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Abstract 

 

 

 
In this thesis, we examine the possibility of determining whether a computer user is 
engaged in reading material on the computer monitor, or not, using image sequences 
from an ordinary camera.  The challenges in determining whether reading is taking 
place is in differentiating this from the different activities that the user can perform at 
the computer, and being tolerant to user differences, different types of text and how 
they are displayed.  
 

We have proposed an algorithm based on estimating gaze directions, achieving an 
average accuracy of 84.1% on 10 people.  Changes in the gaze directions over a 
specified interval during reading are modelled using a set of Finite State Machines 
(FSMs).  Gaze directions estimated over a finite time interval (window) are checked 
with respect to these FSMs to determine whether the interval represents reading.  An 
aggregate of these determinations over successive time windows is finally used to 
infer whether reading is taking place.   
 

 

 

Keywords:  Reading detection, gaze tracking, user interest tracking, finite state 

machines, attentive systems, blink detection. 
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Summary 

 

There has been an increasing interest in the fields of Human Computer Interfaces 

(HCI), wearable computing and affective computing.  The emphasis is on building 

intelligent computers that are not only able to perform traditional computing but also 

capable of interacting with their users.  In order for computers to be more effective in 

interacting with their users, they (the computers) would need to assess what the users 

are currently doing, anticipate their needs, gauge how are they feeling – frustrated, 

bored and so on.   

 

In this thesis, we examine the possibility of determining whether a computer user is 

engaged in reading material on the computer monitor, or not, using image sequences 

from an ordinary camera.  The challenges in determining whether reading is taking 

place is in differentiating this from the different activities that the user can perform at 

the computer, and being tolerant to user differences (e.g. language skills and age), 

different types of text and how they are displayed.  

 

We have proposed an algorithm to determine whether the computer user is reading, 

achieving an average accuracy of 84.1% on 10 people.  In the experiment, non-reading 

activities, such as playing computer games and watching video clips, which require 

different types of attention were included to test our algorithm.   

 



xi 

The algorithm is based on estimating gaze directions.  In order to obtain gaze 

direction, firstly, face localization is carried out by detecting skin regions and then 

detecting faces in them.  Next, eye localization is performed on the detected face.  

Two methods are employed independently.  The first method uses colour information 

of the iris and sclera while the second method relies on blink detection.  When blinks 

are available, the second method is used, otherwise, the first method is employed.  The 

method of using blinks is preferred over using colour information as it provides more 

accurate localisation of the eyes.  Once the eyes are localized, they are tracked.  One 

localized or tracked eye in each frame is then used to determine the person’s gaze 

direction.  The gaze information is then used for reading detection.  Changes in the 

gaze directions over a specified interval during reading are modelled using a set of 

Finite State Machines (FSMs).  Gaze directions estimated over a finite time interval 

(window) are checked with respect to these FSMs to determine whether the interval 

represents reading.  An aggregate of these determinations over successive time 

windows is finally used to infer whether reading is taking place.
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Chapter 1 

Introduction 

 

 

 

1.1 Objective 

 

The aim of the project is to differentiate whether the user is involved in reading or 

other activities.  The user will be located in front of a computer monitor. 

 

 

1.2 Utility of and Challenges in reading detection 

 

As computer technology advances, we are moving on to building computers that are 

more interactive and personal.  In order for computers to be more effective in 

interacting with their users, they (the computers) would need to assess what the users 

are currently doing, anticipate their needs, gauge how are they feeling – frustrated, 

bored and so on.  Coupled with cheaper and more powerful video cameras, there has 

been a growing interest in building such computers or systems as can be seen in the 

increase of interest in the fields of Human Computer Interfaces (HCI), wearable 
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computing, affective computing and many others.  One possible use is in HCI, when 

creating adaptive peripheral displays, it would be useful to know whether the user is 

reading [Maglio2000].  When the user is reading, the display would be as quiet and 

non-disturbing as possible.   

 

Before moving on, perhaps it would be good to establish common grounds.  To 

different people, reading could take on different meaning.  So, what is reading? True 

reading requires integrating the ability to break the code and the ability to understand 

the meaning intended by the writer.  In addition, the reader must maintain interaction 

with personal background (schema), the context of the text, and the author’s intention.   

 

As we can see, reading is a rather complicated process.  It only seems simple because 

it has become a habitual activity.  Indeed, reading detection and reading speed 

estimation present a few challenges.  First and foremost, the direct input, gaze 

direction, needs to be obtained and the gaze directions need to be analysed to 

determine whether reading has taken place.  This analysis is complicated by the 

numerous activities that the user can perform while at the computer.  Some of the 

activities include scanning (for information), watching a video clip, playing games and 

so on.  In addition, several factors such as individual differences (e.g. language skills, 

intelligence, age, etc), text difficulty, differences in display such as font face, font size, 

have all to be taken into consideration.  All these increase the difficulty of reading 

detection. 
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1.3 Design Overview 

 

During reading, the eye gaze makes periodic movements from left to right and back.  

These periodic changes in the gaze direction are modeled and used for reading 

detection.  In order to determine the gaze direction, the eyes have to be detected and 

localized.  Once the eyes are localized, they are tracked in subsequent frames.  To 

reduce search times, frontal faces are first detected and localized.   

 

The algorithm flow is shown in Figure 1.1.  The input to the application is a sequence 

of (near) frontal face images.  For the first image, face detection is performed on the 

whole image to locate the position of a face, assuming that there is only one user.  

Once the face is located, detection of the eyes is carried out in the upper half of the 

face.  The detected eyes are fit to a geometric model.  If eye detection is successful, 

eye tracking is implemented on subsequent frames.  The tracked eyes are also fit to the 

geometric model to confirm the validity of the tracking.  If the tracked eyes fit the 

model, the gaze direction is estimated.  If not, the whole process of face and eyes 

detection has to be repeated on the current frame. 

 

The gaze direction sequence estimated from each frame is input to the reading 

detection module, which uses data from a sliding window of 6 seconds to detect 

whether reading is taking place in that interval.  The sliding window is offset by 1 

second intervals to determine reading.  The results over these 6 sliding windows are 

aggregated to make a smoothed decision. 
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The system is based on the assumption that there is only one person or one face in the 

image.  During recording, the subjects were told to make themselves comfortable and 

read the material on the screen as they normally would.  However, the subjects were 

requested not to rub their eyes or cover their face regions with their hands, or move 

their heads so much that they are out of the video capture area.  Care was taken to 

ensure that the subjects were not distracted from their reading. 

 

Sequence of frontal face images

Eyes Localisation

Track Eyes
on next frontal face image

Face Localisation

Does not fit model

Determine
Gaze Direction

Determine Reading

Fit to Eye Model

Fits model

 

Figure 1.1: System Overview 
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1.4 Literature survey 

 

Little research has been carried out in the field of Pattern Recognition for reading 

detection to date.  However, observations on a reader’s eye movements were made as 

far back as 1879 by Professor Emile Javal of the University of Paris.  In the decades 

from the 1930s to the late '60s, reading research was dominated by views that put little 

focus on how the eyes functioned in reading.  Most of the research in the field of 

Psychology in the last few decades (1980s and '90s) focused more on studying eye 

movements within a set of assumptions arising from that view of the reading process.  

Summaries of the findings of eye-movement research are now being used to argue for 

a word-recognition, as opposed to a meaning-construction, view of reading (e.g., 

[Adams1995]). 

 

Though research on eye movements during reading is prevalent, apparently, the only 

attempt to detect whether a user is reading or engaged in any other possible user 

activities at the computer was carried out by Campbell, et. al. [Campbell2001].  They 

used infra-red cameras to track eye movements.  Using pooled data of these 

movements, they examined changes in them for determining whether reading or other 

activities such as scanning is taking place.  Their experiments showed that their 

algorithm is robust to noise, individual differences and variations in text difficulty.  In 

addition, they claimed that the pooled evidence algorithm they used has a high (nearly 

100%) accuracy rate.  However, the experiments were carried out on only 4 or 5 

subjects who were constrained to rest their heads on a chin rest. 
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In our works (Figure 1.1), the first step to reading detection involves face localisation.  

A common method employed in the process of face localisation is skin colour 

segmentation.   Skin colour segmentation is advantageous in that it is fast and 

orientation invariant.  Examples of systems that make use of skin colour detection are 

[Menser2000], [Jones1999] and [Yang1997].  In this project, skin colour segmentation 

is carried out using the method proposed in [Yang1997]. 

 

Skin colour segmentation alone is not sufficient for determining the presence of a face.  

It is helpful in quickly finding possible face regions (where the skin is detected).  

