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Summary 

There are two main contributions in this thesis, namely: (i) improving the accuracy of the Boundary 

Element Method (BEM) in the analysis of electrostatic problems by using singular boundary elements, 

and (ii) developing a fast algorithm, namely the Fast Fourier Transform on Multipoles (FFTM) for 

rapid solution of the integral equation in the BEM.  

It is well known that the electric flux or surface charge density can become infinite at sharp corners and 

edges, and standard boundary elements with shape functions of low order polynomials fail to produce 

accurate results at these singular locations.   

This thesis describes the formulation and implementation of new singular boundary elements to deal 

with these corner and edge singularity problems.  These singular elements can accurately represent the 

singularity behaviour of the edges and corners because they include the correct order of singularity in 

the formulations of the shape functions.  The main contribution here is the development of a general 

methodology for formulating singular boundary elements of arbitrary order of singularity.   

It is demonstrated that the use of the singular elements can produce more accurate results than the 

standard elements.  Furthermore, it is also shown to be more accurate than the “regularized function 

method” (for two-dimensional analysis) and h- mesh refinement method (for three-dimensional 

analysis).  The singular elements are also used in electromechanical coupling simulations of some 

micro -devices.  It is observed that using the singular elements gives rise to larger deformation in 

comparison to the standard elements.  This indicates that ignoring the corner and edge singularities (as 

in standard elements) in the electrostatic analysis is likely to underestimate the true deformation of the 

micro -structures in the simulations.  However, in terms of the pull-in voltage, the effect of the singular 

elements is less significant due to the pull-in phenomenon. 

BEM generates a dense linear system, which requires ( )3nO  and ( )2nO  operations if solved using 

direct methods, such as Gaussian Elimination, and iterative methods, such as GMRES, respectively.  

This obviously becomes computationally inefficient as the problem size n increases.   
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In this thesis, a fast algorithm, called the Fast Fourier Transform on Multipoles (FFTM) method, is 

proposed and implemented for the rapid solution of the integral equation in the BEM.  The speedup in 

the algorithm is achieved by: (i) using the multipole expansion to approximate “distant” potential 

fields, and (ii) evaluating the approximate potential fields by discrete convolution via FFT. 

It is demonstrated that the FFTM provides relatively good accuracy, and is likely to be more accurate 

than the Fast Multipole Method (FMM) for the same order of multipole expansion (at least up to the 

second order).  It is also shown that the FFTM has approximately linear growth in terms of 

computational time and memory storage requirements.  This means that it is as efficient as existing fast 

methods, such as the FMM and precorrected FFT approach. 
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1 

Introduction 

In the computational arena, researchers strive continuously to improve numerical simulations, both in 

terms of accuracy and efficiency.  The needs for better performance in numerical simulations are 

forever in demands, as their roles in the design and development of new products become more 

important.  This is further promoted by the rapid increases in the size of the problems people are 

solving.   

One typical application is the simulations of Micro-Electro -Mechanical Systems (MEMS), also known 

as Micro-System Technology (MST).  MEMS is a new process technology, device concept and 

application that generates new markets for the field of integrated micro-sensors and micro -actuators.  

Some existing MEMS devices are pressure-sensing devices, inkjet print heads, airbag accelerometers, 

micro -gyroscope, micro-optical devices, micro-fluidic systems and micro-actuators/motors.  Every new 

MEMS product is essentially a research project that has a long and expensive development cycle.  To 

improve on the situation, Computer-Aided-Design/Engineering (CAD/CAE) tools are often used [1-3], 

which help MEMS designers to explore the unknown in hours instead of months.  Some of the existing 

design tools that are specially developed for MEMS designs are MEMCAD
a
 [4-6], IntelliCAD

b
 [7] and 

SOLIDIS
c
 [8]. 

This thesis investigates the physical simulations of multiple coupled energy domains, where the two 

coupling domains are the electrostatics and mechanical domains.  Coupling arises when electrostatics 

forces, which are generated by the applied electrical voltages, deform parts of the structures that in turn 

induce mechanical restoring forces within the structures.  Electromechanical coupling analysis is 

required to solve for the self-consistent state, where the electrostatics forces counter-balance the 

mechanical forces [9-15].  Boundary Element Method (BEM) is often employed to solve the 

electrostatics analysis, whereas Finite Element Method (FEM) does the mechanical analysis.  In this 

study, we aim to improve the electrostatics analysis, both in term of the accuracy and efficiency. 

a
 MEMCAD.  Conventor Inc., 4001 Weston Parkway, Cary, NC 27513. 

b
 IntelliCAD.  IntelliSense Corp., Wilmington, MA 01887, USA. 

c
 SOLIDIS .  ISE Integrated Systems Engineering AG, Zurich Switzerland. 
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1.1 Improving Accuracy of Electrostatics Analysis 

The first part of this thesis aims to improve the accuracy of the electrostatics analysis in MEMS device 

simulations.  Generally, the major sources of errors in BEM are: 

(1) Modeling errors - Due to the simplifications made when transforming real physical problems 

into numerical models.  They can occur in geometrical modeling, applied boundary conditions 

and material properties.  

(2) Implementation errors - They arise from the numerical techniques used in the implementation 

of BEM.  One such error is due to the numerical integrations of the boundary integrals, 

especially dealing with the singular integrals. 

(3) Discretization errors - This contributes to significant errors in BEM analysis, which consist of 

geometrical and variable discretization errors.  The former is due to partitioning of boundary 

domains into many smaller panels/elements, which in most cases do not represent the original 

domains exactly.  On the otherhand, variable discretization error arises because the basis 

functions used for the variables (usually of low order polynomials) cannot adequately describe 

the true solution.  This is especially significant when the problem contains singularity 

solutions, such as in fracture mechanics [16-23], and corner singularities in potential problems 

[24-36]. 

This thesis aims to reduce the third source of errors, specifically to deal with the singularities that arise 

from sharp corners and edges of electrical conductor [24, 25, 34].  In this thesis, we have adopted the 

singular element method.  Hence, the objective for the first part of the thesis is to develop and 

implement singular boundary elements for two and three-dimensional electrostatics analysis. 

1.2 Improving Efficiency of Solution Method 

It is well-known that BEM generates a dense linear system, which requires ( )3nO  and ( )2nO  

operations if solved using direct methods, such as Gaussian Elimination, and iterative methods, such as 

GMRES [37], respectively.  This obviously becomes computationally inefficient when the problem 

size n increases.  Recent developments in the solution of dense linear system utilize the matrix-free 

feature of the iterative methods, which only requires computing matrix-vector products that can be seen 
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as a potential evaluation process.  This important observation has led to the developments of numerous 

fast algorithms.  In general, these fast algorithms work by classifying the potential contributions into 

“near” and “distant” regions, where the “near” contributions are computed exactly as in standard BEM, 

while the “distant” ones are approximated.  The various algorithms differ in the way the “distant” 

potential contributions are computed.  Two such fast algorithms are the Fast Multipole Method (FMM) 

[38, 39, 40, 41, 42, 43, 44, 45] and the precorrected-FFT approach [46, 47, 48]. 

In this thesis, we propose an alternate fast algorithm that can also evaluate the dense matrix-vector 

products rapidly.  The core of the method lies on recognizing the fact that potential calculations using 

multipole expansions can be expressed as discrete convolutions, which are computed rapidly using Fast 

Fourier Transform (FFT) algorithms [49].  We refer to it as the Fast Fourier Transform on Multipoles 

(FFTM) method.  Hence, the objective of the second part of the thesis is to develop and implement 

FFTM for solving large three-dimensional electrostatics problems using BEM. 

1.3 Thesis Organization 

This thesis comprises of two ma in parts.  Chapters 3 to 5 are concerned with improving the accuracy of 

the analysis, by using singular boundary elements.  On the other hand, Chapters 6 and 7 discuss 

improving the computational efficiency for solving the dense linear system generated by BEM, with 

the development of FFTM. 

Chapter 2 begins with an overview of the implementation of BEM for solving electrostatics problems.  

Chapter 3 reviews on the existing methods that were employed to improve the BEM accuracy.  

Chapters 4 and 5 describe the implementation and application of the singular element method in two 

and three-dimensional electrostatics analysis, respectively.  Both chapters begin with discussions on the 

nature of the singularity problem.  This is then followed by the formulation of the singular boundary 

elements.  The numerical techniques that are employed to evaluate the boundary integrals are also 

discussed.  Some examples are then solved to demonstrate the significant improvement in the accuracy 

achieved by using the singular boundary elements.  Finally, concluding remarks are given at the end of 

both chapters. 

In Chapter 6, we review some existing fast methods for solving large dense linear system of equations.  

This discussion leads to Chapter 7, the main text of the second part of the thesis on the development of 
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an alternate fast algorithm, namely FFTM.  It begins with a detailed description of the algorithm, which 

is followed by a simple complexity analysis.  It is then applied it to solve some numerical examples to 

investigate the accuracy and efficiency of the method.  Last but not least, in Chapter 8, we summarize 

the main ideas and major contributions of this piece of work.  Some recommendations on the future 

work are also discussed in the chapter. 

This thesis also includes several appendices, which are denoted alphabetically.  Appendix A describes 

the iterative solution method for dense linear system, namely GMRES, which is used extensively in 

this thesis.  Appendix B presents the closed form singularity solution for two-dimensional corners, and 

also the numerical techniques used to determine the order of singularity for three-dimensional corners.  

Appendix C discusses the numerical integration techniques used to evaluate the singular boundary 

integrals.  Appendix D describes a preprocessing program, which is implemented to identify and 

classify the singular boundary elements automatically.  Appendix E briefly describes the solution 

method for the electromechanical coupling analysis.  Finally, the real-valued version of multipole 

expansion is derived, and recursive formulas for the associated Legendre and trigonometric functions 

are given in Appendix F. 
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2 

BEM for Electrostatics Analysis 

Electrostatics analysis is performed to solve for the surface charge density distributions induced on the 

conductors due to applied electrical potentials.  They are then used to compute the capacitance and 

electrostatics forces, which are very important in the functioning of many MEMS devices.  Capacitance 

sensors, such as pressure sensors, accelerometers and micro-gyroscope, require the capacitance to be 

computed accurately.  Similarly, accurate evaluation of electrostatics force is essential since it is the 

driving force of many micro-devices, such as comb -drive actuators, micro-optical switch devices, 

micro -pumps/valves and micro-motors.   

This chapter begins with the formulations of Boundary Integral Equation (BIE), both in the direct and 

indirect approaches.  Although indirect BIE is very effective in solving exterior problems, where 

problem domains are infinite or semi-infinite, care must be exercised when applying the appropriate 

boundary conditions.  This issue is discussed in Section 2.2.  Finally, an overview on the 

implementation of the BEM is presented in Section 2.3. 

2.1 Formulations of Boundary Integral Equation 

The governing equation for the electrostatics analysis of electrical conductors embedded in an infinite 

homogeneous dielectric, such as free space, is the Laplace equation, 

 ( ) Ω∈=∇ xx ,02φ  (2.1) 

where ( )xφ  is the electrical potential at point x, and Ω corresponds to the domain in which (2.1) is 

satisfied.  The following sub-sections discuss the formulations of the BIE for (2.1). 

2.1.1 Direct formulation by weighed residual technique 

The direct boundary integral equation (DBIE) formulation, derived using weighted residual technique 

together with Divergence theorem and Green’s identities, can be found in many BEM textbooks, such 

as [50, 51]. DBIE for potential problem is generally given by 
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where x and x ′  denote the field and source points, respectively, and ( )xα  is generally known as the 

jump term, which arises when x is moved to the boundary and is dependent on the geometry of the 

boundary at x.  ( )xx ′,G  is the fundamental solution for potential problems and is given by 

 

( )

( ) analysis. 3Dfor ,  
4

1,

analysis. 2Dfor ,  
1
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1

,

xx
xx

xx
xx

′−
=′

′−
=′

π

π

G
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 (2.3) 

where xx ′−  is the distance between point x and x ′ .  The second integral on the right hand side of 

(2.2) exists only in the sense of Cauchy Principle Value (CPV) when xx ′= .  Generally, this integral 

together with ( )xα  can be obtained indirectly by using the constant potential condition (analogous to 

the rigid body motion condition in elastostatic problem). 

Although DBIE is widely regarded as the standard BEM formulation, it is not effic ient in solving 

exterior problems, as it requires a bounded problem domain.  This implies that an artificially large 

boundary is needed to represent the infinite boundary, which increases the problem size significantly.  

Hence, for exterior problems, it is  preferable to employ the indirect formulation. 

2.1.2 Indirect formulation using surface layer sources  

There are two possible kinds of sources that can exist on the surface of the electrical conductors when 

subjected to applied potentials.  They are the single layer (surface charge) and double layer (dipole) 

sources.  For purely Dirichlet problems, only the single layer source exists.  In this case, the potential at 

any point x in the problem domain Ω  is given by the Fredholm integral equations of the first kind, 

 ( ) ( ) ( ) Ω∈′Γ
′−

′= ∫
Γ

xx
xx

xx ,
4

1
d

πε
σφ  (2.4) 

where ( )x ′σ  is the surface charge distribution on the boundary Γ.  Equation (2.4) is essentially based 

on the principle of superposition, which states that the potential at x is generated by summing the 

effects from all the surface charges that exist in the domain.  Indirect boundary integral equation 

(IDBIE) is then derived from (2.4) by taking point x to the boundary Γ, which is done in a limiting 
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process (see appendix of [45]).  This process however does  not alter the governing equation, that is, 

(2.4) is still valid when x is on the boundary. 

2.1.3 Indirect formulation derived from direct formulation 

This alternate formulation is presented because it reveals an important issue regarding the use of 

IDBIE, which is not obvious from (2.4).  That is, (2.4) alone does not govern the electrostatics problem 

completely. 

For electrical conductors, the surface charge density is related to the normal potential flux by the 

following relation, 

 ( ) ( )
n∂

∂
=

x
x

φ
εσ  (2.5) 

where ε is the dielectric constant of the medium.  For uniform Dirichlet problems, (2.2), after 

substituting (2.5) and assuming ε = 1.0, can be rewritten as, 
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 (2.6) 

where iφ  and Γi denote the potential and boundary of the i-th conductor, for i=1…m, respectively, 

while ∞φ  and  Γ∞  corresponds to that on an artificially large surface that approximates the boundary at 

infinity.  By using the constant potential condition, the jump term is derived as 

 
( ) ( ) ( ) ( )∫∑ ∫

∞Γ= Γ

′Γ
∂

′∂
−′Γ

∂
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−= x
xx

x
xx

x d
n

G
d

n
Gm

i
i

,,
)(

1

α  (2.7) 

Note that when x falls on the i-th conductor, the contributions from the other conductors to (2.7) are 

zeros, and that from Γ∞ is equal to -1.  This observation comes from the property of the Green’s 

function, which states that 

 
( ) ( ) 








 Ω∈

=′Γ
∂

′∂
∫
Γ

function sGreen'
 ofproperty 

otherwise0
 if1-, i

i

d
n

G x
x

xx
 (2.8) 

where iΩ  corresponds to close domain bounded by i-th conductor’s surfaces, and since x always falls 

within the domain bounded by Γ∞, hence its contribution is -1. 
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It is also noted that  

 ( ) ( ) ( ) ( ) ( ) ( ) 0,,lim =′Γ′′≈′Γ′′ ∫∫
∞∞ Γ

∞
Γ

∞→′−
xxxxxxxx

xx
dGdG σσ  (2.9) 

since ( ) ∞→′−→′
∞∞ xxxx  as 0,G , and ( ) ( )∫

∞Γ

′Γ′ xx dσ  is a finite quantity as explained as follows.  

For a closed system, the total charges induced on the surfaces of the conductors and the infinite 

boundary must be conserved, that is  
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xxxx

xxxx

σσ
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1

1

0

 (2.10) 

where Q is the total induced charge on the conductors’ surfaces only, which is equal in magnitude to 

the total charge induced on the infinite boundary. 

Hence, combining (2.6) to (2.9), we obtain 

 ( ) ( ) ( ) ( )∑ ∫
= Γ

∞ ′Γ′′=−
m

i
i

dG
1

, xxxxx σφφ  (2.11) 

Unlike the IDBIE presented in Section 2.1.2, this approach leads to two governing equations, namely 

(2.10) and (2.11), that must be satisfied for exterior potential problems.  However, there are three 

unknowns (σ, Q and ∞φ ) in the two equations, which renders the problem undetermined.  In order to 

resolve the problem, either Q or ∞φ  need to be specified as applied boundary condition to eliminate 

one of the unknowns.  This issue on the appropriate choice of boundary conditions is discussed in the 

following section. 

2.2 Boundary Conditions for Exterior Problems  

2.2.1 Potential at infinity is zero, 0=∞φ  

For a system of m conductors, each at potential of iφ  and with charge Qi, for i=1…m, the electrostatics 

potential energy can be expressed in terms of the potentials and capacitance [52].  The capacitance 

defines the ability of the conductors to store electric charges. For a given configuration of conductors, 

the total charge induced on i-th conductor is related to the potentials and capacitance by 
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 ∑
=

==
m

j
jiji miCQ

1

 1...  ,φ  (2.12) 

where iiC  corresponds to the self-capacitance, and ijC  are the induced capacitance that represents the 

capacitive coupling between conductors i and j, where i, j=1…m, and ji ≠ . 

Suppose the infinite boundary is also regarded as a conductor, then (2.12) becomes 

 miCCQ
m

j
ijiji  1...   ,

1

=+= ∑
=

∞∞φφ  (2.13) 

where ∞iC  is the induced capacitance of the infinite boundary with respect to the i-th conductor.  To 

determine the self-capacitance iiC , a unit voltage is applied on conductor i, while the others are set to 

zeros (including the infinite boundary, that is, 0=∞φ ).  From (2.13), the positive charges induced on 

conductor i is equivalent to the self-capacitance of the conductor for the given configuration of 

conductors, while the negative charges on the other conductors correspond to the induced capacitance.  

Notice that by setting 0=∞φ , (2.11) is reduced to (2.4). 

2.2.2 Total induced charge on infinite boundary is zero, Q = 0 

In most electrical circuitry, potentials are defined in a relative sense, usually with respect to the ground 

that is assumed to be zero.  Hence, (2.4) cannot be used directly since it only computes absolute 

potential, which is usually not given.  In other words, the assumption that 0=∞φ  may not be 

appropriate.  In this case, one possible solution is to set Q = 0, implying that no electrical fluxes that 

emit from the conductors can reach the infinite boundary.  This assumption is obviously more 

appropriate for problems where the conductors are packed closely together.  One such scenario is when 

a system of conductors is placed over an infinitely large planar ground.  This can approximately be 

seen in many MEMS devices, where microstructures are suspended over a large substrate (usually 

grounded). 

For such problems, the computational cost can be reduced significantly by using the method of images 

[52] with the grounded plane placed at x
3 

= 0.  This approach is based on the principle of superposition, 

where the potential above the ground plane is induced by two sets of charges; namely the actual 

charges above the ground plane, and its image charges that are mirrored about the ground plane.  By 
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setting the potential at the ground plane to zero explicitly defined the datum for the potential.  In other 

words, the potentials at all other field points are relative potential with respect to this datum potential.  

The potential at point x  due to a unit charge at x ′  is  

 

( )
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2
22
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2
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 (2.14) 

The first term corresponds to the effect due the actual charge at position ( )321 ,, xxx , and the second 

term is that due to image charge, which has an opposite charge polarity and at the mirror position 

( )321 ,, xxx − .  Equation (2.14) is modified Green’s function, which is useful in this scenario because it 

removes the necessity to model the large planar ground at 3x = 0.  Hence, using the modified Green’s 

function, more realistic simulations of the MEMS devices can be performed at a reasonable cost.  

2.3 Implementation of BEM for Electrostatics Analysis 

This section briefly summarizes the implementation of BEM for electrostatics analysis.  Generally, it 

comprises of the following steps: 1) boundary element discretization, 2) choosing the BEM schemes, 

and 3) solving the dense linear system of equations generated by BEM. 

2.3.1 Boundary element discretization 

The starting point of the discretization process consists of approximating the boundary by a set of EN  

curves (two-dimensional) or polygons (three-dimensional), often referred to as panels or elements, such 

that U
EN

e
e

1

ˆ
=

Γ=Γ , is the approximated boundary.  Both the geometry and variables of the boundary 

elements are then approximated in the following form as  

 ( ) ( ) k
e

n

k
ke uxu

e

ˆ.ˆ
1

∑
=

= ξϑ  (2.15) 

where ( )ξϑk  are the basis functions, k
eû  are the nodal values at the k -th node of the element, and ne is 

the number of nodes on the element.  Note that the basis functions for the geometry and variables need 
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not be the same.  But when they are identical, the element is referred to as iso-parametric element.  

Equation (2.15) can be written more compactly as 

 ( ) ( )∑
=

Θ=
N

i
ii xuxu

1

ˆ )
 (2.16) 

where ( )xû  is represented as a linear combination of a set of N linearly independent expansion 

functions ( )xiΘ  that is weighed by iu)  at N discrete points. 

After the discretization process, the DBIE given in (2.2) and IDBIE in (2.4) become 
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where ( )xφ
kΘ , ( )xq

kΘ  and ( )xσ
kΘ  are the expansion functions of σφ and , q , respectively, and ( )xR  

is the residual error function that arises from the approximations in the discretization process.  For 

well-conditioned problems, ( )xR  is a good measure of the discretization errors, and hence the next 

step is to minimize it.  The simplest approach to carry out this task is to use the point collocation 

scheme. 

2.3.2 Collocation BEM 

In this approach, the residual is forced to be zero at N  points in the solution domain, usually chosen to 

coincide with the interpolation nodes.  Hence, the collocation BEM equations for (2.17) and (2.18) are 
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2.3.3 Solving dense linear system of equations 

After applying the collocation BEM scheme and the boundary conditions in (2.19) and (2.20), the 

problem is reduced a dense linear system of equations 

 bx
rr

=A  (2.21) 

where A is a fully-populated N x N coefficients matrix, x
r

 is a vector that contains all the unknowns, 

and b
r

 is a known vector as a result of the applied boundary conditions. 

Solving (2.21) by direct methods, such as Gaussian Elimination, require ( )3NO  operations, which is 

computationally expensive if N exceeds several thousands.  To improve on the situation, iterative 

methods were developed [53, 54], which require only ( )2NO  operations.  Generalized Minimal 

RESidual (GMRES) is one such iterative solver that is most suitable for solving dense matrix equations 

generated by BEM.  A comprehensive discussion and implementation of GMRES is presented in 

Appendix A.  The computational cost can be further reduced by utilizing the matrix-free feature of the 

iterative methods, which only requires computing matrix-vector products that correspond to potential 

calculations.  This important observation has led to the development of numerous fast algorithms, such 

as FMM [38-45] and precorrected-FFT [46-48], which is only ( )NO  or ( )NNO log .  A more detailed 

literature review on the fast algorithms is given in Chapter 6, and in Chapter 7, we present an alternate 

fast algorithm, the Fast Fourier Transform on Multipoles (FFTM). 



 
 

Chapter 3: Approaches to Improve BEM Accuracy 

 
13 

3 

Approaches to Improve BEM Accuracy 

As mentioned in Section 1.1, one major source of error in BEM comes from discretization of the 

variables.  This error is especially significant when low order basis functions are used in the problem 

that contains singular solutions.  This chapter reviews on the approaches that were developed to reduce 

this error.   

Broadly speaking, the methods that were developed to improve the accuracy to singular problems can 

be classified into three major groups, namely the mesh refinement techniques, the singular elements 

and singular function methods.  Mesh refinement techniques tend to be less accurate than the other two 

methods, because they are not specially designed to deal with the singularity problem.  Rather, it is the 

nature of the adaptive algorithms that reveal and treat the singularities indirectly.  This means that they 

require no prior information about the singularities, which is an advantage over the other two methods.  

The singular elements and singular function methods require prior knowledge of the locations of the 

singularity fields.  In addition, they also need to know the actual singularity behaviors, in terms of the 

order of singularities and the singularity profiles (corresponding to the eigenvalues and eigenvectors of 

the eigenproblem that is associated with a given geometry).  The singular element method usually 

needs to know the order of singularity (eigenvalues) only, whereas the singular function approach also 

requires the singularity field variations (eigenfunctions).  In general, the inclusion of the eigenfunctions 

by the singular function method can produce more accurate solutions.  However, the difficulty to derive 

these eigenfunctions has limited the extension of the singular function method to three-dimensional 

analysis. 

In the following sections, the three methods will be discussed in greater details.  It is remarked the 

literature review here is far from being a complete one.  Nevertheless, it should provide readers with 

good overviews of the three approaches. 
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3.1 Adaptive Mesh Refinement Techniques 

Adaptive mesh refinement techniques are iterative in nature, where one is often required to solve a 

given problem a few times before attaining a good solution.  In general, they comprise of the following 

three processes: 

(i) Error estimation process:  This estimates the discretization error of the solution, and provides 

an error indicator for the refinement process, which is also used as a termination criterion for 

the iteration.  

(ii) Mesh refinement process :  This improves the solution by the h-, p- and r-refinement schemes, 

or their combinations. 

(iii) Adaptive tactics process:  This determines the elements to be refined by using the error 

estimator in (i), and the mesh refinement scheme in (ii) is then carried. 

Mesh refinement is an intensively researched area, especially during the late 1980’s and the early 

1990’s.  Readers are referred to [55-57] for more detailed reviews on this topic.  The following sub-

sections briefly discuss the error estimations and the mesh refinement processes.  The adaptive tactics 

process is not further elaborated, since the adaptive algorithms follow naturally once the choices of the 

error estimation and the mesh refinement schemes were made. 

3.1.1 Error estimations 

Residual error type 

As mentioned in Section 2.3.1, the residual of the BIE, as given in (2.17) and (2.18), is a good 

indication of the variables errors, and is often used to estimate the variables errors by assuming the 

variations of the residual functions on the element [58-64].  Figure 3.1 shows the residual interpolation 

function for the linear element used by Dong and Parreira [64], where the residual R3 is obtained by 

applying the residual equation at the midpoint of the linear element.   

 

 

 

Figure 3.1. Residual interpolation approximation for linear element. 
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Interpolation error type 

“Exact” solution is  assumed to be that obtained by using higher order interpolation functions.  The 

error estimator is the difference between the numerical and “exact” solutions [65-67].  Consider a 

simple example as depicted in Figure 3.2.  Suppose f(x) is approximated by piecewise linear 

interpolation functions defined at some discrete points.  Then fitting a cubic interpolation function 

through three adjacent points gives the estimated variable error as indicated by the shaded regions. 

 

 

 

 

 

 

 

Boundary integral equation error type 

Suppose φ* and q*, and  φ̂ and q̂  denote the exact solutions and the numerical solutions, respectively.  

Substituting both sets of solutions into the boundary integral equation associated with the collocation 

point ix , and taking the difference gives [57] 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )xxxxxxxxx
i

iii ′Γ







∂

′∂′−′′= ∫
Γ

d
n

GeGee q
,, φφα  (3.1) 

where φφφ
ˆ* −=e  and qqeq ˆ* −=  are the variable errors.  Equation (3.1) is the BIE for the variable 

errors.  Hence, it can be solved using BEM if the residual of (3.1) is known or approximately 

computed.  Kawaguchi and Kamiya [68] presented a sample point error analysis to solve (3.1). 

