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SUMMARY 

 
How to get pure components spectra from mixture spectra by mathematical methods is 

a great challenge to chemical researchers. In the past two decades, efforts were 

dedicated to extracting pure component spectra from mixture spectra. Many of these 

studies have to use reference spectra or database to find the pure spectra. During the 

past few years, Dr. Garland and his group have developed a series of algorithms based 

on the Entropy Minimization and singular value decomposition (SVD) to get the pure 

spectra from mixture spectra mathematically. By using these algorithms, pure spectra 

can be reconstructed without relying on prior information. These algorithms are also 

very useful in studying chemical reactions. 

 

These algorithms have been successfully used in reconstructing pure FTIR, UV, 

RAMAN spectra in non-reactive or reactive systems. The latest algorithm, Band Target 

Entropy Minimization (BTEM), has been successfully applied to studying mechanisms 

of chemical reactions and to find the spectra of unstable components. Currently, these 

algorithms are expected to handle other spectroscopic data such as Mass Spectra, XRD, 

and NMR. Due to the specific features of each type of spectrum, effort has to be 

invested to modify the algorithms for the use in a particular type of spectroscopic data. 

 

Mass spectroscopy is widely used nowadays in chemical analysis. Different from other 

kinds of continuous spectroscopies like FTIR, the mass spectroscopy is discrete. 

Another aspect of mass spectroscopy is that the pattern for every pure component 

spectrum is not fixed. It varies from time to time and from machine to machine.  

 

The original entropy minimization function usually uses 1st, 2nd and 4th order 

derivatives, which would cause problem when non-differentiable discrete data like 

mass spectra used. In this present work, discrete spectra, MS, are studied by using 

entropy minimization algorithm to reconstruct pure component spectra from mixture 



 vi 

spectra.  

 

In this thesis, first, a special objective function for discrete spectra is developed to 

reconstruct pure component spectra from mixture spectra. Peak heights instead of their 

derivatives are used in the objective function. The algorithm is computationally 

efficient as fewer mathematical operations are needed to evaluate the objective 

function.  

 

Secondly, the effect of noise on the system is studied. A method using weighted 

information VT vectors is proposed to reduce noise effect in the system. This algorithm 

weights VT vectors according to their contribution to the total variance of the 

observations. Therefore, it makes the system much less sensitive to the noise present in 

the system.  

 

Thirdly, a two-peak/band targeting method (tBTEM) is used to deal with overlapped 

peaks. It uses two peaks into targeting rather than one peak as in BTEM. The two-peak 

targeting method can rearrange the objective function values of different pure spectra, 

which could find out all pure spectra with their highest peak from mixture. In addition, 

it can be extended to deal with highly overlapped systems by using multi-peak in 

targeting. Due to the use of two peaks, it is also less sensitive to the noise because big 

signal to noise ratio is used. 

 

Fourthly, an exhaustive search method is proposed to find all components in a 

synthesized mixture with 10 components. In this method, several criteria have been 

used in discarding bad, duplicated and combined estimated spectra.  

 

Fifthly, a method called fast multi-start simplex method (FMSS) is carried out to 

accelerate the optimization speed. FMSS uses a multi-start method to find global 

minimum and to discard non-promising start points in advance by using different stop 

criteria at different searching steps. The method dramatically reduces the optimization 
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time compared with the multi-start simplex method. Compared with the popular 

optimization method, simulated annealing, it is also much faster in reconstructing pure 

mass spectra. 

 

Finally, the new set of algorithms for reconstructing discrete spectra from mixture is 

tested successfully on a real MS data set which contains four components. Some 

strategies to lower the non-stationary effect are discussed.  
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BTEM and tBTEM Methods 

A   Experimental mixture data matrix 

â    Normalized estimated spectrum/spectra 

estâ    Un-normalized estimated spectrum 

c   Concentration of pure component (s)  
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F   Penalty function term 
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Chapter 1: Introduction 

 

In chemical sciences, one constant challenge is to identify pure components from 

mixtures and/or evolving reactive systems. Usually, one attempts to purify/separate the 

components before analysis. To date, many advanced combined analytical instruments, 

e.g. GC-MS, HPLC-MS and HPLC-NMR, have been used to perform separations, 

obtain pure component spectra and finally present positive identification of the pure 

components. Even aided with these state-of-the-art analytical instruments, there are 

many types of situations where separation is difficult (i.e. a mixture with tens of 

components in it) or even impossible (i.e. reactive systems with transient or labile 

species). Moreover, it is difficult to apply traditional methods, separation-then-analysis, 

to changing systems such as reactions. Therefore, a lot of effort has been put in 

reconstructing pure component spectra from mixture data without chemical separation 

i.e. interpreting mixture spectra by mathematical methods to get pure spectra.  

 

Today, there are many mathematical methods of interpreting mixtures. These methods 

could be classified into two groups. One group uses reference spectra or spectra 

databases to extract pure component spectra from mixtures. The other group 

reconstructs pure component spectra without using references. The later one is more 

useful in finding unknown component spectra since there is no reference available. Dr. 

Garland and his group developed a series of algorithms (Zeng and Garland, 1998; Pan 

et al., 2000; Widjaja and Garland 2002; Chew et al., 2002) to reconstruct pure 

component spectra from mixtures without prior information. Their algorithms used 

entropy minimization and singular value decomposition (SVD). Besides the abilities in 

reconstructing pure components spectra, these algorithms are very useful in studying 



Chapter 1: Introduction 

 - 2 - 

transition metal homogeneous chemical syntheses (Widjaja et al., 2002; Li, et al., 2002, 

2003a and 2003b) 

 

Till now, many achievements of entropy minimization methods have been made in 

interpreting continuously differentiable spectroscopic data, such as FTIR, RAMAN, 

and UV-VIS. The latest algorithm is band-target entropy minimization (BTEM) (Chew 

et al., 2002). Currently, these algorithms are expected to apply to other spectroscopic 

data such as Mass Spectra, XRD, and NMR.  Due to the specific features of each type 

of spectrum, effort has to be invested to modify the algorithms for their use in a 

particular type of spectroscopic data.   

 

MS is a popular analytical method in many fields such as organic chemistry, food 

analysis, drug analysis and biological analysis. There are many kind of mass 

spectrometry such as electrospray ionization mass spectrometry (ESI MS), membrane 

introduction mass spectrometry (MIMS) etc. MS combined with other devices such as 

GC-MS and HPLC-MS are powerful tools in modern analytical chemistry, they can 

perform good separation and detection at the same time. But when the number of 

components in mixture increases, it would be difficult to separate all the components 

in the mixture at the same time. This kind of problem always happens in food and 

medicine analyses (e.g. Chinese medicines). 

 

Compared with IR and other spectra, mass spectrum has specific features; it is well 

known for its un-differentiable nature. BTEM method demonstrates its ability in 

dealing with continuous spectra. Since BTEM method reconstructs pure spectra with 
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1st, 2nd and 4th order derivatives; it seems that BTEM is not suitable for discontinuous 

data. For discrete data systems, a different kind of objective function should be used.  

 

In BTEM method, an optimization method named simulated annealing (SA) is used in 

finding global minima. Widjaja and Garland (2000) successfully used SA as global 

optimization method to reconstruct spectra on large-scale problems. However, the 

optimization time of SA in reconstructing pure spectra is relatively long. It would be 

better to find a faster optimization method. 

 

In this thesis, effort was devoted to modify BTEM and make entropy minimization 

method applicable to discrete spectra on both simulated systems and real systems. 

Effort also was dedicated to finding a faster optimization method in reconstructing 

spectra. 

 

In this present work, effort mainly focuses on mathematical aspects which include: 

1) Developing an objective function for discrete spectra which uses peak heights 

instead of derivatives. The new objective function needs less computational 

operations than BTEM.  

2) Weighting the abstract VT vectors to get estimated spectra to reduce the effect of 

noise i.e. make the algorithm less sensitive to the number of VT vectors used in the 

system. This is very useful in treating data obtained from real systems. 

3) Using a two-peak targeting strategy (tBTEM) to deal with strongly overlapping 

peaks. With this method, all pure component spectra can be reconstructed with 

their highest peaks. This method also makes the system less sensitive to noise 

because of higher signal to noise ratio. 
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4) An exhaustive search method is developed to find all pure components spectra 

automatically. 

 

5) A global optimization method, fast multi-start simplex method (FMSS), is 

proposed. Compared with SA, it is much faster in reconstructing pure mass spectra. 

FMSS uses different kinds of stop criteria in different steps to speed up its 

searching speed by discarding some non-promising points in advance. Besides its 

fast speed, FMSS is a totally parallel method.  

 

These new mathematical methods are tested on synthesized and real mixture mass 

spectra data sets. When these new methods are applied to real mass spectra, some 

experimental strategies are used to lower the non-stationary effect.  

 

In this thesis, these contributions are organised as follows: Chapter 2 is a literature 

review of chemometrics development, entropy minimization methods, chemometrics 

methods in MS, and optimization. In chapter 3, the special aspects of mass spectra and 

reasons of modifying BTEM are discussed, and mathematical modifications are 

described in detail. The methodology of fast multi-start simplex optimization method 

(FMSS) is also discussed and presented in detail in this chapter. In chapter 4, these 

new mathematical methods are tested by synthesized mixture data; their advantages are 

discussed and shown by different examples. In chapter 5, these new algorithms are 

tested on real mass spectra data. Special features of real mass spectra and experimental 

strategies which are used to lower non-stationary effect of MS are discussed. 

