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Summary 

This research is an investigation of the problem of prosody generation for 

Mandarin Chinese text-to-speech system. I mainly work on two issues of prosody: (1) 

The prediction of prosodic phrase breaks, especially the prediction of prosodic word 

break. (2) The design, evaluation, and selection of prosody parameters for unit 

selection based synthesis. 

This work uses a speech corpus read by a female professional speaker. During the 

evaluation of speech corpus, the problem of speech unit distribution of Chinese 

language is first investigated. The speech corpus is then evaluated to find if it is 

suitable for this work. 

The problem of prosodic break has been investigated. The factors that affect the 

performance of prosodic break are examined. Dependency models for break 

prediction are developed. The experiments show that the models produce better result 

than the simple CART approach. 

The approaches of designing, evaluating, and selecting prosody parameters are 

given. Some prosody parameters are defined to suit the nature of Chinese speech and 

the approach of unit selection. The parameters defined in this work are intended to 

overcome the major speech problems in speech synthesis. We highlight the problems 

of correctly representing perceptual prosody information in this work. The defined 

parameters are examined from statistical views and recognition views. A clustering 

approach is used to remove redundancy in prosody parameter definition. The 

relationship between the parameters and features for prediction has been investigated.  

In the unit selection-based synthesis, the defined parametric prosody expression is 

applied in cost function. Some experiments are designed to better evaluate the system. 

The experiments show that the use of parametric prosody representation significantly 

improved the quality of speech. 
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Chapter 1  Introduction 

The aim of this research is to develop an approach to generate good prosody from 

Mandarin Chinese text and then apply the prosody to a speech generation component 

(synthesizer) to generate high quality speech. Specifically, we investigate what 

prosody description is suitable for unit selection based synthesis approach.  

The research is carried out through building a full size Chinese text-to-speech 

system, which is used as a test bed for studying and evaluating algorithms and 

approaches. 

1.1 Knowledge of TTS 

In order to explain the work of this research, in this section, we introduce some of the 

topics related to the research. 

1.1.1 Text-to-Speech 

Text-to-speech synthesis (TTS) is the automatic conversion of any plain text to speech 

(Shih and Sproat, 1996). The generated speech is expected to resemble that of a native 

speaker of the language as closely as possible. The input text usually exists in 

machine-readable form, such as a text file. The subject in this research is Mandarin 

Chinese TTS. Therefore, the input of the system is Chinese text in the form of 

Chinese codes (such as GBK for Simplified Chinese or Big5 for Traditional Chinese), 

which can be in a text file format, and the output of the system is speech signal, which 

may be stored in a computer as a waveform file.  

In the past decades, much progress has been made in Chinese TTS systems and 

many systems have been built (Lee et al., 1989,1993; Chan et al. 1992; Chen et al., 

1998; Shih and Sproat, 1996; Chou and Tseng, 1998). Like TTS systems in other 

languages, a typical TTS system consists of three main parts, which are text analysis, 
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prosody generation, and speech signal synthesis. Figure 1.1 shows a typical 

framework of a TTS system.  

The input of a TTS system is usually raw text. Text analysis is to change the raw 

text into the format that prosody generation and synthesis parts can accept. The raw 

text may consist of non-Chinese characters (symbols, digits, etc). Before doing other 

things, a text normalization process converts them into Chinese text.  After 

normalization, the text becomes a sequence of Chinese characters. As there is no 

space delimiter between words in Chinese, to perform further analysis, words should 

be extracted from the sentence. Word segmentation identifies words in the continuous 

Chinese text. Moreover, POS (Part-of-speech) is one of the basic information for 

understanding a sentence.  POS tagging process classifies each word into a category. 

POS information may be useful in analysis of prosody structure, as will be shown in 

later chapters. Another task of text analysis is to convert the Chinese text into 

phonetic representations for producing correct sounds in the generated speech.  

 
Raw Text 

Text processing 

Linguistic and phonetic 
information 

Prosody generation

Prosody and phonetic 
information 

Speech synthesis 

Speech 

Figure 1.1 Typical Framework of a TTS System 
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The second part of a TTS system is prosody generation. Proper prosody should 

be generated according to the linguistic and phonetic information contained in the 

sentence. The prosody includes rhythm, pause, accent, pitch, duration, and other 

perceptually identifiable acoustic features in speech. The process of prosody 

generation usually does the following work:  

• Determining Symbolic Representation of Prosody: Usually, several levels 

of break are defined to give a prosody structure of a sentence. The breaks will 

determine the duration of pause between words and will affect prosody 

parameters, such as duration of speech units, pitch contour, etc. In some 

languages (e.g. English), labels for stress, accent and boundary tone also need 

to be determined at this stage. The breaks and labels are symbolic 

representations that describe some abstract prosody events.  

• Determining Parametric Representation of Prosody: Prosody parameters 

are a set of quantitative parameters that represent prosody (pitch contour, 

duration, and energy) of the utterance to be generated. These parametric 

representations are continuous values that measure the acoustic properties of 

speech. A model is usually built to convert all the available symbolic 

information (linguistic and phonetic inputs, prosodic breaks, and intermediate 

labels) into some desired parameters.  

The third part of a TTS system is the synthesis component, which transforms the 

pronunciation and prosody information into speech signal. The segmental (linguistic) 

and supra-segmental (prosody) information should be well presented in the generated 

speech. The pronunciation is usually done by selecting the correct synthesis unit, 

while the realization of prosody is either by transformation of the synthesis units or by 

selecting the proper units that match the target prosody. 

1.1.2 Prosody 

The ultimate goal of a TTS system is to make the system read text like a human. The 

naturalness of speech depends on how much acoustic information of natural speech is 

contained in the reconstructed speech.  Natural human speech usually contains two 
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different sorts of information: segmental information and suprasegmental information. 

The segmental information refers to what the speaker says. The suprasegmental 

information refers to how the speaker says. Same segmental information with 

different supra-segmental information may result in different meanings. For example, 

“Good.” and “Good?” have the same segmental information but different intonations, 

resulting in different meanings. 

Suprasegmental information is usually referred to as prosody in literature. Prosody 

generally consists of certain properties of the speech signal such as audible changes in 

pitch, loudness, syllable length, pause, and so on.  Perceptually, prosody is usually 

perceived as break, tone, accent, intonation, etc. Acoustically, prosody is measured by 

fundamental frequency (F0) contour of speech waveform, length of duration, and 

energy level of speech units, etc.  

Fundamental frequency is usually regarded as the most important element of 

prosody. As fundamental frequency is perceptually identified as pitch, in many 

literatures, it is referred to as pitch. In this work, we use the term “pitch” to mean 

fundamental frequency in most occasions. We use pitch contour to mean funamental 

frequency contour, which is also referred to as intonation contour in some literatures. 

1.1.3 Speech Synthesis by Unit Selection 

There has been a lot of research on speech synthesis in the past decades. All the 

methods can be classified into three major categories (Flanagan, 1972), which are 

articulatory synthesis, formant synthesis, and concatenation synthesis. Articulatory 

synthesis attempts to model the human speech production systems, while formant 

synthesis and concatenation synthesis attempt to only model resultant speech. 

Formant synthesis generates speech with the support of a database of rules. 

Concatenation synthesis concatenates pre-recorded speech units to form the final 

speech. During the synthesis process, the units are usually changed to fit the prosody 

requirements.  

Most of the traditional speech synthesis approaches use signal-processing 

techniques to construct or transform speech signals during synthesis process. This 
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usually generates speech with a machine-like voice. As the development of hardware, 

computer has more memory and more powerful computation power. It becomes more 

realistic to store as many speech units as possible. Therefore, an extreme approach 

emerged. The approach uses a huge prerecorded corpus (Black and Campbell, 1995; 

Hunt and Blank 1996). During synthesis, we only need to select the best synthesis 

units and then concatenate them without any modification. As there is no signal 

processing to the original speech signal, the synthetic speech can be very natural. 

1.2 Research Overview 
1.2.1 Problem Statement 

As we have stated, speech contains two kinds of information, which are segmental 

information and suprasegmental information (prosody). Segmental information 

determines the intelligibility of speech, while suprasegmental information determines 

the naturalness of speech. The aim of this work is to generate high quality speech. To 

generate high quality speech, we need to generate speech with proper segmental 

information and proper suprasegmental information (prosody).  

Unit selection based approach is considered a way to improve the segmental 

information for synthetic speech. Since speech pieces are directly copied to final 

speech during synthesis process, the generated speech can keep the segmental 

information as much as possible.  

When we decide to use unit selection based approach for synthesis, the main 

problem of generating high quality speech becomes the generation of natural prosody.  

To generate natural prosody, we have to (1) generate a correct prosodic structure and 

(2) generate a proper representation of prosody.  

In Chinese, syllables are usually grouped into prosodic words. Prosodic words are 

further grouped together to form prosodic phrase. The existence of prosodic structure 

makes speech natural. To synthesize speech with a correct prosodic structure, we have 

to investigate the problems of the placement of prosodic breaks, especially the 

prosodic word breaks. 
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For unit selection based approach, it is a problem to ensure that the 

suprasegmental information of synthetic speech is correct and the best. Unlike other 

approaches, the unit selection based approach is a pattern matching process, in which 

prosody of speech unit cannot be changed. We may have the following problems in 

dealing with this. (1) How to measure the mismatch between target unit and selected 

unit? (2) What representation is needed for describing prosody of units? (3) How to 

keep the parameter set concise but sufficient? (4) What factors are important in 

predicting prosody parameters? 

To investigate the problems of prosodic break and prosody parameters, we also 

need a reliable speech corpus and reliable evaluation approaches. Therefore, the main 

problems to be solved in this work can be described from the following aspects: 

(1) Corpus Evaluation 

Both corpus-based prosody generation and unit selection-based speech synthesis 

approaches require speech corpora. To better investigate the prosody and synthesis 

problems, the speech corpus should be well designed to have a good coverage of the 

prosody and speech phenomena. Due to the large number of unit combinations in 

Chinese, it is a big challenge to design an inventory that covers prosody phenomena 

as largely as possible, yet to keep the size of the inventory as small as possible. The 

distribution of units in this language should be investigated. The speech corpus for 

this work should be well evaluated before it is used. 

(2) Prosodic Break Prediction 

One of the most important aspects of Chinese prosody is the organization of speech 

units when speaking. Linguists have found that there is a hierarchical structure for 

Chinese prosody. Syllables are grouped together to form prosodic groups. Due to the 

existence of different levels of prosodic group, listeners can perceive different types 

of prosodic break. The breaks make listener to understand speech better. However, 

this hierarchical structure cannot be well used in Chinese TTS system due to poor 

prediction approaches. Especially, we need to investigate the approaches and factors 

in the prediction of prosodic words.  
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(3) Prosody Parameter Design and Prediction 

There were some prosody models designed for Chinese (refer to 5.1.4). However, 

they have the following shortcomings:  

(1) They are designed for signal processing based synthesis (e.g. PSOLA, etc), in 

which signals are transformed according to prosody requirements. They are normally 

unsuitable for unit selection. There is no pitch contour mismatch between units in 

signal processing based synthesis. However, it is a problem to measure a prosody 

mismatch during unit selection-based synthesis process.  

(2) The general prosody parameters (duration, energy, and pitch contour) cannot 

capture all the important aspects of prosody. For example, duration analysis showed 

that boundary units (e.g. start and end units of a prosodic word or a phrase) have 

longer durations than other units. However, if we select a long unit only based on 

duration, the selected unit is not necessarily a unit that we expect. Duration alone 

cannot distinguish boundary units from non-boundary ones, which however are quite 

different in perception. Therefore, some more prosody parameters should be 

investigated to account for these prosody differences in units. Another important 

aspect for Chinese prosody is tone. How to effectively express tone information is 

also a problem.  

(3) When we define many parameters to account for different aspects of prosody, 

the defined parameters may have redundancy. How to select a small set of parameters 

yet to describe the main prosody properties is a problem.  

(4) To understand the problem of prosody prediction, we need to further 

investigate the relationship between the parameters and the features.  

(4) Unit Selection with Prosody 

Unit selection based approach has been used by English and other languages. 

However, integration of prosody in unit selection remains a problem. Some systems 

(e.g. Chu et al, 2000) integrate symbolic representation of prosody in their work. 

Symbolic representations are discrete values to describe prosody events, such as break 
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types, accent marks etc. The symbolic representations can capture some of the 

prosody differences. However, the discrete values cannot provide an accurate 

distinction between units. Hence, the best units may not be selected due to the absence 

of proper distinction measures. Some work tried to use parametric parameters (e.g. 

Campbell et al, 1996), however, the parameters are not carefully designed for unit 

selection based approach and the way to apply the prosody is not well considered. For 

example, variation of prosody parameters was not well handled in their work.  

Evaluation of synthetic speech is always problematic for two reasons: (1) 

Language is an infinity set. Complete testing is impossible. (2) Speech quality is often 

evaluated by human perception. Thus, evaluation is difficult to be conducted.  

To have a fair evaluation of speech, the testing material and testing approach is 

very important. Designing text that has a good coverage of the language in question 

should be investigated. To better evaluate the performance of the defined prosody 

parameters using subjective test, proper testing approach should be used. 

1.2.2 Brief Description of the Work 

This work is to investigate the problem of the prediction of prosodic breaks and 

prosody parameters. Especially, we want to investigate how prosody is designed, 

predicted, and applied in the unit selection based synthesis. To achieve this goal, we 

have to work on four main tasks.  The four main tasks are as shown in Table 1.1.   

The first part is corpus preparation. We will build a good corpus for our main 

research in this part. In addition, we will evaluate the corpus to make sure it is suitable 

for this work.  

The second part is prosodic break prediction. In prosodic break prediction, we 

will propose models for predicting the breaks. We will investigate the factors for the 

prediction of prosodic words. 

The third part is the determination and prediction of prosody parameters. In 

prosody parameter determination, we will propose an approach to decide what kind of 

prosody description should be used for the unit selection based approach. Especially, 
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we will propose an approach to convey the tone and break information in the 

parameters. We will remove the redundancy of the parameters.  

The fourth part is the unit selection with prosody. In this part, we will integrate 

prosody parameters into cost function to help unit selection. We will also design 

testing texts and testing approaches for listening test. 

Tasks Subtasks 

Constructing corpus 

Analyzing distribution of Chinese units 

Corpus preparation 

Evaluating the corpus 

Analysizing prosodic words  

Proposing model for prosodic word prediction

Prosodic break 
prediction 

Proposing model for minor prosodic phrase 
prediction 

Defining prosodic parameter 

Evaluating prosodic parameters 

Selecting prosodic parameters 

Prosodic parameter 
determination 

Analyzing prediction factors 

Defining cost functions 

Designing testing text 

Unit selection with 
prosody 

Evaluating synthetic speech 

Table 1.1 Tasks of this work 

1.2.3 Problems not Concerned in the Work 

To better understand and avoid misunderstanding of the scope of this work, we list 

some issues that may be raised. 

(1) Speaker Dependent or Speaker Independent 

The work is about text-to-speech system. The synthetic speech should come from 

only one speaker.  To make the generated speech resemble the voice and the speaking 

style of the original speaker, the prosody model should also be built from the same 

speech data. Therefore, the TTS system is a speaker dependent system. 
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Different speakers may have different prosody styles, such as the habits of 

breaking within a sentence. However, since we are going to generate prosody for TTS 

system, this research deals with common prosody characteristics among general 

native speakers. Prosody differences among speakers are not the main issue of this 

work. 

The speech corpus in the work is read by a speaker with common speaking style. 

The results produced by the models using the corpus may be speaker dependent. 

However, the approaches adopted are speaker independent because they are not based 

on speaker dependent features. 

(2) Locality  

The speech to be generated is standard mandarin Chinese speech. (Refer to Section 

2.1.3) Other dialects are not concerned in this work.  To concentrate on TTS, we do 

not take dialects or locality as part of the work.  

(3) Prosody and Emotion 

Emotion is one of the expressing forms of prosody. Emotional speech usually has 

special duration, pitch contour, and energy variation. However, emotion is not the 

topic of this research. The main aim of this work is to generate speech with general 

speaking style and voice quality. The generated speech is to be used for general 

purpose rather than in specific domain or for special use. 

(4) Meanings of Prosody 

In life, we generally use prosody to mean poem style text. Speech with prosody 

usually means speech with regular rhythm. However, in the context of text-to-speech 

synthesis, prosody means some particular perceptual properties of speech. The 

prosody in this work means the later. Therefore, any speech segment has its prosody, 

no matter it has a regular rhythm or not. The meaning of poem style structure of 

speech is not the part of this work. 
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1.3 Outline of the Thesis 

Chapter 2 introduces the background related to this research. Some basic knowledge 

of Chinese and Chinese prosody is briefly covered. The training approach CART is 

briefly introduced. 

Chapter 3 describes corpus preparation. The process of generating the corpus is 

described. The distribution of units in Chinese language is studied. The speech corpus 

is evaluated also.  

Chapter 4 studies the prediction of prosody structure. The problem of prosodic 

word is first studied. Models for the prediction are given. Some aspects related to the 

performance are discussed. The problem of minor phrase prediction is also 

investigated.  

Chapter 5 covers prosody parameters for unit selection based synthesis approach.  

This chapter proposes approaches for designing, evaluating and selecting prosody 

parameters for unit selection. Prosody parameters are defined. The prosody 

parameters for describing perceptual prosody effects are evaluated. An approach for 

selecting parameters is proposed. The relationship between features and parameters is 

analyzed.  

Chapter 6 covers the unit selection-based speech synthesis. The prosody 

parameters are integrated into unit selection.  The cost function for unit selection is 

defined.  The algorithm for unit selection is given. The weights of subcosts are 

determined. 

Chapter 7 describes the evaluation of speech quality. The texts for testing are 

designed. The performance of the prosody and the TTS system is tested. 

Chapter 8 gives a summarization. 
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Chapter 2  Foundations 

In this chapter, some basic knowledge of Chinese and the research findings of 

Chinese prosody are first covered. Then the main learning approach, CART 

(classification and regression tree), is described.   

2.1 Basics of Chinese  
2.1.1 Words 

Chinese language differs from Western languages in a number of ways. Chinese is an 

ideograph language, whose character set is not a closed one. The number of basic 

Chinese characters is large, ranging from thousands of frequently used characters (GB 

code) to some twenty thousand ones in a more complete Chinese character code 

standard (such as GBK or Unicode). A typical system that uses the GB set includes 

6763 simplified Chinese characters. 

In Chinese, a word is a unit consisting of one or more characters. Most of 

Chinese words consist of 1 to 4 characters. As there is no generally accepted 

definition of word, the number of words is not fixed either. Word is defined 

differently in different applications. A big dictionary may contain 60,000 or even 

100,000 Chinese words. As there are always newly generated words, such as 

compound words and proper names, it is not possible to completely include all 

possible words in a dictionary.  

Another difference between Chinese and Western languages is that there is no 

space between words in a text of Chinese. Therefore, before the understanding of a 

sentence, words need to be identified first from a continuous text string of a sentence. 
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2.1.2 Phonetics of Chinese 

Phonetically, each Chinese character is a tonal monosyllable (with exception that 

around 10 characters have disyllabic pronunciations). Although the number of the 

characters is large, the number of syllable pronunciations is much less. There are 

around 408 different syllables in Mandarin Chinese regardless of tone (Chao 1968). 

Tone is one of the distinguishing characteristics of Chinese. There are five tones for 

the pronunciation of syllables. Same pronunciation with different tones usually 

conveys different meanings. There are around 1300 different meaningful 

pronunciations in Chinese Mandarin if tones are considered. Therefore, usually many 

Chinese characters share the same pronunciation. It is also possible that one character 

has more than one pronunciation while having different meanings. 

FINAL
EndingNasalDiphthongorVowelMedial

INITIAL
Consonant ][][][   

 

Figure 2.1 Decomposition of a Chinese base syllable 

22 INITIALS B C CH D F G H J K L M N P Q R S SH T X Z ZH NULL-INITIAL 

38 FINALS A AI AN ANG AO  

E EI EN ENG ER  

I IA IAN IANG IAO IE IN ING IONG IU IZ IZH 

ONG OU 

U UA UAI UAN UANG UENG UI UN UO 

V VAN VE VN  

Table 2.1 Initials and Finals in Chinese 

As shown in Figure 2.1 (Chao 1968), conventionally, each Chinese base syllable 

can be decomposed into an initial-final structure similar to the consonant-vowel 

relations in other languages. Each base syllable consists of either an initial followed 

by a final or a single final. Here initial is the initial consonant part of a syllable and 

 



 
Chapter 2. Foundations  14 

final is the vowel part including an optional medial or a nasal ending. In Mandarin 

Chinese, there are 22 initials (including a null-initial) and 38 finals as shown in the 

table (Hon, 1994; Wu, 1989). 

2.1.3 Mandarin 

Spoken Chinese exists in the form of different dialects. For example, Cantonese is 

spoken in Hong Kong and southern China. Mandarin is the standard spoken language 

of Chinese.  Mandarin (Putonghua) is defined as “the common language in China, 

based on the northern dialects, with the Peking phonological system as its norm of 

pronunciation.” (NLRM, 1955). In this thesis, in the context of speech, we use 

Chinese to mean Mandarin. 

2.2 Chinese Prosody 

The researches in Chinese prosody provide us a picture of Chinese prosody. Prosody 

of Chinese is unique in several ways. We briefly introduce the following: tone, 

intonation, and rhythm. 

2.2.1 Tone 

Chinese is a tonal language, in which each syllable (or Chinese character) carries a 

tone. Tone helps to express meanings in Chinese. The tone can be perceptually 

identified by human or observed from pitch analysis result. When a syllable is 

pronounced in isolation, its pitch contour is quite stable. Pitch contour of each tone is 

regular, except for tone 5, traditionally termed neutral tone, which is not considered as 

a formal tone.  The pitch contour of base syllable  “ma” is shown in Figure 2.2. (Xu, 

1997).  From the figure, we see that each tone has its shape. 

However, when pronounced in a context, the pitch contours of tone undergo 

substantial variations, which usually depend on the contextual tones and sentence 

intonation. There are anticipatory effect and carry-over effect in Chinese tones (Xu, 

1997). Pitch contour will change to have a smooth transition between itself and the 

contour of its previous syllable or the succeeding syllable. These effects exist between 
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syllables, even if the syllables do not form a word, as long as there is no pause 

between them.   

It is well known that a third tone will be changed to the second tone when it is 

followed by another third tone. For example, the original pronunciation of “雨伞” 

(umbrella) is “yu3 san3”. However, it is usually read as “yu2 san3”. 

It is possible for a prosodically weak syllable to be toneless, i.e. neutral tone 

(Tone 5).  In extreme cases, a tone may be realized with a shape opposite to the 

lexical specification (Shih et al, 2000). The pitch contour of the neutral tone syllable 

is conditioned primarily by the tone of the preceding syllable, although other factors 

such as the following syllable also play a role. 

From the above facts, we understand that pitch contour of a tone is heavily 

affected by the surrounding syllables. 

 

 

Figure 2.2 Tones and pitch tracks of base syllable “ma” (Xu, 1997) 
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2.2.2 Intonation Theory of Chinese 

Unlike English and other non-tonal languages, in which the F0 contour is principally 

determined by intonation pattern alone, F0 in Mandarin Chinese also reflects lexicon 

tone for the component words. When syllables are stressed, their tonal shapes are 

fully realized, while weakly stressed syllables are usually overridden by sentence 

intonation. (Liao, 1994) 

There are three different models previously proposed to describe intonation of 

Mandarin Chinese (Jin, 1996). (1) The pitch range theory (Gärding, 1987) claims that 

Mandarin intonation is a combination of different pitch range values determined by 

the sentence. Tones are just local pitch perturbations within the given ranges. (2) The 

pitch contour theory (Chao, 1968) claims that Mandarin intonation is characterized by 

contrasting contour shapes. These contours provide global rises or falls onto which 

the local word tone contours are superimposed. (3) The register theory (He and Jin, 

1992) claims that Mandarin intonation contours are exhibited on different registers 

according to grammar and the speaker’s attitude. 

From these theories, we understand that Chinese intonation has a global shape for 

the whole intonation and local shape for tones. The global shape and local shape 

interact with each other.  

2.2.3 Rhythm 

One example of rhythm in Chinese is the existence of prosodic word. Linguistic 

research on Chinese prosody (Feng, 1997) found that the prosodic word in Chinese 

includes at least one foot, which is the smallest free-used prosody unit in prosody 

morphology. A standard foot in Chinese is bi-syllablic. Tri-syllable foot (super foot) 

and monosyllable foot (degenerate foot) are variations of standard foot. Super foot 

and degenerate foot are realized under certain conditions. When there is a single 

syllable around a standard foot, the syllable will be attached to the neighboring foot to 

form a super foot (Shih, 1986). Degenerate foot occurs in the case that a monosyllabic 

word constitutes an independent intonation group (Feng, 1997). 
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This indicates that sometimes, a monosyllable word will be attached to its 

neighboring words to form bigger prosodic unit. However, sometimes, a monosyllable 

word can stay alone in speech. 

2.3 Classification and Regression Tree (CART) 

Many parts of this research use the decision tree approach. CART approach (Breiman 

et al, 1984) is used as the main learning approach to construct decision trees. A 

decision tree is a tree structure that represents a classification system or predictive 

model. The tree is structured as a sequence of simple questions, and the answers to 

these questions trace a path down the tree. The leaf node reached determines the 

classification or prediction made by the model. A decision tree in general is tree-

structured classifier that attempts to infer an unknown variable from an observed 

feature vector. The CART approach has some advantages:  

• The sequence of the questions is automatically determined from training data.  

• During the construction process, the important factors are automatically 

selected as question, while irrelevant factors are ignored.  

• The relative importance of the feature can be examined from the tree that is 

constructed from the training data.  

• The size of the tree can be easily scaled according to different needs.  

2.3.1 Classification Tree or Regression Tree 

Classification tree and regression tree are both types of decision tree where 

predictions are made based on questions about feature vectors. Classification trees 

assign a class based on the observed features. Regression tree are used to predict a 

continuous-valued variable. Both classification tree and regression trees are used in 

different parts of this research.  

Many algorithms for constructing decision tree have been proposed, such as C4.5 

by Quinlan (1993), CART by Friedman et al (1984). Wagon tool in Festival (Black et 
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al, 1998) is used as our main tool in the work. Apart from the predicted value, the leaf 

node for regression tree and classification tree can provide more parameters. For 

example, a regression tree can provide a standard deviation of the predicted value, 

while a classification tree is able to provide the probability distribution of each class 

in the node.  

 

NextWordLen = 3 WordLength = 1
PosID1 == 36

NextWordLen = 1

NextPosID = 36

WordLength = 1

NextPosID == 36 

1

32

4 5

8 

7 6

NextWordLen = 2 

N: 0.878 
B: 0.122 

9 10

N: 0.032
B: 0.968

11

NextPosID == 23

 

Figure 2.3 Example of classification tree  

(Answer “yes” to left, “no” to right child) 

Figure 2.3 gives an example of a classification tree, in which each node has a 

question based on the features of a feature vector.  If an answer of a question is yes, 

the prediction goes to the left branch of the subtree. It goes to the right if the answer is 

no. Leaf nodes give the predicted values. For the feature values (NextwordLen = 1, 

WordLen = 1, PosID1 = 36, NextPosID = 3, and NetPosID = 3) of feature vector, the 

features trace a path from node 1, via node 2, node 4, node 8, and end at node 9. The 
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predicted value (at node 9) produces the result class N (or a probability of 0.878 of 

being class N, and a probability of 0.122 of being class B). 

Figure 2.4 gives an example of a regression tree. For feature values (EndOfPW = 

0, InitialID = 2, FinalID = 27, PosID = 14), the prediction traces a path from node 1, 

via node 2, node 4, and node 8, down to node 9. The predicted value is 0.126 with a 

predicted standard deviation of 0.023.  

Generally, a constructed classification tree or regression tree works like a 

function  

)(XFy =      (2.1) 

where F(X) is the function that transforms the feature vector X into a value y. For 

regression tree, y is a continuous value, while for classification tree, y is an integer 

indicating a category.  

  

   

FinalID=6  FinalID=27   

EndOf PW=0 

iBreakBefore=2  

InitialID=2 

PosID=14   

1

32

4 5

8 

76

ToneID=5  

(0.023, 0.126)   
9 10

(0.026, 0.135) 

NextWordLen= 2   

 

Figure 2.4 Example of regressin tree (Answer “yes” to left, “no” to right child) 
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2.3.2 Splitting Criteria 

A tree grows by splitting the training data set. CART uses binary splits that divide 

each parent node into exactly two child nodes by posing questions with yes/no 

answers at each decision node. CART searches for questions that split nodes into 

relatively homogenous child nodes. As the tree evolves, the nodes become 

increasingly more homogenous. An impurity function is used in the classification 

trees to evaluate the goodness of the splits. A node’s impurity function should be 

largest when it contains an equal mix of classes, and smallest when the node contains 

only one class. The different splits possible at a node are judged by calculating the 

decrease of the impurity of the whole tree. Each selected split tries to make the 

maximal decrease in impurity.  

The decrease of impurity can be defined as: 

)()()(),( LLRR tiPtiPtisti −−=∆              (2.2) 

where the split s of node t puts a proportion PR of data to the right child tR and PL to 

the left child tL, and i(t) is impurity function for node t.  

There are different options to define impurity functions. Four types of impurity 

functions are commonly used in classification tree (Brieman, 1984). In Wagon, to 

make sure the splits of data will not make too small partitions, the program uses the 

following definitions as impurity functions:  

(1) Regression tree: For sample sets with continuous predictees, impurity 

function i(t) is defined as: 

tNtvti )()( =         (2.3) 

where  is the variance of the sample points in the node, N  is the number of 

sample points in the node. The variance alone overly favors very small sample sets. 

Multiplying each part with the number of samples will encourage larger partitions, 

which will lead to more balanced decision trees in general.  

)(tv t
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(2) Classification tree: For sample sets with discrete predictees, impurity function 

i(t) is defined as: 

tNteti )()( =       (2.4) 

where  is the entropy of the sample points in the node, N  is the number of 

sample points in the node. Again, the number of sample points is used so that small 

sample set is favored. 

)(te t

2.3.3 Building Better Tree 

In the training process of a decision tree, a tree can be split small enough to make the 

tree work well for the training samples. However, the constructed tree is not 

necessarily good for data outside the training data. It is more desirable to build a 

classification/regression tree that will work well for new unseen samples. Some of the 

ways to make a better tree are as follows: 

1. Controlling the size of node. The method is to build a full tree but make sure 

that there are enough samples in each node. An absolute minimal size for a 

tree node can be assigned. Alternatively, the minimal size can be a percentage 

number of the complete training data. The splitting of a tree stops when the 

splitting forms a node with size smaller than a stop value.  

2. Holding out data for pruning. Another way is to hold out some of the 

training data for pruning. A tree with a small node size is first built and then 

pruned to where it best matches the held-out data. 

3. Stepwise training.  A good technique in Wagon is to build trees in a stepwise 

manner. In this case, instead of considering all features in building the best 

tree, it builds trees looking for which individual feature best increases the 

accuracy of the built tree on the provided testing data. Normally, a splitting 

process is used to look for the best question over all features. This technique 

first builds a tree using each individual feature that could lead to the best tree. 

Features are added one by one. This process continues until no more features 
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are added to the accuracy or some stopping criteria (e.g. size of node) is 

reached. 

4. Cross validation. Cross validation is widely used in machine learning. By 

dividing the whole data set into different partitions, in each test, one partition 

will be reserved for testing, while the others work as the training data. This 

approach can generate a good result without bias. 

2.4 Formulas 
2.4.1 Mutual Information 

The mutual information of two random variables X and Y with a joint probability 

mass function P(x,y) and marginal probability mass functions p(x) and p(y) is defined 

as (Cover et al, 1991): 

∑
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Mutual information can be used to measure mutual dependency between discrete 

variables. 