Several face detectors proposed in the literature could be used to determine face 

positions in the skin regions.   Yang and Huang [Yang1994] presented a hierarchical 

knowledge-based system for face detection in complex background.  However, the 

rules for discrimination are not necessarily optimal since their structure is fixed 

beforehand.  In [Moghaddam1995], Moghaddam and Pentland employed maximum 

likelihood estimation on feature vectors obtained from eigenspace decomposition to 

detect faces.  However, principal component analysis does not maximise 

discrimination.  Sung and Poggio [Sung1994] and Rowley et. al. [Rowley1996] 

reported systems which utilises neural networks which claim very good performance 

but these systems are extremely computational expensive in both the training and 

testing procedures.  The classifier used for face detection in this project is based on 

[Colmenarez1997] which reported comparable performance to neural network based 

face detectors in [Sung1994] and [Rowley1996] but it is much less computationally 

expensive.  
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The next step of the design involves eye localisation.  Several methods have been 

proposed, for example in [Fang1994], a novel filter is used for eye localisation.  The 

basic idea is to use the relative high horizontal contrast density determination, facial 

geometry reasoning, and eye position determination.  Another method [Benn1997] 

proposes to use a gradient decomposed Hough Transform to embody the natural 

concentricity of the eye region in a peak reinforcement scheme.  In this project, eye 

localisation is performed by combining 2 methods.  One uses colour information 

[Betke2000] and the other uses motion during a blink.  Eyes are more accurately 

localized using involuntary blink information as compared to using colour information 

which is more varied across different races.  However, eye localization using colour 

information is useful especially in the absence of blinks because it can be carried out 

any time.  The literature contains a few methods that have been devised for blink 

detection.  In [Yano1999], frame differencing is used for blink detection.  Al-Qayedi 

and Clark [Qayedi2000] track features about the eyes and infer blinks through 

detection of changes in the eye shape.  Smith et al. [Smith2000] try to differentiate 

between occlusion of the eyes (due to rotation of the head) and blinking.  The subject’s 

sclera is detected using intensity information to indicate whether the eyes are open or 

closed (i.e., a blink is occurring).  Black et. al. [Black1998] detect blink using optical 

flow but the system restricts motion of the subject and needs “near frontal” views in 

order to be effective. Grauman, et al. [Grauman2001] report a success rate of 96.5% in 

almost real-time.  Here, frame differencing is initially performed to obtain motion 

regions.  Then a pre-trained “open-eye” template is selected for the computation of the 

Mahalanobis distance measure which is used to retain the best pair of blobs as 

candidates for eyes. The eyes are tracked and correlation scores between the actual eye 

and the corresponding “closed-eye” template are used to detect blinks.  The blink 
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detection method used in this project combines the use of temporal differencing and 

optical flow computation based on [Black1996].  Temporal differencing allows us to 

quickly identify motion regions and optical flow computation is used to further 

ascertain that the motion is due to the closing (downwards) and opening (upwards) of 

the eyelids during a blink in localised regions.  This speeds up the computations. 

 

When eyes are localised, they are tracked.  Several trackers are available in the 

literature, e.g. Kalman Filter [Rosales1998] and CONDENSATION [Isard1996].  In 

this project, we have chosen to use the Kanade-Lucas-Tomasi (KLT) tracker based on 

[Tomasi1991], [Lucas1981] and [Birchfield1996] as it is found to serve our needs and 

easily implemented as source codes are made available in the public domain by Stan 

Birchfield. 

 

As the eyes are localised or tracked, gaze estimation is performed.  In the literature, 

infra-red cameras are often used to obtain very accurate gaze estimation.  However, we 

are interested in methods that used images captured by ordinary video cameras.  Some 

of the approaches include neural networks [Schiele1995], [Varchmin1997] and 

[Baluja1993], morphable models [Rikert1998], and self-organizing gray-scale units 

[Betke1999].  Gee and  Cipolla [Gee1994] explore the underlying geometric 

constraints.  In this project, gaze is estimated using neural network based methods as 

proposed in [Baluja1993] and [Varchmin1997]. 

 

Our aim is to create a system to demonstrate reading detection using ordinary video 

cameras.  The system should be as non-intrusive as possible so that the users are not 
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distracted during their activities.  In addition, the system should be robust to individual 

differences as well as the difficulty of contents of text. 

 

 

1.5 Experimental Setup 

  

Figure 1.2 shows the experimental setup.  The camera is placed between the subject 

and monitor, tilted up at an angle.  The monitor is raised to prevent the camera from 

occluding it. 

monitor

video camera

subject

 

Figure 1.2: Experimental Setup 
 

 

The sequences were captured using a Panasonic 3 CCD digital video camera at a 

resolution of 768x576 and at a frame rate of 25 frames/sec. They were transferred to a 

computer via firewire interface and then converted to portable pixelmap format for 

processing.  The conversion was done using a video editing software, VideoMach.  

Unless otherwise stated, the system is run on a Pentium 4, 1.7GHz, 256 MB RAM 

machine. 
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1.6 Organisation of Thesis 

 

The thesis is organised into 6 chapters.  Face localization, eye localization and 

tracking, gaze direction estimation are discussed in detail, with results for each 

individual module, in Chapters 2, 3 and 4 respectively.  In Chapter 5, the algorithm for 

reading detection is discussed.  Results for the entire system are also presented in the 

same chapter.  Possible future work is discussed and the thesis is concluded in Chapter 

6. 
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Chapter 2 

Face Localization 

 

 

 

2.1 Background 

 

This chapter discusses how a face in the scene is detected.  Automatic detection of the 

human face forms an essential ingredient in the analysis of human behaviour.  Face 

detection is a challenging problem as there are numerous variations which have to be 

taken into consideration.  They include people with different skin colour, differences 

in illumination, complexity of the scene background, presence of glasses and so on. 

 

In the next section, we discuss the theory behind the method of classification used for 

face detection before moving on to how the data is prepared to train the classifier.  

This chapter will be concluded with discussion on the results obtained.   

 

2.2 Algorithm for Face Localisation 

 

In this project, faces are localized in 2 stages.  In the first stage, skin colour 

segmentation is performed on the whole image to quickly identify possible locations 
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of faces.  More details on skin colour segmentation are given in Section 2.2.1.  “Skin 

blobs” are then passed through a classifier built to identify faces.  The classifier is 

discussed in depth in Section 2.2.2.   

 

2.2.1 Skin Colour Segmentation 

 

Skin colour segmentation provides an efficient means of obtaining possible face 

region in an image.  The algorithm used for skin colour segmentation in this project is 

described in Yang, et. al. [Yang1997].   A normalised chromatic colour space, 

viz.
BGR

R
++

 and 
BGR

G
++

, is used as it is found that skin colours of different 

people are less variant in this space.  Also Yang, et al. assert that in the normalised 

chromatic colour space, a bivariate normal distribution can be used to characterise skin 

colour distributions.  Thus, pixels with normalised chromatic colours that fall within 

the bivariate normal distribution will be classified as skin pixel.  

 

 

2.2.2  Information-Based Maximum Discrimination Classifier for 

Face Detection 

 

The classifier for face detection maximises the discrimination between positive (faces) 

and negative (non-faces) examples in a training set [Colmenarez1997].  A Markov 

process is used to model the face and non-face patterns and estimate their probability 

distributions using training data.  Kullback relative information or Kullback 
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divergence is used to measure the “distance” between the two probability distribution 

models.  The Markov process that optimizes the information-based discrimination 

between face model and non-face model or the process that achieves the least 

“distance” between the models is identified.  The detection process first computes the 

likelihood ratio of an observation using the probability models obtained from the 

learning process.  The likelihood is then compared to a fixed threshold for determining 

whether it is a face.   

 

Let Xn be a random process, and nXP  and nXM  be two probability functions for Xn 

describing the face and non-face classes, respectively.   The divergence of P with 

respect to M is then defined as: 

 

 ∑=
n n

n

n

X X

X
XMP M

P
PH ln||  (4.1) 

 

Let S = {si ∈ [1,n], i = 1, 2, … ,n} be a list of indices such that si ≠ sj for i ≠ j.  If Xn 

can be modelled as a kth order Markov process, then 

 

 P(XSn | XS1, … , XSn-1) = P(XSn | XSn-k, … , XSn-1), (4.2) 

 

and the divergence of P with respect to M is obtained as: 

 

( )( ) ( ) ( )∑∑
+==

−−−
+=

n

ki
SSSMP

k

i
SSSMP

n
MP ikiiii

XXXHXXXHSXH
1

||
1

|||| 111
,...,||,...,||  (4.3) 
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We want to find an optimal set of indices S* such that 

 

 ( )( ) ( )( ) SSXHSXH n
MP

n
MP ∀≥ |||| *  (4.4) 

 

i.e., the set that maximises the discrimination (Kullback divergence) between the face 

and non-face classes. 

 

Once S* is found, the likelihood ratio given in equation (4.5) is the one that optimizes 

the correct-answer-false-alarm trade off of the training set and may be expected to 

work well with other data sets. 

 

 ( )
( ))(

)())(( *

*
*

SXM
SXPSXL n

n
n =  (4.5) 

 

In order to find S* in equation (4.4), we only consider a 1st order Markov process, and 

the greedy algorithm of Kruskal [Cormen1990] is used to obtain sub-optimal but good 

results.  In simplifying equation (4.3) for a 1st order Markov process, we need to find 

the divergence of the two probability density functions for individual pixels and pairs 

of pixels.  For each pair of pixels Xi and Xj, the divergence of the two probability 

density functions is computed as follows: 

 

 ( ) ( )
( )∑=

2 |
|

ln,)||(
A ji

ji
jiji XXM

XXP
XXPXXH  (4.6) 

where ||A|| is the number of possible values that the pixels can take (the images are 

pre-processed to limit the possible gray values to a small number). 
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For each pixel, H(Xi) is computed as follows:   

 

 ( ) ( )
( )∑=

2

ln)(
A i

i
ii XM

XPXPXH  (4.7) 

 

Finally, using equations (4.6) and (4.7), the indices S*  (S1, S2, ..., Sn) which maximise 

the total divergence of the Markov process is found using equation (4.8). 

 

 ( )( ) ( ) ( )∑
=

−
+=

n

i
ssS

n
ii

XXHXHSXH
2

11
||  (4.8) 

 

For each pair of pixels in the ensemble of images in the training set, a joint histogram 

is used to estimate the probability density function for both classes, faces and non-

faces. 

 

2.3 Data Preparation 

 

For skin colour segmentation, skin colour pixels from training images are used for the 

computation of the parameters, viz. mean and covariance matrix, of the bivariate 

normal distribution.  An example of detected skin colour is shown in Figure 2.1. 