Conclusions and discuss of future works are presented in chapter 6. Finally, references 

are attached at the end of the thesis.  



Chapter 2: Literature Review 

 - 5 - 

Chapter 2：Literature Review 

 

In chemical engineering, especially in chemical reaction engineering, studies of 

mechanism and kinetic of chemical reactions play important roles in the development 

of chemical theories. Based on the understanding of the processes of chemical 

reactions, it would be feasible to design, optimize and control chemical reactions. 

Furthermore, in chemical industries, the high yield and reproducibility of the targeting 

components are highly desired. Kinetic studies could provide a basis to achieve these 

goals. Today, mechanism and kinetic studies are still very active and challenging areas 

(Garland et al. 1997) although they are very old sciences.   

 

In terms of the mechanism and kinetic of a chemical reaction, there are some very 

important questions that should be answered. They are:   

(1) How many observable species present in the reaction system?  

(2) How many observable reactions take place in the system?  

(3) How the unknown observable species look like?  

In many cases, the initial reactants are known. In most cases, the resultants are known 

too. In terms of reactions, additional information concerning the species and reactions 

presenting in the system may not always be available especially when transient, 

reactive or labile species are presented in the systems.  
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Computer aided analysis of in-situ spectroscopic measurements could help to solve 

these problems and allow modelling complex processes since it does not interfere with 

systems and would get the total information of systems. However, it is usually difficult 

to interpret of spectroscopic measurements obtained from reactive systems. These 

difficulties come not only from the complexity of the large amount of data but also 

from the absence of reference data if newly observed but still unidentifiable transient 

species presented in system. Also, the presence of random experimental error as well 

as noise in the spectra would make the interpretation difficult. 

 

Effective interpreting chemical data which are gotten from various analytical 

instruments is very important. Mathematical methods which could analyze the data and 

get exact and meaningful chemical information could greatly help us to achieve this 

aim. Computer aided analytical methods have been received considerable attention in 

the past decades. A research area named “chemometrics” has developed fast. 

Chemometrics is a science that combines mathematics and statistics with chemistry to 

handle, interpret even predict chemical data. Powerful chemometric methods have 

opened new vistas and provided useful solutions to many complex chemical problems. 

(Kowalski, 1980; Frank and Kowalski, 1982; Delaney, 1984; Brereton, 1987; Brown et 

al., 1988, 1992, 1994 and 1996; Brown, 1990; Lavine, 1998 and 2000). 

 

Among many chemometric methods, one of the most important techniques is factor 

analysis (Malinowski, 1991 and 1999), especially the principal component analysis 
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(PCA) and singular value decomposition (SVD). These techniques demonstrated their 

abilities in extracting real factors associated with the number of components and 

reactions from a large number of experimental data which are linearly combined by 

different components. Among many applications of PCA and SVD, few of them focus 

on on-line chemical reaction (Furusjoe et al., 1998; Bijlsma and Smilde, 1999; Bijlsma 

et al, 1998). Recently, there is a kind of method which combines SVD and entropy 

minimization in finding pure spectra and dealing with reactive chemical reactions. This 

kind of method demonstrates as a powerful tool in studying mechanism and kinetic of 

chemical reactions and finding elusive components (Li et al., 2002). The latest 

algorithm of this kind of method is called band-target entropy minimization (BTEM) 

(Chew et al., 2002).  

 

As mentioned in chapter one, the emphasis of present work is to develop the numerical 

techniques to apply BTEM to discrete spectra. Based on this reason, the outline of 

chapter 2 is as follows. Section 2.1 discusses the theoretical basis of SVD. Section 2.2 

mainly focuses on entropy minimization methods. Section 2.3 discusses the methods 

reconstructing pure spectra with/without prior information and entropy minimization 

method on reconstructing pure spectra with SVD method. In section 2.4, the topic is 

mainly on chemometric methods on discrete data such as mass spectrometry. 

Optimization methods are discussed in section 2.5.  
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2.1  Singular Value Decomposition (SVD) 

When a large dimension chemical matrix needs to be studied by chemometric methods, 

techniques to lower the matrix of data to the lowest dimension are needed. The 

mathematical methods for determining the number of real factors such as species and 

reactions are called eigenanalysis, these methods yielding eigenvalues and associated 

eigenvectors of a matrix. The four most commonly used methods are SVD (Shrager, 

1984 and 1986), the power method (POWER), the Jacobi method, and non-linear 

iterative partial least-squares (NIPALS) (Winter, 1992). 

 

Singular value decomposition is a very powerful technique in dealing with sets of 

equations or matrices that are either singular or numerically very close to singular. 

SVD allows one to diagnose the problems in a given matrix. SVD is the preferred 

algorithm and the most stable (Lawson and Hamson, 1972; Shrager 1986) under the 

widest range of applications. SVD can distinguish eigenvectors which have minute 

difference. For large matrices involving thousands of scalars, the use of SVD is 

preferable (Shrager 1986). With these advantages, SVD is more and more popular.  

 

When performing singular value decomposition on a spectroscopic data matrix A, the 

matrix A is expressed as equation (2.1) (Shrager 1986; Scheick, 1997). 

T
kkkk VUA υυυυ Σ ×××× ××=        (2.1) 

Matrices U and V are orthonormal singular vector matrices that satisfy UTU = VTV= I, 

where I is an identity matrix. Matrix Σ is a diagonal matrix whose diagonal elements, 
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called singular values, are equal to the square roots of the respective eigenvalues. The 

matrix containing the singular values Σ contains a square diagonal matrix Sk×k in the 

first k columns and a zero matrix Ok×(v-k). If the data matrix is square, the SVD problem 

reduces to the classic eigenvalue problem (the jth singular value is related to the 

eigenvalue λj as the square root). The singular values in Σ are arranged in decreasing 

magnitude, representing the decreasing contribution of each corresponding vector in 

VT to the total variance of the signals, i.e., the first few vectors contain a significant 

amount of meaningful information while the latter vectors contain considerable noise.   

 

In real chemical processes, let k denotes the number of spectra taken and υ denotes the 

total number of channels (commonly υ >> k), an Ak×υ data matrix can be obtained 

when all spectra are collected. It is assumed that both k and υ are greater than s, the 

number of components in the data set. The set of spectroscopic measurements is 

related to pure component spectra for the s observable species denoted as as×ν, the 

relative concentration of the s species and the error are denoted as ck×s and εk×ν, 

respectively.  It has been mentioned in considerable detail elsewhere (Garland et al. 

1997) that as×ν can usually be considered as constant, and the error matrix εk×ν 

represents random experimental error, instrumental error and non-linearity in the 

absorptivities.  

    υυυ ε ×××× += ksskk acA         (2.2) 

When performing SVD on a set of experimental spectra A which is obtained 

sequentially with time, a set of singulars value or eigenvalues are gotten. For an ideal 
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case without any kind of noise, the real factors should equate to the number of 

non-zero singular values. For real system, the number of non-zero singular values is 

always greater than that of real factors. The significant singular values correspond to 

real factors while the remaining represents the noise in the system. To determine the 

number of significant factors, visual checking or statistical testing (Malinowski, 1988) 

should be incorporated. Filtering techniques (Smit, 1992a and 1992b) are always 

preformed before SVD to enhance the quality of data to get correct factors. 

 

In fact, VT is an abstract matrix associated with the pure component spectra matrix as×ν 

(Malinowski, 1991). If there are no nonlinearities in the system (and this is seldom the 

real case), then the first s VT vectors contain all the information associated with the 

absorptivities of pure components, â , and the two matrices are related by a square 

transformation matrix T as shown in equation (2.3). Similarly, the estimated 

concentration matrix ĉ  is related to U and the rotation matrix T in equation (2.4). It is 

important to point out that in most real physically meaningful situations, equations (2.3) 

and (2.4) are at best crude approximations. First, the spectroscopic problem is not 

linear, and secondly, one does not know the number of species s present in advance.                    

T
ssss υυ ××× ×= VTâ              (2.3) 

1ˆ −
×××× = sssssksk TUc Σ        (2.4) 
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2.2  Entropy minimization method in chemometrics  

Entropy minimization is known to be a powerful pattern recognition tool (Watanabe, 

1981) and is associated with the principle of simplicity. Sasaki et al (1983) have 

shown that it is possible to transform the eigenvectors from the second moment of the 

spectroscopic data (i.e. basis vectors similar to the right singular vectors VT), into a set 

of vectors which approximate the shape of the pure component absorptivities. The 

procedure is based on solving a Shannon’s entropy minimization problem (Kanpur, 

1993). The Sasaki’s algorithm used equation (2.5) as its objective function, where the 

entropy function hsν is given by the normalized second derivatives of the estimated 

absorptivities (equation 2.6).  

)ln(hh (G) min s

S

1 1
sT w.r.t. ss

υ

υ

υ∑∑−=
×

     (2.5) 

∑
=

= L

1

"
s

"
s

sν

a

a
h

υ
υ

υ

ˆ

ˆ
        (2.6) 

Sasaki used equation (2.3) to get estimated pure spectra υ×sâ  by using a square 

matrix ss×T . Equation (2.3) reconstructs out all potential pure spectra in one 

optimization. This method is called “square s×s problem”. For an unknown system, the 

number of species s is unknown. When Sasaki’s entropy minimization method is 

applied to get pure spectra, an arbitrary number of species, s, should be used, i.e. the 

arbitrary number should exactly equal to the real number of components in system.  