2.4.2 Pearson Product Moment Correlation Coefficient 

Correlation coefficient is usually used to measure the dependency between continuous 

variables. Correlation coefficient between variable X and Y is defined as: 
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Chapter 3  Speech Corpus Construction 

In this chapter, the process of constructing the corpus is described. The distribution of 

speech units in Chinese language is investigated. The corpus is evaluated by the 

coverage of speech phenomena. 

3.1 Speech Corpus Construction and Processing 

Early systems used some rules to generate prosody parameters. Since too many 

factors affect prosody parameters and the factors interact with each other, it is difficult 

to use rules to cover all the factors. It is wise to use corpus-based approach, in which 

rules for the parameters can be derived by learning by analyzing speech corpus.  

3.1.1 Consideration of Number of Speakers 

The corpus in this work is produced by a professional female speaker. The reason to 

use corpus of only one speaker is as the following: 

(1) The speech corpus will be used as unit inventory. A TTS system requires that 

all the speech units in the synthetic sentence come from the same speaker. Multiple 

voices are not usually used because we want to generate understandable and pleasant 

speech for general use. It is strange to have multiple voices in one utterance. 

(2) The speech corpus is used for prosody training. The speaker for this corpus is 

a professional broadcast speaker. Her speaking style is considered as a good example 

for general listeners. As we want to generate speech with good prosody, we use the 

prosody contained in the corpus as our standard prosody style. Using multiple voices 

does not help to achieve this goal. 

(3) Unlike speech recognition application, where it is desired to accept different 

styles of speech, a text-to-speech system is to generate a specific voice of speech. 

Therefore, a text-to-speech system is a speaker dependent system.  
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(4) This work uses corpus of one speaker. However, the approaches used in this 

work are not limited to this corpus. The approaches can also be used for new corpus. 

When we need to generate multiple voices in text-to-speech, we need to generate 

multiple corpora of single voice. 

(5) Multiple-speaker speech corpus is useful when we want to investigate the 

general nature of speech of this language.  However, this is not the aim of the work. 

Due to the same reason as speaker, the corpus does not intend to cover different 

localities, different genders, etc. The female speaker of this corpus carries a Beijing 

style Mandarin accent, which is accepted as a standard spoken language in China and 

other parts of the world. 

3.1.2 Speech Data 

Since each Chinese character is a syllable, it is quite natural to use syllable as our 

analysis unit. In order to find the relationship between the text and the target prosody 

in the synthesis process, the speech need to be labeled with prosody data and the text 

should be analyzed and converted into a well-formed format. 

The construction of the corpus mainly consists of the following steps: 

Script design: In this research, the script for the speech recording is carefully 

selected using a greedy algorithm (Sproat 1997), which tries to cover as many 

pronunciation combinations as possible. The script is selected sentence by sentence 

from a huge text corpus. The huge text corpus consists of around 400M Chinese 

characters. The content of the text comes from many sources. Most of them are from 

Chinese web pages. The content of the text covers different styles of articles, 

including news, review, science, story, and so on. Finally, a large collection of 

sentences is selected. The average length of sentence selected is about 11.  The 

selection process is not a part of this work. In this work, we use part of the collection 

as our corpus, which consists of around 3,600 sentences. The nature of our selected 

sentences will be discussed later in this chapter.   
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Recording: A professional female broadcasting announcer reads all the text in a 

neutral manner with normal speed. The recording is conducted in a studio designed 

for speech recording. The speech is recorded using a digital audiotape recorder at a 

sampling rate of 44,000 samples/second and a resolution of 16 bits. The recorded 

speech is then segmented into speech utterances of sentence and is stored in 

waveform files. If a mistake is made, the sentence is recorded again. A glottal wave 

device is used in the recording process. This device is attached to the neck of the 

speaker in order to record the glottal wave, which is the source of fundamental 

frequency. The glottal wave will be used for accurate calculation of fundamental 

frequency values. 

Segmentation: Segmentation is to label continuous speech into small unit that is 

easy to manipulate. In this work, we use HMM-based recognition techniques to 

perform automatic segmentation. The segmentation is achieved by force aligning 

speech with text. 

Manual verification: The segmented speech is then checked by human to 

remove any mistakes during automatic labeling process and to find any incorrectly 

read units. The sentences found with mistakes are read, segmented, and labeled again. 

Pitch value calculation: One of the most important prosody elements is pitch 

contour. As we have recorded the glottal waveform, the glottal waveform is used for 

pitch calculation.  This pitch extraction work is done using pitch extraction tool from 

Festival speech synthesis package. 

3.1.3 Text Data 

Text Normalization: The script text is first cleaned. The numbers are changed to 

corresponding Chinese characters. The symbols are removed. Therefore, the text is 

changed to pure Chinese text.  

Word Segmentation: The word segmentation used HMM-based segmentation 

approach, which is trained on 6 months of People’s Daily of PKU Tagged Corpus (Yu 

et al, 2002). A dictionary of around 60,000 words is used.  
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POS Tagging: An HMM-based tagging program, which is trained using PKU 

(Peking University) Tagged Corpus and PKU tag set, is used for POS tagging. The tag 

set is as shown in Appendix A. 

Text to pronunciation conversion: A conversion program is used to convert the text 

into Chinese pinyin transcriptions. To make sure there is no error, the converted 

pronunciations are manually checked. 

Prosodic Breaks: Prosodic breaks are also labeled in text data. In our research, we 

label the breaks manually. The break types we defined include: prosodic word break, 

minor phrase break, and major phrase break. The breaks are labeled by one person 

first and then checked by two other persons. One example of the labeled breaks is 

shown in Figure 3.1, in which space marks prosodic word, “|” marks minor phrase, 

and “||” marks major phrase. 

想着 要靠 卖画 为生的 画家| 固然不少||，但是| 却有着| 各自 不同的 

难处||。 

Figure 3.1 Example of Chinese prosodic structure 

 

3.1.4 Data Attributes 

The final data is a collection of information that represents text and speech with a 

multi-tier structure. The data can be described as shown in Table 3.1.  

Figure 3.2 shows an example of the tiers for speech data. Waveform, F0 contour, and 

syllable label tiers are shown respectively. Example of tiers for text data is shown in 

Table 3.2. In the table, space marks prosodic word break,  

”|” marks minor phrase break, and  “||” marks major phrase break. The speech data 

and text data are aligned syllable by syllable. 
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Category Data tier Description 
Normalized text Pure Chinese characters with 

punctuation marks 
Word segmented text Words are segmented 
Pinyin  Corresponding pinyin of Chinese 

characters 
POS POS types of each word 

Text 

Prosodic break Prosodic word and prosodic phrase 
breaks 

Speech wave data Speech data 
Speech label Labels indicating the start and end point 

of each syllable 

Speech 

Pitch contour Pitch contour of speech. The pitch value 
is given every 0.001 second. Unvoiced 
part is given a pitch value of 0. 

Table 3.1 Data tiers of the corpus 

 

 

 

 

Figure 3.2 Example of speech tiers in the corpus  

(waveform, F0 contour and syllable labels) 
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Tiers Example 
Normalized text 想着要靠卖画为生的画家固然不少 
Word segmented 
text 

想 着 要 靠 卖画 为生 的 画家 固然 不少 

Pinyin  xiang3 zhe5 yao4 kao4 mai4 hua4 wei2 sheng1 de5 
hua1 jia1 gu4 ran2 bu4 shao3 

POS (Aligned with 
words) 

v u v v v n v u n d d a 

Prosodic break  想着 要靠 卖画 为生的 画家| 固然不少|| 

Table 3.2 Example of text tiers in corpus  

3.2 Phonetic Statistics of Chinese 

Both prosody training and unit selection need a corpus that has a good coverage of 

basic speech units and combinations of speech units. Because a unit is usually 

affected by its context units, it is desirable for a corpus to have a full coverage of 

context dependent units. In this section, we investigate this possibility by looking at 

the distributions of speech unit in Chinese language.  

We use a text corpus that consists of 6 months of texts from the People’s Daily (a 

Chinese newspaper), which was word segmented and POS tagged by Peking 

University (Yu et al, 2002), as real world corpus for statistics. The corpus consists of 

about 11.4M Chinese characters.  

The reasons why we choose People’s Daily are as the following: 

• The articles in the newspaper use formal Chinese languages, which are 

suitable for readers from a wide range of backgrounds.  

• There is a wide coverage of different genres, such as general news, views, 

economics, education, social science, etc. 

• The corpus was well word-segmented, tagged, and checked by Peking 

University. So the accuracy of the corpus is guaranteed. 
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• This corpus is publicly available. Anyone can easily verify some of the results 

obtained in this work. 

The text is first transformed into pinyin format. Statistics is done based on pinyin 

transcription.  Counting is done sentence by sentence. Sentence start and sentence end 

are regarded as a special pinyin (e.g. represented as #).  

Using Pi, Ii and Fi to represent the pinyin, initial and final of ith syllable 

respectively, we considered the following basic combinations of units in our statistics: 

• Context independent unit (Unigram): <Pi> 

• Context dependent unit (Trigram): < Pi-1, Pi,  Pi+1>, < Fi-1, Pi,  Ii+1> 

Here, a unit means the syllable with pinyin and tone. Context independent unit 

means, unit itself is considered when counting the units. Context dependent unit 

means, the previous and next units of the current unit are also considered in counting.  

In the following sections, we want to know how many of the most frequent units 

can have a good coverage of the real world text. The accumulative coverage of the 

first n frequently occurred units c  is calculated by )(n

∑∑
==

=
N

i
i

n

i
i ffnc

11
/)(     (3.1) 

where  means the frequency of the ith unit, N is the total number of units in the 

corpus. The units are sorted in descending order of frequency.  

if

3.2.1 Context Independent Unit 

Figure 3.3 shows the coverage of syllables in the corpus. X-axis is the number of 

syllables sorted by descending order of frequency. Y-axis is the accumulative 

coverage percentage. Totally, there are 1,373 distinct syllables in the corpus. The 

figure shows that around 400 most frequent syllables occupy around 90% of all the 

occurrences in the text corpus.  This result shows that the distribution of syllables is 

quite unbalanced in the corpus.  
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3.2.2 Context Dependent Unit 

In voice production process, neighboring sounds interact each other. This leads to 

phonetic coarticulation. Therefore, a voice inventory of rich contextual consideration 

is crucial to a quality TTS system. However, context of a unit can be considered at 

different levels. For example, we can consider the whole syllable of previous unit as 

left side context of the current unit. Alternatively, we can use final part of the 

previous unit as left side context of the current unit.  
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Figure 3.3 Accumulative coverage of syllables in text corpus. 

We first consider the context of a syllable by looking at the pinyin (with tone) of 

previous and next syllables. In this consideration, the trigrams of unit (< Pi-1, Pi,  Pi+1>) 

should be counted. Figure 3.4 shows the relationship between the number of units and 

the accumulative coverage of the units in the corpus. X-axis is the number of trigrams 

sorted by percentage in descending order. From the figure, we see that to cover 80% 

of < Pi-1, Pi,  Pi+1> occurrences in the corpus, we have to cover around 69 distinct 

units; to cover 90%, we have to cover 150  distinct units. It seems impossible to 

build a speech corpus to have such coverage. 
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Figure 3.4 Accumulative coverage of pinyin trigram 
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Figure 3.5 Accumulative coverage of syllable with context considered 
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We can narrow the scope of the context. Instead of considering full syllables of 

previous or next syllable, we can consider to use half of a syllable. If we only use the 

final and tone of the previous syllable, and initial and tone of the next syllable for 

context consideration, we have a coverage curve as shown in Figure 3.5.  From the 

figure, we can see that to cover 80% of < Fi-1, Pi,  Ii+1> occurrences in the corpus, we 

have to cover around 26 distinct units; to cover 90%, we have to cover 52  

distinct units. It seems that building a speech corpus with such coverage is not 

realistic either. 

4× 4×10 10

3.2.3 Grouping Context Units by Initial and Final 

We can further reduce the number of context elements by clustering initial and final 

into initial and final class.  For example, finals of the previous syllable “A” and “IA” 

can be grouped into one class because their coarticulation effects are similar. 

Each syllable has a neighbor at its left side. There are 38 finals in Chinese. 

Therefore, the right edge of the previous syllable has 38 choices.  In this work, we 

classify the 38 finals into 10 classes as shown in Table 3.3.  

 

Class Right edge of a syllable 

R1 A IA UA 

R2 AI EI I UI UAI IZ IZH 

R3 AN EN IAN IN UAN VN VAN UN 

R4 ANG ENG IANG ING IONG UANG ONG 

R5 AO IAO O UO 

R6 E 

R7 ER  

R8 IE VE 

R9 IU OU U 

R10 V 

Table 3.3 Class of right edge (final) of syllable 
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For right neighbor of a syllable, there are 22 choices of initial. However, when 

the right syllable has a null initial, the final is the actual left side of the syllable. There 

are 11 finals that possibly follow a null initial. Therefore, there are 32 choices for left 

edge of a syllable. We classify left edges into 11 categories according to their 

production manners as shown in Table 3.4. 

Based on the initial and final class, the number of context dependent unit can be 

calculated again.  Tone of previous and next syllable can also be ignored if we want to 

further reduce the context consideration.  

Class Left edge of a syllable 
L1 A AI AN ANG AO 
L2 B D G K P T  
L3 C CH F J Z ZH X S SH Q H 
L4 E EN ER OU 
L5 EI 
L6 L  
L7 M 
L8 N 
L9 W 
L10 R 
L11 Y V 

Table 3.4 Class of left edge (initial or final for null-initial syllable) of syllable 

3.2.4 Considering Loose Coarticulation 

Considering context is to keep the coarticulation effects. However, there are 

different levels of coarticulation. When two units are succeeding units in an utterance, 

the coarticulation degree is determined according to pronunciation of the second unit 

(Wu et al.  2001). We define the following coarticulation types as follows:   

• Loose coarticulation, when the initial of the second syllable is unvoiced. 

• Intermediate coarticulation, if the initial of the second syllable is voiced.  

• Tight coarticulation, if the second syllable has a null initial.    

The actual initials are listed in Table 3.5. 
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Coarticulation type Initials of the second syllable 

Loose coarticulation B C CH D F G H J K P Q S SH T X Z ZH  

Intermediate coarticulation L M N R 

Tight coarticulation NULL-INITIAL 

Table 3.5 Classification of initials for tightness of connection. 

Realizing the differences in coarticulation degree, we can further group units, 

which have loose coarticulation with its context. For right context, the initial of next 

syllable, L2 and L3 can be combined to one category because all of them belong to 

loose coarticulation. For the left context (final of the previous syllable), when the 

initial of the current unit belongs to loose coarticulation, the left context can be 

ignored because we can assume that this unit is not affected by its left context. 

Therefore, the number of unit and distribution of units can be calculated again based 

on the reduced context dependent unit set. 

3.2.5 Unit Distribution for Different Context Considerations 

We compare the coverage of context dependent units in Table 3.6 by different context 

considerations. In the table, we can see that if full pinyin (with tone) is used for 

consideration of the previous and next syllables, there are 2.57M different 

combinations in the corpus. If we only consider the previous final and next initial and 

tones on both sides, the total number of different combinations is reduced to 1.34M. 

Further grouping initial and final into class and considering tones on both sides, the 

total number is reduced to 481,590. Ignoring tones on both sides, there are 80,378 

different context dependent units. If we further consider context with loose 

coarticulation has no great effect for the current syllable, the number of context 

dependent units is 26,972. 

When we design a speech corpus for TTS, we usually have to construct a corpus 

of natural utterances instead of single units, i.e. each unit cannot be recorded in 

isolation. Rather, units should stay in carrier sentences in order to maintain 
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naturalness. The method inevitably keeps many redundant copies for many units. 

Therefore, to cover a specific number of units, the number of units in the final corpus 

could be many times larger than the number of units intended to cover.  For example, 

to cover the 80,378 units, the size of the corpus should be much larger than 80,387. 

Realizing the difficulty in covering all possible units in a corpus, a corpus should be 

built with a fair coverage for a reasonable level of context consideration rather than a 

full coverage of possible variants of unit. 

Previous Unit Next  
Unit 10% 20% 50% 90% 100% 

Initial  
Final  
Tone 

Initial   
Final  
Tone 

946 4,437 73,430 1.49M 2.57M 

Final  
Tone 

Initial   
Tone 841 3,474 37,996 500,693 1.34M 

Final Class 
Tone 

Initial Class 
Tone 464 1,608 12,052 118,284 481,590 

Final Class Initial Class 
 89 290 1,847 13,966 80,378 

Final Class,  
Loose  
coarticulation  
collapsed 

Initial Class,  
Loose 
coarticulation 
collapsed 

11 36 253 2,770 26,973 

Table 3.6 Number of units for coverage of context dependent units 

3.3 Corpus Evaluation 

Corpus is very important for this research. If a corpus does not reflect the language 

well, the result based on the corpus will be unreliable. As the corpus is used for both 

prosody training and unit selection, a good design of the corpus script should meet the 

following criteria: 

• The text used for recording the speech corpus is a true reflection of the 

general text corpus.  

• The speech corpus used for unit selection has enough pronunciation coverage 

of Chinese language. 

• The corpus should be sufficiently large. This allows that it has enough 

occurrences for individual features. For example, for training of prosody, we 

need each tone to have enough occurrences in corpus.  
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3.3.1 Word Frequency 

To use a statistical approach, the corpus we used should be a good reflection of real 

world data. We use the PKU People’s Daily Corpus as our reference corpus to 

represent the real world text. Because the models for prediction of prosodic structure 

will be based on the words in corpus, we will compare the relative frequency of words 

with that of words in reference corpus. 

We calculate the relative frequency of common word in the two corpora. A 

correlation value of 0.93 is achieved between the frequency values. From the 

correlation value, we see that the content of the speech corpus is positively correlated 

with the reference corpus.  

3.3.2 Syllable Coverage 

We investigate how the speech corpus covers the real world units. There are 1373 

distinct syllables in PKU corpus.  Our corpus consists of 1261 distinct syllables, 

which cover 96.58% of all distinct syllables (1326/1373) and cover 99.88% of 

occurrences of syllables in PKU corpus. We see from the data that the corpus has a 

good coverage of context independent units the language.  This means, in a real TTS 

process, most of syllable can be found in the speech corpus. 

Previous syllable Next Syllable Percentage covered 

Final class, tone Initial class, tone 33.1 % 

Final class Initial class 76.8% 
Final Class,  
Loose  
coarticulation  
collapsed 

Initial Class,  
Loose 
coarticulation  
collapsed 

90.4% 

Table 3.7 Coverage of context dependent units of the corpus 

We also consider the coverage of context dependent units. The result is shown in 

Table 3.7. The constructed corpus covers 76.8% of the context dependent units if 

context is considered using final class for previous syllable and initial class of next 
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syllables, and covers 90.4% of context dependent units if loose coarticulation is 

considered as not having effects on this current unit.  Therefore, in our consideration, 

at least 90.4% of the units can be synthesized seamlessly almost without problem in 

coarticulation.   

3.3.3 Statistics 

We stated that the corpus should be sufficiently larger so that there are enough 

occurrences for individual features. However, this does not mean that we need that 

every feature should have many occurrences. Because language is unbalanced itself, 

overlooking very rare cases does not damage the general accuracy of this work. 

In this part, we will give some details on the coverage of some basic units in this 

corpus. From the number of occurrences, we will have a better understanding of the 

nature of the corpus.  

The corpus includes 38,713 Chinese characters in 3,609 clauses or sentences. The 

average length of a sentence is 10.7 (38,713/3,609) characters. The numbers of units 

are as shown in Table 3.8. 
Unit Number 

Characters 38,713 

Words 27,293 

Prosodic words 17,040 

Minor phrases 6,341 

Major phrases 3,682 

Sentences 3,609 

Table 3.8 Number of text units and prosodic units in the corpus 

Word 

Length 

Number of 

Occurrence Unique word

1 17,547 2,409 

2 8,979 4,826 

3 517 381 

4 250 223 

Total 27,293 7,839 

Table 3.9 Length distribution of words in the corpus 
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Among the 27,293 words, there are 7,839 unique words. The numbers of words in 

different lengths are shown in Table 3.9.  

POS Frequency POS Frequency POS Frequency 

Ag 158 e 7 nz 33 

Bg 2 f 516 o 15 

Dg 25 g 417 p 1,292 

Ng 1,007 h 4 q 763 

Rg 25 i 148 r 1,287 

Tg 34 j 288 s 110 

Vg 309 k 68 t 156 

A 1,232 l 60 u 1,661 

Ad 129 m 1,338 v 6,021 

An 65 n 5,355 vd 15 

B 123 nr 977 vn 562 

C 822 ns 241 y 122 

D 1,843 nt 10 z 53 

Table 3.10 Frequency of POS in corpus 

Num of 

occurrences 

Num of 

Syllable 

Coverage of base 

syllables  

>= 300 12 2.9% 

>= 200 27 6.6% 

>= 100 88 21.6% 

>= 50 161 39.5% 

>= 20 284 69.6% 

>= 10 304 74.5% 

>= 5 375 91.9% 

>= 1 400 98.0% 

Table 3.11 Occurrence distribution of toneless syllable in the corpus 

Tone 

Number of 

Occurrences 

1 5,529 

2 7,530 

3 5,230 

4 9,640 

5 2,142 

Table 3.12 Distribution of tones in the corpus 

The number of words falling in each POS category is also counted as shown in 

Table 3.10.  We see from the table that the distribution of POS is unbalanced. 
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We also counted the occurrences of pronunciations in the corpus. There are 977 

distinct syllables, and 378 toneless syllables occurred in the corpus. Table 3.7 shows 

the number of occurrence of distinct toneless syllables in this corpus. We can see that 

74.5% of the base syllables have at least 10 occurrences in the corpus. 

The occurrences of tones are shown in Table 3.8.  Tone 4 has the most 

occurrences in corpus, and tone 5 has the least occurrences. 

3.3.4 Conclusion 

From the discussion and data provided in previous parts of the section, we understand 

that the speech corpus is a close approximation to the real world text corpus. The 

speech corpus has a good coverage of context independent units and a fairly large 

coverage of context dependent units. 

In brief, the constructed corpus is a reflection of real world text with a little bias 

to cover as many context dependent unit variants as possible. 

3.4 Summary 

In this Chapter, we have described the process of constructing the speech corpus. A 

study of context independent units and context dependent units has been conducted. 

We have understood that building a speech corpus with full coverage of context 

dependent units is not realistic. We have evaluated the corpus and found that the 

corpus used in this research has both a good coverage of context independent units 

and a large coverage of context dependent units. 

In the evaluation of speech corpus, I use some approaches to reduce the number 

of context dependent units. This solution reduces the number of context dependent 

units significantly. It makes building small speech inventory for text-to-speech 

synthesis possible. It also provides solutions for building text-to-speech inventory of 

different scales. 
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Chapter 4  Prosodic Break Prediction 

In this chapter, we discuss the prosodic break (or unit) prediction, especially the 

prediction of prosodic words. First, an introduction is given. Then the determinations 

of prosodic word and prosodic phrase are discussed. The problems are described; the 

prediction models are presented; and the experiments are conducted. 

4.1 Introduction 
4.1.1 Prosodic Break 

When speaking, people tend to group words into small prosodic unit groups.  This 

occurs not only in Chinese but also in other languages. Grouping words into phrases 

helps the speaker to speak more easily and the listeners to understand the sentence 

better. Punctuation marks are explicit symbols in a sentence to indicate breaks. 

However, more breaks will be inserted within a long sentence when we speak. The 

sentence is therefore broken into short phrases, which are called prosodic groups. 

Take an English sentence for example. The sentence “I went to the bookstore in order 

to buy a book.” can be read as “I went to the bookstore [break] in order to buy a 

book”, but it is unusual to read it as “I went to the bookstore in [break] order to buy a 

book”. 

Prosodic phrase boundary can be identified by some pauses, pitch changes, or 

duration changes of boundary syllable in speech. In a TTS system, to realize all these 

effects in synthetic speech, phrase boundaries need to be determined first. Phrase 

boundary is realized by inserting pauses, changing the pitch contour, and lengthening 

duration of the boundary syllables, etc.  

It is common that words representing a meaningful concept are grouped into a 

phrase. However, prosodic phrase does not always coincide with the phrase from a 

syntactic point of view.   
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Usually phrase boundaries are also referred to as prosodic breaks. Different levels 

of prosodic unit (or break type) can be defined. In English, the ToBI labeling system 

(Silverman, 1992) defined six types of break. In some researches, less break types 

were defined.   

This work is to predict prosodic break for Chinese text-to-speech. 

4.1.2 Review of Existing Approaches 

Many approaches have been proposed for the determination of the prosodic breaks (or 

units) from text input. Typical approaches include rule-based and corpus-based ones.  

Rule-based approaches were first used for locating phrase boundary. MITalk 

(Allen et al, 1987) parses text into noun phrases, verb phrases, and prepositional 

phrases. The phrases are defined by grammar rules. After obtaining the phrases and 

clauses, pauses are inserted to break up long sentences.  

Liberman and Church (1992) proposed a very simple but efficient approach, 

which defines phrase by at least one function word followed by at least one content 

word. The parser first searches for the function words then searches for the content 

word for each function word. Break is placed before each function word that follows a 

content word. Despite its simplicity, it produces better results than the approach in 

MITalk. This is because, in English, boundaries are more likely between content 

words and function words, because most functional words are placed before the words 

they are related. Note that this is not necessarily true for other languages.  

Bachenko and Fitzpatrick (1990) proposed another rule-based method, which 

transforms a given syntactic tree to a prosodic tree via several rules. It finds prosodic 

phrase breaks from boundary salience indices that are generated from the level of 

bracketing between words in a full syntactic parsing.  

Typical corpus-based approaches include classification and regression tree 

(CART), neural networks, and hidden Markov models (HMM). Wang and Hischberg 

(1992) used CART for locating English phrase boundary in ToBI framework. They 

used POS, time-based and word-based distance, and syntactic information as features 
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for CART trees. Ostendorf and Veilleux (1994) have developed two automatically 

trained models for predicting prosodic phrase breaks, a decision tree model, and a 

hierarchical model. The models use text-based features, which includes punctuation, 

POS, and syntactic constituency. The decision tree approach is able to use text 

features within a large window of utterance and is able to take into account the break 

dependency using Markov relations between breaks. The hierarchical model 

represents prosodic phrasing of entire utterance as a nested hierarchy of constituent 

phrases. Decision tree was used to represent the lowest level constituent.  

Fujio et al (1994, 1995) presented models for predicting major phrase boundary 

location and pause insertion for Japanese using a stochastic context-free grammar 

(SCFG) from an input word class sequence. These prediction models were made with 

similar idea, as both major phrase boundary location and pause insertion have similar 

characteristics. In these models, word attributes and left/right-branching probability 

parameters representing stochastic phrasing characteristics are used as input 

parameters of a feed-forward neural network for the prediction. To obtain the 

probabilities, first, major phrase characteristics and pause characteristics are learned 

through the SCFG training using the Inside-Outside algorithm. Then, the probabilities 

of each bracketing structure are computed using the SCFG. Experiments were carried 

out to confirm the effectiveness of these stochastic models for the prediction of major 

phrase boundary locations and pause locations. Accuracy of 85.2% for pause 

boundaries and 90.9 % for no-pause boundaries were achieved. 

Taylor and Black (1998) proposed another method, which uses only POS 

information. The sentence is first converted into POS sequence. Then a Markov 

model is used to give the most likely sequence of breaks.  

Sun et al (2001) used decision trees to estimate the probability of a word juncture 

type (break or non-break) given a finite length window of POS values, and used an n-

gram model to choose the word juncture sequence. Trained on an 8,000 word 

database, the algorithm predicted breaks with F=77% and non-breaks with F=93%. (F 

is a combined parameter indicating precision and recall) 
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However, the above-mentioned approaches have one or more of the following 

limitations: 

(1) Some of the approach are rule-based and language dependent.  For example, 

Liberman and Church, (1992) and Bachenko and Fitzpatrick (1990) are rule-based 

and language dependent.   

(2) Some of them require parsing of sentences, which is slow, inaccurate, and 

unsuitable for a practical TTS implementation. For example, in Fujio et al (1994, 

1995), prediction of breaks is based on SCFG. 

(3) Some approaches may have problem of data sparseness during calculation of 

probability.  In Taylor and Black (1998), to have enough data to calculate probability, 

the models should be designed to have a limited span of only a few words. 

(4) Prosody phenomena in Chinese are different from other languages. For 

example, people usually avoid using monosyllabic words in Chinese; hence, 

monosyllabic words are likely to be combined with their neighboring words in 

speaking. None of the above approaches is directly suitable for predicting Chinese 

prosodic word breaks. 

The above reasons make the previous approaches for other languages unsuitable 

for Chinese language or the approaches need to be improved. 

4.1.3 Review of Work for Chinese 

Come back to Chinese, most early Chinese TTS systems inserted break after every 

word or used rules to determine some breaks. More recently, there were a few 

approaches for phrase determination. Chou et al (1998) proposed an approach to first 

form a lattice to include the possible phrase grouping, and then find the best path from 

the lattice according to the frequencies of POS grouping.  Chen et al (2001) proposed 

an approach based on inductive learning algorithm and extension matrix theory.  POS 

sequence and syntactic structure are used in the phrase model. POS type and length of 

constituents in terms of the number of characters and words are used as features for 

 



 
Chapter 4. Prosodic Break Prediction  44 

prediction and a success rate of 93% achieved on 371 training sentences and 188 

testing sentences. 

Generally, some of the above researches for Chinese phrase break reported good 

prediction results. However, there are uncertainties or shortcomings in the above 

approaches.  

(1) Prediction of prosodic phrase on the base of syntactic structure can achieve 

good prediction result. However, the accuracy of automatic syntactic structure parsing 

was not reported. Considering the errors occurred in syntactic analysis, the accuracy 

of the prosodic phrase break will be lower for a prediction from POS sequence.  

(2) Most of them used small number of sentences in the experiments. Due to the 

large number of words and POS types and the richness of language phenomena in 

Chinese, they do not sufficiently show how the methods work well on larger corpora.  

(3) Previous work only put efforts on phrase breaks. Prosodic word was regarded 

as a common prosodic phrase. However, prosodic word break has its own 

characteristics (rhythm requirement).  It should be specially treated. 

4.2 Determination of Prosodic Breaks 
4.2.1 Chinese Prosodic Structure 

Each Chinese character is pronounced as a syllable. Syllables form a word, and words 

are connected together to form a sentence. From the view of prosodic structure, 

prosodic units can be defined. Researches have found that there is a hierarchical 

prosodic structure for Chinese prosody, which constitutes the rhythm of Chinese 

speech (Shih 1986). There are following prosodic elements in Chinese speech:  

� Prosodic word (PW): Prosodic word is the basic building block of rhythmic 

structure of sentence. A prosodic word usually consists of one, two, or three 

syllables. However, in most cases, it consists of two or three syllables. 

Prosodic word can be a single word, part of a word, or combination of words. 

For example, 4-syllable words may be taken as two disyllabic prosodic words.  
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� Prosodic phrase (PP): Prosodic phrase is a common rhythm unit in the 

production and perception of speech. It is usually a meaningful combination of 

prosodic words. Some researchers indicate that the span of the chunk is 

usually within nine syllables in Chinese (Cao, 2000).   

� Intonation phrase (IP): Intonation phrase is a rhythmic group containing one or 

more prosodic phrases, and is usually identical to syntactically meaningful 

sentence. There is usually a long pause after an IP. 

In this research, the following units are used in the corpus: 

� Character: The smallest unit in text. Each character is a syllable in terms of 

pronunciation. 

� Word:  A word consists of one or more characters. It is a unit from the 

syntactic view. 

� Prosodic word: In this research, short words are combined to form prosodic 

word. However, we do not split a long word into small prosodic words. 