 

 

 

Figure 3.2. Error estimation by higher interpolation function. 
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3.1.2 Mesh refinement schemes 

Mesh refinement schemes determine how the elements are to be refined in order to improve the 

numerical solutions.  They can be classified into h-, p-, r- versions, and also their combinations. 

h- refinement schemes 

The solution is improved by increasing the number of elements, while the order of interpolation 

functions remains invariant (usually of low order polynomials).  This refinement technique is simple to 

implement in BEM.  However, the coefficient matrix has to be rebuilt after every mesh refinement, 

which makes this approach inefficient.  To improve on the situation, the h- hierarchical refinement 

schemes were proposed [63, 64, 65, 66, 67, 69], which used the h- hierarchical interpolation functions 

to simulate the effects of the conventional h- refinement schemes, without having to physically 

subdivide the elements.  A comparison of the standard and h- hierarchical linear interpolation functions 

is shown in Figure 3.3.   

 

 

 

 

 

 

 

 

 

For the h- hierarchical approach, the previous set of interpolation functions is not affected by the 

current mesh refinement, and hence the coefficient matrix formed in the previous analysis can be used 

in the current analysis.  This greatly improves the efficiency of the h- refinement scheme over the 

conventional approach, but it was reported by Zhao and Wang [69] that the coefficient matrix becomes 

ill-conditioned with increasing refinements. 

Figure 3.3. Standard versus h- hierarchical linear interpolation functions. 
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p- refinement scheme 

In the p- refinement scheme, the element mesh remains unchanged, but the order of the interpolation 

functions is increased.  The improvement in the solution is achieved because higher order interpolation 

functions are more versatile in capturing the true solution.  The conventional p- refinement scheme 

used the Lagrange interpolation formula to generate polynomial interpolation functions.  But just like 

in the h- refinement scheme, this approach is inefficient.  Hence, an alternate scheme was proposed, 

which is of the “hierarchical type” [70, 71, 72].  There exist two types of p- hierarchical interpolation 

functions, namely the Legendre polynomials [71, 72] in (3.2), and Peano’s functions [70] in (3.3): 
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r- refinement scheme 

The r- refinement scheme is also known as the mesh redistribution method [60, 61, 73, 74, 75].  In this 

scheme, both the number of elements and the order of interpolation function remain invariant, but the 

collocation nodes are relocated so as to minimize an object function, such as the maximum error norm 

or the global error derived from the residual of the integral equation.  In this sense, this approach can be 

seen as an optimization process, which utilizes limited degree of freedoms to achieve the best 

performance in term of accuracy.  However, this scheme does not guarantee convergence to the exact 

solution, since this cannot be achieved by simply rearranging the nodal points alone.  On the other 

hand, the exact solution can theoretically be attained by h- and p- schemes, by using infinitesimal 

elements for the h- method, and infinite order of interpolation functions for the p- method. 

Combination schemes 

The above-mentioned schemes have their pros and cons.  Hence, different combinations of these 

schemes are employed to devise new schemes that make use of the advantages to compromise the 

disadvantages.  Two combined schemes were developed, namely the hp- [58, 76] and hr- [62, 77] 

refinement schemes. 
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3.2 Singular Elements Method 

Singular elements have their interpolation functions modified from those of the standard elements, 

mostly in an ad hoc manner, so that the singularity behavior of the field variables is  correctly described.  

Usually only the first term of the singularity solution is considered.  It is remarked that this approach is 

not being widely used in the potential analysis [19, 24], but has received much greater attention in 

fracture mechanics research [16-23].  Generally, two ways of deriving the singular shape functions 

have been identified, namely modifying reference nodes, and modifying shape functions.  

3.2.1 Modifying reference nodes 

The most widely used singular element based this approach is the traction singular elements, which is 

used to model the 
r

1
 variation of the traction in the vicinity of the crack-tip or crack front.  The idea 

is to shift the middle node of a two-dimensional quadratic element to the quarter-point posit ion, as 

shown in Figure 3.4. 

 

 

 

 

 

Substituting the quarter-point quadratic mapping function into the standard quadratic shape functions 

produces the r  effect in the displacement field, that is, 

 rArAAu iiii
321 ++=  (3.4) 

where 11
ii uA = , [ ]3212 43

1
iiii uuu

L
A −+−=  and [ ]3213 242

1
iiii uuu

L
A +−= , and j

iu  is the nodal 

displacement at node j and in the i direction.  The 
r

1
 singularity variation in the traction fields can be 

obtained by modifying (3.4).  Blandford et al. [16], and Martinez and Dominguez [17] simply multiply 

Figure 3.4. (a) Standard quadratic element, (b) Quarter-point quadratic element. 
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(3.4) by 
r
L

 to derive the singular shape functions for the traction field.  Ariza et al. [18] further 

extended this concept to three-dimensional fracture mechanics analysis.  Some researchers went on to 

employ this node shifting methodology to formulate singular elements for arbitrary order of singularity, 

by determining the optimum location of the middle node, through some curve-fitting process [22, 78].  

However, it was pointed by Qian and Hasebe [79] that this approach is erroneous, because the behavior 

in the vicinity of the singular point is still r , regardless of where the middle node is shifted in a 

quadratic element. 

3.2.2 Modifying shape functions 

In this approach, the shape functions for the displacement and the traction are usually derived in an ad 

hoc manner.  Jia and Shippy [20] presented the following shape functions for the displacement and 

traction fields, respectively. 
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 (3.6) 

where the traction shape functions are derived from (3.5) by dividing 1
dN  and 2

dN  by ξ+1  and 3
dN  

by 
2

1 ξ+
.  They also commented that the formulation of the singular shape functions was by no 

means unique.  In fact, they developed four different sets of singular shape functions for the traction 

variable; the one presented above was chosen based upon numerical experiments.  They later further 

extended their work to the three-dimensional crack problems in [21]. 
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3.3 Singular Function Method 

For two-dimensional potential problems, it is well known that the potential field in the vicinity of sharp 

corner is given by the asymptotic series 

 ( ) ( ) .0 as,,
1

→+= ∑
∞

=

rfrr
i

iiio
i θλαφθφ λ  (3.7) 

where ( )θ,r  is the polar coordinates centred at the corner, iλ  and ( )θλiif  are the eigenvalues and 

eigenfunctions that can be obtained analytically by separation of variables [52], and iα  are the 

unknown coefficients dependent on the applied boundary conditions.  In general, the singular function 

method employs the truncated version of (3.7) in the solution process.  There also exist many different 

types of singular function methods, and only some of them are discussed in the following sub-sections. 

3.3.1 Subtraction of singularities 

This approach removes the singularities from the solution so that the remaining variable field is 

smooth, and hence can be solved accurately by the standard methods, such as FDM, FEM and BEM.  

Wigley [28] did it in an iterative manner, which he called the subtraction of singularities approach.  A 

similar method was also proposed by Igarashi and Honma [25], which they called the regularized 

function method. 

Olson et al., on the other hand, developed the Integrated Singular Basis Function Method (ISBFM) 

[27].  The main difference between this approach and Wigley’s method is that it is not iterative.  This is 

achieved by using the following relation to generate the additional equations, which is derived from the 

Green’s theorem. 

 . ..., 2, 1,for ,0ˆˆ
s

i
i Nid

n
g

ug
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u ==Γ
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−
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∫
Γ

 (3.8) 

where ∑
=

−=
sN

i
ii guu

1

ˆ α  and ( )iii frg i θλλ= .  The Lagrange multipliers are employed to impose the 

essential boundary conditions.  They later presented a boundary integral version of the ISBFM [26], in 

which the solution in the whole domain is solely approximated by the singular basis functions. 
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3.3.2 Boundary approximation methods  

The problem domain is first divided into several sub-domains according to the singularity locations.  In 

each singular sub-domain, special functions that can account for the singularities are employed, 

whereas the standard methods are used in the non-singular regions.  Finally, the solution is obtained by 

enforcing the compatibility conditions at the sub-domains inter-boundaries.   

Li et al. [29-33] proposed a combined method that used Ritz-Galerkin in the singular sub-domains, and 

FEM in the rest of the solution domains.  In general, the asymptotic series in (3.7) are chosen to be the 

basis functions for the Ritz-Galerkin method.  The compatibility conditions at the inter-boundaries are 

then enforced in a least squares sense [29], by hybrid-combined methods [30, 31], penalty-combined 

methods [32] and also their combinations [33]. 

3.4 Comments on the Three Approaches 

3.4.1 Mesh refinement techniques 

The mesh refinement techniques are iterative in nature, where a problem often has to be solved a 

number of times in order to arrive at the “correct” solution.  The number of iterations depends on the 

convergence tolerance, and the refinement scheme employed.  It is also dependent on the smoothness 

of the solution.  For problems that contain singular solutions, it is expected to require  more iterations to 

attain convergence.  Hence, the computational cost may become too expensive to handle for singular 

problems. 

Global error is often taken as the convergence criterion, such as the residual norms.  However, “small” 

global error does not necessarily correspond to “small” local error.  This is especially true in singularity 

problems where the local errors, in the vicinity of the singular regions, remain large despite small 

global error.  In other words, the solutions in the singular regions are still poorly represented even when 

the convergence criterion is satisfied. 

3.4.2 Singular element method 

Singular elements incorporate the singular variations in their shape functions, often in a rather ad-hoc 

manner, by either modifying the reference nodes, or modifying the shape functions.  Although the 

singular shape functions do not exactly describe the asymptotic solution, they are still able to produce 
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accurate solution, especially in the singular regions.  This is because the solution in the singular region 

is usually dominated by the singular term of the asymptotic solution, which can be accurately 

represented by the singular shape functions. 

The singular elements are used only in the regions where singularity solution is expected, and hence the 

exact singularity locations must be known a priori.  Fortunately, this does not pose a difficult problem 

for the types of singularities investigated in this study, as they are due to sharp corners and edges, 

which can be identified easily using a pre-processing program.  The geometry dependence also 

indicates that different singular elements have to be formulated to handle different types of singularity 

fields.  Hence, this complicates the implementation of the singular elements method in three-

dimensional analysis, as presented in Chapter 5. 

3.4.3 Singular functions method 

This approach has not been widely adopted by the engineering community.  One possible reason is 

because the closed form singularity solutions for many practical engineering applications, such as 

fracture in a bi-material interface, are not available.  Likewise, there is also no report of three-

dimensional singularity analysis using this approach.  In our opinion, it is very difficult and tedious to 

implement this method to solve three-dimensional singularity problems. 

3.4.4 Method adopted in this thesis  

In this thesis, we have adopted the singular element method for the following reasons.  The singular 

function approach is first eliminated because no closed form singularity solution exists for three-

dimensional problems.  Although the singularity solution can be approximated numerically, its 

implementation is practically too tedious.  On the contrary, the other two approaches were already 

being employed in three-dimensional singularity problems.  Bactold et al. [76] employed the hp- 

adaptive mesh refinement technique to solve electrical potential problems, and singular elements were 

used extensively in the three-dimensional fracture mechanics analysis.  Finally, the singular element 

method is preferred in this  study because of its superior accuracy over the mesh refinement method. 
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4 

Two-Dimensional Singular Elements 

Two-dimensional analysis is first conducted as a preliminary investigation. This chapter begins with a 

general formulation of the two-dimensional singular elements of an arbitrary order of singularity.  This 

is followed by a discussion of the numerical treatments of the singular integrals.  Two numerical 

examples are then used to demonstrate the accuracy of the singular elements, namely the co-axial 

conductor and parallel conductor problems.  The numerical results show that the present approach 

gives very accurate solutions.  The effect of the size of the singular element is also investigated. 

4.1 Formulation of Two-Dimensional Singular Elements 

The solution to the two-dimensional Laplace equation is generally given by the as ymptotic series in 

(3.7).  For the specific case where uniform Dirichlet boundary condition is applied at the corner, the 

series solution becomes 

 ( ) ∑
∞

=






+=

1

sin,
k

k

ko
k

rr
ψ
πθ

αφθφ ψ
π

 (4.1) 

where ψ  is the interior angle bounded by the adjacent boundaries BA ΓΓ  and  as shown in Figure 4.1, 

and oφ  corresponds to the applied potential at the corner.  From (4.1), it is easily seen that the normal 

potential gradient 
n∂

∂φ
 becomes singular for re-entrant corner, that is ψ > π, where the first term of the 

series is singular. 

 

 

 

 
 

Figure 4.1. Two-dimensional potential field with a singular corner at O. 
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4.1.1 General formulation of singular element 

Suppose the normal potential gradient is approximated by the first three terms of the series in (4.1), i.e. 

 bas
s BrArrQ

n
++=

∂
∂φ

 (4.2) 

where Qs is generally known as the generalized flux intensity factor, A and B are some constant 

coefficients, s is the order of singularity (possibly negative in value), and a and b are positive 

exponents.  The values of s, a and b are dependent on the angle of the corner.  In particular, for 

πψ 20 << , it is observed that 1−=
ψ
π

s , 1
2

−=
ψ
π

a  and 13 −=
ψ
πb .  Now by letting r = Lη, where L 

is the length of the element, and η is the intrinsic coordinate 10 ≤≤η , (4.2) can be expressed in the 

local co-ordinates as  

 bass
s BALQ

n
ηηηφ ** ++=

∂
∂

 (4.3) 

where ALA a=*  and BLB b=*  are again constants.   

It is important to note that the singular coefficient sQ  is retained in the formulation to ensure that the 

flux intensity factor is consistent for the two singular elements adjacent to the corner.  Using the 

standard approach of formulating shape functions, the following requirements on the potential gradient 

are specified as 
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where 2q  and 3q  are the variable unknowns at the respective nodal positions.  The first requirement is 

met naturally due to the singular term in (4.3).  Applying the other two requirements and then solving 

for A* and B* gives 
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 (4.5) 

Substituting them back into (4.3) gives 
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  (4.6) 

where s
iN is the set of singular shape functions defined as 
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 (4.7) 

4.1.2 Specific formulation for ψ  = 3π/2 

To date, many MEMS devices have simple geometry, usually “rectangular” with right-angled corners 

and edges.  This special case is considered here, that is, ψ = 3π/2. Substituting this value into (4.2) 

gives s = -1/3, a = 1/3, b = 1. Hence, the singular shape functions in (4.7), as plotted in Figure 4.2, are 
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 (4.8) 

 

 

 

 

 

 

 

The singular shape functions derived above are used only in the variations of the potential gradients for 

those elements with either node 1 or 3 falling on a re-entrant corner.  These elements are known as the 

singular boundary elements. 

Figure 4.2. Singular shape functions for s = -1/3, a = 1/3 and b = 1. 
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4.2 Numerical Integration of Boundary Integrals 

This section deals with the numerical integration of the boundary integrals that arise from the 

implementation of BEM.  The types of boundary integrals to be dealt with are of the following forms: 

 ( ) ( ) ( )xxxx ′Γ′′= ∫
Γ

dGqI
e

,1  (4.9a) 

 ( ) ( ) ( )x
xx

x ′Γ
∂

′∂′= ∫
Γ

d
n

G
I

e

,
2 φ  (4.9b) 

where ( )xq  corresponds to the normal potential gradient, which is possibly singular, and ( )xφ  is the 

potential, which is always represented by a quadratic variation.  The integrals are usually transformed 

to the intrinsic co-ordinate, which are convenient forms to be evaluated by Gaussian quadrature 

schemes, as follows 

  ( ) ( ) ( )∫
−

=
1

1
1 , ξξξξ dJGNI q x  (4.10a) 

 ( ) ( ) ( )∫
−

∂
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, ξξξξφ dJ
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where ( )ξφN  and ( )ξqN  denote the shape functions for the potential and potential gradient variables, 

respectively, and ( )
2

2
2

1








+








=

ξξ
ξ

d
dx

d
dx

J  is the Jacobian of transformation.  In the following sub-

sections, we describe the techniques used to compute (4.10a) and (4.10b) for different situations. 

4.2.1 Non-singular integral 

When the integrand is nonsingular within the integration limits, the standard Gaussian quadrature 

(specifically known as Gauss-Legendre [80]) is used, which approximates the integral with the formula 

 ( ) ( )∑∫
=−

≈
n

i
ii fdf

1

1

1

ξωξξ  (4.11) 

where n is the number of integration points, which also corresponds to the order of the Gaussian 

quadrature formula, and iξ  and iω  denote the abscissa and weights of the ith Gauss point of the n-

order formula, respectively. 
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4.2.2 Singular integral due to fundamental solution only 

When the collocation point x falls on the element, (4.10a) and (4.10b) become singular due to the 

singular nature of the fundamental solution.  The technique used to treat this singularity for (4.10a) 

includes a coordinate transformation, which transforms the Euclidean length xx ′−  into the 

following general form [50] 

 ( )ηηR=′− xx  (4.12) 

where ( )ηR  is nonsingular.  Hence, the fundamental solution ( )ξ,xG  becomes 
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′− ηηππ R
1
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11
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2
1

xx
 (4.13) 

Equation (4.10a) is then separated into two components, with one containing the logarithm singularity, 

and the other is nonsingular.  The nonsingular part can be evaluated using the standard Gaussian 

quadrature, while the singular one can be evaluated with logarithmic Gaussian quadrature [50]. 

The singular treatment for (4.10b) is as follows.  For the case when i = j, the integral in (4.10b) 

becomes strongly singular and exists only in the sense of the Cauchy Principal Value.  This integral can 

be obtained indirectly by using the constant potential condition, which gives 

 ∑
≠=

′−=′
N

jij
ijii gg

,1

 (4.14) 

where ijg ′  denotes the (i, j) entry of the coefficient matrix generated with (4.10b).  On the other hand, 

when i ≠ j, the singularity in the integrand is removed by the zeros of the shape functions ( )ξφN , which 

satisfy the Kronecker delta property, that is,  

 ( )




=
≠

=
ji
ji

N ij
j

i  if  1
 if  0

δξ  (4.15) 

4.2.3 Singular integral due to singular shape function only 

This singular integral occurs only in (4.10a), when ( )ξqN  is the singular shape function sN1  derived in 

(4.8).  Strictly speaking, only the singular term sη  needs special treatment.  In this case, the singular 

integral to be dealt with is of the form 
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A simple way to treat this singular integral is to use the variable transformation, ( ) 11
2
1 2 −+= ζξ , 

which transforms (4.16) into 
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which is no longer singular since πψ
ψ
π 20for  

2
11 <<−>−=s . 

4.2.4 Singular integral due to fundamental solution and singular shape function 

This situation also only occurs in (4.10a), when the collocation point falls on the singular node of the 

singular element.  The first task is to deal with the logarithmic singularity in the fundamental solution, 

which is done by using the same technique discussed in Section 4.2.2.  After the appropriate 

transformations, the resulting integral becomes 
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However, ( )ηf  and ( )ξf  may still be singular due to the singular shape functions.  In this case, the 

second integral is handled in the same way as described in Section 4.2.3.  As for the first integral, the 

transformation 2ζη =  is used, thereby giving 

 ( ) ( ) ( )[ ] ( )∫∫ 
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 1
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1
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ζζηη
η

η dJfdJf  (4.19) 

in which the Jacobian of transformation, ζζη dd 2= , is used to remove the weak singularity of the 

shape function. 

4.3 Numerical Examples 

4.3.1 Coaxial conductor example 

This example concerns the capacitance extraction of a square coaxial transmission line, as shown in 

Figure 4.3.  Only a quarter of the problem is analyzed due to symmetry.  This problem is also known as 

the Dirichlet-Laplace problem on the L-shape domain [25], and it is one of the commonly used 
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benchmark problem for singularity analysis.  This is an interior (closed domain) problem, and hence 

the direct BEM is used. 

 

 

  

  

 

 

 

It is clear that sharp corner is actually a geometrical idealization, when the radius of curvature of the 

“corner” is very small compared the overall dimensions of the structure.  The question of how small 

this radius should be is raised here.  Hence, this example is first used to study the sharp corner 

idealization.   

A non-dimensional variable R, which is defined as the ratio of the curvature radius r to the 

characteristic length of the conductor L, is introduced.  A very fine mesh, using the standard quadratic 

element, is used to solve for the cases with R = 0.1, 0.05, 0.02 and 0.01.  The computed capacitance is 

then compared with the exact solution for the idealized case, which is C* = 2.55852 [25] (scaled by 

4πε).  The capacitance and the normal potential gradient are related by 

 
n∂

∂= φεσ  (4.20) 

 Γ= ∫
=Γ

dC
1φ

σ  (4.21) 

where σ is the surface charge density on the conductor and ε is the dielectric constant of the medium.  

C is obtained by summing all the surface charges on the conductor that has a potential equal to one.  

The relative error is computed and plotted in Figure 4.4. 

From Figure 4.4, it is noted that the relative error is very small (< 1%) for all the cases considered.  A 

best fit equation for the relationship between the relative error and R is obtained, and is given by  

Figure 4.3. One quarter of the square coaxial conductor problem. 
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 RRR 2465.3548.7392.273error lativeRe 23 ++−=  (4.22) 

For small values of R, this relationship can be approximated by the linear term alone.  In this study, 

which is directed towards accurate numerical analyses of micro-devices, the ratio R is probably of the 

order from 1x10-3 to 1x10-6.  This means that the relative error induced when making the sharp corner 

idealization is also of that order of magnitude.  Hence, the sharp corner idealization is a valid 

assumption in this study, as the error induced is usually less than the tolerance needed. 

 

 

 

 

 

 

 

 
Next, this example is solved using the standard BEM with (i) constant, (ii) linear, (iii) quadratic 

elements (no singular treatment for these three cases), and (iv) quadratic with singular elements 

(present formulation).  The relative error is again computed and plotted in Figure 4.5 as a function of 

the number of elements M.  The results of Igarashi and Honma [25], employing the regularized 

function method, are also included.  

From Figure 4.5, it is easily seen that the present formulation produces excellent accuracy in 

comparison to the rest.  It is also noted that its convergence rate is approximately the same as the 

standard elements, whereas the regularized function method has a faster convergence rate.  However, 

the present singular element is very accurate even for very coarse meshes.  Generally, it is more 

accurate than the regularized function method by about two orders of magnitude.  The generalized 

intensity factor Qs of (4.2), which are obtained directly from the nodal variable, are tabulated in Table 

4.1.  These values compare very well with the results reported by Igarashi and Honma [25], and that 

y = -273.92x3 + 73.548x2 + 3.2465x
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Figure 4.4. The results for the sharp corner idealization with different radius of curvature R values. 
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obtained by the linear extrapolation method on a very fine mesh, as shown in Figure 4.6.  The results 

are tabulated in Table 4.1, and they show good agreement. 
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Figure 4.6. Extraction of the flux intensity factor Qs by extrapolation method. 
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Figure 4.5. Convergence of the capacitance for coaxial conductor problem. 

Table 4.1. Generalized flux intensity factor Qs for different meshes and methods. 

Number of elements, M Coefficients, Qs 

16 1.12172 
32 1.12313 
64 1.12348 

128 1.12363 
256 1.12374 

Linear Extrapolation 1.1250 
256 (c.f. [25]) 1.1280 
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Next, the effect of using different values for a and b, but retaining the singularity exponent s is 

examined.  Two cases are considered as follows: 

(1) a = 0 and b = 1,  that is, ( ) ηηφη BAq ++=
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(2) a = 1 and b = 2,  that is, ( ) 23
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This study is carried out in order to determine whether the first term of the series, which contains the 

singularity, is the only term of importance to the computations.  The two set of shape functions are 

given in Figures 4.7(a) and 4.7(b), respectively. 

 

 

 

  

 

 

 
Figure 4.8 shows the surface charge density distribution on the interior conductor from point c to b in 

Figure 4.3, for the three sets of shape functions and with 32 elements. The three curves are observed to 

coincide almost exactly with one another.  This suggests that the first term in the series is indeed of 

primary importance and is solely responsible for the vast improvement in the numerical results. 

 

Figure 4.7. Singular shape functions for (a) s = -1/3, a = 0 and b = 1, and (b) s = -1/3, a  = 1 and b = 2. 
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4.3.2 Parallel conductor example 

Most simulations of electrostatics actuation in micro-devices are exterior problems, that is, the problem 

domain is infinite.  Hence, the present formulation is extended to exterior problems, where the indirect 

BEM approach is used.  This example can be viewed as two infinitely long conductors placed parallel 

to each other, and separated by a distance D.  Figure 4.9 shows the cross-sectional view of the 

conductors.  In this example, apart from the capacitance, the resultant force acting on the left conductor 

is also computed. 

 

 

 

 

 

 
Electrostatics pressure p is related to the surface charge density σ by 

 
ε

σ 2

2
1=p  (4.25) 

where ε is the dielectric constant of the medium.  The electrostatics force F acting along a straight 

boundary Γ of the conductor surface is hence given by 
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Figure 4.8. Distribution of surface charge density along interior conductor for different set of singular 
shape functions. 

Figure 4.9. Parallel conductors with square cross-section. 
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 Γ= ∫
Γ

dpF   (4.26) 

and it acts in the outward normal direction to the boundary.  

For the present analysis, the number of elements used for each side of the conductors is denoted by M.  

The “exact” solution is approximated using a very fine mesh of standard quadratic elements with 

M=100.   
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Figure 4.10. Convergence behavior of capacitance for parallel conductor problem. 

Figure 4.11. Convergence behavior of resultant force acting on the left conductor. 
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The convergence behaviors for the capacitance and resultant force are plotted in Figures 4.10 and 4.11, 

respectively, for the various types of elements under investigation. Again, the singular element 

formulation produces accurate results when compared to the standard elements.  However, it is noted 

that the results for the capacitance are generally more accurate than those for the forces. 

This observation can be explained as follows.  Recall that the surface charge density σ is the primary 

unknown variable in the boundary integral equation.  Hence, the implementation of the BEM will 

minimize the error of σ.  Suppose the numerical solution for σ is expressed as 

 ErrorExactNumerical σσσ +=  (4.27) 

Hence, relative error for σ and the capacitance are simply given by 

 
Exact

ErrorError
σ
σσ =  (4.28) 
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On the other hand, the electrostatics force is a quantity that is derived from σ by using (4.25) and 

(4.26).  The numerical solution for the electrostatics pressure is  

 ( )2

2
1

ErrorExactErrorExactNumerical ppp σσ
ε

+=+=  (4.30) 

where 2

2
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=  and ( )22
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ErrorErrorExactErrorp σσσ
ε

+= .   

The relative error for the electrostatics pressure is then 
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Similarly, the relative error for the electrostatics force can be expressed as 
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A comparison of (4.28) and (4.31) reveals that the relative error for the pressure is at least two times 

larger than the error for the surface charge density.  Hence, in general, this means that the computed 
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force is expected to be less accurate than the capacitance.  Furthermore, notice that Numσ  may be 

greater than Exactσ  at some parts on the boundary and smaller at others.  This means that Errorσ  can be 

positive or negative along the whole boundary.  Due to the randomness of Errorσ , the relative error of 

the capacitance may still be small even when the surface charge density distribution is not correctly 

represented.  This is probably the main reason for the standard elements, namely the constant, linear 

and quadratic elements, to give good results for the capacitance even though they do not capture the 

singularity behaviour at the corners properly.  However, this is not the case for the electrostatics force.  

From (4.32), the error in the force comprises two components, namely 2 and 2 ErrorErrorExact σσσ .  The 

first component may again be small due to randomness in Errorσ .  But the second component is 

positive definite (unless the exact solution is obtained), and when integrated over the boundary may not 

be small.  Hence, in order to obtain good results for the computed force, it is important that the surface 

charge distribution be accurately represented in the first place, by treating the corner singularity 

problem. 

