor and White [41-43, 45] then implemented the
method in electrostatics analysis, mainly to calculate the capacitance of three-dimensional structures.
The efficiency of FMM relies on the effective usage of the multipole and local expansions, which are
employed repeatedly in a hierarchical manner through a series of translation operations. The following
sub-sections briefly describe the essence of the algorithm. Readers are referred to [44, 45] for the

detailed implementation of the method.

6.1.1  Multipole Expansion
Given a localized distribution of charges s (XG) which is bounded within a sphere S, of radius a, the

potential it generates outside the sphere can be approximated by the following multipole expansion

Y08 )

n+
n=0 m=-n R

(6.1)

>

where M " are multipole moments, which are associated with their corresponding spherical harmonics

Ynm(q f ) and radial distant R from the centre of S, to the potential point x, and p is the order of the

multipole expansion.
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The multipole moments are defined as
M =5 (xaY, " ¢f gred®xe (6.2)
and Ynm(q,f) isgiven by

n- |m)

Y (@)= Wpﬁ (cosq )e'™ (6.3)

where P (cosq) is the associated L egendre function of the first kind with degree n and order m, which

is defined only when n is a nonnegative integer, and for -n£m£n. The error incurred by truncating

the multipole expansion in (6.1) to order of p is bounded by [44, 45]

- 2Q Gag™
-f B2 6.4
[ TR TSRS (6.4)

where Q, = (§ (xa)d °xe.

Beside multipole expansion, there also exist other expressions that can approximate far field potential

due to some localized charges, such as the Poisson’ s formula (see for example [94], [95).

6.1.2 Local Expansion

Suppose there are some charges q(xd) distributed outside a sphere S, of radius a centred at the origin,
the potential at any pointx within S, due to q(x@ can be approximated by the local expansion as,

f(x) »g é LY (a,f)r ! (6.5)

=0 k=]

where L'} arethelocal expansion coefficients, which are defined as

Lk = m(xa)Yk_jéqTf”)dg’xcr (6.6)

and the error is similarly bounded, asin (6.4), by

~,.2Q, & ™"
|f exact ~ f |£9 2 -+ (67)
ed-lgeag

Mathematically, local expansion is the Taylor series of the potential function generated by q(xtI) in

spherical coordinates, and L‘} correspond to the potential and its gradients at the centre of S,.
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6.1.3 Trandlation Operators
Multipole and local expansions form the basis of FMM. However, the method relies on the ahility to

translate between the two expansions. Basically, there are three translation operators, namely:

0] Multipole to Multipole (M2M) translation, which converts multipole moments M " defined at
(r a, b) into multipole moments I\7I_r;“ centred at the origin.

(i) Multipole to Local (M2L) translation, which computes the local expansion coefficients L*,
that is, the potential and its gradients, due to the multipole moments M " .

(iii) Local to Local (L2L) translation, which converts local expansion coefficients ij defined at

the origin into local expansion coefficients Ijjk at some other point.

The translation formulas for these operators can be found in [38, 40, 41, 44, 45]. It is remarked that

these operations scale with O(p4).

6.1.4 FMM algorithm
The algorithm beginswith a hierarchical spatial decomposition of acomputational cube that bounds the
problem domain into successively smaller cells, where each cell is subdivided into 8 child cells. This

resultsin a hierarchical oct-tree representation of the simulation domain, where level 0 is the root cube,
and level L consistsof 8" cells.
At the lowest level, the distributed charges within each cell are converted to multipole moments located

at the centre of the cell using (6.2). The multipole moments for dl cells higher up the tree are then

derived from the multipole moments of their child cells by using the M2M translation operator.
Next, at all levels, the local expansion coefficients, due to the multipole moments in the “interaction
cells’, are computed for al the cells through the M2L translation operator. In general, there are exactly

at most 189 “interaction cells’ for a given cell, which gives roughly 189p4 operations per cell. This
translation process is the most expensive part of the algorithm, and hence different techniques were

implemented to improve it. Greengard and Rokhlin [40] developed the new version of FMM, which

scales approximately like 20p3 + 189p2, by using the diagonal forms of translation operators with
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exponential expansions. Further improvement was made by Cheng et al. [38] using the adaptive spatial
decomposition algorithm. On the other hand, Elliott and Board [96] reduced the O(p?) scaling factor to
O(p?logp) by performing FFT on the translation operators. However, it is noted this approach becomes

numerically unstable for large p.

The local expansion coefficients for all the cells at the lowest level are then obtained by summing the

local expansion coefficients from the higher level cells, which are translated down the hierarchy

through the L2L translation operator. Finally, using the local expansion in (6.5) gives the potential at
point x, which only accounts for the “distant” charges effects. The“near” charge contributions are then

added directly onto the potential point.

Alternatively, using multipole expansion alone can give rise to a simple fast algorithm, generally
known as the tree algorithm [97, 98], which is O(nlogn). The basic idea is very similar to FMM
algorithm, except that local expansion is not used. Instead, the multipole expansion is evaluated
directly on the potential point. Hence, to a certain extent, FMM can be seen as an enhancement of the

tree algorithm.

6.2  Precorrected-FFT Approach

This method was developed by Phillips and White [46-48] for solving complicated three-dimensional
electrostatics problems. [t is motivated by the approximation scheme that enables one to represent an
arbitrary distribution of charges by a small number of weighted point charges, which al lie on a
uniform grid. Evaluating the potentials at the grid points due to the grid charges can then be seen as a
discrete convolution, which can be performed efficiently using FFT agorithms. In generd, it

comprises the following steps:

D projecting the panel charges onto auniform grid of point charges,

(2 computing the grid potentials dueto the grid charges via FFT,

3) interpolating the grid potentials onto the panels collocation points, and

4 pre-correcting the interpolated potentials by replacing the inaccurate “near” charges

contributions obtained via FFT with the ones that are computed directly.
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6.21 Projecting arbitrary charge distribution onto a grid
The first step of this algorithm is to represent the panel charges s (x) by a set of Ng point chargesq;, j

= 1... Ng that are positioned on a uniform grid. This can be done by matching potentials of the grid

charges and distributed charges s (x) at some pre-selected points. Another possible approach is based

on matching the multipole moments directly [99]. Nevertheless, both the techniques result in
performing singular value decomposition (SVD) on an over-determined system, whose pseudoinverse

givesthe linear transformation for mapping arbitrary charges s (x) to grid point chargesg;.

6.22 Computing gridpotentials by discrete convolution via FFT
Once the panel charges are projected to a grid, computing the potentials at the grid points due to the

grid chargesis athree-dimensional convolution. That is,

f(,.k)=GG= & gli- i¢j- jek- kdali¢jckd (6.8)

i¢jeke

where f (i, j,k) and §(i¢ ¢k are the grid point potential and grid point charge at position (i, j,k)
and (i¢j¢kd), respectively, and g(i -i¢j- jek- k(I) is the Green's function, which is essentially the
inverse dstance between the grid points (i, j,k) and (i¢j¢k©. The key to the efficiency of

precorrected-FFT lies on the fact that the discrete convolution in (6.8) can be computed rapidly by

using FFT algorithms [49].

6.23  Approximating potentials by interpolating grid potentials

Grid potentials are then interpolated onto all the panel’s collocation points. One simple approach is to
use a polynomial interpolation over several grid points. Alternatively, an operator that interpolates
potentials at grid points onto panel’s collocation points can be obtained by following the similar idea of

representing charges on the grid.

6.24  Precorrecting the approximated potentials
This step is required because the grid charges do not accurately approximate the “near” interactions.
Hence, the task here is to replace the inaccurate contributions from the grid charges that were included

through the convolution process by the ones that are computed accurately.
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In summary, precorrected-FFT algorithm approximates the dense matrix-vector product, as given by
f=pqg b f >>[5+VTGW]q (6.9)

where P is from the precorrecting step, V and W are the potential interpolation and grid charge

projection operators, respectively, and G is discrete Fourier transform matrix. And all the matrices

POSSESS sparse representations.

6.3  Matrix Sparsification Techniques

6.31 Wavelet based method

The idea of employing wavelet bases to build sparse versions of discretized boundary integral operators
was introduced by Beylkin et al. [100]. It was later used by Spasojevic et al. [101, 102] to solve two-
dimensional electrostatics problems. In their works, the orthogonal [101] and bi-orthogonal [102] Haar
wavelets were used as the basis for representing the charge distributions, that is, the surface charges on

each boundary element is approximated by
& &
s()»a asw w(x) (6.11)
I=- 1k=0

where s and v (x) are the wavelet coefficient and wavelet basis, respectively, and L is order of

resolution, with K = max(0, é-l) translated functions at level | resolution. Sparsifying the fully
populated matrix can be achieved simply by ignoring the “small” entries in the matrix. This
elimination process is often based on the distance criterion, that is, the distance between the source and

field points. Other works that were based on the wavel et approach can be found in [103-105].

6.3.2  Singular Value Decomposition

Another approach of sparsifying a dense matrix is through the use of Singular Value Decomposition
(SVD) methods [106, 107], which exploits the fact that a large part of the dense matrix is numerically
low rank. The algorithm first adaptively partitions the matrix into low rank submatrices, viadivide and
conquer, and then applies SVD on these submatrices to obtain a sparse representation of the original

dense matrix.
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Fast Fourier Transform on Multipoles (FFTM)

In this part of the thesis, we propose a fast algorithm for the rapid solution of the integral equation in
BEM. This method arises from an important observation that potential evaluation using multipole
expansion can be expressed as a series discrete convolution of the multipole moments with their
associated spherical harmonics functions. FFT algorithms can be employed to evaluate the discrete
convolutions rapidly, and this essentially provides the efficiency of this approach. We refer it to as the

Fast Fourier Transform on Multipoles (FFTM) method.

This chapter is organized as follows. The FFTM algorithm is first presented in Section 7.1. Some
important issues regarding itsimplementation are also adressed. Thisis then followed by its complexity
analysis in Section 7.2. In Section 7.3, some numerical examples are presented to illustrate the
performance of the method, in terms of its accuracy and efficiency. It is demonstrated that FFTM is an
accurate method, and has only linear growth in the computational complexity, which implies that it can

as efficient as other fast algorithms, such as FMM and precorrected FFT.

71  FFTM Algorithm

This algorithm generates a number of transformation matrices that are denoted by three-letter

abbreviations, following the works of Nabors and White in [45]. The letter notations have the

following meanings: M = Multipole moments, Q = Charge, P = Potential and 2 = To. Basically, the

algorithm comprises the following five steps:

D discretization of spatial domain into many smaller cells,

(2 representation of the panel charges by multipole momentsfor all cells (Q2M),

3) evaluation of the potentials at cell centers due to the multipole moments, through discrete
convolutionsthat is accelerated by FFT algorithms,

4 interpolation of the cell potentials (due to “distant” charges) onto collocation points on the

panels (P2P),
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(5 inclusion of potential contributions from the “near” charges directly onto the panels (Q2P).

This processis summarized in Figure 7.1. The following sub-sections elaborate on each of the steps.
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Figure 7.1. 2D pictorial representation of FFTM algorithm. Step (1): Division of problem domain
into many smaller cells. Step (2): Computation of multipole moments for all cells. Step (3):
Evaluation of potentials at cell centers by convolutions via FFT. Step (4): Interpolation of cell
potentials onto panel collocation points. Step (5): Inclusion of near charges contributions (panels

within the shaded region) directly onto panels.

7.1.1  Spatial discretization

This step divides the problem domain into many smaller cells, and allocates the panels among them.
The aim is to identify closely pack panels that can be approximated by simpler representations, such as
multipole moments in FMM or grid point charges in precorrected-FFT. It also helps to separate the
“near” panels and the “distant” ones. Unlike FMM, the initial volume that bounds the problem domain
need not be a cube, since the hierarchical partitioning of the cellsis not needed. The dimensions of the
volume only need to satisfy the ratio required by the FFT solvers, which is usually in powers of two.
Otherwise, dummy layers of empty cells have to be added to meet the requirement. This process is
commonly known as zero padding. Nowadays, it is possible to perform FFT on any arbitrary size with

the help of the freeware FFTW (Fastest Fourier Transform in the West), provided by Frigo and

+
Johnson . This improves the efficiency of FFTM by minimizing the number of zero padding, and

hence avoiding the unnecessary increase in size of the FFT array.