Therefore, prosodic word is one single word or a combination of two or more 

words. 

� Minor phrase: Small meaningful phrase in utterance. This is equivalent to the 

prosodic phrase that we have mentioned previously. A minor phrase usually 

consists of several prosodic words. 

� Major phrase: Phrase with an obvious pause in an utterance. This is equivalent 

to the intonation phrase that we have mentioned before. 

Each of the above unit marks a type of break. Therefore, the following breaks are 

defined: syllable break (SB), word break (WB), prosodic word break (PWB), minor 

phrase break (PPB), and major phrase break. (IPB) In the break sets above, each set is 

a subset of previous set. The later three breaks are termed as prosodic break in this 

work. 
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4.2.2 Issues of Prosodic Break in this Work 

Although Chinese linguists have found that there is a hierarchical prosodic structure 

for Chinese (Shih 1986) for many years, the problem of prosodic structure was not 

well dealt with in Chinese TTS systems. Some systems attempt to use different types 

of break. However, the problem of prosodic word, which is a more basic prosodic unit, 

was not well studied. Some researchers are aware of the importance of grouping 

words into prosodic words. However, approaches for grouping the words were not 

well given. Usually, rules are defined for the prosodic word prediction. In this work, 

we will investigate the patterns of prosodic word and will propose corpus-based 

approach for prosodic word prediction.  

As for phrase prediction, there were some attempts in using corpus-based 

approach to generate better prosodic break. Nevertheless, they rely on a parsing tree. 

Due to the difficulty in parsing a sentence and the existence of many ungrammatical 

sentences or phrases in real text, the approach of using parsing tree is not realistic in a 

real TTS system. In this work, we will propose a corpus-based approach to generate 

minor phrase breaks from word sequences.  

(1) Corpus Issues 

In this work, we use corpus of one speaker for prediction of prosodic word break and 

minor phrase break. The reasons to use one speaker can be explained as the following: 

(1) This research is to predict breaks for an input text based on the corpus of one 

speaker. Therefore, the style of break placement is the same as that of the speaker. 

Because the speaker is speaking standard Mandarin with a normal style, the generated 

speech corpus is one representative of speech for people who use this language. 

(2) We use the corpus of one speaker for our test. However, this corpus is much 

larger (3600 sentences) than corpora used in many of the research projects for 

prosodic break prediction, in which usually hundreds of sentences are used. Therefore, 

our corpus covers more phenomena of prosodic word breaks.  

 



 
Chapter 4. Prosodic Break Prediction  47 

(3) The proposed approach is speaker independent because the prediction does 

not rely on speaker dependent features. It is possible that the speakers in different 

parts of world have different speaking styles. However, the phenomenon of prosodic 

word is one of the characteristics of Chinese language. The patterns of prosodic group 

may be different among different speakers from different parts of the world. However, 

as long as there exist such patterns, the approach proposed in this work will still work. 

(2) Disagreements between Labelers  

In the processing of the corpus, we labeled three types of breaks, which are prosodic 

word break, minor phrase break, and major phrase break. The former two takes a 

large part of all the breaks. To evaluate to what degree the labeling work can be 

reproducible, we ask three people to label 100 sentences and compare the results. We 

found that for prosodic word breaks, between labels of each two persons, there is 

around 96% overlap. However, for minor phrase breaks, this value is around 83%. 

Therefore, there is more agreement on prosodic word, but less agreement on minor 

prosodic phrase. The disagreements show that there is no clear definition for prosodic 

word and prosodic phrase. The result shows that there is more agreement of prosodic 

word than minor phrase among different people. This is due to different people have 

different breaking styles. They have more choices for minor phrase level breaks. 

(3) Prosodic Unit and Prosodic Break 

The work of this chapter can be considered as prediction of prosodic units. Since 

prosodic units are separated by prosodic breaks. Correctly predicting prosodic break 

also correctly predicts prosodic units (prosodic word and minor prosodic phrase in 

this work).  Therefore, the work of this chapter can also be considered as prediction of 

prosodic break. 

The task of prosodic break determination is first to combine short words to form 

prosodic word, and then combine prosodic words to form longer phrase, which may 

be uttered as a prosodic unit in speaking. The prosodic structure prediction work for 

Chinese includes the following parts: Prosodic word detection, minor phrase break 

prediction, and major phrase prediction.  
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The corpus we used here is a text transcription of our speech corpus. The three 

types of break are manually labeled. The final data are word sequences marked with 

different types of break.  As most of the sentences in the corpus are short sentences 

(around 10 syllables), there is only one major prosodic phrase in a sentence. Therefore, 

in this research, we will only predict prosodic word breaks and minor phrase breaks. 

In prediction, we assume each sentence end is a major phrase break. Since the number 

of major phrase is small, this simplification will not greatly affect the accuracy in the 

prediction of prosodic structure. 

Prosodic word break set is a subset of word break set. Therefore, the prediction of 

prosodic word is to determine which word break should also be marked as prosodic 

word break.  

Similarly, minor phrase break set is a subset of prosodic word break set. 

Therefore, the prediction of minor phrase break is to determine which prosodic word 

break should be marked as minor phrase break. 

(4) Approach Option 

One of the ways to solve the problems of break determination is to use a single 

method to determine the different types of break, such as using decision tree approach. 

However, because the different break types are determined by different factors, it is 

better to predict different breaks separately. We understand that the phenomenon of 

prosodic word is a phenomenon that some monosyllabic words are attached to other 

words. However, minor and major phrases are grouping of meaningful words (Shih 

1986).  

In this work, we will first build model to predict prosodic word breaks. Then we 

build model to predict minor phrase breaks. 

4.3 Prosodic Word Detection 

The prosodic word detection problem is unlike the other prosodic break detection in 

that it is a local combination of words (demanding of rhythm) rather than a global 
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consideration of words (logically meaningful grouping). The detection of prosodic 

word is a process to find whether two words, which are usually monosyllable words 

or one of which is a monosyllable word, should be combined together to form a single 

prosodic unit.  

4.3.1 Prosodic Word 

In word segmentation, a string of Chinese characters is separated into Chinese words 

under the guidance of lexicon or rules. In our lexicon, only words of length from 1 to 

4 are included. The word segmentation program looks for words that are included in 

the lexicon from the sentence. Some rules are used to find the words that are not in the 

lexicon. After word segmentation, a sentence is converted into a sequence of words. 

However, the words are only defined from a syntax view. In real speech, people 

do not speak Chinese word by word as performing word segmentation. Instead, 

neighboring words are grouped together when speaking. Take the sentence “请把这

本书给你哥哥” (Please pass this book to your brother) as an example. The result of 

word segmentation is like “请|把|这|本|书|给|你|哥哥|”. However, in speech, the 

sentence is more likely to be read like “请把|这本书|给|你哥哥”, in which “请把”, 

“这本书” and “你哥哥” are uttered together respectively. Actually, each group of the 

words is a combination of some short words. 

Prosodic word is a group of syllables that are uttered closely and continuously. 

Grouping of the prosodic word considers the meaning of word and rhythm of speech. 

In most cases, a prosodic word is a compound word or a meaningful unit. It is a 

concept of words based on prosody rather than syntax. Some prosodic words are 

actually phrases in a syntactic view. To distinguish from prosodic word, the words 

from word segmentation are called syntax words. Previous studies on Chinese 

prosody have shown that prosodic word is an important prosody unit in Chinese. 

(Qian et al, 2000).  

The relationship between syntax words and prosodic words includes three types. 

(1) A prosodic word is a syntax word. (2) A prosodic word is combination of several 
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short syntax words. (3) A prosodic word is part of a long syntax word.  In this 

research, 4-syllable words are also taken as one valid prosodic word because usually, 

the prosodic break is not obvious in many 4-syllable words. 

The existence of prosodic words renders speech with rhythm. There are short 

breaks between prosodic words in sentence. The use of prosodic word in TTS 

includes the following (1) It gives correct breaks in the sentence. (2) It helps to make 

tone changes (tone sandhi) in the sentence. (3) It helps to improve the accuracy of 

prosody parameter prediction since prosody properties of boundary syllables are 

different from those of non-boundary ones. 

In TTS, we need to find prosodic word from syntax word sequence. The problem 

of prosodic word detection can be considered as a problem of deciding whether there 

should be a prosodic word break or not between two syntax words, which is actually a 

classification problem. This work is to find rules to detect prosodic word breaks using 

corpus-based approach. 

We considered the following parameters or constraints in prosodic word 

prediction: (1) What features of words are used in prediction? (2) How many 

categories of part-of-speech are suitable? (3) How many words should be specially 

dealt with in feature set? (4) How previous predicted break will affect the next 

prediction? (5) How the dependency between breaks will help to improve accuracy? 

(6) What parameters for CART are suitable for the experiments? 

4.3.2 Patterns of Prosodic Words  

We are dealing with how words can be combined to form prosodic word. It is not 

realistic to consider each word individually even if we have a very large corpus. 

Therefore, we have to use word group for generalization purpose. POS is a natural 

grouping method. To consider rhythm, we also need to consider the length of word 

(number of syllables in word).  Therefore, we can think of the following features: (1) 

POS type of word. (2) Length of each word. The two features can be justified by 

looking at the patterns of prosodic word.   
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POS Patterns for prosodic word Percentage 

d+v v+v v+u m+q v+n n+n n+u 

v+p a+u a+n n+f v+Ng r+u r+v 

m+m v+r p+r m+n d+p n+Ng 

d+a p+n nr+nr adv+d+v 

m+m+q r+q r+n n+v v+a 

50% 

Other 1416 patterns 50% 

Table  4.1  Prosodic word patterns in terms of POS 

• Patterns appeared in terms of part of speech. Among 17040 prosodic words in 

our corpus, we found around 55% of them are single words, i.e. a syntax word is a 

prosodic word. Among the rest 45%, there are 1446 types of POS combination.  

Table 4.1 lists the patterns of prosodic word in terms of part of speech. The first 

30 frequent POS patterns covers around 50% of all the POS combinations. We can 

see from the table that most patterns consist of two words. The mostly appeared 

POS types are noun, verb, adjective, and numeric words, which are represented by 

n, v, a, and m respectively.  

Length patterns  
for prosodic word 

Percentage

1+1 46.2% 
2+1 15.6% 

1+1+1 15.4% 
1+2 7.0% 

1+1+1+1 4.3% 
2+2 2.9% 

2+1+1 1.8% 
1+1+2 1.4% 
1+2+1 1.2% 

1+1+1+1+1 0.8% 
4+1 0.8% 
3+1 0.7% 

Other 20 patterns 1.8% 

Table  4.2 Prosodic word patterns in terms of word length 
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• Patterns appear in terms of length of word. Table 4.2 lists the distributions of 

prosody word patterns in terms of length of word. In the table, “1+1” means the 

prosody word is composed of with two monosyllabic words. We can see that 

almost all patterns contain monosyllabic words, and the “1+1” pattern accounts 

for 46.2% of all occurrences. 

 

Feature Mutual Information 
POSi-1 0.0059 
LENi-1 0.0322 
POSi 0.1031 
LENi 0.0566 

POSi+1 0.1737 
LENi+1 0.1361 
POSi+2 0.0064 
LENi+2 0.0020 

Table  4.3 Mutual information between break type and features 

We use break type in the following discussions. Break type means a binary value 

to indicate whether, in a break position, there is a prosodic word break or not. For 

example, 1 means existence of prosodic word break, and 0 means non-existence of 

prosodic word break. 

To determine the break type (1 for existence, 0 for not) between two words, we 

need to consider whether the two words can form a prosodic word.  However, we 

cannot only look at the two words alone. We need to look at a wider range around the 

break. One choice is to choose a window of a few words (e.g. we choose four words) 

around the break (2 before and 2 after) for the prediction. This allows us to compare, 

among the three breaks between the four words, which one is the most possible 

prosodic word break. 

Before building a model, we first examine some main features for the prediction. 

Mutual information is a measure to evaluate the dependence between events. We 

calculate the mutual information (For formula, refer to Section 2.4.1) between the 

break (break between word wi and wi+1) and POS types and length of words (POSi  
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and LENi mean POS types and length of word wi. ). The calculated mutual 

information is shown in Table 4.3.   

In the table, we can see that POSi, POSi+1 , LENi, LENi+1 have a larger mutual 

information value than other features. This shows that the two words immediately 

next to the word break have the largest effect on the prosodic word break types 

(existence or not). 

4.3.3 Baseline Model 

We will use CART approach for the prediction because CART has the following 

advantages: (1) It can incorporate different types of features, and there is no limit for 

the number of inputs. Therefore, we can add additional features to improve its 

performance; (2) it can automatically select the most important features for 

classification.  

The data item for constructing a decision tree consists of a feature vector and an 

expected resultant value. Suppose we are to determine the break type (1 for existence 

and 0 for non-existence) between wi and wi+1. The feature vector includes the 

information of the four words (wi-1. wi, wi+1, wi+2) around the break.  The basic 

features we used are:  

• POSs of wi-1, wi, wi+1 and wi+2  (POSi-1, POSi, POSi+1 and POSi+2): There are 35 

POS types in our corpus. NULL is set as POS type if the word does not exist. (e. 

g., w-1.) 

• Lengths of wi-1. wi, wi+1 and wi+2 (LENi-1, LENi, LENi+1 and LENi+2): The 

length of word is in the range from 1 to 4 because the lexicon has a maximum 

word length of four. If a new word has a length more than 4, the length feature is 

set to 4.  Length is set to zero if the word does not exist. (e. g., w-1 is null.) 

4.3.4 Grouping POS Categories 

Due to the limited size of the corpus, there may be not enough training data for some 

POS types.  To make the models more general for the POS types, we have to merge 
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some small POS types.  In this work, we try the following approach to reduce the 

number of POS types and hence to improve generality. 

• Simply merge POS types by the frequency. We combine most rarely appeared 

POS types in this work. 

• Merge POS types according to its discriminating abilities. In the process of 

constructing the decision tree, when only one feature is used, the values are 

used one by one from root down to a single node. This will give us a sequence 

of POS types ordered by their discriminating ability. The POS types with less 

discriminating ability should be combined together because their low 

discriminating ability may be caused by insufficient occurrences.  

4.3.5 Single Word Categories 

On the other hand, some frequently used words may have their own characteristic 

different from the other words in the same POS category. Therefore, we need to form 

groups for some single words. In this work, we will define single word groups for the 

most frequently used words, and a separate group for the rest of the words. Therefore, 

we need additional features, which are: 

• Single word group type for wi-1. wi, wi+1 and wi+2: We put some frequent used 

words into single word groups to improve their discrimination ability. 

4.3.6 Dependency on Previous Break 

Although the simple CART approach works relatively well, it does not consider the 

dependency between breaks. Because each break is calculated separately, mistakes 

cannot be corrected using relationships between prosodic word breaks. Therefore, a 

model that can account for the dependency between the prosodic word breaks should 

be used. 

As we are aware that the current break type (existence or not) is somewhat 

dependent on the previous break types. For example, if there is a prosodic break in 

previous position, the chance of the current position being a prosodic word break will 
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be less. In view of this fact, we can take the previous break type as one of the input 

features in our model. 

4.3.7 Global Optimization 

Using a window of four words and previous break, we can have a well prediction of 

prosodic word break. However, it is desired to consider longer dependency in the 

sentence. That is, we need to insert breaks into word sequence with global 

optimization. The following approach is proposed to have a better result of prosodic 

word prediction. 

(1)  Dependency Model 

The approach for predicting prosodic word uses classification tree and a Markov 

assumption on the break sequence.  

The probabilistic approach for the prediction of prosodic word breaks uses a 

stochastic model P  that represents the conditional dependence of the 

sequence of the breaks a on the sequence of feature vectors 

 for a sentence of n words (Ross, 1995). a  is the type of the break  

(0 for non-break and 1 for break) after the syllable i, and Y  is a vector of features that 

are relevant to the break. Using the chain rule: 
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To calculate the , CART approach is applied. a  and Y are used as 

input features of the tree and  is the output value of the tree. Normally 
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when using a decision tree, terminal nodes assign the most likely classification. Here, 

each node is associated with a discrete distribution, which represents the conditional 

probabilities for each break type. That is, we can obtain the values of 

 from the tree, where b is a break type (break or no-break). The 

calculation of probability can be illustrated in Figure 4.1 

),|( Yabap = 1 iii −
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C AR T  

P revio u s b reak 
ty p e

Featu res

P (b reak) P(n o  b reak)

 

Figure 4.1 Prediction of probability using Classification tree 

We want to determine the break between wi and wi+1 in word sequence (wi-1. wi, 

wi+1, wi+2) around the break. The features (Yi and ai-1) used for the CART for 

probability calculation are: 

• POSs of wi-1. wi, wi+1 and wi+2 

• Lengths of wi-1. wi, wi+1 and wi+2 

• Single word group of wi-1. wi, wi+1 and wi+2 

• Prosodic word break type of previous break position. 

(2)  Prediction Algorithm 

The model tries to find the predicted break type sequence that maximizes the 

probability . This can be achieved by using a Viterbi search algorithm. The 

prediction algorithm works as the following: 

)1Y n

1. Initial state P(0,1) = 1 

2. Search 

for i = 1 to NWord  do  
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a. for k = 1 to NPath 

for j = 0 to 1 do  

P(i, 2NPath +j)= P (i-1,k)P(j) 

b. sort P(i, j), (j=1 to 2NPath) 

c. keep the first m items if 2NPath >m 

3. Back trace to find the best break assignment sequence 

4. Output 

where P(i,j) is the probability of jth path in ith step, NWord is the number of words in the 

sentence, NPath is the number of paths in this step, P(j) is the probability of the break 

type j in this step, m is the number of paths kept in current step (beam width of Viterbi 

Search). 

(3)  Model Training 

The training process is to construct the decision tree and then calculate the probability 

of each class in a node.  

The constructing process of the tree is a process that splits the training data into 

small sets. When a tree is constructed, each leaf node has a set of training vectors and 

a predicted value. We do not just take the classification value. To obtain a probability, 

we consider the distribution of the values in the node.  

For example, given the value of ai-1 and Yi, if we are going to determine the break 

type of a i (1 for break, 0 for no-break), the features (ai-1 and Yi) trace the tree down to 

node T, and then the probabilities are calculated as: 

nmYaap iii /),|1( 1 == −    (4.3) 

nmYaap iii /1),|0( 1 −== −    (4.4) 
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where, n is the number of training samples falling into node T, in which m samples 

have break value 1. 

To accurately calculate the probability on each leaf node, the size of the node 

should be large enough. The sizes of leaf nodes are controlled to have a minimum 

limit in the building process of the tree in this work.   

4.3.8 Experiments 

The corpus consists of 3609 Chinese sentences. There are totally 27293 word breaks, 

among which there are 17040 prosodic word breaks.   

The text script of each sentence is automatically word segmented and tagged with 

POS types.  Prosodic words are labeled manually according to the recorded speech.  

Please note that errors in word segmentation and POS tagging are kept in training data. 

The reason is that, if we use corrected data, the final model may be sensitive to wrong 

word segmentation and wrong POS types. 

Experiments are performed by investigating: (1) the proper parameters for 

training of decision trees; (2) the performance of using different feature sets; (3) effect 

of number of POS categories (4) number of single word group. (5) performance 

difference between the different models (simple CART model and dependency 

model). 

(1)  Training Parameters 

Before conducting all the experiments, we need to consider some relevant parameters.  

During building the classification tree, one of the parameters needed is the stop 

size. This size determines the minimal size of nodes in a tree and controls the splitting 

process of building a tree.  A too large value of stop size will lead to a tree that is not 

precise enough, while a too small value will result in the tree being over-trained to 

suit the training data.  After some experiments, I find that, for my data, the stop size 

should be at least 7.  To calculate the probability values in dependency model, we also 
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need the size of a node is not too small.  In my experiments,  I decide to use 20, which 

is suitable for all cases.  

In tree construction process, we held some data for pruning (Refer to Section 2.3.3). 

We also investigate how much held out data should be used. This held-out data set is 

not used for testing of the result, but to build the tree. Therefore, it is part of training 

data. We investigated and found that there is no much difference when using 10% to 

50% of the data as held-out. In the following experiments, I use 20% of the training 

data as held out pruning data. 

Another problem is that how to divide all the data into training set and testing set. 

One can randomly select part of the data as testing data and the rest as training data. 

To get a more precise result, sometimes, 10-fold cross validation approach is used for 

training and testing. We compared our results using 20% randomly selected as testing 

data and 10-fold cross validation. The results are consistent. Therefore, in the rest of 

the work, we will use 80% of randomly selected data as training data and the rest 20% 

as testing data. We will concentrate on the features and schemes used for prediction in 

the following work.  All the following testing results are results on testing set. 

In all the following experiments, the trees are trained to maximize the accuracy of 

prediction of break and none-break. Accuracy is calculated as: 

ac NNA /=      (4.5) 

where  is the number of correctly predicted break type (both break and non-break), 

  is the total number of all break type to be determined. All the following 

experiments will be evaluated using this value.  

cN

aN

(2)  Different Feature Sets 

Now, we test how the model and features work when predicting prosodic word break. 

We use the information of two, three or four words to make the prediction. The result 

is shown in Table 4.4. In the table, Feature Pi and Li denote the POS type and length 
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of word Wi. We are going to determine the break types (existence or not) between Wi 

and Wi+1. 

Features Accuracy 
Pi-1, Li-1, Pi, Li 73.68% 
Pi+1, Li+1, Pi+2, Li+2 80.05% 
Pi, Li, Pi+1, Li+1 84.01% 
Pi-1, Li-1, Pi, Li, Pi +1, Li+1 85.29% 
Pi, Li,Pi+1, Li+1, Pi+1, Li+1 85.37% 
Pi-1, Li-1, Pi, Li, Pi+1, Li+1, Pi+2, Li+2 85.81% 

Table  4.4 Accuracy of using different feature sets 

In the table, we can see that using two words around the break to predict the break 

types achieves 84.01% of accuracy, which is better than using two words before or 

two words after the break. Using three words makes a better prediction, and using 

four words make the best prediction. 

(3)  Number of POS Types 

The POS tagger of this work uses PKU tag set. Our corpus consists of 40 POS types 

(Categories). By merging some less frequent POS categories, we reduced it to 35 

types. Because keeping too many POS categories may cause data sparseness problems, 

in this experiment, we will test if we can reduce the number of POS types without 

degrading the performance of the system. 

There are two considerations of methods in reducing the number of POS (refer to 

4.3.4). One is to merge the less frequent categories. The other is to merge the ones 

that contribute less to the break prediction. By training CART for prediction using 

POS of individual word as the only input feature (use Pi  or Pi +1), we found that most 

of the less contributed ones are less frequent categories. That means the two options 

for reduction of POS categories come to the same way.  We sort POS types in the 

descending order of frequencies in the data, and found POS types whose rank beyond 

20 did not participate in tree construction. Therefore, we keep the most frequent 20 

POS categories and merge all the rest into 1 category (the rest POS types).  

We make the prediction using the features of POS (21 types) of four words and 

length of four words, and found the accuracy of prediction has not been affected (no 
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improvement and no degrade). We further reduce the POS categories by merging less 

frequent POS categories into the “Rest POS” class. We found that if the number of 

POS types reduces to less than 15, the accuracy starts to drop. Therefore, keeping 15 

POS categories in the prosodic word prediction is sufficient. 

We examine the most frequent types of POS category in the classification tree. It is 

interesting to find that three large POS categories do not participate in the 

classification. The three types are: v (verb), n(noun), p(prep).  This can be explained 

that these three categories are actually a mix of words in different natures. They do 

not provide enough discriminating ability to the prediction.  

(4)  Number of Single Word Groups  

We are aware that noun, verb, and adjective make very big POS categories. Therefore, 

some words cannot be well discriminated.  In this experiment, we will form individual 

word group for frequently used word. The rest of the words will remain as one group. 

(Refer to Section 4.3.5) For example, if we decide to create 50 groups for the first 50 

frequently used words, we will create 51 groups. 50 of them are for all the 50 

frequently used words (Each word belongs to 1 group). All the other words belong to 

the 51st group. We take this word group value as a new feature in the test. By 

changing the number of the single word groups, we have the result shown in Table 4.5. 

Number of word 
groups Accuracy  

0 85.2% 
50 86.1% 
100 86.2% 
200 86.0% 
500 85.8% 

1000 85.6% 

Table  4.5 Accuracy of different word group size 

We find that when the number of word groups is 100, the accuracy is 1% higher 

than there is no word group defined. However, when the number of word groups 

increases, the accuracy begins to drop. The reason for this drop is that too many 

unnecessary categories will make the tree over-trained to suit the training data. 

Therefore, the number of word group should not be very large. Defining around 100 
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single word groups for the most frequent words would help to improve around 1% in 

prosodic word prediction.  

(5)  Dependency Model 

In this experiment, we will compare the performance of dependency model with that 

of a simple CART model.   

In the experiment, the features used are POS (20 POS types) and length of 4 words, 

and 50 single word groups. The results are shown in Table 4.6. In the table, simple 

CART approach achieves an accuracy of 86.10%. When previous break is added to 

input feature, accuracy improved to 88.10%. When using dependency model 

(previous break is considered in CART and constraints between breaks are considered 

in Markov chain), the accuracy improved to 91.65%.  

Method Features Accuracy  

CART 
without previous 

breaks 

Pi-1, Li-1, Wi-1,  
Pi, Li, Wi, 
Pi+1,Li+1, Wi+1, 
Pi+2,Li+2, Wi+2 

86.10% 

CART  
with previous breaks

Pi-1, Li-1, Wi-1,  
Pi, Li, Wi, 
Pi+1,Li+1, Wi+1, 
Pi+2,Li+2, Wi+2 
B i-1 

88.10% 

Dependency model 

Pi-1, Li-1, Wi-1,  
Pi, Li, Wi, 
Pi+1,Li+1, Wi+1, 
Pi+2,Li+2, Wi+2 
B i-1 

91.65% 

Table 4.6 Performance comparison for CART approach  

and Dependency model 

Clearly, from the above results, we can see that the dependency model has better 

performance than the simple CART approach.  

(6)  Error Analysis 

Our experiment result shows that the accuracy for prediction of prosodic word break 

on testing data is 91.65% (dependency model). 8.35% of the break types (existence or 
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not) are not correctly predicted as in the testing data. However, after analyzing the 

errors, the errors can be classified into two categories: 

• Acceptable break type: Because there are many ways to break a sentence into 

prosodic word groups. Therefore, some predicted break types that do not agree 

with the testing data are actually alternative breakings. This accounts for about 

3.4% of all the testing data. 

• Unacceptable break type: Some others are wrong break types. The errors are 

mainly caused by wrong word segmentation and wrong POS types of words. 

Some are caused by ambiguity in sentence structure. 

(7)  Speed Comparison 

We have proposed dependency model, which shows better performance than simple 

CART approach. We are also interested to know how fast the dependency model 

works. We conducted an experiment to compare the speed of dependency model and 

CART model. We predict prosodic word break of 4000 sentences and record the time 

used using the two different ways. In dependency model, we use a beam width of 30 

(i.e. m = 30) in Viterbi search algorithm in Section 4.3.7. The test is done on a 

Pentium II-500 PC. The result is as shown in the Table 4.7. It shows that the speed of 

dependency model is around 36.0% of the CART approach. 

Method Time 
(seconds)  

CART 9.0  
Dependency model 25.0 

Table 4.7 Speed comparison for CART approach  

and Dependency model for prosodic word break prediction 

4.4 Minor Phrase Break Detection 

Phrase break is the break between phrases. There are many ways for break prediction 

in literature. The simplest methods usually only distinguish words as content words or 

function words; some use POS sequence. More approaches that are complex 

determine breaks based on a parsing tree. Due to the complexity of the parsing and the 
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low accuracy of parsing long sentences, this approach is not realistic in a real TTS 

system. In these approaches, some use POS sequence as input, each break is 

determined by a window of word sequence. However, the window size of word 

sequence used for prediction is limited by the data sparseness problems.  In this work, 

we will try to overcome these problems using POS sequence but using CART to avoid 

data sparseness problem.  

We examine the distribution of lengths of minor phrases. The distribution of the 

length is shown in Figure 4.2. From the figure, we can see that most of the minor 

phrases are within the range of 3 to 11 syllables.  This means that minor phrase breaks 

are dependent on each other statistically. For example, a break is more likely to 

appear five to nine syllables away from its neighboring breaks. 
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Figure 4.2 Distribution of number of syllables in phrase 

We use break type in this section (Section 4.4). Break type means a binary value to 

indicate the existence of a minor phrase break. 1 means existence, while 0 means non-

existence. 

We calculated the mutual information between breaks and possible features. The 

result is shown in Table 4.8 and 4.9. Table 4.8 shows the mutual information (Refer to 

Section 2.4.1) between current break type and the previous break types. In the table, 

Break Pi means the previous ith break. Break P0 means the break to be determined 

itself. We can see in the table that, the highest mutual information value (0.00669) is 
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the value between Break P3 and the current break. That means a break type in a 

certain distance has some dependency relationship with the current break type. 

 

Feature 
Mutual 

Information 

Break P7 0.00024 

Break P6 0.00001 

Break P5 0.00055 

Break P4 0.00198 

Break P3 0.00669 

Break P2 0.00181 

Break P1 0.00361 

Break P0 0.98950 

Table 4.8 Mutual information between break type and  

previous break type for minor phrase 

 

Feature Mutual Information

POS P8 0.00208 

POS P7 0.00146 

POS P6 0.00207 

POS P5 0.00296 

POS P4 0.01035 

POS P3 0.02187 

POS P2 0.04991 

POS P1 0.22532 

POS N1 0.23396 

POS N2 0.15001 

POS N3 0.01312 

POS N4 0.00232 

POS N5 0.00248 

POS N6 0.00365 

POS N7 0.00574 

POS N8 0.00626 

Table 4.9 Mutual information between break type and previous  

and next POS types for minor phrase  
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Table 4.9 shows the mutual information between break type and POS types of 

surrounding words. In the table, POS Pi means POS of the previous ith word, and 

POS Ni means POS of the next ith word. We can see that the highest values are for 

POS N1 and POS P1. That means that the POS types of words immediate next to the 

break have the highest influence on the break type to be determined. Words far away 

have less influence. 

4.4.1 CART Approach 

In a simple CART model, the break is mainly decided by the sequence of POS in the 

sentence. A window on the sequence can be used. If the size of the window for the 

current word i is from j words left from, to l words right from the word, then the 

features used for the prediction are: POSs of wi-j, …, wi-1, wi, wi+1,…, wi+l.  The 

determination of break type can be illustrated in Figure 4.3. 

   

…… 3 − i w    3 − i b    2 − i w    2−ib    1−iw    1−ib   iw      ib   1+iw   1+ib    2 + i w ……   

Classification Tree 

 

Figure 4.3 Calculation of probability using CART 

4.4.2 Dependency Model 

Inspired by the approach we used in prosodic word prediction, in this approach, we 

assume that the break between two words depends on the previous break sequence in 

this sentence. The model can be described as the following. 
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The probabilistic approach to prediction of minor breaks uses a similar stochastic 

model as for prosodic word detection.  represents the conditional 

dependence of the sequence of breaks a on the sequence of feature 

vectors Y .  is the break type (break or no-break) of the syllable i, 

and Y  is a vector of features that are relevant to the break. Using the chain rule: 
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Under the mth-order Markov assumption, the current break depends on m breaks 

before, we have: 

∏
=

−−
−=

n

i
i

mi
ii

nn YaapYapYaP
2

1
11111 ),|()|()|(   (4.7) 

To calculate the , CART approach is applied. a  and Y are 

used as input features of the tree and  is the output value of the tree. 

 means the previous m break types, and Y  means POS types of a window of 

word sequence around a break. The calculation of probability can be illustrated as 

shown in Figure 4.4. 
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Figure 4.4 Calculation of probability using CART in dependency model 
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One more thing needs to be considered here. It is stated earlier in 4.2.1 that minor 

prosodic break set is a subset of prosodic word break. Therefore, the predicted minor 

phrase break cannot be in the middle of a prosodic word. To prevent this, the 

calculated probability should be adjusted. When a break position is not a prosodic 

word break, the probability value is assigned to zero. This avoids inserting a minor 

phrase break in the middle of a prosodic word. 

