
ADAPTIVE LINK CACHING FOR DYNAMIC

SOURCE ROUTING - A SIMULATION STUDY

LIU YAODA

NATIONAL UNIVERSITY OF SINGAPORE

2003
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ADAPTIVE LINK CACHING FOR DYNAMIC

SOURCE ROUTING - A SIMULATION STUDY

LIU YAODA

(B. Eng., Shanghai Jiaotong University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2003

i

Acknowledgment

First of all, special thanks must go to my parents, especially my mum dwelling in

my memory, for all the love and care they gave me during my journey of growing

up.

I would like to express my gratitude to my supervisors, Dr. Jiang Sheng-

ming and Dr. Jiang Yuming for all their kindly help and patience through the

days. The pleasure is certainly mine in having this opportunity to work under

their guidance and learn from them. I really appreciate the numerous valuable

advice and discussion with them.

Special thanks must go to Yih-Chun Hu from Carnegie Mellon University

for his kindness of sharing his simulation model.

Also I would like to thank Institute for Infocomm Research for providing

me with all facilities to carry out my research.

Work aside, I want to thank all my friends, especially my girl friend, Wei

Na, for the happy hours.

ii

Contents

Acknowledgment i

Contents ii

List of Figures iv

List of Tables vi

Summary viii

Chapter 1. Introduction 1

1.1 Overview of routing in MANETs 1

1.2 Motivation . 4

1.3 Methodology . 6

1.3.1 Mobility models . 6

1.3.2 Performance metrics . 8

1.4 Organization and contribution . 10

Chapter 2. Adaptive link caching for DSR: an overview 12

2.1 Principle of adaptive link caching 13

2.2 An application of adaptive link caching in DSR 15

2.3 Simulation results . 16

2.3.1 Homogeneous mean epoch 17

Contents iii

2.3.2 Heterogeneous mean epochs 23

2.3.3 Random waypoint mobility model 25

2.4 Conclusion . 29

Chapter 3. An adaptive link caching protocol for DSR 30

3.1 Protocol specification . 30

3.1.1 Header format . 31

3.1.2 Detailed operation . 32

3.2 An implementation of ε measurement 35

3.3 Simulation results . 38

3.3.1 Homogeneous mean epoch 39

3.3.2 Heterogeneous mean epochs 40

3.4 Conclusion . 42

Chapter 4. Adaptability to mobility models 44

4.1 Exponential random waypoint mobility model with pause 45

4.2 Random waypoint mobility model 50

4.3 Random Gauss-Markov mobility model 55

4.4 Brownian mobility model . 57

4.5 Conclusion . 59

Chapter 5. Conclusions 61

Bibliography 64

Appendix A. Source Code for Tp × L(Tp) Estimation 67

Appendix B. Source Code for ε Estimation 70

iv

List of Figures

2.1 Overhead vs packet delivery ratio (exponential random waypoint

mobility model (pause time = 0s), homogeneous mean epoch (λ−1 =

60), 500m× 1500m) . 20

2.2 Delay vs path length (exponential random waypoint mobility model

(pause time = 0s), homogeneous mean epoch (λ−1 = 60), 500m×

1500m) . 21

2.3 Overhead vs packet delivery ratio (random waypoint mobility model,

500m× 1500m) . 27

2.4 Delay vs path length (random waypoint mobility model, 500m ×

1500m) . 28

3.1 Amended DSR Source Route option in a DSR Options header . . 31

3.2 Original DSR Source Route option in a DSR Options header . . . 32

3.3 Flow chart of route request processing 33

3.4 Flow chart of ε measurement . 37

4.1 Packet delivery ratio vs overhead (exponential random waypoint

mobility model, 500m× 1500m) 47

List of Figures v

4.2 Delay vs path length (exponential random waypoint mobility model,

500m× 1500m) . 48

4.3 Packet delivery ratio vs overhead: random waypoint mobility model

(pause time = 5s), 500m× 1500m 51

4.4 Delay vs path length: random waypoint mobility model (pause

time = 5s), 500m× 1500m . 52

4.5 Packet delivery ratio vs overhead (random waypoint mobility model,

500m× 1500m, Max speed = 20m/s) 53

4.6 Delay vs path length (random waypoint mobility model, 500m ×

1500m, Max speed = 20m/s) . 54

vi

List of Tables

2.1 Distribution of times being next hop vs space sizes: heterogeneous

mean epochs (λ−1
1 = 60s, λ−1

2 = 250s), exponential random way-

point mobility model (pause time=0s) 24

2.2 Performance versus space sizes: heterogeneous mean epochs (λ−1
1 =

60s, λ−1
2 = 250s), exponential random waypoint mobility model

(pause time=0s) . 25

2.3 Distribution of being next hop versus mobility: heterogeneous

mean epochs (λ−1
1 = 60s), exponential random waypoint mobil-

ity model (pause time=0s), 1500m× 1500m 26

3.1 Performance: exponential random waypoint mobility model (pause

time = 0s), homogeneous mean epoch (λ−1 = 60), 1500m× 500m 40

3.2 Distribution of being next hop vs space sizes: exponential random

waypoint mobility model (pause time=0s), heterogeneous mean

epochs (λ−1
1 = 60s, λ−1

2 = 250s) 41

3.3 Distribution of being next hop vs space sizes: exponential random

waypoint mobility model (pause time=0s), heterogeneous mean

epochs (λ−1
1 = 60s, λ−1

2 = 250s) 42

List of Tables vii

3.4 Performance versus space sizes: exponential random waypoint mo-

bility model (pause time=0s), heterogeneous mean epochs (λ−1
1 =

60s, λ−1
2 = 250s) . 43

4.1 Performance: exponential random waypoint mobility model (pause

time = 5s), homogeneous mean epoch (λ−1 = 60s), 1500m× 500m 45

4.2 Distribution of being next hop: exponential random waypoint mo-

bility model (pause time = 5s), heterogeneous mean epochs (λ−1
1 =

60s, λ−1
2 = 250s), 500m× 1500m 50

4.3 Performance: exponential random waypoint mobility model (pause

time = 5s), heterogeneous mean epochs (λ−1
1 = 60s, λ−1

2 = 250s),

500m× 1500m . 50

4.4 Performance: random Gauss-Markov mobility model, homogeneous

interval, 1500m× 500m . 57

4.5 Distribution of being next hop: random Gauss-Markov mobility

model, heterogeneous intervals (λ−1
1 = 10s, λ−1

2 = 20s), 1500m ×

500m . 58

4.6 Performance: random Gauss-Markov mobility model, heteroge-

neous intervals (λ−1
1 = 10s, λ−1

2 = 20s), 1500m× 500m 58

4.7 Performance: Brownian mobility model, homogeneous interval,

1500m× 500m . 59

4.8 Distribution of being next hop: Brownian mobility model, hetero-

geneous intervals (λ−1
1 = 10s, λ−1

2 = 20s), 1500m× 500m 60

4.9 Performance: Brownian mobility model, heterogeneous intervals

(λ−1
1 = 10s, λ−1

2 = 20s), 1500m× 500m 60

viii

Summary

In Dynamic Source Routing protocol (DSR) for Mobile Ad Hoc Networks (MANETs),

caching is an important issue because it can make use of the known routing in-

formation to improve performance. In the design of caching schemes, the cache

timeout, the time period that a link should stay in the cache, is very important

and has high impact on the performance. However, only a few works have been

done on how to determine the cache timeouts which can adapt to the change of

link status.

In this thesis, an adaptive link caching scheme for DSR is proposed and

evaluated through simulation. The proposed scheme suggests nodes to predict

a link’s lifetime, Tp, estimate the link availability, L(Tp), and use Tp × L(Tp) to

determine the cache timeout for the link before it is added into the cache. This

cache timeout can reflect the future link status and is helpful in choosing reliable

routes so that the performance of DSR can be improved.

1

Chapter 1

Introduction

1.1 Overview of routing in MANETs

In mobile ad hoc networks (MANETs), routing is among the most important and

challenging subjects. Because MANETs are self-organizing, self-configuring and

non-infrastructural, routing can only be done in a multi-hop manner, in which

every node is acting not only as a node, but also as a router to forward packets

for other nodes that are not within the wireless transmission range of each other.

Because MANETs are bandwidth and energy constraint, routing in MANETs

confronts many challenges.

Many different routing protocols have been proposed to provide MANETs

with multi-hop routing solution, such as Destination- Sequenced Distance-Vector

routing (DSDV) [17], Ad Hoc On-demand Distance-Vector routing (AODV) [16]

and Dynamic Source Routing (DSR) [14]. In general, the current existing pro-

tocols can be categorized into two types: on-demand and table-driven routing

protocols [7]. On-demand protocols attempt to find routes only when the routes

1.1 Overview of routing in MANETs 2

are desired by a packet ready to be sent. When a source node requires a route

to a destination node, a route discovery process is initiated by the source node.

Once a route has been found, it is maintained until it is not required any longer

or the maintaining node thinks the route is not usable any longer. On the other

hand, table-driven protocols attempt to maintain consistent, up-to-date routing

information for all nodes in the network. This is typically achieved through main-

taining a set of routing tables and exchanging them among nodes. Changes in

network topology brought about by mobility or node failures, are catered for by

propagating updates throughout the network to maintain a consistent view.

Obviously, the wireless, mobile and multi-hop nature are the main causes

of the complexity of routing in MANETs. Since no central administration entity

exists, a node has to exchange routing information with other nodes so as to get

enough information to perform the multi-hop routing, which is the origin of the

signalling overhead. A lot of works have been done on how to exchange rout-

ing information. DSDV exchanges routing tables periodically. AODV deploys

route discoveries to find routes and sends “hello” message periodically to main-

tain routes. DSR deploys route discoveries to find routes and maintains routes

passively. More discussion on the routing protocols can be found in [7].

On the other hand, how to obtain and apply link status to routing in

MANETs is gaining more and more attention, since it can help in maintaining

routes and selecting more reliable routes. In [3] and [5], a metric called “asso-

ciativity” is defined to reflect link status. Each node sends beacons periodically

to signal the neighbors its existence; when receiving such beacons, the receiver

1.1 Overview of routing in MANETs 3

increases the sender’s associativity. In [8], signal stability and location stability

are used to quantify link status. By measuring the signal strength of beacons,

all neighbors are categorized into “strongly connected” and “weakly connected”.

The location stability is measured by recording the time period that the link has

existed. The drawback of the above two schemes is that they do not make full use

of the signal strength information. Actually, based on the obtained information

of signal strength, nodes’ relative velocities and distance can be estimated, and

then a predicted lifetime of the link can be obtained. Several solutions have been

proposed for such predictions. For example, in [13], nodes can predict links’ life-

time by measuring the relative distance between the two nodes of the link. The

drawback of the above scheme is that these metrics cannot reflect the possible

change of link status if the nodes change their movement in the near future. A

prediction-based link availability algorithm is proposed to consider the possible

movement change in [9]. In this model, the link availability is defined as the time

period in which an active link will continue to be available. The basic idea is

to let nodes first predict a time period (Tp) that a currently active link will last

from t0 by assuming that both nodes of the link will keep their current movement

unchanged. Then, the probability that the link will last from t0 to t0 + Tp is

estimated by considering the possible movement changes in the time period Tp.

Lastly, a metric, Tp × L(Tp), is proposed to reflect the link availability, which is

expected to reflect links’ future status.

In this thesis, we study how to apply TP×L(Tp) to provide the link caching

schemes for DSR with adaptability.

1.2 Motivation 4

1.2 Motivation

In [15], several caching schemes for DSR are studied, some are path cache, and

the others are link cache. Path cache is simple for implementation and easy to

manage. Link cache depends on some complex search algorithms to find the

best path to the destination node, which is more difficult to implement and may

require more CPU time to process. However, link cache has some strengths that

we are more interested in.