T FFTW, C subroutines library for computing Discrete Fourier Transform (DFT). 92

The freeware can be downloaded from http://mww.fftw.org.
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7.1.2  Transformation of panels chargesto multipole moments
In this step, the arbitrary distribution of charges s (X(]) within a given cell is represented by an

equivalent system of sources that are positioned at the centre of the cell. These sources include a point
charge, an electric dipole, and other higher multipole moments, which can be obtained using (6.2), and

rewritten here for convenience,
M7 = ¢ (xd, " ¢f gréd®xe (7.2)

Equation (7.1) is essentialy the Q2M transformation function. Applying Q2M to al the cells
transforms the boundary element discretized problem to one that contains point urces that are

regularly spaced, as depicted in Figure 7.1 after Step 2.

7.1.3 Evaluation of potentialsat cellscentresusing FFT

This step isto evaluate the potentials at the cells’ centres due to the effects of the multipole momentsin
al the cells. The egular spacing of the cell centres enables this potential evaluation process to be
expressed as discrete convolutions, which can be done rapidly using FFT. Mathematically, the
potential calculations using multipole expansions can be written as a series of three-dimensional

discrete convolutions as

i K»8 8@ &AMtk _(i-i¢j- jok- kg (7.2)
n=0m=-n@ i¢ j¢ k¢ R Q

where the indices ¢, j, k), and (,j k) denote the discrete locations of the field points and multipole

2
moments, respectively, and there are exactly (p+1) discrete convolutions. In order to eliminate the
aliasing effects completely, the convolution size needs to be increased by eight times with zero

padding.

7.1.4  Evaluation of potentials at panels' collocation points
Once the potentials at the multipole cell centers are determined, they must be interpolated onto the
actual collocation nodes on the panels. Consider a collocation point x that fallsin cell k, its potential is

the sum of the contributions from the “distant” and “near” charges, that is,

T x)»& 7 ()+A () @3
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where Ny denotes the cells that are considered far away from cell k, whereas N, corresponds to the
near-neighbors of cell k, which are usually defined to be either the first nearest neighboring cells (27
cells), or first and second nearest neighboring cells (125 cells). The rest of the cells in the domains are
considered “distant”. Hence, the two sets of cells are mutually exclusively, that is, Ng + N, = N, where

N, isthe total number of cells.

The “distant” charges contributions, which are approximated by multipole expansion, can be
determined by interpolating the cells potentials (obtained in Step 3) onto the collocation point x. In
this study, the simple quadratic interpolation method is adopted. Basically, the idea is to form a
potential interpolation element with the nearest neighboring cells. Hence, a three-dimensional

quadratic interpolating function has 27 potential points, as given by

~ P ~
f (X: \Z Z) =a N, (X, Ys Z)( i (7.4)

i=1

where N, (x,y, z) is the set of quadratic Lagrange interpolation functions, and f~i is cell’s potential.

Equation (7.4) is the transformation function for P2P matrices.

However, prior to that, we need to perform a potential correction step, which is essential because the
cell potentials obtained through the discrete convolutions have inevitably included the “near” charges
contributions that are inaccurately represented by multipole expansions. The potential correction

scheme adopted here israther straightforward, asillustrated in Figure 7.2 for the two-dimensional case.
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Figure 7.2. () Potentials at nine interpolation cells, which account for effects of distant charges
only. This is given by the difference of potential due to (b) convolution corresponding to set N
and, (c) convolution corresponding to set N,.
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Figure 7.2(a) shows the desired situation where the potentials at the nine interpolation cells include the
effects of the “distant” charges only. This is achieved by taking the difference of the potentials
calculated from the two discrete convolutions, as depicted in Figures 7.2(b) and 7.2(c), respectively.
The former convolution is that described in Section 7.1.3. On the other hand, the second convolution
evaluates the potentials at the same interpolation points, but due to the charges in the near-neighboring
cellsonly. Werefer to this convolution as the potential correction step, which will be discussed further
in Section 7.1.5. Hence, by using the corrected interpolation potentials in (7.4), the “distant” charges

contributions can be computed.

The second component of (7.3), which accounts for the “near” charges effects, is identical to the direct
passin FMM [41, 45]. In this case, the potential contributions from the panels that falls within N, cells
are evaluated directly onto the collocation point. The transformation matrices that perform this task are

denoted by Q2P.

7.1.5 Potential correction step

This step calculates the potentials at the 27 interpolation points due to the multipole moments in the N,
cells. Although this can again be done rapidly by discrete convolution using FFT, it will be shown
shortly that the direct approach is more efficient. The following discussion compares the efficiency of

the two approaches (in terms of real multiplication operations), for situation where N,, = 125.

Suppose this task is done by discrete convolution using FFT, the operation counts can be approximated
as follows. First, one needs to perform two FFTs and a complex multiplication of Fourier coefficients
of size m, where the minimum size of mis 7x7x7 = 343, since at least 2 zero paddings are required in
each direction. However, it is more efficient to let mto be 8x8x8 = 512, because of its high efficiency
with FFT agorithms. A detail study of the FFT algorithms reveals that this FFT can be done with only
128 real multiplication operations, by fully utilizing the twiddling factors [49]. As for the complex
multiplication of the Fourier coefficients, there are exactly 256 of them. However, due to the
symmetry of the response functions, whose Fourier transforms are either purely real or imaginary, each
complex multiplication is reduced from four real multiplication operations to two. Hence, the total
number of real multiplication operations needed to perform this potential correction step through

discrete convolution is 2x128 + 2x256 = 768.
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On the other hand, evaluating this convolution directly requires 27x124 = 3348 operation counts, since
there are 27 interpolation points, and for each point there are 124 cells contributions to be considered.
The singular contributions due to the self multipole moments are set to zero, because they are to be
accounted for exactly in the “near” contributions. It appears that the direct approach is computationally
more expensive than the convolution approach.  However, two simple techniques can be applied to

reduce the direct approach cost significantly.

Thefirst technique involves setting the response functions at the nearest neighbours to zero, that is,

;Lm(i-itpj- j¢k- k§=0, for|i-i¢|j- j$and]k- k$£1 (7.5)

n+l

Using (7.5) naturally excludes the effects of the multipole moments of the nearest neighbouring cells,
whose contributions are to be computed exactly by using Q2P. This reduces the number of cells to be
considered for each interpolation point to 125-27 = 93. Hence, the total operation counts reduces to

27x98 = 2646.

The second technique makes use of the symmetry of the response functions. This allows us to
exchange many of the multiplication operations with additions. It is noted that the gain from this
technique hinges on the number of distinct response function values that are associated with each
interpolation point. Thisis summarized in Table 7.1 for the various response functions (up to p = 2)
and the 27 interpolation points. On average, applying this technique reduces the number of
multiplication operations to about 20 % of the original counts, that is, from 2646 to about 500.

Hence, applying these techniques make the direct approach more favourable in performing the

potential correction step.

7.16 Remarkson theuse of local expansion

The use of local expansion to compute potentials at the panel collocation points, as used in FMM, may
be a more intuitive and desirable approach of implementing FFTM. This approach would enable the
method to attain arbitrary high order of accuracy, which is not possible with the quadratic interpolation

method.

However, there are some practical issues that hinder the implementation of local expansions. First, the

complicated multipole to local expansion transformation makes it difficult to implement. More
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importantly, the number of discrete convolutions scales with O(p+1)4, which means that the
computational cost (both in the time and memory storage requirements) increases dramatically with
increasing value of p. In other words, the improvement in the accuracy is achieved at a very high
computational cost. Hence, further investigations are needed to study the efficiency of this approach.

For now, the simple quadratic interpolation scheme is used.

Table7.1. Number of distinct values for different response functions at different potential
interpolation points.

m

Interpolation Number of distinct valuesfor response functions, ﬁ (n,m)
points
0,0) 1,0 13 (1,1) (20 23 (21) 22 (2:2)
1 15 27 27 27 32 22 22 22 22
2 15 27 27 27 32 22 22 22 22
3 15 27 27 27 32 22 22 22 22
4 15 27 27 27 32 22 22 22 22
5 15 27 27 27 32 22 22 22 22
6 15 27 27 27 32 22 22 22 22
7 15 27 27 27 32 22 22 22 22
8 15 27 27 27 32 22 22 22 22
9 14 24 17 24 29 18 16 22 18
10 14 24 24 17 29 16 18 22 18
11 14 24 17 24 29 18 16 22 18
12 14 24 24 17 29 16 18 22 18
13 14 24 17 24 29 18 16 22 18
14 14 24 24 17 29 16 18 22 18
15 14 24 17 24 29 18 16 22 18
16 14 24 24 17 29 16 18 22 18
17 14 17 24 24 23 18 18 16 16
18 14 17 24 24 23 18 18 16 16
19 14 17 24 24 23 18 18 16 16
20 14 17 24 24 23 18 18 16 16
21 6 9 9 9 11 7 7 7 7
22 11 15 15 15 17 13 13 10 10
23 11 15 15 15 17 13 13 10 10
24 11 15 15 15 20 10 13 16 13
25 11 15 15 15 20 13 10 16 13
26 11 15 15 15 20 10 13 16 13
27 11 15 15 15 20 13 10 16 13
Total 360 575 575 575 705 463 463 507 463

(Total/2646) % 13.6 21.7 21.7 21.7 26.6 17.5 17.5 19.2 17.5

7.2 Algorithmic Complexity Analysis
This section gives estimates on the time and memory complexity for the FFTM algorithm. The
analysis looks at two parts, namely at the initialization and iteration stages. At initialization stage, we

are mainly concerned with the memory complexity required to store the various transformation
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matrices, whereas at the iteration stage, we are interested in the time complexity. The overall

computational complexities of FFTM algorithm are summarized in Table 7.2.

Table7.2. Time and memory complexities of FFTM algorithm.

STAGES OPERATION COMPUTATIONAL TIME MEMORY STORAGE
Computing Q2M, 2 >
P2P and Q2P Ol(p+fnJ+ 0f27n) + o(N, k) ol(p+1n)+
matrices 0(27n) + O(N,k n)
Initialization
Computing response 2
functions and their O((p+1)2NC)+O((p +1)? NCIOch) O((p+1) Nc)
FFTs
Total cost at . N R N
Initialization Ofp+ P Ne* U o7y N o§p+l)2(n+Nc)g
stage & éNclogN, § 5 +(27+N k)
Computing multipole O(( D +1)2 n)
moments viaQ2M
Computing cells
potentials by ol(p+17[eN,) + 6N, iogleN. ) oli7N)
convolutions
Iteration
Potential ecti
andeinntlerp?)cl);i onI Sina O((p +1P54N,NF, + 27”)
P2P
Computing “near” O( Nnkcn)
interactions via Q2P
. én+ (16N, )log(8N,) i
Total Perform meatrix - ¢p+1fa i
I tg ali(;?]sgztge vector products for KitersX OG f & BN.)+5.4NF.N, H: O[L7N, +n1+K;,J)
Kiters times g+ (27 + Nyk)n >
Definitions:

n isthe problem size.

p isthe multipole expansion order.

N isthetotal number of mutipole cells after the spatial discretization step.

N, isthe number of cellsthat arein the direct interaction list, either 27 or 125.
ke isthe average number of panelsinacell.

Fcisasparsity factor that definestheratio of the non-empty cellsto N..

Kiters IS the number of iterations required to achieve the desire accuracy.

721  Complexity at Initialization stage
The main computational cost of this initialization stage is due to the formations of the various
transformation matrices, which include Q2M, P2P and Q2P, and also computation of the response

m
n

Rn+1

functions and their Fourier transforms.