The determination of breaks needs a dynamic programming process to find the 

best one. Viterbi search algorithm works similarly as that for prosodic word 

prediction. 

4.4.3 Experiments 

We use parameter precision (P) and recall (R) to evaluate the performances of the 

models.  The parameters are defined as:  

pc NNP /=     (4.8) 

lc NNR /=     (4.9) 

where Nc, Nl, and Np are number of correctly predicted break, number of labeled 

break, and number of predicted breaks respectively. 

Experiment is conducted to compare the dependency model and the simple CART 

model.  We use the two approaches for testing: 

CART approach with POS sequence (Method 1): In this approach, we only use 

POS sequence to predict breaks between words.  A window consists of 2n 

surrounding words (n words before and n words after) around a word break. Features 

for predicting the break include the POS of n words before and n words after the 

break.  For the cases that there are no enough words to fill the window, a NULL value 

is assigned as POS.  In this experiment, n is given a value from 1 to 8.  

Dependency model with POS sequence and previous break sequence (Method 

2): In this approach, a window of 2n words is also selected together with n-1 breaks 
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before the words.  Therefore the features for the prediction include POS of n words 

before the break, n words after the break and n-1 break types before the break. The n 

value also varies from 1 to 8.  

The CART approach (Method 1) is previously used by other researchers. In this 

work, we take this approach as a reference to evaluate the performance of our new 

model, i.e. dependency model. Based on same corpus, the performances can be 

compared. 

Similar to the experiments for prosodic words, we found that 20 is a suitable stop 

size for decision tree for our experiments. We used 10-fold cross validation approach 

in our experiment to better evaluation the models. The trees are trained to maximize 

the accuracy of prediction of break and non-break. 

n Recall Precision 
1 75.6% 70.9% 

2 80.9% 74.5% 

3 80.9% 74.2% 

4 80.2% 74.4% 

5 80.4% 74.5% 

6 80.1% 74.2% 

7 80.1% 74.4% 

8 80.3% 74.9% 

Table 4.10 Result of break prediction using CART and POS sequence 

n Recall Precision 

1 86.6% 75.1% 

2 86.4% 80.2% 

3 86.1% 80.9% 

4 86.0% 80.0% 

5 86.2% 80.5% 

6 86.1% 80.4% 

7 86.0% 80.5% 

8 85.8% 80.7% 

Table 4.11 Result of break prediction using dependency model 

 



 
Chapter 4. Prosodic Break Prediction  70 

We calculated the precision and recall values for the prediction. The results of 

prediction are shown in Tables 4.10 and 4.11, and they are compared in Figure 4.5 

and Figure 4.6.  

(1) Performance of the Dependency Model 

For dependency model, Figure 4.6 shows that precision increases from 75% to 80% 

when n changes from 1 to 2. There is no significant change when n > 2. 

 
Precision comparison of simple CART  

and dependency model 
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Figure 4.5. Comparison of precision values for phrase break prediction  

using the CART and dependency model 
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Figure 4.6. Comparison of recall values for phrase break prediction  

using the CART and dependency model 
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For recall values in Figure 4.7, there is no significant change when n changes 

from 1 to 8. 

Therefore, the dependency model (when including 2 words before, 2 word after 

the break, and 2 breaks before the break) helps to improve precision. This does not 

have much influence on recall. 

(2) Performance of the CART Model 

In Figure 4.6, we can see that the precision value is around 71% when n=1, and 

increase to around 73% when n = 2. The precision values remain around 80% when n 

>2.  

For the recall values in Figure 4.8, we can see it increases from 75% to 80% 

when n changes from 1 to 2. There is no increase when n > 2. 

Therefore, it is necessary to include four words (two before and two after the 

break) into prediction when using CART approach for prediction. 

(3) Comparison of the Two Models 

In Figure 4.5, we can see then the precision values become stable when n>=2. The 

precision of dependency model is around 6% higher than simple CART model. 

In Figure 4.6, we can see that there is 5% higher in recall values when n is greater 

than 2. 

Therefore, when we include 4 words around the break for prediction, the 

dependency model has a better performance on both precision and recall than the 

simple CART approach.  

(4) Error Analysis 

Similar to prosodic word prediction, because there are many ways to break a sentence, 

the wrongly predicted breaks can be classified as acceptable break type and 
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unacceptable one. We find from our result that among all the breaks, around 3.5% of 

them are incorrectly predicted but are acceptable.  

One of the drawbacks of the model is that some long minor phrases tend to be 

mistakenly separated into short minor phrases in our approach. This is due to, 

statistically, most of the minor phrases are short ones. 

(5) Speed of Dependency model 

We have conducted experiments to test the time of processing. The test is done on a 

PII-500 PC.  We take 30 for beam width of Viterbi search. Experiment on 4000 

sentences shows the speed of dependency model is around 40.1% (9.8/24.1) of the 

simple CART approach.  The actual time used is as in Table 4.12. 

Method Time 
(seconds)  

CART 9.8  
Dependency model 24.1 

Table 4.12 Speed comparison for CART approach  

and Dependency model for phrase break prediction 

4.5 Discussion 

From the experiments conducted, we have the following findings: 

 (1) For prosodic word break, we can achieve high accuracy when using four 

words around the break. This high accuracy shows that prosodic word break is 

dependent on the length and POS of the words around the break. Reducing the 

number of POS types to 15, there is no degrade for the performance. The performance 

can be improved by adding frequent single word categories. 

(2) For prosodic word break, when applying dependency model, it shows better 

performance than using a simple CART approach alone. There is an increase of 5% in 

accuracy. 

(3) For minor phrase break, when the dependency between minor phrase breaks is 

considered, there are increases in both precision and recall values in the same word 
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window size compared with simple CART approach.  There are an increase of 6% in 

precision value and an increase of 5% in recall value. 

(4) For minor phrase break, we find that both the CART approach and the 

dependency model achieves good performance when n = 2. Therefore, when making a 

prediction, it is necessary to consider two words before and two words after a word 

break, which is a 4-word window. For dependency model, we need to consider two 

word breaks before as well. There is no need to include more words. 

(5) Directly comparing the performance of the work with other work is not easy 

because different experiments are based on different corpora, different features, etc. In 

addition, there is no public available corpus for testing different approaches for break 

prediction. However, compared with simple CART approach, which is used by many 

research projects, the dependency model has better performance in predicting 

prosodic word break and prosodic minor phrase break. 

4.6 Summary 

In this chapter, Chinese prosodic structure is first described. The problem of prosodic 

word and prosodic phrase has been investigated. Models for break prediction are 

proposed. Features for prediction are tested. Possible improvements are tried.  

Experiment shows that the proposed dependency model is better than simple CART 

approach. 

For prosodic word prediction, we understand that length of words and part of 

speech are important features for Chinese prosodic word break prediction. There is a 

dependency between breaks, which will help to improve the accuracy of prosodic 

word break prediction.  

For minor phrase prediction, the experiment shows that considering 4 words 

around a break can make a good prediction for both CART approach and dependency 

approach. 
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Chapter 5  Prosody Parameters 

In this chapter, we investigate the problem of the prosodic parameters for unit 

selection based synthesis. First, we give an introduction of the prosody parameters 

and previous approaches in generation of prosody. Then, the definitions of the 

prosody parameters are given. Next, the parameters are evaluated and selected. 

Finally, the method for prediction of the parameters is given. Relevant experiments 

are described in the final part of the chapter. 

5.1 Introduction 

The naturalness of speech is determined by the richness of prosody contained in the 

speech. To generate high quality speech, proper prosody should first be generated 

from linguistic representation that is derived from an input text. 

In a TTS system, the prosody is a set of parameters that describes rhythm, 

intonation, unit length, and loudness of speech.  The values of parameters change with 

time. The main prosody parameters include the pitch contour of an utterance, duration 

of units, and energy of speech units. In the past decades, various approaches for 

predicting prosody parameters have been proposed for different languages.  

For a given text, there are more than one spoken realizations by different 

speakers or for different intentions. The differences between the realizations might be 

very large. Lack of deep understanding of a sentence makes the determination of 

prosody of a sentence difficult. Usually, the resultant prosody is an average of or the 

most probable one among different possible realizations of the same linguistic 

expression. Therefore, the task of TTS usually generates the speech with commonly 

acceptable prosody for a text. Acceptable prosody means the prosody of the generated 

speech should be plausible but need not to be the most appropriate for a particular 

case (Monaghan 1989). 
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5.1.1 Pitch Contour 

Pitch contour represents the change of fundamental frequency (F0) over time. It is 

generally accepted as the most important element of prosody. Various approaches 

have been applied in fundamental frequency generation. We can classify the existing 

approaches based on different aspects of prosody models. This part gives some 

characteristics of the prosody models. 

(1) Direct Prediction or Two-step Prediction 

The current TTS systems follow two general ways to generate prosody parameters. 

Some systems create prosody parameters directly from linguistic features. Other 

prosody models generate prosody in two steps: (1) a fisrt step to predict intermediate 

prosodic labels from text, and (2) a second step to convert the intermediate prosodic 

labels and other features into quantitative prosody parameters.  

Usually abstract prosodic labels serve as intermediate prosodic labels. The 

abstract labels are designed according to prosodic theories of the language in research. 

Labeling systems, such as ToBI (Silverman et al 92) for English, are based on the 

perception of human. The labels capture the global intonation of a sentence and some 

important prosodic phenomena, such as pitch accents, boundary tones. The second 

step is a realization of the abstract labels.  

(2) Parametric or Non-parametric Model 

The parametric approaches try to describe the pitch contour with some parameters. In 

realization, pitch contour is generated by curve functions or interpolation. Typical 

parametric approaches include: Addictive model used by MITalk (Allen, 1987, 

O’Shaughnessy, 1979), Pierrehumbert’s model (1981), Fujisaki model (1988). 

Fujisaki proposed a source/filter model to generate F0 contour. It defines two kinds of 

commands, phrase commands and accent commands. The former carries information 

about prosodic phrase and models as pulses. The latter represents a lexical accent and 

models as step functions. F0 contour is generated by smoothing the command signals 

with second order linear filters.   
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Non-parametric approaches, however, try to directly generate the final parameters 

from all the input features. The non-parametric approaches include hidden Markov 

model, neural networks, and concatenative methods. Most of corpus-based 

approaches are non-parametric. 

(3) Tone-Sequence Model or Superpositional Model 

It is a common knowledge that an F0 Contour is the result of many interacting factors, 

each having a different temporal scope (phone, syllable, word, phrase, sentence, or 

paragraph). A superpositional model attempts to model some or all of these factors 

separately, and combines the partial models to a final F0 contour (Buhmann et al, 

2000). The final pitch contour is a combination of several contours. The famous 

Fujisaki model (Fujisaki, 1988) belongs to this category. A sequential model however 

directly generates F0 contour from left to right as a sequence of F0 values or 

movements. The tilt model (Taylor, 1998) and many other ToBI based models fall in 

this group. 

(4) Rule–Based or Corpus-Based Approaches 

Early systems use rule-based approaches (Klatt, 1987; Lee et al., 1989,1993; Chan 

and Chan, 1992; Anderson et al., 1984; Jilka et al., 1999). Currently, most prosody 

models have moved to corpus-based approaches. Typical corpus approaches include: 

CART approach (Lee S. H., 2000; Ross, K. N., 1995), Markov model (Ljolje and 

Fallside, 1986), linear regression (Black et al., 1996), neural networks (Traber, 1992), 

and others. 

5.1.2 Duration 

Duration means the time length of a speech unit. It is a way to describe the temporal 

structure of speech. Duration usually changes with many factors, such as phone 

identity, accent, phrase-final, etc. A duration model can predict duration for individual 

phoneme, or for a larger unit such as syllable.  
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The models to predict durations fall into two categories: rule-based and corpus-

based. Currently, there is a trend to use data-driven approaches for duration modeling. 

Generally, there are two kinds of methods, which can be classified as parametric and 

non-parametric methods.  

The most famous rule-based model is Klatt’s model (1987) for English in MITalk. 

It used a multiplication formula. The parameters reflecting the contribution to 

durations were carefully tuned by researchers.  

Van Santen (1994) proposed a sum-of-products model, which is a generalization 

of additive model and multiplicative model. The model is a sum of terms with each 

term itself is a product of one or more factors. The reported result of the model is that 

the correlation between observed and predicted duration was above 0.9 for both vowel 

and consonants.  

Riley (1992) applied a CART approach to duration prediction.1500 utterances 

from one speaker were used to train the regression tree. The standard deviation of 

residual of prediction is 23ms.  

5.1.3 Energy 

Energy is considered less important than pitch contour and duration. Therefore, many 

systems do not treat energy seriously. However, inappropriate energy level of a unit 

may make speech sound uncomfortable. Therefore, full prosody control of speech 

needs to consider energy as well. Energy can be represented as a contour over time 

axis or a single value for a speech unit. 

Corpus-based approach is generally adopted in generating energy contour. Neural 

networks (Lee et al, 1998), regression tree (Bagshaw 1998), and dynamic system 

(Ross and Ostendorf 1999) approaches were used to model energy contour.  

The basic unit for energy prediction can be at syllable level (Lee et al. 1998), 

phone level (Bagshaw 1998) or even frame level (Ross and Ostendorf, 1999).  
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5.1.4 Previous Approaches for Chinese Prosody 

For Chinese language, some models have been proposed to generate intonation 

contour, duration, and other parameters. 

For pitch contour of Chinese, emphasis is put on two parts. One is F0 contour of 

lexicon tone. The other is global intonation of pitch contour. Rule-based systems 

model each tone with a contour and use a decline line to represent the global 

intonation.  Lee et al. (1989) classified tone contour into some patterns, and rules 

were used to select different patterns. Bell labs system (Sproat, 1998) uses abstract 

labels to represent tones. Rules are defined to assign labels to syllables. The labels are 

further converted into pitch values. 

Stem-ML approach (Shih et al., 2000) was proposed to model Chinese pitch 

contour. This is a parametric model, which can make quantitative F0 predictions, in 

terms of the lexical tones and the prosodic strength of each word. The model can 

accurately reproduce F0 in continuous speech with a 13 Hz RMS error.  

For duration modeling, many attempts were made. Early systems determine the 

durations using handcrafted duration rules (Chiou et al. 1991; Choi et al. 1994). 

Parametric approaches were also used in Bell Labs Mandarin System (Shih and 

Sproat, 1996). Neural networks approaches were used by Hwang et al (1996), and 

Shih and Ao (1997). 

There are a few corpus-based models for the generation of full prosody 

parameters. Neural network models (Chen et al., 1998) were applied to generate all 

prosody parameters (including pitch, duration, and energy).  

5.2 Problems and Solutions 

Although various ways have been used to generate prosody for Chinese, few of them 

are suitable for unit selection based approach. In this section, I describe the problems 

of prosody for unit selection, and provide my solutions.  
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5.2.1 Problems of Prosody for Unit Selection 

Parametric representation of prosody: Prosody can be expressed in two ways. One 

is using symbolic representation. Another is parametric representation. Symbolic 

representations of prosody include tone, break, etc, which are abstract linguistic 

representations. Parametric representations include pitch contour, duration, and 

energy values. Symbolic representations are finally realized by parametric 

representations in real speech. Although prosody is considered as one of the most 

important factors of synthetic speech, prosody was not well handled in unit selection-

based systems. Some of the previous systems used symbolic prosody in unit selection. 

This can only achieve limited success in naturalness because symbolic prosody 

representations are discrete values, which are only rough descriptions of prosody. 

Therefore, to better describe prosody in unit selection, there is a need to use 

parametric prosody representation in unit selection. 

Parameters for unit selection: Previous Chinese prosody models only predict 

duration, energy value, and a curve to describe the pitch contour. The parameters are 

used in speech synthesis process by changing the speech signal. For example, in 

PSOLA synthesis, lengthening the speech (to change duration) is done by inserting 

more pitch periods; lifting the pitch value (to change pitch) is done by reducing the 

offset between the signals to be added up; or changing volume is done by amplifying 

the amplitude.  However, in a unit selection-based approach, each unit has particular 

prosody parameters. The prosody parameters of the unit do not cover the total 

prosodic parameter space continuously. Therefore, during selection of units, there is a 

problem on how to measure the similarity between units.  In consideration of this, we 

need parameters specially designed for unit selection-based approach.  

Parameter definition: The main problems in prosody of current Chinese TTS 

systems include: rigid rhythm, inadequate pause, unclear tone, discontinuity in speech, 

sudden rising or lowering in pitch, too long or too short sound, etc. The specific 

reasons for these problems are: 

• General prosody parameter: Inappropriate pitch, duration, and energy values 

will lead to sudden rising or lowering in pitch, too long or too short sound, etc. 
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• Implementation or representation of breaks: Inappropriate implementation or 

inappropriate parametric representation of breaks may result in rigid rhythm, 

inadequate pause. 

• Implementation or representation of tones: Inappropriate implementation or 

inappropriate parametric representation of tones may result in unclear tone and 

unclear sound. 

Although the prosody parameters are intended to describe all prosody aspects, 

simply selecting some basic prosody paraemters (duration, mean of pitch, energy) 

cannot effectively represent prosody. These parameters do not necessarily convey 

important perceptual information correctly. For example, it is unknown whether the 

tone and break information are correctly preserved in the parameters. We have to find 

an approach to solve the problem of realization of these perceptual effects. 

Parameter selection: When many parameters are defined, there may be some 

redundancy. We want to select from them a small set of descriptive parameters that is 

sufficient but concise. This is a problem of parameter selection. 

Feature analysis: There are many features (linguistic, phonetic, and break 

information derived from the input text) for prediction of prosody. To better 

understand the problem of prosody generation, we should investigate the relationships 

between the prosody parameters and the features for prediction.   

Prediction model: We should decide a prediction approach for predicting the 

prosodic parameters. 

5.2.2 Implementation of Perceptual Effects 

We find that prosody implemented in final speech contains two kinds of information, 

which are: 

• Implicit prosody: The intrinsic properties of speech that are required by 

segmental property of speech. These are basic prosody parameters, such as 
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duration, energy and pitch. For example, for a certain syllable, duration value 

should be in a proper range. If the duration is too small, it will sound bad. 

• Explicit prosody: The properties that can be identified as perceptual prosody 

effect. The effect is usually represented by a combination of some prosodic 

parameters. For example, break information and tone information are 

perceptual effects. They may be described by a group of parameters.  

The structure of the prosody prediction and implementation in this work is as 

shown in Figure 5.1. We understand the process of prediction of prosody and 

implementation of prosody in speech from three aspects. The three aspects can be 

considered as three transformation chains, which are entity chain, general prosody 

chain, and perceptual prosody chain. Note that, the three aspects are different 

understanding of the same process. 
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Figure 5.1 Prediction of prosody 



 
Chapter 5. Prosody Parameters  82 

In the entity chain, we see the prosody generation process transforms the text into 

prosody, and the speech synthesis process transforms the prosody (and other input) 

into speech. If we focus on general prosody properties, we can view the information 

transformation as the general prosody chain. In this chain, the prosody generation 

process transforms the linguistic features into the prosody parameters. Then the unit 

selection process generates a speech signal that contains the prosody parameters. 

From the view of perceptual prosody, we see that the tone and break information is 

contained in initial input text. After prosody generation, it is converted into a 

parametric representation. The parametric form of prosody representation is then 

converted into an acoustic representation after unit selection based synthesis process. 

We can see that the information of tone and break is transmitted in the whole process. 

Therefore, from the entity view, the whole TTS process is to transform text into 

speech. From the view of general prosody, the text is transformed into proper speech 

signal with proper prosody properties. From the view of perceptual prosody, the 

identifiable perceptual elements (such as break and tone) are transferred though the 

prosody generation process and unit selection process to the final speech.  

In this work, we want to determine the parameters that can correctly transmit the 

perceptual effects (e.g. tone and break through the chain). The process of determining 

prosody parameter set works as follows. First, an initial parameter candidate set is 

decided. Among the parameters, some of them should be sufficient to describe the 

desired perceptual effects. Then, the parameters are evaluated using two approaches. 

One is to examine the parameters from the statistical view to find their discriminating 

ability for the symbolic prosody representation. The other is to use recognition 

approach to verify the parameters. Properly designed parameter set can result in a 

sufficiently high accuracy. Next, a parameter clustering approach is used to select a 

set of units with minimal redundancy. Finally, the prosody parameters are integrated 

into cost function to guide the unit selection. 

Note that, in our unit selection synthesis process, prosodic word break is 

implemented by selecting proper boundary syllables rather than inserting silences. 
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5.2.3 Solutions for the Problems 

We give solutions to the problems raised in Section 5.2.1. 

Parametric representation of prosody: In a unit selection-based synthesis 

approach, prosody parameters are used as discriminating criteria, which are used in a 

pattern matching process.  Therefore, we decide to use some key parameters to 

describe prosody. We choose syllable as our basic unit for prosody analysis and 

generation.  The calculation and prediction of the parameters will be on syllable level 

in this research.  

Parameters for unit selection: In unit selection-based synthesis, the values of the 

parameters of a unit will be compared with the target values during unit selection 

process. When there is a mismatch, we should have a way to evaluate the degree of 

mismatch. In this work, we view prosody prediction as a classification problem. An 

input prosody feature vector will be mapped to a class. Each class has a predicted 

prosody parameter value, and a measure to account for the variation of the parameter. 

That means each predicted parameter would be represented by: (1) a value of the 

prosody parameter. (2) a variation measure of the predicted value. In this work, 

variation is measured using standard deviation of the samples in the same class. 

Parameter definition: Tone and break are two of the most important prosody 

elements of Chinese speech. In this work, we will investigate the problem of 

describing effects of tone and break in speech. We will define parameters that are 

suitable for describing the tone and boundary effects. The defined parameters will be 

evaluated by statistical analysis and recognition. 

Parameter selection: To remove redundancy in the defined parameters, we 

decide to use a clustering approach. The parameters will be clustered according to the 

correlation values between them.  Representative parameters will be selected from 

each cluster. 

Feature analysis: We will also examine all the factors that affect the prosody 

parameters. We are interested in which features are mostly affecting the result of 
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prosody parameters and which group of features can give a good prediction of the 

parameters. We will do the following: 

• Prediction using single feature: We will find out the prediction ability of each 

feature we used. 

• Prediction using stepwise training: We will find out which group of features 

have best prediction ability. 

Prediction Approach: A prosody model is to map the linguistic input vector L = 

(l1,l2 ….lm) to prosody parameter vector P = (p1,p2…pn). Each pi is a function of L.  

pi = Fi (L)     (5.1) 

where Fi is the function that derive parameter pi from L.  

To implement this function, we use CART approach. The inputs of the linguistic 

features are discrete values. The output pi’s are continuous values in this research. 

Due to the large number of features and training data items, the generated tree can be 

very large. The number of nodes may be hundreds or even thousands. 

5.3 Prosody Parameters for Unit Selection 

In this part, we will define a set of candidate prosody parameters to describe prosody 

for unit selection. 

5.3.1 Duration and Energy 

Duration means the time length of a unit. Duration of a unit is usually measured from 

start of the unit to the end of the unit.  Start and end of a unit is labeled in the corpus. 

However, how to accurately determine the start and end of each syllable is a problem. 

We realized that duration actually relies on energy change. Start of a unit is identified 

when the energy value rises from zero up to a non-zero value, while end of a unit is 

identified when the energy value returns to zero. The problem is that sometimes 

energy is changing gradually. A unit may last too long before the energy goes to zero. 
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That makes the duration unstably long. To overcome this problem, in this work, we 

first normalized the duration of unit by removing low energy part. 

During the calculation of duration, a normalization approach is used to obtain a 

consistent calculation of duration. The method of normalization is shown in Figure 

5.2. The figure shows energy change of a syllable. The normalized sn and en meet the 

following criteria. 

∫=
e

s
dttEesF )(),(         (5.2) 

),()( , llnl esFssF ⋅= α      (5.3) 

),(),( llln esFeeF ⋅= β     (5.4) 

where, E(t) is the RMS energy of the signal at time t and F  is the accumulative 

energy from time s to time e as illustrated in the figure. s

),( es

l and el are labeled start and 

end. α and β are small values, e.g. 0.001. By using this processing, silence parts or the 

parts with very small sound are excluded from the duration of syllables. As duration is 

only served as criteria for unit selection, it does not hurt even if part of the unvoiced 

initial of a syllable is excluded from the duration. 
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Figure 5.2 Syllable duration normalization 

By using this normalizing approach, in the corpus, the mean of standard deviation 

of duration reduces from 65.9 to 64.6 ms (with mean from 243.3 to 240.7 ms). We 
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examine the change of durations, and found that 12% of the units have more than 0.01 

second change in duration. For all the changes, we found that most of them are start or 

end syllable of an utterance. The start and end silences have been removed from 

duration. We use the normalized duration as the syllable duration parameter. 

Energy is a parameter to measure the loudness of sound. There are a number of 

representations of Energy (and they might be in different scales, e.g. dB which is in 

logarithm scale).  For example: 

• Total value: 

∑
=
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n
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2 )]([      (5.5) 

where n is the sample number in a unit, x(i) is the signal value of the ith 

sample. 

• Maximal value 
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where n is the number of syllables in a unit, m is a frame length for calculating RMS 

energy,  x(i) is the signal value of the ith sample. 

The two kinds of representation (sum value or maximum value) do not consider 

influence of duration for energy. The total energy of unit reflects energy over all the 

duration of whole unit. For same type of unit, a unit with long duration usually has 

higher total energy than that with a shorter duration. Maximal value of RMS Energy 

reflects the peak value of energy in the unit.  It only reflects part of the energy 

information of a unit.  A better way is to use an average value of energy within the 

duration of a unit.  
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As we know that energy of unvoiced part of a unit is low, including unvoiced part 

into energy measure may introduce unstableness in energy value. In this work, we use 

RMS energy of syllable only on voiced part of the unit. The RMS energy is defined as: 

nixE
n

i
/)]([

1

2∑
=

=      (5.8) 

where x(i) is the amplitude of the ith sample of the signal, n is the number of samples 

in the voiced part of the syllable. 

Duration value and energy are important element of prosody. However, the 

values (even with pitch parameters also considered) cannot fully reflect some 

important difference in prosody.  For example, the parameters cannot distinguish 

boundary syllables. A start syllable and an end syllable of prosodic word have 

markedly different perception effects. Incorrect use of boundary units will result in 

wrong break position effect in speech utterance. So we have to investigate the 

acoustic correlates of boundary units. 

Energy contour is one of the options for this consideration. However, description 

of energy contour depends on the start and end markings of a unit, while the start and 

the end of the unit depend on energy contour (i.e. at the edges of unit, what an energy 

value can be considered as silence). To solve this paradox, in this work, we use a 

representation by considering energy and duration simultaneously. 

The new defined parameters are based on the Figure 5.2.  Similar to formula 5.2, 

we define parameters using the following formulas. 

),()( , nnn esFssF ⋅= γγ  )10( << γ   (5.9) 

)/()()( nnn sessp −−= γγ     (5.10) 

where γ  is a given value for defining parameter, s  is the corresponding time point 

within the duration, 

γ

 is the defined parameter, others have the same meaning as 

those in formula 5.2.  

)(γp
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)(γp  defines a percentage point of energy distribution in the duration. It is 

another description of energy contour. Take an example to explain the meaning of γ  

and )(γp . If we define  and calculated that , it means that divided 

by , the left part of the syllable accounts for 30% of the energy and 40% of duration.   γs

4.0)( =γp3.0=γ

We set values of γ , and calculate values of )(γp as our prosody parameters. In 

this work, we define percentage points of duration that divide energy at 1/6, 2/6, 3/6, 

4/6, and 5/6 of whole energy. That is, γ  takes 1/6, 2/6, 3/6, 4/6, and 5/6 in formula 

(5.10).   

Besides the parameters we defined above, we should define two other parameters, 

which are parameters that describe energy level at boundaries. It is usual that the 

energy value at syllable boundary is not a value close to zero. Rather, in many cases, 

because a unit is tightly connected with previous or next units, there are continuous 

energy contour between two units. Therefore, we represent the boundary energy (start 

and end position of a unit) with RMS values within a 50 ms frame.  

5.3.2 Pitch Contour 

Pitch contour is generally considered as the most important one among prosody 

descriptions. In this research, pitch contour is decomposed into two parts. The pitch 

contour is considered as the sum of global intonation contour and syllable pitch 

contour.  

• Global intonation contour: Global intonation contour means the global 

change of pitch values over the syllables in a sentence. It controls the whole 

intonation of an utterance. The global contour is determined by the 

grammatical function and pragmatic function of each word and phrase in the 

sentence. 

• Syllable tone contour: Syllable F0 contour means the local change of pitch 

values in a syllable. It controls the tone identity of a syllable. Syllable contour 
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is usually determined by tone of the syllable, and affected by tones of 

surrounding syllables, stress degree, etc. 

Suppose the F0 contour for the voice part of a syllable is  and  and  are 

start time and end time of the voiced part of the syllable. Then we define the 

following: 

)(tf s e

 Pitch Mean of Syllable:  mean pitch value of a syllable 

)/())(( sedttfp
e

s

−= ∫         (5.11) 

Tone Contour of Syllable:  Tone contour is defined as the pitch contour of a 

syllable minus the pitch mean of the syllable.  

ptftc −= )()(       (5.12) 

where p is pitch mean of the syllable. 

Tone 1    Tone 2         Tone 3    Tone 4 

 

Figure 5.3 Illustration of pitch curves of tone 

Tone Contour Vector of a Syllable:  Tone contour is expressed using a vector. 

We obtain m samples in the pitch contour evenly to form an m+1 dimensional vector. 

This gives a uniform representation of all syllable pitch contour.  Tone contour vector 

of the syllable is defined as: 

},...,,,{ 210 mccccC =           (5.13) 

mjtjfc j ..0),)1(( =∆−=      (5.14) 

mTt /=∆        (5.15) 
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where T is the duration of the voiced part of the syllable. 

The global contour can be expressed by pitch mean values of syllables of sentence. 

To express contour the local of each syllable, we use the tone contour vector. In this 

work, m takes value 8. To more efficiently describe the contour of tone, we need to 

define more parameters. 
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Figure 5.4 Illustration of prosody parameters 

Before defining more parameters to express local tone contour, we have a look at 

the stylized pitch curves of four tones in Figure 5.3.  We can easily see that each tone 

has clear difference in start and ends. Therefore, we use parameters to characterize 

these values.  Former research also shows that pitch range is an important factor for 

Chinese prosody (see 2.2). Therefore, the parameters to characterize local contour of a 

syllable are defined as following (Refer to Figure 5.4): 

PitchRange: The difference between the maximal value and the minimal value of 

pitch contour. (DG in the figure). 

PitchStart: The pitch value of the start point of the voiced part. (OF in the figure). 

PitchEnd: The pitch value of the end point of the voiced part. (OE in the figure). 
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5.3.3 Candidate Prosody Parameters 

A summary of all defined parameters for each syllable is as the following: 

1. Duration: The time length of the syllable. 

2. EnergyRMS, EnergyMax, EnergySum: Average, Maximum, and Sum of 

energy of the voice part of the syllable.  EnergyRMS is the RMS energy 

within the whole voice part of the syllable. 

3. PitchMean: Mean value of pitch of the voiced part of syllable. 

4. PitchRange: The difference between maximal value and minimal values of 

pitch contour in a syllable.  