4.3.3 Biased element distribution effect for M = 3 

From Figure 4.8, it is noted that the singularity region is confined to a small part in the vicinity of the 

corner, and the remaining part of the field variable has a relatively flat distribution.  This suggests that 

the accuracy can be improved by using an appropriately biased distribution of elements along the edge.  

In other words, for fixed number of element used, a small singular element is used for the singularity 

region, and a large quadratic element is used for the remaining part. 

A parameter known as the bias ratio B.S is defined as 
conductor square oflength 

elementsingular  oflength 
=B.S  is introduced 

and is varied from 1/3 (no bias for M = 3) to 0.1.   The length of the edge of the conductor here is equal 

to 1 and is discretized into 3 elements.  This study is carried out for different distances between the 

conductors, namely, D = 0.2, 0.3, 0.5, 1.0 and 2.0.  The estimated “exact” solutions are obtained from 

the numerical results of a fine mesh (M = 100).  The results are normalized with respect to the “exact” 

solutions, and are plotted in Figure 4.12 for different values of the distance D between the parallel 

conductors. 
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The intersections of the curves with the dashed line indicate the bias ratios that produce the most 

accurate results for the respective cases.  Notice that only two of the curves cut the dashed line, namely 

for D = 0.2 and D = 0.3.  This means that the optimum bias ratio is likely to vary with distance D.  This 

behaviour can be explained as follows.  First, it is noted that the sides bc and eh in Figure 4.9 resemble 

parallel plates.  For the parallel plate, the electric field (and hence the surface charge density) is 

uniform in the inner portion, with some fringing effects near the edges.  These fringing effects diminish 

as the parallel plates move closer to each other.  Likely, the singular region also becomes smaller as the 

distance between the two parallel conductors decreases. 

 

 

 

 

 

 

 

 

 

 
From Figure 4.12, it is also observed that there is no intersection for D = 0.5, 1.0 and 2.0.  In fact for 

these three cases, the best results are obtained when there is no bias at all.  This seems to suggest that if 

the distance between the conductors is greater than the nominal size of the conductors, there is no need 

to have a biased distribution of elements.  The reason for this is that the surface charge distribution in 

the inner portion is no longer very flat when D is relatively large.  Hence, three elements are not 

sufficient to approximate the actual distribution closely.  In this case, better accuracy can only be 

obtained by using more elements.  In Figure 4.13, the surface charge density distributions on the side 

bc for D = 0.2, 1.0 and 2.0 are plotted.  The distributions are normalized with respect to the surface 
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charge density at the centre of bc.  It is observed that the distributions are consistent with the earlier 

comments, where the inner portion becomes flatter as D decreases. 

 

 

 

 

 

 

 

 

 

4.4 Conclusion for Two-Dimensional Singular Elements 

In this chapter, a singular element approach has been presented for the analysis of corner singularities 

in two-dimensional potential problems.  The shape functions of the singular element are formulated to 

incorporate the singular behaviour of the normal potential gradient.  This method requires only a minor 

modification in the formulation of the boundary element equations, by using the singular shape 

functions in (4.8), instead of the standard quadratic shape functions, when either node 1 or 3 of the 

element coincides with a corner.   

This method has been applied to two numerical examples, namely the coaxial conductor example 

(interior problem), and the parallel conductor example (exterior problem).  The results are very 

accurate in comparison with the standard elements, namely, constant, linear and quadratic elements.  

Furthermore, for the first example, this method also shows better accuracy over the ‘regularized 

function method’ by Igarashi and Honma [25].  In conclusion, this method is capable of producing 

accurate results, in terms of the capacitance, force per unit length and also the generalized flux intensity 

factor, even for coarse meshes.  Furthermore, the generalized flux intensity factor, Qs of (4.2), is 

computed directly in the analysis with only little extra effort needed. 
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However, the evaluation of the boundary integral for the singular element is more complicated.  The 

computational effort for this singular element integral is estimated to be four to five times more than 

that required by the standard quadratic element.  However, this extra effort can be easily compensated 

by the reduction in the total number of elements used, since for a given accuracy, this method requires 

much fewer elements than when using standard elements. 
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5 

Three-Dimensional Singular Elements 

The two-dimensional results motivate us to extend the singular element method to three-dimensional 

analysis.  However, it is shown in here that this extension is not trivial.  The complication arises due to 

the additional dimension, where two-dimensional corners (represented as points) now become edges in 

the three-dimensional context, and in addition, there are three-dimensional corners that are formed 

when the edges meet or terminate. 

This chapter is organized as follows.  Section 5.1 covers the aspects of identifying the singular features 

that can exist in a ‘rectangular’ structure, and defining the different types of singular elements needed.  

Unlike in the two-dimensional case, the singular fields for these three-dimensional corners cannot be 

expressed in closed forms.  Numerical methods have to be employed to approximate the singular 

solutions, which are presented in Section 5.2.  In Section 5.3, we present the core of this chapter, that is 

concerned with the formu lation of the singular shape functions.  A general methodology for 

formulating arbitrary singular element is first described, followed by the specific implementation for 

the various singular elements that are identified in Section 5.1.  The numerical integration of the 

boundary integrals, where two sources of singularities can exist is also discussed.  The singular 

elements are used to solve some numerical examples to evaluate the performance of these singular 

elements.  It is shown that they can improve the accuracy of the results for capacitance and 

electrostatics forces quite significantly.  We also investigate the effects of using the singular elements 

on the functionality of some MEMS devices. Finally, some concluding remarks are provided. 

5.1 Identifying Singular Features 

This section describes the identification of the different types of singular elements that exist in a 

“rectangular” structure.  The first part identifies the singularity features in the structure, namely the 

edges and corners, and based on the different combinations of the singular features, the various types of 

singular element are defined. 



 
 

Chapter 5: Three-Dimensional Singular Elements 

 
41 

5.1.1 Identify singular edges and corners  

In this study, we confine ourselves to structures that are ‘rectangular’, that is, the edges and corners are 

right-angled.  This is an important special case because many of the MEMS structures are generally 

‘rectangular’.  Figure 5.1 shows a typical ‘rectangular’ structure, where different types of edges and 

corners are identified.  The aim here is to determine the singular features in the given structure. 

 

 

 

 

 

 

 

 
To determine whether an edge or a corner is singular, we usually have to solve for the eigenvalue of 

that geometry.  In general, only the smallest eigenvalue minα  is of interest, because ( )minmin 1 αλ −=  

corresponds to the order of singularity for the potential gradients and surface charge density, in the 

vicinity of the edges and corners, when 1min <α .  The two-dimensional results of the singularity field 

analysis (see Appendix B.1) can be used directly for the re -entrant edges (continuous solid lines in 

Figure 5.1). 

For three-dimensional corners, the solid angle ϕ is a good indication of the singularity nature of the 

corner, where it is expected to be singular if ϕ < 2π (ϕ  = 2π corresponds to a smooth surface).  Based 

on this simple observation, two singular corners are identified in Figure 5.1, namely the strongly and 

weakly singular corners, denoted by the squares and diamonds markers in Figure 5.1.  In contrast, the 

corners that are marked with triangles and circles are non-singular.  In fact, they should be more 

appropriately identified as ‘zero’ corners, because theoretically no charge can exist at these locations.  

However in this study, only the singular features are specially treated because they are possibly the 

main source of errors in the electrostatics analysis. 

Figure 5.1. A “rectangular” structure with identified edges and corners. 
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5.1.2 Identify possible types of singular elements  

Based on the geometry in Figure 5.1, five different types of singular elements are defined, as illustrated 

in Figure 5.2.  

 

 

 

 

 

 

 

 
The different types of singular elements arise because of the way in which the singularity fields vary on 

the elements.  This is in turn dependent on the numbers and types of edges and corners that fall on 

them.  Hence, this provides a unique way of identifying the various types singular elements.  The 

definitions for the singular elements are as follows: 

(1) Singular Edge: Contains only one singular edge. The order of singularity (edge singularity) 

remains the same along this edge. 

(2) Singular Corner1 :  Contains the strongly singular corner with the two adjacent singular edges.  

The singularity order increases along the edge towards the singular corner. 

(3) Singular Corner2 :  Contains only the weakly singular corner, and the field is only weakly 

singular at the corner. 

(4) Singular Corner3 :  Contains only one singular edge and the weakly singular corner.  In this 

case, the singularity order varies along the edge towards the singular corner. 

(5) Singular Corner4 :  Contains only one singular edge and a non-singular corner.  In this case, 

the singular field decays along the edge towards the non-singular corner. 

After identifying these five types of singular elements, the next task is to formulate the singular shape 

functions for these elements.  But prior to that, the order of singularities for the singular edges and 

corners must be obtained. 

Standard 
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Edge 

Singular 
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Singular 
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Singular 
Corner2  

Figure 5.2. Boundary element mesh of “rectangular” structure with various types of singular 
elements. 
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5.2 Extraction of the Order of Singularities 

In Section 5.1.1, one singular edge (re-entrant edges) and two singular corners (the strongly and weakly 

singular corners) were identified.  In this section, we will determine the order of singularities for these 

singular features.   

5.2.1 Singular edge 

The two-dimensional corner actually corresponds to the ‘plane-strain’ (dimension is infinite in the out-

of-plane direction) approximation of the three-dimensional edge.  Hence, the results from the two-

dimensional singular field analysis can be used directly for the three-dimensional singular edges.  From 

the two-dimensional study, the order of singularity for the right-angled singular edges is 
3
1=Eλ .   

5.2.2 Strongly singular corner 

This type of corner is formed when three singular edges meet.  Figure 5.3 shows the geometry of this 

corner and its problem domain G for the eigen-problem.   

 

 

 

 

 

 

 

 

 

 

 
It is noted that this  type of corner had previously been studied extensively by Fichera [34], Beagles and 

Whiteman [35], and Bazant [36].  Fichera obtained a lower bound for the order of singular for the 

potential field as 

 4335.0min >α  (5.1) 

Figure 5.3. (a) Geometry of strongly singular corner,  (b) Plot of eigen-problem domain in (θ, φ) 
plane. 
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On the other hand, Bazant reported a value of 455.0min =α , using the finite difference approach.  

Finally, Beagles and Whiteman summarized their results as follows 

 .4542.04335.0with ,4525.0 min
*
min <<≈ αα  (5.2) 

where *
minα  is the ‘exact’ solution suggested, which was extrapolated from the results obtained with 

various mesh sizes.  In this study, the suggested value *
minα  is used, which gives the order of singularity 

for this particular corner to be 5475.01 =Cλ . 

5.2.3 Weakly singular corner 

This weakly singular corner corresponds to the diamond markers in Figure 5.1.  The eigen-problem 

domain G, together with the boundary conditions, is depicted in Figure 5.4(b), and only half of it is 

required due to symmetry.  

 

 

 

 

 

 

 

 

The boundary conditions imposed at φ = 0 and π are due to the symmetry condition, and for those 

boundaries that fall on the conductor surfaces, U = 0.  However, the boundary condition imposed at θ = 

0 is not obvious.  First, this boundary is a fictitious one, which actually corresponds to a point in the 

original spherical coordinates system.  Hence, it is expected that U is single-valued along this 

boundary, that is, U=U* is itself an unknown.  In this case, the problem is not well-posed since the 

given boundary value problem (BVP) is not fully constrained.  However, it is observed that 0=
∂
∂

θ
U

 at 

Figure 5.4. (a) Geometry of weakly singular corner, (b) Plot of eigen-problem domain in (θ , φ) 
plane. 
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the point (θ, φ) = (0, π/2) due to the symmetry condition. This supplements the extra condition needed 

to define the problem completely. 

The governing equation for the three-dimensional eigen-problem of the potential analysis is (see 

Appendix B.2 for the derivation) 
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where ( )1+αα  is the eigenvalue for the given problem, I is the identity operator and ∆θ is the Laplace-

Beltrami operator defined as 
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 (5.4) 

The objective here is to determine the smallest eigenvalue ( )1minmin +αα  that satisfies (5.3).  Due to 

the simple geometry of the domain G, the finite difference method is used to solve this eigenvalue 

problem.  However, the variable U and more importantly its derivatives are not well behaved near the 

point 







4
,

2
ππ

, because of the singularity ray that passes through it.  The order of singularity for this 

ray is identical to that of the singular edge, which is 
3
2=Eα .  This means that both the first and second 

order partial derivatives of U are singular at that point, and finite difference method fails to give 

accurate results when used directly to solve (5.3).  To overcome this problem, the regularization 

technique suggested by Bazant [36] is used, which assumes 

 ( ) ( )φθτφθ α ,, uU E=  (5.5) 

where 
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 −=

π
φ

π
θτ  corresponds to the radial distance from the singularity point.  

Hence, the point singularity of the original variable U is explicitly extracted by the transformation in 

(5.5), so that the new variable u is nonsingular throughout the problem domain G.  Substituting (5.5) 

into (5.3) and (5.4) gives 
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where 
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The finite difference method is now used to solve for the eigenvalues of the modified eigen-problem.  

The discretized finite difference domain of eigen-problem and the modified boundary conditions are 

depicted in Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Discretized finite difference domain and boundary conditions for the modified eigen-
problem. 
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The Neumann boundary conditions are modified using (5.5), that is, 
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Finally, applying the finite difference method leads to the linear system of equations,  

 ( ) 0uM =υ  (5.8) 

where M is the eigen-matrix with υ = α(1+α), and u is the vector of the nodal unknowns.  A non-trivial 

solution of u exists if and only if the determinant of M(υ) is zero.  In Appendix B.2, two methods of 

solving (5.8) are presented.  For this problem, method B (conversion to non-homogenous equations) is 

used, because small scanning interval for α can be obtained using the results from Bazant [36].  It is 

noted that some of the cases were already studied by Bazant (data points in Figure 5.6(b)).  By using 

these known solutions and fitting the data with a best-fit curve (as depicted in Figure 5.6(b)) an 

estimate of the eigenvalue is derived as 871.0≈estimateα .  

 

 

 

 

 

 

 

 

Finally, the results for the smallest eigenvalue using different meshes are plotted in Figure 5.7, and by 

extrapolating these results gives 8896.0* =α , which gives the order of singularity for this weakly 

singular corner to be 1104.02 =Cλ . 

 

Figure 5.6. (a) A general right-angled corner with varying ψ angle.  (b) Plot of the eigen-values 
αmin versus different ψ. 
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5.3 Formulation of Three-Dimensional Singular Elements 

In this section, we present the formulations of the singular shape functions for the 9-node and 8-node 

singular elements.  The 8-node singular elements are also derived in consideration of the serendipity 

element.  It is well known that the serendipity element can be as accurate as the 9-noded Lagrangian 

element, even though it does not satisfy the complete quadratic form. 

5.3.1 General methodology for formulating singular elements 

A general methodology for formulating singular elements, with arbitrary order of singularities, is first 

presented.  This approach consists of the following three steps. 

Step 1: Approximating the singular solution 

The first step is to approximate the variation of the potential flux on the singular elements, which 

comprises singular and nonsingular parts.  Generally, it can be expressed in the following form: 
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where ( )21, rrf s
i  and ( )21, rrf ns

j  are the singular and nonsingular functions respectively, and 

ns
j

s
i cc  and  are the unknown coefficients.  Here, r1 and r2 correspond to the intrinsic coordinates of the 

element.  The number of terms for the two parts depends on the number of nodes that are located 

directly on the singularity, but they must satisfy the equality, nnn nss =+ , where n is the number of 

nodes on the element, which is 8 or 9.  Two requirements should satisfy by (5.9), and they are: 

Figure 5.7. Extraction of singularity order for weakly singular corner. 
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(i) The singular functions should closely approximate the actual singular fields.  This requires the 

orders of singularities to be correctly included at the appropriate singular nodes.  Although, it 

seems desirable to have the singularity variations (the eigenvectors) incorporated in the 

singular functions, they generally violate the second requirement, which is the compatibility 

condition. 

(ii) The singular elements should be compatible, that is, the field variable must be continuous at 

inter-element boundaries.  This is necessary because the surface charge density or the electric 

flux is expected to be continuous on smooth surfaces.  However, from the mathematical 

viewpoint, this compatibility condition need not be enforced in the BEM, as for example when 

using the constant boundary elements.  

This step is the most difficult part of the process.  The two requirements stated above complicate the 

task of finding appropriate functions for (5.9).  But once the functions are formed, the rest of the steps 

follow naturally. 

Step 2: Solving for the singular coefficients, s
ic  

The next task is to solve for the coefficients in terms of the nodal unknowns.  The singular coefficients 

are solved first, and this is done by applying the nodal conditions at the singular nodes.  In the vicinity 

of the singular region, the nonsingular part has negligible effect, and hence (5.9) is reduced to 
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where ( )21, rrf s
i  is conveniently expressed as ( ) ( )2121 ,, rrhrrg i

s
i , with ( )21, rrg s

i  being a non-singular 

function, and ( )21 , rrhi  is the singularity form that exists in ( )21, rrf s
i .  Then, dividing (5.10) with an 

appropriate de-singularizing term ( )21 , rrh j  gives 

 
( )
( ) ( ) ( ) ( )

( )∑
≠=

+=
sn

jii j

i
s
is

i
s
j

s
j

j rrh
rrhrrg

crrgc
rrh
rrf

,1 21

2121
21

21

21

,
,,

,
,
,

 (5.11) 

Note that (5.11) gives the generalized flux intensity factor s
jϕ  at the appropriate singular node j, which 

is related to the coefficients s
ic .  By considering the flux intensity factors at all the singular nodes, 

exactly ns equations are generated, which allows s
ic  be solved uniquely in terms of s

s
i ni ,..,1for   , =ϕ .  
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Finally, by substituting s
ic  back into (5.10), and gathering the terms with identical s

iϕ  together, the 

singular functions in (5.10) can be rewritten as 

 ( ) ( )∑
=

=
sn

i

s
i

s
i

s rrprrf
1

2121 ,, ϕ  (5.12) 

where ( )21 , rrp s
i  forms the singular part of the shape functions of the singular element. 

Step 3: Solving for the nonsingular coefficients, ns
ic  

Next, (5.12) is substituted back into the (5.9) to give 

 ( ) ( ) ( )∑∑
==

+=
nss n

j

ns
j

ns
j

n

i

s
i

s
i rrfcrrprrf

1
21

1
2121 ,,, ϕ  (5.13) 

Here, we aim to solve for the nonsingular coefficients ns
jc .  The procedure is exactly the same as in 

Step 2, except the nodal values at the nonsingular nodes ns
jϕ  correspond to the actual physical 

quantities.  However, in this case, ns
jc  would be functions of ns

jϕ  and s
iϕ , since the singular part may 

be nonzero at the nonsingular nodes.  Again, a sufficient number of equations is available to solve for 

the coefficients ns
jc  uniquely.  Finally, substituting the results back into (5.9) gives the complete set of 

shape functions for the singular ele ment, 

 ( ) ( ) ( )[ ] ( )∑∑
==

++=
nss n

j

ns
j

ns
j

n

i

ns
i

s
i

s
i rrqrrqrrprrf

1
21

1
212121 ,,,, ϕϕ  (5.14) 

Here the terms in the square brackets are the singular shape functions for the singular nodes, which 

comprise singular ( )21 , rrp s
i  and nonsingular ( )21 , rrq ns

i  parts, and ( )21 , rrq ns
j  are the shape functions 

for the nonsingular nodes.  Note that Step 2 and 3 can be incorporated into commercial software with 

symbolic computation abilities, such as Mathematica and Maple. 

5.3.2 Formulating the singular elements  

The three-step process described above is used to formulate the shape functions for the various singular 

elements identified in Section 5.1.  However, only the first step is presented here for all the singular 

elements, because it is the vital step that determines the shape functions.  Note also that the expressions 
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presented in this section are for the 9-node elements only.  Those for the 8-node elements can be 

derived similarly by dropping the highest order term in the nonsingular part of the expressions. 

Edge singular element 

Without loss in generality, suppose the element is singular along the edge 02 =r , as shown in Figure 

5.8.  One possible singularity solution is of the following form 

 ( ) ( ) ( )21
2

21
21 ,

,
, rrf

r

rrg
rrf ns

s

E
+=

λ
 (5.15) 

where  

 
( )
( ) 2

2
2

162
2

15
2
214

2
232122121

2
1312121

,

 ,,

rrcrrcrrcrcrrcrcrrf

rcrccrrg
nsnsnsnsnsnsns

ssss

+++++=

++=
 

and 
3
1=Eλ . 

 

 

 

 

 

 

 
Basically in (5.15), the generalized flux intensity factor sϕ  assumes a quadratic variation along the 

singular edge.  The nonsingular function also assumes a quadratic form, in which the terms are selected 

so that compatibility conditions along the element boundaries are satisfied.  At the inter-element 

boundaries, the solution must be of the following forms: 

(iii) quadratic along the edge 12 =r , that is,  

 ( ) 2
121101 raraarf ++=  (5.16a) 

(iv) two-dimensional singular form at the edges 1 and 0 11 == rr , that is,  

 ( ) 2
2221

2

0
2 rbrb

r

b
rf

E
++=

λ

†
 (5.16b) 

where a’s  and b’s are constant coefficients.   

† This two-dimensional singularity form is chosen because it blends naturally with the standard quadratic function.  
Furthermore, the two-dimensional analysis shows that this singularity form can be as accurate as the actual singularity 
form, as given in Section 4.1.1. 

Figure 5.8. (a) Locations of Edge singular elements, and (b) Edge singular element definitions. 
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To check for the compatibility conditions: When 12 =r , (5.15) becomes 

 ( ) ( ) ( ) ( ) 2
165314223111 rcccrccccccrf nsnssnsnssnsnssns ++++++++=  (5.17) 

which is a quadratic form.  When 1 and 0 11 == rr , (5.15) are reduced, respectively, to 

 ( ) 2
2321

2

1
2 rcrc

r
c

rf nsns
s

E
++=

λ
 (5.18a) 

 ( ) ( ) ( ) 2
26432521

2

321
2 rcccrccc

r
ccc

rf nsnsnsnsnsns
sss

E
++++++

++
=

λ
 (5.18b) 

which also satisfy the required singularity form. 

Up to this point, it is shown that the singular solution in (5.15) is feasible.  Proceeding with Step 2 and 

3 leads to the sets of shape functions for the Edge singular element. 

9-node element: 

 

( )( ) ( )( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]

( ) ( )
( )( )( )
( ) ( ) ( ) ( )[ ]

( ) ( )
( ) ( )

( )( )( )
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2
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r
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N
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r
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N
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r
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E

E

E
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−−−−=

−−=
−−=

−+−−−
−

=

−−−−=
−−=

−+−−−
−

=

−+−−−+
−−

−=

λ

λ

λ

 (5.19a) 

8-node element: 

 

( )( ) ( ) ( ) ( )( )[ ]

( ) ( ) ( )( )[ ]
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( ) ( ) ( )[ ]
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( )
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2
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5
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2
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2
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2
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1
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rrrN
rrrN
rrrN

rrr
r
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N

rrrrN
rrrrN

arrrr
r
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N

arrrr
r

rrN

E

E

E

−−=
−=

−=

−−
−

=

−+−−−=
−−−=

−−+−−
−

=

−−+−−+−−−=

λ

λ

λ

 (5.19b) 

where ( ) .2 Ea λ=  
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Corner1 singular element 

This element contains two singular edges and a strongly singular corner located at node 1, as shown in 

Figure 5.9(b). 

 

 

 

 

 

 

 

 
In this case, the singular part of (5.9) contains one strongly singular corner and two edges singularity 

forms.  Considering the corner singularity, in the vicinity of the corner node, the corner singularity field 

is dominant, and has the general form 

 ( )θλ frcf Cs

r

s 1
10

−

→
≈  (5.20) 

Here sc1  is the generalized flux intensity factor, 2
2

2
1 rrr +=  is the radial distance from the corner 

node 1, and ( )θf  describes the variation of the singular field on the element, which is essentially the 

solution of the eigenproblem for the strongly singular corner.  Then it is also noted that when 

2
 and 0
π

θ →  with 0≠r , the field is also singular, which is of the edge singularity form.  Hence, by 

extracting these edge singularities from ( )θf , (5.20) gives 

 ( ) ( ) ( ) ( )θθθθ λλ gf EE −−= cossin  (5.21) 

where ( ) Eλθ −sin  and ( ) Eλθ −cos  account for the edge singularities along 02 =r  and 01 =r , 

respectively, and ( )θg  is expected to be a nonsingular function.  Substituting (5.21) back into (5.20), 

and also recognizing that 
r
r2sin =θ  and 

r
r1cos =θ , gives 

Figure 5.9. (a) Locations of Corner1  singular elements, and (b) Corner1 singular element 
definitions. 
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 ( ) ( )θ
λλ

λλ g
rr

rcf
EE

ECs

r

s












≈ +−

→
12

2
10

11
1  (5.22) 

Finally, to ensure that the compatibility requirements are satisfied along 11 =r  and 12 =r , (5.22) is 

forced to be zero along these two edges by assuming the simple form of ( ) ( )( )21 11 rrg −−=θ .   Hence, 

(5.22) becomes  

 
( )( )

EE rr
rrr

cf s

r

s
λλ

γ

21

21
10

111 −−
=

→
 (5.23) 

where 1192.0211 =+−= EC λλγ . 

The two edge singularity forms follow that given in (5.15) closely, where the generalized flux intensity 

varies quadratically along the two singular edges.  However, it is desirable that these edge singularity 

fields vanish in the vicinity of the corner node, because these effects are already included in the corner 

singularity given in (5.23).  Hence, the appropriate choices for the edge singularity forms are 

 
( )

Er
rrcc

f
ss

r

s
λ

1

2232

01

+
=

→
 (5.24a) 

 
( )

Er
rrcc

f
ss

r

s
λ

2

1154

02

+
=

→
 (5.24b) 

As for the nonsingular function, it turns out that the only choice that will enforce the compatibility 

conditions at the inter-element boundaries is  

 ( ) 2
2

2
142

2
13

2
21221121 , rrcrrcrrcrrcrrf nsnsnsnsns +++=  (5.25) 

Therefore, the complete singularity representation for this Corner1  singular element is  

 
( ) ( )( ) ( ) ( )

2
2

2
142

2
13

2
212211

2

1154

1

2232

21

21
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11
,
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r
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r
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ssss
s

EEEE

++++

+
+

+
+

−−
=

λλλλ

γ

 (5.26) 

The singular expression satisfies the compatibility conditions at 1 and 1 21 == rr , since the solutions 

along the two edges are 

 ( ) ( ) ( ) ( ) 2
24232312

2

54
21 , rcccrccc

r
cc

rrf nsnssnsnss
ss

E
++++++

+
=

λ
 (5.27a) 

 ( ) ( ) ( ) ( ) 2
1435214

1

32
1 rcccrccc

r
cc

rf nsnssnsnss
ss

E
++++++

+
=

λ
 (5.27b) 

which are the same singularity form as (5.16b).   



 
 

Chapter 5: Three-Dimensional Singular Elements 

 
55 

The shape functions for the Corner1  singular element are thus given as: 

9-node element: 
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 (5.28a) 

8-node element: 
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 (5.28b) 

( ) ( ) .,,
2

  and  2,2   where 1132
2
12

21
121

1 babaab
aa

baa E ===== −γλ  

Corner2 singular element 

This element contains only one weakly singular corner, which is at node 1, as shown in Figure 5.10.  In 

the vicinity of the corner node, the singular solution has a similar form as (5.20), which is the corner 

singularity form.  The function ( )θf  needs to be compatible with the adjacent elements at the four 

element’s edges. 
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The compatibility conditions require the expression to be: 

(i) quadratic along the edges 1 and 1 21 == rr , as in (5.16a), and 

(ii) of two-dimensional singular form along the edges 0 and 0 21 == rr , as in (5.16b). 

