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Synopsis 

 

In modern drug discovery practices, drug leads are screened / designed against a 

pre-selected drug target. As a prerequisite step, target identification directs further 

research and developments. It has become increasingly important and received more 

and more attention from researchers.  

This work begins with the development of the Therapeutic Target Database (TTD), 

which provides a comprehensive information source of known therapeutic targets and 

serves as a basis for the development of other in silico tools. A relational data model 

was designed specifically for this database which aims to maximize the ability to 

accommodate future extensions and facilitate the integration of information. 

Rapid discovery of new therapeutic targets is also very important as it may not only 

introduce more efficient therapeutic targets for certain diseases, but also increase the 

flexibility in designing of novel therapeutic intervention strategies by exploiting the 

synergies between known and newly discovered targets. With this database, statistical 

learning approaches are explored in rapid drug target discovery. Our results showed 

that support vector machine, a novel statistical learning approach, may be useful in the 

prediction of drug-target like proteins in human genome.  

Besides more effective therapeutic targets, delicate therapeutic mechanisms 

involving multiple cooperating targets may also help to improve the treatment 

effectiveness. Novel therapeutic mechanisms discovered from studies of herbal 
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medicines have routinely been used in new drug discovery. However, the insufficient 

mechanistic understanding of Medicinal Plants (MPs) hinders the efforts of developing 

new drugs based on the novel therapeutic mechanisms of MP ingredients. With known 

drug target information, virtual screening technologies are explored in the rapid 

analysis of the therapeutic mechanisms of effective herbal medicines. While a number 

of methods bear the potential in this application, our testing results on an extended 

docking method, the inverse docking approach, suggests its usefulness in facilitating 

the rapid analysis of the therapeutic mechanisms of effective herbal medicines.  

Currently, computer aided drug design approaches mainly focus on the structure 

properties of a drug target and its possible binder to find or design a chemical that 

could bind the target tightly. However, these approaches based on the “lock and key” 

principle neglect the important processes prior to and after drug–receptor interactions. 

Therefore, the success rate of new drug candidates is still low. Introducing the 

consideration of mechanisms of drug action into the early stages of drug design 

process becomes a popular idea among drug design experts. In this regard, the drug 

target directed in silico approaches discussed in this work can be regarded as part of 

the efforts toward therapeutic mechanism based drug design. Novel approaches 

introducing the consideration of ADME profile, potential toxicity effects and other 

important factors into the early stages of drug discovery process would be interesting 

topics that follow this work. 
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Chapter 1 

 

Introduction 

 

This thesis is submitted to the Faculty of Science in partial fulfillment of the 

requirements of the degree of Doctor of Philosophy. 

 

1.1 Introduction to drug discovery 

 The search for new, effective and safe drugs has become increasingly 

sophisticated. Two pronounced characteristics marked the modern age of the 

pharmaceutical industry: “competitiveness” and “high cost”. Driven by the high 

exclusive marketing profit, competition between pharmaceutical companies is much 

more intensive than before. Moreover, it is a competition by innovation [1], as 

highlighted by the title of an article in a research management journal: “’Innovate or 

die’ is the first rule of international industrial competition” [2].  

Besides the profit, the cost of discovering a new drug is also very high. Recent 

statistics shows that it would take 10-12 years, 200-350 million U.S. dollars to 

discover a new drug [3]. And this cost has been growing at a rate of 20% per year [3]. 

To alleviate this problem, efforts have been directed to reduce the cost and time span 

needed for the discovery of a new drug. In consideration of the current patent 

protection period of 20 years for new drugs, any advance in getting a drug out more 



Chapter 1: Introduction   2

quickly is desirable. In addition to its great contribution to the improvement of our life 

qualities, it is enormously profitable. If the research and development (R&D) stage 

took 10 years, the exclusive marketing period would only have 10 years left. If the 

R&D time were to be shortened for 2 or 3 years, not only a big amount of R&D 

funding could be saved, but also a longer precious exclusive marketing period would 

be rewarded. 

More and more computer approaches are now being developed to reduce the 

cost and cycle time for discovering a new drug. In order to appreciate the drug target 

directed in silico approaches in drug discovery and development, the background of 

drug discovery is necessary to be introduced first. 

1.1.1 History of drug discovery 

Around the period from 1872 to 1874, as a medical student in the laboratory of 

the anatomist Wilhelm Waldeyer at the University of Strasbourg in Germany, Paul 

Ehrlich observed that certain dyes showed selective affinity to biological tissues. This 

observation led Ehrlich to postulate the “chemoreceptor hypothesis” [4]. This 

hypothesis argued that certain chemoreceptors on parasites, micro-organisms, and 

cancer cells would be different from analogous structures in host tissues, and that 

these differences could be exploited therapeutically. This idea gave rise to the birth 

of chemotherapy, laid the ground in immunology and pharmacology, and 

subsequently led to the drug discovery practices. 

In the late 19th and early 20th century, the development of analytical chemistry 

methodologies such as chromatography, mass spectrometry, Nuclear Magnetic 
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Resonance (NMR) spectrometry [5,6] and purification techniques used in organic 

chemistry [7-9] had been proved fruitful in the purification and characterization of 

active ingredients form medicinal plants. For instance, morphine [10] was first 

isolated from opium extract in 1815 and papaverin [11] in 1848. Another prominent 

example is the discovery of penicillin [12] as an antibiotic by Alexander Fleming in 

1929 from a penicillium mold. The discovery of penicillin had opened a door for other 

scientists to search for other chemically related derivatives as well as new antibiotics. 

Since then, many drug companies established their own research units to search for 

drugs that exerted other pharmacological or chemotherapeutic properties. 

The advances in biochemistry [13] also influenced drug discovery significantly. 

Many drugs were found to exert their effects by interacting with biological 

macromolecules such as enzymes, DNA (deoxyribonucleic acid) or RNA (ribonucleic 

acid), glycoproteins, hormones, receptors and transcription factors, which are 

regarded as drug targets. It is also well understood that in most of the cases, drugs 

exert their functions by interacting with their targets mainly by non-covalent bonds 

such as van der Waals interactions, the same hydrogen bond interactions, and 

electrostatic interactions [14]. Only in few instances are covalent interactions formed 

[15]. 

1.1.2 Modern drug discovery 

After more then 150 years of development, the discovery and development of a 

new drug is still a long and expensive process while it has become much more 

competitive. At present, new agents discovered not only need to show the desired 
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therapeutic effects, but also need to be demonstrably better than existing drugs in 

terms of less side effects and higher efficacy. The development and improvement of 

drug discovery technologies is indispensable in order to win the competition of 

innovation [1] in the modern pharmaceutical industry. 

As illustrated in Fig 1.1, a typical new drug discovery process starts from target 

identification, which is followed by the search for drug leads and then clinical trials.  

 

 

The step of lead discovery is considered a bottle-neck of the drug discovery 

process [16,17]. In the past, leads were mainly discovered by random screening of a 

large chemical library. The sources of chemicals can be diverse such as active 

ingredients of natural products, derivatives of existing drugs, or even random 

synthesized chemicals. Most large pharmaceutical companies have their own 

corporate libraries, which contain the chemicals accumulated from years of efforts. It 

was reported that only one potential lead can be identified by random screening of 

Random 
Screening 

Lead 
Optimization

Theoretical Approach, Rational 
Drug Design, Combinatorial 
Chemistry 

Drug Leads Pre-clinical 
Research 

Clinical 
Trials 

Marketing 

Figure 1.1 Stages of the new drug discovery process 

Target 
identification
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10-20 thousand of chemicals [3]. Therefore, the efficiency of mere random screening 

is very low.  

The increasingly better understanding of the drug-target interaction mechanism 

and rapid advances in biochemistry and organic chemistry lead to the advent of 

computer aided drug design (CADD) [18-24], which aims to help the rapid and 

efficient discovery of drug leads. These approaches can be grouped into three 

categories according to their different strategies. 

1.1.2.1 Combinatorial chemistry based approaches 

One way to improve the efficiency of lead discovery is to reduce the average 

time and cost required for individual target-chemical binding affinity assay. This idea 

is fulfilled by the emergence of combinatorial chemistry [25] in the 1990s. 

Combinatorial chemistry provides a tool to do systematic screening of a large 

number of small chemicals. Building blocks are first designed by computer software 

using molecular modeling techniques. A combinatorial chemical library is then 

synthesized or virtually synthesized maximizing the molecular diversity [26,27]. With 

the help of high-throughput screening technologies, the average time and cost for 

screening an individual compound in a large chemical library are significantly 

reduced [28]. Combinatorial chemistry is mainly based on wet-lab experiments and 

is not within the scope of this work. Therefore, it will not be covered in detail here. 

1.1.2.2 Receptor structure based drug design 

Another way to improve the efficiency of lead discovery is to focus on those 

chemicals that are more possible to be drug leads, which is fulfilled by rational drug 
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design approaches. 

In case that a specific drug target and its 3D structure are known, receptor 

structure based drug design can be conducted. With the progressing of molecular 

biology, X-ray crystallography and NMR techniques, the structures of many drug 

targets have been determined [29]. More structures of drug targets can be modeled 

using homology-based methods [30]. Based on the 3D structure of the 

macromolecule receptor, molecular modeling techniques [23] are first applied to infer 

the mechanism of interaction between the target and its ligands. The essential 

structural features of the target are then summarized from the mechanism, such as 

electrostatic interaction areas, hydrophobic interaction areas, hydrogen bond donors 

and acceptors. Base on these features, rational drug design methods can then be 

used to obtain possible starting structures for leads optimization. There are two kinds 

of such methods, namely the “whole-molecule method” and the “connection 

method”. 

The “whole-molecule method” mainly relies on the molecular docking technique 

[31-38]. It searches an entire 3D structure database of small molecules to find 

putative drug leads for a specific therapeutic target. In this course, docking single or 

multiple small molecules in single or multiple conformations to the receptor binding 

sites of the target is attempted, in order to find the best putative ligand-receptor 

complex conformation. Testing results on a number of flexible docking algorithms 

have shown that these algorithms are capable of finding binding conformations close 

to experimentally determined ones [39-41]. Based on geometric and chemical 
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complementarities, a score is given to each putative ligand-receptor complex to 

reflect the “expected” binding affinity. Chemicals are considered as potential drug 

leads if their scores pass certain threshold. 

 Connection methods work progressively like building a house by bricks. 

Functional groups that best interact with important receptor sites are first placed on 

the receptor, and then they gradually “grow” to a full molecule. This is like the greedy 

search method often used in mathematical optimizations. Many drug design tools 

have been developed implementing this idea, such as CLIX [42], LUDI [43], CAVEAT 

[44], LEGEND [45], and MCDNLG [46]. 

 The receptor structure based drug design strategy has showed more and more 

significance in new drug discovery [47-54]. There are many successful examples, 

one of which can be found in Inviraser [51], approved as an anti-HIV drug by FDA 

(Food and Drug Administration, USA) in 1995. This drug was developed by 

Hoffmann La Roche co. Ltd. It was the first HIV protease inhibitor approved by FDA. 

1.1.2.3 Chemical structure activity relationship based drug design 

In the case when some effective drugs / ligands of a target are known, Structure 

Activity Relationship (SAR) based drug design can be performed. Usually, by 

studying a series of small chemicals that have similar pharmacological effects 

through the same mechanism, Quantitative Structure Activity Relationship (QSAR) / 

3D-QSAR models [55-59] are constructed to reflect the relationship between their 

activities and their quantitative structure properties. Then the QSAR / 3D-QSAR 

models can be used to screen a chemical library for potential drug leads, as well as 
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provide theoretical guidance on lead structure optimization. Furthermore, by means 

of conformation analysis and molecular modeling, 3D pharmacophore models [60-62] 

can be inferred from the SAR models. Based on the pharmacophore models, 3D 

chemical structure database queries [63] can be performed to obtain possible drug 

leads. It is also possible to optimize lead structures according to the 3D 

pharmacophore models [64,65].  

The key step in this strategy is the derivation of QSAR/3D-QSAR models. In the 

year of 1868, Crum-Brown and Fraser published the first equation in the field of 

QSAR (Equation 1.1), which set forth the idea that the biological activity of a 

compound Φ  is a function of its structure properties C [66].  

)(Cf=Φ                            Equation 1.1 

Nearly one century later, Hansch and Fujita [67,68] discovered the extra 

thermodynamic approach (also called Hansch approach, Equation 1.2), which says 

that the activity of a drug is related to, in a linear model, three descriptors, namely 

the hydrophobicity parameter π  or Plg , the electrostatic parameter σ , and the 

stereo parameter sE .  

ConstcEbPaC s ++++= ...lg1lg σ   ( RConstcba ∈,,, )   Equation 1.2 

Modern QSAR / 3D QSAR studies use much more complicated descriptors to 

capture the structure features of small chemicals, such as hydrophobicity 

parameters [69,70], electrostatic parameters (such as Hammett parameter σ [71], 

field parameter F and resonance parameter R [72]), stereo parameters (such as Taft 

constant [73], STERIMOL parameters[74]), indicator variables (such as molecular 
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topological index [75,76]) and computed theoretical  parameters (such as electron 

structure parameters, force field parameters and free energy related parameters). 

Also, much more complicated statistical learning algorithms have been explored in 

QSAR studies to construct better models, which include partial least squares (PLS) 

[77,78], principal component analysis (PCA) [79], genetic algorithm (GA) [80,81], and 

artificial neural network (ANN) [82-86]. The competition for the best descriptors and 

the best models are still far from the end. 

Small molecule structure activity relationship based drug design is one of the 

most “classical” approaches used in drug design. One successful example of the 

classic Hansch-Fujita QSAR method can be found in the development of the 

anti-cancer drug asulacrine (CT921) [87]. In the QSAR research, Denny et. al. 

focused not only on the DNA-binding ability of the chemical, but also tried to optimize 

the solubility and pKa . So far, asulacrine had entered phase II clinical trial and 

possessed a good prospect in the treatment of breast cancer [88]. 

 

1.2 Therapeutics target and drug discovery 

The above mentioned technologies are powerful tools in new drug discovery. 

However, their successes are built on an appropriate selection of therapeutic 

intervention strategy and therapeutic targets. As the initial step in the chain process 

of drug discovery, this step shall be paid full attention. 

1.2.1 Information resources of therapeutic targets 

A comprehensive knowledge database on therapeutic targets summarizing 
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known drug target information will undoubtedly help the selection of therapeutic 

targets and the design of therapeutic intervention strategies that explore the 

synergies between known targets [89]. However, the information about known drug 

targets is still scattered among the millions of available references. Work needs to be 

done in order to collect and sort the drug target information. We therefore directed 

our effort in developing a database of known therapeutic targets with the aim to 

facilitate convenient access of the relevant information and knowledge discovery 

[90]. 

All the information in the Therapeutic Target Database (TTD) was manually 

collected from available literature data with the help of a few simple automated text 

retrieval programs. A relational data model [91] was designed specifically for this 

database with deliberate effort to maximize the ability to accommodate future 

extensions and facilitate the integration of information. The database was finally 

implemented on an Oracle 9i DBMS (DataBase Management System) [92] and a 

public accessible web interface was built using the Active Server Page (ASP) 

technology [93,94]. The database schema and web interface of TTD has been 

extended to develop two other databases -- Drug Adverse Reaction Target (DART) 

database and drug Absorption, Distribution, Metabolism, Excretion Associated 

Protein (ADME-AP) database. 

1.2.2 Discovery of novel therapeutic targets 

Besides a central information source for known targets, rapid discovery of new 

therapeutic targets is also very important. It may not only introduce more efficient 
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therapeutic targets, but also increase the flexibility in designing novel therapeutic 

intervention strategies by exploiting the synergies between known and newly 

discovered targets. The discovery of new targets that are sufficiently robust to yield 

marketable therapeutics is an enormous challenge [95,96]. The completion of human 

genome project [97] brought a new opportunity for target discovery by the way of 

systematic genome scale screening.  

Conventional approaches of target discovery are mainly disease-dependent, 

such as screening of disease-derived cell lines, analysis of crucial elements of 

disease-affected pathways, examination of gene transcript levels and protein 

expression levels of cells in disease status [95]. These methods involve heavy 

wet-lab experiments as well as domain expertise in respective diseases and 

therefore are difficult to be applied in the genome scale target identification. Hence, 

rapid in silico disease-independent target discovery methods are desired. 

The search for novel targets is, to a certain degree, similar to the search for 

novel drug leads in rational drug design. For example, the ligands of a certain protein 

share some common structural features. In a typical QSAR study, a statistical model 

is first constructed to learn the common features represented by a proper set of 

descriptors, and then used to predict new ligands of this protein according to their 

descriptors. Proteins targeted by drugs are belonging to a unique group among all 

others [89]. An appropriate set of descriptors may also reflect some common 

features they share, which might be used to identify new potential drug targets. This 

leads to the study on the prediction of drug-target like proteins by statistical learning 
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methods described in Chapter 3. 

With the known drug targets as examples, we explored the usefulness of 

statistical learning methods [98-103] in the prediction of drug-target like proteins 

based on protein sequences, which may have the potential to be applied in genome 

scale drug target screening. Specifically, our studies on one statistical learning 

method, support vector machine [104], showed that it is able to train a statistical 

model reasonably well to facilitate the identification of potential new drug targets in 

the human genome. Its overall prediction accuracy is nearly 90% high and the 

prediction accuracy may be further improved by new developments in learning 

algorithms, descriptors, and pre-processing techniques. 

1.2.3 Study of novel therapeutic mechanisms 

Proven efficient therapeutic intervention strategies are of great value to the 

designing of new therapeutic intervention strategies. Medicinal plants serve as a 

good repository for clinical effective drug mechanisms [105] as they have been 

explored therapeutically in traditional medicines for hundreds of years and have 

already been used as an important source for potential drug leads in modern drug 

discovery [106-108]. It was known that 1/3 of the currently available drugs were 

developed from herbal ingredients [108]. However, there are lots of effective herbal 

medicines that do not have their therapeutic mechanisms understood yet. 

Insufficient knowledge about the molecular mechanism of these medicinal plants 

limits the scope of their application and hinders the effort to design new drugs using 

the therapeutic principles of herbal medicines. This problem can be partially 
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alleviated if efficient methods for rapid identification of protein targets of herbal 

ingredients can be introduced. 

Efforts have been directed at developing efficient computer methods facilitating 

the target identification for small molecules. The rational drug design technologies 

developed for searching drug leads for a certain target [41,58,109,110] may also be 

inversely used for the identification of therapeutic targets of effective herbal 

medicines with unknown mechanisms of action. For example, the virtual binding test, 

originally designed to search for protein binders, shows a good potential to be 

extended to analyze novel therapeutic mechanisms of herbal medicines. One 

computer program, INVDOCK [111], has been developed to search the therapeutic 

target database for therapeutic targets of active herbal ingredients. We selected nine 

herbal ingredients to evaluate usefulness of INVDOCK in the identification of 

therapeutic targets of medicinal herbal ingredients [112]. The results showed that the 

majority of INVDOCK identified therapeutic targets and their associated therapeutic 

effects have been confirmed or implicated by previous studies, which suggests the 

potentiality of in silico methods in facilitating the study of molecular mechanisms of 

medicinal plants. 

 

1.3 Thesis outline 

As introduced above, although the problems addressed in this thesis are focused 

on drug targets, the techniques used in this work span several relatively independent 

areas, namely information technology, statistical learning and molecular modeling. 
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As a multi-disciplinary work, two distinct audiences are addressed, one of specialists 

in pharmacology, the other of specialists in computer science or bioinformatics. 

Despite the fact that either group may find certain sections of this work elementary, 

such sections are included to cover backgrounds for the benefit of individuals from 

outside of the given field. 

The multi-disciplinary nature of this work requires a slightly different thesis 

organization. Because the approaches used in different chapters are virtually 

dissimilar and independent, these methods and their backgrounds are discussed in 

their respective chapters to maintain the best coherency. This thesis is divided into 

five chapters. Chapter 1 introduces the general background of this work. Chapter 2, 

therapeutic target database development, describes the effort to establish a public 

accessible information source of known therapeutic targets. The attempt to construct 

a statistical model for the prediction of drug-target like proteins is detailed in Chapter 

3. The study of the molecular mechanisms of medicinal plants by an in silico 

approach is documented in chapter 4. And finally, a summary of this work is 

presented in Chapter 5. 
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Chapter 2 

 

Therapeutic target database development 

 

This chapter describes our work in developing a publicly accessible drug target 

database, Therapeutic Target Database (TTD), which provides information about the 

known protein and nucleic acid therapeutic targets together with the targeted 

diseases / conditions, their pathway information and those corresponding drugs / 

ligands directed at each of these targets. An ontology-like database structure is 

devised to manage the drug target information as well as maintaining the maximum 

flexibility to accommodate new interests in drug mechanisms. Web interfaces built 

on this database structure inherits this flexibility. The work of TTD has been extended 

to the construction of two other drug mechanism information databases, namely 

Drug Adverse Reaction Database (DART) and drug Absorption Distribution 

Metabolism and Excretion Associated Protein database (ADME-AP). 

 

2.1 Introduction 

Pharmaceutical agents generally exert their therapeutic effects by binding to 

some particular protein or nucleic acid targets [89,113]. So far, hundreds of proteins 

and nucleic acids have been explored as therapeutic targets [89]. Rapid advances in 

genetic [114,115], structural [29,30] and functional [116] understandings of disease 
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related genes and proteins not only raise strong interest in the search for new 

therapeutic targets, but also promote the study of various aspects of known targets 

including the molecular mechanisms of their binding agents, related adverse effects 

[117], and pharmacogenetic implications [118], etc. The knowledge gained from such 

studies is important in facilitating the design of more potent, less toxic, and 

personalized drugs. Development of advanced computational methods for 

bioinformatics [119], molecular modeling [120], drug designing and pharmacokinetics 

analysis [54,56,111] increasingly uses known therapeutic targets and drugs to refine 

and test algorithms and parameters. Therefore, a database that provides 

comprehensive information about therapeutic targets will be helpful in catering to the 

needs and interests of the relevant communities in general and those unfamiliar with 

a specific therapeutic target in particular.  

Database development is one of the major concerns in the field of bioinformatics 

[121]. The motivation for design and development of bioinformatics databases 

comes from the challenge of bridging the gap between knowledge and their efficient 

management (storage, retrieval and processing) in biomedical sciences. It is said 

that in the post-genomic area, the annotation of sequences would be a major 

direction of bioinformatics [121-123]. The development of specialized domain 

knowledge databases such as TTD can be regarded as part of this effort.  

In order to provide a background for readers who are not familiar with biological 

databases, a brief history of bioinformatics with the focus on publicly accessible 

databases is briefly introduced below. 
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Although the term bioinformatics was first coined in the 1980s, the idea of using 

computers to store and manage biological data was actually initiated by X-ray protein 

crystallographers in the 1960’s [124]. Their early work led to the establishment of the 

first bioinformatics database in 1971:  Brookhaven National Laboratory’s Protein 

Data Bank (PDB), a database of 3D protein structures [125].  

However, the advent of what we call bioinformatics today was mainly driven not 

by X-ray crystallographers but by the development of improved automatic DNA 

sequencing technology [126,127]. Prior to these Nobel-prize winning developments, 

it would take a laboratory at least two months to sequence just 150 nucleotides. By 

the end of 1970s, it was possible to sequence around 200 bases per day. Owing to 

the introduction of fluorescence labeling technology [128] and multiplexed capillary 

electrophoresis [129-131], fully automated DNA sequencers soon appeared. Now 

with instruments such as the ABI 3700 or the Pharmacia Megabase 500, it is 

possible to sequence 500,000 bases per day on a single machine. Today, companies 

such as Celera, Incyte, Monsanto and others are capable of sequencing up to 100 

million bases a day. 

Because of these new technologies, DNA sequencing activities became heavily 

dependent on computer software for assembling, storing and managing DNA 

sequence data [132-135]. The rapid accumulation of DNA sequence data also 

stimulated much interest in the development of statistical methods and computer 

programs for analyzing DNA and protein sequences [136-139]. The need for 

computational tools was especially amplified with the launch of the Human Genome 
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Project in 1990 [140]. Beginning as a 15 year effort coordinated by the U.S. 