5. PCon0, PCon1, PCon2, PCon3, PCon4, PCon5, PCon6, PCon7, PCon8:  

The values are defined in formula (5.13) when m takes 8. The reason of using 

8 is that, after examining pitch contours of syllables, I find sampling 8 points 

is enough to describe the main shape of the pitch contours. In all the values, 

for the convenience of later use, we also represent PCon0, PCon4, PCon8 as 

PitchStart, PitchMiddle, PitchEnd respectively, which are just values of the 

start point, middle point and end point of the voiced part. 

6. EnergyStart, EnergyEnd: RMS energy values with a frame of 50 ms at start 

and end points of each syllable. 

7. EnPer1, EnPer2, EnPer3, EnPer4, EnPer5: The values describe 5 

percentage points within the duration. The 5 points divide the whole energy of 

the syllable equally into 6 segments. That is, γ  takes 1/6, 2/6, 3/6, 4/6, and 5/6 

in formula (5.10).  Here, we divide duration into 6 segments because we find it 

is enough to describe the trend of an energy contour. EnPer3 is also 

represented as EnergyHalfPoint, for the convenience of later use. 

Among the parameters we defined, each has its main concerns: 
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• Duration, Energy, and PitchMean are general parameters that determine the 

global prosody of utterances (although they also have effects on local prosody).   

• EnergyStart, EnergyEnd, EnPer1, EnPer2, EnPer3, EnPer4, and EnPer5 

together with duration are mainly used to describe boundary effects (i.e. 

break).    

• PCon0, PCon1, PCon2, PCon3, PCon4, PCon5, PCon6, PCon7, PCon8 

together with PitchMean and PitchRange are mainly used to describe tones. 

5.4 Parameter Determination 

In all the candidate parameters, some are intended to express the perceptual effects, 

such as break and tone. We will evaluate the parameters to see whether they 

effectively express the effects. Then redundancy will be removed and a concise set 

will be selected. 

5.4.1 Parameter Evaluation 

We have defined the parameters to describe prosody. However, one problem is: are 

these parameters sufficient to describe important aspects of Chinese prosody? Two 

most important prosody properties of Chinese speech we are to realize in speech 

synthesis are tone and break (prosodic break). Therefore, we will examine whether the 

defined parameters are fit for describing them. To simplify the work, we only 

consider prosodic word break. Therefore, break means prosodic word break in this 

context. We will investigate this by: 

• Examining the distribution of the parameters for different tone types and 

boundary types. We will use boxplots to see the parameters have different 

distributions for different types of tone and boundary type. By using this way, 

we make sure that the parameters we will use are relevant parameters to the 

intended prosodic effects. 
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• Examining the ability of the parameters for describing tones and breaks from 

the view of tone and boundary recognition.  If a computer can recognize the 

tones correctly, it is possible that human can easily perceive the tone based on 

the acoustic properties of the speech. We will use CART approach for the 

recognition purpose in the work. By using this way, we make sure that the 

parameters we will use are sufficient to describe the prosodic effects. 

Details of the parameter evaluation will be described in experiment part in 

Section 5.6.1. 

5.4.2 Parameter Selection 

We have listed all candidate prosody parameters in 5.3.2 and have confirmed that the 

defined parameters can describe tone and break in 5.4.1(details in 5.6.1). However, 

with so many parameters, it is not efficient to predict all of them because many of 

them are highly correlated.  Therefore, we should choose some representative 

parameters from all the candidates. 

In this work, we use clustering approach to reduce the number of useful 

parameters. The distance between parameters is calculated based on correlation value 

between two parameters.  

We use absolute correlation distance in the work.  For the absolute correlation 

distance method, distance is defined as: 

||1 ,, jiji rd −=       (5.16) 

where  is the Pearson product moment correlation (Refer to Section 2.4.2) between 

variables i and j. 

jir ,

In this work, the distance between two clusters is the average distance between a 

variable in one cluster and a variable in the other cluster. The distance is defined as: 
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where,  and  are the number of variables in clusters k and l. kN lN

The clustering process can be shown by a dendrogram. Then we cut the 

dendrogram at a similarity level and the clusters are determined.  Final parameters are 

determined by choosing one parameter from each cluster. 

Details of parameter selection will be described in experiments at Section 5.6.1. 

5.5 Prediction of Prosody 
5.5.1 Features for Prediction 

Prosody is determined by many factors. The following features are defined as 

determining factors of prosody parameters in this research. All these features are input 

values in prediction. 

(1) Syllable Information 

Syllable information includes the syllable itself and its context syllable. Each syllable 

is a combination of initial, final and tone.  There are following features: 

• Initial of the current syllable (CurrInitial).  

• Final of the current syllable (CurrFinal). 

• Tone of the current syllable (CurrTone). 

• Initial of previous syllable (PrevInitial). 

• Final of previous syllable (PrevFinal). 

• Tone of the previous syllable (PrevTone). 

• Initial of the next syllable (NextInitial). 

• Final of the next syllable (NextFinal). 

• Tone of the next syllable (NextTone). 
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(2) Word Information 

Three words are considered for a syllable as possible determining factors. They are 

the word containing the syllable, previous word and next word. Each word has a 

length and a POS category. The features are: 

• Length of the current word (WordLen). 

• POS type of the current word (WordPOS). 

• Length of the previous word (PrevWordLen). 

• POS type of the previous word (PrevWordPOS). 

• Length of the next word (NextWordLen). 

• POS type of the next word (NextWordPOS). 

• Location of the syllable in a word (LocInWord). 

• Start syllable of a word (WordStart): 1 for Yes, 0 for No. 

• End syllable of a word (WordEnd): 1 for Yes, 0 for No.  

(3) Prosodic Word Information 

Word is unit defined from syntax view. In speech, prosodic word is a more stable unit 

than word.  The prosody of the syllable being the first syllable of a prosodic word is 

different from those of syllables in middle or final position of a prosodic word. 

Therefore, in this research, prosodic word is applied as a feature.  The features are: 

• Length of the prosodic word (PWLen). 

• Tag indicating whether it is the first syllable of the prosodic word (PWStart). 

The value is 1 for yes and 0 for no. 

• Tag indicating whether it is the final syllable of the prosodic word (PWEnd). 

The value is 1 for yes and 0 for no. 

• Location of the syllable in prosodic word (LocInPW). 
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(4) Phrase Type and Breaks 

Phrase is important in that (1) the boundary syllable is usually different from other 

syllables in prosody. (2) There is a decline trend for pitch in an utterance. In this work, 

we use features to indicate whether the syllable is a boundary syllable. We define the 

following features about phrase. 

• Major phrase type (IPType): Major phrase is equivalent to intonation phrase in 

this work. Major phrase type is approximated by using type of utterance. The 

defined types are: (1) Incomplete utterance. (2) Statement utterance. (3) 

Questioning utterance.   

• Location of the syllable in major phrase  (LocInIP). 

• Break type before the syllable (BreakBefore). The types include: No-break, 

word break, prosodic word break, minor phrase break, major phrase break. 

• Break type after the syllable (BreakAfter). The types are the same as 

BreakBefore. 

5.5.2 Prediction Ability of Features 
(1) Single Feature in Prediction 

As all the input information will be used as discriminating factors in our model to 

give accurate prediction using CART approach, we first examine the discriminating 

ability of each feature. This evaluation is done by using only one factor as 

classification feature and judge the accuracy of the classification made by this factor. 

For example, the tone of a syllable is one of the factors that affect the duration of the 

syllable. To find out to what extent the tone can be used as classification criteria, we 

classify the syllable into five classes by tone. In each class, we take the average value 

of the durations. Then we have five values, which will be used as the predicted value 

of the syllable. Comparing the predicted value with the actual value we obtain from 

corpus, we have a correlation between the two sets of values. This correlation will 

serve as an index of the distinguishing ability of the feature tone. 
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In this research, we examine the relationship between the features and the main 

parameters. But it should be noted that:  

1. The result is a statistical result that reflects the corpus. Conclusions based on 

this corpus are true for the corpus within the same domain.  

2. Some of the features are different representations of the same fact. Therefore, 

features may be dependent each other in this study.  

3. The relationship between the input features and the output parameters may be 

cause-consequence or just statistical co-occurrence. 

In statistics, to draw conclusion from one sample data sometimes is not reliable. 

In practice, these two techniques can make conclusion more reliable. (1) When 

sample size is small, for example, less than 50, a widely used approach is 

bootstrapping, in which data are re-sampled and statistics are based on many rounds 

of sampling. (2) When sample size is large, a typical approach is to randomly divide 

the sample into two disjoint sets. Statistical results from the two sets will be compared 

to make sure the result is consistent. Since we have a large corpus, we use the later as 

our preferred approach. 

We conduct this experiment in Section 5.6.2. 

(2) Combined Features in Prediction  

In this part, we examine the prediction ability of combined features. This is done by 

using stepwise training of regression tree. In stepwise training of decision tree, each 

single input feature is considered in each step and the feature that can achieve the 

largest reduction in impurity is selected as a new feature in each step. By this way, a 

group of features that can contribute most to the training process are adopted first. 

The input features will be selected one by one by the order of importance in 

constructing the tree. Therefore, this part is to find a sequence of most important 

features that can give best prediction of a single prosodic parameter.   

We conduct this experiment in Section 5.6.3.  

 



 
Chapter 5. Prosody Parameters  98 

5.5.3 Prediction Model 

We are designing prosody for unit selection-based approach. One of the important 

factors in measuring unit mismatch is the degree of variations of a unit.  There are two 

reasons why we need to consider variations of parameters. (1) Different parameters 

have different measuring scales. Without normalization, they cannot be compared 

together. (2) We are aware that even with same type of parameters, in different 

situations or for different unit identities, they have their own variation trends. For 

example, for energy of syllables in our corpus, syllables with final A have larger 

variations (standard deviation is 822) than those with final UN (standard deviation is 

609).  Therefore, we view prosody prediction as a classification problem. Feature 

vectors will be classified into classes. In each class, we calculate standard deviations, 

which will be the measure to account for the variations of the predicted parameters. 

CART approach can be used for classification and prediction. It is a natural choice to 

use it. 

Each parameter we defined for this work is a continuous value. For each 

parameter, a regression tree will be built. Given all the feature values of a syllable, the 

regression tree will give a predicted value together with a standard deviation of the 

predicted value. The predicted value is the parameter value we expect, while the 

standard deviation describes how accurate the value might be. 

We conduct experiments on parameter prediction in Section 5.6.4. 

5.6 Experiments 
5.6.1 Parameter Determination 

In this part, we first conduct experiments to evaluate the parameters for describing 

tones and breaks. Then we cluster parameters to select a set of useful parameters. 

Finally, we will look at the properties of the selected parameters. 
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(1) Parameters Describing Tone 

It is a common knowledge that the acoustic correlate of tone is pitch contour of a 

syllable in speech. PitchMean, PitchRange, Pcon0 (PitchStart), PCon1,Pcon2, Pcon3, 

Pcon4 (PitchMiddle), Pcon5,Pcon6, Pcon7, and Pcon8 (PitchEnd) describe pitch 

values.  Therefore, they are parameters to describe tone. 

First, we evaluate the discriminating ability of the parameters for tone types. We 

draw boxplots for this purpose. Among all the parameters, we draw boxplot of four 

parameters. Figure 5.5, 5.6, 5.7, and 5.8 show the boxplots for PitchMean, PitchRange, 

PitchStart, and PitchEnd respectively. In all the figures, tone 5 means neutral tone.  

In Figure 5.5 for PitchMean, we see that tone 1 and tone 4 have a clear distinction 

from other tones in median, Q1 and W3.  In Figure 5.6 for PitchRange, we can see 

that tone 1 and tone 4 have a clear distinction from each other. In Figure 5.7 for 

PitchStart, we can see that tone 1 and tone 5 have distinction between tone 3, tone 4, 

and tone 5. In Figure 5.8 for PitchEnd, we can see that tone 2 and tone 4 have clear 

distinction from each other. In brief, each of the four parameters provides some 

distinction between some tone types. Examination of the rest of parameters gives 

similar conclusion. Therefore, the parameters are useful in describing tone types for 

Chinese.  
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 Figure 5.5 Boxplots for PitchMean by tone type  
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Figure 5.6 Boxplot for PitchRange by tone type 
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 Figure 5.7 Boxplots for PitchStart by tone type 
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Figure 5.8 Boxplots for PitchEnd by tone type 
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To further evaluate the parameters, we use the parameters together with other 

parameters to predict the tone category. In other words, we are trying to recognize 

tone type based on the above parameters and other possible input. Again, we use 

CART approach for the recognition. The inputs of the classification tree are 

continuous values, while the output of the tree is tone type. The features for the 

recognition of tone in this investigation is as the following: 

• PitchMean : Mean value of pitch. 

• PitchRange: Range of pitch value for the tone contour. 

• Nine sample values from pitch contour: PithchConP0 (PitchStart), PitchConP1, 

PitchConP2, PitchConP3, PitchConP4, PitchConP5, PitchConP6, PitchConP7, 

PitchConP8 (PitchEnd). 

• EnergyRMS: RMS energy. 

• Duration: Duration of the syllable. 
Training Data 

Actual 
Class 

Total 
Cases 

Percent
Correct

1 
N=6162

2 
N=7486

3 
N=6209

4 
N=8694 

5 
N=3420 

1 6,027 93.8 93.8 2.5 0.8 1.3 1.5 
2 8,156 84.9 2.7 84.9 5.3 0.8 6.4 
3 5,656 74.5 1.5 3.9 74.5 8.5 11.6 
4 10,190 77.7 1.6 1.2 13.4 77.7 6.2 
5 1,942 78.4 2.1 3.5 7.9 8.1 78.4 

Testing Data 
Actual 
Class 

Total 
Cases 

Percent
Correct

1 
N=6125

2 
N=7510

3 
N=6498

4 
N=8519 

5 
N=3319 

1 6,027 91.5 91.5 3.3 1.5 1.8 2.0 
2 8,156 82.4 3.2 82.4 6.4 0.9 7.1 
3 5,656 66.7 1.9 5.4 66.7 10.6 15.3 
4 10,190 73.3 1.7 1.2 16.0 73.3 7.9 
5 1,942 48.8 3.6 8.7 25.3 13.6 48.8 

Table 5.1 Accuracy for tone recognition 

Using CART approach with 10-fold cross validation, the result is as shown in 

Table 5.1. The table shows the accuracy of tone types. We can see in the table that: 

• The lowest accuracy for testing test is for tone 5 (neutral tone). The accuracy 

of tone 5 for training data is 74.5%. However, for testing data, the accuracy is 
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only 48.8%. The reason for this low accuracy is that tone 5 is not a formal tone 

and there is not typical pitch contour shape for tone 5. 

• If we ignore tone 5, the general accuracies for all the other tones are from 

74.5% to 93.8% for training data, and from 66.7% to 91.5% for testing data. 

Therefore, except for tone 5, the general accuracy is quite good. 

• The accuracy for training and testing data for tone 3 is low (74.5% and 66.7%). 

This shows that tone 3 is difficult to be correctly recognized. This accuracy is 

consistent with our observation that many of the tone 3 syllables are not 

clearly recognized by human ears.  

• From accuracy of testing data, 16.0% of tone 3 syllables are recognized as 

tone 4 syllable, and 10.6% of tone 4 syllables are recognized as tone 3. This 

shows that tone 3 and tone 4 are sometimes difficult to be distinguished from 

each other. This is also observed during manual verification process of the 

corpus. 

  
Pitch 
Mean 

Pitch
Range

Pitch
Con0

Pitch
Con1

Pitch
Con3

Pitch
Con4

Pitch 
Con5 

Pitch 
Con6 

Pitch 
Con7 

PitchRange -0.105            
PitchCon0 -0.217 0.459           
PitchCon1 -0.147 0.541 0.920          
PitchCon2 -0.054 0.561 0.686 0.895         
PitchCon3 0.061 0.438 0.296 0.551         
PitchCon4 0.191 0.033 -0.378 -0.204 0.636        
PitchCon5 0.179 -0.419 -0.822 -0.864 -0.312 0.513     

We calculate the total accuracy for all syllables, and find the accuracy of training 

data is 82.0% and that of testing data is 76.4%. If we ignore tone 5, the accuracy of 

training data is 82.3% and 78.2% respectively. 

Pitch
Con2

 

 

 

 

0.846
0.157
-0.721   

PitchCon6 0.098 -0.522 -0.790 -0.930 -0.955 -0.749 -0.028 0.824     
PitchCon7 0.048 -0.546 -0.696 -0.860 -0.951 -0.865 -0.314 0.565 0.910   
PitchCon8 0.013 -0.523 -0.572 -0.828 -0.806 -0.416 0.341 0.710 0.912 -0.723

Table 5.2 Correlation values between parameters for tone 

To understand the accuracy, we conduct a listening test for 200 syllables by 3 

persons. Each person is asked to listen to the 200 syllables and to count the number of 
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tones that can be clearly identified.  The result shows that the average percentage of 

syllables with clear tone is 85.4%.  This shows that the accuracy by tone recognition 

is close to the result of human perception. Therefore, the defined parameters can well 

describe tone. 

We calculate the correlation values of the defined parameters for tones. The 

values are as shown in Table 5.2. From the table, we see that PitchMean has relative 

small correlation values with other parameters. PitchRange has moderate correlation 

values with others except for PitchCon4. The correlation values between PitchCon0 to 

PitchCon8 are diverse. Some are high and some are low.  Generally, we can conclude 

that there are many redundant parameters in all the defined parameters for describing 

tone. We will remove the redundancy later in this chapter. 

(2) Parameters Describing Break 

Among the prosodic break types, the prosodic word break is the smallest prosodic 

break type and the biggest break set. In this part, we examine the parameters that are 

meant to account for the breaks. We know that at boundary of prosodic units, there 

are usually lengthen effects. This may lead to a longer duration for a syllable than at 

non-boundary positions.  We define parameters Duration, EnergyStart, EnergyEnd, 

EnergyPer1, EnergyPer2, EnergyPer3(EnergyHalfPoint), EnergyPer4, and 

EnergyPer5 for boundary effects.  
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Figure 5.9 Boxplots of Duration by boundary type 
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According to the position of a syllable in a prosodic word, syllables can be 

classified into 4 categories, which are, single syllable prosodic word, start, middle and 

end of a multiple syllable words.  

We draw boxplot for Duration, EnergyStart, EnergyHalfPoint, and EnergyEnd as 

shown in Figure 5.9, 5.10, 5.11, and 5.12 respectively. Each of the figures shows that 

there are different patterns for different boundary syllable types. This shows that these 

parameters can make more or less distinction between boundary types. Examination 

of the rest of parameters gives similar conclusion. Generally, the parameters provide 

some distinctions for different types of unit (in terms of position in prosodic word). 
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Figure 5.10 Boxplots of EnergyStart by boundary type 
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Figure 5.11 Boxplots of EnergyHalfPoint by boundary type 
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Figure 5.12 Boxplots of EnergyEnd by boundary type 

Like what we have done for tone, we also investigate the parameters from 

recognition view. We investigate the accuracy of predicting the end of prosodic word 

(EndOfPW) only. The reason is that end syllable (EndOfPW) and start syllable 

(StartOfPW) of prosodic word always appear as neighbors. CART approach is used 

for the recognition. The features for this recognition are as the following: 

• Duration and Energy (Max value, Sum value and RMS value) 

• PitchMean, PitchRange 

• EnergyPer1, EnergyPer2, EnergyPer3, EnergyPer4, EnergyPer5  

 
Training Data 

Actual
Class

Total
Cases

Percent
Correct

0 18,373 86.4
1 13,698 76.1

Testing Data 
Actual

Class
Total
Cases

Percent
Correct

0 18,273 82.5
1 13,698 72.5

Table 5.3 Recognition result of StartOfPW 
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The recognition result of EndOfPW is shown in Table 5.3. It shows that the 

accuracy of end syllable of prosodic word is 76.1% for training data and 72.5% for 

testing data. It shows that the above parameters can help to distinguish boundaries. 

We should note the following factors that are affecting accuracy as well: 

• Some of the prosodic word break cannot be recognized correctly because the 

breaks are not clear when the speaker read the utterance. In real speech, 

sometimes, there is no clear distinction whether a word break is a prosodic 

word boundary or not. This is observed in our speech corpus.  

• Syllable identity is not included in recognition. Therefore, we missed some 

discriminating factors in recognition. The reason to exclude syllable identity 

is that we want to exclude the effect of text information, which is contained in 

syllable identity. Some of breaks can be identified from syllable identity. For 

example, “DE5” is the pronunciation of character “的”, which is usually an 

end syllable of prosodic word.  

• Boundary is placed between two syllables. Therefore, boundary effect is a 

combined effect of two syllables. This obtained accuracy is only obtained 

from the syllable before the break. 

We calculate the total accuracy and find the total accuracy for break is 82.0% for 

training data and 78.2% for testing data. We should note that if randomly assigning 

prosodic break types to break between syllables, the accuracy should be 50% in 

theory.  

We conducted a listening test for syllables. Each listening is to judge whether the 

syllable is an end syllable of prosodic word. 3 persons listened to 200 syllables and 

achieved an accuracy of 72.1%. This result is even worse than that by break 

recognition. The reason for this result is that break is prominent only when multiple 

syllables are placed together, and many of the breaks between syllables sound 

between break and non-break. The result shows that our recognition rate is 

sufficiently good. Hence, the parameters help to describe break type. 
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 Duration Energy
Start 

Energy
End 

Energy
Max 

Energy
RMS

Energy
Sum 

Energy
Per1 

Energy 
Per2 

Energy 
Per3 

Energy
Per4 

EnergyStart 0.022          
EnergyEnd -0.431 -0.075         
EnergyMax 0.041 -0.043 0.180        
EnergyRMS -0.109 0.019 0.294 0.950       
EnergySum 0.181 0.004 0.139 0.954 0.948      
EnergyPer1 -0.071 -0.403 0.391 0.013 -0.064 -0.079     
EnergyPer2 -0.125 -0.317 0.455 -0.069 -0.102 -0.135 0.939    
EnergyPer3 -0.174 -0.262 0.506 -0.147 -0.130 -0.179 0.856 0.963   
EnergyPer4 -0.217 -0.217 0.553 -0.217 -0.152 -0.215 0.765 0.888 0.964  
EnergyPer5 -0.258 -0.168 0.603 -0.273 -0.169 -0.247 0.652 0.774 0.866 0.946

Table 5.4 Correlation values between break related variables 

We next examine the relationship between the parameters. We calculate the 

correlation values between the parameters. The values are as listed in Table 5.4. From 

the table, we see that Duration has low correlation values with other parameters. 

EnegyStart has low correlation values with others. EnergyEnd has moderate 

correlation values with EnergyPer1 to EnergyPer5. EnergyRMS, EnergySum, and 

EnergyMax have high correlation values between each other. EnergyPer1 to 

EnergyPer5 have high correlation values between each other. Therefore, there is 

redundancy in the defined parameters.  

(3) Parameter Selection 

Since there is redundancy in our candidate parameters, in this part, we conduct 

experiments to select representative parameters from the candidate parameter set. 

Using clustering approach, we select parameters that have less correlation values 

between each other. The procedure of clustering is an agglomerative hierarchical 

method that begins with all parameters separate, each forming its own cluster. In the 

first step, the two parameters closest together are joined. In the next step, either a third 

parameter joins the first two, or two other parameters join into a different cluster. This 

process will continue until all clusters are joined into one. At last, we need to decide 

the number of clusters. 
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The clustering process can be shown as in a dendrogram as shown in Figure 5.13. 

Figure 5.14 shows that similarity levels at each step of clustering.  The similarity, 

s(i,j), between two clusters i and j is given by: 

s(i,j) = 100(1-D(i,j))    (5.18) 

where D(i,j) is the distance between two clusters. In the figure, axis x is the number of 

step. Axis y means, at this step, the parameters have similarities above this value have 

been combined. In the figure, we can see that there is an abrupt change from 

similarity 81.4 to 65.7 at step 13. Therefore, we cut the dendrogram at similarity level 

80. 
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 Figure 5.13 Dendrogram for clustering parameters 

 

Drawing a cutting line on the dendrogram at similarity value 80 in Figure 5.13, 

we get the final clusters.  The final clusters are shown in Table 5.5. The table shows 

the parameters in each cluster. We select one parameter from each cluster as a 
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representative of the cluster.  The third column is the parameters we finally 

determined in TTS system.  

Similarity level in parameter clustering
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Figure 5.14 Similarity level in paramter clustering step 

In the table, we see that PCon0 , PCon1 and PCon5 fall in one cluster. We choose 

Pcon0 (PitchStart) because it is the first value in the contour. Accurately determining 

this value will help to maintain the prosody smoothness between this syllable and 

previous syllable in utterance. Pcon4 constitutes a cluster itself. It is coincident that 

the value is actually the pitch value at the middle point of the contour.  PCon2, Pcon3, 

Pcon6, Pcon7, and Pcon8 belong to one category. We choose Pcon8 (PitchEnd) as 

representative of this cluster. Selecting this parameter has the same reason as selecting 

Pcon0 in cluster 3 for the purpose to maintain continuous in pitch between two 

syllables. 

We also see that the three types of energy values fall into 1 cluster.  We select the 

RMS energy as their representative, as this is a preferred value as we described in 

5.3.1. 
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Parameters EnPer1, EnPer2, EnPer3, EnPer4 and EnPer5 are clustered together. 

We select the middle value EnPer3 (EnergyHalfPoint) as representative.  

Cluster No. Parameters in the cluster  
Selected 

Parameter 
1 Duration Duration 
2 PitchMean PitchMean 
3 PCon0     PCon1     PCon5 Pcon0 
4 PCon2     PCon3     PCon6     PCon7     PCon8 Pcon8 
5 PCon4 Pcon4 
6 EnergySum     EnergyMax     EnergyRMS EnergyRMS 
7 EnPer1    EnPer2    EnPer3    EnPer4    EnPer5 EnergyHalfPoint 
8 PitchRange Pitchrange 
9 EnergyStart EnergyStart 

10 EnergyEnd EnergyEnd 

Table 5.5 Final clusters in parameter clustering 

 Duration Pitch
Mean

Pitch
Con0

Pitch
Con4

Pitch
Con8

Pitch
Range

Energy
Start 

 Energy
End 

 Energy 
RMS 

PitchMean -0.219         

PitchCon0 0.112 -0.217        

PitchCon4 -0.122 0.191 -0.378       

PitchCon8 -0.086 0.013 -0.572 -0.416      

PitchRange 0.171 -0.105 0.459 0.033 -0.523     

EnergyStart 0.022 -0.122 0.184 -0.087 -0.079 0.09    

EnergyEnd -0.431 0.370 -0.198 0.016 0.235 -0.154 -0.075   

EnergyRMS -0.109 0.328 -0.004 -0.006 -0.037 0.127 0.019 0.294  

EnergyPerHalf -0.174 0.245 -0.235 0.087 0.213 -0.244 -0.262 0.506 -0.130 

Table 5.6 Correlation values between selected parameters 

We examine the correlations between the selected parameters. The correlations 

are shown in Table 5.6.  We see from the table that the highest correlation in absolute 

value is 0.572. Most correlation values are very low. Therefore, the selected 

parameters have little redundancy as we expected. Models for predicting the 10 

parameters will be built later in this chapter. These parameters will be used in unit 

selection process in Chapter 6. 
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(4) Summary of Parameter Determination 

In this work, we proposed an approach to evaluate and select parameters for unit 

selection based synthesis.  We summarize the steps for parameter determination as 

follows: 

(a) Define all the candidate parameters. 

(b) Evaluate whether the intended parameters are the discriminating parameters 

for the prosodic effect from statistical view.  

(c) Evaluate whether the discriminating parameters are sufficient to describe the 

prosodic effect using recognition approach.  

(d) If the parameters are not sufficient to describe the intended prosodic effect, 

go to step (a) to define more parameters. 

(e) If the parameters are sufficient, perform a parameter clustering process. This 

step groups parameters together into a tree structure. 

(f) Determine the final clusters, and select one parameter from each cluster as 

representative parameter. This step removes the redundancy and determines 

a final set of parameters.  

Note that this work is only an example for doing similar work. We can identify 

the following generality for this approach: 

Parameters: This work defined a candidate parameter set of 22 parameters in 

5.3.3. However, there is no limit of defined parameters. The parameters were defined 

from 3 aspects of prosody (pitch, duration and energy). However, the defined 

parameters are not the only choice to do the work. One can certainly define a new set 

of equivalent parameters to achieve the same goal. Moreover, one can also define 

parameter beyond pitch, duration and energy. In principle, any acoustic parameters 

can be defined as long as they are correlates of some perceptual effects. 
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Perceptual Effects:  In this work, we highlight the ability of describing the 

perceptual prosodic effects, tone and break. However, there is no limit for such 

prosodic events.  The idea can be used in other prosodic events. If there are sufficient 

labeled data and sufficient parameters, we can also evaluate and find parameters for 

describing any abstract prosodic events, for example, stress, emotion status (such as 

happiness, sadness, surprise), etc. 

Language: This approach is also not limited to Chinese speech only. It can work 

for any language. To apply to a new language, a corpus of this language should be 

built. The parameters suitable for this language should be defined. To generate good 

prosody in speech, we also need to concentrate on some prosodic effects of this 

language (such as tone and break in this work). 

5.6.2 Single Feature in Prediction 

We now examine the discriminating ability of the features in prosody parameter 

prediction. To make sure the results obtained are reliable, we divided the data into two 

halves. For each half, we use each feature as prediction feature, then we calculated the 

correlation values. In the following tables, correlation1 and correlation2 are the values 

obtained from the two halves of the data.  In this following discussion, for consistent 

results, we will use the average value of correlation1 and correlation2 to explain our 

findings. (Explanation of the methods for this experiment can be found in Section 

5.5.2.)  

We choose to predict three parameters (PitchMean, Duration, and Energy) 

because the parameters are the most important parameters for genreal prosody (see 

Section 2.2).  

(1) Factors Affecting Pitch Mean 

Table 5.7 shows correlation of the factors in predicting PitchMean of syllable. 

Examining the table, the following facts are found: 
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1. Most important factor: The correlation obtained using tone alone is 0.654, 

which is the highest. Therefore, tone is the most important factor in 

determination of pitch mean of syllables. 

2. Syllable and neighboring syllables:  

 

Category Feature Correlation1 Correlation2 Average 

CurrIntial  0.185 0.176 0.181 

CurrFinal 0.213 0.091 0.152 
Current 

Syllable 
CurrTone 0.662 0.645 0.654 

PrevInitial 0.242 0.243 0.243 

PrevFinal 0.233 0.221 0.227 

PrevTone 0.194 0.200 0.197 

NextInitial 0.269 0.280 0.275 

NextFinal 0.233 0.082 0.158 

Context 

Syllables 

NextTone 0.221 0.217 0.219 

WordPOS 0.228 0.230 0.229 
Current Word 

WordLen 0.054 0.028 0.041 

PrevWordPOS 0.284 0.282 0.283 

PrevWordLen 0.110 0.131 0.121 

NextWordPOS 0.182 0.198 0.190 
Context Words 

NextWordLen 0.030 0.037 0.034 

LocInWord 0.149 0.167 0.158 

WordStart 0.148 0.167 0.158 
Location in 

Word 
WordEnd 0.195 0.195 0.195 

PWLen 0.046 0.050 0.048 

LocInPW 0.000 0.000 0.000 

PWStart 0.250 0.260 0.255 
Prosodic Word 

PWEnd 0.321 0.328 0.325 

IPType 0.023 0.015 0.019 Intonation 

Phrase LocInIP 0.313 0.337 0.325 

BreakBefore 0.322 0.331 0.327 
Break Type 

BreakAfter 0.363 0.375 0.369 

Table 5.7 Comparison of factors determining pitch mean 

a. The tone of the syllable (0.654) is important, while the initial and final 

of the syllable (0.181 and 0.152) are less important in predicting pitch 

mean. 
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b. It is interesting to look at the correlations obtained by initial and final 

of the previous (0.243 and 0.227) and next syllable (0.275 and 0.158). 