The complexities for computing and storing Q2M, P2P and Q2P are O((p+1)2 n), O(27n) and

O(Nn kcn), respectively, where k. denotes the average number panelsin one cell. The constant factor

of 27 in the complexity of P2P is due to the quadratic interpolation scheme used for the interpolating
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potential. Computing the response functions and their Fourier transforms have complexities
O((p +1)? NC) and O((p+1)2 N, logN, ) respectively. Note that zero padding is avoided here due to
the symmetries of the response functions. Finaly, the total time and memory complexities at the
initialization stage are
Time=0((p+1)2[n+N_ +N_ logN_]+(27+N k)]
Memory=0((p+1)2(n+ N, )+ (27+ N,k )n)
It is important to note that the dominant cost at this stage is likely to be due to the computing and

storing of Q2P matrices, since Nk, which is equal to 27k, or 125k, is usually larger than (p + 1)2 .

7.22 Complexity at iteration stage
At the iteration stage, the main concern is the time complexity as it is the primary factor that
determines the efficiency of this algorithm. The memory complexity is considerably less as compared

to that at the initialization stage. The major memory requirements are;

0] Two matrices of sizes 8N; and N.. The former is used for the Fourier Transform in the
discrete convolution step, while the later one stores the approximated potentials obtained.

(i) One matrix for storing the basis vectors generated by the GMRES at each iteration. Normally,
the memory required is O(nKiiers), Where Kiwrs IS the number of iterations for the solution to
converge to the desire accuracy. However, this can be constrained by using the restart

GMRES [37].
Time complexity at the iteration stage comprises of the following components:

(i) O((p +1)° n) operations to compute (p+1)° multipole moments using Q2M, O(27n)
operations to interpolate potentials using P2P, and O(Nnkcn) operations to compute the
“near” chargesinteractions using Q2P.

(i) O((p +1)°[2(8N, log8N ) +8NC]) operations to compute (p+ 1)2 discrete convolutions, each
requiring two FFTs and one complex multiplication of size 8N..

(iii) O((p +1)*[0.2(27N )F, NC]) operations to perform the potential correction step, where Fcisa

sparsity factor that defines the ratio of the non-empty cellsto N, (since this step is only applied

9
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for non-empty cells), and the 0.2 factor accounts for the speedup due to the two techniques

described in Section 7.1.5.

Hence, the total time and memory complexities for oneiteration is given by

Time = ap+1)°[n+(16N, )log8N, ) + (8Nc)+5-4NnFch]g
O§+ (27 + Nk, )n :

Memory =O(17N_ + nK,.)

7.3  Numerical Examples

In this section, some numerical examples are used to study the performance of FFTM. The study
comprises of an accuracy analysis and an efficiency analysis (in terms of computational speed and
memory requirements). Different FFTM schemes are characterized by two parameters, namely, (i) the
direct interaction list Djig, and (ii) the multipole expansion order p. Djig = 1 when only the nearest
neighbors are used for the direct interactions, and Dy = 2 when the first and second nearest neighbors
are used for the direct interactions. The parameter p takes value of 0, 1 or 2. The combinations of the
two parameters give a total of six FFTM schemes. All the analyses are done on a HP C3600

workstation with 1 GB of RAM.

7.3.1 Accuracy analysisof FFTM

The accuracy of FFTM is gauged against the solutions that are obtained using the GMRES explicit
method, where the full coefficient matrix is formed explicitly. Four examples are used in this accuracy
analysis. These include, (i) the self-capacitance extraction of a cube, (ii) the electrostatics force
analysis of a cube that is placed over a ground plane, (iii) the electromechanical coupling analysis of
the comb-levitation problem, and (iv) the 4x4bus-crossing example [41]. The first three examples are

also used in the singular elements analysisin Chapter 5.

Four different types of boundary elements are used here, namely the constant, linear, quadratic and
quadratic-singular, where their names denote the order of the polynomials that represent the surface
charge density on the elements. For the quadratic-singular element type, singular elements are used in

place of the standard quadratic elements at sharp corners and edges.
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Effects of spatial discretization on accuracy of FFTM

It is believed that the spatial discretization can have significant effects on the accuracy of the solution.

By using finer cell discretization, the accuracy of the “distant” charges contributionsimproves, because

the separation distance ratios 8%9 for the multipole expansion are smaller now. However, the number
eRg

of panel charges that are to be treated exactly in the “near” charges component is reduced, which

resultsin aloss of accuracy. Hence, it is desirable to study this effect on the different FFTM schemes.

The cube self-capacitance extraction problem is used for this study, and the cube is meshed with 64
uniform constant boundary elements on each face. The “exact” solution is 73.033 pF, and the results

are tabulated in Table 7.3.

Table 7.3. Capacitance of cube example using different @ll discretizations for different FFTM
schemes.

Cels discretization Diigt = 1 Diist =2
(kX nyx ny p=0 p=1 p=2 p=0 p=1 p=2
5x5x5 74.963 73.101 72.968 73.990 73.048 73.031
8x8x8 71.679 73.995 73.049 71.8%4 73.014 73.035
12x12x 12 73.661 73.143 73.005 73.382 73.100 73.038

The results are generally quite accurate, giving errors less than 5 %, for all the schemes. However, it is
noted that for the lower order schemes, the results fluctuate quite significantly with different kind of
spatial discretizations. However, the degree of fluctuation decreases when higher order multipole
expansion is used. This behavior is probably due to the fact that the higher order multipole moments
can represent the charge distributions within the cells more accurately. Monopole (o = 0) moment
simply approximates the charge distributions within each cells by a point charge at the cell’s center,
which has magnitude equal to the sum of the charges within the cell. This means that it does not
account for the charge distributions within the cell. On the other hand, the dipoles (o = 1) and the
quadrupoles (p = 2) moments can model the first and second derivatives of the charge distributions,

respectively. Hence, this makes the multipole expansion less sensitive to the cell discretization step.

As the lower order FFTM schemes (p = 0) are too sensitive to the cell discretization, they are not used

in the subsequent analyses.
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Self-capacitance extraction of cube example

This example is identical to the one used above, with spatial discretization fixed at 8x8x8. The

capacitance results are tabulated in Table 7.4.

Table 7.4. Capacitance extraction of cube example, for different FFTM schemes and different types
of elements.

FFTM
GMRES
Element type explicit Dis=1 Diis =2
p=1 p=2 p=1 p=2
Constant 73.033 72.995 73.049 73.014 73.035
Linear 74.194 73.916 73.945 73.976 73.981
Quadratic 73.716 73.715 73.762 73.726 73.734
Quadratic-
singular 73.503 73.495 73541 73.508 73.520

Generally, the results are very accurate for al the schemes, with errors less than 1 %. An important
observation is noted by comparing the results of the FFTM schemes that have the identical p value but
different Dy value. For example, consider the results in column 4 (Djj = 1and p = 2) and 6 (Djig = 2
and p = 2) of Table 7.4. In this case, one expectsthe first column of resultsto be less accurate, because
the second nearest neighboring cells are approximated by the multipole expansions that tend to be less
accurate. However, the two sets of results are not significantly different. In fact, they differ by less
than 0.1 %. Similar observations can be seen for the results between column 3 and 5. This observation

may be due to the following reason.

First, the difference in the two situations is the treatment of the second nearest neighboring cells. For
schemes with Djig = 1, their effects are approximated by multipole expansions, while those with Djig =
2 accounts for them exactly in the direct interaction list. Although the multipole approximations are
less accurate, their effects on the overall solution may not be significant. Thisis simply because their
potential contributions may only be a small portion of the total potential contributions from all the
cells, since this layer of neighbouring cells (98 of them) usually forms only a small fraction of the total
number of cells. Hence, their error contributions are also expected to be small. This suggests that the
FFTM schemes with Djigx = 1 should be used over those with D¢ = 2, by virtue that they are less

expensive, and only slightly less accurate.
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It is also observed that FFTM only approximates the corresponding “exact” solutions for the different
types of elements used. In other words, this method is capable of retaining the effects of the element
shape functions, through the used of Q2M (multipole moments for “distant” charges contributions) and
Q2P (for “near” charges contributions) transformation matrices. This is especially important for the
quadratic-singular element type, because it is desirable that the accuracy of the singular elements be

retained when approximating the dense matrix-vector products by these transformations.

Electrostatics force on cube over ground plane

This example is also identical to the one used in Section 5.5.2, except that the ground plane is not
infinite. In this case, the ground plane is assumed to be three times larger than the unit cube, and the
cube is placed at distance of 0.5 unit above the ground plane. The resultant electrostatics force acting
on the cube's face that is just above the ground is computed. The spatial discretization here is

16x16x8, and theresultsare givenin Table 7.5.

Table 7.5. Electrostatics force on cube's surface, for different FFTM schemes and different types
of elements.

FFTM
GMRES
Element type explicit Diig =1 Diig =2

p=1 p=2 p=1 p=2
Constant 3922 3901 3.855 3.928 3916
Linear 4.666 4.691 4.674 4.664 4.665
Quadratic 4.654 4.643 4672 4.661 4.650

Quadratic-
singular 4,753 4.751 4,782 4,762 4.750

In this case, the results are generally less accurate than the previous example. As electrostatics force is
proportional to the square of the surface charge density, the error is likely to be twice that in the

capacitance calculation.

Comb-finger levitation example

This example is an electromechanical coupling analysis of comb fingers as described in Section 5.5.3.
We examine two cases, where the applied voltage is 100 V and 200 V, respectively. Only the constant
and quadratic-singular element types are used here. The cell discretization is 20x10x2, and the results

aregivenin Table 7.6.
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Table 7.6. Maximum deflection of central comb-finger, for different FFTM schemes and different
types of elements.

Element Applied GMRES aall
type vo(l{/a)ge explicit Diis =1 Diis =2
p=1 p=2 p=1 p=2
Congant 100 0.03266 0.03118 0.03259 0.03139 0.03267
200 0.1185 0.1136 0.1176 0.1142 01179
Quadratic- 100 0.04585 0.04525 0.04547 0.04638 0.04560
singular 200 0.1589 0.1607 0.1577 0.1611 0.1581

Theresults are again accurate for all the various schemes. For the schemeswithp =1, theerroris1—4
%, while for p = 2, it isless than 1 %. The deflection of the comb-finger depends greatly on the
computed force distributions, which in turn depends on the surface charge distributions. Hence, it isno
surprise that the higher order schemes (p = 2) can produce more accurate solutions, since they can

approximate the actual charge distributions more accurately than the lower order schemes (p = 1).

4x4 bus-crossing example

In this example, taken from Nabor and White [41], the capacitance matrix of a 4x4 bus-crossing
example, as shown in Figure 7.3, is computed. For consistent comparison with the results in [41], only
the FFTM schemes with Dji = 2 are used. The cell discretization used is 10x10x3. The results of the

FMM from [41] are also duplicated in Table 7.7, followed by the results of the FFTM schemes.

Figure 7.3. 4x4 bus-crossing example from [41]. Conductors are meshed as close to the original
work as possible.

It is observed that FFTM is generally more accurate than FMM. This is especially obvious for the
lower order schemes (p = 0, 1) and for the off-diagonal capacitance entries. The significant
improvement in the accuracy islargely due to the ways the distant potential contributions are computed

in the two methods.
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Table7.7. Capacitance extraction of 4x4 bus-crossing example by FMM from [41], and FFTM
methods.

Solution Capacitance Matrix Entry (pF)
Method Cu Ci2 Ci3 Cis Cis Cis Ci7 Cis
GMRES explicit 402.9 -136.2 -12.00 -7.886 -48.18 -39.90 -39.90 -48.18
FMM (p = 0) 3945  -1240  -0175  -2471  -5215  -4339  -4308  -52.92
FMM (p = 1) 4066  -1307  -1236  -6.676  -48.48  -4045  -4027  -48.46
FMM (p = 2) 4052  -1378  -1191  -8079  -4836  -4009  -4001  -48.45
FFTM (p=0) 404.2 -133.1 -13.53 -6.108 -49.14 -41.53 -41.27 -49.85
FFTM (p=1) 4034 -136.7 -1257 -8.014 -48.15 -39.63 -39.62 -48.05
FFTM (p=2) 403.2 -136.3 -11.49 -7.966 -48.36 -40.05 -40.05 -48.34

In FMM, multipole and local expansions are used in a hierarchical fashion to approximate the distant
potential fields. This hierarchical approach tends to introduce more approximations when multipole
moments and local coefficients are passed upwards and downwards in the hierarchy in the algorithm.