Department of Energy and the National Institutes of Health, its ultimate goal is to 

map sequence and identify all 30,000+ genes in the human genome. The first draft 

of human genome was completed on June 25, 2000 and released publicly on Feb 15, 

2001 [141-143]. It is expected that a finished version of human genome will be 

released very soon. By then it is also expected that the genomes of many other 

organisms will have been sequenced. Not only has bioinformatics played a key role 

in handling, sorting and storing this genomic information, it is also expected to help 

with the new challenges ahead in inferring gene and protein functionality [122,123], 

which is critical in the advances of biomedical and pharmaceutical sciences. 

Another stimulus for the rapid advances of bioinformatics has been the 

spectacular growth in computer technology [144]. It is uncannily predicted by Gordon 

Moore in 1965: “The processing speed of a microchip will double about every 18 

months”. Today, this trend still holds true and it is know as the Moore’s Law [145]. 

Such rapid rate of computer hardware development has led to the creation of a 

thriving computer industry that delivers very high performance machines at relatively 

low prices. This in turn has led to the ubiquitous distribution of desktop computers, 

allowing easy access to computational tools among biologists and drug designers. 

Also, there is another significant reason for the rapid growth in computer usage 

among biologists and pharmaceutical researchers, which is the emergence of the 

“Information Superhighway” – Internet [146-148]. Originally developed in 1969 by the 

U.S. Department of Defense for research in communication networkings, ARPANET 
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[149] (as it was called then) grew from a text-only messaging system to a graphical, 

interactive communication medium, enabling rapid information exchange [150,151]. 

By 1993, Internet uses exploded with the introduction of browsers such as Mosaic 

and Netscape. These web browsers and their special communication language, 

HTML (Hypertext Markup Language) [152], have greatly facilitated the access and 

communication between individuals, research labs, universities and other large 

research organizations. Taking advantages of the information highway, centralized 

biological databases have been established. Dedicated bioinformatics web servers 

such as EXPASY (http://www.expasy.org) [153] and National Center for 

Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov) [154] heralded the 

establishment of the Internet as the primary means of communication among 

biological and pharmaceutical researchers, causing the field of bioinformatics to truly 

take off. So far, there are more than 500 published biological databases and this 

number keeps growing annually [155-157].  

While many databases have been built for knowledge exchange and discovery 

with different focuses, a public database focusing on therapeutic target information 

has not yet been established. Although probably all the proteins and nucleic acids 

targeted by drugs are in other databases, they are not specified as therapeutic 

targets and  it is troublesome for researchers to search for information across 

multiple databases. Moreover, because of the different focuses of these databases, 

the annotations they provide may not be so relevant to drug discovery. A database 

focusing on therapeutic targets are therefore needed as a basic tool in 
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pharmaceutical sciences to support the multi-disciplinary effort of modern drug 

discovery. For example, with comprehensive drug target information, in silico 

approaches may be applied to facilitate the discovery of novel therapeutic targets 

and therapeutic mechanisms, which are discussed later in the next two chapters. 

 

2.2 Collection of therapeutic target information 

A survey of modern drug design approaches reveals that the information on 

three types of molecules is of great interest to relevant communities: drug targets 

(proteins or nucleotides), drugs / chemicals that bind these targets and natural 

ligands of these targets [48,50,54,56,74,113,158].  

Drug targets are the primary focus of the database. Important properties of a 

target include its synonyms, related diseases and pathways. Unlike small chemicals, 

there is no systematic naming protocol designed for macromolecules. Contemporary 

naming for proteins and genes are not unified. For example, prostaglandin H2 

synthase, a well known therapeutic target for inflammation, is also known as 

cyclooxygenase [159], while the two names bear no obvious morphological similarity. 

The prevailing heterogeneous naming in literature makes it necessary to enforce a 

standardized or systematic nomenclature for drug targets. Therefore, a unique 

identifier needs to be assigned to each target, which is also the solution adopted by 

major sequence databases such as SWISS-PROT and NCBI. In TTD, the most 

popularly used target name is chosen for each target and other names of the protein 

are stored as its synonyms. The therapeutic effects achieved through the regulation 
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of target activity are no doubt the most important feature of a therapeutic target. To 

understand the therapeutic effects, this regulation of target activity shall be examined 

in the complex pathways in the host organisms [160]. The pathway information is 

therefore very useful to a variety of applications such as finding alternative 

therapeutic targets, designing a therapeutic intervention strategy which involves 

multiple co-operating targets, and analyzing potential drug-drug interactions. As 

introduced in Chapter 1, receptor 3D structure based approaches require the 3D 

structures of target molecules. In case that the 3D structure of a target has not been 

resolved, the primary sequence of the target may be used to derive its 3D model. 

Therefore, cross reference to PDB, the protein 3D structure database, and 

SWISS-PROT, a major protein sequence database with wealthy annotation, shall be 

established whenever possible.  

A new drug discovery process can also start from the structural information of 

the small molecules that bind a certain target. In this case, a series of known binders 

of a target are analyzed to derive a structure activity relationship model. Information 

on drugs, investigational drugs, and other chemicals that have activities on a certain 

target is therefore very important. A target may have multiple binding sites [161-164]. 

Different drugs may bind to different binding sites of a target and exert different 

regulatory effects on the target activity. Therefore, drugs of different types may have 

different binding sites and shall be differentiated as their structure activity 

relationship may be different.  

Drug binding is competitive in nature [165-169]. This binding competitiveness is 
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an important factor in drug design. Natural ligands of drug targets are prevailing 

competitors. A drug is less likely to be effective if it binds to its receptor 

non-competitively against the natural ligands of the receptor. Thus the information on 

natural ligands that can bind to the known drug targets is also desirable. 

Drugs and natural ligands are generally small chemicals. Although there is a 

standard IUPAC (International Union of Pure and Applied Chemistry) name for every 

small chemical, they are not the most widely used ones. Therefore, a unique 

identifier is assigned for drugs and natural ligands in the database. With the help of 

IUPAC names, it is much easier to identify the synonyms of the same chemical. In 

this database, the molecular formula, molecular weight, CAS RN (Chemical Abstract 

Service Registration Number, an identification number given to each registered 

chmeical), and chemical classification of a drug or natural ligand are provided. 

Because the information collected is mostly reported in experiments using 

different methodologies, equipment and reagents, the heterogeneous quality of data 

in this database requires that the references to the original information sources be 

provided. The citation of the literature is therefore provided wherever applicable.  

 With the rapid advances in new drug discovery, more and more information 

about explored drug targets and new drug targets are being generated. An 

automated literature information extraction system, if available, is desired with this 

consideration. However, biological literature are unstructured materials, which are 

considered very difficult for automated information extraction [170-172]. A survey of 

current literature information extraction technology showed that there are some 
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major obstacles in this application besides those inherited from natural language 

processing. First, the molecule names are difficult to recognize [173]. They are often 

composed of several words that also have their own meanings respectively. This 

makes it difficult to determine the boundary of protein names. Also, various 

abbreviations are used for proteins and nucleotides. The same abbreviation may or 

may not mean the same thing in different contexts. Previous successful attempts in 

automated biomedical literature information retrieval usually work in small domains 

and use name dictionaries to avoid the problem of recognizing protein and nucleic 

acid names [174]. This is not a feasible solution to our application as the work 

needed to construct a complete name dictionary of human proteins and nucleic acids 

is too heavy to be afforded. Second, pronouns are extensively used when describing 

complex relationships between molecules. The determination of the objects 

indicated becomes particularly difficult especially when there are more than one 

pronouns in the same sentence [175]. The third difficulty lies in the understanding of 

generalized terms and narrowed terms. For example, rhodopsin is a kind of 

G-Protein Coupled Receptor (GPCR). The description of the common characteristics 

of all GPCRs will also apply to rhodopsin. To address this problem, it needs the 

biological domain knowledge to be “hard-coded” into the information extraction 

system [176,177], which is an extremely difficult work. Therefore, fully automated 

literature information extraction methods may not be ready for this application until 

the above mentioned problems are sufficiently addressed. However, simple 

automated text retrieval programs based on key word searching are developed to 



Chapter 2: Therapeutic target database development  24

facilitate our search for therapeutic target information, which are proved to be helpful 

in reducing the burden of data collators. 

 With the help of a few automated text retrieval programs developed in PERL, we 

downloaded all the literature in NCBI that contains the phrase “therapeutic target” in 

their abstracts. Efforts have been made to manually extract information from 

available literature. Only those proteins and nucleic acids that had already been 

explored by current therapies or had been suggested explicitly by the author as 

potential therapeutic targets were included in the database. A total number of 433 

targets were found in the literature. It has been reported that approximately 500 

therapeutic targets have been exploited in the currently available medical treatments 

[89]. The search for therapeutic targets aims to collect as many known targets as 

possible. However, descriptions of some of the targets in the literature were not 

specific enough to point to any particular protein or nucleic acid as the targets. 

Hence these targets were not included in this database. 

   

2.3 Therapeutic target database development 

Before undertaking a discussion of therapeutic target database development, it 

is important to determine the expected system functionalities and guidelines for 

further designing processes. The technology platform and software tools suitable for 

this project shall be selected accordingly.  

2.3.1 Requirement analysis 

The database system is expected to store and manage the information about 
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known therapeutic targets. The interested types of information have been discussed 

in the previous section. In consideration of the fast enriching data about known drug 

targets or potential drug targets, a convenient updating mechanism is needed for this 

database. Also, a good system should not be designed to satisfy only the current 

needs; it should also take full consideration of the possible change and extension in 

future. Rational drug design is pacing fast nowadays. Different designing 

approaches take interests in different facets of drug targets. In the foreseeable future, 

more types of information will be needed by new or improved rational drug design 

approaches and therefore needed to be added into this database. Small changes or 

a complete overhaul of the database structure may be needed with this regard. No 

database or other software can be suitable for use forever; however, a flexible 

database structure that can be extended to incorporate these new interests with 

minimum necessary changes is desired. Moreover, the data collection work of two 

other drug mechanism information databases was in progress parallel to the 

development of TTD. As an augmented goal, it would be better that the design and 

implementation codes of TTD can be re-used in the development of these two 

databases. 

Before the actual database development, it is also to be determined which 

technology platform and software tool are to be used to establish this database.  

2.3.1.1 Databases development approaches 

There are several approaches to establish a database in past bioinformatics 

practices. The common ones include the flat-file approach, the relational approach, 
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and the manual approach. 

In the flat-file approach, data is organized in text files where individual records of 

data are represented by a set of lines in strict order with symbols that allow the 

computer to find and retrieve specific pieces of information [178,179]. SWISS-PROT, 

EMBL, GenBank and OMIM are examples of the databases using this approach. 

In the relational approach, a set of tables (also known as relations) are created 

by a database developer to reflect the inter-relationship between the data stored in 

the database [180-185]. Typically database management software such as SQL 

Server, Access, IBM DB2, or Oracle is used to manage the querying, updating and 

re-structuring of the database. The relational approach is so far the most widely 

utilized and dominant mainstream approach to data management. 

In the manual approach, the information is manually coded into static web pages. 

Data are organized hierarchically and can be navigated following the hyper-links 

from the portal page. Usually no software helping the search and management of the 

data is used and limited search facility is provided. This approach mainly serves 

databases with very small scale and highly specific scope, such as the protease 

inhibitor database (http://www.yorvic.york.ac.uk/~proteinase/). 

Manual approach is the easiest way to create an information repository without 

the requirements of any specific software. However, its limitations in search facility 

and data maintenance are severe drawbacks for middle and large scale databases. 

The scale of TTD rules out the manual approach as a good choice. 

The flat-file approach comes from the earliest way of exchanging biological 
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information -- distribution of copies of flat-files to researchers. Since then, a large 

number of biological repositories have emerged, and the availability of the Internet 

has made it possible for researchers to access them without having to install and 

manage local copies of the data. Due in parts to the flat-file based origins, many of 

the major present day biological data repositories, e.g. SWISS-PROT, are 

established using flat-file indexing systems. They are mainly efficient searching 

engines built on the concept of indexing. Information retrieval is performed by 

keywords, or by conjunctive or disjunctive combination of a set of keywords. 

Numerous interfaces [186,187] has been built to allow one to search for desired 

information in a collection of heterogeneous databases. 

The advantage of such flat-file based systems is self-explanatory content that is 

optimized for human readability. The incorporation of hyperlinks into such records 

further allows for extensive cross-referencing. However, the flat-file approach is 

relying on mere text-matching indexing. It shows significant drawbacks in 

comparison to the more comprehensive relational approach, which provides a 

number of desired capabilities for complex queries and data maintenance with the 

support of a relational database management system (RDBMS): 

1. Complex query support is limited. Present flat-file based repositories offer 

HTML forms that accept search terms as input. Search engines parse indexes of 

keyword to find matches, and retrieve matching records. A more elaborate search 

form allows the specification of field specific terms and Boolean combination of 

different search terms. It is important to note that, in the majority of cases, queries 
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are limited to the text matching approach. There is no support for complex queries 

with analytical requirements or nested queries such as “what are the targets unique 

to liver?” This kind of comprehensive listing of organ-wise unique targets has the 

potential to minimize drug side effects. In the contemporary relational databases, 

Structured Query Language (SQL) [188,189], an industrial standard, is supported 

almost unanimously, which could be used to construct virtually all kinds query logic in 

order to get comprehensive and specific results. For instance, the above mentioned 

question may be answered by a SQL query like the following:  

 

 

 

This SQL statement contains nested query which is not supported by indexing 

engines such as the one in SWISS-PROT. 

2. Data maintenance is tedious and difficult. A flat-file indexing system only 

provides the functionality of a search engine with no support for data maintenance. 

For example, when updating the content of a flat file, there is no constraint that can 

be enforced in normal text-editors to check whether reasonable data have been 

entered in the correct format. For example, one might enter “30-Feb-1997” in a text 

editor as a date by mistake. This obvious error could only be identified by a thorough 

check of the data later. However, A RDBMS will refuse to accept this kind of “illegal” 

SELECT DISTINCT [Target Name]  
FROM [Target Table]  
WHERE [Organ] = ‘liver’  

AND [Target Name] NOT IN  
(SELECT DISTINCT [Target Name] FROM [Target Table] 
 WHERE [Organ] <> ‘liver’); 
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data if appropriate constraints have been enforced. This will significantly reduce the 

error rate in data preparation. Also, any updates in the data files will not automatically 

take effect in the flat-file indexing system. It usually requires a re-indexing process to 

make the changes effective. For big repositories like SWISS-PROT and TREMBLE, 

a complete re-indexing would take more than 10 hours. However in RDBMS, efficient 

algorithms are implanted to keep indices up to date on the fly while you are 

modifying the data. 

3. Views cannot be decoupled from underlying data. In other words, records are 

always retrieved in entirety. This will reduce the query performance due to the 

operations wasted in retrieving irrelevant data. In RDBMS, SQL is able to control 

which information is needed by defining appropriate views upon the tables. An 

RDBMS is able to carry out the queries optimally according to the user defined SQL. 

In view of these advantages of the relational approach over the others, it is 

considered to be the best one for the development of TTD 

2.3.1.2 Selection of RDBMS 

The relational approach requires the support of an RDBMS. The RDBMS 

enables users to create and maintain a relational database. They are designed to 

control data redundancy, restrict unauthorized access, provide persistent storage for 

program objects and data structures, permit inference and actions using rules, 

provide multiple user interfaces, represent complex relationships among data, 

enforce integrity constraints, and provide backup and recovery supports [92,190]. 

Although the direct objective is to develop a therapeutic target database, the 
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selection of the RDBMS should take further considerations for the subsequent 

database projects and the data analysis requirements by other projects of our group. 

Specifically, a desired RDBMS should be able not only to support several small 

databases, but also to hold local copies of existing major public biological databases 

and provide integrated analytical query ability. Therefore, a high performance large 

scale RDBMS is needed.  

As illustrated in Figure 2.1 (May 2001 IDC report on 2000 RDBMSs), the market 

share of RDBMSs is: Oracle (Oracle 9i) 46%, IBM DB2 (DB2 UDB 7.2) 24%, 

Microsoft SQL Server (SQL Server 2000) 7% and others 23%. For better 

compatibility with other existing applications, we decided to choose a RDBMS from 

the best selling ones, namely Oracle 9i, DB2 UDB 7.2 and SQL Server 2000. 

 

  

 

The factors affecting the selection of RDBMS include: platform and system 

requirements, supported data types, program language supporting, application 

46%

24%
7%

23%

Oracle 9i

DB2 UDB 7.2

SQL Server 2000

Others

Market Shares of Major RDBMSs

 
Figure 2.1:  Market shares of major RDBMSs. Based on May 2001, IDC report on 

2000 RDBMSs 
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development features, manageability features, security features, analysis ability, 

internet ability, price and performance.  

After a careful technical assessment of the major RDBMSs, Oracle 9i is selected. 

It is clear that SQL Server 2000 was the least expensive of the three. However, it 

could only run on the Windows platform, which limited its performance. DB2 UDB 7 

had just moved from its main frame to Client/Server based database market. Similar 

to Oracle 9i, it could run on many operating systems, and its data types were best 

compatible with ANSI (American National Standards Institute) SQL definitions. 

However, Oracle 9i had the most variety of modules and development tools, 

including modules for data mining and online analytical process, which is essential 

for high-end data analysis purposes. For many years, it had led the way in indexing 

and query optimization technologies while it is not worse than its competitors in other 

important aspects. Also, Oracle 9i is a fully object-oriented database, which 

conforms to the trend toward Object Oriented Programming (OOP). Oracle had kept 

the biggest market share for years. According to the 2001 statistics, over half of the 

fortune 100 corporations used Oracle as their database servers. And finally, it was 

said that the price for a full featured Oracle RDBMS was comparable to that of a full 

featured DB2 RDBMS. Therefore, Oracle 9i was selected to be the platform for our 

database projects and other data analysis tasks. 

After the determination of approach and software platform, the actual database 

design begins. 

2.3.2 Database design 
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The database designing process can and should be divided into three phases: 

conceptual design, logical structure design and physical design, as given in the 

widely accepted Information Engineering Methodology (IEM) [191,192]. The 

conceptual design phase consists of defining the types of information to be stored in 

the database and documenting them. The logical design phase consists of putting 

the conceptual design into practice in the software of choice by creating data tables 

and the relationships between them. Physical design phase allows the designer to 

determine how the data is to be stored on the magnetic media of a computer.  

2.3.2.1 Conceptual design 

The conceptual design phase is a “high-level” phase of design and is 

independent of the choice of database management systems. The result of this 

designing phase is a set of documentation diagrams, whose purpose is to create 

discussion and understanding of the database design before the implementation 

work begins.  

The design documentation that depicts the semantic relationship between data 

is called the entity relationships diagram (ERD) [193,194]. This data modeling 

technique breaks data types down into entity types, attributes and relationship types. 

An entity type is a collection of entities that share common properties or 

characteristics. The properties or characteristics of an entity type or relationship type 

that are of interest to the organization are called attributes. Relationship types are 

meaningful associations between / among entity types. There are three categories of 

relationship types: one-one relationships, one-many relationships and many-many 
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relationships. 

A natural way of drawing the entity relationship diagram is to take target 

molecules, drugs, ligands, and references as entity types and their respective 

properties as their attributes while relationships are established accordingly. For 

instance, the entity type target molecule will have attributes including a unique ID, 

synonyms, cross references, related diseases, functions, pathways involved. And 

they are linked to natural ligands and different types of their drugs by many-many 

relationships. However, this simple method is not applicable because it may result in 

potential multiple-valued attributes which violates the first norm in database design 

and will cause problem in query and data maintenance [195,196]. For instance, the 

attribute “synonyms” may have multiple values for one target. It would be hard for 

applications and SQL queries to distinguish different synonyms within the same data 

item. To address this problem, these “attributes” that might have multiple values are 

“promoted” to weak entity types. A weak entity is an entity of which its existence 

depends on the relation with another entity (the identifying entity). For example, the 

identifying entity type for a weak entity of “target synonym” is an entity of “target 

molecule”. The existence of “target synonyms” depends on their relationship to a 

“target molecule”. A weak entity has no key attribute because it cannot exist without 

the relation it has to its identifying entity. The resulted first draft of ERD (using 

"Crow's Foot" notation, which is the accepted IEM convention) is shown in Figure 2.2. 

To have a clearer view of the attributes of relationships, in this ERD, any relationship 

with attributes is drawn as weak entities identified by both sides of the relationship.  
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2.3.2.2 Logical design 
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In the logical structure design phase, the structure of the database (also known 

as database schema) is created, which is a set of data tables and their connections. 

The data tables and the connections between them can be directly derived from the 

ERD. However, this approach does not, by itself, assure a good relational database 

for every purpose. The first design of TTD schema was derived from the above ERD, 

which was evaluated on a small set of sample data and disclosed several problems 

about this design. Accordingly, a series of modifications on the first schema is carried 

to introduce more unification on the data representation and flexibility to 

accommodate extensions. The latest revised schema resembles a semantic network 

in ontology research very much. These designing processes are detailed as follows. 

2.3.2.2.1 ERD derived database structure 

The algorithm for translating a sound conceptual design into a relational data 

structure is given in [197,198] as the following four steps: 

First, construct a table for each entity type, containing all the attributes of the 

entity type and having a primary key or a unique identifier filed. 

Second, construct a table for each many-many relationship type containing the 

unique identifier for each side of the relationship along with the attributes of the 

relationship. 

Third, for each one-many relationship type, add the unique identifier from the 

“one” side to the table corresponding to the entity on the “many” side, along with all 

the attributes of the relationship. 

Finally, for each one-one relationship type, add the unique identifier from either 
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side to the table for the other side, along with the attributes of the relationship. 

Using this algorithm, an initial version of therapeutic target database can be 

constructed, which consists of sixteen tables, as shown in Table 2.1. One table is 

created for the target molecule entity type, which includes two columns -- the unique 

identifier assigned to each target and its recommended name. Those types of 

information with one-many relationships to a target, such as synonyms, related 

diseases / conditions, functions, pathways involved, are stored in their respective 

tables with the unique identifiers of their identifying targets. The many-many 

relationship between target molecules and their different types of drugs are stored in 

one table, which contains the unique identifiers of targets, the unique identifiers of 

drugs that bind the targets, and the types of the drugs. The many-many relationship 

between target molecules and their natural ligands are also stored in one table 

structurally similar to the table of target-drug relationship. To provide the information 

sources for data quality assessments, the tables storing information collected from 

literature, such as the tables for target functions, target pathways, different types of 

drugs and ligands, all contain one column storing the unique identifier of 

corresponding references. For each drug, a unique identifier was assigned and it 

was stored in one table with the recommended name of that drug, its molecular 

weight and its molecular formula. Those types of information with one-many 

relationships to a drug, such as drug synonyms, CAS RN, and chemical 

classification, are stored in their respective tables with the unique identifier of their 

corresponding drugs. In this design, CAS RN is treated as an entity type with 
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one-many relationship to a drug, which is different from most of the current available 

chemical databases, such as ACX and the Merck index, which usually provide only 

one CAS RN for each chemical. This is because while in most of the cases, a 

chemical only has one CAS RN and vice versa, a small number of exceptions do 

exist. For example, GTP (guanosine triphosphate) has two CAS RNs: 86-01-1 and 

56001-37-7. Drug and natural ligands are all small chemicals that have the same 

types of information. Therefore, the data tables created for natural ligands are similar 

to those for drugs. The table storing information about references is relatively simple. 

It only contains two columns of unique identifier and reference citation. 

 

Table 2.1: The data tables created in the first design of TTD.  