One possible expression is  

 ( ) ( )( ) ( )( )22 1
2

1
1 11 CC rrf λλθ ++ −−=  (5.29) 

which gives the corner singularity as 

 
( )( ) ( )( )

2

22 1
2

1
1

10

11
C

CC

r

rr
cf s

r

s
λ

λλ ++

→

−−
=  (5.30) 

The nonsingular solution is taken to be 

 
( )

2
2

2
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2
17

2
216

2
15

2
24213122121,

rrcrrcrrcrc

rcrrcrcrcrrf
nsnsnsns

nsnsnsnsns

++++

+++=
 (5.31) 

which is the complete quadrilateral form without the constant term.  Hence, the complete singular 

expression for this element is  

 
( )

( )( ) ( )( )
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2
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2
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2
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=
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 (5.32) 

It is trivial to show that (5.32) satisfy the compatibility conditions at all the element edges.  Hence, the 

sets of shape functions are: 

 

Figure 5.10. (a) Locations of Corner2  singular elements, and (b) Corner2  singular element 
definitions. 
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9-node element: 
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 (5.33a) 

8-node element: 
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 (5.33b) 

( ) .and5.0  where 2 aba C == λ  

Corner3 singular element 

This element contains one singular edge and one weakly singular corner, which is assumed to be at 

02 =r  and node 1, respectively, as depicted in Figure 5.11.  

 

 

 

 

 

 
Figure 5.11. (a) Locations of Corner3  singular elements, and (b) Corner3  singular element 
definitions. 
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The corner singularity form is identical to (5.20), and the field is singular when 0→θ .  The corner 

singularity takes the form 

 ( )θ
λ

γ

g
r

rc
f

E

s

r

s

2

1

0

2

=
→

 (5.34) 

where 22293.022 =+−= EC λλγ .  Since this element always has Corner2  singular element as its 

neighbour at 01 =r , for compatibility, ( )θg  is taken to be ( )( ) ( )( )22 1
2

1
1 11 CC rr λλ ++ −− , which gives the 

corner singularity as 
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1
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0
11 CC

E
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The edge singularity assumes the form in (5.24b), which again vanishes at the corner, and the 

nonsingular function is identical to that in (5.15).  Therefore, the complete singular expression is  
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 (5.36) 

In this case, the compatibility conditions are identical to (5.16), except at 01 =r , where the order of 

singularity is 2Cλ .  It is again trivial to show that (5.36) satisfies the compatibility requirements.  The 

sets of shape functions are as follow: 

9-node element: 
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 (5.37a) 
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8-node element: 
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 (5.37b) 

( ) ( ) ( ) .  and 2,2,2  where 21221
22 abaaa CE ==== −− γλλ  

Corner4 singular element 

Finally, the last singular element is considered in Figure 5.12.  In this element, there is only one 

singular edge along 02 =r , and this singularity field dies down as it approaches the “zero” corner at 

node 1. 

 

 

 

 

 

 

 

 
Theoretically, the field is zero along the edge r1 = 0.  But, as mentioned in the beginning, this zero field 

effect is not being specially treated.  Hence, along this edge, the field is assumed to be the normal 

quadratic form.  The edge singularity form is again that as in (5.24b), and the nonsingular part is  
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 (5.38) 

where the last term provides the quadratic field along the edge 01 =r . 

Figure 5.12. (a) Locations of Corner4  singular elements, and (b) Corner4  singular element 
definitions. 
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This gives the complete singular expression as 
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Hence, the sets of shape functions are: 

9-node element: 
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8-node element: 
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 (5.40b) 

( ) .2where Ea λ=  

This completes the entire formulation of shape functions for the various singular elements.  It is 

remarked that the derived shape functions are not unique, since different functions can be assumed for 

the variations of the fields on the element, for example ( )θg  in (5.22).  However they are reasonably 

simple forms that correctly describe the singularity behaviours at the singular nodes, and also satisfy 

the compatibility conditions along the element edges.  Hence, they are expected to be effective in 

capturing the singularity fields in the vicinity of sharp corners and edges. 
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5.4 Numerical Integration of Boundary Integrals 

This section deals with the numerical integration of the boundary integrals that arise from the 

implementation of the indirect BEM formulation.  The boundary integral is generally of the form 

 
( ) ( ) 2121

1

1

1

1

21 ,
4

,
ξξξξ

πε
ξξ

ddJ
xx

N
I ∫ ∫

− −
′−

=  (5.41) 

where ( )21,ξξN  is the shape function that describes the surface charge density function ( )x ′σ , 

xx ′−  is the Euclidean length of ( )xx ′−  and ( )21 ,ξξJ  is the Jacobian of transformation that maps 

the element from the global coordinates to the intrinsic coordinates. 

Four situations can occur in (5.41), namely, 

(i) the integrand is nonsingular, 

(ii) only the fundamental solution is singular, that is, the collocation point falls on the standard 

elements, 

(iii) only the shape function is singular, that is, the element is a singular element, and 

(iv) both (ii) and (iii) occur together, that is, the collocation point falls on a singular element. 

The rest of this section briefly discusses the numerical techniques used to evaluate the four types of 

integrals above. 

5.4.1 Nonsingular Integral 

When the integrand is nonsingular, the two-dimensional Gauss-Legendre quadrature schemes can be 

used.  It is essentially the product formula of the one-dimensional Gauss-Legendre quadrature rule 

[81], which is given by the formula 

 ( ) ( ) j

n

i
i

n

j
jifddf ωωξξξξξξ ∑∑∫ ∫

= =
− −

≈
1

1

2

1
21

1

1

1

1 21 ,,  (5.42) 

where iξ  and jξ  are the abscissae of the Gauss-Legendre formula, iω  and jω are the corresponding 

weighing coefficients, and n1 and n2 are the numbers of Gauss points used in iξ  and jξ directions, 

respectively. 
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5.4.2 Singular integral due to fundamental solution only 

The evaluation of this singular integral is itself a research topic.  Numerous methods have being 

developed to improve its accuracy.  Broadly speaking, they can be classified into two groups, namely 

the weighted Gaussian quadrature formulae, and the transformation techniques.  The former methods 

compute new sets of abscissas and weights, where the singularity is moved to the weights [82-84].  On 

the other hand, the transformation techniques utilize the Jacobian of transformations to remove or 

weaken the singularity.  One well-known approach is the transformation of triangular elements into 

squares [85], which is referred as the regularization transformation.  A study by Aliabadi and Hall [86] 

showed that this is a very accurate and efficient method.  Another similar approach is the polar 

coordinate transformation [87], where the rectangular intrinsic coordinates ( )21,ξξ  are replaced by the 

polar coordinate system ( )θρ, , with the singular point at origin.  Other types of transformations 

include the polynomial transformation [88, 89] and co-ordinate multi-transformations [90, 91]. 

The regularizing transformation technique [85] is used here to resolve this singular integral.  The 

element is first sub-divided into two or more triangles, depending on the collocation point location.  

These triangles are considered as degenerate squares, which are then mapped into square elements 

using the following mapping functions.  

 ( ) ( ) ( ) ( ) 2. 1,for ,3
4

2
3

1
21 =+++= iLLLL iiii ξξξξ  (5.43) 

where ( )1
iξ  is the triangle corner that coincides with the collocation point, and ( )2

iξ  and ( )3
iξ  correspond 

to the other two corners of the triangle, and  
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After applying the bilinear transformation, (5.41) becomes 
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where ( ) ( ) ( )21
21

21 ,
4

,
, ξξ

πε
ξξ

ξξ J
N

f =  is a nonsingular function, T is the number of sub-triangles 

depending on the collocation point, and ( ) ( )221 1, ηηηη += cJ  is the Jacobian of transformation that 
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maps ξ onto η, and it cancels the 
xx ′−

1
 singularity so that the integrand in (5.45) is smooth 

throughout the integration domain.  Here, c is a constant that also depends on the location of the 

collocation point.  Since the integrals are no longer singular, the standard Gaussian quadrature scheme 

can be used. The mapping functions and values of T and c for the various cases, where the collocation 

points fall on different nodes, are summarized in Appendix C.1.  Figure 5.13 shows this process for the 

case where the collocation point at node 1. 

 

 

 

 

 

 

 

5.4.3 Singular integral due to singular shape function only 

This integral occurs when the integrating element is singular, that is, ( )21,ξξN  in (5.41) is a singular 

function.  This can be rewritten as  

 ( ) ( ) 2121
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where ( ) ( ) ( )21
21

21 ,
4

,
, ξξ

πε
ξξ

ξξ J
xx

N
g ns

′−
=  is a nonsingular function, and ( )21,ξξnsN  is the nonsingular 

part of the singular shape function associated with the singularity form ( )21,ξξh .  According to the 

shape functions derived in the previous section, these are  
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Figure 5.13. Regularization transformation process for collocation point at node 1. 
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and ( ) ( )2
2

2
1 11

2
1

ξξ +++=r . 

Since all these singularities exist only along the boundaries, the Gauss-Jacobi quadrature formula [80] 

is particularly suitable for evaluating such weakly boundary singular integrals.  The one-dimensional 

Gauss-Jacobi formula is given by 

 ( ) ( ) ( ) ∑∫
=−

≈+−
n

i
ii

ba fdf
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1

1

)(11 ϖζξξξξ  (5.48) 

where iζ  and iϖ  are the abscissae and weights of the Gauss-Jacobi formula, and a and b are weakly 

singular exponents, with value greater than -1.0.  However, for numerical stability, a should be greater 

than -0.98 [80].  The Gauss-Jacobi scheme, together with the Gauss-Legendre scheme, are use to 

evaluate the integral in (5.46) with singularity forms given by (5.47a)-(5.47d).  For example, if 
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, then (5.46) is evaluated as 
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where the Gauss-Jacobi quadrature is used in the i-direction, and the Gauss-Legendre quadrature is 

used in the j-direction.  Similar approaches are used for the singularity form in (5.47b) and (5.47d), by 

choosing the correct schemes in the appropriate directions.  As for (5.47c), which is only singular at 

one point, this point singularity can be removed by expressing the integral as   
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where ( ) ( ) ( )
2

21
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Cr

g
k i

λ

β ξξξ
ξξ

+
= .  The term ( )βξ i+1  de-singularizes the weakly singular effect due 

to 
2

1
Crλ , since β is chosen to be 0.98. 
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5.4.4 Singular integral due to fundamental solution and singular shape function 

This situation occurs when the collocation point falls on a singular element, where both the 

fundamental solution and the shape functions are singular.  In this case, the integral is more 

conveniently rewritten as 

 ( ) ( ) 2121

1

1

1

1
21 ,

1
, ξξξξξξ ddh

xx
gI i











′−
= ∫ ∫

− −

 (5.51) 

where ( )21 ,ξξg  is again a non-singular function, and ( )21 ,ξξih  is one of the singular functions given 

in the above sub-section.  To remove these singularities completely, the following techniques are used.   

First, the stronger singularity due to the fundamental solution is removed by using the regularizating 

transformation technique discussed in Section 5.4.2.  After the transformation, (5.51) becomes 
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where the function in the square bracket is nonsingular as ( )21 η+  cancels the singularity in 
xx ′−

1
.  

However, ( )21 ,ξξih  may still be weakly singular along the boundaries.  If ( )21 ,ξξih  is nonsingular, 

then the integration is carried out as usual by using Gauss-Legendre schemes.  However, if it contains 

the edge singularity form as 

 ( ) ( ) ( ) ( ) ( ) 2121

221121 1111, ddcc
ih −−−− +−+−= ηηηηξξ   (5.53) 

where 2121  and  , , ddcc  correspond to the orders of singularity of ( )21 ,ξξih , the Gauss-Jacobi 

formu las, with a = c1, b = c2 for η
1 and a = d1, b = d2 for η

2 can then be used to evaluate the singular 

integral.  This approach fully exploits the capability of the Gauss-Jacobi formulae to deal with integrals 

that contain only weak singularities.  Furthermore, if ( )21 ,ξξih  is of the point singularity form, the 

technique used in Section 5.4.3 can be employed.  The final forms of the integrals and the appropriate 

Gaussian Quadrature formulas for the different singular forms ( )21 ,ξξih  at different collocation nodes 

are presented in Appendix C.2. 
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5.5 Numerical Examples 

Using the singular shape functions and the appropriate techniques to evaluate the boundary integrals, 

the singular element method is implemented in a three-dimensional BEM code.  In this section, some 

numerical examples are presented to demonstrate the accuracy of these singular elements in evaluating, 

(i) the capacitance, and (ii) the electrostatics force for electrostatics problems.  The 8-node singular 

elements are denoted as quadsng8, while 9-node singular elements as quadsng9.  The results reveal that 

the singular elements can produce very accurate results.  The improvement is most likely due to the 

fact that the singular elements can describe the true surface charge dis tributions (and hence the 

electrostatics force distributions) more accurately in the singularity regions.  Electromechanical 

coupling analyses are also conducted to investigate the effects of using singular elements on the 

functionality of some micro-devices, namely micro-beam switches, a comb -drive and a micro-mirror. 

5.5.1 Capacitance extraction problems  

Two examples, involving self-capacitance extraction, are used to determine the accuracy of the singular 

elements in obtaining the capacitance of (i) a cube and (ii) an L-shaped conductor.  These two 

examples are chosen because they contain the types of singularity features that are studied here.  

Furthermore, they are used as test problems by Tausch and White [92] to evaluate the accuracy of their 

mesh refinement method.  In fact, the “exact” capacitance for the two examples are derived from [92], 

by extrapolating their mesh refinement results. 

Cube example 

This example, as depicted in Figure 5.14, is discretized with uniform square panels, and it contains 

both Edge and Corner1  singular elements.  The “exact” capacitance is estimated to be 73.51 pF.  

 

 

 

 

 

Figure 5.14. Discretization of cube example. 
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The relative percentage errors with respect to the ‘exact’ solution are given in the log-log plot in Figure 

5.15, where the horizontal axis corresponds to the problem size n.  This plot also includes the results 

from [92], which employed the adaptive h- mesh refinement technique using constant elements. 

 

 

 

 

 

 

 

 

 

 

It is obvious from Figure 5.15 that the singular elements produce very accurate results, even for the 

coarsest mesh density considered here (only four elements along each edge).  In general, it is more 

accurate than the other standard elements by at least one order of magnitude.  It is also noted that the 

singular element approach has the same convergence rate as the standard elements.  On the other hand, 

the adaptive mesh refinement technique has a better convergence behaviour.  However, its results are 

still much less accurate than the singular element approach because the singularity solutions at the 

sharp corners and edges cannot be adequately represented by low-order polynomial elements.  

Furthermore, in order for the mesh refinement approach to attain convergence, it usually has to solve a 

number of progressively larger problems, which can be quite expensive.  From this example, it is 

shown that the singular shape functions for the Edge and Corner1 singular elements are feasible and 

accurate, at least in terms of capacitance extraction. 

 

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+02 1.00E+03 1.00E+04

Problem size, n

R
el

at
iv

e 
E

rr
or

 [%
]

constant 

linear

quadratic

quadsng8

quadsng9

mesh
refinement

Figure 5.15. Relative percentage errors for the capacitance of cube example.  “Exact” solution is 
73.51 pF . 
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L-shape example 

The geometry of this example is shown in Figure 5.16, which contains the Edge, Corner1 , Corner2  and 

Corner3  singular elements.  The “exact” solution is estimated to be 112.15 pF.  

 

 

 

 

 

 

 

 
Likewise, the relative percentage errors for the various elements and the adaptive mesh refinement 

technique are plotted in Figure 5.17.  It is again seen that the singular element approach produces very 

accurate results. 
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Figure 5.17. Relative percentage errors for the capacitance of the cube example.  “Exact” solution 
is 112.15 pF. 
 

Figure 5.16. Discretization of the L-shaped example. 
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Biased element distribution effect 

Very often, more accurate results can be obtained by using the r-mesh refinement technique near the 

singularity regions, because the influence of the singularity is usually quite localized.  For geometrical 

induced singularities, which are easily identified from the geometry such as the solid angles, the mesh 

refinement can be done manually at the preprocessing stage.  The cube example (with five elements 

along each edge) is used to study the biased element distribution effect.  The bias ratio R is defined to 

be the ratio of the largest element length (at the center of the cube) to the smallest element length (near 

to the edges and corners), and is taken to be 1.0, 2.0, 3.0, 4.0 and 5.0 in the present computations.  

Figure 5.18 shows the meshes for the various R values, and the corresponding results are presented in 

Figure 5.19. 

 

 

 

 

 

 

 

 

It is noted that the r-mesh refinement technique tends to work more consistently for the standard 

elements.  However, their convergence rates decrease with increasing value of R, which suggests that 

further increasing the bias ratio has little or no effect on the results.  This observation is consistent with 

the general observation that the r-mesh refinement approach does not guarantee that the solution 

converges to the exact one, simply because this cannot be achieved by just rearrangement of the 

elements alone. 

On the other hand, the singular element solutions are better for low bias ratios, and then deteriorate 

with increasing bias ratios.  This observation can be explained as follows.  It is recalled that singular 

elements are used only in the singularity regions, while the standard quadratic elements are used 

Figure 5.18. Surface meshes for different biased ratio R., ranging from 1.0 to 5.0. 

R = 1.0 R = 2.0 R = 3.0 

R = 4.0 R = 5.0 
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elsewhere.  The singular elements are expected to capture the rapidly varying singularity fields 

accurately, whereas the standard quadratic elements can describe the regular fields that are remote from 

the singularity regions.  In order for the singular elements to perform at their optimum, it is necessary 

that the size of the singular elements be comparable with the actual singularity regions.  To be more 

explicit, consider the situation where the singular elements are much larger than the actual singularity 

regions.  In this case, it is obvious that the singular shape functions, specifically the nonsingular parts, 

are inadequate to represent the actual solutions.  On the other hand, if the singular elements are too 

small, the standard quadratic elements adjacent to them have to represent part of the singularity fields.  

The major source of error is then due to the inability of the standard quadratic elements to represent the 

rapidly varying solutions near the singularity regions.  This is probably the scenario for this cube 

example with large bias ratios.  The important question to ask here is: when is element-biasing useful, 

or what determines the sizes of the singularity regions?  One possible factor that affects the size of the 

singularity regions is the proximity between the conductors.  A study is conducted in the next section 

with respect to the electrostatics force analysis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19. Relative percentage errors for the capacitance of the cube example with biased ratio 
R = 1.0, 2.0, 3.0, 4.0 and 5.0. 
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5.5.2 Electrostatics force analysis  

Many microelectromechanical systems are actuated by electrostatics forces, which are otherwise 

practically too small for macro-applications.  The electrostatics force is directly proportional to the 

square of the surface charge density.  Hence, this provides another motivation for performing 

electrostatics analysis accurately.  This section evaluates the usefulness of the singular elements with 

the cube example, which is now placed over an infinite ground plane at some distance d.  The resultant 

electrostatics force induced on the face of the cube that is  closest to the ground plane, which has the 

largest magnitude, is calculated in this study.  The analysis is conducted for three different distances, 

namely d = 1.0, 0.5 and 0.2.   Note that the ‘exact’ solutions are approximated from the extrapolation of 

the uniform mesh refinement results.   

Convergence behaviors using uniform meshes 

This analysis studies the convergence behaviour of the various elements using uniform meshes.  The 

convergence behaviors for the various elements for different distance d are plotted in Figures 5.20-

5.22. 

It is again obvious that the use of singular elements can produce more accurate results than using the 

standard elements alone.  However, the results for the constant elements improve as the distance d 

decreases, whereas the situation is the opposite for the singular elements.  This observation can be 

explained as follows.  It is expected that the centre portion of the cube’s face generate a uniform 

electric field with the ground plane.  As the distance d decreases, the size of this uniform field grows, 

which means that a larger portion of the face of the cube has a more or less constant surface charge 

density.  Hence, constant elements can produce good results for smaller values of d.  Also, an increase 

in the size of the uniform field indicates an equivalent decrease in the singularity region.  Hence, for 

the coarse mesh cases, the singular elements are too large to be able to capture the true surface charge 

distribution accurately (which partly consists of the uniform field).   However as the mesh is refined, the 

singular element results improve significantly, while this is not the case for the constant elements.  This 

is simply because the true fields can be captured more accurately in both the uniform and singularity 

regions, by the quadratic elements and singular elements, respectively.  For the constant elements, the 

uniform field remains accurate, but the singularity region is still poorly represented.  To further 
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illustrate this point, the surface charge density distributions for the face of the cube are plotted for 

various distances in the Figure 5.23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.21. Relative percentage errors for the electrostatics force on the cube face at distance 
d = 0.5. 
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Figure 5.20. Relative percentage errors for the electrostatics force on the cube face at distance 
d = 1.0. 
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Figure 5.23(a) depicts the general surface charge distribution that one expects, where the centre portion 

shows a relatively uniform distribution that becomes rapidly varying as it approaches the edges and 

corners.  Figures 5.23(b)-(d) show the contour plots of the distributions for the different distances, 

namely, for d = 1.0, 0.5 and 0.2, respectively.   
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Figure 5.22. Relative percentage errors for the electrostatics force on the cube face at dis tance 
d = 0.2. 
 

(a) 

(b) (c) (d) 

Figure 5.23. (a) A general surface charge distribution, (b) contour plots of surface charge 
density distributions at d = 1.0, (c) d = 0.5, and (d) d = 0.2.   
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The density of the contour lines signifies the rate at which the surface charge density is varying.  It is 

obvious from the figures that the size of the uniform/singularity fields for d = 0.2 is significantly 

larger/smaller than the two other cases.  This is consistent with the explanation given above.  On the 

other hand, the difference is not obvious between distributions for d = 1.0 and d = 0.5.  This seems to 

suggest that the surface charge distributions remain similar beyond a certain distance. 

Biased elements distribution effects at different distances from ground plane 

In light of the above analysis, it is noted that the uniform mesh refinement technique is not an efficient 

approach, as the additional elements used within the uniform field have negligible effect on the 

solution.  The more favourable approach is the r-mesh refinement technique.  However, the questions 

of “when is element biasing necessary?”, and “how much is required?”, still remain to be answered.  

The following study aims to draw a general relationship between the distance d and the bias ratio R 

required to give an optimal solution with the singular element approach, at least for this cube example.  

The biased meshes are those used in the previous analysis, as depicted in Figure 5.18.  The results are 

normalized with respect to their corresponding ‘exact’ solutions, and are plotted in Figure 5.24.  The 

points at which the various curves cut the normalized line (dashed line) give the optimal bias ratios that 

produce the ‘exact’ solutions.  Table 5.1 summarizes the optimal bias ratios for the various distances 

using the quadsng8 and quadsng9 elements. 
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Figure 5.24. The normalized results for the biased elements study for different distance d from 
the ground plane. 
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From Table 5.1, it is observed that larger bias ratios are required as the distance d decreases.  This is 

again consistent with the observations noted earlier.  Another interesting observation seen in Figure 

5.24 is that the 8-node singular element seems to be less sensitive to over-biasing (when the bias ratio 

is larger than the optimal value) in this example.  The figure shows clearly that the results for the 9-

node singular element deteriorate much faster than the results for the 8-node singular elements when 

the elements are over-biased.  Hence, this makes the 8-node singular elements more favourable than 9-

node ones, especially considering that their shape functions are simpler, and they are computationally 

less expensive (with only 8 nodes per element). 

 

 

 

 

5.5.3 Electromechanical coupling analysis 

Electrostatics force is one common driving force used to actuate micro-parts in some MEMS devices.  

Electromechanical coupling arises when electrostatics forces, which are induced by the applied 

voltages, deform parts of the structures.  The deformation, on the other hand, is governed by the 

stiffness of the structures.  In general, the deformed structures may result in further changes in the 

surface charge distribution, and thus the electrostatics forces acting on the structures.  Hence, the 

coupling analysis requires one to solve for a self-consistent equilibrium state, in which the 

electrostatics forces are exactly counter-balanced by the mechanical forces due to the stiffness of the 

structure. 

The multilevel Newton method [15] is employed to solve for the self-consistent equilibrium state.  This 

method requires an electrostatics solver that computes the surface charges, which are then used to 

compute the electrostatics forces for an applied voltage.  It also requires a mechanical solver that 

calculates the structural deformation when subjected to the electrostatics forces.  In this study, an in-

house code is used for the electrostatics solver, while a commercial general-purpose finite element 

software package ABAQUS
†
 is used for the mechanical analysis.  The electromechanical coupling 

analysis is more clearly described in Appendix E.  

Table 5.1. Optimal biased ratios for the singular elements for different distances. 

Optimal biased ratio, R 
Distance, d 

Quadsng8 Quadsng9 
1.0 2.2 2.3 
0.5 3.7 3.3 
0.2 4.5 3.8 

 

† ABAQUS.  HKS Hibbitt, Karlssoon & Sorensen, Inc. 1080 Main Street, Pawtucket, USA. 
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In this section, three typical micro-devices, namely, the micro-beam switch, the comb -drive actuator 

and the micro-mirror are analyzed.  In the micro-beam examples, which include a cantilever beam and 

a doubly-clamped beam, the effects of the force distribution on the pull-in voltage are examined.  In the 

comb-drive example, the comb -finger levitation problem is addressed, in which the deflection profile 

of the comb -finger is important.  Finally, in the micro-mirror example, the tilting angles of the mirror 

are studied.  These examples are have been used earlier in [12-15]. 

Four different types of boundary elements are used here, namely, the constant, linear, quadratic and 

quadratic-singular elements.  The first three types are the standard elements, with the names denoting 

the order of the polynomial of the basis functions used for the surface charge variations on the element.  

The quadratic-singular element corresponds to the case where standard quadratic elements are used for 

the non-singular regions and singular elements for the singular regions.  It is mentioned here that the 

problem sizes for the various types of elements are different for the boundary element analysis, where 

the quadratic/quadratic-singular elements are usually about four times larger than the constant/linear 

elements.  This makes the comparisons less meaningful, since the former types of elements are 

expected to produce more accurate results simply because of the larger degree of freedoms.  

Nevertheless, the results for the constant and linear elements are also included for completeness sake.  

As for the finite elements, the 27 node solid elements are used for all cases. 

Micro-beam examples 

Micro-beams are often used as on/off switches in micro -devices.  Typically, the beam is placed over 

the substrate (usually grounded and coated with a layer of dielectric to prevent short-circuiting) with a 

small gap between them.  When a voltage is applied on the beam, electrostatics forces are exerted on 

the beam causing it to bend towards the substrate.  As the voltage increases, the forces increase rapidly 

and deflection of the beam increases non-linearly.  This continues until a critical voltage at which the 

beam collapses abruptly onto the substrate.  This critical voltage is known as the pull-in voltage, which 

is an important parameter that defines the on/off states of the micro-switch. 