First of all, link cache is more efficient in deploying the routing information

obtained in the route discovery that costs a lot of bandwidth, power and CPU

time. For example, if a link is observed to be broken, with path cache, a common

and easy way is to remove all paths containing this link, which is not an efficient

way to make use of the routing information. However, with link cache, if the

same thing happens, we only remove the broken link and keep all other active

links unaffected. It is obvious that link cache is better than path cache in two

aspects. First, it can maintain the connectivity of the mobile ad hoc network

when link breakage happens; and second, it can reduce the signaling overhead

and delay caused by the route discovery for routing information which should be

still available in the cache but unfortunately has been removed.

Second of all, link cache requires smaller cache capacity than path cache

does. Theoretically, with a MANET of n nodes with the link cache strategy, the

maximum number of links is n × (n − 1), which is the number of links that a

node will possibly need to store. In this case, when the network size grows, the

1.2 Motivation 5

cache capacity demand for link cache may grow dramatically. However, this will

happen only if all nodes can communicate directly with one another, which is

always not the case in realistic MANETs. And active links will break because of

the movement after certain period of time and such kind of link breakage will be

observed and subsequently the broken link will be removed from the link cache.

Besides, link cache can prevent the link cache becoming too big by giving every

link a timeout after which the link will be removed from the link cache. The most

important thing is that in link cache, an active link occupies only one memory

entity at any time. However, in path cache a active link might be cached many

times in different paths and therefore occupy multiple memory entities. In this

sense, the link cache needs less cache capacity than path cache does.

Based on the above consideration, we decided to use link cache as the basis

of our research.

For link caching in [15], the cache timeouts for links are determined in

two ways. One is to set a single static timeout for all links. The other is to set

different timeouts for different links based on a metric called link stability, which

is increased when the link is used, and decreased when the link is observed to

break. For the static scheme, it has been shown that either 5s or 10s are the

optimal static timeouts in those cases studied and the optimal static timeouts

for other scenarios could be different [15]. Since the timeouts can affect the

performance a lot, an adaptive scheme which can predict the links’ lifetimes is

expected to perform better.

Inspired by [9] and [15], we consider to apply the metric “link availability”

1.3 Methodology 6

to maintain the route cache in DSR. In particular, we use link availability and

predicted lifetimes to determine cache timeouts, which decide how long a link

should stay in the link cache. Before a link is added into the link cache for DSR,

its link lifetime is estimated as Tp × L(Tp) and then lifetime + currenttime is

used as the timeout for the corresponding link.

1.3 Methodology

To evaluate the proposed adaptive link caching scheme, a set of simulations have

been conducted with NS-2 [4]. The following sections present the mobility models

and the metrics used for performance evaluation. The static link caching scheme

(link-static-T) [15] is also simulated for comparison, in which all links are cached

for Ts.

The simulated MANET consists of 50 nodes, with 20 constant bit rate

data connections in total, each transmitting at 4 packets of 64 bytes per second.

A node can have at most 2 such connections. The simulation time is set to 900s

and three space sizes, i.e., 700m×700m, 500m×1500m and 1500m×1500m, are

simulated.

1.3.1 Mobility models

The following mobility models are adopted in the simulation.

• Exponential random waypoint mobility model [9]:

The initial position and destination are selected uniformly over the allowed

1.3 Methodology 7

space, and the time for a node to reach the destination (i.e., epoch length)

is exponential distributed with mean epoch, namely λ−1. Then the node’s

speed is the distance divided by the epoch length. After reaching the des-

tination, the node may pause for some time, and then repeats the above

operations. For the homogeneous mean epoch cases, all nodes have the same

mean epoch λ−1. For the heterogeneous mean epochs, nodes may have dif-

ferent λ−1. High mobility nodes have a smaller λ−1
1 and low mobility nodes

have a larger λ−1
2 . Note that, exponential random waypoint mobility model

is considered as a mobility model with exponentially distributed epochs

only when the pause time equals to 0.

• Random waypoint mobility model [11]:

The initial position and destination are selected uniformly over the allowed

space, and a speed is selected uniformly over [0, vmax]. After arriving at the

destination, a node waits at the destination for a pause time, and repeats

the above operations.

• Random Gauss-Markov mobility model [12] and [15]:

Under this mobility model, at the beginning of each deterministic interval

nodes update their speeds as follows:

vxt
= αvxt−1

+ (1− α)vx +R
√
1− α2, (1.1)

vyt
= αvyt−1

+ (1− α)vy +R
√
1− α2, (1.2)

where [vxt
, vyt
] is nodes’ velocity in the interval t; R is a random variable

normally distributed with mean 0 and variance δvx
; α is the weight of the

1.3 Methodology 8

velocity in the last interval. If a movement causes a node to move out of

the space, the direction of the velocity is reversed.

• Brownian mobility model:

Under this mobility model, nodes change speed and direction at discrete

time intervals, such that at the beginning of each interval, each node chooses

r ∈ [0, vmax] and θ ∈ (−π, π] and moves with velocity vector (r sin θ, r cos θ)

during that interval. If this movement causes a node moving out of the

allowed space, the node keeps the originally chosen velocity, but picks the

intersection of the boundaries and the movement direction as destination.

1.3.2 Performance metrics

In [15], caching schemes are evaluated in terms of four performance metrics:

packet delivery ratio, overhead in packets, end to end delay and path optimality.

The first three metrics are also used here to evaluate the adaptive link caching

scheme. In addition, path length is used to present the path optimality; overhead

in bytes is used to show the overhead more precisely; number of route discoveries

is used to present the number of route discoveries. The six performance metrics

adopted are described as follows:

• Packet delivery ratio (PDR): The fraction of packets sent by the “ap-

plication layer”on a source node, which are received by the “application

layer” on the corresponding destination node.

• Overhead in packets (OiP): The total number of packets transmitted

1.3 Methodology 9

by the routing protocol, which does not include data packets.

• End to end delay (DL): The average delay from the point when a packet

is sent by the “application layer” on a source node until the point when it is

received by the “application layer” on the corresponding destination node.

It is computed only for packets that are successfully delivered.

• Overhead in bytes (OiB): The total number of bytes transmitted by the

routing protocol.

• Number of route discoveries (NRD): The total number of route dis-

coveries initialized by all nodes.

• Path length (PL): The number of hops that a packet passes before it

reaches the corresponding destination node.

In addition, a metric called times of being next hop, which is the

number of times that a node is selected as an intermediate node to form source

routes in DSR, is used to evaluate the adaptability of the adaptive link caching

scheme to different mobility. Summing up the times of being next hop of all

nodes belonging to the same class of mobility degree, the total times of being

next hop of the class of nodes can be obtained. For example, when node S has

a data packet addressed to node D and finds a route such as S->M->N->O->D.

Suppose along this route, two nodes, M and N, are high mobility nodes; one

node, O, is low mobility node. Then for this route, the times of being next hop of

high mobility nodes is 2, and the times of being next hop of low mobility nodes

1.4 Organization and contribution 10

is 1. Repeating the above operation, we can have the total times of being next

hop of high and low mobility nodes. Note that we exclude the source node and

destination node from the recording, because they are fixed and not affected by

routing protocol.

1.4 Organization and contribution

The rest of the thesis is organized as follows:

Chapter 2 introduces the principle of the proposed adaptive link caching

scheme for DSR and investigates its performance in an ideal situation. In this

case, a node knows all information used to estimate link lifetime, which is fur-

ther used to determine the time period that a link should stay in the link cache.

Furthermore, a node is supposed to know the availability of other nodes imme-

diately. This chapter tries to provide an overview of the proposed adaptive link

caching scheme and its performance. Compared to the static link caching scheme

(i.e., link-static-T) [15], the proposed adaptive link caching scheme can reflect the

possible link status in the future and reduce the overhead generated for routing.

Chapter 3 proposes an adaptive link caching protocol for DSR and evalu-

ates it with the exponential random waypoint mobility model. In reality, a node

knows only the information used to estimate lifetimes of links between itself and

its neighbors, and hence it can only estimate the cache timeouts for links be-

tween itself and its neighbors. To make nodes know the timeouts for other links,

a scheme of exchanging timeouts among nodes is introduced into the protocol by

1.4 Organization and contribution 11

appending the timeouts to the DSR header. Besides, to provide the protocol with

adaptability to mobility models with non-exponential epochs, the ε measurement

scheme [9] is implemented into the protocol.

Chapter 4 evaluates the proposed adaptive link caching protocol for some

other mobility models whose epochs are not exponentially distributed, so as to

show the adaptability of the protocol to other mobility models. We found that

in most cases the protocol can adapt to mobility models and perform better than

the static link caching scheme [15].

Chapter 5 concludes the thesis and discusses possible future research di-

rections in this area.

The work in this thesis is also reported in [1] and [2].

12

Chapter 2

Adaptive link caching for DSR:

an overview

In this chapter, we propose a new adaptive link caching scheme for DSR, which

aims to manage the cached link information according to the possible link status

in the future. In DSR, caching is an important source of routing information and

probably the most effective way to make use of the routing information obtained

through route discoveries. When it comes to cache, cache timeout, the time when

a link will be removed from the cache, must be considered. However, only a few

works have been done in this field. Before we present our solution, let us take

a closer look at the cache timeout. When a link is about to be added into a

link cache, a timeout value has to be assigned to the link. The ideal scenario

is that nodes know the time point when the link will be broken at the time of

adding it into the cache. Thus, this time can be used as cache timeout and the

link information can represent the actual link status exactly. In reality, it is not

possible to know future link status exactly in advance. So, what can we do? It is

2.1 Principle of adaptive link caching 13

possible to obtain the historical and current link status. With these information,

nodes can predict the future link status. Particularly, the lifetime of links can

be predicted. Our idea is to estimate the lifetime of links first, and then set the

cache timeout according to the estimated lifetime. In this chapter, we discuss

the proposed scheme with a simple case in which the nodes know all information

needed to predict the lifetime for every link. Based on this assumption, no timeout

exchange is needed and all estimation can be done locally by the node itself. The

proposed scheme is also analyzed with the simplest scenario as explained later.

Firstly, it is evaluated in terms of some common performance metrics, such as

packet delivery ratio, overhead, end to end delay. Secondly, its adaptability to

mobility is discussed with a special scenario in which nodes move with different

mobility.

2.1 Principle of adaptive link caching

This section introduces the principle of the adaptive link caching scheme. Basi-

cally, in this scheme a node does a prediction based cache timeout estimation for

each link when it is about to add the link into its link cache.

Before we delve into the details on how to estimate cache timeouts, let us

look at what information we have and what can be done. When a node receives

data packets or beacons from a neighbor node, it can measure the signal strength

and then estimate the distance and relative velocity [13]. More recently in [6],

with the help of global positioning system, a node can also get information about

2.1 Principle of adaptive link caching 14

the distance and relative velocity. Now that we have such movement information,

what can be done? At first, we assume that nodes will not change the current

movement. Based on this assumption, we can predict the future movement of the

nodes with their historical movement and then predict the lifetime of links, Tp.

Due to the dynamic nature of MANETs, Tp itself can not reflect the real lifetime

of links especially in high mobility scenarios. Considering the possible movement

change of nodes, the probability that the link will continue to be available in the

predicted time period, L(Tp), must be introduced. Particularly, given a currently

available link and Tp estimated based on historical and/or current status of the

link, L(Tp) can be estimated. The estimation of L(Tp) is based on the knowledge

of the mobility model. For different mobility models, different L(Tp) can be

obtained for the same Tp. The combination of the predicted lifetime and the

probability as Tp×L(Tp), can be expected to reflect the future link status better

than the lifetime itself.