 

Table Name Columns Table Relationships 

TTDTG: 

Drug targets  

TID: Target unique identifier 

NM: Recommended target name 

 

TTDDG: 

Drugs 

DID: Drug unique identifier 

NM: Recommended drug name 

MW: Molecular weight 

MF: Molecular formula 

 

TTDLG: 

Natural Ligands 

LID: Natural Ligand unique identifier 

NM: Recommended ligand name 

MW: Molecular weight 

MF: Molecular formula 

 

TTDRF: 

References 

RFID: Reference unique identifier 

RF: Reference citation 
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TTDTS 

Target synonyms 

TID: Target unique identifier 

SN: Target synonym 

TID ∈  TTDTG.TID 

TTDTP: 

Target involved 

pathways 

TID: Target unique identifier 

PW: Pathway name 

RF: Reference unique identifier 

TID ∈  TTDTG.TID 

RF ∈  TTDRF.RFID 

TTDTD: 

Target related 

diseases 

TID: Target unique identifier 

DN: Disease name 

RF: Reference unique identifier 

TID ∈  TTDTG.TID 

RF ∈  TTDRF.RFID 

TTDTF: 

Target functions 

TID: Target unique identifier 

FN: Target function 

RF: Reference unique identifier 

TID ∈  TTDTG.TID 

RF ∈  TTDRF.RFID 

TTDTDG: 

Drugs that bind 

targets 

TID: Target unique identifier 

DG: Drug ID 

TP: Drug category 

RF: Reference unique identifier 

TID ∈  TTDTG.TID 

RF ∈  TTDRF.RFID 

DG ∈  TTDDG.DID 

TTDTLG: 

Natural ligands that 

bind targets 

TID: Target unique identifier 

LG: Natural ligand ID 

RF: Reference unique identifier 

TID ∈  TTDTG.TID 

RF ∈  TTDRF.RFID 

LG ∈  TTDLG.LID 

TTDDS: 

Drug synonyms 

DID: Drug unique identifier 

SN: Drug synonym 

DID ∈  TTDDG.DID 

TTDDR: 

Drug CAS RN 

DID: Drug unique identifier 

CAS: CAS Registration Number 

DID ∈  TTDDG.DID 

TTDDC: 

Drug chemical 

classification 

DID: Drug unique identifier 

DC: Drug classification 

DID ∈  TTDDG.DID 

TTDLS: 

Ligands synonyms 

LID: Natural ligand unique identifier 

SN: Natural ligand synonym 

LID ∈  TTDLG.LID 

TTDLR: 

Ligand CAS RN 

LID: Natural ligand unique identifier 

CAS: CAS Registration Number 

LID ∈  TTDLG.LID 
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TTDLC: 

Ligand chemical 

classification 

LID: Natural ligand unique identifier 

LC: Natural ligand classification 

LID ∈  TTDLG.LID 

 

After the tables and their relationship (constraints) were created, a web interface 

of the database was sketchily implemented and the system was analyzed on a small 

set of testing data. The above data structures showed several weaknesses in the 

test run. They can be summarized as below: 

First, the information retrieval of a single target involves many tables. It is not a 

big issue when the tables are queried or analyzed by SQL statements. However, 

when building the web interface for the database, each table needs a distinct record 

set object in the web server, which will lead to inefficient use of web server resources. 

Also, the big number of objects requires a corresponding size of codes to manipulate 

them, which makes the debug and maintenance of these codes troublesome. 

Second, the interface codes developed on this structure are fairly rigid to 

accommodate extension of the database. For example, in the later designing stages, 

it was suggested that it would be better to classify the therapeutic targets into 

different categories according to its related diseases / conditions, in order to facilitate 

systematical studies. Accordingly, the classification information for therapeutic 

targets should be added into the database. With the rapid progress in rational drug 

design approaches, it is foreseeable that more types of information will be needed by 

novel or improved methods. The ability to accommodate these extensions with 

minimal changes in the database structure and all its application codes is desired. In 
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this design, in order to incorporate the classification information, a new table storing 

the unique identifier of targets and their classes needed to be added into the 

database. Big changes on the interfacing codes were required to use the new table. 

Actually, not only the web interface but also all the database applications written in 

programming languages requiring extensive coding (such as C/C++) will suffer from 

this problem. The expandability and life cycle of this database are therefore 

considerably compromised. Also the database structure and interface codes, 

developed in this manner, are unable to be re-used in the development of other 

databases. 

2.3.2.2.2 Revised database structure 

A careful analysis of the first design revealed possible directions to address the 

above problems. First, in the above data structure, most of the tables were quite 

similar in terms of the data types stored in them. Many of them consisted of three 

columns: a column for the unique identifier of an entity type (target, drug or ligand), a 

column for a property of the entity type (i.e. natural ligands of targets or synonyms of 

drugs) and a column for the corresponding unique identifier of a reference citation. 

This similarity provides the possibility of reducing the number of tables by merging 

similar ones. Second, in order to minimize the effort needed when new types of 

information were to be added into the database, the applications shall be able to 

“notice” the changes in the database and adapt to the changes automatically. One 

possible solution would be providing the “database structure” information in one of 

the tables.  
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The above considerations led to the revised ERD shown in Figure 2.3. Each kind 

of relationship type, regardless of its type (one-one, one-many or many-many), are 

given a unique identifier. The unique identifiers of different relationships and their 

descriptions are stored in one table so that applications will be able to access the 

types of relationships stored in the database. The relationships are divided into two 

categories. One category of relationships links an entity to its attributes, regardless 

of single-valued attributes or multi-valued attributes. The other category of 

relationships links two entities together, where the other entity is represented by its 

unique identifier. All the information in this database can therefore be represented in 

a quadruple notation and stored uniformly. The quadruple notation includes the 

unique identifier of an entity, the unique identifier of a relationship, the right hand side 

of the relationship (either a property value or a unique identifier of another entity, 

according to the relationship category) and the unique identifier of the reference 

where this piece of information comes from. For example, “prostaglandin H2 

synthase is a therapeutic target for treating inflammation” will be stored in the 

database in the quadruple form: 

 (“TTT0000600”, “D105”, “Inflammation”, “10878289”) 

where “TTT0000600” is the unique identifier for the target prostaglandin H2 synthase; 

“D105” is the unique identifier for the relationship between targets and their related 

diseases; “10878289” is the unique identifier of the reference where this information 

is extracted. Similarly, “prostaglandin H2 synthase has an inhibitor, aspirin” will be 

stored in the database in the quadruple form: 
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(“TTT0000600”, “D141”, “TTD0000354”, “8728890”) 

where “D141” is the unique identifier for the relationship between targets and 

their inhibitors, “TTD0000354” is the unique identifier of the drug aspirin and 

“8728890” is the unique identifier of the reference where this information is extracted. 

In this revised schema, there are only three tables and applications can access the 

“logical structure” of the database by reading the information in the relationships 

table. Also, to support the continuous work of data maintenance, a housekeeping 

field storing the latest update time of each piece of information is added. This revised 

schema is shown in Table 2.2 

Subject
Relationship ID
Object
Reference
Latest Update

Information

Relationship ID
Description
Type

Relationship

Reference ID
Citation

Reference

Edit Date: 6/17/2001 12:05:05 PM
Description: Modified based on Rev. 5. A unified format is used to store all
the data. The definintion of logical relationships is given in another table.

Target DB: Oracle 9i Rev: 7 Creator: Chen Xin
Filename: ERD8 Company: BIDD Group

Therapeutic Target  DB

Figure 2.3: Revised Entity Relationship Digram of TTD.

 

Table 2.2: The data tables created in the revised design of TTD. 
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Table Name Columns Table Relationships 

TTDINFO: 

Information 

ID: Unique identifier of an entity 

TP: Unique identifier of a relationship 

CT: Property value 

RF: Unique identifier of the reference 

UPD: Latest update time 

TP ∈  TTDTP.TP 

RF ∈  TTDRF.RFID 

TTDRF: 

References 

RFID: Reference unique identifier 

RF: Reference citation 

 

TTDTP: 

Relationships 

TP: Unique identifier of a relationship 

NM: Relationship name 

MD: Relationship category. 

 

 

2.3.2.2.3 Further analysis of the revised database structure 

This quadruple notation is applicable not only to this database but also to the 

other drug mechanism databases that were developed in parallel, which enabled the 

reuse of the TTD database schema and interface codes in the development of these 

databases. This universal applicability of this schema may be partly explained by its 

resemblance to semantic networks that are used in ontology research. 

Ontologies are frameworks developed principally by the AI (Artificial Intelligence) 

community in the 1970s and 1980s to represent the key concepts in any research 

field and their inter-relationships [199]. Many bioinformatics specialists believe that 

they are necessary not only to make database annotations accessible to analysis 

tools, but also to facilitate information retrieval. For example, searching for all 

G-protein-coupled receptors in a database would be easier with software that 

“knows” that these proteins might be variously annotated as “transmembrane 
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protein”, “7TM protein”, “GPCR” or “opsin”.  In the 1960s and 1970s, the artificial 

intelligence (AI) community developed several systems to embody this sort of 

complexity. One such system, the semantic networks, represents concepts as nodes 

in a graph, which are joined by arcs that specify their relationships [200-202]. 

Semantic network is the approach taken by many bioinformatics ontologies. It is 

hoped that by building these lattices of semantic associations and by hooking 

database entries to the appropriate points, ontologies can be used to resolve the 

problem of database integration.  

GPCR

Opsin G-protein Coupled
ReceptorIs a kind of

Euqal toIs a kind of

Figure 2.4: An example of semantic networks.
 

When a semantic network notation is devised, it is necessary to specify not only 

the types of the node and arcs, as well as the ways they can be combined, but also 

their meanings. In the above example, there are three issues. First, synonyms are 

used to describe the same entity (for example, “GPCR” and “G-protein-coupled 

receptor”). Second, relationships are required to group related concepts together (for 

example, “opsin” is a kind of “GPCR”). Third, there are subtle differences between 

terms (for example, “transmembrane” describes the location of a protein that might 

or might not be a GPCR). Unless the meanings of the relationships are specified 
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precisely, the semantic network is meaningless [203]. An example of a semantic 

network is shown in Figure 2.4. 

The revised data structure could be regarded as an extended semantic network. 

In this sense, the quadruple notation could be interpreted as if two nodes were linked 

by an arc with the reference. The exact meanings of the arcs (relationships) are 

stored in the relationships table. Ontologies are built for the integration of databases. 

Therefore, this ontology-like data structure is also expected to enable easy 

integration with other databases and maximizes the re-usability of the application 

codes developed on this data structure.  

Normalization is also a very important issue in database design [195,198]. The 

following normal forms (NFs) have been defined: 1NF, 2NF, 3NF, BCNF, 4NF, and 

PJ/NF(5NF) [204]. Normalization theory is simply a formalization of the “one fact in 

one place” principle of good design. If a database schema satisfies a specific set of 

rules, it is said to be in some normal form. Normal forms are thus specific sets of 

rules. Each higher normal form includes all the rules of all lower normal forms. For 

example, a table in the third normal form satisfies all requirements for 1NF, 2NF and 

3NF. The normal form requirements up to 3NF are listed below: 

1NF: This normal form specified the granularities of data. It requires no relations 

within attributes, no composite attributes, no multi-valued attributes and no nested 

relations. 

2NF: In this normal form, all the requirements of 1NF shall be satisfied besides 

every non-prime attribute is fully functionally dependent on the key. 
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3NF: In this normal form, all the requirements of 2NF shall be satisfied besides 

no non-prime attribute can be determined by another non-prime attribute. 

Normalization may be an abused principle. Excessive normalization will lead to 

a poor performance of the database. Thus normalization should be carried out 

cautiously [204]. In general, the third normal form (3NF) is regarded sufficient for 

therapeutic target database and the revised schema conforms to the third normal 

form. 

One problem that the revised data structure might face is that the referential 

integrity could no longer be enforced by simply adding foreign key constraints on 

relevant columns. However, this problem could be solved by setting up triggers to 

check the referential integrity in Oracle 9i. 

The revised schema and the first ERD derived schema are mutually convertible. 

In a sense, the revised data structure could be viewed as each table in the first 

schema was attached by a tag of its identity and stored together. To convert data 

from the revised schema to the first ERD derived schema, one only needs to group 

the records according to their relationship type column (TP) and store different 

groups of records in different tables. To convert data from the first ERD derived 

schema to the revised schema, one just needs to add the relationship type 

information into the each table and then store them centrally. During the 

development of the database, a script was written to do these conversions 

automatically when needed. 

2.3.2.3 Physical design 
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After the data structure was fixed, how the data would be stored on the magnetic 

media of the computer needed to be determined. As most of the modern database 

management systems, Oracle 9i can take care of this problem for the user. This 

designing phase is mentioned here as a distinct section only for the sake of 

completeness. 

After all the above designing activities, the database can be then implemented 

and the maintenance work will keep on going all across the life cycle of the 

database. 

2.3.3 Implementation 

There are two parts of work needed to be done to establish a publicly accessible 

database. One is on the RDBMS side and the other is on the web interface side. 

According to the above revised design, tables were set up in the RDBMS and 

the referential integrity was enforced by setting up triggers. A package was created 

to collect all the PL/SQL programs written for this database, including scripts to load 

data, check referential integrity, convert data formats, do housekeeping work as well 

as support the functionalities of the web interface [92,190]. 

Various technologies can be used to build the web interface which creates 

dynamic web presentations according to a viewer’s interest. Common techniques 

include JSP (Java Server Pages) [205], PHP (Personal Home Page) [206], ASP 

[207], and Perl (Practical Extraction and Reporting Language) DBI (DataBase 

Interface) [208] based applications. Among them, ASP has a big advantage on its 

ease of use. It supports ADO (ActiveX Data Objects) objects [209], ODBC (Open 
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DataBase Connectivity) [210] and OLE-DB (Object Linking and Embedding 

DataBase) [211] which make the development of web interface for databases much 

easier. Although in terms of run-time resource usage, ASP is not as good as JSP, it is 

still better than traditional CGI (Common Gateway Interface) [212] based 

approaches such as Perl DBI based applications. It is said that ASP technology is 

very good for middle-range applications, which fits TTD very well. 

Using the ASP technology, the interface of TTD was developed, which has a 

URL at http://xin.cz3.nus.edu.sg/Group/ttd/ttd.asp. The portal page is shown in 

Figure 2.5. TTD is searchable by target name or drug/ligand name. It can also be 

accessed by selection of disease name, drug/ligand function, or drug therapeutic 

classification from the list provided in the corresponding selection field. Searches 

involving any combination of these five search or selection fields are also supported. 

Each search or selection field in this page will match one or more types of 

information in the database. For example, if any of the “recommended name” or 

“synonyms” of a target matches the term specified in the “target name” filed, this 

target is considered a hit. 
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The search is case insensitive. In a query, a user can specify full name or any 

part of the name in a text field, or choose one item from a selection field. Wild 

characters of “*” and “?” are supported in the text field. “?” represents any one 

character and “*” represents a string of characters of any length. For example, input 

of “phosphatase” in the target name field finds entries containing “phosphatase” in 

their name, such as Cdc25A phosphatase or tyrosine phosphatase.  On the other 

hand, input of “Cdc25? phosphatase” finds entries with names like Cdc25A 

phosphatase, Cdc25B phosphatase and Cdc25C phosphatase.  Likewise, input of 

“Cdc* phosphatase” finds the same entries as above. In this case, “*” represents 

“25A”, “25B” or “25C”. “*” and “?” are not the wild characters used in SQL, therefore, 

all the terms are pre-processed so that they can be correctly interpreted. 

The query conditions are persevered throughout a query session by cookies. 

The result of a typical search is illustrated in Figure 2.6. SQL query statements were 

Figure 2.5: The portal page of TTD web interface 
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dynamically constructed to pick out the summary information of the targets satisfying 

the criteria specified in the first page. In this page, all the therapeutic targets found 

are listed along with the disease conditions to be treated, drugs or ligands that bind 

the target, and its classification. This summary information is generated 

automatically by a PL/SQL scripts with parameters specifying which types of 

information shall be included. ASP codes for this page were written in a manner that 

they are able to automatically adapt to different types of summary information. 

Detailed information of a target can be obtained by clicking the corresponding target 

name. 

The interface displaying the detailed information of a target is shown in Figure 

2.7. ASP codes for the generation of this page read the relationships type table 

TTDTP in the database and display all types of information about the target currently 

available. From the page shown, one finds target name, corresponding disease 

condition and cross-link to Karolinska disease database (http://www.kib.ki.se/), target 

function,  pathway, corresponding natural ligand, known drugs or ligands directed at 

the target, drug type (such as inhibitor, antagonist, and blocker etc.), drug 

therapeutic classification, and additional cross-links to other databases that provide 

useful information about the target.  
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Figure 2.7: The TTD web interface of the detailed information of a target 

Figure 2.6: The TTD web interface of a search result 
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2.4 Preliminary analysis of TTD 

A total number of 433 protein and nucleic acid targets were collected in TTD. As 

shown in Figure 2.8, two major classes of molecules contribute to more then three 

quarters of the total therapeutic targets, which are enzymes (44%) and receptors 

(33%). Other significant classes of therapeutic targets include hormones and factors 

(10%), ion channels (4%) and nucleotides (3%). This composition is generally in 

agreement with that reported in 1997[213]. These targets cover 125 different 

diseases / conditions, and 809 distinct drugs / ligands directed at these targets are 

collected in this database. 

 

 

2.5 Extension of the TTD database schema and interface 

The information on drug adverse reaction and drug Absorption Distribution 

Figure 2.8: Biochemical classes of drug targets in TTD 
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Metabolism and Excretion (ADME) associated proteins are collected in parallel to the 

development of TTD. These are also very important aspects that affect the success 

of a drug.  

While developing the database schema and web interface for the therapeutic 

target database, attentions have been paid to develop re-usable modules. By 

reading the relationship table, the ontology like database schema of TTD and its 

interface codes can virtually adapt to any predefined sets of information types, 

including those needed by drug adverse reaction information and drug ADME 

associated proteins information. Therefore, the work of TTD is readily extendable to 

the development of these two drug mechanism databases, namely the Drug Adverse 

Reaction Database (DART) [214] and drug ADME associated protein database 

(ADME-AP) [215]. 

Drug adverse reaction is often induced by the interaction of a drug or its 

metabolites with specific protein targets related to toxicity or side effects 

[117,216-219]. Knowledge about these targets is both important in facilitating the 

study of the mechanism of drug adverse reaction and in new drug discovery. It is 

also useful in the development and testing of rational drug design and safety 

evaluation tools [220-223]. The Drug Adverse Reaction Database (DART) is 

intended to provide comprehensive information about toxicity and side effect targets 

to the relevant communities. DART contains information about known toxicity and 

side effect related proteins described in the literature together with physiological 

function of each target, related diseases, corresponding agonists / antagonists / 
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activators / inhibitors, IC50 values of the inhibitors, and the toxic effect or side effect 

resulting from the binding of a drug. Cross-links to other databases are also 

introduced to facilitate the access of information about the sequence, 3D structure, 

function, and nomenclature of each target along with drug/ligand binding properties, 

and related literature. Each entry can be retrieved through multiple methods 

including target name, target physiological function, toxicity or side effect, ligand 

name, and biological pathways. This database can be accessed at 

http://xin.cz3.nus.edu.sg/group/dart/dart.asp. 

Drug absorption, distribution, metabolism and excretion are the processes prior 

to and after drug-target interaction. It often involves interaction of a drug with specific 

proteins [224-229]. Knowledge about these ADME-related protein targets is 

important in facilitating the study of the mechanism of drug transportation, disposition 

as well as therapeutic action. It is also useful in the development and testing of 

rational drug design and pharmacokinetics prediction tools [225,230-235]. The 

ADME associated protein database ADME-AP is intended to provide information 

about proteins acting as ADME targets described in the literature. This database 

gives description about physiological function of each target, membrane location and 

tissue distribution, transport direction, driving force, substrates that bind to a target, 

pharmacokinetic effect in terms of ADME classification, synonyms and gene name. 

Cross-links to other databases are also provided to facilitate the access of 

information about the sequence, 3D structure, function, genetic disorder and 

nomenclature of each target along with drug/ligand binding properties, and related 
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literature. Each entry can be retrieved through multiple methods including target 

name, ADME class, ligand/substrate name, and target physiological function. This 

database can be accessed at http://xin.cz3.nus.edu.sg/group/admet/admet.asp. 

 

2.6 Summary 

Therapeutic target database is developed from information in available literature, 

which is a result of collective and persistent effort over the years. It integrates the 

general information of therapeutic targets such as physiological functions and their 

therapeutic related aspects. With the rapid development of proteomics [95,236] and 

pathway analysis [237], the relevant information can be incorporated or the 

corresponding databases can be cross-linked to TTD to provide more 

comprehensive information about the drug targets and their relationship to other 

biomolecules and cellular processes.  

An ontology-like database schema is designed for TTD which can easily 

incorporate new interests in therapeutic targets. Interface codes developed on this 

schema are also highly flexible. The work in TTD has been extended to develop two 

other drug mechanism information databases – DART and ADME-AP. 

The completion of TTD not only provides a convenient way of looking up 

therapeutic target information, but also brings new research opportunities, such as 

the study of novel approaches in discovery of new therapeutic targets and new 

therapeutic intervention strategies, which are discussed next. 
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Chapter 3 

 

Prediction of Drug-target like proteins  

 

In this chapter, we explore the use of statistical learning approaches to predict 

drug-target like proteins from their primary sequences in order to facilitate the rapid 

discovery of new potential therapeutic targets from the large quantity of sequences in 

human genome. A number of statistical learning methods and pre-processing 

techniques are explored. It was found that the Support Vector Machine (SVM) 

algorithm with a fine-tuned Gaussian kernel was able to make reasonably accurate 

prediction, which showed its potential to be used in the genome scale rapid drug 

target discovery, as a novel in silico approach supplementary to the conventional 

experimental approaches. 

 

3.1 Introduction 

Target discovery constitutes one of the main components of today’s early stage 

pharmaceutical research [3,74]. The aim of target discovery is to identify and validate 

suitable drug targets (i.e. proteins or nucleotides to which drug binding produces 

therapeutic effects) for therapeutic interventions. Only a small fraction of proteins are 

actually targeted by today’s drugs. Indeed, a review article published in 2000 

estimated that current therapies explored less than 500 distinct targets [89]. The total 
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number of tractable targets remains difficult to estimate given the uncertainty 

surrounding the total number of human genes. However, it has been estimated that 

the number of drug targets is probably in the range of 5,000-10,000 [89]. This 

number is 10-20 times greater than that of the currently explored drug targets. 

The discovery of targets that are sufficiently robust to yield marketable 

therapeutics is an enormous challenge. Through the years, many approaches have 

been used with varying degrees of success. Most of them are disease dependent 

[95], for example, target-independent screening of tumor-derived cell lines, 

reductionist approaches to identifying crucial elements in disease-affected pathways, 

“global” examination of gene transcript levels, and global examination of protein 

expression levels. These are mainly wet-lab based approaches which require the 

consumption of large amount of money and time. Disease-independent approaches 

were also reported, such as screening of homologs of previously drugged targets.  

The fruits of the Human Genome Project will undoubtedly change how and 

where we look for new drugs and how we assess drug targets [238,239]. With the 

exception of these infectious disease targets, which are proteins or nucleotides 

essential to viral replication or bacterial metabolism in the infectious organisms, most 

of the drug targets are human proteins. Many more targets responsible for 

debilitating human diseases are waiting to be uncovered from the large number of 

genes composing the human genome. It is expected that the search engines and 

powerful analytical techniques developed in bioinformatics and rational drug design 

may help a lot in future target discovery. Rapid genome scale in silico 
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disease-independent target discovery methods are desired in this endeavor. 

Drug targets are a unique group of proteins bearing certain common 

characteristics. For example, a good target must possess substantial regulatory 

effect on a pathogenic pathway and the effect should be limited to that pathway so 

that normal processes of human body will not be disturbed. Therefore not 

surprisingly, a big portion of explored targets are receptors whose functions are 

highly important and specific to certain pathways. According to 2000 statistics, these 

receptors contribute to 45% of all current targets. Also, enzymes, whose activities 

are usually highly specific, make up for 28% targets [89]. It is easy to see that some 

protein classes are, obviously, more “successful” or exhibit better tractability in the 

drug discovery process. This shows that the drug-target likeness of a protein is 

related to its classes of structure and function, which are ultimately determined by its 

sequence. Statistical learning approaches have been applied to find the relationship 

between protein sequences and their functions [240-244], which lead to the 

hypothesis that the statistical learning methods may be equally applicable in 

prediction of drug-target like proteins, which is an efficient approach to pick out 

candidate targets from the huge number of proteins in the human genome. 