 

In Sasaki’s method, two constraints should be imposed to ensure the non-negativity of 

estimated pure component spectra and concentrations; it is achieved by introducing a 
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penalty function into the objective function, i.e. equation (2.7). Note that the pure 

component spectra and concentrations matrices are related to the rotation matrix ss×T  

in equations (2.3), (2.4) and (2.6), respectively. 

)c,aP()ln(hh  (G) min s

S

1 1
sT w.r.t. ss

ˆˆ+−= ∑∑
×

υ

υ

υ     (2.7) 

where P is the penalty function and defined by equation (2.8), F1 and F2 are the 

functions associated with the pure component spectra and concentration matrices 

respectively; γa and γc are penalty factors that are empirical constants. The detail about 

these equations, refer to Sasaki’s paper (1983) 

)(F)(F),P( 2c1a cc ˆˆˆˆ γγ += aa        (2.8) 

 

Following Sasaki’s method, Zeng and Garland (1998) suggested the use of a 4th order 

derivative (for high quality differentiable data) within an entropy type functional and 

reformulated an appropriate objective function. Such entropy function is anticipated to 

produce final approximations for pure component spectra which are smoother and 

more symmetric, and possess fewer spectral artefacts arising from other components in 

the multi-component solution. 

 

Pan et al (2000) proposed an algorithm using weighted spectral regions either on the 

entire spectrum or part-of-the-spectrum. This method is potentially very useful for 

problems where signal variance differs greatly from one region of the spectrum to 

another, and where one spectral window may contain very highly overlapping features.   
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The above efforts dealt with systems possessing very few (e. g. two) components, due 

to the limitations of the model used and the optimization algorithms used. Widjaja and 

Garland (2002) successfully extended the entropy minimization algorithm to a 

synthetic seven-component system by using Corana’s simulated annealing (SA) 

(Corana, 1987) as the optimization method, so that large-scale entropy minimization 

problems with multiple observable species could be solved. In above-mentioned 

algorithms, the rotation square matrix T with dimensions of s×s has to be solved at the 

same time by an optimization method. This “square problem” may encounter 

computational difficulties when s increases, band positions shift and band shapes 

change.   

 

As mentioned previously, entropy minimization methods have problem in deciding the 

number of components s in system. For a real system, the observable number of 

species would be determined by the significant number of eigenvectors. There are 

several statistical criteria for determining the significant number of eigenvectors 

(Carey, 1975) in entropy minimization methods, Malinowshi F-test method 

(Malinowshi, 1990 and 1999) was used to determine the number of observable species 

in system.  

 

Other than reconstructing pure spectra from mixture, entropy minimization method can 

be used in many fields. Chen et al (2002) used Shannon’s entropy minimization 

method in automatic phase correction of 1H NMR spectra. The results of automatic 
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phase correction are found to be comparable to, or perhaps better than, manual phase 

correction. Chen and Garland (2002) applied entropy minimization method to 

precondition in-situ FTIR spectra. By their method, background spectra such as H20 

and CO are deduced from experimental spectra that makes kinetic research easier.  

 

2.3  Band-target entropy minimization (BTEM) 

Based on entropy minimization method, Chew et al (2002) developed a band-target 

entropy minimization method (BTEM). Different from reconstructing all the pure 

spectra at the same time, BTEM reconstructs one pure spectrum every time. For square 

problem entropy minimization method, when a certain number of VT vectors used in 

optimization, the same number of pure spectra will be reconstructed even the 

assumptive number of components s is wrong. In BTEM, whatever the number of VT 

vectors used in the optimization, the result is always one spectrum. It is less important 

to know the exact number of observable species in BTEM. A rough number of VT 

vectors, say j > s, are taken from VT matrix, these j vectors are then transformed, 

one-spectrum-at-a-time, into an estimate pure component spectra. In this way, the 

“square problem” of solving s×s unknowns is avoided and instead, each with 1×j 

unknowns is solved. The utility of BTEM in solving the “blind” spectral reconstructing 

problem (e.g. given no prior information) arises because (1) no assumption concerning 

the number of observable species is necessary (2) spectral quality after reconstruction 

is greatly improved because non-linearity can be taken into account by targeting a 

small band of peak and (3) the algorithm is goal oriented – one targets an observed 
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feature in VT and then recovers the associated entire function (pure component 

spectrum). 

 

The BTEM algorithm is initiated by targeting a feature in the matrix VT = [VV×k, V 

v×(v-k)]T, where only the first k vectors have physical meaning (k experimental 

measurements were made). The algorithm retains this interesting spectral feature and 

forces a reconstruction of the associated entire pure component spectrum. In terms of 

mathematical aspects, the main difference between the original square problem entropy 

minimization and BTEM is the way to reconstruct pure spectra. The estimated pure 

spectrum in every reconstruction is shown in equation (2.9) 

T
jj1

est
νν ××× ×= VTa1        (2.9) 

The objective function of BTEM is similar to that of square problem entropy 

minimization. Compare with “square problem” entropy minimization method, BTEM 

uses a column T1×j to replace the rotate square matrix Ts×s as in equation (2.3) and 

reconstructs spectra one by one.   

 

The BTEM algorithm has been successfully applied to many real systems such as 

FTIR (Chew, 2002), RAMAN (Ong, 2001; Sin, 2002) and in-situ reactions (Widjaja et 

al, 2002) and has shown its considerable usefulness in finding unknown components 

and dealing with the pure component spectra of unstable species (Li et al., 2002). It 

should be noted that these applications involved only continuous spectra like FTIR and 

RAMAN.  
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2.4  Pure spectra reconstruction methods in Mass spectrometry 

Different from those continuous spectra such as IR and RAMAN, mass spectra are 

discrete and non-differentiable. Different kinds of chemometric methods are used to 

deal with MS. Sharaf and Kowalski (1982) reported applications of Lawton and 

Sylevstr (Lawton and Sylevstr, 1971) self- modelling curve resolution methods to 

resolve overlapping GC-MS peaks of a binary mixture. Chen and Huang (1981) 

presented a method of spectral estimation for three components. Their method required 

regions of unique spectral response for each of the components. Ritter et al. (1976) 

used factor analysis of mass spectra to identify the number of components in mixture 

and predicted other unknown mixture. In their method, they discarded some particular 

m/z positions from the data matrix and identified components that have unique mass 

positions. Visual checking is needed in their method to delete some m/z positions. The 

peak discarding method would be useful in finding major components but would be 

dangerous in dealing with minor components.  

 

Feng and Liang (2000) proposed an approach to retrieve components’ mass spectra. 

The procedure first checked the weighted reference to determine the presence of the 

reference spectra in a mixture and then used a non-negative least squares regression to 

find the contributions of the components in the mixture. In Gong’s newly published 

papers, several methods are used to retrieve pure mass spectra from mixture especially 

to study Chinese traditional medicines (Gong et al, 2001a and 2001b). In these 



Chapter 2: Literature Review 

 - 17 - 

methods, reference database should be used to search possible pure components in the 

mixture just like many other library search methods (Tong and Cheng, 1999) in MS.  

 

Phalp et al (1995) reported a modified Simple-to-use interactive self-modelling 

mixture analysis (Windig, 1992) (SIMPLISMA) approach (TSIMPLISMA) that used 

the concept of “representative-spectra” of MS. Instead of using the pure-variables in 

the SIMPLISMA, TSIMPLISMA defines and evaluates the purity of the spectra.  The 

spectrum with the highest purity value represents the “representative” spectrum for a 

component and the contributions from this component are removed from the data set.  

The procedure proceeds sequentially for the remaining components. The incorporation 

of the expert knowledge also contributes to the usefulness of TSIMPLISMA. Windig 

et al. (2002) combined conventional SIMPLISMA (for pure variables of wide peaks) 

with second-derivative spectra data (for pure variables of narrow peaks, overlapping 

with the wide peaks) get pure spectra. In summary, the identification of pure 

component mass spectra from mixture spectra usually requires some sort of 

information concerning the reference spectra or expert knowledge. Although 

SIMPLISMA method does not need reference, when a mixture presented, an arbitrary 

number of pure components in system need to be specified, also their estimated results 

always have negative MS peaks. 
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2.5  Optimization 

Optimization methods are used in many fields of science, engineering and business. 

They are also frequently used in chemometrics field.  

 

Optimization methods can be classified into two groups in terms of their optimization 

problems. One group is constrained problem, the other is unconstrained problem. 

Commonly, solving a constrained problem is not only time-consuming but also much 

more difficult than its counterpart – the unconstrained problem. In practice, 

unconstrained optimization is usually preferred. A constrained optimization is easy to 

be dealt as an unconstrained optimization method by converting its constraints to 

penalty functions. 

 

There are many methods dealing with unconstrained problems. Each method has its 

advantages and disadvantages in different kinds of problems. In general, computational 

methods to deal with unconstrained problems use iteration methods. These 

optimization methods may fall into two categories: direct methods and indirect 

methods. Direct method such as simplex (Spendley et al., 1962) and random search 

method (Dixon and James, 1980) use only the value of objective function. The indirect 

methods such as steepest descent method and Newton’s method (Edgar et al., 2001) 

use objective functions derivatives in finding their search directions whenever their 

derivative formulas are implicit or explicit. Most of the time, the objective functions 

are differentially implicit, therefore numerical differential methods are needed which 
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would result into computational inefficient and make problems more difficult. 