 

For training the face detector based on the information-based maximum discrimination 

classifier, faces are extracted manually from images captured using a digital camera.  
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The outer eye corners are used as normalizing references, to resample the extracted 

faces to a chosen window size, 11x11. 

 

 

(a) 

 

(b) 

Figure 2.1: Skin colour detection. (a) Original image, (b) Detected skin in white. 
 

In order to increase the size of the training set, each of these images (before being 

down-sampled to 11x11) is rotated in-plane with angles of ±6°, as shown in Figure 2.2 
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(a), and rescaled using scales of 0.9 and 0.81, as shown in Figure 2.2 (b), to generate 

another 9 training images.  Histogram equalization is performed on each training 

image for lighting correction and the image is quantised into 4 levels as shown in 

Figure 2.3.  Four levels of pixel quantisation are chosen because it gives reasonably 

good performance while not being too computationally expensive.    

 

Similar processing is also performed on non-face images.  Non-face images are 

extracted from natural scenes such as satellite images.  Some examples are shown in 

Figure 2.4.  In order to increase the discriminatory power of the classifier, images are 

also extracted which contain part of the face.   

 

 

2.4 Implementation 

 

Skin colour segmentation is first performed on the acquired image of size 768x576 to 

obtain skin blobs.  Assuming that there is only one face in the image, the biggest blob 

is passed to the classifier for face detection.   

 

To detect faces of different sizes, a multi-scale search has to be carried out.  At each 

scale, a window of size 11x11 is translated over the whole image and a likelihood 

value is computed ( see equation (4.5) ) for each window location and compared with 

a threshold to determine whether a face is present.  In our application context, 

observed face sizes of faces of interest range from 140x135 to 340x340, and thus, 4 

scales within this range are used to speed up the detection process. 
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(a) 

   

(b) 

 

Figure 2.2: Some samples of face training images. (a) Images are taken from a 
person looking at 9 different spots: centre, 4 corners and the 4 centres of the sides of 
the monitor, (b) Scales of 1.0, 0.9 and 0.81 are used to get different face sizes. 
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(a)      

(b)      

(c)      

 

Figure 2.3: Samples of pre-processed training images.  (a) Original 11x11 images, (b) 
Corresponding images, histogram equalized, (c) Images in (b) quantised to 4 levels. 
 

 

     

(a) 

     

(b) 

 

Figure 2.4: Samples of negative training images, histogram equalised and quantised to 4 
levels.  (a) Parts of face,  (b) Other images, such as satellite images. 
 

 

2.4.1 Selecting the threshold to determine presence of a face 

 

The likelihood values in equation (4.5) are obtained for all the samples, with positive 

samples differentiated from negative ones.  The statistics of the likelihood values are 

given in Table 2.1.  Graphs of false alarm rate and missed detection rate are shown in 

Figure 2.5.  From Figure 2.5, a threshold of 3.3 is selected to have a low false alarm 

rate and a low missed detection rate. 
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Table 2.1 Statistics of the likelihood values 

 Mean Standard Deviation 

Face 3.87 0.72 

Non-face 2.06 1.02 
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Figure 2.5: Graphs of false alarm rate and missed detection rate. 
 

 

2.4.2 Bootstrapping 

 

For classifying faces from non-faces, it is difficult to get a good representation of the 

non-face class as it would include all other images that are not faces.  Hence, 

bootstrapping is used during the training phase, where false positives obtained are 
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added to the negative example set at the end of the training round and the classifier is 

re-trained.  This process is repeated a few times to increase the discriminatory power 

of the classifier. 

 

 

2.4.3 Determining the final location of the face 

 

As a multi-scale search is performed to detect faces of different sizes at different 

positions, it is highly possible that we will get multiple detections around a face, from 

which the final position of the face needs to be determined.  To resolve this, the mean 

location of all the centres of the face candidates is first obtained.  Face candidates 

whose centres are beyond a certain acceptable distance from the mean centre location 

will be rejected.  The remaining face candidates is then used to mark the final location, 

having top left-hand corner coordinates (xUL,yUL) and bottom right-hand corner (xBR, 

yBR), of the detected face as follows: 

xUL = min(xi), i∈ remaining face candidates 

yUL = min(yi), i∈ remaining face candidates 

xBR = max(xi), i∈ remaining face candidates 

yBR = max(yi), i∈ remaining face candidates 

 

2.5 Results and Discussion 

 

We computed the likelihood ratio of the training images using the probability models 

obtained from the learning process, and compared it to a fixed threshold to make the 
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decision.  The threshold is set at 4 in order to have a high detection rate while keeping 

false alarm rate reasonably low.  

 

A candidate obtained from the multi-resolution search is considered a correct detection 

if it falls in the scale range considered, and the error in the position of the face (with 

respect to the ground truth) is less than 10 percent of the size of the face. All other 

candidates are marked as false positives.  The classifier was tested on 15 people, with 

9 poses each.  In this experiment, seven scales were used to test the robustness of the 

classifier.  The results are tabulated in Table 2.2.  A high detection rate of 97.8% is 

achieved with a corresponding low false alarm rate of 0.28%.  In the implementation 

of the system, to speed up the detection process, only 4 different scales are used as the 

face sizes are expected to range from about 140x135 to 340x340.  Figure 2.6 shows an 

example of how the face candidates are combined to give a final localization of the 

face.  Skin detection module takes about 0.7 seconds to process a 768x576 image.  

Using 4 scales, the amount of time required to process a 768x576 image is about 11.4 

seconds.  

 

A false alarm rate of 0.28% is higher than that reported in the literature, e.g. 

[Colmenarez1997] which reported about 0.048% on the database it tested.  However, 

the reported false alarm rate is reasonably low and does not pose a major problem for 

detecting faces in our project. 
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Figure 2.6: Combining face candidates for face localization.  The 3 initial face 
candidates are bounded by blue boxes.  The final face localization is bounded using 
red box as shown. 

 

Table 2.2 Classification results for face detection. 
 

Detected Faces Detection Rate False Faces/Total  

Windows Tested 

False Alarm Rate 

132/135 97.8% 596/216126 0.28% 

 

 

2.6  Conclusion 

 

In conclusion, skin colour detection gives reasonably smaller search areas for face 

detection.   Skin detection takes about 0.7 seconds to process a 768x576 image.  The 

visual learning technique, Information-Based Maximum Discrimination, employed for 

face detection is able to optimize the discrimination between faces and non-faces.  To 
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further speed up the detection process, only 4 different scales are used as the face sizes 

are expected to range from about 140x135 to 340x340.  The amount of time required 

to process a 768x576 image is about 11.4 seconds.  The face detector has a detection 

rate of 97.8% and a false positive alarm rate of 0.28%. 
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Chapter 3 

Eye Localization and Tracking 

 

 

 

3.1 Introduction 

 

Eye localization is useful in applications such as normalization of the face, gaze-based 

human-computer interface, and security systems using the iris for identification.  Eye 

localization is implemented by combining 2 independent methods.  The first uses 

colour information of the irises and sclera of the eyes while the second uses motion 

associated with eye blinking.  Eye localization is discussed in Section 3.2.   Once the 

eyes are localised, they are tracked using a tracking mechanism discussed in Section 

3.3.  The tracker is initialised on the areas of the eyes, i.e., feature points around the 

eyes are chosen and then subsequently tracked.  If more than 20% of these points are 

lost during tracking, the tracker is disabled and a check is made to determine whether 

the points are lost due to sudden eye-ball movement or other movements.  First, 

motion analysis, which includes frame differencing, thresholding and connected 

component analysis, is performed to obtain motion blobs.  Unsuitable blobs are 

removed (refer to Section 3.4 for suitability of blobs for eyes) and optical flow 
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computation is carried out.  From optical flow analysis, if the motion is due to eye-ball 

movement, the tracker is reinitialised and tracking resumes.  If it is due to other 

movements, the whole process of eye localization is repeated.  As a confirmatory step, 

the localised and tracked eyes are fit to a geometric model to ascertain the correctness 

of the eye localization.  This is discussed in Section 3.4.  The entire process of eye 

localization is shown in Figure 3.1. 

 

 

3.2 Eye Localization 

 

The eyes are localized by a combination of 2 methods.  The first uses color 

information of human iris and sclera.  The second uses motion information during 

blinks.  From our experiments, we found that eyes are more accurately localized using 

blink information as compared to using color information of human iris and sclera.  

Thus, when blinks are available, they are used to mark the positions of the eyes.  

Otherwise, eye localization is done using colour information because it can be carried 

out any time.  When this method is used, skin and face detection is required.  Once the 

eyes are localized, they are tracked in subsequent frames.  Details are found in Section 

3.2.1.  The second method checks for downward and upward motions of the eyelids 

that occur during blinks.  If this is found, then blinking is deemed to have taken place 

and the appropriate motion regions are marked as eye regions.  Details are given in 

Section 3.2.2. 
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Figure 3.1: Flowchart depicting how eyes are localised and tracked. 
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3.2.1 Eye Localization Using Colour Information 

 

When a face is detected, only the upper half is searched for eyes.  The eyes are found 

by identifying “sclera” and “iris” pixels.  The identification is carried out in 2 steps.  In 

the first step, the R-G and G-B components of each pixel are considered based on 

[Metke2000].  Some statistics on the 2 components, collected from 20 people, is given 

in Table 3.1.  Histograms for R-G and G-B are shown in Figures 3.2 and 3.3, 

respectively.  Based on these statistics, the thresholds are found to discriminate 

between iris/sclera and other pixels.  Using the gaussian fit on these statistics, the 

thresholds for R-G and G-B are selected.  Here, a pixel is considered as iris/sclera after 

this first test if its R-G value is less than 8 and its G-B value is less than 19.   

