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List of Notations

• Time:

T Length of time horizon (number of periods), in reverse order.

t Time periods left until departure (count-down).

• Fares, refunds and penalties:

f Single fare class, f > 0.

fi The fare category of demand class i, time-independent.

f̂it

The revenue that airline earns if the booking agent accepts a

request for a seat in fare class i at t (Charging different prices

at different points in time).

Rc The refund to the customer who cancels.

Rns The refund to the customer who is a no-show.

Ro The overbooking penalty/Denied boarding cost.

Rsp

Spoilage cost per passenger, which is the revenue lost by not

being able to fill the capacity due to show up falling short of

capacity.
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List of Notations vii

• Capacity and Booking limits:

C Capacity (Physical seats).

Q Overbooking Pad, i.e. how much to overbook.

B
Booking Limit for all fare classes/Overbooking level, i.e. the

maximum number of bookings will be accepted by the airline.

Bi The booking limit for fare class i.

Bit The booking limit for fare class i at time period t.

• Expected Revenue:

x The current number of reserved seats.

x = (x1, · · · , xm)
The reservation vector, where xi denotes the number of seats

currently reserved in fare class i.

Ut(x)
The maximum total expected net revenue of operating the

system from period t to 0.

• Demand and Cancellation Process:

pit Prob. of a booking request for a seat in fare class i at time t.

qit Prob. of a class i cancellation occurring at time t.

pt0 Prob. of no request (reservation or cancellation) at time t.

Dt Demand (to come) process (m-dimensional).

D
t Aggregate demand (to come) distribution (m-dimensional).

Dt = E[D
t
] Expected aggregate demand to come (m-dimensional).



List of Notations viii

• Others:

S Survivals, i.e. those who bought the ticket and show up.

β

The probability for each customer holding a seat reservation

to be a no-show at the time of departure (Same for all fare

classes).

βi Prob. of each customer in fare class i being no-show.

α = 1− β
The probability of surviving that does not depend on when the

reservation was booked and independent of other customers.

i.e. show-up rate.

αi The show-up rate for fare class i.



Summary

In the airline industry, it is of crucial importance to optimize passenger bookings

as this is a main source of income for the airline. Even when a flight is booked

solid, there is a possibility of a passenger not showing up at the departure time

resulting in an empty seat which otherwise could earn a revenue for the airline. It

is common knowledge that once an aircraft departs, the revenue from the empty

seats on that flight will never be recouped. In an attempt to reduce vacant seats,

airline resorts to “Overbooking” — that is, accepting more reservations than the

capacity of the aircraft which is effective at increasing load factors and revenues.

Overbooking problem may seem simple. However, beneath that surface impres-

sion, a good deal of complexity lurks. The crux of the problem lies in how much

to overbook. Due to the unpredictable nature of passengers’ behavior, there is a

great degree of variance in the number of people who cancel the reservations or do

not show up for a particular flight. Consequently, numerous flights end up taking

off with empty seats while other flights end up denying some passengers’ boarding.

The number of articles that have been published in the area of Airline Overbook-

ing Problem is relatively not big, in spite of the huge financial impact of a yield

management system. This is partly due to the fact that overbooking is part of

yield management, which is a strategic tool to increase corporate profitability and

most airlines generally do not publish their yield management approaches, models

ix



Summary x

and implementation aspects due to their proprietary nature. We tried our best to

find all possible important papers published up to this day.

In Chapter One, efforts are made to survey the important results in this field.

We give a rough overview of the airline overbooking problem with regards to the

overbooking models in use today, and analyze 3 different techniques for the airline

overbooking problem: Static Models on Single Leg, Dynamic Models on Single

Leg, and the Models in Network Environment(Corresponding to Chapters 2, 3 and

Chapter 4). Furthermore, we will explain the difference between the defined Static

and Dynamic models in details.

Chapter Two focuses mainly on Static Overbooking Problem on the single-

leg, which is separated into two sections 2.2 and 2.3. We describe 3 rules for the

Single-class, Single-leg problem in Section 2.2. The model for rule one is similar

to the one by Beckmann (1958) [3]. The models of Rule Two and Three are same

as Bodily and Pfeifer’s (1992) in [10]. We complete their proofs in our report. In

section 2.3, we revised Littlewood’s rule (1972) [39] to include overbooking for a

single-leg, two fare classes case based on the nested reservation system. Similar

to what Belobaba (1987) [5] has done, we extend the results to the overbooking

problem for multiple fare classes, which we call revised EMSR (rEMSR) to find the

protection levels for higher fare classes from lower ones. We present an example to

show that, given all these protection levels in the nested reservation system, how

the optimal booking limits are determined to maximize the total expected revenue.

The Dynamic Model on the single-leg is the subject of Chapter Three. The

main difficulty for overbooking models with cancellations in the dynamic environ-

ment lies in the fact that there are two concurrent stochastic processes: booking

and cancellation. We discuss two models from Janakiram, Stidham, and Shayke-

vich (1999) [54]. The booking control policy is proposed and the optimality of the

policy is proved in Section 3.3 which is not provided in [54]. Model 2 considers
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the refund to cancellations and no-shows. The model is in multi-dimension as

cancellation and no-show probabilities are fare-dependent. In this report, the way

how a multi-dimensional problem is converted into a one-dimensional problem was

represented. We tried to make the steps more clear and we completed some proofs

which were not provided in [54]. A numerical example is quoted to show that we

do not always need the full multi-dimensional model, and to imply several other

important results.

In Chapter Four, the Airline Overbooking problem is put into the network

environment. Bertsimas and Popescu (2001) [7] proposes two approximate dy-

namic programming algorithms: Bid-price Control and Certainty Equivalent Con-

trol (CEC belongs in the class of approximate dynamic programming mechanisms

in which the cost-to-go function is approximated by the value of a linear program-

ming relaxation). We discuss these two algorithms handling cancellations and

no-shows by incorporating overbooking control in the underlying mathematical

programming formulation in depth. We extend the results from [7] by provid-

ing and proving structural properties of the two algorithms allowing overbooking

which [7] hasn’t considered. These results offer insights into the behavior of both

algorithms. One computational example is quoted to show that the CEC policy

improves upon the performance of the bid price control policy.

Finally, in Chapter Five, we conclude this report with an overview and suggest

a direction for future research in the integration of revenue management.

For clear interpretation, a glossary of sometimes-confusing terminologies used in

Overbooking problems in Airline Revenue Management is provided in Appendix 1

as they can be very useful for the future researchers in this area. We also collect and

outline some important results throughout the literature of Overbooking Problem

in Appendix 2.



Chapter 1
Airline Overbooking Problem

1.1 Introduction

Airline industry is one of the capacity constrained services, such as transporta-

tion, tourism, entertainment, media and internet providers. They all constantly

face with the problem of intelligently allocating the fixed capacity of perishable

products to demand from different market segments, with the objective of max-

imizing total expected revenue. For the airline, a seat on any particular flight

departure is an extremely perishable commodity. Once the doors are closed on a

plane, the value of any unsold seats is lost forever.

Revenue management originates from the airline industry, where deregulation of

the fares in the 1970’s led to heavy competition and the opportunities for revenue

management schemes were acknowledged in an early stage. Revenue management

can be defined as the art of maximizing profit generated from a limited capacity

of a product over a finite horizon by: selling the right product to the right type

of customer, at the right time and for the right price. But, this process involves

consumer behavior and past data analysis, it can be very challenging.

The airline revenue management problem has received a lot of attention through-

out the past years and will continue to be of interest in the future. Smith et

al. (1992) [52] describe the airline revenue management problem as a non-linear,

1
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stochastic, mixed-integer mathematical program that requires data such as pas-

senger demand pattern, cancellations, group reservations, cargo load, and other

estimates. Solving this problem would require approximately 250 million decision

variables! For the sake of feasibility and time, it has been reduced to three distinct

smaller problems: Overbooking, Discount allocation, and Traffic management in

[52].

The air transport industry operates its passengers service almost entirely on the

basis of pre-reservation. Passengers who make reservations may, with minor ex-

ceptions, cancel them or even not show up at the departure time without economic

penalty. Airlines, in turn, compensated for this flexibility by taking reservations

in excess of the capacity, i.e. overbooking. By this, the planes would not so often

depart with empty seats for which there was a demand.

As long as forty years ago, the major U.S. Airlines had a significant “no-show” problem. In

1961, the CAB (Civil Aeronautics Board) reported that the 12 leading carriers were experiencing a

very significant no-show rate: only 1 out of 10 passengers actually boarded. This statistic resulted

from an investigation undertaken because of reports, ultimately confirmed, that several major

carriers were deliberately overbooking. In the sixties, the so-called “no-shows” were becoming

a major problem for airlines who found they had many flights that were fully booked departing

with empty seats.— Rothstein (1985) [46]

So, in fact, the airline overbooking problem arises from the propensity of air-

line customers, who have made a reservation for a flight, to subsequently cancel

that reservation or make a no-show. In airline revenue management, cancellations

refer to return or changes of booked seats prior to flight departures, which can

be rebooked in the future, while no-shows refer to passengers that do not check

in without notifying the airline in advance which lead to ultimate vacancies. In

anticipation that cancellations and no-shows will occur, the airline may overbook

the flight, thereby reselling a seat vacated by a customer who cancels or will be a

no-show. The potential extra revenue from overbooking a flight must be balanced

against its costs. This arises because in overbooking, the airline runs the risk of
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not having sufficient capacity which is relatively fixed1 to accommodate all its cus-

tomers, in which case it must deny reservation requests or deny boarding to some

of them (i.e. bumping), thereby incurring a cost measured both financially and in

loss of goodwill.

One might think that a good strategy would be to avoid overbooking completely

in the attempt to keep all customers satisfied. However, because of passengers’

uncertainties, airlines have to adjust the policies to offset the effects of passenger

cancellations and no-shows, which is necessary and not so easy. Without overbook-

ing, it is estimated that 15 percent of seats would be spoiled on sold-out flights

[52]. Figure (1.1) from [52] shows that when there are cancellations, the capacity

of a plane can only be filled through overbooking.

P
e

rcen
tag

e o
f C

a
pacity

Reservation Pattern
Without

Overbooking

Overbooking Level

Capacity

Reservation Pattern
with Overbooking

Number of Days to Departure

0 20 40 60 80 100

Figure 1.1: Overbooking allows more reservations to be accepted. For flights close

to departure, there are more reservations accepted with overbooking to compensate

for cancellations and no-shows.

While unpopular with passengers, overbooking is effective at increasing load

factors and revenues. This raised the issue of determining the right booking limit

1The reason for this characteristic is very simple. If capacity were flexible, there would be

no need for a tradeoff. If airlines could add or remove seats on aircraft at will, there would

be no reason to try to manage capacity. Unfortunately, the plane cannot be enlarged, the only

flexibility allowed is to schedule the passenger on a later flight.
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(Overbooking Level), which is the maximum number of seats that can be sold

to passengers. The level of overbooking for each class of passenger has been the

topic of research for many years. If the booking limit is set too low, there will

be lots of empty seats. On the other hand, if the booking limit is set too high,

the benefits of filling the aircraft would be overwhelmed by the denied boarding

costs. Determining the optimal booking limit is the focus in the airline overbooking

problem. And, the airline has the opportunity to change the limit for the latest

demand forecast and changing human behaviors as departure approaches.

The following section will provide some main results in literature of airline rev-

enue management and trace the development of “overbooking” concept.

1.2 Models in Use

Current models can be grouped as leg-based and network-based. Leg-based

methods are aimed at optimizing the expected revenue on a single-leg flight.

Network-based models consider booking requests for multiple legs at the same

time. In either case, the booking control policy can be static, in which decisions

are based on pre-calculated booking limits, or dynamic, where the decision rules

will be changed during the booking period.

In details, the entire network of the flight can be separated into smaller flight

legs. The leg-based airline overbooking policy allows the airline to maximize the

total expected revenue from each leg, setting booking limits on all the fare classes

available in that leg. Therefore, reservations on that flight leg are accepted based

on the availability of a particular fare class on that leg. A passenger’s ultimate

destination, overall itinerary2 which includes multiple legs, or total revenue contri-

bution to the airline is not taken into account.

For the single leg airline overbooking problem, as mentioned above, the booking

control policy can be Static or Dynamic: those assuming that the demands fare

2Airline, typically, offers tickets for many origin-destination itineraries in various fare classes.
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classes3 arrive separately in a predetermined order and we get one-time setting of

booking limits for each class (Static), and those allowing customers of different fare

classes to book concomitantly, and we may change the booking limits during the

booking period (Dynamic).

If the route structure of an airline served each distinct origin and destination

(OD) market with isolated, non-stop, point-to-point flights, as shown in Figure

[1.2], a Leg-based approach would be all that was necessary. However, in real

world situations, the typical airline route structure is a more complex network

built around one or more connecting hubs, as shown in Figure [1.3].

Figure 1.2: Distinct origin and destina-

tion (OD) market with isolated, non-

stop, point -to-point flights.

Figure 1.3: Network is built around one

connecting hub.

A major flaw of leg-based models is that they only locally optimize booking

control, whereas an airline should strive to maximize revenue from its network as

a whole. Overbooking control focusing on individual flight legs does not guarantee

that revenues will be maximized across an entire network of flight, as Williamson

(1992) [62] stated.

[Example:] Consider a passenger travelling from A to C through B. That is,

travelling from A to C using flight legs AB and BC. If the single leg approach

is used, this passenger can be rejected on one of the flight legs because another

passenger is willing to pay a higher fare on this flight leg. But by rejecting this

3In this report, the terminology ‘fare classes’ actually refers to the buckets. I do not concern

myself with how airlines define their fare classes because the model presented in this report is

independent of the method of fare classification.
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demand, the airline loses an opportunity to create revenue for the combination of

the two flight legs. If the other flight leg does not get full, it could have been more

profitable to accept the passenger to create revenue for both flight legs.

Hence, determining an overall booking control strategy for the entire network

is far from trivial. Network overbooking control allows the airline to differentiate

between the many types of fares4 and the variety of itinerary values determining

seat allocations. The purpose of such control manages overall network traffic,

limiting sales by origin-destination itinerary, as well as fare class by methods which

incorporate mathematical programming and network flow techniques.

1.2.1 Static Overbooking Problem on Single Leg

We could unearth no scientific work or even discussion of the overbooking prob-

lem published earlier than 1958. In that year, an article by Beckmann (1958) [3]

employing a static one-period model with reservation requests, booking, and fi-

nally cancellations was issued. It contains a mathematical model to determine the

booking level that minimized the lost revenue due to empty seats plus the costs

of over-sales. The model of Kosten (1960) [31] has the same objective but is more

exact, in that it provides the interspersion of reservations and subsequent cancel-

lations (which Beckmann ignored, as he took it that all cancellations occurred at

departure time). An easier-to-implement model is published by Thompson (1961)

[59], which entirely ignores the probability distribution of passenger demand as

well as costs, and which requires data only on the cancellation proportions out

of any fixed number of reserved passengers. Thompson’s work influenced much

subsequent research.

The next important work was done by Taylor (1962) [58]. He adopted Thomp-

son’s approach and presented a model similar in spirit, but featuring a much more

exact treatment of cancellation, no-shows and group sizes. Deetman (1964) [20] at

4These fare classes not only include business and economy class, which are settled in separate

parts of the plane, but also include fare classes for which the difference in fares is explained by

different conditions for cancellation options or overnight stay arrangements or etc.
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KLM studied Taylor’s model to test its behavior and implementability. Rothstein

and Stone (1967) [47] developed a computer system for booking levels by using

a slightly simplified version of the Taylor’s model and capitalizing on the copious

cancellation statistics available from Sabre. Belobaba (1987) [5] and in part of his

Ph.D. dissertation [4], discussed the problem of overbooking in multiple fare classes

and suggested a heuristic approach to solve the problem. American Airlines imple-

mented (in 1976, with a major revision in 1987 [1]) such a model with additional

constraints to ensure that the level of service was not overly degraded (Smith et

al. 1992) [52]. More review in this area is given by Rothstein (1985) [46] and is

further discussed in Chatwin (1993, chapter 1) [15]. Chatwin dealt exclusively with

the overbooking problem and provided a number of new structural results. More

Recent work on the static overbooking problem is discussed by McGill (1989) [40],

Bodily and Pfeifer (1992) [10].

In Chapter Two, we critically explore two simple models (single-fare-class) and

generate 3 Rules corresponding to different policies to determine the optimal book-

ing limit. The model for rule one is similar to the one by Beckmann (1958) [3].

The model for Rule Two and Three are same as in [10]. The rest of this Chapter

is about static multi-fare-class problem on Single-leg. We revise Littlewood’s rule

(1972) [39] including overbooking for a Single-Leg, two-fare-class case. Similar to

what Belobaba (1987) [5] has done, we extend the result to get a revised EMSR

method for multi-fare-class case considering overbooking. Finally, we propose a

method incorporating overbooking based on the nested reservation system to find

out the optimal overbooking level and the optimal booking limits for each fare

class. The results generated by these solutions are optimal under the sequential

arrival assumption as long as no change in the probability distributions of the

demand is foreseen.
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1.2.2 Dynamic Overbooking Problem on Single Leg

A Drawback of the aforementioned models is that the dynamic nature inher-

ent in the reservations process and cancellation process is not considered. In the

“Dynamic Overbooking Problem”, the demand for each fare class is modelled as

a time-dependent process, where the inter-arrival time is lengthen or shorten as

the scheduled departure time approaches. Dynamic solution methods do not de-

termine the booking limits at the start of the booking period as the static solution

methods do. Instead, we should monitor the state of the booking process over time

and decide whether to accept a particular booking request when it arrives or reject

it, based on the state of the booking process at that point in time.

Rothstein (1968, 1971) [43][44] first formulated the airline overbooking problem

as a dynamic programming model, and he later did the same for the similar hotel

overbooking problem in [45]. Hersh and Ladany (1977) [35] modelled flights with

an intermediate stop using dynamic programming, and Ladany [32] [33] developed

models for the hotel/motel industry, and considered the extension to two or more

fare classes.

A characterization of the optimal dynamic policy based on a threshold time

property was done by Diamond and Stone (1991) [21], and later by Fend and

Gallego (1995) [25]. Lee and Hersh (1993) [38], considered a discrete time dy-

namic programming model, where demand for each fare class is modelled by a

non-homogeneous Poisson process. Using a Poisson process gives rise to the use of

a Markov decision model. They also provided an extension to their model to incor-

porate batch arrivals. Janakiram, Stidham, and Shaykevich (1999) [54] extended

the model proposed by Lee and Hersh to incorporate cancellations, no-shows and

overbooking. They also considered a continuous time arrival process as a limit to

the discrete time model by increasing the number of decision periods. In Chapter

Three, we will discuss more in details of two dynamic models which permit cancel-

lations, no-shows and overbooking. The difference between “Static Models” and

“Dynamic Models” defined in this report will also be described in section 1.3.
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1.2.3 Network Model

Revenues are maximized for each individual flight leg in the research described

above, but the flow of traffic and the interaction between flight legs are not taken

into account.