Compared with indirect methods, direct methods generally are less efficient but much 

robust.  

 

All optimization methods also can be classified as local minima optimization methods 

or global optimization methods. Local optimization methods would only find the 

nearest local extrema depending on their initial points. Global optimization methods 

can find global minima wherever the initial points are. Global optimization methods 

can be sub-classified as two groups: exact methods and heuristic methods. Exact 

methods can find the global optimization points and can prove that they have found. 

Branch-and-bound methods (BB), methods based on interval arithmetic (Kearfott, 

1996) and some multistart procedures (Rinnooy and Timmer, 1987; Locatelli and 

Schoen, 1999) belong to the category of exact methods. Heuristic methods can not 

prove that they have found global minima although they would find often. Simulated 

annealing (SA), genetic algorithm (GA) and scatter search belong to heuristic method.  

 

BTEM used simulated annealing (SA) method as its global optimization method. SA 

method is a popular method today. Original SA method (Kirkpatrick et al, 1983) is a 

single point stochastic search technique where in each iteration, a neighbour point, 

whenever higher or lower, is created from a current solution by an acceptance 

probability. SA is a naturally sequential algorithm and difficult to be a parallelize 

algorithm (chen et al., 1998). There are many efforts on extending SA into parallel 
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algorithm (Onbasoglu and Ozdamar, 2001; Chu et al., 1999). Chen et al. (1998) 

reported a hybrid parallel SA method with GA to take both methods’ merits. Although 

SA is a global optimization method, its optimization result sometimes is affected by 

the starting points.  

 

Before BTEM method, Sasaki, Zeng and Pan used Nelder and Mead’s simplex method 

(Nelder and Mead, 1965) as their optimization method in a low dimension square 

problem entropy minimization. Simplex method is an efficient and robust method 

compared with other direct search method. Although simplex method is not a global 

method, it is not easy to be trapped on a local minimum and has the ability of 

following the gross behaviour of the test functions despite many local minima. 

Simplex method is fit for solving problems with small number of variables. For 

large-scale problem, it is not reliable. Huang et al (1998) extended the simplex method 

to a global optimization method to synthesized and real magnetoencephalography 

problems by using many random starting points to find many local minima. By 

comparing these minima, the lowest value is treated as the global minimum. This kind 

of method is a heuristic method for it can not guarantee to find a global minimum. But 

if enough start points given, the global minimum would be found.  
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Chapter 3: Development of tBTEM 

 

In this chapter, emphasis is placed on finding the right kind of objective function form 

and fast optimization method for reconstructing pure component spectra from discrete 

data. Band-target entropy minimization (BTEM) is mainly used for dealing with 

continuous data such as FTIR, UV and RAMAN. BTEM’s objective function uses 1st, 

2nd and 4th derivatives and does not fit for discrete data. Since the non-differentiable 

nature of discrete data, it would be very important to find a suitable objective function 

for discrete data. On the other hand, the optimization method used in BTEM is simulated 

annealing (SA). Although SA’s performance in BTEM is very good, its optimization 

speed is relatively slow especially when the number of data channel υ increases. 

 

3.1  BTEM 

BTEM algorithm reconstructs one pure component spectrum at every reconstruction by 

targeting a single peak (or a small range of interval) every time. The detailed steps are 

shown below.  

1. Perform singular value decomposition (SVD) on a spectroscopic data array Ak×v.  

T
kkkk VUA υυυυ Σ ×××× ××=       (3.1) 

where k is the number of experiments taken, υ is the number of spectroscopic data 

channels (k < υ). Since the VT vectors after kth vector has no physical meaning in 

matrix TV υυ×  and it can be truncated to T
kV υ×  (Garland et al., 1997; Golub and Van 

Loan, 1996, Malinowski, 1991). 
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2. Inspect the right-singular matrix VT
k×υ to identify last k - j vectors that appear to 

represent only noise and discard these k - j vectors. (Usually, every VT vector is 

plotted in a figure and checked. The abscissa and y-axis of the figure represent 

channel number and intensity respectively.) This leaves the truncated right singular 

matrix VT
j×υ (j is the number of VT vectors which will be used in following 

targeting).  

3. Identify an interesting local extremum in the first j singular vectors by checking 

every VT
 vector. This local extremum will be targeted by BTEM. Usually, a small 

interval of wave numbers around the extremum is chosen to deal with peak shift in 

real system.   

4. A set of random numbers is used as an initial guess for the vector T1×j by 

optimization method. T is always updated by optimization method until the right 

value is found. Usually simulated annealing (SA) is used as the optimization 

method.  Then the spectrum aest is estimated by equation (3.2). 

T
jj1

est
υυ ××× ×= VTa1       (3.2) 

5. Normalize the estimated spectrum aest by the maximum peak within the targeted 

region. Let the normalized spectrum be denoted as â . If only a peak instead of a 

small region used, the denominator of equation (3.3) is the value of this peak.  

)max(a'

est
1

1
υ

υ
×

× =
aâ          (3.3) 

where a′ is the targeted region within the estimated spectrum.  

6. Formulate the objective function in terms of the normalized â  

∑ ××+−=
υ

1kυ1υυ ),P(lnhh  min(G) ca ˆˆ       (3.4) 
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where the entropy function is defined by equation (3.5) and the first order derivative 

is used. Usually, 1st, 2nd and 4th order derivatives have been used in the entropy 

function for differentiable spectra, but this varies from case to case. The penalty 

function P is defined by equation (3.6) which contains two terms, non-negativity of 

estimated spectrum and non-negativity of estimated concentrations. These two 

penalty functions are defined in equations (3.7) and (3.8) and their coefficients are 

defined in equations (3.9) and (3.10). The estimated concentration column is 

defined in equation (3.11). 
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7. Check the objective function value G against a stopping criterion. If the stopping 

criterion is not met, then generate another T by the optimization method. Repeat 

steps 4 to 7 until one T associated with a pure component spectrum is reconstructed.  

8. Repeat steps 3 to 7 by targeting another extremum to find the remaining pure 

component spectra.  
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Practically, to find a pure component spectrum, first an interested peak/band is chosen 

from VT vectors. An estimated spectrum will come out after targeting this peak/band. If 

the targeted peak/band is not the highest peak/band within the estimated spectrum, 

another round of targeting should be performed by using the highest peak/band’s 

position within the estimated spectrum. Commonly, the second result would be better. If 

the new peak in the second estimated spectrum is the highest one, it means a pure 

component spectrum was found. The reason for using the highest peak to targeting is its 

greatest signal to noise ratio. Although many pure component spectra can be found by 

their highest peaks, sometimes if more than two components’ highest peaks locate at the 

same position, only one pure component spectrum can be reconstructed by targeting at 

their common highest peak. The others pure spectra should be reconstructed by targeting 

different peaks.  

 

3.2  Modification on objective function for discrete spectra 

The original entropy functional equation (3.4) causes a problem with non-differentiable 

discrete data like mass spectra. Therefore, it was suggested that the peak heights instead 

of their derivatives should be used to formulate the objective function.  It was also found 

that the use of normalized peak heights of estimated spectrum instead of the expression 

of υυ hh ln has good performance in reconstructing spectra. The objective function for 

discrete spectra required less computational time in evaluating the objective function.  

Specially, the following objective function is proposed. 

),P(   (G) min 1k11 ××× += ∑ caa ˆˆˆ υ
υ

υ       (3.12) 
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where the penalty functions are defined similar to that of the BTEM algorithm. They are 

expressed in equations (3.13) and (3.14). 

)(F)(F),P( kcc1aak1 11 ˆˆˆˆ ×××× += caca γγ υυ      (3.13) 
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Besides the changes of the objective function, the number of the coefficients of penalty 

function for non-negativity of estimated spectrum is changed from three to one. In 

general, the objective function for discrete spectra is simpler compared to that of BTEM.  

 

3.3  Weighted VT 

As mentioned in the introduction section of SVD, every VT vector is a unit vector 

because VVT = I. As shown in equation (3.2), every VT vector plays the same important 

role in BTEM algorithm. The BTEM algorithm can not tell the differences between 

vectors mainly containing useful information and vectors mainly containing noise. 

Furthermore, as we know, the vectors in the VT matrix are ordered according to their 

contribution to the total variance of the observations. Therefore, the first few vectors 

associate with real chemically important signals in the system and the rest associate 

primarily with the instrumental and experimental noise. This means even in an nth VT 

vector (n >> the number of components), it would have useful information in it together 

with a large amount of noise. In the original BTEM algorithm, in order to fully use the 

information, a very large number of vectors (>> the number of components) are used in 
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optimization. As mentioned, because the vectors associated with both real signals and 

noise play equal roles in the BTEM algorithm, adverse effects on the spectral 

reconstruction may be introduced when too many VT vectors are used in optimization. 

 

BTEM avoids the problem in deciding or guessing the exact number of species s 

presented in system, as that occurs in square problem entropy minimization. BTEM still 

has difficulty in deciding how many VT vectors j should be used in optimization. To fully 

use the information and not to introduce much noise in system, there should be an 

optimum value of the number of VT vectors which should be used in system. For less 

noise systems, it would be a minor problem; but for noise system, it would be very 

important.  

