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SUMMARY 

 

As there is an ever-increasing need to pack more features into smaller chip packages at 

the lowest possible cost, the wafer fabrication process has to be optimized to produce 

the greatest possible yield.  With the move towards DUV lithography and its necessary 

use of chemically amplified resists, one aspect of fabrication that is influential in the 

control of linewidth is the development of the photoresist after it has been imaged.  

Tight control of the post-exposure bake temperature across the entire wafer is crucial 

in ensuring proper reaction of the chemically amplified resist.  For proper development 

of the resist, temperature variations have to be within o1 C±  when the wafer 

temperature is beyond o60 C  and o0.1 C±  at steady state.   

 

Closed loop wafer temperature control requires the use of contact temperature sensors 

to measure and feedback the current wafer temperature.  As wafers are loaded for 

processing, the level of thermal contact between the temperature sensor and wafer 

varies and this can degrade the quality of the feedback signal.  Experiment results 

showed that poor thermal contact can cause temperature differences of up to o3.8 C .  

Such a large difference in temperature can affect the reactions of the chemically 

amplified resist and the ability to maintain tight linewidth control across the wafer.  In-

situ testing of the temperature sensor’s parameters may be conducted using the Loop 

Current Step Response test which provides an indication of the extent of thermal 

contact.  To perform the LCSR test in-situ, the existing temperature measurement 

board had to be modified.  The hardware design principles and considerations, and the 
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LCSR test results of the modified system were presented.  The software modifications 

were also noted.   

 

Knowing the sensor’s parameters, a software compensation algorithm can be used to 

post-process the sensor’s readings and recover the actual wafer temperature.  The 

mathematical basis of the algorithm was presented.  It was demonstrated that with the 

algorithm the temperature difference could be reduced to within o1 C±  during transient 

and o0.1 C±  at steady state.   

 

If the LCSR test was performed separately from the PEB step, additional time would 

be incurred, reducing the throughput of wafers processed.  A solution would be to 

perform the LCSR test concurrently with the PEB step.  An algorithm was proposed to 

enable this.  The mathematical derivation of the algorithm and its simulated 

performance were presented.  The simulation results showed that there is a caveat to 

the use of the algorithm, and so a workaround was proposed.  Experimental results 

demonstrated that the sensor parameters could be obtained when the LCSR test was 

performed during the PEB temperature ramp.  The subsequent closed loop temperature 

control of the wafer was able to maintain the measurement error to within o1 C±  when 

the wafer temperature is beyond o60 C  and o0.1 C±  at steady state.   
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CHAPTER 1  

INTRODUCTION 

 

1.1 Motivation 

The introduction of new semiconductor technologies now exceeds the rate predicted 

by Moore's Law.  Microprocessor speed doubles every four years and, every five 

years, the number of bits produced increases tenfold [1].  Wafer, chip-die sizes and 

feature densities have become ever larger as wafer processing technology advances.  

This development results from the incessant move towards the fabrication of finer 

features over larger chip-die sizes on bigger wafers.  The latest prediction from the 

Semiconductor Industry Association’s (SIA) International Technology Roadmap for 

Semiconductors (ITRS) indicates that feature density can only increase as time 

progresses (Figure 1-1). 

 

Figure 1-1.  Exponential increase in the number of transistors produced [1] 
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In summary, the current trends in the semiconductor industry include : 

• decreasing feature size 

• increasing need for reduced defect density 

• increasing interconnect levels 

• reducing chip cost 

 

These trends place tremendous pressure on the industry to produce chips that pack an 

ever-greater amount of components into an ever-shrinking area, with the greatest 

possible yield and at the lowest possible cost.  To meet such a demand, every aspect of 

the wafer fabrication process has to perform well. 

 

Variation in temperature uniformity across-die and across-wafer is an important factor 

affecting the quality and yield in wafer processing [2]. With better control of absolute 

and spatial temperature distribution across the wafer during the several baking steps in 

the lithographic sequence, linewidth variations can be kept to a minimum.  

Furthermore, the widespread adoption of deep ultra-violet (DUV) lithography has 

necessitated the use of chemically-amplified resists, which are more sensitive to 

temperature variations than traditional Novolac resists.  Thus, the search for better 

wafer temperature control has now greater impetus.  

 

A method by which temperature regulation may be improved is closed-loop control.  

Unfortunately, it is difficult to achieve accurate in-situ monitoring of spatial 

temperature distribution using either contact or non-contact temperature sensors.  The 

measurement accuracy of contact temperature sensors such as thermocouples and 

RTDs are dependent on the amount of thermal contact between the transducer and the 
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wafer surface.  As a wafer is simply placed on the hot-plate during PEB process, it is 

difficult to ensure that there is good and consistent thermal contact between the wafer 

and the sensors.  Consequently, the sensor output is unreliable.   

 

An alternative to contact sensors are non-contact temperature sensing techniques that 

are based on the detection of infrared radiation.  However, the accuracy of non-contact 

temperature sensors is dependent on the emissivity of the target material.  If the 

emissivity is less than 1.0, the radiation power actually emitted from the material 

surface is less than expected and a non-contact sensor will give a reading that is lower 

than the true surface temperature.  Another problem is that semiconductors are 

substantially transparent in the spectral range where thermal radiation is emitted 

because they have very small emissivity.  Due to the fact that wafers are semi-

transparent to IR radiation, radiation from the underlying devices (e.g., heater) will 

also be picked up by the sensor [3].  Even in more sophisticated infrared thermometers 

where a pulsed laser is emitted and the amount of reflected energy measured, the 

accuracy is specified as o3 C±  [4].  Such accuracy is insufficient for use in wafer 

temperature uniformity control.  The difficulties in using of contact and non-contact 

sensors to accurately measure wafer temperature have hindered the widespread use of 

closed loop temperature control.  It is, therefore, worthwhile to explore methods for 

improving the accuracy of contact sensors so they can be used in the semiconductor 

fabrication process.   

 

This thesis seeks to demonstrate that measurement accuracy, and therefore wafer 

temperature control, can be improved by using a software compensation algorithm to 

post-process the readings obtained using a resistance temperature detector (RTD).  The 
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proposed algorithm is able to obtain the sensor response characteristics required for 

the compensation algorithm without interrupting existing fabrication procedures, 

thereby maintaining the throughput of wafers processed.   

  

 

1.2 Thesis Organization 

The thesis is organized as follows : 

 

Chapter 2 will introduce the basic processes in patterning a wafer.  It will describe the 

move towards deep ultra-violet photolithography and the use of chemically amplified 

photoresists.  The integrated bake/chill machine in which the experiments are 

performed on is then described, with emphasis on its main components.  To provide 

motivation for the work presented in this thesis, the effect of poor thermal contact 

between the temperature sensor and the wafer on the performance of closed loop 

control is also demonstrated.   

 

Chapter 3 will introduce the principles of the Loop Current Step Response test which 

is used to determine the sensor parameters.  The existing measurement board design is 

introduced, focusing on the AD7711AN chip, which is an analog front-end chip for the 

RTD that provides the excitation current and analog-digital conversion of the 

temperature measurements.  The principles and design considerations for the hardware 

modifications to incorporate the LCSR test function are then presented.  Finally, the 

experimental result of an LCSR test performed using the modified measurement board 

is presented. 
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Chapter 4 presents the derivation of the proposed software compensation algorithm.  

The algorithm has the characteristics of a high-pass filter which will amplify high 

frequency noise and requires the introduction of a low-pass filter to remove the high 

frequency signals.  The choice of the low-pass filter pole is discussed and its 

experimental impact demonstrated.  The performance of a closed loop controller that 

utilizes the algorithm to improve sensor accuracy is then shown.  A point is noted on 

the need for an accurate estimate of sensor parameter K.  Another stumbling block is 

that the duration of the LCSR test is long compared to the time taken to complete the 

PEB.  As a result, manufacturing throughput will suffer.   

 

Chapter 5 presents the algorithm that enables the estimation of the sensor parameters 

to be estimated via an LCSR test during the PEB process.  The mathematical 

derivation of this algorithm is shown, followed by the simulation results demonstrating 

its viability.  Simulation results showed that the sensor gain estimated using the 

proposed algorithm depends on how accurately the start of the PEB process can be 

synchronized with the LCSR test.  Hence, a possible workaround for this problem is 

proposed.  The experimental procedure for demonstrating the performance of the 

algorithm is then described, and the experimental results presented.   

 



 6

CHAPTER 2  

THE WAFER PATTERNING PROCESS 

 

2.1 Introduction 

An integrated circuit (IC) is a semiconductor device that contains electronic 

components fabricated on a silicon substrate.  A semiconductor device is fabricated by 

transferring layer upon layer of circuit patterns onto a wafer.  As feature sizes decrease 

and the amount of interconnects increase, precise fabrication of chip features becomes 

critical.   

 

Photolithography is the all-important process that creates the layers of circuit patterns 

on the wafer surface.  It is one of the most critical operations in wafer fabrication 

because it determines the horizontal surface dimension that can be produced on a 

wafer.  A photolithography system typically costs more than one third the costs of 

processing a wafer to completion.  Although this cost will increase as minimum 

feature size on a semiconductor chip decreases, optical lithography remains attractive 

because of its high wafer throughput [5].   

 

There are two primary objectives in the photolithography process.  One is the creation 

of pattern features whose dimensions are as close to the design requirements as 

possible.  The accuracy of this process is termed the resolution of the images.  The 

second is the accurate layering of circuit patterns over one another.  This is termed the 

registration or alignment.  An entire layer has to be correctly placed and the individual 
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parts of a circuit must be in the correct positions relative to each other.  Failure in this 

step could prevent the interconnecting vias from linking adjoining layers of circuit, 

rendering the chip defective.  Each step in the photolithography process contributes 

variations to the patterning process, and cumulative errors can ultimately cause the 

chip to fail.   

 
Process Step Purpose 

1. Surface preparation Cleaning and drying of wafer surface (dehydration) to 
promote resist adhesion 
 

2. Photoresist application Application of a thin layer of chemically-amplified 
photoresist to the wafer by spin-coating 
 

3. Exposure Precise alignment of mask to wafer and exposure to DUV 
light. Then pattern image is projected onto wafer 
 

4. Post-exposure bake Baking at about 90°C to activate catalyst that drives image 
development in chemically-amplified resist 
 

5. Development Removal of unwanted resist by dissolving resists in 
developer 
 

6. Develop Inspection Inspection of wafer for alignment and defects (ie. 
Correctness of image transfer) 
 

7. Etching Top layer of wafer is removed 
 

8. Photoresist removal Removal of photoresist layer from wafer 
 

9. Final inspection Surface inspection for etch irregularities and other 
problems 
 

Table 2-1.  Summary of steps for fabricating a single layer 

 

In general, the sequence of steps for patterning a single layer can be summarized as in 

Table 2-1 [6].  Before the image of the circuit is projected onto the wafer, photoresist 

is first dripped onto the centre of the wafer and then spun to eventually form a uniform 

and very thin layer (Figure 2-1).  Upon exposure to UV light, the exposed regions then 

undergo chemical changes.  A post-exposure bake (PEB) is then performed to activate 
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the reactions in the exposed regions, causing them to become soluble.  The unexposed 

regions remain insoluble and protect the underlying substrate from subsequent 

processing.  After the PEB, the soluble regions are removed and the exposed regions 

of the wafer are processed.  Once the processing is complete, the photoresist is 

completely removed.   

 

Figure 2-1.  The photoresist spin-coating process 

 

 

2.2 Deep-UV Lithography 

The demand for finer features has driven the technology of optical lithography to the 

deep-UV (DUV) range.  Figure 2-2 shows the ultra-violet portion of the 

electromagnetic wave spectrum and the move towards shorter wavelength with deep-

UV lithography. 
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Figure 2-2.  The ultra-violet portion of the EM spectrum 

 

The shift to deep-UV also involved a new type of light source, the development of 

special projection lenses, and the introduction of new resist materials that exhibit 

sufficient transparency to deep-UV exposures [6].  Transparency to deep-UV light is 

necessary for the projected light to penetrate through to the bottom of the photoresist 

layer.  Otherwise, exposure of the photoresist would not be uniform across the depth 

of the photoresist, thereby deteriorating the imprinted image quality.  The following 

sections describe various aspects of DUV lithography.   

 

2.2.1 Imprinting the Image 

The most commonly used patterning technique is the step-and-repeat method 

performed on a machine called a stepper, as illustrated in Figure 2-3.  In DUV 

lithography, the light source is an excimer laser which is focused onto the wafer 

through a series of mirrors and lens.  A mask is aligned with the wafer and exposed to 

the light source, then ‘stepped’ to the next site.  This process is then repeated over the 

entire wafer surface.  In reduction stepper systems, a large mask is used and the 

projected image is then reduced (usually at a ratio of 5:1).  The use of a large mask 
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ensures that any stray pattern introduced by dirt or glass distortion in the mask is 

reduced to insignificance.  Also, a large mask is easier to fabricate and repair.   

 

The advantage of a step-and-repeat system is that each chip is individually aligned, 

resulting in better pattern overlay and registration. Since a single mask is used 

throughout the entire process, the wafer images are potentially more uniform.  Other 

improvements include better resolution and reduced vulnerability to dust and dirt since 

a smaller area is exposed each time.  

 

Figure 2-3.  Step-and-repeat system 

 

Good linewidth control and overlay can be obtained because focus and alignment can 

be adjusted during the scan of each field to match the topography and previous level 
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pattern.  With a bright illumination source, high throughput can be achieved because 

the stage can be scanned at high speeds [7]. 

 

2.2.2 Chemically-Amplified Resist 

With the move towards DUV lithography, traditional photoresists could no longer be 

used.  They do not perform adequately because of their inability to become more 

transparent when exposed to deep-UV wavelength light.  Furthermore, the intensities 

of DUV light sources are lower.  To circumvent this intrinsic sensitivity limitation and 

to dramatically increase the resist sensitivity, the concept of chemical amplification 

was introduced.   

 

In chemical amplification, a catalytic species generated by irradiation triggers off a 

series of subsequent chemical transformations, providing a gain mechanism.  An 

additional photoactive compound commonly called photoacid generator (PAG) is 

added to the photoresist.  The PAG dissolves into a strong acid when exposed to light.  

A post-exposure bake is required to thermally induce a chemical reaction, which may 

be the activation of a cross-linking agent for a negative resist or the deblocking of the 

polymer resin for a positive resist.  The acid acts as a catalyst so that it is hardly 

consumed by the reaction, and can continue driving the deblocking process.  For 

example, one molecule of PAG might trigger 500 to 1000 chemical reactions [8].   

 

2.2.3 Post-exposure bake or PEB 

In DUV lithography, PEB takes on a more critical role than traditional 

photolithographic techniques.  In the use of chemically-amplified resists, PEB is 
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necessary to drive the catalytic reaction to completion.  Three phenomena compete in 

the resist [2] during the PEB process : 

1. Deprotection of the resist, which renders the exposed regions soluble during 

resist development.  The rate of the deprotection reaction is a function of 

temperature and the concentration of the reactants and it increases with 

temperature. 

2. Photoacid diffusion.  After exposure, the exposed regions of the resist layer 

have much higher concentrations of acid than the unexposed regions.  This 

difference in concentration causes the acid to diffuse from the exposed to the 

unexposed regions.  Acid diffusion results in deprotection of the chemically 

amplified resist beyond the exposed regions which can ultimately deteriorate 

the image quality. 