On the other hand, FFTM replaces this hierarchical process by using FFT algorithm to evaluate the

discrete convolutions of the multipole expansion. In this case, the cell size to distance ratio %9
eRg

which determines the accuracy of the multipole expansion (see equation (6.4)), are smaller than those

in FMM. Thispoint ismoreclearly illustrated in Figure 7.4 for the two-dimensional case.
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Figure 7.4. Comparison on accuracy of (a) FFTM and (b) FMM, based on cell to distanceratio.

Suppose we want to evaluate the potential at point x, due to the surrounding multipole moments, which
corresponds to the “distant” charges contributions in (7.3). The obvious approach is to compute all the
multipole moments effects directly, but this may be computationally too expensive. FFTM doesitin a

more efficient way by recognizing that this potential evaluation task can be seen as discrete
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convolutions of the multipole moments with their associated response functions, which can be
evaluated rapidly using FFT algorithms. On the other hand, FMM uses a number of transformations to
reduce the computational cost, which involve passing multipole and local expansions in a hierarchical
manner. This process results in multipole moments representation that contains cells of different sizes,
such as the one depicted in Figure 4(b). Each of the coarsest cells in Figure 4(b) corresponds to 16

cells at the finest level from Figure 4(a). As noted in (6.4), the accuracy of the multipole expansion

depends on the multipole order p, and the separation distant ratio (%) For a given multipole

expansion order, it is easily seen in Figure 4 that FFTM is likely to be more accurate than FMM, since

the coarser cells in FMM have larger (%) ratios than the corresponding finer cells they originally

represent. Although, this argument would be absolutely true only if the local expansion is used for
FFTM, we believe that it still holds, for low order expansion (p £ 2), since the quadratic interpolation
functions resemble the second order local expansion. Through this simple error analysis, it is
demonstrated that potential evaluation through convolutionsin FFTM islikely to be more accurate than

that obtained by using the hierarchical approach in FMM.

7.3.2 Efficiency analysis of FFTM

This section studies the efficiency of FFTM, in terms of the computational speed (CPU time) and
memory storage requirements. Although it is preferable to compare FFTM with the existing fast
methods, it is not done here because we are not familiar with the implementations of FASTCAP (FMM
based program by Nabors and White [45]) and FFTCAP (pre-corrected FFT based program by Phillips
and White [48]). In this study, the comparisons are made only with respect to the GMRES explicit

method. Only the constant element and FFTM schemes with p > 0, are used here.

Effects of spatial discretization on efficiency of FFTM

Spatial discretization is also expected to affect the efficiency of the method. The effects come in two
ways, namely when evaluating the discrete convolutions, and computing the “near” charges
contributions via Q2P. For finer cell discretization, the cost of evaluating the discrete convolutions
obviously increases, but computing the “near” charges effects become less expensive now, since the

number of panelsin the direct interaction lists decrease.
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The cube example is used here for two kinds of cell discretization, namely 8x8x8 and 12x12x12. Only

the schemes Djig =1, p = 1) and DOjigx = 2, p = 2) are used to investigate the spatial discretization

effects. The cube is meshed with uniform elements, and larger problems are generated by using afiner

element mesh. Plots of the CPU time and memory storage requirements are shown in Figure 7.5.

The two sets of plots are observed to be similar. The 12x12x12 spatial discretization seems a little

more efficient, because the gradients of the associated curves, as shown in Figure 7.5, are dightly

gentler than that for the 8x8x8 case. This means that its computational costs grow slower with

increasing size of the problem. However, for smaller problems, the 8x8x8 spatial discretization is

noted to be more efficient.
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Figure 7.5. (a) CPU time and (b) memory storage requirements for FFTM schemes using different
spatial discretization.  Solid and dashed lines correspond to 8x8x8 and 12x12x12 cell

discretizations, respectively.

Test examples

The efficiency of the various FFTM schemes is now compared against the GMRES explicit method.

Two examples are considered here, namely the capacitance calculations of a cube (identical to the one

used above with cell discretization fixed at 12x12x12), and the bus-crossing example (asin Figure 7.3).

For the bus-crossing example, the problem size is increased by using finer mesh and/or adding two

more layers of conductors. The cell discretization is either 14x14x6 or 14x14x12, depending on the
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layers of the conductors. The efficiency plots of the CPU time and memory storage requirements for

the two examples are given in Figures 7.6 and 7.7, respectively.
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Figure 7.6. Plots of (a) CPU time and (b) memory storage versus problem sizes for cube example.
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All the problems are solved more rapidly with FFTM. It is also observed that both sets of results show
similar behaviour. As expected, the GMRES explicit method grows quadratically with increasing
problem size. On the other hand, the gradients of the FFTM curves, for both time and memory
requirement, are approximately near unity for all the different schemes. In general, if one desires better
accuracy over the low order scheme (p = 1 and Djj¢ = 1), it is usualy more efficient to increase the
multipole order (from p = 1 to p = 2 with Dyj = 1) rather than to use Djig = 2 (that is, using Djig = 2
instead of Djig = 1, and keeping p = 1),. This is because the computational cost for storing and
evaluating the “near” contributions via the Q2P matrices increases by about 5 times (from 27 cells to
125 cells), if one were to used Djig = 2 instead of Djig = 1. On the other hand, the computational cost

only increases by about 2 times (from 4 to 9) if we use a higher multipole order, since they grow like

order (p+1)2.

From the test examples, it is demonstrated that FFTM is obviously more efficient than the GMRES
explicit approach. More importantly, the method has only linear complexity growth for both the
computational time and memory storage requirements. This means that FFTM can be as efficient as

the existing fast methods, such asthe FMM and precorrected FFT method.

Larger realistic problems
Finally, we employ FFTM to solve some larger and more realistic problems. They include the micro-
mirror, 5x5 woven, bus-crossing, comb-drive and 10x10 woven, in ascending order of problem size

and are depicted in Figure 7.8.

The CPU times and memory storage requirements are summarized in Table 7.8. There are two rows of
results for each problem. The upper one is the CPU time and the lower one is the memory storage
requirement. The computational costs for GMRES explicit approach are extrapolated from the results
in the efficiency study, since these problems are too large to be simulated with our workstation. In
Table 7.9, we aso calculated the ratios of these costs with respect to the estimated cost of the GMRES

explicit method.
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(®

Figure 7.8. (@ micro-mirror, (b) 5x5woven, (¢) bus-crossing, (d) comb-drive, and (e) 10x10woven.
Cell discretizations used are (24x24x8), (16x32x8), (24x24x24), (50x60x2), and (32x64x8),
respectively.
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Table 7.8. CPU time and memory storage requirements for some large realistic problems.

Solution method

Example
(DOF) GMRES FFTM, Dig=1 FFTM, Djig =2
explicit p=1 p=2 p=1 p=2
Micro-mirror 19.3 mins 0.884mins 1.10 mins 2.39 mins 3.04 mins
(10590) 897 Mb 33.54Mb 37.26Mb 85.70Mb 89.71Mb
5x5woven 47.0 mins 0.972mins 1.38 mins 2.71 mins 4.23 mins
(16640) 222 Gb 30.22Mb 34.16 Mb 73.22Mb 77.28Mb
Bus-crossing 141 hrs 1.88 mins 2.89 mins 4.23 mins 7.79 mins
(22368) 4,00 Gb 32.89Mb 42.33Mb 65.23Mb 74.78 Mb
Comb-drive 2.78 hrs 2.20 mins 3.44 mins 5.39 mins 9.77 mins
(31328) 7.85 Gb 4559Mb 56.81Mb 92.50Mb 101 Mb
10x10woven 12.05hrs 7.02 mins 9.68 mins 16.07 mins 25.56 mins
(65280) 34.09Gb 110Mb 126 Mb 172Mb 183 Mb

Table7.9. Ratio of CPU time and memory storage with respect to GMRES explicit method.

Example FFTM, Diig =1 FFTM, Diig =2
(DOF) p=1 p=2 p=1 p=2
Micro-mirror 0.0457 0.0569 0.123 0.157
(10590) 0.0374 0.0415 0.0955 0.100
5x5woven 0.0207 0.0294 0.0578 0.0901
(16640) 0.0136 0.0154 0.0331 0.0349
Bus-crossing 0.0222 0.0342 0.0501 0.0922
(22368) 0.00822 0.0106 0.0163 0.0187
Comb-drive 0.0132 0.0207 0.0324 0.0586
(31328) 0.00622 0.00734 0.0118 0.0129
10x10woven 0.00971 0.0134 0.0222 0.0353
(65280) 0.00323 0.00370 0.00505 0.00537

From Table 7.9, it is observed that the FFTM schemes are about one to two orders more efficient than

the explicit GURES method. It is also noted that the savings are usually more significant in terms of

the memory storage requirements. For the largest problem considered here, the saving can be more

than 100 times for the CPU time, and 300 times for the memory storage.
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7.4  Conclusion for FFTM Method

In this part of the thesis, we developed an alternate fast algorithm that can evaluate the dense matrix-
vector products rapidly. We referred it to as the Fast Fourier Transform on Multipoles (FFTM)
method. The speedup inthe algorithm is achieved by: (i) using the multipole expansion to approximate
“distant” potential fields, and (ii) evaluating the approximate potential fields by discrete convolution

viaFFT algorithms.

It is demonstrated that FFTM provides relatively good accuracy, and is likely to be more accurate than
FMM for the same order of multipole expansion, at least up to p = 2. Generdly, it is more efficient to

increase p rather than to use larger Dig, in order to obtain more accurate solution.

FFTM has approximately linear growth in terms of the computational time and memory storage
requirements. Hence, it is as efficient as the existing fast methods, such as FMM and precorrected FFT
methods. In fact, for a given order of accuracy, we believe that FFTM is likely to be more efficient
than FMM, since the latter method would need a higher order expansions in order to achieve the desire

accuracy.
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Conclusion and FutureWorks

There are two main contributions in this thesis, namely: (i) improving the accuracy of the BEM
analysis of electrostatic problems by using singular boundary elements, and (ii) developing a fast

algorithm (FFTM) for solving the dense linear system of equations generated by BEM rapidly.

The first part of the thesis is concerned with improving the accuracy of the electrostatics analysis of
corner and edge singularities in potential problems. This is achieved by developing new sngular
boundary elements, which correctly represent the singularity behaviour in the vicinity of the edges and
corners. These singular elements have incorporated the singularity features, specifically the order of
singularity, in the formulations of the shape functions. Chapter 4 is a preliminarily study on the two-
dimensional singular elements analysis, and Chapter 5 extends this approach to three-dimensional
problems. In both studies, it is demonstrated that the use of singular elements can produce more
accurate results, both in the capacitance and el ectrostatics force cal cul ations, than the standard elements
(shape functions of low order polynomials). Furthermore, it is also shown that this singular element
approach is more accurate than some existing methods, such as the “regularized function method” by
Igarashi and Honma [25] (for two-dimensional analysis) and h- mesh refinement method [92] (for

three-dimensional analysis).

For the three-dimensional study, the singular elements are also used in the electrostatics analysis of the
electromechanical coupling simulations of some micro-devices. It is observed that using the singular
elements give rise to larger deformations in comparison to the standard elements. This indicates that
ignoring the corners and edges singularities (as in standard elements) in the electrostatic analysis is
likely to underestimate the true deformations of the micro-structures in the simulations. However, the

differencesin the pull-in voltages are relatively smaller due to the pull-in phenomenon.

The second part of the thesis aims to improve the efficiency of solving the integral equation in the
BEM. In Chapter 7, we proposed and implemented an alternate fast algorithm, which we referred to as

the Fast Fourier Transform on Multipoles (FFTM) method. The speedup in the algorithm is achieved
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by: (i) using the multipole expansion to approximate “distant” potential fields, and (ii) evaluating the

approximate potential fields by discrete convolution via FFT.

It is demonstrated that FFTM provides relatively good accuracy, and is likely to be more accurate than
FMM for the same order of multipole expansion (up to the second order). It is aso shown that FFTM
has approximately linear growth in terms of the computational time and memory storage requirements.
Hence, it is as efficient as the existing fast methods, such as FMM and precorrected FFT methods. In
fact, we believe that FFTM is likely to be more efficient than FMM, since FFTM needs lower order of

expansion to achieve the same order of accuracy.