The establishment of therapeutic target database has provided a useful resource 

for statistical model training. Various statistical approaches are evaluated in this work 

to examine whether statistical learning approaches can show satisfactory capacity in 

recognizing novel potential therapeutic targets by analysis of the sequences of 

explored therapeutic targets. 
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3.2 Statistical learning 

With regard to this application, a supervised binary classification method is 

needed [245]. Specifically, examples are represented by a vector of a fixed number 

of attributes (denoted by NAAA ..., 21 ), also known as features, describing different 

characteristics of the examples. A given set of class labels (denoted by C ), for 

example }1,1{ −+  in binary classification, labels all the examples, where the 

examples labeled “+1” are called positive examples, and the examples labeled “-1” 

are called negative examples. Supervised learning methods, also known as 

classification methods, are to build a set of models that can correctly predict the 

class labels of a set of different examples (testing examples) based on the 

knowledge represented by a set of examples with known class labels (training 

examples). 

3.2.1 Classification algorithms 

 Over the years, a variety of different classification algorithms have been 

developed by the machine learning community. Examples of such algorithms are 

decision tree bases [246-248], rule-based [249,250], probabilistic [251], neural 

network [252,253], genetic [254], instance based [255,256], and support vector 

machine [104,245]. Depending on the characteristics of the data sets being 

classified, certain algorithms tend to perform better than others. In recent years, 

algorithms based on the support vector machine and the k-nearest neighbors have 

been shown to produce reasonably good results for problems in which features are 
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continuous. For this reason, we are mainly interested in these two algorithms. We 

also include the decision tree algorithm, which is the “classical” benchmark for 

classification algorithms and can be applied universally. These algorithms are 

described briefly below. 

3.2.1.1 Decision tree 

 Decision trees are powerful and popular tools for classification and prediction 

[246-248]. The attractiveness of decision trees is due to the fact that, in contrast to 

neural networks and support vector machines, decision trees represent rules. Rules 

can readily be expressed so that human can understand them. They can even be 

directly used in a database access language like SQL so that records falling into a 

particular category may be retrieved.  

There are a variety of algorithms for building decision trees that share the 

desirable quality of interpretability. A well known and frequently used decision tree 

algorithm over the years is ID3 (or its improved version C4.5 and its commercial 

counterpart See5/C5.0).  

Decision tree is a classifier in the form of a tree structure (Figure 3.1), where 

each node is either a leaf node, which indicates the class labels of examples, or a 

decision node, which specifies some test to be carried out on a single attribute value 

and has one branch and sub-tree for each possible outcome of the test. A decision 

tree can be used to classify an example by starting at the root of the tree and moving 

through it until a leaf node, which provides the class label of the example. 
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Decision tree induction is a typical inductive approach to learn knowledge on 

classification. Most algorithms that have been developed for learning decision trees 

are variations on a core algorithm that employs a top-down, greedy search through 

the space of possible decision trees. ID3 is a widely used decision tree learning 

algorithm [257]. It uses fixed sets of attributes, and creates a decision tree to classify 

an example into a fixed set of class labels. At every step, if the remaining examples 

are all of the same class, it predicts that class, otherwise, it chooses the attribute with 

the highest “information gain” and creates a decision node based on that attribute to 

split the remaining training examples into one subset per discrete value of that 

attribute. It recursively does this until each leaf node contains only examples of one 

class, or all the attributes are used up.  

The primary focus of the decision tree growing algorithm is to select which 

A1

C= +1 A3C= -1 C= -1

C= -1 C= -1

A1= Red A1=Blue

A2>3 A2<=3 A2<=1 A2<=1

A2 A2

A3=True A3=False
C= -1

A2

Leaf Node

Decision Node

 

Figure 3.1: An example of decision trees. 
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attribute to test at each decision node in the tree. The quantitative measure of the 

worth of an attribute used in ID3 is a statistical property called “information gain” that 

measures how well a given attribute separates the training examples according to 

their class labels. 

In order to define information gain precisely, we need to define a measure 

commonly used in information theory, called entropy (denoted by E ), which 

characterizes the impurity of an arbitrary collection of examples. Given a set S , in 

the binary classification setting, the entropy of set S  is defined as: 

nnppSE 22 loglog)( −−=          Equation 3.6 

where p  is the proportion of positive examples in S  and n  is the proportion of 

negative examples in S . In all calculations involving entropy we define 0log0 2  to 

be 0. Notice that the entropy is 0 if all members of S  belong to the same class, 

which is the stop criteria of tree splitting; and the entropy is 1 (at its maximum) when 

the collection contains equal numbers of positive and negative examples. If the 

collection contains unequal numbers of positive and negative examples, the entropy 

is between 0 and 1.  

 One interpretation of entropy from information theory is that it specifies the 

minimum number of bits of information needed to encode the classification of an 

arbitrary member of S  (i.e., a member of S  drawn at random with uniform 

probability) [258]. For example, if p  is 1, a receiver knows the drawn example will 

be positive, so no message need be sent, and the entropy is 0. On the other hand, if 

p  is 0.5, one bit is required to indicate whether the drawn example is positive or 
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negative. If p  is 0.8, then a collection of messages can be encoded using less than 

1 bit (on average) per message by assigning shorter codes to collections of positive 

examples and longer codes to less likely negative examples.  

Given entropy as a measure of the impurity in a collection of training examples, 

we can now define a measure of the effectiveness of an attribute in classifying the 

training data. The measure we will use, called information gain, is simply the 

expected reduction in entropy caused by partitioning the examples according to this 

attribute. More precisely, the information gain ),( iASG  of an attribute iA , relative 

to a collection of examples S , is defined as  

 )()(),(
)(

vA
AVv

vA
i i

i

i SE
S

S
SEASG =

∈

=∑−=        Equation 3.7 

where )( iAV  is the set of all possible discrete values for attribute iA , and vAi
S =  is 

the subset of S  in which attribute iA  has the value v . Note the first term in the 

equation of ),( iASG  is just the entropy of the original collection S  and the second 

term is the expected value of the entropy after S  is partitioned using attribute iA . 

The expected entropy described by this second term is simply the sum of the 

entropies of each subset vAi
S = , weighted by the fraction of examples 

S

S vAi =  that 

belong to vAi
S = . ),( iASG  is therefore the expected reduction in entropy caused by 

knowing the value of attribute iA . Put another way, ),( iASG  is the information 

provided about the class labels, given the values of some attribute iA . The value of 

),( iASG  is the number of bits saved when encoding the class labels of an arbitrary 

member of S , by knowing the value of attribute iA .  
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 The measure G  tends to favor those attributes with more possible discrete 

values. For example, a decision tree can be established to predict the disease of a 

patient using only one attribute: the case serial number. However, this decision tree 

would probably fail when a new patient with a new case serial number comes. 

Another measurement, Gain Ratio ( R ) is defined to avoid this bias, which can be 

calculated as follows. 

 ),(/),(),( iii ASIVASGASR =  where       Equation 3.8 
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where )( iAV  is the set of all possible discrete values for attribute iA ; vAi
S =  is the 

subset of S  for which attribute iA  has value v  and the norm of a set ⋅  is 

defined as the number of elements in the set. ),( iASIV  can be interpreted as the 

total information content of the attribute iA . Therefore, Gain ratio is the ratio of 

information gained that is pertinent to classification by branching on iA . 

The initial definition of decision tree is restricted to attributes that take on a 

discrete set of values. In other words, the attributes tested in the decision nodes of 

the tree must also be discretely valued. This restriction can easily be removed so 

that continuous-valued decision attributes can be incorporated into the learned tree 

[259]. This can be accomplished by dynamically defining new discrete-valued 

attributes that partition the continuous attribute value into a discrete set of intervals. 

For instance, for an attribute iA  that is continuous-valued, the ID3 algorithm can 

dynamically create a new Boolean attribute iA'  that is true if cAi <  and false 

otherwise. The only question is how to select the best value for the threshold c . 
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Clearly, we would like to pick a threshold that produces the greatest information gain. 

By sorting the examples according to the continuous attribute iA , then identifying 

adjacent examples that differ in their class labels, we can generate a set of candidate 

thresholds midway between the corresponding values of iA . It can be proven that 

the value of c  that maximizes information gain must always lie at such a boundary. 

These candidate thresholds can then be evaluated by computing the information 

gain associated. This dynamically created Boolean attribute can then compete with 

the other discrete-valued candidate attributes available for growing the decision tree. 

Normally, the process of selecting a new attribute and partitioning the training 

examples is repeated for each non-terminal descendant node, using only the training 

examples associated with that node. This process continues for each new leaf node 

until either of two conditions is met:  

Every attribute has already been included along this path through the tree, or  

The training examples associated with this leaf node all have the same class 

labels (i.e., their entropy is zero).  

In principle, the above decision tree algorithm can be used to grow each branch 

of the tree just deeply enough to perfectly classify the training examples. While this is 

sometimes a reasonable strategy, in many cases it can lead to difficulties when there 

is noise in the data, or when the number of training examples is too small to give a 

representative sample of the reality. In either of these cases, this simple algorithm 

will produce trees that over-fit the training examples. Therefore, after the tree is 

constructed, a pruning process is applied to gradually remove decision nodes that 
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give the least improvements on accuracy and assign to these nodes the class label 

of the majority of remaining examples [260,261]. In this case, the prune level will be 

a free parameter to be optimized in the decision tree induction, which controls the 

complexity of the tree. 

3.2.1.2 K-nearest neighbor 

 K-nearest neighbor (kNN) is a well known and widely used instance-based 

classification algorithm due to its conceptual simplicity, general applicability and 

efficiency [255,262-264]. It can be used as an initial tool to analyze a data set before 

proceeding to more sophisticated methods. It is also used to benchmark results of 

other classification methods. K-nearest neighbor is an algorithm that uses all 

available examples and classifies new instances based on a similarity measure.  

The basic idea behind this classification paradigm is first to compute the 

similarity between a test example and all the examples in the training set, then to 

select the k  most similar training examples, and finally to determine the class label 

of the test example based on the class labels of these k  nearest neighbors. 

One of the advantages of k-nearest neighbor method is that it is well suited for 

composite classes (classes consists of examples whose features have different 

characteristics for different subsets, or sub-classes) as its classification decision is 

based on a small neighborhood of similar examples.  

 Two steps are critical to the performance of the k-nearest neighbor. The first is 

the method used to determine the similarity between a test example and the 

examples in the training set and the second is the method used to determine the 
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class label of the test example based on the class labels of the nearest neighbors. 

For data sets for which the objects are represented by multi-dimensional vectors, like 

our application, the approach that is commonly used to compute the similarity is 

using the Euclidean distance or any other norm based distance. We use the 

Euclidean distance as the similarity measurement in our experiments.  

 The other step to determine the class of the test example based on the classes 

of its k-nearest neighbors is to assign it to the majority class, i.e., the class to which 

most of the k-nearest neighbors belong. This decision function can be illustrated by 

Equation 3.10. 
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where )( iVc  is the class label of the i -th nearest neighbor iV . 

 In the k-nearest neighbor classification, the value of k  is needed. It has been 

found that Nk <  is a general criterion that should be met for good results, where 

N  is the total number of training examples [255]. Therefore, the number of effective 

nearest neighbors k  will be a free parameter in the k-nearest neighbor algorithm to 

be optimized according to test results. 

3.2.1.3 Support vector machine 

Although the basis of support vector machine had been laid in the 1960s, the 

idea of support vector machine was only officially proposed in 1995 by Vapnik and 

his co-workers [104,245]. Then, the research on its theoretical aspects and 

application aspects soared up because of the strong predictive power that this 

statistical learning algorithm had shown. It has been applied in a wide range of 



Chapter 3: Prediction of Drug-target like proteins  

 

68

problems including text categorization [265,266], hand-written digit recognition [104], 

image classification and object detection [267,268], flood stage forecasting [269], 

micro-array gene expression data analysis [270], drug design [158], prediction of 

protein solvent accessibility [271], protein fold recognition [272], protein secondary 

structure prediction [273], prediction of protein-protein interaction [274]. These 

studies have demonstrated that SVM is consistently superior to other supervised 

learning methods [158,270,275].  

Support vector machine (SVM) separates a given set of labeled training 

examples in a multi-dimensional space via a hyper-plane optimally positioned 

between the positive samples and negative samples. The test examples are then 

placed onto this multi-dimensional space to recognize which are positive and which 

are negative based on their relative positions to the hyper-plane. For most of 

real-world problems, the dataset can not be separated by this linear method. Special 

“kernels” are introduced in SVM to automatically conduct nonlinear mapping from the 

input space onto a high-dimensional feature space in which the training examples 

can be linearly separated. The optimal hyper-plane thus determined in the feature 

space corresponds to a nonlinear decision boundary in the input space.  
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Let the training data of two separable classes, which contains n samples, be 

represented by ),(),......,,(),,( 2211 nn yxyxyx  .,...,2,1 ni = where N
i Rx ∈ is a vector 

in an N dimensional space, and iy { }1,1 +−∈ indicates class label. Given a weight 

vector w  and a bias b  (figure 3.2), it is assumed that these examples can be 

separated by a hyperplane with a margin of 1: 

1+≥+⋅ bxw i ,  for 1+=iy          Equation 3.11 

1−≤+⋅ bxw i ,  for 1−=iy          Equation 3.12 

where T
nwwww ),...,,( 21= is a vector of n  elements.  

Equation 4.11 and Equation 4.12 can be combined into a single inequality: 

1)( ≥+⋅ bxwy ii ,  for ni ,...,2,1=          Equation 3.13 
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Figure 3.2: Definition of Hyperplane and Margin. The circular dots and square dots 
represent samples of class -1 and class +1, respectively. 
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As shown in Figure 3.3(a), there exist a number of separating hyperplanes for an 

identical group of training data. The objective of SVM is to determine the optimal 

weight ow  and optimal bias ob  such that the corresponding hyperplane separates 

the positive and negative training data with maximum margin, which is expected to 

produce the best generalization performance. This hyperplane (Figure 3.3(b)) is 

called the Optimal Separating Hyperplane (OSH). 

The equation for an arbitrary hyperplane can be written as  

,0=+⋅ bxw i
T              Equation 3.14 

and the width of the two corresponding margins is 

{ } { } w
xw

w
xwbw

T

yx

T

yx

⋅
−

⋅
=

−=+=
maxmin

1|1|
),(γ        Equation 3.15 

Given the constraint Equation 3.13, one obtains 

w
bw oo

2),(max == γγ            Equation 3.16 

Figure 3.3: Available separating hyperplanes and Optimal Separating Hyperplane 
(a) Available Hyperplanes H, H’, H’’,… 
(b) Unique Optimal Separation Hyperplane 
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The OSH can therefore be obtained by minimizing the norm of w  under the 

inequality constraint Equation 3.13. The saddle point of the following Lagrangian 

gives solutions to the above optimization problem: 

 ∑
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where 0≥iα are Lagrange multipliers. The solution to this Quadratic Programming 

(QP) problem requires that the gradient of ),,( αbwL with respect to w and 

b vanish, i.e., 0=
∂
∂

= owww
L

and 0=
∂
∂

= obbb
L

, which gives rise to the following 

conditions: 
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By substituting Equation 3.18 and Equation 3.19 into Equation 3.17, the QP problem 

becomes the maximization of the following expression: 
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under the constraints 0
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i
ii yα  and 0≥iα , .,...,2,1 ni =  

The points located on the two optimal margins will have non-zero coefficients 

iα  among the solutions to Equation 3.20, and are called Support Vectors (SVs). The 

bias ob  can be calculated as follows: 
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After determination of support vectors and bias, the decision function that 
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separates the two classes can be written as 
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Real-world problem are usually nonlinear in nature. The linear classification 

scheme described above is thus inapplicable to these problems. A nonlinear 

classification scheme can be introduced such that the original training data x in the 

input space X  is projected into a high-dimensional feature space F  via a Mercer 

kernel operator K  [276,277] followed by the construction of OSH in the feature 

space (Figure 3.4).  

Mathematically, the above set of equations is transformed into the following form by 

substituting the inner product in input space )( xxi ⋅  to the inner product in feature 

space ),( xxK i , where K is a symmetric positive definite function that satisfies 

Mercer’s conditions: 
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Figure 3.4: Project the training data nonlinearly into a higher-dimensional feature 
space and construct a hyperplane to separate positive and negative datasets with 
maximum margin there.  
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 ∫∫ > ,0)()(),( dxdyygxgyxK   ∫ ∞< ,)(2 dxxg       Equation 3.25 

In this case, the Kernel function can represent a legitimate inner product in a feature 

space: 

 ))()((),( yxyxK Φ⋅Φ=            Equation 3.26 

where Φ  is an implicit mapping function from the input space to the feature space 

F .  

In F , the dual Lagrangian, given in Equation 3.20, becomes 
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Thus the decision function changes to be 
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 Linear classification can also be integrated in the non-Linear classification 

framework. By defining )(),( yxyxK T ⋅= , the equations for non-linear classification 

immediately become equations for linear classification. 

Usually, many candidate kernel functions can be used in a SVM, such as 

Polynomial kernel dT yxyxK −⋅−= )1(),( , Gaussian kernel 

)
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exp(),( 2
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yx
yxK

−
−= , and others [278], as well as their combinations such as 
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the sum or tensor products of kernels. Among them, Gaussian kernel is the most 

popular one and we use Gaussian kernel in our classification. Usually, there are 

some parameters to be optimized in kernel function, such as the parameter σ  in a 

Gaussian kernel. 

3.2.2 Pre-processing for classification 

 While neglected by many machine learning research in the area of 

bioinformatics, pre-processing is regarded as a necessary step for serious real world 

data mining in the machine learning community. Here, several popular 

pre-processing techniques are explored. 

3.2.2.1 Scaling 

 One of these widely used pre-processing techniques is normalization. 

Empirically, normalization will help to improve the prediction accuracy. In this work, 

Equation 3.30 is used for normalization, which is the approach adopted by LIBSVM 

[279], a support vector machine classification toolbox.  
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=           Equation 3.30 

where iA  is the i -th feature, iA  is the average value of iA  among all the 

examples. After this process, all the features will be in the region of [-1,+1]. 

Another very important issue of pre-processing is dimensionality reduction. 

Bellman (1961) [280] first proposed the term “curse of dimensionality”, which refers 

to the exponential growth of hyper-volume as a function of dimensionality. Most 

statistical learning models can be thought of mappings from an input space to an 

output space. Thus, loosely speaking, a statistical learning model needs to somehow 
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"monitor", cover or represent every part of its input space in order to know how that 

part of the space should be mapped. Covering the input space takes resources, and, 

in the most general case, the amount of resources needed is proportional to the 

hyper-volume of the input space. The exact formulation of "resources" and "part of 

the input space" depends on the type of the model and should probably be based on 

the concepts of information theory and differential geometry. The curse of 

dimensionality causes a model with lots of irrelevant inputs to behave relatively badly. 

When the dimension of the input space is high, the model uses almost all its 

resources to represent irrelevant portions of the space. Even if a statistical learning 

algorithm is able to focus on important portions of the input space, the higher the 

dimensionality of the input space is, the more examples are needed to make a 

reasonable sampling. 

Dimensionality reduction has been the focus of pre-processing research for 

quite some time [281-284]. Conventional approaches have been developed to select 

the “best” subset of the original features that can best describe the problem. Recent 

advances in dimensionality reduction incorporate methods that will construct a new 

set of features from the original features to minimize the information loss when 

discarding any of the original features. Such methods are represented by Principal 

Component Analysis (PCA) and Independent Component Analysis (ICA). 

3.2.2.2 Principal component analysis 

Principal Component Analysis (PCA) is widely used in signal processing, 

statistics, and neural computing [285,286]. In some application areas, this is also 
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called the (discrete) Karhunen-Loève transform, or the Hotelling transform.  

 The basic idea in PCA is to find the components nsss ......, 21  so that they 

explain the maximum amount of variances in the input space by n  linearly 

transformed components. PCA can be defined in an intuitive way using a recursive 

formulation. Define the direction of the first principal component, say 1w , by  
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11 maxarg xwEw T
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=
          Equation 3.31 

where 1w  is of the same dimension as the example vector x . Thus the first 

principal component is the projection on the direction in which the variance of the 

projection is maximized. Having determined the first 1−k  principal components, 

the k -th principal component is determined as the principal component of the 

residual:  





























−= ∑

−

==

21

111 maxarg
k

i

T
ii

T

w
xwwxwEw        Equation 3.32 

The principal components are then given by Equation 3.33.  

 xws T
ii =               Equation 3.33 

In practice, the computation of the iw  can be simply accomplished using the 

(example) covariance matrix { } CxxE T = . The iw  are the eigenvectors of C  that 

correspond to the k  largest eigenvalues of C .  

By choosing the n  first components, PCA is used to reduce the dimensionality 

of the input data. One usually chooses Nn <  ( N  is the dimension of the original 

feature vector). It can be proven that the representation given by PCA is an optimal 

linear dimension reduction technique in the mean-square sense [285]. By this means, 

noise may be reduced, as the data not contained in the n  first components may be 
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mostly due to noise. A simple illustration of PCA is found in Fig. 3.5, in which the first 

principal component of a two-dimensional data set is shown.  

 

 

3.2.2.3 Independent component analysis 

 Independent component analysis (ICA) [287,288] is a statistical and 

computational technique for revealing hidden factors that underlie sets of random 

variables, measurements, or signals.  

Assume that we observe N  linear mixtures x ( NAAA ..., 21 ) (the features of an 

example) of N independent components Nsss ..., 21 , 

NjNjjj smsmsmA +++= ......2211         Equation 3.34 

In the ICA model, it is assumed that each mixture jA  as well as each 

independent component ks  is a random variable. The observed values jA ( x ), e.g., 

the j -th feature of all the examples, are then a sample of this random variable. 

Figure 3.5: Principal component analysis of a two-dimensional data set. The 
line shown is the direction of the first principal component, which gives an 
optimal (in the mean-square sense) linear reduction of dimension from 2 to 1 
dimension. 



Chapter 3: Prediction of Drug-target like proteins  

 

78

Without loss of generality, it is assumed that both the mixture variables and the 

independent components have zero mean: If this is not true, then the observable 

variables jA  can always be centered by subtracting the sample mean, which 

makes the model zero-mean.  

It is convenient to use vector-matrix notation instead of the sums like in the 

previous equation. The above mixing model is written as  

Msx =               Equation 3.35 

where x  is the random vector whose elements are the mixtures NAAA ..., 21 ; s  is 

the source vector with elements Nsss ..., 21 ; and M  is the mixing matrix with 

elements ijm .  

The statistical model in Equation 3.36 is called independent component analysis, 

or ICA model. The ICA model is a generative model, which means that it describes 

how the observed data are generated by a process of mixing the components js . 

The independent components are latent variables, meaning that they cannot be 

directly observed. Also the mixing matrix is assumed to be unknown. All we observe 

is the random vector x , and we must estimate both M  and s  using it. This must 

be done under assumptions as general as possible.  

Wxs =                Equation 3.36 

The starting point for ICA is the very simple assumption that the components js  

are statistically independent. It is assumed that the independent component must 

have non-gaussian distributions. However, in the basic model we do not assume that 

these distributions are known. For simplicity, it is also assumed that the unknown 
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mixing matrix M  is square. Then, after estimating the matrix M , its inverse 

W can be computed.  

The non-gaussianity can be measured in different ways. Suppose y  is a 

random variable, classical measure of non-gaussianity is kurtosis which is defined by 

Equation 3.37: 

{ } { }( )224 3)( yEyEykurt −=          Equation 3.37 

A second very important measure of non-gaussianity is given by negentropy. 

Negentropy is based on the information-theoretic quantity of (differential) entropy. 

Entropy E  is defined for a discrete random variable y  as 

 )(log)()( 2 i
i

i ayPayPyE ==−= ∑         Equation 3.38 

where the ia  are the possible values of y . This very well-known definition can be 

generalized for continuous-valued random variables, in which case it is often called 

differential entropy. The differential entropy E  of a random variable y  with density 

)(yf  is defined as [289]: 

dyyfyfyE )(log)()( 2∫−=           Equation 3.39 

A fundamental fact in information theory is that a gaussian variable has the 

largest entropy among all random variables of equal variance. To obtain a measure 

of non-gaussianity that is zero for a gaussian variable and always nonnegative, one 

often uses a slightly modified version of the definition of differential entropy, called 

negentropy. Negentropy J  is defined as follows: 

 )()( yEyEJ Gauss −=            Equation 3.40 

where Gaussy  is a Gaussian random variable sharing the same covariance matrix as 
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y . However, negentropy is computationally very difficult. Estimating negentropy 

using the definition would require an estimate (possibly nonparametric) of the 

probability density function. Therefore, simpler approximations of negentropy are 

very useful, for example Equation 3.41 [290]. 