In the Static network models, the core problem is determining optimal decision

rules for sequentially accepting or denying Origin-Destination-Fare (ODF) itinerary

requests at the start of the booking period. We can create such model incorporat-

ing probabilistic demand and solve it by probabilistic mathematical programming

techniques. Alternatively, we can simplify the problem by substituting uncertain

demand by its expectation, which allows the use of deterministic mathematical pro-

gramming. Booking control can be implemented in various ways. We can aim at

determining booking limits. Booking requests are rejected if the respective booking

limits would otherwise be exceeded. An alternative form of booking control that

can be derived from the dual form of these models is based on bid-prices.

Bid-price control is, perhaps, one of the hottest decision rules in the last 10 years.

Instead of setting booking limits, this approach assigns a bid-price to each of the

flight legs in the network. The simple rule for this control policy is: A booking

request for an ODF itinerary is accepted if and only if the associated fare exceeds

the sum of the bid-prices of those legs along the itinerary. Simpson (1989) [51]

and Williamson (1992) [62] first studied this method and proposed approximations

to generate bid prices based on dual prices of various mathematical programming

formulations of the problem. The mathematical programming approach will han-

dle realistically large problems and will account for multiple origin-destination

itineraries and additional constraints. Even though, in general, the bid-price con-

trols are not optimal, they can still provide asymptotic optimal bid-prices when

the leg capacities and the sales volumes are large.

In fact, the most practical and relevant, yet least investigated model for Network

Revenue Management (NRM) is the dynamic network model. Talluri and Van

Ryzin (99A,B) [56] and [57] studied a dynamic network model using bid-price
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control mechanisms, argued why bid-price policies are not optimal, and provided

an asymptotic regime when certain bid-price controls, based on a probabilistic

programming formulation of the problem, are asymptotically optimal. Gunther and

Johnson (1998) [28] formulated the problem as a Markov Decision Problem, and

used linear programming and regression splines to approximate the value function.

In the following years, they introduced a new method to compute bid prices for

single hub airline network. However, none of these NRM-approaches which base

on additive bid prices handles cancellations and no-shows. Actually, most of the

network models ignore the cancellations, no-shows and overbooking.

However, we can use the typical overbooking method to decide an initial allocation

of overbooking pads, which are virtual increased in leg-capacity. By such method,

we can handle cancellations and no-shows to some extent.

Ladany and Bedi (1977) [34], and Hersh and Ladany (1978) [36], considered

the overbooking problem in the network environment which incorporated the time

distribution at which reservations and cancellations were actually made. Dror et

al. (1988) [22] also proposed a method by using a network flow representation of

the problem incorporating both cancellations and no-shows.

Bertsimas and popescu (2001) [7] proposed a new algorithm — Certainty Equiv-

alent Control, also handling cancellations and no-shows by incorporating oversales

decisions in the underlying linear programming formulation. This policy conceptu-

ally improves the current NRM-approach which bases on additive bid-pricing, by

using more insightful, piecewise linear approximations of opportunity cost. They

also reported more encouraging computational performance than Bid-price control.

We will look through that algorithm incorporating the cancellations, no-shows and

overbooking and obtain more results in Chapter Four.

1.3 Models on Single Leg: Static vs. Dynamic

The simpler approach to the Single-leg airline overbooking problem is often

solved by using the static models to find one-time setting of booking limits, while
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more complicated approaches use historical data, competitors’ actions, and current

trends to set initial booking limits, and then to make adjustments in these limits

as bookings materialize, which are indicated as dynamic models. Obviously, the

static models are less data demanding and, hence, have been well accepted by the

airline industry, even though they are not so practical. Therefore, it is compelling

to compare the static models from the dynamic models.

Static Overbooking Problem

Focus:

What limit to place on booking for each fare class, considering the cancellation

and no-show behaviors at the beginning of the booking process based on demand

estimates. Once the booking limits are calculated, they will not be changed until

the flight departs (Time-independent).

Assumptions:

1. Fare classes are booked sequentially5, but not exclusively in order of increasing

fare level. Once the bookings of one fare class stop, it will not be reopen again.

2. We do not consider the passenger arrival process over time, requiring instead

only the total demand for each class. It ignores the airline reservation process,

precisely, the stochastic evolution of demand over time.

3. We assume that arrival time uniquely determines the class of each request. In

other words, within each time period, all arriving customers request the same fare.

4. Customers can cancel their reservations (cancellations) or simply do not utilize

their reservation (no-shows), getting full, partial or no refund, which is depending

on the fare category.

5. Statistical independence of demands between booking classes6.

6. Single flight leg with no consideration of network effects.

5This is a common assumption in many of the earlier papers (e.g. Belobaba (1987) [4],

Belobaba (1989) [6], Wollmer (1992) [63], Brumelle and McGill (1993) [14] and Robinson (1995)

[42]).
6No information on the actual demand process of one fare can be derived from the actual

demand process of another fare.
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7. No demand recapturing which implies that every customer has got a strict

preference for a certain fare class and that a denied request is lost forever.

8. No batch booking which justifies looking at one booking request at a time.

Solution Technique:

Under some assumptions, create the total expected revenue function or the total

expected cost function, then try to find the optimal booking limit for each fare

class to maximize the revenue function or to minimize the cost function.

Demand Data Needed:

We need the estimation of the probability distribution of the total demand for each

fare class.

Dynamic Overbooking Problem

Focus:

Whether to accept a particular reservation request at its particular arrival time,

considering the dynamic characteristics of the cancellation and no-show behaviors

(Time-dependent Booking Limits).

Assumptions:

1. Requests for each fare class can arrive throughout the reservation horizon, no

assumptions are made on the arrival order of the fare classes.

2. The demand for each fare class is modelled as a time-dependent process.

3. Customers may cancel their reservations at any time up to the departure of the

flight or simply do not utilize their reservation (no-shows), getting full, partial or

no refund, which is time and class dependent/independent.

(Same as Assumptions 5-8 in Static Overbooking Problem.)

Solution Technique:

Dynamic programming, using the time remaining until departure (suitably divided
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into periods or stages) as the index. In order to decide whether or not to accept

the booking request, at its particular arrival time, the opportunity cost of losing

this seat taken up by the booking has to be evaluated and compared to the rev-

enue generated by accepting the booking request. As the number of periods grows

to infinitely, the distribution of total arrivals will converge to a nonhomogeneous

Poisson distribution.

Demand Data Needed:

We need the distribution of the customer arrival times.

[Remark 1:] The early control systems (Static Models) are based on booking lim-

its, which are typically determined at the beginning of the booking process based

on demand estimates. Most carriers which actively control seat inventories have

developed or invested in some type of statistical data management and decision

support system. These systems collect and store historical reservations data and

estimate demand based on historical patterns and forecasting models. This allows

airline to respond to changes in booking patterns to update these booking limits

as departure time approaches, although it is practically undesirable to recalculate

them every time a booking request is made.

[Remark 2:] In dynamic models, the demand is modelled as a stochastic process

and decision making is performed under uncertainty. At each point of time, the

optimal decision should be determined. However, the booking policy of static

models is fixed throughout the booking period and does not adapt to unexpected

developments in the demand. Due to the intractable computation of the dynamic

programming solutions, the static models are often used to approximate dynamic

policies, by solving the model at several fixed times during the booking process.



Chapter 2
Static Overbooking Problem (Single Leg)

2.1 Introduction

The static overbooking problems focus on setting the booking limits for each fare

class to maximize the expected profit for the airline. In detail, for each fare class

on Single-Leg, statistical models are applied to historical booking data to forecast

the expected demand for all future departure. We use these demand forecasts to

determine the booking limits for each fare class at the start of the booking process,

incorporating the overbooking factors, to minimize the lost revenue due to empty

seats plus the costs of oversales, or to maximize the expected revenue function.

Once these limits are set, they will not be changed until the flight takes off. The

booking limits for each class give the number of seats available for that class.

In this Chapter, we explore two simple models (single-fare-class) in Section 2.2

and generate 3 Rules corresponding to different policies to determine the optimal

booking limit. Rule One is generated and proved completely. The model for rule

one is similar to the one by Beckmann (1958) [3]. The model for Rule Two and

Three is same as Bodily and Pfeifer’s (1992) in [10]. That is a general and prac-

tical Static model on Single-leg, which is worthy of further research. In Section

2.3, we concern more about the Static multi-fare-class problem on Single-Leg. We

will revised Littlewood’s rule (1972) [39] including overbooking for a Single-Leg,

14
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two-fare-class problem first. Similar to what Belobaba (1987) [5] did, we extend

our result to get a revised EMSR method for multi-fare-class case allowing over-

booking. Finally, we will propose one solution incorporating overbooking in the

nested reservation system to find out optimal booking limit for each fare class. The

papers relevant to our work in this Chapter are [5], [10], [62], [24], [39] and [49].

2.2 Single-fare-class Model

The Single-fare-class on Single-leg problem is considered in most of the earlier

works. That is, only one fare class is considered in the reservation system. A pas-

senger comes for a request which can be either a booking request or a cancellation.

The airline should find some decision policies to determine whether to accept the

booking request or reject it when it arrives. The key point for such static problem

is to determine the optimal overbooking level B (i.e. booking limit for this fare

class), which is a one-time setting and will not be changed until the flight takes

off. The booking requests can be accepted if only if the optimal overbooking level

hasn’t been exceeded. So, we should find a decision rule to determine how much

to overbook the flight in order to minimize the sum of oversale and spoilage costs,

or to maximize the expected net revenue which is equal to the total revenue minus

expected oversale cost.

Define:

k The overbooking rate such that (1 + k) · C = B.

Ro The overbooking penalty/Denied boarding cost.

Rsp

Spoilage cost per passenger, which is the revenue lost by not

being able to fill the capacity due to show up falling short of

capacity.

α The show up rate.

I. Rule One
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Assumptions:

1. Reservations are accepted on a first-come, first-served basis. No additional

reservations will be accepted once bookings have been stopped.

2. The amount of passengers that will show up at the gate is B ∗ α, where the

show-up rate α is not deterministic, with a probability density function, h(α), and

0 ≤ α ≤ 1.

3. The survivals are stochastically independent of one another.

[Rule 1:] We suppose α (show-up rate) is not deterministic here, with a probability

density function h(α) and 0 ≤ α ≤ 1. The optimal overbooking level B = (1 +k)∗
C, where k can be obtained by:

Ro

Ro +Rsp
=

∫ 1
1+k

0 h(α)αdα∫ 1

0
h(α)αdα

[Proof:]

In the simplest form, assuming all values are deterministic, the overbooking level

may be computed as given below. Assuming reservations book to the overbooking

level B, the number of passengers that will show up at the gate is B · α. Ideally,

one would like to set B such that B · α = C. When 0 ≤ α < C
B

, spoilage occurs

and the amount of spoilage is equal to C −B · α; the corresponding spoilage1 cost

is Rsp · (C−B ·α). When α > C
B

, oversale occurs and the amount of oversold seats

is equal to B · α− C; the corresponding oversale cost is equal to Ro · (B · α− C).

Now, we relax the assumption that the show up rate is deterministic.

Hence, the expected spoilage cost is:

E[SC] = Rsp

∫ 1

0

h(α)[C − (1 + k)Cα]+dα

= Rsp

∫ 1
1+k

0

h(α)[C − (1 + k)Cα]dα

1Spoilage cost per passenger, which is the revenue lost by not being able to fill the capacity

due to show up falling short of capacity.
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The expected oversale cost is:

E[OC] = Ro

∫ 1

0

h(α)[(1 + k)Cα− C]+dα

= Ro

∫ 1

1
1+k

h(α)[(1 + k)Cα− C]dα

So, the expected total cost is:

E[TC] = E[SC] + E[OC]

= Rsp

∫ 1
1+k

0

h(α)[C − (1 + k)Cα]dα

+Ro

∫ 1

1
1+k

h(α)[(1 + k)Cα− C]dα (2.1)

Differentiating with respect to k, we obtain:

dE[TC]

dk
=

d

dk
[Rsp

∫ 1
1+k

0

h(α)Cdα−Rsp

∫ 1
1+k

0

h(α)(1 + k)Cαdα]

+
d

dk
[Ro

∫ 1

1
1+k

h(α)(1 + k)Cαdα−Ro

∫ 1

1
1+k

Ch(α)dα]

= − 1

(1 + k)2
Rsph(

1

1 + k
)C −Rsp

∫ 1
1+k

0

Cαh(α)dα

+Rsp(1 + k)
1

(1 + k)2
C(

1

1 + k
)h(

1

1 + k
)

+Ro

∫ 1

1
1+k

Ch(α)αdα +Ro 1

(1 + k)2
(1 + k)Ch(

1

1 + k
)(

1

1 + k
)

+RoC(− 1

(1 + k)2
)h(

1

1 + k
)

= Ro

∫ 1

1
1+k

Ch(α)αdα−Rsp

∫ 1
1+k

0

Cαh(α)dα

d2E[TC]

dk2
= −Ro(− 1

(1 + k)2
)Ch(

1

1 + k
)(

1

1 + k
)−Rsp(− 1

(1 + k)2
)C(

1

1 + k
)h(

1

1 + k
)

=
1

(1 + k)3
h(

1

1 + k
)C(Ro +Rsp) ≥ 0

So, E[TC] is a convex function and we can obtain the global minimum value.
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Let dE[TC]
dk

= 0 and µα =
∫ 1

0
h(α)αdα, we get:

dE[TC]

dk
= RoC(µα −

∫ 1
1+k

0

h(α)αdα)−RspC

∫ 1
1+k

0

h(α)αdα = 0

RoCµα = (RoC +RspC)

∫ 1
1+k

0

h(α)αdα

Ro

Ro +Rsp
=

∫ 1
1+k

0 h(α)αdα

µα
=

∫ 1
1+k

0 h(α)αdα∫ 1

0
h(α)αdα

(2.2)

The k satisfying Eq.(2.2) is the overbooking rate to get the minimum expected cost

for the airline, hence, optimal overbooking level can be obtained by B = (1+k)∗C.

�

Here the solution to the formulation depends upon the underlying probability

distribution. Almost all the airlines keep a record of past-departure data for all

flights. These data can be used to study the form and parameters of the underlying

distribution, which may be uniform, normal or beta.

[An Example]

Here is an example to illustrate the probabilistic overbooking model formulations

presented in this section. We assume the underlying distribution is uniform.

We assume that show-up rate α is distributed uniformly over [0.8, 1],

then h(α) = 1
1−0.8

= 5, (0.8 ≤ α ≤ 1)

so µα =
∫ 1

0.8
αh(α)dα =

∫ 1

0.8
5αdα = 0.9.

We suppose that: Ro = Rsp = 2f per seat of the capacity,

From Eq.(2.2), we have

1

2
=

∫ 1
1+k

0.8 5αdα

0.9∫ 1
1+k

0.8

5αdα = 0.45

(
1

1 + k
)2 = 0.82

(1 + k)
.
= 1.1043.

The overbooking level B = (1 + k) · C = 1.1043C.



2.2 Single-fare-class Model 19

[Remark ] The solution to the formulation Eq.(2.2) depends upon the underlying

probability distributions. In real life, the case is not as simple as Eq.(2.2), since the

formulation will be more complex for the decision support system. We assume the

amount of passengers that will show up at the gate is B∗α, where the show up rate

α is a random variable. We use the expected number instead of the distribution,

to get one decision rule. This rule is attractive for its simpleness. However, it may

not be optimal by using the mean number. Together with the assumption that α is

random, one can try to extend the Rule One to use the compound distribution to

establish the optimal decision rule. Rule Two and Three as follows are treated as

classical models for Static Airline Overbooking Problem. Instead, in Rule Two and

Three, we assume that the show up rate α is constant and establish the optimal

decision rule using the different distributions.

II. Rule Two

We assume that:

1. The number of the survivals is the binomial process with constant α,

i.e. S(B) v Bin(B,α).

2. The survivals are stochastically independent of one another.

3. Group bookings are not allowed here or treated as individual bookings.

4. Cancellations that occur after bookings which have been stopped are treated as

no-shows.

5. Customers can be rejected boarding and get back (f+R), where R is the refund

to customer.

[Rule 2:] The decision rule with binomial survivals would suggest that the (B +

1)th booking be accepted as long as:

C−1∑

k=0

(
B

k

)
αk(1− α)B−k >

R

R + f
. (2.3)

[Proof:]
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Let U(B) be the total revenue to be maximized if we curtail bookings at B:

U(B) = f · S(B)− (R + f) · [S(B)− C]+

E[U(B)] is the total expected revenue over the random variable S. We assume

that the decision maker’s goal is to find the value B∗ that maximize E[U(B)]. If

E[U(B)] is concave function of B, we will book (B + 1)th customer as long as:

E[U(B + 1)]− E[U(B)] > 0

Thus the optimal overbooking level B∗ is the largest (B + 1) such that E[U(B +

1)]− E[U(B)] > 0.

Note that E[S(B) − C]+ = 0 for B ≤ C, E[U(B)] will be a non-decreasing

function of B ≤ C. We now prove that E[U(B)] is concave function for B ≥ C.

E[U(B + 1)]− E[U(B)]

= f · (E[S(B + 1)]− E[S(B)])− (R + f) · (E[S(B + 1)− C]+ − E[S(B)− C]+)

= f · [α · (B + 1)− α ·B]− (R + f) · [
B+1∑
i=C+1

(
B + 1

i

)
· αi · (1− α)B+1−i · (i− C)

−
B∑

i=C+1

(
B

i

)
· αi · (1− α)B−i · (i− C)]

We know that:
(
B+1
i

)
=
(
B
i

)
+
(
B
i−1

)
.

= f · α− (R + f) · [αB+1(B + 1− C) +
B∑

i=C+1

(
B

i

)
· αi · (1− α)B+1−i · (i− C)

+
B∑

i=C+1

(
B

i− 1

)
· αi · (1− α)B+1−i · (i− C)−

B∑
i=C+1

(
B

i

)
· αi · (1− α)B−i · (i− C)]

= f · α− (R + f) · [αB+1(B + 1− C) +
B∑

i=C+1

(
B

i− 1

)
· αi · (1− α)B+1−i · (i− C)

−α ·
B∑

i=C+1

(
B

i

)
· αi · (1− α)B−i · (i− C)]
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Let k = i− 1.

= f · α− (R + f) · [αB+1(B + 1− C) +
B−1∑

k=C

(
B

k

)
· αk+1 · (1− α)B−k · (k + 1− C)

−α ·
B∑

i=C+1

(
B

i

)
· αi · (1− α)B−i · (i− C)]

= f · α− (R + f) · [
B∑

k=C

(
B

k

)
· αk+1 · (1− α)B−k · (k + 1− C)

−
B∑

i=C+1

(
B

i

)
· αi+1 · (1− α)B−i · (i− C)]

= f · α− (R + f) ·
B∑

k=C

(
B

k

)
αk+1(1− α)B−k

=⇒ (E[U(B + 1)]− E[U(B)])− (E[U(B)]− E[U(B − 1)])

= −(R + f) · [
B∑

k=C

(
B

k

)
αk+1(1− α)B−k −

B−1∑

k=C

(
B − 1

k

)
αk+1(1− α)B−1−k]

= −(R + f) · [αB+1 +
B−1∑

k=C

(
B − 1

k

)
αk+1(1− α)B−k

+
B−1∑

k=C

(
B − 1

k − 1

)
αk+1(1− α)B−k −

B−1∑

k=C

(
B − 1

k

)
αk+1(1− α)B−1−k]

= −(R + f) · [αB+1 +
B−1∑

k=C

(
B − 1

k − 1

)
αk+1(1− α)B−k

−
B−1∑

k=C

(
B − 1

k

)
αk+2(1− α)B−1−k]

Let z = k + 1.