 

After this test, most of the non-eye pixels would have been eliminated.  However, 

sometimes, a few non-eye pixels remain and they hinder eye localization as shown in 

Figure 3.4 (b).  Thus, another test is performed to remove these pixels that hinder eye 

localization.   

 

In the second step, an analysis of the colour components of pixels that remain is 

carried out.  It is found that using the components of Cr and Cb in the YCrCb colour 

space gives the best separation of iris and sclera pixels from the non-eye ones.  The 

distribution of Cr and Cb of those pixels that are not removed in the first test is shown 

in Figure 3.5.   
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From the distribution, 2 linear equations (as shown in Figure 3.5b) are defined to 

identify 2 regions for iris/sclera and non-eye.  The equations are: 

 

1) Cr-Cb = -3, and 

2) Cr + 4*Cb = 22. 

After the second test, the eye is correctly localized as shown in Figure 3.4 (c). 

Table 3.1 Statistics of` iris and sclera’s colour components. 
 

 Iris/Sclera Non-eye 

 Mean Variance Mean Variance 

R-G -0.488 48.34 10.54 66.02 

G-B 14.11 20.06 21.22 56.43 

Total Number of pixels used 0.189 x 106 5.77 x 106 

 

 

Figure 3.2: Graph of frequency vs R-G.  Gaussian refers to the gaussian fit to the 
distribution. 
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Figure 3.3: Graph of frequency vs G-B. Gaussian refers to the gaussian fit to the 
distribution. 

 

 

     

 (a) (b) (c) 
 

Figure 3.4: A sample where the eye is not properly segmented after the first test and 
can be properly localised after the second test.  (a) Original image, (b) Binary image 
after the first test; white pixels indicate “eye” pixels, (c) Binary image after the second 
test, the eye can now be properly localised. 
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(a) 

 

(b) 

 
Figure 3.5: Histogram of Cr and Cb of remaining pixels after the first test.  (a) 
Three-dimensional view, (b) Two-dimensional view. 
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3.2.2 Blink Detection for Eye Localization 

 

Detecting blinks enables us to determine eye regions.  The process of blink detection 

involves (a) temporal frame differencing, and (b) computation of optical flow.  The 

flowchart is shown in Figure 3.6.  Optical flow field is computed using the algorithm 

in [Black1996].  The steps in the algorithm for eye localization using blink detection 

are given below: 

Step (i) Obtain locations of possible motion using frame difference between 

successive frames.   

Step (ii) Threshold the frame difference at 15 and obtain blobs using morphological 

operations and connected components analysis. 

Step (iii) Remove unsuitable blobs i.e. remove blobs which are either too big or too 

small or have incorrect width to height ratios to be considered as eye 

candidates.  

Step (iv) If there are no blobs remaining, repeat (i) to (iii) on subsequent frames until 

at least 2 blobs remain.  Mark the positions of these blobs. 

Step (v) Compute optical flow field around the vicinity of the remaining blobs. 

Step (vi) Ascertain dominant direction of motion.  If the dominant motion is 

downwards and its magnitude is greater than 3, then the position of the 

blob(s) is noted.  This denotes eye closure during a blink.  If the motion is 

not downwards then repeat (i) to (vi).  Steps (vii) onwards are used for 

detecting subsequent eye opening phase of the blink. 

Step (vii) Repeat steps (i) to (iii) to find motion blobs. 
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Step (viii) Discard blobs that are not situated near the location of the blobs which had 

downward motion. 

Step (ix) Compute optical flow to ascertain if the dominant motion is upwards if 

there are at least 2 blobs remaining.  Otherwise, increment count and go to 

Step (vii).  If count is greater than 3, it means that no corresponding 

upward motion is detected and thus no blink is deemed to have occurred.  

Thus, jump to Step (i) to restart the process of blink detection.  The 

threshold for count is 3 because from our observations, involuntary blinks 

in general do not last more than 5 frames. 

Step (x) If the dominant motion is upwards and its magnitude is greater than 3, then 

classify the frames beginning from the frame where downward motion was 

detected to the frame where upward motion is detected as blink frames.  Go 

to Step (xi).  Otherwise, increment the count and go to Step (vii).  

Step (xi) Mark the positions of the bounding boxes of eye regions. 

 

In Step (ii), a threshold of 15 is used because it was found to give good segmentation 

of motion regions from non-motion ones.  The criteria for pairs of suitable blobs are 

given in Section 3.4.  In Steps (vi) and (ix), based on Table 3.2, a threshold of 3 for the 

flow magnitude is used.  Table 3.2 shows the statistics for the magnitude of the optical 

flow field for different types of movements.  Both the magnitude and especially, the 

direction of the flow vectors from the computation of optical flow are used to 

differentiate vertical eyelid movements during blinks from movement of the eyeball 

(predominantly horizontal) and horizontal head movements (Figure 3.9).  As for 

vertical head movements, they result in blobs that can be eliminated based on size, size 

ratio (please refer to Section 3.4) and the average magnitude of the velocity vectors.  
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From Table 3.2, in the case of head motion, its average magnitude is 2.88 compared to 

3.05 and 4.80 for upward and downward eyelid movements respectively.  Figure 3.10 

shows an example of vertical head movement and its optical flow field. 

 

Table 3.2 Mean and variance of magnitude of optical flow vectors based on 50 blinks 
from 10 different people. 

 
 Mean Variance 

Blinking (closing) 4.80 2.60 

Blinking (opening) -3.05 0.14 

Vertical head movement 

(absolute) 

2.88 0.32 

Horizontal head movement 
(absolute) 

0.19 0.01 

Eyeball movement 9.74 9.14 
 

 

3.3 Eye Tracking 

 

After having located the eyes, we track them using the Kanade-Lucas-Tomasi (KLT) 

tracker [Tomasi1991], [Lucas1981], [Birchfield1996].  The combined process of 

localizing and tracking of the eyes is shown in Figure 3.1.  The KLT tracker classifies 

a tracked feature as good or bad according to the residual of the match between a 

window around the feature in the previous and current frame; if the residual exceeds a 

fixed threshold, the feature is considered lost.  For feature selection, the selection 

criterion is based directly on the definition of the tracking algorithm, which expresses 

how well a feature (or rather the window around the feature) can be tracked.  Details 

can be found in refer to Section 4 of [Tomasi1991]. 



35 

 

Threshold frame difference of frame t
and t+1

input sequence

Connected component analysis

Eliminate unsuitable blobs

At least 2 blobs
remaining?

Compute optical flow

No

Yes

Dominant motion
downwards and
magnitude > 3?

No

t = t+1

Threshold frame difference of frame t
and t+1

connected component analysis

Eliminate unsuitable blobs

At least 2 blobs
remaining?

Compute optical flow

No

Yes

Dominant motion
upwards and

magnitude >3?

No

Yes

t = t+1

Blink detected

count = 0

count > 3?

increment
count

No

Yes

t = t+1

 

Figure 3.6: Flowchart depicting blink detection process. 
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The tracker is initialized on the eye regions on the frame immediately after the blink is 

detected.  We found that twenty feature points selected in the eye regions give the best 

bounding boxes for the eyes during tracking.   

 

Occasionally, when there is relatively larger motion, a few feature points could be lost.  

When there is drastic motion in the eyes (which can be caused by a blink or motion of 

the eye ball), more feature points will be lost.  When the accumulated number of 

feature points lost is more than 20% of the total feature points, then the tracker is 

disabled.   There have, however, been cases when less than 20% of the feature points 

were lost even during a blink.  Thus, additional checks are performed based on a 

geometrical model of eye regions to ensure that the tracker will be disabled.  After 

this, eye localization is performed to reinitialize the tracker. 

 

 

3.4 Geometric model for eyes 

 

A geometric model is built for the localised/tracked eyes to check for the validity of 

the eye region.  The model consists of the following measures: 

(a) Width to Height ratio (WHR) of the bounding box of the eyes. 

(b) Ratio of the left eye’s WHR to right eye’s WHR. 

(c) Distance between the centres of the 2 bounding boxes. 

 

From our data set, the acceptable range for (a) is from 1.7 to 5.1 and for (b), the 

acceptable values are from 0.6 to 1.6.  As for (c), the acceptable range in the y 
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direction is from 0 to 60 pixels while for the x direction, the range is from 100 to 220 

pixels. 

 

 

3.5 Results and Discussion 

 

3.5.1 Results for eye localization using colour components 

 

The method was tested on 15 people in 9 poses and the results of eye localization 

using color components are tabulated in Table 3.3.  An eye is considered correctly 

localized if the error in the localization (with respect the ground truth) is less than 10 

percent of the size of the eye. Nine poses were chosen as the camera was placed, tilted 

upwards (please refer to Section 1.5), and thus, lighting from the ceiling lights appears 

differently for the various poses.  An example of eye localization using color 

information is shown in Figure 3.7. 

 

Table 3.3 Results of eye localization using colour components. 
 

Total number of eyes Number of eyes 

correctly localized 

Percentage Accuracy 

270 263 97.4 
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3.5.2 Results on eye localization using blinks 

 

Through our experiments, we found that during a blink there are only 2 blobs which 

will satisfy the requirements of the correct ratio, size and dominant downward motion 

in the frame where the blink starts (Figure 3.8a), followed by 2 blobs that have the 

correct ratio and size but with dominant upward motion (Figure 3.8b) as the blink ends 

a few frames later. 