 { } { }[ ]∑
=

−∝
p

i
iii vGEyGEkJ

1

2)()(          Equation 3.41 

where ik  are some positive constants, and v  is a Gaussian variable of zero mean 

and unit variance. The variable y  is assumed to be of zero mean and unit variance, 

and the functions iG  are some non-quadratic functions [290]. The following choices 

of G have been proved useful:  

 ay
a

yG coshlog1)( =  where 21 ≤≤ a  and      Equation 3.42 

 )2/exp()( 2yyG −−=            Equation 3.43 

By choosing an appropriate G  the classical kurtosis measure of non-gaussianity 

can be unified in this framework, i.e. 4)( yyG = . 

Equation 3.41 is used as the contrast function (non-gaussianity measure) to be 

maximized in order to find the first independent component: 

)(maxarg
11 xwJw T

w
⋅=

=
          Equation 3.44 

Thus the first independent component is the projection on the direction in which 

the non-gaussianity (measured by an approximation of negentropy) of the projection 

is maximized. To estimate several independent components, several units with 

weight vectors Nwww ......, 21  need to maximized together using Equation 3.44. To 

prevent different vectors from converging to the same maxima, the outputs are 

decorrelated after every iteration of the optimization process. The independent 
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components are then given by Equation 3.45.  

 xws T
ii =               Equation 3.45 

ICA can be seen as an extension to principal component analysis and factor 

analysis. ICA is a powerful technique capable of finding the underlying factors or 

sources. It is interesting to note that ICA makes explicit connection to projection 

pursuit. Projection pursuit is a technique developed in statistics for finding 

“interesting” projections of multidimensional data [291-294]. Such projections can 

then be used for decision making, and for such purposes as density estimation and 

regression. In basic (one dimensional) projection pursuit, we try to find a direction 

such that the projections of the data in this directions have an interesting distribution, 

i.e., display some structure. It has been argued by Huber [293] and by Jones and 

Sibson [294] that the Gaussian distribution is the least interesting one, and that the 

most interesting directions are those that show the least Gaussian distribution. This 

is exactly how to estimate the ICA model. The usefulness of finding such projections 

can be seen in Fig. 4.6, where the projection on the projection pursuit direction, 

which is horizontal, clearly shows the clustered structure of the data. The projection 

on the first principal component (vertical), on the other hand, fails to show this 

structure.  

So far, there are no reported indicators that can show whether a statistical 

learning algorithm or a pre-processing procedure is suitable for a certain application. 

The performances of different classifiers and the effect of scaling, PCA and ICA on 

them are evaluated and compared below. 
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3.3 Problem definition 

The input data to the above statistical learning methods are a set of examples 

(training set) and the class labels attached to these examples (training labels). The 

accuracy of the output models can be evaluated by comparing the model predictions 

on a set of different examples (testing set) with prior knowledge of the class labels of 

these examples (testing labels). In the majority of cases, there are some free 

parameters in statistical learning algorithms which control the generation of models, 

such as the prune level in decision tree induction and the kernel parameter in 

support vector machine. The “best” model is usually selected from a series of models 

generated using different parameter sets according to certain model accuracy 

measurements. This leads to the problem that the selection of the “best” model is not 

independent of the testing set. Therefore, the best model may “over-fit” to a 

Figure 3.6: An illustration of projection pursuit and the “interestingness” of 
non-gaussian projections.  
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particular testing set. In order to have an unbiased estimation of the prediction 

accuracy of the selected models, an independent evaluation data set with known 

class labels, in addition to the training and testing data sets, is needed. The unbiased 

estimation of the prediction accuracy of the selected model can therefore be 

measured on the independent evaluation data set. The procedures used to construct 

the data sets and the measurements used to evaluate the model accuracy are 

detailed below. 

3.3.1 Description of data 

All drug-target protein sequences used in this study are retrieved from the 

SWISS-PROT database release 40 [295]. A total of 339 human target proteins are 

obtained by an automated sequence retrieval program linked to therapeutic target 

database. These proteins are labeled “+1”. The non-drug-target proteins are 

composed of 1620 other proteins randomly selected. These proteins are given the 

label “-1”. As shown in Table 3.1, the training set is comprised of 235 positive 

examples and 1131 negative examples; the testing set is comprised of 64 positive 

examples and 301 negative examples; and the independent evaluation set is 

comprised of 40 positive examples and 188 negative examples. A perl program is 

written to randomly distribute these proteins while maximizing the protein family 

diversity [296] in each set. The proportions of positive examples in all the three data 

sets are close to 17%, which is the expected proportion of targets in human genome 

(5,000 / 30,000) [89].  
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Table 3.1: Composition of training, testing and independent evaluation data sets. 

 

Data Set  No. of positive examples No. of negative examples

Training set 235 1131 

Testing set 64 301 

Independent evaluation set 40 188 

 

Training and testing of the statistical learning model requires each example be 

represented as a feature vector consisting of a fixed number of real valued 

components. These feature vectors are assembled from the encoded representations 

of tabulated residue properties including amino acid composition, hydrophobicity, 

normalized Van der Waals volume, polarity, polarizability, charge, surface tension, 

secondary structure and solvent accessibility for each residue in the sequence 

[271-274,297]. Three types of descriptors, composition (C), transition (T) and 

distribution (D), are used to describe global composition of each of these 

properties[298]. C is the number of amino acids of a particular property (such as 

hydrophobicity) divided by the total number of amino acids. T characterizes the 

percent frequency with which amino acids of a particular property is followed by amino 

acids of a different property. D measures the chain length within which the first, 25, 50, 

75 and 100% of the amino acids of a particular property is located respectively.  
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A hypothetical protein sequence AEAAAEAEEAAAAAEAEEEAAEEAEEEAAE, 

as shown in Figure 3, has 16 alanines ( 161 =n ) and 14 glutamic acids ( 202 =n ). The 

composition for these two amino acids are %33.53)/( 211 =+ nnn and 

%67.46)/( 212 =+ nnn  respectively. There are 15 transitions from A to E or from E to 

A in this sequence and the percent frequency of these transitions is (15/29)=51.72%. 

The first, 25, 50, 75 and 100% of “A” are located within the first 1, 5, 12, 20 and 29 

residues, respectively. The D descriptor for “A” is thus 1/30=3.33%, 5/30=16.67%, 

12/30=40.0%, 20/30=66.67%, 29/30=96.67%. Likewise, the D descriptor for “E” is 

6.67%, 26.67%, 60.0%, 76.67%, 100.0%. Overall, the amino acid composition 

descriptors for this sequence are C=(53.33, 46.67), T=(51.72) and D=(3.33, 16.67, 

40.0, 66.67, 96.67, 6.67, 26.67, 60.0, 76.67, 100.0), respectively. 

Descriptors for other properties can be computed by a similar procedure and all 

the descriptors are combined to form the feature vector. In most studies, amino acids 

are divided into three classes for each property and thus the three types of 

descriptors for each property consist of 21 elements: three for C, three for T and 15 

for D. Taking hydrophobicity as an example, the steps of feature construction are as 

Figure 3.7: A hypothetical sequence for illustration of derivation of the feature
vector of a protein. 
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follows: first, 20 aminoacid residues can be devided into three groups according to 

their hydrophobicity (denoted as H, M, L). The original protein sequence can thus be 

translated to a pseduosequence of H, M and L according this grouping. Then, the 

composition of H, M and L (3 elements), transitions of H/M, H/L and M/L (3 elements), 

and distributions of H, M, and L (15 elements) can be computed. They add up to 21 

elements. The physicochemical properties of amino acid residues are can be found 

in KEGG database. The secondary structure and solvent accessibility properties of 

each residue are predicted by the PHD program. Details of the formula can be found 

in the respective publications and references therein[271-274,297,298]. These 

properties and their respective dimensionality are given in Table 3.2. All the features 

are continuous and the total dimensionality of the vector is 188 (all the vectors are 

column vectors by default in this work). 

 

Table 3.2: Feature vector composition. 

 

Feature description No. of dimensions 

Amino acids composition 20 

Hydrophobicity 21 

Normalized Van der Waals volume 21 

Polarity 21 

Polarizability 21 

Charge 21 

Surface tension 21 

Secondary structure 21 

Solvent accessibility 21 
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Total 188 

 

3.3.2 Measurements of prediction accuracy 

Before discussing the result of the drug-target like protein prediction, it is 

important to explain the measurements used to evaluate the effectiveness of a 

classification algorithm. First, confusion Matrix is the most simple and informative 

way to analyze the behavior of a classifier. It contains information about both actual 

and predicted classifications. Table 3.3 shows a common confusion matrix for binary 

classification, in which “a” is the number of correctly classified positive examples, 

called true positive (TP); “d” is the number of correctly classified negative examples, 

called true negative (TN); “b” is the number of incorrect predictions of the positive 

class, called false positive (FP); “c” is the number of incorrect predictions of the 

negative class, called false negative (FN).  

 

Table 3.3: An example of confusion matrix in binary classification 

 

Actual  

Positive Negative 

Positive a (TP) b (FP) 
Predicted 

Negative c (FN) d (TN) 

 

Based on the confusion matrix, accuracy measurements of a classifier can be 

calculated by the following quantities. 

1. Overall accuracy, A  for short, is the proportion of the total number of 
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predictions that are correct. It is calculated using Equation 3.1. 

)/()( dcbadaA ++++=          Equation 3.1 

2. Precision, P  for short, is the proportion of the predicted positive examples 

that are correct. It is calculated using Equation 3.2. 

)/( baaP +=              Equation 3.2 

3. Recall, R  for short, is the proportion of the real positive examples that are 

correctly predicted. It is calculated using Equation 3.3. 

)/( caaR +=             Equation 3.3 

4. F value, F  for short, is designed to have a balanced evaluation on both 

precision and recall. It is the geometric mean of R  and P , as in Equation 3.4. 

)/(**2 RPRPF +=            Equation 3.4 

The most commonly used measurement for evaluating a classifier is the overall 

accuracy. However, it is usually found that positive examples are more interesting. 

For example, in our case, finding a drug-target like protein is of more interest to 

pharmaceutical companies than finding a protein that is unlikely to be a drug target. 

Under this situation, the precision and recall, which reflects the prediction accuracy 

on positive examples, are important measurements. Precision gives the idea about 

how much confidence we have when the model gives a positive prediction and recall 

measures how many real positive examples are predicted by this model. The 

geometric average of precision and recall, F value, is a balanced view of these two 

factors. 

The data sets in this application are not balanced. The number of negative 



Chapter 3: Prediction of Drug-target like proteins  

 

89

examples is around five times bigger than that of positive examples. Therefore, the 

prediction accuracy on negative examples will have five times more influence on the 

overall accuracy. Inspired by the F value, we devised a new measure “balanced 

precision” in this work, which is the geometric mean of the precision on positive 

examples and the precision on negative examples. Balanced precision is denoted by 

G  and can by calculated by Equation 3.5: 

)/(**2 RRNRRNG +=  where )/( bddRN +=      Equation 3.5 

In this work, the statistical models are selected according to three criteria, A , F  

and G , respectively. 

As discussed above, the free parameters controlling the generation of the 

statistical models needs to be optimized. In this work, a series of models are 

generated using different parameters. We define the term “best A ” of a learning 

algorithm as the A  measured on an independent evaluation set using the same 

parameter set that maximizes A  on the testing data set. The “best F ” and “best 

G ” are defined similarly as the measurements made on the independent evaluation 

set using the same parameter sets that maximize them on the testing data set 

respectively. Note, under this definition, the “best” measurements might not be the 

highest values achieved on the independent evaluation set. 

Furthermore, we consider one algorithm to be better than another if and only if 

this algorithm wins two or more times when its best A , best F  and best G  are 

compared to those of the other algorithm respectively. Also, we say one model is 

“better” than another if and only if two or more of its three measurements ( A , F  
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and G ) are better than those of the other. 

 

3.4 Prediction of drug-target like proteins 

In order to evaluate different classification and pre-processing techniques, an 

efficient tool to implement different algorithms is needed. The matrix operation 

support provided by MatLab [299] makes the representation of numerical data and 

implementation of the different algorithms much easier. Therefore, we choose 

MatLab as our platform of computation. 

With the help of standard MatLab matrix functions and standard toolboxes, i.e. 

statistics toolbox and optimization toolbox, we implemented the algorithms for 

scaling, PCA, decision tree, k-nearest neighbor, and support vector machine. An ICA 

package for MatLab, FastICA 2.1, was used for ICA analysis, which is developed by 

Jarmo Hurri et.al. [300] and can be downloaded freely from 

http://www.cis.hut.fi/projects/ica/fastica/. 

The decision tree algorithm was implemented with the information gain 

branching criterion. This is because the gain ratio criterion is mainly designed to deal 

with attributes with many discrete values. In our case, all the attributes are 

continuous where a threshold is chosen to bisect all the possible values, which is 

equivalent to all the attributes having two discrete values. Therefore, it is not 

necessary to use the gain ratio branching criterion. And our later study also 

confirmed that the gain ratio criterion performed no better than the information gain 

criterion. 
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The support vector machine algorithm was implemented with a Gaussian kernel, 

)
2

exp(),( 2

2

σ

yx
yxK

−
−= . This is because the Gaussian kernel always performs 

better than others in our previous study of protein function classification [275,301].  

In the ICA analysis, the nonlinearity function used in the non-gaussianity 

measurement was 3)( uuG = , which is the default choice of the FastICA package. 

 All the programs in this work were developed using MatLab R13 licensed from 

NUS and executed on a Dell Optiplex GX240 computer with one 2.4GHz Intel 

Pentium IV CPU and 512M memory. 

3.4.1 Decision tree prediction 

 After training with the training data set without any pre-processing, the decision 

tree that perfectly classifies the training set is pruned from level 0 (original tree) to 

the maximal level (only the root is kept). By the definitions in section 3.3.2, the best 

A , F , and G  achieved by the decision trees pruned in different levels are 85.09%, 

54.05% and 68.40% respectively, which are shown in Figure 3.7. 

The pre-process of scaling does not affect the tree induction because the 

decision tree induction algorithm only cares about the relative order of the attribute 

values when selecting the thresholds to bisect the continuous attributes. Therefore, 

the scaled data sets give the same tree and the same performance.  

In order to evaluate the effect of the PCA dimensionality reduction, the first n  

principal components of the original data sets are selected to construct a new set of 

training, testing and independent evaluation data and the decision tree algorithm is 

evaluated on the new set of data with reduced dimensionality. Here, n  is scanned 
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from 1 to the maximal number of principle components with an interval of 10. The 

best A , best F , and best G  achieved using different numbers of principal 

components are plotted in Figure 3.8. Overall, The best A , best F , and best G  

achieved, as shown in Table 3.5, are 79.39%, 43.37% and 46.62% respectively 

which is worse than those of the original or scaled data sets. 

Similar to PCA, the evaluation of the effect of ICA dimensionality reduction on 

decision tree induction is conducted. The first n  independent components of the 

original data sets were first estimated to construct a new set of training, testing and 

independent evaluation data. The decision tree algorithm is then evaluated on the 

new set of data with reduced dimensionality. The best A , best F , and best G  

achieved using different numbers of independent components are plotted in Figure 

4.9. As shown in Table 4.6, the best A , best F , and best G  achieved are 81.58%, 

22.78% and 35.25% respectively, which are also inferior to those of the original or 

scaled data sets. 

In summary, the decision tree algorithm works better on original or scaled data 

sets. The best A , best F , and best G  achieved are 85.09%, 54.05% and 

68.40% respectively.  

3.5.2 K-nearest neighbor prediction 
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Table 3.4: Summary of the decision tree performance on original or scaled data sets. 

The maximum prune level of the complete tree is 13. 

 

Measure 

Optimized 
Prune Level

Overall 

Accuracy 
F Value 

Balanced 

Precision 

Overall 

Accuracy 
13 0.8509 0.2609 0.2609 

F Value 4 0.8509 0.5405 0.6493 

Balanced 

Precision 
1 0.8421 0.5500 0.6840 
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Figure 3.7: Decision tree prediction of drug-target like proteins on original datasets.
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Table 3.5: Summary of the decision tree performance on PCA processed data sets. 

 

Measure 

Optimized 

No. of Principal 

Components 

Overall 

Accuracy 

F 

Value 

Balanced 

Precision 

Overall 

Accuracy 
90 0.7939 0.3864 0.5633 

F Value 60 0.8070 0.4337 0.5925 

Balanced 

Precision 
120 0.3023 0.3291 0.4662 
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Figure 3.8: Decision tree prediction of drug-target like proteins after PCA 
dimensionality reduction. 
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Table 3.6: Summary of the decision tree performance on ICA processed data sets.  

 

Measure 

Optimized 

No. of Independent 

Components 

Overall 

Accuracy 

F 

Value 

Balanced 

Precision 

Overall 

Accuracy 
110 0.8158 0.2667 0.4422 

F Value 130 0.7982 0.2278 0.3550 

Balanced 

Precision 
90 0.7237 0.2143 0.3525 

 

50 100 150
0.5 

0.6 

0.7 

0.8 

0.9 

1 

No. of Independent Components

B
es

t A
cc

ur
ac

y 

50 100 150 
0

0.2

0.4

0.6

0.8

1

No. of Independent Components

B
es

t F
Va

lu
e 

50 100 150
0 

0.2 

0.4 

0.6 

0.8 

1 

No. of Independent Components

B
es

t B
al

an
ce

d 
P

re
ci

si
on

 

Testing data 

Independent evaluation data

Figure 3.9: Decision tree prediction of drug-target like proteins after ICA 
dimensionality reduction. 
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On the original and scaled data sets, the parameter k  used in kNN is scanned 

in the range of 1…37. The number 37 is calculated as the square root of the number 

of training examples. The kNN algorithm performs slightly better on original data sets. 

The best A , best F , and best G  on original data sets are 83.77%, 50.00% and 

69.64% respectively, which is comparable to those of decision trees. The 

classification results on original data sets are plotted in Figure 3.10 and summarized 

in Table 3.7. 

The effect of PCA dimensionality reduction on kNN classification is evaluated 

similarly as in the last section. The first n  principle components of the original data 

sets are estimated to construct a new set of training, testing and independent 

evaluation data and the kNN algorithm is evaluated on this new set of data with 

reduced dimensionality. The number of principal components n  is scanned from 1 

to the maximum with an interval of 10. The best A , best F , and best G  achieved 

using different numbers of principal components are 83.77%, 56.84% and 75.30% 

respectively. These values are better than those of the original data sets. These 

results are plotted in Figure 3.11 and summarized in Table 3.8. Also, it is interesting 

to see the best models are built when only a small number of principal components, 

i.e. less than one third of the total dimensions, are used in the training, testing and 

independent evaluation data sets.  
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Table 3.7: Summary of the kNN performance on original data sets.  

 

Measure 

Optimized 
k 

Overall 

Accuracy 
F Value 

Balanced 

Precision 

Overall 

Accuracy 
23 0.8377 0.2449 0.2603 

F Value 1 0.7895 0.5000 0.6964 

Balanced 

Precision 
1 0.7895 0.5000 0.6964 
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Figure 3.10: K-nearest neighbor prediction of drug-target like proteins using 
original data sets. 
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Table 3.8: Summary of the kNN performance on PCA processed data sets. 

 

Measure 

Optimized 

No. of Principal 

Components 

Overall 

Accuracy 
F Value 

Balanced 

Precision  

Overall 

Accuracy 
30 0.8377 0.4127 0.7330 

F Value 50 0.8333 0.5684 0.7429 

Balanced 

Precision 
60 0.8421 0.5743 0.7530 
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Figure 3.11: K-nearest neighbor prediction of drug-target like proteins after PCA 
dimensionality reduction. 
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Table 3.9: Summary of the kNN performance on ICA processed data sets. 

 

Measure 

Optimized 

No. of Independent 

Components 

Overall 

Accuracy 
F Value 

Balanced 

Precision  

Overall 

Accuracy 
160 0.7939 0.3621 0.6027 

F Value 140 0.7851 0.3276 0.5649 

Balanced 

Precision 
140 0.7851 0.3276 0.5649 
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Figure 3.12: K-nearest neighbor prediction of drug-target like proteins after ICA 
dimensionality reduction. 
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The ICA pre-processing is also evaluated similarly. The best A , best F , and 

best G  are plotted in Figure 3.12 against the number of independent components 

used. As shown in Table 3.9, the best A , best F , and best G  achieved using 

different number of independent components are 79.39%, 32.76%, and 56.49% 

respectively, which is also better than the original results. 

In summary, the k-nearest neighbor algorithm works best on PCA pre-processed 

data sets. The best A , best F , and best G  achieved are 83.77%, 56.84% and 

75.30% respectively. These results are slightly better than those of decision trees. 

 

3.5.3 Support vector machine prediction 

 On original data sets, SVMs are trained with the kernel parameter σ  scanned 

in the range of [1...75] with an interval of 1, which is the range that empirically gives 

optimal classification results in protein function classification [275]. The 

measurements concerned, A , F  and G , are plotted against σ  in Figure 3.13. 

The best A , best F , and best G , as summarized in Table 3.10, are 87.28%, 

56.72%, and 72.47% respectively. 

On scaled data sets, the kernel parameter σ  is scanned in the range of 

[0.04..3] with an interval of 0.04. The A , F , and G  obtained with different σ  are 

plotted in Figure 3.14. The best A , best F , and best G  are found in a single SVM 

model with 28.1=σ , which are 89.91%, 68.49%, and 75.63% respectively. These 

results are better than those of the original data sets.  
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Table 3.10: Summary of the SVM performance on original data sets.. 

 

Measure 

Optimized 

Kernel Parameter 

σ  

Overall 

Accuracy 
F Value 

Balanced 

Precision  

Overall 

Accuracy 
27 0.8728 0.5672 0.6350 

F Value 27 0.8728 0.5672 0.6350 

Balanced 

Precision 
50 0.8596 0.6000 0.7247 
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Figure 3.13: Support vector machine prediction of drug-target like proteins on 
original data sets. 
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Table 3.11: Summary of the SVM performance on scaled data sets. 

 

Measure 

Optimized 

Kernel Parameter 

σ  

Overall 

Accuracy 
F Value 

Balanced 

Precision  

Overall 

Accuracy 
1.2800 0.8991 0.6849 0.7563 

F Value 1.2800 0.8991 0.6849 0.7563 

Balanced 

Precision 
1.2800 0.8991 0.6849 0.7563 
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Figure 3.14: Support vector machine prediction of drug-target like proteins on 
scaled data sets. 
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Table 3.12: Summary of the SVM performance on PCA pre-processed data sets. 

 

Measure 

Optimized 

No. of Principal 

Components 

Overall 

Accuracy 
F Value 

Balanced 

Precision  

Best Overall 

Accuracy 
130 0.8991 0.6849 0.7563 

Best F Value 130 0.8991 0.6849 0.7563 

Best Balanced 

Precision 
50 0.8991 0.6512 0.7730 
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Figure 3.15: Support vector machine prediction of drug-target like proteins after 
PCA dimensionality reduction. 
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Table 3.13: Summary of the SVM performance on ICA pre-processed data sets. 

 

Measure 

Optimized 

No. of Independent 

Components 

Overall 

Accuracy 
F Value 

Balanced 

Precision  

Best Overall 

Accuracy 
140 0.8772 0.5634 0.7046 

Best F Value 130 0.8509 0.5385 0.6657 

Best Balanced 

Precision 
130 0.8509 0.5385 0.6657 
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Figure 3.16: Support vector machine prediction of drug-target like proteins after 
ICA dimensionality reduction. 
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The effect of PCA dimensionality reduction on SVM prediction is evaluated in a 

similar way as that discussed in the previous sections. The number of principal 

components estimated is scanned from 1 to the maximum with an interval of 10 and 

the kernel parameter σ is scanned in different ranges that empirically give optimal 

results under different conditions. The best A , best F , and best G  achieved 

using different numbers of principal components are plotted in Figure 3.15. Overall, 

The best A , best F , and best G  achieved with different numbers of principal 

components, as shown in Table 3.12, are 89.91%, 68.49%, and 77.30% respectively, 

which are comparable (slightly better in terms of balanced precision) to those on the 

scaled data sets. 