Now let us go further to the prediction of Tp×L(Tp). Assuming that nodes

know all necessary information such as relative velocities and distances between

all nodes, they can estimate the lifetime of links that they noticed and assign

timeouts according to the estimated lifetimes. By assigning different timeouts to

different links, which can reflect the actual lifetime of the link, nodes’ cached link

information can reflect the current link status better and then do better routing.

In other words, links with longer lifetimes will stay in the link cache for longer

time than those with shorter lifetimes, and at the same time, links with longer

lifetimes will have higher probability to be selected to form source routes than

2.2 An application of adaptive link caching in DSR 15

those with shorter lifetimes. The scheme can improve the performance of the

network, such as, reducing the overhead caused by broadcasting route requests

and error rate caused by broken links. Simulation results that verify this will be

shown in later sections.

The Tp × L(Tp) estimation procedure is as follows. Once a node notices

an active link that does not exist in its own link cache, the lifetime of this link

is estimated. Then the estimated lifetime value plus the current time is used as

the cache timeout for the link. Finally, the link and its cache timeout are stored

in the link cache for future use .

2.2 An application of adaptive link caching in

DSR

This section presents an application of the above link caching scheme for DSR.

Here, Tp is calculated using the measurement-based link lifetime prediction al-

gorithm proposed in [13], which predicts the lifetime of the link by measuring

the distance between the two nodes of the link. L(Tp) is estimated using the

Prediction-based Link Availability Estimation algorithm proposed in [9]. For

cases in which all nodes have the same mean epoch λ−1, called homogeneous

mean epoch, L(Tp) is estimated as

L(Tp) ≈ (1− e−2λTp)(
1

2λTp
+ ε) + λTppe

−2λTp , (2.1)

2.3 Simulation results 16

where, p is the probability that two nodes move closer after they change their

movements, and ε is an adjustment to the link availability estimation.

In [10], this algorithm has been extended to support different mean epochs

for the two nodes of a link, called heterogeneous epoch, as

L(Tp) ≈ e−(λ1+λ2)Tp

2(λ1 + λ2)Tp
{pT 2

p (λ1 + λ2)
2 − 2Tp(λ1 + λ2)ε

−2 + 2e(λ1+λ2)Tp [1 + Tp(λ1 + λ2)ε]}, (2.2)

where, λ1
−1 and λ2

−1 are the mean epochs of the two nodes of a link, and the

other variables are the same as those in (2.1).

For simplicity, the ε can be set to 0, with which (2.1) is simplified to

L(Tp) ≈ (1− e−2λTp)
1

2λTp
+ λTppe

−2λTp , (2.3)

and (2.2) is simplified to

L(Tp) ≈ e−(λ1+λ2)Tp

2(λ1 + λ2)Tp
{pT 2

p (λ1 + λ2)
2 − 2 + 2e(λ1+λ2)Tp}, (2.4)

There are two assumptions for the L(Tp) estimation:

• Epochs are exponentially distributed with λ−1.

• Node mobility is uncorrelated.

2.3 Simulation results

This section presents some simulation results with two kinds of mobility models

and for simplicity the ε is set to 0 in this chapter. We first evaluate the adaptive

2.3 Simulation results 17

link caching scheme with the exponential random waypoint mobility model. The

homogeneous mean epoch case is studied in Section 2.3.1 and the heterogeneous

mean epoch case is studied in Section 2.3.2. Lastly, the performance based on

random waypoint mobility is presented in Section 2.3.3.

2.3.1 Homogeneous mean epoch

This section evaluates the proposed adaptive link caching scheme with homo-

geneous mean epoch, in which nodes move within the space of 500m × 1500m

according to the exponential random waypoint mobility model. For comparison,

the results of the static link caching scheme (link-static-T) [15] is also presented.

As shown in Figs. 2.1 and 2.2 , the adaptive link caching scheme performs as well

as, if not better than link-static-T.

Fig. 2.1 (a) presents the results of the adaptive scheme in terms of packet

delivery ratio. Among link-static-Ts, link-static-2 performs best in terms of

packet delivery ratio, reaching 99.3%, a little higher than 98.9% achieved by

link-static-5. Note that, the results in [15] reported that for the random way-

point mobility model [11], link-static-5 (i.e., static timeout equals to 5s) performs

best in terms of packet delivery ratio. However, this does not stand here anymore.

This shows that one single static timeout may not always work best. While the

adaptive link caching scheme, without such static setting, performs a little worse

than link-static-2, but better than all other link-static-Ts and achieves the packet

delivery ratio of 99.1%.

Figs. 2.1 (b) and (d) present the performance in terms of overhead. Al-

2.3 Simulation results 18

though link-static-2 performs best among link-static-Ts in terms of packet deliv-

ery ratio, it does not perform best in terms of overhead. It generates overhead

of 58379 packets and 3003434 bytes, however, link-static-10 generates overhead

of only 27435 packets and 1658613 bytes. Thus, a conclusion can be drawn that

the static scheme with a specific static timeout may not performs best in terms

of both packet delivery ratio and overhead. Besides, since with all static timeout

simulated the static scheme can always achieve the packet delivery ratio higher

than 95%, the performance in terms of overhead is more interesting to us. The

same result has also been reported in [15]. However, it it interesting to find that

the adaptive link caching scheme performs even better than link-static-10. It

generates overhead of only 16871 packets and 988684 bytes, which is much less

than those generated by link-static-10. The reason is explained below.

In DSR, overheads include two kinds of route request packets: route re-

quests initialized by source nodes and those relayed by the intermediate nodes.

In this scenario, as shown in Fig. 2.1 (d) compared to Fig. 2.2 (d), most of the

overhead packets belong to the first class of route requests. For the static timeout

of 10s, among about 17000 overhead packets, 14323 route requests belong to the

first class. However, the adaptive scheme reduces the number of such overhead

packets to 7595. To explain the decreasing of initialized route requests, let us look

at the relationship between the timeout settings and the number of the first class

of route requests. If a link that will actually exist for 20s is manually assigned

the timeout of 5s, if in the last 15s, this link is needed in forming a route, a route

request is initialized, which is not necessary if we set the timeout dynamically to

2.3 Simulation results 19

20s. If a link that will actually exist for 5s is manually assigned the timeout of

20s, if in the last 15s, this link is used in forming a route, route errors happen,

which will not happen if we set the timeout dynamically to 5s. Since the number

of route requests equals to the number of route discoveries, we conclude that the

adaptive scheme can decrease the number of route discoveries so as to reduce the

total overhead.

With a closer look at link-static-T’s performance in packet delivery ratio

and overhead, we find there is a tradeoff between these two performance metrics.

With the increase of T, link-static-T performs worse and worse in terms of packet

delivery ratio; but in terms of overhead it performs better and better until T

reaches some value (10s in this scenario), after which it performs worse and worse.

There seems to be some kind of best T with which link-static-T can perform fairly

well in these two performance metrics for a specific scenario, for example, 4s in

this case. A metric called “packet delivery ratio / overhead in bytes” can help us

investigate the performance in these two metrics and find a best T. Larger value

of this metric means better performance. As shown in Fig. 2.1 (c), the best static

timeout is 4s. On the other hand, it is not easy, if possible, to find this T for

every scenario. However, the proposed scheme does not need to worry about the

setting of T and can achieve better performance than link-static-T with the best

T.

Fig. 2.2 (a) presents the results in terms of end to end delay. We can see

that the adaptive scheme also performs well in this metric. Particularly, with

the adaptive link caching scheme, packets experience mean delay of 42ms, while

2.3 Simulation results 20

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

P
a

c
k
e

t
d

e
li
v
e

ry
 r

a
ti
o

a) Packet delivery ratio

T=2

T=4
T=5

T=10

T=15

T=20

{ }Link−static−T {Link−adaptive}

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

O
v
e

rh
e

a
d

 i
n

 b
y
te

s

b) Overhead in bytes

T=2

T=4

T=5

T=10

T=15
T=20

{ }Link−static−T {Link−adaptive}

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

P
a

c
k
e

t
d

e
li
v
e

ry
 r

a
ti
o

 /
 o

v
e

rh
e

a
d

 i
n

 b
y
te

s

c) Packet delivery ratio / overhead in bytes

T=2

T=4

T=5

T=10

T=15 T=20

{ }Link−static−T {Link−adaptive}

0

1

2

3

4

5

6

7
x 10

4

O
v
e

rh
e

a
d

 i
n

 p
a

c
k
e

ts

d) Overhead in packets

T=2

T=4

T=5

T=10

T=15

T=20

{ }Link−static−T {Link−adaptive}

Figure 2.1: Overhead vs packet delivery ratio (exponential random waypoint

mobility model (pause time = 0s), homogeneous mean epoch (λ−1 = 60),

500m× 1500m)

2.3 Simulation results 21

0

50

100

150

200

E
n

d
 t
o

 e
n

d
 d

e
la

y
 (

m
s
)

a) End to end delay

T=2

T=4

T=5

T=10

T=15

T=20
{ }Link−static−T {Link−adaptive}

0

0.5

1

1.5

2

2.5

3

3.5

4

P
a

th
 l
e

n
g

th
 (

h
o

p
s
)

b) Path length

T=2
T=4 T=5

T=10
T=15

T=20

{ }Link−static−T {Link−adaptive}

0

10

20

30

40

50

60

70

80

90

100

E
n

d
 t
o

 e
n

d
 d

e
la

y
 /
 p

a
th

 l
e

n
g

th

c) End to end delay / path length

T=2 T=4 T=5

T=10

T=15

T=20

{ }Link−static−T {Link−adaptive}

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

N
u

m
b

e
r

o
f
ro

u
te

 d
is

c
o

v
e

ri
e

s

d) Number of route discoveries

T=2

T=4

T=5

T=10 T=15
T=20

{ }Link−static−T {Link−adaptive}

Figure 2.2: Delay vs path length (exponential random waypoint mobility

model (pause time = 0s), homogeneous mean epoch (λ−1 = 60), 500m×1500m)

2.3 Simulation results 22

with link-static-Ts, packets experience mean delays ranging from 52ms (at static

timeout 4s) to 197ms (at static timeout 20s). The reason is as follows. DSR

introduces two kinds of delay: the time spent in waiting for a route discovery to

complete before a packet can be sent, and the time spent in detecting (through

retransmission and acknowledgement) route errors and performing salvages. It is

clear that the more route discoveries performed, the longer time spent in waiting

for them to complete; the more route errors, the longer time spent in salvaging

route errors. Since the adaptive scheme can reduce the number of route discoveries

and route errors as we discussed above, it is not surprising that it can achieve

better performance in delay.

Fig. 2.2 (b) presents the results in terms of path length. The adaptive

scheme performs worse than the static scheme with a relatively small static time-

out. The reason is as follows. For the static scheme, the smaller timeout set,

the more route discoveries performed. With more route discoveries performed,

more route information can be found and hence the a shorter path can be found.

With a small static lifetime, such as 2s, although DSR does not perform well in

terms of other metrics, it does get the latest routing information so as to get

shorter paths. But with the rise of the static timeout, the performance of the

static scheme becomes worse and worse.

Fig. 2.2 (c) presents the performance in terms of delay per hop. It is

shown that the adaptive scheme can also reduce the delay per hop compared to

link-static-Ts.