3. Photoacid loss due to neutralization by base species in the exposed regions.  

The amount of acid loss increases with PEB temperature [9] due to a greater 

likelihood of encounter with base species.  This reduction in acid concentration 

leads to a slowing of the rate of deprotection reaction.  However, base in the 

unexposed regions act as a trap for diffusing acid and neutralizes it.  

 

The complex interaction between these three phenomena influences the quality of the 

final image formed in the resist.  The discussion also highlights the important role 

played by the PEB temperature in the chemical reactions.   
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Table 2-2.  Temperature sensitivity of various chemically-amplified resists [2] 

 

Table 2-2 shows the temperature sensitivity of various chemically amplified resists.  

While there is the option of selecting a chemically amplified resist with lower 

temperature sensitivity, this is not without trade-offs.  For instance, although the 

APEX-E resist has high temperature sensitivity, its use is widespread because of its 

excellent resolution.  In general, resists that are less temperature-sensitive have lower 

activation energies (the deblocking reaction can occur at room temperature) and hence 

have lower shelf-life [2].    

 

The effect of post-exposure bake on linewidth control was studied by Sturtevant et al. 

[9], where the process parameters considered were PEB temperature, PEB duration 

and exposure dose.  It was found that of the three process parameters, the process 

latitude for PEB temperature was the highest, indicating that PEB temperature is the 

most critical parameter for linewidth control.  Figure 2-4 shows the respective process 

latitudes, expressed in terms of percentage CD change per percentage parameter 

change.   
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Figure 2-4.  Process latitude for a 0.5µm  lithography with respect to exposure dose, PEB duration and 

PEB temperature [9] 

 

Figure 2-5 shows the effect of PEB temperature on the ability to fabricate a star pattern 

of feature size graduating from 0.25 mµ  at the centre to 1.5 mµ  at the edge.  The PEB 

temperatures studied were 65 C , 90 C  and 100 C  over a PEB duration of 90s.  At 

65 C , the 0.3µm  lines were resolved, while at 100 C  only lines larger than 0.7µm  

were resolved.  The features were best resolved at 90 C .  Sturtevant et. al suggests 

that photoacid loss due to neutralization by base species and photoacid diffusion are 

the factors behind the above-mentioned trends.  Thus, the PEB has a primary influence 

on resist performance and wafer temperature uniformity during the PEB process is 

important.   
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Figure 2-5.  SEM photographs of resolution stars for wafers with PEB temperatures a PEB duration of 

90s at (a) 65 C   (b) 90 C   (c) 100 C  [9] 
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2.3 The Integrated Bake/Chill Machine 

The integrated bake-chill machine was designed with the aim of improving linewidth 

control and increasing the throughput of wafers processed.  Section 2.2.3 noted the 

importance of PEB in the processing of wafers, and Section 2.2.2 further noted the 

sensitivity of chemically-amplified resists to PEB temperature.  Hence, there is a need 

for a system that is designed to maintain wafer temperature uniformity across a wafer 

with the ultimate goal of achieving tight linewidth control.  Figure 2-6  shows the 

cross-section of the integrated bake-chill machine.   

 

Figure 2-6.  Cross-section showing the layout of the machine [10] 

 

The key components of the integrated bake-chill machine are : 

• A rotating turntable upon which the wafer is placed 

• A multi-zone heating system 

• An integrated temperature measurement system 
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2.3.1 The Turntable 

The turntable houses the vacuum chuck, the in-situ temperature measurement board 

and the temperature sensors.  It also serves as the platform upon which the wafers are 

placed.   

 

 

Figure 2-7.  The turntable 

 

The motivation for spinning the wafer is to improve annular temperature uniformity. 

Spinning the wafer below the heater provides each wafer annulus with more consistent 

thermal conditions for both bake operation and heat dissipation.  With a revolution 

speed of 600rpm, the temperature uniformity can be kept to within 0.1°C [11].   

 

An added benefit of the rotating turntable is the ability to perform spin-coating of 

photoresist on the same platform.  This removes the need to have the spin-coating 
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done separately and reduces the number of transfers of wafer.  Furthermore, with the 

spin-coating and baking performed within the same machine, latter processing steps 

can commence as the former nears completion.  For instance, towards the end of the 

spin-coating step with a typical full speed at 3000-6000rpm [12], the prebake step can 

be initiated without waiting for the turntable to come to a complete stop.  

 

2.3.2 The Multi-zone Hotplate 

The multi-zone hotplate consists of 7 heating zones.  Figure 2-8 is a photograph of the 

hotplate.   

 

Figure 2-8.  The multi-zone hotplate 

 

The machine can be configured to operate in two modes.  One mode is wafer 

temperature control mode, where the wafer temperature readings from the in-situ 

measurement board are used as the feedback signal.  The other mode is heater control 

mode, where the heater temperature readings from the sensors in the hotplate are used 
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as the feedback signal.  This flexibility allows the machine, when it is not performing 

PEB of wafers, to maintain the heaters at a setpoint temperature.   

 

2.3.3 In-situ Temperature Measurement System 

The in-situ temperature measurement system enables the bake/chill machine to meet 

the ultimate objective of ensuring temperature uniformity across a wafer, as detailed in 

[10].  The two primary components of the temperature measurement system are : 

• A temperature measurement board that is capable of 16 channels of concurrent 

measurements.  The temperature measurement board is embedded in the body 

of the turntable and provides in-situ measurement of the wafer temperature.   

• A computer running Labview, which provides the user interface  

 

The temperature measurement board is connected to the temperature sensors and 

provides the necessary signal conditioning and data conversion.  Its primary 

components are : 

• an Intel 80C196KC microcontroller that controls the various sub-systems 

• a PSD401A2 controller peripheral chip to provide address and data de-

multiplexing, address decoding and additional logic inputs and outputs for 

receiving commands or controlling other devices 

• Analogue Devices AD7711AN signal conditioning chips that provide a stable 

built-in current of 200µA  for exciting the RTDs and performs analogue-to-

digital conversion 

• Honeywell HRTS-5670 platinum resistance temperature detectors.  The 

general characteristics of RTDs are provided in Appendix A 



 20

• ICL-232 serial communication chip to transmit the acquired data to a personal 

computer. 

• MAX882 linear regulator chips to condition the board's power supply 

 

Figure 2-9  presents a functional block diagram of the temperature measurement board    

 
Figure 2-9.  Functional block diagram of temperature measurement board 

 

Before the board begins running, a firmware is first downloaded into the PSD401A2 

chip.  The functions of the firmware include : 

• defining the operational modes of the 80C196KC, PSD401A2 and AD7711AN 

• defining which pins on the 80C196KC and PSD401A2 are active and their 

corresponding functions 

• initialization functions 

• running the user programs 
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The firmware is compiled from several source codes, each of which is written 

specifically for a chip, or for the user program.  The final product is a hexadecimal-

format file which is downloaded into the PSD401 chip and executed by the 80C196KC 

microcontroller.   

 

Each measurement channel consists of one temperature sensor and one AD7711AN 

chip.  The AD7711AN chip passes a constant 200µA  current through the temperature 

sensor and measures the voltage across the RTD.  Since the excitation current is 

constant, the voltage across the RTD is proportional to its resistance and may be used 

to infer the temperature.  The AD7711AN’s ADC then converts the measured voltage 

to a 24-bit digital number and transmits that serially to the PSD401 chip.  A total of 16 

pins on the PSD401 are assigned to receiving the digital numbers from the 

AD7711ANs, one pin for each channel.  As the PSD401 reads all 16 pins concurrently, 

the data from these 16 channels appear multiplexed at the PSD401 pins.  The onboard 

firmware performs the de-multiplexing that recovers the digital numbers from each 

channel.  These digital numbers are then passed to the RS-232 transceiver which then 

transmits them to the PC.   

 

2.3.4 Machine Operation 

Figure 2-10 illustrates the operation of the bake-chill machine during PEB.  The wafer 

is loaded onto the turntable and the latter rotated.  The wafer is held down in place by 

suction force via eight vacuum cups.  The RTDs in contact with the wafer measure its 

temperature, and the measurement signal is then processed by the temperature 

measurement system embedded in the turntable.  The processed signals are then 

relayed to the PC which runs the closed loop temperature control scheme.  Based on 
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the feedback signal, the PC outputs a 0-5VDC signal to the power modules, which is 

then translated into a 0-240VAC electrical drive that powers the heaters.  Thus, the 

amount of heat applied to the wafer depends on the current wafer temperature.   

 

 

Figure 2-10.  Operation of the bake-chill machine 

 

 

2.4 The Influence of Poor Thermal Contact 

Closed-loop control techniques can provide tighter temperature control.  However, it is 

effective only if an accurate feedback signal is available.  This section examines the 

influence of thermal contact level on the performance of a closed-loop controller.  As 

the study aims at ascertaining the effect of poor feedback signal on control 

performance, a simple single-input single-output control system was used.  Instead of 

multi-zone heating, the heater was configured into a single zone and the temperature 

on one point of the wafer was measured when it is heated from the room temperature 

of approximately 27 C  to a typical PEB temperature of 90 C  [13].   
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The experimental procedures were as follows : 

1. Before starting each experiment, the heating unit was moved away from the 

turntable.  The steady-state temperature of the heater was then regulated at 

130 C  before work commenced.  This temperature is the level that gives rise 

to a wafer temperature that is approximately equal to the steady state PEB 

temperature of 90 C .  

2. The wafer was placed on the turntable and the hot-plate lowered so that the 

distance between the heater and the wafer was approximately 2.5 mm. 

3. Temperature readings acquired by the temperature measurement system was 

passed to a Proportional plus Integral (PI) controller in order to manipulate the 

wafer temperature.  The proportional gain (P) and integral gain (I) is 10 and 

0.03 respectively.  The sampling rate was 4Hz.   

 
Two experiments were performed : one where the feedback signal was from the RTD 

that had good thermal contact with the wafer, and another in which the contact was 

poor.  Poor thermal contact was simulated by pasting a layer of tape on the sensing 

surface of the sensor so that it was not in direct contact with the wafer.  In order to 

gauge the effect of a poor contact sensor on the ability of the feedback system to 

maintain temperature uniformity, a reference RTD was mounted beside the poor 

contact sensor to obtain an indication of the wafer temperature.  Good thermal contact 

between the reference RTD and the wafer was ensured by using a liberal amount of 

thermal paste.   

 

The wafer temperature rise profile obtained using sensors that have good and poor 

contact with the wafer are compared in Figure 2-11(a).  The plots show that the step 

response is more oscillatory when the feedback signal is provided by a sensor that has 
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poor thermal contact.   This may be caused by the fact that the time constant of a 

sensor which has poor contact is no longer negligible.  Consequently, the effective 

order of the closed-loop system is increased leading to an oscillatory step response.  

Figure 2-11(b) shows the difference between the outputs of the two sensors.  

 

During the PEB process, the desired spatial uniformity on a wafer is 1 C±  from 60 C  

to the PEB temperature of 90 C  and 0.1 C±  at steady state [13].  It may be concluded 

from Figure 2-11(b) that the PEB temperature specifications cannot be achieved if the 

feedback signal passed to the various zones of the multi-zone heater is derived from 

sensors that have varying level of thermal contact with the wafer.  Thus, an algorithm 

for improving the accuracy of the measurement is needed.   
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Figure 2-11.  Closed loop control performance when feedback sensor has good and bad thermal contact 

with wafer 
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CHAPTER 3  

THE LOOP CURRENT STEP RESPONSE TEST AND 

THE MEASUREMENT HARDWARE 
  

The variability of thermal contact between the temperature sensor and the wafer can 

deteriorate the quality of the feedback signal for closed loop control.  To overcome 

this, an algorithm that processes the feedback signal to remove any variability in 

measurement accuracy is needed.  Since this algorithm must operate online, an in-situ 

method for identifying the response characteristics of the sensor is essential.  This 

chapter will introduce the Loop Current Step Response (LCSR) test that is used to 

determine the properties of the temperature sensor.  The hardware modifications to 

incorporate the LCSR test function into the existing temperature measurement board 

are then documented.  Finally, the experimental results of the LCSR test are presented.   

 

 

3.1 Sensor Parameter Estimation Using the LCSR Test 

Before software compensation can be used to improve the quality of the measured 

signal used to perform feedback control, the response characteristics of the sensor 

must first be determined.  This can be achieved by the Loop Current Step Response 

(LCSR) test.  This test is performed in-situ, with the sensor installed in the operating 

environment.  The primary advantages of this test are that the sensor need not be 

removed for testing, and the test captures all factors that affect the response time of the 

sensor.  The use of the LCSR test requires knowledge of the temperature sensor’s 

model which represents its response characteristics.  It also requires a means of 
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identifying the model’s parameters from the LCSR test data obtained.  These are 

detailed in the following sections.   

 

3.1.1 Sensor Transfer Function 

Any change in temperature at any point in the sensing element can be assumed to arise 

from [14] : 

1. Changes in the temperature of the sensor’s surroundings 

2. Self-heating effect due to passing of electrical current through the resistive 

sensing element 

3. Combined effect of the above two changes 

 

Schematically, such behaviour can be represented by Figure 3-1, where the symbols 

used represent : 

( )mT s  Measured temperature 

( )aT s  Actual medium temperature 

( )P s  Electrical power generated in the sensor 
( )iT s  Rise in temperature due to self-heating 

PK  Transfer function of electro-thermal conversion in sensor 
( )1G s  Transfer function for temperature sensing of medium 

( )2G s  Transfer function for internal self-heating 
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( )aT s ( )mT t

( )'
2G s

Sensor

( )1G s

Thermal
Conversion stage

+

( )iT s
PK( )P s

Electro-Thermal
Conversion stage

( )2G s

 

Figure 3-1.  Schematic of temperature sensor model 

 

The lower path models the direct temperature measurement and the classical 

immersion identification method with external excitation.  Assuming that the sensor 

may be modelled as a multi-layer cylinder and the thermal capacitance between the 

sensing element and the central axis is negligible, the transfer function of the thermal 

conversion stage for externally excited immersion tests is given in Equation (3.1). 

 ( ) ( )
( ) ( )1

1 1
m

n
a i i

T s KG s
T s sτ=

= =
∏ +

 (3.1) 

 

The upper path starting from ( )P s  models the self-heating effect when the 

temperature of the sensor’s surroundings is constant.  Since an RTD requires a 

constant excitation current to be passed through it, a current I passing through a 

resistance R generates a heating effect 2I R .  This is converted into an internal 

temperature ( )iT s  in the electro-thermal conversion stage of the model.  For self-

heating tests, the transfer function is given by 
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=
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 (3.3) 

 

RTDs are encapsulated in a protective sheathing and so the thermal energy of the 

surroundings is first transmitted through the protective sheath before reaching the 

sensing element.  Thus, the two heat transfer processes and the schematic in Figure 3-1 

can be modelled as 

 ( ) ( )( ) ( ) ( )
( )( ) ( )

1 2 1 2

1
1 1 1 1

P
m a

K K NsKT s T s P s
s s s sτ τ τ τ

+
= +

+ + + +
 (3.4) 

where 1τ  Thermal resistance of the protective sheath 
 2τ  Thermal resistance of sensing element 

 

The RTD used for this project has a thin ceramic protective sheath and so the thermal 

resistance of the sheath is negligible relative to that of the sensing element.  Thus, 

1 2τ τ<<  and the model of the sensor may be further simplified to  

  ( ) ( ) ( ) ( )
2 11 1

P
m a

K KKT s T s P s
s sτ τ

= +
+ +

 (3.5) 

 
The zero in the second term is removed so that the transfer function is strictly proper.  
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3.1.2 Identifying the Sensor Parameters Using the LCSR Test 

An RTD is a resistive element whose resistance varies with temperature.  A known 

constant excitation current is passed through the RTD, generating a voltage across it 

from which the resistance can be found.  Thus, variations in resistance are reflected as 

variations in the measured voltage across the RTD.  The LCSR test involves the 

sudden change of current through the sensor filament, bringing about a temperature 

transient.  This method exploits the fact that heat transfer resistances and heat 

capacities are independent of the direction of heat flow.  Thus, the same heat transfer 

characteristics that control the transient response following a change in temperature 

around the sensor also controls the temperature transient following a change in the 

current flowing through the filament.  Consequently, the test captures all factors that 

can affect sensor response time in the process.   