     

(a) (b) 

 

(c) 

Figure 3.7: Localization of eyes using colour components.  (a) Upper-half of 
detected face with red bounding boxes around the eyes.  (b) Binary image after 
iris/sclera identification and morphological operations.  White regions indicate 
possible iris/sclera regions.  Bounding boxes are drawn around the blobs to localize 
the eyes.  (c) Localized eyes in the original image.  Bigger red bounding box indicates 
localized face while blue bounding boxes indicate face candidates (See Figure 2.6). 
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From Figures 3.9 and 3.10, we see that performing only frame-differencing can lead to 

the wrong regions being identified as eyes.  Frame differencing fails to distinguish 

between motion of the eyeball and a blink as seen in Figure 3.9.  Thus optical flow is 

incorporated to ensure the accuracy of the localization of the eyes.  Comparing the 

optical flow diagrams in Figures 3.8 (b) and 3.10 (b), the magnitude of the velocity 

vectors in the case of the blink is much larger (as indicated by the longer arrows) than 

in the case of vertical head movement.  Thus the magnitude of the flow can be used to 

differentiate downward blink movement from vertical head movements for detecting 

the start of a blink.   

 

The algorithm was tested on 13 sequences of people, engaged in reading or playing 

computer games, which consisted of about 700 frames (resolution of the frames is 768 

x 576, captured at 25 frames per second) each.  There are 5 blinks in each sequence on 

average.  It takes about 20 seconds for optical flow computations employed in blink 

detection per sequence.  Of the 65 blinks in the sequences, two were missed and there 

were no false detections, giving an accuracy rate of 97.0%. 

 

 

3.5.3 Results on eye tracking 

 

It was observed that the KLT tracker could track the eyes in the interval between 

blinks for the same 13 sequences used in blink detection.  The tracker takes a mere 10 

seconds to track eyes for a sequence of 700 frames (28 seconds long at 25 frames per 

second).  Thus, eye localization and tracking could run in near real-time. 
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 (a) (b) 

   

 

 (c) (d) 

 

Figure 3.8: Results of motion analysis and optical flow computation.  
(a) Frame differencing, thresholding and connected components on the first 2 frames of the 
blink to obtain motion regions.  Motion regions found are bounded by black boxes. 
(b) Optical flow computations on the whole image of (a).  Majority of flow vectors are 
pointing downwards.  
(c) Same motion as (a) on the frames where the eye first reopens.  Motion regions are bounded 
by black boxes. 
(d) Optical flow computations on whole image of (c). Majority of flow vectors are pointing 
upwards.  
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(a) (b) 

 

(c) 

Figure 3.9: Results of motion analysis and optical flow computations where there is 
horizontal motion of the head as well as motion of the eye ball.  The motion of the eye ball 
lasts for 2 frames.   
(a) Frame differencing, thresholding and connected component analysis on first 2 frames when 
the movement starts to obtain motion regions.  Motion regions are bounded by black boxes.   
(b) Same motion analysis as (a) on the last 2 frames when the movement ends.  Motion 
regions are bounded by black boxes.   
(c) Optical flow computations on whole image of (a). Majority of the flow vectors are pointing 
sideways. 
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(a) (b) 

 

Figure 3.10: Results of motion analysis and optical flow computations where there is a 
vertical head movement.  
(a)  Frame differencing, thresholding and connected component analysis are performed to 
obtain motion regions.  Motion regions are bounded by black boxes.   
(b) Optical flow computations on whole image of (a).  The majority of the flow vectors are 
pointing upwards and their magnitude is smaller than that seen in Figure 3.8 (for a blink where 
the eyelid motion is faster). 
 

In our experiments, we found that for eyes of size about 50x30, whenever there was a 

drastic movement (about 9 pixels) in the subject’s eyeball, the tracker was disabled.  

This is undesirable as the tracker should only be disabled by the occurrence of a blink.  

To avoid this, we use the fact that the dominant direction of the optical flow for eye-

ball movements is horizontal.  If the direction of the flow vectors is sideways in the 

motion regions, then eye-ball movement is deemed to have taken place and the tracker 

is reinitialized in the next frame using eye regions of the previous frame.    

 

At every blink, to prevent drifting, the tracker needs to be reinitialized.  Figure 3.11 

shows the eyes being tracked in the interval between 2 blinks. 
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 (a) (b) 

Figure 3.11: Tracking of the eyes. (a) Immediately after being initialised, (b) Just 
before a blink. 

 

3.6 Conclusion 

 

Temporal differencing is very fast and gives an indication of possible motion regions 

in the image.  However, this alone is not sufficient to differentiate blinking from other 

possible motions like head and eyeball movements.  Thus, when frame differencing 

indicates motion, computation of the optical flow magnitude and direction can be used 

to differentiate blinking from the other motions.  The KLT tracker is used to track the 

eyes between blinks.  Blink detection is extremely useful in providing accurate eye 

localization.  However, a limitation of this method of eye localization is that it only 

works when blinks are encountered.  Thus, localizing eyes using colour information is 

employed in the absence of blinks.  We have achieved a success rate of 97.0% for 

blink detection while the accuracy for localizing eyes using colour information was 

97.4%. 
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Chapter 4 

Eye Gaze Direction Determination 

 

 

 

4.1 Introduction  

 

In this chapter, we will discuss how the eye-gaze direction is estimated in a non-

intrusive manner as input to the next module, reading detection.  In the next section, 

the theory behind the algorithm used is first discussed followed by data preparation 

and implementation.  Results and discussion are given before the chapter is concluded. 

 

The classification of eye gaze direction is carried out using feature vectors obtained 

from projections onto eigenspace of the eyes as used in [Baluja1993] and 

[Varchmin1997].  A set of eigen-vectors, or eigen-eyes, of size 40x20 is built from a 

training set of eyes.  The detected eye from the eye detection/tracking module is 

normalized to the pre-determined size of 40x20 and projection weights of this 

normalized eye to the eigen-eyes are obtained.  These projections are used as input 

features to a Radial Basis Function neural network (RBFNN) for determining the  

direction of the gaze.  The structure and learning strategy of the RBFNN are discussed 

in Section 4.2 and Section 4.3, respectively.  The centres of the RBFNN are obtained 
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by feeding the same training projections to Self Organizing Maps (SOMs) and details 

are given in Section 4.4. 

 

4.2 Radial Basis Functions Neural Networks  

 

The RBFNN, whose structure is shown in Figure 4.1, involves 3 layers, the input 

layer, the hidden layer and the output layer.  The input layer has nodes connected to its 

environment, in this case, the features that we specified.  The hidden layer applies a 

nonlinear transformation from the input space to the hidden space.  The weights, ωi, of 

the nodes in the output layer are just a linear sum of the outputs in the hidden layer and 

basically, the output layer supplies the response of the RBFNN to the activation 

pattern applied to the input layer. 
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Figure 4.1: Structure of Radial Basis Function Neural Network.  For simplicity, only 
one output node is shown in the figure.   
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4.3 Training the RBFNN 

 

The learning strategy used is found in [Haykin1999].  The centres of the radial basis 

functions are selected through a self-organising process.  Self Organizing Maps 

(SOMs) are chosen over K-means clustering method because we can see how the 

different classes cluster in the maps.  How the centres are obtained is discussed in 

Section 4.4. 

 

Gaussian functions are used as activation functions for the hidden nodes in the hidden 

layer.  A gaussian activation function centred at ti is defined as 

 

 ( ) 







−−=− 2

2
max

2
12 exp ii tx

d
mtxG

α
, i= 1, 2, ..., m1 (4.1) 

 

where m1 is the number of centres and dmax is the maximum distance between the 

chosen centres.  The standard deviations of the Gaussian radial basis functions are 

varied to find the best gaussian fit for the training data.  As the value of σ is varied, 

given in equation (4.2), the standard deviations of all the Gaussian radial basis 

functions take on the same value of σ. 

 

 
1

max

2m
d

ασ =  (4.2) 

where α = {0.8, 0.85,…,1.2}. 
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Once ti and α are determined by some means, the only parameters that would need to 

be learned are the linear weights, w, in the output layer of the network.  The 

pseudoinverse method is employed. 

 

 w = G+d (4.3) 

 

where d is the desired response vector in the training set.  The matrix G+ is the 

pseudoinverse of the matrix G, which itself is defined as  

 

 G = {gji} (4.4) 

 

where  

 







−−=

2

2
max

1exp ijji d
mg txα , j = 1, 2, ..., N;  i = 1, 2, ..., m1 (4.5) 

 

where xj is the jth input training vector and N is the number of training vectors. 

 

4.4  Obtaining Centres for RBFNN using Self Organizing Maps 

(SOMs) 

 

Self-Organizing Maps (SOMs) are a special class of artificial neural networks based 

on competitive learning; the output neurons of the network compete among 

themselves to get activated.  Normally, only one output neuron gets activated and it is 
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known as the winning neuron.  In a SOM, neurons are placed at the nodes of a lattice, 

in this case, a 2-D map of size 20x20.  The size of 20x20 was chosen as it gave good 

grouping with reasonable training times as compared to sizes such as 10x10 and 

30x30.  The neurons get selectively tuned to the input patterns in the course of a 

competitive learning process.  A SOM is characterized by the formation of a 

topological map of the input patterns in which the spatial locations of the neurons in 

the lattice are indicative of intrinsic statistical features contained in the input patterns, 

hence its name.  If the features are properly selected and the SOMs have learned well, 

the SOMs should show grouping in clear proper clusters.  The weights of the neurons 

in the SOM are then used as centres for the RBFNN. 

 

4.4.1 Algorithm for SOM 

 

The algorithm for the SOM is given below.   

1) The weights of the neurons in a map of size say 20x20 are first randomly 

initialised. 