(E[U(B + 1)]− E[U(B)])− (E[U(B)]− E[U(B − 1)])

= −(R + f) · [αB+1 −
B∑

z=C+1

(
B − 1

z − 1

)
αz+1(1− α)B−z +

B−1∑

k=C

(
B − 1

k − 1

)
αk+1(1− α)B−k]

= −(R + f) · [
B∑

k=C

(
B − 1

k − 1

)
αk+1(1− α)B−k −

B∑
z=C+1

(
B − 1

z − 1

)
αz+1(1− α)B−z]

= −(R + f) · [
(
B − 1

C − 1

)
αC+1(1− α)B−C ]

< 0.
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So E[U(B)] is concave function of B ≥ C, because (E[U(B + 1)] − E[U(B)]) is

strictly decreasing in B ≥ C. Hence, we will book (B + 1)th customer as long as:

E[U(B + 1)]− E[U(B)] > 0

⇔ f · α− (R + f) ·
B∑

k=C

(
B

k

)
αk+1(1− α)B−k > 0

⇔ f > (R + f) · [1−
C−1∑

k=0

(
B

k

)
αk(1− α)B−k]

⇔
C−1∑

k=0

(
B

k

)
αk(1− α)B−k >

R

R + f

We proved that the (B + 1)th booking can be accepted as long as:

C−1∑

k=0

(
B

k

)
αk(1− α)B−k >

R

R + f
. 2

[Remark 1:] The survival probability which is a constant here must be estimated

subjectively or from past data.

[Remark 2:] Eq.(2.3) can be stated: curtail bookings when the probability of

spoilage has decreased to the ratio R
f+R

. It can be treated as a primary decision

rule and can be extended to increasingly more practical assumptions about the

survival process.

[Remark 3:] In Rule Two, we assume that the survival process is binomial. If

passengers book in small groups or passengers cancel in small groups, then cancel-

lation patterns are not independent any more, and the distribution is not binomial.

So group bookings are not allowed here or treated as individual bookings.

[Remark 4:] Actually, this model (See the below chart for illustration) is the clas-

sical model in the Static Airline Overbooking Problem and can be used as a basic

step for us to go further in this problem.

III. Rule Three

It is convenient and practical to treat the overbooking level and the survival

quantities as continuous variables. Empirical studies have shown that the normal
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Classical overbooking model

B : number of reserv. accepted

refund on
cancellation

S(B): number of survivors

C: capacity of inventory

(S(B)-C)+:  denied boarding

cancel

survive

Binomial Process

Stage 1:

Stage 2:

overbooking
limits B*

- cost

probability distribution gives a good continuous approximation to airline demand

distributions. Applying the normal approximation to the binomial distribution,

we get the following decision Rule 3. Under the assumption of binomial survivals

with constant α, the implementation of the optimal decision rule prescribes a fixed

limit on the number of reservations to be booked (based on f,Ro, C, α that can

be put in prior to accepting reservations) to maximize the expected net revenue

which is equal to the total gross revenue minus expected oversale cost.

[Rule 3:Continuous normal decision rule ]

Book reservations up to B which is determined by:

Φ =
Ro

f +Ro
+
φ · √1− α

2
√
Bα

where φ is the unit normal probability density function and Φ is the left-tail unit

normal cumulative distribution function, both evaluated at (C−αB)

[αB(1−α)]
1
2

.

[Proof:]

Assume that the distribution for survivals S given B books is normal, with mean
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µ = αB and variance σ2 = α(1− α)B. The value to be maximized is:

U(B, S) =





fS, if 0 ≤ S ≤ C

fC −Ro(S − C), if S > C

The expected value of U(B,S) over the random variable S is then

E[U(B,S)] =

∫ C

0

fS · θ(S|B)dS +

∫ ∞
C

[fC −Ro(S − C)]θ(S|B)dS

where θ(S|B) is the normal probability density (given B): 1√
2πσ
· e− (S−µ)2

2σ2 .

Let Θ(C) =
∫ C
−∞ θ(S|B)dS which is the left-tail cumulative distribution function.

So, we have:

Θ(C) =

∫ C

−∞
θ(S|B)dS

=

∫ C

−∞

1√
2πσ
· e− (S−µ)2

2σ2 dS

=

∫ C−µ
σ

−∞

1√
2π
· e−x

2

2 dx

= Φ(
C − µ
σ

)

= Φ(z)

where, z = C−µ
σ

and Φ(z) =
∫ z
−∞ φ(x)dx, where φ(x) is the unit normal probability

density function.

Hence, the expression may be retreated as:

E[U(B, S)] =

∫ +∞

−∞
fS · θ(S|B)dS −

∫ ∞
C

fS · θ(S|B)dS −
∫ 0

−∞
fS · θ(S|B)dS

+

∫ ∞
C

[fC −Ro(S − C)]θ(S|B)dS

= fµ− (f +Ro)

∫ ∞
C

Sθ(S|B)dS + (f +Ro)

∫ ∞
C

Cθ(S|B)dS

= fµ− (f +Ro)

∫ ∞
C

Sθ(S|B)dS + (f +Ro)C[1−Θ(C)]
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∫ ∞
C

Sθ(S|B)dS =

∫ +∞

−∞
Sθ(S|B)dS −

∫ C

−∞
Sθ(S|B)dS

= µ−
∫ C

−∞
S · 1√

2πσ
· e− (S−µ)2

2σ2 dS

= µ+

∫ e
− (C−µ)2

2σ2

0

σ2 1√
2πσ

d(e−
(S−µ)2

2σ2 )

−µ
∫ C

−∞

1√
2πσ
· e− (S−µ)2

2σ2 dS

= µ+ σ2 1√
2πσ
· e− (C−µ)2

2σ2 − µ ·Θ[C]

= µ[1−Θ(C)] + σ2 · θ(C)

= µ[1− Φ(z)] + σ · φ(z) (2.4)

where, µ = αB , σ2 = αB(1− α).

So, we get

E[U(B, S)] = fµ− (f +Ro)[µ(1− Φ) + σ · φ] + (f +Ro)C(1− Φ)

= fµ− (f +Ro)[σ · φ− (C − µ)(1− Φ)] (2.5)

∂E[U(B, S)]

∂B
= fα− (f +Ro)[φ

σ

2B
+ σ

∂φ

∂B
+ α(1− Φ) + (C − µ)(

∂Φ

∂B
)] (2.6)

Set ∂E[U(B,S)]
∂B

= 0.

α(1− Φ) =
fα

f +Ro
− [φ

σ

2B
+ σ

∂φ

∂B
+ (C − µ)(

∂Φ

∂B
)]

It is easy to get that σ ∂φ
∂B

+ (C − µ)( ∂Φ
∂B

) = 0.

=⇒ α(1− Φ) =
fα

f +Ro
− φ σ

2B

=⇒ Φ =
Ro

f +Ro
+ φ

σ

2µ

=⇒ Φ =
Ro

f +Ro
+
φ · √1− α

2
√
Bα

The B satisfying the above equation is the optimal overbooking level. 2

[Example:] We consider a hypothetical airline, Bell Air. On one of its flights,

previous records show that about 15% of people who had tickets for the flight did
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not take the flight. There are C = 120 seats on the plane. Assuming that any par-

ticular individual on the flight has a probability of 0.15 of not showing up, and that

whether each individual shows up is independent from whether any other individual

shows up. This is a binomial situation with B trials and α = 0.85. Since B will be

at least 120, it is appropriate to use normal approximation to binomial distribution

since αB ≥ 120(0.85) = 112 > 5 and B(1−α) ≥ 120(0.15) = 18 > 5. We use a nor-

mal approximation, µ = αB = B(0.85) and σ =
√
Bα(1− α) =

√
B(0.15)(0.85).

Suppose f = 450 and Ro = 200, so, we have Ro

f+Ro
= 0.31. From the normal distri-

bution table, the corresponding z = −0.50. So by Rule Three, we get 143 as the

optimal booking level.

[Remark 1:] The model for Rule Three is same in Bodily and Pfeifer (92)[10].

They got the first result Eq. (2.4) without proof, saying that it could be obtained

by using the expansion for a right-tail normal integral from Raiffa and Schlaifer

(1961) [41]. We apply the same model from [10], analyze the problem carefully and

complete the proof here.

[Remark 2:] A useful extension of the Rule Three is to consider survival prob-

abilities that depend on the time the reservation is made, which is more practical,

for reservations made only a few periods ahead may produce survivals with more

likelihood than reservations made many periods ahead. These reservations with

time-varying probabilities can be treated as different fare classes. In some sense,

this problem can be treated as a multi-fare-class, single-leg problem.

[Remark 3:] Rule One, Two, Three are all simplest models with one fare class

on Single Leg. We gave out different decision rules to determine the overbooking

level. We ignored the demand factor which is reasonable only for one fare class.

In the case with more than two fare classes, it is more complicated and we should

definitely consider about the demand distribution.
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[Claim:] The demand factor will not affect our decision rule for Static, Single-leg,

Single fare class problem.

[Proof:]

Define U(B,D, S) be the total revenue to be maximized if we curtail bookings at

B, as defined previously, but it includes the demand factor.

U(B,D, S) = f · S(min{B,D})− (R + f) · [S(min{B,D})− C]+

where D is the demand and S(min{B,D}) is the number of the survivals, where

S can be any distribution. E[U(B,D, S)] is the total expected revenue over the

random variable S. Let x as the demand random variable, with a probability

density function, g(x).

E[U(B,D, S)] =

∫ ∞
0

f · E[S(min{B, x})] · g(x)dx

−
∫ ∞

0

(R + f) · E[S(min{B, x})− C]+ · g(x)dx

=

∫ B

0

f · E[S(x)] · g(x)dx+

∫ ∞
B

f · E[S(B)] · g(x)dx

−
∫ B

0

(R + f) · E[S(x)− C]+ · g(x)dx

−
∫ ∞
B

(R + f) · E[S(B)− C]+ · g(x)dx

∂E[U(B,D, S)]

∂B
= f · E[S(B)] · g(B) +

∫ ∞
B

f · ∂E[S(B)]

∂B
· g(x)dx− f · E[S(B)] · g(B)

−(R + f) · E[S(B)− C]+ · g(B) + (R + f) · E[S(B)− C]+ · g(B)

−
∫ ∞
B

(R + f) · ∂E[S(B)− C]+

∂B
· g(x)dx

= f · ∂E[S(x)]

∂B
· Pr{D ≥ B} − (R + f) · ∂E[S(B)− C]+

∂B
· Pr{D ≥ B}

Let ∂E[U(B,D,S)]
∂B

= 0. We have:

f · ∂E[S(x)]

∂B
= (R + f) · ∂E[S(B)− C]+

∂B

We proved that the demand factor will not affect our decision rule.
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2.3 Multi-fare-class Model

Nested Reservation System:

Let’s consider a Single-leg overbooking control problem in which bookings are

accepted into two fare classes in the nested reservation system [Figure 2.1]. Nesting

is preferable in airline seat management. In the partitioned structure [Figure 2.2],

the booking requests for the higher fare class will not be accepted even the limit for

the lower fare class will never be exceeded. So the airlines without nested reserva-

tion systems are denying themselves the flexibility of accommodating unexpectedly

high demand levels in high-fare classes and, in turn, are losing potential revenues.

Williamson (1992) [62] presented that the expected revenue from a nested structure

is equal to or greater than that of a partitioned structure.

 

 

Highest Class 

Lowest Class 

f1

f2

f3

f4

Capacity

Figure 2.1: Nested Structure.

 

 

Highest Class 

Lowest Class 

f1

f2

f3

f4

Capacity

Figure 2.2: Partitioned Structure.

Littlewood (1972) [39] was the first to propose a solution to a booking control

problem for a Single-leg flight with two fare classes in Nested Reservation System.

The idea of his scheme is to equate the marginal revenues in each of the two fare

classes, closing down the lower fare class when the certain revenue from selling

another lower fare seat is exceeded by the expected revenue of selling the same

seat to a higher fare.

[Note:] The assumption 1 of Rule One in previous section: Sell the tickets on

a first-come, first-served basis, is not practical for a multi-fare-class problem. If
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we still use this assumption, let’s say in a two-fare-problem (Leisure travellers and

Business travellers), its capacity is likely to fill up early with leisure travellers,

who are eager to fix their holiday trip. Later bookers, typically business travellers

willing to pay a higher fare, will then find that there are no seats left, and these

sales will be lost. So here we will ideally assume that lower fare comes before the

higher fare, and try to find limit on the lower fare class to protect some seats for

the later higher fare class.

Under this assumption, Littlewood suggested that total revenue on flight leg

would be maximized if additional low fare bookings were accepted based on the

condition that the certain revenue obtained from each incremental low fare pas-

senger exceeded the expected marginal revenue of saving the seat for a potential

high fare passenger. That is: f2 ≥ f1 ·
∫∞

Π1
2
p1(D1)dD1. Hence, this rule can deter-

mine when to stop accepting bookings from Class 2 and how many seats should

be protected for Class 1, so as to maximize the total expected revenue without

considering overbooking, where,

fi The fare for the class i and f1 > f2 > 0.

D1 The total demand for seats in the class 1.

D2 The total demand for seats in the class 2.

p1(D1)
The probability distribution for the total number of requests

for reservations, D1 received by the airline for seats in class 1.

Π1
2

The number of seats protected for Class 1 from Class 2 book-

ings (protection level without considering overbooking).

B1

The maximum number of seats available for the fare class 1

(Booking limit for the higher fare class).

B2

The maximum number of seats available for the fare class 2

(Booking limit for the lower fare class).
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By determining a protection level for the high fare class, they also set the booking

limits for both classes, i.e. the maximum number of seats available for higher fare

class is: C and for lower fare class is: C − Π1
2. The reservation system is nested.

If class 2 booking requests never reach C − Π1
2, the unsold seats will be available

for unexpectedly higher class 1 demand.

Belobaba (1987) [5] extended Littlewood’s rule to multiple fare classes and intro-

duced the term expected marginal seat revenue (EMSR) for the general approach.

Assume that: we have m fare classes and f1 > f2 > · · · > fm.

Pi(Πi
j) =

∞∑

Di=Πij

pi(Di)

EMSRi(Π
i
j) = fi ·Pi(Πi

j) = fj (i < j j = 2, 3, · · · ,m)

where Πi
j is the protection level for class i from class j without considering over-

booking.

His method produced nested protection levels, i.e. set the transparent booking

limits for the higher fare class.

Bj = max{0, C −
∑
i<j

Πi
j}

Although the EMSR method is not optimal for more than two fare classes, it does

provide good booking limits in practice.

However, Littlewood didn’t consider cancellations, no-shows and overbooking

in his model. It can be of interest to revise the Littlewood’s rule incorporating

overbooking. The demand inputs required are still estimates of the densities of

requests for each fare class. The difference here is that each accepted booking

request in a fare class cannot be treated as if the revenue associated with that

class will always be realized.

We assume that each passenger in class 1 has an independent probability α1 of

showing up, with 0 < α1 < 1 and each passenger in class 2 has an independent

probability α2 of showing up, with 0 < α2 < 1.

We assume that lower valued fare classes book before higher valued fare classes.

Suppose a request comes to book one more seat in Class 2, we have to make a
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decision whether the request should be accepted by closing down one seat in Class 1

or reject it. We use π1
2 as the number of seats left for Class 1 from Class 2 bookings,

which takes no-shows and overbooking into considerations. If we accept one more

booking request for class 2, we will have π1
2 − 1 tickets to class 1. Otherwise, we

will keep all the left tickets (π1
2) to class 1.

If we accept this booking request and no more request will be accepted in Class

2, airline will get:

U(1) = f1 · α1 ·min{π1
2 − 1, D1}+ f2 · α2

If we reject it:

U(0) = f1 · α1 ·min{π1
2, D1}

The expected values are:

E[U(1)] = f1 · α1 · [
π1

2−1∑
D1=0

D1p1(D1) +
∞∑

D1=π1
2

(π1
2 − 1)p1(D1)] + f2 · α2

E[U(0)] = f1 · α1 · [
π1

2−1∑
D1=0

D1p1(D1) +
∞∑

D1=π1
2

π1
2p1(D1)]

The optimal solution must be such that it gives a higher expected value, hence,

it is optimal to accept the booking only if E[U(1)] ≥ E[U(0)].

f1 · α1 · [
π1

2−1∑
D1=0

D1p1(D1) +
∞∑

D1=π1
2

(π1
2 − 1)p1(D1)] + f2 · α2

≥ f1 · α1 · [
π1

2−1∑
D1=0

D1p1(D1) +
∞∑

D1=π1
2

π1
2p1(D1)]

That is, this Class 2 request should be accepted only if :

f2 · α2 ≥ f1 · α1 ·
∞∑

D1=π1
2

p1(D1).

From the above analysis, we will get the revised Littlewood’s rule as follows:

Revised Littlewood’s rule:

We accept an additional low fare bookings based on the condition that the certain
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revenue obtained from each incremental low fare passenger exceeded the expected

marginal revenue of saving the seat for a potential high fare passenger. That is:

f2 · α2 ≥ f1 · α1 ·
∞∑

D1=π1
2

p1(D1). (2.7)

The smallest value of π1
2 that satisfies Eq.(2.7) is the number of seats protected for

the higher fare class, which we call the optimal protection level.

[Remark 1:] We get the Eq.(2.7), then we can get the optimal protection level

for class 1 from class 2. However, by determining a protection level for the high

fare class, we still cannot set the booking limits for both classes. 2

Define:

B∗
The optimal overbooking level (Booking limit for the higher

fare class).

[Remark 2:] The function depends on the probability distribution of D1, which

is a discrete random variable. Most of the time, it is quite painful process to

find a representation of this probability distribution when the range of all possible

values for demand is large. Hence, continuous random variable can be considered

to approximate the discrete random variable D1.

Similar to Belobaba’s way, we also extend the revised Littlewood’s rule men-

tioned above to multiple fare classes on Single-leg. We call it revised EMSR

(rEMSR).

We accept an additional lower fare bookings based on the condition that the

certain revenue obtained from each incremental lower fare passenger exceeded the

expected marginal revenue of saving the seat for a potential higher fare passenger.