 

The sensor’s parameters can be found from the LCSR test data using the Least-squares 

method.  Ambient temperature is assumed to be constant and by the Principle of 

Superposition, ( ) 0aT s =  and the first term in Equation (3.5) can be set to zero.  The 

sensor model then becomes 

 ( ) ( )
2 1

P
m

K KT s P s
sτ

=
+

 (3.6) 

 

Since the parameters K and 2τ  in Equation (3.6) are to be identified, let K
∧

 and τ∧  be 

the estimated static gain (K) and time constant ( 2τ ) respectively.  Rearranging 

Equation (3.6),  

 ( ) ( ) ( )1 1 1P
m m

K KT s T s P s
s sτ τ

∧

∧ ∧= − +   

 



 31

For a step change in the current flowing through the RTD, ( ) AP s
s

= , 

 ( ) ( ) 2

1 1 P
m m

K AKT s T s
s sτ τ

∧

∧ ∧= − +  (3.7) 

 

Let 2 PA K A= .  Taking the inverse Laplace transform of Equation  (3.7), 

 ( ) ( ) 2
0

1 t

m m
K AT t T t dt t

τ τ

∧

∧ ∧= − +∫  (3.8) 

 

During the LCSR test, pairs of t and ( )mT t  can be recorded.  The data pairs may be 

arranged in the following matrix form, 
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  Y Xθ=  

where 
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Equation (3.9) is linear-in-the-parameters.  Hence the coefficient vector θ  can be 

found using the Least-squares method.   

 ( ) 1T TX X X Yθ
−

=  (3.10) 

 
As the coefficient vector θ  contains two terms, only two equations can be formed to 

solve for three unknowns ( 2A , K
∧

 and τ∧ ).  An additional relationship is needed before 

the sensor parameters, K
∧

 and τ∧ , can be identified on-line.  Since the same current is 

passed through the sensor filament during each LCSR test, the amount of extra 

electrical power generated and hence, 2A  should remain constant.  If 2A  can be 

determined experimentally off-line, then there will be sufficient information in θ  to 

identify K
∧

 and τ∧  online.  Assuming that the calibration errors are small, the steady-

state sensor output will approach the actual temperature when there is good thermal 

contact between the sensor and the wafer.  Consequently, the steady-state gain K of the 

sensor transfer function should be unity so that ( ) ( )m aT T∞ = ∞ .  By performing an 

LCSR test under good contact conditions, 2A  and τ∧  can be found by setting K to 1.  

Once 2A  is identified, it can be used together with the coefficient vector, θ , to 

determine the sensor parameters online for subsequent tests.  
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3.1.3 Simulation Results 

A simulation was performed to verify the model of the sensor and the ability of the 

least-squares method to identify the sensor parameters.  Since the RTD data sheet 

states that the sensor time constant is 0.6s, and assuming the thermal contact between 

sensor and wafer is good, the sensor model was chosen as ( ) 1
0.6 1

G s
s

=
+

.  The LCSR 

test duration was 15s and the sampling rate was 10Hz.  Figure 3-2  shows the result of 

the simulated LCSR test.  Using the Least-squares method in Equation (3.10), the 

identified τ∧  and K
∧

 are 0.6014 and 1 respectively, demonstrating that it is able to 

accurately identify the sensor parameters from the LCSR test data.   

 
Having introduced the LCSR test, the next step is to incorporate the LCSR test into the 

existing temperature measurement board so that it can be evaluated experimentally.  

Before presenting the hardware modifications, the design issues associated with the 

AD7711 is described.   
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Figure 3-2.  Simulation result of LCSR test 
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3.2 The AD7711AN Signal Conditioning ADC Chip 

The AD7711AN chip offers a complete analog front end for low frequency 

measurement applications.  It accepts low level signals directly from a transducer and 

outputs a serial digital word.  Figure 3-3 presents the functional block diagram of the 

AD7711AN chip, showing the primary functions and pins of the chip.   

 
(a) Functional block diagram of AD7711AN 

 

Reference
Resistor

RTD

AD7711AN

AIN(+)

AIN(-)

RTD1

REFIN(+)

REFIN(-)

A

 
 

(b) Simplified schematic of 
AD7711AN for temperature 

measurement 
 

Figure 3-3.  Details of the AD7711AN 
 

The functions of the important pins and function blocks is as follows : 

• AIN1(+) / AIN1(-) : Differential analog input. 

• REFIN(+) / REFIN(-) : Differential reference voltage input. 

• VBIAS : Biasing voltage for the AD7711AN internal circuit operation. 

• AVDD : Analog positive supply voltage (+5V). 

• VSS : Analog negative supply. Since single-rail power supply is used, this pin is 

connected to AGND. 

• RTD1 : Internal current source. 

• REFOUT : Built-in 2.5V reference voltage. Can be used as the reference 

voltage in ratiometric AD conversion of voltage measurements. 

• AGND : Ground reference input for analog circuit. 
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• PGA : Programmable gain that allows direct interface with low-level signals. 

For a given sampling rate, higher gain values increase the signal-to-noise ratio 

of measurements. 

• Digital Filter : Sets the sampling rate of the AD7711AN. 

• Control Register : Defines the operating modes of the AD7711AN. 

• -  ModulatorΣ ∆  : converts the sampled signal into a digital pulse train whose 

duty cycle contains the digital information. 

 

The voltage across the temperature sensor is measured via a differential analog input 

(AIN1(+) and AIN1(-) in Figure 3-3a) and applied to a programmable gain (PGA in 

Figure 3-3a).  The output from the gain is then sampled and then processed by an on-

chip digital filter (Charge-balancing AD converter in Figure 3-3a).  The first notch of 

this digital filter determines the sampling rate and hence the amount of measurement 

noise, and is programmed via the on-chip control register (Control register in Figure 

3-3a).   The input pins REFIN(+) and REFIN(-) provide the reference voltage for the 

ratiometric analog-digital conversion of the RTD voltage measurement.     

 

Figure 3-3b shows the existing connections of the AD7711AN for the acquisition of 

temperature readings.  Pin RTD1 provides the constant excitation current through the 

RTD and the reference resistor.  The pins AIN1(+)/AIN1(-) and REFIN(+)/REFIN(-) 

measure the voltages across the RTD and reference resistor respectively.  The digital 

output of the AD7711AN chip is the discretized value of the ratio between the 

measured voltage and the reference voltage.  The advantage of a ratiometric scheme is 

that if the same excitation current is used to excite the RTD and generate the reference 

voltage (see Figure 3-3b), any variations or drift of the current will not affect the 

measurements.   For instance, let  
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RTDV  Voltage across RTD 

Gain  Gain of AD7711AN programmable gain (PGA) 

REFV  Voltage across reference resistor 

RTDR  RTD resistance at given temperature 

REFR  Reference resistor 

I  Excitation current 

 

 Ratiometric result RTD

REF

Gain V
V

⋅
=  (3.11) 

 

RTD

REF

RTD

REF

I RGain
I R
RGain
R

×
= ⋅

×

= ⋅
 

  

If a stable resistor is chosen as the reference resistor, the measurement readings from 

the AD7711AN will be stable even in the presence of excitation current fluctuations.  

Furthermore, the current sources of the AD7711AN have low temperature coefficients.  

These two factors equip the AD7711AN with excellent measurement stability.   

 

3.2.1 Design Considerations 

There are several design guidelines/restrictions that must be adhered to for the 

AD7711AN chip to function properly.  They are : 

1. The absolute maximum voltage relative to ground applied at any pin is 

0.3VSSV + . 

2. For better performance, the recommended BIASV  is half of DDAV . The latter is 

fixed at +5V. 

3. There are mutual constraints on BIASV  and REFV . 
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0.85BIAS REF DDV V AV+ × <  and - 0.85BIAS REF SSV V AV× >  

 For the case where 5VDDAV = +  and 0VSSV AGND= = , 2.5VBIASV = +  

(Constraint 2), 

  
2.5 0.85 5

2.94V
REF

REF

V
V

+ × <
<

 or 
2.5 - 0.85 0

2.94V
REF

REF

V
V

× >
<

 

4. For valid readings, REFV  has to be at least 1.1V.  A further note is that the lower 

REFV  is, the greater the measurement noise. 

5. The -Σ ∆  converter discretizes voltages bounded by 0V and REFV  into 2N  

values, where N is the number of bits in the digital word.  Hence the 

AD7711AN output will saturate when 

AIN 1 REFV Gain V⋅ >  

 

The current flowing through the RTD needs to be increased during the LCSR test, but 

as the output of the AD7711AN chip’s built-in current source cannot be altered, an 

external circuit is needed to provide the high current.  The connection between the 

external circuit and the measurement board can be made at the point labeled as ‘A’ 

indicated in Figure 3-3b.  Pin RTD1 is the output of the AD7711AN current source 

and it has very high output impedance.  All the other input pins in Figure 3-3b also 

have high input impedance.  The injected current will simply flow through the RTD 

and reference resistor down to ground.  However, there are a number of other issues 

that need to be considered in order to safely integrate the external circuit into the 

existing system 

 

The first consideration is that the analog voltage input pin of the AD7711AN (AIN) is 

connected to a sampling capacitor (see Figure 3-4).  The input sample rate (fCLKIN) 
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determines the time that the analog input capacitor, CINT, has to charge up fully before 

data is sampled.  Hence, care must be taken to ensure that the external impedances do 

not cause the RC time constant to exceed the sampling period.  As shown in Figure 

3-3b, point A is connected to the AIN1(+) analog input and so the external high current 

circuit can potentially introduce parasitic impedance to the AIN1(+) input.  To take 

care of this issue, the external circuit must present a very low output impedance so as 

not to significantly affect the charge-up time of the sampling capacitor CINT.  

Alternatively, the output impedance has to be extremely high so as to effectively 

present an open circuit to the AIN1(+) analog input.   

 

 

Figure 3-4.  Analog input impedance 

 

A second consideration hails from the fact that the signals of these circuits are low.  It 

may, therefore, be prudent to power the external circuit from the same power supply as 

the measurement board.  If more than one power supply is used, there is the possibility 

that each supply unit will have different ground potential.  This can potentially affect 

the readings when the external circuit is switched into the measurement board.  The 

measurement board utilizes the MAX883 voltage regulator chips, which can accept 

voltage inputs of up to +11.5VDC single-rail.  With this in mind, the components 

would have to be able to operate from a +11.5VDC single-rail power supply.   
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Two designs were implemented on the temperature sensor board. The first design 

sought to incorporate the LCSR function that allowed for measurement of temperature 

during both the high current and nominal current phase.  However due to hardware 

restrictions, only a limited amount of high current could be injected into the RTD and 

the resulting self-heating temperature rise was very small.  A second design was 

implemented, which sacrificed the high current temperature measurement for a larger 

injected current and self-heating temperature rise.  The designs are detailed in the 

following sections.   

 

 

3.3 Design A 

To perform the LCSR test, a high current has to be passed through the RTD to cause 

self-heating.  Furthermore, it is advantageous for the temperature measurement system 

to be able to acquire temperature readings during both the high and nominal current 

phases.  Thus, the objective for this design is to inject a high current into the RTD and 

still be able to obtain temperature readings from the RTD during this high current 

phase.  Since the built-in current source of the AD7711AN is fixed at 200µA , an 

external constant current source circuit is required to provide the high current.  For 

testing purposes, only one measurement channel would be modified.   

 

3.3.1 Basic Principle 

Since the objective is to obtain the RTD readings during both the high current and 

nominal current phase, the modifications must allow the data acquired during both 

phases to be reliable.   
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The high current increases the amount of self-heating in the RTD, which in turn causes 

its resistance to increase.  Since the reference resistor is stable, its resistance does not 

change in the presence of a larger current.  Defining the following quantities,  

 heatR  increase in resistance due to self-heating 
 nR  RTD resistance at nominal current 
 REFR  Resistance of reference resistor 
 hI  Magnitude of high current 
 nI  Magnitude of nominal current 
 Gain Gain of AD7711AN programmable gain amplifier (PGA) 

 

Table 3-1 compares in general terms the measurements obtained during the nominal 

and high current phases.   

 
   
 Nominal Current High current 

REFV  n REFI R  h REFI R  

RTDV  n nI R  ( )h n heatI R R+  

Analog value 
corresponding 
to AD7711AN 
output 
(Equation (3.11) 

RTD

REF

n n

n REF

n

REF

n
REF

Gain V
V

Gain I R
I R

Gain R
R
GainR
R

×

×
=

×
=

=

 

( )

( )

( )

RTD

REF

h n heat

h REF

n heat

REF

n heat
REF

Gain V
V

Gain I R R
I R

Gain R R
R

GainR R
R

×

× +
=

× +
=

= +

 

 
Table 3-1.  Comparison of high and nominal current measurements 

 

As the same current flows through both the RTD and the reference resistor, Table 2-1 

shows that any change in readings during the high current phase is due only to the 
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change in RTD resistance caused by self-heating.  When the high current is switched 

away from the RTD, the amount of self-heating decreases and heatR  will gradually 

decay to 0.   

  

3.3.2 The External High Current Circuit 

Figure 3-5 is a schematic diagram of the circuit that is used to pass a high current 

through the RTD. 

 

Reference
Resistor

RTD

AD7711AN

AIN1(+)

AIN1(-)

RTD1

REFIN(+)

REFIN(-)

Rset

LM334

W172DIP-147

1N5818

5V

L293E
Vs

Vss

Out1In1Port D7
PSD401A2

External circuit  

Figure 3-5.  Simplified schematic of LCSR circuit (first modification) 

 

The primary components of this design are :  

• LM334 Current source to provide the high current. SETR  is used to set the 

output current 

• W172DIP-147 Relay to switch the high current into the RTD 

• L293E Relay driver.  The L293E relay driver is required because the PSD401 

is not able to provide sufficient current to drive the W172DIP-147 relay.  The 
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L293E relay driver acts as a buffer by drawing very little current from the 

PSD401 and supplying the current required to drive the relay coil.   

• 1N5818 Diode to provide a high impedance into the high current circuit. This 

is to satisfy the design consideration in section 3.2.1, where an external circuit 

should not cause the RC time constant of the sampling capacitor to increase 

beyond the sampling period 

• AD7711AN Signal conditioning ADC with RTD excitation current to provide 

the analog front-end signal conditioning and ADC for acquiring temperature 

readings from the RTD 

• PSD401A2 Field-programmable microcontroller peripheral to activate and 

deactivate the relay driver, thereby controlling the injection of high current into 

the RTD 

All the components in Figure 3-5 can be powered from the same single-rail power 

supply as the measurement board.   

