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SUMMARY

Topics covered in this dissertation fall mainly in the general framework of Mobile

Manipulation. A control algorithm that is capable of a unified force and motion

control, based on the Operational Space Formulation [1], was set as the starting

platform in the project.

The thesis focused on the problem of singularity. Issues in identification of sin-

gularities and singular directions were discussed. These issues are not new, however,

certain simplification process is often introduced to reduce the complexity of the iden-

tification techniques. Analysis was performed on these simplified methods to evaluate

the completeness of resulting solutions.

Two concepts of singularity handling methods were presented. The first was

by removing the degenerate components of the task. Certain discontinuity issues

associated with this method were analyzed. This method belongs to the category

that introduces a division in workspace. The second was to supplement the DOFs

lost in singularity with extra “virtual” joints. There is no division of workspace in

this category.

The last chapter presents the example of the application of the operational space

formulation with singularity compensation, performing an industrial task of polishing

the curved surface of an aircraft canopy with no prior knowledge of the surface profile.

x



The workspace of the manipulator was extended by mounting it on a mobile base.

The result is presented in graphs and in videos that are available on the Internet.
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NOMENCLATURE

iJ Jacobian matrix expressed in Frame i

ARB 3×3 rotation matrix describing the orientation of Frame{B}
in Frame{A}. The 1st, 2nd, and 3rd column represent the
rotation of X, Y, Z axes of Frame{B} expressed in Frame{A}

τττ Torque command vector to the manipulator joints

τττ 0 Torque command vector to be projected into the null space
of the Jacobian of the manipulator

f Operational space force command vector of the operational
point in a manipulator

A Joint space inertia matrix

B Coriolis and Centrifugal force in joint space

g Gravity vector in joint space

Λ̂ Inertia matrix in operational space

µµµ The Coriolis and centrifugal forces in operational space

p Gravitational vector in operational space

Ω Task specification matrix, on which axes are in force and
which in motion control

J# Generalised inverse of a Jacobian matrix

J̄ Dynamically Consistent Inverse of a Jacobian matrix

xii



si sin(qi)

cab cos(qa + qb)

JV Top half of Jacobian matrix J , mapping joint rate to task
space velocity of the operational point

Jω Bottom half of Jacobian matrix J , mapping joint rate to
the angular velocity of the operational point.

Mi The i− th minor of a matrix

s(q) The factor in determinant of the Jacobian matrix which is
zero at specific singularity

s0 The threshold value that defines the singular region

−∇v0(q) Gradient descent of potential function v0(q)

s1, s2, s3 Columns of the rotation matrix which represent the orien-
tation of each axis of the end-effector with respect to Base
Frame

s1d, s2d, s3d represent the desired values of s1, s2, and s3

{A} Frame {A} as a label in the diagram.

Â skew symmetric matrix equivalent to a cross product oper-
ator, see Section 2.3.

a Scalar variable a (lower case, regular font).

a Vector a (lower case, bold font).

A Matrix A (upper case, bold font).

f(q, q̇) Function f , a function of q and q̇.

xiii
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CHAPTER 1

INTRODUCTION

The field of robotics has experienced a major boost in the recent years, thanks

mainly to the rapid development of computer technology. Now, the field has developed

and branched into many different exciting fronts, away from the industrial robotics

for which it was originally designed for. Examples include the haptic technology,

computer dynamic simulation, vision systems, humanoids (Figure 1.1), and various

advanced control algorithms.

Figure 1.1: Honda Asimo - an example of the recent development in the
front of humanoid robots, spearheaded mainly by the Japanese. (From
http://www.honda.co.jp/ASIMO/)
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Created with the purpose of assisting humans, robot development has more than

ever focused on its interaction with the human world. While the usage of robots in

the industry has been successful to a certain degree, its implementation is simplified

by structuring the environment to suit the operation of the robots. The assembly line

in the automotive industry is the classic example, where the cars in production would

be placed on a conveyer belt and stationed at exact locations for the robot to operate

on. Human operators are kept outside the workspace of the robots for safety reasons

and because the robots are not programmed to handle any additional obstacles such

as human traffic.

Today, robots are to operate in the “unstructured environment” of the human

world. By “unstructured” we mean that we do not always have a static and well

defined environment, where the position of everything is known and predefined. There

is a need to adapt to the changing environment, to deal with new obstacles (e.g.,

human traffic) and changing condition (e.g., lighting, temperature, friction, stiffness

of environment). It is also necessary to have the versatility to operate on objects

with different characteristics, not just identical objects such as in mass production.

The system also needs to be safe for human interaction. All these requirements have

opened up a wide variety of exciting challenges in the field of robotics.

This dissertation deals with “Mobile Manipulation”. A mobile manipulator is a

manipulator that is mounted on a mobile base. Mobile manipulation means manip-

ulation while the base is in motion. The robot can now cover a larger workspace

due to the increased mobility. It also deals with force and motion control of the

manipulator, enabling the robot to interact with the environment through touching

and manipulation. Force control enables the robot to have a stable impact with the
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environment, and a controlled force to be exerted. While all these are taking place,

the dynamics of both arm and base are also compensated to produce a smooth and

accurate performance.

This dissertation concentrates mainly on the topic of singularity. Singularity is

a configuration whereby in its vicinity, robots would have unbounded joint rate for

a finite motion in operational space. This is a problem that reduces the usable

workspace of a lot of robots. As a part of the ”Mobile Manipulation” project, the

problem of singularity needs to be addressed. The contribution to the effort of creating

a mobile manipulator in the unstructured human environment is by ensuring the

robustness and stability of the control algorithm. This improves the safety of the

human coming into interaction with the robots. It also improves the dexterity of

the manipulator by claiming back workspace originally rendered unusable by singular

configurations.

The objective of this Ph.D work is a complete treatment of singularity on existing

manipulators, i.e. this work does not involve manipulator designs that minimise sin-

gularity. This includes the issues of singularity identification and handling of these

singularities. In identification, we evaluate the existing techniques for completeness

of solution, especially for redundant manipulators. Some singularity handling tech-

niques are reviewed and proposed. These techniques can mainly be divided into two

categories. One category divided the manipulator workspace into singular and non-

singular regions, and applies a different control scheme inside the singular regions.

The other has a uniform control scheme across the entire workspace that is designed

to be singularity robust. Examples were given and issues from both categories were

discussed. Chapter 2 covers general background on robotic theory necessary for the
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understanding of the work reported in this dissertation. Chapter 3 covers the back-

ground on various types of singularities and various documented works in this field.

Chapter 4 covers the singularity identification techniques and the issues in the iden-

tification of singular direction. Chapter 5 presents a method of handling singularities

by removing the degenerate components. Chapter 6 presents a discussion on the re-

duced degree of freedom inside the singular region and the discontinuity across the

boundary. Chapter 7 presents another method of handling singularities by supplying

extra joints ‘virtually’ to supplement the lost DOFs when singularity occurs. Chapter

8 presents an application example in mobile manipulation that utilises all the ma-

terial covered in the previous chapters. It involves mounting a manipulator arm on

a mobile base to perform force/motion control task. Summary of the dissertation is

presented in Chapter 9 including suggestions for future work.

The work on mobile manipulation is mainly derived from that of Oussama Khatib’s

at Stanford University. The operational space formulation [1] was chosen as the

working platform in this project.

The contributions of this Ph.D work are:

• Completeness of Solution in Singularity Identification

Several methods have been proposed in the past and often involves separating

the Jacobian matrix into top and bottom halves for the purpose of singularity

identification. Analysis was performed on the completeness of the set of solution

given and some amendments to the technique are proposed.

• Singularity Handling in Force and Motion Control

A formulation of singularity handling method in operational space framework,
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capable of handling force and motion control. Null space motion was also uti-

lized in assisting motion in the degenerate direction inside singular region.

• Physical Interpretation and Usage of Singular Value Decomposition

in Singular Handling of Manipulators

Although the usage of Singular Value Decomposition (SVD) in singularity analy-

sis and handling is widespread, in this dissertation, we have included further

analysis the topic. A short section is included to numerically define the singular

directions of a manipulator in singular configuration. The SVD is also used to

improve the singularity handling technique presented in Chapter 5.

• The resulting issues from the reduced degree of freedom in the

singular region and the discontinuity across the singular boundary

Inside the singular region, the manipulator task is specified only in the subspace

of the workspace that is not degenerate. Inside this region, motion in singular

direction is no longer performed, resulting in an accumulated error and discon-

tinuity and jerkiness in motion as the manipulator leaves the singular region.

The problem is analysed and handling methods were proposed.

• Virtual Joints

Singularity handling was done by virtual joints. It was proposed that extra

“virtual joints” are added to the system to compensate for the lost DOFs during

singularity. The concept was implemented and verified in real-time experiments

on PUMA 560.
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• Integration of Arm and Base Units with Different Control Modes

A method was proposed in mixing a torque controlled arm and a velocity con-

trolled base. This can be thought of a “macro-mini” structure where the velocity

controlled base is of slower servo loop and therefore slower response compared

to the torque controlled arm. Also velocity control in itself compromises the

performance of the manipulator, as it is not capable of force/motion control.

The next chapter will briefly go over the necessary background on the theories

and methods used in this dissertation.
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CHAPTER 2

BACKGROUND THEORY I: FORCE AND MOTION
CONTROL OF MANIPULATORS

2.1 Chapter Overview

This chapter covers the necessary background theory that formed the starting

point of the project. The main ideas were derived from the work of Oussama Khatib’s

from Stanford University [1, 3, 4], who was also the external advisor to this project.

This provided a good starting platform to the project and ideas were developed to

expand the theories and to implement the ideas into real tasks.

The main sections of the chapter include a brief summary of Operational Space

Formulation [1] and Redundancy and Null Space Theory [4, 5, 6]. Other ideas in

redundancy resolutions were also explored and presented in this chapter.

This section covers only the important parts of robotics background theory that

are crucial in this dissertation. Further reading can be found in textbooks such as

[2, 7, 8, 9, 10, 11].

2.2 Operational Space Formulation

The Operational Space Formulation [1] is a control approach where free motion

and contact forces are expressed in operational space (Cartesian space as seen from
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the end-effector or tool), generated by including the dynamic parameters of the ma-

nipulator in the desired control forces. This force is then transformed into equivalent

torque values to be exerted by each joint to describe the desired force at the end

effector.

The force is obtained by multiplying mass/inertia of the robot with the desired ac-

celeration. The mass/inertia of the robot can be obtained by experiments as described

in [12, 13] and can also be verified in [14]. In free motion, the desired acceleration is

generated by the control law that minimises the error between the desired and the ac-

tual trajectories. Other dynamic parameters can be included into the generated force,

such as the Gravity, Coriolis, and Centrifugal forces to better model the dynamics of

the robot.

An obvious advantage of this formulation is that it is a very natural framework for

combined position and force control, which is used when the end effector comes into

contact with the environment. Forces are generally expressed in the Cartesian space,

and having free motion generated as forces that draws the mass of the manipulator in

the Cartesian space provides an elegant framework for a hybrid motion/force control.

The total force f is therefore a combination of the force for free motion control

and force for constrained motion (force control). It is then converted to joint torques

by

τττ = JT f +N Tτττ 0

NNN = [I− J#J]
(2.1)

where τττ is the joint torque command vector, and J is the Jacobian matrix. NNN and

τττ 0 are used to control the null space motion of the Jacobian and is useful when

the manipulator is redundant with respect to the task. They will be elaborated in

the later parts of the chapter. J# is a generalised inverse of the J matrix. In our
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experiment, the dynamically consistent inverse J̄ [4] is utilised. The definition of

generalised inverse and the dynamically consistent inverse and its further explanation

are given in Section 2.5.

2.2.1 Motion Control

Free motion, in the Operational Space Formulation, is generated by a virtual force

vector from the present to the desired position, taking into account the dynamics of

the manipulator. This is similar to the well-known computed-torque control [15]

except that it is now done in operational space. The control law to generate the

required force is computed from the required acceleration, f∗motion:

f∗motion = Iẍd −Kv,motion(ẋ− ẋd)−Kp,motion(x− xd) (2.2)

f∗motion is then multiplied with the inertia matrix Λ̂, and added with the Coriolis and

Centrifugal forces µ̂µµ and gravitational vector p̂, to yield the required force:

fmotion = Λ̂(x)f∗motion + µ̂µµ(x, ẋ) + p̂(x) (2.3)

The operational space control can be compared with computed-torque control in joint

space, which is described as:

τττ = Â(q)q̈ + b̂(q, q̇) + ĝ(q) (2.4)

where Â is the joint space inertial matrix of the manipulator, b̂(q, q̇) is the Corio-

lis and centrifugal vector, and ĝ is the gravity compensation vector in joint space.

Methods of dynamics identification can be found in [12] and [16, 13]. In the work

involved in this dissertation, we use the PUMA 560 manipulator as a test bed. The

dynamic model of PUMA 560 is obtained from [13].
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These dynamic parameters can then be translated into task space for use in Equa-

tion 2.3 by:
Λ̂(x) = [J(q)Â−1(q)JT (q)]−1

µ̂µµ(x, ẋ) = [J−T (q)B̂(q)−Λ(q)Ĥ(q)][q̇q̇]
p̂(x) = J−T (q)ĝ(q)

(2.5)

where Ĥ(q)[q̇q̇] = J̇(q)q̇. This is valid for all serial, including redundant, manipu-

lators. Note that Equation 2.5 is only valid if the manipulator is at a non-singular

configuration.

The “ ˆ ” above the parameter represents our estimate of actual dynamic param-

eters. The actual dynamic model of the robot is represented by:

fmotion = Λ(x)ẍ + µµµ(x, ẋ) + p(x) (2.6)

2.2.2 Force Control

As the robot end-effector is in contact with the environment, reaction forces and

moments are generated at the end-effector. These forces/moments are then trans-

mitted to the robot joints where the drive torques can be generated to impose the

desired contact forces/moments to the robot environment.

The force control in operational space can be transformed to the robot joint space

by the same transformation as the operational space motion control.

The operational space force applied at the end-effector can be expressed as,

fforce = Λ̂(x)f∗force + µ̂µµ(x, ẋ) + p̂(x) + fcontact (2.7)

where,
f∗force = Kp,force(fd − fcontact) + Ki,force

∑
(fd − fcontact). (2.8)
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is the control law and fcontact is the force exerted on the environment and is related

to the force sensor reading, fsensor, by

fcontact = −fsensor (2.9)

Note that the force sensor reading is the force exerted by the environment on the

end-effector.

The µ̂µµ and p̂ vectors are the Coriolis and centrifugal vector and gravitational

vector as defined in motion control. With contact to the environment, the actual

dynamic model becomes

fforce = ΛΛΛ(x)ẍ + µµµ(x, ẋ) + p(x) + fcontact (2.10)

2.2.3 Unified Force and Motion Control

In unified force and motion control, first the task is defined: which degrees-of-

freedom are assigned to force control and which are to motion control. Appropriate

control algorithms are then applied respectively.

The resulting force and motion control is done by selecting the desired force or

motion response of the robot and adding them together to get the effective robot

response (Figure 2.1). This is expressed as,

f = fmotion + fforce (2.11)

where

fmotion = Λ̂(x)Ωf∗motion + µ̂µµ(x, ẋ) + p̂(x) (2.12)

and

fforce = Λ̂(x)Ω̄f∗force − fsensor. (2.13)
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f∗motion (Equation 2.2) and f∗force (Equation 2.8) are the force applied for motion and

force control respectively. ΩΩΩ and Ω̄ΩΩ are the selection matrices to switch the appli-

cation between force or motion whichever is desired and to specify the direction of

application. µ̂µµ(x, ϑ) represents the Coriolis and centrifugal forces and p̂(x) the Grav-

itational force, which are the same for force and motion control, and are therefore

only included once.

To specify the selection matrices, consider a reference Frame {P} at the oper-

ational point that is always parallel to the base (global) reference Frame {O} (see

Figure 2.1). We then consider an operational space (tool) force Frame {T} whose

orientation is obtained from Frame {P} by the 3 × 3 rotation matrix PRT . Frame

{T} is attached to the end-effector while the origin of Frame {P} translates with the

operational point and always coincides with the origin of Frame {T}.

Figure 2.1: Tool frame assignment
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The generalized task specification matrices ΩΩΩ is then defined as

ΩΩΩ =

(
PRT

TSSST
FRP 0

0 PRT
TSSST

MRP

)
(2.14)

where

SSSF =




σFX 0 0
0 σFY 0
0 0 σFZ


 (2.15)

SSSM =




σMX 0 0
0 σMY 0
0 0 σMZ


 (2.16)

and

σFX , σFY , σFZ , σMX , σMY , σMZ are binary values where “1” signifies application

of free motion (motion control) along the corresponding axis and “0” for constraint

motion (force control) along the corresponding axis.

Equation 2.14 was derived to consistently match the frames that different compo-

nents are expressed in. SSSF and SSSF are expressed in the end-effector frame (Frame{T}.

However, f∗motion and f∗force are all expressed in Frame{0}, consistent with system dy-

namics expressed in Frame {P} (which is parallel to Frame{0})(Equations 2.6 to

2.10). Therefore, they have to be first transformed to Frame{T} (by TRP ) before the

application of SSS 2.14. They are then transformed back to Frame{P} by PRT after

the application of SSS.

Ω̄ΩΩ is obtained using S̄SSF and S̄SSM which are the complements of SSSF and SSSM.

When fmotion and fforce are obtained, the combined f is sent as torque by Equation

2.1.
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Figure 2.2: The schematic diagram of the operational space formulation

The schematic diagram of the operational space formulation is summarised in

Figure 2.2. The operational space formulation is capable of unified force and mo-

tion control. Desired contact force with the environment and the desired end-effector

motion is generated by task specification. The task specification also includes the

description of which degrees-of-freedom are to be assigned to force control and which

to motion control. The control law that compares the input and the generated out-

put forces and motion at the end-effector provides the actuation command in task

space required to close the tracking error. The equations are reproduced below for

convenience.

f∗motion = Iẍd −Kv,motion(ẋ− ẋd)−Kp,motion(x− xd) (2.2)

f∗force = Kp,force(fd − fcontact) + Ki,force

∑
(fd − fcontact) (2.8)

These commands are then compensated for the dynamic effect according to the

dynamic model of the manipulator and assigned to its associated degrees-of-freedom.

The resulting forces are added together to form the total force to be displayed at the
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end-effector.

fmotion = Λ̂(x)Ωf∗motion + µ̂µµ(x, ẋ) + p̂(x) (2.12)

fforce = Λ̂(x)Ω̄f∗force − fsensor (2.13)

f = fmotion + fforce (2.11)

The force is then converted to joint space command to be sent to the respective

joints, by:

τττ = JT f +N Tτττ 0 (2.1)

For more details in unified motion and force control, please refer to [1].

2.3 Decoupling of the Jacobian Matrix

The Jacobian matrix is defined as the mapping from joint velocities to the end

effector linear velocity ṗ and angular velocity ωωω [8], where:




ṗ
−−−−

ωωω


 =




J1

−−−−
J2







q̇1

q̇2
...
q̇n


 (2.17)

where q̇1, q̇2, ...q̇n are the joint velocities, and J1 (3 × n) and J2 (3 × n) are the

Jacobian matrices for the translation and orientation of the end-effector.

In an anthropomorphic arm, a spherical wrist is attached at the end of the manip-

ulator. This is a very common design in manipulator arms, in industrial or research

laboratory robots. A spherical wrist is one with 3 DoF where the three axes of ro-

tation intersect one another at one point. This point is often called the wrist point,

and is often used as the operational point of the manipulator arm in the analysis of
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the Jacobian matrix. Locating the operational point at the wrist would simplify the

Jacobian matrix to:




ṗ
−−−−

ωωω


 =




J11 | 03×3

−−−−− −−−−−
J21 | J22







q1

q2
...
qn


 (2.18)

This is because any motion in the last three joints which form the spherical wrist

does not contribute to changing the position of the operational point, since the oper-

ational point is at the wrist.

When a tool is attached to the end-effector and the operational point is now at

the tip of the tool, a transformation matrix can be defined to extend the Jacobian to

include the extra distance.

Figure 2.3: When its operating point is extended from the wrist point (W) to the
tool point (T), a simple transformation matrix can be defined to relate the Jacobian
matrices at the wrist point and the tool point.

Supposed 0pW and 0pT are the position vectors of the wrist point and the tool

point with respect to Frame {0} respectively, and WpT is the position vector of the
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tool point with respect to the wrist (see Figure 2.3), then

(
0ṗT
0ωωωT

)
=

(
0ṗW +0 ωωωW × (0RW

WpT )
0ωωωW

)
(2.19)

where 0RW is the rotation matrix of the end-effector with respect to the Frame {0}

and 0ωωωW is the angular velocity of the wrist point W with respect to Frame {0}.

Using the cross product property a× b = −(b× a), then 0ωωωW × (0RW
WpT ) can

be written as −0RW
WpT ×0 ωωωW . Using the skew symmetric matrix notation, it can

be re-written as: ̂(0RW .WpT ).0ωωωT

ω̂ωω is the skew symmetric matrix equivalent to a cross product operator where:

ω̂ωω =




0 −ωZ ωY

ωZ 0 −ωX

−ωY ωX 0


 (2.20)

After rearranging, we obtain:

(
0ṗT
0ωωωT

)
=

(
I − ̂(0RW

WpT )
0 I

)(
0ṗW
0ωωωW

)
(2.21)

or

0JT =


 I − ̂((0RW )WpT )

0 I︸ ︷︷ ︸


 0JW

0JT = J∗ 0JW

(2.22)

J∗ is the transformation matrix that converts the operational point from the wrist

point to any arbitrary point rigidly attached to the end-effector.

This decoupling technique is widely used in the analysis of Jacobian matrix. The

usage is shown in Chapter 3 and 4 of this dissertation.
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2.4 Redundancy

2.4.1 Redundancy Definition

If a manipulator has more degrees of motion than required by the task, then the

manipulator is redundant. From Equation 2.17, it can be seen that the Jacobian

matrix would have more columns than rows (n > m). In this case, there exist infinite

sets of solution to the inverse kinematics.

Figure 2.4 is taken from [9] to illustrate the Redundant space in the Jacobian

matrix.

Figure 2.4: The relationship between the manipulable and redundant space

If the Jacobian matrix is defined as of size m by n, then the rank of the matrix

is the degree of manipulability (DoM) of the manipulator, and the dimension of the

redundant space is the degree of redundancy (DoR) [17]. It also follows that:

DoM + DoR = n. (2.23)

At singular configurations, rank of the Jacobian matrix degenerates, therefore

DoM would decrease, while DoR increases by the same number that DoM decreases

(by 2.23).
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2.4.2 The Jacobian Matrix

Most robot control algorithms use the Jacobian matrix as a coefficient to the

linear equations. Therefore, kinematic properties can be analyzed on the basis of the

Jacobian matrix in light of matrix theory [18].

The definition of the Jacobian matrix is given in Equation 2.17. It shows the

mapping between task space and joint space velocities. The Range space of the

Jacobian matrix, R(J), is the subspace made up of kinematically realizable motions

in task space. The dimension of the Range space is the rank of J(q) = min(m,n),

where J is m× n.