The effect of the ICA dimensionality reduction on SVM is also evaluated. The 

number of independent components estimated is scanned from 1 to the maximum 

with an interval of 10 and the kernel parameter σ  is scanned in different ranges 

which empirically give optimal solutions while different numbers of independent 

components are used. The best A , best F , and best G  achieved are plotted 

against the number of independent components in Figure 3.16. As shown in Table 

3.13, the best A , best F , and best G  achieved, are 87.72%, 53.85%, and 

66.57% respectively, which are not as good as those of the original data sets. 

In summary, SVM performance can be improved by the pre-processing of 

scaling and PCA. Among all the three classification techniques explored, SVM 

classifies our data best. The best A , best F , and best G , if optimized individually, 

can reach 89.91%, 68.49% and 77.30% respectively.  
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3.6 Prediction results and analysis 

Table 3.14 summarizes the comparison between different statistical learning 

methods evaluated in this work. Overall, SVM gives the best results with the best A , 

best F , and best G  reaching 89.91%, 68.49% and 77.30% in different SVM 

models. The accuracy of SVM prediction, if successfully generalized in real-world 

application, is reasonably good to provide valuable information for genome scale 

target discovery.  

 

Table 3.14: Performance comparison between different statistical methods 

 

Measurement 

Optimized 
Decision Tree 

K-nearest 

Neighbor 

Support Vector 

Machine  

Best Overall 

Accuracy 
85.09% 83.77% 89.91% 

Best F Value 54.05% 56.84% 68.49% 

Best Balanced 

Precision 
68.40% 75.30% 77.30% 

 

 

Errors in statistical learning arise for a number of reasons. It is not expected that 

exhaustive experiments have been done to verify whether each known protein is a 

target or not. Also, the therapeutic targets collected in TTD are not complete. This 

may result in that, with a small possibility, some drug targets are included in the 

negative examples. Although, most of the statistical learning methods are able to 
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deal with a certain level of noise, these approaches are generally based on a large 

number of observations (examples). Here in our application, the number of positive 

examples used for training is only 235, which accounts for less then 5% of the 

expected population of drug-target like proteins. Therefore, these wrongly assigned 

class labels, if any, may considerably confuse the learning algorithm and 

compromise the accuracy of the constructed classification models. 

Also, the training data are not balanced. The number of negative examples is 

significantly higher than that of positive examples. It is expected that the negative 

examples represent a better sample of the problem space and provide more 

comprehensive information about its classification. Our results indeed show 

significantly better performance on negative examples than on positive examples. 

For example, while one SVM model has an overall accuracy of 89.91%, its F value is 

only 68.49%. 

Anticipated rapid progress in pharmaceutical sciences is expected to provide 

larger number of and more accurate training examples. Knowledge from study of 

protein functions also facilitates the selection of training examples for prediction of 

potential drug-target like proteins. 

According to the principal of Occam’s razor, the simpler a model is, the better it 

will generalize. However, too simple models may not catch all the essential 

characteristics of a problem. The following inequality was found to describe this 

relationship during the development of the support vector machine algorithm. With 

the probability of η−1  ( 10 ≤≤η ), the following bound holds for all models α  that 
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are generated using statistical learning approaches, 
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where h  is a measure of the model complexity called the Vapnik-Chervonenkis (VC) 

dimension, l  is the number of training examples and )(αempR  is the empirical risk 

calculated as Equation 4.47. 
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where ),( αxf  is the classification function used for a model α , ix  is the i -th 

training example and iy  the corresponding class label. Therefore, a good statistical 

learning method shall strike a balance between the model complexity and the 

empirical risk. 

The better performance displayed by support vector machine might be partly 

explained with the above theorem. By implementing a scheme called Structural Risk 

Minimization (SRM), SVM finds the optimal separation hyper-plane, which proves to 

be the model with lowest complexity when the empirical risk is fixed. 

In comparison, the decision tree induction process does not guarantee the result 

to be the simplest tree, whether in terms of tree height or number of decision nodes. 

The decision tree induction process always branches on the candidate attribute that 

gives the maximal information gain. Therefore, it can be regarded as a greedy 

search algorithm to build a tree as simple as possible. As we know, the greedy 

search algorithm usually does not guarantee the finding of the global minimal. On the 

other hand, although the information gain criterion used in selecting branching 
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attributes well reflects the nature of classification – find the class information that is 

hidden in a number of attributes, the binary discretization method used to deal with 

continuous attribute may not well reflect the class information hidden in an attribute. 

This binary discretization will work well when the attribute values of each class have 

only one center. If the attribute values of each class have multiple clusters 

(sub-classes), this binary discretization method will overlook much useful information 

by combining those multiple clusters into one. A good discretization process needs to 

separate the attribute into multiple segments that generate maximum gain ratio. 

However, it would be computationally too expensive to afford as the search for the 

best number of segments and their boundaries will have to evaluate 12 1 −−n  

possible solutions, where n  is the number of places where adjacent examples 

belong to different classes. 

In comparison to the decision tree algorithm, the algorithm of kNN works well 

with attribute values that have multiple clusters. However, this advantage can only be 

fully displayed when the problem space is well sampled and every sub-cluster (or 

sub-class) of each class is well represented by training examples. However, this is 

not likely to be our case – the examples of the two classes display no obvious 

structure on any of the dimensions and 1366 training examples can by no means 

sample a space of 188 dimensions well. Even if the input space is reduced to only 50 

dimensions, the training examples are still far from enough to sample the input space. 

This kind of insufficient sampling will carry more information on a particular sample 

set (training set) besides the information on the attribute-class relationship. An 
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algorithm that is less selective may therefore tend to use more irrelevant information 

to build the classification model.  In other words, the constructed model may easily 

“over-fit” to that particular sampling of training examples and its expected prediction 

accuracy will be compromised. While SVM implements SRM to avoid over-fitting, the 

distance measure used in kNN is too simple to effectively avoid this over-fitting, 

which may be one of the reasons that explains the better performance of SVM over 

kNN. Future advances in small sample statistics might provide better learning 

algorithms to derive attribute-class relationship from a small number of samples in a 

high-dimensional space. 

The performance of classification may also be improved with the advances in 

the formulation of protein sequence descriptors. Although our test results 

demonstrated this set of descriptors are useful, they may not be perfect.  

Obviously, the descriptors used here do not have any direct logical connection to 

the drug-target likeness. For example, descriptors that reflect the sequence 

uniqueness and function relationship may give better information on the drug-target 

likeness. It is desirable for such quantitative descriptors to be devised.  

Also, the descriptors are not independent, which means the same information is 

given in more than one descriptor, which gratuitously increases the complexity of 

input space and consumes more “resources” of a statistical model. As shown in 

Figure 3.17, about 50 principal components are able to represent 90% of the total 

variances in all 188 dimensions, and 140 principal components can represent 99.9% 

of the total variances in all dimensions. However, in this application, mere PCA or 
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ICA dimensionality reduction approach seems not effective in improving the 

predictive accuracy. This might be explained by the unsupervised nature of these 

dimensionality reduction approaches. PCA and ICA do not use the class information 

when they are making linear combinations of attributes. Therefore, the constructed 

principal components or independent components may not be so relevant to the 

problem of classification. When the attributes-class relationship is intricate and the 

input space is insufficiently sampled, such as in our application, dimensionality 

reductions by mere PCA or ICA analysis may not preserve enough information 

relevant to classification. In this regard, dimensionality reduction processes that take 

consideration of the class distribution of examples and preserve useful information 

are desired. 
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Figure 3.17: Number of principal components and the percentage of total variance 
they can represent. 
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3.7 Summary 

A number of statistical learning methods and pre-processing techniques are 

investigated for the application of drug-target like protein prediction, which includes 

the learning algorithms of decision tree, k-nearest neighbor and support vector 

machine and the pre-processing techniques of scaling, PCA and ICA dimensionality 

reduction. The support vector machine approach gives the best classification results. 

Scaling and PCA help to improve the performance of SVM. The highest A , F  and 

G  achieved in different SVM models reach 89.91%, 68.49% and 77.30% 

respectively. This accuracy seems to be reasonably good to facilitate the genome 

scale drug target discovery. 

Performance and applicability of the statistical learning methods may be further 

improved by incorporation of new information from advances in pharmaceutical 

sciences, proteomics, and protein function. Efficiency and accuracy of statistical 

learning methods in prediction of drug-target like proteins can also be enhanced from 

new progress in learning algorithms, descriptors, and pre-processing techniques. 

Apart from discovery of new drug targets, discovery of efficient therapeutic 

intervention strategies that explore the synergies between existing targets is also 

critical in facilitating the combat against diseases. With the help of the therapeutic 

target database, it may also be possible to explore the unknown therapeutic 

mechanisms of effective herbal medicines, which is discussed in the next chapter.
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Chapter 4 

 

In silico study of the mechanisms of action of active 

ingredients from medicinal plants 

 

 Therapeutic mechanisms of effective herbal medicines are very useful in 

designing novel therapeutic intervention strategies. So far, medicinal plants still 

serve as a major source of novel therapeutic mechanisms. The molecular 

mechanism related to therapeutic effects of a medicine can be probed if its 

therapeutic targets can be identified. In silico approaches to study mechanisms of 

the therapeutic action of herbal medicines are developed in this endeavor. So far, 

one extended docking approach, INVDOCK, has been developed to facilitate such 

studies. Our results on nine selected active ingredients derived from herbs showed 

that over half of the INVDOCK identified potential therapeutic targets of the selected 

active herbal ingredients have relevant experimental findings, and about 70% of their 

therapeutic implications have been reported to occur in cultivated cells, animal 

models or clinical trails. These results suggest the usefulness of in silico tools in 

facilitating the discovery of novel therapeutic mechanisms of effective herbal active 

ingredients. 

 

4.1 Introduction 
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Novel therapeutic mechanisms discovered from studies of MP ingredients have 

routinely been used to derive new therapeutic intervention approaches [105]. 

However, so far, studies on the therapeutic mechanism of herbal medicines are still 

very limited. 

Medicinal plants (MPs) have been widely explored in traditional medicines 

[302-304] and in drug discovery [106-108]. Approximately one third of the top-selling 

drugs currently in the market were derived from plants [108]. Because of their broad 

structural diversity and wide range of known pharmacological activities, MPs have 

served and are still used as a valuable source for new drug discovery [106-108]. 

As part of the new drug discovery effort, a large number of ingredients have 

been extracted from MPs and other natural sources, and they have been studied for 

their potential therapeutic effects[305-309]. However, the basic and clinical 

pharmacology is known for only a portion of these ingredients [305,309]. Thus the 

insufficient mechanistic understanding of MPs hinders the efforts of developing new 

drugs based on the novel therapeutic mechanisms of MP ingredients. It also limits 

the scope of therapeutic exploration of MPs used in traditional medicines and other 

herbal medicines. Hence much more research remains to be done in order to probe 

the mechanisms of action of MP active ingredients. Systematic study of the 

mechanisms of a large number of MP ingredients by means of traditional assay 

based methods is a costly and time-consuming process due to the difficulties in 

extraction, synthesis, and activity test of herbal ingredients. Therefore alternative 

approaches for low-cost and rapid analysis of the mechanisms of MP ingredients are 
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useful for the study and exploration of MPs.  

 

4.2 In silico methods for target identification of MP ingredients 

The molecular mechanism related to the therapeutic effects of an MP ingredient 

can be probed if its therapeutic targets can be identified. Target identification is also 

an important step in rational drug design [238,310]. Thus varieties of target search 

strategies have been explored or are under consideration.  

A popular approach is to derive target information from the variation of 

micro-array expression data between normal cells and cells in disease states [109]. 

Micro-array technology relies on the hybridization properties of nucleic acids to 

monitor DNA or RNA abundance on a genomic scale. By arraying different 

immobilized probe oligo-nucleotides on a chip, micro-arrays have revolutionized the 

study of genomes by allowing researchers to study the expression of thousands of 

genes simultaneously. The ability to simultaneously study thousands of genes under 

a host of differing conditions presents an immense challenge in the fields of 

computational science and data mining. Conventionally, t-test is used to identify 

those genes that have a significantly different expression level in normal and 

disease states. Now various computational methods have been used to facilitate the 

analysis of micro-array expression data to find the genes that act differently and the 

patterns of gene expression that strongly relate to certain kinds of disease 

conditions. Such approaches include regularized t-test based on a Bayesian 

statistical framework, neural networks, principal component analysis, Bayes belief 
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networks, clustering, mixture models and expectation minimization, gene shaving, 

support vector machine, hidden markov model (HMM), and other statistical learning 

methods [311,312]. For instance, statistical methods were exploited to find 

schizophrenia associated genes [238] and diffuse large B-cell lymphoma related 

genes [313] based on microarray expression data. These comparative methods may 

be potentially used for facilitating the search of the targets of MP ingredients by 

analysis of the change of expression profiles induced by the addition of specific MP 

ingredients into disease-state cells.  

High-throughput screening has been routinely used for the identification of small 

molecule drugs of a specific target [110]. The same technology can be readily 

applied to the search of targets of MP ingredients as well as synthetic chemicals. A 

comprehensive library of potential targets can be built and used for the search of 

targets [90]. It has been reported that protein chips [314] are capable of large-scale, 

high-throughput analysis of protein-small-molecule interactions. Similar to DNA 

micro-arrays, in protein chips, proteins are prepared, densely arrayed on the surface 

of the chip in their active conformations. This technology enables the large-scale 

parallel analysis of the binding affinity between a pool of proteins and a certain 

chemical, which makes it feasible to screen a target library for those proteins 

targeted by MP ingredients. Production, segregation, purification and immobilization 

of proteins required for the fabrication of protein chips is still a complex and costly 

procedure. Therefore, in silico virtual screening is expected to be a potentially good 

choice for low-cost and efficient search of targets of MP ingredients.  
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One of the widely used virtual screening approaches in rational drug design is 

quantitative structure activity relationship [58,315]. As discussed in previous 

sections, QSAR is based on the statistical analysis of the relationship between 

biological activity of a chemical and its quantitative and structural properties. The 

derived statistical model could then be used to predict the activity of an unknown 

chemical by its quantitative attributes usually calculated from its structure. By 

generating QSAR models of a sufficient pool of potential targets, this method can be 

extended to facilitate the search of the protein targets of an MP ingredient as well as 

a synthetic chemical. Specific targets can be identified from this pool if the molecule 

is predicted to have sufficient activities.  

QSAR is a target specific approach which requires the construction of a unique 

model for each potential protein target, which makes it a complex matter to screen a 

large number of potential targets. An interesting alternative method has recently 

emerged which overcomes the difficulty of using QSAR. It has been reported that 

support vector machine, an relatively new statistical learning algorithm, may be used 

to construct a universal model for prediction of the binding affinity between a protein 

and a compound using the quantitative descriptors constructed from both the protein 

sequence and the chemical structure properties [316]. This method may be easily 

extended to screen a target library to identify potential protein targets of MP 

ingredients. However, this approach requires sufficiently diverse and accurate 

known ligand-protein binding affinities in order to satisfactorily train the statistical 

learning model. A database of theoretically computed ligand-receptor binding 
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energies [317] has been used as the training examples in the previous work, which 

limits the reliability of the models generated. Hopefully, further developments of this 

method will enable it to become a useful tool for target identification. 

Ligand-protein docking is also a popular virtual screening technology in rational 

drug design. In this approach, a chemical is structurally and chemically placed into 

the binding site of a protein based on the 3D structure of both molecules and the 

computed interaction energy between them [39-41]. Testing results on a number 

chemicals have consistently indicated that they are capable of finding the 

protein-small-molecule binding conformations at a receptor site close to 

experimentally determined structures[39-41]. Thus the ligand-protein docking 

method can be readily extended to identify therapeutic targets of MP ingredients as 

well as synthetic chemicals based on the structural and molecular mechanical 

analysis of the bindings between the molecules and the therapeutic targets collected 

in TTD [318]. So far, an extended ligand-protein docking method, INVDOCK, has 

been specifically used for automated drug target identification of several small 

molecules [111]. 

 

4.3 A closer examination of an in silico method - INVDOCK 

INVDOCK is the only in silico method specifically applied to identification of 

protein targets of small chemicals so far. It is worthy of a closer examination of the 

principles and algorithms as well as the performance of this method.  

4.3.1 Feasibility  
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INVDOCK is based on a ligand-protein inverse docking strategy such that a 

compound is attempted to dock to known ligand-binding pockets of each of the 

proteins in a protein 3D structural database. A protein is considered as a candidate 

potential target of a compound if that compound can be docked into the protein and 

the binding satisfies a molecular-mechanics based criterion for chemical 

complementarity [111]. Because of their capability in identifying potential ligands and 

binding conformations, docking algorithms are expected to be equally applicable to 

the inverse docking procedure for finding multiple protein targets to which a 

compound can bind or weakly bind [111,223]. 

The inverse docking algorithm requires a sufficient number of proteins of known 

3D structure to cover a diverse range of potential therapeutic effects. At present 

there are 19860 protein entries in the Protein Data Bank (PDB) and the number 

increases at a rate of well over 100 per month[319]. About 17% of these have 

unique sequence[320].  Introduction of high-throughput methods is expected to 

enable structural determination of 10,000 proteins with unique sequence within five 

years[29]. Thus the number of proteins is approaching a meaningful level to cover a 

diverse set of potential therapeutic targets.  

4.3.2 Algorithm 

The flowchart of the inverse docking algorithm is shown in Figure 4.1. A small 

molecule is attempted to dock to proteins with known 3D structures. By evaluating a 

molecular-mechanics based criterion for chemical complementarity, the docking 
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filter generate a putative protein / nucleotide targets list of the small molecule. This 

list is further filtered to find the putative therapeutic targets of that small molecule.  

 

To facilitate fast-speed search of potential protein targets of a chemical, a protein 

cavity database has been developed from the corresponding protein 3D structures 

in the PDB [111]. Each cavity entry is composed of a sphere cluster filling the cavity. 

Every cavity in each protein has a corresponding entry in this cavity database.  

Figure 4.1: Flowchart of the inverse docking algorithm 

Cavity database

Protein 3D
structures (PDB)

Docking filterSmall molecule
structure

Putative
targets list

Therapeutic
target database

Matching filter

Putative therapeutic
targets list

Vector-based docking of
a ligand to a cavity

Limited conformation
o p t i m i za t i o n  o n  t h e
ligand and the side chain
of the cavity

Energy minimization for
all atom in the binding
site

Docking evaluation by
molecular mechanics
energy functions and
comparison with other
ligands

Docking filter :



Chapter 4: In silico study of medicinal plant mechanisms   

 

121

Docking of a particular chemical to a cavity occurs by the following steps: First, 

the chemical is aligned within the selected site by matching the position of each 

atom of the compound with the center of spheres.  Because of the relatively 

low-resolution nature of the conformation sampling of the chemical, certain degree 

of structural clash is allowed at this stage. A molecular-mechanics conformation 

optimization is then conducted by a limited torsion space sampling of rotatable 

bonds in the chemical and those in the side-chain of the receptor amino acid 

residues at the binding site. Each rotatable bond is sampled in the range of ±15o. 

This is followed by 50 iterations of Cartesian coordinate energy minimization on all 

chemical and protein atoms at the binding site so as to further optimize the 

compound-protein complex. Energy minimization is by a steepest decent method.  

In both torsion optimization and energy minimization, AMBER force fields [120] 

are used for covalent bond, bond angle, torsion, and non-bonded Van der Waals 

and electrostatic interactions. The partial charges of drug atoms are assigned 

following the method described in [446]. Morse potential [321], which is a function of 

donor-acceptor distance, is used to represent hydrogen bond terms. This potential 

has been shown to give reasonable description of hydrogen bond energy and 

dynamics in biomolecules [322,323]. The energy function is: 
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In this function, R , θ  and φ  denotes bond length, bond angle and torsion 

angle respectively, eqR , eqθ  and eqφ  are taken as equilibrium bond length, 

angle and torsion angle respectively and their values are from the original PDB 

structure and the structure of the drug respectively; Kr  and θK  are covalent 

and bond angle bending force constant respectively; nV  and n  are torsion 

parameters; r  is the hydrogen bond donor-acceptor distance, and 0V , a  and 

0r  are hydrogen bond potential parameters. 

Scoring of docked molecules is based on a ligand-protein interaction energy 

function LPE∆  composed of the same hydrogen bond and non-bonded terms as 

those used for structure optimization [111]. Analysis of a large number of PDB 

ligand-protein complexes shows that the computed LPE∆  is generally below 

NEThreshold α−=∆  kcal/mol, where N  is the number of ligand atoms and α  is a 

constant ~1.0 10. The exact value of α  can be determined by fitting the linear 

equation NEThreshold α−=∆  to the computed LPE∆  for a large set of PDB 

structures. This statistically derived energy value can be used empirically as a 

threshold for screening likely binders. A polynomial form of ThresholdE∆  involving 

more parameters may also be introduced to derive an energy threshold. LPE∆  can 
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be required to be lower than ThresholdE∆  when selecting successfully docked 

structures. A discussion on the typical binding energies can be found in [317]. 

Drug binding is competitive in nature. A drug is less likely to be effective if it binds 

to its receptor non-competitively against natural ligands and, to some extent, other 

drugs that bind to the same receptor site. This binding competitiveness may be 

partially taken into consideration for cavities known as ligand-bound in at least one 

PDB entry. Ligands in PDB structures are known binders. Therefore PDB ligands 

bound to the same receptor site as that of a docked molecule may thus be 

considered as “competitors” of that molecule. In INVDOCK selection of a putative 

protein target, the computed LPE∆  is not only evaluated against ThresholdE∆  but 

also compared to the ligand-protein interaction energy of the corresponding PDB 

ligands that bind in the same cavity in this or other relevant PDB entries. The 

Ligand-protein interaction energy for the relevant PDB structures is computed by the 

same energy functions as that for the docked molecule. In addition to the condition 

that it be lower than ThresholdE∆ , LPE∆  of a docked molecule is required to be lower 

than a “competitor” energy threshold CompetitorE∆  when selecting a putative target. 

CompetitorE∆  can be taken as highest ligand-protein interaction energy of the 

corresponding PDB ligands multiplied by a factor β .  In order to be able to find 

weak binders as well as strong binders, a factor 1≤β  is introduced to scale the 

ligand-protein interaction energy of PDB ligands. This is because a weak binder may 

have slightly higher interaction energy than that of a PDB binder. No experimental 

data has been found to determine the value of β . Hence β  has been tentatively 
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determined by an analysis of the computed energy for a number of compounds. A 

value of 0.8 has been suggested for β  which leads to reasonable results 

statistically [111]. 

4.3.3 Validation studies on synthetic chemicals 

The effectiveness of INVDOCK prediction of the protein targets of synthetic 

chemicals can be demonstrated from a recent study on a number of clinical agents 

[111]. The results of one drug, tamoxifen (Figure 3.1), are quoted here. Tamoxifen is 

an anticancer drug widely used for treatment of breast cancer [324] and it has been 

approved as the first cancer preventive drug. Tamoxifen metabolite 4H-tamoxifen is 

believed to be the major contributor to the anti-oestrogenic effects of tamoxifen 

inside the human body [324].  