 

When the LCSR test is activated, Port D7 of the PDS401A2 goes high, turning on the 

relay driver and closing the relay contact.  This closed relay then passes the high 

current into the RTD and reference resistor.  The total current passing through the 

RTD is the sum of the injected current and the AD7711AN’s excitation current.  After 

a pre-specified high current duration, Port D7 goes low which turns off the relay driver 

and opens the relay contact. Thus, the current through the RTD and the reference 

resistor reverts to the nominal value.  As the amount of self-heating is now reduced, 

the sensor cools and this is recorded as a first-order decay in the temperature profile.  
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3.3.3 Choice of Maximum High Current 

As mentioned in Section 3.2.1 (Constraint 3), the maximum voltage that can be 

applied to the REFV  pin is 2.94V.  The current provided by the external circuit flows 

through both the RTD and the reference resistor.  Consequently, the largest possible 

current that may be used to drive the RTD is  

Max Maximum current through RTD REF

REF

V
R

=  

 

Setting 6kΩREFR =  and since Max 2.94VREFV = , 

2.94VMaximum current through RTD
6kΩ

0.49mA
490µA

=

=
=

 

 

As the excitation provided by the AD7711AN is 200µA , the maximum external 

current is 290µA .   

 

3.3.4 Software Modifications 

Code was added to the firmware to control the injection of high current into the 

measurement board by activating and deactivating Port D7 of PSD401 chip.  The 

original firmware also had a function that performed a moving average of the 

AD7711AN data with a moving average window of 8 samples.  As a tradeoff between 

reducing measurement noise and preventing the averaging from muting the decay 

profile of the LCSR test, the moving average window was reduced to 4 samples.  To 

accommodate these changes, various existing functions and definitions were modified.  

The firmware modifications are documented in Appendix B.   
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3.3.5 Experimental Results 

Besides identifying the sensor time constant, the objective for this experiment is to 

determine whether the temperature change induced by the self-heating in the RTD is 

sufficiently large so that the sensor parameter identification is less likely to be affected 

by measurement noise and ambient temperature variations.  In the experimental setup, 

a high current of about 410µA  is first passed through the sensor, causing self-heating 

and thus, raising the temperature of the sensor.  The current is then returned to its 

nominal value and the sensor temperature decay profile recorded.  The experimental 

setup is as follows :  

• Current used to perform LCSR test is 410µA , of which 210µA  is provided by 

the external circuit and 200µA  comes from the AD7711AN’s internal current 

source 

• High current duration = 30s 

• Nominal current duration = 30s 

• Sampling rate : 10Hz 

 

Figure 3-6 shows the LCSR profile obtained using the modified circuit board when 

there is good thermal contact between the sensor and wafer.  It shows the high current 

phase during the first 30s, followed by the temperature decay back to the readings that 

correspond to the ambient temperature after the high current is switched off.  Using 

least-mean-squares estimation method described in Section 3.1.2, the sensor time 

constant was found to be 0.6057sτ∧ =  and the temperature change induced by the 

increase in electric power generated internally was o0.0178 C .  The estimated τ is close 

to the manufacturer-specified typical value of 0.6s.   
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Figure 3-6.  LCSR Profile of design A 

 

It has to be noted that the self-heating induced temperature rise is very small 

(approximately o0.02 C ).  With such a small temperature change, there is a chance that 

measurement noise will be significant relative to the temperature rise, which could 

affect the accuracy of the estimated sensor parameters.  Furthermore, in the presence 

of ambient temperature fluctuation, the LCSR profile will not decay to a steady state 

value, but to a gradual upward or downward trend.  Such steady state trends can affect 

the estimation of the sensor parameters.  These concerns highlight the limitations of 

the proposed design.  In the following section, a second circuit for performing the 

LCSR test is described.   
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3.4 Design B 

The restriction on the maximum current that could be injected into the RTD is 

imposed by the decision to pass a common current through the RTD and the reference 

resistors so that the AD7711AN output will still be valid during the LCSR test.  By 

doing away with the common excitation current and replacing the reference resistor 

with a constant +2.5V voltage instead, it would be possible to increase the maximum 

current through the RTD.   

 

Figure 3-7  shows the schematic diagram of the revised design, with the shaded region 

highlighting the differences from Figure 3-5.  The main changes are : 

1. The reference resistor REFR  was removed  

2. The connection between pin AIN1(-) and REFIN(+) severed 

3. AIN1(-) was shorted to ground 

4. A new connection was then made between REFOUT and REFIN(+)   

 

RTD

AD7711AN

AIN1(+)

AIN1(-)

RTD1

REFIN(+)

REFIN(-)

Rset

LM334

W172DIP-147

1N5818

5V

L293E

Vs

Vss

Out1In1Port D7
PSD401A2 REFOUT

2.5V

External circuit  

Figure 3-7.  Simplified schematic of LCSR circuit (second modification) 
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It is necessary to sever the connection between REFIN(+) and AIN1(-) because AIN1(-

) is now shorted to ground.  Keeping the connection between REFIN(+) and AIN1(-) 

would short REFOUT, which is the built-in 2.5V reference voltage, to ground and 

damage the AD7711AN.  With this change, the excitation current from pin RTD1 

flows only through the RTD and down to ground.  The full circuit schematics showing 

the modifications to the temperature measurement board are documented in Appendix 

C.   

 

The maximum current that can flow through RTD in this design is given by 

Max Maximum current through RTD AIN 1

RTD

V
Gain R

=
×

 

where Gain is the programmable amplifier gain at the AIN1(+)/AIN1(-) input of the 

AD7711AN.  Measuring the resistance of the RTD at room temperature gives a 

reading of 1075Ω .  For calculations, it is assumed that the RTD resistance at room 

temperature is 1100Ω .  Setting 4Gain =  and since Max 5VAIN 1V = + , 

5VMaximum current through RTD
4 1100Ω
1.136mA

=
×

=
 

Since the excitation provided by the AD7711AN is 200µA , the maximum external 

current is 0.936mA. 

 

The LCSR test will be performed at room temperature.  Since 1100Ω  is a typical 

resistance for a platinum 1kΩ  RTD at room temperature, the analog input voltage is  

1

1.1mA 1100 4
4.8V

AIN h RTDV Gain I R Gain⋅ = ⋅
= ⋅ Ω⋅
=
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This exceeds REFV  and causes the AD7711AN readings to saturate (Constraint 5 in 

section 3.2.1).  Thus, the ability to pass a larger current through the RTD sacrifices the 

ability to obtain temperature measurements during the high current phase.   

 

3.4.1 Calibrating the Modified Measurement Board 

The modifications involved changing the voltage supplied to the reference input of 

Channel 13, which requires the measurement board to be re-calibrated to relate the 

digitized readings to a degree-Celsius value.  Calibration was performed by immersing 

the RTD in a closed loop regulated oil-bath.  The oil-bath is a Neslab EX-251 high 

temperature bath that has a temperature stability of o0.01 C±  at o60 C  [15].  The oil-

bath temperature was allowed to settle to a fixed value before the digitized readings of 

the AD7711AN were recorded.  This process was repeated for a temperature range of 

o30 C  to o110 C  at o10 C  intervals.  Table 3-2 shows the calibration data pairs relating 

the digitized readings to temperature.  By fitting the data to a straight line in the least-

squares sense, the relationship between them is found to be 0.3225 270.43y x= − , 

where y is the temperature in degree-Celsius and x is the digitized readings.  Figure 

3-8 shows the closeness of the straight-line fit to the calibration data.   

 Temperature / o C  Digitized Readings 
 30 930.65 
 40 961.74 
 50 994.56 
 60 1025.5 
 70 1055.8 
 80 1086.8 
 90 1117.9 
 100 1148.4 
 110 1178.8 

 
Table 3-2.  Calibration data for Channel 13 after modifications 
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Figure 3-8.  Straight-line fit of Channel 13 calibration data 

 

 

3.5 Experimental Results 

Figure 3-9 and Figure 3-10  shows the LCSR profile obtained using Design B, for  

sensors that have good thermal contact and poor thermal contact with the wafer.  The 

high current duration was 20s and the nominal current duration was 60s; the sampling 

rate was 10Hz.  The magnitude of the high current is about 1.1mA.  Comparing Figure 

3-9 with Figure 3-6, the temperature rise brought about by the larger excitation current 

for good thermal contact is now much greater at about o0.2 C .  The estimated sensor 

time constant is 0.75s.  When thermal contact is poor (Figure 3-10), the estimated time 

constant is 1.62s.  It may be expected that the sensor with the poor thermal contact will 

have a larger time constant, since the heat generated by the high current will take 

longer to dissipate away.   
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Figure 3-9.  LCSR result of design B for good thermal contact 
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Figure 3-10  LCSR result of design B for poor thermal contact 
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The experimental results of this chapter demonstrate that the temperature measurement 

board modified according to design B is able to perform the LCSR test.  A sufficiently 

large current can be injected into the RTD to induce a larger temperature change that is 

less likely to be affected by measurement noise and ambient temperature variations.  

However, due to hardware restrictions, this comes at the expense of being able to 

obtain high current temperature measurements.   

 

Having shown that the measurement board is now able to perform the LCSR test to 

identify the sensor parameters, the next chapter will introduce the software 

compensation algorithm that seeks to improve the closed loop temperature control 

performance of the wafer.  
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CHAPTER 4  

AN ALGORITHM FOR IMPROVING MEASUREMENT 

ACCURACY 
 

Having successfully implemented the circuit for performing the LCSR test online, the 

sensor parameters can be identified in-situ.  The LCSR test would capture all the 

factors that affect the sensor response characteristics and so the parameters identified 

should accurately reflect the actual conditions under which the PEB would be 

performed.  In this chapter, an algorithm that aims at improving the measurement 

accuracy of the temperature measurement is proposed.  The derivation of the algorithm 

is first shown.  The need to cascade a filter with the algorithm is explained and the 

experimental effect of the filter demonstrated.  The performance of a closed loop 

wafer temperature controller that utilized the feedback signals generated by the 

proposed algorithm is then presented. 

  

 

4.1 The Compensation Algorithm 

In Chapter 2, experimental results showing the impact of poor thermal contact on the 

performance of closed loop control is presented.  A means of estimating the sensor 

parameters online is documented in Chapter 3.  Accordingly, this section proposes an 

algorithm that seeks to alleviate the impact of varying amount of thermal contact on 

the quality of the feedback signal and, therefore, the closed loop control performance. 
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The algorithm for predicting the actual wafer temperature is based on the technique of 

estimating the input to a system by multiplying its output by the inverse transfer 

function.  As shown in Chapter 2, the input-output relationship of the temperature 

measurement system, which utilizes a thin-film platinum RTD as the sensing element, 

can be modelled by the following first order transfer function [16] : 

 
( ) ( )

( )

1

m

a

T s
G s

T s
K
sτ

=

=
+

 (4.1) 

 
where ( )aT t  and ( )mT t  are the actual and measured temperature respectively. K is the 

steady-state gain and τ  is the time constant of the RTD.  An estimate of the wafer 

temperature, ( )aT t , may be found via the following expression : 

 
( ) ( ) ( )

( )

1

1 1

a m

m

T t G s T s

s T t
K

τ

∧
−

∧

∧

=

 = + 
 

 (4.2) 

 

K
∧

 and τ
∧

 are, respectively, the steady-state gain and the sensor response time 

identified experimentally from the LCSR test.  However, ( )1 1 1G s s
K

τ
∧

−
∧

 = + 
 

 is non-

causal and is the transfer function of a high pass filter.  If Equation (4.2) is used to 

post-process the sensor output, high frequency noise in the feedback signal will be 

amplified.  A solution to the problem is to cascade a low pass filter, whose transfer 

function is 1
1f sτ +

, to ( )1G s− .  Hence, the proposed compensation algorithm is of the 

form 
( )

1

1f

s

K s

τ

τ

∧

∧

+

+
.   Figure 4-1 shows the functional block diagram of the temperature 

measurement system and the proposed compensation system.  The symbols represent : 
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( )aT t  Actual wafer temperature 

( )aT k  Recovered wafer temperature 

( )mT t  Output of temperature sensor 

( )mT k  Sampled data from output of temperature sensor 
ZOH Zero-order hold 

( )G z  Transfer function of compensation algorithm with filter pole 
 

Sensor ZOH( )aT t
( )mT k

( )aT k
∧

( )G s ( )mT t

G(z)

τ

−

+

1( )
1f

G s
s

 

Figure 4-1.  Functional block diagram of temperature measurement system 

 

A point to note is that the compensation algorithm is defined in continuous-time 

domain.  However, the output of the sensor, ( )mT t , is sampled by the signal 

conditioning chip and so the measurement data obtained is a discrete signal, ( )mT k .  

Thus, it is necessary to construct a continuous time signal by using the ZOH to hold 

the sampled value for the sampling period, h.  The final expression for ( )aT k
∧

 is 

derived as follows. 

 

( )1

( )( )
( )

( )1

a

m

T zG z
T z

G sz
s

∧

−

=

 = − Ζ  
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 (4.3) 

 
 and 
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 (4.4) 
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 Substituting Equation (4.4) into Equation (4.3), 

( )1
1

( ) 1 1 1( ) 1
( )

1 1 1
1

( ) 1
( )

f

f

ff

f

f

a f

m f

f
h

f

h

a
h

m

T zG z z
T z s sK

z z z
z zK z e

z eT z
T z K z e

τ

τ

τ ττ
τ

τ

τ τ
τ

τ τ
τ

∧
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−
∧

∧

∧
−

−
−∧

∧ −

  −  = = − Ζ +  +    
 

−− − = + − − 
 
 − −
 =
 
 −
 

 

 Cross multiplying and further evaluating, we have the final expression 

 1( ) ( 1) ( ) ( 1)f f

h h
f

a a m m
f f

T k e T k T k e T k
K

τ τ τ ττ
τ τ

∧∧
− −∧ ∧

∧

  −  = − + − + −      

 (4.5) 

 
 
Thus, an estimate of the measurand at the kth sample can be obtained using the kth and 

(k-1)th sample of the sensor output ( )mT k  and ( 1)mT k −  respectively, together with the 

(k-1)th estimate of the wafer temperature ( 1)aT k
∧

− . 

 

 

4.2 Experimental Results 

4.2.1 The Choice of Filter Pole 

A unity gain first order low-pass filter, ( ) 1
1f

f
G s

sτ
=

+
, was introduced in order to 

limit the amount by which the high frequency noise is amplified by the ideal inverse 

sensor transfer function, ( )1G s− .  The trade-off is that ( )fG s  will hinder the ability 
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of ( )1G s−  to provide a good estimate of actual temperature on the wafer.  Hence, the 

pole location of the low-pass filter must be selected with care.  For simplicity, fτ  is 

chosen as a fraction of the sensor response time derived from the LCSR test i.e. 

f nτ τ
∧

=  where 0 1n< < .  When n  is small, the bandwidth of the filter is large so high 

frequency noise will be amplified by a larger gain, and vice versa.   