2.3 Simulation results 23

2.3.2 Heterogeneous mean epochs

This section discusses the adaptability of the adaptive link caching scheme to

heterogeneous mean epochs. In heterogeneous mean epochs, nodes with large

mean epoch, λ−1
2 are called low mobility nodes; those with small mean epoch,

λ−1
1 are called high mobility nodes. Low mobility nodes cause less topological

change than high mobility nodes and links consisting of low mobility nodes are

more stable than those consisting of high mobility nodes. Although we do not

change the routing selection scheme by using the adaptive link caching scheme,

we can still expect it to choose better route since the proposed scheme makes

the cached routing information reflect the link status better. Better routes here

mean those that are more stable, which is more important than other metrics in

wireless situation in some sense.

With different combinations of λ−1
1 and λ−1

2 , different time periods are

simulated. For the case of λ−1
1 = 60s and λ−1

2 = 250s, the simulation time is

900s; for the case of λ−1
1 = 60s and λ−1

2 = 500s, the simulation time is 1500s.

Table 2.1 lists the distribution of nodes’ times of being next hop. The

results show that the adaptive scheme can adapt to node’s mobility and select

low mobility nodes as next hop more frequently. For both spaces, link-static-

5 selects high mobility nodes slightly more frequently than low mobility nodes.

However, using the adaptive scheme, low mobility nodes are selected much more

frequently than high mobility nodes, for example, with the space of 700m×700m,

72.95% of nodes selected as next hop are low mobility nodes.

2.3 Simulation results 24

Table 2.1: Distribution of times being next hop vs space sizes: heteroge-

neous mean epochs (λ−1
1 = 60s, λ−1

2 = 250s), exponential random waypoint

mobility model (pause time=0s)

700m× 700m 500m× 1500m

Static T=5s Tp × L(Tp) Static T=5s Tp × L(Tp)

LMN HMN LMN HMN LMN HMN LMN HMN

TBNH 1491.6 1658 1721.2 638.1 3053.4 3184.2 3350.5 1645.2

PBNH 47.36 52.64 72.95 27.05 48.95 51.05 67.07 32.93

(LMN = Low Mobility Node, HMN = High Mobility Node, TBNH = Times of

being next hop, PBNH = Percentage of being next hop)

Table 2.2 presents the network performance for heterogeneous mean epochs.

The adaptive scheme outperforms link-static-5, especially in terms of overhead in

packets. For example, for the space of 700m × 700m, the adaptive link caching

scheme generates only 3041 overhead packets, while link-static-5 generates 21418

overhead packets, more than 7 times of 3041. Since low mobility nodes cause less

network topology change, in some sense, links consisting of low mobility nodes

are more reliable than those consisting of high mobility nodes. By selecting low

mobility nodes as next hop more frequently, the adaptive link caching scheme can

be expected to achieve better performance than link-static-T.

Table 2.3 investigates the effect of mobility on nodes’ being next hop. By

setting λ−1
1 = 60s for both scenarios and λ−1

2 = 250s, 500s respectively, we found

that the lower mobility the nodes are, the more frequently they will be selected

2.3 Simulation results 25

Table 2.2: Performance versus space sizes: heterogeneous mean epochs

(λ−1
1 = 60s, λ−1

2 = 250s), exponential random waypoint mobility model (pause

time=0s)

700m× 700m 500m× 1500m

Static T=5s Tp × L(Tp) Static T=5s Tp × L(Tp)

PDR 99.97 99.98 99.26 99.40

OiP 21418 3041 29716 12092

NRD 20176 2416 19238 5720

DL 7.983 7.960 50.3 33.7

PL 1.7543 1.7990 2.7366 2.734

OiB 926374 167548 1770297 703264

(For details on metrics, refer to Section 1.3.2)

as next hop.

From all the above results, we can make a conclusion that the adaptive

scheme selects low mobility nodes as next hops more frequently so as to form

more stable routes.

2.3.3 Random waypoint mobility model

Different from the last two sections, random waypoint mobility model is used to

simulate the nodes’ movement in this section. Note that non-exponential epoch

is the feature of the random waypoint mobility model, while exponential epoch is

an assumption of L(Tp) estimation [9] which was part of our adaptive link caching

2.3 Simulation results 26

Table 2.3: Distribution of being next hop versus mobility: heterogeneous

mean epochs (λ−1
1 = 60s), exponential random waypoint mobility model

(pause time=0s), 1500m× 1500m

λ−1
2 = 250s λ−1

2 = 500s

Static T=5s Tp × L(Tp) Static T=5s Tp × L(Tp)

LMN HMN LMN HMN LMN HMN LMN HMN

TBNH 4208.8 4466.3 4107.3 3890.2 3053.4 2576.8 3350.5 1579.4

PBNH 48.52 51.48 51.36 48.64 54.23 45.77 67.96 32.04

(LMN = Low Mobility Node, HMN = High Mobility Node, TBNH = Times of

being next hop, PBNH = Percentage of being next hop)

scheme. It is interesting to observe that the adaptive link caching scheme can

perform well in this case. Figs. 2.3 and 2.4 present the performance of the

adaptive scheme in comparison with those of link-static-T.

As mentioned in Section 2.3.1, the results in [15] reported that for random

waypoint mobility model [11], link-static-5 (i.e, static timeout equals to 5s) per-

forms best in terms of packet delivery ratio. The results are reproduced as shown

in Fig. 2.3 (a), where link-static-5 achieves packet delivery ratio of 99.66%. How-

ever, our adaptive link caching scheme performs even better than link-static-5,

achieving the packet delivery ratio of 99.77%.

The other results achieved by the adaptive scheme are similar to those in

Section 2.3.1, thus here we only discuss the results briefly. In terms of metrics

except for path length, the adaptive link caching outperforms link-static-T.

2.3 Simulation results 27

90

92

94

96

98

100

102

P
a

c
k
e

t
d

e
li
v
e

ry
 r

a
ti
o

a) Packet delivery ratio

T=2 T=4 T=5 T=10 T=15 T=20

{ }Link−static−T {Link−adaptive}

0

0.5

1

1.5

2

2.5

3
x 10

6

O
v
e

rh
e

a
d

 i
n

 b
y
te

s

b) Overhead in bytes

T=2

T=4

T=5

T=10
T=15

T=20

{ }Link−static−T {Link−adaptive}

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−4

P
a

c
k
e

t
d

e
li
v
e

ry
 r

a
ti
o

 /
 o

v
e

rh
e

a
d

 i
n

 p
a

c
k
e

ts

c) Packet delivery ratio / overhead in packets

T=2

T=4

T=5

T=10

T=15 T=20

{ }Link−static−T {Link−adaptive}

0

1

2

3

4

5

6
x 10

4

O
v
e

rh
e

a
d

 i
n

 p
a

c
k
e

ts

d) Overhead in packets

T=2

T=4

T=5

T=10
T=15

T=20

{ }Link−static−T {Link−adaptive}

Figure 2.3: Overhead vs packet delivery ratio (random waypoint mobility

model, 500m× 1500m)

2.3 Simulation results 28

0

10

20

30

40

50

60

70

80

90

100

E
n

d
 t
o

 e
n

d
 d

e
la

y
 (

m
s
)

a) End to end delay

T=2 T=4
T=5

T=10

T=15 T=20
{ }Link−static−T {Link−adaptive}

0

0.5

1

1.5

2

2.5

3

3.5

4

P
a

th
 l
e

n
g

th
 (

h
o

p
s
)

b) Path length

T=2 T=4 T=5 T=10 T=15 T=20

{ }Link−static−T {Link−adaptive}

0

5

10

15

20

25

30

35

40

45

50

E
n

d
 t
o

 e
n

d
 d

e
la

y
 /
 p

a
th

 l
e

n
g

th

c) End to end delay / path length

T=2 T=4 T=5 T=10

T=15 T=20

{ }Link−static−T {Link−adaptive}

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

N
u

m
b

e
r

o
f
ro

u
te

 d
is

c
o

v
e

ri
e

s

d) Number of route discoveries

T=2

T=4

T=5

T=10

T=15 T=20

{ }Link−static−T {Link−adaptive}

Figure 2.4: Delay vs path length (random waypoint mobility model, 500m×

1500m)

2.4 Conclusion 29

2.4 Conclusion

In this chapter, we propose and evaluate an adaptive link caching scheme for

DSR in an ideal case, where nodes can know all information needed to estimate

TP×L(Tp) immediately. Compared to link-static-T [15], the adaptive link caching

scheme achieves good performance in all metrics since it can choose more reliable

routes by selecting low mobility nodes as next hop more frequently. Although

the evaluation is not complete, it somewhat shows us the potential performance

of the proposed caching scheme. An adaptive link caching protocol based on this

scheme and a more detailed performance evaluation will be given in the following

chapters.

30

Chapter 3

An adaptive link caching

protocol for DSR

In this chapter, we develop an adaptive link caching protocol for the real situa-

tion in which a node only knows the relative distance and velocities of neighbor

nodes. In this case, a node only estimates Tp × L(Tp) for links between itself

and its neighbor nodes. Since cache timeouts for all known links are necessary, a

mechanism to exchange the information between nodes is introduced in Section

3.1. In order to make the protocol more adaptive, an implementation of ε mea-

surement [9] is also introduced in Section 3.2. The performance of this protocol

is investigated in comparison with the results given in Chapter 2.

3.1 Protocol specification

This section introduces the adaptive link caching protocol. In this protocol,

we first let nodes estimate the timeout for links between themselves and their

neighbors. Then we add these timeouts into the DSR header so as to exchange

3.1 Protocol specification 31

them between nodes. Here each node maintains a list of timeouts, one timeout

for one link in its own cache, which are used to manage the link cache.

3.1.1 Header format

The header in our protocol is the same as those in DSR except that some extra

bytes are added to contain the timeout information. Wherever there is a route

in the header, more clearly, in route request, route reply and data packets, the

corresponding timeout information should be added.

Let us illustrate the amendment made to source route option first. Suppose

we have a data packet with a DSR header, which contains a source route n hops

long, the amended source route option is shown in Fig 3.1. There are not only

a set of addresses, but also timeouts of the links along the route. If we add one

byte for each timeout value, n − 1 bytes of timeout information are added into

the source route option. For comparison, the original source route option in DSR

header is presented in Fig 3.2.

� �
�
	���
���������	�� ��	���������������� � !"�$#%�'&)(��'* +,��-�(���.�� +/�'.0#1���'23�

4
��&5��#6#87)�:9
��
�;<����=���7)�:9 4
��&5��#6#87 ��9
4
��&5��#6#87 ��9

�
��
�;>�'��=���7 ��9

� � �

�
4
��&5��#6#?7 ��@:�:9

4
��&5��#6#?7 ��@:�:9 ��
�;<����=���7 ��@A�B9

Figure 3.1: Amended DSR Source Route option in a DSR Options header

3.1 Protocol specification 32

�� � � � � � � � � � � � � 	 � �� � � � � � � � � � � � � 	 � �� � � � � � � � � � � � � 	 � �� � � � � � � � � � � � � 	 �

 � �
 � � � � � � � �
 �

 � � � � � � � ! � " �

 � � � � � � � ! � " �

�

� �

 � � � � � � ! � # � " �

�

Figure 3.2: Original DSR Source Route option in a DSR Options header

In Fig 3.1, Address[i] is the ith intermediate node along the source route;

timeout[1] is the timeout of the link between originating node and Address[1],

which is estimated at Address[1] normally; T imeout[i] is the timeout of the link

between Address[i− 1] and Address[i].

In the route request and route reply options, the same structures of ad-

dresses and timeouts are used.

3.1.2 Detailed operation

In this section, we only introduce the operations related to timeouts. Generally,

these operations includes: timeout estimation, extracting timeouts from cache,

adding timeouts to DSR header, extracting cache timeouts from DSR headers

and cache management. For details of other operations in DSR, please refer to

[14].