Several extensions of this piece of work can be identified. For the singular boundary elements, one
obvious extension is to employ it in fracture mechanics, specifically for three-dimensional problems.
To our best knowledge, three-dimensional fracture mechanics analysis of sharp corners is still
considerably rare up to date. In this case, one would have to determine the order of singularities for
different configurations of geometrical corners and material properties. Once this information is
obtained, the general methodology for formulating the singular elements, as presented in Section 5.3,

can be used to derive the shape functions for the singular elements.

As mentioned in Section 7.1.6, the use of local expansion, in conjunction with multipole expansion, is

the most natural approach to devise the FFTM algorithm. However, the O(p+1)4 growth in the number
of discrete convolutions hinders the practicability of this approach. Fortunately, this scaling factor can
be reduced quite significantly by applying the first technique that is used to reduce the computational
cost of the potential correction step (see Section 7.1.5). In this case, besides the “near” cells, the
response functions of the higher multipole moments for the “very faraway” cells are also set to zero.
Physically, this means that the potential contributions from the higher multipole moments that are
located “very faraway” from the potential point are simply ignored. This can be done because the
higher multipole moments potential effects die down rapidly with increasing distance between the

source and field points. By doing so, the number of zero paddings required to eliminate the aliasing
effects can be greatly reduced. To be more explicit, instead of 23 = 8 times of zero padding, it is now

3 3
Z times, where 1.0 < Z < 2.0, and it depends on the order of accuracy required. Suppose Z=15(Z =
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3.375), then the computational cost for evaluating the discrete convolutions is reduced by

approximately two times.

Another way to enhance the performance of FFTM isto employ parallel computation. An obvious part
of the algorithm that we believe will gain significant speedup is the evaluation of the numerous discrete

convolutions, because they are independent of one another. In other words, the task of computing the
4
O(p+1) discrete convolutions can be distributed to many processors simultaneously. Hence, the

computational time is expected to scale like O((p+1)4/m), where m is the number of processors

available.

Besides improving the FFTM algorithm, it can also be extended to other areas, such as in particle
simulations and solving Helmholtz problems. Although, both the problems have already being solved
efficiently using FMM, we believe that FFTM can perform better because of its superior accuracy over
FMM. In fact, any problems that have being solved by FMM, can also be solve as efficiently by
FFTM. To agreater extent, we believe that this new fast algorithm can be applied to any problems that
are solved by BEM, since the problems are ultimately reduced to solving dense linear systems of

equations.
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Appendix A

Generalized Minimum RESIdual (GMREYS)

Solving linear system of equations is one fundamental task in many numerical methods, for example
solving boundary value problems (BVP) using BEM, where the problems are reduced to a dense linear
system of equations, as given by

AX =b (A.D)

where A isafully populated coefficient matrix.

Solving (A.1) using direct methods, such as Gaussian Elimination, require O(n3) operations, which
becomes computationally intractable if the problem size n exceeds several hundreds. On the other
hand, using projection iterative methods can reduce the operation counts toO(nz). Thisis because the

main computational cost of these iterative solvers is due to the generation the orthonormal basis
vectors, which are defined by dense matrix-vector products. In general, they only aim to solve (A.1)
approximately by minimizing the residual norm. Generalized Minimum RESidual (GMRES) is one
such iterative method that is especialy effective in solving dense linear systems generated by BEM.

The remaining of this appendix will describe the method in more details.

A.1  Basic Conceptsof Projection Iterative Methods

Suppose K, is the chosen subspace and mis its dimension, then m constraints are imposed in order to

extract an approximation X . A typical approach is to impose m orthogonality conditions. If the

residual vector, T =b- AX is constrained to be orthogonal to m linearly independent vectors, then
another subspace L of dimension m is generated, which is called the subspace of constraints, and
these orthogonality conditions are known as the Petrov-Galerkin conditions. To summarize, a
projection iterative method seeks an approximate solution X, from an affine subspace X, +K of
dimension mby imposing the Petrov-Galerkin conditions, that is,

b- AX AL (A.2)

where X, isan arbitrary initial guess of the solution.
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A.2  Krylov Subspace Methods
Oneimportant class of K isthe Krylov subspace, which is defined by
K, (AT,) = spanlf,, A, A%, ..., A™F,} (A3)

where T, =b - A%, istheinitial residual.

Different Krylov subspace methods arise from the different choices of the subspace L. One possible

choice is L, =K and also its variant L = AK_, in which GMRES belongs. The approximated

m'’

solution X, is generally be expressed as
X =Xo + a Ji Aii;o =Xt pm-l(A)FO (A.4)

where p,_. l(A) correspondsto apolynomial of degree m-1.

A.3 GMRES: Basic Conceptsand Theorems
GMRES was proposed by Saad and Schultz [37] as a Krylov subspace method for solving non-

symmetric systems, where the constraint subspace L is chosen to be AK . The mth iteration of

GMRES isthe solution to the least square problem

minimize ”B- A)Zm”z, X1 X, +K (A.5)

where T =b- AX, isthe GMRES residual at the mth iterations. Substituting (A.4) into the residual
equation gives,

6' A;(m = 6 - A()zo + pml(A)FO)

mA - (A.6)
= (1_ pm-l(A))rO = pm(A)rO
where ﬁmT P., isaresidual polynomial of degree mthat satisfy the condition P, (0) =1. Using (A.5)

and (A.6), the following theorem is derived.

THEOREM A.l. Let A be nonsingular and )A(m be the approximated solution at the mth GMRES

iterations. Thenforal p, 1 P,
[l = min|P(AY ], £ [Pn(AXc . (A7)

pl Py,

which leads to the following corollary,
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ek 5 o, (A8)

["l.

From (A.8), it is easy to see that GMRES algorithm will find the exact solution in at most n iterations
(assuming infinite precision for the arithmetic operations). It is also interesting to note two other

theorems, which show finite termination of the GMRES algorithm under certain circumstances.

THEOREM A.2. Let A be a nonsingular and diagonalizable matrix. Suppose A has only k distinct

eigenvalues, then GMRES will terminate in at most k iterations.
THEOREM A.3. Let A be a nonsingular norma matrix. Let b be linearly spanned by the k

- &
eigenvectorsof A, thatis, b =g g,V;, where v, istheith eigenvector of A and g, isthe corresponding
i=1

coefficient. Then GMRES will also terminate in at most k iterations.

A4  GMRES: Implementation and Algorithms
Suppose V  isan orthogonal projector onto K . Then (A.4) can be written as

X =% Vo Vi (A.9)
where VmT R™ isthe coefficient vector to be determined. The least squares problem in (A.5) becomes

minimize |[fo- AV ¥nl,. ¥ul R (A.10)

Suppose Gram-Schmidt or modified Gram-Schmidt is used to form the orthonormal basis of K _,
whichinthis caseis called the Arnoldi process (ALGORITHM A.1), then

AV =V _.H_ (A.11)
where H isan upper Hessenberg matrix whose entries h; satisfy the condition, h; =0if i >j- 1.

Substituting (A.11) into the residual vector gives

I:’m :FO - Vm+1H mym =V (bél -H mym) (A12)

T Vmu

where b =|[f,|,. & =(1,0,...0)" T R", and theresidual normis

IFull, = (b8 - H oY), (A.13)

since the column vectorsof V_ . are orthonormal.

m+1
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ALGORITHM A.1: Arnoldi process.

)

1 Let T, =b- AXjand V, =2

I,

oM

2. Fori=1,..., m1,

\7i+1 = A\7i - é ((Avi )T \7] )\71

i+1]l2
In summary, the GMRES approximation is a unique solution of (A.9), which minimized (A.10), that is,
Vm = minimize |(b& - H ¥, )|,T R".

To solve the least squares problem defined in (A.13) efficiently, the upper Hessenberg matrix is

transformed into upper triangular form by using the Givens rotations. A Givensrotation is defined as

€ 0 0 Ou
2 i
D O
é - ¢ S 0
G =é .a (A.14)
a -5 G oY
Y E od
e u
@ 0 0 1g

which is a (mt+1) square matrix, where mis the number of iterations performed. The entries C; ad S

arelocated in thei and i+1 rows and columns, which are defined as

(i-1) h...
c = Ll s = A (A.15)

P e

Applying (A.16) repeatedly will ultimately reduce H  toitstriangular form

Q.H,=R, (A.16)
where Q=G ..G,G,, and R_ is a (m+1)xm upper triangular matrix. Finally, substituting (A.16)

into (A.13) gives

"(bél -H mymmz = "Qm(bél -H mym X|2

A.l
:"(@m' Rmym)uz, sinceQ,, is unitary. (10

The solution of (A.17) is obtained by solving the triangular system, with the last row of R and last
term of g, removed. Note that the last entry of g,, corresponds to the residual of the least square

problem that is used as the convergence indicator.
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The Arnoldi algorithm and Givens rotations are the two important frameworks that GMRES algorithm

builds on. With these in hand, the GMRES algorithm is derived in ALGORITHM A.2.

ALGORITHM A.2: GMRES agorithm.

Suppose the following information is given:

A = coefficient matrix, b = right hand side, X, = aninitial guess,
T = convergence tolerance, andkmax = maximum iterations allowed.

L f=b- A%, %=, r=b =[],
7ol
g=(b,0..,0" 1 R™* k=0
2. Whiler > ||5||andk<kmax
(@) k=k+1

(b) Orthogonalization by Arnoldi process
(c) Transformi ng H, intotriangular form.
if k >1, apply Q,,; tokthcolumn of H .
(d) Computeresidualas, r =|g,,,|.
3. Solving thetriangular system.
Setr; =h;, andw, =g forlfij £k
Solve R, Y, =W,.
4. Returnsolutionas, X, =X, +V,Y,.

One disadvantage of the method is that it requires all the basis vectors of the Krylov subspace to be
stored as the iteration progress. This means that performing k iterations require storing k vectors of
size n, which is undesirable for large problems. To overcome this problem, one can used a restarted

version of the GMRES algorithm as given in ALGORITHM A.3.

ALGORITHM A.3: Restarted GMRES algorithm.

1. Definel andk max. Andseti = 0and X, = 0.
2. While convergenceis not attained,
i=i+1.
Use ALGORITHM A.2,With} i(o :9' =1 )
7 Xo =Xi.1,» Otherwise.
where X;_,is thesolutionreturn by previousGMRES solve.
3. Return X, asthe approximat e solution by GMRES.
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Appendix B

Extracting Order of Singularity for Two and Three- Dimensional
Cornersand Edges

The singularity behavior of the potential gradients or surface charge distributions in the vicinity of
sharp corners and edges is strongly determined by the order of singularity, which is essentialy the
eigenvalue of the associated eigen-problem of the given geometry. This appendix presents the
techniques used to extract the order of singularities for the edges and corners in two and three-

dimensional problems.

B.1 Potential Fieldsin the Vicinity of Two-Dimensional Corner

In the two-dimensional context, a corner is referred to as the intersection point of two planes, which in
this case are the adjacent surfaces of a conductor. The corner is placed at the origin O and the

conductor is assumed to be at a constant potential f . Figure B.1 shows a general corner in two-

dimensional space.

o x

Figure B.1. Two-dimensional corner with opening angley .
The governing equation for the potential field, in the polar coordinates (r , q) in two-dimensional
space, isgiven by

19® e, 19

roqr 1]rE,r2ﬂq2

=0 (B.1)

By using separation of variables [52], the general solution of (B.1) is
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f (r vQ)z(ao +bylnr )(Ab + BOQ)

+é: e+t A coda )+ B snfa q)) (B-2)

where a's are the eigenvalues, which are constrained by the boundary conditions applied at the

corner. For uniform Dirchlet boundary condition, (B.2) is reduced to

goo L
tr vq):f0+gcirnggn§ﬂ2 (B.3)
=1 eY g

where ¢, are the unknown coefficients that depend on the boundary conditions remote from the corner

point.
) . . I [ A .
Finally, the normal potential gradients, that is, ﬁ:r_ﬁ at the two adjacent surfaces of the
conductor are given by
f & apo
%:aciéaYﬁgrgY e, forq=0
v (8.4)
" _& apo vy
—=g9 ¢c—=°" “codip), forq=Y
n % gY %] S( )
and in the vicinity of the re-entrant corner can be approximated by
.. gailg
A » Clgggr &Y o (B.5)
fin “eYg

o
which may be singular with the order of singularity given by Ee% - 1;

B.2  Extracting Order of Singularity for Three-Dimensional Corners
Analytical singularity solutions are ailmost impossible for the three-dimensional corners. Numerical

techniques have to be used to determine the order of singularity for arbitrary corners. One such

techniqueis presented as follows.