 

Figure 4-2 shows the plots before and after the sensor outputs are processed by the 

compensation algorithm presented in Equation (4.5).  The plots were generated using 

0n =  and 0.25n =  respectively.  The sampling time, h , is 0.25 seconds.  It is clear 

from Figure 4-2(a) that the compensation algorithm will amplify noise if the low-pass 

filter is not employed.  The results in Figure 4-2(b) demonstrate that the low pass-filter 

has successfully prevented high frequency noise amplification.  Since the noise level 

in the software compensated signal is within the steady-state requirement of 0.1 C± , 

n  is chosen as 0.25 and used to analyze the ability of the proposed strategy to 

minimize the impact of thermal contact level on the ability of the PI controller to 

regulate wafer temperature.   
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(a)  Without filter 
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(b)  With filter 

Figure 4-2.  Comparing measurement noise with and without filter 
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4.2.2 The Closed Loop Performance 

As in Section 2.4, the control problem is to heat the wafer from an ambient 

temperature of approximately 27 C  to 90 C .  The experimental procedures are the 

same.  Two experiments were performed : one where the feedback signal was from the 

RTD that had good thermal contact with the wafer, and another in which the contact 

was poor.  In both cases, the feedback signal received by the PI controller is processed 

through the compensation scheme.  The PI controller parameters used were P = 10 and 

0.03I =  and the sampling rate was 4Hz.  A reference RTD was mounted beside the 

sensor that provides the feedback signal to obtain an indication of the wafer 

temperature.  The sensor parameters identified via the LCSR test and the least-squares 

estimator, are tabulated in Table 4-1.  The sampling time, h , is 0.25 seconds.   

 
  

K
∧

 τ
∧

 
Reference sensor  1 0.74 

Feedback sensor (Good contact)  1 0.89 

Feedback sensor (Poor contact)  1.0024 3.36 

Table 4-1.  The estimated sensor parameters 

 

Figure 4-3 shows the feedback signals and the wafer temperature as measured by the 

reference sensor.  Comparing Figure 2-11(a) and Figure 4-3(b), it can be observed that 

the difference between the output of the feedback and the reference sensor is 

significantly smaller and the step response is less oscillatory if the compensation 

algorithm is used to process the feedback signal.  Furthermore, Figure 4-3 indicates 

that with the compensation algorithm in place, the behaviour of the temperature 

control system is less dependent on the sensor condition. 
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(a)  Feedback sensor in good thermal contact with wafer 
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(b)  Feedback sensor in poor thermal contact with wafer 

Figure 4-3.  Comparison of closed loop performance 
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In order to ascertain if the compensation algorithm is able to prevent poor thermal 

contact from hindering a multi-loop controller from achieving the desired spatial 

uniformity, the difference between the output of the reference sensor and the 

compensated feedback signal is shown in Figure 4-4.  When the feedback sensor has 

relatively good contact with the wafer, the difference between the feedback and 

reference signal is within the desired accuracy of 1 C±  during transient and 0.1 C±  at 

steady-state.  This is evident in Figure 4-4(a).  For the case where the thermal contact 

of the feedback sensor is poor, the compensation algorithm reduced the maximum 

measurement error during transient by four times and eliminated the differences at 

steady-state.  During the critical stage of the PEB process (wafer temperature is above 

60 C ), the difference between the feedback and the reference sensor is less than 1 C .  

The results demonstrate that the proposed compensation algorithm may be used to 

reduce the adverse impact of poor thermal contact on the ability of a multi-zone 

closed-loop controller to maintain spatial uniformity across a wafer during the PEB 

process.  Despite the promising results, the proposed algorithm faces several problems.  

In the next section, the limitations that may hinder a successful application in practice 

are described. 
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(a)  Feedback sensor in good thermal contact with wafer 
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(b)  Feedback sensor in poor thermal contact with wafer 

Figure 4-4.  Temperature difference between feedback and reference sensor 
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4.3 The Need for an Accurate Estimate of K 

The sensor parameter estimation method based on the LCSR test has to be accurate, 

especially the estimation of K.  The steady state temperature uniformity requirement of 

steady state error to be within 0.1 C°±  leaves little room for error.  For the desired 

temperature setpoint of 90 C° , the maximum allowable error in the estimation of K is 

   

Max steady state errorMax allowable error in K
Steady state temperature
0.1
90
0.00111

=

=

=

 

 

The least-squares parameter estimation method is used to provide an estimate of the 

transfer function parameters from the transient profile data.  However, the accuracy of 

the estimation is dependent on the ability of the data to faithfully capture all pertinent 

information about the temperature profile, ie. its initial value, the transient and the 

final value.  If the data-logging begins after the instance when the current is returned 

to the normal state, only the first sample captures the rise in temperature induced by 

the LCSR test.  Since the presence of noise is inevitable, it is likely that the first 

sample is corrupted.  Consequently, the accuracy of the estimated sensor parameters 

would be adversely affected.  This problem arises from the lack of readings during the 

first part of the LCSR test.   

 

A solution would be to begin data-logging during the high current phase.  The mean of 

the steady state samples during the high current phase data could be used as the initial 

value of the LCSR profile.  Simulations were performed to demonstrate the 

effectiveness of this technique.  The transfer function of the sensor was chosen as 



 63

( ) 1
1.8 1

G s
s

=
+

 to simulate a poor thermal contact case, where the time constant is 

greater.  The sampling rate used was 10Hz and the step input change was o0.2 C− .  

Since thermal noise present in resistive elements has the characteristics of white noise 

[17] and the RTD is essentially a resistor, the noise model used in the simulation was 

band-limited white noise with zero mean.  The power spectral density of the noise 

added was 0.0002W/rad/s and was determined by a visual study of an LCSR profile 

obtained experimentally.  Table 4-2 shows the estimation result.  Without using the 

high current data, the estimation error for K
∧

 was 0.015, which is greater than the 

maximum allowable error at o90 C .  With the high current data, the estimation error 

for K
∧

 was 0.0005 and is within the maximum allowable error.  The simulation results 

indicate that the accuracy of K
∧

 can be improved if data recording was not suspended.  

However, the hardware restrictions highlighted in Chapter 3 resulted in the need to 

forsake the ability to obtain accurate high current readings in order to achieve a larger 

self-heating temperature change.  The next chapter describes a method to workaround 

the inability to obtain accurate high current readings so that a good estimate of K can 

still be obtained.  It also introduces an algorithm that performs the LCSR test and the 

estimation of the sensor parameters during the PEB process.  This alleviates the 

negative impact on wafer throughput if the LCSR test was performed before each 

wafer was processed.   

 
  

K
∧

 τ
∧

 / s 
True value  1 1.8 

Estimated value without high-current data  0.985 1.81 

Estimated value with high-current data  0.9995 1.78 

Table 4-2.  Simulation results with and without high-current data 
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CHAPTER 5  

THE IN-SITU SENSOR PARAMETER IDENTIFICATION 

ALGORITHM 
 

Chapter 4 demonstrated that an algorithm that employs an inverse sensor model 

constructed via the LCSR test is able to improve measurement accuracy.  However, 

performing the LCSR test prior to the PEB process takes away time from the 

fabrication process and reduces the throughput of wafers processed.  One solution is to 

perform the LCSR test during the PEB process so that the wafer fabrication throughput 

is not affected.  In this chapter, an algorithm is proposed that allows such an 

implementation.  The LCSR test is performed during the PEB process and the data 

collected is processed through the least-square algorithm, yielding the sensor time 

constant and sensor gain.  To overcome the inability to obtain accurate high current 

readings arising from the hardware restrictions, a workaround method to obtaining a 

good estimate of K is demonstrated.   

 

 

5.1 Mathematical Derivation 

Figure 5-1 presents a block diagram that combines the temperature measurement 

process during PEB processing with the LCSR test, derived from the sensor model 

presented in section 3.1.1.  The following assumptions are made :  
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1. In the lower path, the thermal resistance of the protective sheath is negligible 

so that Equation (3.1) becomes the first-order transfer function 

( ) ( )
( )1

1
m

a

T s KG s
T s sτ

∧

∧= =
+

. 

2.  The thermal conversion transfer function of the upper path is first order so that 

Equation (3.2) becomes first-order system ( ) ( )
( )

'
2

1
m

i

T s KG s
T s sτ

∧

∧= =
+

. 

 
( )U s  is the external heat source applied to heat the wafer and is modelled as a step 

input.  The typical wafer temperature profile during PEB [2] is shown in Figure 5-2 

and it is assumed that ( )U s  causes the wafer temperature to increase in a first-order 

manner ie. ( )
( ) 1

a PEB

PEB

T s K
U s sτ

=
+

.  When the high current flowing through the RTD is 

switched away, the electric power generated reduces and so ( )P s  is modelled as a 

negative step input.  The self-heating in the RTD is reduced and this is manifested as a 

negative step change in temperature, ( )iT s .  The RTD measures both these quantities 

( ( )iT s  and ( )aT s ) and its output is ( )mT t .  Defining the following symbols in Figure 

5-1, 
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( )U s
( )aT s

1
K
sτ

∧

∧ +1
PEB

PEB

K
sτ +

Wafer temperature

( )mT s

Sensor

+

( )iT s
PK( )P s

1
K
sτ

∧

∧ +

( )'
2G s

( )1G s

 

 ( )P s  
Electric power generated in the sensor. Modelled as a 
negative step input 

 
PK  Transfer function of electro-thermal conversion in sensor 

 ( )iT s  Temperature change due to reduction of self-heating.  
Modelled as a negative step input 

 ( )mT s  Measured temperature 
 ( )aT s  PEB wafer temperature 

 τ∧  Estimated sensor time constant 

 K
∧

 Estimated sensor gain 
 ( )U s  Temperature of heat source. Modelled as a step input 
 KPEB Post-exposure bake process gain 
 

PEBτ  Post-exposure bake process time constant 
 

Figure 5-1.  Functional block diagram of temperature measurement 
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Figure 5-2.  A typical wafer temperature profile during PEB [2] 

 

From Figure 5-1, 

( ) ( ) ( ) ( )
11 1( )

PEB
m i

PEB

K K KT s U s T s
ss sττ τ

∧ ∧

∧ ∧

⋅
= +

++ +

  
Cross-multiplying, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2

1 1( )

( )

PEB PEB m PEB PEB i

PEB m PEB m m PEB PEB i i

s s T s K K U s K s T s

s T s sT s T s K K U s K sT s K T s

τ τ τ τ τ

τ τ τ τ τ

∧ ∧∧ ∧

∧ ∧ ∧∧ ∧

 + + + = + +  

+ + + = + +  

( ) ( ) ( ) ( ) ( ) ( )2 ( )PEB m PEB m m PEB PEB i is T s sT s T s K K U s K sT s K T sτ τ τ τ τ
∧ ∧ ∧∧ ∧

= − + − + + +  
 

From Figure 5-1,  

( ) ( )
1

i P

P

T s K P s

AK
s

= ⋅

 = ⋅ − 
 

 

Let 1PT K A∆ =  so that ( )i
TT s
s

∆
= − .  For ( ) 2AU s

s
= , 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2

2
2 3 2 3

2
2

1 1 1 1 1 1

1 1 1

( )

( )

( )

PEB m PEB m m PEB PEB

PEB PEB
m m m

PEB PEB PEB PEB

PEB PEB
m m

PEB PEB PEB PEB

A T Ts T s sT s T s K K K s K
s s s

K K A K T K TT s T s T s
s s s s s

K K A K TT s T s
s s

τ τ τ τ τ

τ τ
τ τ τ τ τ τ τ τ τ

τ τ
τ τ τ τ τ τ τ τ

∧ ∧ ∧∧ ∧

∧ ∧ ∧∧

∧ ∧ ∧ ∧ ∧

∧ ∧∧

∧ ∧ ∧ ∧

∆ ∆
= − + − + − −

+ ∆ ∆
= − − + − −

+ ∆
= − − + − 3 2

1 1K T
s sτ

∧

∧

  ∆  −
 
 

 

 
Taking the inverse Laplace Transform,  

( ) ( ) ( ) [ ]
 t  t 2

2 0  0

1 1
2

( )PEB
m m m PEB

PEB PEB PEB

K K TT t T t dt T t dt K A T t tτ τ
τ τ τ τ τ τ τ

∧ ∧∧

∧ ∧ ∧ ∧
+ ∆

= − − + − ∆ −∫ ∫ ∫
 

 

Let 2PEBA K A
∧

=  and PEBPEB ττ∧ =  since both variables have to be estimated.  In matrix 

form,  

 

( )
( )
( )

( ) ( )

( ) ( )

( ) ( )

 t  t2
1 1 1 1 0  0

1
 t  t2

2 2 2 2 2 0  0

 t  t3 2
3 3 3 3 0  0

1
2

1

( )m m
PEBm

PEBm m m

m
m m

PEB

PEB

K T

t T t dt t T t dt
T t
T t t T t dt t T t dt
T t

Kt T t dt t T t dt A T

τ

τ τ
τ τ

τ τ

τ τ

∧

∧

∧ ∧

∧ ∧

∧
∧

∧ ∧

∧ ∧

 ∆ −

   +    −      =        − ∆         

−


∫ ∫ ∫
∫ ∫ ∫
∫ ∫ ∫











 
 
 
 
 
 

 (5.1) 

 

Like Equation (3.9), Equation (5.1) is linear-in-the-parameters.  The coefficient vector 

can be found using the least-squares estimator.  Once the coefficient vector has been 

identified, 4 equations can be formed to find the 4 unknown parameters.  Let the 4 

coefficients be 1d , 2d , 3d  and 4d  respectively.  The 4 equations are thus :  
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 1
K T d

τ

∧

∧
∆

− =  (5.2)  

 2
( )PEB

PEB

dτ τ
τ τ

∧ ∧

∧ ∧
+

− =  (5.3) 

 3
1
2 PEB

K A T d
τ τ

∧
∧

∧ ∧
 − ∆ =  

 (5.4)  

 4
1

PEB

d
τ τ∧ ∧− =  (5.5) 

 

From Equation (5.3), 

 2

4
PEB

d
d

τ τ∧ ∧+ =  (5.6) 

From Equation (5.5), 

 
4

1
PEB d

τ
τ

∧
∧=  (5.7) 

Substituting Equation (5.7) into Equation (5.6), 

 
2

4 2 1 0d dτ τ∧ ∧− − =  (5.8) 
 

Substituting values for 2d  and 4d in Equation (5.8) and solving, the estimate of τ∧  is 

obtained.  Substituting τ∧  back into Equation (5.7), PEBτ∧  is obtained. 

 

From Equation (5.2), 

 1dK
T
τ∧∧

= −
∆

 (5.9) 

 

Here, T∆  is not known, but can be determined separately.  As described in section 

3.1.2, T∆  can be found via an LCSR test and a sensor that is in good thermal contact 
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with the wafer.  When the sensor is in good thermal contact with the wafer, K can be 

assumed to be 1.  Thus, this value of T∆  serves as the magnitude of the temperature 

change induced by the self-heating in the RTD.  With T∆  and 1d  known, and τ∧  

found earlier, K
∧

 can be calculated. 