 

Potential human and mammalian protein targets of 4H-tamoxifen identified by 

INVDOCK are given in Table 4.1 along with the respective clinical implications from 

experiments. The computed binding energies are not listed as energy alone may not 

Figure 4.2 Chemical structure of tamoxifen 
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be a good indicator on the strength of drug binding in-vivo because of the compitions 

from other natural ligands. A number of known protein targets of tamoxifen are found 

in the Table. These include estrogen receptor [324], protein kinase C [325], 

collagenase [326], hydroxysteroid dehydrogenase [327], Alcohol dehydrogenase 

[328], and prostaglandin synthetase [329]. It has been observed that two other 

INVDOCK identified proteins glutathione transferase and 3-alpha-hydroxysteroid 

dehydrogenase exhibited altered activity by tamoxifen [330,331], which may be 

indicative of direct binding of tamoxifen to these proteins. Experiments showed that 

the levels of another two identified proteins, dihydrofolate reductase and 

immunoglobulin, are changed by tamoxifen [332,333]. Ligand binding is known to 

self-regulate protein levels in certain cases [334]. It remains to be seen whether 

these two proteins are also the targets of tamoxifen as implicated by INVDOCK 

search.  

 

Table 4.1: Potential therapeutic targets of 4H-tamoxifen identified from INVDOCK 

search of human and mammalian proteins.  

 

PDB 
ID 

Target Name Experimental Findings Therapeutic Implications

1a52 Estrogen Receptor Drug target [324] Breast cancer [324] 

1akz Uracil-DNA Glycosylase   

1ayk 

 

Collagenase 

 

Inhibited activity [327] 

 

Tumor cell invasion and 

cancer metastasis [327] 

1az1 Aldose Reductase  Diabetes 
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1bnt Carbonic Anhydrase   

1boz Dihydrofolate Reductase Decreased level [332] Combination therapy for 

cancer[332] 

1d3v Arginase   

1d6n Hypoxanthine-guanine 

phosphoribosyltransferase

  

1dda Alcohol dehydrogenase Inhibition [328] Enhanced ethanol's 

sedative effect [328] 

1dht, 

1fdt 

17-beta-Hydroxysteroid 

Dehydrogenase 

Inhibitor [327] 

 

Promotion of tumor 

regression [327] 

1gsd, 

3ljr 

Glutathione Transferase 

A1-1, Glutathione 

S-Transferase 

Suppressed enzyme and 

activity [330] 

Genotoxicity and 

carcinogenicity [330] 

1mch 

 

Immunoglobulin Light Chain

 

Temporarily enhanced Ig 

level [333] 

Modulation of immune 

response [333] 

1p1g 

 

Macrophage Migration 

Inhibitory factor 

  

1ulb Purine Nucleoside 

Phosphorylase 

  

1zqf DNA Polymerase  Viral infection 

2nll Retinoic Acid Receptor   

1a25 Protein Kinase C Inhibition [325] Cancer [325] 

1aa8 D-Amino Acid Oxidase   

1afs 

 

3-alpha-Hydroxysteroid 

Dehydrogenase 

Effect on androgen induced 

activity [331] 

Hepatic steroid metabolism 

[331] 

1pth Prostaglandin H2 

Synthase-1 

Direct inhibition [329] Prevention of 

vasoconstriction [329] 
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1sep Sepiapterin Reductase   

2toh Tyrosine 3-Monooxygenase   

 

It is noted that a known target of tamoxifen such as calmodulin [325] is not 

identified by INVDOCK. One possible reason might be that the available PDB 

structures of calmodulin are not sufficiently close to the tamoxifen-bound 

conformation. None of these PDB structures is bound by a ligand similar in structure 

to tamoxifen. The conformation of calmodulin is known to change significantly by 

binding of ligands [335]. Because of the intrinsic flexibility of this protein, it is highly 

likely that ligand binding to this protein involves induced-fit. The analysis of two PDB 

structures of calmodulin bound by a different ligand (PDB id: 1a29 and 2bbm) shows 

that the conformation of this protein is dependent on its binding ligand. In a recent 

molecular docking study, a ligand was docked into calmodulin by the consideration 

of conformation changes that mimic an induced fit [336]. It is also found that 

4H-tamoxifen can be placed into calmodulin with slightly less favorable steric 

interaction than allowed by the INVDOCK scoring function. An appropriate 

conformation change in calmodulin might allow for the removal of this un-favorable 

interaction.  

The limited number of protein entries available in the cavity database is also 

expected to result in missed hits. For instance, known tamoxifen metabolizing 

protein cytochrome P450 [337] is not identified in this work because no 

corresponding human or mammalian entry is available in the cavity database. A 
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search of bacterial proteins in the database identified this protein (PDB Id: 5cp4 and 

1cpt) as a putative target. 

As shown in Table 4.1, apart from the ten putative protein targets that have been 

implicated or confirmed experimentally, INVDOCK identified ten other proteins as 

putative targets of 4H-tamoxifen. These include aldose reductase, Arginase, 

carbonic anhydrase, macrophage migration inhibitory factor, purine nucleoside 

phosphorylase, DNA polymerase, hypoxanthine-guanine phosphoribosyltransferase, 

retinoic acid oxidase, sepiapterin reductase, and tyrosine 3-monooxygenase. No 

literature has been found to link tamoxifen to each of these proteins. There is also no 

report that indicates each of these proteins is not a target of tamoxifen or its analogs. 

Further investigation is therefore needed to determine whether or not 4H-tamoxifen 

can bind to these proteins. 

In summary, the majority of INVDOCK identified protein targets have been 

implicated or confirmed by experiments [111,223]. Ligand-protein inverse docking 

appears to be a useful approach for computer-aided identification of potential protein 

targets of small synthetic molecules. The ability of identification of therapeutic 

targets of MP ingredients is evaluated as follows. 

 

4.4 In silico prediction of therapeutic targets of MP ingredients 

In this work, the therapeutic targets of six MP ingredients have been predicted by 

the in silico method INVDOCK. The results, together with the those of three other 

MP ingredients published before, have been compared with available experimental 

findings [338]. These nine ingredients were selected based on a comprehensive 
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MEDLINE [339] search on MP related publications, and those ingredients with 

relatively abundant amount of references are selected. This is to ensure that, for 

each selected ingredient, there is a reasonable amount of experimental findings to 

make a sensible evaluation of INVDOCK results.  

The nine MP ingredients include genistein, ginsenoside Rg1, quercetin, 

acronycine, baicalin, emodin, allicin, catechin and camptothecin. These compounds 

have been subjects of various investigations including the probing of their molecular 

targets. The availability of relevant experimental findings makes it possible to 

conduct comparative study and to evaluate INVDOCK derived results. The 3D 

structures of each of these MP ingredients are generated by the following procedure: 

The 2D structure of each MP ingredient is obtained from the CCD database 

(http://www.chemnetbase.com/) and it is then converted into 3D structure using 

CONCORD (http://www.tripos.com/admin/LitCtr/concord.pdf) licensed from SYBYL.  

All the proteins with known 3D structure in the Protein Databank PDB are 

searched by INVDOCK for identification of potential protein targets of the MP 

ingredients. The therapeutic target database was then searched to provide a list of 

candidate therapeutic targets from the complete protein targets list. 

To evaluate the usefulness of INVDOCK for predicting the therapeutic targets of 

the selected MP ingredients, literature have been searched for reports about the 

experimentally determined targets of these MP ingredients. It is noted that a 

substantial number of experimental binding studies have been conducted at 

micro-mole level which is significantly higher then that of average in vivo drug 
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concentration. Although binding analysis at higher concentrations has routinely been 

used as an indication about in vivo effect at lower concentrations [340,341], certain 

caution is needed for searching related experimental reports. Two additional 

requirements have been used in the selection of related experimental reports. One 

is that a reported experiment be conducted at concentrations no higher than the 

routinely used ones[340,342]. Another is that the physiological effect of the reported 

binding has been observed. 

Pharmacokinetics is another factor that needs to be considered when searching 

for related experimental reports. While some reports may indicate the binding of a 

selected MP ingredient with a protein, it may not be clear whether that particular MP 

ingredient can reach the target site with sufficient concentration. Therefore, 

additional experimental evidence such as the reported in vivo effects of the 

particular MP ingredient on the specific organ have been used as an indication that 

the MP ingredient likely reach a particular site at certain level of concentration.  

4.4.1 Genistein 

Genistein (Figure 4.3) is a soy-derived isoflavone of therapeutic interest. Dietary 

intake of soy is associated with a decreased risk of both hormone-dependent and 

hormone-independent cancers [343]. At the molecular level, genistein inhibits the 

activity of ATP binding enzymes such as tyrosine-specific protein kinase, 

topoisomerase II and enzymes involved in phosphatidylinositol turnover. Moreover, 

genistein can act via an estrogen receptor-meditated mechanism [344]. At the 

cellular level, genistein induces apoptosis and differentiation in cancer cells, inhibits 
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cell proliferation, modulates cell cycling, exerts antioxidant effects, inhibits 

angiogenisis, and suppresses osteoclast and lymphocyte functions [344]. In addition, 

it acts as an immunosuppressant and shows beneficial effects in the treatment of 

osteoporosis, cardiovascular disease, and menopause [344]. 

The pharmacokinetics profile of genistein has been well studied. One experiment 

on an animal model showed a favorable uptake of genistein [345]. In another study, 

genistein has been found in various organs of rats, including gut, excretory organs, 

respiratory organs, peripheral organs, reproductive organs. The pharmacokinetics 

data were also measured [346]. The good pharmacokinetic profile of genistein also 

contributes to its wide range of beneficial effects. 

 

INVDOCK identifies 18 potential therapeutic targets of genistein, which are listed 

in Table 4.2 together with available experimental findings. Two of these proteins 

have been reported to be directly inhibited by genistein in vitro. These targets are 

estrogen receptor [347], and FGF receptor 1 [348]. Estrogen receptor beta is 

reported to bind genistein with an affinity close to that of 17beta-estradiol. However, 

Figure 4.3 Structure of the MP ingredient genistein. 
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it remains to be determined whether it is a mediator of genistein's activity in vivo. 

FGF receptor 1 is a kind of tyrosine kinase. As a general tyrosine kinase inhibitor, 

genistein is expected to inhibit FGF receptor 1. These two proteins are known 

anti-cancer targets and there is indeed a report about the effect of genistein on 

cancer. [349]  

 

Table 4.2: Potential therapeutic targets of Genistein identified from INVDOCK search 

of human and mammalian proteins. 

 

PDB 
ID 

Target Name Experimental Findings Therapeutic 
Implications 

1a35 Topoisomerase I Genistein has anti- 

topoisomerase I effect 

[350]. 

Cancer [349] 

1a7c Plasminogen activator 

inhibitor 

Genistein shifts urokinase 

/ plasminogen activator 

inhibitor proteolytic 

balances [351]. 

Cancer [349] 

1akf Estrogen receptor Genistein binds to 

estrogen receptor beta 

[347]. 

Cancer (Breast) 

[352],d 

Vascular disease 

[353]  

1d6n Hypoxanthine-guanine 

phosphoribosyltransferae 

Genistein marginally 

activates HPRT [354]. 

Malaria [355] 

1di8 Cyclin-dependent kinase 2 Genistein suppresses 

CDK2 activity [356]. 

Cardiovascular 

disease [353] 
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1fgi FGF receptor 1 Genistein blocks 

cytoplasmic receptor 

domain [348]. 

Cancer [349] , 

Angiogenesis [353] 

1rts Thymidylate synthetase      Cancer [349] 

1ula Purine nucleoside 

phosphorylase 

 Cancer [349], Malaria 

[355] 

2dhf Dihydrofolate reductase  Leprosy [357] 

1vbt Cyclophilin A  Cancer [349], 

1db4 Phospholipase A2  Inflammation [358] 

1diy Prostaglandin H2 synthase Genistein decreased the 

specific activity of 

prostaglandin H2 

synthase prepared from 

A431 cells. [359] 

Inflammation [358] 

1d8d Farnesyltransferase  Cancer [349] 

1bpx DNA polymerase  Viral infection [360] 

1b3o Inosine dehydrogenase  Malaria [355] 

1azm Carbonic anhydrase I  Hypertension, 

Glaucoma[361], 

Cancer [349] 

1awn Guanylyl cyclase  Cancer [349] 

1a25 Protein kinase C  Cardiovascular 

disease [353]  

Cancer [349] 

 

Experiments also showed that the activity or expression level of each of the five 

INVDOCK identified therapeutic targets given below is affected by genistein. Ligand 
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binding may influence the activity of a protein, and it is also known to self-regulate 

protein levels in certain cases [334]. Hence there is a possibility that these observed 

phenomena indicate genistein’s binding to each of these proteins as predicted by 

INVDOCK. The activities of cyclin-dependent kinase 2 [356], topoisomerase I [350] 

and prostaglandin H2 synthase[359] have been reported to be suppressed by 

genistein. Cyclin-dependent kinase 2 is a therapeutic target for cardiovascular 

disease. Genistein has been found to possess an effect preventive of cardiovascular 

disease [362]. Topoisomerase I is another therapeutic target of cancer. 

Prostaglandin H2 synthase (COX) is a major therapeutic target for inflammation. 

Genistein has been reported to have some relationship with inflammation [358]. Also, 

genistein has been known to induce a shift towards antiproteolysis on 

urokinase/plasminogen activator inhibitor proteolytic balances [351], which seems to 

suggest that this protein is a target and it may also account for genistein’ efficacy in 

cancer therapy. Genistein can marginally induce hypoxanthine-guanine 

phosphoribosyltransferase [354], which seems to suggest a mechanism of genistein 

effect in treating malaria [355].  

Moreover, there are 11 identified therapeutic targets without experimental 

validation or invalidation. Further experimental investigation is needed to determine 

whether each of these proteins is a target of genistein as predicted by INVDOCK. 

These targets have been explored in treatments of eight different diseases. Among 

them, the effect of genistein on cancer[349], malaria[355], leprosy[357], 

inflammation[358], herpes viral infection[360], glaucoma[361] and vascular 
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disease[353] has been reported in cell cultivation or animal models. However, 

whether these effects are due to the predicted interaction of genistein with some of 

these proteins remain to be studied. Moreover the pharmacokinetic profile of 

genistein needs also to be studied to assess the clinical effect of genistein on these 

diseases. 

4.4.2 Ginsenoside Rg1  

Ginsenoside Rg1 (Figure 4.4) is a major bioactive component of ginseng. 

Ginseng is a highly valued MP in the Far East and has gained popularity in the West 

during the last decade [363]. It can be used to combat stress, to enhance both the 

central and immune systems, and to help maintaining optimal oxidative status 

against certain chronic disease states and aging[364]. It is also reported to have an 

effect to prevent cancer[365]. The pharmacokinetic data of ginsenoside Rg1 is not 

so well studied as genistein. The available data showed that ginsenoside Rg1 had a 

wide distribution and long half-life in the body [366,367].  

  
Figure 4.4 Structure of the MP ingredient ginsenoside Rg1. 
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The predicted therapeutic targets of ginsenoside Rg1 are given in Table 4.3. 

Three proteins are identified as potential therapeutic targets of this MP ingredient. 

One is endothelial nitric-oxide synthase, which is known to be inhibited by 

ginsenoside Rg1[368] and this inhibition may contribute to the observed 

maintenance of optimal oxidative status against chronic disease states and 

aging[364]. DNA polymerase beta has not been reported to bind ginsenoside Rg1, 

however, it has been found that ginsenoside Rg1 can stimulate DNA synthesis[369] 

and activate DNA polymerase delta[370]. Protein cyclophilin is also identified as a 

potential target by INVDOCK, while no experimental reports are available to confirm 

or invalidate it. This protein is related to immunomodulatory activity, which is one of 

the well-known therapeutic effects of ginsenosides including ginsenoside Rg1[371]. 

In addition to these therapeutic targets, INVDOCK also predicted an experimentally 

confirmed non-therapeutic target, 1,4-galactosyltransferase, an in vivo metabolizing 

enzyme of ginsenoside Rg1 [372].  

 

Table 4.3: Potential therapeutic targets of ginsenoside Rg1 identified from INVDOCK 

search of human and mammalian proteins. 

 

PDB 

ID 

Target Name Experimental 

Findings 

Therapeutic 

Implications 
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1rpa 

 

DNA polymerase beta Rg1 stimulates DNA 

synthesis. Rg1 

activates DNA 

polymerase delta 

[369,370]. 

Viral infection (herpes) 

[373] 

1rmh Cyclophilin A  Immune response [371] 

3nos Endothelial nitric-oxide 

synthase 

Rg1 inhibits NOS dose 

dependently [368]. 

Maintaining optimal 

oxidative status [364] 

 

4.4.3 Quercetin 

Quercetin (Figure 4.5) is a flavonoid nearly ubiquitous in plants and it is 

particularly rich in seeds, citrus fruits, olive oil, tea, and red wine [374]. Certain plants 

containing flavonoids have been used in traditional medicines and there have been 

suggestions for exploring these MPs therapeutically [374]. Quercetin is one of the 

most comprehensively studied flavonoids which are suitable for evaluation of 

INVDOCK. However, unfortunately, in vivo data on the disposition, absorption, 

bioavailability, and metabolism of quercetin after intravenous and oral administration 

in humans are scarce and contradictory [375]. One study on rat showed that 

quercetin, but not its glycosides, is absorbed from the rat stomach [376]. Another 

study suggests that quercetin 3-O-beta-glucoside was hydrolysed before or during 

its intestinal absorption [377]. Also, quercetin and rutin were found in plasma as 

glucuronides and/or sulfates of quercetin and as unconjugated quercetin aglycone 

[378]. 
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Eleven therapeutic targets are identified from INVDOCK computation. The 

results are shown in Table 4.4. Three of them are reported to be inhibited by 

quercetin directly. They are estrogen receptor, phospholipase A2 and SRC tyrosine 

kinase[374,379]. SRC tyrosine kinase and estrogen receptor are established 

therapeutic targets for cancer, which is consistent with the well known anti-cancer 

effect of quercetin [380]. SRC tyrosine kinase is also a therapeutic target for 

osteoporosis. Studies on quercetin and its derivatives showed they have beneficial 

effect on this disease in an animal model [381]. Estrogen receptor has also been 

explored as a therapeutic target for vascular disease. The efficacy of quercetin in 

vascular diseases has been well observed [382].  

 

Table 4.4: Potential therapeutic targets of quercetin identified from INVDOCK search 

of human and mammalian proteins. 

 

PDB ID Target Name Experimental Findings Therapeutic 

Implications 

Figure 4.5: Structure of the MP ingredient quercetin. 
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1a35 DNA topoisomerase I Quercetin inhibits 

topoisomerase I - catalyzed 

DNA religation [383] 

Cancer [380] 

1akf Estrogen receptor Quercetin binds to type II 

estrogen binding site [379] 

Cancer [380] 

Vascular disease 

[382]  

1azm Carbonic anhydrase I  Glaucoma, 

Hypertension [384], 

Cancer [380] 

1bpx DNA polymerase Quercetin and myricetin 

exhibited complex interaction 

with DNA polymerases [374]. 

Herpes viral infection 

[385],[382] 

1bvm Phospholipase A2 Inhibited by quercetin [374]. Inflammation [386] 

[382] 

1csb Cathepsin B  Autoimmune disease 

[387], Rheumatoid 

arthritis 

1d3h Dihydroorotate 

dehydrogenase 

 Malaria [388] 

1d6n Hypoxanthine-guanine 

phosphoribonucleic 

transferase (HGPRT) 

Quercetin induces 

HGPRT-deficient mutants 

[389] 

Malaria [388]  

1klt Chymase   Asthma [390], 

Cardiovascular 

disease [382], 

Inflammation [382], 

Dermatitis [391] 
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1a25 Protein kinase C Quercetin inhibits the 

phosphorylating activity [374].

Cancer [380], 

Vascular disease 

[382] 

1fmk SRC tyrosine kinase  Inhibited by quercetin [374]. Cancer [380] 

Osteoporosis [381] 

 

Quercetin has also been reported to inhibit the topoisomerase I catalyzed DNA 

religation [383], inhibit the phosphorylating activity of protein kinase C [374], as well 

as exhibit complex interaction with DNA polymerase [374]. These proteins are also 

identified as potential targets of quercetin by INVDOCK. Therapeutically, they are 

used in the treatment of cancer, vascular diseases, and viral infection respectively. 

The uses of quercetin in these diseases are also reported [380,382].   

There are 5 other INDOCK predicted therapeutic targets without available 

experimental finding to either verify or invalidate them. Quercetin is known to induce 

HGPRT-deficient mutants in rats [389], which might result from the interaction 

between this protein and quercetin. HGPRT is a therapeutic target for the treatment 

of malaria. Another therapeutic target for malaria, dihydroorotate dehydrogenase, is 

also identified as potential target of quercetin. It is noted that experiment has shown 

that quercetin gave strong antimalarial activity [388]. Other yet-to-be-verified 

potential targets include chymase, cathepsin B and carbonic anhydrase I. They are 

therapeutic targets for 9 diseases. Among them the effect of quercetin on 

hypertension [384], cancer [380], autoimmune diseases [387], asthma [390], 
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cardiovascular diseases [382], inflammation [382] and dermatitis [391] has been 

reported in animal models or clinical trials.  

A number of targets of quercetin unrelated to therapeutics have been reported 

[374]. The 3D structures of most of these proteins are unavailable and thus beyond 

the reach of INVDOCK. Nonetheless, the 3D structures of four of these proteins are 

available. Two of these proteins are identified by INVDOCK as potential targets. 

They are ribonuclease and nitric oxide synthase. The other two reported targets, 

aldose reductase and amylase, are missed by INVDOCK. Quercetin has also been 

reported as a competitor for ATP and GTP in vivo[374]. Therefore it is not surprising 

that quercetin can bind to some of the ATP-binding or GTP-binding enzymes. 

INVDOCK identifies two such enzymes as potential targets, which include 

adenosine kinse and guanylyl cyclase.  

4.4.4 Acronycine 

Acronycine (Figure 4.6) is an active compound from Acronychia pedunculata. It 

is reported to have anti-cancer effects [392]. Crassum intestine 38 adenocarcinoma 

cell growth and L1210 leukemia cell growth are reported to be inhibited by this 

compound through a mechanism of inhibition the synthesis of DNA or RNA [393]. 

Acronycine is a lipophilic alkaloid. Its etoposide solution was active in 

multidrug-resistant Chinese hamster ovary cells. The oral bioavailability of an 

acronycine solution in etoposide diluent was only 50% but both i.p. and p.o. 

regimens achieved plasma levels greater than 1.0 micrograms/ml. [394]. 
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As shown in Table 4.5, INVDOCK finds three potential therapeutic molecular 

targets for acronycine. Among them, DNA polymerase is experimentally reported to 

be a target responsible for its anti-cancer effect [392]. The other two are neither 

confirmed nor invalidated by experiments. They are beta-catenin, a potential 

anticancer target, and aldose reductase, a target for diabetes. Further experimental 

study is needed to clarify whether or not these are targets of acronycine. 

 

Table 4.5: Potential therapeutic targets of acronycine identified from INVDOCK 

search of human and mammalian proteins. 

 

PDB 

ID 

Target Name Experimental 

Findings 

Therapeutic Implications 

2acq Aldose reductase  Diabetes 

3bct Beta-catenin  Cancer [392] 

1zqo DNA polymerase beta Inhibition of DNA 

synthesis.[393]  

Viral infection 

 

Figure 4.6: Structure of the MP ingredient acronycine. 
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4.4.5 Baicalin 

 

Baicalin (Figure 4.7) is an active compound from Scutellaria baicalensis or 

Oroxylum indicum. It is reported to have anti-cancer [395], anti-inflammation [396], 

anti-AIDS effects [397], and has been used in the treatment of diabetes [398] and 

liver problems [399]. Baicalin is absorbed from the rat gastrointestinal tract as the 

aglycone and restored to its original form [400]. One study showed that its plasma 

concentration reached a peak of 0.42 microgram/mL 5.3 h after oral administration, 

600 mg/kg [401].  

As shown in Table 4.6, INVDOCK finds 9 potential therapeutic protein targets for 

baicalin. Two of these targets were inhibited by baicalin. One is DNA polymerase 

beta, an anti-virus target, which could be weakly inhibited by baicalin [402]. The 

other is aldose reductase [399], a target for the treatment of diabetes [398]. It has 

been reported that baicalin has certain effects on two other therapeutic targets 

suggested by INVDOCK. Baicalin has been found to down-regulate the expression 

level of cyclin-dependent kinase 2 [403], which are known anti-cancer targets. This 

Figure 4.7: Structure of the MP ingredient baicalin. 
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compound has also been reported to have an inhibitory effect on phospholipase A2 

[404,405], which is a known anti-inflammatory target. The anti-cancer and 

anti-inflammatory effects of binding of baicalin to these implicated targets have been 

observed experimentally [395,396]. The other 5 predicted targets are neither 

confirmed nor invalidated by experiments. They are all potential anti-cancer targets. 