2We need to get an overbooking level, or sometimes called ‘Pseudo-capacity’ (which is equal to

Capacity + Overbooking Pad) since the overbooking level B∗ is treated as if it were the seating

capacity of the airplane. As the Pseudo-capacity approach decomposes the cancellation of the

total overbooking limit from calculation of the booking limit for each fare class, it is probably the

most widely used approach to overbooking in real world revenue management implementations.

i.e. If we can find: B∗= Capacity + Overbooking Pad, then we can set B1 = B∗ and B2 = B∗−π1
2 .
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That is:

fj · αj ≥ fi · αi ·Pi(πij) = rEMSRi(π
i
j), i < j, j = 2, 3, · · · ,m. (2.8)

where the smallest value πij satisfying the above condition is the protection level

for Class i from Class j (i < j).

f1

f2

f3

2
3

B
1
=B*

B
2
 =B*-

B
3
=B*- 1

3
- 2

3

Overbooking Level B*

Figure 2.3: The rEMSR solution for the nested 3-class example.

However, the derivation of overbooking limits, Bi, from the revised EMSR deci-

sion rule is still complicated. The simplest case is when show up rates αi across fare

classes are following the equal, so that the revised EMSR formulation is reduced

to the original EMSR. And we assume that all the oversold tickets from the lowest

fare class fm with penalty to the airline R. We set Di as the totally demand for

ith fare class and D = D1 + · · ·+Dm. If we can find the optimal overbooking level

B∗ = B1, which is available for all the fare class, we can obtain all the overbooking
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limits simply by: Bj = B1 −
∑

i<j π
i
j, (j = 2, 3, · · · ,m). The net result is that

each fare class may be overbooked by the same percentage and B∗ will be the same

regardless of the fare class mix actually booked for any particular flight.

We can find the optimal overbooking level using one approach by a weighted

average fare as follows:

f =

∑m
1 fi · E[Di]∑m

1 E[Di]
.

The total revenue to be maximized for the airline can be defined as:

f · S(min{B1, D})−R · E[S(min{B1, D})− C]+.

From the claim in Section 2.2, we have known that the demand factor will not affect

the Single-leg, Single-fare-class problem. So we have the total revenue function as

follows to be maximized:

f · S(B1)−R · E[S(B1)− C]+.

Hence, we can find an optimal B1 = B∗ referring to Rule Two or Rule Three when

the S follows the binomial or normal distribution. Subsequently, we can find all

the Bi.

[Conclusion:]

We have explored the multiple fare classes, Single-leg problem in nested struc-

ture in this section. In a nested reservations system, fare classes can be structured

as such that a request will always be accepted as long as seats are available in the

respective or any of lower fare classes. Such system is binding in its booking limits

on the lower fare, but the limits are ‘transparent’ from the higher fare classes.

Williamson (1992) [62] shows that the nested reservation system can take equal

or more expected revenue for the airline than the partitioned system. We have

revised EMSR method to find the protection levels πij for Class i from Class j,

where i < j, referring to Eq.(2.8). Given these protection levels, we have discussed

one example to find out the optimal booking limit for each fare class under some

assumptions in this section. At present, further research is still needed to make
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the model easier to implement and more efficient.

[Evaluation:] The methods in this Chapter are all static. We determine booking

control policies at the start of the booking period, i.e. set the optimal booking

limits for all the fare classes to maximize the expected revenue for the airline.

The results generated by these solutions are optimal under the sequential arrival

assumption as long as no change in the probability distributions of demand is

foreseen.

Actually, the real demand process will change, and the airline has the oppor-

tunity to change the overbooking limits as departure approaches. If we can get

the information on the actual demand process, then we can reduce the uncertainty

associated with the estimates of demand. Hence, we can use such Static method

repetitively over the booking period based on the most recent demand and capac-

ity information, which is the general way to approximate the dynamic overbooking

problem. In the next Chapter, we will emphasize on the Dynamic Overbooking

Problem on the Single-leg.



Chapter 3
Dynamic Overbooking Problem

3.1 Introduction

In Chapter Two, we try to find the optimal booking limits for different fare

classes at the beginning of the booking period. These booking limits will not

be changed until the flight departures. The booking control policy there is to

accept the booking request within the booking limit. The solutions in Chapter

Two are optimal under the sequential arrival assumption as long as no change in

the probability distributions of demand is foreseen.

In fact, the overbooking problem is intrinsically dynamic — an airline has the

opportunity to change the limits as departure time approaches. In this Chapter,

the multiple fare classes are booked concomitantly without the assumption on the

arrival patterns for various fare classes. We will consider the booking process as a

discrete-time dynamic programming model(DP), where demand for each fare class

is modelled by a non-homogeneous Poisson process. Using a Poisson process gives

rise to the use of a Markov Decision model. The states of the such model are de-

pendent on the time until the departure of the flight and on the reserved capacity.

The stochastic process of cancellations will also be considered. To overcome rev-

enue losses resulting from no-shows, airlines will rationally adopt the overbooking

policies as well. The booking period is divided into a number of decision periods.

36
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These decision periods are sufficiently small such that no more than one request

(either a booking request or a cancellation) arrives within such a period. The state

of the process changes every time a decision period elapses or the number of seats

previously accepted changes.

For the dynamic inherency, the control policy in this chapter is: focus on whether

to accept or reject a particular booking request at its particular arrival time, by

comparing the revenue generated by accepting this request and the opportunity cost

of losing this seat taken up by the booking. So the solution for this problem is

more concerned with evaluating these opportunity costs and incorporating them

in booking control policy such that the expected future revenue is maximized.

The dynamic control proposed by Janakiram, Stidham, and Shaykevich (1999)

[54] will be discussed in this Chapter. However, the characterization of the op-

timal policy will be restructured for more clear interpretation. The Model 1, a

simple extension from Lee and Hersh (1993) [38] that incorporates cancellation,

no-shows and overbooking will be described. The concavity of the associated op-

timal value function, which is the key point to get the optimality of such control

policy will be proved completely in this report. Model 2 considers the more gen-

eral case which allows class-dependent cancellation and no-show probabilities and

refund amounts, with refunds at the time of cancellation and no-show, resulting in

multidimensional state variable. We will discuss the way in [54] how to reduce the

problem to a one-dimensional MDP and avoiding the curse of dimensionality. We

will represent the steps more clearly and complete some proofs which are not pro-

vided in [54]. Finally, we summarize some results from a small numerical example

quoted from [54], highlighting the effects of allowing cancellations and suggesting

that the full multidimensional model may not always be necessary. The discussion

in this chapter are mainly based on the references: [38], [54], [37] and [26].
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3.2 Model Description

We will describe some common natures and assumptions for Model 1 and Model

2 first. Consider the models on single flight leg with capacity C (e.g. a one-way

flight from RDU to LAX). Assuming that each passenger belongs to one of m fare

classes, with class 1 corresponding to the highest fare and class m to the lowest,

each of the m fare classes may arrive throughout the reservations horizon. Each

passenger requests at most one seat. Multiple seat requests, where an arriving

customer attempts to book more than one reservation, are not permitted. At the

moment a booking request arrives, the decision to accept or reject involves three

factors: the number of seats previously accepted, the time remaining in the reser-

vations horizon, and the fare class of the request.

The models 1 and 2 share the assumptions as follows:

(1) Single-leg flight with known capacity C.

(2) m fare classes (1-highest fare, m-lowest fare) and independent demand between

the booking classes.

(3) Booking requests in each fare class are time-dependent processes.

(4) Passengers may cancel the reservations until the departure time.

(5) Passengers can be no-shows at the time of departure.

(6) Overbooking is allowed with a penalty-cost function.

(7) Denied requests are considered revenue lost, i.e. passengers whose requests

denied will not upgrade or take another flight on the same airline.

x The current number of reserved seats.

x = (x1, · · · , xm)
The reservation vector, where xi denotes the number of seats

currently reserved in class i.

Ut(x)/Ût(x)

The maximum expected net revenue given the reserved seats

and with t remaining decision periods before the departure of

the flight.
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3.3 Model 1

1. Assumption and Description

Formulate the problem as a finite-horizon, discrete-time Markov decision process

(MDP) in which the state variable is the total number of seats already accepted.

Besides the common assumptions in Section 3.2, we assume that:

• Cancellations and no-shows have class-independent rates but are still time-

dependent process(one dimensional state variable).

• No refund for cancellations and no-shows.

• At each stage, only one of the following events occurs:

(1) a booking request of a customer in fare class i with the probability pit;

(2) a cancellation by a customer with the probability qt(x), which is a non-decreasing

and concave function of x;

(3) a null event with the probability p0t(x);

i.e.
∑m

i=1 pit + qt(x) + p0t(x) = 1 for all x and t > 1.

• At the time of departure, each customer holding a seat reservation is a no-show

with probability β. Hence, 1−β is the probability of showing-up for the flight. As

a result, we can see that Y (x)∼Bin(x, 1− β) which is a binomial distribution.

y = Y (x) The number of people who show up for the flight.

π(Y (x))
Overbooking penalty, assuming it is non-negative, convex and

non-decreasing in Y (x) ≥ 0, with π(Y (x)) = 0 for Y (x) ≤ C.

The objective is to maximize the expected total net revenue over the horizon

from period T to period 0, the departure time of the flight. At each stage t, the

following transitions possible from state x are shown in Figure (3.1).

Since the Model 1 starts with no seats booked at stage T and at most one seat

request can be accepted at each stage, it follows that x ≤ T − t, at each stage t.
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X+1

x

X-1

Accept

Cancellation --- q
t
(x)

Reject or No Arrivalx

Figure 3.1: Transitions Possible.

So, the optimal value functions, Ut, are determined recursively by:

Ut(x) =
m∑
i=1

pit max{fit + Ut−1(x+ 1), Ut−1(x)}

+qt(x)Ut−1(x− 1) + p0t(x)Ut−1(x), 0 ≤ x ≤ T − t, t ≥ 1

U0(x) = E[−π(Y (x))], 0 ≤ x ≤ T (3.1)

[Note 1:] The requests for seats are independent of the number of seats already

booked x, whereas the cancellation probabilities depend on x, which is the sum of

the seats booked in all fare classes.

[Note 2:] The model here is discrete. Direct implementation of the obvious dy-

namic programming solution techniques leads to algorithms that are computa-

tionally intractable when applied to problems of practical size. We give out One

Step of Calculation as follows. Particularly, we can assume that qt(x) = x · qt,
where qt is the average cancellation rate at t. Passengers cancel their booked seats

independently of one another.

At stage t, given the following data, we can calculate Ut(x) given x.

Fare Classes Probability of Arrival Probability of Cancellation

f1t = 200 p1t = 0.2 qt = 0.02

f2t = 150 p2t = 0.4 qt = 0.02

f3t = 75 p3t = 0.2 qt = 0.02

Ut−1(4) = 1600

Ut−1(5) = 1500

Ut−1(6) = 1400
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Calculating Ut(5) using the objective value function above:

Ut(5) =
m∑
i=1

pit max{fit + Ut−1(5 + 1), Ut−1(5)}

+5qtUt−1(5− 1) + (1−
m∑
i=1

pit − 5qt)Ut−1(5)

= 0.2 ∗max{(200 + 1400), 1500}+ 0.4 ∗max{(150 + 1400), 1500}
+0.2 ∗max{(75 + 1400), 1500}+ 5 ∗ 0.02 ∗ 1600 + 0.1 ∗ 1500

= 1550

2. Optimality of the Booking Control Policy

If a customer in class i arrives for a booking request in period t, the airline

should determine whether to accept the request and get fit, or reject it and leave

this seat to a later request. Let’s look at Eq.(3.1), the strategy here is to compare

fit + Ut−1(x + 1) and Ut−1(x). So, we will accept this booking request for class i

iff:

fit + Ut−1(x+ 1) ≥ Ut−1(x)⇐⇒ fit ≥ Ut−1(x)− Ut−1(x+ 1)

We call Ut−1(x)− Ut−1(x+ 1) is the opportunity cost1 of accepting the booking

request for class i at period t. Comparing the revenue generated by accepting

the booking request and the opportunity cost of losing this seat taken up by the

booking, if fit ≥ Ut−1(x)− Ut−1(x+ 1), then we accept the request.

Definition 1: For each stage t and each fare class i, define the optimal booking

limit Bit as:

Bit = min{x ≥ 0 : Ut−1(x)− Ut−1(x+ 1) > fit}

If fit ≥ Ut(x)− Ut(x+ 1) for all x, the revenue generated is always higher than

the opportunity cost, then, we should always accept the booking request, for all

x. That means, there is no limit for the bookings at all, we can set Bit = ∞.

1The opportunity cost plays the same role as the expected marginal seat revenue (EMSR) of

Belobaba (1989) [6](See also Brumelle and McGill (1993) [13] and Wollmer (1992) [63]). It is also

the optimal bid price for Single-leg problem, in the sense of Williamson (1992)[62].
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Nevertheless, if the opportunity cost Ut(x)−Ut(x+ 1) is non-decreasing in x, as x

increases, and because fit is fixed, we can find one Bit satisfying:

fit ≥ Ut−1(x)− Ut−1(x+ 1) 0 ≤ x < Bit

fit < Ut−1(x)− Ut−1(x+ 1) x ≥ Bit (3.2)

If we can find more than one Bit satisfying the conditions as above, we will select

the first one. Hence, Bit is well-defined.

[Booking Policy:]

We will accept a class i request in period t if and only if 0 ≤ x < Bit.

Class i booking will be accepted in period t provided the number of previously

accepted reservations lies strictly below the optimal booking limit, Bit.

So, if we want to find a well-defined finite optimal booking limit Bit for the fare

class i at t, we have to prove that the opportunity cost function Ut(x)− Ut(x+ 1)

is non-decreasing in x which holds iff the optimal value function Ut(x) is concave

in integral values x (Refer to the definition as follows).

[Definition 2:] A function f : Z −→ R is concave if f(s) − f(s + 1) is non-

decreasing in s. (From Stidham (1978) [53])

[Theorem 1:] For t = 0, 1, · · · , T , Ut(x) is concave and non-increasing in x. (It

will be proved later.)

Corollary 1: For a given t, the opportunity cost: Ut(x)−Ut(x+1) is non-decreasing

in x = 0, 1, · · · , T − t− 1.2

Hence, the key point for the optimality of this booking control policy is the

concavity of optimal value function Ut(x). The following lemmas 1, 2 and 3 are

2[38] obtained this main theorem without cancellations, overbooking through an ad-hoc in-

ductive argument that appears to rely on the specific structure of that problem, whereas it is not

readily clear how to similarly extend the technique of [38] here. In contrast, it is the presence of

the maximization term, and thus, the applicability of Lemma 1 and 2, that induces concavity of

the value functions, and not the specific details of the equations themselves.
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fundamental to the proof of the concavity of Ut(x). All of them will be proved.

Lemma 1 is originally proved in Stidham (1978) [53] and it will be explained in

greater details for easy understanding below. Lemma 2 is the result from the the-

ory of stochastic ordering.

Lemma 1: Suppose g : Z+ −→ R. is concave in s ≥ 0. Let f : Z+ −→ R be

defined by:

f(s) = max
a=0,1,··· ,m

{a · r + g(s+ a)}, s ≥ 0 (3.3)

for a given real number r ≥ 0 and nonnegative integer m, then f(s) is concave in

s ≥ 0.

[Proof:]

First, note that f(s) = f̃(s)− s · r, where

f̃(s) = max
s≤t≤s+m

{t · r + g(t)}, s ≥ 0

Let: t∗ = arg maxt≥0{t · r + g(t)}
Then, from the concavity of g,

f̃(s) =





(s+m) · r + g(s+m), s+m ≤ t∗

t∗ · r + g(t∗), s < t∗ < s+m

s · r + g(s), t∗ ≤ s.

For 1 ≤ s < t∗ −m,

f̃(s− 1)− f̃(s) = g(s− 1 +m)− g(s+m)− r
≤ g(s+m)− g(s+ 1 +m)− r
= f̃(s)− f̃(s+ 1)

For t∗ −m ≤ s ≤ t∗, it follows from the definition of t∗ that:

f̃(s− 1) ≤ t∗ · r + g(t∗) = f̃(s) ≥ f̃(s+ 1)

so that

f̃(s− 1)− f̃(s) ≤ 0 ≤ f̃(s)− f̃(s+ 1)
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Finally, for s > t∗,

f̃(s− 1)− f̃(s) = g(s− 1)− g(s)− r
≤ g(s)− g(s+ 1)− r
= f̃(s)− f̃(s+ 1)

Thus,f̃(s) − f̃(s + 1) is nondecreasing in s, and f̃ is concave for s ≥ 0.Therefore,

f(s) = f̃(s)− s · r is also concave for s ≥ 0. 2

Lemma 2: Let f(y), y ≥ 0, be a nondecreasing convex function. For each non-

negative integer x, let Y (x) ∼ Bin(x, γ), random variable (0 < γ < 1) and let

h(x) := E[f(Y (x))]. Then h(x) is nondecreasing convex in x ∈ (0, 1, · · · ). (This

result is from the Example 6.A.2 in Shaked and Shanthikumar (1994) [48]

Lemma 3: IfH(x) = g(x)·f(x−1)+(ω−g(x))·f(x), where ω ≥ 0 and ω−g(x) ≥ 0,

g is concave, non-decreasing function in x and f is concave, non-increasing function

in x, then H is a non-increasing concave function in x.

[Proof:]

Let: ζ(x) = f(x)− f(x+ 1).

• For f is concave and non-increasing function in x, ⇒ ζ(x) ≥ 0 and ζ(x) is

non-decreasing in x.

H(x) = g(x) · f(x− 1) + (ω − g(x)) · f(x)

H(x+ 1) = g(x+ 1) · f(x) + (ω − g(x+ 1)) · f(x+ 1)

⇒ H(x)−H(x+ 1) = g(x) · ζ(x− 1) + (ω − g(x+ 1)) · ζ(x) ≥ 0.

=⇒ H is non-increasing in x.

[H(x)−H(x+ 1)]− [H(x+ 1)−H(x+ 2)]

= g(x)(ζ(x− 1)− ζ(x)) + (ω − g(x+ 2))(ζ(x)− ζ(x+ 1))

+ζ(x) · [g(x+ 2)− g(x+ 1)− (g(x+ 1)− g(x))]

• ζ(x) is non-decreasing in x. ⇒ The first two terms are non-positive.
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• g(x) is non-decreasing and concave function in x.

⇒ g(x + 1) − g(x) is non-increasing in x and the third term above is also non-

positive.

So we have: [H(x)−H(x+ 1)]− [H(x+ 1)−H(x+ 2)] ≤ 0 in x.

=⇒ H(x)−H(x+ 1) is non-decreasing in x.

=⇒ By definition 2, we obtain that H is concave.

=⇒ H is non-increasing and concave in x. 2

[Remark:] Using Lemmas 1, 2 quoted and Lemma 3 which is proved by us, we will

complete the proof of the concavity for the optimal value function Ut(x).

[Proof of Theorem 1:] (which is incomplete in [54])

We will prove Theorem 1 by Induction on t.

We first need to verify that U0(x) = E[−π(Y (x))] is concave and non-increasing in

x to start the induction.

We assume that π(·) is non-negative, convex, and non-decreasing.

Y (x) has a binomial ∼ (x, 1− β) distribution, 0 < 1− β < 1

By Lemma 2, we get that:

=⇒ E[π(Y (x))] is non-decreasing, convex.

=⇒ U0(x) is thus non-increasing and concave.