In this example, the micro-beam has dimensions of 100x2x1 µm.  The gap between the beam and the 

substrate is assumed to be 1 µm, with a 0.3 µm thick dielectric coating.  The pull-in voltage is attained 

when the beam reaches a certain displacement profile and deflects in an unstable manner towards the 
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substrate.  Two situations are considered here, namely, when the beam is fixed only at one end 

(cantilever beam), and when both ends are fixed (doubly-clamped beam) [13-15]. 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 5.25 and 5.26 show the discretized mesh, and the beam deflection profiles for the cantilever 

and doubly-clamped beams, respectively.  The meshes for the two problems are not identical, as mesh 

refinements are employed at different regions appropriately.  The maximum deflections (at the free end 

for the cantilever beam and the mid-span for the double-clamped beam) at different applied voltages 

Figure 5.25. (a) Discretization of cantilever micro -beam example, (b) Deflection profile of beam 
before pull-in voltage, with magnification of 20.  

Figure 5.26. Discretization of doubly-clamped micro-beam example, (b) Deflection profile of 
beam before pull-in voltage, with magnification of 20.  
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for the various elements are plotted in Figures 5.27 and 5.28, respectively.  The pull-in voltages are 

summarized in Table 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27. Variation of maximum deflection with applied voltage for different elements in 
cantilever micro-beam. 
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Figure 5.28. Variation of maximum deflection with applied voltage for different elements in 
doubly-clamped micro -beam. 
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From Table 5.2, it is noted that the pull-in voltages are not significantly different for different elements.  

Compared to the quadratic-singular, the constant element shows differences of 5-7%, linear elements 3-

4%, and quadratic element only 1-2%.  The results essentially demonstrate the ability of the various 

standard elements to capture the actual surface charge distributions, where the higher-order elements 

obviously perform better.  It seems that the corner and edges singularity effects, through the surface 

force distributions, are not significant as far as the pull-in voltage is concerned.  One of the possible 

reasons is the rapidly changing gradient of the curve near the pull-in voltage.  This effect is due to the 

highly nonlinear relationship between the induced electrostatics force and the gap between the beam 

and the substrate.  From Figures 5.27 and 5.28, it is first noted that the differences in the curves are 

diverging before the pull-in phenomenon sets in.  Specifically, the differences in the maximum 

deflection build up gradually to more than 20 % for the constant element, and about 14 % and 8 % for 

the linear and quadratic elements, respectively.  However, in the pull-in zone, the curves are parallel to 

each other because the beam deflects rapidly with small increments in the applied voltage.  This makes 

the choice of elements less important once the beam is in the pull-in zone. 

Comb-finger levitation problem 

Levitation [93] is a parasitic phenomenon that is often encountered in comb -drive designs.  Generally, 

this effect appears in problems that contain more than two conductors.  Consider the simplified model 

shown in Figure 5.29, which consists of only three comb fingers, each of dimensions 20x1x1 µm and 

suspended at 1 µm over a ground plane.  The central finger, which is grounded and fixed at its left end, 

bends upward under the levitation force, when the two outer fingers (assumed to be fixed) are 

connected to an external voltage source.  Figure 5.30 shows the maximum deflection of the central 

finger versus the applied voltages for the various elements used. 

Table 5.2. Pull-in voltages for the beam examples for different elements. 

Pull-in voltage (V) 
Element type  

Cantilever Double-clamped 
Constant 6.80 44.2 
Linear 6.63 43.2 

Quadratic 6.51 42.4 
Quadratic-singular 6.40 41.9 
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Figure 5.30. Comb-finger maximum deflections versus applied voltages for the various elements. 
 

Figure 5.29. (a) Discretization of comb -finger levitation example, (b) Deflection profile of comb -
finger at 200 V, with magnification of 10.  
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From Figure 5.30, it is noted that the maximum deflections of the finger are quite different for the 

different types of elements.  Again, with reference to the results of the quadratic-singular element, the 

differences in the deflections at the tip of the central finger for the various elements at different applied 

voltages are tabulated in Table 5.3.  It is observed that the differences in terms of deflections are more 

significant than that for the pull-in voltages for the micro-beam examples.  Hence, this example reveals 

that the distribution of the forces can have significant effect on the deflection profile, especially on 

slender beam-like structures. 

 

 

 

 

 

Micro-mirror example 

This example is similar to the problem discussed in [12].  The geometry of the problem together with 

the discretization is depicted in Figure 5.31(a).  The mirror plate (10 µm in the diagonal length and 0.4 

µm thick) is fixed at the ends of two torsional arms.  Two electrodes (6 x 3 x 1 µm) slightly above the 

ground plane are placed at 1.5 µm underneath the mirror.  A voltage is applied on one of the electrodes 

(driving source) with all the other conductors held at zero volts.  This has the effect of tilting the mirror 

towards the driving electrode.  In this example, the important results are the tilting angles of the mirror, 

which are obtained from the displacements at the tips of the mirror. The general deflection profile of 

the mirror is shown in Figure 5.31(b). Figure 5.32 shows the tilting angles of the mirror under different 

applied voltages for the various elements.  The percentage differences with respect to the quadratic-

singular solutions for the standard elements are computed and tabulated in Table 5.4. 

This example also shows some differences in the tilting angles of the mirror obtained by using different 

types of elements.  It is noted that the differences grow quickly as the applied voltages increase.  This is 

again believed to be due to the highly nonlinear relationship between the induced electrostatics force 

and the gap between the conductors.  This observation is consistent with the results for the micro-beam 

examples, before the pull-in zone. 

Table 5.3. Percentage differences in the deflections at the tip of the central finger, with respect to 
the results of quadratic-singular, for the various standard elements. 
 

Differences in deflections of central finger (%) Applied voltage  
(V) Constant Linear Quadratic 
50 30.4 10.8 6.02 

100 28.8 11.0 7.02 
150 27.4 11.7 7.12 
200 25.4 12.5 8.18 
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Figure 5.32. Mirror tilting angles versus applied voltages for the various elements. 
 

Figure 5.31. (a) Discretization of micro-mirror, (b) Deflection profile of micro-mirror at 350 V, 
with magnification of 5. 
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5.6 Conclusion for Three-Dimensional Singular Elements 

New singular elements have been developed for three-dimensional boundary element analysis of corner 

and edge singularities in potential problems.  The singular elements can represent the correct 

singularity behaviours in the vicinity of the edges and corners, because the singular features are 

incorporated in their shape functions.  Two sets of singular elements are formulated, namely the 8-node 

and 9-node elements. 

It is demonstrated that the singular boundary element can produce more accurate results for the 

capacitance calculations than the standard elements (shape functions of low order polynomials), and 

the h- mesh refinement method [92].  For the two examples studied here, the accuracy is shown to be 

better by more than one order of magnitude.  In terms of electrostatics forces, the singular elements are 

also more accurate than the standard elements, though less significant compare to capacitance 

calculations.  However, in this case, it is important to note that the singular elements give a much faster 

convergence rate with increasing number of elements than the standard elements. 

Numerical solutions can often be improved, without increasing the problem size, by using biased 

elements, that is the r- mesh refinement method.  This technique works more consistently for the 

standard elements, as the solutions are observed to improve when smaller elements are used near the 

singular regions.  However, this is generally not the case when singular elements are used.  It is 

observed that there exists an optimum bias ratio that produces possibly the most accurate solution for a 

given number of elements.  This optimal situation is achieved when the size of the singular elements is 

comparable with the actual size of the singular regions.  Hence, it is expected that the optimum bias 

ratio will vary with the proximity between conductors, as this determines the actual size of the 

singularity regions.  It is also noted that the optimum bias ratio is different for the 8-node and 9-node 

Table 5.4. Percentage differences in tilting angles of micro-mirror for different elements. 

Differences in tilting angles of the mirror (%) Applied voltage  
(V) Constant Linear Quadratic 
100 12.4 8.05 5.03 
150 12.8 8.07 5.04 
200 13.3 8.17 5.09 
250 14.3 8.41 5.26 
300 16.2 9.49 5.56 
350 23.7 12.1 7.32 
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singular elements.  From the biased element distribution study, it is observed that the 8-node elements 

tend to be less sensitive to the biasing effects  than the 9-node ones.  This additional feature, together 

with the obvious fact that 8-node elements are computationally cheaper than 9-node elements (one 

degree of freedom less for each element), with comparable accuracy, makes them more favourable than 

the 9-node elements. 

The singular elements are also used in the electrostatics analysis of the electromechanical coupling 

simulations of some micro-devices.  It is observed that the use of the quadratic-singular elements can 

give better results for the deflection profiles.  In general, the standard elements tend to give smaller 

deformations than the singular elements.  This indicates that ignoring the geometrical singularities (as 

in standard elements) is likely to underestimate the true displacements.  However, the differences in the 

pull-in voltages are relatively small, as demonstrated in the micro-beam example. 
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6 

Reviews of Fast Algorithms for BEM 

Recent developments in fast algorithms have rekindled the interests in solving large problems using 

BEM, because of the linear growth in the computational complexities.  These fast algorithms work by 

approximating the dense matrix-vector product, which is the key step in the projection type of iterative 

methods for solving the linear.  The coefficient matrix is usually not formed explicitly, but 

approximated by sparse representation.  This means that it is also cheaper in terms of computational 

storage.  However, it is important to realize that the improvement in the computational efficiency is 

achieved by compromising the accuracy.  This chapter reviews some of the existing fast algorithms. 

6.1 Fast Multipole Method 

Fast Multipole Method (FMM) was developed by Greengard and Rohklin [39, 44] for solving potential 

fields in particle systems in astronomy studies.  Nabor and White [41-43, 45] then implemented the 

method in electrostatics analysis, mainly to calculate the capacitance of three-dimensional structures.  

The efficiency of FMM relies on the effective usage of the multipole and local expansions, which are 

employed repeatedly in a hierarchical manner through a series of translation operations.  The following 

sub-sections briefly describe the essence of the algorithm.  Readers are referred to [44, 45] for the 

detailed implementation of the method. 

6.1.1 Multipole Expansion 

Given a localized distribution of charges ( )x ′σ , which is bounded within a sphere Sa of radius a, the 

potential it generates outside the sphere can be approximated by the following multipole expansion 

 ( ) ( )∑ ∑
= −=

+
≈

p

n

n

nm

m
nn

m
n M
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0
1

,~ φθ
φ x  (6.1) 

where m
nM  are multipole moments, which are associated with their corresponding spherical harmonics 

( )φθ ,m
nY  and radial distant R from the centre of Sa to the potential point x, and p is the order of the 

multipole expansion. 
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The multipole moments are defined as 

 ( ) ( ) xdrYM nm
n

m
n ′′′′′= ∫ − 3,φθσ x  (6.2) 

and ( )φθ ,m
nY  is given by 
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where ( )θcosm
nP  is the associated Legendre function of the first kind with degree n and order m, which 

is defined only when n is a nonnegative integer, and for nmn ≤≤− .  The error incurred by truncating 

the multipole expansion in (6.1) to order of p is bounded by [44, 45] 
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where ( )∫ ′′= xdxQ 3
1 σ .   

Beside multipole expansion, there also exist other expressions that can approximate far field potential 

due to some localized charges, such as the Poisson’s formula (see for example [94], [95). 

6.1.2 Local Expansion 

Suppose there are some charges ( )xq ′  distributed outside a sphere Sa of radius a centred at the origin, 

the potential at any point x within Sa due to ( )xq ′  can be approximated by the local expansion as, 
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where k
jL  are the local expansion coefficients, which are defined as 
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and the error is similarly bounded, as in (6.4), by 
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Mathematically, local expansion is the Taylor series of the potential function generated by ( )xq ′  in 

spherical coordinates, and k
jL  correspond to the potential and its gradients at the centre of Sa. 
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6.1.3 Translation Operators 

Multipole and local expansions form the basis of FMM.  However, the method relies on the ability to 

translate between the two expansions.  Basically, there are three translation operators, namely: 

(i) Multipole to Multipole (M2M) translation, which converts multipole moments m
nM  defined at 

( )βαρ ,,  into multipole moments m
nM

~
 centred at the origin. 

(ii) Multipole to Local (M2L) translation, which computes the local expansion coefficients k
jL , 

that is, the potential and its gradients, due to the multipole moments m
nM . 

(iii) Local to Local (L2L) translation, which converts local expansion coefficients k
jL  defined at 

the origin into local expansion coefficients k
jL~  at some other point. 

The translation formulas for these operators can be found in [38, 40, 41, 44, 45].  It is remarked that 

these operations scale with O(p
4
). 

6.1.4 FMM algorithm 

The algorithm begins with a hierarchical spatial decomposition of a computational cube that bounds the 

problem domain into successively smaller cells, where each cell is subdivided into 8 child cells.  This 

results in a hierarchical oct-tree representation of the simulation domain, where level 0 is the root cube, 

and level L consists of 8
L cells. 

At the lowest level, the distributed charges within each cell are converted to multipole moments located 

at the centre of the cell using (6.2).  The multipole moments for all cells higher up the tree are then 

derived from the multipole moments of their child cells by using the M2M translation operator.   

Next, at all levels, the local expansion coefficients, due to the multipole moments in the “interaction 

cells”, are computed for all the cells through the M2L translation operator.  In general, there are exactly 

at most 189 “interaction cells” for a given cell, which gives roughly 189p
4
 operations per cell.  This 

translation process is the most expensive part of the algorithm, and hence different techniques were 

implemented to improve it.  Greengard and Rokhlin [40] developed the new version of FMM, which 

scales approximately like 20p
3 

+ 189p
2
, by using the diagonal forms of translation operators with 
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exponential expansions.  Further improvement was made by Cheng et al. [38] using the adaptive spatial 

decomposition algorithm.  On the other hand, Elliott and Board [96] reduced the O(p4) scaling factor to 

O(p2logp) by performing FFT on the translation operators.  However, it is noted this approach becomes 

numerically unstable for large p. 

The local expansion coefficients for all the cells at the lowest level are then obtained by summing the 

local expansion coefficients from the higher level cells, which are translated down the hierarchy 

through the L2L translation operator.  Finally, using the local expansion in (6.5) gives the potential at 

point x, which only accounts for the “distant” charges effects.  The “near” charge contributions are then 

added directly onto the potential point. 

Alternatively, using multipole expansion alone can give rise to a simple fast algorithm, generally 

known as the tree algorithm [97, 98], which is O(nlogn).  The basic idea is very similar to FMM 

algorithm, except that local expansion is not used.  Instead, the multipole expansion is evaluated 

directly on the potential point.  Hence, to a certain extent, FMM can be seen as an enhancement of the 

tree algorithm. 

6.2 Precorrected-FFT Approach 

This method was developed by Phillips and White [46-48] for solving complicated three-dimensional 

electrostatics problems.  It is motivated by the approximation scheme that enables one to represent an 

arbitrary distribution of charges by a small number of weighted point charges, which all lie on a 

uniform grid.  Evaluating the potentials at the grid points due to the grid charges can then be seen as a 

discrete convolution, which can be performed efficiently using FFT algorithms.  In general, it 

comprises the following steps: 

(1) projecting the panel charges onto a uniform grid of point charges, 

(2) computing the grid potentials due to the grid charges via FFT, 

(3) interpolating the grid potentials onto the panels collocation points, and 

(4) pre-correcting the interpolated potentials by replacing the inaccurate “near” charges 

contributions obtained via FFT with the ones that are computed directly. 
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6.2.1 Projecting arbitrary charge distribution onto a grid 

The first step of this algorithm is to represent the panel charges ( )xσ  by a set of NG point charges qj, j 

= 1… NG that are positioned on a uniform grid.  This can be done by matching potentials of the grid 

charges and distributed charges ( )xσ  at some pre-selected points.  Another possible approach is based 

on matching the multipole moments directly [99].  Nevertheless, both the techniques result in 

performing singular value decomposition (SVD) on an over-determined system, whose pseudoinverse 

gives the linear transformation for mapping arbitrary charges ( )xσ  to grid point charges qj. 

6.2.2 Computing grid potentials by discrete convolution via FFT 

Once the panel charges are projected to a grid, computing the potentials at the grid points due to the 

grid charges is a three-dimensional convolution.  That is, 

 ( ) ( ) ( )∑
′′′

′′′′−′−′−==
kji

kjiqkkjjiigqkji
,,

,,ˆ,,ˆ,,ˆ Gφ  (6.8) 

where ( )kji ,,φ̂  and ( )kjiq ′′′ ,,ˆ  are the grid point potential and grid point charge at position ( )kji ,,  

and ( )kji ′′′ ,, , respectively, and ( )kkjjiig ′−′−′− ,,  is the Green’s function, which is essentially the 

inverse distance between the grid points ( )kji ,,  and ( )kji ′′′ ,, .  The key to the efficiency of 

precorrected-FFT lies on the fact that the discrete convolution in (6.8) can be computed rapidly by 

using FFT algorithms [49]. 

6.2.3 Approximating potentials by interpolating grid potentials 

Grid potentials are then interpolated onto all the panel’s collocation points.  One simple approach is to 

use a polynomial interpolation over several grid points.  Alternatively, an operator that interpolates 

potentials at grid points onto panel’s collocation points can be obtained by following the similar idea of 

representing charges on the grid. 

6.2.4 Precorrecting the approximated potentials 

This step is required because the grid charges do not accurately approximate the “near” interactions.  

Hence, the task here is to replace the inaccurate contributions from the grid charges that were included 

through the convolution process by the ones that are computed accurately. 
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In summary, precorrected-FFT algorithm approximates the dense matrix-vector product, as given by 

 qP=φ      ⇒     [ ]qT GWVP +≈ ~φ   (6.9) 

where P~  is from the precorrecting step, V and W are the potential interpolation and grid charge 

projection operators, respectively, and G is discrete Fourier transform matrix.  And all the matrices 

possess sparse representations. 

6.3 Matrix Sparsification Techniques 

6.3.1 Wavelet based method 

The idea of employing wavelet bases to build sparse versions of discretized boundary integral operators 

was introduced by Beylkin et al. [100].  It was later used by Spasojevic et al. [101, 102] to solve two-

dimensional electrostatics problems.  In their works, the orthogonal [101] and bi-orthogonal [102] Haar 

wavelets were used as the basis for representing the charge distributions, that is, the surface charges on 

each boundary element is approximated by 

 ( ) ( )∑ ∑
−= =

≈
L

l

K

k
lklk xx

1 0

ϖσσ   (6.11) 

where lkσ  and ( )xlkϖ  are the wavelet coefficient and wavelet basis, respectively, and L is order of 

resolution, with K = max(0, 2
l
-1) translated functions at level l resolution.  Sparsifying the fully 

populated matrix can be achieved simply by ignoring the “small” entries in the matrix.  This 

elimination process is often based on the distance criterion, that is, the distance between the source and 

field points.  Other works that were based on the wavelet approach can be found in [103-105]. 

6.3.2 Singular Value Decomposition 

Another approach of sparsifying a dense matrix is through the use of Singular Value Decomposition 

(SVD) methods [106, 107], which exploits the fact that a large part of the dense matrix is numerically 

low rank.  The algorithm first adaptively partitions the matrix into low rank submatrices, via divide and 

conquer, and then applies SVD on these submatrices to obtain a sparse representation of the original 

dense matrix. 
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7 

Fast Fourier Transform on Multipoles (FFTM) 

In this part of the thesis, we propose a fast algorithm for the rapid solution of the integral equation in 

BEM.  This method arises from an important observation that potential evaluation using multipole 

expansion can be expressed as a series discrete convolution of the multipole moments with their 

associated spherical harmonics functions.  FFT algorithms can be employed to evaluate the discrete 

convolutions rapidly, and this essentially provides the efficiency of this approach.  We refer it to as the 

Fast Fourier Transform on Multipoles (FFTM) method.   

This chapter is organized as follows.  The FFTM algorithm is first presented in Section 7.1.  Some 

important issues regarding its implementation are also adressed. This is then followed by its complexity 

analysis in Section 7.2.  In Section 7.3, some numerical examples are presented to illustrate the 

performance of the method, in terms of its accuracy and efficiency.  It is demonstrated that FFTM is an 

accurate method, and has only linear growth in the computational complexity, which implies that it can 

as efficient as other fast algorithms, such as FMM and precorrected FFT. 

7.1 FFTM Algorithm 

This algorithm generates a number of transformation matrices that are denoted by three-letter 

abbreviations, following the works of Nabors and White in [45].  The letter notations have the 

following meanings: M = Multipole moments, Q = Charge, P  = Potential and 2 = To.  Basically, the 

algorithm comprises the following five steps: 

(1) discretization of spatial domain into many smaller cells, 

(2) representation of the panel charges by multipole moments for all cells (Q2M), 

(3) evaluation of the potentials at cell centers due to the multipole moments, through discrete 

convolutions that is accelerated by FFT algorithms, 

(4) interpolation of the cell potentials (due to “distant” charges) onto collocation points on the 

panels (P2P), 
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(5) inclusion of potential contributions from the “near” charges directly onto the panels (Q2P). 

This process is summarized in Figure 7.1.  The following sub-sections elaborate on each of the steps. 

 

 

 

 

 

 

 

 

 

 

7.1.1 Spatial discretization 

This step divides the problem domain into many smaller cells, and allocates the panels among them.  

The aim is to identify closely pack panels that can be approximated by simpler representations, such as 

multipole moments in FMM or grid point charges in precorrected-FFT.  It also helps to separate the 

“near” panels and the “distant” ones.  Unlike FMM, the initial volume that bounds the problem domain 

need not be a cube, since the hierarchical partitioning of the cells is not needed.  The dimensions of the 

volume only need to satisfy the ratio required by the FFT solvers, which is usually in powers of two.  

Otherwise, dummy layers of empty cells have to be added to meet the requirement.  This process is 

commonly known as zero padding.  Nowadays, it is possible to perform FFT on any arbitrary size with 

the help of the freeware FFTW (Fastest Fourier Transform in the West), provided by Frigo and 

Johnson
†
.  This improves the efficiency of FFTM by minimizing the number of zero padding, and 

hence avoiding the unnecessary increase in size of the FFT array. 

 

† FFTW, C subroutines library for computing Discrete Fourier Transform (DFT).   
  The freeware can be downloaded from http://www.fftw.org. 

Figure 7.1. 2D pictorial representation of FFTM algorithm.  Step (1): Division of problem domain 
into many smaller cells.  Step (2): Computation of multipole moments for all cells.  Step (3): 
Evaluation of potentials at cell centers by convolutions via FFT.  Step (4): Interpolation of cell 
potentials onto panel collocation points. Step (5): Inclusion of near charges contributions (panels 
within the shaded region) directly onto panels. 
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7.1.2 Transformation of panels charges to multipole moments 

In this step, the arbitrary distribution of charges ( )x′σ  within a given cell is represented by an 

equivalent system of sources that are positioned at the centre of the cell.  These sources include a point 

charge, an electric dipole, and other higher multipole moments, which can be obtained using (6.2), and 

rewritten here for convenience, 

 ( ) ( ) xdrYM lm
n

m
n ′′′′′= ∫ − 3,φθσ x  (7.1) 

Equation (7.1) is essentially the Q2M transformation function.  Applying Q2M to all the cells 

transforms the boundary element discretized problem to one that contains point sources that are 

regularly spaced, as depicted in Figure 7.1 after Step 2. 

7.1.3 Evaluation of potentials at cells centres using FFT 

This step is to evaluate the potentials at the cells’ centres due to the effects of the multipole moments in 

all the cells.  The regular spacing of the cell centres enables this potential evaluation process to be 

expressed as discrete convolutions, which can be done rapidly using FFT.  Mathematically, the 

potential calculations using multipole expansions can be written as a series of three-dimensional 

discrete convolutions as  

 ( ) ( ) ( )∑ ∑ ∑∑∑
= −= ′ ′ ′

+ 
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where the indices (i, j, k), and (i’,j’,k ’) denote the discrete locations of the field points and multipole 

moments, respectively, and there are exactly (p+1)
2
 discrete convolutions.  In order to eliminate the 

aliasing effects completely, the convolution size needs to be increased by eight times with zero 

padding. 