 

Finally, from Equation (5.4), 

3

4

2 dA T
dK

∧

∧

 
= + ∆ 

 
 

 

With 3d , 4d  and T∆  known, and K
∧

 found in Equation (5.9), A
∧

 can be calculated.  In 

summary, the equations for calculating the PEB and sensor parameters are : 

Sensor time constant :
2

4 2 1 0d dτ τ∧ ∧− − =  

Thermal contact gain : 1dK
T
τ∧∧

= −
∆

 

PEB process time constant :
4

1
PEB d

τ
τ

∧
∧=  

Heat input and PEB process gain :
3

4

2 dA T
dK

∧

∧

 
= + ∆ 

 
 

 

Having shown parameter estimation algorithm and the calculations required to find the 

value of each parameter, the next step is to carry out simulations to determine the 

performance of the algorithm. 
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5.2 Simulation Results 

A Matlab/Simulink simulation program was first written to verify the viability of the 

parameter estimation algorithm.  The sequence of events is as follows : 

1. With the wafer at room temperature, the high current is switched into the 

temperature sensor, modelled as ( ) 1
0.6 1

G s
s

=
+

.  This causes self-heating in 

the sensor and the measured temperature rises to a steady state value as a 

consequence.   

2. Once the rise in temperature due to the increase in amount of self-heating has 

stabilized, the PEB process, modelled as ( )
( )

1
60 1

aT s
U s s

=
+

 and ( ) o83 CU s = , is 

activated and the excitation current is returned to its nominal value.  Logging 

of wafer temperature data begins.  The amount of electrical power generated 

decreases at the same time that wafer temperature rises due to the PEB ramp.  

The LCSR test results shown in Chapter 4 indicate that the temperature change 

when the RTD current increases from 200µA  to about 1.1mA is approximately 

o0.2 C .  Hence, T∆  was set at o0.2 C  in the simulation programme.   

3. After a pre-defined duration, data logging is stopped.  The data is processed by 

the estimation algorithm and the sensor parameters obtained.   

 

The simulation results are presented in Figure 5-3.  The lower pane shows that the 

current flowing through the temperature sensor is switched back to the nominal value 

at 10t s= , reducing the amount of self-heating.   
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Figure 5-3.  Illustration of high current and PEB temperature ramp 

 

Figure 5-4 focuses on the initial wafer temperature rise of the simulation.  The LCSR 

test and the wafer temperature was logged immediately when the PEB ramp was 

activated, for a duration of 10s.  Figure 5-4(a) shows the 10s of the simulation when 

the LCSR test was running.  Figure 5-4(b), which focuses on the first second after the 

high current was switched off at 10t s= , shows that the measured temperature decays 

initially even though the wafer is being heated.  This behaviour occurred because the 

electrical power generated internally decreases when the current flowing through the 

RTD is reduced to its nominal value.  Since PEBτ τ< , the rate of decay in sensor output 

brought about by the drop in the RTD excitation current is faster than the increase in 

wafer temperature due to the applied heat.   
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The coefficients to be found are : 

1
2

1

( )PEB

PEB

PEB

PEB

K T

K A T

τ

τ τ
τ τ

θ

τ τ

τ τ

∧

∧

∧ ∧

∧ ∧

∧
∧

∧ ∧

∧ ∧

 ∆ −
 
 
 + −
 

=  
 

  − ∆   
 
 

− 
  

 

 

Using the data and the least-squares estimator, the coefficients were identified and 

compared with their ideal values in Table 5-1 .  

 

  
 
 

K T
τ

∧

∧
∆

−  
( )PEB

PEB

τ τ
τ τ

∧ ∧

∧ ∧
+

−  1
2 PEB

K A T
τ τ

∧
∧

∧ ∧
 − ∆  

 
1

PEBτ τ∧ ∧−  

Actual value  -0.33333 -1.6833 1.1556 -0.027778 

Estimated value       -0.33124 -1.679 1.147 -0.027709 

Table 5-1.  The estimated coefficients from simulation 

 
From the coefficients in Table 5-1, the sensor parameters were calculated.  Table 5-2 

compares the actual and the estimated sensor and PEB process parameters. 

 
  

 τ∧  K
∧

 PEBτ∧  A
∧

 

True value  0.6 1 60 83 

Estimated value  0.60157 0.99631 59.993 82.991 

Table 5-2.  The estimated parameters from simulation 
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It is evident from Table 5-2 that the estimation algorithm performs well and is able to 

accurately identify the sensor parameters.   

 

To further check that the algorithm is able to perform well under experimental 

conditions, measurement noise was added to the simulation model.  Since the RTD is a 

resistive element, the noise model used was the band-limited white noise model from 

Simulink [17].  The power spectral density of the noise added was 0.002W/rad/s and 

was determined by a visual study of a similar temperature rise profile obtained 

experimentally.  Table 5-3  compares the estimation results.  Figure 5-5 shows the first 

10s of the simulated wafer temperature profile.   

 

  
τ∧  K

∧

 PEBτ∧  A
∧

 

Actual value  0.6 1 60 83 

Estimated value  0.64624 0.82828 50.954 86.695 

Table 5-3.  The estimated parameters from simulation with noise added 

 

Though the estimates PEBτ∧  and A
∧

 have been significantly affected by measurement 

noise, the parameters of primary interest, τ∧  and K
∧

, were still close to their actual 

values.  This could be a consequence of the measurement data used for the parameter 

estimation, which fully captures the LCSR profile but does not capture the steady state 

of the PEB process.   
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(a) Simulation wafer temperature profile over the first 10s of PEB ramp 
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(b)  Simulation result, zooming in on the first second of wafer temperature ramp 

Figure 5-4.  Simulation results of parameter estimation algorithm 
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Figure 5-5.  Simulation wafer temperature profile over the first 10s of PEB ramp with noise added 

 

 

5.3 Caveat 

In Section 5.2, Table 5-2 showed that if the data logging and high current switching 

coincided exactly with the start of the PEB process, the estimated parameters were 

very close to the true values.  However, it is difficult to synchronize the high current 

switch-over exactly with the start of PEB process.  The presence of an air-gap between 

the heater and the wafer results in a short delay between the instance when heat is 

applied and when the wafer temperature begins rising.  This section aims to investigate 

the effect of a delay between the instant when current is switched to the nominal level 

and the start of the PEB process.   
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Delays of 0.5s and 1.0s were used to highlight the effect of a failure to synchronize the 

start of the data logging and PEB ramp.  Figure 5-6 illustrates a 0.5s difference 

between the start of the PEB process and the start of data logging.  Table 5-4 compares 

the estimates obtained without measurement noise. 
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Figure 5-6.  Illustration of a 0.5s delay in starting data logging 

 

  
τ∧  K

∧

 PEBτ∧  A
∧

 

Actual value  0.6 1 60 83 

Estimated value (no delay)  0.60157 0.996 59.993 82.991 

Estimated value (0.5s delay)  0.6017 -1.344 59.993 -61.245 

Estimated value (1.0s delay)  0.6019      -2.342 59.993 -34.847 

Table 5-4.  Variation of estimates with delay in measurement 
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Though the impact of the delay on the estimated value of τ  is minimal, K
∧

 is 

incorrect, even in the absence of measurement noise.  Not surprisingly, the effect of 

the delay on the parameter estimates is exacerbated in the presence of measurement 

noise, as Table 5-5 shows.  

 

  
τ∧  K

∧

 PEBτ∧  A
∧

 

Actual value  0.6 1 60 83 

Estimated value (no delay)  0.646 0.828 50.954 86.695 

Estimated value (0.5s delay)  0.653       -1.59 49.297 -43.480 

Estimated value (1.0s delay)  0.730 -3.122 47.159 -21.003 

Table 5-5.  Variation of estimates with delay in measurement, in the presence of measurement noise 

 

For a delay of 0.5s, the estimates of τ  is still reasonable but the estimate for K is 

incorrect.  For a delay of 1.0s, the estimates of τ  is further from the actual value but 

the estimate for K deteriorates much further.  For the proposed algorithm to work in 

practice, it is necessary to ascertain the extent to which the error in the estimated value 

of τ  affects the closed loop control performance.   

 

The study was carried out by assuming that the actual sensor time constant was 

0.6sτ =  whilst the identified sensor time constant was 0.73sτ∧ =  (for a measurement 

delay of 1.0s in Table 5-5).  Since the algorithm would be used in closed loop wafer 

temperature control, a closed loop control simulation was chosen.  The parameters of 

the PI controller were 10P =  and 0.03I =  and the PEB process model was chosen to 

be ( )
( )

1
150 1

aT s
U s s

=
+

 (Figure 5-1) and ( ) o68 CU s = .   The simulation sampling rate 
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was 4Hz and the noise model used was the same as for the results in Table 5-5.  The 

filter pole of the compensation algorithm described in section 4.2.1 was chosen to be 

0.25fτ τ∧= .   

 

Figure 5-7 shows the simulated dynamic response of the closed loop performance.  

The blue plot represents the simulated wafer temperature and the green plot is the 

predicted temperature (ie. the output from the RTD that has been processed through 

the compensation algorithm).  Figure 5-8 shows the temperature difference between 

the blue and green plots.  The largest temperature difference is about o0.5 C  and is 

within the requirement of o1 C±  during transient.  The steady state difference is about 

o0.005 C  and within the steady state requirement of o0.1 C± .  Thus, the identified time 

constant of 0.73s is acceptable.  Having shown that the sensor time constant can be 

estimated, the next section investigates a method to determine the estimate of K using 

the identified sensor time constant.  
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Figure 5-7.  Dynamic response of closed loop performance simulation 
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Figure 5-8.  Temperature difference between actual and compensated readings for 0.73sτ
∧

=  
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5.4 Relationship between K and τ 

In order for K to be reliably identified, a method that ensures K is not affected by the 

synchronization of the current switching and PEB temperature ramp is needed.  In 

section 5.3, it was shown that τ  can be reasonably estimated even in the presence of  

synchronization errors and measurement noise.  Thus, one possible method is to use τ  

to find K.  By first experimentally determining the relation between K and τ , the 

estimate of τ  can be used to identify K.   

 

5.4.1 The Experimental Results 

To obtain the experimental data, two sensors were attached to the wafer : one serving 

as a reference sensor that is always in good thermal contact with the wafer; the other 

as the measurement sensor with varying levels of thermal contact with the wafer.  

Good thermal contact between the sensor and wafer was achieved by applying liberal 

amounts of thermal paste.  Poor thermal contact was achieved by covering the contact 

surface of the sensor with tape to varying extents.  For the measurement sensor, each 

level of thermal contact corresponded to a certain value of τ .  This value of τ  can be 

determined using the LCSR test.  Having determined τ , the wafer was then heated 

under open loop to a steady state temperature of around 
o90 C .  The ratio of the 

reference sensor reading over the measurement sensor reading at steady state is the 

steady state gain, or K, of the sensor transfer function when thermal contact is poor.  

Repeating the experiment for different levels of thermal contact, Table 5-6 shows the 

corresponding τ  and K values obtained.  The relation between them can be 

determined using least-squares curve fitting to the general second-order equation 

2K a b cτ τ= + + , as shown in  Figure 5-9.  The equation of the best-fit curve is 
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20.00042937 0.0010961 0.99906K τ τ= + +  

With this information, the estimation algorithm can be used to find τ , and from which 

K can subsequently be found.   
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Figure 5-9.  Best fit line representing relation between τ  and K 

 

     

 τ / s K τ / s K 
     

 0.772 1 2.106 1.00335 
 0.983 1.000973 2.168 1.00400 
 1.23 1.000955 2.547 1.00446 
 1.39 1.00120 2.615 1.00522 
 1.71 1.002064 2.801 1.00541 
 1.90 1.00283 3.091 1.00651 

 
Table 5-6.  Corresponding values of τ and K 

 

Having identified a relationship between τ  and K, the next step is to put the proposed 

algorithm using an experimental setup.  



 83

5.5 Experimental Results 

To test the performance of the algorithm under actual experimental conditions, the 

experimental procedure is as follows : 

1. The heaters are first maintained at a steady state temperature of o125 C .  The 

wafer is left at room temperature.   

2. The high current of 1.1mA is switched into the temperature sensor.  For the 

duration of the high current, the readings from the sensor are not logged. 

3. The wafer is then loaded into the bake-chill machine.   

4. After about 15s, the heaters are lowered.  As the heaters are nearing their fully 

lowered positions, the cardboards are quickly removed. 

5. The current is then switched back to its nominal value.  The Labview program 

has been written to start the data logging once the RTD excitation current is 

switched to its nominal level.   

6. After the sensor parameters have been identified, these are then passed to the 

compensation algorithm.  The Labview program then switches to closed-loop 

temperature control of the wafer and activates the compensation algorithm.   

7. The wafer temperature is then heated up to and maintained at o90 C .   

 

As with the experiments in section 4.2.2, two sets of experiments were performed : 

one where the feedback signal was from the RTD that had good thermal contact with 

the wafer, and another in which the contact was poor.  In both cases, the feedback 

signal received by the PI controller is processed through the compensation scheme.  

The PI controller parameters used were P = 10 and 0.05I = .  A reference RTD was 

mounted beside the poor contact sensor to obtain an indication of the wafer 

temperature.   
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5.5.1 Good Thermal Contact 

Figure 5-11  shows the first 10s of the experiment for a temperature sensor with good 

thermal contact.  The high current duration was about 20s (not shown in Figure 5-11) 

and the nominal current duration was 10s; the sampling rate was chosen to be 10Hz in 

order to capture the dynamics of the LCSR profile.  For the duration of the LCSR test, 

the heater temperature was maintained at o125 C  i.e. applied heat remains constant.  

This is to achieve a faster wafer temperature rise time.  After switching to closed-loop 

temperature control, the sampling rate was changed to 4Hz since the dynamics of the 

PEB process is slower than the LCSR test.  This reduces the amount of measurement 

noise in the data.  Using the proposed algorithm, the identified parameters are shown 

in Table 5-7.  K
∧

 was determined using the relation between τ  and K proposed in 

section 5.4.   

 

 
 τ∧  K

∧

 PEBτ∧  A
∧

 

 0.819 1.0002 145.9 144.2 

Table 5-7.  The identified parameters for a sensor with good thermal contact 

 

From the experimental data presented in section 5.4.1, the time constant and gain of a 

sensor that has good contact with the wafer is 0.772s and 1 respectively.  Thus, the 

estimated value of τ  is close to the value obtained when wafer temperature is constant 

and K
∧

 is within the allowable estimation error noted in section 4.3.   

 

Since PEBτ∧  and A
∧

 are affected by a synchronization error between the high current 

switching and the start of the PEB process, there is a need to verify the identified 
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parameters.  To do this, a simulation was used to compare the experimental profile 

with the temperature rise profile obtained from a simulation model constructed using 

the identified PEB parameters.  This is depicted in Figure 5-10.   

 

A
∧

( )mT t
1

K
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∧
+
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2where PEBA K A
∧

=  

Figure 5-10.  Functional block diagram of simulation to generate PEB temperature rise 

 

Since the experimental result of Figure 5-11 was for a good thermal contact sensor, the 

results in Table 5-7 were used as the simulation parameters.  The resulting data was 

then plotted together with the experimental data.   
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Figure 5-11.  Experimental result of LCSR test with wafer heating for sensor with good thermal contact 
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Figure 5-11 clearly shows the closeness of the fit of the actual PEB profile to the 

simulated profile.  Thus, the estimation algorithm can be used to determine the sensor 

parameters during the PEB process.   