The singularity solution for a corner can be constructed from the bounded solution of the three-
dimensional Laplace problem defined by the intersection of a sphere of radius rg, with surface S and

centered at the corner, with the region around the corner W, satisfying the boundary conditions on the

appropriate parts of the corner, as depicted in Figure B.2.
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“r

&

Figure B.2. A corner with apex at the centre of a sphere.

Consider the three-dimensional Laplace equation in the spherical coordinates system,

.. 2 ..
%1§2E9+ . _12 T f2 +— 1 la%inq EQ: (B.6)
r’fré Trg r?sn®q If r‘sing 19 é 19 o

Applying the following separation of variables
f(ra.f)=Rru(.f) (B.7)

gives,

2

r:—z(rR)-a(a +1)R=0, O<r<r, (B.8)
r
D, +af@a +1)Iu =0, @.f)i G

uU=0, (@.f)1 1G, (B.9)

U 7
—=0, J)1 916G
o (@.f)1 16,
where G=1SCW, G=1SCTW, | istheidentity operator. Dy isthe Laplace-Beltrami operator given as

L. 2
D, = Bpq 1 8, Lt 1 (B.10)

"TSnqTa & Tap sniqfZ
The solution of (B.8) is straightforward, which is given by
R=Ar® +Br @ (B.11)
where A and B are constants, and a isyet to be determined by solving the eigenvalue problem defined

in (B.9). In the following sub-section, we present a numerical technique for solving the eigenvalue

problem of ageneral corner.
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B.2.1 Solvingthe Laplace-Beltrami eigenvalue problem

Finite difference method (FDM) can be used to solve the eigenvalue problem in (B.9). However, from
Figure B.2, it can be seen that the problem domain G may contains singular solution due to the
singularity rays that intersect at the corner at O. These singular points have the order of singularity
identical to their corresponding rays. Although U is not singular, its derivatives are definitely singular.

This deteriorates the accuracy of the numerical results.
To alleviate the situation, Bazant [36] suggested removing all the point singularities by expressing
U (q f ) (assuming only one singularity point exists) as

u.f)=[ta.f )] u.f) (8.12)
where t (q,f ) is a chosen function that is nonzero everywhere except on the singularity point, and pis
the correct singular exponent of the singularity ray. In this case, the function u(q f ) is smooth, and
hence FDM can then be used to solve the modified eigen-problem more accurately.
Suppose the singularity ray lies along the pole g =0, the obvious choicefort is

t =q, or t =dnq (B.13)

For the general case where the singular ray is located at (ql,f l) , We can choose

t=yfa-a) +[ - .)sna,P (B.14)
Equation (B.14) can be extended to general case where n singularity rays exist within the domain,i.e.

Ul.f)=trt 2.t >)u@t) (B.15)
where p’s are the known singular exponents of the singularity rays, andt’sare the appropriately chosen
functions.
Applying the FDM to the modified eigen-problem leads to the following eigen-matrix problem,

Al Ju=0, withl =afl+a) (B.16)
where A is the coefficient matrix, U is the vector of nodal unknowns and | is the eigenvalue of matrix
A. Two methods are presented in the following sub-section that can be used to solve the eigen-matrix

problemin (B.16).
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B.2.2  Solution methodsfor the eigen-matrix problem

Method A: Reduction to a matrix eigenvalue problem

For FDM, it isnoted that | only existsin the diagonal entries of A. Hence, (B.16) can be rewritten as
(A¢- 11U =0 (B.17)
where A€ is a matrix independent of |, and | is the identity matrix. This is a standard eigenvalue

problem that can be solved using QR factorization. The two corresponding rootsa for each | are

1
t [=+I B.18
2 (B.18)

a=-

N

If | are all real, then the smallest positive | also corresponds to the smallest a, which is the order of

singular for the potential field.

Method B: Conversion to non-homogenous equations
Generally, the eigen-problem can be written as

M( Ju =0 (B.19)
This method begins by making an initial guess for | to compute the corresponding matrix M, which is
then modified by replacing one of the equation, for example the kth equation, with U, =1. The

modified problem, which is now non-homogenous, is then solved, and the solution is substituted back

. - . - .
into the original kth equation, that is, @ myU; =Q. Generaly, Q is not equal to zero, unless the

i=1
assumed | is an eigenvalue of (B.19). Hence, the aim isto find the smallest value of | that makes Q =

0 or near zero.

However, it is noted that the radius of convergence for this approach can be quite small. This means
that a good initial guess is required to ensure the method to convergence to the mrrect eigenvalue.
Otherwise, the result has to be scanned in small steps for alarge interval, which can be computationally
expensive. Therefore, a more efficient approach is to use method A to obtain a good initial guess of |,

and then use method B to refine the solution.
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Appendix C

Numerical Integration of Singular Integralsin Three-Dimensional
BEM

This appendix summarizes the regularization transformations for the various cases where the
collocation point falls on nodes of the element over which integration is performed. Thefirst part deals
with casesin which only the fundamental solutionissingular. In the second part, both the fundamental
solution and the shape functions are singular. In this case, the regularization transformations are first
applied to remove the more strongly singularity due to the fundamental solution. The weakly singular

shape functions, after the transformations, can be cast into forms that can be effectively treated by the

+
Gauss-Jacobi formulas [98]. Hence, the second part summarizes these expressions, which helps to

determine the appropriate Gauss-Jacobi formulas required.

C.1 Regularization Transformations for Treating the Singularity due to
Fundamental Solution

Theintegral concern hereis generally of the form

e cli+h,) fi
| = X1, X, |]-——=dh,dh,y (5.45)
a1 00f b ) ey

where f(xl,xz) is a nonsingular function, T is the number of sub-triangles depending on the

collocation point, and c is the constant associated with the Jacobian of transformation that maps x onto
h, and also depends on the location of the collocation point. The underlying principle and general
mapping functions of this technique are given in Section 5.4.2. In this section, the actual mapping
functions are explicitly presented for the various cases, where collocation points falls on different

nodes.

(i) _Collocation point at corner nodes. c=0.5for T=1,11.

Node 1: Node 2:

(I): Xp =1 X, =1, (I): Xp=-f X, =1

(II): X, =f,; x,=1; (II): X, =-f; X, =-1,
0 (n

T Gauss-Jacobi formulaiis given by: a(l XPRexP il »d " f(z v, 132

where z; and v ; arethe abscissas and weighs, and a and b are the singular exponents.



Y Node 3:

Node 4:

Q) (1): x,=-f; x,=-1, an | (1): x,=f,; x,=- 1,
(II): X, =-f,; x,=-1, (II): X, =f; x,=-f1,
(ii) Collocation point at mid-side nodes. ¢ =0.25,for T =I, Ill, andc=0.5for T=11.
Node5: () Node 6:
(1 M) xy =1 x,=1, (D) x=-1,; x,=1;,
(ny: x,=1,, x,=1, (n (n)y: x,=-1; x,=1,
(1 0 my: x =-"f5, x,=1, amy [ ey xp=- 1,5 x,=-1f;
Node 7: Node 8:
()] (1n (1n
): x,=-f;, x,=-1, (1): x ="1,; x,=- 1,4
(D] (“): X1:f4* X2:'f1 ) an (”): Xlzfl; X2:f4
(my: x; =14, x,=-1, 0 (my: x;=1,; x,=1,

(iii) Collocation point at center node (9). ¢ = 0.25 for all sub-domains.

where f, =h,, f,

C.2
Regularization Transformations

M Node 9:
1): x,="13; x, =1, (n): x;=1,; x,="1;4
(rn M| Ay x,=-f5; x, =1, (IV): x,=1,; X, =-1;
(IV)

1+ 20+, )aen,), fo=(en,) and 1, =2h,(+,).

Singularity Expressions for the Singular Shape Functions After the

Boundary element integrals, after the regularization transformations, have the following general form

11

= 80 b b )

c(i+h,)

[x- x4

where f(xl,x2)=g(X1.Xz)

1dh2

(C.2)

is a nonsingular function. However, h (xl,xz) may still be

singular due to the singular shape functions. There are four possible types of singularity forms, as

mentioned in Section 5.4.3:
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h=—t — fori=

rcz

ra

hy=——=— fori=

(Lex, )

where r =%\/(1+x1)2 +@+x, ) .

(C.39)

(C.3b)

(C.3c)

(C.3d)

The objectivesin this section are to determine: (i) the final expressions of the kernel h, (xl,xz) after the

regularization transformations, and (ii) the Gauss-Jacobi formulas needed to evaluate the resulting

integrals. Now, consider the different singularity functions givenin (C.3a) to (C.3d) separately.

1 .

h =——=— fori=1or2

(Lrx )
For this form, only one of the two cases is presented (i.e. i = 1 or 2). Without loss in generality, let
h, :ﬁ . Hence, considering the various cases where the collocation point is located at different

+X, £

nodes.

Node 1: Node 2:

-1 éa-h,)°u 1
O =y ® “:§g+ij3a-th
1

Il 1

(D h = [ ](1 h )E (1+h2)IE (1) hl:(l-h )IE

Node 3: Node 4:

1 | 1
| = [ E
VR R N
_§-n) 0 1 Ny h=—=.
Iy h = (+xJ S (I h THE
Node 5: Node 6:
1 B LE
(1) Fa=a:—7j OXUEN §i m;Eé( 1)b
@+h)bu 1 1
RN (EPA L (TN S R B

i m:kﬂ%a——y—

1
h
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Node 7: Node 8:

M h=[e) ]W (1, h1=[(2)'5](1+;1)|E(1+hlz).E

) h= 9((11+:1))Ib é(ljn)b W hl:ﬁ
() h;ﬁ

Node 9:

0 hi:(1+>1<1)'E (1), (IV) hlzé((i::j)).ig(“il)b

() hﬁ[@'E]ﬁ

ra:

" ) )

, =

This form of singularity exists only in the shape functions of Cornerl singular element, which is

associated with strongly singular corners.

Node 1:
i é d+h zu%u 1 1
T I '31) + 1(.) ¢ I,
R T (T T
1
Node 2: Node 3:
ér(L-h, U 1 1 _ért-h U 1
SR P e oy e (X [ (B S T
v al 1 ér:@-h,)’u 1 1
(1) hy=|2)-r i | ' =é U
[() ](1+h1)E (1_ hz)E(l_,_hz)E () h, §(1+X1)'E g(l hl)b (1 hz)lE
Node 4: Node5:
1 1 A | a; I
0 n=[@e gy 11
| ) @n ) een s O T T on, )
r-h )0 1 1 a i
() =@ _gufen )t o1 1
8 oc) gl-ny @wn s (D S(mm G fen, )
1 1
h, =[2)2< 1|
() h, [(2) r J(1+h1)'5(1-h2)'5(1+h2)|5
Node 6: Node7:
:é ral(l' hl)b l;l 1 | h :;2)E 31(1 h )bu 1 1
) ) - T8 L (RN AT
S L 1 SV 1
Iy h,= (1) h,=¢é i
R TN I TN 6 Wox) alen) Bn.J:
_¢2)cr@-h)’0 1 1 1 _¢ rf-h) U1
I o (o ey UL ooy P B T ar
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Node 8:

(1) h= [ (1”11) (L- hz)'511+h2)'s
(. ‘93913) g@+iab@+§ﬁ%
) T T

h =t

Node 9:

& rfen) U g
QO T i=an =,
i :g(zygral(uhl)b@ 1

1
1+x,)¢  g+h,) @-h,)*
1

é
() v fen,) 0
V) = e o gty Gn,)

Thisisapoint singularity that existsin Corner2 singular element.