In our protocol, the most important operation is the estimation of time-

outs, which is the only source of timeout information. Here we introduce when

3.1 Protocol specification 33

Figure 3.3: Flow chart of route request processing

3.1 Protocol specification 34

and who to do timeout estimation. To know the way to estimate timeouts, please

refer to Section 2.2.

A node estimates timeouts only when it receives a route request. Fig.

3.3 illustrates the route request processing, for more details on it, please refer to

Appendix A. When receiving a route request from its neighbor, a node estimates

the timeout for the link between itself and the neighbor. Then the node searches

its own link cache for a route from itself to the destination of the source route. If

some route is found, a route from the source to the destination can be formed, and

then a route reply containing the source route and the corresponding timeouts

is sent back to the source of the route request. If no route is found in the link

cache, the node appends its own address and the estimated timeout, and then

broadcasts the route request.

So far, we have estimated timeouts and added them into the DSR header.

To make a node know the timeouts for every link in its cache, whenever it receives

packets containing source routes, these timeouts must be extracted and cached as

well as the links along the source route, which can be used to form source routes

for sending data packets or creating route reply. If a link is already in the cache,

the two timeouts are compared and the larger one is selected as the timeout for

the link.

The timeouts stored in the link cache are also used in maintaining the link

cache. If the timeout for a link is T, at time point T, the link will be removed

from the link cache.

3.2 An implementation of ε measurement 35

3.2 An implementation of ε measurement

To make the protocol more adaptive, we implement the ε measurement proposed

in [9], which can enable the estimation of L(Tp) given by (2.1) and (2.2) more

applicable to other mobility models.

After a node has a Tp prediction on a link at time t0, it measures the time

period (Tr) during which this link will continue to be available. If this link is still

available at t0 + Tp, the node sets Tr = Tp and does another prediction. After

we obtain the information of Tp and Tr, a measured link availability, Lm(Tp), is

calculated by Tr/Tp. With Lm(Tp), a measured ε, εm, can be estimated as

εm ≈
Lm(Tp)− 0.5λTpe−2λTp

1− e−2λTp
− 1

2λTp
, (3.1)

for homogeneous mean epoch [9], and for heterogeneous mean epoch

εm ≈
Lm(Tp)− 0.25(λ1 + λ2)Tpe

−(λ1+λ2)Tp

1− e−(λ1+λ2)Tp
− 1

(λ1 + λ2)Tp
. (3.2)

Repeating the above operation, a node can have a series of εm,j and ε can be

estimated by

ε =

∑N

j=1 εm,j

N
, (3.3)

where, N is the number of εm,j samples.

In our implementation, each node maintains a list of Tp and t0, one Tp

and one t0 for one link between itself and one of its neighbors. As mentioned in

Section 3.1.2, when a node receives a route request from its neighbor, it predicts

a Tp and estimates a L(Tp) for the link between itself and the neighbor, and then

records the Tp and t0.

3.2 An implementation of ε measurement 36

To get Tr, each node needs to know the time when the link breaks down,

Tb. With Tb, Tr is estimated as:

Tr ≈ Tb − t0. (3.4)

As for the measurement of Tb, several means can be used. Firstly, if the

physical layer can detect the link status and report them to the DSR, for example,

by checking the signal strength of packets, the Tb can be easily obtained. Secondly,

if the upper layer can detect and report the breaking down of a link, for example,

by retransmission for a maximum times, the Tb can also be obtained. Thirdly,

DSR itself can also detect it by sending beacons periodically. However, to simplify

the implementation, in our simulation, a simpler way is used to accomplish this

objective. That is, a node estimates the distance between itself and its neighbors

once per second to find the time that a link breaks.

Fig. 3.4 illustrates the εm measurement implementation in our simulation. For

more details on it, please refer to Appendix B. At the beginning of every second,

a node checks the links between itself and its neighbors to update ε. If a link

has a flag called Link dead, which means that the link has expired before the

last check, nothing needs to be done. The objective of this flag is to prevent

multiple εm estimations for one link broken. If the link does not have this flag,

Tr is estimated as

Tr ≈ CURRENT TIME − t0. (3.5)

3.2 An implementation of ε measurement 37

CEDGFIH�JLK>K�MONPCOQGCORTSUMWVYX[Z

\P]B^_X3`�acb�dfe1d�X3gPd�d�ahaciGjcdk^
l K�`�jc]3iYK>`�acmGdon

p

CEDGFICEq/r)s"t�u6CEq:v"FUw

N

Mo^_X3]3xy`�X3doz�t
p

C D { C q n

K�d�|6}c~6d�jG]�b�X�C8q

K>d�|6dk^_X�]3xy`�X3d�z

p

� d�X��T�3`�mh��]3aG�cQcjGd�`�j

���3`�mY�]3ac�GQcjcd�`�jY]B^
^_d�X�n

N

Mo^_X3]3xy`�X3doz�t

sEt�u6CEqAv"FICEDG��C8q

\PiYaciGX3�c]3acm

\LiYaciGX3�c]3acm

p

N

Figure 3.4: Flow chart of ε measurement

3.3 Simulation results 38

and the distance between the two ends of the link is calculated and compared

to the radio transmission range. Distance greater than the transmission range

means that the link is broken. If the link is broken, εm is calculated as (3.1) and

(3.2). If the link is not broken and Tr is greater than Tp, the node sets Tr = Tp,

estimates εm with Lm(Tp) = 1 and does another Tp prediction. If the measured

εm is less than 0, it is set to 0. Lastly, the measured ε is calculated as (3.3).

With ε measurement, different nodes have different ε, which adapts to the

node’s mobility. We can expect high mobility nodes to have small Tr and ε and

consequently next time when they do Tp prediction, a small L(Tp) will be given

for the same Tp. After reaching steady state, for the same Tp, high mobility node

will have small timeout value and low mobility node will have large timeout value.

3.3 Simulation results

This section presents simulation results for the exponential random waypoint

mobility model without pause. This part of results tries to show the impact of

the delay caused by exchanging timeouts on the performance through comparison

with the results presented in Chapter 2. The results for the homogeneous mean

epoch are presented in Section 3.3.1, and Section 3.3.2 presents the results for

heterogeneous mean epochs. In this section, we abbreviate ideal link-adaptive

scheme proposed in Chapter 2 and link-adaptive protocol to AD and ADP,

respectively.

3.3 Simulation results 39

3.3.1 Homogeneous mean epoch

Table 3.1 lists the results given by the proposed protocol in comparison with the

results presented in Section 2.3.1.

We observe that the proposed protocol performs worse than the ideal link-

adaptive scheme proposed in Chapter 2. For example, the proposed protocol

achieves the packet delivery ratio of 99.08%, while the ideal link-adaptive scheme

achieves that of 99.12%. The protocol generates overhead of 22505 packets and

1275098 bytes, while the ideal link-adaptive scheme achieves that of 16781 packets

and 988684 bytes. The proposed protocol makes data packets to suffer a delay

of 50ms, while the ideal link-adaptive scheme achieves a delay of 42ms. The

reason is that timeouts exchange introduces some latency and consequently the

timeout information in the proposed protocol is not as accurate as that in the

ideal link-adaptive scheme.

However, compared to link-static-T, the proposed protocol performs fairly

well. As shown in Table 3.1, in terms of packet delivery ratio and path length,

the proposed protocol outperforms all link-static-Ts except for link-static-2; in

terms of overhead in packets and bytes, and delay, the link-adaptive protocol out-

performs all link-static-Ts. Most importantly, similar to the ideal link-adaptive

scheme, the proposed protocol does not need static timeout settings and hence

it does not need to worry about the tradeoff between packet delivery ratio and

overhead mentioned in Section 2.3.1.

3.3 Simulation results 40

Table 3.1: Performance: exponential random waypoint mobility model

(pause time = 0s), homogeneous mean epoch (λ−1 = 60), 1500m× 500m

Metrics Static timeout Tp × L(Tp)

2s 4s 5s 10s 20s AD ADP

PDR 99.3 99.0 99.0 98.2 95.3 99.12 99.08

DL 62 66 65 108 197 42 50

PL 2.65 2.72 2.73 2.87 3.20 2.67 2.72

NRD 41284 23285 20345 14323 16141 7595 8288

OiP 58379 37735 33797 27435 39659 16781 22505

OiB 3003434 1580672 1830622 1658613 3300721 988684 1275098

(For details on metrics, refer to Section 1.3.2)

3.3.2 Heterogeneous mean epochs

In this section, the link-adaptive protocol’s adaptability to mobility is evaluated

by times of being next hop. In Chapter 2, we found that the ideal link-adaptive

scheme chooses low mobility nodes more frequently to form source routes. Here,

we find the proposed protocol also has this preference. Table 3.2 and Table

3.3 present link-adaptive protocol’s being next hop performance in comparison

with link-static-5’s and the ideal link-adaptive scheme’s respectively. Table 3.4

presents the corresponding network performance.

Table 3.2 shows us that the proposed protocol chooses low mobility nodes

as next hop more frequently than high mobility nodes compared to link-static-5,

especially for the small space such as 700m × 700m. For the space of 1500m ×

3.3 Simulation results 41

Table 3.2: Distribution of being next hop vs space sizes: exponential ran-

dom waypoint mobility model (pause time=0s), heterogeneous mean epochs

(λ−1
1 = 60s, λ−1

2 = 250s)

700m× 700m 500m× 1500m

Static T = 5s ADP Static T = 5s ADP

LMN HMN LMN HMN LMN HMN LMN HMN

TBNH 1491.6 1658 1835 564 3053.4 3184.2 3640 1628

PBNH 47.36 52.64 76.5 23.5 48.95 51.05 69.1 30.9

(LMN = Low Mobility Node, HMN = High Mobility Node, TBNH = Times of

being next hop, PBNH = Percentage of being next hop)

500m, among nodes selected as next hops by link-static-5, 48.95% are low mobil-

ity nodes, while among nodes selected as next hops by the protocol, 68.6% are

low mobility nodes. It is interesting to find from Table 3.3 that the proposed

protocol performs even better than the ideal link-adaptive scheme in terms of the

preference of selecting low mobility nodes as next hop. This can be explained as

follows. Because of the ε measurement, low mobility nodes are expected to have

larger ε after reaching steady state. With larger ε, links consisting of low mobility

nodes will have larger timeouts. As a result, they will stay in the cache for longer

time and gain more chances to be selected as next hop.

From Table 3.4, we can find that with the preference for low mobility

nodes, the proposed protocol performs better than link-static-5 in all perfor-

mance metrics, especially with the space of 700m × 700m. Inherited from the

3.4 Conclusion 42

Table 3.3: Distribution of being next hop vs space sizes: exponential ran-

dom waypoint mobility model (pause time=0s), heterogeneous mean epochs

(λ−1
1 = 60s, λ−1

2 = 250s)

700m× 700m 500m× 1500m

AD ADP AD ADP

LMN HMN LMN HMN LMN HMN LMN HMN

TBNH 1721.2 638.1 1835 564 3350.5 1645.2 3640 1628

PBNH 72.95 27.05 76.5 23.5 67.07 32.93 69.1 30.9

(LMN = Low Mobility Node, HMN = High Mobility Node, TBNH = Times of

being next hop, PBNH = Percentage of being next hop)

ideal link-adaptive scheme, the proposed protocol also improves the overhead per-

formance a lot. With the space of 500m× 1500m, it achieves overhead of 14856

packets and 803546 bytes, while link-static-5 achieves that of 29716 packets and

1770297 bytes. However, compared to the ideal link-adaptive scheme, the pro-

posed protocol performs worse because of the latency mentioned in Section 3.3.1.

For example, the proposed protocol achieves the packet delivery ratio of 99.30%,

while the ideal link-adaptive scheme achieves that of 99.40%.