2) Learning: An input pattern of a fixed dimension is presented to the map and the 

winning neuron is determined.  The neighbouring neurons around the winning 

neuron learn at the same rate. 

3) If maximum number of iterations is reached, goto 4, otherwise goto 2. 

4) Mapping: We tried 2 types of mapping to see any difference in the formation 

of clusters . 

i) Present the training input patterns, one at a time, to the map.  The 

neuron whose weight is closest to this input will claim this input.  A 
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histogram of the number of times that each label was won by the 

neuron is maintained for every neuron.  At the end of the pattern 

presentation process, the histogram of each neuron is examined.  The 

neuron is assigned the label which it won the most number of times. 

ii) Present the input patterns from all the labels to each neuron in each 

turn.  The neuron will win the pattern that is closest to it.  A histogram 

of the number of times that each label was won by the neuron is 

maintained for every neuron.  At the end of the pattern presentation 

process, the label of the maximum number of inputs claimed by the 

neuron will be assigned to this neuron. 

 

When method (i) is employed, some of the neurons may not claim any pattern and thus 

their labels are not determined.  In this project, we have selected method (ii) mainly 

because the clusters obtained are much more defined than method (i).  The SOMs 

obtained using the 2 methods are shown in Figure 4.4. 

 

4.4.2 Parameters 

 

Some considerations involved in SOMs are: 

 

1) Initialisation of the weights.  These are randomly initialised. 

2) learning rate 

3) neighbourhood size 

4) Terminating criterion: we terminate the iterations based on a maximum 

number of iterations. 
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The learning rate refers to how much the winning neuron and its neighbours learn 

from the input patterns.  The neurons learn by having their weights adjusted according 

to equation (4.6).  The learning rates were changed as shown in Figure 4.2 (a).  Figure 

4.2 (b) shows the change of the neighbourhood radius with respect to the number of 

iterations.   

 

wn,a  = α(x - wn,b)  (4.6) 

 

where wn,b is the weights of the neuron before learning, wn,a is the adjusted weights to 

be added to the neuron,  x is the input pattern, and α is the learning rate. 
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Figure 4.2: Learning rate and neighourhood radius. (niter = Total no. of samples 
*100, tmid = Total no. of samples *10) 
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The initial radius is set such that the number of neighbourhood neurons covers 

approximately half the map size.  This is to allow a quick global organisation of the 

SOM.  As time passes, the neighbourhood radius shrinks and eventually, only the 

winning neuron learns.  This allows the SOM to pick up local characteristics of the 

patterns.  After the SOM has learnt, the weights of the neurons are used as centres for 

RBFNN. 

 

 

4.5 Implementation of Gaze Direction Determination 

 

The subjects are requested to look at the mouse pointer as it is moved and sequences 

of the subjects are captured.  The positions of the pointer are logged at the same 

frequency at which the frames are captured, i.e., 25 frames per second.  Thus, we 

know where the subject is looking at in every frame and this will help us in labeling 

our data.   

 

The mouse pointer is moved horizontally, from left to right, and from top to bottom, 

resembling how the gaze will move during reading.  While following the mouse 

pointer, if a blink occurs, the subjects’ eyes will be closed or half closed.  Thus, 

images of such nature are not used for training or testing for eye gaze estimation.  In 

addition, during the transition in which the mouse pointer is moved from right to left, 

as the mouse pointer is moving rapidly, the eyes may not be able to follow as 

accurately.  Thus, samples during this transition are also discarded. 
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The remaining eye gaze samples are labeled according to where the subjects are 

looking on the monitor screen (from the logged position of the pointer).  The screen is 

divided into 4 vertical strips as shown in Figure 4.3.   

 

Screen

Left Right

2 3 41

 

Figure 4.3: Regions defined on the monitor. 

 

Once these labeled images are obtained, eye localization and tracking (as in Chapter 3) 

are performed to extract the left eye of the person.  The left eyes are then normalized, 

or resized, to a pre-determined size of 40x20 using bi-cubic interpolation.  After this, 

PCA of the eye for each person is computed from these 40x20 training images.  On 

average, 1800 images are used for training.  The number of eigen-eyes is chosen for 

95% representation accuracy.  Numbers of eigen-eyes for 95% accuracy ranged from 

38 to 55.  Projections of each training eye sample to these eigen-eyes are obtained. 

These projections are used as input vectors to the SOM to obtain centres for RBFNN 

(see Section 4.4).  A map size of 20x20 is used and the weights of 400 neurons in the 

map are used as centres for RBFNN.  Using these centres and the projections of 

training eye sample to the eigen-eyes, the RBFNN is trained as discussed in Section 
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4.3.  Four output nodes are used in the output layer.  The 4 classes obtained from the 

RBFNN are then quantised to 2 (left and right) as shown in Figure 4.3. 

 

 

4.6 Results and Discussion 

 

Two sequences are captured for each subject, one for training and one for testing.  For 

each subject, a new SOM and RBFNN is built.  Figure 4.4 shows examples of SOMs 

obtained.  Figure 4.4 (a) and (b) show SOMs for the same person by using different 

methods of mapping mentioned in Section 4.4.  Figure 4.4 (a) is obtained using 

method (i) while Figure 4.4 (b) is obtained using method (ii).  Figure 4.4 (c) and (d) 

are SOMs obtained for another person.  Similarly, Figure 4.4 (c) is obtained using 

method (i) and Figure 4.4 (d) is obtained using method (ii).  From Figure 4.4, SOMs 

obtained using method (i) have gaps, represented by “-“.  In addition, the SOMs 

obtained using method (ii) are more organized compared to method (i).  Comparing 

Figure 4.4 (b) and (d), the gaze patterns for person A form better clusters, values 1 and 

2 (representing Left) are grouped “together” in the middle left hand side of the map 

and values 3 and 4 (representing Right) are grouped on the rest of the map.   

 

The average results 10 people for the gaze direction estimation module are tabulated in 

Table 4.1.  In obtaining the standard deviation using equation (4.2), we have used α = 

1.  On average, 1800 training and 450 testing samples are used.    
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 (a) (b) 

  

 (c) (d) 

 

Figure 4.4: Self-Organising Maps using the algorithm discussed in Section 4.4.1.   
(a) SOM obtained for person A using mapping method (i), 
(b) SOM obtained for person A using mapping method (ii), The cluster drawn represents a 
homogenous group of vectors representing the left side of the screen. 
(c) SOM obtained for person B using mapping method (i),  
(d) SOM obtained for person B using mapping method (ii) as above. 
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Table 4.1 Classification results for gaze direction estimation using RBFNN. 

 % Error in classification 

 Column 1 Column 2 Column 3 Column 4 Left Right 

Training 

Samples 
4.1 6.5 7.1 4.8 3.1 4.1 

Testing 

Samples 
7.5 10.8 12.3 9.1 8.9 10.2 

 

For example, under “Column 1” for training samples, 4.1% of the samples belonging 

to this column are wrongly classified; and under “Left” for test samples, 8.9% of the 

samples that belong to columns 1 and 2 are wrongly classified. 

 

From Table 4.1, the percentage errors for columns 2 and 3 are significantly higher than 

that for column 1 and 4.  Depending on how closely the subjects follow the mouse 

pointer, there could be some misassociation of frames and mouse position log.  Thus, 

some samples could be wrongly labelled, especially those at the boundaries of the 

columns.  Chances of misassociation are higher for columns 2 and 3, as compared to 

columns 1 and 4 as the former pair has more boundaries. 

 

In [Baluja1993], the system is reported to run at 15Hz on a Sun SPARC 10 machine, 

and is able to achieve a 1.5 degree accuracy.  Individual users have to be customized 

to use the system.  For [Varchmin1997], their system is reported to run at 1 frame per 

second on a common workstation.  Varchmin et. al. reported an average error of 1.5 

degrees for the gaze pan angle and 2.5 degrees for the tilt angle.  In their 
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implementation, a lamp is used to produce a specular highlight on the user’s eye to 

help center the region of interest.  For the gaze module of this work, on a Pentium 4 

1.7 GHz machine, once the eyes are localized, it takes on average 40ms to determine 

gaze direction of a person for each frame in sequences captured at 25 frames per 

second. 

 

 

4.7 Conclusion 

 

In conclusion, a RBFNN classifier whose centres are obtained using SOM is 

implemented.  The classifier built is used to differentiate which side (left/right) of the 

monitor the eyes are looking at.  The classifier has an accuracy of 90% classification 

for unseen data and it runs at 25 frames per second. 
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Chapter 5 

Reading Detector  

 

 

5.1 Introduction 

 

The proposed reading detection method uses gaze direction as input.  The modules 

discussed in Chapters 2 to 4 provide a means to obtain the required gaze directions.    

This chapter discusses the algorithm for reading detection and how gaze directions are 

used for this purpose.  Theory for reading detection is presented in the next section, 

followed by preparation of data to test the algorithm in Section 5.3.  The results of the 

system are presented and discussed in Section 5.4 before the chapter is concluded.    

 

During reading, eyes make periodic movements from left to right and back.  It has 

been generally accepted that there are 2 types of eye movements, saccades and 

fixations, during reading.  Saccades are jerky motions as the eyes make a scan.  

Fixations refer to the times when the eyes dwell longer on certain words.   

Different people fixate on different words while reading.  As we are interested in 

capturing the characteristic periodic movements of the gaze during reading, the gaze 

directions on the monitor are quantised into 2 categories, “LEFT” or “RIGHT”.  These 

two gaze directions are obtained from the gaze direction module (Chapter 4).  
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Quantisation of gaze directions into 2 levels smoothes the variation of fixation on 

different words.   