We assume that Ut−1(x) is concave and non-increasing, and let:

git(x)
.
= max{fit + Ut−1(x+ 1), Ut−1(x)}

Ut(x) =
m∑
i=1

pitgit(x) + qt(x)Ut−1(x− 1) + p0t(x)Ut−1(x), 0 ≤ x ≤ T − t, t ≥ 1.

By Lemma 1, git(x) is concave in x. (Note that, this is only the special case of

Lemma 1 with m = 1). Moreover, git(x) is non-increasing as the maximum of two

non-increasing functions is non-increasing.

Define: Ht−1(x)
.
= qt(x)Ut−1(x− 1) + p0t(x)Ut−1(x).
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p0t(x) = 1−∑m
i=1 pit − qt(x) = ω − qt(x) ≥ 0, where ω ≥ 0 (not dependent on x).

We assume that Ut−1(x) is concave and non-increasing in x. We also know that

qt(x) is concave and non-decreasing in x.

⇒ Ht−1(x) is concave and non-increasing in x by Lemma 3.

Ut(x) =
m∑
i=1

pitgit(x) +Ht−1(x), 0 ≤ x ≤ T − t, t ≥ 1.

[Fact:] If f and g are concave, non-increasing functions, then f + g is a concave,

non-increasing function, and so is α · f for a non-negative constant α.

Ut(x) is the sum of two concave, non-increasing functions. So Ut(x) is concave,

non-increasing in x = 0, 1, · · · . 2

3.4 General Model (Model 2)

In this section, a more general model will be discussed.

1. Assumption and Description

• Class-dependent cancellation and no-show probabilities.

• Refunds at the time of cancellation and no-show are class-dependent. Actually,

most airlines refund cancelled seats based on different fare classes.

Let pit(x), qit(x) and p0t(x) respectively, denote the probability of a booking

request in fare class i, the probability of a cancellation by customer in class i,

and the probability of null event in period t, given the reservation vector x (i =

1, 2, · · · ,m). We also assume that:

∑m
i=1 pit(x) +

∑m
i=1 qit(x) + p0t(x) = 1 for all x and t > 1.

At the time of departure, each customer of class i has a probability βi of being

a no-show, only dependent on the class i. Corresponding to each βi, Yi(xi) de-

notes the number of people in class i showing up for departure, where Yi(xi) ∼
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Bin(xi, 1−βi). Let y = Y (x) :=
∑m

i=1 Yi(xi) denote the total number of customers

who show up for the flight. π(y) is the overbooking penalty. As in Model 1, we as-

sume that π(y) is non-negative, convex and non-decreasing in y ≥ 0, with π(y) = 0

for y ≤ C.

At each stage t, the following transitions possible from state x are shown in

Figure 3.2.

Figure 3.2: Transitions Possible.

As in Model 1, the objective now is to maximize the expected total net revenue

over the horizon from period T to period 0, starting from state x = (0, · · · , 0),

that is, there are no booked seats at the beginning of period T . A customer who

requests for a seat in fare class i at stage t pays fare f̂it.

Let χt := {x = (x1, x2, · · · , xm) : xi ≥ 0, i = 1 : m;
∑

i xi ≤ (T − t)}. As a

function of the state x ∈ χt, in period t, let Ût(x) denote the maximal expected

net benefit at stage x, which are determined recursively by:

Ût(x) =
m∑
i=1

pit(x) max{f̂it + Ût−1(x + ei), Ût−1(x)}

+
m∑
i=1

qit(x)(−Rc
it + Ût−1(x− ei)) + p0t(x)Ût−1(x) x ∈ χt, t ≥ 1

Û0(x) = E[−π(Y (x))−
m∑
i=1

(xi − Yi(xi))Rns
i ], x ∈ χ0 (3.4)

where ei is the ith unit m-vector.

From the Eq.(3.4), we will accept the class i booking if and only if:

f̂it + Ût−1(x + ei) ≥ Ût−1(x)

⇐⇒ f̂it ≥ Ût−1(x)− Ût−1(x + ei)
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[Booking Policy:] We accept a class i request in stage t with reservation vector

x iff f̂it ≥ Ût−1(x)− Ût−1(x + ei).

As the different classes of customers have different cancellation rates and refunds,

it is necessary to keep track of the number of customers in each class, rather than

just the total number. As a result, this model has a multi-dimensional state space.

Model 2 includes the refund for cancellations and no-shows which are ignored by

model 1. Due to the computational disadvantage of the multi-dimensional state

space, we should consider to reduce this general model to a one-dimensional MDP

in certain cases, which can give us a good approximation to the optimal solution.

In the numerical example section, we quote an example from [54], which will show

that with careful use of the one-dimensional heuristic approximation, the revenue

difference between a one-dimensional model and a multi-dimensional model is not

much, which suggests that a multi-dimensional model may not always be necessary.

2. The Refund of the Cancellations and No-shows

We consider the refund of cancellations and no-shows in Model 2. We assume

that we will reject all additional arrivals, starting from state x at stage t (not

affected by future arrivals). Let Ht(x) as: Total expected loss of revenue over

periods t to 0 caused by cancellations and no-shows which is an unavoidable loss

of revenue.

Ht is given as follows:

Ht(x) =
m∑
i=0

pit(x)Ht−1(x) +
m∑
i=1

qit(x)(Rc
it +Ht−1(x− ei)) x ∈ χt

H0(x) = E[
m∑
i=1

(xi − Yi(xi))Rns
i ] =

m∑
i=1

βixiR
ns
i . x ∈ χ0 (3.5)

We define: Ut(x) := Ût(x) + Ht(x), t ≥ 0, which represents the maximal expected

controllable net revenue over periods t to 0.
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By Eq. (3.4) and Eq. (3.5),

Ut(x) =
m∑
i=1

pit(x) max{f̂it − [Ht−1(x + ei)−Ht−1(x)] + Ut−1(x + ei), Ut−1(x)}

+
m∑
i=1

qit(x)Ut−1(x− ei) + p0t(x)Ut−1(x), x ∈ χt, t ≥ 1

U0(x) = E[−π(Y (x)], x ∈ χ0 (3.6)

where, Ht−1(x + ei) − Ht−1(x) is the marginal expected cost associated directly

with the accepted customer, namely, the expected amount that will be refunded

to that customer resulting from cancellation or no-show.

[Booking Policy:] We accept a class i request in stage t with reservation vector

x⇔ f̂it − [Ht−1(x + ei)−Ht−1(x)] ≥ Ut−1(x)− Ut−1(x + ei).

3. Reduction to one-dimensional problem

In this part, we will show that: when cancellations and no-show probabilities are

fare-independent, the state-space can be reduced, the multidimensional problem

can be converted into a one-dimensional problem.

NAssumption 1. qit(x) = qit(xi), for all x = (x1, x2, · · · , xm), t = T, T − 1, · · · , 1.

(i.e. Probability of a class i cancellation in a period depends only on xi).

Lemma 4: Under Assumption 1,

Ht(x) =
m∑
i=1

Hi,t(xi), t ≥ 0 (3.7)

where the functions Hi,t satisfy the recursive equations (i = 1, · · · ,m).



Hi,t(xi) = (1− qit(xi))Hi,t−1(xi) + qit(xi)(R

c
it +Hi,t−1(xi − 1)), xi ≥ 0, t ≥ 1

Hi,0(xi) = βixiR
ns
i , xi ≥ 0

(3.8)

(It can be proved easily by induction on t.)



3.4 General Model (Model 2) 50

N Assumption 1’: qit(x) = xiqit for all x, where qit > 0, i = 1 : m, t =

T, T − 1, · · · , 1 (i.e. each customer cancels independently of all other customers,

with a cancellation rate solely dependent on the customers class).

We define: Gi,t(xi) := Hi,t−1(xi + 1)−Hi,t−1(xi) be the marginal expected cancel-

lation cost associated with fare-class i booking in state x at t.

Lemma 5: Under Assumption 1’,

Gi,t(xi) = Gi,t(xi − 1) (which is not shown in [54].)

where Gi,t(xi) is the marginal expected cancellation cost of accepting a request

for a seat in fare class i in t. Furthermore, we define Gt(i) satisfies the recursive

equations:

Gt(i) = qi,t−1R
c
i,t−1 + (1− qi,t−1)Gt−1(i), t ≥ 2

G1(i) = βiR
ns
i , i = 1, · · · ,m

where Gt(i) is the expected cancellation cost attributable to that customer which

is independent of xi. Then we have:

Gi,t(xi) = Gt(i)

[Proof:] (By induction on t).

Gi,1(xi) = Hi,0(xi + 1)−Hi,0(xi) = βiR
ns
i

Gi,1(xi − 1) = Hi,0(xi)−Hi,0(xi − 1) = βiR
ns
i

Hence, Gi,1(xi) = Gi,1(xi − 1) holds.

Next we will prove that Gi,t(xi) = Gt(i) for t ≥ 2.
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Suppose Gi,t−1(xi) = Gi,t−1(xi − 1) holds for t ≥ 2.

Gi,t(xi) = Hi,t−1(xi + 1)−Hi,t−1(xi)

= (qi,t−1(xi + 1)− qi,t−1(xi))R
c
i,t−1 + (1− qi,t−1(xi + 1))Gi,t−1(xi)

+qi,t−1(xi)Gi,t−1(xi − 1), xi ≥ 0, t ≥ 2

= ((xi + 1)qi,t−1 − xiqi,t−1)Rc
i,t−1 + (1− (xi + 1)qi,t−1)Gi,t−1(xi)

+xiqi,t−1Gi,t−1(xi − 1)

= qi,t−1R
c
i,t−1 + (1− qi,t−1)Gi,t−1(xi)− xiqi,t−1Gi,t−1(xi)

+xiqi,t−1Gi,t−1(xi − 1)

= qi,t−1R
c
i,t−1 + (1− qi,t−1)Gi,t−1(xi)− xiqi,t−1[Gi,t−1(xi)−Gi,t−1(xi − 1)]

= qi,t−1R
c
i,t−1 + (1− qi,t−1)Gi,t−1(xi)

Gi,t(xi − 1) = Hi,t−1(xi)−Hi,t−1(xi − 1)

= qi,t−1R
c
i,t−1 + (1− xiqi,t−1)Gi,t−1(xi) + (xi − 1)qi,t−1Gi,t−1(xi − 1)

= qi,t−1R
c
i,t−1 +Gi,t−1(xi)− qi,t−1Gi,t−1(xi − 1)

−xiqi,t−1(Gi,t−1(xi)−Gi,t−1(xi − 1)

= qi,t−1R
c
i,t−1 +Gi,t−1(xi)− qi,t−1Gi,t−1(xi − 1)

∵ Gi,t−1(xi) = Gi,t−1(xi − 1)

∴ Gi,t(xi) = Gi,t(xi − 1)

And we get:

Gi,t(xi) = qi,t−1R
c
i,t−1 + (1− qi,t−1)Gi,t−1(xi), t ≥ 2

Gi,1(xi) = βiR
ns
i . i = 1, · · · ,m

We know that the functions Gt(i) satisfy the recursive equations:

Gt(i) = qi,t−1R
c
i,t−1 + (1− qi,t−1)Gt−1(i), t ≥ 2

G1(i) = βiR
ns
i , i = 1, · · · ,m
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Gi,t(xi) and Gt(i) have the same recursive functions, so we get: Gi,t(xi) = Gt(i).

We prove the Lemma 4. 2.

N In this case, the recursive optimality equations, which now take the form:

Ut(x) =
m∑
i=1

pit(x) max{f̂it −Gt(i) + Ut−1(x + ei), Ut−1(x)}

+
m∑
i=1

xiqitUt−1(x− ei) + p0t(x)Ut−1(x), x ∈ χt, t ≥ 1

U0(x) = E[−π(Y (x))], x ∈ χ0 (3.9)

[Booking Policy:] We will accept a class i request in stage t with reservation

vector x iff f̂it −Gt(i) ≥ Ut−1(x)− Ut−1(x + ei).

We know that Ut(x) are recursive, dynamic which depend on x which are not

one-dimensional. So, the curse of dimensionality is still there.

Assumption 1”. qit(x) = xiqt, for all x ∈ χt, i = 1 : m, where qt > 0, t =

T, T − 1, · · · , 1 (cancellation rates are same for all fare class i = 1 : m in period t).

Assumption 2. pit(x) = pit, for all x ∈ χt, i = 1 : m, t = T, T − 1, · · · , 1, i.e.

arrivals of booking requests are independent of the number of seats already booked.

Assumption 3. βi = β, i = 1 : m, the no-show probabilities are independent of

the fare class.

[Theorem 2:] Under Assumptions 1”,2,3, the optimal value functions, Ut(x),

depend on x only through x =
∑m

i=1 xi, and are determined by the recursive

optimality equations:

Ut(x) = Ut(x) =
m∑
i=1

pit max{f̂it −Gt(i) + Ut−1(x+ 1), Ut−1(x)}+ xqtUt−1(x− 1)

+(1−
m∑
i=1

pit − xqt)Ut−1(x), 0 ≤ x ≤ T − t, t ≥ 1

U0(x) = U0(x) = E[−π(Y (x))], 0 ≤ x ≤ T (3.10)

where Y (x) ∼ Bin(x, 1− β).
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[Proof:] (The proof is by induction on t.)

Suppose U0(x) = U0(x) = E[−π(Y (x))] depending on x only through x =
∑m

i=1 xi.

Let t ≥ 1 and suppose Ut−1(x) = Ut−1(x) for all x. Then, it follows from Eq.(3.9)

and Assumptions 1”,2, and 3 that

Ut(x) =
m∑
i=1

pit max{f̂it −Gt(i) + Ut−1(x+ 1), Ut−1(x)}+ xqtUt−1(x− 1)

+(1−
m∑
i=1

pit − xqt)Ut−1(x), 0 ≤ x ≤ T − t, t ≥ 1 (3.11)

where x =
∑m

i=1 xi and we use the fact
∑m

i=1 pit +
∑

i xiqt + p0t(x) = 1. It follows

from Eq.(3.11) that Ut(x) = Ut(x) only depending on the total number of seats

booked x =
∑m

i=1 xi, so Eq.(3.11) holds. This completes the induction and the

proof of the theorem 2. 2

So, when cancellation and no-show probabilities are independent of the fare class,

the Model 2 is converted to an equivalent form with one-dimensional state variable:

the total number of seats booked x =
∑m

i=1 xi.

[Optimality:] Eq.(3.10) has exactly the form of the one-dimensional problem

(Model 1) discussed in the previous section, with fit = f̂it−Gt(i), and qt(x) = xqt

(a concave function of x), so all the monotonicity results for Model 1 apply, in

particular, the optimality of the booking control policy.

3.5 Numerical Example

To reduce the computational burden, it is advantageous to introduce a maximum

overbooking pad Q, resulting in an additional state constraint 0 ≤ x ≤ C +Q, at

each period t.

For the one-dimensional model, assume that booking requests will always be

rejected in state C + Q at t. The recursive optimality equations in this case can
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be written as:

Ut(x) =
m∑
i=1

pit max{fit − (Ut−1(x)− Ut−1(x+ 1))), 0}

+xqtUt−1(x− 1) + (1− xqt)Ut−1(x) 0 ≤ x ≤ C +Q− 1, t ≥ 1

Ut(C +Q) = (C +Q)qtUt−1(C +Q− 1) + (1− (C +Q)qt)Ut−1(C +Q), t ≥ 1

U0(x) = E[−π(Y (x))], 0 ≤ x ≤ C +Q (3.12)

where qt is the average cancellation rate. Similarly, for the multi-dimensional

example, we also use the corresponding special case of Eq.(3.4), with the addition

of an overbooking pad Q.

[Data:]

The cornerstone of the approach demonstrated in this Chapter is the inclusion of

customer cancellations. We quote a small example from [54] with class-dependent

cancellation and no-show rates.

Available capacity is C = 4 with an overbooking pad of Q = 2.

There are 2 classes, with f1 = 3 and f2 = 1. Class 1 is fully refundable, Rc
1t =

Rns
1 = 3, whereas class 2 is non-refundable, Rc

2t = Rns
2 = 0. Penalties of 2 and 6 cor-

respond to overbooking levels of 1 and 2, respectively. The remaining parameters

are summarized in Figure 3.3.

Compare the performance of four methods in order of increasing accuracy (and

complexity):

Method 1: Model from [38], which completely ignore cancellations and no-shows,

however, add a overbooking pad to the physical capacity and allocate the booking

limits for each fare class.

Method 2: Model 1, subtracting the expected cancellations and no-shows refund

from the gross fare, but ignoring the effects of cancellations (probabilities) on future

seat availabilities.

Method 3: Model 1, incorporating both refunds and probabilities of cancellation

and no-show, but using approximate probabilities (class-independent).

Method 4: Model 2, with both class-dependent refunds and probabilities (multi-

dimensional).
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Here, Method 3 is used for the purpose of comparison with three different rates,

summarized in Figure 3.4.

p
1t

p
2t

p
3t

p
4tPeriod t

Parameters

16-13

12-9

8-5

4-1

0

0.00 0.30 0.00 0.00

0.30 0.50 0.00 0.00

0.30 0.00 0.05 0.00

0.40 0.00 0.10 0.00

0.00 0.00 0.20 0.00

Figure 3.3: Parameters

3b 3cPeriod t
Method

16-9

8-5

4-1

0

0.025 0.050 0.020

0.050 0.100 0.040

0.100 0.200 0.080

3a

0.000 0.000 0.000

Figure 3.4: Comparison of Class-

Independent Cancellation Rates.

Method 3a—average the cancellation and no-show rates of the two classes.

Method 3b—simply use the rate corresponding to class 1.

Method 3c—use 40% of the class 1 cancellation and no-show rates.

Using Methods 1,2,3a-3c, the simplified one-dimensional problem is solved op-

timally, and the results are compared with those obtained using Method 4. The

expected revenues obtained by each of the methods are summarized in Figure 3.5,

where % Sacrificed is the additional revenue that could be gained by solving the

problem optimally (Method 4), expressed as a percentage of the revenue obtained

using the given method. Figure 3.6 compares the values of Ut(0) for each of the

four methods.

Method

U16(0.0)

%Sacrificed

1 2 3a 3b 3c 4

5.86 5.74 6.22 5.05 6.38 6.41

9.39 11.67 3.05 26.93 0.47 -

Figure 3.5: Summary of Methods 1-4

[Result 1:] The approaches introduced in this Chapter are computational feasible

using data from a real-life airline application.
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6 8 10 12 14 16
4.0

4.5

5.0

5.5

6.0

6.5

7.0
U

t(0
)

t

Method 4

Method 3c

Method 3a
Method 1

Method 2

Method 3b

Figure 3.6: Ut(0) versus t for the different methods.

[Result 2:] Revenue decreases when going from Method 1 to Method 2.

Note: Even though Method 2 appears to be a more accurate model in that can-

cellation and no-show refunds are subtracted from the gross fare, it doesn’t take

into account the effects of cancellations on future seat availabilities, which send

the wrong signal to the algorithm for this example.