The orthogonal complement of the Range space is the Null space, made up of all

the kinematically unrealizable motion of δx.

2.4.3 Redundancy Resolution

Null Space control uses the fact that the orthogonal projection of the Jacobian

to the null space (I− J#J) is a subspace of q̇ that produces zero motion at the end

effector. This is used in the the control of null space motion.

There is also a null space associated with the transpose of Jacobian matrix. The

relationship between end-effector forces and joint torques is expressed as:

τττ = JT (q)f + [I− JT (q)JT#(q)]τττ 0 (2.24)

where JT# is the generalised inverse of JT , and τττ 0 is the arbitrary joint torque vector

to be projected to the null space of JT . Throughout this dissertation, the dynamically

consistent inverse (J̄) [4] is used as the inverse that’s consistent with the system’s

dynamics (Section 2.5 covers the dynamically consistent inverse). The summary table

for force/position duality is shown in Table 2.1.
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Table 2.1: The position/force duality
Position Force

δq = J̄δx + [I − J̄J ]δq0 τττ = JT f + [I − J̄J ]Tτττ 0

Equation 2.24 shows that joint torques can be decomposed into those correspond-

ing to force acting on the end-effector (the operational forces, represented by the JT f

part of τττ), and those that affect only the internal joint motion ([I−JT (q)JT#(q)]τττ 0).

In resolving redundancies, a performance measure is usually defined so that the

set of solution selected would minimise or maximise this measure. The maximum

number of independent sets of performance measure that can be imposed is equal to

the degrees of redundancy of the manipulator with respect to the task. Performance

measure can be designed to avoid singularities [19, 20], to avoid obstacles [21, 17], to

avoid joint limits [22], or to ensure that the torque is within a certain limit [19].

Let v(q) be the performance measure as a function of joint displacement. One

way to resolve redundancy, is to define a gradient descent function of the performance

measure τττ 0 = −∇v(q). This is then projected into the null space by Equation 2.24.

This is the method used in this dissertation.

An alternative way of obtaining the effect of null space projection is by using the

extended Jacobian matrix [23, 24, 25].

The conventional method expresses the range and null space projection of the task

explicitly as shown in Equation 2.25.

τττ = JT f +[I− J̄J]T τττ 0

δq = J#︸︷︷︸ δx + [I− J#J]︸ ︷︷ ︸ δq0

Manipulable Space Null Space

(2.25)
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The idea in the Extended Jacobian Matrix (EJM) is to incorporate the desired null

space behaviour into the Jacobian matrix. By doing this, the method extends the

redundant Jacobian matrix into a square matrix. When the inverse kinematics is

performed, this square Jacobian matrix will yield a unique solution that satisfies

both the required range and null space behaviours.

The extended Jacobian matrix is defined as

J = [Jm|Jn−m] (2.26)

where Jm is the m × m square minor of the Jacobian matrix that is full rank

(when the Jacobian matrix is not singular) and Jn−m is of size m × (n −m). J can

be rewritten as:

J = Jm[Im|J′n−m] (2.27)

where J′n−m = J−1
m .Jn−m and Im is an identity matrix of size m×m.

A matrix Υ is defined so that

ΥΥΥ =

(
J′n−m

−In−m

)
(2.28)

The matrix Υ an orthogonal matrix to the Jacobian matrix J. This is shown by:

J.Υ = (Jm|Jn−m) .

(
J−1

m .Jn−m

−In−m

)
= 0 (2.29)

A method of utilising the matrix Υ is shown by the Extended Jacobian Matrix

(EJM) [23, 24, 26, 27, 28].

The EJM is a method of resolving redundancy by adding (extending) the Jacobian

matrix J with additional number of rows Ja so that the extended Jacobian matrix
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Je is square. The additional rows Ja contains the extra constraints that need to be

satisfied for the redundancy resolution to arrive at a particular set of solution. These

extra rows are designed so that Ja.q̇ = 0 so that the internal joint motion will not

affect the motion of the end-effector.




ṗ
ωωω

−−−−
0


 = Je(q)q̇

=




J
−−−−

Ja


 q̇

(2.30)

where Je is the extended or padded square Jacobian matrix, J is the original non-

square Jacobian for the redundant manipulator, and Ja is the additional constraints

in the form of extra rows to patch the Jacobian matrix to a square shape.

Let the performance measure to be optimised again be v0(q). Then a matrix G(q)

can be defined as:

G(q) =

(
δv0(q)

δq
.Υ

)T

(2.31)

The non-square Jacobian matrix can now be padded to a square matrix by:

Je =

(
J

δG(q)
δq

)
(2.32)

This, in effect, projects the performance measure into the null space of the Jaco-

bian matrix, so that:




ṗ
ωωω

−−−−
0


 =




J

−−−−
δG(q)

δq


 q̇ (2.33)
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When the inverse kinematics is performed, the (square) extended Jacobian Je will

yield a set of solution q̇ that satisfies both the required task space velocity ẋ and the

null space behaviour as dictated by the potential function v0(q).

2.4.4 When Null Space Projection Conflicts with End-Effector
Motion

Sometimes, the desired null space behaviour is in conflict with the required end-

effector motion. By definition, any function projected into the null space of the

Jacobian matrix does not produce any effect at the end-effector. In other words, the

redundant space is mapped onto a zero point in the manipulable space (Section 2.4.1).

Therefore, when there is a conflict between the desired null space behaviour and the

required end-effector motion, the null space behaviour would not be satisfied.

This is also reflected mathematically on the equations. Equation 2.34 shows the

manipulable and null space of a manipulator. The null space torque (τττ 0) and the null

space joint velocity (δq0) are as explained in Section 2.4.3.

τττ = JT f +[I− J̄J]T τττ 0

δq = J#︸︷︷︸ δx + [I− J#J]︸ ︷︷ ︸ δq0

Manipulable Space Null Space

(2.34)

An example of three-link planar (R-R-R) manipulator is shown in Figure 2.5. The

desired end-effector motion is to move along the X0 axis away from the origin. The

manipulator is set to maintain a desired null space behaviour of q2 = −300. The null

space torque or velocity vector in this case is a 3× 1 vector:
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−∇v0(q) =




0
δ
δq

v0(q)

0


 (2.35)

Figure 2.5: The three-link planar (R-R-R) manipulator above is given a task of
following a trajectory in 2D. The extra degree of freedom is assigned to the null space
behaviour of keeping q2 = −300. The desired end-effector motion is to move along
the X0 axis away from the origin. The top and middle pictures show the possible
configurations where both the desired end-effector motion and required null space
behaviour are satisfied. The bottom picture shows the configuration where the null
space behaviour can no longer be satisfied. Notice the (I− J#J) projection matrices
for all the three cases.

The manipulator is shown in the top and middle pictures (2.5) to be in configu-

rations where it is possible to satisfy both the desired null space behaviour and the

required end-effector motion. A numerical example is substituted into the equation.

Notice the matrix (I−J#J) has non-zero values in the rows and columns correspond-

ing to the the null space behaviour of joint 2.
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In the bottom picture, however, the manipulator is shown to be in a configuration

where in order to satisfy the required end-effector motion, the desired null space

behaviour has to be abandoned. This shows in the (I − J#J) matrix where the

second row and column now contain only zeros. This means any function in the

second element of vector −∇v0(q) will not have any effect on the motion of the end-

effector. This confirms that null space behaviour does not produce any additional

effect on the end-effector motion and it will not be satisfied in the case where it is in

conflict with the required end-effector motion.

2.5 Generalised Inverses

As shown by the previous sections, a generalised inverse is required to invert a

non-square matrix for redundant manipulators. A well-known generalised inverse is

the Moore-Penrose generalised inverse. Others can be found in [29, 30, 31, 19] among

many.

The matrix J# is the generalised inverse of J if and only if [32]:

JJ#J = J (2.36)

Each generalised inverse has a property of minimising a certain property in se-

lecting one solution out of the infinite number of sets. For example, pseudo inverse

is one of the solutions, whereby it minimizes the norm of the vector / solution in a

least-squared fashion.
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2.5.1 Dynamically Consistent Inverse

The natural criterion in designing the motion of a robotic mechanism is to have

a solution with minimum kinetic energy. It is the natural way because it conforms

with the dynamics of the mechanism and is physically intuitive with how human and

animals utilise their bodies.

While projection of an arbitrary vector into the null space of the Jacobian matrix

will not affect the task of the end-effector [9, 32, 33], only one inverse would guarantee

that it is consistent with the dynamics and it is where the kinetic energy is minimised.

This is the dynamically consistent inverse as shown in [34, 4], and [35]. It is found

by first equating the torque from the dynamic equation of a manipulator (Equation

2.4) with the torque from the generalised-forces equation (Equation 2.1):

Â(q)q̈ + b̂(q, q̇) + ĝ(q) = JT f + [I− J#J]Tτττ (2.37)

and then premultiplying the equation by J(q)A−1(q) to yield:

J(q)q̈ + J(q)A−1(q)(b̂(q, q̇) + ĝ(q)) = J(q)A−1(q)JT f + J(q)A−1(q)[I− J#J]Tτττ

(2.38)

As the aim of the inverse is not to introduce additional acceleration at the end-

effector, Jq̈ is substituted by the derivative of ẋ = Jq̇:

d

dt
ẋ = J̇ q̇ + J q̈

ẍ = J̇ q̇ + J q̈

Jq̈ = ẍ− J̇ q̇ (2.39)
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The resulting equation is written as:

ẍ + [J(q)A−1(q)b(q, q̇)− J̇(q)q̇] + J(q)A−1(q)g(q) =
(J(q)A−1(q)JT (q)f + J(q)A−1(q)[I− JT (q)J#T (q)]τττ 0

(2.40)

Equation 2.40 shows that for the acceleration at the operational point not to be

affected by τττ 0, it is necessary for the term involving τττ 0 to be zero, or:

J(q)A−1(q)[I− JT (q)J#T (q)]τττ 0 = 0 (2.41)

A generalised inverse of J(q) satisfying the above constraint is said to be dynam-

ically consistent [36]. This inverse is the generalised inverse of the Jacobian matrix

corresponding to the solution of δx = J(q)δq that minimises the manipulator’s in-

stantaneous kinetic energy. J#T can then be solved from 2.41 as:

JA−1 − JA−1JTJ#T = 0 (2.42)

Therefore

J#T = (JA−1JT )−1JA−1 (2.43)

or

J̄T = ΛΛΛ(q)J(q)A−1(q) (2.44)

where

ΛΛΛ(q) = (J(q)A−1(q)JT (q))−1 (2.45)
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2.6 Measure of Orientation Error

In this dissertation, orientation error of the end-effector is measured in dφφφ , which

is defined as [7]:

dφφφ = −1

2
(ŝ1s1d + ŝ2s2d + ŝ2s2d) (2.46)

where s1, s2, s3 are the columns which represent the orientation of the end-effector

with respect to Base Frame, and s1d, s2d, s3d represent the desired orientation, at each

sampling period.

The “̂ ” symbol is the skew symmetric matrix equivalent to the cross product of

the vector. For example, if

s =




sx

sy

sz


 (2.47)

then

ŝ =




0 −sz sy

sz 0 −sx

−sy sx 0


 (2.48)
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CHAPTER 3

BACKGROUND THEORY II: SINGULARITIES

3.1 Types of Singularities

In [37], singularities are divided into real and artificial singularities. Real singular-

ities are those inherent in the physical configuration of the robot or the environment.

Artificial (or sometimes called mathematical) singularities are those resulting from

the control algorithms of the manipulator.

Real singularities include kinematic singularities and semi singularities. Artificial

singularities include algorithmic and semi-algorithmic singularities.

Algorithmic, semi, and semi-algorithmic singularities can occur only to redundant

manipulators [38]. In a redundant system, self-motion is possible as there are more

number of joints than necessary for the task. A performance measure optimisation is

usually imposed to regulate the behaviour of the self motion to arrive to a particular

solution.

3.1.1 Real singularity

Kinematic singularities are those where the manipulator loses the ability to execute

tasks in full set of DoFs. This means, there is no solution in the inverse kinematics

that would produce the required motion in task space. Semi singularities are the
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result of kinematic inequality such as obstacles and joint angle limits. These are all

inherent part of the robot’s physical configuration.

3.1.2 Artificial singularity

Algorithmic singularities occur when the main task of controlling the end-effector

contradicts the secondary task of optimising a performance measure.

The semi-algorithmic singularity is the combined version of semi and algorithmic

singularities. It occurs as the result of kinematic inequality such as joint limits and

obstacles (semi singularities) and at the same time the main and secondary tasks of

the control algorithm contradict each other.

3.2 Kinematic Singularity

Singularity is generally defined as the configurations where the manipulator does

not posses its full DoFs or when the Jacobian matrix is rank deficient. This means a

drop in the degree of manipulability (and an increase in degree of redundancy, as in

Equation 2.25). At these configurations, the manipulator loses the ability to perform

tasks in the maximum number of DoF that it normally possesses in non-singular

configurations.

It is also reflected by the determinant of the Jacobian matrix going to zero

(det(J) = 0) in the case of square matrices or det(JJT ) = 0 in the case of a re-

dundant manipulator [39].

3.2.1 A Two-link Example of Singularity

To briefly illustrate a kinematically singular configuration, a two-link manipulator

example as shown in Figure 3.1 is presented here. While in singular configuration
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(Figure 3.1 (right)), any joint command sent to joint 1 or 2 will not produce any

instantaneous motion in the x2 direction. In this case, x2 represents the degenerate

or singular direction.

Figure 3.1: Example of singular configuration: a two-link planar manipulator has 2
degrees of freedom (left). At singular configuration (right), any joint command sent
to joint 1 and/or joint 2 will not produce any instantaneous motion in X2 direction.

If the length of the two links were l1 and l2 and angular displacements of the two

joints were q1 and q2 as shown in Figure 3.1 (left), then the velocity of point P of the

manipulator with respect to Frame {2} can be described as:

δx = J δq(
δx2

δy2

)
=

(
l1s2 0

l2 + l1c2 a2

) (
δq1

δq2

)
(3.1)

At the kinematically singular configurations, as described in Figure 3.1(right),

q2 = 0 (therefore sin(q2) = 0 and cos(q2) = 1, and the Jacobian matrix becomes:

δx = J δq(
δx2

δy2

)
=

(
0 0

l2 + l1 a2

) (
δq1

δq2

)
(3.2)
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which shows that for any value of δq1 and δq2, there will be no resulting instantaneous

change in the x2 direction. Thus, the manipulator is in singular configuration, as

instantaneously it can only move in y2 direction. The direction along x2 in this case

represents the singular direction.

However, it is not always correct to say that a manipulator is singular when it

loses one or more of its degrees of freedom. Rather, it is when it does not have the

full DoFs or when the Jacobian matrix is rank-deficient. The reason will be explained

in Chapter 4 (Section 4.5).

3.2.2 Singular Value Decomposition

Singular Value Decomposition of the Jacobian matrix are often used in computa-

tion to determine the inverse of the matrix and to analyse singularity issues of the

manipulator. In Chapter 4, the SVD of the Jacobian matrix is utilised to determine

the singular direction(s) of the manipulator. These identified singular directions are

removed in the singularity handling methods in Chapter 5 and 6 to allow the end-

effector to operate in the near singular region in a stable manner.

The SVD of the Jacobian matrix J is defined as:

J = UΣΣΣVT (3.3)

where UεRm×m and VεRn×n are proper orthogonal matrices and ΣΣΣ is a diagonal

matrix with values (σ1, σ2, ..., σm) and ΣΣΣεRm×n [17], where σ1 ≥ σ2 ≥ ... ≥ σm ≥ 0

are the singular values of the matrix.

The inverse of the Jacobian matrix can hence be expressed as:

J−1 = VΣΣΣ−1UT (3.4)
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Since

ẋ = Jq̇ (3.5)

then

ẋ = UΣΣΣVT q̇ (3.6)

or

UT ẋ = ΣΣΣVT q̇ (3.7)

The columns of the square and orthonormal matrix U contains the singular vectors

of the Jacobian matrix and they describe the principal axes of motion in a task space,

expressed in the same frame as that of the Jacobian matrix. Since it is orthonormal,

it can be utilised as a rotational matrix that transforms the Jacobian matrix from

it’s current frame to a singular Frame S, as shown in Equation 3.8.

SJ = UT ẋ = ΣΣΣVT q̇ (3.8)

The ΣΣΣVT can therefore be thought of as the Jacobian matrix expressed in the

Singular Frame{S}. It relates the joint space velocity to the task space velocity

expressed in the Singular Frame {S}.

When the manipulator is in singular configuration, one or more of the singular

values (σ) will be zero. Equation 3.9 shows the example of the matrix ΣΣΣ for a 3× 4

(redundant) Jacobian matrix, where σ1 ≥ σ2 ≥ σ3. In singular configuration, the last

k singular values (σ) would be zero, where k is the number of rank that the Jacobian

matrix loses.
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SJ = ΣΣΣVT q̇

=




σ1 0 0 0
0 σ2 0 0
0 0 σ3 0


VT q̇

(3.9)

When ΣΣΣ is multiplied with VT , it results in a Jacobian matrix expressed in Singular

Frame {S} that has only zeros in its last k rows. An example of a 3 × 4 Jacobian

matrix is shown in Equation 3.10 for the case of k = 1 or when it possesses a rank of

2.

SJ = ΣΣΣVT q̇

=




x x x x
x x x x
0 0 0 0


 q̇

(3.10)

where {x x x x} is a non-zero row in the matrix.

This way, the singular direction of the manipulator is revealed. However, this can

only be done numerically, not symbolically.

The example of SVD application on the Jacobian matrix on a two link manipulator

such as one in Figure 3.1 and on PUMA is given in Section 4.6.5 when the topic of

identification of singular direction is discussed. Further reading on SVD can be found

in [32].

3.3 Semi Singularity

Semi singularities are the result of kinematic inequality constraint such as ob-

stacles and joint angle limits [37]. It is a real singularity, like kinematic singularity,

as it is inherent in the physical configuration of the robot or the condition of the

environment. Unlike kinematic singularity, where the manipulator loses the ability

to move in a particular axis in both directions, in semi singular configurations, the
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manipulator loses the ability to move in one direction but is still capable of moving

in the opposite direction.

Suppose joint i is at joint limit. A minor of the Jacobian matrix Jm is defined

by removing the column corresponding to joint i. If Jm is rank deficient, then the

manipulator is at semi singularity [40] [41]. In short, it is a kinematic singularity that

happens as a manipulator loses the use of one or more of its joints due to joint limits

or obstacles.

3.4 Algorithmic Singularity

Algorithmic singularities occur when the main task of controlling the end-effector

motion is interlocked with the secondary task of optimising a performance measure.

When this happens, the manipulator is not degenerate physically (mechanically), but

mathematically. Two examples are shown to illustrate the problem.

3.4.1 Example with Extended Jacobian Matrix method

Algorithmic singularity is a typical problem with the popular EJM technique

(Extended Jacobian Matrix) The EJM method is explained in Section 2.4.3 [23, 24,

26, 27, 28].

In a redundant manipulator, the Jacobian matrix is not square but of size m ×

n, where m is the number of DoFs in task space, while n is the number of joints.

The kinematic control techniques that require the inverse of the Jacobian matrix is

therefore faced with the problem of inverting a non-square matrix. Various generalised

inverses have been used in the past to resolve the issue. EJM technique, as explained

in Section 2.4.3 pads the Jacobian matrix into a square matrix so that:
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ṗ
ω̇

−−−−
0


 = Je(q)q̇

=




J
−−−−−−−−

Ja


 q̇

(3.11)

where Je is the extended or padded square Jacobian matrix, J is the original non-

square Jacobian for the redundant manipulator, and Ja is the additional constraints

in the form of extra rows to patch the Jacobian matrix to a square shape.

The number of rows added is the same as the dimension of null space of the

Jacobian matrix, which is (n − m). The addition of rows into the Jacobian matrix

to provide constraints in redundancy resolution introduces more conditions in which

the Jacobian matrix could become degenerate.

When J is rank-deficient, the manipulator is in kinematic singularity. Algorithmic

singularity is when Ja is rank deficient while J is not. This results in rank-deficient

overall Jacobian matrix Je.

3.4.2 Example:Mobile Bases with Powered Caster Wheel

In mobile bases with powered caster wheels (Figure 3.2), a Jacobian matrix can

be defined by finding the relationship between the contact point of the wheel with the

floor and the center of the mobile platform. The study on designs and development

of the kinematics and dynamics of mobile bases has been conducted quite extensively

in the past. Specifically for powered-cater wheels, the literature can be found in

[42, 43, 44, 45, 46, 47], among many others.
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Figure 3.2: The powered caster wheel - with three angular velocities, two of which
are measurable and actuated with motors, while σ̇ is not measurable nor actuated.

The Jacobian can then be expressed relating the joint rate commands

[φ̇1, ρ̇1, σ̇1, ...φ̇N , ρ̇N , σ̇N ]T to task space velocity vector of the center point of the mobile

platform [ẋ, ẏ, θ̇]T . N is the number of wheel modules the base has.

Let a mobile platform have N wheel modules, separated evenly from each other

by angle ∆β = 2π/N . Let γ be the angle between the first wheel module and the X

axis of the mobile base frame (the frame attached to the center of operational point

of the mobile platform that moves and rotates with the mobile base) (Figure 3.3).

Let β be the angle each wheel module makes with wheel module number 1, therefore

βi = ∆β(i − 1) + γ. The joint actuators are defined as: φ̇ is the angular velocity

between the wheel and the body of the mobile base, ρ̇ is the angular velocity of the

driving wheel, and σ̇ is the angular velocity between the absolute frame of the floor
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with the wheel (where the rotation is around an axis normal to the floor intersecting

the contact point of the wheel and the floor). (see Figure 3.3).

Figure 3.3: The variables used to describe the configuration of the mobile base.

The inverse kinematics of the individual wheel module is:




φ̇i

ρ̇i

σ̇i


 =

1

rb




rsφi
−rcφi

r(b− hcαi
)

bcφi
bsφi

−bhcαi

−rsφi
rcφi

rhcαi







ẋ
ẏ

θ̇


 (3.12)

where α = βi − φi, i denotes the wheel module of interest, r is the radius of the

wheels, h is the radius of the platform and b is the offset on the caster wheels.

Equation 3.12 shows the inverse kinematics that has been obtained symbolically.

It can be said that as long as the radius of the wheel r and the offset b is not zero,

the mapping from task space to joint rate vector always exists. This implies that for
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any desired task space velocity of the operational point attached to the mobile base,

there always exists a set of joint rate command to provide the motion.

Joint rate command (the inverse kinematic solution) can be obtained directly by:




φ̇1

ρ̇1

σ̇1
...

φ̇N

ρ̇N

σ̇N




=




J−1
1

...

J−1
N







ẋ
ẏ

θ̇


 (3.13)

where J−1
i is the inverse Jacobian matrix for the individual wheel module such as

shown in Equation 3.12.