 

Finite State Machines (FSMs) are used to model eye gaze transitions.  These are 

described in Section 5.2.1 and the algorithm for reading detection is discussed in detail 

in Section 5.2.2.   

 

 

5.2 Theory of Reading Detection 

 

5.2.1 Finite State Machines  

 

A finite-state machine (FSM) is an abstract model of a system (physical, biological, 

mechanical, electronic, or software) whose key components are  

• a finite number of states which represent the internal "memory" of the system 

by implicitly storing information about the past.  

• state transitions which represent the "response" of the system to its 

environment. Transitions depend upon the current state of the machine as well 

as the current input and often result in a change of state.  

 

Consider, for example, the use of an FSM to model an old-time soda machine that 

dispenses soda for 30 cents as shown in Figure 5.1.  The possible inputs to the 

machine are n - nickel, d - dime, q - quarter, s - select soda.  
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The states of the machine are designated by circles, each labeled with the amount of 

money that has been deposited so far.  State 00 is designated as the start or initial state 

by the incoming arrow.  States which represent a total input of 30 or more cents are 

considered final states and are designated by double circles.  The transitions from state 

to state are shown as arcs (lines with arrows).  Each transition is labeled with the input 

that caused it. 

 

 

Figure 5.1: Finite State Machine to model an old-time soda machine. 

 

If a person puts a nickel into the machine followed by a dime followed by a quarter, 

the FSM would transition from state 00 to state 05 to state 15 to final state 40. At that 

point, he or she could select a soda.  

 

In addition to the FSM state, there may be variables, external to the system, that 

remember other details. The designer has to use judgement to decide what to model 

with a FSM state and what to leave as a variable.   
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5.2.2 Reading Detection Algorithm 

 

Hong, et. al.  [Hong2000] used the FSM for gesture recognition.  We use a similar 

technique for reading detection.  FSM is chosen because it is well-suited to model the 

required information.  In addition, usually, one can easily achieve real-time speed with 

FSM as it is computationally inexpensive.  The inputs to the reading detection 

algorithm from the gaze direction module are either “LEFT” or “RIGHT” for every 

frame, indicating that the eye gaze is on the left or right side of the monitor 

respectively.  Two pieces of information are required to be captured from the periodic 

movements of the gaze during reading.  The first is the type of transition, i.e., from left 

to right or from right to left.  The second is the minimum and maximum dwell times of 

the gaze on one side of the monitor before it makes a transition to the other side.  The 

states of the FSM are “LEFT” and “RIGHT”.  An example of a FSM that can be used 

to model reading is shown in Figure 5.2.  Two variables, Tmin and Tmax, are used to 

store the minimum and maximum dwell times encountered in each state of the 

machine.  The dwell times are in units of number of frames.  An additional variable, 

TCounter, is used to keep track of the amount of time the FSM stays in each state.  

The FSM shown has 4 states.  For convenience, the length of a FSM is used to denote 

the number of states the FSM has. 

LEFT

T1min T1max

RIGHT

T2min T2max

LEFT

T3min T3max T4min T4max

RIGHT

T1Counter T2Counter T3Counter T4Counter

LEFT

 

Figure 5.2: An example of a FSM.   
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The FSM makes 2 types of transitions, either self-transition or transition to the next 

state.  The FSM makes a self-transition if the next gaze direction input is the same as 

the current one.  In this case, the counter, e.g. for the first state, T1Counter is increased 

by 1.  In order to make a transition to another state, 2 criteria have to be satisfied.  The 

next gaze input must be different from the current state and the current state’s counter 

must be between the current state’s Tmin and Tmax.  Otherwise, the particular FSM is 

disabled and we cannot infer from it that the current gaze pattern inputs correspond to 

that of reading.  Transition into the first state occurs when the gaze input is 

appropriate.  For example, in Figure 5.2, the gaze input has to be “LEFT” in order to 

enter the first state of the FSM.  Another term “order” is used to denote the ordering of 

the FSM’s states.  For the FSM in Figure 5.2, the order of the FSM is [L R L R].  This 

FSM is different from another FSM which may have the same length but has a 

different order of states, i.e., [R L R L]. 

 

 

5.2.2.1 Building a Database of FSMs 

 

Using labeled training data of a person engaged in reading, a set of FSMs are built to 

represent the (possibly different) types of reading patterns, and stored in a FSM 

database.   
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 (a)    (b)  

 

 State Tmin Tmax State TCounter 

Right 35  35  Right 45  

 Left 88 88 Left 71 

 Right  27  27 Right 44 

(c) (d) 

 

 State Tmin Tmax  

 Right 35  45   

 Left 71 88  

 Right 27  44  

 (e) 

 

Figure 5.3: Example illustrating how the database of FSMs is constructed.  Value of 1 in the 
y-axis indicates “Left” and 2 indicates “Right”.  The x-axis refers to frame numbers.  The 
FSMs are of length 3 and have state order [R L R]. 
(a) Gaze pattern with transitions at 35-36, 123-124.  
(b) Gaze pattern with transitions at 45-46 and 116-117.  
(c) A new FSM is constructed for (a), assuming that this FSM is not in the database.   
(d) A FSM representing the pattern in (b) exists.  Hence the dwell time parameters of the 
existing FSM are updated. 
(e) Dwell time parameters, Tmin and Tmax of FSM shown in (c) in database are updated when 
the FSM in (d) is presented to the database. 
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The Tmin and Tmax parameters of each state of a FSM are learnt from the training 

data.  During training, a trial FSM, similar to the one shown in Figure 5.2, is 

constructed for each reading sample, when only the dwell time in each state is noted.  

If the trial FSM has the same order and number of states as one in the existing 

database, the dwell time parameters (Tmin and Tmax) of the exisiting FSM are merely 

updated and the trial FSM is deleted.  Otherwise the FSM is added to the database.  If 

Tmin for a particular state of an existing FSM in the database is greater than the 

corresponding value for the trial FSM, Tmin is set to trial FSM’s TCounter value.  

Similarly, if the value of Tmax of a state of an existing FSM in the database is less 

than that of the corresponding value of the trial FSM, Tmax is set to trial FSM’s 

Tcounter value.  Figure 5.3 shows how the parameters for dwell times are obtained.   

 

 

5.2.2.2 Noise filtering 

 

Filtering is required to remove noise in the output of the gaze direction module arising 

from classification errors, or from the subject back-tracking during reading, at the 

center of the monitor (the boundary of LEFT and RIGHT).  Figure 5.4(a) shows an 

output pattern from the gaze detection module.  Figure 5.4(b) shows the results after 

filtering.  Here, filtering involves smoothing isolated peaks/valleys as well as groups 

of peaks/valleys.   
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Two parameters are used for filtering, called stable width and group width (width of 

groups of peaks/valleys), which are defined as follows:   

 

Stable width: The amount of time units during which the data is constant. 

Group width:  The time width where there is a “frequent” change in the data 

points. 

 

Isolated peaks/valleys are filtered out.  Peaks/valleys are considered isolated if they 

fulfill 2 criteria:  1) if the peak/valley widths are less than a specified value, and 2) the 

peaks/valleys have stable widths on their left and right that are not less than a specified 

value.  In this project, the specified values are the same for stable widths on the left 

and right of peaks/valleys. 

 

Groups of “high frequency” peaks/valleys are smoothed if their widths are less than a 

specified group width as they are most likely noise.  High frequency refers to 

continuous transitions with the widths of peaks/valleys less than “stable width”.  When 

the group width of “high frequency” peaks/valleys exceeds a specified value, they are 

left unchanged.  This is because it could be due to the eye making rapid left to right or 

right to left transitions.  

 

In Figure 5.4(a), isolated peaks/valleys are found at 13-14, 29-31, 80-82, 117 and these 

are removed as shown in Figure 5.4(b).  Groups of peaks/valleys are found at 68-73, 

88-96, 106-112, 139-143.  If the group width is set to 6, then groups at 68-73 and 139-

143 are filtered as shown in Figure 5.4(b). 
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(a) 

 

(b) 

 

Figure 5.4: Input pattern from the gaze direction module.  The y axis refers to gaze direction, 
value of 1 for LEFT while value of 2 indicates RIGHT.  (a) Before filtering,  (b) After 
filtering.   
 

 

5.2.2.3 Determination of Reading 

 

After the database of FSMs (a description of FSMs in the database is given in Section 

5.4.1.) representing reading has been built from training data, they are used to detect 

reading in 2 steps.    The first step involves comparing the FSM of gaze direction over 
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an interval, say 6 seconds, with those in the database.  If no existing FSM in the 

database has the same number of states (FSM length) and order of states, the order is 

[R L R], no reading is deemed to have taken place in that interval.  If the database has 

a FSM that has same length and state order as the FSM presented to the database, the 

dwell time of each state of the sample FSM is compared with that of the FSM in the 

database.  If each of these dwell times falls within Tmin and Tmax (inclusive of Tmin 

and Tmax) of every state, then reading is deemed to have taken place over the interval.  

Otherwise, no reading is deemed to have taken place.  The first step of reading 

detection is performed, say at intervals of one second.  For example, for a detection 

interval of 6 seconds, at t =10, gaze direction information from t = 4 to t = 10 is used.  

For the next detection, at t = 11, gaze direction information from t = 5 to t = 11 is used. 

  

In the second step, reading detections over a set of 6 consecutive intervals is 

considered to determine whether reading is taking place.  The result of the majority of 

these 6 detections is used to determine whether reading is taking place.  For this 

project, 6 consecutive windows are used with a reading detection window of 6 

seconds. 