7.1.4 Evaluation of potentials at panels’ collocation points 

Once the potentials at the multipole cell centers are determined, they must be interpolated onto the 

actual collocation nodes on the panels.  Consider a collocation point x that falls in cell k , its potential is 

the sum of the contributions from the “distant” and “near” charges, that is, 

 ( ) ( ) ( )xxx ∑∑
==

+≈
nd N

j

j
k
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i

i
kk

11

~~~ φφφ  (7.3) 
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where Nd denotes the cells that are considered far away from cell k , whereas Nn corresponds to the 

near-neighbors of cell k , which are usually defined to be either the first nearest neighboring cells (27 

cells), or first and second nearest neighboring cells (125 cells).  The rest of the cells in the domains are 

considered “distant”.  Hence, the two sets of cells are mutually exclusively, that is, Nd  + Nn = Nc, where 

Nc is the total number of cells . 

The “distant” charges contributions, which are approximated by multipole expansion, can be 

determined by interpolating the cells’ potentials (obtained in Step 3) onto the collocation point x.  In 

this study, the simple quadratic interpolation method is adopted.  Basically, the idea is to form a 

potential interpolation element with the nearest neighboring cells.  Hence, a three-dimensional 

quadratic interpolating function has 27 potential points, as given by 

 ( ) ( )∑
=

=
27

1

~
,,,,

~

i
ii zyxNzyx φφ  (7.4) 

where ( )zyxN i ,,  is the set of quadratic Lagrange interpolation functions, and iφ~  is cell’s potential.  

Equation (7.4) is the transformation function for P2P matrices. 

However, prior to that, we need to perform a potential correction step, which is essential because the 

cell potentials obtained through the discrete convolutions have inevitably included the “near” charges 

contributions that are inaccurately represented by multipole expansions.  The potential correction 

scheme adopted here is rather straightforward, as illustrated in Figure 7.2 for the two-dimensional case. 

 

 

 

 

 

 

 

 

Figure 7.2. (a) Potentials at nine interpolation cells, which account for effects of distant charges 
only. This is given by the difference of potential due to (b) convolution corresponding to set Nc 
and, (c) convolution corresponding to set Nn. 
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Figure 7.2(a) shows the desired situation where the potentials at the nine interpolation cells include the 

effects of the “distant” charges only.  This is achieved by taking the difference of the potentials 

calculated from the two discrete convolutions, as depicted in Figures 7.2(b) and 7.2(c), respectively.  

The former convolution is that described in Section 7.1.3.  On the other hand, the second convolution 

evaluates the potentials at the same interpolation points, but due to the charges in the near-neighboring 

cells only.  We refer to this convolution as the potential correction step, which will be discussed further 

in Section 7.1.5.  Hence, by using the corrected interpolation potentials in (7.4), the “distant” charges 

contributions can be computed. 

The second component of (7.3), which accounts for the “near” charges effects, is identical to the direct 

pass in FMM [41, 45].  In this case, the potential contributions from the panels that falls within Nn cells 

are evaluated directly onto the collocation point.  The transformation matrices that perform this task are 

denoted by Q2P. 

7.1.5 Potential correction step 

This step calculates the potentials at the 27 interpolation points due to the multipole moments in the Nn 

cells.  Although this can again be done rapidly by discrete convolution using FFT, it will be shown 

shortly that the direct approach is more efficient.  The following discussion compares the efficiency of 

the two approaches (in terms of real multiplication operations), for situation where Nn = 125. 

Suppose this task is done by discrete convolution using FFT, the operation counts can be approximated 

as follows.  First, one needs to perform two FFTs and a complex multiplication of Fourier coefficients 

of size m, where the minimum size of m is 7x7x7 = 343, since at least 2 zero paddings are required in 

each direction.  However, it is more efficient to let m to be 8x8x8 = 512, because of its high efficiency 

with FFT algorithms.  A detail study of the FFT algorithms reveals that this FFT can be done with only 

128 real multiplication operations, by fully utilizing the twiddling factors [49].  As for the complex 

multiplication of the Fourier coefficients, there are exactly 256 of them.  However, due to the 

symmetry of the response functions, whose Fourier transforms are either purely real or imaginary, each 

complex multiplication is reduced from four real multiplication operations to two.  Hence, the total 

number of real multiplication operations needed to perform this potential correction step through 

discrete convolution is 2x128 + 2x256 = 768.  
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On the other hand, evaluating this convolution directly requires 27x124 = 3348 operation counts, since 

there are 27 interpolation points, and for each point there are 124 cells contributions to be considered.  

The singular contributions due to the self multipole moments are set to zero, because they are to be 

accounted for exactly in the “near” contributions.  It appears that the direct approach is computationally 

more expensive than the convolution approach.    However, two simple techniques can be applied to 

reduce the direct approach cost significantly.   

The first technique involves setting the response functions at the nearest neighbours to zero, that is,  

 ( ) 1 and ,for ,0,,
1

≤′−′−′−=′−′−′−
+

kkjjiikkjjii
R
Y

n

m
n  (7.5) 

Using (7.5) naturally excludes the effects of the multipole moments of the nearest neighbouring cells, 

whose contributions are to be computed exactly by using Q2P.  This reduces the number of cells to be 

considered for each interpolation point to 125-27 = 98.  Hence, the total operation counts reduces to 

27x98 = 2646. 

The second technique makes use of the symmetry of the response functions.  This allows us to 

exchange many of the multiplication operations with additions.  It is noted that the gain from this 

technique hinges on the number of distinct response function values that are associated with each 

interpolation point.  This is summarized in Table 7.1 for the various response functions (up to p = 2) 

and the 27 interpolation points.  On average, applying this technique reduces the number of 

multiplication operations to about 20 %  of the original counts, that is, from 2646 to about 500.    

Hence, applying these techniques make the direct approach more favourable in performing the 

potential correction step. 

7.1.6 Remarks on the use of local expansion 

The use of local expansion to compute potentials at the panel collocation points, as used in FMM, may 

be a more intuitive and desirable approach of implementing FFTM.  This approach would enable the 

method to attain arbitrary high order of accuracy, which is not possible with the quadratic interpolation 

method. 

However, there are some practical issues that hinder the implementation of local expansions.  First, the 

complicated multipole to local expansion transformation makes it difficult to implement.  More 



 
 

Chapter 7: Fast Fourier Transform on Multipoles (FFTM) 

 
97 

importantly, the number of discrete convolutions scales with O(p+1)
4
, which means that the 

computational cost (both in the time and memory storage requirements) increases dramatically with 

increasing value of p.  In other words, the improvement in the accuracy is achieved at a very high 

computational cost.  Hence, further investigations are needed to study the efficiency of this approach.   

For now, the simple quadratic interpolation scheme is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2 Algorithmic Complexity Analysis 

This section gives estimates on the time and memory complexity for the FFTM algorithm.  The 

analysis looks at two parts, namely at the initialization and iteration stages.  At initialization stage, we 

are mainly concerned with the memory complexity required to store the various transformation 

Table 7.1. Number of distinct values for different response functions at different potential 
interpolation points. 
 

Number of distinct values for response functions, 1+n

m
n

R
Y

 (n, m) Interpolation  
points  

(0,0) (1,0) (1,1) (1,-1) (2,0) (2,1) (2,-1) (2,2) (2,-2) 
1 15 27 27 27 32 22 22 22 22 
2 15 27 27 27 32 22 22 22 22 
3 15 27 27 27 32 22 22 22 22 
4 15 27 27 27 32 22 22 22 22 
5 15 27 27 27 32 22 22 22 22 
6 15 27 27 27 32 22 22 22 22 
7 15 27 27 27 32 22 22 22 22 
8 15 27 27 27 32 22 22 22 22 
9 14 24 17 24 29 18 16 22 18 

10 14 24 24 17 29 16 18 22 18 
11 14 24 17 24 29 18 16 22 18 
12 14 24 24 17 29 16 18 22 18 
13 14 24 17 24 29 18 16 22 18 
14 14 24 24 17 29 16 18 22 18 
15 14 24 17 24 29 18 16 22 18 
16 14 24 24 17 29 16 18 22 18 
17 14 17 24 24 23 18 18 16 16 
18 14 17 24 24 23 18 18 16 16 
19 14 17 24 24 23 18 18 16 16 
20 14 17 24 24 23 18 18 16 16 
21 6 9 9 9 11 7 7 7 7 
22 11 15 15 15 17 13 13 10 10 
23 11 15 15 15 17 13 13 10 10 
24 11 15 15 15 20 10 13 16 13 
25 11 15 15 15 20 13 10 16 13 
26 11 15 15 15 20 10 13 16 13 
27 11 15 15 15 20 13 10 16 13 

          
Total 360 575 575 575 705 463 463 507 463 

 (Total/2646) %  13.6 21.7 21.7 21.7 26.6 17.5 17.5 19.2 17.5 
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matrices, whereas at the iteration stage, we are interested in the time complexity.  The overall 

computational complexities of FFTM algorithm are summarized in Table 7.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2.1 Complexity at Initialization stage 

The main computational cost of this initialization stage is due to the formations of the various 

transformation matrices, which include Q2M, P2P and Q2P, and also computation of the response 

functions 
1+n

m
n

R

Y
 and their Fourier transforms.   

The complexities for computing and storing Q2M, P2P and Q2P are ( )( )npO 21+ , ( )nO 27  and 

( )nkNO cn , respectively, where k c denotes the average number panels in one cell.  The constant factor 

of 27 in the complexity of P2P is due to the quadratic interpolation scheme used for the interpolating 

STAGES  OPERATION COMPUTATIONAL TIME MEMORY STORAGE 

Initialization  

Computing Q2M, 
P2P and Q2P 
matrices 

 
Computing response 
functions and their 
FFTs 

( )( )npO 21+ + ( )nO 27 + ( )nkNO cn  
 

 
 

( )( )cNpO 21+ + ( )( )cc NNpO log1 2+  

( )( )npO 21+ + 
( )nO 27 + ( )nkNO cn  

 
( )( )cNpO 21+  

 
Total cost at 
Initialization 

stage  
 ( ) ( ) 
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+ nkN

NN
Nn

pO cn
cc

c 27
log

1 2  ( ) ( )
( ) 











++
++

nkN
Nnp

O
cn

c

27
1 2

 

Iteration 

Computing multipole 
moments via Q2M 
 
Computing cells’ 
potentials by 
convolutions 
 
Potential correction 
and interpolation via 
P2P 
 
Computing “near” 
interactions via Q2P 

( )( )npO 21+  
 
 

( ) ( ) ( ) ( )[ ]( )ccc NNNpO 8log1681 2 ++  
 
 

( )( )nFNNpO cn 274.51 2 ++ c  
 
 

( )nkNO cn  

 
 
 
 

( )cNO 17  
 

Total cost at 
Iteration stage  

 
Perform matrix -
vector products for 
Kiters times 

Kitersx
( ) ( ) ( )

( )
( ) 
















++










++

+
+

nkN

NFNN

NNn
p

O

cn

cnc

cc

27

4.58

8log16
1 2

c  

 
( )( )itersc KnNO ++ 117  

Definitions: 
n is the problem size. 
p is the multipole expansion order. 
Nc is the total number of mutipole cells after the spatial discretization step. 
Nn is the number of cells that are in the direct interaction list, either 27 or 125. 
kc is the average number of panels in a cell. 
Fc is a sparsity factor that defines the ratio of the non-empty cells to Nc. 
Kiters is the number of iterations required to achieve the desire accuracy. 

 

Table 7.2. Time and memory complexities of FFTM algorithm. 
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potential.  Computing the response functions and their Fourier transforms have complexities 

( )( )cNpO 21+  and ( )( )cc NlogNpO 21+ , respectively.  Note that zero padding is avoided here due to 

the symmetries of the response functions.  Finally, the total time and memory complexities at the 

initialization stage are 

 ( ) [ ] ( )( )nkNNlogNNnpO cnccc +++++= 271Time 2

 ( ) ( ) ( )( )nkNNnpO cnc ++++= 271Memory 2  

It is important to note that the dominant cost at this stage is likely to be due to the computing and 

storing of Q2P matrices, since Nnk c, which is equal to 27k c or 125k c, is usually larger than ( )21+p . 

7.2.2 Complexity at iteration stage 

At the iteration stage, the main concern is the time complexity as it is the primary factor that 

determines the efficiency of this algorithm.  The memory complexity is considerably less as compared 

to that at the initialization stage.  The major memory requirements are: 

(i)  Two matrices of sizes  8Nc and Nc.  The former is used for the Fourier Transform in the 

discrete convolution step, while the later one stores the approximated potentials obtained. 

(ii)  One matrix for storing the basis vectors generated by the GMRES at each iteration.  Normally, 

the memory required is O(nKiters), where Kiters is the number of iterations for the solution to 

converge to the desire accuracy.  However, this can be constrained by using the restart 

GMRES [37]. 

Time complexity at the iteration stage comprises of the following components: 

(i)  ( )( )npO 21+  operations to compute (p+1)
2
 multipole moments using Q2M, ( )nO 27  

operations to interpolate potentials using P2P, and ( )nkNO cn  operations to compute the 

“near” charges interactions using Q2P. 

(ii)  ( ) ( )[ ]( )ccc NNNpO 88log821 2 ++  operations to compute (p+1)
2
 discrete convolutions, each 

requiring two FFTs and one complex multiplication of size 8Nc. 

(iii)  ( ) ( )[ ]( )ccn NFNpO 272.01 2+  operations to perform the potential correction step, where Fc is a 

sparsity factor that defines the ratio of the non-empty cells to Nc (since this step is only applied 
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for non-empty cells), and the 0.2 factor accounts for the speedup due to the two techniques 

described in Section 7.1.5. 

Hence, the total time and memory complexities for one iteration is given by 

 
( ) ( ) ( ) ( )[ ]

( ) 










++

++++
=

nkN

NFNNNNnp
O

cn

ccnccc

27

4.588log161
Time

2

 

 ( )itersc nKNO += 17Memory  

7.3 Numerical Examples 

In this section, some numerical examples are used to study the performance of FFTM.  The study 

comprises of an accuracy analysis and an efficiency analysis (in terms of computational speed and 

memory requirements).  Different FFTM schemes are characterized by two parameters, namely, (i) the 

direct interaction list Dlist , and (ii) the multipole expansion order p.  Dlist  = 1 when only the nearest 

neighbors are used for the direct interactions, and Dlist = 2 when the first and second nearest neighbors 

are used for the direct interactions.  The parameter p takes value of 0, 1 or 2.  The combinations of the 

two parameters give a total of six FFTM schemes.  All the analyses are done on a HP C3600 

workstation with 1 GB of RAM. 

7.3.1 Accuracy analysis of FFTM 

The accuracy of FFTM is gauged against the solutions that are obtained using the GMRES explicit 

method, where the full coefficient matrix is formed explicitly.  Four examples are used in this accuracy 

analysis.  These include, (i) the self-capacitance extraction of a cube, (ii) the electrostatics force 

analysis of a cube that is placed over a ground plane, (iii) the electromechanical coupling analysis of 

the comb -levitation problem, and (iv) the 4x4bus-crossing example [41].  The first three examples are 

also used in the singular elements analysis in Chapter 5. 

Four different types of boundary elements are used here, namely the constant, linear, quadratic and 

quadratic-singular, where their names denote the order of the polynomials that represent the surface 

charge density on the elements.  For the quadratic-singular element type, singular elements are used in 

place of the standard quadratic elements at sharp corners and edges. 
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Effects of spatial discretization on accuracy of FFTM 

It is believed that the spatial discretization can have significant effects on the accuracy of the solution.  

By using finer cell discretization, the accuracy of the “distant” charges contributions improves, because 

the separation distance ratios 







R
a

 for the multipole expansion are smaller now.  However, the number 

of panel charges that are to be treated exactly in the “near” charges component is reduced, which 

results in a loss of accuracy.  Hence, it is desirable to study this effect on the different FFTM schemes.   

The cube self-capacitance extraction problem is used for this study, and the cube is meshed with 64 

uniform constant boundary elements on each face.  The “exact” solution is 73.033 pF, and the results 

are tabulated in Table 7.3. 

 

 

 

 

 

The results are generally quite accurate, giving errors less than 5 %, for all the schemes.  However, it is 

noted that for the lower order schemes, the results fluctuate quite significantly with different kind of 

spatial discretizations.  However, the degree of fluctuation decreases when higher order multipole 

expansion is used.  This behavior is probably due to the fact that the higher order multipole moments 

can represent the charge distributions within the cells more accurately.  Monopole (p = 0) moment 

simply approximates the charge distributions within each cells by a point charge at the cell’s center, 

which has magnitude equal to the sum of the charges within the cell.  This means that it does not 

account for the charge distributions within the cell.  On the other hand, the dipoles (p = 1) and the 

quadrupoles (p = 2) moments can model the first and second derivatives of the charge distributions, 

respectively.  Hence, this makes the multipole expansion less sensitive to the cell discretization step.  

As the lower order FFTM schemes (p = 0) are too sensitive to the cell discretization, they are not used 

in the subsequent analyses. 

Dlist = 1 Dlist = 2 Cells discretization  
(nx x ny x nz) p = 0 p = 1 p = 2 p = 0 p = 1 p = 2 

5 x 5 x 5  74.963 73.101 72.968 73.990 73.048 73.031 
8 x 8 x 8  71.679 73.995 73.049 71.894 73.014 73.035 

12 x 12 x 12 73.661 73.143 73.005 73.382 73.100 73.038 

 

Table 7.3. Capacitance of cube example using different cell discretizations for different FFTM 
schemes. 
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Self-capacitance extraction of cube example 

This exa mple is identical to the one used above, with spatial discretization fixed at 8x8x8.  The 

capacitance results are tabulated in Table 7.4.  

 

 

 

 

 

 

Generally, the results are very accurate for all the schemes, with errors less than 1 %.  An important 

observation is noted by comparing the results of the FFTM schemes that have the identical p value but 

different Dlist  value.  For example, consider the results in column 4 (Dlist = 1 and p = 2) and 6 (Dlist  = 2 

and p = 2) of Table 7.4.  In this case, one expects the first column of results to be less accurate, because 

the second nearest neighboring cells are approximated by the multipole expansions that tend to be less 

accurate.  However, the two sets of results are not significantly different.  In fact, they differ by less 

than 0.1 %.  Similar observations can be seen for the results between column 3 and 5.  This observation 

may be due to the following reason. 

First, the difference in the two situations is the treatment of the second nearest neighboring cells.   For 

schemes with Dlist = 1, their effects are approximated by multipole expansions, while those with Dlist = 

2 accounts for them exactly in the direct interaction list.  Although the multipole approximations are 

less accurate, their effects on the overall solution may not be significant.  This is simply because their 

potential contributions may only be a small portion of the total potential contributions from all the 

cells, since this layer of neighbouring cells (98 of them) usually forms only a small fraction of the total 

number of cells.  Hence, their error contributions are also expected to be small.  This suggests that the 

FFTM schemes with Dlist = 1 should be used over those with Dlist  = 2, by virtue that they are less 

expensive, and only slightly less accurate. 

Table 7.4. Capacitance extraction of cube example, for different FFTM schemes and different types 
of elements. 

FFTM 

Dlist = 1 Dlist = 2 Element type  
GMRES 
explicit 

p = 1 p = 2 p = 1 p = 2 

Constant 73.033 72.995 73.049 73.014 73.035 
Linear 74.194 73.916 73.945 73.976 73.981 

Quadratic 73.716 73.715 73.762 73.726 73.734 
Quadratic-
singular 73.503 73.495 73.541 73.508 73.520 
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It is also observed that FFTM only approximates the corresponding “exact” solutions for the different 

types of elements used.  In other words, this method is capable of retaining the effects of the element 

shape functions, through the used of Q2M (multipole moments for “distant” charges contributions) and 

Q2P (for “near” charges contributions) transformation matrices.  This is especially important for the 

quadratic-singular element type, because it is desirable that the accuracy of the singular ele ments be 

retained when approximating the dense matrix-vector products by these transformations. 

Electrostatics force on cube over ground plane 

This example is also identical to the one used in Section 5.5.2, except that the ground plane is not 

infinite.  In this case, the ground plane is assumed to be three times larger than the unit cube, and the 

cube is placed at distance of 0.5 unit above the ground plane.  The resultant electrostatics force acting 

on the cube’s face that is just above the ground is comp uted.  The spatial discretization here is 

16x16x8, and the results are given in Table 7.5. 

 

 

 

 

 

 

In this case, the results are generally less accurate than the previous example.  As electrostatics force is 

proportional to the square of the surface charge density, the error is likely to be twice that in the 

capacitance calculation. 

Comb-finger levitation example 

This example is an electromechanical coupling analysis of comb fingers as described in Section 5.5.3.  

We examine two cases, where the applied voltage is 100 V and 200 V, respectively.  Only the constant 

and quadratic-singular element types are used here.  The cell discretization is 20x10x2, and the results 

are given in Table 7.6. 

Table 7.5. Electrostatics force on cube’s surface, for different FFTM schemes and different types 
of elements. 

FFTM 

Dlist = 1 Dlist = 2 Element type  
GMRES 
explicit 

p = 1 p = 2 p = 1 p = 2 

Constant 3.922 3.901 3.855 3.928 3.916 
Linear 4.666 4.691 4.674 4.664 4.665 

Quadratic 4.654 4.643 4.672 4.661 4.650 
Quadratic-
singular 4.753 4.751 4.782 4.762 4.750 

 



 
 

Chapter 7: Fast Fourier Transform on Multipoles (FFTM) 

 
104 

 

 

 

 

 

 
The results are again accurate for all the various schemes.  For the schemes with p = 1, the error is 1 – 4 

%, while for p = 2, it is less than 1 %.  The deflection of the comb -finger depends greatly on the 

computed force distributions, which in turn depends on the surface charge distributions.  Hence, it is no 

surprise that the higher order schemes (p = 2) can produce more accurate solutions, since they can 

approximate the actual charge distributions more accurately than the lower order schemes (p = 1). 

4x4 bus-crossing example 

In this example, taken from Nabor and White [41], the capacitance matrix of a 4x4 bus-crossing 

example, as shown in Figure 7.3, is computed.  For consistent comparison with the results in [41], only 

the FFTM schemes with Dlist = 2 are used. The cell discretization used is 10x10x3.  The results of the 

FMM from [41] are also duplicated in Table 7.7, followed by the results of the FFTM schemes. 

 

 

 

 

 

 

It is observed that FFTM is generally more accurate than FMM.  This is especially obvious for the 

lower order schemes (p = 0, 1) and for the off-diagonal capacitance entries.  The significant 

improvement in the accuracy is largely due to the ways the distant potential contributions are computed 

in the two methods. 

Table 7.6. Maximum deflection of central comb -finger, for different FFTM schemes and different 
types of elements. 

FFTM 

Dlist = 1 Dlist = 2 
Element  

type  

Applied 
voltage  

(V) 

GMRES 
explicit 

p = 1 p = 2 p = 1 p = 2 
100 0.03266 0.03118 0.03259 0.03139 0.03267 

Constant 
200 0.1185 0.1136 0.1176 0.1142 0.1179 
100 0.04585 0.04525 0.04547 0.04638 0.04560 Quadratic-

singular 200 0.1589 0.1607 0.1577 0.1611 0.1581 

 

Figure 7.3. 4x4 bus-crossing example from [41].  Conductors are meshed as close to the original 
work as possible. 
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In FMM, multipole and local expansions are used in a hierarchical fashion to approximate the distant 

potential fields.  This hierarchical approach tends to introduce more approximations when multipole 

moments and local coefficients are passed upwards and downwards in the hierarchy in the algorithm.  

On the other hand, FFTM replaces this  hierarchical process by using FFT algorithm to evaluate the 

discrete convolutions of the multipole expansion.  In this case, the cell size to distance ratio 







R
a

, 

which determines the accuracy of the multipole expansion (see equation (6.4)), are smaller than those 

in FMM.  This point is more clearly illustrated in Figure 7.4 for the two-dimensional case. 

 

 

 

 

 

 

 

 
Suppose we want to evaluate the potential at point x, due to the surrounding multipole moments, which 

corresponds to the “distant” charges contributions in (7.3).  The obvious approach is to compute all the 

multipole moments effects directly, but this may be computationally too expensive.  FFTM does it in a 

more efficient way by recognizing that this potential evaluation task can be seen as discrete 

Capacitance Matrix Entry (pF) Solution  
Method C11 C12 C13 C14 C15 C16 C17 C18 

GMRES explicit  402.9 -136.2 -12.00 -7.886 -48.18 -39.90 -39.90 -48.18 
FMM (p = 0) 394.5 -124.0 -0.175 -2.471 -52.15 -43.39 -43.08 -52.92 
FMM (p = 1) 406.6 -139.7 -12.36 -6.676 -48.48 -40.45 -40.27 -48.46 
FMM (p = 2) 405.2 -137.8 -11.91 -8.079 -48.36 -40.09 -40.01 -48.45 

         FFTM (p = 0) 404.2 -133.1 -13.53 -6.108 -49.14 -41.53 -41.27 -49.85 
FFTM (p = 1) 403.4 -136.7 -12.57 -8.014 -48.15 -39.63 -39.62 -48.05 
FFTM (p = 2) 403.2 -136.3 -11.49 -7.966 -48.36 -40.05 -40.05 -48.34 

 

Table 7.7. Capacitance extraction of 4x4 bus-crossing example by FMM from [41], and FFTM 
methods. 

Figure 7.4. Comparison on accuracy of (a) FFTM and (b) FMM, based on cell to distance ratio. 



 
 

Chapter 7: Fast Fourier Transform on Multipoles (FFTM) 

 
106 

convolutions of the multipole moments with their associated response functions, which can be 

evaluated rapidly using FFT algorithms.  On the other hand, FMM uses a number of transformations to 

reduce the computational cost, which involve passing multipole and local expansions in a hierarchical 

manner.   This process results in multipole moments representation that contains cells of different sizes, 

such as the one depicted in Figure 4(b).  Each of the coarsest cells in Figure 4(b) corresponds to 16 

cells at the finest level from Figure 4(a).  As noted in (6.4), the accuracy of the multipole expansion 

depends on the multipole order p, and the separation distant ratio ( )R
a .  For a given multipole 

expansion order, it is easily seen in Figure 4 that FFTM is likely to be more accurate than FMM, since 

the coarser cells in FMM have larger ( )R
a  ratios than the corresponding finer cells they originally 

represent.  Although, this argument would be absolutely true only if the local expansion is used for 

FFTM, we believe that it still holds, for low order expansion (p ≤ 2), since the quadratic interpolation 

functions resemble the second order local expansion.  Through this simple error analysis, it is 

demonstrated that potential evaluation through convolutions in FFTM is likely to be more accurate than 

that obtained by using the hierarchical approach in FMM. 

7.3.2 Efficiency analysis of FFTM 

This section studies the efficiency of FFTM, in terms of the computational speed (CPU time) and 

memory storage requirements.  Although it is preferable to compare FFTM with the existing fast 

methods, it is not done here because we are not familiar with the implementations of FASTCAP (FMM 

based program by Nabors and White [45]) and FFTCAP (pre-corrected FFT based program by Phillips 

and White [48]).  In this study, the comparisons are made only with respect to the GMRES explicit 

method.  Only the constant element and FFTM schemes with p > 0, are used here. 

Effects of spatial discretization on efficiency of FFTM 

Spatial discretization is also expected to affect the efficiency of the method.  The effects come in two 

ways, namely when evaluating the discrete convolutions, and computing the “near” charges 

contributions via Q2P.  For finer cell discretization, the cost of evaluating the discrete convolutions 

obviously increases, but computing the “near” charges’ effects become less expensive now, since the 

number of panels in the direct interaction lists decrease. 
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The cube example is used here for two kinds of cell discretization, namely 8x8x8 and 12x12x12.  Only 