Among them, protein kinase C and adenylyl cyclase are also reported to be 

therapeutic targets in vascular diseases. Baicalin was observed to have an effect on 

the contractility of rat isolated mesenteric arteries[406].  Further study is needed to 

determine whether these are targets of baicalin. 

 

Table 4.6: Potential therapeutic targets of baicalin identified from INVDOCK search 

of human and mammalian proteins. 

 

PDB 

ID 

Target Name Experimental Findings Therapeutic 

Implications 

121p H-Ras p21 protein  Cancer [395] 

1ads Aldose reductase Baicalin reduced RBC sorbitol 

levels in diabetic rats as 

inhibitor of Aldose 

Reductase.[399] 

Diabetes [398] 

1agw FGF receptor 1  Cancer [395] 

1a25 Protein kinase C  Vascular disease[406]， 

Cancer [395] 

1awk Adenylyl cyclase  Vascular disease [406],  

Heart failure, Erectile 

dysfunction 



Chapter 4: In silico study of medicinal plant mechanisms   

 

145

1awn Guanylyl cyclase  Cancer [395] 

1irb 

 

Phospholipase A2  Inhibition effect. [404,405] Inflammation [396] 

2bpf DNA polymerase Beta Weak inhibition[402] Viral infection [402] 

1jsu 

 

Cyclin-dependent 

kinase-2 

Baicalin decreases 

expression level of 

cyclin-dependent kinase[403]

Cancer [395] 

 

4.4.6 Emodin 

 Emodin (Figure 4.8) is an active compound from Rheum palmatum, Rumex 

dentatus and Cassiatora. It has been found to have anti-cancer [407], 

immuno-modulation [408] and laxative effects. Administration of emodin to rabbits by 

i.v. bolus resulted in a serum profile which could be well described by a 

two-compartment model. Oral administration of emodin resulted in a very low serum 

concentration but protein binding assays show that emodin was highly bound to 

serum protein [409].Liver, kidney and intestinal tract showed higher concentrations 

than plasma [410]. 

 

Figure 4.8: Structure of the MP ingredient emodin. 
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As shown in Table 4.7, INVDOCK identifies five potential therapeutic protein 

targets for emodin. Two of them have relevant publications, which are protein kinase 

C [411], and nuclear factor Kappa-B [412]. Emodin was reported to inhibit protein 

kinase C[411]. Protein kinase C has been explored as a therapeutic target in cancer 

and vascular diseases. Emodin’s beneficial effect in cancer were observed in mice 

[407]. Emodin was reported to inhibit TNF-induced NF-kappaB activation [412]. 

NF-kappaB played an important role in a number of diseases. Among them, 

emodin’s beneficial effects in inflammation [413] and atherosclerosis[414] were 

reported. The other three targets are neither confirmed nor invalidated by 

experiments. They are therapeutic targets for cancer [407], inflammation [413] and 

diabetes. It remains to be seen whether or not these are targets of emodin as 

predicted by INVDOCK. 

 

Table 4.7: Potential therapeutic targets of emodin identified from INVDOCK search of 

human and mammalian proteins. 

 

PDB 

ID 

Target Name Experimental 

Findings 

Therapeutic Implications 

2acq Aldose reductase  Diabetic treatment 

1pth Prostaglandin H2 

Synthase-1 

 Inflammation [413] 

3bct Beta-catenin  Cancer [407] 
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1nfk Nuclear factor 

Kappa-B 

Emodin inhibits 

TNF-induced 

NF-kappaB activation 

[412] 

Inflammation [413], 

Asthma, 

Atherosclerosis[414], 

Neurodegenerative disorders, 

allergic rhinitis, 

Migraine 

1a25 Protein kinase C Inhibitor[411] Cancer [407], Vascular disease 

 

4.4.7 Allicin 

Allicin (Figure 4.9) is a bioactive compound from garlic with a number of 

therapeutic effects. It is known to reduce blood cholesterol, triglycerides levels and 

systolic blood pressure in hypercholesterolemic rats [415]. This compound has been 

shown to possess antimicrobial activities [416] especially against H. pylori [417]. It 

selectively inhibits the GSH-dependent PGH2 to PGE2 isomerase in 

adenocarcinoma cell line, which has implication in pulmonary vasodilating, 

anti-inflammatory as well as anti-cancer effects [418].  It has also been found to be 

an antioxidant agent [419].  

 

 Putative human and mammalian therapeutic protein targets of allicin identified 

by INVDOCK are given in Table 4.8 along with the respective clinical implications 

Figure 4.9: Structure of the MP ingredient allicin. 
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from experiments. Four putative protein targets are identified. One of them, insulin, 

seems to be implicated by experiment. It has been observed that the level of insulin 

is increased by allicin [420].  

 

Table 4.8: Potential therapeutic targets of allicin identified from INVDOCK 

search of human and mammalian proteins. 

 

PDB 

ID 

Target Name Experimental 

Findings 

Therapeutic 

Implications 

1znj 

 

Insulin Increased insulin 

level [420]  

Diabetes [420] 

1ah3 Aldose Reductase  Diabetes 

1cdk CAMP-Dependent Protein 

Kinase 

 Cancer 

1rpa 

 

Prostatic Acid Phosphatase  Cancer (prostate cancer) 

 

INVDOCK also finds aldose reductase, CAMP-dependent protein kinase, and 

prostatic acid phosphatase as putative therapeutic targets. However there is no 

experimental study to either implicate or invalidate each of these targets. Interaction 

of allicin with insulin as well as aldose reductase has implications for diabetes, which 

is consistent with the observed effect of allicin on diabetes [421]. CAMP-dependent 

protein kinase and prostatic acid phosphatase have implications in anticancer 

effects, which is consistent with observed anticancer effects of garlic [422]. Further 
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experimental investigation is needed to test whether these three proteins are targets 

of allicin. 

4.4.8 Catechin 

Catechin (Figure 4.10), also known as cyanidol, is an active compound from 

green tea. It has been shown to inhibit the growth of human breast cancer cells [423] 

and prostate cancer cells [424] partly because of its inhibition of cyclin-dependent 

kinases [425]). The antitumor activity of this compound may also arise from its 

inhibition of tyrosine phosphorylation of PDGF beta-receptor [426], induction of 

apoptosis [427] and inhibition of matrix metalloproteinases [428]. Catechin exhibits 

anti-inflammatory as well as cancer chemopreventive effects in many animal tumor 

bioassays, cell culture systems, and epidemiological studies [429]. Some of these 

effects of catechin are in part from its inhibition of TNF-alpha and NF-kappaB. This 

compound also has antiplaque and hepatoprotective effects via reduction of 

membrane fluidity [430]. It has been reported that this compound has antioxidative 

action mediated by the activation of glutathione peroxidase [431].  

INVDOCK search produces seventeen putative therapeutic targets, which are 

given in Table 4.9. Seven of these targets have been confirmed by experiments, 

which showed that catechin inhibits each of them. These include cyclin-dependent 

kinase and FGF receptor [425], neutrophil collagenase [428], protein kinase C [425], 

CAMP-dependent protein kinase [432] TNF-alpha and NF-kappaB p65 [429]. 

Inhibition of each of the first five proteins has potential anticancer implications, 

binding to the sixth protein may produce anti-inflammatory effects, and the 
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interaction with the seventh and eighth proteins may lead to anti-inflammatory as 

well as cancer chemopreventive effects.  

 

Table 4.9: Potential therapeutic targets of catechin identified from INVDOCK search 

of human and mammalian proteins. 

 

PDB 

ID 

Target Name Experimental Findings Therapeutic 

Implications 

1ads Aldose Reductase  Diabetes 

1agw FGF Receptor 1 Inhibitor[433] Cancer[433]  

1aqc X11  Anti-clotting 

1crp 

 

C-H-Ras p21 Protein Inhibition of 

Ras-transformed cells [434]

Cancer [434] 

1mcc 

 

Immunoglobulin Lambda 

Light Chain 

Immunoenhancing effect on 

T and B cell functions [435]

Enhanced immune 

response [435] 

1mnc 

 

Neutrophil Collagenase Collagenase inhibitor [428] Cancer [428] 

1a25 Protein Kinase C Inhibitory effect [436] Cancer [436],  Vascular 

disease 

Figure 4.10: Structure of MP ingredient catechin. 
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1awn Guanylyl Cyclase  Cancer 

1cdk 

 

CAMP-Dependent 

Protein Kinase 

Inhibitor [432] Cancer [432] 

1p38 

 

MAP kinase p38 Inhibition of activation of 

p38 mitogen activated 

protein kinase. 

Cancer 

1rpa Prostatic acid 

phosphatase 

 Cancer (prostate cancer) 

1wav 

 

Insulin Activator [429] Diabetes [429] 

1ydt 

 

C-AMP-dependent 

protein kinase 

 Cancer 

1cpj Cathepsin B Activator [429] Cancer [429]  

1jsu Cyclin-dependent 

kinase-2 

Inhibitor [433] Cancer [433] 

1ram Transcription factor NF- 

KB p65 

Inhibitor [429] Inflammation [429] 

2tnf Tumor necrosis factor 

alpha 

Inhibitor [429] Inflammation [429] 

 

Available experimental data also seem to implicate another five of INVDOCK 

identified therapeutic targets. Catechin has been found to be an activator of 

cathepsin B and insulin [429]. It is possible that activation of each protein is by direct 

binding of catechin. Activation of cathepsin may produce anticancer effects, while 

activation of insulin may help reduce glucose levels and thus have implications in 

diabetes treatment. Catechin is known to inhibit both the ras-transformed cells  and 

the activation of p38 mitogen-activated protein kinase [434], which may have 
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implication in anticancer properties. One possible reason for these inhibitory effects 

are due to the binding of catechin to ras p21 protein and MAP kinase p38 

respectively as predicted by INVDOCK. Catechin is also known to have 

immuno-enhancing effect on T and B cell functions [435], which may also result from 

binding of catechin to immunoglobulin lambda light chain as predicted by INVDOCK. 

Further investigation is needed to determine whether these proteins are targets of 

catechin. 

Moreover, INVDOCK identified four additional putative therapeutic targets. 

These are aldose reductase, X11, guanylyl cyclase, and C-AMP-dependent protein 

kinase. No experimental information has been found to either implicate or invalidate 

them. Hence, further study is needed to determine whether these proteins are 

targets of catechin. The potential therapeutic effect of the binding of catechin to each 

of these proteins is diabetes treatment for the aldose reductase, anti-clotting for X11, 

and anticancer for guanylyl cyclase and C-AMP-dependent protein kinase 

respectively.  

Some known therapeutic targets of catechin are not found by INVDOCK search. 

These include matrix metalloproteinase-2, matrix metalloproteinase-9, matrix 

metalloproteinase-12 and glutathione peroxidase. This occurs because of a lack of 

relevant structures in the database. The cavity database does not yet have 3D 

structures of matrix metalloproteinase-2, matrix metalloproteinase-9 and matrix 

metalloproteinase-12. Although the 3D structures of glutathione peroxidase are 

available in the database, these are ligand-free structures that may not be a suitable 
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system for accurate analysis of the binding of a compound that affects the function 

of that protein. Thus these structures are not used in INVDOCK study. 

4.4.9 Camptothecin 

Camptothecin (Figure 4.11) is a compound from the plant Canptotheca 

acuninata. It has well recognized antitumour activities and has been evaluated in 

clinical trials [437]. 

 

As shown in Table 4.10, INVDOCK identifies nine putative therapeutic protein 

targets, eight of which has anticancer implication. Two such putative targets have 

been confirmed experimentally. These are topoisomerase I [438] and protein kinase 

C [439,440]. Another identified putative target is implicated by experiment. It has 

been shown that camptothecin inhibits the activity of calpain [441], which may be 

indicative of direct binding of camptothecin to this protein. Such a binding is 

expected to induce apoptosis in leukemic cells.  

 

Table 4.10: Potential therapeutic targets of camptothecin identified from INVDOCK 

search of human and mammalian proteins. 

  

Figure 4.11: Structure of MP ingredient camptothecin. 
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PDB 

ID 

Target Name Experimental Findings Therapeutic Implications 

1ads Aldose 

Reductase 

 Diabetes 

2gss 

 

Glutathione 

S-Transferase 

p1-1 

Increased intracellular 

glutathione [442] 

Cancer [442]  

7ice DNA 

Polymerase 

Beta 

 Cancer 

1a25 Protein Kinase C Inhibitor [440] 

 

Cancer [439], Vascular 

disease 

1cdk CAMP-Depende

nt Protein 

Kinase 

 Cancer 

3bct Beta-Catenin  Cancer 

1dvi Calpain Inhibition of calpain activities. 

[441] 

Cancer.[441] 

1yfo 

 

Receptor Protein 

Tyrosine 

Phosphatase 

Caused elevation of PTPase 

in the cytosol and the nucleus 

which play a critical role in the 

induction of the differentiation 

of IW32 erythroleukemia cells.  

[443] 

Cancer [443] 

1a35 Topoisomerase I Inhibitor [438] Cancer [438] 

 

Two additional putative targets seem to be implicated by experiments as well. 

Camptothecin has been found to elevate the level of protein tyrosine phosphatase 
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[443] and to increase intracellular glutathione [442], which might result from its 

binding to receptor protein tyrosine phosphatase and glutathione S-transferase 

respectively as predicted by INVDOCK. Binding to these two proteins may have 

anticancer implication. For instance, it has been found that camptothecin causes 

elevation of PTPase in the cytosol and the nucleus, which affects the induction of the 

differentiation of IW32 erythroleukemia cells. Therefore INVDOCK prediction of 

these two putative targets may partly explain the observed anticancer activities of 

camptothecin.  

Other identified potential therapeutic targets are DNA polymerase beta, 

CAMP-dependent protein kinase, beta-catenin and aldose reductase. There is no 

experimental information to either implicate or invalidate these targets. Further study 

is therefore needed to clarify this. Anticancer activity may potentially be produced by 

camptothecin binding to DNA polymerase beta, CAMP-dependent protein kinase 

and beta-catenin respectively. The effect of camptothecin on aldose reductase may 

have implication in diabetes treatment. 

 

4.5 Limitations and suggested improvement of INVDOCK 

 Table 4.11 summarizes the comparison between INVDOCK predictions and 

available experimental findings for the nine MP ingredients presented here. Overall 

about 51% of INVDOCK identified potential therapeutic targets of these MP 

ingredients have relevant experimental findings. Moreover, about 70% of the 

identified therapeutic implications related to these targets have been reported to 
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occur in cultivated cells, animal models or clinical trails. It seems that INVDOCK is 

capable of providing useful information for experimental researchers in probing the 

mechanisms of MPs. 

 

Table 4.11: Statistics of therapeutic targets of selected bioactive MP ingredients 

identified by INVDOCK search. The statistics of experimentally reported or 

implicated targets is also given for comparison. 

 

MP Ingredient  

 

No. of 

therapeutic 

INVDOCK 

identified 

targets  

No. of 

therapeutic 

targets that 

have relevant 

literature 

support 

No. of 

therapeutic 

effects related 

to INVDOCK 

identified 

targets 

No. of 

therapeutic 

effects that 

have 

relevant 

literature 

support 

Genistein 18 7 9 8 

Ginsenoside Rg1 3 2 3 3 

Quercetin 11 6 12 10 

Acronycine 3 1 4 2 

Baicalin 9 4 7 5 

Emodin 5 2 11 4 

Allicin 4 1 2 1 

Catechin 17 12 5 4 

Camptothecine 9 5 3 2 

Total 79 40 56 39 
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Discrepancy between INVDOCK results and available experimental data arises 

from a number of reasons. It is not expected that exhaustive experiments have been 

done to determine all protein targets of the studied MP ingredients. The lack of 

sufficient experimental data is likely an important factor for the discrepancy. Lack of 

relevant protein structures is likely to be another factor. 3D structure of a large 

number of known therapeutic targets is not available. Some of the 3D structures may 

be of little relevance here. These include entries containing incomplete sections or 

chains, protein mutants that are structurally different from the corresponding proteins 

investigated in experiments, ligand-bound proteins whose conformations are 

relevant only to a specific set of compounds, and macromolecular complexes 

unrelated to a particular biological process studied experimentally. “False hits” may 

thus be generated if these irrelevant structures are selected by INVDOCK. 

Anticipated rapid progress in structural genomics[320] is expected to provide a more 

diverse set of relevant structures. Knowledge from study of protein functions also 

facilitates the selection of relevant structures in determination of potential protein 

targets related to a particular cellular or physiological condition. 

As in other docking studies, INVDOCK does not take protein profiles, such as 

gene expression pattern and protein levels, into consideration, which may also be a 

source of discrepancy between INVDOCK computation and experiments. Some 

experimental studies of MP ingredients are based on the investigation of cell lines or 

other assays. Observation of molecular events related to the interaction with a 

particular protein requires that the protein be expressed at a sufficient level in the 
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system being investigated. If such a level is not reached at a particular setting, the 

corresponding experiment is not useful in probing the binding of a compound to that 

protein. Proteins not expressed or at too low levels are unlikely to be a detectable 

target. Advance in proteomics is providing rapidly growing information about the 

profiles of proteins inside cells[223]. Incorporation of this information into the 

INVDOCK procedure may be helpful in improving the prediction accuracy. 

Therapeutic action of a chemical requires it to achieve an adequate 

concentration in the body fluid bathing the target tissue. The concentration of a 

chemical is determined by its pharmacokinetic profile. Also these chemicals might 

undergo some extent of metabolism. In some cases, both the original chemical and 

the metabolited derivative could have the same effect through the same mechanism 

(e.g. Tamoxifen and 4-H-tamoxifen are both anti-cancer agents). However, in some 

cases, the metabolited derivative would lose its activity (e.g. quercetin gave strong 

antimalarial activity, however, its glucosides, showed little significant activity [388]). 

Therefore the ADME profile, which has been neglected in INVDOCK and other 

docking studies, needs to be considered. Rapid progress in our understanding of 

pharmacokinetics and drug metabolism [444] is providing useful information in this 

regard. 

 

4.6 Summary 

 A number of in silico methods for target identification are being explored or under 

consideration. Several methods have potential applications in facilitating the 

identification of therapeutic targets of MP ingredients. These include high-throughput 
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assay based approaches, extended QSAR approaches, statistical learning methods 

and extended docking methods. One of these methods, INVDOCK, has been 

specifically used in the identification of protein targets of MP ingredients as well as 

synthetic chemicals. Testing results suggest the usefulness of INVDOCK as an in 

silico tool in facilitating the identification of potential therapeutic targets of the MP 

ingredients and thus providing valuable clues to the mechanisms of herbal 

medicines and their possible secondary therapeutic effects. This may greatly 

facilitate the mechanistic study of herbal medicines. Performance and applicability of 

in silico methods may be further improved by incorporation of new information from 

advances in structural genomics, proteomics, protein function, and 

pharmacokinetics. Efficiency and accuracy of in silico methods in analyzing the 

mechanisms of herbal medicines can also be enhanced from new progress in 

computational algorithms, parameters, and more accurate models of the interaction 

between a target and its binding molecules. 
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Chapter 5 

 

Summary 

 

The course of new drug discovery is still inefficient and costly nowadays. 

Rational drug design has been introduced to facilitate this process. The essence of 

rational drug design is the reasoned extrapolation of our knowledge of targeted 

receptors and “lead” structures to suggest novel chemical structures with defined 

characteristics as potential drugs.  

The selection of therapeutic targets to be worked with is therefore very important. 

In contemporary new drug discovery processes, it is the first stage of R&D leading to 

a new drug and directs further investigations. The appropriate selection of effective 

therapeutic targets and efficient therapeutic intervention strategies is receiving more 

and more attention. With this regard, this work explored the use of in silico 

approaches in facilitating relevant research.  

First, a comprehensive information source of known therapeutic target 

information devoted to new drug discovery will be undoubtedly helpful to the relevant 

research communities. However, existing drug target information is still scattered 

among the huge quantity of biomedical literature. Work needs to be done to collect 

and sort known drug target information to provide an easy access to relevant 

communities. As a fundamentally important task, a database of known therapeutic 
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target information, Therapeutic Target Database, was curated. A relational data 

model was designed specifically for it which aims to maximize the ability to 

accommodate future extensions and facilitate the integration of information.  

Rapid discovery of new therapeutic targets is also very important as it may not 

only introduce more efficient therapeutic targets for certain diseases, but also 

increase the flexibility in the design of novel therapeutic intervention strategies by 

exploiting the synergies between known and newly discovered targets. With known 

examples of therapeutic targets, statistical learning methods might be able to learn 

the common features of therapeutic targets and predict the drug-target like proteins 

in the human genome. This, if feasible, would greatly help the rapid discovery of 

therapeutic targets based on the human genomic data. A number of statistical 

learning methods and pre-processing techniques are explored for the application of 

drug-target like protein prediction. Among them, the support vector machine 

approach gives the best classification results which are reasonably good to facilitate 

the in-sillico genome scale drug-target screening. Performance of the statistical 

learning methods may be further improved by incorporation of new information from 

advances in pharmaceutical sciences and proteomics. The accuracy of statistical 

learning methods in prediction of drug-target like proteins can also be enhanced from 

new progress in learning algorithms, descriptors, and pre-processing techniques.  

Besides more effective therapeutic targets, delicate therapeutic intervention 

involving multiple cooperating targets may also help to improve the treatment 

efficacy. Novel therapeutic mechanisms discovered from studies of herbal medicines 
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have routinely been used in new drug discovery. With known drug target information, 

in silico approaches may also be used in the study of novel medicinal plant 

mechanisms. While a number of approaches have the potential in this application, 

our testing results on one of them, the INVDOCK approach, suggests its usefulness 

in facilitating the identification of potential therapeutic targets of MP ingredients and 

thus providing valuable clues to the mechanisms of effective herbal medicines. 

Performance and applicability of in silico methods may be further improved with new 

advances in structural genomics, proteomics, protein function, and pharmacokinetics. 

Efficiency and accuracy of in silico methods in analyzing herbal medicine 

mechanisms can also be enhanced from new progress in computational algorithms, 

parameters, and more accurate models of the interaction between a target and its 

binding molecules. 

Currently, the computer aided drug design approaches mainly focus on the 

structure properties of a drug target and its possible binder to find or design a 

chemical that could bind the target tightly. Essentially, they are based on the “lock 

and key” principle proposed by Fisher more than 100 years ago [445]. This principle 

has such a big influence on medicinal chemists and drug design experts that when a 

new drug needs to be designed, they always think of the receptors (drug targets) first, 

and then design a “key” to that receptor to treat that disease.  

However, drug designing approaches based on the “lock and key” principle have 

their innate deficiency. For example, theoretically, drug-receptor interactions are 

dynamic processes. That is to say, a drug must pass through a “cavity” to reach the 
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active site of the receptor. It means when the drug is passing the “cavity”, the 

drug-receptor complex is probably in a transition state. The structure of this transition 

complex can not yet be determined experimentally or be modeled by effective 

algorithms. Also, the kinetic process of how the drug is administrated, transported, 

metabolized and excreted is not considered. In other words, the processes prior to 

and after drug–receptor interaction have not yet been paid enough attention, which 

are also very important factors that determine the chance of finding a successful 

drug. Therefore, while the modern drug designing approaches indeed helped much 

in the research and development of new drugs, the rate of success is still low.  

Introducing the consideration of drug mechanisms into rational drug design 

becomes a popular idea among drug design experts, which is recognized as 

mechanism based drug design (MBDD). In this regard, the drug target directed in 

silico approaches discussed in this work can be viewed as part of the efforts to 

embody therapeutic mechanism based drug design. Besides drug targets, the other 

important factors affecting the success of a drug, such as its ADME profile, toxicity 

and drug-drug interaction profile, are also critical to the new drug discovery process. 

Novel approaches incorporating the consideration of these factors into the early 

stages of the drug discovery process would therefore be expected to further improve 

the research and development efficiency, which would be interesting topics that 

follow this work.
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