However, in some control methods, such as in [44], a set of joint rate variables can

be defined as active and the rest as passive. This is useful when not all the joints

in the mobile platform are powered (actuated), for example, when only three joints

are powered, while the rest are passive caster wheels. Supposed the active variables

are chosen as θa = [φ1, ρ2, ρ3]
T . Through rearranging of the independent equations

between joint rate command and task space command, we can define two Jacobian

matrices such that

Jaθ̇θθa = Jpθ̇θθp (3.14)

The active joint rate command θa can be obtained from selecting the correct rows

of the inverse kinematics equations, while the passive wheel joint rate command from:

θθθp = J−1
p Jaθ̇θθa (3.15)
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Obtaining the joint rate command this way, however, introduces an extra step

which involves taking the inverse of Jp. It is possible to have configurations where Jp

is rank-deficient. These configurations represents the singularities that occurs when

only the joints in θθθa are actuated in the mobile platform. When this happens, it is

termed algorithmic singularity in [44]. However, when all the joints are actuated, the

mobile platform is capable of moving in all directions at all time.

The resulting singular configuration is dependent on the choice of θθθa. A different

set of active joints would result in a different singular configurations. The singular

configurations for this choice of active joint actuators (θθθa = [φ1, ρ2, ρ3]
T , namely the

steering angle of wheel 1, driving angles of wheels 2 and 3) are shown in Figure 3.4.

Figure 3.4: The singular configurations of a three wheeled mobile base, assuming
active joint commands are: φ1 (steering angle of wheel 1), ρ2 and ρ3 (driving angles
of wheels 2 and 3). In (a) the mobile platform cannot rotate in around its Z axis and
(b) it cannot translate in the direction perpendicular to the parallel lines.
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This algorithmic singularity occurs because by first mapping the task space com-

mand into three active variables, it was assumed that the mobile platform only has

those three actuated joints, instead of six. If instead of three, four active joint vari-

ables were made active, then the singularities would be removed. The significance

of this analysis is that it is possible to design a three-wheeled mobile platform (with

powered-caster wheels, each capable of steer and drive actuation) and power only four

of the six joints. Theoretically, it should be able to move in any direction instanta-

neously.

3.5 Semi-Algorithmic Singularity

Semi-algorithmic singularities occur when a semi singularity and an algorithmic

singularity happens at the same time. This can be distinguished from algorithmic

singularity in that it is unidirectional, whether upon maximisation or minimisation

of the performance criteria.

This class of singularities is quite new, in comparison to the rest, as reported in

[37].

3.6 Summary

Types of singularities are summarised in this chapter. While mathematical or

artificial singularities can be handled or removed efficiently, it is important to note

that real singularities, especially kinematic singularities can not be removed, as it is

inherent in the design of the mechanisms. Certain approximation or clever mathe-

matical manipulation may be devised to handle the configuration in an efficient and
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stable manner, however, certain sacrifice such as in tracking performance is still nec-

essary. The only way to completely remove kinematic singularities is by designing a

singularity free manipulators.

The subsequent chapters in this dissertation will explain the issues in the iden-

tifications of singular configurations and singular directions with their proposed so-

lutions. Once identified, the singular configurations are to be handled so that the

manipulator will be able to move through them in a robust and stable manner. The

last chapter will present an industrial application where mobile manipulator is shown

at work with singularity robust algorithm.

42



CHAPTER 4

NEW INSIGHTS INTO THE IDENTIFICATION OF
KINEMATIC SINGULARITIES AND ITS DEGENERATE
DIRECTIONS

4.1 Chapter Overview

This chapter discusses the methods of identifying singular configurations and sin-

gular directions of a serial manipulator. First it covers a technique proposed in [48],

and evaluates the completeness of the solution given. A simple check is proposed to

make sure that some singular configurations, relating to the wrist of the manipula-

tors, are not left out. This chapter then covers the singularity identification methods

for non-redundant and redundant manipulators, with examples given. A discussion

on the identification of singular direction is given at the end.

The new contribution in this chapter is the insight into the completeness of the so-

lution in the identification of singularities, obtained by the currently popular method.

The method simplifies the identification process by dividing the Jacobian into the

translational and the orientational halves, which was found to leave out a small sub-

set of possible solutions. Another contribution is the analysis of identification of

singular directions.
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4.2 Introduction and Background

As explained in Chapter 2 in the section on singularity, singular configuration

can be determined mathematically as the configuration where det(J) = 0 for square

Jacobian matrix and det(J.JT ) = 0 for redundant manipulator where the J matrix

is not square. This property can be used to determine symbolically the condition of

singular configuration in a manipulator.

Khatib [3] categorizes singularities into two main groups: type 1 and type 2 based

of the types of motion generated by null space motion while the robot is in singular

configuration. Type 1 is when null space torque moves the robot out of the singularity.

Type 2 is when null space torques affects only the internal joint motions, or when the

null space motion moves (shifts) the degenerate direction.

Section 4.3 will cover the singularity identification in a 6DoF manipulator with

the PUMA 560 as an example. Section 4.4 covers the popular methods of identifying

the singularities in a redundant manipulator. To simplify the process, the Jacobian

is often divided into the top and bottom halves as the translation and orientation

portions. These halves are then evaluated separately to yield the position and ori-

entation singularities respectively. This method has its drawback, as presented in

Section 4.5, in that it may miss certain singularities resulting from the dependencies

between the top and bottom halves of the Jacobian matrix. This is the new contribu-

tion to the identification process of singularities. Section 4.6 covers the issues in the

identification of singular directions once the singularities are identified. Section 4.7

offers a simple check to the problem of incomplete solutions covered in Section 4.5.
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4.3 Singularity Identification for a 6 DoF Manipulator

As a 6 DoF manipulator has a square Jacobian matrix, it is very simple to identify

the singularities. Setting det(J) = 0 will yield the complete solution. If this turns

out to be computationally expensive, a simplification can be done such as in Section

2.3 for those manipulators with spherical wrists. The Jacobian can be expressed as:

JT = J∗ JW

JT = J∗
(

J11 03×3

J21 J22

)
(4.1)

J is a transformation matrix whose expression is given in Equation 2.20. It can be

established that det(J∗) = 1 at all time. Therefore, det(JT ) = det(JW ). Because the

Jacobian is a square matrix with a zero top right quadrant, then det(JT ) = det(JW ) =

det(J11).det(J22). This reduces the identification problem to solving the determinants

of 3 × 3 matrices. J11 and J22 determine the position and orientation singularities,

respectively.

4.3.1 Singularity Identification in PUMA

In PUMA, or any PUMA-like manipulators (or referred to as anthropomorphic

with spherical wrist manipulator in [8]), there are typically three singularities: wrist

lock (type 2), elbow lock (type 1), and head lock (type 2). These singularities can

happen individually, or as a combination of two of even three at the same time.

The frame assignment and the table of Denavit-Hartenberg parameters used in

this experiment can be found in Appendix A.

With the frame assignment shown in Figure A.1, and modified DH parameters

according to Craig’s [2](see Table A.1 in Appendix)(other sets of DH parameters can
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be found in [7] or [49]) , the determinant of PUMA is derived as:

det(J) = det(J11)det(J22);

det(J11) = −a2(d4c3 − a3s3)(d4s23 + a2c2 + a3c23);

det(J22) = −s5;

(4.2)

(Cheng et al[50]) where the parameters are defined in Appendix A.

Singularity therefore occurs when:

• −a2(d4c3 − a3s3) = 0,which yields the elbow lock with q3 = 92.69o

• (d4s23 + a2c2 + a3c23) = 0, which yields the head lock and

• −s5 = 0, which yields the wrist singularity.

(4.3)

After the singular configurations are identified, a handling algorithm is then de-

signed to handle the motion through these singularities in a stable manner. This is

covered in Chapters 5-7.

4.4 Singularity Identification for Redundant Manipulator

In a redundant manipulator, identifying singularities has to be done by evaluating

det(J.JT ), due to the non-square Jacobian matrix.

A method of simplifying the identification process for redundant manipulator is

presented in [48, 51]. On top of that, the Jacobian decoupling method for an anthro-

pomorphic arm as explained in Section 2.3 was utilised to simplify the process further

by placing the operational point of a serial arm at the intersection point at the wrist

point [52]. It is summarised in Section 4.4.1.
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4.4.1 Separating Jacobian into Position and Orientation

The Jacobian matrix is split into JV (the top three rows of the Jacobian, which

map the joint space velocities to operational space velocities) and Jω (bottom three

rows, map joint velocities to angular velocity of the end-effector).

(
vp

ωωωp

)
=

(
JV

Jω

)



δq1

δq2

...
δqn


 (4.4)

These top and bottom halves of the Jacobian matrices were solved separately to

determine the symbolical expression for singularities. The determinant of JV was

calculated symbolically. When this expression goes to zero, JV and therefore J is

rank deficient. The resulting configurations are termed position singularity. When

Jω is rank-deficient, the resulting configurations are called orientation singularity.

The exact conditions presented in [48] for orientation singularity in a 3D space task

specification were:

1. rank(J21) < 3
2. rank(J22) < 3
3. rank(J21|J22) < 3

(4.5)

where J21, J22 are as defined in (2.18) and in (4.1).

This process has its drawback, which is explained in Section 4.5.

4.4.2 Utilising the Minors of the Jacobian Matrix

The technique of separating the Jacobian into top and bottom halves and eval-

uating position and orientation singularities reduces the complexity of the problem.

Instead of solving for a 6× n Jacobian matrix, it is reduced to solving for two 3× n

sub-matrices.
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To obtain the expression that causes the determinant of an m × n matrix to go

to zero, where n > m, the m ×m minors of the Jacobian matrix are utilised, as in

[48]. The minors of the Jacobian matrix were also used as performance measure of a

manipulator in [20].

The method used is to identify the expression that causes all the minors of a

redundant matrix to have determinants of zero. This expression will cause the original

matrix to be rank deficient. This is the result of the Binet-Cauchy identity of:

det(JJT ) =

p∑
i=1

mi (4.6)

where mi are the determinant of the minors of J and p is the number of m×m minors

of the Jacobian matrix.

4.4.3 Example: Mitsubishi PA-10 (7 DoF Articulated Robot)

The method will be illustrated with example of the PA-10 manipulator. To sim-

plify the expression, the Jacobian was expressed as its simplest form in the fourth

frame as the following:

4J11 =




(d5 + d3c4)s2s3 c3(d5 + d3c4) 0 d5

c3(d3 + d5c4)s2 + d5c2s4 (−d3 − d5c4)s3 d5s4 0
d3s2s3s4 d3c3s4 0 0


 (4.7)

4J21 =



−c3c4s2 − c2s4 c4s3 −s4 0

s2s3 c3 0 1
c2c4 − c3s2s4 s3s4 c4 0


 (4.8)

4J22 =




0 −s5 c5s6

0 c5 s5s6

1 0 c6


 (4.9)

where

J =

[
J11 03×3

J21 J22

]
(4.10)
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We can now separately analyze the position and the orientation singularities. The

frame assignment of the manipulator is shown in Figure 4.1

Figure 4.1: Seven dof Mitsubishi PA-10 and its frame assignment

Position Singularity

To identify position singularities, it is necessary to evaluate if sub-matrix J11 is

rank-deficient.

The decoupling process has simplified the process from finding the determinant of

a 6×7 Jacobian to 3×4 Jacobian matrix symbolically. However, the Jacobian is still
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not square and it is still computationally intensive to obtain the symbolic expression

for det(JJT ) = 0 to determine singularity.

To utilise the Binet-Cauchy identity (Equation 4.6), distinct order 3 minors of the

Jacobian sub-matrix 4J11 are defined as follows:

Let 4J11 = [4j111
4j211

4j311
4j411], where 4jk11 are the columns of 4J11 matrix. We

declare the minors as:

m1 = det[4j111
4j211

4j311]

m2 = det[4j111
4j211

4j411]

m3 = det[4j111
4j311

4j411]

m4 = det[4j211
4j311

4j411]

The resulting expressions are:

m1 = 0

m2 = d3d5S4((d3 + d5C4)S2 + d5C2C3S4)

m3 = −d3d
2
5S2S3S

2
4

m4 = −d3d
2
5C3S

2
4

(4.11)

To obtain the condition of det(JJT ) = 0, we need to find the expressions that

would make all of m1 to m4 equal to 0.

From Table 4.1, it is shown that there are two position singularities:

• when sin(q4) = 0, therefore q4 = 0. It should also be noted that since sin(q4)

in itself causes J11 to be rank deficient, any combination of sin(q4) with other

possible terms would also produce rank deficiency, namely: (s2 = 0 AND s4 =

0), (s3 = 0 AND s4 = 0), (c3 = 0 AND s4 = 0), (s2 = 0 AND s3 = 0 AND

s4 = 0), and (s2 = 0 AND c3 = 0 AND s4 = 0). This may sound trivial,
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Table 4.1: This table shows which terms in the determinants of the minors set M1 to
M4 to zero.

m1 m2 m3 m4

c3 = 0
√ √

s2 = 0
√ √

s3 = 0
√ √

s4 = 0
√ √ √ √

((d3 + d5c4)S2 + d5c2C3s4) = 0
•c4 = −(d3/d5) AND c2 = 0

√ √ √ √
•c4 = −(d3/d5) AND c3 = 0

√ √ √
•s2 = 0 AND c3 = 0

√ √ √ √
•s2 = 0 AND s4 = 0

√ √ √ √

because all these configurations are the same family of singularities caused by

sin(q4) = 0. However, these may have additional singular directions, which will

be covered in Section 4.6.6.

• when sin(q2) = 0 AND cos(q3) = 0, ie. q2 = 0 or 180o AND q3 = ±90o.

It is not possible for q4 = 180o because of joint limits.

Orientation Singularity

Referring to (4.5) and [48], orientation singularity happens when J21 and J22 are

rank-deficient, and that the linear combination of J21 and J22 are rank-deficient.

For J21 to be rank deficient

Using the same method to determine position singularities, it was found that

for det(J21J
T
21) = 0, it was required that sin(q2) = 0 and sin(q3) = 0.

For J22 to be rank deficient

det(J22) = −sin(q6). For it to be zero, then q6 = 0,±180.

51



For the lower half of 4J rank deficient

Let Jω be the combined matrix of J21 and J22 (i.e. the lower half of the full

Jacobian 4J). Then

det(JωJ
T
ω) = 8− 4cos(2q4)− cos(2(q4 − q5))
−2cos(2q5)− cos(2(q4 + q5))

(4.12)

For (4.12) to be zero, then q4 = 0 and q5 = 0, which works out to be a special

case of elbow singularity of q4 = 0.

4.4.4 Summary of singularities in PA-10

The 7 DOF Mitsubishi PA-10 has singularities at:

• boundary or elbow singularity, when q4 = 0.

• internal position singularity, when q2 = 0 or 180o and q3 = ±90o or it can be

written as: sin2(q2) + cos2(q3) = 0

• orientation singularity, when the arm is vertically pointing up, i.e. when q2 to

q5 = 0. The robot is in both position and orientation singularity, therefore there

would be more than one degenerate directions.

4.5 Completeness of Solution

Splitting the Jacobian into JV and Jω and evaluating the Jacobian separately to

identify singularities present a possibility of an incomplete set of solutions, meaning

it may not identify all the possible singular configurations.

Although it is well known in the case of PUMA, it often escapes the attention

when evaluating the singularities for redundant manipulator.
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For PUMA 6DoF manipulator, it was shown that the determinant can be eval-

uated as det(J) = det(J11).det(J22). This means that the Jacobian could be rank-

deficient regardless of J21. If the top and bottom halves of the Jacobian matrix

were evaluated separately, then the singularity case of det(J22) = 0 would be missed,

because if J21 was of full-rank, then [J21|J22] would also be of full-rank.

This case is also extended in redundant manipulators. It is often assumed that

because by definition the position and orientation halves of each column of the Jaco-

bian matrix is derived orthogonally, that entire top and bottom halves of the Jacobian

matrix are orthogonal to each other. See the definition of column i of the Jacobian

matrix 4.13 [8]:

(
zi × (p− p0)

zi

)
; for revolute joint i

(
zi

0

)
; for prismatic joint i

(4.13)

Looking at the definition of Jacobian for revolute joints, column JV,i = zi×(p−p0)

is orthogonal to Jω,i = zi. Whereas for prismatic joint, JV,i = zi and Jω,i = 0.

However, when the top and bottom half of the columns are orthogonal, it does not

mean that the entire top and bottom halves of the Jacobian matrix are orthogonal to

each other. Dependant equations can still exist on the top and bottom halves, which

will present a problem when singularities are evaluated separately for position and

orientation. When dependent rows occur in top and bottom halves of the Jacobian

matrix, it is not simply a position nor orientation singularity, it is a coupled singularity,

resulted from the coupling between the joints used for end-effector tasks in position

and in orientation. This is a conflict of ‘resources’ and the manipulator loses the ability

to move in certain direction because the degree of mobility required is occupied. The
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manipulator is able to perform task in the singular direction if all the available joints

were dedicated to only orientation or only position of the end-effector, but not both.

Following this finding, it is therefore not correct to describe singularity as the

configuration where the manipulator loses one or more of its degrees of freedom.

Singularity should be defined as the configuration whereby the manipulator no

longer possesses the full 6 DoFs (or just the ”full DoFs”, for the case of manipulators

with less than 6 DoFs).

To illustrate the problem better, the example below on PUMA 560 is shown. Let

the PUMA be at the wrist singular configuration:

q1 = 0, q2 = −45o, q3 = 135o, q4 = q5 = q5 = 0 (Figure 4.2)

At this singular configuration, the Jacobian matrix with respect to Frame{4} (DH

frame attached to joint 4) is:

4J =




0 0.74 0.43 0 0 0
0.74 0 0 0 0 0
−0.06 0.33 0.02 0 0 0
−1 0 0 0 0 0
0 1 1 0 1 0
0 0 0 1 0 1




(4.14)

As shown in Equation 4.14, the rows of the Jacobian matrix that represent the

translation in Y axis of Frame {4} and the rotation around X axis of Frame{4} are

dependant. The robot is not capable of translating in Y direction of Frame{4} and

rotating around X axis of Frame{4} at the same time (see Figure 4.2).

While it is clear-cut for a non-redundant manipulator, it is not so for a redundant

serial manipulator with a spherical wrist, where there are 4 joints assigned to actuate
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Figure 4.2: The wrist singularity expressed in Frame 4. It is not able to translate in
Y and rotate in X axis of Frame 4 simultaneously.

the position of the end-effector. There is, therefore, a redundant degree of freedom in

the task which can then be used to supplement the orientation task when singular.

This is the assumption made in [48] which define the condition of determining the

orientation singular configuration as shown in Equation 4.5.

However, this may not hold true for all cases. The important thing to note is that

the extra degree of freedom in the first four joints would have to have a component

in the singular direction of the wrist singularity for these condition to hold. A simple

example is given below to illustrate the rare cases where this condition may not be

true.

Supposed the 7 DoF manipulator has a PUMA-like structure, with an addition of

a revolute joint as indicated in Figure 4.3.

When joint 6 is straightened (q6 = 0), the spherical wrist loses one degree of

freedom, which is the rotation around X5 (see Figure 4.4). The position task, however,
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Figure 4.3: The structure of a PUMA manipulator (left) and an example of a 7 DoF
PUMA-like manipulator with spherical wrist (right).

possesses 4 joints and therefore redundant. This extra DOF can be used to supplement

the lost DoF at the wrist.

In some manipulator designs, however, the additional joint in may not guarantee

that it would supplement the loss DoF when the wrist is straightened. The example

shown in Figure 4.3 (right). When the wrist is straightened, q5 = 0 or 180o (see Figure

4.4), the additional joint does not help in the direction of lost degree of freedom. In

this configuration, the manipulator is still not able to rotate around X5. It is only

possible to provide motion in that direction through joint 1. However, motion in

joint 1 would affect the position of the end-effector. This manipulator is therefore in

a singular configuration, as it is still lacking the capability to rotate around X5.

Evaluating only the bottom three rows of the Jacobian matrix would ignore this

fact and therefore fail to identify the singularity at sin2(q5) + sin2(q6) = 0. Here, Jω

is full rank while the complete Jacobian J is rank deficient or singular.
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Figure 4.4: The 7DOF manipulator, side view (planar). The wrist is straightened
(q6 = 0) with q5 = 0. It is not able to rotate around axis X5.

With the Jacobian matrix expressed symbolically in Appendix A, evaluating the

orientation singularity following the technique described in [48] would yield:

subcondition 1: rank(J21) < 3 J21 expressed in Frame{5} is shown below:

5J21 =



−c5s234 s5 s5 s5

−s5s234 c5 c5 c5

c234 0 0 0


 (4.15)

The determinant of J21 is zero when:

• s234 = 0 AND s5 = 0

• s234 = 0 AND c5 = 0

• c234 = 0

subcondition 2: rank(J22) < 3 The determinant is evaluated to be sin(q6). Setting

q6 = 0 or 180o,

5J22 =




0 0 S6

0 1 0
1 0 C6


 (4.16)
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The determinant is zero when s6 = 0

subcondition 3: rank(5J21|5J22) < 3 This is labelled as Combined Orientation Sin-

gularity. Setting s6 = 0, for all three conditions to be true, then for [5J21|5J22]

to be rank deficient, the first row of the matrix has to be all zeros.

[4J21|4J22] =



−c5s234 s5 s5 s5 0 0 0
−s5s234 c5 c5 c5 0 1 0

c234 0 0 0 1 0 1


 (4.17)

In order to have [4.17] rank deficient, we need to choose the condition of singu-

larity of J21 to be (s234 = 0 AND s5 = 0 AND s6 = 0).

Setting s5 = 0 and s6 = 0 (without s234 = 0) is enough to make the Jacobian

matrix singular. Therefore the solution is incomplete.

Although this is a singularity that exists on conventional robots, which have been

around for a long time, to the best of our knowledge, it has not been classified in the

literature. This is not a semi singularity or an algorithmic singularity. It is still a

kinematic singularity, it is inherent in the mechanical design of the manipulator, it is

not caused by control algorithm or any joint limits or obstacles in the environment.

In this dissertation, it is termed coupled singularity.

To properly address this issue, the idea of singular direction must be covered first.

The following section will cover the idea of singular direction before discussing about

how to check the completeness of the solution to the set of singularities in redundant

manipulator.

4.6 Identifying the Singular Direction

When singularity occurs, there is a row(s) in the Jacobian - when it is transformed

onto the correct frame - that contains only zeros. By definition that ẋ = Jq̇, a zero
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row in the Jacobian means that there is a direction (or a degree of freedom) in task

space that the manipulator is unable to move in, regardless of the joint rate command

- hence the singular direction.

Singular direction is difficult to determine symbolically. Most of the time, when

a singularity is identified, the singular direction is obtained just by observation.

For a singular direction to be described mathematically and to be physically mean-

ingful, it has to be expressed as a vector with respect to a frame that has physical

meanings in terms of the robot configuration. To declare any arbitrary frames usually

results in very complicated expression to evaluate. The natural solution is to define

singular directions in relation to the Denavit-Hartenberg frames of the robot. For

example, a singular direction can be described as ”the translation along X axis of

Frame{1} of the DH frames”. The following subsections discuss the singular direc-

tions of different singular configurations in PUMA.