Node 1
€ aé+h102@_% 1
’ h3: cz@_ -
(1).qn) (2 é’fg 2 QE (1+h,)
Node 2:
(1) h= |cz
e@+h) 1

) h= e g@+h)
Node 4:

é1+h,)°u 1
| <
(1) h= g P @+h )°
(1) hs:_
Node 6
(1) h=—m

rle

_éa+h)°0 1
() hs—g rlee E(1+h1)b

Node 3:
e(1 h,) U 1
(.1 h= e g@ h,)°
Node5:
(1,31 hfi
e(1 h)u 1
() hy (e g(1+h)
Node 7:
e(1 h)blﬁJ 1
(1) b
hs @ r Q('hl)b
(1+h) 1
(I h = e g(1+hl)b
(nr) hazr%
Node 9:
(1,311 h= |C2

1+h 1
(1), (1v) hy= e( +'cz) 5(1+hl)b
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fori =lor2.

This form of singularity exists in the shape function of Corner3. Again without loss in generality,

consider h, :( _:Z),E
Node 1:
A58 w0 1
h, =¢=* i
O, 8782 54 wn,)-
Ple)é gan 0-2u6172 1 1
N h,==% & L3
R PR I R T T
Node 2: Node 3:
ére2(1-h, )"0 1 _[];
| h — 1 (|) h4—l’ I
R { TN B (AN ona)-
1 ér(1-h )"0 1
(1) h, =|r | () h,= =
[ ](1-h2)E @(1+x)E a(t-h,)
Node 4: Node5:
| 1 1 raz
h = Epay h4:
(1) h, [(2) r ](1+h1)'E [+h,)" (1) fLix,)
) h, =[] o en )ty
L) =) G,y
h, =|(2) = r®:
R O T
Node 6: Node 7:
& 1- h, 1 —|(o) e r2e| L
—|raz 1 — (-'-hl)bl;I 1
(= ]m RIS S en I e
— raz
() h, ——(1+X1)|E
Node 8: Node 9:
—_ lepa, 1 1 = _32
(M, h, =[@)+r ](1+h1)'E TTHE (1) h (1+x1)
ary h,= ralz| - (1+h) -
TR (1),(1v) h, @(1"')(1) g(1+h1)b

(1) h4=[(2)Er32](1_hl).E
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Having to explicitly expressthe kernel h;’s after the regularization transformation, the following Gauss-

Jacobi formulas are identified.

D
@)
(©)
4
©)
(6)
™)
®)

a=lgandb=0
a=0andb=1¢
a=bandb=0
a=0andb=b
a=0andb=I¢g
a=0andb=1¢
a=lgandb=1g

a=bandb=1g
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Appendix D

Automatic I dentification of Singular Elementsin MEM S Device
Simulations

In this thesis, MSC/PATRAN (a general pre-processing program) is used to create the input files for
the electrostatic analysis. In two-dimensional analysis, the singular nodes and elements can be easily
identified and manually selected in the boundary element models. Hence, including the information of
the singular elements is rather trivial. However, the situation is not the same in the three-dimensional
context, where the complication arises from the extra dimension. Take for example the electrostatic
comb drive shown in Figure D.1 (a very common MEMS device that can function as a capacitance
sensor or an electrostatic actuator). All the nodes that fall on the sharp edges and corners are singular

nodes, and hence the task of collecting them manually istoo laborious and almost impossible.

Figure D.1. A three-dimensional model of acomb drive.

This is further complicated by the different types of singular elements that were identified in Section
5.1. To aleviate this problem, a user-defined program, written in PCL (Patran Command Language),
is implemented. This program is capable of automatically identifying and classifying the singular
elements according to their unique features. The author would like to thank Dr. Su Yi for
implementing this pre-processing program. Figure D.2 shows the user-interface of the program that

makes it user-friendly.
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D.1

User-defined menu

»ds  nsight Control ‘ Custom Functions

-om FLEXIm per a request to execute on a HP 700 system at 02-Apr-01 09:20:43.

2nse File: /app12/tma/license/license.dat

= ]
)1 09:20:43 Action: Post =
+has been set to the Starbase gr —| ‘ o ‘Jl Current Viewport
Node Type ‘default,uiewporﬁ

Classification
paTRaN created using PCL ‘%l*

— | Select Groups to Post

Required It L S | ey | RIS || New groupsthat are
| Solid 1 corner_node3 | created
edge_node automatically

P 13
Select None |
— select all \
Reset Graphics
Select Current |
Apply | H cancel | Apply cancel |

Figure D.2. The user interface created using PCL.

Classification of Singular Elements

As noted in Section 5.1, there are five different types of singular elements identified for a genera

rectangular structure. These singular elements possess unique features that allow them to be identified

and classified uniquely. The following are some preliminary definitions of singularity geometries in

which the classification of singular elements are based on:

@i

(i)
(iii)
@iv)
v)

A convex edgeis singular in nature.

A concave edgeis hon-singular in nature.

A vertex connected to three singular edgesis strongly singular.
A vertex connected to two singular edgesisweakly singular.

A vertex connected to one or less singular edgeis non-singular.

A summary of the definitions of the singular elements are given as follows:

D

Edge: Contains only one singular edge. The order of singularity (referred to as edge

singularity) remains the same along this edge.
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2 Cornerl: Contains a strongly singular vertex with two adjacent singular edges. The order of
singularity increases from edge singularity to the stronger Corner1 singularity asit approaches
the singular corner.

3) Corner2: Contains only a weakly singular vertex and hence, the field is only weakly singular
(Corner2 singularity) at the corner.

(4) Corner3: Contains one singular edge and also a weakly singular vertex. In this case, the order
of singularity varies from edge singularity to Corner2 singularity along the singular edge.

(5 Corner4: Contains one singular edge and also a non-singular corner. In this case, the singular

field would die down at the non-singular corner.

D.2  Automatic Detection of Singular Features of Geometric M odel
To identify the singular elements, it is necessary to first efficiently identify the singular features of the
geometric model. This involves essentially checking the edges for convexity. As mentioned earlier, a

convex edge represents one that is singular in nature.

To determine whether an edge of a model is convex or concave, an understanding of the representation
of geometric entities in surface modeling is required. In general, a solid consists of a set of bounding
faces with outward directed normal vectors. Each of these faces is formed by one or more closed chain
of edges. In the case of a simple trimmed surface, there is only one outer bounding loop of edges. For
surfaces with holes, there is an addition of one or more inner bounding loop of edges. Figure D.3
illustrates a simple trimmed surface and one with a inner bounding loop. Also, the ordering of the
edges and vertices of a surface follows a standard convention such that the direction of the outer
bounding loop of edges is clockwise with reference to the face normal vector n while that of the inner

bounding loop or loops of edgesis anticlockwise.

7
v LL
¥y —
ey | — \ v € _—\
Ve \e
: e v Mgeg \&3
\
\ e 2. Y Burface 2
e v 9

™

s Al v
Surface 1 \,\ va €m V1o .
el B \, fﬁ—f’/ €3
——— 2 _— V3
- ¥ v &1

¥y €

Figure D.3. Trimmed surfaces and their naming convention.
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To represent geometric entities in terms of faces, edges and verticesis merely descriptivein nature. To

effectively evaluate these entities, some basic concepts of differential geometry are required.

A geometric edgeis essentially a 3D curve. The regular parametric representation of the curveis
r=r(t) = (x(), y(t), z(t)) (D.1)
The derivative of the vector valued functionr(t) is defined as

r(t) =dr(t)/dt = (dx/ dt,dy/dt,dz/ dt) (D.2)
Higher order derivatives are defined similarly.

An intrinsic property of the curve is the unit tangent vector or gradient of the curve. Suppose sisthe

natural parameter, that is, the arc length of acurver(t), then
s= (§|r‘(t)|dt (D.3)

It follows that the unit tangent vector of the curver(t) is defined as

T=dr/ds (D.4)
By applying achain rule differentiation, an alternate expression for the unit tangent vector is obtained

T=r@)/|i) (D.5)
In differential geometry, asurfaceis expressed as

r(u,v) = (x(u,v),y(u,v), 2(u,v)) (D.6)

where u and v are parameters of the surface. A useful property is the surface unit normal vector n
which is essential for surface interrogation. On differentiating r(u,v) with respect tot gives

P I NI L (D.7)
d fu dt v dt

where [ isthe tangent vector of r(t) and r, and r, are tangent vectors of isoparametric curves on the
domain (,v-plane) of the parametric surface r(u,v). The three tangent vectors f, ry, and r, define a

plane called the tangent plane as shown in Figure D.4.

The surface unit normal vector n isthe unit normal vector to this tangent plane at a particular point,

which is obtained by normalizing the vector product of r, and r, as

u (0.8)
I

=

n=
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Figure D.4. Illustration of atangent plane.

Consider the pair of adjacent planar surfaces in Figure D.5 which are orthogonal to each other at an
edge g; where i signifies the surface index and j the edge index. The edge &; is convex if the cross

product n, and fi, isin the same direction as e;. Consequently, if they are in the opposite direction,

then g; isaconcave edge.

=

Surface &

Figure D.5. A pair of orthogonal planar surfaces.

Although this is true for orthogonal planar surface pair with straight edges, such a configuration is very
restricted for modeling an object, even though it is observed that many of the MEMS structures are in
general ‘rectangular’. A method is devised to handle geometric configurations that are not constrained
by orthogonal and planar conditions. Consider a pair of general 3D surfaces as shown in Figure D.6

which share a common edge represented by gt). The unit tangent vector T of gt) can be evaluated
using (D.7) att = 0.5. Next, the surface unit normal vectors n, and n; of surfacei and surfacej can be
evaluated at the parametric valuesu and v using (D.8) wherer;(u;,vi) = r;(u;,v;) =r(t = 0.5).

If the cross product of fi, and fi; isin the same direction asT, then the edge is convex. Consequently,

if they are in the opposite direction, then the edge is concave. A special situation arises when the cross

product isanull vector. In such acase, theedgeisplanar. Ingeneral, the following criterion apply:
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() TXn " n;)=+ve b edgeisconvex
(i) TXn n)=-ve b edgeisconcave

J

(iii) TXn," n;)=0 P edgeisplanar

Burface ¢

Burface §

Figure D.6. A pair of non-planar surfaces.

Using these criteria, all the edges of a general solid can be queried for convexity. The flowchart of the

algorithm to check the convexity of the edges of ageneral solid isshownin FigureD.7.

For all faces(h o -

e mocel i

| Get face normal |

]
¥

done or all edges
of face(n

| Get edge direction) |

done

Get face normal of adjacent face(s)
of face(i at edgel))

i

WECT = cross(face normall ), face
narmall K1)

!
PROD = dot(ECT, edge
directioni;n

'

PROD iz +ve?

Yes

na

| Edgel ) iz convesx |
|
4.| Continue I

Figure D.7. FHowchart describing the process of checking convexity of edges.
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After checking the convexity for all the edges, the nodes of the mesh are classified accordingly. Every
type of singular elements described in Section D.1 can be uniquely defined by a combination of these

nodetypes. There are altogether four types of different nodes:

(1) A node which lies on avertex associated with one convex edge.
(2 A node which lies on avertex associated with two convex edges.
3) A node which lies on avertex associated with three convex edge.
4 A node which lies on a convex edge.

The flowchart of the algorithm to classify the nodes of a mesh according to these four categories is

shown in Figure D.8.

D.3 Implementation

The platform used in the implementation of the algorithms described in the previous section is
MSC/PATRAN, an industrial standard finite element pre- and post-processor. In particular, the
algorithms are coded in the PATRAN Command Language (PCL), which is an integral part of the
PATRAN system. Using PCL, access to PATRAN functions and databases is made possible. PCL is
also used to create an application user interface, which is depicted in Figure D.2, to enhance the ease of
execution of the algorithms. The user is only required to select the solid and activate the ‘apply’
button. When the execution of the program is completed, four groups are created in the PATRAN

database. They are:

(D) cor ner _nodel containing nodes lying on vertices associated with one convex edge.
(2 cor ner _node2 containing nodes lying on vertices associated with two convex edges.
3) cor ner _node3 containing nodes lying on vertices associated with three convex edges.
4 edge_node containing nodes lying on convex edges.