 

After the sensor parameters had been identified, the Labview program automatically 

switches to closed loop temperature control of the wafer with the compensation 

algorithm active.  Figure 5-12 plots the compensated measurement sensor signal (blue) 

with the compensated reference sensor signal (black).  Figure 5-13 plots the difference 

between the readings of the two channels.  The filter pole of the compensation 

algorithm was chosen to be 0.25fτ τ∧= , for the measurement sensor and 0.75fτ τ∧=  

for the reference sensor.  The filter bandwidth used for the reference channel is smaller 

because the reference channel had greater measurement noise due to the hardware 

modifications.  The filter pole was therefore chosen to reduce noise in the 

compensated reference channel measurements to the same level as the measurement 

channel.   

 

The critical temperature for the PEB process is above o60 C  and was crossed about 

58s into the experiment (see Figure 5-12).  In Figure 5-13, the temperature difference 

between the sensors fell to within o1 C±  about 26s into the experiment and finally to 

within o0.1 C±  at steady state.  Thus, the compensation algorithm was able to reduce 

measurement error to within o1 C±  during the critical stage of the PEB process and to 

within o0.1 C±  at steady state.  The largest temperature difference in Figure 5-13 is 

greater than Figure 4-4(a) (good thermal contact results of section 4.2.2). This is 

because the estimates τ∧  and K
∧

 used in the compensation algorithm in section 4.2.2 
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were obtained in a separate LCSR test without ambient temperature drift and are more 

accurate indicators of the sensor response characteristics.  They are not subject to the 

synchronization errors that may occur in the experiments for this section.  Thus, it may 

be expected that the closed loop temperature control performance of the compensation 

algorithm will be better in section 4.2.2.   
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Figure 5-12.  Experimental result of closed loop control with compensation for sensor with good 

thermal contact 
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Figure 5-13.  Temperature difference between the compensated measurement and reference sensor for 

experiment with good sensor thermal contact 

  

5.5.2 Poor Thermal Contact 

Poor thermal contact between the sensor and wafer was created by pasting a layer of 

tape onto the sensing surface of the RTD.  Figure 5-14 shows the first 15s of the 

experiment for a temperature sensor with poor thermal contact.  The high current 

duration was about 20s (not shown in Figure 5-14) and the closed loop control was 

commenced 15s after the current was switched back to the nominal value.  The least-

squares estimation was performed 5s later than the good contact case because a poor 

contact sensor has a larger time constant.  As with section 5.5.1, the sampling rate was 

chosen to be 10Hz.  Using the proposed algorithm, the identified parameters are shown 

in Table 5-8.  K
∧

 was determined using the relation between τ  and K proposed in 

section 5.4.   
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 τ∧  K

∧

 PEBτ∧  A
∧

 

 1.80 1.0024 148.4 138.6 

Table 5-8.  The identified parameters for a sensor with poor thermal contact 

 

To serve as the reference parameters τ  and K with which to compare the estimation 

results of the poor thermal contact experiment, an LCSR test with the least-squares 

estimator was performed under steady ambient temperature conditions to identify the 

sensor parameters.  Since the identification of the sensor parameters under constant 

ambient conditions is not subject to the caveat noted in section 5.3, it is reasonable to 

assume that it provides a more accurate estimate of the sensor parameters.  Under 

constant ambient conditions, the sensor time constant τ  was found to be 1.63s and 

using the relation found in section 5.4, K was 1.00199.  Comparing the parameters 

identified during the PEB process with those identified under constant ambient 

conditions, it is evident that τ∧  is close to τ .  The difference between K
∧

 and K is 

0.0004 and is within the allowable estimation error noted in section 4.3.  Thus, with 

poor thermal contact between the sensor and wafer, the estimation algorithm is able to 

determine the sensor parameters.   

 

After switching to closed-loop temperature control, the sampling rate was reduced to 

4Hz.  The PI controller parameters used were P = 10 and 0.05I = .  Figure 5-15 plots 

the compensated measurement sensor signal (blue) with the compensated reference 

sensor signal (black).  The filter pole of the compensation algorithm was chosen to be 

0.25fτ τ∧= , for the measurement sensor and 0.75fτ τ∧=  for the reference sensor.  In 

Figure 5-16, the largest temperature difference between the sensors was about o1.6 C .  
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The critical temperature for the PEB is above o60 C  and was crossed about 50s into 

the experiment (see Figure 5-15).  In Figure 5-16, the temperature difference between 

the sensors fells to within o1 C±  at about 40s into the experiment and finally to within 

o0.1 C±  at steady state.  This demonstrates that the compensation algorithm is able to 

reduce the measurement errors to within the specified requirements.   

 

The results of this chapter demonstrate that with the use of the sensor parameter 

identification algorithm, the LCSR test can be performed during the PEB process.  The 

sensor parameters can be identified whilst maintaining the throughput of wafers 

processed.  Using the identified parameters in the compensation algorithm to process 

the feedback sensor signals, the closed loop wafer temperature control was able to 

maintain the temperature uniformity between the sensors to within the requirements of 

o1 C±  during the critical stage of the PEB process and o0.1 C±  at steady state.   

 

0 5 10 15
20

22

24

26

28

30

32

34
LCSR Profile

T
em

pe
ra

tu
re

 / 
de

g 
C

Time / s  

Figure 5-14.  Experimental result of LCSR test with wafer heating for sensor with poor thermal contact 



 91

 

0 200 400 600 800 1000 1200 1400 1600 1800
30

40

50

60

70

80

90

100
Temperature Profile

T
em

pe
ra

tu
re

 / 
de

g 
C

Time / s

Measurement sensor
Reference sensor

 
Figure 5-15.  Experimental result of closed loop control with compensation for sensor with poor thermal 

contact 
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Figure 5-16.  Temperature difference between the compensated measurement and reference sensor for 

experiment with poor sensor thermal contact 
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CONCLUSION 

 

The move towards DUV lithography and its use of chemically amplified resists 

created a situation where the minimum feature size is greatly influenced by the PEB 

temperature.  Hence, tight closed loop control of the PEB temperature across the entire 

wafer is crucial in ensuring that the reactions of the chemically amplified resist take 

place properly.  Closed loop control techniques may be used to ensure spatial 

temperature uniformity.  However, the performance of closed loop controllers depend 

on the availability of accurate feedback signals.  As poor thermal contact between 

sensor and wafer adversely affects measurement accuracy, in-situ temperature 

measurement systems for the PEB process will be practical only if techniques for 

minimizing the influence of contact level are available.   

 

In an attempt to reduce the undesirable impact of poor thermal contact on 

measurement accuracy, the Loop Current Step Response test was employed for in-situ 

testing of the sensor’s condition.  Hardware for performing the LCSR test was 

designed and implemented.  Experimental results showed that the LCSR test can be 

carried out by the modified temperature measurement system and the sensor 

parameters can be identified on-line. 

 

Having successfully implemented the LCSR test on-line, an algorithm that utilizes the 

LCSR test results to predict the actual PEB temperature is proposed and implemented.  

Experimental results showed that the proposed algorithm is able to improve the 

measurement accuracy.  When the estimation algorithm was used to provide the 

temperature feedback signals that is fed to a PI controller, better control performance 
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was obtained.  Although the test results are promising, the algorithm is of limited 

practical use because the LCSR test must be completed before the PEB process can 

commence, resulting in a loss in wafer throughput.  To address this problem, the 

sensor parameter estimation algorithm was modified so that the LCSR test and PEB 

processing can be performed concurrently.  The mathematic derivation of the 

algorithm was presented.  Simulation results demonstrated that the sensor parameters 

could be estimated reasonably accurately even in the presence of measurement noise.  

However, there was a caveat to the use of the algorithm; the start of the PEB and the 

instant at which current is switched back to its nominal value had to coincide exactly.   

A workaround was proposed to enable the parameters to be found.  Finally, 

experiments were conducted and the results demonstrated the ability of the algorithm 

to identify the sensor parameters.  Using the identified parameters in the compensation 

algorithm to process the feedback sensor signals, the closed loop wafer temperature 

control was able to reduce the measurement error to within the requirements of o1 C±  

during transient and o0.1 C±  at steady state.   

 

There are several aspects of this research that could benefit from future work. One 

would be a re-design of the temperature measurement system so that during the high 

current phase of the LCSR test, a larger current can be passed through the RTD to 

generate significant electrical power while temperature measurements are made.  This 

can be achieved by providing a higher supply voltage to the AD7711AN chip so that a 

larger reference voltage can be used, thereby raising the voltage limit where the 

measurement readings saturate.  Such a design would provide the data required to 

obtain a good estimate of the first data point of the LCSR profile, and ultimately an 

accurate identification of the sensor thermal contact gain K.  Another possible front for 
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future work would be to use recursive least-squares to identify the sensor parameters.  

The current least-squares method identifies the sensor parameters after the LCSR test 

has been completed.  Since the level of thermal contact is not known prior to 

performing the LCSR test, the test has to be performed for a long duration so that in 

the event of a larger time constant arising from a poor thermal contact, sufficient data 

is recorded to allow accurate identification of the sensor parameters.  However, in the 

event of a good thermal contact, the LCSR test would run longer than necessary and 

delay the resumption of closed loop control.  With the recursive least-squares, the 

sensor parameter is identified real-time so that the LCSR test can be stopped when the 

value of the identified parameters has remained sufficiently stable.  In this manner, the 

duration of the LCSR test will not be longer than necessary.  
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APPENDIX A 

THE PLATINUM RESISTANCE TEMPERATURE 

DETECTOR 
 

A resistance-temperature detector (RTD) is a temperature sensing device whose 

resistance varies with temperature.  An RTD consists of a wire coil or deposited film 

of pure metal enclosed in a sheath of protective casing. RTDs can be made of different 

metals and have different resistances, like copper, nickel and platinum.  Because of its 

favourable characteristics over the other metals, platinum has become the metal of 

choice for RTDs.  These characteristics include resistance to corrosion and 

contamination, availability in a pure form, and mechanical and electrical properties 

that are highly stable and reproducible. 

 

Figure A-1 shows a cross-section of a thin-film RTD.  It is extremely small, often less 

than 1.6mm2, and is manufactured by techniques similar to those in the fabrication of 

integrated circuits.  A thin film of platinum is first deposited onto a ceramic substrate.  

Then, the element’s surfaces are covered with glass material to protect the elements 

from humidity and contaminants and provide strain relief for the external leadwires.   

 

 

Figure A-1.  A thin-film RTD [1] 
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The nominal resistance of RTDs come in two common values : 100Ω  or 1000Ω .  A 

high nominal resistance would be more advantageous because of higher measurement 

sensitivity and reduced effects of connecting lead resistances on the measurement 

accuracy.  The following sections detail some of the typical characteristics of RTDs.   

 

A.1 Accuracy, Stability and Repeatability 

RTDs have excellent accuracy over a wide temperature range, and some have 

accuracies as high as 0.01Ω  at 0° C.  IEC standard 751 sets two tolerance classes for 

the accuracy of RTDs: Class A and Class B.  Class A has an accuracy of 

( )0.15 0.002T T∆ = ± + ⋅ , whilst that of Class B is ( )0.30 0.005T T∆ = ± + ⋅ , where 

T  is the absolute value of temperature in °C.  The definition of Class A applies to 

temperatures from -200°C to 650°C, and only for three- or four- wire configurations.  

Class B covers the entire range from -200°C to 850°C. 

 

Stability is the sensor's ability to maintain a consistent output when a constant input is 

applied.  Physical or chemical changes can cause calibration drift.  The material that 

the platinum is adhered to can expand and contract, straining the wire.  The stability of 

RTDs is exceptional and common industrial RTDs drift less than 0.1 CD  per year, and 

some models are stable to within 0.0025 CD  year.  Drift rates conservatively specified 

by manufacturers are typically 0.05°C/yr [2].   

 

Repeatability is the sensor's ability to give the same output or reading under repeated 

identical conditions.  In most applications, absolute accuracy is not necessary. Instead, 
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the focus is on the stability and repeatability of the sensor.  If an RTD in a 90°C oil 

bath consistently reads 90.1°C, other means can easily compensate for this error [2].  

 

A.2 Linearity 

An RTD has a temperature-resistance relationship given by 

 ( )2
0 1 21 n

nR R T T Tγ γ γ= + + + +…  (0.1) 

 
where 1γ , 2γ …, nγ  are the temperature coefficients of resistivity and 0R  is the 

resistance of the RTD at a reference temperature 0T .  This is usually specified at 0 CD .  

The number of terms in Equation (0.1) is determined by the material used and the 

range of temperature.  Over a narrow range, the higher order terms may be neglected.  

From Figure A-2 below, it is clear that platinum is linear over a wide temperature 

range and this is one reason it is preferred over other metals.   

 

 

Figure A-2.  Resistance-temperature relation of various materials [3] 
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Each of the different metals used for sensing elements (platinum, nickel, copper) has a 

different amount of relative change in resistance per unit change in temperature. A 

measure of a resistance thermometer’s sensitivity is its temperature coefficient of 

resistance, or α .  It is commonly defined as the element’s average change in 

resistance per degree Celsius change, in o/ CΩ  of sensor resistance over the range of 

o0 C  to o100 C .   

100 0
o

0 100 C
R R

R
α −
=

⋅
 

where 0R  is the RTD resistance at o0 C  and 100R  is the resistance at o100 C .  α  has 

units of oΩ/Ω/ C .  The α  of an RTD is a physical and electrical property of the metal 

alloy and the method by which the element was fabricated.   

 

A.3 Self-Heating 

The excitation current can cause the RTD to heat up internally, via 2I R  heating of 

resistive elements.  Self-heating is typically specified as the amount of power that will 

raise the RTD temperature by 1° C, or 1 mW/°C.  Self-heating can be minimized by 

using the smallest possible excitation current.  The amount of self-heating also 

depends heavily on the medium in which the RTD is immersed.  Self-heating can be 

up to 100 times higher in still air than in moving water [4].   

 

In applications where the change in temperature measured is small and high sensitivity 

is required, sensors with large surface areas should be used.  In this manner, a large 

excitation current can be used.  The heat generated by the large current can be quickly 

dissipated by the large surface area.   
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A.4 Response Time 

The response time, or the sensor time constant, is typically defined as the time it takes 

for an RTD to respond to a step change in temperature and come to 63% of its final 

steady state value.  It is an indication of the RTD’s ability to react to a change in 

temperature, and depends on the RTD’s thermal mass and proximity to the material 

being measured.  The response time can also vary depending on the application.  For 

instance, an RTD sensor in a thermowell will react more slowly to a temperature 

change than the same sensor immersed directly into the process.   

 

An advantage of thin-film platinum RTDs is that they are fabricated on a substrate 

with significantly smaller volume and mass, thus allowing faster response times.   