[Result 3:] An increase of nearly 9% can be achieved by incorporating both refunds

and cancellation and no-show probabilities, with careful use of the one-dimensional

heuristic approximation (Method 3c).

Note: The revenue increment from Method 3 to Method 4 is less than 1%, which

suggests that the full multi-dimensional model (Method 4) may not always be nec-

essary.
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[Result 4:] Method 3b which simply use the cancellation rate corresponding to

class 1 results in a bad approximation. We note the importance of choosing the

approximation cancellation rate properly.

3.6 Evaluation

One of the advantages of dynamic models is that they can easily be extended

to include cancellations, no-shows, and overbooking. The discrete time model in

this chapter assumed that, in each time period, at most one booking request or

one cancellation can occur. When the number of time periods is very large, this

approach gives a good approximation of the continuous time model. However,

for the discrete-time model, the size of the state space always poses a threat to

such application to real problems when either the inventory position is high or the

length of time-to-go is big. The interdependence between different states of time

and inventories makes it difficult to apply the recursive solution procedure which

works well in continuous-time revenue management models.

Most researchers have discovered that direct implementation of the obvious dy-

namic programming solution techniques leads to algorithms that are computa-

tionally intractable when applied to problems of practical size. They formulated

continuous-time models whose computation effort is fairly mild and tackled the

optimal booking policy with cancellations and no-shows (Refer to Feng, Lin and

Xiao (2001) [26]).

Alternatively, two general approaches can be used to overcome this difficulty:

1. Make restrictive assumptions or to suppress certain elements of the problem.

2. To use heuristics that lead to suboptimal, but easily implemented rules.

Both approaches can provide approximate solutions to partially restricted or even

practical versions of the problem, but we should be careful what the effects of

changes in parameters of the problem are induced.
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To conclude this chapter, we pose a few items which are in the queue of future

research. They may be significant from theoretical and practical viewpoints:

1. One may consider some efficient heuristic approaches to approximate the

optimal policy for the models in this Chapter.

2. One may consider optimal booking control for the single-leg flight models

with group/batch demand. This is particularly relevant when airlines deal with

travel agencies who often book a large number of tickets by pooling individuals’

booking requests. Booking process with both individual and group demands can

be modelled as a compound Poisson Process, which may drastically increase the

degree of analytical complication.

3. A more general model that considers the disposition of refused reservations

request, which might not always result in a booking loss to the airline (it can be

a request to a higher fare class, same flight; a shift to a different flight, same fare

class and airline or a booking loss for the airline).

4. It is also conceivable that the technique may be applied to control the entire

flight network simultaneously, which will be discussed in the next Chapter.



Chapter 4
Overbooking in Network Environment

4.1 Introduction

Airlines tend to operate as a network more than as individual flights. Maximizing

revenues on each flight leg individually in no way guarantees that total network

revenues are being maximized (Williamson (1992) [62]). The core problem in this

chapter for network revenue management (NRM) is determining optimal decision

rules for sequentially accepting or denying Origin-Destination-Fare (ODF) itinerary

requests to maximize the airline’s expected revenue. The decision rule here is:

grant the booking request only if the offered fare exceeds the opportunity cost

of that ODF itinerary. The major issues associated with this chapter for the

network overbooking controls are: the availability of data at the itinerary fare

class level, demand forecasting, cancellation process at this level, the mathematical

optimization tools necessary for controlling seats at the network level, etc.

Besides the emphasis on network-based rather than leg-based models, there is

an increased interest in models for dynamic booking control. That is, we are more

interested in investigating the design of dynamic overbooking policy for allocating

inventory to correlated, stochastic demand for multiple classes on multiple legs, so

as to maximize total expected revenue in a network environment at each point of

time. Several optimization models addressing the NRM problem will be introduced.

59
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Two approximate dynamic programming algorithms incorporating cancellations,

no-shows and overbooking will be presented and analyzed both theoretically and

computationally.

The discussions are mainly based on Bertsimas and Popescu (2001) [7], Boer

et al. (2002) [11] and Williamson (1992) [62]. However, all these papers do not

emphasize on overbooking, even in [7]. In this chapter, we will pay more attention

on the dynamic overbooking policy in the network environment. Several major

results from [7] will be explained in greater details for better understanding. We

check the rationality of the two approximate dynamic programming algorithms

proposed in [7], by completing the proofs. Furthermore, more structural properties

of the two algorithms are dig out. Some other related papers referred to in this

chapter are: [8], [56], and [57].

4.2 Problem Definition and Notations

We give an airline network composed of l legs, which are used to serve a total of

m ODF itinerary demand classes.

Let:

N = (N1, · · · , Nl): total initial network capacity.

A = (aji)l×m: leg-class incidence matrix, where Ai is the ith column of A and

aji = 1 if itinerary i uses leg j and aji = 0 otherwise.

� In an airline network without group discounts, A is a 0 - 1 matrix which may

contain repeated columns for different fare classes on same itinerary. Assume: Ai

has at least one nonzero component, i.e. all itineraries use at least one leg.

f = (f1, · · · , fm): fi is the fare category of ith ODF itinerary request1 Assume:

1A much more serious practical obstacle is the need to forecast expected demand for each

Origin-Destination-Fare itinerary in a given connecting network. We have taken the fare classes

on each Origin-Destination into account, because different fare classes make different revenue

contributions to the network. So, we define that different ODF itinerary requests for different

fare classes, even they have identical origin and destination.
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The rejected requests for itineraries are lost to the network. In particular, we

don’t model diversion/upgrade among itineraries.

[Example:]

Consider a very simple network, where there are 3 nodes A, B and C, and with

l = 2 legs: (1)AB and (2)BC with total capacity N = (N1, N2). Suppose there

is demand for all itineraries: (1)AB, (2)BC, and (3)ABC, with only one fare class

for each itinerary. Furthermore, there are discounts for groups of size k1 = 8 for

(1)AB, at a rate of f 8
1 per group. =⇒ total of m = 4 classes.

So,

 f

A


 =




f1 f2 f3 f 8
1

1 0 1 8

0 1 1 0




s = sales to date vector (s = (s1, · · · , sm) which is a m-vector).

sti = the number of seats sold to ith ODF itinerary until time t.

soi = the number of seats overbooked at departure for ith ODF itinerary.

ei = a unit vector with ith column is 1.

The time is discrete. The state of the system S = (t, s) is given by the time t (t

periods to departure) and the sales-to-date record s for each ODF itinerary.

4.3 General Models

The problem of dynamic overbooking control for network revenue management

belongs to the class of finite horizon decision problems under uncertainty. The DP

approach which will be presented below can be viewed as extending the single-leg

models investigated in Chapter Three and Bitran and Mondschein (1995) [9], and

is similar to the early single-leg DP formulation of Rothestein (1971, 1974) [44][45].

The DP approach is based on the perfect state information and is not feasible in

practice because of the enormous size of the state space.

The LP formulation introduced later is similar to the one proposed by Williamson

(1992) [62]. The LP formulations belong to the Static models, which are easy to
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implement. Furthermore, the LP approach can handle multiple classes and group

bookings, and incorporate cancellations, no shows and overbooking. In the dy-

namic network setting, the static model can be used to approximate DP by solving

the model at several fixed times during the booking process.

1. Dynamic Programming Model Allowing Overbooking

In the case of perfect state information, this model provides the optimal control

policy. Since we allow cancellations, we cannot use the vector of remaining capac-

ities as the state variable. It is necessary to keep track of the past sales record

s. The state space is large here. The random quantities involved are the demand,

cancellation and no-show processes. We assume that no refund for no-shows here.

Given the initial network inventory N, define DP o(s, t) as the maximum expected

net benefit of operating the system over periods t to 0, given by:

DP o
N(s, t) =

∑
i

pit ·max(DP o
N(s, t− 1), fi +DP o

N(s + ei, t− 1))

+
∑

i|si≥1

qit · (DP o
N(s− ei, t− 1)−Rct

i ) + pt0 ·DP o
N(s, t− 1)

DP o
N(s, 0) =

∑

es
P (s̃ bookings out of s show up) · [DP o

N(s̃,−1)− (Rns)′ · (s− s̃)]

DP o
N(s̃,−1) =





−min (Ro)′ · so

s.t. A · (s̃− so) ≤ N

0 ≤ so ≤ s̃

(4.1)

where,

so The vector for the number of customers which are overbooked;

Ro
Ro = (Ro

1, · · · , Ro
m), Ro

i is the penalty to the customer who is

overbooked for ith ODF itinerary;

Rct
i The refund to one cancellation at time t for ith ODF itinerary;

Rns The refund vector for no-show.

pit Prob. of a booking request for ith ODF itinerary at time t;
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qit Prob. of cancellation for ith ODF itinerary at time t;

pt0 Prob. of no request (reservation or cancellation) at time t.

We assume that
∑m

i=1 pit +
∑m

i=1 qit + pt0 = 1 for all t > 1.

The boundary conditions are changed to account for no-shows (time t = 0) and

final bumping decisions (time t = −1). The final bumping decision is made so as

to minimize total penalties, while keeping the actual capacity restrictions satisfied.

If customer-walking penalties are paid per leg, i.e. c = (c1, c2, · · · , cl)′, rather

than per itinerary, the boundary condition at t = −1 is simply c′(As − N)+.2

When bumping penalties are itinerary specific (not leg-additive), then an opti-

mization problem needs to be solved to decide which passengers should be refused

boarding so as to incur least penalties. For example, in a two-leg network which

is oversold by one seat on each leg, it is better to bump a connecting passenger

rather than two different passengers on each leg whenever overbooking penalties

are leg-subadditive.

If a customer in ith ODF itinerary arrives for a booking request in period

t, the airline should determine whether to accept the request and get fi or re-

ject it and leave this seat to a later request. From Eq.(4.1), the strategy is

to compare fi + DP o
N(s + ei, t − 1) and DP o

N(s, t − 1). So, we will accept iff

fi +DP o
N(s + ei, t− 1) ≥ DP o

N(s, t− 1).

[Booking Policy for DP Model:]

At any given state S, accept a booking request for ith ODF itinerary iff

fi ≥ OCi(s, t) = DP o
N(s, t− 1)−DP o

N(s + ei, t− 1). (4.2)

where, OCi(s, t) is the opportunity cost of selling one booking request for ith ODF

itinerary at time t. However, computing DP o
N(·, t) is not feasible in practice be-

cause of the enormous size of the state space3. Therefore, the only practical option

2Use the operator (x)+ = max(x, 0), for x ∈ R, which naturally extends for vectors: (x)+ =

((x1)+, · · · , (xn)+) for x = (x1, · · · , xn) ∈ Rn.
3DP formulations of the revenue management problem are required to properly model real
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in practice is to use approximate methods.

2. Integer and Linear Programming Models Allowing Overbooking

The static model is often used to approximate dynamic model by solving the

model at several fixed times during the booking process. Actually, static model

is the most frequently used formulation for the NRM problem. Let’s consider its

most general formulation without overbooking first.

max E[
∑
i

fi ·min{zi,Dt

i}]

s.t.
∑

i uses legj

zi ≤ Nj For all flight legsj = 1, 2, · · · , l.

zi ≥ 0, integer for all itineraries i = 1, 2, · · · ,m (4.3)

The demand process at time t is denoted by Dt , and D
t

represents the corre-

sponding random vector of cumulative demands. That is, D
t

i is a random variable

representing the number of ith ODF itinerary to come from time t to departure

time. Usually, only partial information about the demand process could be ob-

tained, which might consist of the expected demand to come Dt = E[D
t
]. Based

on expected demand information, a simple approximation to E.q.(4.3) is to substi-

tute each D
t

by Dt = E[D
t
], resulting in the Integer Programming(IP) model:

max E[
∑
i

fi · yi]

s.t.
∑

i uses legj

yi ≤ Nj For all flight legsj = 1, 2, · · · , l.

yi ≤ Dt
i

yi ≥ 0, integer for all itineraries i = 1, 2, · · · ,m (4.4)

where y is the integer vector that decides how many seats to be reserved in the

future for ODF itineraries to maximize the airline’s expected revenue.

world factors like cancellations, overbooking, batch bookings, and interspersed arrivals. But, ex-

act DP formulations, particularly stochastic ones, are well known for their unmanageable growth

in size when real world implementations are attempted. However, DP can be used as a calibration

tool for checking the performance of less accurate but more efficient solution methods.
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This will result in an IP approximation model to the value function which is

obtained by finding a tentative itinerary allocation assuming that demand to come

is always equal to its mean. Such a static model is used to approximate dynamic

model without considering overbooking by solving the model at several fixed times

during the booking process.

Similarly, we want to get an IP approximation model to Eq.(4.1) considering

cancellations, no-shows and overbooking. Here, we assume that the cancellation

and no-show for each given ODF itinerary reservation are independent.

Let:

so
A vector for the number of seats (itinerary requests) that the

airline decides to overbook.

qci
The probability that a given ith ODF itinerary reservation is

cancelled at some point in the booking period.

γnsi
The probability that a given ith ODF itinerary reservation

does not show up for the flight at departure time.

Rc The refund received by a cancellation.

Rns The refund received by a no-show.

For the cancellations and no-shows are taken into account, both kind of penalties

should be considered. And we allow overbooking at the departure, so, the penalty

for the denied passengers should also be included:

1: Given ith ODF itinerary reservation is cancelled at some point in the booking

period and the customer gets refund Rc
i immediately.

2: Given ith ODF itinerary reservation is not cancelled at any point in the booking

period. However, it doesn’t show up at departure time. Customer gets refund Rns
i .

3: Given ith ODF itinerary reservation is not cancelled at any point in the booking

period. It shows up at departure time. However, it is rejected boarding in the end

and the customer gets refund Ro
i .
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The objective is to maximize the total net benefit over the network of the flights

at time t is as follows:

IP o
N(s, t) = max

∑
i

[fi · yi − qci · yi ·Rc
i − (1− qci ) · γnsi · yi ·Rns

i ]

−
∑
i

[(1− qci ) · (1− γnsi ) · soi ·Ro
i ]

There two types of constraint functions: the capacity constraints on each flight

leg and the demand constraints associated with each passenger as follows:

1. The demand constraint is:

0 ≤ y ≤ Dt

2. The capacity constraints on each flight leg for i = 1, · · ·m are:

0 ≤ (1− qci ) · (1− γnsi ) · (yi + si) · Ai − (1− qci ) · (1− γnsi ) · soi · Ai ≤ Ni.

We define:

fi · yi − qci · yi ·Rc
i − (1− qci ) · γnsi · yi ·Rns

i

= [fi − qci ·Rc
i − (1− qci ) · γnsi ·Rns

i ] · yi .= f̃i · yi

f̃i is defined to be the expected revenue before the overbooking period for ith ODF

itinerary at time period t.

(1− qci ) · (1− γnsi ) · (yi + si) · Ai

= (yi + si) · [(1− qci ) · (1− γnsi ) · Ai] .= (yi + si) · Ãi

We denote (yi + si) · Ãi as the expected capacity occupied by ith ODF itinerary

reservations at the end of horizon.

(1 − qci ) · (1 − γnsi ) · soi is the number actually overbooked in the end for the ith

itinerary. We let:

(1− qci ) · (1− γnsi ) · soi · Ai .
= soi · Ãi, i = 1, · · ·m.

(1− qci ) · (1− γnsi ) · soi ·Ro
i

.
= soi · R̃o

i
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R̃i is defined as the average overbooking penalty of one ith ODF itinerary reserva-

tion.

Hence, the integer programming (IP) approximation model, that maximizes the

expected net benefit at time t subject to expected capacity constraints is:

IP o
N(s, t) = max f̃

′ · y− R̃o
′ · so

s.t. 0 ≤ Ã · (y + s− so) ≤ N

0 ≤ y ≤ Dt

0 ≤ so ≤ y + s

y, so integer.

[Note:] Fractions of seats cannot be sold. The seat allocations must be integral

numbers. The difficulty of such a constraint is that integer solutions usually re-

quire a considerable amount of extra processing. Simple rounding of a non-integer

solution often does not give the optimal integer solution and can be significantly

different from it.

The corresponding LP relaxation is explored below which is appealing precisely

because it is so simple and computationally efficient. And simulation studies have

shown that with frequent re-optimizing, the LP approximation is quite good, pro-

ducing a higher expected revenue compared to some other approximation schemes.

LP o
N(s, t) = max f̃

′ · y− R̃o
′ · so

s.t. 0 ≤ Ã · (y + s− so) ≤ N

0 ≤ y ≤ Dt

0 ≤ so ≤ y + s (4.5)
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Its dual can be expressed as follows:

min v′ ·N− u′ · s + (̃f
′ − u′)+ ·Dt

s.t. u′ = min(R̃o
′
,v′ · Ã)

v ≥ 0. (4.6)

This formulation can be equivalently written as:

LP o
N(s, t) = min

v≥0
v′ ·N− (min(R̃o

′
,v′ · Ã)) · s + (̃f

′ −min(R̃o
′
,v′ · Ã))+ ·Dt

Thus the objective value function is piecewise linear, concave in the expected de-

mand to come Dt and s.

[Proof:]

LP o
N(s, t) = max f̃

′ · y− R̃o
′ · so

s.t. 0 ≤ Ã · (y + s− so) ≤ N

0 ≤ y ≤ Dt

0 ≤ so ≤ y + s

= max f̃
′ · y− R̃o

′ · so

s.t. Ã · (y + s− so) ≤ N

Ã · (−y− s + so) ≤ 0

y ≤ Dt

so ≤ y + s

y ≥ 0

so ≥ 0

Given a primal problem with the structure shown above, its dual is defined to

be the problem shown as follows (See [8], P145):

LP o
N(s, t) = min v′ · (N− Ã · s) + w′ · (Ã · s) + h′ ·Dt + g′ · s

s.t. v′ · Ã−w′ · Ã− g′ + h′ ≥ f̃
′

−(v′ · Ã−w′ · Ã− g′) ≥ −R̃o
′

v,w,h,g ≥ 0.

= min v′ ·N− (v′ · Ã−w′ · Ã− g′) · s + h′ ·Dt

s.t. v′ · Ã−w′ · Ã− g′ + h′ ≥ f̃
′

−(v′ · Ã−w′ · Ã− g′) ≥ −R̃o
′

v,w,h,g ≥ 0. (4.7)
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Let u′ = v′ · Ã−w′ · Ã− g′, where v,w,g ≥ 0

u′ ≤ v′ · Ã−w′ · Ã

LP o
N(s, t) = min v′ ·N− u′ · s + h′ ·Dt

s.t. u′ + h′ ≥ f̃
′

−u′ ≥ −R̃o
′

u′ ≤ v′ · Ã−w′ · Ã
w,v,h ≥ 0.

= min v′ ·N− u′ · s + h′ ·Dt

s.t. u′ ≥ f̃
′ − h′

u′ ≤ min{R̃o
′
,v′ · Ã−w′ · Ã}

w,v,h ≥ 0.