These groups can then be exported to the required format according to the type of solver used.

To evaluate the performance of the algorithm, the program is run on a HP B200 workstation with 256
MB of RAM. For the comb drive configuration shown in Figure D.1, the program completes the task

inonly 39.22 seconds.
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Check concavity of
all edges of model

Get node on vertex J§

'

Get number of convex
edges, HUMEDGE
connected to vertex J

}

YES
_..| Ade node to LIST |—
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d@- Y83 o[ At node toLI=T2 —
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of model
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Boolean
L& | (LIST1,LIST2,
LI=T3, LIST4)

Stop

Figure D.8. Flowchart showing the process of classifying singular elements.
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Appendix E

Electromechanical Coupling Analysis

To date, many MEMS devices are driven by electrostatic force. The actuation principle can be briefly
described as follows. Electrical potentials that are applied on the conductors (actuators) induced
electrical charges on their surfaces, which in turns generate electrostatic forces on the conductors.

These forces then deform the MEMS structures, which result in mechanical restoring forces in the
structures. The deformations of the structures also change the surface charge distributions, and hence
the electrostatic forces, which usually further deformed the structures. This process will continue until
an equilibrium state is attained, where the electrostatics driving forces are completely balanced by the

mechanical restoring forces. This equilibrium state is often referred to as the self-consistent state.

It is obvious that the coupling analysisis nonlinear. Mathematically, the solutions for the two domains
can be represented as

q=R.(uf) (E.2)
where R (u,f) denotes a linear operator that relates the surface charges density q, for a given
conductor geometry u, and the applied electrical potentialsf. And,

u=R, (u Pa) (E2)
where R, (u, P(q)) represents a linear or nonlinear operator that defines the structural displacements u,

for agiven the external pressure loading P, which is afunction of the surface charge density g.

Note that (E.1) and (E.2) can be solved in a black-box manner. This means tha they can be solved
individually using different methods as if they are stand-alone problems. One obvious advantage using

ablack-box approach is the ease of implementation.

In the following section, we briefly outlined a black-box approach, namely the rultilevel Newton
method [15]. This method is used in this thesis to solve the electromechanical coupling analysis.
There also exists other approaches, such as the simple relaxation technique [9], the Surface-Newton
Generalized Conjugate Residual (SNGCR) algorithm [10], and the tightly coupled Newton method [13,

14].
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E.1  Multilevel Newton Method

In this approach, the coupled equations are solved by employing a nested Multidimensional Newton-

Raphson method. The outer-Newton iteration solves the following residual equation:

Q-
u -

Fluq)=j

19- Re(wlu_ g

RE

R, (@) 3
where R_ (u) is the charge on the conductors for a given conductors geometry u, and R, (q) isthe
structural displacement due to the electrostatic forces generated by the charges q. Hence, the Newton
iteration equation isgiven as

- F(uk,qk)ﬂ(uk,qk)}qu (E4)
1Yu

where d, and d, are the variations in the solutions at the k iteration, which can be taken as the

convergence indicator, and J(u, q) corresponds to the Jacobian of (E.3) whichisgiven by

| - R /Tug
e/ E (E5)

é
Jlu,gq)=a
Lo g g T

where| istheidentity sub-matrix.

Basically, convergence is attained when d, and d, are both smaller than a given tolerance. The self-
consistent solutions are then computed as,

q =qg“+df, and u" =u*+dk (E.6)
A summary of the multilevel Newton technique is given in the following algorithm.

ALGORITHM E.1: Multilevel Newton algorithm.

1. Defineconvergenatolerancel .
Andsetk=1, u* =0 and g* = 0.
2. Do,
Solve(F.4) ford,andd ,i.e

F( K k)_ ( K k)idq[,jk

-FlWw', g )=JW", g %dug.
Compute g** =q" +d.
Compute u** = u* +dk.
k=k+1

while Jd|°T, or a)] =T -

3. Return u*"and g*" asthesdf - consistent solutions.
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Notice that the linear system defined by (E.4) in the above algorithm can be solved by using iterative

solver, such as the Generalized Minimal RESidual (GMRES) [37]. An important feature of GMRES is
that the coefficient matrix, which in this case the Jacobian of residual J(uk , qk), need not be formed
explicitly. In other words, the method is matrix-free, and only requires the matrix-vector product

J*V_ to be computed, where J* isthe Jacobian of the residual of at the kth Newton iteration, and V.,

is the mth basis vector of the Krylov subspace K (Jk,F) as defined by

m 0

spar1{FO, (J k)FO, (Jk)zr”o, (J k)m'lro}, with 7, =- F(uk,qk). Hence, using (E.5), the matrix-vector

product is explicitly expressed as

6, TRe, U
— é I 'ﬂRE/ﬂUUdimU gqm' u um U
Ju, gy, =¢ i "y =@ a (E.7)
wakn=e o /ma b & TRy g
é fa *"g

where v, ., and v, , are the components of V_ that are associated with the charge g in the electrostatic
analysis and the displacement u in the mechanical analysis respectively. The derivative termsin (E.7)

can be approximated by finite-difference as follows:

B e 0,0)- R, forx=uora e

where the matrix-free parameter Dis asmall value, and is suggested to be [15]

o] BlR o

D, =sign(x* \7x)* m'né WWB (E.9)
with al (0.01, 0.5) and b1 (0.1, 1.0).
Therefore, (E.7) becomes
G Slrdn ) R
G ko) ol 0

Notice that Rg (u +D,* Vu,m) and R, (q +D,* Vq,m) are simply the solutions for the charge q and
displacement u, when subjected small perturbations of magnitudes D,*v,, and D,*V,,

respectively. Hence, they can be solved outside the GMRES iteration. The matrix-vector product in

(E.10) can be obtained using the following algorithm.
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ALGORITHM E.2: Computation of the matrix-vector product.

Given the parameters:
D,, D, using (E.8), and V,,,, and v, from the mth GMRES iteration.
Compute the following solutions,

G = Re (u,f} J using el ectrostatic solver.
q: = RE(U+ Dy *Vim.f %

u; = Ry (u, P(a)

u, =Ry, (u, P(q +Dy * Vym

u,m?

v using elastomechanics solver.

Finally compute the matrix-vector product as

[ 1 ]

Vq,m - _(q2 - ql):

| D t

3(u, ), =i 1 y
}Vu,m - D_u(u2 - uy)

Basically, ALGORITHM E.2 states that at each GMRES iteration, one require to compute two black-box

solves, that is, Rg(u+D,*V,,,f) and R,(u Pla+D,*V,,)). Hence, the efficiency of the

individual solvers has great impact on the overall efficiency of this method.

E.2 Finite Element and Boundary Element Meshes

For coupling analysis, two sets of element meshes are generated. There is a finite element volume
mesh of the structure that is required by the mechanical solver, and also a boundary element surface
mesh used by the electrostatic solver. The two meshes are associated with each other as they share the
same set of nodes on the free-surfaces of the structures, where the coupling effects occur. One simple
approach is to extract the boundary element mesh from the finite elemment mesh, that is, the faces of the
finite elements that coincide with the free-surfaces of the structures are regarded as boundary elements.
However, it is noted that for a given finite element mesh, this way of creating the boundary element
mesh results in different problem sizes for the boundary element analysis using different types of

boundary elements.

E.3 Equivalent Nodal Forces

Electrostatic analysis computes the surface charge density distributions induced on the surfaces of the
structures, which is then used to derive the electrostatic pressure distributions acting on the structure.

The pressure loading has to be converted into nodal forces in the mechanical analysis to solve for the
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deformation of the structures. The transformation of the distributed pressure loading to its equivalent
nodal forces can be done by equating the work done by the two systems of forces, as shown in Figure

E.1, thatis,

hY

F.G, = op0x. %, (. %, Jddx,, x,) (E12)

Qo

|
1N

where the left hand side of (E.12) corresponds to the work done by the nodal forces F,, and the right

hand side is that due to the pressure loading p(xl, xz) By expressing the displacement variations

u(xl,xz) in terms of the nodal displacement Gi, that is, u(xl,xz): 2 Ni(xl,x2 )l]i , the equivalent
=1

nodal forces arethen derived as
11
F = (‘x‘j\li (xl,xz)p(xl,xz)p(xl,x2)|dx1dx2 (E.13)
1-1

where |J (xl,xzx is the Jacobian of transformation that maps the element from global coordinates to its

intrinsic ones. The equivalent nodal forces computed in (E.13) act in the direction normal to the
surface of the structure, but they can be easily resolved into their global coordinate components based

on the geometry of the element, namely its surface normal vector.

(b)
Figure E.1. (a) Distributed pressure loading and (b) equivalent nodal forces, acting on an element.
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Appendix F

Multipole Expansion For mulas

The multipole expansion given in (6.1) is a complex value function. To avoid complex arithmetic, it is
rewritten in the real valued expression, by combining the complex conjugates. This is derived in
Section F.1. This appendix also presents the recursive formulas for the associated Legendre functions
and trigonometric functions, which is used to accelerate the calculations of the spherical harmonics. It

also gives the symmetry properties of these functions that are exploited to avoid computing the

m

. Y :
response functions —— for the whole problem domain.

R n+l

F.1. Real Valued Multipole Expansion

Consider the truncated multipole expansionin (6.1), that is,

Jd & Y™(q,f
F()»Q 4 M] R(q ) (F.1)
n=0 m=-n

The multipole moments M and spherical harmonics Y," (q,f) can be explicitly expanded into their
real and imaginary components as

n- |m

m _ (re) _ i pn(im)
M n W {mnm |mnm } (FZ)
where m([? = o (xgcogmf §d°x¢, m{? = & (xgsin(mf &d°x¢, and F(xg=r (x9PI™ (cosq r @ .
And the spherical harmonicsisdefined as
m_ [\N- |n1 (re) 4 iy, (im)
Yn - '(n+—|rn|)_ {ynm +1 Yom } (F3)
with y® = Pl (cosy )codnf ), and y™ =PI (cosq )sin(mf ).

Finally, by substituting (F.2) and (F.3) back into (F.1) givesthe real valued multipole expansion, as

d) y Cm n-|m l r r im im
(>4 8 o {ﬂ} My + iy )
where ch=};’ m:Q;
i 2, otherwise.
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F.2. Recurrence Formulasfor Associated Legendre and Trigonometric
Functions

To accelerate the computations of the spherical harmonics functions Ynm, the following recurrence

formulas can be used:

Associated Legendre functions, Pr:”(cosq) for 0 £q £%

2n)! . \n
Pr:‘(cosq):((z—nn))—m(- smq) , n30 (F.59)
P"Y(cosq) =(2n- 2)cosy P"(cox), n31 (F.5b)
m —_ 1 _ m
P (cosy) = ) [(en- 1)cosy P (cosa) (50
—(n+m—1)an2(cosq)] , OEmEn-2
Trigonometric functions
cogdmf ) = 2cosf cogm- 1f - com- 2f (F.62)
sin(mf ): 2cod sin(m- l) - sin(m- 2} (F.6b)

F.3.  Symmetry Properties of Associated L egendre and Trigonometric
Functions

These symmetry properties are useful when evaluating the spherical harmonics for the full angular

ranges, that is, for O£q£p and O£f £2p. Consider a point in the first quadrant with the

coordinates of (R,q f ) the following symmetry relation holds for the symmetry points in the other

quadrants:

Associated Legendre functions, for symmetry point at (R,p -q.f )

(oo o\ L Prcosg) i (n+m)iseven
P (codp - q)) = i brcody)  othenise 7
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Trigonometric functions

cogm(p - f))=(- 1) cogmf )

snfinp - )= (. 4fmsner ) PO (ReP 1) (F 82
:T((:(f: ; )))): ((- i)) Sﬁs((nff)) forpointt (Ra,p +f) (F.8b)
;(:]S((_- rr;f))::czif(:ﬁ)) for point at (Rq,- f) (F.80)

m

. . . ) A
Hence, by using these symmetry properties, the cost of evaluating the response functions ﬁ is

tremendously reduced.
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