 

1.1.1 Signal Conditioning 

RTDs can be difficult to measure because their resistances are relatively low and vary 

only slightly with temperature.  To use it as a measurement device, a constant current 

(the excitation current) is passed through it, producing a measurable voltage.  Any 

change in the measured temperature causes the resistance to change, and this is 

reflected as a change in the voltage across it.  It is important that the constant current 

source is stable and has a low temperature coefficient, otherwise changes in the 

measured voltage will not be due only to the resistance, and the sensor readings will 

inaccurate.   
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APPENDIX B 

Modifications to the Firmware 

(Note :  Additions/modifications to the code are highlighted in bold) 
 
AD7711.c 
 
• Added cases ‘rmLCSRON’ and ‘rmLCSROFF’ in function ‘MainLoop’ to switch on and 

switch off Port D7 
 
 
#include  <80c196.h> 
#include  <psd401.h> 
#include  <AD7711.h> 
#include  "RunMode.h" 
 
#define  True 1 
#define  False 0 
 
extern void  Idle96(void); 
static register volatile ERunMode RunMode; 
static register unsigned char bAverSampleBits; 
static register unsigned char ADCStarted; 
static register unsigned char ADCMode; 
static register unsigned char ADCGain; 
static register unsigned int  ADCFilter; 
static register unsigned int  DelayCount; 
static register unsigned int  *pADBuf, ChipMask; 
static register unsigned char *pbData, BitMask; 
static register unsigned char WordCnt; 
static register unsigned char Ret; 
static register unsigned char Round; 
static register unsigned char *pbLast; 
static register unsigned long TheLong, *plSum; 
static register unsigned int  RawADBuf[ADWORDLENGTH << 3]; 
static register unsigned char XchgADBuf[ADWORDLENGTH << 4]; 
extern unsigned long Sum[16]; 
extern unsigned char ADData[(ADWORDLENGTH << 4) * AverSamples]; 
 
 
/* ---------------------------------------------------------- 
   function to delay Cnt times 
   ----------------------------------------------------------*/ 
void Delay(void) 
{ 
  while(--DelayCount); 
} 
#define DELAY(COUNT) DelayCount=COUNT; Delay() 
 
/* ---------------------------------------------------------- 
   function to read the SDATA from 16 AD7711s to RawADBuf 
   ----------------------------------------------------------*/ 
void ReadADCs(void) 
{ 
  pADBuf = RawADBuf; 
  WordCnt = ADWORDLENGTH << 3; 
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  do 
  { 
    *(pADBuf++) = PortABIn; 
    Set_SCLK; 
    DELAY(SCLK_PulseDelay); 
    Clear_SCLK; 
  } 
  while (--WordCnt); 
  Stop_Access; 
} /* end of ReadADCs function */ 
 
 
/* ---------------------------------------------------------- 
   function to write the SDATA to 16 AD7711s from RawADBuf 
   ----------------------------------------------------------*/ 
void WriteADCs(void) 
{ 
  pADBuf = RawADBuf; 
  WordCnt = ADWORDLENGTH << 3; 
  do 
  { 
    PortABOut = *(pADBuf++); 
    Set_SCLK; 
    DELAY(SCLK_PulseDelay); 
    Clear_SCLK; 
  } 
  while (--WordCnt); 
  Stop_Access; 
} /* end of WriteADCs function */ 
 
/* ---------------------------------------------------------- 
   function to decode the SDATA in RawADBuf 
   ----------------------------------------------------------*/ 
void DecodeSDATA(void) 
{ 
  pbData+= ADWORDLENGTH << 4; 
  ChipMask= 0x8000;     /* Bit15 stands for the 15th AD7711 */ 
  do 
  { 
    pADBuf= RawADBuf; 
    WordCnt= ADWORDLENGTH; 
    do 
    { 
      *(--pbData) = 0; 
      BitMask= 0x80; 
      do 
      { 
 if (*(pADBuf++) & ChipMask) 
   *pbData|= BitMask; 
 BitMask= BitMask >> 1; 
      } 
      while (BitMask); 
    } 
    while (--WordCnt); 
    ChipMask= ChipMask >> 1; 
  } 
  while (ChipMask); 
} /* end of DecodeSDATA function */ 
 
/* ---------------------------------------------------------- 
   function to encode the SDATA in RawADBuf 
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   ----------------------------------------------------------*/ 
void EncodeSDATA(void) 
{ 
  WordCnt= (ADWORDLENGTH << 4) / 2; 
  pADBuf= RawADBuf; 
  do 
    *(pADBuf++) = 0; 
  while (--WordCnt); 
  pbData+= ADWORDLENGTH << 4; 
  ChipMask= 0x8000;     /* Bit15 stands for the 15th AD7711 */ 
  do 
  { 
    pADBuf = RawADBuf; 
    WordCnt = ADWORDLENGTH; 
    do 
    { 
      pbData--; 
      BitMask = 0x80; 
      do 
      { 
 if (*pbData & BitMask) 
   *pADBuf |= ChipMask; 
 pADBuf++; 
 BitMask= BitMask >> 1; 
      } 
      while (BitMask); 
    } 
    while (--WordCnt); 
    ChipMask= ChipMask >> 1; 
  } 
  while (ChipMask); 
} /* end of EncodeSDATA function */ 
 
/* ---------------------------------------------------------- 
   function to copy the first 3 bytes into rest of XchgADBuf 
   ----------------------------------------------------------*/ 
void DupCtrlReg(void) 
{ 
  WordCnt=0; 
  pbData= XchgADBuf; 
  do 
  { 
    *(pbData+3)= *pbData; 
    pbData++; 
  } 
  while(++WordCnt < 3*15); 
} 
 
/* ---------------------------------------------------------- 
   function to set the 16 adc7711 control registers 
   ----------------------------------------------------------*/ 
void PutCtrlReg(void) 
{ 
  EncodeSDATA(); 
  Start_WriteCtrl; 
  WriteADCs(); 
} /* end of PutCtrlReg function */ 
 
/* ---------------------------------------------------------- 
   function to get the 16 adc7711 data/calibration registers 
   ----------------------------------------------------------*/ 
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void GetDataReg(void) 
{ 
  Start_ReadData; 
  ReadADCs(); 
  DecodeSDATA(); 
} /* end of GetDataReg function */ 
 
/* ---------------------------------------------------------- 
   function to set the 16 adc7711 data/calibration registers 
   ----------------------------------------------------------*/ 
void PutDataReg(void) 
{ 
  EncodeSDATA(); 
  Start_WriteData; 
  WriteADCs(); 
} /* end of PutDataReg function */ 
 
/* ---------------------------------------------------------- 
   function to test whether all 16 ad7711s are ready 
   ----------------------------------------------------------*/ 
void IsReady(void) 
{ 
  while (Port01 & WorkSet) 
    if (--DelayCount == 0) 
    { 
      RunMode= rmADCOutOfTime; 
      Ret= False; 
      return; 
    }; 
  Ret= True; 
  return; 
} 
#define ISREADY(COUNT)     DelayCount=COUNT; IsReady(); if 
(Ret) 
#define TESTREADY(COUNT)    DelayCount=COUNT; IsReady() 
 
/* ---------------------------------------------------------- 
   Write control registers of the 16 AD7711s 
   ----------------------------------------------------------*/ 
void  WriteCtrl(void) 
{ 
  if (ADCFilter < 19) 
    ADCFilter= 19; 
  if (ADCFilter > 2000) 
    ADCFilter= 2000; 
  XchgADBuf[2]= (ADCMode << 3 | ADCGain & 7) << 2; 
    /* channel is always AIN1 here.*/ 
  XchgADBuf[1]= 0xd0; 
    /* 1(uses 24bit word, keep accord with ADWORDLENGTH) 
       1(RTD current on) 
       0(burnout current off) 
       1(unipolar)*/ 
  XchgADBuf[1]|= ADCFilter >> 8; 
  XchgADBuf[0]= ADCFilter & 0xff; 
  DupCtrlReg(); 
  pbData= XchgADBuf; 
  PutCtrlReg(); 
 
  if ((ADCMode>0) && (ADCMode<5)) 
  { 
    /* ignore the /DRDY status for a modulator cycle at least, 
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    and wait until calibrations over*/ 
    for (WordCnt=0; WordCnt< 20; WordCnt++) 
    { 
      DELAY(30000); 
    }; 
    TESTREADY(20000); 
  }; 
  return; 
} 
 
void IdleAD7711s(void) 
{ 
  XchgADBuf[2]= (ADCGain & 7) << 2 | 0x01; 
    /* 000, normal mode 
       0, channel is always AIN1 here. 
       1, power down*/ 
  XchgADBuf[1]= 0x90; 
    /* 1(uses 24bit word, keep accord with ADWORDLENGTH) 
       0(RTD current off) 
       0(burnout current off) 
       1(unipolar)*/ 
  XchgADBuf[1]|= ADCFilter >> 8; 
  XchgADBuf[0]= ADCFilter & 0xff; 
  DupCtrlReg(); 
  pbData= XchgADBuf; 
  PutCtrlReg(); 
} 
 
 
/* ---------------------------------------------------------- 
   function to perform alrothim average 
   ----------------------------------------------------------*/ 
void AverData(void) 
{ 
  WordCnt=16; 
  plSum= Sum; 
  do 
    *(plSum++)= 0; 
  while (--WordCnt); 
 
  WordCnt= 1 << bAverSampleBits; 
  pbData= ADData; 
  do 
  { 
    ChipMask=0x8000; 
    plSum= Sum; 
    do 
    { 
      *((unsigned char *)(&TheLong))= *(pbData++); 
      *((unsigned char *)(&TheLong)+1)= *(pbData++); 
      *((unsigned char *)(&TheLong)+2)= *(pbData++); 
      *(plSum++)+= TheLong; 
      ChipMask= ChipMask >> 1; 
    } 
    while (ChipMask); 
  } 
  while (--WordCnt); 
 
  ChipMask= 0x8000; 
  plSum= Sum; 
  pbData= XchgADBuf; 
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  do 
  { 
    *plSum= *plSum >> bAverSampleBits; 
    *(pbData++)=  *((unsigned char *)plSum); 
    *(pbData++)= *(((unsigned char *)plSum)+1); 
    *(pbData++)= *(((unsigned char *)plSum)+2); 
    plSum++; 
    ChipMask= ChipMask >> 1; 
  } 
  while (ChipMask); 
} 
 
 
/* ---------------------------------------------------------- 
   function to get the latest results of 16 ad7711s into pbData 
   ----------------------------------------------------------*/ 
void GetADResult(void) 
{ 
  if (Port01 & WorkSet) 
    return; 
  pbData= pbLast; 
  pbLast+= (ADWORDLENGTH<<4); 
  if (pbLast >= ((unsigned char *)ADData + sizeof(ADData))) 
    pbLast= ADData; 
  GetDataReg(); 
  AverData; 
  RunMode = rmReady; 
} /* end of GetADResult function */ 
 
 
void ResetAD7711s(void) 
{ 
  TheLong= 0; 
  bAverSampleBits= AverSampleBits; 
  Round=0; 
  pbLast= ADData; 
  ADCGain= AD7711Gain; 
  ADCFilter= AD7711Filter; 
  ADCMode= 1; 
  WriteCtrl(); 
 
/* synchronize 16 ADCs */ 
  Start_Sync; 
  DELAY(5); 
  Stop_Access; 
} 
 
 
void InitPorts(void) 
{ 
  PortABCtrl= 0xFFFF; /* sets all pins of port A and B as MCU I/O*/ 
  PortCDCtrl= 0xFFFF; /* sets all pins of port C and D as MCU I/O*/ 
  Stop_Access; 
  Clear_SCLK; 
  PortCDDir= 0xFFFF; /* sets all pins of port C and D as output */ 
  PortDOut=0x00; 
  ioport1= 0xff; 
} 
 
void MainLoop(void) 
{ 
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  RunMode=rmUnknown; 
  ADCStarted= False; 
  do 
  { 
    switch (RunMode) 
    { 
      case rmReset:{    RunMode=rmBusy; 
   InitPorts(); 
   ResetAD7711s(); 
   break; 
     }; 
      case rmIdle: { IdleAD7711s(); 
   Idle96(); 
   RunMode= rmReady; 
   break; 
     }; 
      case rmQuit: { RunMode=rmUnknown; 
   return; 
     }; 
      case rmUnknown: break; 
      case rmBusy: 
      case rmReady:{  GetADResult(); 
   break; 
     }; 
      case rmADCOutOfTime:break; 
 case rmLCSRON: { 
   PortDOut|= 0x80; 
   RunMode = rmReady; 
   break; 
   }; 
 case rmLCSROFF: { 
   PortDOut&= 0x0F; 
   RunMode = rmReady; 
   break; 
   }; 
      default: RunMode=rmUnknown; 
    }; 
  } 
  while(1); 
} 
 
 
 
 
 
 
AD7711.h 
 
• Changed defined value of ‘AD7711Filter’ to increase AD7711 sampling rate 
• Changed defined value of ‘AverSamples’ to reduce number of samples in moving average 

window 
• Changed defined value of ‘Set_SCLK’ so that Port D7 status will not be affected by 

setting of S_CLK 
• Changed defined value of ‘Clear_SCLK’ so that Port D7 status will not be affected by 

clearing of S_CLK 
 
 
#include <80c196.h> 
#include <PSD401.h> 
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#ifndef _AD7712h 
#define _AD7712h 
 
#define Ch1 0x4000 
#define Ch2 0x8000 
#define Ch3 0x2000 
#define Ch4 0x1000 
#define Ch5 0x0400 
#define Ch6 0x0800 
#define Ch7 0x0200 
#define Ch8 0x0100 
#define Ch9 0x0080 
#define Ch10 0x0040 
#define Ch11 0x0020 
#define Ch12 0x0010 
#define Ch13 0x0004 
#define Ch14 0x0001 
#define Ch15 0x0008 
#define Ch16 0x0002 
 
/* the parameters of ad7711s */ 
#define Gain1  0x00 
#define Gain2  0x01 
#define Gain4  0x02 
#define Gain8  0x03 
#define Gain16  0x04  
#define Gain32  0x05 
#define Gain64  0x06 
#define Gain128     0x07 
 
#define AD7711Gain Gain4 
#define AD7711Filter 781 
#define ADWORDLENGTH    3 
#define WorkSet  0xffff 
#define AverSampleBits  2 
#define AverSamples     1  /* (1<<AverSampleBits) */ 
 /* set to 1 if no averaging used */ 
 
/* macros for ad7711 control */ 
#define Start_ReadCtrl PortABDir= 0x0000; PortCOut= 0x3C 
   /* RFS= low, A0= low */ 
#define Start_ReadData PortABDir= 0x0000; PortCOut= 0xFC 
   /* RFS= low, A0= high */ 
#define Start_WriteCtrl PortABDir= 0xffff; PortCOut= 0x33 
   /* TFS= low, A0= low */ 
#define Start_WriteData PortABDir= 0xffff; PortCOut= 0xF3 
   /* TFS= low, A0= high */ 
#define Stop_Access     PortABDir= 0x0000; PortCOut= 0xFF 
   /* RFS= TFS= high */ 
#define Start_Sync PortCOut= 0xCF 
#define Set_SCLK PortDOut|= 0x0F 
   /* SCLK= 1 */ 
#define Clear_SCLK PortDOut&= 0xF0 
   /* SCLK= 0 */ 
#define SCLK_PulseDelay 0x02 
   /* delay constant for active SCLK pulse*/ 
#endif 
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RUNMODE.h 
 
• Added ‘rmLCSRON’ and rmLCSROFF’ 
 
 
#ifndef _RunModeh 
#define _RunModeh 
 
typedef enum 
{ 
  rmInit,   /* issued by PC */ 
  rmCali,   /* issued by PC */ 
  rmReset,  /* issued by PC */ 
  rmAcqu,        /* issued by PC */ 
  rmIdle,         /* issued by PC */ 
  rmQuit,         /* issued by PC */ 
  rmUnknown,     /* reported by C196 */ 
  rmBusy,   /* reported by C196 */ 
  rmReady,       /* reported by C196 */ 
  rmADCOutOfTime,/* reported by C196 */ 
  rmLCSRON,  /* issued by PC */  
  rmLCSROFF  /* issued by PC */  
} ERunMode; 
 
#endif
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