4.6.1 Head Lock

When PUMA manipulator head lock (see Section 3.3.1) occurs, a2C2 + a3C23 +

d4S23 = 0 (Equation 4.3). Equation(4.18) shows the top half of the Jacobian 1J,

which is the Jacobian matrix in Frame{1}. From this equation, it is shown that the

second row of the Jacobian is all zeros, which corresponds to the translation along

Y-axis of Frame{1} which is the degenerate direction.

1J =




−d2 − d3 d4c23 − a2s2 − a3s23 d4c23 − a3s23 0 0 0
a2c2 + a3c23 + d4s23 0 0 0 0 0

0 −a2c2 − a3c23 − d4s23 −a3s23 − d4s23 0 0 0


 (4.18)
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4.6.2 Elbow lock

There are some singular directions that cannot be described by any of the DH

frames of the robots. This commonly happens with robots with offset joints, like the

PUMA. Robots with intersecting rotational axes such as the Mitsubishi PA-10 does

not have such problem. An example of this is the elbow singularity of PUMA. It is

shown by projecting the Jacobian and the task space forces onto Frame{B} which is

not one of the frames in our DH assignment (see Figure 4.5 for the frame assignment,

and Equation (4.19) for the resulting Jacobian). At this configuration, the singular

direction is found to fall along the line connecting the wrist point to the origin of base

frame.

BJ[1][1] = (d2+d3)s2(d4c3−a3s3)
(a2+a3c3+d4s3)h

BJ[1][2] = (d4c3−a3s3)(a2+a3c3+d4s3)2h

a2
2+d2

2+2d2d3+d2
3+2a2a3c3+a2

3c23+2a2d4s3+d2
4s2

3+a3d4Sin[2q3]
BJ[1][3] = d4c3−a3s3

h
BJ[2][1] = (d2 + d3)s2
BJ[2][2] = a2 + a3c3 + d4s3
BJ[2][3] = a3c3 + d4s3

BJ[3][1] =
c2(a2

2+d2
2+2d2d3+d2

3+a2a3c3+a2d4s3)+(a2+a3c3+d4s3)(a3c23+d4s23)

(a2+a3c3+d4s3)h
BJ[3][2] = (d2+d3)(d4c3−a3s3)

(a2+a3c3+d4s3)h
BJ[3][3] = (d2+d3)(d4c3−a3s3)

(a2+a3c3+d4s3)h

(4.19)

where: h =
√

1 + (d2+d3)2

(a2+a3C3+d4S3)2

Frame{B} is obtained by rotating Frame{2} by angle β, (see Figure 4.5) which is

defined as:

β = tan−1

[
d2 + d3

a2 + a3c3 + d4s3

]
(4.20)

From Equation 4.3, it is shown that −a2(d4c3 − a3s3) = 0 at elbow singularity.

Therefore, the first row of BJ11 is a zero row (BJ[1][1] =B J[1][2] =B J[1][3] = 0).

This shows that the singular (degenerate) direction lies along the X-axis of Frame{B}
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(see Figure 4.5). Equation 4.19 only shows the elements BJ from the top left quadrant

(J11), because the top right quadrant is a zero matrix.

Figure 4.5: PUMA, from top view, shows the degenerate direction at elbow singu-
larity, expressed in Frame{B}, which is derived from rotating Frame{2} by angle
{b}

4.6.3 Wrist lock

In PUMA wrist lock, there is no entire row of zeros in the Jacobian matrix when

it is expressed in any physically meaningful frame (such as the DH frames or one

obtained by rotating one of the DH frames). This is the same case as that described

in Section 4.5, where a certain DoF in the wrist is disabled, and where there is or

are other joints available to supplement that lost DOF, however it is being used for

another task.
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The singular direction in PUMA wrist lock is the rotation around the X axis of

Frame {4}. This singularity occurs when J22 is rank deficient, regardless of what

J21 could be. Therefore a row of zeros may not exist when the Jacobian matrix is

expressed with respect to Frame {4}. Section 4.6.4 shows that J will still have a row

of zero when transformed to a particular frame, however, this frame no longer has

any physical meaning.

Figure 4.6: The wrist of PUMA 560, showing Frame{4}

4.6.4 On Whether There is Always a Zero Row

The last case of singularity, such as in PUMA wrist, shows that when expressed

in the singular frame, there is a possibility that there is no entire row of zeros. This

shows that when in wrist singularity, it is possible to rotate around X4, but it has to

be performed by joints that are already being used to perform position control of the

end-effector.

As elaborated in Section 3.2.2, when the Jacobian matrix is rank deficient, then

the last k entries of σi in the diagonal matrix Σ will be zero. k is the number of rank

the Jacobian loses at the singularity. When this happens, ΣΣΣVT will result in a 6× n

matrix with the last k rows being zero.
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Taking UT as a transformation matrix, it can be said that there is always a way

to transform the Jacobian matrix to another frame that guarantees the existence of

a zero row(s) during singularity. However, this frame may not have any physical

meaning as this process mixes up the translational and the rotational halves of the

Jacobian matrix.

When the SVD is performed on a Jacobian matrix that maps the joint velocities

to only translation velocity in task space, then U will be a 3×3 rotational matrix and

its columns describe the direction principal axes of motion of the end-effector, and the

last k columns describe of the translation singular direction. k is the number of rank

that the manipulator loses in the singular configuration. Similarly, when performed

on Jacobian matrix that maps the joint velocities only to angular velocity in task

space, matrix U is a rotational matrix and its columns describe the axes of rotation

of the end-effector motion.

When the Jacobian matrix is evaluated as a 6 × n matrix, the translational and

rotational halves are mixed up and any physical meaning is lost. It should also be

noted that for orientation of some serial manipulator such as PUMA, the orientation

singularity (the wrist singularity) cannot be identified fully just by taking the rota-

tional (lower) half of the Jacobian matrix. For the specific case of the PUMA robot,

it can be evaluated by taking the SVD of only J22.

Despite having no physical meaning, matrix U is still a valid transformation. We

use this in our control strategy to perform the singularity handling.
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4.6.5 On Identification of Singular Direction

As mentioned above, the singular directions in the PUMA robot were identified

by observation after the independent singular configurations were identified. These

singular directions are expressed as a vector in a certain frame, such as “rotation

around the X axis of Frame {4}”.

Searching for it symbolically would be difficult. One way to obtain an orthonor-

mal transformation matrix to transform the Jacobian matrix into a singular frame,

whereby one of the axes is the degenerate direction is by utilising SVD. This is done

as shown by Equation 3.3. However, this process will lose the physical meaning of

the singular frame and direction when it is performed on a 6 DoF task.

If the singular direction is one of the axes of the Denavit Hartenberg frames defined

for the manipulator joints, it can be identified with the following method. When a

singular configuration is identified, the singular condition is substituted back into the

Jacobian matrix. The idea is then to transform the Jacobian matrix into all the DH

frames of the robot (i.e. premultiplying the Jacobian matrix with respect to base

Frame (0J) with 0RT
i , where i is the i-th Frame of the DH assignment) and check for

the existence of zero rows (Equation 4.21). The zero row is then the singular direction

expressed in terms of one of the DH frames of the robot.

iJ = (oRi)
T .0J (4.21)

iJ is the Jacobian matrix with respect to the i-th frame. When there are n joints

in the robot, then the evaluation is performed n × k times, once at each DH frame,

where n is the number of DH frames and k is the number of distinct singularities.

One that yields a row of zero is a singular direction.
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Searching for singular directions that don’t lie on any axes of any DH frames

yields very complicated expressions, such as shown in Equation 4.19 for PUMA elbow

singularity. Cases of coupled singularities, such as discussed in wrist singularity of

PUMA would also not yield a row of zeros.

4.6.6 Singular Value Decomposition in Determining Singular
Directions

As shown in Section 4.6.4, SVD can be used to decompose the Jacobian matrix

to show the row of zeros when the manipulator is in singular configurations. This

section intends to expand more on the role of SVD and other information that can

be gained from its usage.

Let us examine the example of a two link planar manipulator, such as one illus-

trated in Figure 3.1. As shown earlier, the Jacobian matrix of such manipulators can

be expressed as:

0J =

( −l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12

)
(4.22)

The Jacobian above is expressed with respect to the Frame {0}. When q2 = 0,

the manipulator is in singular configuration. For a condition where q1 = 0 and q2 = 0

and defining l1 = 5 and l2 = 3, then the SVD of the Jacobian matrix becomes:

J = UΣΣΣVT (4.23)

J =

(
0 −1
1 0

)(
8.5440 0

0 0

)(
0.9363 −0.3511
0.3511 0.9363

)
(4.24)
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Figure 4.7: The singular vectors which form the columns of matrix U and V in the
SVD of the Jacobian matrix in the example.

The matrix ΣΣΣ contains the singular values along its diagonal while the columns

of matrix U and V contain the singular vectors. It is shown that the manipulator is

singular as the smallest singular values is zero.

In the configuration chosen for the example (q1 = 0 and q2 = 0), the singular

direction of the manipulator is the translation along the X axis of Frame {0}. It is

also shown that the singular vectors associated with the singular value of 0, which

is the second column of the matrix U which is (−1, 0)T , is the vector describing

the singular direction of the manipulator. The first column of the matrix U which

is (0, 1)T is associated with the singular value 8.5440 and therefore described the

direction perpendicular to the singular direction.

The vectors in columns of matrix U and matrix V is shown in Figure 4.7.
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For another configuration, for example q1 = 1500 and q2 = 0, the SVD of the

Jacobian matrix becomes:

J =

( −0.5000 −0.8660
−0.8660 0.5000

)(
8.5440 0

0 0

)(
0.9363 −0.3511
0.3511 0.9363

)
(4.25)

In this configuration, the elbow of the manipulator is still straight (q2 = 0) and

the manipulator arm is pointing at 150o from the X axis of Frame {0}. The singular

direction is still the translation along X axis of Frame {1}, or the translation along

the line forming an angle of 150o from the X axis of Frame{0}.

Again, it is shown that the first column of the matrix U describes the direction

perpendicular to the singular direction while the second column describes the singular

direction. To see that, notice that atan2( 0.5000
−0.8660

) = 150o.

Another important point is that the SVD has the same values for matrices ΣΣΣ

and V. It can be said that matrix U describes the task space behaviour of the

manipulator. Its transpose is also a valid transformation matrix that would transform

the Jacobian matrix into the singular frame {S} (see Equation 4.26.) The expression

ΣΣΣV is, therefore, the Jacobian matrix of the manipulator expressed in the singular

frame {S}.

0J = UΣΣΣVT

UT 0J =S J = ΣΣΣVT (4.26)

Application on PUMA singular direction

The exercise above is applied to the head singularity of PUMA, where a2.C2 +

a3.C23+d4.S23 = 0. The lost degree of freedom, as explained earlier, is the translation

along the Y axis of Frame {1}.
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Let q1 = 0, q2 = −45o, and q3 = 2.9177o. This combination of q2 and q3 causes

a2.C2 +a3.C23 +d4.S23 = 0 and hence head singularity. As explained in Section 4.6.4,

that the SVD of the Jacobian matrix in 6DoF will cause the transformation matrix

to lose its physical meaning. The analysis in this section will be performed on the

position and orientation halves of the Jacobian matrix separately.

Analysing the top half of the Jacobian only, taking the top half as a 3× 6 matrix:

JV = UΣΣΣVT ; (4.27)

U =



−0.8952 0.4457 0.0000
−0.0000 0.0000 −1.0000
0.4457 0.8952 0.0000


 (4.28)

ΣΣΣ =




1.4216 0 0 0 0 0
0 0.1187 0 0 0 0
0 0 0.0000 0 0 0


 (4.29)

V =




0.0945 −0.5637 0.8205 0 0 0
−0.8331 −0.4961 −0.2448 0 0 0
−0.5451 0.6604 0.5165 0 0 0

0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000




(4.30)

The Jacobian above is expressed with respect to Frame{0}. As q1 = 0 in the

example, the arm is aligned with the X axis of Frame{0}, which means that the lost

degree of freedom is the translation along the Y axis of Frame{0}.

In matrix U, the third column correspond to the σ value of 0. The value of the

vector is {0,−1, 0}, still expressed in Frame {0}, which corresponds to the Y axis (or

negative Y axis, to be exact) of Frame {0} or the singular direction.

The SVD can also be performed on the Jacobian matrix expressed in the singular

frames. For the example of head singularity, the Jacobian matrix is then expressed
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in Frame {1}. The result is that the vector associated with the singular direction

will always show {0,−1, 0} or {0, 1, 0} because the singular direction is always the

translation along Y axis when expressed in Frame{1}.

The same analysis can be performed on the elbow singularity. However, as high-

lighted in this chapter, wrist singularity is not contained only within the lower half of

the Jacobian matrix. Analysis only the lower half of the Jacobian matrix Jω will not

yield the complete solution of the singular configurations. When SVD is performed

on the 6×6 Jacobian matrix, it will lose the physical meaning of the singular direction

as highlighted in Section 4.6.4.

4.6.7 Families of Singularities with Additional Singular Di-
rection: Mitsubishi PA-10

In PUMA manipulator, it was shown that there were three distinct singular con-

figurations, each would reduce the rank of the Jacobian matrix by one. When all

three happen together, which is when the arm is point vertically upwards, then the

rank of the Jacobian matrix is reduced by 3, leaving only 3 available DOFs.

As summarised in Section 4.4.4, the Mitsubishi PA-10 has three singularities:

when q4 = 0 (elbow singularity) (and all the combinations: (s2 = 0 AND s4 = 0),

(s3 = 0 AND s4 = 0), (c3 = 0 AND s4 = 0), (s2 = 0 AND s3 = 0 AND s4 = 0), and

(s2 = 0 AND c3 = 0 AND s4 = 0), when q2 to q5 are all zero (orientation singularity),

and when (q2 = 0 and q = ±90o) (internal singularity).

Observing the combinations of elbow singularities visually, one can identify the

singular directions as shown in Table 4.2.
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Table 4.2: Singular directions of Mitsubishi PA-10 at singular configurations where
q4 = 0

Singular direction
s4 = 0 translation along Z4

s2 = 0 AND s4 = 0 translation along Z4

s3 = 0 AND s4 = 0 translation along Z4

c3 = 0 AND s4 = 0 translation along Z4

s2 = 0 AND s3 = 0 AND S4 = 0 translation along Z4 AND Y4

s2 = 0 AND c3 = 0 AND S4 = 0 translation along Z4

s2 = s3 = s4 = s5 = 0 translation along Z4 AND Y4

AND rotation around X4

The point to pay attention to is that although s4 = 0 would cause the Jacobian

matrix to the rank deficient, further precaution has to be taken because its combina-

tion with other conditions can result in further reduction in the rank of the Jacobian.

Certain singularity handling algorithms such as the ones described in Chapter

5, resolve singularities by removing the singular direction from the task, therefore

providing a stable control over the singular region. Therefore, in the case of s4 = 0,

removing the singular direction of translation along Z4, would provide a stable control

over the singular region as the Jacobian matrix is now of full-rank. However, when

s4 = 0 AND (s2 = 0 AND s3 = 0), the manipulator will further lose another degree

of freedom. When this happens, there is an extra singular direction to be removed

from the Jacobian, otherwise the manipulator performance over the singular region

would be unstable.

When q2 to q5 are all zero, the manipulator also loses the rotational DOF around

X axis of Frame{4}. In this configuration, the manipulator loses a total of 3 DoFs.
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In internal singularity where (q2 = 0 and q3 = ±90o), the manipulator loses the

translational motion along Z axis of Frame{4} (see Figure 4.8)

Figure 4.8: Mitsubishi PA-10 in singular configurations: left in internal singularity
and right when the arm and the wrist are straightened, where the manipulator loses
3 DOFs

It is therefore important in the design of algorithm to handle singularities in a

manipulator to thoroughly list not just all the possible singularities but also all the

possible singular directions.

4.7 A Simple Check to the Complete Set of Solution to Sin-
gular Configurations of Redundant Manipulator

The simplification that the technique of dividing the Jacobian into position and

orientation halves reduces the computational complexity tremendously. For some
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cases, the redundant manipulator has a very complex Jacobian matrix, that solving

for det(J.JT ) is too difficult even for the modern computers and softwares. It is good

to be able to use the simplification, while making sure we still get the complete set

of solutions.

For the case of serial manipulators with a wrist attached to the end, a simple

check is introduced below. These wrists are usually spherical. For these manipulators,

placing the operational point at the wrist point (the point of intersection of all the

rotational axes of the wrist) will cause only the first few joints to affect the position

of the operational point. These joints also affect the orientation of the end-effector.

The last few joints, the ones that belong to the wrist, only affects the orientation of

end-effector.

The problem of possible incomplete solution can be summarized as follows: as the

wrist loses rank (rank(J22) < 3), a redundant manipulator will have extra DOF(s)

to supplement this shortage. When it is successfully supplemented, then it is not a

singularity. If it is not supplemented, then the Jacobian is rank deficient, even when

Jω = [J21|J22] is full rank.

The search for the incomplete or the missing singular configuration is therefore

confined to that of orientation singularity. It is proposed that one method of check-

ing is to be able to confine the possible configurations that the earlier method of

identification had missed. These configurations are then substituted to the complete

Jacobian matrix and its rank calculated to see if it becomes singular. The problem

now is to determine what are the possible conditions of orientation singularity.

The lower half of the Jacobian matrix contains the zi rotational axes of all the rev-

olute joints in the manipulator (see definition of Jacobian matrix (see Equation 4.13).
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When J22 is singular, only the joints in J21 whose axes of rotation has components

in the singular direction can help supplement the lost degree of freedom. Taking a

dot product between the z axes of the joints in J21 with the singular direction will

show all the possible factors that can supplement the lost DOF. If the dot product

is zero, the axis is completely orthogonal to the singular direction and is incapable

of assisting the motion in that direction. These are the only factors, that when set

to zero, (together with the factor that cause J22 to be zero) would form the possible

missing singular configurations in orientation singularity.

Let’s take a look at the example used in Section 4.5 (Figure 4.3). To verify that

the columns of Jω are the zi axes of the revolute joints i, it can be seen that when

[J21|J22] is expressed in the wrist frame (Frame {5}), the fifth column of the lower

Jacobian now contains {0, 0, 1}T (Equation 4.16), which is the z axis of Frame{5},

expressed in Frame {5}. J22 is singular when sin(q6) = 0, which makes top row of J22

all zeros. The singular direction in this case is the rotation around X axis of Frame

{5}, or {1, 0, 0}T when expressed in Frame {5}.

We would like to find the possibility that the redundancy in J21 is able to sup-

plement the DoF lost by J22. To obtain all the possible joint contribution to this

direction of motion, a dot product is taken between this singular direction and all

the axes of rotation in J21. This is to say, between {1, 0, 0}T and all the columns in

J21. When Jacobian is expressed in the singular frame, then the dot product results

are all the elements in the same row as the singular direction of the wrist - in our

example: the first row of the [J21|J22].

When the resulting expressions from the dot product go to zero, there is a possi-

bility that the Jacobian matrix loses a rank, because when the dot product of these
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axes of rotation with the singular direction is zero, they are orthogonal to each other

and therefore will not contribute to the motion in the singular direction.

The [J21|J22] is reproduced below for convenience. In this example, the dot prod-

uct between the z axes in J21 with the singular direction yield c5s234 and s5.

[5J21|5J22] =



−c5s234 s5 s5 s5 0 0 s6

−s5s234 c5 c5 c5 0 1 0
c234 0 0 0 1 0 c6


 (4.31)

This yields three possible cases:

• s234 = 0 AND s6 = 0. This was substituted and found not to cause the complete

Jacobian J to be rank deficient.

• s234 = 0 AND s5 = 0. This was substituted and found not to cause the complete

Jacobian J to be rank deficient.

• c5 = 0 and s6 = 0. This is also not the term that would cause J to be rank-

deficient.

• s5 = 0 AND s6 = 0. This condition causes J to be rank-deficient. This is

consistent with what we found in Section 4.5

• s234 AND s5 = 0 AND s6 = 0. This configuration would cause the J matrix to

be rank-deficient and also the Jω = [J21|J22] to be rank-deficient.

It is therefore detected that the configuration (s5 = 0 AND s6 = 0) is singular,

and it can not be detected by evaluating det(Jω) = 0.
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4.8 Summary

The method of evaluating position and orientation singularities separately from

the top and bottom halves of the Jacobian matrix helped to reduce the complexity

of the problem. Instead of having to solve the determinant of 6 × n matrices, it is

reduced to 3×n matrices. A simple check was proposed to make sure that some wrist

singularities in redundant manipulators are not overlooked. The proposed check was

valid only for serial manipulator with spherical arm. This is done by narrowing the

possible missing singular configuration to be the components that might contribute

to the singular direction in J21. The method of identifying singularities are covered

and the importance of identifying singular directions, not just the singularities, is

discussed. Singular directions are difficult to evaluate and express symbolically. A

simple searching method is proposed by transforming the rank deficient Jacobian

matrix into all the DH frames of the robot and identifying a row of zero. For the few

rare cases that don’t fit into this method, it is easier to identify singular direction by

inspection, especially after the singular configuration has been identified.
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CHAPTER 5

SINGULARITY HANDLING: BY REMOVAL OF
DEGENERATE COMPONENTS

5.1 Chapter Overview

Singularity handling methods are divided into two categories. The first category

consists of the methods with divisions of workspace. A singular region is declared

around a singular configuration where a different control algorithm designed to han-

dle the singularity is applied. The second category comprises the technique with a

uniform algorithm throughout the entire workspace that has the capability of going

through singularities in a stable manner. There is no division of workspace with

different control algorithms in these methods.

The singularity handling method presented in this chapter is one of those in the

first category, while Chapter 7 covers an example of a singularity handling method

from the second category.

In this chapter, various existing methods are reviewed. The method proposed

in this chapter involves identifying the degenerate directions of the singularity and

removing the degenerate component of the task while the end-effector is inside the

singular region. Null motion was utilised in assisting and creating motion in the
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degenerate direction. Implementation example in a PUMA 560 manipulator is pre-

sented.

5.2 Related Works

Chapter 4 explored singularities and methods of identifying them. In this chapter,

a method of singularity handling is presented. It is well-known that singularities

inherently limit the manipulator’s capability to complete its task. As the manipulator

approaches and enters singular configuration, the inverse of the Jacobian matrix would

be ill-conditioned. The resulting joint rate command for a finite motion in task

space would be unbounded. That is why it is necessary to handle singularities in a

stable manner. Many methods have been proposed to handle singularities. There are

generally divided into two main categories: the first involves division of workspace and

a different control algorithm is applied to the region around the singularities, while

the second applies a uniform control strategy, that is capable of handling singularities,

throughout the entire workspace.