the schemes (Dlist  = 1, p = 1) and (Dlist = 2, p = 2) are used to investigate the spatial discretization 

effects.  The cube is meshed with uniform elements, and larger problems are generated by using a finer 

element mesh.  Plots of the CPU time and memory storage requirements are shown in Figure 7.5. 

The two sets of plots are observed to be similar.  The 12x12x12 spatial discretization seems a little 

more efficient, because the gradients of the associated curves, as shown in Figure 7.5, are slightly 

gentler than that for the 8x8x8 case.  This means that its computational costs grow slower with 

increasing size of the problem.  However, for smaller problems, the 8x8x8 spatial discretization is 

noted to be more efficient. 

 

 

 

 

 

 

 

 

 

Test examples 

The efficiency of the various FFTM schemes is now compared against the GMRES explicit method.  

Two examples are considered here, namely the capacitance calculations of a cube (identical to the one 

used above with cell discretization fixed at 12x12x12), and the bus-crossing example (as in Figure 7.3).  

For the bus-crossing example, the problem size is increased by using finer mesh and/or adding two 

more layers of conductors.  The cell discretization is either 14x14x6 or 14x14x12, depending on the 

Figure 7.5.  (a) CPU time and (b) memory storage requirements for FFTM schemes using different 
spatial discretization.  Solid and dashed lines correspond to 8x8x8 and 12x12x12 cell 
discretizations, respectively. 
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layers of the conductors.  The efficiency plots of the CPU time and memory storage requirements for 

the two examples are given in Figures 7.6 and 7.7, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6. Plots of (a) CPU time and (b) memory storage versus problem sizes for cube example. 
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Figure 7.7. Plots of (a) CPU time and (b) memory storage versus problem sizes for bus-crossing 
example. 
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All the problems are solved more rapidly with FFTM.  It is also observed that both sets of results show 

similar behaviour.  As expected, the GMRES explicit method grows quadratically with increasing 

problem size.  On the other hand, the gradients of the FFTM curves, for both time and memory 

requirement, are approximately near unity for all the different schemes.  In general, if one desires better 

accuracy over the low order scheme (p = 1 and Dlist  = 1), it is usually more efficient to increase the 

multipole order (from p = 1 to p = 2 with Dlist = 1) rather than to use Dlist = 2 (that is, using Dlist  = 2 

instead of Dlist  = 1, and keeping p = 1),.  This is because the computational cost for storing and 

evaluating the “near” contributions via the Q2P matrices increases by about 5 times (from 27 cells to 

125 cells), if one were to used Dlist = 2 instead of Dlist = 1.  On the other hand, the computational cost 

only increases by about 2 times (from 4 to 9) if we use a higher multipole order, since they grow like 

order (p+1)
2
. 

From the test examples, it is demonstrated that FFTM is obviously more efficient than the GMRES 

explicit approach.  More importantly, the method has only linear complexity growth for both the 

computational time and memory storage requirements.  This means that FFTM can be as efficient as 

the existing fast methods, such as the FMM and precorrected FFT method. 

Larger realistic problems 

Finally, we employ FFTM to solve some larger and more realistic problems.  They include the micro-

mirror, 5x5 woven, bus-crossing, comb -drive and 10x10 woven, in ascending order of problem size 

and are depicted in Figure 7.8. 

The CPU times and memory storage requirements are summarized in Table 7.8.  There are two rows of 

results for each problem.  The upper one is the CPU time and the lower one is the memory storage 

requirement.  The computational costs for GMRES explicit approach are extrapolated from the results 

in the efficiency study, since these problems are too large to be simulated with our workstation.  In 

Table 7.9, we also calculated the ratios of these costs with respect to the estimated cost of the GMRES 

explicit method. 
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(a) 
(b) 

(c) (d) 

(e) 

Figure 7.8.  (a) micro-mirror, (b) 5x5woven, (c) bus-crossing, (d) comb -drive, and (e) 10x10woven.  
Cell discretizations used are (24x24x8), (16x32x8), (24x24x24), (50x60x2), and (32x64x8), 
respectively. 
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From Table 7.9, it is observed that the FFTM schemes are about one to two orders more efficient than 

the explicit GMRES method.  It is also noted that the savings are usually more significant in terms of 

the memory storage requirements.  For the largest problem considered here, the saving can be more 

than 100 times for the CPU time, and 300 times for the memory storage. 

 

 

 

 

Solution method 

FFTM, Dlist = 1 FFTM, Dlist = 2 

 
Example 
(DOF) GMRES  

explicit p = 1 p = 2 p = 1 p = 2 
19.3 mins 0.884 mins 1.10 mins 2.39 mins 3.04 mins Micro-mirror 

(10590) 897 Mb 33.54 Mb 37.26 Mb 85.70 Mb 89.71 Mb 
47.0 mins 0.972 mins 1.38 mins 2.71 mins 4.23 mins 5x5woven 

(16640) 2.22 Gb 30.22 Mb 34.16 Mb 73.22 Mb 77.28 Mb 
1.41 hrs 1.88 mins 2.89 mins 4.23 mins 7.79 mins Bus-crossing 

(22368) 4.00 Gb 32.89 Mb 42.33 Mb 65.23 Mb 74.78 Mb 
2.78 hrs 2.20 mins 3.44 mins 5.39 mins 9.77 mins Comb-drive 

(31328) 7.85 Gb 45.59 Mb 56.81 Mb 92.50 Mb 101 Mb 
12.05 hrs 7.02 mins 9.68 mins 16.07 mins 25.56 mins 10x10woven 

(65280) 34.09 Gb 110 Mb 126 Mb 172 Mb 183 Mb 

 

Table 7.8. CPU time and memory storage requirements for some large realistic problems. 

FFTM, Dlist = 1 FFTM, Dlist = 2 Example 
(DOF) p = 1 p = 2 p = 1 p = 2 

0.0457 0.0569 0.123 0.157 Micro-mirror 
(10590) 0.0374 0.0415 0.0955 0.100 

0.0207 0.0294 0.0578 0.0901 5x5woven 
(16640) 0.0136 0.0154 0.0331 0.0349 

0.0222 0.0342 0.0501 0.0922 Bus-crossing 
(22368) 0.00822 0.0106 0.0163 0.0187 

0.0132 0.0207 0.0324 0.0586 Comb-drive 
(31328) 0.00622 0.00734 0.0118 0.0129 

0.00971 0.0134 0.0222 0.0353 10x10woven 
(65280) 0.00323 0.00370 0.00505 0.00537 

 

Table 7.9. Ratio of CPU time and memory storage with respect to GMRES explicit method. 
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7.4 Conclusion for FFTM Method 

In this part of the thesis, we developed an alternate fast algorithm that can evaluate the dense matrix-

vector products rapidly.  We referred it to as the Fast Fourier Transform on Multipoles (FFTM) 

method.  The speedup in the algorithm is achieved by: (i) using the multipole expansion to approximate 

“distant” potential fields, and (ii) evaluating the approximate potential fields by discrete convolution 

via FFT algorithms. 

It is demonstrated that FFTM provides relatively good accuracy, and is likely to be more accurate than 

FMM for the same order of multipole expansion, at least up to p = 2.  Generally, it is more efficient to 

increase p rather than to use larger Dlist , in order to obtain more accurate solution.   

FFTM has approximately linear growth in terms of the computational time and memory storage 

requirements. Hence, it is as efficient as the existing fast methods, such as FMM and precorrected FFT 

methods.  In fact, for a given order of accuracy, we believe that FFTM is  likely to be more efficient 

than FMM, since the latter method would need a higher order expansions in order to achieve the desire 

accuracy. 
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8 

Conclusion and Future Works 

There are two main contributions in this thesis, namely: (i) improving the accuracy of the BEM 

analysis of electrostatic problems by using singular boundary elements, and (ii) developing a fast 

algorithm (FFTM) for solving the dense linear system of equations generated by BEM rapidly.  

The first part of the thesis is concerned with improving the accuracy of the electrostatics analysis of 

corner and edge singularities in potential problems.  This is achieved by developing new singular 

boundary elements, which correctly represent the singularity behaviour in the vicinity of the edges and 

corners.  These singular elements have incorporated the singularity features, specifically the order of 

singularity, in the formulations of the shape functions.  Chapter 4 is a preliminarily study on the two-

dimensional singular elements analysis, and Chapter 5 extends this approach to three-dimensional 

problems.  In both studies, it is demonstrated that the use of singular elements can produce mo re 

accurate results, both in the capacitance and electrostatics force calculations, than the standard elements 

(shape functions of low order polynomials).  Furthermore, it is also shown that this singular element 

approach is more accurate than some existing methods, such as the “regularized function method” by 

Igarashi and Honma [25] (for two-dimensional analysis) and h- mesh refinement method [92] (for 

three-dimensional analysis). 

For the three-dimensional study, the singular elements are also used in the electrostatics analysis of the 

electromechanical coupling simulations of some micro-devices.  It is observed that using the singular 

elements give rise to larger deformations in comparison to the standard elements.  This indicates that 

ignoring the corners and edges singularities (as in standard elements) in the electrostatic analysis is 

likely to underestimate the true deformations of the micro-structures in the simulations.  However, the 

differences in the pull-in voltages are relatively smaller due to the pull-in phenomenon. 

The second part of the thesis aims to improve the efficiency of solving the integral equation in the 

BEM.  In Chapter 7, we proposed and implemented an alternate fast algorithm, which we referred to as 

the Fast Fourier Transform on Multipoles (FFTM) method.  The speedup in the algorithm is achieved 
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by: (i) using the multipole expansion to approximate “distant” potential fields, and (ii) evaluating the 

approximate potential fields by discrete convolution via FFT. 

It is demonstrated that FFTM provides relatively good accuracy, and is likely to be more accurate than 

FMM for the same order of multipole expansion (up to the second order).  It is also shown that FFTM 

has approximately linear growth in terms of the computational time and memory storage requirements.  

Hence, it is as efficient as the existing fast methods, such as FMM and precorrected FFT methods.  In 

fact, we believe that FFTM is likely to be more efficient than FMM, since FFTM needs lower order of 

expansion to achieve the same order of accuracy.  

Several extensions of this piece of work can be identified.  For the singular boundary elements, one 

obvious extension is to employ it in fracture mechanics, specifically for three-dimensional problems.  

To our best knowledge, three-dimensional fracture mechanics analysis of sharp corners is still 

considerably rare up to date.  In this case, one would have to determine the order of singularities for 

different configurations of geometrical corners and material properties.  Once this information is 

obtained, the general methodology for formulating the singular elements, as presented in Section 5.3, 

can be used to derive the shape functions for the singular elements. 

As mentioned in Section 7.1.6, the use of local expansion, in conjunction with multipole expansion, is 

the most natural approach to devise the FFTM algorithm.  However, the O(p+1)
4
 growth in the number 

of discrete convolutions hinders the practicability of this  approach.  Fortunately, this scaling factor can 

be reduced quite significantly by applying the first technique that is used to reduce the computational 

cost of the potential correction step (see Section 7.1.5).  In this case, besides the “near” cells, the 

response functions of the higher multipole moments for the “very faraway” cells are also set to zero.  

Physically, this means that the potential contributions from the higher multipole moments that are 

located “very faraway” from the potential point are simply ignored.  This can be done because the 

higher multipole moments potential effects die down rapidly with increasing distance between the 

source and field points.  By doing so, the number of zero paddings required to eliminate the aliasing 

effects can be greatly reduced.  To be more explicit, instead of 2
3
 = 8 times of zero padding, it is now 

Z
3
 times, where 1.0 < Z < 2.0, and it depends on the order of accuracy required.  Suppose Z = 1.5 (Z

3
 = 
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3.375), then the computational cost for evaluating the discrete convolutions is reduced by 

approximately two times.   

Another way to enhance the performance of FFTM is to employ parallel computation.  An obvious part 

of the algorithm that we believe will gain significant speedup is the evaluation of the numerous discrete 

convolutions, because they are independent of one another.  In other words, the task of computing the 

O(p+1)
4
 discrete convolutions can be distributed to many processors simultaneously.  Hence, the 

computational time is expected to scale like O((p+1)
4
/m), where m is the number of processors 

available. 

Besides improving the FFTM algorithm, it can also be extended to other areas, such as in particle 

simulations and solving Helmholtz problems.  Although, both the problems have already being solved 

efficiently using FMM, we believe that FFTM can perform better because of its superior accuracy over 

FMM.  In fact, any problems that have being solved by FMM, can also be solve as efficiently by 

FFTM.  To a greater extent, we believe that this new fast algorithm can be applied to any problems that 

are solved by BEM, since the problems are ultimately reduced to solving dense linear systems of 

equations.  
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Appendix A 

Generalized Minimum RESidual (GMRES) 

Solving linear system of equations is one fundamental task in many numerical methods, for example 

solving boundary value problems (BVP) using BEM, where the problems are reduced to a dense linear 

system of equations, as given by 

 bx
rr

=A  (A.1) 

where A is a fully populated coefficient matrix. 

Solving (A.1) using direct methods, such as Gaussian Elimination, require ( )3nO  operations, which 

becomes computationally intractable if the problem size n exceeds several hundreds.  On the other 

hand, using projection iterative methods can reduce the operation counts to ( )2nO .  This is because the 

main computational cost of these iterative solvers is due to the generation the orthonormal basis 

vectors, which are defined by dense matrix-vector products.  In general, they only aim to solve (A.1) 

approximately by minimizing the residual norm.  Generalized Minimum RESidual (GMRES) is one 

such iterative method that is especially effective in solving dense linear systems generated by BEM.  

The remaining of this appendix will describe the method in more details. 

A.1 Basic Concepts of Projection Iterative Methods  

Suppose mK  is the chosen subspace and m is its dimension, then m constraints are imposed in order to 

extract an approximation mx̂ .  A typical approach is to impose m orthogonality conditions.  If the 

residual vector, xbr
rrr

A−=  is constrained to be orthogonal to m linearly independent vectors, then 

another subspace mL  of dimension m is generated, which is called the subspace of constraints, and 

these orthogonality conditions are known as the Petrov-Galerkin conditions.  To summarize, a 

projection iterative method seeks an approximate solution mx̂  from an affine subspace mx K+0

r
 of 

dimension m by imposing the Petrov-Galerkin conditions, that is, 

 mmxb L⊥− ˆA
r

 (A.2) 

where 0xr  is an arbitrary initial guess of the solution. 
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A.2 Krylov Subspace Methods  

One important class of mK  is the Krylov subspace, which is defined by 

 ( ) { }0
1

0
2

000 ...,,,,, rrrrspanr m
m

rrrrr −= AAAAK  (A.3) 

where 00 xbr
rrr

A−=  is the initial residual.   

Different Krylov subspace methods arise from the different choices of the subspace mL .  One possible 

choice is mm KL =  and also its variant mm KL A= , in which GMRES belongs.  The approximated 

solution mx̂  is generally be expressed as  

 ( ) 010

1

0
00ˆ rpxrxx m

m

i

i
im

rrrr
AA −

−

=

+=+= ∑ γ  (A.4) 

where ( )A1−mp  corresponds to a polynomial of degree m-1. 

A.3 GMRES:  Basic Concepts and Theorems  

GMRES was proposed by Saad and Schultz [37] as a Krylov subspace method for solving non-

symmetric systems, where the constraint subspace mL  is chosen to be mKA .  The mth iteration of 

GMRES is the solution to the least square problem 

 mmm xxxb K+∈− 0
2

ˆ,ˆ minimize
rr

A  (A.5) 

where mm xbr ˆA−=
rr

 is the GMRES residual at the mth iterations.  Substituting (A.4) into the residual 

equation gives, 

 
( )( )

( )( ) ( ) 001

010

1

ˆ

rprp
rpxbxb

mm

mm
vr

rrrr

AA
AAA

=−=
+−=−

−

−  (A.6) 

where mmp P∈  is a residual polynomial of degree m that satisfy the condition ( ) 1=0mp .  Using (A.5) 

and (A.6), the following theorem is derived. 

THEOREM A.1.  Let A  be nonsingular and mx̂  be the approximated solution at the mth GMRES 

iterations.  Then for all mmp P∈  

 ( ) ( )
20202

min rprpr m
p

m
m

rrr
AA ≤=

∈P
 (A.7) 

which leads to the following corollary, 
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 ( )
2

20

2 Am
m p
r

r
≤r

r
 (A.8) 

From (A.8), it is easy to see that GMRES algorithm will find the exact solution in at most n iterations 

(assuming infinite precision for the arithmetic operations).  It is also interesting to note two other 

theorems, which show finite termination of the GMRES algorithm under certain circumstances. 

THEOREM A.2.  Let A be a nonsingular and diagonalizable matrix.  Suppose A has only k  distinct 

eigenvalues, then GMRES will terminate in at most k  iterations. 

THEOREM A.3.  Let A be a nonsingular normal matrix.  Let b
r

 be linearly spanned by the k 

eigenvectors of A, that is, i

k

i
ivb
rr

∑
=

=
1

γ , where iv
r

 is the ith eigenvector of A and iγ  is the corresponding 

coefficient.  Then GMRES will also terminate in at most k  iterations. 

A.4 GMRES : Implementation and Algorithms  

Suppose mV  is an orthogonal projector onto mK .  Then (A.4) can be written as 

 mmm yxx
rr

V+= 0
ˆ  (A.9) 

where m
m Ry ∈

r
 is the coefficient vector to be determined.  The least squares problem in (A.5) becomes 

 m
mmm Ryyr ∈−

rrr
, minimize

20 AV  (A.10) 

Suppose Gram-Schmidt or modified Gram-Schmidt is used to form the orthonormal basis of mK , 

which in this case is called the Arnoldi process (ALGORITHM A.1), then  

 mmm HVAV 1+=  (A.11) 

where mH  is an upper Hessenberg matrix whose entries ijh  satisfy the condition, 1 if0 −>= jihij .  

Substituting (A.11) into the residual vector gives  

 ( )mmmmmmm yeyrr
rrrrr

HVHV −=−= ++ 1110 β  (A.12) 

where 
20r

r
=β , ( ) mT Re ∈= 0,...,0,11

r
, and the residual norm is  

 ( )
212 mmm yer

rrr
H−= β  (A.13) 

since the column vectors of 1+mV  are orthonormal. 
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ALGORITHM A.1: Arnoldi process. 

 1.  Let 00 xbr
rrr

A−= and 
20

0
1 r

r
v r

r
r

= .  

 2.  For i = 1,…, m-1, 
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In summary, the GMRES approximation is a unique solution of (A.9), which minimized (A.10), that is, 

( ) m
mmm Ryey ∈−=

21 minimize
rrr

Hβ . 

To solve the least squares problem defined in (A.13) efficiently, the upper Hessenberg matrix is 

transformed into upper triangular form by using the Givens rotations.  A Givens rotation is defined as 
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iG  (A.14) 

which is a (m+1) square matrix, where m is the number of iterations performed.  The entries ii sc  and  

are located in the i and i+1 rows and columns, which are defined as  
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=  (A.15) 

Applying (A.16) repeatedly will ultimately reduce mH  to its triangular form 

 mmm RHQ =  (A.16) 

where 12... GGGQ mm = , and mR  is a (m+1)xm upper triangular matrix.  Finally, substituting (A.16) 

into (A.13) gives 

 
( ) ( )

( ) unitary. is  since,
2

2121

mQR

HQH

mmm

mmmmm

yg

yeye
rr

rrrr

−=

−=− ββ
 (A.17) 

The solution of (A.17) is obtained by solving the triangular system, with the last row of mR  and last 

term of mg
r

removed.  Note that the last entry of mg
r

 corresponds to the residual of the least square 

problem that is used as the convergence indicator. 
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The Arnoldi algorithm and Givens rotations are the two important frameworks that GMRES algorithm 

builds on.  With these in hand, the GMRES algorithm is derived in ALGORITHM A.2. 

ALGORITHM A.2: GMRES algorithm. 

 Suppose the following information is given:  
 A = coefficient matrix, b

r
 = right hand side, 0xr  = an initial guess, 

 ∈ = convergence tolerance, and kmax = maximum iterations allowed. 
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One disadvantage of the method is that it requires all the basis vectors of the Krylov subspace to be 

stored as the iteration progress.  This means that performing k iterations require storing k  vectors of 

size n, which is undesirable for large problems.  To overcome this problem, one can used a restarted 

version of the GMRES algorithm as given in ALGORITHM A.3. 

ALGORITHM A.3: Restarted GMRES algorithm. 
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Appendix B 

Extracting Order of Singularity for Two and Three- Dimensional 
Corners and Edges 

The singularity behavior of the potential gradients or surface charge distributions in the vicinity of 

sharp corners and edges is strongly determined by the order of singularity, which is essentially the 

eigenvalue of the associated eigen-problem of the given geometry.  This appendix presents the 

techniques used to extract the order of singularities for the edges and corners in two and three-

dimensional problems.  

B.1 Potential Fields in the Vicinity of Two-Dimensional Corner 

In the two-dimensional context, a corner is referred to as the intersection point of two planes, which in 

this case are the adjacent surfaces of a conductor.  The corner is placed at the origin O and the 

conductor is assumed to be at a constant potential 0φ . Figure B.1 shows a general corner in two-

dimensional space. 

 

 

 

 

 

 

The governing equation for the potential field, in the polar coordinates ( )θρ,  in two-dimensional 

space, is given by 

 011
2

2

2
=

∂
∂+








∂
∂

∂
∂

θ
φ

ρρ
φρ

ρρ
 (B.1) 

By using separation of variables [52], the general solution of (B.1) is  

Figure B.1. Two-dimensional corner with opening angle ψ. 
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where s'α  are the eigenvalues, which are constrained by the boundary conditions applied at the 

corner.  For uniform Dirchlet boundary condition, (B.2) is reduced to  
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where ic  are the unknown coefficients that depend on the boundary conditions remote from the corner 

point. 

Finally, the normal potential gradients, that is, 
θ
φ

ρ
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∂
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=
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n
 at the two adjacent surfaces of the 

conductor are given by 
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and in the vicinity of the re-entrant corner can be approximated by 
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which may be singular with the order of singularity given by 
















−
Ψ

1
π

. 

B.2 Extracting Order of Singularity for Three-Dimensional Corners  

Analytical singularity solutions are almost impossible for the three-dimensional corners.  Numerical 

techniques have to be used to determine the order of singularity for arbitrary corners.  One such 

technique is presented as follows. 

The singularity solution for a corner can be constructed from the bounded solution of the three-

dimensional Laplace problem defined by the intersection of a sphere of radius rs, with surface ∂S and 

centered at the corner, with the region around the corner Ω , satisfying the boundary conditions on the 

appropriate parts of the corner, as depicted in Figure B.2.  
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Consider the three-dimensional Laplace equation in the spherical coordinates system, 

 0sin
sin
1

sin
11

22

2

22
2

2
=








∂
∂

∂
∂

+
∂
∂

+







∂
∂

∂
∂

θ
φ

θ
θθφ

φ
θ

φ
rrr

r
rr

 (B.6) 

Applying the following separation of variables  

 ( ) ( ) ( )φθφθφ ,,, UrRr =  (B.7) 

gives, 
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where G=∂S∩Ω , ∂G=∂S∩∂Ω , I is the identity operator.  ∆θ is the Laplace-Beltrami operator given as 
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 (B.10) 

The solution of (B.8) is straightforward, which is given by 

 )1( +−+= αα BrArR  (B.11) 

where A and B are constants, and α is yet to be determined by solving the eigenvalue problem defined 

in (B.9).  In the following sub-section, we present a numerical technique for solving the eigenvalue 

problem of a general corner.   

Figure B.2. A corner with apex at the centre of a sphere. 
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B.2.1 Solving the Laplace-Beltrami eigenvalue problem 

Finite difference method (FDM) can be used to solve the eigenvalue problem in (B.9).  However, from 

Figure B.2, it can be seen that the problem domain G may contains singular solution due to the 

singularity rays that intersect at the corner at O.  These singular points  have the order of singularity 

identical to their corresponding rays.  Although U is not singular, its derivatives are definitely singular.  

This deteriorates the accuracy of the numerical results. 

To alleviate the situation, Bazant [36] suggested removing all the point singularities by expressing 

( )φθ ,U  (assuming only one singularity point exists) as 

 ( ) ( )[ ] ( )φθφθτφθ ,,, uU p=  (B.12) 

where ( )φθτ ,  is a chosen function that is nonzero everywhere except on the singularity point, and p is 

the correct singular exponent of the singularity ray.  In this case, the function ( )φθ ,u  is smooth, and 

hence FDM can then be used to solve the modified eigen-problem more accurately.   

Suppose the singularity ray lies along the pole 0=θ , the obvious choice for τ is  

  θτθτ sin== or,  (B.13) 

For the general case where the singular ray is located at ( )11,φθ , we can choose  

 ( ) ( )[ ]211
2

1 sinθφφθθτ −+−=  (B.14) 

Equation (B.14) can be extended to general case where n singularity rays exist within the domain,i.e. 

 ( ) ( ) ( )φθτττφθ ,..., 21
21 uU np

n
pp=  (B.15) 

where p’s  are the known singular exponents of the singularity rays, and τ’s are the appropriately chosen 

functions.   

Applying the FDM to the modified eigen-problem leads to the following eigen-matrix problem, 

 ( ) ( )ααλλ +== 1with ,0UA  (B.16) 

where A is the coefficient matrix, U is the vector of nodal unknowns and λ is the eigenvalue of matrix 

A.  Two methods are presented in the following sub-section that can be used to solve the eigen-matrix 

problem in (B.16). 
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B.2.2 Solution methods for the eigen-matrix problem 

Method A: Reduction to a matrix eigenvalue problem 

For FDM, it is noted that λ only exists in the diagonal entries of A.  Hence, (B.16) can be rewritten as 

 ( ) 0UIA =−′ λ  (B.17) 

where A′  is a matrix independent of λ, and I is the identity matrix.  This is a standard eigenvalue 

problem that can be solved using QR factorization.  The two corresponding roots α for each λ are 

 λα +±−=
4
1

2
1

 (B.18) 

If λ are all real, then the smallest positive λ also corresponds to the smallest α, which is the order of 

singular for the potential field. 

Method B: Conversion to non-homogenous equations 

Generally, the eigen-problem can be written as 

 ( ) 0UM =λ  (B.19) 

This method begins by making an initial guess for λ to compute the corresponding matrix M, which is 

then modified by replacing one of the equation, for example the kth equation, with 1=kU .  The 

modified problem, which is now non-homogenous, is then solved, and the solution is substituted back 

into the original kth equation, that is, ∑
=

=
n

i
iki QUm

1

.  Generally, Q is not equal to zero, unless the 

assumed λ is an eigenvalue of (B.19).  Hence, the aim is to find the smallest value of λ that makes Q = 

0 or near zero. 

However, it is noted that the radius of convergence for this approach can be quite small.  This means 

that a good initial guess is required to ensure the method to convergence to the correct eigenvalue.  

Otherwise, the result has to be scanned in small steps for a large interval, which can be computationally 

expensive.  Therefore, a more efficient approach is to use method A to obtain a good initial guess of λ, 

and then use method B to refine the solution. 
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Appendix C 

Numerical Integration of Singular Integrals in Three-Dimensional 
BEM 

This appendix summarizes the regularization transformations for the various cases where the 

collocation point falls on nodes of the element over which integration is performed.  The first part deals 

with cases in which only the fundamental solution is singular.  In the second part, both the fundamental 

solution and the shape functions are singular.  In this case, the regularization transformations are first 