The values are larger than the corresponding values obtained by the 

current syllable. It shows that the context of a syllable could be more 

important even than the initial and final type of the syllable itself.  This 

can be explained that in some words, the previous or next syllable of 

the current syllable is more important in determining the nature of the 

words. 

3. Word level:  

a. The POS of the current word (0.229) is important, while its length 

(0.041) is less important. This shows that pitch mean is more 

determined by the syntactical property (e.g. POS) rather than the form 

(e.g. length) of word. 

b. The POS types of previous word (0.283) and next word (0.190) also 

have larger impact on the pitch mean than lengths (0.121 and 0.034). 

4. Word and prosodic word: 

a. Length of word (0.041) and length of prosodic word (0.048) are less 

important in determining the pitch mean compared with other factors 

(e.g. POS, Start and End). 

b. Start and end of prosodic word (0.255 and 0.325) have bigger effect on 

pitch mean than start and end of word (0.158 and 0.195). This shows 

that prosodic word is more meaningful in predicting pitch mean. 

5. Intonation phrase: 

a. Intonation type (IPType, or Major phrase type) (0.019) is less 

important in pitch mean prediction.  The reason is that intonation type 

normally affects the syllables in the final part of the utterance, which 

are only a very small part of all syllables in the corpus. 
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b. The location of syllable in phrase (0.323) is an important input value. 

This can be explained by the fact that the general pitch contour has a 

trend of going down in an utterance. 

6. Break types: 

a. Break types before and after a syllable (0.327 and 0.369) is very 

important in predicting pitch mean. 

b. Note that prosodic word breaks are major parts of break types.  

Comparing values of the start and end of prosodic word (0.255 and 

0.325) with break types (0.327 and 0.369), we find prosodic word 

break take an important part in break types for predicting pitch mean. 

7. Conclusion: 

In summary, we find that, in determining pitch mean: 

a. Current tone is the greatest factor. 

b. Surrounding syllables have a big impact. 

c. POS of word is more important than length of word. 

d. Prosodic word is more meaningful than word. 

e. Length of prosodic word is less important than the start and end 

positions of prosodic word. 

f. Breaks before and after a syllable have great impacts. 

g. Location in phrase is more important than type of intonation phrase. 

(2) Factors Affecting Duration 

A comparison of factors determining duration is listed in the Table 5.8. From the table, 

we have the following findings: 
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1. Most important factor: Break type after a syllable (0.438) has the largest 

value in determining duration. 

2. Syllable and neighboring syllables: 

 

Category Feature Correlation 1 Correlation 2 Average 

CurrIntial  0.343 0.330 0.337 

CurrFinal 0.248 0.132 0.190 
Current 

Syllable 
CurrTone 0.180 0.181 0.181 

PrevInitial 0.088 0.081 0.085 

PrevFinal 0.092 0.098 0.095 

PrevTone 0.031 0.033 0.032 

NextInitial 0.312 0.315 0.314 

NextFinal 0.261 0.080 0.171 

Context 

Syllables 

NextTone 0.220 0.218 0.219 

WordPOS 0.216 0.226 0.221 
Current Word 

WordLen 0.088 0.089 0.089 

PrevWordPOS 0.101 0.087 0.094 

PrevWordLen 0.033 0.025 0.029 

NextWordPOS 0.228 0.240 0.234 
Context Words 

NextWordLen 0.054 0.050 0.052 

LocInWord 0.108 0.118 0.113 

WordStart 0.102 0.113 0.108 
Location in 

Word 
WordEnd 0.193 0.216 0.205 

PWLen 0.217 0.222 0.220 

LocInPW 0.000 0.000 0.000 

PWStart 0.124 0.137 0.131 
Prosodic Word 

PWEnd 0.412 0.430 0.421 

IPType 0.040 0.033 0.037 Intonation 

Phrase LocInIP 0.048 0.053 0.051 

BreakBefore 0.133 0.149 0.141 
Break Type 

BreakAfter 0.428 0.447 0.438 

Table 5.8 Comparison of factors determining duration 

a. The initial, final, and tone of current syllable (0.337, 0.190 and 0.181) 

have great effects for duration of syllable. Among them, initial is the 

most important. 
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b. The values for initial, final, and tone of next syllable (0.314, 0.171 and 

0.219) are very high. This shows that the next syllable has great 

influence for the duration of the syllable. This can be explained that, 

when uttering the current syllable, a speaker will get ready for uttering 

the next syllable. For different following syllables, a speaker will take 

different amount of time to adjust speech organ.  

c. On the other hand, the values for initial, final, and tone of previous 

syllable (0.085, 0.095 and 0.032) are very low. This shows that the 

previous syllable gives little contribution for the duration of current 

syllable. 

3. Word level:  

a. Similar to pitch mean and pitch range, POS of word (0.221) is 

important than length of word (0.089). 

b. POS of next word (0.234) is more important than POS the previous 

word (0.094). 

4. Word and prosodic word: 

a. Length of prosodic word (0.220) has a significant effect on duration, 

while length of word (0.089) does not. 

b. End of prosodic word (0.421) has more influence on duration that end 

of word (0.205). This means duration is sensitive for the last syllable of 

a prosodic word. 

5. Intonation phrase: Intonation type (0.037) and location of the syllable in 

phrase (0.051) have no significant effect on duration. 

6. Break types: Break types after the current syllable (0.438) is much more 

important than break types before the current syllable (0.141) in determining 

duration.   
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7. Conclusion:  

In summary, we have the following findings: 

a. The most important factor for duration is the break type after the 

syllable. The break type before the syllable is less important. 

b. The duration of a syllable is more determined by the next syllable than 

the previous syllable. 

c. Prosodic word is more meaningful in determining duration than word.  

d. POS of word is important, while length of word is not. 

e. POS of next word is more important than POS of previous word. 

(3) Factors Affecting Energy 

Table 5.9 lists correlation values of energy (EnergyRMS) obtained by all the features. 

We found that: 

1. Most important factor: The final of the current syllable (0.370) has the 

greatest influence on energy.  

2. Syllable and neighboring syllables: Initial, final and tone of previous 

syllable (0.250, 0.229 and 0.156) have a larger influence on energy than those 

of the next syllable (0.167, 0.102 and 0.123). 

3. Word level: 

a. POS of word (0.161) and length of word (0.102) have a moderate 

effect on energy. 

b. POS of previous word (0.283) and POS of next word (0.140) are more 

important in determining energy than length of the words 

(PrevWordLen: 0.089, NexWordLen:  0.056).   
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c. POS of previous word (0.283) is more important than POS of next 

word (0.140). This finding is consistent with that previous comparison 

on syllable level. 

4. Prosodic word: Start of prosodic word (0.115) is more important than end of 

prosodic word (0.015). 

 

Category Feature Correlation 1 Correlation 2 Average 

CurrIntial  0.312 0.333 0.323 

CurrFinal 0.485 0.254 0.370 
Current 

Syllable 
CurrTone 0.170 0.186 0.178 

PrevInitial 0.243 0.257 0.250 

PrevFinal 0.223 0.235 0.229 

PrevTone 0.145 0.166 0.156 

NextInitial 0.172 0.162 0.167 

NextFinal 0.142 0.062 0.102 

Context 

Syllables 

NextTone 0.127 0.119 0.123 

WordPOS 0.155 0.166 0.161 
Current Word 

WordLen 0.105 0.099 0.102 

PrevWordPOS 0.273 0.292 0.283 

PrevWordLen 0.079 0.099 0.089 

NextWordPOS 0.130 0.150 0.140 

Context 

Words 

NextWordLen 0.064 0.047 0.056 

LocInWord 0.092 0.088 0.090 

WordStart 0.090 0.088 0.089 
Location in 

Word 
WordEnd 0.038 0.027 0.033 

PWLen 0.110 0.076 0.093 

LocInPW 0.000 0.000 0.000 

PWStart 0.115 0.114 0.115 

Prosodic 

Word 

PWEnd 0.000 0.030 0.015 

IPType 0.000 0.000 0.000 Intonation 

Phrase LocInIP 0.318 0.327 0.323 

BreakBefore 0.277 0.291 0.284 
Break Type 

BreakAfter 0.160 0.147 0.154 

Table 5.9 Comparison of factors determining Energy 

5. Intonational phrase: Location in intonational phrase (0.323) has a better 

discriminating ability than type of the phrase (0.030). 
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6. Break types: Break before the syllable (0.284) is much more important than 

break after the syllable in determining energy (0.154) 

7. Conclusion:  

a. The greatest factor in determining energy is the final of the syllable. 

b. Syllable before the current syllable has a better discriminating ability 

in determining energy than that after the current syllable.  

c. Break type before the current syllable is more important in 

determining energy than that after the current syllable.  

(4) Summary of the Analysis 

We have the following findings from previous analysis: 

• PitchMean is mostly determined by tone; Duration is mostly determined by 

break type after the syllable; Energy is mostly determined by final of the 

syllable. 

• PitchMean is affected by both previous and next syllable; Duration is more 

affected by next syllable; Energy is more affected by previous syllable. 

• POS of word is more important than length of word in predicting predict 

PitchMean. 

• Prosodic word is more meaningful than word in predicting the parameters. 

• Breaks before and after syllable are equally important in determining 

PitchMean; Break after syllable are more important in determining Duration; 

Break before syllable are more important in determining Energy.  

• Location of syllable in utterance greatly affects PitchMean and Energy. 

However, it has little effect on duration. 
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5.6.3 Combined Features for Prediction 

In this part, we examine the prediction ability of combined features. This is done by 

using stepwise training of regression tree.  (Explanations of methods for this 

experiment can be found in Section 5.5.2.)  Among the 10 parameters we determined 

in 5.6.2, We will examine the following parameters: PitchMean, Duration, and 

EnergyRMS. The reason to examine them is that they are parameters to describe the 

general property of prosody.  

 

Step Feature Correlation 
achieved 

1 CurrTone 0.6490 
2 BreakBefore 0.7536 
3 BreakAfter 0.8029 
4 LocInIP 0.8340 
5 PrevTone 0.8524 
6 NextTone 0.8617 
7 PWLen 0.8668 
8 WordPOS 0.8709 
9 CurrInit 0.8757 
10 PrevPOS 0.8778 
11 CurrFinal 0.8787 
12 NextWordLen 0.8796 
13 PrevWordLen 0.8800 
14 NextInit 0.8803 
15 PrevInit 0.8805 
16 NextPOS 0.8807 
17 LocInPW 0.8810 
18 NextFinal 0.8811 
19 EndOfPW 0.8811 

Table 5.10 Stepwise training for PitchMean 

(1) Stepwise Training of PitchMean 

There result of stepwise training of regressing tree is shown in Table 5.10 and Figure 

5.15. The correlation value obtained by adding each feature is shown in the table. The 

features are listed in descending order according to its importance in the prediction. 
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We can see from the figure that the achieved value changes quickly in the first 

five steps. Therefore, the first a few features have the greatest contribution in 

predicting pitch mean. In the table, we can see the most important features are:  

• Tone of the syllable 
• Break type before the syllable 
• Break type after the syllable 
• The location of the syllable in intonational phrase 
• Tone of the previous syllable 
• Tone of the next syllable  

 
 

All the above facts show us that: 
• PitchMean is one of the discriminating parameters for tone 
• PitchMean changes at boundary syllables (sensitive to breaks before and after 

the syllable) 
• PitchMean is greatly determined by tones of the current syllable and 

surrounding syllables 
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Figure 5.15 Stepwise training of PitchMean 

(2) Stepwise Training of Duration 

The result for Duration is shown in Table 5.11 and Figure 5.16. In the figure, we can 

see that the achieved correlation value becomes stable after six steps. The most 

important factors are: 

• Break after the current syllable 

 



 
Chapter 5. Prosody Parameters  123 

• Initial of the current syllable 
• Final of current syllable 
• Tone of the current syllable 
• POS types of the next word 
• Break type before the current syllable 

The facts show: 
• Break is the most important factor for duration. Therefore, this parameter is 

discriminating factor for boundary (break). 
• Syllable identity with tone is the second important factor for duration. 
• POS type of the word after the syllable is an important factor.  

Step Feature Correlation 
achieved 

1 BreakAfter 0.4717 
2 CurrInitial 0.6261 
3 CurrFinal 0.6947 
4 CurrTone 0.7267 
5 NextWordPOS 0.7421 
6 BreakBefore 0.7501 
7 WordPos 0.756 
8 LocInIP 0.762 
9 PWLength 0.7656 
10 NextWordLen 0.7686 
11 NextTone 0.7709 
12 NextInitial 0.7728 
13 PrevTone 0.774 
14 PrevInitial 0.7745 
15 PrevWordLen 0.7748 

Table 5.11 Stepwise training for Duration 
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Figure 5.16 Stepwise training of Duration 
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Order of 
feature Feature Correlation 

achieved 
1 CurrFinal 0.5184 
2 PrevInitial 0.6540 
3 CurrInitial 0.6980 
4 CurrTone 0.7223 
5 LocInIP 0.7485 
6 BreakAfter 0.7586 
7 PrevTone 0.7608 
8 PWLen 0.7629 
9 WordLen 0.7640 
10 PrevWordLen 0.7652 
11 WordPOS 0.7660 
12 NextWordLen 0.7673 
13 NextTone 0.7680 
14 NextWordPOS 0.7687 
15 LocInWord 0.7690 

Table 5.12 Stepwise training for Energy 

(3) Stepwise Training of EnergyRMS 

Table 5.12 and Figure 5.17 show the result of stepwise training for EnergyRMS of a 

syllable. The value of achieved correlation increases quickly in the first six steps. The 

first six features are most important for the prediction of EnergyRMS. The most 

important features are:  

• Final of the current syllable 
• Initial of the previous syllable 
• Initial of the current syllable 
• Tone of the current syllable 
• Location of the syllable in intonational phrase 
• The break type after the syllable 

 
The facts show that: 

• Energy is mostly dependent on the final of the current syllable. 
• Syllable identity is the main factor for the parameter. 
• Location of the syllable in intonational phrase is an important factor. The 

reason is that energy has a downtrend from the start to end of an intonational 
phrase (most of time, intonational phrase is an utterance.). 
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Figure 5.17 Stepwise training of Energy 

(4) Summary of the Analysis 

For all the stepwise training above, we can see that the most influential input features 

for prosody prediction are: 

• Initial, final and tone of the current syllable 
• Initial, final and tone of the previous and next syllables 
• The break types before and after the current syllable 
• Location of the syllable in the intonational phrase 

Examining features for PitchMean, we find that the most important factor is tone 

of the syllable. We also find that tone of previous syllable, tone of next syllable, 

breaks around the syllable, and location of the syllable in utterance play important 

roles. However, the final of the syllable, which is the actual carrier of the tone, is not 

an important factor in predicting PitchMean. That means PitchMean of a tone contour 

is almost independent of the sound that carries the tone. 

We examine the parameter Duration and find that, besides break types before and 

after the syllable, syllable identity (the initial, final and tone of the syllable) is an 

important factor for the prediction. The reason why syllable identity is important is 

that different syllables have different intrinsic durations.  
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Figure 5.18 EnergyRMS changing with location of syllable in utterance. 

Examining EnergyRMS, we find that EnergyRMS is determined by final of the 

syllable mostly. The initial and tone of the syllable are in the third and forth position.  

We find that location of the syllable in intonational phrase is one of the important 

factors for prediction. This can be confirmed by Figure 5.18. This is a boxplot for 

Energy, classified by location of syllable in utterance. The boxplot of EnergyRMS 

figure shows that the EnergyRMS has a decreasing trend with the change of location 

in utterance. 

5.6.4 Prediction of All Parameters 

The prosody parameters are predicted using CART.  In this experiment, we first 

randomize the order of the data items in the data set. Then we divide the data set into 

training set and testing set, which include 80% and 20% of the data items respectively. 

This experiment is conducted without using stepwise training because stepwise 

training is extremely slow. The minimal node size is set to 20. The results are shown 

in Table 5.13. Here we list the Root Mean Squared Errors (RMSE) and correlation 

values of the predicted parameters.  

In the table, we can see that the PitchMean has the highest correlation value 

(0.8791 for training data and 0.8526 for testing data) among all the parameters. 
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PitchStart, PitchEnd, EnergyEnd, EnergyHalfPoint are parameters in the second 

highest correlation value group.  This shows these parameters are relatively more 

stable than others are. 

 Training data Testing data 

Parameter RMSE Correlation RMSE Correlation

PitchMean 25.32 Hz 0.8791 28.85 Hz 0.8526 

PitchStart 24.85 Hz 0.7753 27.35 Hz 0.7337 

PitchEnd 25.96 Hz 0.7773 27.97 Hz 0.7512 

PitchMiddle 8.70 Hz 0.6552 9.66 Hz 0.6049 

PitchRange 31.44 Hz 0.6771 34.56 Hz 0.5982 

Duration 0.037 Sec 0.7262 0.040 Sec 0.6723 

Energy 447.3 0.7346 621.3 0.6614 

EnergyStart 521.78 0.7382 576.58 0.6910 

EnergyHalfPoint 0.083 0.7961 0.091 0.7486 

EnergyEnd 490.00 0.7598 534.10 0.7207 

Table 5.13 Result of the prosody parameter prediction 

The lowest correlation value obtained is for PitchRange (0.6771 for training data 

and 0.5982 for testing data). Duration, EnergyRMS and EnergyStart have relatively 

low correlation values. This shows that these three parameters are not so stable. Pitch 

range can change with stress degree of a syllable, which cannot be easily derived from 

text input, and is not included in the features for prediction. Therefore, the accuracy of 

PitchRange is relatively low. Duration is related to breaks between syllables. 

However, the time length of a break is flexible. Therefore, accuracy of Duration is 

relatively low. Energy is determined by volume of speech. It is possible that the 

volume levels vary among different utterances. Therefore, Energy has a relatively low 

accuracy in prediction. 

The accuracies cannot be easily compared with those of other research work. The 

reasons are: (1) The definition of the parameters and the corpus used are different. (2) 

The accuracies of parameters are not the only measures to evaluate the parameters.  

The significance of the parameters is that they are intended to describe some 

perceptual effects.  The selection process of the parameters shows that the parameters 

capture the information of the perceptual effects. Another difference of the work from 
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the other approaches is that a standard deviation is also predicted, which will measure 

the variation of the parameters. 

No matter how well the parameters are defined or predicted. Its effectiveness can 

only be shown when the prosody is applied to real TTS process. We will apply the 

generated prosody to unit selection-based synthesis approach in Chapter 6. The 

synthetic speech will be evaluated in Chapter 7. 

5.7 Summary 

This chapter describes the process of design, evaluation and determination of the 

prosody parameters. First, I introduce the prosody parameters and review the prosody 

prediction approaches.  Second, the problem of prosody parameters for unit selection 

is stated. The solutions to the problems are proposed. Third, the parameters are 

defined. The processes for evaluating and selecting parameters are described. A 

clustering approach is adopted to determine the final parameter set. Finally, 

relationships between parameters and features are investigated.  

In this chapter, I proposed an approach to determining parametric prosody 

representation for unit selection based synthesis. This approach solved the following 

problems that encountered in unit selection based speech synthesis. (1) The 

approaches for evaluating prosody parameters have been given. This helps to 

determine whether the parameters are sufficient to describe perceptual prosody effects 

(e.g. tone and break). (2) The approach for determining final parameter set has been 

given. The approach can determine a parameter set, which is concise but sufficient. (3) 

Using a regression tree approach, the prosody models predict the prosodic parameter 

as well as the standard deviation of the class to which it belongs. This makes it 

possible to measure mismatch in unit selection based synthesis.   

This work provides a solution for determining a set of prosody parameters 

suitable for unit selection based synthesis. The selected parameters describe not only 

the general prosody of speech but also the important perceptual prosody effects. The 

proposed approach can be extended to languages other than Chinese, or to prosody 

properties other than break and tone. 
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For the prosody description for Chinese, I discovered that energy contour  (or its 

equivalent) helps to describe boundary units. I discovered the relationship between the 

prosody parameters and the features for prediction. This result helps to understand the 

prosody parameters and features better. This is useful when building prosody models 

of different sizes, in which some factors can be neglected. 
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Chapter 6  Unit Selection with Prosody 

In this chapter, we describe how the prosody parameters that are determined in the 

previous chapter are integrated into the unit selection process. First, an introduction to 

speech synthesis techniques is given. Then, we describe the corpus-based unit 

selection approach. Next, we define the cost function, into which the prosody 

parameters are integrated. Finally, the weights for the subcosts are determined. 

6.1 Introduction 

The strategies of synthesizing speech on computer can be classified into three major 

categories (Flanagan, 1972), which are articulatory synthesis, formant synthesis, and 

concatenation synthesis. Articulatory synthesis attempts to model the human speech 

production systems, while formant synthesis and concatenation synthesis attempt to 

only model resultant speech. Formant synthesis generates speech with the support of a 

database of rules. Concatenation synthesis works with a database of pre-recorded 

speech pieces. Unit selection based approach belongs to the category of concatenation 

synthesis. 

6.1.1 Unit Selection-Based Synthesis 
(1) Unit Selection-Based Concatenation Synthesis 

Normal concatenation synthesis works by keeping a small unit inventory during 

synthesis. A unit is selected and then modified using signal processing techniques 

according to prosody features. Synthesis by this way can generate speech with 

relatively high quality. However, the synthetic speech is more or less distorted due to 

the signal processing process.  

A simple idea of generating good speech is to store large quantities of speech 

segments of human speech in a database and, when generating, concatenate all the 

needed speech segments together without any modification. Of course the longer the 
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stored segments selected for the concatenation, the more natural the generated speech. 

As each speech unit may have many variants in different contexts or prosodic 

situations, this approach needs a large memory to store a large number of speech 

segments. The approach was not practical some years ago because of the limitation of 

computer power and memory. With the development of hardware, the use of large 

speech corpus as synthetic units for direct concatenation is possible.  

This idea was first proposed to minimize the unnaturalness that caused by the 

concatenation of small synthesis unit inventory. A non-uniform unit concatenation 

method was proposed by Sagisaka (1988, 1990). The approach eventually developed 

to the problem of unit selection (Black and Campbell 1995, Hunt and Black 1996). 

The key idea of unit selection is to select from corpus the longest available strings of 

phonetic segments that match a sequence of target speech sounds in the utterance to 

be synthesized, thereby minimizing the number of concatenations and reducing the 

need for signal processing. The underlying assumption of the unit concatenation 

synthesis is that the listener will tolerate the occasional spectral and prosodic 

mismatch in an utterance if the general quality of the speech is similar to natural 

speech  (Mobius, 2000). 

Although there are more or less prosody considerations, the use of prosody for 

unit selection process is weak. Usually, only basic prosody parameters are defined. 

The parameters are not enough to describe some important prosody properties. (E.g. 

break). In addition, the variations of prosody parameters are not carefully considered. 

(2) Unit Selection-Based Synthesis for Chinese 

Unit selection-based speech synthesis (or corpus-based synthesis) has been applied in 

English and other languages for some years. In recent years, some attempts (Liu, and 

Wang, 1998; Chu et al. 2001; Wang et al., 2000, Li et al, 2001) have been made in 

Chinese TTS using unit selection approach in synthesis process. A representative of 

the existing unit-selection based system is (Chu et al, 2001). The system used a two-

step synthesis framework, in which, there is no prosody model. Prosody is assumed to 

be implicitly contained in text information. In the unit selection process, when 

selecting a syllable, the cost function considers the unit, its context, and the position 
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of the unit in a prosodic word (start, middle or end of a prosodic word.) This approach 

works relatively well with a huge speech inventory. However, the shortcoming of the 

approach is that it only takes into consideration part of the many factors that affect 

prosody. Therefore, the selected unit may not a prosodically best one. Hence, the 

generated speech sometimes may have bad prosody because the selected units do not 

suit the context.  

The use of prosody parameters in cost function to select the best units has been 

applied for selecting units in a small unit inventory. Wu et al. (2001) proposed a 

scheme to select phonetically, linguistically best units and then apply prosodic 

modifications. Prosody is first generated from some stored template using cost 

functions. Then synthesis units are selected using cost functions, in which prosody is 

used, and a PSOLA synthesis part is applied to modify prosody.  The scheme is useful 

in a unit selection-based synthesis. However, their prosody model determines prosody 

parameters from stored templates, in which only limited prosodic factors are 

considered.  

The biggest problem of the unit selection based approaches is that they do not 

have a good prosody consideration. This limits the quality of the generated speech. 

(3) Unit Selection Model 

A unit selection model has a well-organized unit database. The database contains the 

speech units from a large corpus, which is carefully designed to have a good coverage 

of all phonetic and prosodic variants of each unit. In the database, each speech unit 

has a number of possible variants, which are suitable to appear in different phonetic 

and prosodic environments. The large speech corpus is analyzed offline and all the 

calculated features are stored in a unit database. In the database, each instance of a 

unit is described by a vector of features. Each feature may be a discrete or continuous 

value. The features include features of the unit itself and the context of the unit. The 

features of the unit itself are used for selecting the correct unit that meets the 

segmental requirement, while the features of context are used for selecting the 

contextually best unit, which may minimize the discontinuity between the selected 

units. 
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The corpus-based concatenation synthesis is actually a pattern matching process. 

During the synthesis, the work need to do is to select the best units that phonetically 

and prosodically best match the target units. Meanwhile, the discontinuity between 

selected units should be kept as small as possible. To meet these requirements, two 

costs should be defined in synthesis. One is unit cost, which describes how close a 

selected unit to the desired unit. The other is connection cost, which describes the 

degree of continuity between the selected units. The whole cost is the weighted sum 

of the two costs.  

(4) Unit Selection Process 

The speech synthesis part accepts information from prosody generation part, retrieves 

the speech unit database to find a proper template for every target speech unit. During 

the selection process, the phonetic and prosodic constraints will be applied. The 

smoothness of the concatenation will also be concerned.   

 The

target se

syllable 

 

 Target unit 
Jin1 Tian1 Hen3 Re4 

Jin1_1 Tian1_1 Hen3_1 Re4_1 

Jin1_2 Tian1_2 Hen3_2 Re4_2 

Jin1_3 Tian1_3 Re4_3 

Tian1_4

Sequence 

Candidate 
units  

 

Figure 6.1 Illustration of unit selection 

 unit selection process can be illustrated as Figure 6.1. In the figure, the 

ntence is “今天很热 (it is hot today)”, which consists of 4 syllables. Each 

has a set of candidate units. The thick line and thick edge box indicate the 
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selected unit sequence. In unit selection process, to get the best speech, we have to 

consider (1) the properness of the unit to target unit, (2) the smoothness between the 

selected units to be connected. Therefore, the selection process is to find a best path 

among all the possible paths in the connection lattice. The search process of the path 

is guided by a cost function, which describes the degree of properness of a unit and 

degree of smoothness between two units.  

6.1.2 Problems of Prosody in Unit Selection 

The performance of unit selection is based on the design of cost function. 

Nevertheless, how prosody can effectively help to select units remains a problem.  

The use of prosody in a unit selection system is highly desirable. Some previous 

work usually used symbolic prosody, which is discrete description of prosody. The 

symbolic representation of prosody cannot give a fine distinction of prosody of units. 

Therefore, the best unit may be not selected in the unit selection process. Some other 

research work used parametric prosody. However, the parameters are not well defined 

and well normalized. In this work, we will incorporate parametric prosody into the 

unit selection process. 

There were a few attempts in Chinese unit selection-based TTS. However, 

previous work for Chinese unit synthesis use simple break or template based prosody 

models. These considerations can improve speech a little in prosody. However, this 

improvement is sometimes only by chance. The lack of full prosody representation 

prevents it from generating speech of high quality. At least the following speech 

problems cannot be solved in previous approaches:  

• Inappropriate duration: The duration of a speech unit is determined by the 

context where the unit appears. A TTS system without good prosody 

consideration may generate too long or too short units.  

• Inappropriate loudness: Due to the same reason, some of the units may have a 

too loud or too soft sound compared with their neighboring units. 
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• Inappropriate pitch level: Sometimes, we can perceive some high pitch or low 

pitch sound in some TTS systems. This is mainly caused by incorrect pitch 

level. 

• Unclear or wrong tone: There is no careful consideration of pitch contour of 

unit in speech. A unit with a correct tone in the original speech may change to 

a wrong tone when connected with other units from other context. 

• Incorrect break: When a unit initially from the start position of a prosodic 

word is placed at a position of end of prosodic word (or vice versa), we can 

perceive an obvious unnaturalness. This is mainly caused by improper 

realization of break (or boundary effect). 

In this work, we will integrate parametric prosody representation defined in 

previous chapter into the unit selection process (refer to 6.3.2). The aim of the work is 

to overcome the problems that occur in previous TTS systems. 

6.2 Unit Selection Model in this Work 

In this research, we use a unit selection-based model for speech synthesis. Different 

from various previous researches in Chinese and other languages, we integrate 

parametric prosody information into cost function and unit selection process. In 

addition, the cost functions are designed to suit the nature of Chinese language. 

6.2.1 Unit Specifications 

In this work, we choose syllable as our synthesis unit. The reason to choose syllable is 

that syllable is a relatively stable units. The coarticulation between syllables is 

relatively loose, while the coarticulation between sub-syllable units is very tight. 

Each unit is specified by a feature vector, which will be used for matching in a 

unit selection process. Both the target units and units in inventory are described using 

this feature vector. The features describe the phonetic identity, phonetic context, break 

types around the unit, and prosody parameters of each unit.  The features defined in 

this work includes the following: 
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• Phonetic identity of the unit: Using the pronunciation of the unit is to ensure 

that the candidate unit will have the same sound as the expected one.  The 

pronunciation includes the initial, final and tone. There are 22 initials, 38 

finals, and 5 tones defined in this work.  

• Phonetic context:  The coarticulation between two units is determined by the 

phonetic identity of its neighbors. The context of the unit will help to find the 

unit with similar context of a unit.  The phonetic context consists of the initials, 

finals, and tones of previous and next units. 

• Breaks around the unit: The break types before and after the unit. The prosodic 

properties of a unit before a break and after a break are quite different.  The 

break type information is an important index to evaluate the similarity of two 

units. We defined five types of break, which are syllable break, word break, 

prosodic word break, minor phrase break, and major phrase break. 

• Prosody parameters: The prosody parameters are a collection of parameters 

that describe the duration, pitch contour and energy of a unit.  

The details of all the features are listed in Appendix B. 

6.2.2 Corpus Coverage 

For corpus-based speech synthesis, a large speech corpus should be built. The speech 

corpus consists of a large collection of utterances. The unit for the synthesis will be 

extracted from the corpus. It is ideal to cover context dependent units and prosody 

variants as much as possible.  However, meeting the criteria needs very large speech 

corpus or sometimes is even impossible. As the cost of constructing a large corpus 

with high quality is very expensive, balance is usually made between coverage and 

size.  

In this research, we built a corpus of around 38000 syllables. The corpus is 

designed to cover the frequently used context independent syllable and context 

dependent syllable as much as possible. As calculated in Chapter 3, the built corpus 

covers 99.8% of syllable occurrences in PKU People’s Daily text corpus. When 
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context of unit is grouped by initial and final class, the speech corpus covers 76.8% of 

the unit occurrences in PKU text corpus. When loose coarticulation is grouped 

together, the speech corpus covers 90.4% of the unit occurrences in PKU text corpus. 

(Refer to Section 3.3.2 for details). 

6.2.3 Implementation of Prosody by Unit Selection 

The prosody is implemented in unit selection by selecting units with proper prosody 

properties. This is done by using prosody related subcosts in cost function. (Refer to 

6.3.2) The selected units will be concatenated together to form a speech utterance. 

The speech of connected units itself exhibits prosody. No silence is inserted into 

speech to create a prosodic break in utterance. Tone is implemented by selecting units 

with proper pitch contour. Break is implemented by selecting proper boundary units. 