 

Obviously, it would be advantageous to lower the effect of noise while retaining the 

useful information. Instead of using the VT vectors directly, we multiply the VT matrix 

by a set of weights, namely, the diagonal matrix S that is readily available from SVD 

(see section 2.1).  Thus, the significance of the vectors associated with the real signals is 

increased and the effect of noise is reduced.  In particular, equation (3.2) is modified as 

below. 

)( T
jjjj11

est
υυ ×××× ××= VSTa      (3.15) 

where S is the square diagonal matrix containing singular values (see section 2.1). By 

scaling the right singular vectors, the importance of the noise vectors is reduced during 

optimization. Accordingly, it is less likely that the optimization method becomes 
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trapped in a local minimum. In other words, the optimization is less sensitive to the 

choice of the number of VT vectors.  

 

3.4  Two-peak/band target method 

In Step 5 of the BTEM algorithm, the estimated spectrum is normalized by using the 

maximum value within the targeted band. Since the targeted peak plays a central role in 

retrieving the entire associated spectrum, using a higher peak is advantageous due to the 

larger signal to noise ratio and the result is often less affected by the noise presented. For 

systems having moderately overlapping spectra, the BTEM algorithm is usually 

successful in estimating all the pure spectra with their highest peaks. However, if 

strongly overlapping spectra present at the highest peak position / channel, only the 

spectrum with the smallest objective function value would be recovered. To deal with 

this challenge, a two-peak/band targeting strategy uses a modification of equation (3.3) 

as shown below, where a′ and a″ are the two targeted peaks/bands within the estimated 

spectrum.   

)max(a")max(a'
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×
υ

υ

aâ      (3.16) 

In two-peak/band targeting method, it would be better that the two highest peaks within 

a spectrum are used in equation (3.16).  Since the chances that two pure component 

spectra have their highest peaks locating at the same positions / channels are small, 

permutation for different pairs of the highest peaks provides an exhaustive search for 

pure component spectra.  Consequently, it is possible to recover most if not all the pure 

component spectra that are overlapping.  If extremely overlapping pure component 
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spectra are suspected in the system, e.g. more than two pure spectra whose highest peaks 

locate at the same location, or one spectrum is almost totally overlapped by another 

spectrum; a multiple targeted peak strategy may be employed to handle such a complex 

system.  In these cases, the normalization in equation (3.16) will be replaced by equation 

(3.17). 
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When one peak is targeted, every pure component in the system will have an objective 

function value. Since SA optimization method only finds out the value of global 

minimum, the spectrum whose objective function value corresponding to global 

minimum would be reconstructed out. The other spectra with higher objective function 

values locating at different local minima would not be found. It is found that each local 

minimum would indicate a pure spectrum in one-peak-targeting method, there is no 

local minima indicating mixture spectra which are combined by two pure spectra. When 

more than one peak is used in targeting, the searching spaces are more complex than that 

of single-peak-targeting method. There are many local minima which indicate mixture 

spectra. For example, in two-peak targeting method, there are many local minima 

indicating spectra which are linearly combined by two pure spectra. In three-peak 

targeting-method, there are many local minima whose spectra are combined by two or 

three pure spectra. Therefore, when multi-peak-targeting method is used, it is not always 

good to engage many peaks (e.g. >4 peaks) in targeting. Using many peaks in targeting 

would make the searching space more complex. It would make reconstruction more 
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difficult.  

 

3.5  Overall tBTEM algorithms 

With all those modifications in the previous sections, the overall tBTEM algorithm can 

be expressed in the following steps. 

1. Perform singular value decomposition (SVD) on spectroscopic data array Ak×υ as 

equation (3.1), where k is the number of experiments taken, υ is the number of 

spectroscopic data channels (k < υ). After truncating off physically meaningless 

parts of right singular matrix VT
υ×υ and zero part of diagonal matrix Sk×υ, they 

become to VT
k×υ and Sk×k (Garland et al., 1997; Golub and Van Loan, 1996, 

Malinowski, 1991).  

2. Inspect every right-singular vector in matrix VT
k×υ to identify last k - j vectors that 

appear to represent only noise. Discard these k - j vectors. This leaves the truncated 

right singular matrix VT
j×υ.  

3. Identify two interesting local extrema in the first j singular vectors to be targeted by 

tBTEM. Usually, only these two extrema themselves will be chosen in discrete 

spectra.   

4. A set of random numbers is used as an initial guess for the test vector T1×j by 

optimization method. T is always updated by optimization method until the right 

spectrum is found. Then the spectrum aest is estimated by equation (3.18) 

)( T
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5. Normalize the estimated spectrum aest by targeting two peaks/bands with equation 

(3.19). Let the normalized spectrum be denoted as â .  

)a"max)max(a'

est
1

1 (
ˆ

+
= ×

×
υ

υ
aa           (3.19) 

where a′ and a′′ are the targeting peaks within the estimated spectrum.  

6. Formulate the objective function by equation (3.20) in terms of the normalized â  
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The penalty function P is defined in equation (3.21) to guarantee non-negativity in 

the reconstructed spectrum and concentrations (equation (3.22)).  The estimated 

concentrations are defined in equation (3.23).  

1
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××××× ×××= TT
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7. Check the objective function value against a stopping criterion. If the stopping 

criterion is not met then generate another T by optimization method. Repeat steps 4 

to 7 until one pure component spectrum is reconstructed.  

8. Repeat steps 3 to 7 by targeting other extrema to find the remaining pure component 

spectra.  

 

Other than FTIR and NMR spectra, mass spectra has no (or tiny) peak shift. Commonly, 

for tBTEM, peaks themselves only would be used in targeting. tBTEM could easily be 
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changed to a single-peak targeting method by choosing two same peaks. 

 

3.6  Fast multi-start simplex method (FMSS) 

In addition to different kinds of entropy functions needed to reconstruct continuous or 

discrete spectra, optimization methods play very important role in BTEM to find results. 

The original square problem entropy minimization uses simplex method; but it fails to 

deal with more than 3 components in a mixture. Although simplex is a robust method 

and not easily to be trapped in local minima, it is difficult to find a global minimum in 

higher dimension problems. After Widjaja and Garland (2002) used simulated annealing 

method as a global minimization method, square problem entropy minimization and 

BTEM can deal with more than 10 components. For continuously differentiable data 

such as FTIR and RAMAN, with υ = 2500-10000 channels of data, and j = 25-100, 

typical workstation CPU time for a single spectral reconstruction is 6-12 hours (dual 

Intel Xeon 500 MHz CPUs, 2GB RAM, Win NT 4.0 workstation).  

Multi-start methods attempt to find a global minimum by starting the searches from 

many different starting points. Many papers focus on this kind of method such as 

multilevel single linkage method (MLSL), Multiple Local searches with clustering (LC)

(Törn, 1978), and controlled random searching (CRS) (Price, 1978). In these methods, 

none of them embeds local minima searching methods.  

 

Other than these multi-start methods which do not include local minima searching 

methods, there is another kind of multi-start method which embeds some local minima 
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searching methods. The latter methods start searching from many random starting points 

by using local minima searching methods. Since every starting point reaches a local 

minimum, if many starting points are used, the lowest one would be the global minimum. 

However, the latter methods can not guarantee to find global minima. This kind of 

multi-start method has one advantage that it can find many different local minima other 

than global minimum. Multi-start methods combined with local minima searching 

methods should be classified as heuristic searching methods.  

 

Simplex methods are local minima searching methods. Spendly, Hex and Himsworth 

(1962) first formulated a sequential simplex method in 1962. It used an equilateral 

polyhedron in search. Nelder and Mead (1965) refined the Sequential Simplex by 

permitting the geometric figures to expand and contract continuously during the search 

to improve its searching efficiency. The Nelder-Mead’s Simplex algorithm is an elegant 

method for function minimization. Although it is not a global optimization method, it is 

able to crawl out of some local minima to find better minima. Compared with gradient 

methods such as Powell's method, Nelder-Mead’s simplex method is generally less 

efficient but more robust. It neither uses line minimizations nor builds an implicit model 

of the derivative structure of the function. These aspects of the Nelder-Mead simplex 

method make it quite popular.  

 

Huang et al (1998) successfully used multi-start simplex method to deal with simulated 

and real magnetoencephalography problems. They combined Nelder-Mead’s simplex 
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method with a great number of initial points, after every starting point reaches its end 

points with the same stopping criterion, all objective function values were compared and 

the lowest one was assumed to be the global minimum. 

 

Based on the idea of multi-start methods mentioned above, a global optimization 

algorithm named fast multi-start simplex method (FMSS) is proposed. It dramatically 

speeds up the searching speed by using different stopping criteria in different searching 

steps in order to discard points which are not promising in the future. In BTEM 

algorithm, FMSS is successfully used to reconstruct pure component mass spectra on 

both synthesized and real data sets. Compared with multi-downhill simplex method, it 

dramatically reduces the computational time. Also it is much faster than SA in 

reconstructing pure mass spectra.  

 

The following procedure specifies the FMSS algorithm. First, FMSS starts from many 

starting points and converges every starting point at a coarse stopping criterion. Then it 

retains some points that have the smallest objective function values (the number of the 

retained points is smaller than the number of the starting points). Second, from these 

retained points, a new round of searching, which uses a finer stopping criterion, is 

performed and a smaller number of points are retained again. After several rounds of 

searching by refined stopping criteria, the final objective function values are compared 

and the lowest one is assumed to be the global minimum. The detailed steps are shown 

below. 
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1. Choose a number of starting points n0, reduction coefficient of number of searching 

points 0 < rp < 1, coarse stopping criterion ε0, stopping criterion reduction 

coefficient rε, and the number of searching rounds R.  