applied to remove the more strongly singularity due to the fundamental solution.  The weakly singular 

shape functions, after the transformations, can be cast into forms that can be effectively treated by the 

Gauss-Jacobi formulas
†
 [98].  Hence, the second part summarizes these expressions, which helps to 

determine the appropriate Gauss-Jacobi formulas required. 

C.1 Regularization Transformations for Treating the Singularity due to 
Fundamental Solution 

The integral concern here is generally of the form 

 ( ) ( )∑ ∫ ∫
= − − 
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1

1
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where ( )21,ξξf  is a nonsingular function, T is the number of sub-triangles depending on the 

collocation point, and c is the constant associated with the Jacobian of transformation that maps ξ onto 

η, and also depends on the location of the collocation point.  The underlying principle and general 

mapping functions of this technique are given in Section 5.4.2.  In this section, the actual mapping 

functions are explicitly presented for the various cases, where collocation points falls on different 

nodes. 

(i)  Collocation point at corner nodes.  c = 0.5 for T = I, II. 

 

 

 

† Gauss-Jacobi formula is given by: ( ) ( ) ( ) ∑∫ =−
≈+−

n

i i
ba ).(fdf
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1
11 ϖζξξξξ ,  

where iζ  and iϖ  are the abscissas and weighs, and a and b are the singular exponents. 
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(ii)  Collocation point at mid-side nodes.  c = 0.25, for T =I, III, and c = 0.5 for T = II.   

 

      

 

 

 

 

(iii)  Collocation point at center node (9). c  = 0.25 for all sub-domains.  
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η+=f , and ( )214 1
2
1

ηη +=f . 

C.2 Singularity Expressions for the Singular Shape Functions After the 
Regularization Transformations  

Boundary element integrals , after the regularization transformations, have the following general form 
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gf  is a nonsingular function.  However, ( )21,ξξih  may still be 

singular due to the singular shape functions.  There are four possible types of singularity forms, as 

mentioned in Section 5.4.3: 
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where ( ) ( )2
2

2
1 11

2
1

ξξ +++=r . 

The objectives in this section are to determine: (i) the final expressions of the kernel ( )21,ξξih  after the 

regularization transformations, and (ii) the Gauss-Jacobi formulas needed to evaluate the resulting 

integrals.  Now, consider the different singularity functions given in (C.3a) to (C.3d) separately. 
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nodes. 

  

 

 

 

 

 

  

 

 

 

Node 1: 

( )

( )[ ]
( ) ( ) EE

E

E

hII

hI

λλ
λ

λ

ηη

η

21
1

2
1

1

1

1

12)(

1

1
)(

++
=

+
=

 

Node 2: 

( )
( ) ( )

( ) E

E

hII

hI

λ

βλ

β

η

ηξ
η

2
1

11

1
1

1
1

)(

1
1

1
1

)(

−
=

−











+
−

=
 

Node 3: 

( )
( )
( ) ( )βλ

β

λ

ηξ

η

η

11

1
1

2
1

1
1

1

1
)(

1

1
)(

−











+

−
=

−
=

E

E

hII

hI

 

Node 4: 

( )[ ]
( ) ( )

( ) E

EE

E

hII

hI

λ

λλ
λ

η

ηη

2
1

21
1

1
1)(

1
1

1
12)(

+
=

++
=

 

Node 5: 

( )
( )
( ) ( )

( )[ ]
( ) E

E

E

E

hIII

hII

hI

λ
λ

βλ

β

λ

η

ηξ

η

ξ

2
1

11

1
1

1
1

1

1
2)(

1

1

1

1
)(

1

1
)(

−
=

+











+

+
=

+
=

 

Node 6: 

( )
( ) ( )

( ) E

E

hII

hIIII

λ

βλ

β

η

ηξ
η

2
1

11

1
1

1
1

)(

1
1

1
1

)(),(

−
=

−











+
−

=
 



 
135 

 

 

 

 

 

    

( ) ( ) EE

rh
λλ

α

ξξ 21
2 11

1

++
=  

This form of singularity exists only in the shape functions of Corner1  singular element, which is 

associated with strongly singular corners.     

 

 

 

 

 

 

 

 

  

 

   

   

 

Node 7: 

( )[ ]
( )

( )
( ) ( )

( ) E

E

E

E

hIII

hII

hI

λ

βλ

β

λ
λ

ξ

ηξ

η

η

1
1

11

1
1

2
1

1

1
)(

1

1

1

1
)(

1

1
2)(

+
=

+











+

+
=

−
=

 

Node 8: 

( )[ ]
( ) ( )

( ) E

EE

E

hII

hIIII

λ

λλ
λ

η

ηη

2
1

21
1

1
1)(

1
1

1
12)(),(

+
=

++
=

 

Node 9: 

( )
( )
( ) ( )

( )[ ]
( ) E

E

EE

hIII

hIVIIhI

λ
λ

βλ

β

λ

η

ηξ
η

ξ

2
1

11

1
1

1
1

1
1

2)(

1
1

1
1

)(),(
1

1
)(

−
=

+











+
+

=
+

=
 

Node 1: 

( )( )

( ) ( ) 1

1

1

21

22
1

2 1
1

1
1

2
112)(),(

CE

EhIII
λλ

α

αλ

ηη
η

++

































 ++= −  

Node 2: 

( )
( ) ( ) ( )

( )[ ]
( ) ( ) ( ) EEE

E

EE

rhII

r
hI

λλλ
αλ

λβλ

βα

ηηη

ηηξ
η

221
2

211

1
2

11
1

1
1

2)(

1
1

1
1

1
1

)(

1

1

+−+
=

+−











+
−

=
 

Node 3: 

( )
( ) ( ) ( )

( )
( ) ( ) ( ) EE

EE

r
hII

r
hI

λβλ

βα

λβλ

βα

ηηξ
η

ηηξ

η

211

1
2

212

1
2

1
1

1
1

1
1

)(

1
1

1
1

1

1
)(

1

1

−−











+
−

=

−−











+

−
=

 

Node 4: 

( )[ ]
( ) ( ) ( )

( )
( ) ( ) ( ) EE

EEE

E

r
hII

rhI

λβλ

βα

λλλ
αλ

ηηξ

η

ηηη

212

1
2

221
2

1
1

1
1

1

1
)(

11

1

1

1
2)(

1

1

+−











+

−
=

+−+
=

 

Node 5: 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )[ ]
( ) ( ) ( ) EEE

E

EE

EEE

E

rhIII

r
hII

r
hI

λλλ
αλ

λβλ

βα

λλλ

αλ

ηηη

ηηξ

η

ηηξ

221

2
2

211

1
2

211
2

11
1

1
12)(

1
1

1
1

1

1
)(

1

1

1

1

1

2
)(

1

1

1

+−+
=

++











+

+
=

++











+
=

 

Node 6: 

( )
( ) ( ) ( )

( )
( ) ( ) ( )
( ) ( )

( ) ( ) ( ) EE

E

EE

EE

r
hIII

r
hII

r
hI

λβλ

βαλ

λβλ

βα

βλλ

βα

ηηξ

η

ηηξ

η

ηξξ

η

211

1
2

212

1
2

121

1
2

1

1

1

1

1

12
)(

1
1

1
1

1

1
)(

1

1

11

1
)(

1

1

1

−−











+

−
=

−+











+

+
=

−











++

−
=

 

Node 7: 

( ) ( )
( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )βλλ

βα

λβλ

βα

λβλ

βαλ

ηξξ

η

ηηξ

η

ηηξ

η

121

1
2

211

1
2

212

1
2

1

1

11

1
)(

1
1

1
1

1

1
)(

1

1

1

1

1

12
)(

1

1

1

−











++

−
=

−+











+

+
=

−−











+

−
=

EE

EE

EE

E

r
hIII

r
hII

r
hI

 



 
136 

 

 

 

 

2

1
3 Cr

h
λ

=  

This is a point singularity that exists in Corner2 singular element. 
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Having to explicitly express the kernel hi’s after the regularization transformation, the following Gauss-

Jacobi formulas are identified.  

(1) a = λE and b = 0 

(2) a = 0 and b = λE 

(3) a = β and b = 0 

(4) a = 0 and b = β 

(5) a = 0 and b = λC1 

(6) a = 0 and b = λC2 

(7) a = λE and b = λE 

(8) a = β and b = λE 



 
139 

Appendix D 

Automatic Identification of Singular Elements in MEMS Device 
Simulations 

In this thesis, MSC/PATRAN (a general pre-processing program) is used to create the input files for 

the electrostatic analysis.  In two-dimensional analysis, the singular nodes and elements can be easily 

identified and manually selected in the boundary element models.  Hence, including the information of 

the singular elements is rather trivial.  However, the situation is not the same in the three-dimensional 

context, where the complication arises from the extra dimension.  Take for example the electrostatic 

comb drive shown in Figure D.1 (a very common MEMS device that can function as a capacitance 

sensor or an electrostatic actuator).  All the nodes that fall on the sharp edges and corners are singular 

nodes, and hence the task of collecting them manually is too laborious and almost impossible. 

 

 

 

 

 

 

This is further complicated by the different types of singular elements that were identified in Section 

5.1.  To alleviate this problem, a user-defined program, written in PCL (Patran Command Language), 

is implemented.  This program is capable of automatically identifying and classifying the singular 

elements according to their unique features.  The author would like to thank Dr. Su Yi for 

implementing this pre-processing program.  Figure D.2 shows the user-interface of the program that 

makes it user-friendly. 

 

 

Figure D.1. A three-dimensional model of a comb drive. 
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D.1 Classification of Singular Elements 

As noted in Section 5.1, there are five different types of singular ele ments identified for a general 

rectangular structure.  These singular elements possess unique features that allow them to be identified 

and classified uniquely.  The following are some preliminary definitions of singularity geometries in 

which the classification of singular elements are based on:  

(i) A convex edge is singular in nature. 

(ii) A concave edge is non-singular in nature. 

(iii) A vertex connected to three singular edges is strongly singular. 

(iv) A vertex connected to two singular edges is weakly singular. 

(v) A vertex connected to one or less singular edge is non-singular. 

A summary of the definitions of the singular elements are given as follows: 

(1) Edge: Contains only one singular edge. The order of singularity (referred to as edge 

singularity) remains the same along this edge. 

Figure D.2. The user interface created using PCL.  

Required input New groups that are 
created 

automatically 

User-defined menu 
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(2) Corner1 : Contains a strongly singular vertex with two adjacent singular edges.  The order of 

singularity increases from edge singularity to the stronger Corner1  singularity as it approaches 

the singular corner. 

(3) Corner2 : Contains only a weakly singular vertex and hence, the field is only weakly singular 

(Corner2  singularity) at the corner. 

(4) Corner3 : Contains one singular edge and also a weakly singular vertex.  In this case, the order 

of singularity varies from edge singularity to Corner2  singularity along the singular edge. 

(5) Corner4 : Contains one singular edge and also a non-singular corner.  In this case, the singular 

field would die down at the non-singular corner. 

D.2 Automatic Detection of Singular Features of Geometric Model 

To identify the singular elements, it is necessary to first efficiently identify the singular features of the 

geometric model.  This involves essentially checking the edges for convexity.  As mentioned earlier, a 

convex edge represents one that is singular in nature. 

To determine whether an edge of a model is convex or concave, an understanding of the representation 

of geometric entities in surface modeling is required.  In general, a solid consists of a set of bounding 

faces with outward directed normal vectors.  Each of these faces is formed by one or more closed chain 

of edges.  In the case of a simple trimmed surface, there is only one outer bounding loop of edges.  For 

surfaces with holes, there is an addition of one or more inner bounding loop of edges.  Figure D.3 

illustrates a simple trimmed surface and one with a inner bounding loop.  Also, the ordering of the 

edges and vertices of a surface follows a standard convention such that the direction of the outer 

bounding loop of edges is clockwise with reference to the face normal vector n
r

 while that of the inner 

bounding loop or loops of edges is anticlockwise.  

 

 

 

 

 

Figure D.3. Trimmed surfaces and their naming convention. 
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To represent geometric entities in terms of faces, edges and vertices is merely descriptive in nature.  To 

effectively evaluate these entities, some basic concepts of differential geometry are required.  

A geometric edge is essentially a 3D curve. The regular parametric representation of the curve is  

 ))(),(),(()( tztytxtrr ==  (D.1) 

The derivative of the vector valued function r(t) is defined as 

 )/,/,/(/)()( dtdzdtdydtdxdttdrtr ==&  (D.2) 

Higher order derivatives are defined similarly. 

An intrinsic property of the curve is the unit tangent vector or gradient of the curve. Suppose s is the 

natural parameter, that is, the arc length of a curve r(t ), then 

 ∫=
s

dttrs
0

)(&  (D.3) 

It follows that the unit tangent vector of the curve r(t) is defined as 

 dsdrT /=  (D.4) 

By applying a chain rule differentiation, an alternate expression for the unit tangent vector is obtained 

 )(/)( trtrT &&=  (D.5) 

In differential geometry, a surface is expressed as  

 )),(),,(),,((),( vuzvuyvuxvur =  (D.6) 

where u and v are parameters of the surface. A useful property is the surface unit normal vector n
r

 

which is essential for surface interrogation.  On differentiating r(u,v) with respect to t gives 

 vrur
dt
dv

v
r

dt
du

u
r

dt
dr

r vu &&& +=⋅
∂
∂

+⋅
∂
∂

==  (D.7) 

where r&  is the tangent vector of r(t) and ru and rv are tangent vectors of isoparametric curves on the 

domain (u,v-plane) of the parametric surface r(u,v). The three tangent vectors r& , ru and rv define a 

plane called the tangent plane as shown in Figure D.4.   

The surface unit normal vector n
r

 is the unit normal vector to this tangent plane at a particular point, 

which is obtained by normalizing the vector product of ru and rv as 

 
vu

vu

rr
rrn

×
×=

r
 (D.8) 
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Consider the pair of adjacent planar surfaces in Figure D.5 which are orthogonal to each other at an 

edge ei,j where i signifies the surface index and j the edge index. The edge ei,j  is convex if the cross 

product in
r

 and kn
r

 is in the same direction as ei,j . Consequently, if they are in the opposite direction, 

then ei,j  is a concave edge. 

 

 

 

 

 

 
Although this is true for orthogonal planar surface pair with straight edges, such a configuration is very 

restricted for modeling an object, even though it is observed that many of the MEMS structures are in 

general ‘rectangular’.  A method is devised to handle geometric configurations that are not constrained 

by orthogonal and planar conditions.  Consider a pair of general 3D surfaces as shown in Figure D.6 

which share a common edge represented by γ(t).  The unit tangent vector T of γ(t) can be evaluated 

using (D.7) at t = 0.5.  Next, the surface unit normal vectors in
r

 and jn
r

 of surface i and surface j can be 

evaluated at the parametric values u and v using (D.8) where ri(ui,vi) = rj(uj,vj) = r(t = 0.5).   

If the cross product of in
r

 and jn
r

 is in the same direction as T, then the edge is convex.  Consequently, 

if they are in the opposite direction, then the edge is concave.  A special situation arises when the cross 

product is a null vector.  In such a case, the edge is planar.  In general, the following criterion apply: 

Figure D.4. Illustration of a tangent plane. 

Figure D.5. A pair of orthogonal planar surfaces. 
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(i) vennT ji +=×⋅ )(   ⇒ edge is convex 

(ii) vennT ji −=×⋅ )(   ⇒ edge is concave 

(iii) 0)( =×⋅ ji nnT   ⇒ edge is planar 

 

 

 

 

 

Using these criteria, all the edges of a general solid can be queried for convexity. The flowchart of the 

algorithm to check the convexity of the edges of a general solid is shown in Figure D.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.6. A pair of non-planar surfaces. 

Figure D.7. Flowchart describing the process of checking convexity of edges. 
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After checking the convexity for all the edges, the nodes of the mesh are classified accordingly.  Every 

type of singular elements described in Section D.1 can be uniquely defined by a combination of these 

node types.  There are altogether four types of different nodes: 

(1) A node which lies on a vertex associated with one convex edge. 

(2) A node which lies on a vertex associated with two convex edges. 

(3) A node which lies on a vertex associated with three convex edge. 

(4) A node which lies on a convex edge. 

The flowchart of the algorithm to classify the nodes of a mesh according to these four categories is 

shown in Figure D.8. 

D.3 Implementation 

The platform used in the implementation of the algorithms described in the previous section is 

MSC/PATRAN, an industrial standard finite element pre- and post-processor.  In particular, the 

algorithms are coded in the PATRAN Command Language (PCL), which is an integral part of the 

PATRAN system.  Using PCL, access to PATRAN functions and databases is made possible.  PCL is 

also used to create an application user interface, which is depicted in Figure D.2, to enhance the ease of 

execution of the algorithms.  The user is only required to select the solid and activate the ‘apply’ 

button. When the execution of the program is completed, four groups are created in the PATRAN 

database. They are: 

(1) corner_node1 containing nodes lying on vertices associated with one convex edge. 

(2) corner_node2 containing nodes lying on vertices associated with two convex edges. 

(3) corner_node3 containing nodes lying on vertices associated with three convex edges. 

(4) edge_node containing nodes lying on convex edges. 

These groups can then be exported to the required format according to the type of solver used.   

To evaluate the performance of the algorithm, the program is run on a HP B200 workstation with 256 

MB of RAM.  For the comb drive configuration shown in Figure D.1, the program completes the task 

in only 39.22 seconds. 
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Figure D.8. Flowchart showing the process of classifying singular elements. 
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Appendix E 

Electromechanical Coupling Analysis 

To date, many MEMS devices are driven by electrostatic force.  The actuation principle can be briefly 

described as follows.  Electrical potentials that are applied on the conductors (actuators) induced 

electrical charges on their surfaces, which in turns generate electrostatic forces on the conductors.  

These forces then deform the MEMS structures, which result in mechanical restoring forces in the 

structures.  The deformations of the structures also change the surface charge distributions, and hence 

the electrostatic forces, which usually further deformed the structures.  This process will continue until 

an equilibrium state is attained, where the electrostatics driving forces are completely balanced by the 

mechanical restoring forces.  This equilibrium state is often referred to as the self-consistent state.   

It is obvious that the coupling analysis is nonlinear.  Mathematically, the solutions for the two domains 

can be represented as 

 ( )φ,uRq E=  (E.1) 

where ( )φ,uRE  denotes a linear operator that relates the surface charges density q, for a given 

conductor geometry u, and the applied electrical potentials φ.  And, 

 ( )( )qPuRu M ,=  (E.2) 

where ( )( )qPuRM ,  represents a linear or nonlinear operator that defines the structural displacements u, 

for a given the external pressure loading P, which is a function of the surface charge density q. 

Note that (E.1) and (E.2) can be solved in a black-box manner.  This means that they can be solved 

individually using different methods as if they are stand-alone problems.  One obvious advantage using 

a black-box approach is the ease of implementation. 

In the following section, we briefly outlined a black-box approach, namely the multilevel Newton 

method [15].  This method is used in this thesis to solve the electromechanical coupling analysis.  

There also exists other approaches, such as the simple relaxation technique [9], the Surface-Newton 

Generalized Conjugate Residual (SNGCR) algorithm [10], and the tightly coupled Newton method [13, 

14]. 
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E.1 Multilevel Newton Method 

In this approach, the coupled equations are solved by employing a nested Multidimensional Newton-

Raphson method.  The outer-Newton iteration solves the following residual equation: 

 ( ) ( )
( ) 0, =









−
−

=
qRu
uRq

quF
M

E  (E.3) 

where ( )uRE  is the charge on the conductors for a given conductors geometry u, and ( )qRM  is the 

structural displacement due to the electrostatic forces generated by the charges q.  Hence, the Newton 

iteration equation is given as 

 ( ) ( )
k

u

qkkkk ququF








=−
δ
δ

,, J  (E.4) 

where qδ  and uδ  are the variations in the solutions at the k iteration, which can be taken as the 

convergence indicator, and ( )qu,J  corresponds to the Jacobian of (E.3) which is given by 

 ( ) 







∂∂−

∂∂−
=

I
I

J
qR

uR
qu

M

E,  (E.5) 

where I is the identity sub-matrix. 

Basically, convergence is attained when qδ  and uδ  are both smaller than a given tolerance.  The self-

consistent solutions are then computed as, 

 k
u

kk
q

k uuqq δδ +=+= **   and,  (E.6) 

A summary of the multilevel Newton technique is given in the following algorithm. 

ALGORITHM E.1: Multilevel Newton algorithm. 
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Notice that the linear system defined by (E.4) in the above algorithm can be solved by using iterative 

solver, such as the Generalized Minimal RESidual (GMRES) [37].  An important feature of GMRES is 

that the coefficient matrix, which in this case the Jacobian of residual ( )kk qu ,J , need not be formed 

explicitly.  In other words, the method is matrix-free, and only requires the matrix-vector product 

m
k v

r
J  to be computed, where kJ  is the Jacobian of the residual of at the kth Newton iteration, and mv

r
 

is the mth basis vector of the Krylov subspace ( )0, rk
m

r
JK  as defined by 

( ) ( ) ( ){ }0
1

0
2

00 ...,,,, rrrrspan
mkkk rrrr −

JJJ , with ( )kk quFr ,0 −=
r

.  Hence, using (E.5), the matrix-vector 

product is explicitly expressed as  

 ( )


















∂
∂

−

∂
∂

−
=

















∂∂−

∂∂−
=

mq
M

mu

mu
E

mq

mu

mq

M

E
m

v
q

R
v
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R
v

v
v

qR
uR

vqu
,,

,,

,

,

*

*
, rr

rr

r
r

r
I

I
J  (E.7) 

where mqv ,

r
 and muv ,

r
 are the components of mv

r
 that are associated with the charge q in the electrostatic 

analysis and the displacement u in the mechanical analysis respectively.  The derivative terms in (E.7) 

can be approximated by finite-difference as follows: 

 ( ) ( )[ ] .or    for ,*
1

* quxxRvxRv
x
R

xx
x

x =−∆+
∆

≈
∂
∂ rr

 (E.8) 

where the matrix-free parameter ∆ is a small value, and is suggested to be [15] 

 ( ) ( )










=∆

xx
xx v

xRb

v

xa
vx rr
r

,,1min**sign  (E.9) 

with ( )5.0,01.0∈a  and ( )0.1,1.0∈b . 

Therefore, (E.7) becomes 

 ( )
( ) ( )[ ]

( ) ( )[ ]


















−∆+
∆

−

−∆+
∆

−
≈

qRvqRv

uRvuRv
vqu

MmqqM
q
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EmuuE
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mq
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,,

,,

*
1

*
1

, rr

rr
r

J  (E.10) 

Notice that ( )muuE vuR ,*
r

∆+  and ( )mqqM vqR ,*
r

∆+  are simply the solutions for the charge q and 

displacement u, when subjected small perturbations of magnitudes muu v ,*
r

∆  and mqq v ,*
r

∆  

respectively.  Hence, they can be solved outside the GMRES iteration.  The matrix-vector product in 

(E.10) can be obtained using the following algorithm. 



 
150 

ALGORITHM E.2: Computation of the matrix-vector product. 

 Given the parameters:  

 u∆ , q∆  using (E.8), and muv ,

r
, and mqv ,

r
 from the mth GMRES iteration. 

 Compute the following solutions, 

 
( )

( )


∆+=
=

φ
φ

,*
,

,2

1

muuE

E

vuRq
uRq

r  using electrostatic solver. 

 
( )( )

( )( )


∆+=
=

mqqM

M

vqPuRu
qPuRu

,2

1

*,
,

r  using elastomechanics solver. 

 Finally compute the matrix-vector product as  

 ( )
( )

( )


















−
∆

−

−
∆

−
=

12,

12,

1

1

,
uuv

qqv
vqu

u
mu

q
mq

m r

r
r

J  

Basically, ALGORITHM E.2 states that at each GMRES iteration, one require to compute two black-box 

solves, that is, ( )φ,* ,muuE vuR
r

∆+  and ( )( )mqqM vqPuR ,*,
r

∆+ .  Hence, the efficiency of the 

individual solvers has great impact on the overall efficiency of this method. 

E.2 Finite Element and Boundary Element Meshes 

For coupling analysis, two sets of element meshes are generated.  There is a finite element volume 

mesh of the structure that is required by the mechanical solver, and also a boundary element surface 

mesh used by the electrostatic solver.  The two meshes are associated with each other as they share the 

same set of nodes on the free-surfaces of the structures, where the coupling effects occur.  One simple 

approach is to extract the boundary element mesh from the finite element mesh, that is, the faces of the 

finite elements that coincide with the free-surfaces of the structures are regarded as boundary elements.  

However, it is noted that for a given finite element mesh, this way of creating the boundary element 

mesh results in different problem sizes for the boundary element analysis using different types of 

boundary elements. 

E.3 Equivalent Nodal Forces 

Electrostatic analysis computes the surface charge density distributions induced on the surfaces of the 

structures, which is then used to derive the electrostatic pressure distributions acting on the structure.  

The pressure loading has to be converted into nodal forces in the mechanical analysis to solve for the 
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deformation of the structures.  The transformation of the distributed pressure loading to its equivalent 

nodal forces can be done by equating the work done by the two systems of forces, as shown in Figure 

E.1, that is, 

 ( ) ( ) ( )∫∑
Γ=

Γ= 212121
1

,,,ˆ xxdxxuxxpuF
n

i
ii  (E.12) 

where the left hand side of (E.12) corresponds to the work done by the nodal forces iF , and the right 

hand side is that due to the pressure loading ( )21, xxp .  By expressing the displacement variations 

( )21, xxu  in terms of the nodal displacement iû , that is , ( ) ( )∑
=

=
n

i
ii uNxxu

1
2121 ˆ,, ξξ , the equivalent 

nodal forces are then derived as 

 ( ) ( ) ( )∫ ∫
− −

=
1

1

1

1
21212121 ,,, ξξξξξξξξ ddJpNF ii  (E.13) 

where ( )21,ξξJ  is the Jacobian of transformation that maps the element from global coordinates to its 

intrinsic ones.  The equivalent nodal forces computed in (E.13) act in the direction normal to the 

surface of the structure, but they can be easily resolved into their global coordinate components based 

on the geometry of the element, namely its surface normal vector. 

 

 

 

 

 
(b) 

Figure E.1. (a) Distributed pressure loading and (b) equivalent nodal forces, acting on an element. 

(a) 
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Appendix F 

Multipole Expansion Formulas 

The multipole expansion given in (6.1) is a complex value function.  To avoid complex arithmetic, it is 

rewritten in the real valued expression, by combining the complex conjugates.  This is derived in 

Section F.1.  This appendix also presents the recursive formulas for the associated Legendre functions 

and trigonometric functions, which is used to accelerate the calculations of the spherical harmonics.  It 

also gives the symmetry properties of these functions that are exploited to avoid computing the 

response functions 
1+n

m
n

R
Y

 for the whole problem domain. 

F.1. Real Valued Multipole Expansion 

Consider the truncated multipole expansion in (6.1), that is, 

 ( ) ( )∑ ∑
= −=

+
≈

p

n

n

nm
n

m
nm

n R
Y

M
0

1

,φθ
φ x  (F.1) 

The multipole moments m
nM  and spherical harmonics ( )φθ,m

nY  can be explicitly expanded into their 

real and imaginary components as  

 
( )
( ) { })()(

!
! im

nm
re

nm
m
n mim

mn
mn

M −
+
−

=  (F.2) 

where ( ) ( ) xdmxFm re
nm ′′′= ∫ 3)( cos φ , ( ) ( ) xdmxFm im

nm ′′′= ∫ 3)( sin φ , and ( ) ( ) ( )( )nm
n rPxxF ′′′=′ θρ cos . 

And the s pherical harmonics is defined as 

 
( )
( ) { })()(

!
! im

nm
re

nm
m

n yiy
mn
mn

Y +
+
−

=  (F.3) 

with ( ) ( )φθ mPy m
n

re
nm coscos)( = , and ( ) ( )φθ mPy m

n
im

nm sincos)( = . 

Finally, by substituting (F.2) and (F.3) back into (F.1) gives the real valued multipole expansion, as 

 ( ) ( )
( ) [ ]∑∑

= =
+

+
+

−
≈

p

n

n

m

im
nm

im
nm

re
nm

re
nmn

m
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R
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0 0

)()()()(
1 !

!
xφ  (F.4) 



 =

=
otherwise.,2

;0,1
where

m
cm

n  
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F.2. Recurrence Formulas for Associated Legendre and Trigonometric 
Functions  

To accelerate the computations of the spherical harmonics functions m
nY , the following recurrence 

formulas can be used: 

Associated Legendre functions, ( )θcosm
nP  for 

2
0

π
θ ≤≤  

 ( ) ( )
( ) ( ) 0,sin

!2
!2

cos ≥−= n
n

n
P n

n
n
n θθ  (F.5a) 

 ( ) ( ) ( ) 1,coscos12cos 1
1

1 ≥−= −
−

− nPnP n
n

n
n θθθ  (F.5b) 

 
( ) ( ) ( ) ( )[

( ) ( )] 20,cos1

coscos12
1

cos

2

1

−≤≤−+−

−
−

=

−

−

nmPmn

Pn
mn

P

m
n

m
n

m
n

θ

θθθ
 (F.5c) 

Trigonometric functions 

 ( ) ( ) ( )φφφφ 2cos1coscos2cos −−−= mmm  (F.6a) 

 ( ) ( ) ( )φφφφ 2sin1sincos2sin −−−= mmm  (F.6b) 

F.3. Symmetry Properties of Associated Legendre and Trigonometric 
Functions  

These symmetry properties are useful when evaluating the spherical harmonics for the full angular 

ranges, that is, for πθ ≤≤0  and πφ 20 ≤≤ .  Consider a point in the first quadrant with the 

coordinates of ( )φθ ,,R , the following symmetry relation holds for the symmetry points in the other 

quadrants: 

Associated Legendre functions, for symmetry point at ( )φθπ ,, −R  

 ( )( ) ( ) ( )
( )




−
+

=−
otherwise.cos

even is  ifcos
cos

θ
θ

θπ
m

n

m
nm

n P
mnP

P  (F.7) 
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Trigonometric functions 

 
( )( ) ( ) ( )
( )( ) ( ) ( )φφπ

φφπ

mm

mm
m

m

sin1sin

 cos1cos
1+−=−

−=−
, for point at ( )φπθ −,,R  (F.8a) 

 
( )( ) ( ) ( )
( )( ) ( ) ( )φφπ

φφπ

mm

mm
m

m

sin1sin

 cos1cos

−=+

−=+
, for point at ( )φπθ +,,R  (F.8b) 

 
( ) ( )
( ) ( )φφ

φφ
mm

mm
sinsin

 coscos
−=−

=−
, for point at ( )φθ −,,R  (F.8c) 

Hence, by using these symmetry properties, the cost of evaluating the response functions 
1+n

m
n

R
Y

 is 

tremendously reduced. 