3.4 Conclusion

In this chapter, we developed a protocol to deploy the adaptive link caching

scheme proposed in Chapter 2. A mechanism of timeout exchange between nodes

is proposed and a measurement of ε is introduced into the proposed protocol.

3.4 Conclusion 43

Table 3.4: Performance versus space sizes: exponential random waypoint

mobility model (pause time=0s), heterogeneous mean epochs (λ−1
1 = 60s,

λ
−1
2 = 250s)

700m× 700m 500m× 1500m

Static Tp × L(Tp) Static Tp × L(Tp)

5s AD ADP 5s AD ADP

PDR 99.97 99.98 99.98 99.26 99.40 99.31

NRD 20176 2416 3436 19238 5720 7874

DL 7.98 7.96 7.98 50.3 33.7 40.3

PL 1.75 1.80 1.77 2.74 2.73 2.73

OiP 21418 3041 5128 29716 12092 15012

OiB 926374 167548 320635 1770297 703264 1043282

(For details on performance metrics, please refer to Section 1.3.2)

The simulation results show that the delay for exchanging timeouts has trivial

impact, but the proposed protocol performs as good as the adaptive link caching

scheme if all nodes move according to exponential random waypoint mobility

model without pause. More simulation results on the adaptability of this protocol

to other mobility models will be presented in Chapter 4.

44

Chapter 4

Adaptability to mobility models

Chapter 3 only evaluates the proposed adaptive link caching protocol with sce-

narios in which nodes move according to the exponential random waypoint mo-

bility model without pause. This mobility models conforms to the assumptions

of the L(Tp) estimation given by (2.1) and (2.2). However, in reality, nodes may

move according to other mobility models, with or without pause. Therefore, the

adaptability of the proposed protocol to mobility models affects its applicability

in reality. In Chapter 2, this adaptability has been discussed briefly for an ideal

situation, where a node can estimate timeouts for every link and ε is set to 0 for

simplicity.

The adaptive link caching protocol is expected to have some adaptability

to mobility models due to the use of ε measurement. In this chapter, to investi-

gate the adaptability of the proposed protocol to various mobility models, a set

of simulations are conducted by considering the nature of the mobility models.

Mobility models with non-exponential epoch distribution under investigation in-

clude: the exponential random waypoint with positive pause (Section 4.1), the

4.1 Exponential random waypoint mobility model with pause 45

original random waypoint (Section 4.2), the random Gauss-Markov (Section 4.3)

and the Brownian mobility models (Section 4.4).

4.1 Exponential random waypoint mobility model

with pause

Table 4.1: Performance: exponential random waypoint mobility model

(pause time = 5s), homogeneous mean epoch (λ−1 = 60s), 1500m× 500m

Metrics Static T=5s Tp × L(Tp)

2s 4s 5s 10s 15s 20s

PDR 99.4 99.1 99.0 98.2 96.1 95.1 98.8

DL 57 62 59 119 172 220 51

PL 2.92 2.96 2.94 3.15 3.29 3.54 3.03

RD 42064 23661 20064 14430 15252 16494 9043

OiP 61500 39520 35815 29787 35006 39498 23274

OiB 3270866 2133570 1932737 2247102 4191732 4620977 1362362

(For details on metrics, refer to Section 1.3.2)

This section investigates the proposed protocol’s adaptability to the expo-

nential random waypoint mobility model with positive pause. Firstly, link-static-

Ts and the proposed protocol are compared for a specific pause time. Secondly,

the adaptability to pause times is studied. Lastly, the adaptability to heteroge-

neous mean epochs is discussed, in which low and high mobility nodes have the

4.1 Exponential random waypoint mobility model with pause 46

mean epochs of 250s and 60s respectively.

Table 4.1 presents the results of link-static-Ts and the proposed protocol

for the pause time of 5s. For link-static-T, the tradeoff between packet delivery

ratio and overhead discussed in Section 2.3.1 recurs here, that is, among link-

static-Ts, link-static-2 performs best in terms of packet delivery ratio, path length

and delay, while link-static-10 performs best in terms of overhead in packets and

route discoveries, and link-static-5 performs best in terms of overhead in bytes.

Link-static-5 can be said to perform best in link-static-Ts, achieving relatively

good performance in all performance metrics. However, the adaptive link caching

protocol performs even better than link-static-5, achieving overhead of 1402694

bytes (only 75% of those obtained by link-static-5), and packet delivery ratio of

98.8% (99.8% of 99.0% obtained by link-static-5).

Figs 4.1 and 4.2 present the results of the proposed protocol against various

pause times in comparison with those of link-static-5. For all pause times sim-

ulated, link-static-5 achieves higher packet delivery ratio and lower path length

than the proposed protocol as shown in Fig. 4.1 (a) and Fig. 4.2 (b). However,

in all other performance metrics, the proposed protocol outperforms link-static-5

for all pause times simulated. In addition, Fig 4.1 (c) shows that the proposed

protocol performs better in terms of the overhead generated for each percent of

packets delivered successfully. Fig. 4.2 (c) shows that the proposed protocol per-

forms better in terms of the delay suffered per hop. For the explanation of these

results, please refer to Section 2.3.1 because the results are similar.

However, when the pause time gets longer, the advantage of the proposed

4.1 Exponential random waypoint mobility model with pause 47

5 10 20 30 40 50
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Pause time (s)

P
a

c
k
e

t
d

e
li
v
e

ry
 r

a
ti
o

 (
%

)

a): Packet delivery ratio

Link−static−5
Link−adaptive

5 10 20 30 40 50
0

0.5

1

1.5

2

x 10
6

Pause time (s)

O
v
e

rh
e

a
d

 i
n

 b
y
te

s

b) Overhead in bytes

Link−static−5
Link−adaptive

5 10 20 30 40 50
0

1

2

3

4

5

6

7

8
x 10

−5

Pause time (s)

P
a

c
k
e

t
d

e
li
v
e

ry
 r

a
ti
o

 /
 o

v
e

rh
e

a
d

 i
n

 b
y
te

s

c) Packet delivery ratio / overhead in bytes

Link−static−5
Link−adaptive

5 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

Pause time (s)

O
v
e

rh
e

a
d

 i
n

 p
a

c
k
e

ts

d) Overhead in packets

Link−static−5
Link−adaptive

Figure 4.1: Packet delivery ratio vs overhead (exponential random waypoint

mobility model, 500m× 1500m)

4.1 Exponential random waypoint mobility model with pause 48

5 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

110

Pause time (s)

E
n

d
 t
o

 e
n

d
 d

e
la

y
 (

m
s
)

a) End to end delay

Link−static−5
Link−adaptive

5 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Pause time (s)

P
a

th
 l
e

n
g

th
 (

h
o

p
s
)

b) Path length

Link−static−5
Link−adaptive

5 10 20 30 40 50
0

5

10

15

20

25

30

35

40

Pause time (s)

E
n

d
 t

o
 e

n
d

 d
e

la
y
 /

 p
a

th
 l
e

n
g

th

c) End to end delay / path length

Link−static−5
Link−adaptive

5 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Pause time (s)

N
u

m
b

e
r

o
f
ro

u
te

 d
is

c
o

v
e

ri
e

s

d) Number of route discoveries

Link−static−5
Link−adaptive

Figure 4.2: Delay vs path length (exponential random waypoint mobility

model, 500m× 1500m)

4.1 Exponential random waypoint mobility model with pause 49

protocol in terms of overhead gets weaker. For example, if the pause time equals to

50s, the proposed protocol generates 2008398 overhead bytes, just a little less than

2097307 bytes generated by link-static-5. Note that the proposed protocol is based

on the estimation of Tp×L(Tp) and L(Tp) is based on knowledge of the mobility

model. In our estimation of L(Tp), although we used the measurement of ε to

provide it with some adjustment, we do not consider pause time. Thus when the

pause time increases, the accuracy of the estimation is being lost gradually. With

a fairly large pause time, even the adjustment cannot compensate the inaccuracy

of the L(Tp) estimation in this scenario. Because of this inaccuracy, Tp × L(Tp)

can not reflect the future link status anymore and then protocol performs worse

and worse, but still better than link-static-5.

Our protocol selects low mobility nodes as next hop more frequently than

link-static-5 does as shown in Table 4.2. Particularly, with our protocol a low

mobility node is selected 3623 times, almost 2 times of 1868 times obtained by a

high mobility node, while with link-static-5 low mobility nodes and high mobility

nodes are selected almost the same times, 3251 and 3446 respectively.

Table 4.3 presents the performance of the proposed protocol in heteroge-

neous mean epochs in comparison with link-static-5. By selecting low mobility

nodes more frequently, our protocol achieves better performance than link-static-5

in all performance metrics except for packet delivery ratio and path length.

4.2 Random waypoint mobility model 50

Table 4.2: Distribution of being next hop: exponential random waypoint

mobility model (pause time = 5s), heterogeneous mean epochs (λ−1
1 = 60s,

λ
−1
2 = 250s), 500m× 1500m

Static T=5s L(Tp)× Tp

LMN HMN LMN HMN

Times of being next hop 3251 3446 3623 1868

Percentage of being next hop 49 51 66 34

Table 4.3: Performance: exponential random waypoint mobility model

(pause time = 5s), heterogeneous mean epochs (λ−1
1 = 60s, λ

−1
2 = 250s),

500m× 1500m

PDR OiP OiB RD DL PL

Static T=5s 99.25 32470 1777762 19309 70 2.92

TP × L(Tp) 99.04 20520 1261654 6743 52 2.94

(For details on metrics, refer to Section 1.3.2)

4.2 Random waypoint mobility model

This section investigates the adaptability of the proposed protocol to the random

waypoint mobility model. In this case, the movement can be changed by two

parameters, max speed and pause time. Here, we first run the simulations with

movement patterns generated for five max speeds, i.e., 5, 10, 20, 30 and 40m/s,

and six pause times, i.e., 0, 5, 10, 20, 30 and 40s.

Figs. 4.3 and 4.4 present the results of link-static-5 and the proposed

protocol against various max speeds. Generally, compared to link-static-5, the

4.2 Random waypoint mobility model 51

5 10 20 30 40
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Max speed (m/s)

P
a

c
k
e

t
d

e
li
v
e

ry
 r

a
ti
o

 (
%

)

a): Packet delivery ratio

Link−static−5
Link−adaptive

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Max speed (m/s)

O
v
e

rh
e

a
d

 i
n

 b
y
te

s

b) Overhead in bytes

Link−static−5
Link−adaptive

5 10 20 30 40
0

1

2

3
x 10

−4

Max speed (m/s)

P
a

c
k
e

t
d

e
li
v
e

ry
 r

a
ti
o

 /
 o

v
e

rh
e

a
d

 i
n

 b
y
te

s

c) Packet delivery ratio / overhead in bytes

Link−static−5
Link−adaptive

5 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Max speed (m/s)

O
v
e

rh
e

a
d

 i
n

 p
a

c
k
e

ts

d) Overhead in packets

Link−static−5
Link−adaptive

Figure 4.3: Packet delivery ratio vs overhead: random waypoint mobility

model (pause time = 5s), 500m× 1500m

4.2 Random waypoint mobility model 52

5 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

Max speed (m/s)

E
n

d
 t
o

 e
n

d
 d

e
la

y
 (

m
s
)

a) End to end delay

Link−static−5
Link−adaptive

5 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

Max speed (m/s)

P
a

th
 l
e

n
g

th
 (

h
o

p
s
)

b) Path length

Link−static−5
Link−adaptive

5 10 20 30 40
0

5

10

15

20

25

30

35

40

Max speed (m/s)