Techniques without workspace division generally introduces a continuous modi-

fication either to the Jacobian matrix or to the trajectory of the end-effector. This

continuous function is close to zero when the end-effector is further away from a sin-

gular configuration. In the vicinity of singularity, it introduces a slight error to

avoid the ill-conditioned inverse to the Jacobian matrix. The methods found in

[5, 53, 54, 55, 56, 57], among others are designed within this concept. In [5] and

[58], damped least-squares method was used to obtain a modified Jacobian that is

not singular. With higher damping variables, tracking error introduced could be quite

high. Kircanski [53] utilized the Singular Value Decomposition (SVD) and replaced
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the zero value at the diagonal matrix at singularity with a continuous function of

non-zero value. Other approach resolved singularity by reparameterizing the desired

path s(λ) so that θθθ(λ) and its higher derivatives are well-behaved [54, 59]. The idea

was extended to desingularizing the workspace in [55]. The enhanced Jacobian trans-

pose has also been used in place of Jacobian inverse [56] to provide a stable control

over the vicinity of singularity.

There are also many examples of techniques belonging to the category where the

singularity robust algorithm is appplied in a sub-space defined in the vicinity of sin-

gularities. Aboaf and Paul [60] handled spherical wrist singularity by eliminating

the singular direction and the contribution of the roll joint of the wrist. This ap-

proach results in a reduced (5 by 5) Jacobian which is of full rank. The velocity of

the eliminated joint is then bounded at some maximum joint rate to avoid excessive

joint velocity. The effect is compensated in task space. Chiaverini and Egeland [61]

identified and removed the degenerate components of motion, and applied pseudo

inverse with the collapsed Jacobian in the kinematics-based approach. Cheng [50]

performed an analysis and handling method on PUMA 560 also by releasing the ex-

actness in the singular direction and providing the extra redundancy to the achievable

direction. Their Compact QP method would then attempt to minimize the tracking

error in singular direction. Another approach of removing the degenerate direction

in the vicinity of singularity was implemented in operational space formulation. Null

space motion was utilized to assist motion in the degenerate direction [62]. A similar

approach by utilising null space motion to create motion in degenerate direction is

also presented in [63].

78



Other classes of related techniques drives the end-effector away from the singular

configurations, therefore avoiding the need to handle the phenomenon [64, 26, 65, 66,

67, 38, 64]. In these techniques, redundant motion was utilized to follow a certain

optimization function that maximizes the manipulability of the robot, hence avoiding

singular configuration (where manipulability is zero). This can only be done with

extra degree of freedoms in the manipulator. A measure of manipulability is presented

in [6].

Others incorporate the handling of singularities into the design of their manipula-

tors, for example by introducing redundancies [68], by placing singular configuration

outside of usable workspace using spherical wrist [69] or offset wrist [70], [71], [72],

[73]. Other novel designs forms a Jacobian that is always invertible [74]. However, we

are not always given the opportunities to design the manipulator the way the wish

them to be.

The idea presented in this chapter, along with ideas presented in other papers

such as [61] and [50], divides the whole workspace into two sub-spaces: the singular

region (in the vicinity of singularity) and the non-singular region. An issue with this

approach is the switching of control algorithms causing discontinuities as the ma-

nipulator goes in and out of the singular regions. While inside the singular region,

a singularity handling algorithm is applied to the manipulator. This involves mak-

ing use of the identified singularities as in Chapter 4, and removing the degenerate

components of motion.
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5.3 Handling Singularity by Removing Degenerate Compo-
nents

This section describes the singularity handling method by removal of degenerate

component(s) of the task. First, a region is defined in the vicinity of each singular

configuration. This is called the singular region. While inside the region, the Jacobian

matrix J and the generalised forces f (see Equation 5.1) are transformed into the

singular frame. This is a frame where the degenerate direction spans one of the rows

of the Jacobian matrix. The component is then removed and the Jacobian is collapsed

into a full rank matrix of less number of rows.

The method is proposed based on the operational space formulation. The equation

for the generalised forces at the end-effector is reproduced below for convenience:

τττ = JT f + [I− J̄J]Tτττ 0 (5.1)

5.3.1 The Singular Region

The singular region around the singular configuration can be specified as the

region where the determinant of the Jacobian matrix is less than a certain threshold

value. The determinant can be found symbolically, and each factor s(q) represents

one singularity in the system. A region D is defined around each of these factors [1]:

D = {q ||s(q)| ≤ s0} (5.2)

where s(q) is the factor in determinant of the Jacobian matrix which is zero at specific

singularity and s0 is the threshold value that defines the singular region.
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This divides the entire workspace into two subspaces: one with full Jacobian

and the other with reduced Jacobian matrix (but full rank) with the degenerate

components removed.

5.3.2 Removing Degenerate Components

There are usually more than one singular configurations in a system. For example,

the PUMA robot that we use for case study has wrist, elbow, and head singularities.

Once the manipulator enters a singular region D as in (5.2), the corresponding

degenerate directions are identified and removed.

The singularity handling process is done by first transforming the Jacobian matrix

J and the operational space force f to a frame where the singular direction is aligned

with one of the axes of the frame. We call these frames the ”singular frames”. Trans-

forming the Jacobian into the singular frame can be done by using a symbolically

predetermined rotational matrix from the base frame to the singular frame.

After being transformed to the singular frame, the row(s) of zeros in the Jacobian

matrix which represents the singular direction, and the corresponding component in

Sf are then removed. Sf is the operational space force vector expressed in the singular

frame. This process collapses the Jacobian into a reduced Jacobian (with fewer rows)

but of full rank.

In the singular region, the manipulator is treated as a redundant system with end-

effector subspace being orthogonal to the singular direction. The end-effector task in

the subspace is controlled using the operational space redundant manipulator control,

while null space joint torques are used to deal with the control in the singular direction

according to the singularity type (Equation 2.1)(see Section 5.3.4). Dynamically

81



consistent force/torque relationship guarantees decoupled operational space and null

space behaviour [4].

5.3.3 Utilising the SVD

In removing the degenerate components of the task, the matrix J and vector

f need to be transformed to the singular frame. These frames can be pre-defined

according to the singular direction. For example, for the wrist singularity in PUMA,

the singular direction is the rotation around X axis of Frame {4}. Therefore, Frame

{4} is defined as the singular frame. For head singularity of PUMA, the singular

direction is the translation along the Y axis of Frame{1}. Therefore Frame {1} is

defined as singular frame. When it is identified that the manipulator is close to head

singularity, for example, then the Jacobian matrix and the operational space force

vector are transformed to the corresponding singular frame, i.e. 1J and 1f .

Utilising the SVD, as shown in Section 3.2.2, the Jacobian matrix and the opera-

tional space force vector can be transformed to the singular frame by pre-multiplying

them with matrix UT . For a 6DoF system, this transformation matrix UT may not

display any physical meaning of the singular directions, but it is still a valid trans-

formation to the singular frame. This will reduce the required effort of identifying

various rotational matrices to all the unique set of singularities in a manipulator.

5.3.4 Null Space Control

Once inside the singular region, the task is momentarily reduced to a lower number

of DOFs and motion/force in the degenerate direction that has been removed is no

longer possible until the manipulator exits the singular region.
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If the desired task has a component along the degenerate direction, null space

motions are then utilized to assist the motion. Motion in degenerate direction was

studied in [75, 76, 77]. Null space task can be realized by constructing a potential

function, v0(q), whose minimum corresponds to the goal of the desired task. The

null space torque τττ 0 (see Equation (5.3)) is formulated as the gradient descent of the

potential function:

τττ 0 = −A(q)∇v0(q); (5.3)

where A(q) is the joint space inertia matrix as in Equation 2.5. The joint space

inertia matrix A is included here to scale the joint space null motion torque τττ 0 to

include the dynamics of the manipulator.

Singularities could be categorized into type 1 and type 2, based on the effects of

null space torques τττ 0. When in singular configuration, null space motion in type 1

singularity moves the manipulator out of singularity [3]. Null space motion in type

2 singularities affects only internal joint motion, and changes the singular directions

without affecting the end-effector motion/forces. This is sometimes termed as es-

capable singularities in some literatures [76], because the singular direction can be

shifted away from the desired path.

To escape a type 1 singularity, the end-effector motion in singular direction can

be generated directly through the associated null space torque by a potential function

to move it from a singular configuration s(q) = 0 to the boundary of singular region,

s(q) = s0 (as declared in 5.2). As motion in the singular direction has been removed

from the task as explained in the previous sub-section, motion in the singular direction
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Table 5.1: Singularity by the effect of null space torque have on it
Type 1 Type 2

Effect moves end-effector shifts the singular
out of singularity direction

Potential
function v0(q) = 1

2kN (s(q)− s0)2 v0(q) = 1
2kN (ζζζ(q)− ζζζ(q)0)2

is no longer a part of the task, and is therefore a null space motion. Further example

is shown in the case study of the elbow singularity in PUMA.

In type 2 singularity, the null motion does not move the end-effector but shifts

the singular direction. Potential function can be constructed such that its minimum

occurs when the singular direction is orthogonal to the direction of motion of the

desired path (ζζζ(q) = ζζζ0). ζζζ(q) is the joint configuration vector and ζζζ0 is the config-

uration vector where singular direction is orthogonal to the desired path. Examples

of type 2 singularities can be found in the wrist and head singularities of PUMA.

5.4 Application on PUMA Robot

5.4.1 Removing the Degenerate Components

The idea of removing the degenerate component is to remove the row(s) of the

Jacobian matrix and elements of the task space force f (see Equation 2.1) that rep-

resent the degenerate direction(s) of motion. By doing so, we do not consider the

motion in the degenerate direction as a part of the task space anymore. To do so,

the Jacobian matrix and force vector need to be expressed in the frame in which one

of the axes represents the direction of singularity (degenerate direction).

Force vector in task space is obtained from the control law to represent the vir-

tual force that “pulls” the end effector to the desired position and orientation (see
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Equations 2.2-2.3). The force vector is then resolved into the correct frame, that

represents the singular direction as one of its axes. The Jacobian is also resolved into

the same frame. In singular configuration, instantaneous motion in joint space does

not produce any instantaneous motion in task space. This manifests itself into a row

of zeros in the Jacobian matrix when expressed in the singular frame.

The row of zeros (degenerate components) in the Jacobian matrix and the force

vector are then removed. The resulting Jacobian has its dimension reduced from

m × n to (m − k) × n, where k is the number of DOFs lost by the manipulator at

the singularity. The transpose of the new collapsed Jacobian and the force vector are

multiplied to obtain the joint torque vector (Equation (2.1)).

For the case of PUMA 560, the degenerate direction of motion in wrist singularity,

for example, is represented by the rotation around the X-axis of Frame{4}. The

relationship between the generalized forces, expressed in the frame that best represent

the singular direction (without the null space component), is expressed as:

τττ = (4J)T .4f (5.4)

where
4JT =

(
0RT

4 03×3

03×3
0RT

4

)
.0J

4f =

(
0RT

4 03×3

03×3
0RT

4

)
.0J

(5.5)

4f is the force in the Cartesian axis represented in Frame {4}, obtained from the

control law, with the fourth element (rotation around X-axis) removed, τττ is the torque

sent out to each joint, and 4J is the Jacobian expressed in Frame {4}, with the fourth

row removed. Note that tasks considered are in 6 DoF, which is why the rotational

matrices above are defined as 6× 6.
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As for head singularity, the degenerate direction is the translation along Y axis of

Frame{1}, as shown in Equation 4.18. To express the force vector and the Jacobian

vector in Frame{1}:

1JT = 0RT
1 .0J

1f = 0RT
1 .0J

(5.6)

The first row is then removed from the Jacobian matrix and the force vector. The

resulting torque is calculated by τττ =1 JT .1f .

Elbow singularity is handled in the same way by expressing the Jacobian and force

vector in Frame{B}. The degenerate direction in this case is the translation along X

axis of Frame {B}, as shown in Equation 4.19. The Jacobian and the force vector

are expressed as:

BJT = 0RT
B.0J

Bf = 0RT
B.0J

(5.7)

5.4.2 The Use of Singular Value Decomposition

As explain in Section 5.3.3, SVD can be utilised to reduce the effort of identifying

each rotational matrices. Section 5.4.1 shows the need to identify 4R0,
BR0, and

1R0 to transform the Jacobian matrix and the operational space force vector to the

singular frames for wrist, elbow and head singularities. This can be replaced with

just matrix UT , such that:

0J = UΣΣΣVT

UT 0J = SJ = ΣΣΣVT (5.8)

When applied to a 6 DoF system such as PUMA, the rotational matrix loses its

physical meaning, however, it is still a valid transformation to the singular frame.
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The application of null space motion in singularity handling, however, requires the

knowledge of which singularity the manipulator is in, as treatment is case specific.

In this case, the use of the UT matrix of SVD is limited to reducing the effort of

identifying the rotational matrices to each singular configuration. It is still necessary

to know which case of singularity the manipulator is in (Equation 4.3).

5.4.3 The Use of Null Motion

Motion from a singular configuration can be divided into of feasible and non-

feasible directions. Non-feasible direction is one that requires motion in the singular

(degenerate) direction.

In this method, as explained above, the motion in the degenerate direction has

been disabled through the removal of appropriate elements of the Jacobian matrix

and task space forces.

A path is non-feasible when the desired trajectory lies along the degenerate direc-

tion of the manipulator. In our experiment, the null space motion was then utilised

in handling such motion. Null space torque can then be generated to reconfigure the

manipulator to move in the non-feasible direction. Different functions can be used to

determine the null space torque.

Type 1 Singularity

A type 1 singularity is when null space motion moves robot out of singular con-

figuration. This can be illustrated by a two-link planar manipulator, such as shown

in Figure 5.1. In the configuration shown in Figure 5.1, the manipulator loses the

ability to translate in the X0 direction. This component is then removed from the
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task, resulting in a 1× 2 Jacobian matrix that maps the joint velocities into motion

in Y0.

Suppose it is desired to move the end-effector in the X0 direction. Null motion is

generated by exciting motion in either joint 1 or 2. When this happens, motion at the

end-effector is generated. However, translation in Y0 direction is still under motion

control, while the translation in X0 is free. The null motion is then translated into a

motion that moves the end-effector out of singularity (Figure 5.2.)

Figure 5.1: A two-link planar manipulator is a type 1 singular configuration.

The elbow lock in PUMA is an example of a type 1 singularity. As explained, the

associated null space torque will create end-effector motion in the singular direction.

The singular direction, as shown in Chapter 4, is the translation along the line that

connects the wrist point to the origin of Frame{1}

This means, for the case of PUMA, null space motion of joint 3 would generate

motion in the singular direction (see Figure 4.5 for singular direction).

In Table 5.1, it is shown that when we would like to move from one config-

uration to another within the singular region, the potential function is given as
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Figure 5.2: The two link manipulator from the previous example, moving out of
singularity, due to the application of null space motion.

v(q) = 1
2
kN(s(q) − sd)

2 where s(q) is the factor of the determinant of the Jaco-

bian matrix associated with the singular configuration of interest. The value sd is the

value of the determinant term that we would like the end-effector to move to. If we

wish to move the end-effector out of the singular region, then it is desired to drive

the end-effector to the boundary of this region. In this case, the value sd is set as the

threshold value that divides singular and non-singular regions, s0.

For elbow singularity, s(q) = d4c3 − a3s3 from Equation 4.3. To decide on the

value of s0, Figure 5.4 was utilised. This is the plot of 1/s(q) vs q3. The unstable

motion around singularity is caused by the unbounded inverse of the Jacobian matrix,

which is then used to calculate the joint rate command. The inverse of matrix J is

proportional to 1
det(J)

.Adjoint(J). The unbounded inverse can be thought of as the

result of division by zero, when the determinant of J approaches zero at singularity.
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Figure 5.3: shows Puma-like manipulator moving out of elbow (and wrist) singularity,
following the path which lies in the degenerate direction

The plot of 1/s0 (Figure 5.4 can therefore be used to approximate the threshold

value. The plot shows that for most part away from singularity, the plot was almost

linear. The value 1/s(q) starts to deviate significantly and approach ±∞ at around

88o and 96o. This is about 4-5 degrees away from the exact singularity point of

q3 = 92.69o. It is necessary to verify this threshold value experimentally. The value

of s0 was therefore be approximated at ±0.03.

So an example of potential function designed to move the end-effector from the

elbow singularity (s(q) = 0) to the boundary of the singular region would be:

v(q) =
1

2
kN((d4c3 − a3s3)− (0.03))2 (5.9)

Setting s0 = 0.03 would cause the robot to escape the singularity by assuming an

elbow down position, while setting s(q) = −0.03 would cause it to try to assume an

elbow up position. Singularity are often considered as the intersection point between

different motion manifolds. In this case, it is shown as the point where elbow up and

elbow down position meet [38].
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Figure 5.4: The value of s(q) = d4c3 − a3s3 as a function of q3 and 1/s(q).

The resulting null space torque τττ 0 is:

τττ 0 = −∇v(q) = [0, 0, kN [(−d4s3 − a3c3)− 0.03], 0, 0, 0]T (5.10)

Type 2 Singularity

An example of type 2 singularity in PUMA is when the wrist joint is straightened

(q5 = 0). The non-feasible path in this case is when the desired path contains the

degenerate direction, i.e. for the end-effector to turn around the X-axis of Frame{4}

(see Figure 5.5). As discussed in Section 4.5, PUMA wrist singularity is a special

case whereby there is singular frame with physical meaning that the Jacobian matrix

can be expressed on that would show a row of zeros. This is because it is a coupled

singularity between position and orientation singularity.

The other one is the head lock, where the wrist point lies along the z axis of the

base frame. The degenerate direction is the Y-axis of Frame{1}.
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Figure 5.5: The wrist of PUMA 560, showing Frame{4}

It is described that, as singularity occurs, at least two frames of the manipulator

would line up. One of these two frames can therefore be used to create a null space

motion to escape the singular position.

In the case of PUMA’s wrist, null space torque was used to move joint 4 (see

Figure 5.6). This would then shift the plane that contains the non-feasible-path (the

YZ plane) out of the way of the desired path (Figure 5).

Figure 5.6: Null space torque is used to turn joint 4, so that the YZ plane of Frame{4}
is shifted out of the way of the desired trajectory.
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According to Table 5.1, the potential function for this case is v(q) = 1
2
kN(ζ(q)−

ζ0)
2. The joint configuration is expressed as ζ and the desired configuration ζζζ0 is one

where the singular direction is orthogonal to the desired path.

Supposed the manipulator is currently in wrist singularity and that the desired

motion is aligned with the degenerate direction, which is rotation around X axis of

Frame{4}. Then to create an internal joint motion in joint 4 to shift the degenerate

direction away from the desired path, the potential function can be designed as:

v(q) =
1

2
kN(q4 − (q4S + 90o))2 (5.11)

which rotate joint 4 (and the singular direction) 90o away from the desired path, in

the positive Z4 direction. The variable q4S is the value of q4 at the start of the motion

when the desired path is aligned with singular direction.

As motion in the singular direction is disabled, any motion with a component in

the singular direction will experience difficulty in tracking the desired trajectory. It

is therefore necessary in type 2 singularity to shift the singular direction so that it is

completely orthogonal to the direction of the desired motion.

τττ 0 = −∇v(q) = [0, 0, 0, kN(q4 − (q4S + 90o)), 0, 0]T (5.12)

Similarly, in the case of PUMA head lock, a null space motion of joint 1 is required

to shift the manipulator to go into the initially non-feasible path.

5.5 Implementation Result

The results of the experiments are shown in Figures 5.7 to 5.11.

Figures 5.7 show the position and orientation error in end-effector tracking, in

non-singular motion. Figure 5.8, shows the same set of result drawn in the same
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scale, of the end-effector in a trajectory through a singular, but feasible path. This

was implemented by using the rotational matrix 0R4 as transformation matrix to the

singular frame. The matrix UT is utilised as the transformation matrix to the singular

frame and the result is shown in Figure 5.9. It is shown that the transformation

matrix UT is not only a valid transformation to the singular frame, but also produces

the same effects as those produced by transformation matrix with physical meaning.

The tracking error produced by the two methods (Figure 5.8 and Figure 5.9) are of

the same profile. The difference is minimal and is mainly due to variations between

different runs that is inherent in the running of the robot. Utilising the U from

the SVD of Jacobian matrix J as a transformation matrix to the singular frame is

however, very much simpler and does not require the expressions of various rotational

matrices to be included in the program code, thus, reducing the clutters. Figure 5.10

is tracking error of the end-effector while escaping the wrist lock (type 2 singularity)

into a non-feasible path, and Figure 5.11 of the end-effector moving from an elbow

singularity into a non-feasible path. All the graphs are drawn to the same Y axis

scale. The only significantly larger error encountered is in the orientation error of

the manipulator as it escapes from a wrist lock into a path that lies in degenerate

direction. It is because null space motion was required to turn joint 4 before the end-

effector was able to trace the desired trajectory, hence the large initial orientation

error (see Figure 5.6).

There is an issue of discontinuity as the end-effector crosses between singular and

non-singular region. The result in Figure 5.11 was obtained by tuning the gains

in the control to provide a smooth trajectory. To obtain the same performance of

smooth trajectory, the null motion gains need to be re-tuned for a different trajectory.
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To obtain a better performance, discontinuity between the two regions needs to be

properly addressed. This is done in Chapter 6.

The expression for orientation error presented in the graphs can be found in Sec-

tion 2.7.

The videos of some of the experiments can be found in:

http://guppy.mpe.nus.edu.sg/∼mpeangh/iser00/singularity-1-iser00.mpg

5.6 Summary

In this experiment, singularity handling in torque-controlled manipulator, based

on Operation Space Formulation was explored. It was shown that by removing the

degenerate component(s) of motion, control of the manipulator through singular con-

figuration was possible, with tracking error no larger than that of a motion through

non-singular path. As degenerate degrees-of-freedom in the task are removed in the

singular region, the manipulator is redundant with respect to the task. Motion in

the degenerate direction was made possible by motion of redundant joint to move the

degenerate direction away from the desired path for type 2 singularities. For type 1

singularity, motion generated in the null space moves the end-effector out of singular

configurations. A certain trade off between exactness and achievability was necessary

in moving out of a singular configuration into a non-feasible path.
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Figure 5.7: Trajectory tracking error of end-effector position as it traces a desired
path that is not singular.
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Figure 5.8: Tracking tracking error as the end-effector moved in feasible path through
wrist singularity. Here rotation matrix 4R0 is used as transformation matrix to the
singular frame.
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Figure 5.9: Tracking tracking error as the end-effector moved in feasible path through
wrist singularity. This time, the matrix UT is used as transformation matrix to the
singular frame.
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Figure 5.10: Trajectory tracking error of end-effector as it goes from stationary posi-
tion within singular region (in wrist singularity) into the degenerate direction
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Figure 5.11: Trajectory tracking error of end-effector as it goes from stationary posi-
tion within singular region (elbow singularity) into the degenerate direction
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CHAPTER 6

THE REDUCED DOF WITHIN SINGULAR REGION
AND DISCONTINUITY ISSUES ACROSS THE
BOUNDARY

6.1 Chapter Overview

There have been many singularity handling techniques proposed in the past. Many

of these techniques, such as the one presented in Chapter 5, divide the manipulator

workspace into singular and non-singular regions. A singular region is defined in

the vicinity of a singular configuration, within which, a different control algorithm

is applied to handle the singularity. Generally, it involves removing the degenerate

component(s) of motion. This results in discontinuity in the motion of the end-effector

as it moves in and out of the singular region. This chapter discusses the motion of

the end-effector inside the singular region and the disturbances in motion as it crosses

the boundary of the singular region. Types of disturbance, the causes, and proposed

solutions are presented in this chapter. The techniques were tested on PUMA 560

robot.
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6.2 Introduction

Many approaches have been suggested in the past in handling the singular config-

uration of a manipulator. In the interest of this chapter, there are mainly two types

of singularity handling methods: ones that introduces workspace division and ones

that do not.