We know that: min−u′ · s⇐⇒ max u′ · s and s ≥ 0,

hence, u should be as large as possible

satisfying: u′ ≤ R̃o
′

and u′ ≤ v′ · Ã−w′ · Ã.

w′ ≥ 0 =⇒ w′ · Ã ≥ 0

therefore,

=⇒ w′ = 0 and u′ = min(R̃o
′
,v′ · Ã)

The problem is equivalent to:

LP o
N(s, t) = min v′ ·N− u′ · s + h′ ·Dt

s.t. u′ ≥ f̃
′ − h′

u′ = min{R̃o
′
,v′ · Ã}

v,h ≥ 0

We want min h′ ·Dt and Dt ≥ 0,

so, h should be as small as possible satisfying:

h ≥ 0

−f̃
′
+ u′ + h′ ≥ 0

then, h′ = (̃f
′ − u′)+.

Finally, its dual can be expressed as follows:
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LP o
N(s, t) = min v′ ·N− u′ · s + h′ ·Dt

s.t. h′ = (̃f
′ − u′)+

u′ = min{R̃o
′
,v′ · Ã}

v ≥ 0

= min v′ ·N− u′ · s + (̃f
′ − u′)+ ·Dt

s.t. u′ = min(R̃o
′
,v′ · Ã)

v ≥ 0.

4.4 Approximate DP Algorithms

Up to this point, certain efficient mathematical programming models of the NRM

problem are given. However, the IP/LP model can be treated as a computational

efficient approximation to the DP Model by solving the model at several fixed time

points during the booking process.

Given a certain efficient mathematical programming formulation of the NRM

problem, a generic approximate DP algorithm for the NRM problem should have

the following structure:

Generic Mathematical Programming (MP) Policy:

Identify an efficient formulation MP of the NRM problem.

At any current state S = (s, t),

1. For a ith ODF itinerary request, compute an MP-based estimate of the oppor-

tunity cost OCMP
i (S).

2. Sell to ith ODF itinerary if and only if its fare fi exceeds its opportunity cost

estimate, i.e.,

fi ≥ OCMP
i (S)

3. Go to step 1 and Iterate. (OCMP
i (S) is recomputed periodically throughout the

booking horizon in response to change in s or demand forecast).

The difference between various algorithms comes from the approximate MP for-

mulation and MP-based opportunity cost measure, which is from Step 1.
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In this section, we will consider two approximate dynamic programming algo-

rithms incorporating cancellations and overbooking for the NRM problem — BPC

and CEC, both are derived from the LP relaxation.

1. BPC Policy incorporating Overbooking

Bid-price control (BPC) is a popular method in NRM, where the opportunity

cost of an itinerary is approximated by the sum of bid-prices of the legs along that

itinerary. Here, shadow prices are determined for each leg in the network, related

to the dual (vS) of the LP approximation in Eq. (4.6). We assume that the bid-

prices at state equals the shadow prices obtained from the LP formulation of the

problem. The leg bid-prices are computed additively. At the state S = (s, t), the

opportunity cost estimates (include the penalty vector because of the overbooking

factors) are:

OCBPC(s, t) = min{R̃o
′
, BP o(s, t)} = min{R̃o

′
, (vs,t−1)′ · Ã}

[Booking Policy for BPC:]

At any given state S = (s, t), accept a booking request for ith ODF itinerary iff:

f̃i ≥ OCBPC
i (s, t) = min{R̃o

i , (v
s,t−1)′ · Ãi}. (4.8)

That is, the opportunity cost for ith ODF itinerary at the state (s, t) is estimated

as the smaller between the sum of the bid prices of the incident legs ((vs,t−1)′ · Ãi)
and the overbooking penalty for that itinerary (R̃o

i ). If its adjusted fare f̃i is higher

than the opportunity cost at state (s, t), then the expected revenue for the airline

can be increased, so we can accept this booking request in ith ODF itinerary at

time t.

[Note:] From Eq. (4.6), we have: (us,t−1
i )′ = min{R̃o

i , (v
s,t−1)′·Ãi} = OCBPC

i (s, t).

The additive bid-price approach may be the most popular technique in the cur-

rent literature. However, there are several obvious drawbacks in additive bid-prices:
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• The bid-prices are not well defined if there are multiple dual solutions;

• Even if the sum of the bid-prices along an itinerary are unique, they can not ac-

count for changes of dual basis which are due to large group and multi-leg itinerary

requests);

• Finally, there lie the computational difficulties in reducing the amount of time

required to obtain the bid-prices Hence, it is difficult for the airlines to provide near

real time re-optimizations. Hence, they cannot ensure to make optimal accept/deny

decisions when booking requests arrive.

[Note:] One useful by-product of the BPC policy is to identify flight legs which

have exceptionally high bid prices. These legs correspond to bottlenecks in the

airline network. Bottlenecks can constrain the flow of passengers and should be

attended to. Just as in most industrial settings, the two possible treatments for

bottlenecks are: 1) to increase the capacities of these legs by assigning more or

larger aircraft, and 2) to maximize the use of bottlenecks by placing buffer inven-

tories, which can be achieved with overbooking.

2. CEC Policy incorporating Overbooking

There is another different approximate estimate for the opportunity cost, which

is called certainty equivalent adaptive control (CEC). The idea is to approximate

the value function of the dynamic models DP o
N(s, t) defined in Eq.(4.1) by the

value of the linear programming problem LP o
N(s, t) defined in Eq.(4.5). And we

get the opportunity cost estimate in terms of LP objective values, which is uniquely

determined. Then the cost estimate will not depend on the choice of dual solutions

which may not be unique. So, in this way we can get a better approximation

estimate.

[Booking Control for CEC:]

At any given state S = (s, t), accept a booking request for ith ODF itinerary iff:

f̃i ≥ OCCEC
i (s, t) = LP o

N(s, t− 1)− LP o
N(s + ei, t− 1) (4.9)
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4.5 Structural Properties

We have introduced two approximate dynamic programming algorithms BPC

and CEC in the previous section. Now let us dig out some structural properties of

these two algorithms.

[Proposition 1 ]. In any state (s, t), for any OCBPC
i (s, t), OCBPC

i (s + ei, t) the

following inequalities hold: OCBPC
i (s, t) ≤ OCCEC

i (s, t) ≤ OCBPC
i (s + ei, t).

Inequalities are strict if accepting ith ODF itinerary request must incur a change of

basis in the LP dual. (We mean that any of the optimal solutions for LP o
N(s, t−1)

is not the optimal solution of LP o
N(s + ei, t− 1), and vice versa.)

BPC accepts a
request

CEC accepts a
request

[Proof:]

OCCEC
i (s, t) = LP o

N(s, t− 1)− LP o
N(s + ei, t− 1)

= (vs,t−1)′ ·N− (us,t−1)′ · s + (̃f
′ − (us,t−1)′)+ ·Dt−1

−[(vs+ei,t−1)′ ·N− (us+ei,t−1)′ · (s + ei) + (̃f
′ − (us+ei,t−1)′)+ ·Dt−1]

where (vs,t−1,us,t−1) and (vs+ei,t−1,us+ei,t−1) are optimal dual solutions of LP o
i (s, t−

1) and LP o
i (s + ei, t − 1), corresponding to the given bid prices: BP o

i (s, t) =

(vs,t−1)′ · Ãi and BP o
i (s + ei, t) = (vs+ei,t−1)′ · Ãi respectively.

Since both solutions are feasible for both programs, we obtain the following

upper bounds by evaluating each LP at the optimal solution of the other:

LP o
N(s, t− 1) ≤ (vs+ei,t−1)′ ·N− (us+ei,t−1)′ · s + (̃f

′ − (us+ei,t−1)′)+ ·Dt−1 (4.10)

LP o
N(s + ei, t− 1) ≤ (vs,t−1)′ ·N− (us,t−1)′ · (s + ei) + (̃f

′− (us,t−1)′)+ ·Dt−1 (4.11)

In case the two dual optimal solutions coincide, we obtain equality throughout.
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By Eq. (4.10) and Eq. (4.8), we get,

OCCEC
i (s, t) ≤ (vs+ei,t−1)′ ·N− (us+ei,t−1)′ · s + (̃f

′ − (us+ei,t−1)′)+ ·Dt−1

−(vs+ei,t−1)′ ·N + (us+ei,t−1)′ · (s + ei)− (̃f
′ − (us+ei,t−1)′)+ ·Dt−1

= (us+ei,t−1)′ · ei
= min{R̃o

i , (v
s+ei,t−1)′ · Ãi} = OCBPC

i (s + ei, t)

In the same way, by Eq. (4.11), we can prove that:

OCCEC
i (s, t) ≥ (us,t−1)′ · ei = OCBPC

i (s, t).

So, we prove that: OCBPC
i (s, t) ≤ OCCEC

i (s, t) ≤ OCBPC
i (s + ei, t). �

[Proposition 2 ]. (Structural Properties of the BPC Policy)

At any state (s, t), if LP o
N(s, t− 1) has a unique dual optimal solution, then the

corresponding BPC accepts and only accept requests for which y∗i > 0 in some

primal optimal solution.

[Proof:]

At the state (s, t), we consider the primal and the dual of LP o
N(s, t − 1) below:

max f̃
′ · y− R̃o

′ · so

s.t. Ã · (y + s− so) ≤ N

Ã · (−y− s + so) ≤ 0

y ≤ Dt−1

so ≤ y + s

y ≥ 0

so ≥ 0

= min v′ ·N− u′ · s + h′ ·Dt−1

s.t. u′ + h′ ≥ f̃
′

u′ ≤ R̃o
′

v ≥ 0. (4.12)

we can distinguish the following situations:

• For ith ODF itinerary, y∗i = 0 in all optimal LP-solutions.

We have hi = 0 by complementary slackness properties.
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We assume that LP o
N(s, t−1) has a unique dual optimal solution at any state (s, t),

by strict complementary slackness (See [8], P192), we know that:

ui + hi = min(R̃o
i , (v

s,t−1)′ · Ãi) + hi > f̃i

min(R̃o
i , (v

s,t−1)′ · Ãi) > f̃i

OCBPC
i (s, t) = min(R̃o

i , (v
s,t−1)′ · Ãi) > f̃i

By the condition in Eq.(4.8), the BPC rejects this ith ODF itinerary request.

• For ith ODF itinerary, y∗i > 0 in some optimal LP-solutions. We will get 0 <

y∗i ≤ Dt−1
i . From the complementary slackness, we have that:

ui + hi = f̃i

f̃i − ui = hi ≥ 0

Clearly, we have that:

f̃i ≥ ui = min(R̃o
i , (v

s,t−1)′ · Ãi) = OCBPC
i (s, t)

So, the BPC accepts this ith ODF itinerary request. �

[Proposition 3 ]. (Structural Properties of the CEC Policy)

Suppose that LP o
N(s+ei, t−1) and LP o

N(s, t−1) have different optimal dual bases.

And we assume that Dt−1
i ≥ 1.

[Part One:] CEC accepts ith ODF itinerary request if y∗i ≥ 1 in some optimal

solution of LP o
N(s, t− 1).

[Part Two:] CEC rejects ith ODF itinerary request if 0 ≤ y∗i < 1 in all optimal

solutions of LP o
N(s, t− 1).

[Proof:]

For Part One, we assume that: y∗i ≥ 1 in some optimal solution of LP o
N(s, t−1).
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Hence, we have y∗ − ei ≥ 0.

LP o
N(s, t− 1) = f̃

′ · y∗ − R̃o
′ · (so)∗

where, (y∗, (so)∗) satisfying 0 ≤ Ã · (y∗ + s− (so)∗) ≤ N

0 ≤ y∗ ≤ Dt−1

y∗ − ei ≥ 0

0 ≤ (so)∗ ≤ y∗ + s

=⇒ (y∗, (so)∗) satisfying:

0 ≤ Ã · (y∗ − ei + s + ei − (so)∗) ≤ N

0 ≤ y∗ − ei ≤ Dt−1

0 ≤ (so)∗ ≤ y∗ − ei + s + ei

So, (y∗ − ei, (so)∗) is a feasible solution of LP o
N(s + ei, t− 1), where,

LP o
N(s + ei, t− 1) = max f̃

′ · y− R̃o
′ · so

s.t. 0 ≤ Ã · (y + s + ei − so) ≤ N

0 ≤ y ≤ Dt−1

0 ≤ so ≤ y + s + ei

=⇒ LP o
N(s, t− 1) = f̃

′ · y∗ − R̃o
′ · (so)∗

= f̃i + f̃
′ · (y∗ − ei)− R̃o

′ · (so)∗

≤ f̃i + LP o
N(s + ei, t− 1)

=⇒ OCCEC
i (s, t) = LP o

N(s, t− 1)− LP o
N(s + ei, t− 1) ≤ f̃i

CEC will accept ith ODF itinerary request in this case.

Then we proved the part one.

For part two, 0 ≤ y∗i < 1 in all primal optimal solutions, then 0 ≤ y∗ < Dt−1
i .

By complementary slackness, hi = 0 and ui + hi ≥ f̃i.

That is: min(R̃o
i , (v

s,t−1)′ · Ãi) ≥ f̃i
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Under the assumption that the optimal dual basis changes, and by Proposition 1:

OCCEC
i (s, t) > OCBPC

i (s, t) = min(R̃o
i , (v

s,t−1)′ · Ãi) ≥ f̃i

So, CEC policy rejects ith ODF itinerary request. �

∗ Hence, if we have the assumptions as follows:

1. At any state (s, t), if LP o
N(s, t− 1) has a unique dual optimal solution.

2. LP o
N(s + ei, t− 1) and LP o

N(s, t− 1) have different optimal dual bases.

3. Dt−1
i ≥ 1.

the behavior of the BPC and CEC policies can be characterized as a function of y∗i .

y∗i y∗i ≥ 1 for some y∗ y∗i < 1 for all y∗, but y∗i 6= 0 in some i y∗i = 0 for all y∗

CEC accept reject reject

BPC accept accept reject

4.6 Computational Performance

The aim of this section is to understand the relative performance of BPC and

CEC in the environment with cancellations and overbooking. Exact calculations

of the optimal expected revenue (DP) and the expected values of the proposed

policies (CEC, BPC) are practically impossible. A tractable approach for measur-

ing performance of the proposed policies, however, is provided by simulation. We

consider a booking horizon of 15 periods for a hub and spoke network with 5 cities

and two classes, as in the following example from [7]:
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The leg-class incidence matrix, together with a high-low fare structure f = (fh, fl):


 f

A


 =




f l1 fh1 f l2 fh2 f l3 fh3 f l4 fh4 f l12 fh12 f l13 fh13 f l23 fh23 f l24 fh24

1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1




The arrival process for the highest fare class is nonhomogeneous Poisson with

rate 0.5 for period 1-13 and 5 for periods 14 and 15. The arrival process for the

lowest fare class is homogeneous Poisson with rate 3. For simplicity, keep that fare

of the higher class in a single-leg itinerary equal to $100 and of the lower class

equal to $80. Vary the fare of two leg itineraries.

After experimentation, some results are presented below:
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Figure 4.1: The expected revenue in

T = 200 simulation runs as a function

of the overbooking penalty. The can-

cellation probability was 0.01.
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Figure 4.2: The expected revenue in

T = 200 simulation runs as a function

of the overbooking penalty. The over-

booking penalty was $130.

[Result 1:] By comparing the behaviors of CEC and BPC as a function of the



4.7 Conclusion 79

overbooking penalty, the CEC algorithm leads to higher revenue by approximately

1%, see Figure (4.1).

[Result 2:] For the behaviors of CEC and BPC as a function of the cancellation

probability, with the exception of very high cancellation rate (0.3), CEC outper-

forms BPC still, see Figure (4.2).

4.7 Conclusion

Network-based models consider booking requests for multiple legs at the same

time. The booking control policy can be static, such that decisions are based

on pre-calculated booking limits, or dynamic, where the decision rules constantly

change during the booking period. In this chapter, we investigate dynamic policies

for allocating inventory to stochastic demand of multiple fare classes, in a network

environment so as to maximize total expected revenue. Although in principle it

is not hard to come up with a practical, dynamic model in a network environ-

ment, the proverbial “curse of dimensionality” of dynamic programming would

prohibit solving it to optimality in practice. In this chapter, we consider IP and

LP Models as the approximation schemes by solving the models at several fixed

times during the booking process. Both models incorporate cancellation, no-shows

and overbooking, though these schemes considers only the expected demand and

ignores all distributional information. Furthermore, based on the LP models, two

approximate dynamic programming algorithms (BPC and CEC) are introduced.

We find out and prove some structural properties and compare the behaviors of

both policies. Finally, we quote one computational result to give insight into the

performance of the algorithms. With the importance of overbooking control to

airline profitability, emphasis is being placed on finding more effective methods

and better solutions so as to maximize the expected revenue for the airline in the

network environment.



Chapter 5
Conclusion and Future Work

The emphasis of this report has been on the overbooking in airline revenue man-

agement. Both leg-based and network-based overbooking control approaches have

been developed and evaluated.

We provide an introduction for Airline Overbooking problem and state different

models in use today. The booking control policy for these models can be static or

dynamic. We present the difference between Static and Dynamic models in detail.

In this report, we present several new approaches to solve static Single-Leg prob-

lem with cancellations, no-shows and overbooking. We deduce 3 different rules for

Single-fare, Single-Leg overbooking problem to determine the optimal booking lim-

its for each fare class at the start of the booking process. For the two-fare-class

on Single-Leg, Littlewood’s Rule is revised to include overbooking for two nested

fare classes case. The revised rule has provided the optimal protection level for

the higher fare class from the lower one. We present a heuristic to the nested,

Single-Leg problem with multiple fare classes (rEMSR approach). Given all these

protection levels in the nested reservation system, we propose simple example to

show that how the optimal booking limits are determined to maximize the total

expected revenue.

80
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For these static models on Single-Leg, the structure of the optimal booking con-

trol is such that the decision is determined by the booking limits for each fare class.

The results generated by these solutions are optimal under the sequential arrival

assumption as long as no change in the probability distributions of the demand

is foreseen. So, it is necessary to guarantee that the fare demands are accurately

forecasted. At present, further research is still needed to improve the forecasting

models.

However, passenger behavior, and therefore the optimal booking limits, vary with

time to departure. We discussed two models in [54] to formulate the overbooking

problem as a discrete time Markov decision process and use dynamic programming

to analyze it. These two dynamic models on Single-Leg are discussed in depth. We

prove the concavity of the value function completely, which is the key point for the

optimality of the booking control policies. The structure of the optimal booking

control is such that the decision is determined by the opportunity cost of reducing

one seat in capacity. The optimal decision rule can be determined at each time

period before flight departure. However, the size and complexity of these theoreti-

cal models make them impractical for an airline to use routinely in its reservations

control system.

We have also studied several models and algorithms for solving the dynamic

Network Revenue Management problem (NRM). We find out two approximate dy-

namic algorithms — BPC and CEC which are discussed by Bertsimas and Popescu

(2001) [7]. However, [7] focuses on the models without considering the overbook-

ing, cancellations and no-shows. In this report, all these random and complicated

processes are handled by incorporating oversales decisions in the underlying linear

programming formulation. We provide and prove some structure properties that

compare the behavior of the proposed CEC policy with the BPC approach. These

results offer insight into the behavior of both methods.
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The proverbial “curse of dimensionality” of dynamic methods would still pro-

hibit implementing them in practice. The most frequently utilized methods to the

NRM are static models. They are solved at several fixed times during the book-

ing process. We consider the LP approximation methods, which are appealing

for large-scale network revenue management because they can be very efficiently

solved each time a re-optimization is required. However, we haven’t considered the

nested inventory structure which will generate equal or greater expected revenue

for the airlines [62].