E
n

d
 t
o

 e
n

d
 d

e
la

y
 /
 p

a
th

 l
e

n
g

th

c) End to end delay / path length

Link−static−5
Link−adaptive

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
4

Max speed (m/s)

N
u

m
b

e
r

o
f
ro

u
te

 d
is

c
o

v
e

ri
e

s

d) Number of route discoveries

Link−static−5
Link−adaptive

Figure 4.4: Delay vs path length: random waypoint mobility model (pause

time = 5s), 500m× 1500m

4.2 Random waypoint mobility model 53

0 5 10 20 30 40
95

96

97

98

99

100

101

Pause time (s)

P
a

c
k
e

t
d

e
li
v
e

ry
 r

a
ti
o

 (
%

)

a): Packet delivery ratio

Link−static−5
Link−adaptive

0 5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Pause time (s)

O
v
e

rh
e

a
d

 i
n

 b
y
te

s

b) Overhead in bytes

Link−static−5
Link−adaptive

0 5 10 20 30 40
0

0.5

1

1.5
x 10

−4

Pause time (s)

P
a

c
k
e

t
d

e
li
v
e

ry
 r

a
ti
o

 /
 o

v
e

rh
e

a
d

 i
n

 b
y
te

s

c) Packet delivery ratio / overhead in bytes

Link−static−5
Link−adaptive

0 5 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Pause time (s)

O
v
e

rh
e

a
d

 i
n

 p
a

c
k
e

ts

d) Overhead in packets

Link−static−5
Link−adaptive

Figure 4.5: Packet delivery ratio vs overhead (random waypoint mobility

model, 500m× 1500m, Max speed = 20m/s)

4.2 Random waypoint mobility model 54

0 5 10 20 30 40
0

10

20

30

40

50

60

70

80

Pause time (s)

E
n

d
 t
o

 e
n

d
 d

e
la

y
 (

m
s
)

a) End to end delay

Link−static−5
Link−adaptive

0 5 10 20 30 40
0

0.5

1

1.5

2

2.5

3

Pause time (s)

P
a

th
 l
e

n
g

th
 (

h
o

p
s
)

b) Path length

Link−static−5
Link−adaptive

0 5 10 20 30 40
0

5

10

15

20

25

30

35

40

Pause time (s)

E
n

d
 t

o
 e

n
d

 d
e

la
y
 /

 p
a

th
 l
e

n
g

th

c) End to end delay / path length

Link−static−5
Link−adaptive

0 5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Pause time (s)

N
u

m
b

e
r

o
f
ro

u
te

 d
is

c
o

v
e

ri
e

s

d) Number of route discoveries

Link−static−5
Link−adaptive

Figure 4.6: Delay vs path length (random waypoint mobility model, 500m×

1500m, Max speed = 20m/s)

4.3 Random Gauss-Markov mobility model 55

proposed protocol adapts to speeds well. For all speeds simulated, link-static-5

performs a little better than the proposed protocol in terms of packet deliv-

ery ratio and path length, while the protocol outperforms link-static-5 in other

performance metrics. We can say that the proposed protocol can perform well

with various speeds if nodes move according to random waypoint mobility model.

However, we also find that with the increase of max speed, the advantage of the

proposed protocol is losing gradually. For example, at the max speed of 5m/s,

the proposed protocol generates only 32.6% of overhead bytes generated by link-

static-5, but at the max speed of 40m/s, it generates 86.8% of overhead bytes

generated by link-static-5.

Figs. 4.5 and 4.6 present the performance of link-static-5 and the pro-

posed protocol against various pause times. Results similar to those in Section

4.1 are obtained. With all pause times simulated, link-static-5 performs better

in terms of packet delivery ratio and path length, but worse in terms of other

metrics than the proposed protocol. However, with the increase of pause time,

the proposed protocol’s advantage becomes weaker because of the breach of the

L(Tp) estimation assumption.

4.3 Random Gauss-Markov mobility model

First of all, let us talk about the simulation limitation of this mobility model.

In the simulation of random Gauss-Markov mobility model, if a relatively long

interval is simulated, nodes will move out of the allowed space frequently. As

4.3 Random Gauss-Markov mobility model 56

mentioned in Section 1.3.1, if a movement cause a node moving out of the space,

the direction of the velocity is reversed. If the speed × interval is large enough

compared to the space size, the node may move out of the allowed space even

if the direction of the velocity is reversed. This is the reason that we can not

simulate long movement intervals.

In this section, we simulate homogeneous mean epochs (i.e., 10s, 20s)

and heterogeneous mean epochs (i.e., 10s for high mobility nodes, 20s for low

mobility nodes). With the interval of 10s and 20s, we set the mean epoch in

L(Tp) estimation to 10 and 20 respectively.

In our simulation, vx = vy = 0 m/s, δvx
= δvy

= 10.4835769 m/s and

α = 0.9. These parameters are chosen to be equal to those used by Yih-chun in

his implementation [15].

Table 4.4 presents the results for the interval of 10s and 20s. In these

cases, the proposed protocol performs a little better than link-static-5.

In heterogeneous mean epochs, our protocol selects low mobility nodes

as next hop more frequently than link-static-5. Particularly, with our protocol

low mobility nodes are selected 3967 times per node, and high mobility nodes

are selected 3283 times per node, while with link-static-5 high mobility nodes

are selected more frequently than low mobility nodes. In this case, our protocol

performs better than link-static-5 in terms of packet delivery ratio and path

length, but worse in terms of overhead and delay as shown in Table 4.6.

4.4 Brownian mobility model 57

Table 4.4: Performance: random Gauss-Markov mobility model, homoge-

neous interval, 1500m× 500m

Interval = 10s Interval = 20s

Static T = 5s Tp × L(Tp) Static T = 5s Tp × L(Tp)

PDR 63.39 68.41 67.89 73.65

DL 1657 1799 1292 1360

PL 4.25 3.84 4.60 4.11

NRD 23560 20790 26787 18245

OiP 100808 901460 111398 102664

OiB 8528065 7635748 10753878 8571029

(For details on metrics, refer to Section 1.3.2)

4.4 Brownian mobility model

Similar to random Gauss-Markov mobility model, there is also a limitation within

Brownian mobility model. As mentioned in Section 1.3.1, if a movement causes

a node to move out of the allowed area, the node picks the intersection of the

boundaries and the direction of the velocity as the destination. It seems that

nodes could keep themselves in the allowed area with this mobility model, but

in fact a node may still move out of the space. When a node arrives at the

destination on the boundaries and chooses a velocity directing it out of the space,

the current position will be chosen as the destination again, which is not allowed

in NS-2. Our solution is to reverse the direction of the velocity if the above

situation happens. This introduces the limitation we have discussed in Section

4.4 Brownian mobility model 58

Table 4.5: Distribution of being next hop: random Gauss-Markov mobility

model, heterogeneous intervals (λ−1
1 = 10s, λ−1

2 = 20s), 1500m× 500m

Static T =5s L(Tp)× Tp

LMN HMN LMN HMN

Times of being next hop 3837 4518 3967 3283

Percentage of being next hop 46 54 55 45

Table 4.6: Performance: random Gauss-Markov mobility model, heteroge-

neous intervals (λ−1
1 = 10s, λ−1

2 = 20s), 1500m× 500m

PDR OiP OiB NRD DL PL

Static T =5s 65.09 106363 9313377 25361 1561 4.54

Tp × L(Tp) 71.15 116302 9721711 20187 1804 3.94

(For details on metrics, refer to Section 1.3.2)

4.3, that is to say, large interval such as 30s can not be simulated.

We simulate the homogeneous intervals of 10s and 20s and heterogeneous

intervals (i.e., 10s and 20s). The settings of λ−1 in L(TP) estimation is the same

as those in Section 4.3.

Table 4.7 presents the results for homogeneous intervals. With the in-

tervals of both 10s and 20s, the proposed protocol achieves almost the same

performance as link-static-5 does.

For the heterogeneous intervals, our protocol keeps on selecting low mobil-

ity nodes more frequently as shown in Table 4.8. With our protocol low mobility

nodes and low mobility nodes are selected as next hop 5656 and 4820 times re-

4.5 Conclusion 59

Table 4.7: Performance: Brownian mobility model, homogeneous interval,

1500m× 500m

Interval = 10s Interval = 20s

Static T = 5s Tp × L(Tp) Static T = 5s Tp × L(Tp)

PDR 98.42 98.62 97.04 97.10

DL 96.2 97.3 172.2 142.1

PL 3.20 3.23 3.72 3.70

NRD 17716 13489 19228 12773

OiP 39686 49405 48153 47398

OiB 2410106 3216090 3009948 3136681

(For details on metrics, refer to Section 1.3.2)

spectively, while with link-static-5 low mobility nodes and high mobility nodes

are all selected 7632 times.

With this preference, our protocol performs better than link-static-5 in

terms of packet delivery ratio, delay, route discoveries and path length, but worse

than link-static-5 in terms of overhead as shown in Table 4.9.

4.5 Conclusion

In this chapter, we found that for those mobility models with non-exponential

epoch, the proposed protocol can perform well in most cases. Specifically, our

protocol can adapt to speeds well, but can be affected by pause times and mean

epochs. The shorter the pause time is, the better our protocol performs; the

4.5 Conclusion 60

Table 4.8: Distribution of being next hop: Brownian mobility model, het-

erogeneous intervals (λ−1
1 = 10s, λ−1

2 = 20s), 1500m× 500m

Static T =5s L(Tp)× Tp

LMN HMN LMN HMN

Times of being next hop 7632 7632 5656 4820

Percentage of being next hop 50 50 54 46

Table 4.9: Performance: Brownian mobility model, heterogeneous intervals

(λ−1
1 = 10s, λ−1

2 = 20s), 1500m× 500m

PDR OiP OiB NRD DL PL

Static T = 5s 97.87 45216 2794743 18499 122 3.47

Tp × L(Tp) 98.25 79232 5401734 17767 116 3.38

(For details on metrics, refer to Section 1.3.2)

longer the mean epoch is, the better our protocol performs.

61

Chapter 5

Conclusions

This thesis proposes an adaptive link caching scheme for DSR and evaluates it

through simulation in comparison with a static link caching scheme [15]. To

make the cached link information reflect the link status, we determine cache

timeouts for links in the cache through a lifetime prediction and a link availability

estimation, i.e., Tp × L(Tp), which assumes exponentially distributed epochs.

We found that for mobility models in which nodes moves with exponential

distributed epochs, the proposed scheme can choose more reliable routes and im-

prove the performance, especially the performance in terms of overhead. For other

mobility models with non-exponential epochs, we observed that the proposed

scheme still can choose more reliable routes and improve the performance. That

is, if nodes have relatively long movement intervals and short pauses, the pro-

posed scheme performs much better than the static scheme. On the other hand,

if nodes have relatively short movement epochs and long pauses, although the

proposed scheme can still achieve performance improvement, the improvement is

less than that achieved with long intervals and short pauses. Particularly, for the

5. Conclusions 62

exponential random waypoint mobility model with positive pauses, the proposed

scheme can improve the performance for all pauses simulated. For the random

waypoint mobility model, the proposed scheme can improve the performance for

all pauses and speeds simulated. For the random Gauss-Markov mobility model,

the proposed scheme performs slightly better than the static scheme. However,

for the Brownian mobility model, the proposed scheme performs slightly better

than the static scheme only in terms of packet delivery ratio.

However, there are still a lot of issues we have not covered in this thesis.