As discussed in the introduction to Chapter 5, many examples have been published

on both categories of techniques. This chapter deals with the issues related to the

second category of techniques, where a division of workspace is defined and different

control algorithm is applied within this region to handle the singular configuration.

The example of techniques in this category include [60, 61, 50, 62, 63], among many

others.

The one common thing in these techniques is that within the singular region, the

element that causes the singularity is removed from the control algorithm. This is

commonly done by removing the component of motion in the degenerate (singular)

direction. To be specific, the singular direction is identified and the Jacobian matrix

is transformed onto a frame where one of the axes of this frame is aligned with the

singular direction. This frame is termed the singular frame. The row of the Jacobian

matrix in this frame will be zero at the exact singular configuration. Within the

singular region, the manipulator is assumed as singular and the row is removed. The

Jacobian is collapsed into a full-rank matrix with less number of rows.

In this chapter, we look into practical issues of the end-effector motion which

result from the removal of the degenerate direction. This motion is removed not just

at the exact point of singularity, but throughout the period the end-effector spends
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inside the singular region. As the result, error would occur and accumulate in the

singular direction while tracking the desired trajectory.

6.3 Effects of Removal of Singular Direction

This section will discuss the effect of the removal of the singular direction in the

singular region on both type 1 and type 2 singularities [1]. Type 1 and 2 singularities

are as discussed in Chapter 5, which is the division of singularities based on the effect

of associated null motion on the motion of the end-effector near the singularities.

Projection into null motion is utilised in our experiment to minimise errors and

disturbance by creating some ‘component of motion’ in the lost degree-of-freedom.

The following subsections covers the motion of the end-effector around the singular

configuration.

6.3.1 Upon entry into the singular region

Upon entry into the singular region, the control in the singular direction is re-

moved. Since the end-effector is still in the correct path according to the desired

trajectory (no accumulated error due to drifting away from the desired trajectory),

removing the motion control in the degenerate direction causes no major disturbance

to the end-effector motion. Other cause of discontinuity is the torque discontinuity

at the boundary. As explained above, there is a sudden removal of the contribution

of one of the degrees of freedom, which is not fully zero yet at the boundary of sin-

gular region. There is also an addition of the torque component to generate the null

motion. When implemented whether on simulation or on the real robot, the effect of

crossing the boundary upon entry into the singular region is hardly noticeable. How-

ever, as robots get lighter and smaller, it is necessary to handle such cases. Lighter
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and smaller robots are designed for future use, such as to address the issue of human

safety [78] and micro-scale robots [79].

6.3.2 Motion in singular region

Singularity happens only at an exact point in the workspace. However, behaviour

of the manipulator control in the vicinity of the singularity is not stable. Therefore

singularity is handled within a region declared around the exact singular configura-

tion. This introduces some approximation and therefore some discrepancies as the

end-effector will not be able to perform the task along the singular direction in the

singular region. Motion is only available in the direction perpendicular to the singular

direction (see Figure 6.1). Tracking error in the singular direction builds up within

the singular region.

Figure 6.1: As the end-effector reaches point A at the boundary of singular region, it
can no longer tracks the task in the singular direction. It can only perform motion
in the directions perpendicular to the singular direction.
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Type 1 singularity

In type 1 singularity, null motion creates motion that causes the end-effector to exit

the singular configuration. Since a small end-effector motion in the singular direction

can cause a large internal joint motion in the null space, following a time-dependent

trajectory is difficult. Also, the error between the desired and actual trajectory in

task space is usually too little to generate any motion in the control law, which makes

the tuning of the gain difficult. Another way to put it is that the manipulability of

the end-effector is low near the singular configuration [6].

Type 2 singularity

For type 2 singularity, null space motion shifts the singular direction. We therefore

shift the singular direction to be exactly orthogonal to the desired trajectory while

inside the singular region.

6.3.3 Exiting the Singular Region

Upon exiting the singular region, the control algorithm switches back to its full

degrees-of-freedom. This is where the error accumulated inside the singular region, if

not handled, manifests itself into disturbance or jerkiness in the motion.

Type 1 singularity

If the end-effector exits the singular region at the same point (x, ẋ, ẍ, and t) as the

desired trajectory (xd, ẋd, ẍd, and td), then the motion will be continuous. However, as

mentioned earlier, following a time-dependent trajectory near singularity is difficult.

This is a problem for type 1 singularity because the end-effector exits the singular

105



region according to a potential function, and hence the exit motion is not controllable

according to the desired trajectory.

Motion in singular region is generated by the potential function of that drives the

null motion, which does not contain any time element.

To illustrate the problem better, the following example is used. The elbow singu-

larity of PUMA 560 is a good example. When the elbow is straightened, the singular

direction is the motion of retracting the elbow from the straight posture. This motion

is not controllable by a time-dependent trajectory. As the result, the following cases

could happen (see Figure 6.2).

Figure 6.2: Case 1 is when the end-effector exits the singular region slower than the
desired trajectory. As it exits, it has to catch up with the desired trajectory. Case
2 is when the end-effector exits the singular region ahead of the desired trajectory.
Note that the points are separated by the same time duration which is the sampling
period.
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In case 1 of Figure 6.2, the null motion drove the end-effector to move slower than

the desired trajectory while inside the singular region. As it exits the singular region

(at t = 8 in the example in Figure 6.2), the desired trajectory is far ahead. As the

full degrees of freedom is returned to the control algorithm, the large error between

the desired and actual end-effector position causes a jump in the torque being sent

to the manipulator.

In case 2, the end-effector exits the singular region ahead of the desired trajectory.

As the control algorithm returns to full degrees of freedom (at t=4 in the example

in Figure 6.2) the desired end-effector position is still inside the singular region. The

motion control then pushes the end-effector back into the singular region, where the

null motion would try to push it out again. This would cause a rattling at the

boundary of singular region.

As seen in the explanation for Figure 6.2, it is easier to handle case 1 than case 2,

i.e. it is easier to handle the case where the end-effector moves too slow compared to

the desired trajectory in the singular region. A simple damping technique can be used

to prevent the end-effector from sudden large acceleration due to large accumulated

tracking error. To dictate the condition to be always of case 1, then the end-effector

has to move at equal or slower speed than the desired trajectory inside the singular

region. However, this proved not to be a good method, because it is difficult to

implement control in joint space based on any constraint in task space while inside

the singular region.

The suggested solutions to the problem is to plan a new trajectory. In this method,

a new trajectory is planned when the end-effector exits the singular region. This
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method assumes negligible volume for the singular region and takes the point im-

mediately outside of the singular boundary as the starting of the new task space

trajectory. The current position and velocity of the end-effector at that point are

taken as the initial conditions. The final desired goal is kept the same as that of the

original trajectory. The desired length of time for the newly planned trajectory is

the desired length of time of the original trajectory minus the time spent inside the

singular region. This method produces the smoothest result of all methods so far,

with minimum effort.

Type 2 singularity

While type 1 singularities have problem with the time that the end-effector reaches

the boundary of the singular region upon exit, type 2 has a problem of exiting at the

wrong position from the desired trajectory (if not handled). Figure 6.3 shows the

end-effector entering the singular region at point A. The singular direction is shown

and the end-effector is not in motion control in this direction. It therefore still follows

the desired trajectory only in the direction perpendicular to the singular direction. It

exits the singular reigon at point B, while at this point, the desired trajectory is at

point D. The motion control in returned to the full 6 DoF control and the accumulated

error in the singular direction pushes the end-effector back into the singular region

(towards D) where again the motion control in the singular direction is removed. This

happens until it reaches point C, where motion control in full 6 DoF manages to push

the end-effector directly towards the desired trajectory.

The solution is to utilise the null motion to change the configuration of the ma-

nipulator so that the singular direction is shifted orthogonal to the desired motion

vector. When this is implemented, the end-effector will exit the singular region not
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in singular direction, but in the component of motion that is under motion control.

Motion is therefore continuous.

Figure 6.3: As motion is disabled in the singular direction, the end-effector will move
only perpendicular to singular direction. Error accumulated inside the singular region
in the singular direction causes the end-effector exit the singular region not according
to the desired trajectory.

6.4 Implementation on PUMA560

The singularities of PUMA manipulators, such as shown in Equation 4.2, are

identified as:

Wrist lock when the wrist is straightened, q5 = 0. The singular direction is the

rotation around X axis of Frame {4}.

Elbow lock when the elbow is straightened, q3 = 92.69o

Head lock when the wrist point is immediately above the Z axis of joint 1, or when

(d4s23 + a2c2 + a3c23) = 0.
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6.4.1 Wrist Singularity

This is an example of a type 2 singularity. An example of the singularity handling

for the PUMA wrist is as follows:

• Upon entry, the Jacobian and the task space command vector (ẋ in velocity

or kinematic control, or f in torque control) are transformed to the singular

frame, in this case, Frame {4} (see Figure 6.4). The singular direction is the

rotation around X axis of Frame {4}, so the fourth row of the Jacobian matrix

and the associated element in the command vector is removed. The rest of the

calculation is performed using the reduced Jacobian.

• The null motion is implemented to shift the singular direction to be perpendic-

ular to the desired trajectory.

• The end-effector exits the region perpendicular to the singular direction. It’s

exit trajectory is in motion control according to the desired trajectory, therefore

jerking is minimum. A simple damping technique can be implemented to elim-

inate any small disturbances caused by small numerical error in computation.

When implemented on PUMA, exiting the singular region without the assis-

tance of the null motion to shift the singular direction would create jerkiness due

to accumulated tracking error in the singular direction while inside the singular

region (as shown in Figure 6.3). The result of the experimental run is shown in

Figure 6.5. In this experiment, the PUMA robot was made to move from point

B(x, y, z) = (0.681, 0.149, 0.013) to B(x, y, z) = (0.681, 0.150, 0.50). This defines a

trajectory that moves vertical upwards (in positive Z direction), with a very slight

motion in Y direction while passing through the singular region. The slight motion
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Figure 6.4: Motion of the end-effector through the wrist singularity. The singular
direction: rotation around axis X4 (shown) coupled with translation along Y4.

in the Y direction is intentional. This is because it is difficult to obtain a trajectory

that would excite a slight rotational motion around the X axis of Frame {4} within

the singular region of the wrist singularity. Since the singular direction is the rotation

around X axis of Frame {4} is coupled with the translation along Y axis of Frame

{4} (in this specific case), it was decided to induce a slight motion in Y to create the

same effect. The experimental motion of end-effector is shown in Figure 6.4. The

slight motion along Y direction can not be clearly shown in the figure.

Figure 6.5 (top) shows the end-effector position tracking error. The translation

in Y direction and the singular direction of rotation around X axis of Frame {4} are

the dependant rows in the Jacobian matrix (in this particular example). This shows

in the drift in the motion control of Y axis with respect to Base Frame while inside

the singular region. As it exits the region, it snaps back into the desired trajectory,

causing a sudden disturbance to the motion.

The result shows that it does not take a large motion in the singular direction

to create such disturbance. In this experiment, motion in Y direction was only for

111



Figure 6.5: The discontinuity at the boundary of PUMA wrist singular region. Top
figure shows the end-effector position error with respect to time. It is shown that
motion in Y direction loses its control inside the singular region because it is coupled
with the singular direction. Upon exit, it jerks back into its desired position. Center
graph shows the end-effector orientation error, which also shows the drift from desired
orientation in the singular direction, which snaps back in place upon exit. A smoother
curve is shown as the result of the handling strategy.
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a total displacement of 1 mm. In a real application, this is a reasonable amount of

tracking error. This illustrates the significance of handling the motion inside singular

region properly.

The middle graph shows the end-effector orientation tracking error. In the graph,

the result is shown with respect to the Base Frame. The singular direction is therefore

reflected as the rotation around Z axis. It is shown that the motion in this direction

drifts from the desired trajectory and only snaps back into the desired trajectory after

full 6 DOF motion control is returned to the control algorithm, which is when the

end-effector exits the singular region.

Both graphs also show the effect of null motion in shifting the singular direction

to be orthogonal to the desired direction of motion. When this is done properly, the

discontinuity is reduced significantly and the resulting tracking motion is smooth.

6.4.2 Elbow Singularity

For a type 1 singularity such as the elbow lock in PUMA 560:

• Upon entry, the null motion is implemented to create motion to move the end-

effector out of the singular region.

• The end-effector exits the singular region in the singular direction. Discontinuity

was handled to obtain a smooth motion.

Figure 6.6 shows the experimental setup. The singular direction is the motion of

retracting the straightened arm (elbow). Null motion is applied either joint 2 or joint

3 to assist the motion in the singular direction.

In case 1, (such as introduced in Figure 6.2) the end-effector moves slower than the

desired trajectory when inside the singular region. A built up of tracking error in the
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Figure 6.6: The trajectory in the experiment where the null space motion is utilised
to assist the motion of retracting the straightened arm in the singular direction.

singular direction due to lag causes a sudden jump as the end-effector regains its full

6 DoF motion control. As expected theoretically, this effect was easily reduced with

techniques such as including simple damping terms to make the trajectory smoother.

Damping has the side effect of lengthening the time the end-effector took to close the

tracking error.

The result for case 2 is shown in Figure 6.7. It can be observed that the initial po-

sition error in singular direction is negative, because the end-effector lead the desired

trajectory. As it leaves the singular region, the full 6 DoF motion control pushes the

end-effector back into the singular region to close the tracking error. The end-effector

rattled back and forth across the boundary of the singular region several times before

the desired trajectory caught up and lead ahead. Defining a new intermediate desired

trajectory with current position and velocity as initial condition ensures the smooth

transition. However, the new (intermediate) trajectory will not match the original
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Figure 6.7: Motion of the end-effector as it exits the elbow singularity. The singular
direction: translation along X axis of Frame {B}, which is the line connecting wrist
point to the origin of the Base Frame.

trajectory 100%, so the control law will not attempt to close the tracking error im-

mediately. The effect will be more significant if the portion inside the singular region

constitute a large portion of the desired trajectory.

6.5 Conclusion

When a division in workspace is defined to handle singular configurations, discon-

tinuities arise at the boundary between the sub-spaces. Error was observed especially

when exiting the singular region, when the end-effector regains its full 6 DoF motion

control. Handling methods were suggested and implemented on simulation and on

PUMA 560 manipulator. Results show that although it is possible to obtain smooth

trajectory while moving across singular regions, in the vicinity of singularity, certain

tracking performance still has to be sacrificed to achieve motion in singular direction.
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This is unavoidable, as singularity is a physical phenomenon of the manipulator,

which can only be truly removed through the mechanical design of the robot.
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CHAPTER 7

SINGULARITY HANDLING: BY VIRTUAL JOINTS

7.1 Chapter Overview

While the method presented in Chapter 5 involves removing the degenerate com-

ponents of the task, the method in this chapter proposed adding “virtual” joints into

the manipulator so that it can compensate for the lost DOFs when singularity oc-

curs. The method is uniform throughout the entire workspace and does not divide

the workspace into different regions. The chapter covers the method proposed and

the issues involved in the technique, including the use of null space to ensure that

the torque command vector assigned to carry out the task is only confined to the

physical joints and not the virtual joints. The method was implemented on PUMA

560 manipulator and the results are presented.

7.2 Introduction

As explained in Chapter 5, there are two main categories of singularity handling

method. The first method involves defining a singular region around the singularity,

within which a singularity robust control algorithm is applied. This in effect divides

the workspace into two sub-spaces: singular and non-singular region. The second

method does not have a division of workspace, and the singularity robust algorithm
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is applied uniformly across the entire workspace. The method presented in Chapter 5

is of the first category. While inside the singular region, the degenerate components

of the tasks is removed, therefore collapsing the Jacobian into a matrix of less number

of rows, but of full rank.

In this chapter, a second method of singularity handling is presented. This method

is of the second category where there is no division of workspace with different control

algorithms. Instead of removing the degenerate components, this method proposed

to add extra “joints” into the manipulator, in the directions that are lost during

singularity. By supplying extra “virtual joints” into the system, the system no longer

has any singularities [57]. This method is implemented into the entire workspace,

therefore there are no divisions on workspace into sub-regions. Because this method

adds only virtual joints, not real or physical joints, motion in the degenerate direction

at singularities are still not achievable. There is also an immediate issue that the robot

might rely on the virtual joints to complete its tasks, a case that would adversely affect

the tracking performance, since the virtual joints do not actually exist. Null space

projection is then used to force the torque command assigned to the virtual joints to

zero, therefore fully utilising the physically existent joints.

7.3 Virtual Joints

There are several methods whereby no division of into singular and non-singular

regions were made for example in [5], damped least-squares method was used to

obtain a modified Jacobian that is not singular. Kircanski [53] utilized the Singular

Value Decomposition (SVD) and replaced the zero value at the diagonal matrix at

singularity with a continuous function of non-zero value.
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Rather than removing the component of the task that contains singularity, this

method proposes to supply additional column(s) to the Jacobian matrix to maintain

its rank, even in singular configurations. This can also be thought of as introducing

virtual joint(s) to handle the lost degree(s)-of-freedom in the vicinity of singularity.

These joints only exist computationally, not physically. Therefore, at singular con-

figuration, the manipulator is still not able to perform any tasks in the degenerate

directions although the inverse of the Jacobian matrix exists. This would prevent the

manipulator from going into excessive joint rates (or unstable region). The advan-

tage of this method is that there is no division of workspace or switching of control

algorithms, therefore resulting in smoother performance and simpler method.

An immediate issue with this method is that we do not want the robot to rely on

the virtual joints to complete its tasks, a case that would adversely affect the tracking

performance, since the virtual joints do not actually exist. Null space projection is

then used to force the actuation command assigned to the virtual joints to zero,

therefore fully utilizing the physically existent joints.

The algorithm is evaluated in simulation and implemented on the PUMA 560

manipulator. The results of the real-time experiments are presented in this chapter.

7.3.1 Supplying Virtual Joints

When singularity happens, the manipulator loses its degree(s)-of-freedom, and

the Jacobian matrix loses its rank(s) accordingly. In this condition, the inverse of the

Jacobian matrix no longer exists. As the inverse of Jacobian matrix is essential in
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transforming control commands from Cartesian space (in which our tasks are speci-

fied) to joint space (in which the robot joints are controlled), it is desired to have a

Jacobian matrix whose inverse always exists.

The method proposed is to supply the Jacobian matrix with extra column(s), that

would guarantee that the Jacobian always has full rank even when the manipulator

is in singular configuration. This is done by adding “virtual joints” into the Jacobian

matrix to replace the lost DOF when singularity occurs. This expands the Jacobian

matrix from its original size of m×n matrix to m×(n+v) matrix. m is the dimension

of the tasks specified, which is usually 6, representing 3 DOFs for translation (posi-

tion) and 3 DOFs for orientation. n is the number of joints the manipulator possesses.

v is the number of extra (virtual) joints that is to be added into the system.

Figure 7.1 shows a two-link planar robot in singular configuration (left). This

is a boundary singularity. The degree of freedom lost in this case is the ability to

translate along the line described by the straight arm. However, if two more degrees

of freedom were added to the system, for example: two prismatic joints (Figure 7.1

bottom left), the robot can now translate anywhere even when the arm is straightened

(assuming the prismatic joints do not reach their limits). A more efficient way would

be to identify the lost degree of freedom at such singular configuration and to supply

an extra DOF in this direction with a virtual joint (Figure 7.1 bottom right), which

is a prismatic joint to allow the end-effector to translate along the lost DOF.

As the modification is done permanently to the Jacobian matrix to prevent it

from ever becoming rank-deficient, the control algorithm is uniform throughout the

workspace. This eliminates the switching of control algorithm as found in some other

methods, as mentioned in the introduction.
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Figure 7.1: Example of a two-link planar manipulator in singular configuration and its
lost DOF (top), and two ways of supplementing virtual joints into the system, where
circles represent the revolute joints and squares represent the prismatic (virtual) joints

It should be noted that although the Jacobian matrix is made invertible at sin-

gular configuration, the virtual joints still does not exist physically, therefore the

manipulator still can not perform its tasks in the lost degree-of-freedom.

The control algorithm would produce a command vector of size (n+ v) by 1, con-

taining commands to be sent to individual joints (motor). In the case of operational

space formulation, it is a torque vector, while in higher level control such as velocity

control, it is a joint velocity vector. The elements corresponding to the virtual joints

are therefore ignored and only those corresponding to physically existing joints would

be sent accordingly.

121



7.3.2 Avoiding Assignment of Command to Virtual Joints

The Jacobian matrix is a mapping from the joint space velocities to the task space

velocity. When there are more joints than the number of degrees-of-freedom required

by the task, the robot is considered “redundant”. In a redundant system, there are

many solutions in the joint space that would map onto the desired path of the end-

effector in task space. We can choose one set of the solution by having the desired

behavior of the extra joints projected into the null space of the Jacobian.

In our case, the joints added to the system are virtual, and they only exist com-

putationally and not physically. As the manipulator is now described as having real

and virtual joints, there is an issue whereby the manipulator might rely on the non-

existent joints to complete the specified task. Some non-zero torque values may be

assigned to the virtual joints in its attempt to track the given trajectory. This would

have an adverse effect on the tracking performance of the robot.

Since the Jacobian matrix is now redundant, the problem mentioned above can

be prevented by choosing a set of solution where the desired null space behavior is

to have the virtual joints stationary at zero position. This keeps the virtual joints

unused in completing the specified task and assigns the roles of completing the desired

trajectory to the existing joints.

This is different from simply setting the torque or velocity command values to

the virtual joints to zero. If a solution in the joint space (joint command) has been

obtained by including the virtual joints as real joints, setting command values to

these joints to zero would produce incomplete actuation for the end-effector to follow

the task space trajectory. Using null space projection, however, the velocity of the
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virtual joints can be made zero, while maintaining the resulting forces/velocity at the

end-effector.

The null space behavior, that has been used extensively in the earlier chapters,

is specified by defining the gradient descent of a potential function to be projected

into the null space of the Jacobian matrix. For our case of maintaining the virtual

joints unused, i.e. maintaining the displacement of these “joints” as zero, null space

potential function can be defined as follows:

v0(q) =
1

2

∑
i

ki[f(qi)− f(qi(desired))]
2 (7.1)

where v0(q) is the potential function, ki is a constant gain. To obtain the desired null

space behavior, which is to keep the virtual joints stationary at zero, the potential

functions are defined as:

v0(q) =
1

2

∑
i

ki[qi − qi(desired)]
2 (7.2)

where qi are the joints that we would like to control in null space, which in this case,

are the virtual joints. qi(desired) are the desired values of these joints, which are set to

zero.

The gradient descent of the potential functions are then used as null space torque

or velocity to be projected into the null space of the Jacobian.

Example: 3-link planar manipulator (R-P-R)

Supposed there is a three-link planar manipulator, with two revolute joints q1 and

q2 and a prismatic joint d3 (revolute- prismatic- revolute). If the task was to control

the position of the end-effector, then the manipulator is redundant.