2. 1st searching round:  start searching from every starting point by Nelder-Mead 

simplex method using the stopping criterion ε0, compare these different minima and 

retain the n1 = n0× rp temporary terminal points with smallest objective function 

values. If n1 is a fraction, then round it to its nearest bigger integer. These temporary 

terminal points will be used as starting points in the next round.  

3. 2nd to Rth searching round:  start searching from every retained point from the 

previous round with a decreasing stopping criterion )1(
0 )( −×= i

i rεεε (i: the ongoing 

searching round number, 1 ≤ i ≤ R). Retain ni = ni-1× rp temporary terminal points 

according to their objective function values.  

4. Compare the nR objective function values, which are obtained from Rth searching 

round, to get the lowest one. The obtained smallest objective function value is 

assumed as the global minimum.  

 

Although a fixed reduction coefficient rp is used in the above steps, a changeable 

reduction coefficient may be used in different situations. For example, when the number 

of initial points is huge, in the first few searching rounds, one may use a small reduction 

coefficient rp so that to reduce the number of points fast.  After that, a bigger coefficient 

could be used in the following searching rounds. 
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The FMSS method obviously is a heuristic method. As a common property of heuristic 

methods, it can not guarantee to find a global minimum, but if enough random starting 

points are given, it would find the global minimum.  
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Chapter 4: tBTEM Tests on Simulation System 

 

In this chapter, tBTEM and FMSS algorithms are tested on synthesized mixture data 

sets.     

 

4.1  Tests on tBTEM algorithm 

4.1.1 Simulation method for synthesized data set 

Ten real pure component spectra are used to synthesize mixture data set for testing 

tBTEM. These ten components are ethanol, hexane, toluene, acetone, acetonitrile, 

cyclohexene, acetic acid, (CH3)2CHOH, CH2Cl2 and CH3CH2COCH3. The reasons of 

choosing these ten organic components are:  

1) All of them have low molecular weights (< 100).  

2) There are many same alkyl groups such as CH3- and CH3CH2- and functional groups 

such as CH3CO-. 

In MS detection method, these components would have many same charged fragments 

in electric-impact ionization (EI) method such as CH3
• and CH3CH2

•, therefore there are 

many overlapped channels in mixture spectra. 

 

Every pure component mass spectrum is obtained from GC-MS (GC: Hewlett-Packard 

6890, MS: Hewlett-Packard 5973) with its pure sample. Each spectrum spans m/z = 10 – 

100 with 1 m/z interval. The ionization method is EI. Their pure spectra are shown in 

Figure 4.1. 
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Fifty synthesized mixture data were generated from these 10 pure experimental spectra 

and minor white noise was added to the spectra. This data set was simulated with 

randomly generated non-negative concentrations for each mixture (arbitrary units, range 

from 0 to 1). Accordingly, a concentration matrix, random generated from 0 to 1, for the 

50 mixtures C50×10 was obtained.  In order to make a meaningful simulation, all pure 

component spectra were first scaled to a maximum peak height of 106 (arbitrary unit).  

The mass spectra of the mixtures were simulated with equation (4.1), where P denotes 

the pure spectra of the ten components and ε the noise matrix that was randomly 

generated with a level of 0 to 102.  In the present study, the total channels for each 

spectrum was set to 91. The 2-D array set of 50 simulated mass spectra of the mixtures is 

shown in Figure 4.2. 

9150911010509150 ε ×××× +×= PCA       (4.1) 

Figure 4.1: Pure mass spectra of 10 organic components 
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Figure 4.2:  2-D simulated fifty mixture mass spectra 
 

4.1.2  Parameters of SA optimization method 

SA parameters: starting temperature T0 = 10, step variation Ns = 20, temperature 

reduction coefficient Tr  = 0.85, and TN = max [(100, 5×N)/Ns], where N is the number 

of decision variables to be optimized. 

 

4.1.3 Results 

4.1.3.1 Effect of noise presented in tBTEM system  

In this section, studies focus on how the noise in system affects the estimated results. 

tBTEM objective function used in this test is not weighted. Since there are 10 

components present in synthesized mixture, the choices of the number of VT vectors j are 

from 10. Table 4.1 shows the estimated results at different number of VT vectors used in 

optimization. All these estimated results are gotten by targeting at m/z 43 and 58. To 
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evaluate the similarity between the estimated spectra and reference spectrum 

(CH3COOH), an inner product (IP) is used. The inner product provides a measurement 

of the degree of similarity between two spectra. When the two compared spectra are 

normalized to unit vectors, the IP value should fall in the range of 0 to 1. If two spectra 

are identical, the IP equals 1.  On the other hand, if the IP is 0, the two spectra are 

orthogonal.  

 

In Table 4.1, every objective function value is the lowest one among five repeated tests 

under the same set of parameters, and its corresponding estimated spectrum is used to 

get IP value. The reference pure spectrum, CH3COOH, has an objective function of 

2.0323 while targeting at m/z 43 and 58. The effect of noise in system is shown in Figure 

4.3 and Figure 4.4.  

Table 4.1: Noise effect on optimization 
Number of  VT 
Vectors used 

Objective 
Function Value 

 
IP Value 

Number of  VT 
Vectors used 

Objective 
Function Value 

 
IP Value 

10 1.9813 0.9985 23 2.0396 0.9395 
15 1.9791 0.9982 24 2.0528 0.9188 
17 1.9792 0.9981 25 2.0030 0.9215 
18 1.9796 0.9977 26 2.0260 0.9309 
19 1.9785 0.9980 27 2.0055 0.9069 
20 1.9781 0.9980 28 1.9991 0.9134 
21 1.9831 0.9951 2 9 1.9799 0.9388 
22 2.0642 0.9143 30 1.9770 0.8961 

 

From Figure 4.3, the objective function values slowly decrease at first. When the 

number of VT vectors increases to 21, the objective function value begins to increase and 

there is a jump at 22. After that the objective function values decrease. From Figure 4.4, 

the trend of IP values at different number of VT vectors is similar to that of objective 

function values. At the beginning, the estimated results are good, when the number of VT 
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vectors reaches 21, the estimated spectra become worse. In other words, if the number of 

VT vectors used in BTEM is far more than the number of species in mixture, the 

estimated result will be affected by noise. In this synthesized data set, the noise level is 

quite low. So the critical number of VT vectors (22) is far bigger than the real number of 

species (10) in system. While in a real system, the noise level is far bigger than that of 

this synthesized case, the effect of noise in real case would be more prominent.   

 

It would be better to have an example of noise effect of real system; but for mass spectra, 

problem is encountered in choosing reference pure spectrum. As we know, pattern for a 

pure component spectrum is not fixed. At different machines, there would have different 

kinds of patterns. Even in one machine and in one injection, the patterns would change at 

different retention time due to non-stationary effect. It would be a problem to choose the 

reference spectrum. So it would not be feasible to compare the results between the 

estimated spectra and reference spectrum.  
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Figure 4.3: Changing of objective function values  
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Figure 4.4: Changing of IP values 
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4.1.3.2  Performance of tBTEM algorithm for discrete data 

In this section, the performance of tBTEM is tested.  Following tests use the first 10 VT 

vectors and target only one peak at every reconstruction (i.e. two targeted peaks are 

same). It should be noted that the number of VT vectors used is equal to the number of 

the pure components in the system.  The results are shown in Table 4.2 where the 

targeted peaks and the values of the objective function are given. For comparison 

purpose, the objective function values of all the real pure spectra are also calculated and 

listed. It is evident that both the reference and reconstructed objective function values 

are very similar, where the latter is usually slightly smaller. 

Table 4.2: Comparison of estimated spectra with real spectra 
Estimated spectra 

Component 
Real spectra 

Objective Function 
value 

Peak targeted at 
(m/z) 

Objective 
Function value 

Inner  
Product 

Ethanol 4.7648 31 4.7601 1.00000 
Hexane 6.6033 57 6.5028 0.99983 
Toluene 4.4888 91 4.4761 0.99996 
Acetone 4.7731 58 4.645 0.99737 

Acetonitrile 2.9309 41 2.9305 1.00000 
Cyclohexene 3.9546 56 3.8604 0.99776 
(CH3)2CHOH 2.9658 45 2.8805 0.99886 

Acetic acid 4.7739 60 4.7714 0.99996 
CH2Cl2 3.8334 49 3.8312 1.00000 

CH3CH2COCH3 2.9028 43 2.8536 0.99972 

 

The performance was further examined by taking the inner product of the estimated and 

corresponding real spectra. Obviously, all the IP values are very close to 1 which is 

further confirmation of the excellent reconstructions of all the component spectra.  

 

4.1.3.3  Comparison of weighted and un-weighted VT vectors 

On the basis of the results of section 4.1.3.2, the number of VT vectors used was 

increased to 50, the number of mixtures synthesized, without introducing any weights.  
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It is found that the reconstructed pure component spectra are in general not acceptable.  