 

5.3 Data Preparation 

 

Ten subjects are asked to choose an article they would like to read from a list of 30 

articles.  Each subject is requested to read the articles for about 10 minutes, seated 

about 0.5 metres away from the monitor.  These articles are informative in nature.  

Bulleted text and pictures are common in these articles as shown in Figure 5.5.  The 
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articles are prepared to minimize any variation due to formatting such as font type and 

font size.  The font face used is Arial with the size of the main text set at 18 inches.  

The articles are displayed on a 17” monitor with a resolution of 1024x768.   On 

average, 6 minutes of the sequence of each subject is extracted for training and testing 

purposes. 

 

Besides reading, the subject is also asked to undertake various common computer-

related activities.  In each of these activities, different types of attention are 

emphasized.  There are 3 types of activities, namely playing computer games, 

watching video clips and deciphering hidden patterns in complicated images.  Two 

examples in each activity were used. 

 

 

5.3.1 Computer games 

 

The first computer game that the subject is asked to play is called picture error, 

depicted in Figure 5.6.  In this game, the subject has to identify 5 differences between 

2 images.  In this case, one would expect the gaze of the subject to move quickly from 

one image to another.  This left-right transition is almost the same as that for reading 

except that it is performed at a faster speed. 

 

The second computer game is called zball, a variant of the well-known brick game 

shown in Figure 5.7.  In this game, a ball is moving around, knocking off bricks and 

the subject will be controlling a vertical slider to prevent the ball from going out of 
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bounds to the right hand side.  Again, one would expect left-right transitions of gaze as 

the eyes follow the ball.  However, in this case, the speed at which the transitions are 

made is expected to be lower than that of the first game, closer to the speed of reading, 

due to the speed at which the ball is moving.   

 

5.3.2 Complicated images with hidden patterns 

 

In Figure 5.8, the subject is asked to locate 11 faces embedded in the image.  As the 

subject searches for the hidden pattern, i.e. faces, they would have to focus or 

concentrate on certain portions of the image.  Hence, one would expect their gazes to 

be fixated on a particular spot for a relatively long period of time before their gaze 

shifts quickly to another region. 

 

 

5.3.3 Video Clips 

 

The users were shown 2 video clips on wild life documentaries, e.g. Wild Sanctuaries, 

showing a hunting scene.  One would expect eye movements with moderate speed but 

for the majority of the time, the eyes are focused on the centre of the scene. 
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(a) 

 

(b) 

Figure 5.5: Sample articles.  (a) Contains bulleted text.  (b) Contains images. 
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Figure 5.6: Computer game: Picture Error. 

 

Figure 5.7: Computer game: zball. 
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Figure 5.8: Image with embedded patterns.  Eleven human faces are embedded.   

 

 

5.4 Results and Discussion 

 

A total of 10 people took part in the experiment.  Detection intervals of 4, 6 and 8 

seconds were tried.  For noise filtering, values of 3 to 6 frames were used for “stable 

width” and values of 4 to 9 frames for “group widths”.   

 

The sequences obtained were captured at 25 frames per second.  One reading sequence 

of about 6 minutes is obtained for each person.  Two sequences, on average 2 minutes 

long, for each of the 3 types of “non-reading” activities are acquired for each person. 

The sequences were processed using the modules presented in the earlier chapters to 

obtain the required gaze inputs for the reading module.  Please refer to Figure 1.1.   
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5.4.1 Training the database of FSMs for reading 

 

The database of FSMs for reading is constructed during training by using only reading 

sequences.  For training purposes, gaze samples from the sequences are obtained by 

shifting a window, having a size of 4, 6 or 8 seconds, every 25 frames, which 

corresponds to a 1 second shift.  The “leave-one-out” strategy is used.  In this strategy, 

samples from 9 people are used for training leaving one person out exclusively for 

testing.  This procedure is repeated in a round-robin manner, in this case 10 times.  

Only 70% of the samples are collected from each of the 9 people for training.  An 

example of a FSM for reading is shown in Figure 5.9. 

 

State Min Dwell Time Max Dwell Time 

2 1 20 

1 1 15 

2 3 33 

1 1 28 

2 4 21 

1 1 34 

2 1 27 

1 4 35 

2 1 42 

1 5 34 

2 3 23 

1 1 31 
 

Figure 5.9: A FSM for reading of length 12.  Window size of 6 seconds and a shift of 1 
second are used. 
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Graph of distribution of FSM length
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Figure 5.10: Graph of distribution of FSM length.  Window of size 6 seconds and a 
shift of 1 second are used.  

 

Figure 5.10 shows the distribution of the lengths of the FSMs in the database.  There 

are about 80 distinct FSMs in the database (for each length, there exists 2 FSMs of 

different order).  From Figure 5.10, we see that the majority of the lengths lie in the 

range of 12 to 20.  This would correspond to reading 6 to 10 lines in 6 seconds.  The 

number of FSMs having lengths that are less than 7 and greater than 28 are relatively 

few.  FSMs that have lengths greater than 28, are most likely obtained from noisy gaze 

inputs.  

 

As for the dwell time parameters, for FSMs having lengths less than or equal to 20, the 

maximum amount of dwell times does not change drastically from one state to the 

other of the same FSM.  In fact, the largest difference between the longest and shortest 

dwell times is not more than 3 times.  As the subjects read at their “steady state” pace, 

we would expect the amount of time spent in each state to be approximately the same 
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except during situations when they are engaged in “non-reading” activities such as 

studying an embedded image in the text.   

 

 

5.4.2 Tests 

 

Three types of tests are performed for each cycle of the “leave one out” strategy.  In 

test 1, the remaining 30% of reading samples of the 9 people are used for testing.  In 

test 2, reading sequences from the “left-out” person are used for testing.  In test 3, the 

non-reading sequences of all the 10 people.  It was found that the results for detection 

interval of 6 seconds, stable width and group width both of 5 frames gave the best 

results and are shown in Table 7.1.   

 

Table 7.1 Results of reading determination for detection interval of 6 seconds, stable 
width and group width of 5 with reading detection performed periodically every 
second.  Results presented are the average of the 10 round-robin rotations of the “leave 
one out” strategy.  Result for non-reading accuracy is applicable to all the 10 people. 
 

Average accuracy of reading, or missed detections, for the 
remaining 30% of the reading samples of the 9 people used in 
training (test 1) 

88.3% 

Average accuracy of reading, or missed detections, for reading 
samples of subjects that are left out in each round, i.e., not used in 
training (test 2) 

82.4% 

Average accuracy of non-reading sequence from all 10 subjects in 
each round, or false alarms (test 3) 85.8% 

Average total accuracy for people used in training (combining both 
reading and non-reading sequences) 87.0% 

Average total accuracy for people not used in training (combining 
both reading and non-reading sequences) 84.1% 
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If “stable width” is too low and “group width” too high, a great deal of smoothing will 

be performed.  The non-reading gaze patterns become more similar to the reading gaze 

patterns.  Although this helps to bridge the differences in the reading habits of 

different individuals, unfortunately, this increases false alarms, i.e., non-reading data 

are wrongly detected as reading. 

 

When the detection interval is increased, more data is considered during detection.  

Compared to a shorter detection interval, the gaze patterns are more varied and thus 

more different from one another.  Differences in individual reading style are 

accentuated and thus the accuracy for reading drops.  On the other hand, when the 

interval is decreased, less data is considered and thus, the possibility of variation 

decreases.  The gaze patterns become less different from each other.  As a result, false 

alarms will increase.  

 

Campbell, et. al. [Campbell2001] reported a high (nearly 100%) accuracy rate using 

the pooled evidence algorithm in 2 experiments conducted on 4 and 5 people 

separately.  In their experiments, a chin rest is used to stabilize the participant’s head.  

As compared to ordinary camera used in this project, they used infra-red camera which 

allowed to determine gaze directions more accurately.  

 

5.5 Conclusion 

 

A novel method of using FSMs for reading determination has been proposed.  By 

considering only 2 possible gaze directions, i.e. looking at the left or right side of the 



76 

monitor, the number of transitions and amount of dwell time on each direction are 

modeled using FSM.  The method has been successfully tried, with an overall 

accuracy of 84.1%, on 10 different people engaged in reading and other common 

activities, e.g. playing computer games, watching video clips, at the computer.   
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Chapter 6 

Conclusion and Future Work  

 

 

 

In this work, we proposed an algorithm to differentiate reading activities from other 

non-reading ones, such as playing computer games and watching video clips, of a 

computer user and we have achieved an average accuracy of 84.1% on 10 people using 

the “leave one out” strategy.   

 

In the proposed algorithm, firstly, face localization is carried out combining skin 

detection and face detection.  Face detection has an accuracy of 97.8% and a low false 

alarm rate 0.002%.  Using the upper-half of the detected face, eye localization is 

performed.  Two methods are employed independently.  The first method uses colour 

information of the iris and sclera and it gives an accuracy of 97.4%.  The second 

method relies on blink detection, which has 97.0% accuracy, for eye localization.  

Once the eyes are localized, they are tracked using KLT tracker.  One localized or 

tracked eye of each frame is then used to determine the person’s gaze direction, either 

looking at the left or right half of the monitor.  Determining the gaze directions has an 

accuracy of 89.8%.  The gaze directions are then used as inputs to reading detection.  

FSMs are used to model transitions in these gaze directions over an interval using only 
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reading samples.  Intervals of gaze directions are checked against the trained FSMs 

and an aggregate of the results of this detection is considered to determine whether 

reading is taking place. 

 

Some future work includes making the gaze module person independent, allowing the 

users more freedom of movement and making the system robust to these movements 

and lastly, making the system cope with instances when the users look out of the 

monitor momentarily. 
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