The Overbooking problem in Airline Revenue Management is greatly compli-

cated. The airline’s practices, the size of the aircrafts, the overall route structure

of an airline, the demand densities, the cancellations process of the passengers,

the no-show activities and even the competitive environment in which the airline

operates all dictate the specific approach which is best for a particular airline. It

has received a lot of attention throughout the past years and will continue to be

of interest. In the near future, one can expect to see more research work done

on overbooking in airline revenue management, and finally, considering the full

integration of overbooking with pricing and traffic management [52], rather than

treating each as separate function of the marketing process.



Appendix A
Useful Terminology

We provide here a glossary of terminologies in Overbooking in airline revenue

management. The aim is to supply a separate glossary to avoid needless definitions

for readers familiar with this problem while assisting others who are new to this

field. Many of the terms described here have different meanings in more general

contexts but are presented here with their usual meanings in Airline Overbooking

problem.

For convenience, we will use some abbreviations.

We state them as follows:

AGIFORS Airline Group of the International Federation of Operational

Research Societies

BPC Bid-price Control Algorithms

CAB Civil Aeronautics Board

DINAMO Dynamic Inventory and Maintenance Optimizer

EMSR Expected Marginal Seat Revenue

IP Integer Programming

LP Linear Programming

MP Mathematical Programming Formulation

NRM Network Revenue Management

83
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OBL Optimal Booking Limits

ODF Origin-Destination-Fare

PARM Perishable Asset Revenue Management

SABRE Semi-Automated Business Research Environment

Arrival pattern: The pattern of arrivals of booking requests. In the airline con-

text, some possible arrival patterns are: sequential booking classes, low-before-high

fares, or interspersed arrivals.

Batch booking: A booking request that arrives through normal reservation chan-

nels for two or more seats to be booked for the same itinerary. Contrast with group

bookings.(Also multiple booking, or bulk arrival)

Bid Price: A net value (bid-price) for an incremental seat on a particular flight

leg in the airline network. Also referred to as minimum acceptable fare, hurdle

price, probabilistic shadow price, displacement cost, or probabilistic dual cost.

Bid price control: A method of network seat inventory control that assesses the

value of an ODF itinerary as the sum of the bid-prices assigned to individual legs

in the itinerary. Typically, an ODF request is accepted if its fare exceeds the total

bid-prices.

Booking class: A category of bookings that share common features (e.g., similar

revenue values or restrictions) and are controlled as one class. This term is often

used interchangeably with fare class or bucket.

Booking limit: The maximum number of seats that can be sold to a particular

booking class. In nested booking systems, booking limits apply to the total number

of seats sold to a particular booking class and any lower fare booking classes.



85

Booking Policy: A booking policy is a set of rules that specify at any point

during the booking process whether a booking class should be open. In general,

such policies may depend on the pattern of prior demands or be randomized in

some manner and must be generated dynamically as the booking process unfolds

for each flight. In some circumstances, optimal or approximately optimal booking

policies can be defined by a set of fixed protection levels or threshold curves.

Cancellations: Returns or changes in bookings that occur early enough in the

booking period to permit subsequent re-booking through the reservations system.

Compensation costs or Cost of Oversales: The total value of money and

other incentives given to bumped passengers by airlines. It may consist of com-

pensation for the inconvenience (in the form of vouchers that can be redeemed on

a future flight), hotel and meal accommodations if necessary, and accommodation

on a later flight, either on same airline or some other airline. The oversale cost

is not constant (nonlinear with a positive slope as the number of oversales increase).

Denied boarding: Turning away ticketed passengers when more passengers show-

up at flight time than there are seats available on the flight, usually as a result

of overbooking practices. Denied boarding can be either voluntary, when passen-

gers accept compensation for waiting for a later flight, or involuntary, when an

insufficient number of passengers agree to accept compensation. In the latter case,

the airline will be required to provide compensation in a form mandated by civil

aviation law.

Dynamic models: Models that take into account future possible booking de-

cisions in assessing current decisions. Most revenue management problems are

properly modelled as dynamic programming problems.
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Dual prices: The marginal value of one additional unit of a constrained resource,

as determined by a mathematical programming solution to an optimization model.

Dual prices are one source of the marginal seat values used in bid-price control.

Expected marginal seat revenue (EMSR): The expected revenue of an incre-

mental seat if held open. This is a similar concept to that of bid-price but generally

used in a simpler context.

Flight leg: A section of a flight involving a single takeoff and landing (or no

boarding or deplaning of passengers at any intermediate stops).

Flight Capacity: The total number of physical seats on a given flight.

Goodwill costs: An airline’s rejection of a booking request can affect a customer’s

propensity to seek future bookings from that airline. This cost is difficult to assess

but is considered particularly acute in competitive markets and with customers

who are frequent air travellers.

Go-show: Passengers who appear at the time of flight departure with a valid

ticket for the flight but for whom there is no record in the reservation system. This

no-record situation can occur when there are significant time lags in transferring

booking information form reservations sources (e.g., travel agent’s offices) to the

CRS or when there are transmission breakdowns.

Group bookings: Bookings for groups of passengers that are negotiated with

sales representatives of airlines; for example, for a large group from one company

travelling to a trade show. These should be distinguished from batch bookings.

Hub-and-spoke network: A configuration of an airline’s network around one or
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more major hubs that serve as switching points in passengers’ itineraries to spokes

connected to smaller centers. The proliferation of these networks has greatly in-

creased the number of passenger itineraries that include connections to different

flights.

Independence of demands: The assumption that demands in one customer

category (e.g., booking class or ODF) are statistically independent of demands

in other categories. It is widely believed that this assumption is not satisfied in

practice. See, for example, Hopperstad (1994).

Itinerary: For purposes of this report, an itinerary is a trip from an origin to

a destination across one or more airline networks. A complete specification of an

itinerary includes departure and arrival times, flight numbers, and booking classes.

The term is used ambiguously to include both one-way and round-trip travel. That

is, used in the first way, a round-trip involves two itineraries and, in the second

way, one itinerary.

Leg based control: An old, but still common method of reservations control and

revenue management in which limits are set at the flight leg level on the number

of passengers flying in each booking class. Such systems are unable to properly

control multi-leg traffic, although virtual nesting provides a partial solution.

Load factor: The ratio of seats filled on a flight to the total number of seats

available.

Low-before-high fares: (Also called monotonic fares or sequential fares) The

sequential booking class assumption is often augmented by the additional assump-

tion that booking requests arrive in strict fare sequence, generally from lowest to

highest as flight departure approaches.
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Multi-leg: A section of an itinerary or network involving more than one leg.

Nested booking: In fully nested (also called serially nested) booking systems,

seats that are available for sale to a particular booking class are also available to

bookings in any higher fare booking class, but not the reverse. Thus, a book-

ing limit B for a discount booking class defines an upper bound on bookings in

that class and any lower valued classes and a corresponding protection level for all

higher classes. This should be contrasted with the partitioned booking system.

No-shows: Booked passengers who fail to show up at the time of flight departure,

thus allowing no time for their seat to be booked through normal reservations pro-

cesses. No-shows are particularly common among full fare passengers whose tickets

are fully refundable in the event of cancellation or no-show.

Opportunity cost: In revenue management, the opportunity cost of a booking

includes all future revenues that may be lost if the booking is accepted. Taken to

the extreme, these include the revenue value of potential displaced future book-

ings anywhere in the airline network and goodwill costs from those displacements.

Assessment of the costs and probabilities of such displacements should allow for

the dynamics of cancellations and overbooking and the expected costs of oversold

conditions.

Oversold: An ambiguous term sometimes used when more passengers show up

for a flight than there are seats available. Such situations must be resolved with

denied boarding.

Overbooking: The practice of ticketing seats beyond the capacity of an aircraft

to offset the effects of passenger cancellations and no-shows.



89

Protection levels: The total number of protected seats for a booking class. In

fully nested booking systems the protection level for a fare class applies to that

class and all higher fare classes.

Recapture: The booking of a passenger who is unable to obtain a reservation for

a particular flight or set of flights with an airline onto alternative flights with the

same airline. High recapture probabilities imply that less oversale risk should be

taken, so that the overbooking level will be lower.

Revenue Management: The practice of controlling the availability and pricing

of the seats in different booking classes with the goal of maximizing expected rev-

enues or profits. This term has largely replaced the original term yield management.

Show-ups: Passengers who appear for boarding at the time of flight departure.

The total number of show-ups is = final bookings + go-shows + standbys - no-

shows.

Spoilage: Seats that travel empty despite the presence of sufficient demand to

fill them. This should be distinguished from excess capacity — seats that are

empty because of insufficient total demand. Spoilage therefore represents a lost-

opportunity cost to the airline.

Standby fares: Some airlines will sell last minute discount seats to certain cat-

egories of travellers (e.g., youth or military service personnel) who are willing to

wait for a flight that would otherwise depart with empty seats. In other words,

standbys are customers who buy tickets at (possibly reduced) rates with the re-

striction that they may travel on the next flight with available seats only after all

reservations for that flight have been honored.
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Static models: Models that set current booking limits without consideration of

the possibility of adjustments to the limits later in the booking process. (Compare

with dynamic models.)

Ticket holders or Ticketed passengers: People who have purchased a ticket

and whose individual ticket revenue has already been received by the airline.

Threshold times: They are points in time during the booking horizon before

which requests are rejected, and after which requests are accepted.

Upgrade: This term is used in two ways. Firstly, it refers to an offer to a pas-

senger to fly in a higher service class without additional charge (e.g., in exchange

for frequent flyer points, or to avoid a denied boarding). Secondly, it refers to a

decision by a customer to book in a higher fare class than originally intended when

he or she is advised that no seats are available at their preferred fare (Sell-ups).

Virtual nesting/virtual classes: This is one approach to incorporate origin-

destination information into leg or segment based control systems. Multiple ODFs

are grouped into virtual buckets on the basis of similar revenue characteristics

(e.g., comparable total fare classes.) The buckets are then nested and assigned to

traditional booking classes for control in a leg based reservation system.

Yield management: The early term used for what is now more commonly called

revenue management. Cross (1995) attributes the original term to Robert L. Cran-

dal when he was Senior Vice President for Marketing (Later CEO) at American

Airlines.



Appendix B
Literature Review

Airline Revenue Management research has been reduced to three distinct smaller

problems: Overbooking, Discount allocation, and Traffic management (Smith and

etc. [52]). Overbooking has the longest research history of any of the components

of the revenue management problem. For convenience to the readers, we collect

and outline some important results as follows. You can also check the references.1

Year Reference Main Contributions

1958 Beckmann [3] An early, non-dynamic optimization model is formed for

overbooking, employing a static one-period model with

reservation requests, booking and finally cancellations

(in term of τ distributions) that balances the lost rev-

enue of empty seats with the costs to the airline of pas-

sengers denied boarding.

1These papers are important in this field, we collect them to get a rough idea about what is

going on for the Airline Overbooking problem. As I have said, overbooking is a strategic tool to

increase corporate profitability and most airlines generally do not publish their yield management

approaches, models and implementation aspects due to their proprietary nature. So we tried my

best to find those papers published as possible as we can. Some incorporate overbooking, some

do not, while they are very crucial for the development of this problem.

91



92

Year Reference Main Contributions

1960 Kosten [31] A continuous time approach is developed. However,

this approach requires solution of a set of simultane-

ous differential equations which make the implementa-

tion impractical. He provided the interspersion of reser-

vations and cancellations which Beckmann ignored and

thus yielded a booking level depending upon the number

of days yet to transpire before flight.

1961 Thompson [59] A model is developed to provide booking levels that con-

strained the probability of denied boarding. Different

from Beckmann’s and Kosten’s models, this model omits

the costs and passenger reservation demands, and only

describes the cancellation patterns of any fixed number

of reserved passengers.

1962 Taylor [58] He formed a statistical model(Adapted Thompson’s ap-

proach).

1964 Deetman [20] Taylor’s model was studied to test its behavior and im-

plementability at KLM.

1967 Rothstein and

Stone [47]

They formed a model for Single-leg flight carrying a sin-

gle type of passengers, developed a computer system for

booking levels using a slightly simplified version of the

Taylor model and capitalizing on the copious cancella-

tion statistics available from SABRE.

1968 Rothstein [43] He described the first dynamic programming(DP) model

for overbooking and reviewed the results of test runs of

the model at American Airlines.

1971 Rothstein [44] The procedure of reservations was viewed as a Marko-

vian sequential decision process. He first proposed a

mathematic model to analyze the overbooking policy.



93

Year Reference Main Contributions

1971 Howard [27] The airline overbooking problem is set up for a single

fare class as a Markov decision problem. Howard pro-

posed the use of the value iteration method to obtain

the optimal policy for the problem of overbooking. How-

ever, only very small problems can be solved with this

approach because of the computational limitations of

value iteration.

1972 Vickrey [60] He claimed that oversold conditions could be resolved

with auctions and he describe a concept of the multiple

fare classes reservations system.

1972 Littlewood [39] He proposed a rule for the two-period, two-fare-class

problem in which low-fare customers book prior to

high-fare customers. It is an important paper even

though it ignores cancellations, no-shows and overbook-

ing. His rule was shown to be optimal by Bhatia and

Parekh(1973) of TWA, and later by Richter(1982) of

Lufthansa.

1974 Etschmaier and

Rothstein [23]

They formulated the airline and hotel overbooking prob-

lem as a non-homogeneous markovian sequential deci-

sion process. Solutions to the formulations were ob-

tained with the aid of dynamic programming.

1975 Shlifer and Vardi

[49]

An overbooking model is extended to allow for two fare

classes and a two-leg problem is described. A model was

presented to determine overbooking levels under three

different criteria assuming deterministic capacity of the

three criteria chosen.
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Year Reference Main Contributions

1977 Simon and Visv-

abhanathy [50]

They came up with a remarkable proposal for solving the

overbooking problem: if too many reserved passengers

show up at flight time, the airline agents should conduct

an auction among them.

1978 Hersh and

Ladany [36]

They considered a flight with one class and one interme-

diate stop. In both effects, a sequential decision process

was developed which incorporated the time distribution

at which reservations and cancellations were actually

made, as well as effects due to waitlisted and standby

passengers and overbooking.

1985 Rothestein [46] He presented a survey of the application of operations

research to airline overbooking. The article analyzed

the issues that motivated overbooking and discussed the

relevant practices of the air carriers.

1986 Alstrup et al. [2] A DP treatment of overbooking for a two-class, non-stop

flight was described. The model treats the airline book-

ing process as a Markovian non-homogeneous sequential

decision process. They stated computational experience

with the approach at Scandinavian Airlines(solved by

two-dimensional stochastic dynamic programming).

1987a,b Belobaba [5] He discussed the problem of overbooking in multiple fare

classes and suggested a heuristic approach to solve the

problem.

1988 Dror et al. [22] A basic network model with gains/losses on certain arcs

for seats allocated to a single flight with intermediate

stops is first presented. (A network flow representation

of the problem incorporating both cancellations and no-

shows).
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Year Reference Main Contributions

1989 Brumelle and

McGill [12]

He presented a static formulation of the overbooking

problem and showed that it was a special case of a gen-

eral model of the two fare class seat allocation problem.

1989 Simpson [51] He introduced the idea of bid-price controls and pro-

posed many of the main approximation approaches in

the area.

1992 Williamson [62] Similar to Simpson(1989) and in particular, she used

extensive simulation studies to analyze a variety of ap-

proaches to network revenue management.

1992 Smith et al. [52] American Airlines Decision Technologies developed a

series of OR models and implemented the static one-

period overbooking model with additional constraints to

ensure that the level of service was not overly degraded.

A brief discussion on overbooking was presented in the

article.

1992 Bodily and

Pfeifer [10]

They worked on the static single-leg overbooking prob-

lem and stated the general overbooking rule, and

adapted it for specific models of the random survival

process for reservations.

1993 Chatwin [15] He dealt exclusively with the overbooking problem and

provided a number of new structural results. A rigor-

ous treatment of the multi-period overbooking problem

that relates to a single flight leg with known capacity

and single service class is provided. A continuous time

version of the model with stationary fares and refund is

also presented.
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Year Reference Main Contributions

1993 Weatherford,

Bodily and

Pfeifer [61]

They investigated dynamic booking limits for two

classes of passengers whose booking requests arrive con-

currently, assuming that the distribution of remaining

demand for each fare class was known.

1993 Lee and Hersh

[38]

They considered a discrete time dynamic programming

model, where demand for each fare class was modelled

by a non-homogeneous Poisson process. They proposed

a practical issue in airline seat inventory control (with-

out overbooking).

1993 Curry [19] A simple and easy to understand discussion on over-

booking in revenue management is provided, and a cou-

ple of models for solving the overbooking problem are

presented.

1998 Chatwin [16] He analyzed a multi-period airline overbooking problem

with non-stationary fares.

1998 Karaesman and

Van Ryzin [30]

They addressed the problem of jointly setting overbook-

ing levels when there were multiple inventory classes

that could serve as substitutes for one another.

1999a,b Chatwin [17][18] He modelled customer cancellations, and no-shows in a

dynamic framework. He was the first to take advantage

of the properties that TP3(totally positive of order 3)

density functions preserve quasi-concavity and concav-

ity in order to prove results regarding the structure of

optimal policies. Gave conditions that ensure the intu-

itive result that a booking-limit policy was optimal.
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Year Reference Main Contributions

1999 Subranmanian,

Lautenbacher

and Stidham

[54]

They allowed for bookings in multiple fare classes as

well as cancellations and no-shows. Borrowing a result

from the queueing control literature, they proved the

concavity of the associated optimal value functions and

subsequently, the optimality of a booking limit policy.

2000 Ignaccolo and

Inturri [29]

A fuzzy approach to the overbooking problem in air

transportation is considered.

2000 Zhao and Zheng

[64]

They proved that a similar threshold control as Fend and

Xiao (1999,2000) was optimal for a more general airline

seat allocation model that allowed diversion/upgrade

and no-shows. They also showed that under certain con-

ditions, the optimal threshold may not be monotone.

2001 Feng, Lin and

Xiao [26]

They formulated the airline seat control problem with

cancellations into a continuous-time, stochastic revenue

management model. They showed that optimal seat

control was of the thresholds built upon the character-

istic minimum acceptable fare.

2001 Dimitris Bertsi-

mas and Ioana

Popescu [7]

They investigated dynamic policies for allocating scarce

inventory to stochastic demand from multiple fare

classes, in a network environment so as to maximize

total expected revenues. They proposed and analyzed

a new algorithm, based on approximate dynamic pro-

gramming and extended that to handle cancellations

and no-shows by incorporating oversales decisions in the

underlying linear programming formulation.

2002 Suzuki [55] The behaviors of the denied-boarding passengers after

they were bumped are investigated.
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