The most important one is the impact of errors that may occur when measuring

nodes’ mobility parameter, specifically during the Tp prediction. In this thesis, we

assume that nodes can always measure their neighbors’ mobility parameter accu-

rately and then predict Tp correctly. However, in reality, measurement errors may

happen due to the imperfectness of physical channel (e.g., noise, channel fading,

etc). Unfortunately, in the Tp prediction mechanism adopted in our scheme [13],

the author assumed the physical channel is always perfect. Another assumption

of this Tp prediction mechanism, which can also bring in errors into the measure-

ment, is that the nodes are assumed to know the transmission power of all other

nodes and all nodes keep their transmission powers constant. Unfortunately, this

is not the case in reality . For example, recently power consumption has drawn

a lot of attention, and a lot of work has been done on how to adjust the trans-

mission power of mobile nodes dynamically according to the channel condition

and battery level. If such kind of techniques are used, we cannot expect this

Tp prediction mechanism to provide accurate information on nodes’ movement.

5. Conclusions 63

Below, I will briefly discuss some potential solutions to these problems.

When the signal to noise ratio is very low or channel fading is severe,

the signal strength detected cannot represent the distance, and a node will fail

to estimate the relative velocity between the two nodes of a link. Subsequently,

Tp×L(Tp) will fail to show the actual lifetime of a link. However, when the signal

to noise ratio is high and the channel fading is moderate, the ε adjustment in L(Tp)

estimation can alleviate the inaccuracy in measuring the mobility parameters.

Anyway, for this factor, the credibility for Tp prediction, 0 ≤ α ≤ 1, should be

measured or estimated. Then the actual lifetime of a link under estimation should

be amended as α× Tp × L(Tp). More studies on α is required.

As an alternative for Tp prediction [6], a scheme has been proposed to

predict Tp with the help of GPS. With the information on location and velocity

provided by GPS, the Tp can be estimated more accurately than with the signal

strength measurement based Tp prediction. Note that, the L(Tp) estimation does

not depend on the methods of the Tp prediction.

The following topics can also be further studied for Tp×L(Tp) application.

Firstly, in this thesis we assume that all nodes know the mean epoch used in

L(Tp) estimation, so a dynamic measurement of the mean epoch should be useful

to provide the proposed scheme with more adaptability. Secondly, so far we focus

on the application of Tp×L(Tp) to link caching in DSR. In which way Tp×L(Tp)

can be used in other places to improve network performance is another interesting

issue.

64

Bibliography

[1] Y.D. Liu, S.M. Jiang, Y.M. Jiang, D.J. He, “An adaptive link caching

scheme for on-demand routing in MANETS”, THE 14TH IEEE Int Sym

on Personal, Indoor and Mobile Radio Communications (PIMRC), Sep.

2003, Beijing, China.

[2] S.M. Jiang, Y.D. Liu, Y.M. Jiang, “Provisioning of Adaptability to Vari-

able Topologies for Routing Schemes in MANETs”, the extended abstract

is accepted by IEEE JSAC Special Issue on Quality-of-Service Delivery in

Variable Topology Networks, and the full paper is invited.

[3] C.K. Toh, “Wireless ATM & Ad-hoc Networks”, Kluwer, Nov. 1996

[4] The network simulator (NS-2), http://www.isi.edu/nsnam/ns/

[5] C.K. Toh, “Associativity-based routing for ad-hoc networks”, Wireless

Personal Communications, Mar. 1997, pp. 103-139

[6] W. Su and M. Gerla, “IPV6 flow handoff in ad hoc wireless networks using

monility predication”, Proc. IEEE GLOBOCOM, pp. 271-275, Dec 1999.

Bibliography 65

[7] E.M. Royer and C.K. Toh, “A review of current routing protocols for ad

hoc mobile wireless networks”, IEEE Personal Communications, pp. 46-

55, April 1999.

[8] R. Dube, C. Raia, K-Y Wang and S. Tripathi, “Signal Stability based

adaptive routing (SSA) for ad hoc networks”, IEEE Personal Communi-

cations, pp. 36-45, Feb 1997.

[9] S.M. Jiang, D.J. He, and J.Q. Rao. “A Prediction-based Link Availability

Estimation for Mobile Ad Hoc Networks”, IEEE INFOCOM, pp. 1745–52,

2001. http://citeseer.nj.nec.com/498937.html.

[10] S.M. Jiang, D. He and J. Rao, “A prediction-based link availabil-

ity estimation for routing metrics in MANETs”, submitted to a

journal. Its early version was presented at IEEE INFOCOM 2001,

http://www.cwc.nus.edu.sg/ network/publications.html

[11] D.B. Johnson and D.A. Maltz, “Dynamic Source Routing in Ad Hoc Wire-

less Networks”, in Mobile Computing, edited by Tomasz Imielinski and

Hank Korth, chapter 5, pp. 153-181. Kluwer Academic Publishers, 1996.

[12] B. Liang, Z.J. Haas, “Predictive distance-based mobility management for

PCS networks”, Proc. IEEE INFOCOM, Mar 1999.

[13] D.J. He, S.M. Jiang and J.Q. Rao, “Link availability prediction model for

wireless ad hoc network”, Proc. 2000 International Conference on Dis-

tributed Computing System Workshop, pp. D7-D11, April 2000.

Bibliography 66

[14] D.B. Johnson, D.A. Maltz and Y.C. Hu, “The Dynamic Source Routing

Protocol for Mobile Ad Hoc Networks (DSR)”, IETF Internet Draft,

draft-ietf-manet-dsr-09.txt, April 2003.

[15] Y.C. Hu and D.B. Johnson. “Caching Schemes in On-Demand Rout-

ing Protocols for Wireless Ad Hoc networks”. Proc. the Sixth Annual

ACM/IEEE International Conference on Mobile Computing and Network-

ing (MobiCom’00), pp. 231–242, August 2000.

[16] C.E. Perkins, E.M. Belding-Royer and S.R. Das, “Ad hoc On-Demand Dis-

tance Vector (AODV) Routing”, IETF Internet Draft, draft-ietf-manet-

aodv-13.txt, February 2003.

[17] C.E. Perkins and P. Bhagwat. “Highly dynamic Destination- Sequenced

Distance-Vector routing (DSDV) for mobile computers”. Proc. the SIG-

COMM 94 Conference on Communications Architectures, Protocols and

Applications, pp. 234244, August 1994.

67

Appendix A

Source Code for Tp × L(Tp)

Estimation

For the description of Tp × L(Tp) Estimation, refer to Section 2.2. The source

code is as follows:

double LinkCache::find timeout(ID a, ID b) //added by liuyaoda

{

double lifetime = 0.0; // Tp

double probability = 0.0;// L(Tp)

double epsilon = 0.0;

Node *fromnode, *tonode, *node;

/*one node of the link*/

fromnode = Node::get node by address(a.addr);

/*the other node of the link*/

tonode = Node::get node by address(b.addr);

A. Source Code for Tp × L(Tp) Estimation 68

/*the node itself*/

node = Node::get node by address(net id.addr);

/*predict the link’s lifetime*/

lifetime = ((MobileNode *) fromnode)->lifetime((MobileNode *) tonode);

#ifdef MULTI EPOCH //for heterogeneous mean epochs

double lambda1 = 0.0;// The lambda for fromnode

double lambda2 = 0.0;// The lambda for tonode

if(a.addr < 25){

lambda1=60.0;}

else if (24 < a.addr < 50){

lambda1=250.0;}

if(b.addr < 25){

lambda2=60.0;}

else if (24 < b.addr < 50){

lambda2=250.0;}

lambda1=1.0/lambda1;

lambda2=1.0/lambda2;

/*estimate L(Tp)*/

probability = exp(-(lambda1+lambda2)* lifetime) * (0.5 *

pow(lifetime,2) * pow((lambda1+lambda2),2) - 2

-2 * lifetime * epsilon * (lambda1+lambda2) +

2 * exp((lambda1 + lambda2) * lifetime) * (1 +

lifetime * epsilon * (lambda1 + lambda2))) / (2 *

A. Source Code for Tp × L(Tp) Estimation 69

(lambda1 + lambda2) * lifetime);

#endif

#ifndef MULTI EPOCH //for homogeneous mean epochs

double lambda=0.0;

lambda=1.0/60.0;

/*get the ε of the estimating node*/

epsilon=((MobileNode *) node)->epsilon;

/*estimate the L(Tp)*/

probability = (1-exp(-2 * lifetime * lambda)) * (1.0/ (2.0 * lambda *

lifetime) + epsilon) + lifetime * lambda* exp(-2 *

lifetime *lambda) / 2.0;

#endif

/*estimate Tp × L(Tp)*/

lifetime = probability * lifetime;

if (lifetime < lc minlifetime)

lifetime = lc minlifetime;

return CURRENT TIME + lifetime;

}

70

Appendix B

Source Code for ε Estimation

For descriptio of ε Estimation, refer to Section 3.2. The source code is as follows:

void LinkCache::periodic checkCache() {

for(c = 0; c <= LC MAX NODES; c++) {

Link *v = lcache[c].lh first;

for(; v; v = v− >ln link.le next) {

/*find the links between myself and my neighbors*/

if (c == net id.addr ‖ v− >ln dst == net id.addr){

Node *nodea, *nodeb, *node;

/*one node of the link*/

nodea = Node::get node by address(c);

/*the other node of the link*/

nodeb = Node::get node by address(v− >ln dst);

/*the node itself*/

node = Node::get node by address(net id.addr);//the node itself

/*estimate the distance between the two node*/

B. Source Code for ε Estimation 71

double distance = ((MobileNode *) nodea)− >distance((MobileNode

*) nodeb);

/*the time that the links has been in the cache*/

double Tr=CURRENT TIME-v− >ln insert-1;

/*the predicted lifetime*/

double Tp=v− >lifetime;

if (((MobileNode *) nodea)− >distance((MobileNode *) nodeb)>250.0){

/*the link is not available now*/

if (v− >flag dead==0){//the link was available at the last check

v− >flag dead=1;

if (Tr<Tp){

#ifdef MULTI EPOCH//heterogeneous mean epochs

/*mean epoch for one end of the link*/

double lambda1 = 0.0;

/*mean epoch for the other end of the link*/

double lambda2 = 0.0;

if(c<25){

lambda1=60.0;}

else if (24 < c < 50){

lambda1=250.0;}

if(v− > ln dst < 25){

lambda2=60.0;}

else if (24 < v− > ln dst < 50){

B. Source Code for ε Estimation 72

lambda2=250.0;}

lambda1=1.0/lambda1;

lambda2=1.0/lambda2;

/*estimate ε*/

double epsilong = ((Tr/Tp) - 0.25 * (lambda1 + lambda2)

* Tp * exp (-(lambda1 + lambda2) * Tp)) / (1 -

exp(-(lambda1 + lambda2) * Tp)) -1 / ((lambda1 +

lambda2)*Tp);

#endif

#ifndef MULTI EPOCH//homogeneous mean epoch

/*mean epoch for both ends of the link*/

double lambda=1.0/60.0;

/*estimate ε*/

double epsilong=((Tr / Tp) - 0.5 * lambda * Tp *

exp(-2 * lambda * Tp)) / (1 - exp(-2 * lambda * Tp))-

1 / (2 * lambda * Tp);

#endif

if(epsilong<0){

epsilong=0;

}

/*small Tp is not suitable for the ε estimation*/

if (Tp > 2){

((MobileNode *) node)− >update lifetime(Tr);

B. Source Code for ε Estimation 73

((MobileNode *) node)− >update epsilong(epsilong);

}

}

}

}

/*what to do if the link is still available*/

if (((MobileNode *) nodea)− >distance((MobileNode *) nodeb)<250.0){

if(Tr>Tp){

/*re-predict lifetime*/

double lifetime = ((MobileNode *) nodea)

-> lifetime((MobileNode *) nodeb);

/*reset lifetime*/

v -> setlifetime(lifetime);

}

}

}

}

}

stat.reset();

}