For example, the estimated cyclohexane spectrum (Figure 4.5c) does not resemble the 

real one (Figure 4.5a).  In contrast, the result (Figure 4.5b) was improved greatly when 

the 50 VT vectors were weighted by the diagonal matrix obtained from SVD according to 

equation (3.15).  This test indicates that weighted VT vectors make the algorithm less 

sensitive to the choice of the number of VT vectors used. Indeed, although a lot of noise 

vectors are incorporated into the optimization due to the large number of vectors used, 

the performance of the algorithm is very good. The weighting is very helpful in spectral 

reconstruction for real experimental systems because the exact number of components 

in a system is often unknown a priori. 

 

 

 

 

 

 

 

 

 

 

 

Obviously, the objective function value of the spectrum in Fig 4.5c is larger than that of 
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Figure 4.5: The real and estimated cyclohexane spectra. 
4.5a: real reference spectrum; 4.5b: estimated spectrum with 50 weighted VT vectors; 

4.5c: estimated spectrum with 50 un-weighted VT vectors. 
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the spectrum in Fig 4.5b. This type of result occurs often, namely, the un-weighted 

algorithm produces an incorrect pure component spectrum while the weighted algorithm 

produces an excellent reconstruction. The weighting / scaling of VT clearly improves the 

results due to a better condition number. It should be further noted that if the weighting is 

not performed, a crude estimate of the number of species has to be known a priori (see 

section 4.1.3). Otherwise, the optimization would likely stuck in a local minimum.   

 

4.1.3.4 Comparison of tBTEM and BTEM 

Although it is not absolutely necessary, it is common to target the highest peak of a pure 

component spectrum using the original BTEM because of its large S/N ratio. To target 

the highest peak, the following steps can be performed. First, choose a peak of interest in 

the VT vectors to initialize targeting, and get an estimated spectrum.  If in the 

reconstructed spectrum, the targeted peak is not the highest, then the highest peak is 

targeted next, and the reconstruction is repeated. The result is often improved compared 

to the first one.   

 

Difficulties may be encountered, particularly with BTEM, if the highest peaks of two or 

more spectra all locate at the same channel (m/z). This is because both the global and 

some of the local minima (obtained during the optimization) correspond to the real pure 

component spectra.  In the BTEM algorithm, only the global minimum is kept and the 

local minima are discarded.  As a result, only one spectrum will be recovered while the 

others will not be found.  For instance, in the present system, CH3CH2COCH3, 
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CH3COCH3 (Acetone) and CH3COOH (Acetic Acid) have their respective highest 

peaks locating at m/z 43 which indicates the presence of the fragment of CH3CO•.  

When the peak at m/z 43 was chosen, the algorithm was successful in reconstructing the 

spectrum of CH3CH2COCH3 with the minimum objective function value equal to 

2.9028.  In contrast, although the local minima objective function values of 3.5342 and 

3.5388 corresponded to the solutions of CH3COCH3 and CH3COOH, they were 

discarded during the iteration of the algorithm. Therefore, the algorithm, using only a 

single targeted peak could not find the spectra of CH3COCH3 and CH3COOH using the 

common highest peak.   

 

As mentioned in the previous case shown in Table 4.2, the single peak targeting 

algorithm was able to identify the pure component spectra for CH3CH2COCH3, 

CH3COCH3 and CH3COOH.  Note that in this case the targeted peak for the 

reconstruction of CH3CH2COCH3 was m/z 43, the highest peak, while the 

reconstructions of CH3COCH3 and CH3COOH used m/z 58 and 60 which are not the 

highest peaks for these two spectra.   

 

The tBTEM algorithm has the intrinsic ability to deal with this difficulty.  By choosing 

two big peaks (usually the highest two peaks) of a spectrum, tBTEM obtains the 

minimum objective function corresponding to the solution of one of the spectra. Then in 

another run, another pair of highest peaks is used and a new solution corresponding to 

another spectrum is obtained.  For instance in Table 4.3, using the two highest peaks of 
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m/z 43 and 58 resulted in the minimum objective function 2.0306 which led to the 

reconstruction of spectrum of CH3COCH3.  Similarly, the choice of the two highest 

peaks of m/z 43 and 60 obtained the minimum objective function 2.0323 which 

recovered the spectrum of CH3COOH. 

Table 4.3: Comparison of objective function values by using different targeted peaks 

Target at (m/z) CH3CH2COCH3 CH3COCH3 CH3COOH 
43 only 2.9028 3.5342 3.5388 

43 and 58 2.8837 2.0306 3.5388 
43 and 60 2.9025 3.5156 2.0323 

 

Most importantly, in comparison with BTEM algorithm, the tBTEM is less sensitive to 

the number of VT vectors used.  For example, when an arbitrary number of 35 VT vectors 

were used, the resultant spectra of hexane obtained from the BTEM (targeted at m/z 57) 

and tBTEM (targeted at m/z 57 and 86) are shown in Fig 4.6c and Fig 4.6b respectively.  

Clearly, the resulting spectrum from tBTEM resembles the real one very closely (Fig 

4.6a) while a higher level of noise is present in the spectrum from BTEM.  The inner 

product of real and the estimated spectrum from tBTEM and BTEM are 0.99366 and 

0.95635 respectively, which again shows that tBTEM outperforms the single targeted 

peak algorithm. 

 

The improvement of the performance of tBTEM is probably due to the use of more 

spectra information, i.e. two peaks instead of only a single peak. The enriched spectra 

information may facilitate the reconstruction of pure component spectra from highly 

overlapped mixture spectra.   
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4.2  Exhaustive search using tBTEM 

For either the BTEM or the tBTEM algorithms, each pure spectrum is recovered from a 

separate run.  Therefore, many runs are needed in order to recover all pure spectra, and 

these runs are directed by the user’s choice of the targeted bands (peaks). Clearly, a 

problem arises when many channels of data must be considered. Recovery of all 

potential pure component spectra may not practical if the search is left to the user’s 

judgement alone. Accordingly, an automated exhaustive search is desirable.  

 

The exhaustive search starts with the full permutation of the targeted peaks to generate a 

super-set of estimated spectra. It is clear that such a super-set will contain not only real 

Fig 4.6: Estimated hexane spectra by using one-peak or two-peaks for targeting 
4.6a: Real spectrum; 4.6b: targeted at M/z 57 and 86; 4.6c: targeted at M/z 57 only 
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pure component spectra but also non-real spectra which arise from the superposition 

(additivity) of other pure component spectra. In addition, a few heuristic rules are 

needed to disregard the non-real spectra and eventually to identify the real component 

spectra.  In this section, in order to describe the exhaustive search, we will use the 

simulated data with tBTEM as discussed in the previous sections.    

 

4.2.1 Full permutation of targeted peak pairs 

Let m denote the number of channels in the spectroscopic data. Then a full permutation 

of any pair of peaks (channels) from the entire set of channel leads to n combinations. In 

other words, the number of targeting is equal to the full permutation of m and the same 

number of estimated spectra is obtained.   

 

In most real physical problems, a full permutation over the set of m channels is not 

necessary. Indeed, many channels will have little or no real physical information. 

Accordingly, let m’ denote the number of channels considered after the data (the first 

few VT vectors) are filtered. This filtering can be automated, thereby eliminating 

channels whose values are less than a critical threshold value, or manually whereby the 

user inspects the data set and identifies a sub-set of interest. The latter maybe of more 

efficient (since a smaller set m’ is identified) but it may require experience / some expert 

knowledge. Then, the realistic number of runs n’ can be expressed as equation 4.2.  

2/)1'(''
'

2 −×== mmCn m        (4.2) 

Following the idea further, in order to develop the automated routine, the targeted peaks 
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are chosen from the first VT vector using the threshold method.  The set of targeted peaks 

chosen in this way seems reasonable as the first VT vector represents an average of total 

mixture spectra. A rather stringent threshold can be set if desired, thus maximizing the 

admissible channels to be searched. A useful threshold can be easily defined as the ratio 

of a peak to the maximum value in the first VT. For the simulated system considered here, 

if the threshold is set to 0.05 (case 1) then m’ is equal to 33; while if the threshold is 0.1 

(case 2) then m’ becomes 26.  As a result, the total numbers of the estimated spectra n’ 

for cases 1 and 2 are 528 and 325 respectively. 

 

In the following sub-sections, a few heuristic rules are developed to filter/eliminate the 

superposition spectra and duplicated spectra from the total super-sets of 528 or 325 

estimated spectra and eventually extract all the real component spectra. Since a large 

number of peaks were used for targeting, the robustness of the developed algorithm was 

also examined. 

 

4.2.2  Initial filtering / rejection of undesirable estimated spectra   

A real spectrum can always be reconstructed by tBTEM using an exhaustive search. 

Also, the reconstruction is expected to possess a high degree of accuracy if the highest 

peak is targeted because the highest peak has larger signal to noise ratio.  The rule 

therefore rejects those estimated spectra whose highest peak is not one of the 2 targeted 

peaks. The collection of the candidate spectra is thus reduced.  For cases 1 and 2, the 

numbers of the candidates are reduced to 67 and 58 respectively. 
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4.2.3 Reject the duplicate spectra for a real component 

For real pure component spectra having a number of fragments, an exhaustive search 

using tBTEM will always result in multiple estimates of a real spectrum. In order to 

detect and reject these duplicate estimates, the inner product of every two estimated 

spectra can be calculated after normalizing to unit vectors. Due to the presence of noise, 

a threshold of the inner product can be set e.g. a typical value may be 0.95.  If the 

resulting inner product is larger than 0.95, one of the two spectra under investigation is 

regarded as the duplicate and has to be rejected from the collection of potential 

candidates.  The estimated spectral with the smaller objective function is kept while the 

other is discarded, because the former indicates that the two higher peaks are used for 

targeting and a better signal/noise ratio resulted. In contrast, if the inner product is less 

than 0.95, both spectra are regarded as promising and thus kept for further examination.  