6.2.4 Costs for Unit Selection 

Cost function describes to what degree that the selected units deviate from perfect 

ones. The cost function mainly consists of unit cost and connection cost. Unit cost 

mainly concerns quality of the unit, while connection concerns the coarticulation 

effects between the two selected units.  

(1) Unit Cost (CUnit) 

Unit cost expresses the distance between the unit to select and the unit that we expect. 

In the selection of units, we first look for the units with the same syllable identity 

(initial, final and tone) as the expected units. As we expect to find the syllable that has 

same context situation as our target speech, the cost is to measure its distance from the 

perfect one.  Unit cost is calculated by comparing the corresponding features of a unit 

or a sequence of units, as illustrated in Figure 6.2. In the figure, Ti is the target unit, Ui 

is the unit to be selected. 

Here we classify unit subcosts into two categories, which are phonetic cost and 

prosodic cost. The subcosts define the phonetic and prosodic fitness of the units, 

which will be discussed later. 
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Corpus utterance 

Target utterance 

Ti 

Uj 

Ti-1 

Uj-1 Uj+1 

Ti+1 
  

 

Figure 6.2 Illustration of unit cost calculation 

(2) Connection Cost (CConn) 

When two selected best units from separate places are connected together, they do not 

necessarily match each other. Two successive units with sub-optimal unit cost may be 

preferable over two non-adjacent units with optimal unit cost. 

The connection cost consists of two measures: coarticulatory continuity measure 

and prosodic continuity measure (Yi 1997). The First is inspired by the fact that 

certain phones spoken in succession exhibit a significant amount of coarticulation. 

Phone pairs with more perfect continuity in formants are more preferable to connect. 

Prosodic continuity compares the prosodic information of two connected syllables.  

 

Ui Vj 

Figure 6.3 Direct calculation of connection cost 

When two syllables are to be connected, if they were not spoken in succession, a 

connection cost must occur. The connection cost measures how much degrading in 
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the connection is caused when the pair of speech units comes from non-contiguous 

syllable constituents.  The cost function can be calculated in two ways: 

1. Directly calculated by calculating the spectrum continuity or prosody 

continuity between two units to be connected (as in Figure 6.3, in which units 

Ui and Vj  are to be connected). This usually involves calculation of mismatch 

of acoustic or prosodic parameters. 

2. Indirectly calculated by comparing the connected unit with its original 

neighbor in speech (as in Figure 6.4, in which units Ui and Vj  are to be 

connected). This can be done by considering phonetic information. This work 

uses this way to describe connection cost. 

Original utterance containing Ui 

Ui+1 

Vj 

Ui 

Vj-1 

Original utterance containing Vj 

 

Figure 6.4 Indirect calculation of connection cost 

Because some of the connections are more important (tight coarticulation or 

prosodically coherence) than the others are, we defined an importance factor for 

connection (which will be discussed later in 6.3.4). 

6.2.5 Dynamic Programming 

For each unit of the target speech, there are multiple speech units. The candidate units 

of all target units form a lattice. To find the path that has the lowest cost, a dynamic 

programming approach is needed. In this research, Viterbi algorithm is used to find 

the best path. The Viterbi search progress works in the following steps: 

1. Initialize C(0,1) = 0; 
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2. For i =1 to NSeqUnit do 

a. For j = 1 to NCand 

Calculate unit cost CUnit (j) 

b. Sort units in ascending order of CUnit (j), and  keep the best M ones. 

c. For j =1 to NPath do 

For k =1 to M do 

C(i, jM+ k)= C(i-1, j) + WUnit  CUnit (Vk) +WConCCon(Ui-1,j, Vk) 

d. Sort the paths in ascending order of C(i,1: jM+ k), keep the best N ones. 

3. Back trace to find the best sequence that has a minimal cost value. 

4. Output the sequence of units. 

where the meanings of the notations are as following: 

NSeqUnit: number of units in the sequence; 

NCand: number of candidate units in current step;  

NPath: number of paths in previous step;  

M:  number of candidate units for further calculation in current step;  

N :  number of paths to keep in this step; 

C(i,j) :  accumulative cost of the jth path in the ith step;  

Vk  :  the kth candidate in current step;  

Ui,j  :  the jth selected unit in the ith step;  

CUnit (V) :   the unit cost of unit V; 

CCon(U, V) :   the connection cost between U and V; 
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WUnit :   weight for unit cost; 

Wcon:  weight for connection cost. 

6.3 Definition of the Cost Function 

In this part, we will give the definition details of each subcost. In this work, the value 

of each single subcost is defined in a range from 0 to 100. 

6.3.1 Phonetic Cost of Unit (CPhonetic) 

Phonetic context consists of final of previous syllable, initial of next syllable (or final 

of next syllable if the initial is null), tone of previous syllable, and tone of next 

syllable. The previous syllable and next syllable are considered due to the 

coarticulation effect and the interaction between them. 

(1) Tone of Surrounding Syllables (CToneContext) 

To calculate the cost, we calculate the cost for tone of previous syllable CPrevTone and 

cost for the tone of next syllable CNextTone respectively. 





≠
=

=
ts

ts
evTone TT

TT
C

 if                   50,
 if                     ,0

Pr   (6.1) 

where Tt is the tone of the previous syllable of  target syllable, and Ts is the tone of the 

previous syllable of a candidate syllable from inventory. 





≠
=

=
ts

ts
NextTone TT

TT
C

 if                    50,
 if                      ,0

  (6.2) 

where Tt is the tone of the next syllable of target syllable, and Ts is the tone of the next 

syllable of a candidate syllable from inventory. 

Therefore the total subcost is  

NextToneevTonetToneContex CCC += Pr    (6.3) 
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(2) Pronunciation of Context Syllables (CPronContext) 

To calculate this cost, we calculate the cost for the previous syllable CPrevSyllable and 

cost for the next syllable CNextSyllable respectively.  

The cost CPrevSyllable is defined as: 






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where Ft is the final ID of the previous syllable of the target syllable, Fs is the final ID 

of the previous syllable of a candidate syllable from inventory, FCt is the final class 

ID of the previous syllable of target syllable, FCs is the final class ID of the previous 

syllable of the candidate syllable from inventory. The final class is as defined in 

Section 3.2.3. 

Note that the IDs are numbers that represent categories.  

The cost CNextSyllable is defined as: 
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                L if                     ,0
  (6.5) 

where Lt is the left side (Left side is the initial of the syllable. When the initial is null, 

it is the final of the syllable) ID of the next syllable of the target syllable, Ls is the 

final ID of the next syllable of a candidate syllable from inventory, LCt is the ID of 

left side class of the next syllable of target syllable, LCs is ID of the left side class of 

the previous syllable of the candidate syllable from inventory.  The left side class is as 

defined in Section 3.2.3. 

Therefore the total subcost is  

leNextSyllabevSyllableonContext CCC += PrPr      (6.6) 
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6.3.2 Prosodic Cost of Unit (CProsodic) 

Prosodic cost is calculated by calculating several subcosts firstly. In this work, we 

calculated subcosts for prosodic word breaks around the unit and prosody parameters 

of the unit.  

Although the cost for prosodic break may be partly reflected in prosody 

parameters, we include it in the cost to give it more attention. We consider whether 

the unit is a prosodic word boundary or not because prosodic word is one of the most 

important factors for predicting prosody parameters.  

(1) Break around the Syllable (CBreak) 

To calculate the cost, we calculate the cost for break before the syllable CPrevBreak and 

cost for the break after the syllable CNextBreak respectively. 
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where Bt is the break type (1: prosodic word break, 0: not a prosodic word break) 

before the target syllable, and Bs is the break before the candidate syllable from 

inventory.  
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   (6.8) 

where Bt is the break type after the target syllable, and Bs is the break after the 

candidate syllable from inventory.  

The total cost is  

NextBreakevBreakBreak CCC += Pr     (6.9) 
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(2) Prosody Parameters (CProsodyParam) 

Prosody parameters are predicted in Chapter 6. Here, we define a cost to account for 

all the prosody parameters.  In this research, the parameters of a syllable defined for 

the cost calculation includes 10 parameters as determined in Section 5.6.1.  

The calculation of the prosodic cost is defined as following.  In the prediction of 

prosody parameters in last chapter, we obtain not only the values of prosody 

parameters we expect but also a value of standard deviation of the sample points 

falling into the corresponding leaf nodes of the regression tree.  

The two values together give an accurate prediction of prosody parameters. The 

prosodic value gives the expected parameters, while the standard deviation reflects the 

accuracy of the value. Suppose the predicted prosody parameters are represented 

using vector T. 

),...,( 1021 tttT =                     (6.10)    

The corresponding standard deviations are presented using vector D. 

),...,( 1021 dddD =       (6.11) 

The prosody parameters of a unit from inventory are represented using vector S. 

),...,( 821 sssS =       (6.12) 

The cost is calculated using  
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where wi is the weight for each parameter.  
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6.3.3 Smoothness Cost between Two Units (CSmooth) 

Suppose X, Y, P and Q are speech units as illustrated in Figure 6.5. X and Y are 

succeeding units in original speech, and P and Q are succeeding units in original 

speech as well. X and Q are to be connected in the synthetic speech as shown in 

Figure 6.5. 

To calculate the connection cost between the two selected units that will be 

connected, we used the following features for each connection:  

(1) Perfectly Connected (CSucc) 

If the two selected syllables to be connected are originally succeeding units (X and P 

are the same unit) in the speech corpus, the cost should be zero. Otherwise (X and P 

are not the same), the cost is 100. 
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succC              (6.15) 

(2) Tone Context (CToneConn) 

To make the connected speech smooth, it is expected that the neighbors of the 

selected unit in the synthetic speech have same tones as those in the real corpus. The 

cost is calculated as: 
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ToneConnC  (6.16) 

where T  are tones of units X, Y, P and Q.   QPYX T and T,T, 
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of the previous syllable of  unit X, FP is the final of unit P, FCX 

it X, FCP is the final class of the unit P. 
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ide class of  unit Y, LQ is the left side class of unit Q, LCY is the 

Y, LCQ is the left side class of the unit Q. 

 is calculated as: 

RightSylLeftSyln CC +=     (6.19) 
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6.3.4 Connection Importance Factor Between Two Units (IConn). 

As we are considering the connection between two units, first we need to have a look 

at the types of connection between the two syllables. There are different coarticulation 

degrees for different connection types. This considers two factors:  

• Break types between syllables 

• Coarticulation types between two syllables. 

In this part, break type takes two values, which are existence or absence of a 

break. A break exists after a syllable when there is a prosodic word break, phrase 

break or major phrase break. 

We define three types of coarticulation in Section 3.2.4. When two units are 

succeeding units in an utterance, the coarticulation is determined by pronunciation 

of the second unit (Wu et al.  2001). For different connection types, the connection 

cost should be given to different weights.  Those tight connections should be 

strengthened and loose connection should be given more flexibility to select units 

that are not smoothly connected. This connection importance is a weight factor in 

the whole cost. The connection importance factor is defined as: 











==
==
==

=

=

2   V)T(U, and 0 V)B(U, if          ,0.1
1   V)T(U, and 0 V)B(U, if          ,7.0
0   V)T(U, and 0 V)B(U, if          ,3.0

       1 V)B(U, if                             ,1.0
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where B (U,V) is the break type between U and V, the value 0 and 1 mean there is a 

prosodic word break or not between U and V respectively, T (U,V) is the 

coarticulation degree between U and V, 0, 1 and 2 means loose, intermediate and tight 

coarticulation respectively. 

6.3.5 Total Cost 

Total unit cost is calculated as:  
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onContextonContexttToneContextToneContexPhonetic CWCWC PrPr+=   (6.21) 

osodyParamosodyParamBreakBreakosodic CWCWC PrPrPr +=   (6.22) 

osodicPhoneticUnit CCC Pr+=      (6.23) 

where WToneContext, WPronContext, WBreak,, and WProsodyParam are weights for the 

corresponding subcosts respectively. 

Total connection cost is calculated as: 

CEdgeConnCEdgeConn

CToneConnCToneConnSuccUnitSuccUnitSmooth

CW
CWCWC

+
+=

  (6.24) 

ConnSmoothConnection ICC =      (6.25) 

where WSuccUnit, WToneConn and WEdgeConn are weights for the corresponding subcosts 

respectively. 

Suppose a sequence of n units is selected for a target sequence of n units. The 

total cost is calculated with the following function. 
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where the CTotal is total cost for the selected unit sequence, CUnit(i) is the unit cost of 

unit i, CConnection(i) is the connection cost between unit i and unit i+1. Unit 0 and n+1 

are defined as start and end symbol to indicate start and end of utterance. 

6.3.6 Weight Determination  

The total cost of a sequence of units is a weighted sum of the unit cost and connection 

cost. The unit cost and connection cost are both weighted sum of sub-costs. 

Determining the weights is important for the general performance of the whole system. 

Unfortunately, it is hard to find an objective way to compare the quality of speech 
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utterances generated by using different weight settings. Therefore, we need to have 

some alternatives to determine the weights. 

In this research, the weights are mainly determined by human based on 

knowledge and informal perception test. First, a set of weight values is assigned to 

each weight. Then the weights are adjusted to make the generated speech better.  

(1)  Initial Weights 

The initial weights of unit cost are given according to the importance of the factor 

based on our knowledge. For the determination of costs, we follow the following rules: 

• Cost of phonetic context (WPronContext,) has larger weight than that of tone 

context (WToneContext,), boundary syllable (WBreak). The reason is that the 

phonetic context ensures the coarticulation of the syllable; while the tone 

context and boundary syllable type mainly determine prosody. The prosody is 

also contained prosody parameters. 

• Cost of prosody parameters (WProsodyParam,) has a similar weight value to that of 

the phonetic context (WPronContext,) because we want to give equal importance 

to them initially. 

• The weight of cost of original connection (WSuccUnit) is given a higher value 

than the others are. This favors selecting long speech segments. 

(2)  Weight Tuning 

The tuning of weight is done by informal listening test. To make the adjustment of 

weights based on informal listening test more effective and meaningful, testing text is 

designed to evaluate the speech quality during adjustment of weights. The testing text 

consists of two parts:  

1. Text has enough words that do not appear in the speech scripts. This is to test 

whether the generated speech has good prosody. The use of new words is to 
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ensure that the selected units have suitable prosody not because they happen to 

be selected from a unit of a same word.   

2. Text consists of enough units, between which there are tight connections.  

This is to test whether the connection between units is well considered in the 

selected units. 

The weights are adjusted to make the general speech quality is the best. Although 

this is not a formal testing, the weight can be adjusted to generate relatively good 

speech quality. Finally, the weights are adjusted as shown in Table 6.1. 

Weight Value 

WToneContext,  0.5 

WPronContext,  2.0 

WBreak,  1.0 

WProsodyParam,  1.0 

WSuccUnit 0.5 

WToneConn 0.3 

WEdgeConn 0.3 
Table 6.1 Final weights in the cost function 

Note that there are possibly different ways to set these weights. This setting is 

only one of them. This setting may not be the best one. However, it is enough to 

evaluate the performance of our prosody description. 

6.4 Summary 

In this chapter, we describe how prosody is adopted in the cost function. We describe 

the unit selection model and cost scheme used in this work. The general cost is 

divided into two main parts, which are unit cost and connection cost. The unit cost is 

further divided into phonetic cost and prosodic cost. We also define a connection 

weight for the connection cost. The procedure of weight tuning is also described. 

The evaluation of the TTS system will be carried out in Chapter 7. 
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Chapter 7  Evaluation 

In this chapter, we evaluate the performance of the TTS system when the prosody 

parameters are applied into the unit selection based synthesis. First, we highlight the 

key issues in the evaluation. Then the evaluation of the proposed system is carried out 

from different aspects. 

7.1 Introduction of Speech Quality Evaluation 

Evaluation of synthetic speech is difficult because the quality of speech should 

eventually be judged by human perception. Therefore, there is no directly automatic 

approach for testing like in speech recognition, in which recognition result can be 

compared with standard result automatically.  

In the evaluation of speech quality, we are concerned about two important aspects, 

which are intelligibility and naturalness. Intelligibility means whether the speech is 

clear enough to convey the meanings that we intend to transmit.  Naturalness, 

however, means whether the speech is pleasant to listeners. 

The evaluation of synthetic speech is usually done by subjective listening test with 

a response set of syllables, words or sentences. Many approaches have been used in 

previous research for speech quality evaluations. We list some of the popular 

approaches in the following. 

7.1.1 Segmental Unit Test 

The testing material is usually focused on consonants, because they are easily 

confused. Many consonants are short or weak in speech.  For example, in English, 

nasalized consonants (/m/, /n/, /ng/) are usually considered problematic. (Carlson et al. 

1990).  Some high frequency consonants (/f/, /th/, /s/) sometimes sound similar. 
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Diagnostic Rhyme Test (DRT), which was introduced by Fairbank in 1958, uses 

a set of isolated words to test consonant intelligibility in initial position (Goldstein 

1995, Logan et al. 1989). The test consists of 96 word pairs, which differ by a single 

acoustic feature in the initial consonant. Word pairs are chosen to evaluate the six 

phonetic characteristics of speech.  

Modified Rhyme Test (MRT), an extension to DRT, tests for both initial and final 

consonants apprehension (Logan et al. 1989, Goldstein 1995). The test consists of 50 

sets of one-syllable words, which makes a total set of 300 words. In listening test, a 

word is played and listener is asked to make a multiple-choice answer for what he 

hears. 

There are other variations of the method that use constructed syllable lists, word 

lists or nonsense word lists to evaluate different aspects of speech quality.  

 This kind of testing mainly concerns the intelligibility of speech segments. The 

designed testing set is language dependent.  

7.1.2 Sentence Level Test 

Several sets of sentences have been developed to evaluate the comprehension of the 

synthetic speech. Unlike in segmental tests, incorrectly perceived units can be 

corrected by context information in sentence. 

Harvard Psychoacoustic Sentences is a closed set of 100 sentences developed to 

test the word intelligibility in sentence context (Allen et al. 1987). However, using a 

fixed set of sentences, learning effect is very problematic. Therefore, repeated 

experiments cannot be made. In addition, the words can be guessed from context. 

Haskins Sentences uses texts in which missed items cannot be concluded from 

their contexts. However, a fixed sentence cannot be repeatedly used for test due to the 

learning effect. 

Semantically unpredictable sentence test (SUS-test) is also a sentence level test 

(Goldstein 1995, Pols et al. 1992). The words to be tested are selected randomly from 
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a pre-defined list of possible candidates. The test contains five grammatical structures. 

In actual test, 50 sentences are generated and played in random order to test the 

subjects. This test is not sensitive to learning effect.  

These tests are intended to test the intelligibility at sentence level. Note that the 

designed sentence sets are for English. 

7.1.3 Overall Test 

Mean opinion score (MOS) method is widely used to evaluate speech quality in 

speech transmission and speech synthesis (Goldstein 1995). MOS approach is to ask 

listeners to score each utterance. The average reflects the quality of speech.  

This approach can be used to evaluate the general quality of speech or the quality 

of some specific features, for example, naturalness, intelligibility, prosody, etc. 

Sometimes, reference speech utterances are given as a guideline for scoring. However, 

due to the perceptual multidimensionality of speech (Sproat 1997), which means that 

there are usually different features in a speech utterance, listeners may focus their 

interests on different features for different utterances. The perceptual 

multidimensionality makes the use of reference speech ineffective. Therefore, in 

many MOS tests, a scale of five levels is given. However, the speakers are asked to 

score the speech utterances based on their own judgment. MOS test is usually used for 

relative listening test. That means, it is suitable for comparing two algorithms. It is 

usually meaningless to test one system alone using MOS test. 

7.1.4 Objective Evaluation 

All the above-mentioned approaches involve human listening of the speech utterances. 

Therefore, they are all subjective evaluation approaches. There were also attempts to 

use objective testing approaches. 

Objective methods, such as Articulation Index (AI) or Speech Transmission 

Index (STI) are used to evaluate speech quality in speech transmission (Pols et al. 

1992). These methods are unsuitable for synthetic speech because it is not possible to 
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establish a unique reference speech. However, some attempts are made to objectively 

evaluate the quality of speech in concatenative speech synthesis (Boefard et al.1993). 

A typical idea for this method is to evaluate the speech quality by comparing the 

synthetic speech with a standard template. Some natural speech utterances from 

inventory are usually held up as the standard template speech. The comparison is done 

by comparing two sequences of speech features with dynamic time warping (DTW).  

Although these approaches have been applied by some work, the main problems 

are: (1) The distance measures for comparing speech utterances do not necessarily 

reflect the perceptual differences of speeches. (2) The features used for evaluation do 

not contain enough prosody information. For example, duration information is 

ignored by using DTW. Pitch information is usually omitted in the features. 

Therefore, objective testing approaches are usually useful for testing 

coarticulation effect but not for testing prosody effects. We have to rely on subjective 

listening test in this work. 

7.2 Evaluation of Speech Quality 

In this work, we evaluate the performance of the TTS from the following aspects: 

• The performance of the parametric representation in synthesis 

• The accuracy of the realization of prosodic effects (tone and break in this work) 

• The quality of the generated speech (intelligibility and naturalness) 

7.2.1 Testing Problem of this Work 

The evaluation task for corpus based unit selection approach has some major 

differences from other synthesis approaches.  

The previous testing approaches for segmental units are suitable for testing signal 

processing based approach, in which the same unit is usually generated from the same 

speech template unit. Therefore, if listening test shows that a unit is intelligible, the 
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same unit in a different occasion is usually intelligible as well.  In such case, testing of 

a unit is in fact a complete test of the unit in different situations. 

However, things are different in corpus-based unit selection approach because, in 

corpus-based synthesis, different occurrences of units often come from different 

source units.  If one unit is intelligible, we cannot draw the conclusion that the same 

unit will be intelligible in different occasions. 

Since the possible text of the language is an infinite set, we understand that any 

text for testing can only cover a very small part of this language.  To better evaluate 

the quality of the speech, we need to design a text that has a good coverage of the 

language to some degree. 

We also have some considerations of subjective listening test. Subjective testing 

is usually prone to error. To make the test more reliable, there should be enough 

observations.  Therefore, it is expected that the testing units are small. For example, it 

is more accurate to use syllables as testing objects rather than to use sentence as 

testing objects. In the signal processing based system, it is usually difficult to identify 

which unit is not good because almost all the units are of similar quality. However, in 

a unit selection based system, we can identify which unit is bad. 

7.2.2 Evaluation Methods in this Work 

To evaluate the performance of the proposed prosody scheme in the unit selection 

process, we design some experiments to perform the tests.  

(1)  Evaluation of Cost Functions  

In this work, we are to evaluate how prosody helps to select the proper units in 

synthesis process. Instead of judging the quality of a complete sentence, we judge the 

quality of each unit. This gives a more subtle comparison on two sets of speech 

samples. The unit level listening test is more objective than comparing two utterances. 

When conducting listening test, we ask listener to count the units that are considered 

not a good candidate of the expected unit. We define rate of inappropriate unit (RIU) 

to evaluate the synthetic speech. RIU is defined as the percentage of inappropriate 
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units among all units of the generated speech.  The speech quality is better if this RIU 

value is smaller.   

(2)  Accuracy of Break and Tone 

Break and tone are two of the most important perceptual prosody elements of Chinese 

speech. The information of break and tone are first derived from the input text. Then 

we convert all input information into prosody parameters. Finally, we implement all 

the effects by using unit selection approach. We are interested to know how well the 

break and the tone are preserved in the final speech after such transformations. 

In the unit selection based synthesis approach in this work (Chapter 6), unit is 

defined as a tonal syllable. That means, when we want to select a unit, we will select a 

unit with the same pronunciation and same tone as the target unit. Ideally, the tones of 

all the selected units should be 100% correct in the synthetic speech. However, this is 

not true. In reality, some selected units are perceived as another tone. The reasons for 

this phenomenon are: (1) The corpus is not perfect. So, the tones of some syllables are 

not fully realized during reading. For example, some weak syllable is changed to a 

neutral tone or something between neutral tone and the original tone. (2) Tone contour 

depends on context tone. A tone is heard correct in one place might be heard incorrect 

when placed in another context. (3) It is possible that there are some errors in labeling. 

For example, start and end positions of a unit may not be accurate; a syllable may be 

labeled a wrong tone, etc. 

The problem of break is similar. The final effect of break depends on the selected 

unit. For example, if we need a unit from the start position of a prosodic word, but a 

unit from the end position of a prosodic word is selected, an incorrect break may be 

perceived in the final speech. 

The accuracy of tone and break are calculated by counting the number of units 

that are not perceived as correct break and tone respectively. Note that in the 

calculation of accuracy, we only distinguish prosodic word break or not a prosodic 

word break. Minor phrase break and major phrase break is not considered. The 

accuracy of break and accuracy of tone are separately calculated in this work. 
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(3)  Speech Quality Evaluation 

The speech quality testing involves the testing of intelligibility and naturalness.  

The intelligibility test in this work is to listen to some nonsense sentences and then 

calculate the percentage of correctly heard units. This ensures that the listeners 

understand the syllable from its sound rather than from the whole context. 

Naturalness test is done using MOS testing in this work. The MOS approach in 

the work is to ask the listener to score each sentence based on a 5-level scale of 

general naturalness of speech. The grading scale is shown in Table 7.1.  This is a 

subject-oriented test.  Quality of human speech is graded as 5.  A speech utterance is 

marked as 5 (Excellent) if the listener thinks it is as good as the human speech.  If a 

listener thinks a speech is good but is still not as good as human speech, it is marked 

as 4 (Good).  If a speech is not so good but is acceptable, it is marked as 3 (Fair). If 

the listener thinks the speech is very bad, it is scored as 1 (Bad). Less bad ones are 

marked as 2 (Poor). 

Naturalness Excellent Good Fair Poor Bad 
Score 5 4 3 2 1 

Table 7.1 MOS scores for listening test. 

(4)  Reliability Consideration 

Because subjective tests are involved in this evaluation, there is a problem of how to 

make the testing more reliable.  

The main consideration is that how many listeners and how many listening 

material should be used in the tests.  Using more listeners and more testing sentences 

improves reliability, but also increases the expenses. According to literature 

(Speechworks, 2002), for listening test, 10 subjects listening to 40 to 50 sentences from 

each system provides a good balance between cost and reliability of the result. 

From statistics, adequate sample size depends on the confidence level required 

and the significance degree of the hypothesis to be tested. For a certain confidence 
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level, in the comparison of two populations, if the difference is small, the sample size 

should be large enough. Otherwise, a small sample size is usually enough.   

7.2.3 Testing Material Selection 

One of the issues in evaluating the synthetic speech is what testing text should be used 

in testing. Because natural language is an infinity set, any testing text is just 

infinitesimal. Therefore, we can only test a small part of real world text. To make test 

more reasonable, we have to design text to cover main problems in synthetic speech.  

In this work, text for testing naturalness mainly concerns the coverage of context 

dependent units. Testing text for intelligibility concerns the coverage of distinct 

syllables. 

To select text for general speech quality testing, we use a greedy algorithm. The 

algorithm selects sentences from the PKU People’s Daily corpus. The algorithm of 

selecting sentences can be described as the following algorithm. 

1. Initialization 

i. Let S0 be sentence set for selection; 

ii. Let T0={}; 

2. Selection:  for i = 1 to n do 

for all s in S i do t= argmax F(s)  

Ti = Ti-1  +t; 

Si+1 =S i -t; 

F(t) = 0; 

3. Output Tn 

where Si is the candidate sentence set for selection in i-th step, Ti  is the selected 

sentence set in the i-th step, n is the number of sentence to be selected, and F(s) is the 
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sum of relative frequency in PKU corpus for all the units in sentence s.  Note that F(t) 

is assigned zero if t has been selected in Ti. 

The idea of the above algorithm is to select sentence one by one from a large set. 

Each selected sentence need to best cover the units that are not covered by previously 

selected sentences. 

7.3 Experiments 

In the following experiments, we will (1) select text for listening test; (2) evaluate the 

performance of our prosody representation; (3) evaluate the accuracy of the 

implementation of break and tone in synthesized speech; (4) evaluate the 

intelligibility of generated speech; (5) evaluate naturalness of the generated speech; (5) 

test the speed of the TTS system.  

7.3.1 Testing Text Selection 

Testing text of the listening test is selected from PKU People’s Daily corpus (Yu et al, 

2002). Frequencies of context dependent units are calculated as described in Section 

3.2.4. Context dependent unit is defined by considering the following: (1)The left 

context are grouped by the final class of the previous syllable; (2) The right context 

are grouped by the initial class of the next syllable; (3) The units with loose 

connections to the previous syllable are grouped together; (4) The units with loose 

connections to the next syllable are grouped together.  

First, we select the sentences with 8 to 12 characters as our candidate sentence set. 

Then, we use the algorithm described in 7.2.3 to select sentences.  The selection result 

is as shown in Figure 7.1.  In the figure, the x-axis shows the number of sentences 

selected, and the y-axis shows the percentage of covered units in PKU People’s Daily 

Corpus. We found that when we select 1000 sentences, we can cover 94.6% of all the 

context dependent units in the People’s Daily corpus. Finally, we select 100 sentences 

randomly from the first 1000 sentences as our testing sentence set.  Note that we do 

not select the first 100 selected sentences, as we want to choose both frequent units 

and less frequent units for a fair testing. The selected sentences are as shown in 
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Appendix C.  The 100 sentences consist of 1091 characters. The testing sentences will 

be used in some of the following experiments. 
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Figure 7.1 Text selection for listening test 

7.3.2 Parametric Prosody vs Symbolic Prosody 

In this experiment, we evaluate the performance of our prosodic representation. We 

compare the performance of the parametric prosody with that of symbolic 

representation, which is used by other research work. 

We synthesize speech using three different ways. The difference between the 

approaches is in the calculation of cost function. The three methods are: 

• Method 1 (No prosody used):  In Method 1, the cost function only includes 

the phonetic cost and connection cost. No prosody and connection importance 

are included. That means,  CProsodic  =0 and IConn = 1 in (7.24) and (7.26). 

• Method 2 (Symbolic prosody): In Method 2, the cost function only includes 

the phonetic cost, prosodic cost, and connection cost. However, prosody is 
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only accounted for by using break types, i.e., WProsodyParam =0. Also there is no 

connection importance factor included, i.e. IConn = 1 in (7.26).  

• Method 3 (Full prosody used):  It includes phonetic, prosodic connection 

cost, and connection importance factors, as described in Section 6.3. 

A comparison of the subcosts that the cost functions use is shown in Table 7.2 

 Cost function 
Methods Phonetic  Smoothness Prosody Importance 

Factor 
Method 1 Used Used Not used Not used 
Method 2 Used Used Break type  Not used 
Method 3 Used Used Used Used 

Table 7.2 Methods used in cost test 

Method 2 was adopted by previous work by Chu 2001, which is one of the 

representatives of state-of-art unit selection based TTS system. The difference is that 

their work used a larger corpus of around 200,000 units. However, there are only 

around 38,000 units in this work.  

We synthesized the 100 sentences selected in 7.3.1 using the three methods. 20 

native speakers of Chinese have participated in the listening test. They are asked to 

listening to the 3 sets of speech samples and count the units that are not considered 

good enough. The result is shown in Table 7.3. Experiment shows that, using method 

1, the RIU (rate of inappropriate units) is 46.1%. Using methods, the RIU reduced to 

32.2%. RIU is further reduced after using Method 3. This shows after using symbolic 

prosody, the naturalness is improved, and after using full parametric prosody 

representation, the naturalness is improved significantly. 

Method RIU Mean  StdDev  
Method 1 

(No Prosody) 
46.1% 9.8% 

Method 2 
(Symbolic Prosody) 

32.2% 6.7% 

Method 3 
(Parametric Prosody) 

8.1% 4.2% 

Table 7.3  Result of rate of inappropriate units(RIU) 
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In Method 1, no prosody is applied to the synthetic speech, but the smoothness 

between units is considered. Although some of the sentences are understandable, there 

are many prosodically inappropriate units found in the speech utterances. Main types 

of inappropriate units include: 

1. Unclear tone. Some units sound like units with a different tone from its 

original tone. For example, a third tone may appear as a first tone, a first tone 

sounds like a second tone. 