When in velocity control, the motion of the end-effector can be described as:
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Figure 7.2: An example of a three link planar manipulator, with two revolute joints
q1 and q2 and prismatic joint d3. This simple example is used to illustrate the points
in the null space control.

dq = J#dx + [I− J#J]dq0 (7.3)

where dq0 is the gradient descent of the potential function v0(q), which is used to

described the desired behaviour of the internal joint motion.

dq0 = −∇v0(q) (7.4)

The desired internal joint motion is so that d3 is stationary at position d3 = 0,

therefore:

v0(q) =
1

2
k(d3 − d3,desired)

2 (7.5)

where d3,desired = 0.

When the end-effector was commanded to perform a straight line trajectory, there

are many possible sets of solutions. Figure 7.3 shows the several sets of possible joint
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displacement to the same end-effector motion. Gain k is of the null space equation

7.5. When set to zero, the resulting motion is dictated entirely by the J#ẋ term. In

this case, it can be seen that d3 is free to move to produce end-effector motion that

tracks the desired trajectory. When k = 100, then d3 is forced to be zero at all time.

Figure 7.3: Different sets of joint displacements solution for the same end-effector
motion, generated by different gain ’k’ on the desired null space behaviour, which is
keeping d3 = 0.

If d3 was a virtual joint, there will be no encoder feedback for d3, and the reading

for the value of d3 will always be zero. When this happens, the term d3 − d3,desired

of Equation 7.5 will always be zero, which produce the same effect as having k = 0.

The motion of the end-effector will be dictated by the J#ẋ term and there will be

motion assigned to d3 in order to track the desired trajectory.
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In the real time implementation, it is necessary to numerically integrate the com-

mand dq sent to virtual joint d3 to obtain a “virtual” reading for d3. This will allow

the control law for the null space behaviour (Equation 7.5) to function.

7.3.3 Inclusion of Dynamic Model for Torque Control

The subsection above described the method to apply the virtual joints with ve-

locity controller. That way, command is sent to the manipulator as joint velocity

command vector.

For the low level control methods such as torque control, the dynamics of the

manipulator needs to be included. The torque control method such as the operational

space formulation is described in Chapter 2.

In torque control, it is necessary to obtain the inertia matrix A(q). The A matrix

is derived by:

A(q) =
n∑
i

miJ
T
viJvi + JωiICJωi (7.6)

where i the subscript denoting the centers of mass of individual links and n is the

number of links in the manipulator. Jvi and Jωi are the translational and orientational

Jacobian matrix of the individual centers of mass, and IC is the inertia tensor of the

individual links taken at the center of mass.

Virtual links were modelled as having no mass or inertia. In fact, in our model,

it is not assigned an individual link. However, it is taken that the dynamics of the

links after a virtual joint is affected by the “motion” of the virtual joint.

Let us take an example of a two-link planar manipulator with a prismatic virtual

joint inserted between the two revolute joints (Figure 7.4). The center of mass of

each link are set at a distance a1 and a2 away from joint 1 and 2 respectively. The
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links are of length l1 and l2. The masses are denoted as m1 and m2, while the inertia

tensor at m1 and m2 are defined as IC1 and IC2 where

ICi =




Ixxi 0 0
0 Iyyi 0
0 0 Izzi


 (7.7)

Figure 7.4: An example of a two-link planar manipulator, with a prismatic virtual
joint inserted between the two revolute joints.

Although normally in serial manipulator, having three joints would equal having

three links, and therefore three centers of mass, in this case, only the physical joints

are modelled. Hence only m1 and m2.

The Jacobian matrices of the centers of mass can be calculated as:

JV 1 =

[ −a1s1 0 0
a1c1 0 0

]
(7.8)
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JV 2 =

[ −(l1 + dv)S1 − a2S12 c1 −a2s12

(l1 + dv)c1 + a2c12 s1 a2c12

]
(7.9)

Jω1 =




0 0 0
0 0 0
1 0 0


 (7.10)

Jω2 =




0 0 0
0 0 0
1 0 1


 (7.11)

then the A(q) is calculated as:

A(q) =

[
Izz1 + Izz2 + a2

1m1 + m2(a
2
2 + l21 + 2a2l1c2) Izz2 + a2m2(a2 + l1c2)

Izz2 + a2m2(a2 + l1c2) Izz2 + a2
2m2

]

(7.12)

With the A matrix defined, the ΛΛΛ(q) matrix (kinetic energy matrix) is defined as

covered in Chapter 2 and the torque command for the manipulator is obtained.

In the real-time implementation, the torque command to the physical joints will

result in encoder feedback of joint displacement and velocity reading. The feedback

of the virtual joint is obtained by simulation. Since the joint mass matrix A and

its inverse is already calculated for control purposes, joint acceleration vector can be

obtained from the torque command sent to the virtual joint. The integration of the

vector yields the virtual joint displacement and velocity.

The simulation result of this three link planar manipulator (revolute-prismatic-

revolute) is shown in Figure 7.5. It is the different sets of solution of joint displacement

for the same end-effector trajectory. When the gain for the null space control is large

enough, it will keep the virtual joint close to zero and hence the motion is executed

with only the two physical revolute joints. The comparison of the joint motion of the
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two link robot (controlled as two-link robot) and of the same two-link robot controlled

as a three-link robot but with the virtual joint kept stationary is shown in Figure 7.6.

Figure 7.5: The joint displacement for the example of two link planar manipulator
with a virtual prismatic joint inserted between the two revolute joints. This graph
shows different possible sets of solution for the same end-effector trajectory in torque
control.

7.3.4 Effect of Simulated Joint Feedback

At this point, it is necessary to analyse the validity of using a simulated result

as feedbacks of the virtual joints. Since these feedback are simulated, it is necessary

to analyse to what extent any error in the integration affects the performance of the

algorithm.

In kinematic control, such as the example shown in Figure 7.3, a three link planar

manipulator is compared to a two-link planar manipulator. The length of the links of
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Figure 7.6: The comparison of the joint motion of a two-link manipulator (revolute-
revolute) controlled as a two link robot (q1a, q2a) and as three link robot whose
virtual joint is kept stationary (q1b, q2b, dV ). The control algorithm with virtual
joint successfully emulate the joint motion of the two link robot.

these manipulator are set so that when the virtual joint of the three-link manipulator

is fixed at zero position, the manipulator is identical to the two link case. When the

three link manipulator is commanded to track a trajectory with joint 3 (the virtual

link) kept stationary by null space, the resulting trajectory is almost identical to that

of a two link manipulator’s. Referring to Equation 7.3, the inverse kinematic solution

produced by the J#dx is the solution that minimises the norm of the error (the least

square solution). To select a solution that produces zero joint velocity at the virtual

joint, the null space half of the equation is used. Therefore, the role of the null space

projection of the potential function is to shift the solution produced by the J#dx

term to another set that keeps the virtual joint stationary. When all the redundant
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(virtual) joints are kept “stationary”, The manipulator is no longer redundant. A

unique solution to the inverse kinematic exists using only the physically existent joints

(in the three link planar example, when the virtual joint is kept stationary, then there

is a unique solution for the inverse kinematics of 2DoF task for the remaining two

joints). Since the virtual joint is kept at zero at all time, the value of feedback from

the virtual joint in the form of simulated joint position is not crucial, as long as it

serves the purpose of shifting all the necessary joint motion to satisfy the desired

trajectory to the physically existent joint. The only crucial thing is the sign (+ \ −)

of the simulated joint position for the (feedback) control law to work.

Similarly, for torque control, the simulated feedback of the virtual joint velocity

and position is obtained by integrating the joint acceleration, which in turn is obtained

from the torque command to the virtual joint(s) and the inverse of the mass matrix

A. The three link planar manipulator with the virtual joint (dV ) kept stationary

is compared to the performance of the two-link planar manipulator (with identical

parameters as the three link when the virtual joint is locked at zero position). The

result is shown in Figure 7.6. Again, the mass assigned to the virtual joint does not

affect the performance of the algorithm, as long as the sign of the command produced

by the null space potential function is correct for the control law to function. In a

way, a virtual model is constructed treating the dynamics of the virtual joint as a

unit mass whose value is tuned by the gain ki in the potential function.

7.3.5 In Singular Configuration

Because the additional joints are virtual, motion in the singular direction is still

not possible when the end-effector is close to singular configuration.
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If the desired motion requires the end-effector to move in the singular direction

while in the vicinity of the singular configuration, then it is no longer possible to

keep the virtual joint at qv = 0 (Section 2.4.4). When this happens, the simulated

joint displacement would grow, because these virtual joints represent motion in the

singular direction.

When the end-effector is at perfect singularity, then there is no possible motion

in the singular direction. However, as the manipulator moves slightly off the sin-

gular configuration, the null space behaviour will attempt to keep the virtual joint

(representing the singular direction) at qv = 0 and therefore shift the task to other

joints. Since the manipulability of these physical joints are low near singularity, the

response could be rather slow initially till a large enough error is accumulated and/or

the end-effector move further away from the singularity.

The implementation result will be shown in PUMA 560 below.

7.4 Application on PUMA robot: the method of virtual joint

The algorithm above was implemented on the PUMA 560 manipulator. The result

comprises of two parts: for the non-singular motion and for singular motion.

For non-singular motion, it is important to verify that the algorithm is capable

of assigning no component of the task to the virtual joint, so the task will be wholly

performed by the physical joints. The result is compared to the performance of PUMA

under normal control algorithm, which is one without the addition of virtual joints.

For the singular motion, it is necessary to verify the stability of the control algo-

rithm when going through the singular configurations.
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The singular configurations were identified in Section 4.3.1. The following exam-

ple shows the handling of wrist singularity in detail. As defined in Equation 2.18,

Equation 7.13 shows the lower right quadrant of the Jacobian matrix (4J22), expressed

in Frame{4}. When wrist singularity occurs, s5 = 0, and the first row of this matrix

is all zeros, showing the singular direction, and the determinant of the Jacobian is

zero.

4J22 =




0 0 s5

0 1 0
1 0 c5


 (7.13)

In a design by [68], a four jointed spherical wrist was designed to handle the

problem of singularity. In our method, a virtual revolute joint is added to compensate

for the lost DOF. The diagram of the wrist with the virtual joint added is shown in

Figure 7.7 (b).

Figure 7.7: The diagram of the PUMA spherical wrist (a), and the wrist with added
virtual joint (b)

Since the modified DH parameter requires choosing axis xi−1 along the common

normal of axes zi−1 and zi, (with direction from joint i− 1 to joint i) the addition of
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virtual joint requires reassignment of DH frames. The new frame assignment for the

wrist is shown in Figure 7.7 (b).

The additional joint is reflected on the lower right quadrant of the Jacobian with

respect to Frame{4}:

4J22v =




0 0 −s5 −s5c6

0 −1 0 s6

1 0 C5 c5c6


 (7.14)

where 4J22v is the virtual-joint-supplemented version of 4J22, with the system assumed

to be a 7-jointed mechanism.

The operational space formulation [1] was implemented in our system. The null

space torque τττ 0 which is the gradient descent of the potential functions to control the

null space behavior of the system is defined as:

τ0 = −∇v0(q) = ki(qi − qi(desired))z (7.15)

where z is a vector of size n + v: z = [z1z2...zn+v]
T , where zi = 0 if qi is a real joint

and zi = 1 if qi is a virtual joint.

When implemented in velocity control, the equation would be defined as:

δq = J−1δx +N δq0 (7.16)

where δq is the joint velocity vector, δx is the cartesian velocity vector, and

δq0 = −∇v0(q) (7.17)

The other two singularities (head and elbow) are position singularities (causes

one or more rows of JV to be zero). The same method as that in handling wrist

singularity can be applied there. However, it was shown in [62] and in Equation
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3.18 that the lost DoF for elbow singularity (when elbow is straightened) is of a very

complex expression. This is because the singular direction is not aligned with any

axes of the frames defined by the DH convention. Transforming the Jacobian into

this frame can result in a very complicated matrix.

Following the example described in Figure 7.1, a more straight forward method

can be done by adding three prismatic (virtual) joints with respect to the absolute

frame (Frame {0}), instead of supplying only two in the direction of lost degrees of

freedom (for head and elbow singularities).

The resulting frame assignment is shown in Figure 7.8,

Figure 7.8: The representation of the three prismatic virtual joints with respect to
the base frame to handle position singularities.

where Z1v, X1v, Z2v, X2v, Z3v, and X3v denotes the frames of the virtual pris-

matic joints. The diagram continues to the rest of the PUMA robot, with Frame{1}

(denoted by Z1, X1) is the Frame{1} of PUMA robot as shown in Figure A.1 in the

Appendix.
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To incorporate the virtual joints to handle all the singularities (wrist, elbow, and

head), the PUMA is now regarded as a 10-jointed mechanism, with the virtual joints

labelled as joints 1, 2, 3 (prismatic) and 8 (revolute, at the wrist). This results is the

following 6× 10 Jacobian matrix:

J =




0 1 0 | |
1 0 0 | J11 | 03×4

0 0 1 | |
−− −− −− | − −−− | − −−−

03×3 | J21 | 0J22v




(7.18)

where J11 and J22 is the as defined in (2.18). The full diagram representing all the

10 frames of the system (virtual and real) is shown in Figure 7.10.

The potential function projected into the null space to prevent the virtual joints

from being relied upon to complete the task can be designed for the prismatic joints

as:

v0(q) =
1

2

∑
i

ki(qi − qi(desired))
2 (7.19)

where v0(q) is the potential function for the virtual joints d1, d2, d3 and q8. di denotes

a prismatic joint and qi revolute.

7.5 Implementation Result on PUMA: by virtual joint

The result is divided into two subsections, the first covers the motion through

singular configurations. The second covers the motion of the manipulator in a non-

singular motion. Torque control based on the operational space formulation was used

for the experiment.

7.5.1 Motion through Singular Configuration

Two sets of experimental result are presented in this section. Figure 7.11 shows

the performance of PUMA as it goes through a wrist singularity, and Figure 7.12 as
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Figure 7.9: The trajectory of the PUMA in going through the combined wrist, elbow,
and head singularities

it goes into a combined wrist, elbow and head singularity (when it points straight up

vertically) and out of it (see Figure 7.9).

The PUMA is now regarded as a 10-jointed mechanism, with original PUMA joints

labelled as joint 4,5,6,7,9, and 10, and virtual joints as joint 1,2,3, and 8 (Figure 7.10).

In going through the wrist singularity, the trajectory is a vertical path in X-Z

plane with respect to Frame {0} (constant X, constant Y, increasing Z) (Figure 7.10

shows the definition of base frame).

The robot is shown to go through the wrist singularity, as in the bottom plot

of Figure 7.11, where the wrist joint goes through q9 = 0. The top plot shows the

tracking error of the end-effector from the desired trajectory. Since the path is in

increasing Z direction, while maintaining constant X and Y, little error was observed

in X and Y direction. Maximum error of 0.2 mm in the Z-axis is comparable to the

performance of the robot while tracking a non-singular path. Velocities for joint 7 and
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Figure 7.10: The frame assignment for PUMA in this experiment. Joint 1,2,3, and 8
are inserted as virtual, while the rest are the relabelled PUMA physical joints.

joint 10 of the PUMA robot were shown to be stable. No sudden change or excessive

velocity was observed (second and third plots in Figure 7.11).

Similar result is shown in Figure 7.12, as the robot follows a trajectory in X-Z

plane to go into wrist, elbow and head singularity and out again (see Figure 7.9).

The task space tracking performance (Figure 7.12 top) is comparable to that in non-

singular path. The second and third plots of Figure 7.12 show that there is no sudden

jerks or excessive joint rates while the robot goes through singularity. The plot of the
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Figure 7.11: The result of the experiment, on tracking a trajectory through wrist
singularity. The singular configuration is when the wrist joint (joint 9) goes through
q9 = 0.

139



determinant of the Jacobian matrix (Figure 7.12 bottom) shows that the robot went

through the singularity.

The tracking error in this trajectory was shown to accumulate for a while before

converging to zero. This was as predicted in Section 7.3.4, that since motion in

singular direction is not possible, some accumulation of error might happens before

the manipulator is able to overcome the low manipulability. When the elbow of the

manipulator is straightened (elbow singularity), it required a lot of effort to bend the

elbow again to follow the trajectory without the help of null motion such as the one

described in Chapter 5.

The results verifies the stability of the manipulator going through the singular

configurations, assisted by “virtual joints”, in a real-time implementation.

7.5.2 Non-singular motion

In this sub-section, we will verify that the addition of virtual joints does not affect

the tracking performance of the PUMA in real-time implementation. As explained

above, the PUMA is now modelled as having 10 joints (Figure 7.8). It is necessary

to show that it is the virtual joints are kept “stationary” and that the motion at the

end-effector is not compromised.

Figure 7.13 and 7.14 shows the tracking performance of PUMA in terms of absolute

value of the tracking error to the desired trajectory in task space. The performance in

each axis is shown in separate graph for clarity. Each graph contains the performance

of the PUMA manipulator when controlled in the conventional method of operational

space formulation (torque control) without any singularity handling algorithm, and

when controlled with the algorithm with virtually added joints. The graph shows that
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the error follows the same trend for both cases. The conclusion is that the end-effector

tracks the identical desired trajectory with the same margin of error and that there

is no degradation in the tracking performance of the manipulator in non-singular

motion due to the addition of the virtual joints.

Figure 7.13 shows the tracking error in the position of the end-effector while

Figure 7.14 shows that in orientation. Again, the orientation error is displayed as

dφφφ = [dφX , dφY , dφZ ]T as explained in Section 2.7.

7.6 Conclusion

The singularity handling method proposed in this chapter is to supply ‘extra joints’

to the system in the lost degrees-of-freedom. This time, we introduce the idea without

actually building the extra joints into the physical mechanism, but only to use it to

provide extra rank into the Jacobian matrix. This prevents the Jacobian from going

rank-deficient as the manipulator enters singularity. The method has been shown

to work well, and is able to go through singular configuration in a stable manner.

The advantage is shown in the result as having a smooth continuous motion through

the singular region, as there is no switching in control algorithm in the vicinity of

singularity. Task in the lost degree-of-freedom during singular configuration is still

not feasible.

141



Figure 7.12: The result of the experiment, on tracking a trajectory through combined
wrist, elbow, and head singularity.

142



Figure 7.13: Graphs of the absolute value of the position error in the tracking per-
formance of PUMA in non-singular trajectory: when controlled with and without
virtual joint. Performance in each axis is shown in separate graph. Graph is shown
in task space end-effector tracking error in meters.
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Figure 7.14: Absolute value of the orientation error in the tracking performance of
PUMA in non-singular trajectory: when controlled with and without virtual joint.
Graph is shown in task space end-effector tracking error in dφφφ as explained in Section
2.7.
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CHAPTER 8

ARM-BASE INTEGRATION TOWARDS MOBILE
MANIPULATION

8.1 Chapter Overview

This chapter utilises everything that has been covered to the previous chapters

in the setup and control of a mobile manipulation system. Built on the operational

space formulation, the system consists of the PUMA 560 manipulator mounted on an

XR4000 Nomad mobile base.

While in Chapter 7 virtual joints are added to overcome singular configurations,

this time the concept is applied with addition of real (physically) joints. The extra

joints come in the form of a mobile base to add extra mobility to the PUMA arm.

It is shown that the extra DoF help to reduce the extent of singular configuration,

leaving a smaller portion of the workspace to be affected by it.

The remaining singularity is handled by removing the degenerate components

method. The mobile manipulator is now capable of larger workspace, and its imple-

mentation in a canopy polishing task has been successful [80].

This chapter presents an early stage of mobile manipulation with the singularity

robust algorithm. The task for this industrial application is to polish an aircraft
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canopy. The robot is required to maintain a constant 10N force normal to the un-

known surface of the aircraft canopy. A mobile manipulator was used to extend the

workspace of the manipulator to cover the entire piece of the canopy. The extra

degrees of redundancy also gives the robot the dexterity needed to maintain a com-

pliant motion so that the end-effector is always perpendicular to the surface of the

canopy. It is shown in this chapter that the singularity robust strategy, implemented

on the operational space formulation, was singularity robust in both force and motion

control.

The chapter firstly covers the integration technique between the arm and the base.

The problem encountered was that the base was in high level velocity control, while

the operational space formulation (that has been implemented in the PUMA arm)

requires torque control mode. It then discusses the singularity issues, comparing it

to Chapter 4 and 5. The result of the implementation is presented.

8.2 Integration of Torque Controlled Arm and Velocity Con-
trolled Base

In mobile manipulation [81], a manipulator arm is typically mounted on a mo-

bile base, and the arm and base are in simultaneous motion during a manipulation

task. The capabilities of the arm to manipulate and interact with the environment

is very much extended with the large reachable workspace of the mobile base. When

implemented in operational space formulation [1], ideally, we would like to have the

resulting system as one dynamically compensated system. For that to take place, both

arm and base need to be in torque control mode. However, most commercially avail-

able mobile bases are velocity-controlled. In this section, a solution to the problem
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is presented by combining the operational space formulation with a kinematic-based

control (velocity control) while maintaining dynamic compensation.

The dynamic model of the entire mobile manipulator is first derived. Control algo-

rithms using the complete dynamic model are then formulated. The algorithms com-

pute torque and velocity commands for the torque-controlled and velocity-controlled

joints, respectively, to execute the desired end-effector task. The operational space

formulation [1] is utilised to generate the torque command vector, taking into ac-

count the complete arm-base dynamics as seen from the operational point. Utilising

the property of the dynamically consistent inverse [4], J̄ is used not only in producing

the torque control command, but also the velocity control commands.

The resulting system is capable of dynamically compensated unified force and

motion control. The method is implemented on a PUMA 560 arm and the NOMAD

XR4000+ base (Figure 8.1). The arm provides 6 degrees of freedom for articulation

while the base provides 3 degrees of freedom in the plane and extends the workspace

of the manipulator arm to cover the entire canopy. All the six joints of the PUMA

arm are torque-controlled. However, the NOMAD base is only capable of high level

control, such as velocity control. It is independently driven by 8 DC motors that are

not capable of velocity control. Furthermore, velocity command at the motor level is

not possible and base motion can be only commanded using high level commands for

the holomomic motion in the plane. We therefore treat the base as a 3-DOF velocity

controlled system.

The system in this experiment is the PUMA 560 6 DOF manipulator arm with

the XR4000 Nomadic mobile base. The performance of the system in free motion

and force control task were studied. The method is then applied to an industrial
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application involving an aircraft canopy polishing task. The task is similar to earlier

experiment by [82], although in that experiment, the surface of the canopy is first

mapped, and therefore known to the robot. The application of our method is on a

task that requires the mobile manipulator to maintain a constant force perpendicular

to the unknown surface of the canopy, while the polishing tool covers the entire surface

to be polished.

Typically, velocity controllers operate at a slower rate, (eg. 200Hz), compared to

the internal servo (500-1000Hz) at which the torque control is operating. This slower

update rate has been known to affect performance. The system can be thought of as

a Macro/Mini system [83] [3].