2. Unclear sound: Although each unit can be correctly identified in the original 

speech utterances in speech corpus, when they appear in a synthetic speech, 

the sound cannot be correctly recognized.  

3. Incorrect break position: Some breaks are placed at wrong places. Some 

speech utterances seem incomplete. 

4. Inappropriate duration: Some units sound too long or too short to be fitted in 

the speech utterances. 

5. Inappropriate pitch level: Some units have a higher or lower pitch level than 

their neighboring units. We can hear a sharp rise or fall in pitch. 

6. Inappropriate energy level: Some units appear louder or softer than their 

neighboring units. Volume change can be identified sometimes. 

Some errors can be classified into more than one of the categories. All the above 

problems make it difficult to understand the synthetic speech or it makes listeners feel 

uncomfortable.   

In method 2, when the break information is considered as a substitute of prosody, 

the number of inappropriate units is reduced. Most of type 3 errors are corrected, and 

some of the other type errors are reduced.  

When the prosody parameters (method 3) are applied to the unit selection process, 

the number of the inappropriate units decreased significantly. After examining the 

inappropriate units, we found they are caused by the following reasons: 
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1. Wrong segmentation. This can be improved by improving word segmentation. 

2. Wrong prosodic word break or phrase break.  The number of errors of this 

kind can be reduced if the number of errors in POS tagging and prosodic word 

prediction can be reduced.  

3. Incomplete variants in unit inventory. In some cases, no proper unit can be 

found. Improvements can be made if a larger inventory is used. 

Among the three tested methods, Method 1 applies no prosody, however 

smoothness is considered. Method 2 is an implementation of cost defined by Chu et al 

(2001), which is one of the state-of-art Chinese TTS systems. Method 3 is our 

approach of cost design. The result shows that integrating parametric representation of 

prosody into the cost function greatly improves the quality of the synthetic speech. 

7.3.3 Break and Tone Accuracy 

This experiment is an extension of experiment in 7.3.2. We evaluate the accuracy of 

break and tone in synthetic speech. We used the synthetic speech in 7.3.2 as testing 

material. 

(1)  Break Experiment 

In this experiment, we want to evaluate how well the breaks are implemented. We ask 

the 20 native listeners to listen to the synthetic speech, and count the breaks that are 

well implemented. The accuracy is recorded for comparison.    

The result is as shown in Table 7.4. From the table, we can see that when no 

prosody is integrated, the accuracy of identifiable break is as low as 62.3%. When the 

symbolic representation is used, the accuracy rises to 87.2%. When the parametric 

prosody is applied, the accuracy of break is as high as 94.2%. This means that the use 

of the prosody parameters helps to improve the accuracy of the break placement.  

We also note that, when no prosody is applied, the standard deviation is 10.3%. 

That means the number of correct breaks does not agree among listeners because the 
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breaks are not easy to be correctly identified. When the symbolic prosody is used, the 

standard deviation is 5.2%. When the parametric prosody is used, the standard 

deviation is 3.3%, which means that there is a more agreement on the identified 

breaks among listeners when prosody is used. 

Note that the accuracy of break is 94.2%, which is higher than the accuracy of 

prosodic word break prediction in Chapter 4, where the highest accuracy is 91.65%. 

The accuracy of implemented break is higher than the predicted break. The reasons 

are: (1) In the break prediction, we compare the prediction result with the breaks 

labels in corpus.  We have mentioned in Chapter 4 that the accuracy of the break 

prediction could be higher if we take into account the breaks that are different from 

corpus but are acceptable. (2) Some implemented breaks sound between a prosodic 

break and a none-break. So, they are accepted as correct breaks. 

We also note that the accuracy of break from the symbolic prosody approach is 

87.2%. This is lower than the accuracy of prosodic word prediction, which is 91.65%. 

The reason is that, in symbolic prosody approach, when an expected boundary unit 

cannot be found, a wrong boundary unit is used instead. This increases the break 

errors. The errors can be avoided in parametric prosody approach, in which, when 

there is no suitable boundary unit, a non-boundary unit with suitable prosody nature 

will be used. This explains why prosody parameter approach outperforms symbolic 

prosody approach in break implementation. 

Method Mean  StdDev  
Without 
Prosody 

Parameter 
62.3% 10.3% 

With 
Symbolic 
Prosody 

87.2% 5.2% 

With 
Prosody 

Parameter 
93.4% 3.3% 

Table 7.4 Accuracy of break in speech 
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(2)  Tone Experiment 

In this experiment, we want to evaluate how well the tones are implemented. We ask 

the 20 native listeners to listen to the synthetic speech, and count the tones that are 

correctly implemented. The accuracy is recorded for comparison.    

The result is as shown in Table 7.5. We note that when there is no prosody 

parameters used, the accuracy of tone is 78.3%. When the symbolic prosody is used, 

the accuracy is 86.1%. When the prosody parameters are applied, the accuracy rises to 

97.1%. The standard deviation also falls from 5.2% to 4.5%, then to 1.3%. That 

means there is a high agreement of tone identity among listeners when the prosody 

parameters are applied. 

The experiment shows that the use of the parametric prosody greatly helps to 

improve the tone accuracy. 

Method Mean  StdDev  
Without 
prosody 

parameters
78.3% 5.2% 

With 
Symbolic 
Prosody 

86.1% 4.5% 

With 
prosody 

parameters
97.1% 1.3% 

Table 7.5  Result of correctly implemented tones 

7.3.4 Quality of Synthetic Speech 

The quality of speech is usually evaluated by two main indexes, which are 

intelligibility and naturalness. 

We compare the performance of our system with that of others in the experiment. 

Two systems are selected for comparison. The first selected system is Microsoft SAPI 

5.0, released in 2000. The reasons we choose SAPI for comparison are: 
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(1) SAPI is the most popular system available, and hence provides a good 

reference of synthetic speech quality. SAPI is a system with relatively good speech 

quality and good prosody.  

(2) SAPI is a not a unit selection based speech synthesis system (it is based on 

LPC synthesis), in which speech can be generated with desired prosody precisely. 

However, our approach of unit selection can only select unit with fixed prosody 

properties. During unit selection, there might be a prosody mismatch between the 

selected units and expected unit. Therefore, this test can compare the different forms 

of implementation of prosody parameters. 

Another system we want to compare with is Ifly TTS system. This system is 

developed by Ifly Company, which is a leading Chinese TTS provider in the world  

(http://www.iflytek.com). The system for comparison was released in 2002. The 

reasons to select this system are: (1) The system is generally considered among the 

best ones. (2) It represents the latest TTS technology. (3) It uses a unit selection based 

approach.  This provides a similar ground for testing performance of my system. 

We also compare the generated speech with that generated using my 

implementation of the approaches using symbolic prosody representation. 

(1)  Intelligibility 

The intelligibility can be judged by the rate of recognized units (RRU).  In this test, 

we selected 400 most frequently used syllables. Neutral tone (or tone 5) is not 

considered. There is an average of 55 variants of each syllable in the speech inventory. 

The 400 syllables cover 56.1% of all the syllables in the inventory. We first 

randomize the syllables and then construct 80 nonsense sentences, in which each 

sentence consists of 5 characters. The reason that we choose five characters is that it is 

difficult for listeners to remember too long meaningless syllable sequences.   

When listening to the utterances generated by different approaches, there is a 

problem of learning effect. That means, listener may remember the content of the 

utterance. That will make the result of intelligibility test unreliable. To avoid this, we 
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generated 4 sets of sentences.  The characters in each set have different orders. Each 

set of sentences is used for one approach. One set of generated testing text is as shown 

in Appendix D. 

Synthesis 
approach 

RRU  
Mean 

Standard 
deviation  

Symbolic 
Prosody 80.2% 6.4% 

Microsoft SAPI 
5.0 (2000) 83.4% 3.2% 

Ifly (2002) 88.3% 3.8% 
My System 91.2% 4.1% 

Table 7.6 Result for intelligibility test (Rate of recognized units) 

30 native speakers of Chinese participated in the listening test. Among them, there 

are 15 females and 15 males. Listeners are asked to listen to each utterance and record 

what they heard on paper. Then we compare the syllables they recorded with the 

original text and count the correctly recognized syllables.  

The result of the testing is shown in Table 7.6. We can see that the intelligibility 

of my system is 91.2%. Using symbolic prosody achieves 80.2%. The intelligibility of 

SAPI is 83.4%. The intelligibility of Ifly is 88.3%. It shows that, in intelligibility, my 

system is better than Microsoft SAPI and the approach of using symbolic prosody.  

The intelligibility of my system is slightly better than that of Ifly. 

Although the prosody parameters are designed to improve the naturalness, the 

experiment shows that they also help to improve intelligibility. The reason is that 

prosody has some relation with intelligibility. When units is improperly read or 

labeled in corpus construction process, it affects both the intelligibility and the 

prosody of the unit. Therefore, intelligibility deficiency can be also reflected by 

prosody. 

(2)  Naturalness 

The naturalness is usually judged by MOS test.  In this test, we use the 100 sentences 

selected in Section 7.3.1 as the testing set.  
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Synthesis 
approach 

MOS Mean Standard 
deviation of 

MOS 
Symbolic 
Prosody 

3.12 0.38 

Microsoft SAPI 
5.0 (2000) 

3.41 0.41 

Ifly (2002) 3.94 0.10 
My System 4.21 0.23 

Table 7.7  Result for naturalness test 

30 native speakers of Chinese participated in the listening test. Among them, there 

are 15 females and 15 males. The listeners are asked to compare utterances generated 

by 4 approaches and score them.  Because different voices are involved in evaluating 

these systems, we ask listeners to concentrate on prosody properties of the speech. 

The 4 utterances of each sentence is played one by one. However, to avoid listener 

developing a bias during listening, the order of synthesis approaches is randomized.   

The MOS testing result is shown in Table 7.7. In the table, we see that my system 

has a MOS score of 4.21, which is higher than other approaches.  We see that SAPI 

has better score (3.41) than symbolic prosody approach (3.12). This shows, although 

the voice of SAPI is not as good as symbolic prosody approach, the prosody of SAPI 

is better.  The result also shows my system is better than Ifly system. 

7.3.5 Speed of TTS system 

The speed of a TTS system can be measured by the number of the syllables 

synthesized in one second or the time length of the speech generated in one second.  

The speed is tested on a PC with CPU of Intel Pentium-III 1000MHz and memory of 

256M, the operating system is Window 2000 professional. We selected 200 sentences, 

which consists of 2312 syllables in the test. 

(1) Speed for different beam widths 

As the speed of the unit selection is largely dependent on the beam width (Number of 

best paths kept in each step, the variable N in the algorithm in 6.2.4) of Viterbi search. 
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In this test, we show the speed of the unit selection process for different beam width 

values.  

N S R  
1 151.3 38.9 
2 93.1 23.9 
3 63.8 16.4 
4 47.3 12.1 
5 39.9 10.3 
6 36.1 9.3 
7 31.1 8.0 
8 28.1 7.2 
9 25.6 6.6 

10 22.6 5.8 

Table 7.8  Speed of unit selection dependent on beam width  

The result is shown in Table 7.8 and in Figure 7.2.  In the table, N is the beam 

width of Viterbi search process. S is the number of syllables synthesized in one 

second. R is the speech length (measured in second) generated in one second. 
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Figure 7.2 Speed of unit selection 

In the table and in the figure, we see that the speed of unit selection drops with 

the increase of beam width. When the beam width is 10, the synthesis speed is 22.6 

syllables or 5.8 seconds of speech per second.  The speed is enough to be used in real 
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time TTS application.  A larger value of N will allow a larger searching space. 

However, considering the speed of the system, we choose N=10 as our beam width. It 

should be mentioned that all the previous experiments were based on N=10. 

System Syllables/Second

My system  22.6 

SAPI 154.1 

Ifly 104.2 

Table 7.9  Synthesis speed comparison 

To understand the speed of the TTS system, we also synthesized the same testing 

text using Microsoft SAPI 5.0 and Ifly system. The speeds are compared in Table 7.9. 

The result shows that the SAPI has a speed of 154.1 syllables per second. We find that 

when the beam width is 1, the speed of our system is 151.3 syllables per second, 

which is compatible with SAPI. However, the speech quality for N=1 will not be as 

good as that when N =10. When N=10, SAPI has a speed of around 7.5 times of the 

speed of my system. The speed of Ifly is 104.2 syllables per seconds, which is 4.6 

times of the speed of my system.  

(2) Time breakdown of TTS System 

There are three main parts in the TTS system, which are text analysis, prosody 

generation, and unit selection. The amounts of time used in text analysis, prosody 

generation, and unit selection are as shown in Table 7.10 and Figure 7.3.   

Time breakdown in TTS

Text
analysis

Prosody
generation

Unit
selection

 

Figure 7.3 Time breakdown of the TTS 
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In the figure and in the table, we see that unit selection part takes most of the time 

in the whole TTS process. Therefore, improving the speed of unit selection will 

increase the TTS speed. 

Component of 
TTS 

Time 

percentage

Text analysis 8.1% 

Prosody generation 13.2% 

Unit selection 78.7% 

Table 7.10  Time breakdown for TTS 

Although my system can work for real-time use, we should note that my system 

is an experimental system. In my system, many of the data are stored in files instead 

of staying in the memory; the algorithms are not optimized; the data are not indexed.  

Therefore, there is space for improvement, especially for the unit selection part. 

7.4 Discussion 

From above experiments, we find the following: 

1. Applying prosody parameters in unit selection-based synthesis can improve 

speech quality significantly.  

2. The perceptual prosody elements, tone and break, are well implemented in the 

final speech. 

3. The intelligibility and naturalness of the synthesized speech using the prosody 

parameters are much higher than that is generated by symbolic prosody, or 

SAPI.  

4. The intelligibility is comparable with Ifly TTS system. The naturalness of 

speech generated by my system is higher than that by Ifly system. 

5. The TTS system can be used for real-time use. Most of the time consumption 

is at the unit selection part.  
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The experiments show that the unit selection approach with integration of 

prosody generates speech with very high quality.  

Although the TTS system can generate good speech, we should mention some 

disadvantages. The main disadvantages include: 

• One of the advantages of application of the prosodic parameters is that 

boundary affects are well implemented in final speech. However, this is also 

sometimes a disadvantage in a real TTS system because the synthetic speech is 

sensitive to wrong break placements. When there are errors in break prediction, 

the wrong breaks are also truthfully implemented in the final speech. The 

errors in break prediction can be easily perceived. However, this problem can 

be alleviated by improving the models for break prediction. 

• Unit selection-based approach needs a large corpus to work. Although the 

general speech quality is high, there are chances that when there is no proper 

variant of a needed unit. In such a case, the quality of some part of the speech 

may be bad. This makes the system unstable in some rare cases.  The 

traditional signal processing approach, on the other hand, generates stable 

quality of speech, although the speech is machine-like. 

• In a real system, to cover more variants of units, the corpus has to be very 

large. The recording, labeling and manual verification work in building such a 

system makes this approach very expensive. In a working system, it needs 

large storage to hold the speech data. This makes the system too huge to work 

on computers with small memories. 

• Unlike signal processing based approach, it is not easy to adjust the pitch level, 

speaking rate of the synthetic speech in a pure unit selection based system. 

Such modifications are however very easy in signal processing based synthesis 

(such as Microsoft SAPI).  
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7.5 Summary 

In this chapter, we introduced the problems and approaches for evaluating synthetic 

speech. We designed evaluation approaches and a testing text. We evaluated the 

performance of the prosody parameters and the TTS system.  

In the evaluation of the speech quality, I developed an approach to select a testing 

text, which better covers the language in testing. I designed a syllable level speech 

listening test approach, which provides better distinction ability than sentence level 

testings.  

The experiments show that the use of the proposed parametric representation of 

prosody in unit selection based synthesis greatly improves the speech quality than 

using symbolic prosody information. The intelligibility and naturalness of the 

generated speech are much better than SAPI and the approach using symbolic prosody. 

The system can work in real-time applications.  
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Chapter 8  Conclusion 

The final chapter summarizes the research in the thesis, lists the contribution of the 

author, and gives directions for future work. 

8.1 Summary of the Research 

This research is an investigation of the problem of prosody generation for Mandarin 

Chinese text-to-speech system. I mainly work on two issues of prosody: (1) The 

prediction of prosodic phrase breaks, especially the prediction of prosodic word break. 

(2) The design, evaluation, and selection of prosodic parameters for unit selection 

based synthesis approach. 

This work uses a speech corpus read by a female professional speaker. During the 

evaluation of speech corpus, the problem of speech unit distribution of Chinese 

language is first investigated.  The speech corpus is then evaluated to find that it is 

suitable for this work. 

The problem of prosodic break is investigated. The factors that affect the 

performance of prosodic break are examined. Dependency models for break 

prediction are developed. The experiments show that the models produce better result 

than simple CART approaches. 

The approaches of designing, evaluating, and selecting prosody parameters are 

given. Some prosody parameters are defined to suit the nature of Chinese speech and 

the approach of unit selection. The parameters defined in this work are intended to 

overcome the major speech problems in speech synthesis. We highlight the problems 

of correctly representing perceptual prosody information (break and tone) in this work. 

The defined parameters are examined from the views of statistics and recognition. A 

clustering approach is used to remove redundancy in the prosody parameter definition. 

The relationship between parameters and features for prediction is investigated.  
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In the unit selection-based synthesis, the defined parametric prosody expression is 

applied in the cost function. The cost function is designed to suit the needs of Chinese 

language. Some experiments are designed to better evaluate the system. The 

experiments show that the use of parametric prosody representation significantly 

improves the quality of speech. 

8.2 Contributions 

The major contribution of this work is on the prosody application in unit selection 

based synthesis. I developed an approach to design and apply parametric 

representation of prosody suitable for unit selection-based synthesis for Chinese.  As 

far as I know, this is the first work that investigates the design of parametric 

representation of prosody in a unit selection-based synthesis (for Chinese or other 

languages). Using this approach, we can transmit information of perceptual effects 

(break and tone) from linguistic features to prosody parameters, and then implement 

these effects by unit selection. The intelligibility and the naturalness of speech are 

improved.  

Although this work is done through building up a complete text-to-speech system, 

the contribution of this work is not limited to a Chinese TTS System. Specifically, 

main contributions are in the following aspects: 

(1)  Methodology 

In this work, I proposed an approach to apply parametric prosody representation in a 

unit selection based synthesis process. This approach solved the following problems 

that encountered in unit selection based speech synthesis. (1) The approaches for 

evaluating prosodic parameters have been given. This helps to determine whether the 

parameters are sufficient to describe perceptual prosodic effects (e.g. tone and break). 

(2) The approach for determining final parameter set has been given. The approach 

can determine a parameter set, which is concise but sufficient. (3) Using a regression 

tree approach, the prosody model predict the prosodic parameter as well as the 

standard deviation of the class to which it belongs. This makes it possible to measure 

mismatch in unit selection based synthesis.   
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Generally, this work provides solutions for determining a set of prosodic 

parameters that are suitable for unit selection based synthesis. Meanwhile, the 

approach makes sure that the selected parameter set is sufficient but concise. The 

selected parameters describe not only the general prosody of speech but also the 

important perceptual prosodic effects. The proposed approach can be extended to 

other prosody properties of Chinese or other languages. 

In the work of break prediction, I evaluated my models for the prediction of 

prosodic word break and minor phrase break. I found some ways to make 

improvements in predictions. The models can generate better prediction result than 

generally used CART approaches.  

In the evaluation of speech corpus, I used some approaches to reduce the number 

of context dependent units. This solution reduces the number of context dependent 

units significantly. It makes building small speech inventory for text-to-speech 

synthesis possible.  

In the evaluation of speech quality, I developed an approach to select testing set, 

which better covers the language in testing. I designed syllable level speech listening 

test approach, which provides better distinction ability than sentence level testing.  

(2)  Knowledge of the Chinese Speech 

Because the work is done through building a Chinese TTS system, we achieved many 

findings during the building process. They are summarized as the following: 

The statistical analysis shows that it is infeasible or even impossible to completely 

cover variants of unit in Chinese language. However, the problem of unit coverage 

can be alleviated by reducing the space of the units. We conclude that the corpus 

should usually be designed to balance between the corpus size and coverage of speech 

phenomena.  

For the prosodic word prediction, we understand that the length of words and part 

of speech are important features for Chinese prosodic word break prediction. There is 
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a dependency between breaks, which helps to improve the accuracy of prosodic break 

prediction.  

For the prosody description for Chinese, I discovered that energy contour  (or its 

equivalent) help describe boundary units. I have discovered the relationship between 

prosody parameters and the features for prediction. This result helps understand the 

prosody parameters and features better. This is useful when building prosody models 

of different sizes, in which prosody model can be simplified by overlooking 

unimportant factors. 

During the evaluation, a testing text is selected. It shows that it is possible to 

design a relative small testing set to test the speech of this language.   

(3)  Application 

A complete text-to-speech system is obtained from this research. Therefore, the thesis 

can be used as a guide to build a practical text-to-speech system. 

In the thesis, the approaches to predict prosodic word breaks and minor phrase 

breaks have been given. The features have been tested. The algorithms are also 

provided. 

In the prosody parameter prediction, I defined a set of features for prediction. 

Through experiments, I determined a set of parameters that can be directly used in 

building prosody model for unit selection based speech synthesis approach.  

In the unit selection based synthesis approach, the details of definition of cost 

function are provided. All these can be directly applied in a real Chinese TTS system. 

8.3 Future Work 

In the prosodic word prediction, wrong segmentation of words and wrong tagging part 

of speech may affect the accuracy of prediction result. Therefore, the problem of 

prosodic word may need to be considered with the problems of Chinese word 

segmentation. Some problems may be resolved at the stage of word segmentation. 
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In construction of a speech corpus, there are also some problems to be resolved. 

The labeling of speech corpus is a labor-intensive task. In this work, I used an 

automatic approach followed by manual checking. This manual labeling work is very 

slow.  It is expected to have an approach to automatically make a good labeling 

without manual check. 

In a labeled speech corpus, some units may not be good enough. For example, the 

sounds of some speech are not clear; some units cannot clearly cut out from its 

neighbors. How to eliminate these units from corpus needs more investigation. In this 

research, we have proposed approaches for recognizing tone and breaks. The 

recognition techniques could be used for inventory pruning. 

The weight determination for the cost function in unit selection is important. 

However, there is no good method to resolve this problem now. The problem should 

be further investigated. 
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Appendix 

A. Part-of–speech Tag Set of Peking (Beijing) University 

Tag Chinese Name Translation 
Ag 形容词性语素 Adjective morpheme 
a 形容词 Adjective 

ad 副形词(直接作状语的形容词) Adjective used as adverbial modifier 
an 名形词(具有名词功能的形容词) Active with noun function 
b 区别词 Discriminate 
c 连词 Conjunction 
d 副词 Adverb 

Dg 副语素 Adverb morpheme 
e 叹词 Exclamation 
f 方位词 Noun of locality 
g 语素(大多能作为合成词的词根) Morpheme 
h 前接成分 Prefix 
i 成语 Idiom 
j 简称略语 Abbreviation 
k 后接成分 Postfix 
l 习用语 Idiom 
m 数词 Numeric 
Ng 名语素 Noun morpheme 
n 名词 Noun 
nr 人名 Personal name 
ns 地名 Place name 
nt 机构团体 Name of organ and party 
nz 其他专名 Other proper noun 
o 拟声词 Onomatopoeia 
p 介词 Prepositional 
q 量词 Quantity 
r 代词 Pronoun 
s     处所词 Space 

Tg 时语素(时间词性语素) Time morpheme 
t 时间词 Noun of time 
u 助词 Auxiliary 

Vg 动语素(动词性语素) Verb morpheme 
vd 副动词(直接作状语的动词) Adverb verb 
vn 名动词(具有名词功能的动词) Verb Noun 
w 标点符号 Punctuation 
x 非语素字(符号) Symbol 
y 语气词 Modal 
z 状态词 Adjective of state 
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B. Features for Unit in Speech Inventory  

 

Feature Description Type Range Remarks 

CurrInit Initial of the syllable  Category 1-22  

CurrFinal Final of the syllable Category 1-38  

CurrTone Tone of the syllable Category 1-5  

BreakLeft Break type before the syllable Category 0-4  

BreakRight Break type after the syllable Category 0-4  

PrevInit Initial of the previous syllable Category 0-22 0 for no previous 
syllable 

PrevFinal Final of the previous syllable Category 0-38 0 for no previous 
syllable 

PrevTone Tone of the previous syllable Category 0-5 0 for no previous 
syllable 

NextInit Initial of the next syllable Category 0-22 0 for no next 
syllable 

NextFinal Final of the next syllable Category 0-38 0 for no next 
syllable 

NextTone Tone of the next syllable Category 0-5 0 for no next 
syllable 

Duration Duration of the syllable float float  

EnergyRMS Energy of the syllable float float  

PitchMean Pitch mean of the syllable float float  

PitchStart Pitch value of the start point of 
the voiced part 

float float  

PitchMiddle Pitch value of the middle point 
of the voiced part 

float float  

PitchEnd Pitch value of the end point of 
the voiced part 

float float  

PitchRange Pitch range of the syllable. float float  

EnergyHalfPoint Percentage position of ½ energy 
dividing. 

float [0,1]  

EnergyStart RMS Energy of start point of 
syllable. 

float float  

EnergyEnd RMS Energy of end point of 
syllable. 

float float  
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C. Sentences for Listening Testing 

1. 超负荷的工作累倒了王柏林 

2. 承包或租赁转让金收不回来 

3. 反映了周恩来作为开国总理 

4. 每年节约经费二百余万元 

5. 那么妇女状况也难以改善 

6. 敲击电脑键盘声不绝于耳 

7. 陆军参谋长和外长进行磋商 

8. 在天安门城楼的灯笼里 

9. 中国和美国由于文化原因 

10. 此案案发五年多的时间 

11. 凡单位一次购车五辆以上的 

12. 就要写到东北解放战争 

13. 一个人独立完成证券的交易 

14. 民族医药业应采取积极对策 

15. 一位日本人突然找到我家 

16. 这意味着用于满足人们学习 

17. 坐落在南京路西藏路口 

18. 变要我服务为我要服务 

19. 并为其注入实质内容 

20. 还为人们提供了高倍望远镜 

21. 荒漠丛林中奋勇跋涉的脚步 

22. 加快内引外联的步伐 

23. 教育科学文化卫生委员会 

24. 平均每月为七百三十六元 

25. 葡萄牙经过数年的艰苦努力 

26. 三年两载可能还成不了形 

27. 她拉着我大步进了楼又说道 

28. 放映室的灯光亮了 

29. 王秀英摄于坦桑尼亚 

30. 才能凝成这泥土的精华 

31. 单等对方安排职工来听课 

32. 冷冻货源源送往港澳市场 

33. 熊熊烈焰映红了大半个天空 

34. 音乐剧要求演员歌舞戏全能 

35. 澳门增加委员名额问题 

36. 关于堡贸易政策问题 

37. 收费标准低于航空包裹资费 

38. 营造有利于开展革命传统 

39. 改革前后的场景接续起来 

40. 工商部门优先办理营业执照 

41. 实践和胜利的二十年 

42. 是心胸博大有力量的国家 

43. 收拾完卷宗刚要回家 

44. 维护文明环境需要众人齐努力 

45. 伟大的朋友影片摄成 

46. 专门用于奖励热爱新闻事业 

47. 北京西藏大厦一片欢歌笑语 

48. 可溶性纤维就像小海绵一样 
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49. 马路两边顾客摩肩接踵 

50. 门诊病人两天不能看病用药 

51. 四川射洪县农村卫生见闻 

52. 她因腿伤挥泪告别舞台后 

53. 一些问题也随之暴露出来 

54. 增设了灯光音乐喷泉 

55. 创下我国农业最高劳动生产率 

56. 给了我生命的欢悦与责任 

57. 精神损失费若干了事 

58. 乌克兰前外交部长乌多文科 

59. 与国家骨干信息网络联通 

60. 原子能部长米哈伊洛夫 

61. 在人民日报实现了激光照排 

62. 赞扬此次外交努力的成功 

63. 这次轮训邀请了国防大学 

64. 二月一日那天恰是正月初五 

65. 当热气腾腾的饺子端上桌时 

66. 老人还特意拿出节目单 

67. 目前他已八十九岁高龄 

68. 娘的一抹微笑一句夸奖 

69. 使文明特色家庭成批涌现 

70. 望着那依山傍水一望无边 

71. 为打击仿冒美元纸币 

72. 也不超越于客观实际 

73. 帮助农民建设文化园地 

74. 朝阳区团委为下岗职工献爱心 

75. 大概还影响了若干文艺作品 

76. 但罗马尼亚人似乎更老到 

77. 但没有发生人员伤亡 

78. 九十年代小说的现实主义精神 

79. 她任中共湖南省工委秘书长 

80. 因为有个主语更加明确一些 

81. 又兼顾了与现行利率政策 

82. 增强纳税人自觉纳税意识 

83. 不要忘了给某号猪减料 

84. 长野冬奥会闭幕之日 

85. 共引种堡植物五百多种 

86. 克林顿向美华人华侨贺春节 

87. 李仍光舍身救人获金英勇勋章 

88. 那旅游业还能蓬勃发展吗 

89. 屈原闯荡天下尔后来归 

90. 它们呆的温泉冒着热气 

91. 埃斯特拉达已稳操胜券 

92. 把自己的命运融入国家改革 

93. 部队官兵每扫清一块雷区 

94. 牡丹江市百万亩荒山披绿装 

95. 任务指标虽然年年完成 

96. 这样做符合美中两国利益 

97. 作出了大力振兴电子工业 

98. 六月六日是国际爱眼日 

99. 可线条却像花岗石划过的 

100. 来纪念馆参观有两个原因 
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D. Text Example for Intelligibility Testing 

厚旺船皑额 

隙用法裹好 

阿总挝均韦 

肚解缘饮游 

茵粮场德电 

妆神冬疆固 

蹈头舅祁今 

剪淹世尚亮 

类趾要这墙 

商表北次演 

磁拉带况中 

化除积软别 

没耳题乡回 

辱咳站航骗 

索藕方触扳 

暗染刃亡发 

匙四习雍克 

揩稳晴自狱 

碌予洼策订 

浓阻蚁阶官 

龋径嫁南林 

腕样本摄你 

映达费雅蚀 

姿秆哗蜘谣 

矫版鲜辫大 

谦诬安笑火 

丫约海曾瑟 

编兜玩捌口 

淆瘦莹恩人 

号拖工禾速 

说但浇私五 

伟告李瘟匀 

务悸哪经柞 

有老少阳一 

走破鄙面才 

仅添孩星当 

甥许门玛革 

艳保抬牌蘑 

种忽象我备 

新抱灶远在 

白日女最过 

狠隋威常囚 

落哀优年外 

让国点且印 

颂爵古收更 

管吟借爷睦 

九悼两拄岂 

使见颜补真 

舀戚致高烽 

诸学村急充 

博者富螟多 

祸此辉萍全 

民每三体水 

盏褥靶漳枉 

饭塌二包泳 

宏羡渴妨地 

析六锣韵构 

车趣问竖桔 

琉滓需娃绅 

青叫铲义亚 

彝镰劣个职 

采前倪肩幅 

珊同诗条楔 

户崖腰纷初 

快政并划而 

下坛打梅和 

爱小特儒柯 

哈怎幸吃手 

躯傲扮队然 

弯饿幢婉死 

樱雀无影蚊 

等喂越励俞 

篱佑规钠卒 

拿烬距通景 

迄内蔬狰能 

从殃夜币桥 

享肿哥泰盛 

崇秽佳销仰 

看来非择舟 

律摆胡熬干 
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