8.2.1 Combined Torque and Velocity Control for the Overall
System

A mobile manipulator often consists of many joints, and often some are of torque

control (typically, the arm) and some of velocity control (typically, the base). In

fact, to the best of our knowledge, we are not aware of any commercially available

torque-controlled mobile base today. Here a method of combining torque and velocity

control is presented which is consistent with the dynamics of the entire (eg. arm and

base) system. This approach utilises the force/position duality with extension to the

case of redundant manipulators as shown in Table 8.1. This equation has been shown

in Chapter 2, and is reproduced here for convenience.

The approach uses the dynamically consistent inverse, as introduced in Section

2.5.1 which guarantees the position/force duality when used in torque control. This

property of duality as shown in Table 8.1, provides a method for us to control the

velocity-controlled base in a way which is similar to the RMRC method by [84]. When
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Table 8.1: The position/force duality (reproduced)
Position Force

δq = J̄δx + [I− J̄J]δq0 τττ = JT f + [I− J̄J]Tτττ 0

used in velocity control, there will be error due to the slower and less accurate macro

structure (the base), however, this is compensated by the faster and more accurate

mini structure (the arm).

The combined manipulator arm and the mobile base system can now be regarded

as an n DOF system, where n is the total number of joints that the two systems have

combined. The Jacobian matrix generated is of size m × n, where m is the number

of DoF of the specified task.

Treating the combined system as an n DOF robot, a torque command vector τττ

of size n and velocity command vector δq, also of size n are both generated from

the position/force duality tabulated in Table 8.1 to describe the desired end-effector

motion trajectory and contact forces.

Since the arm is in torque control and the base in velocity control, the appropriate

command for each joint is then sent accordingly. For example, let’s take a combined

system where the base makes up the first 3 joints, and the arm the last 6. From the

resulting 9× 1 velocity command vector dq, the first 3 elements are sent to the base.

Similarly, the last six elements of the torque command vector τττ are sent to the arm

(see Figure 8.1).

A mobile manipulator has typically redundant joints with respect to the task. It is

then necessary to control the behaviour of the manipulator posture. Many algorithms

have been proposed in the past, such as those by [30, 64, 85, 17, 86].
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Figure 8.1: Torque vector from operational space formulation and velocity vector from
velocity control, are both generated to satisfy the desired trajectory. The commands
are sent to the corresponding joints.

In this application, potential functions were constructed to have minima at the

desired manipulator redundant behaviour. The dynamically consistent inverse J̄ as

in the equations in Table 8.1 ensures that the projection of the gradient descent of

the potential function onto the null space of J will not interfere dynamically with the

end-effector task. The potential functions and the null space torque are specified in

the same way as described in earlier chapters.

8.3 Application to Aircraft Canopy Polishing

The proposed method was implemented on a torque-controlled PUMA 560 manip-

ulator arm and a velocity-controlled Nomad XR4000 mobile base, as shown in Figure

8.1.

In this implementation, the omnidirectional Nomad XR4000 base is modelled as

having 3 (planar) DoFs, namely translation along X and Y and rotation around

Z axes. This is done because the control to the mobile base is available in high
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level control (velocity control). The NOMAD actually has 4 wheel modules, with 2

actuators each, one for driving and one for steering [87].

The overall system is therefore thought of as a 9 jointed mechanism, with the base

providing the first three velocity-controlled joints (two prismatic and one revolute),

and the arm the last six torque-controlled joints (see Figure 8.2).

Figure 8.2: Frame assignment for the integrated arm-base system.

From this point onward, “joint 1”, “joint 2”, and “joint 3” would refer to the first

three joints of the overall system, supplied by the base, and “joint 4” to “joint 9”

would refer to joint 1 to 6 of the PUMA arm respectively.

The resulting Jacobian is of size 6 × 9. The resulting joint torque command and

joint velocity command vectors are of size 9 by 1. The first three elements of the

velocity vector are sent as joint velocity commands to the mobile base, while the last

6 elements of the torque vector to the PUMA arm.
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In dynamic compensation, the full dynamic model is employed for the PUMA

arm, while only a simplified model is used for the NOMAD base. The inertia matrix

A used for the NOMAD base is only modelled as having diagonal terms.

A PD control law is used for the motion control and PI for force control. Kp and

Kv gains were chosen to result in a slightly underdamped closed loop system with

natural frequency ωn = 45rad/s.

Force readings were taken with a JR3 FT (force torque) sensors, with a low pass

filter. PUMA and the NOMAD base were controlled by separate computers, linked

by a high speed TCP/IP connection. Control calculation is done on the processor

controlling the PUMA arm. The velocity command vector δq is sent over to the

NOMAD controller as high level velocity command.

8.4 On the Issue of Singularity Handling

This time, instead of adding virtual joints to the robot, we can observe the effect

when real physical joints were added to the manipulator. The extra DoFs can now be

utilised to supplement the DoFs lost during the manipulator arm’s singularities. The

following subsections compute the singular configuration of the arm and base system.

8.4.1 Position Singularity

The Jacobian matrix of the Arm-and-Base system is shown in Appendix B3.

As the mobile base is now capable of supplying motion in X and Y direction

(modelled as prismatic joints), the manipulator can only have a degenerate direction

in Z0 direction, which is the boundary singularity when the arm reaches its maximum

reach in Z0 direction. It can also be considered that 0JV has leading “1” in the matrix

in the first two columns. For the motion in Z0 to be degenerate, it is necessary that
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(a5c5 + a6c56 + d7s56) = 0 (8.1)

and

(a6c56 + d7s56) = 0 (8.2)

Substituting (8.2) into (8.1), we have a5c5 + 0 = 0, therefore c5 = 0, q5 = ±90o.

For (a6c56 + d7s56) = 0, then q5 + q6 = −2.68o.

So for position singularity to occur: q5 = ±90o AND q5 + q6 = 2.68o.

This is the position when the PUMA arm is pointing vertically. The −2.68o is the

small angle caused by the offset at the elbow of the PUMA. The degenerate direction

in the translation along Z0.

8.4.2 Orientation Singularity

When expressed in Frame{7}, which is originally Frame{4} on the stand-alone

PUMA arm, the lower half of the Jacobian matrix becomes:

7Jω =




0 0 −c7s56 −c7s56 s7 s7 0 0 s8

0 0 s7s56 s7s56 c7 c7 0 1 0
0 0 c56 c56 0 0 1 0 c8


 (8.3)

and J22 is rank deficient when s8 = 0 and the resulting Jω is:

7Jω =




0 0 −c7s56 −c7s56 s7 s7 0 0 0
0 0 s7s56 s7s56 c7 c7 0 1 0
0 0 c56 c56 0 0 1 0 0


 (8.4)

Again, we are faced with the question whether identifying the condition where Jω

is rank-deficient is enough to identify the complete set of solution. Jω is rank-deficient

when s8 = 0 AND s7 = 0 AND s56 = 0.

The singular direction for the spherical wrist is the rotation around X axis of

Frame {7}, which is the reflected as the first row of 7Jω. Following the method
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proposed in Section 4.7, it is necessary to check all the terms on the first row of 7Jω

in Equation 8.4. The possible conditions of singularities are:

• s8 = 0 AND s7 = 0

• s8 = 0 AND s56 = 0

• s8 = 0 AND c7 = 0

• s8 = 0 AND s7 = 0 AND s56 = 0

It was found, by substituting these expression into the Jacobian matrix and eval-

uating the determinant, that only when (s8 = 0 AND s7 = 0 AND s56 = 0) the

manipulator in orientation singularity, which is the same as identifying the condition

when Jω is rank-deficient.

This singular configuration happens when the wrist of PUMA is straight and

forearm of the PUMA arm is vertical and the first joint of the PUMA wrist is at zero

position. The singular direction is the rotation around X7 (see Figure 8.3).

Comparing the usable workspace of the mobile manipulation system with that of

a stand-alone PUMA, we can see a significant reduction in the amount of workspace

affected by singularity.

8.5 Experimental Setup and Result

Three sets of experimental result is shown in this paper, which analyse the per-

formance of the combined arm-base system in free motion, constrained motion, and

in an industrial application involving a canopy polishing task (see Figure 8.4).
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Figure 8.3: Sketch of planar view of the arm-base system. The degenerate direction
is the rotation around X7. There is no joints in the robot that can provide this degree
of freedom.

8.5.1 Free motion

This task requires the mobile base to move in an elliptical trajectory, while main-

taining the end-effector stationary with respect to the world frame. The error in

motion tracking is shown as the result. Motion of the base while maintaining a sta-

tionary end-effector can be thought of as internal joint motion of the arm-base system.

This motion is created by projecting the motion of the base into the null space of

the Jacobian. The desired null space configuration qi(desired) for joints 1 and 2 (the

translational DOF of the base) is made to follow a trajectory.

The error in motion trajectory tracking is shown in Figure 8.5. The result presents

the motion tracking performance of the arm-base system. It is required to keep the

end-effector stationary while the base moves in an ellipse, with major axis 40 cm and
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Figure 8.4: The three experiment setups: (left) maintaining stationary end-effector
while the base moves in an elliptical trajectory (center) maintaining a normal force
(stationary end-effector) with a moving base, and (right) polishing task, maintaining
constant 10 N force normal to unknown surface with sinusoidal end-effector motion,
with moving base.

minor axis 14 cm. The low speed setting was for the mobile base to complete the

ellipse in 30s, and high speed in 10s, as shown in the lower graphs of Figure 8.5.

This graph shows that while velocity control of the base has been theoretically

compensated for the dynamics of the structure, it is still affected by the disturbance

of the base motion at high speed. Therefore, for high speed dynamic compensation,

torque control architecture is still necessary.

The result only shows the tracking performance in X axis because the elliptical

trajectory of the base motion has the major axis along X, and error is most prominent

in this axis. Z axis has very little error because it is decoupled from the motion of

the base.
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Figure 8.5: The motion tracking performance of the arm-base system. The mobile
base was required to move in an elliptical trajectory of 40cm major axis and 14cm
minor axis. The desired X position is -15cm. Tracking is shown with the mobile base
moving in low speed (left) and high speed (right)
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Figure 8.6: The system was required to perform force control by exerting a normal
downward force to track the desired force trajectory. (left) force tracking performance
of a stand alone (stationary) PUMA arm and (right) that of arm-base system with
moving base.

The result in Figure 8.5 shows that the error is contained within ± 1 cm when the

base moves in low speed and barely within 2 cm at high speed. It is hard to compare

this performance with that of PUMA stand-alone motion tracking.

The video to this experiment can be found in:

http://guppy.mpe.nus.edu.sg/∼mpeangh/robotics/water bottle2.mpg

8.5.2 Constrained motion

This experiment compares the result of the force control ability of the system

while the base is stationary and while the base is moving. The task was to track a

desired force trajectory (against a surface) that switches between 20N and 15 N every

2 seconds while maintaining the end-effector position. Just like in Section 5.1, the

motion of the base is created by projection to the null space of the Jacobian.

Figure 8.6 shows the performance of force control with a stationary base (left)

compared to that with moving base (right). The error in force control at moving base
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is shown to be within ±2.5N. The effect of dynamic disturbance of the mobile base

of the performance of the arm is further discussed in [43, 42].

8.5.3 Canopy polishing

This task requires the system to maintain a normal force of 10N against an un-

known surface, while the end-effector moves in a sinusoidal manner. The mobile

manipulator automatically complies to the unknown canopy geometry while trying

to maintain a constant force of 10 N normal to the canopy surface. The result com-

pares the performance of the system with a stationary and with a moving base.

In this experiment, the main emphasis is placed not on force control, but on the

singularity issue and the combining of the arm and the base, which are of different

control modes. The operational space formulation is used to perform the unified

force/motion control. Other methods can be utilized too, such as reviewed in [88].

Background in force control strategy can be found in [89] for the classic impedance

control, [90, 91, 92, 93] on hybrid position and force control and [94, 95] for other

force control strategies and fundamental works.

The operational point is chosen at the end of the polishing tool. Motion control

is applied to the translation along X and Y axes, and the rotational around the Z

axis of the tool frame. The 10N force exerted normal to the unknown canopy surface

is along the Z axis of the tool frame. Moment control is applied to the other two

remaining DoFs, namely rotation around X and Y of the tool frame. Maintaining the

moments around these two axes at zero creates the compliant motion of the polishing

tool to follow the contour of the polished surface [80].
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In this experimental run, internal joint motion was set so that the mobile base

always faces the end-effector. This is to prevent the PUMA arm from hitting the

limit of its first joint and to increase the system manipulability [6].

The potential function used was defined as:

v0(q) = kd(q4 − q4,desired)
2; (8.5)

where q4−desired = 0. This means we would like to keep joint 4 (first joint of PUMA

arm) to be at the center of its range. The projection of the gradient descent of this

potential function onto the null space would cause the base to move accordingly.

The performance of the system with combined arm and base was found to be

almost the same for stationary and moving base separately, therefore the graph in

Figure 8.7 only shows the performance of the system with moving base. The force

distribution (with the desired value being 10N) has a spread of ±2 N in both cases,

and motion tracking error within 7 cm.

Figure 8.7: The system is required to perform sinusoidal tool motion maintaining
10N force normal to the unknown surface. The graph shows the error response of the
mobile manipulator in force (right)) and position (right) tracking with moving and
stationary base
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When the tool moves sinusoidally while maintaining contact with the surface of the

canopy, disturbance introduced by the friction with the surface seemed to overwhelm

the error introduced by the dynamic disturbance of the base motion [80]. A friction

compensation was implemented to reduce the effect.

As shown in Section 8.4, wrist singularity has been reduced to only when s8 = 0

AND s7 = 0 AND s56 = 0. When the system was performing the polishing task, it

was able to move across the straight wrist configuration in a stable manner (Figure

8.8).

The polishing motion can be seen from the video in

http://guppy.mpe.nus.edu.sg/∼mpeangh/robotics/polishing-base.mpg

While the polishing motion of the end-effector while going to a wrist singularity

can be found in: http://guppy.mpe.nus.edu.sg/∼mpeangh/robotics/polishing-wrist-

singularity.mpg

8.6 Conclusion

The chapter presents an implementation result of the operational space formu-

lation in a mobile manipulation task, where a torque controlled arm was combined

with a velocity controlled base. The integration method was presented. It is also an

extension of the idea in Chapter 7 of supplying the manipulator with extra DoF to

compensate for the lost DoF at singular configuration. This time, however, the joints

are real, in the form of a mobile base. Results of the experiments were presented.
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Figure 8.8: The performance of the system in polishing experiment as the manipulator
was set to cross the configuration where the wrist was straight. The middle plot shows
the determinant of the Jacobian of just the PUMA arm without the base. The system
can now move across what used to be wrist singularity without any problem.
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CHAPTER 9

CONCLUSION

This thesis concentrated mainly on the issue of singularity. Various issues were

presented in Chapter 4 on the identification of singularities and singular direction.

Completeness of solution was analysed and a simple check was proposed to eliminate

possibility of incomplete solution for the case of serial manipulator with spherical

wrist. Singular directions are usually easy to identify by observation, when the singu-

lar configurations have been identified. It was also highlighted that it is possible for

a family of singular configurations to have different number of lost DoFs. This means

that even when a manipulator has lost one DoF, at certain configurations which form

a subset of the singularity it is in, it can still lose more rank. This should be taken

into consideration when designing algorithms to handle singularities in a manipulator.

In the singularity handling method of removing degenerate components, null space

motion was utilized to create motion to assist the end-effector in escaping singularity

into degenerate direction. The reduction of degrees of freedom within the singular

region causes accumulated error in the singular direction as motion in these directions

is disabled. This would cause jerkiness as the end-effector tries to close the large

accumulated tracking error as soon as it leaves the singular region and regains its full

motion control. Methods were suggested to handle such situations.
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In the method of virtual joint, the DoFs lost in the singularity was regained with

extra joints that only exist computationally. The joints don’t exist physically and

therefore the manipulator is still not able to move in the degenerate direction. The

method is then extended as the manipulator arm was mounted on a mobile base.

The mobile base, capable of 3DoF planar motion was thought of as the extra joints

supplied to the system. In Chapter 8, it was shown that the workspace affected by

singularity was reduced significantly. The system was designed to perform mobile

manipulation task such as compliant motion in canopy polishing task. The robot

was to maintain a constant contact force normal to the surface of the canopy that is

unknown to the robot. The result of the experiment was presented. Several videos of

the experimental results can be found in:

• http://guppy.mpe.nus.edu.sg/ mpeangh/robotics/

example-polishing-force-data.mpg

• http://guppy.mpe.nus.edu.sg/ mpeangh/robotics/

polishing-wrist-singularity.mpg

• http://guppy.mpe.nus.edu.sg/ mpeangh/videos/waterbottle 2.mpg

Future Work

Although singularity is a well researched topic that has been around for a long

time, there is still room for further refinement in this field. Many experts are often

quoted to say that this was a hot topic “10-15 years ago” in their review. It is the

author’s belief that the focus in handling singularity should be directed towards the

robustness of the algorithms in the real-time implementation.
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For example: the issue of discontinuity at the boundary of singular region. There

are not many literature at this point that address the issue in great details. It is

often thought of as a secondary problem to the task of maintaining a stable trajectory

around the singular configuration, and that it can be handled by introducing some

damping terms. However, as robots get smaller in size and lighter, this could become

a more serious problem. Works in micro or nano scale robots can not tolerate much

of a jerkiness, for example.

In a more general view of mobile manipulation, it can be said that most of the

fundamental theories are available to realise a decent experimental setup. However,

it is often still very difficult to realise the system in a robust manner that would

enable the technology to be deployed in a real human-interactive environment. The

reliability and safety of the technology should be the main focus of the development

effort. Experimental setup often works fine within the testing environment, however

the stability windows are often not large enough to handle the uncertainty in the

human (unstructured) environment.
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APPENDIX A

FRAME ASSIGNMENTS

A.1 Frame Assignment for PUMA (stand-alone)

Figure A.1: Frame Assignment for PUMA 560 in the experiment, when used alone
(without the mobile base).

The numerical values for the Denavit-Hartenberg parameters used are: a2=0.4318

m, a3=-0.0203 m, d2=0.2435 m, d3=-0.0934, d4=0.4331m.
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Table A.1: The modified DH parameters for PUMA manipulator (stand-alone as in
[2]

i αi−1 ai−1 di ϑi

1 0 0 0 ϑ1

2 -90 0 d2 ϑ2

3 0 a2 d3 ϑ3

4 90 a3 d4 ϑ4

5 -90 0 0 ϑ5

6 90 0 0 ϑ6

A.2 Frame Assignment for PUMA-NOMAD system

The parameters used in the Denavit-Hartenberg Convention are: d3 = (m),

a5 = 0.4318(m), a6 = −0.0203(m), d5 = 0.2435(m), d6 = −0.0934(m), and d7 =

0.4331(m).

Table A.2: The modified DH parameters for PUMA mounted on Nomad mobile bases
system

i αi−1 ai−1 di ϑi

1 -90 0 d1 -90
2 90 0 d2 90
3 90 0 d3 ϑ3

4 0 0 0 ϑ4

5 -90 0 d5 ϑ5

6 0 a5 d6 ϑ6

7 90 a6 d7 ϑ7

8 -90 0 0 ϑ8

9 90 0 0 ϑ9
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Figure A.2: This is the frame assignment for the Arm-Base System used in the
experiment, involving the PUMA 560 Arm mounted on top of Nomadic XR4000
mobile robot.
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APPENDIX B

JACOBIAN MATRIX

B.1 Jacobian Matrix for PUMA (stand-alone)

J1 =




−C1(d2 + d3)− S1(a2C2 + a3C23 + d4S23)
−S1(d5 + d6) + C1(a2C2 + a3C23 + d4S23)

0
0
0
1




(B.1)

J2 =




C1(C23d4 − a2S2 − a3S23)
S1(C23d4 − a2S2 − a3S23)
−(a2C2 + a3C23 − d4S23)

−S1

C1

0




(B.2)

J3 =




C1(C23d4 − a3S23)
S1(C23d4 − a3S23)
−(a3C23 + d4S23)

−S1

C1

0




(B.3)

J4 =




0
0
0

C1S23

S1S23

C23




(B.4)
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J5 =




0
0
0

−C4S1 − C1C23S4

C1C4 − C23S1S4

S56S7




(B.5)

J9 =




0
0
0

−S1S4S5 + C1(C5S23 + C23C4S5)
C5S1S23 + (C23C4S1 + C1S4)S5

C23C5 − C4S23S5




(B.6)

B.2 Jacobian Matrix for Example Manipulator in Section
3.2.1

Below is the Jacobian of the 7 DOF Manipulator used as an example in Section

3.2.1. The diagram is reproduced below in Figure B.1 (right).

Figure B.1: Structure of the PUMA 6 DOF(left), and an example of a 7 DOF PUMA-
like manipulator with spherical wrist (right). This manipulator is used as an example
in Section 3.2.1.

The Jacobian is given expressed in Frame{4} where it is in its simplest form.
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5J =

(
J11 03×3

J21 J22

)
(B.7)

5J11 =
(
5J11a|5J11b

)
(B.8)

4J11a =




(a2C2 + a3C23 + d5S234)S5 − C234((d2 + d4)C5 − a4S5) C5(d5 + a3S4 + a2S34)
C5(a2C2 + a3C23 + a4C234 + d5S234) + (d2 + d4)C234S5 −(d5 + a3S4 + a2S34)S5

−(d2 + d4)S234 −a4 − a3C4 − a2C34




(B.9)

4J11b =




C5(d5 + a3S4) d5C5

−(d5 + a3S4)S5 −d5S5

−a4 − a3C4 −a4


 (B.10)

[4J21|4J22] =



−C5S234 S5 S5 S5 0 0 S6

−S5S234 C5 C5 C5 0 1 0
C234 0 0 0 1 0 C6


 (B.11)

B.3 Jacobian Matrix for PUMA-NOMAD System

J1 =




0
1
0
0
0
0




(B.12)

J2 =




−1
0
0
0
0
0




(B.13)

J3 =




S34(d5 + d6)− C34(a5C5 + a6C56 + d7S56)
−C34(d5 + d6)− S34(a5C5 + a6C56 + d7S56)

0
0
0
1




(B.14)
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J4 =




S34(d5 + d6)− C34(a5C5 + a6C56 + d7S56)
−C34(d5 + d6)− S34(a5C5 + a6C56 + d7S56)

0
0
0
1




(B.15)

J5 =




−S34(C56d7 − a5S5 − a6S56)
C34(C56d7 − a5S5 − a6S56)
−(a5C5 + a6C56 + d7S56)

−C34

−S34

0




(B.16)

J6 =




−S34(C56d7 − a6S56)
C34(C56d7 − a6S56)
−(a6C56 + d7S56)

−C34

−S34

0




(B.17)

J7 =




0
0
0

−S34S56

C34S56

C56




(B.18)

J8 =




0
0
0

−C34C7 + C56S34S7)
−C7S34 − C34C56S7

S56S7




(B.19)

J9 =




0
0
0

−C8S34S56 − (C56C7S34 + C34S7)S8

C8S34S56 + (C56C7S34 + C34S7)S8

C56C8 − C7S56S8




(B.20)
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