In doing so, the numbers of the candidate spectra in the simulated system decrease to 24 

and 22 for cases 1 and 2 respectively. 

 

4.2.4  Reject spectra that have linear relationship with others 

As mentioned in section 3.4, when two peaks are used in targeting, there are many local 

minima at where spectra are corresponding to mixture spectra that are linearly combined 

by two pure spectra.  

 

This rule rejects spectral estimates that are linear combinations of other spectra.  

Assume that a spectrum X is linearly combined by two other spectra Y and Z, then the 
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following relationship holds, where α and β are positive coefficients, and err represents 

the vector of errors which should approach zero. A full permutation of combinations for 

X, Y and Z are searched to reveal linear dependent combinations, within some 

pre-specified tolerance for the term err.   

errZYX +×β+×α=         (4.3) 

A common way to estimate the coefficients and error term is to perform least square 

regression. It is noted that, however, the least square procedure always generates results 

for the coefficients and errors, no matter whether there exists the linear relationship 

among the X, Y and Z.  In other words, using least square alone may not guarantee the 

correct solution.   

 

The physical meaning of the method is to check if a channel’s value of X is almost solely 

contributed by Y. Then an estimated coefficient α can easily be obtained as α ≈XI / YI at 

this channel. Therefore get the estimated value of β and the relationship among X, Y and 

Z. If X, Y and Z are linearly dependent, then a least squares method would be used to 

find the combined spectrum.  

 

4.2.4.1 Find a channel having the highest ratio of spectra Y and Z 

Sequentially choose three spectra X, Y and Z from the resulting collection of Section 

4.2.3, and then compare the peak values of the two spectra Y and Z at each channel i and 

find a channel I where the maximum ratio is presented.  Let RI denotes the maximum 

ratio, we have 
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...,91 1,2,         == i)Z/Y,Y/Zmax(R iiiiI    (4.4) 

The presence of noise may result in misleading highest ratio RI since many channels of 

mass spectra are zeros.  Thus for all the estimated spectra that are normalized by their 

respective highest peak, the constraints of equations (4.5) and (4.6) are imposed.  This 

indicates that at channel I, the maximum peak value of YI or ZI has to be larger than 0.01.  

The ratio RI is larger than 200. 

010.)Z,Ymax( II >        (4.5) 

200>IR        (4.6) 

Assuming that the peak value YI is larger than ZI at channel I, we proceed to the 

following steps to estimate the coefficients. 

 

4.2.4.2 Determine the coefficients of the linear relationship 

Rewriting equation (4.3) at any channel i, we have the following relationship. 

iiii errZYX +×β+×α=       (4.7) 

Dividing equation (4.7) by YI gives equation (4.8). 

IiIiIi Y/errY/ZY/X +×β+α=     (4.8) 

Recall that if i = I, YI > ZI then ZI /YI < 0.005 (from equation 4.6). Since the estimated 

spectra X, Y and Z are all normalized by their highest peaks, the coefficients  α and β 

would be less than 1. Therefore at channel I, the last two terms of equation (4.8) can be 

cancelled out. Consequently, the coefficient α can be estimated by equation (4.9) as 

below. 

II /YXα ≈         (4.9) 
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Substituting equation (4.9) into equation (4.3), we obtain equation (4.10). 

errZβYY/XX II +×+×=       (4.10) 

Dividing equation (4.10) by XI and rearranging the equation result in equation (4.11). 

IIII X/errZ)X/(Y/YX/X +×=− β    (4.11) 

Let vector W represent the left-hand side of equation (4.11), 

II Y/YX/XW −=         (4.12) 

In order to determine whether there is a linear relationship between W and Z, the inner 

product (IP) of the two unified vectors is evaluated in the same manner as described 

previously.  In particular, a threshold is set as 0.98.  If the inner product is larger than the 

threshold, the spectra X, Y and Z are regarded as linearly related and the algorithm will 

proceed to the step described in Section 4.2.4.3.  Otherwise, the three spectra are 

mutually independent and another set of X, Y and Z are chosen and the steps starting 

from Section 4.3.4.1 are repeated. It is noted that in this process, we do not intend to get 

accurate value of α. 

 

4.2.4.3 Determine the relationship between the linear related spectra  

Once the spectra X, Y and Z are found to be linearly related, the least squares algorithm 

can be used on equation (4.3) to determine the coefficients α and β.  The relationship of 

the three spectra can be identified by checking the signs of the coefficients.  For instance, 

if both α and β are positive, X is the linear combination of Y and Z.  Similar, if α is 

positive and β is negative, Y is the linear combination of X and Z, and so on.  For the 

spectrum that is the linear combination of the other two, it will be removed from the 
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collection of the candidate component spectra.   

 

After checking the full permutation of estimated spectra X, Y and Z, the set of remaining 

spectra is reduced in size, and these retained spectra are regarded as the pure component 

spectral estimates for the system.  For the present simulated system, the final numbers of 

the remaining spectra for both case 1 (n’ = 528) and case 2 (n’ = 325) are reduced exactly 

to 10. These 10 resultant estimates do in fact correspond to the 10 reference component 

used in the simulation.  

 

4.2.5   Computational Considerations    

The spectral reconstruction algorithm tBTEM has to be executed hundreds of times 

during the exhaustive targeting. This represents the primary computational demand in 

the exhaustive search. Indeed, a typical run time for each run of tBTEM was on the order 

of a few minutes, and therefore, the few hundred executions required for case 1 and case 

2 required about 10 hours. These calculations were performed on a 2GB RAM, Intel 

Xeon 500 MHz, and Windows NT 4.0 workstation. After the generation of the superset 

of spectral estimates, the heuristic rules are applied. This latter sorting and reduction of 

the set of spectral estimates requires little time compared to the numerous global 

searches required for the simulated annealing driven tBTEM.     

 

4.3  Performance of fast multi-start simplex method  

As we know, BTEM and tBTEM are algorithms to reconstruct pure spectra. They must 
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use global optimization methods in reconstructing pure spectra. Although simulated 

annealing (SA) is successfully used in BTEM and tBTEM algorithms, its optimization 

speed is slow. In this section, SA is replaced by fast multi-start simplex method (FMSS) 

as optimization method in tBTEM. The FMSS results show that FMSS is much faster 

than SA in reconstructing pure mass spectra.  

 

4.3.1  Simulation method for synthesized data  

The simulated method is similar to that discussed in section 4.1.1 except that the number 

of mixtures increases to 60 and noise level is increased. The noise matrix ε  is randomly 

generated at a level of 0 to 103 instead of 0 to 102. The simulated method is shown in 

equation (4.13) and the 2-D array set of mixture is shown in Figure (4.7) 

9160911010609160 ε ×××× +×= PCA       (4.13). 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: 2-D simulated sixty mixture mass spectra 
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4.3.2 Testing parameters 

After several tests, the parameters of FMSS for reconstructing pure component mass 

spectra are fixed as: 

(1) Points reduction coefficient rp = 0.2  

(2) Initial stopping criterion ε0 = 0.1  

(3) Stopping criterion reduction coefficient rε = 0.1 

(4) The number of search rounds R = 3.  

In FMSS method, the number of variables refers to the number of VT vectors used in 

optimization; the stopping criterion refers to the stopping criterion of objective function 

value. The termination criteria for scalars of T is fixed at 10, which is a very coarse 

tolerance. Other parameters of Nelder-Mead simplex method are the default settings of 

software MATLAB 5.3 (the optimization function used is “fminsearch”). The scalars of 

initial testing T are randomly given with uniform distribution from -5 to 5. The number 

of starting points 0n  is 30 unless otherwise mentioned. 

 

The speed of FMSS method is compared with Corana’s SA in reconstructing pure 

component spectra in tBTEM algorithm. In Corana’s SA, Tr  and TN  determine the 

simulated temperature’s (T) decrease speed and the number of evaluations preformed 

respectively. Larger value of Tr  and TN means larger number of evaluations needed i.e. 

longer optimization time. The parameters of SA are the same as those used by Widjaja 

and Garland (2002), that is, starting temperature T0 = 10, step variation Ns = 20, 

temperature reduction coefficient Tr  = 0.85, and TN = max [(100, 5×N)/Ns], where N is 

the number of decision variables to be optimized.  
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The computational work was performed on a workstation with dual Xeon PIII 500 MHz 

CPU and 2048M ram by using commercial software MATLAB 5.3.  Since MATLAB 

5.3 does not support parallel method, therefore every time only one of the two CPUs is 

used.  

 

4.3.3 Validity tests of FMSS 

The validity of the FMSS optimization method is tested by using tBTEM with different 

number of optimization variables. When a certain number of VT vectors, j, is used in 

optimization, therefore the number of decision variables in the vector T is also j (see 

equation 3.15). In every test, when a certain number of variables and a certain number of 

starting points are chosen, 30 repeated reconstructions using the same parameters are 

performed in order to test the robustness of the algorithm. The inner product (IP) of two 

unit vectors is used to check the similarity between the reference spectrum and estimated 

spectra. In these tests, the reference spectrum is acetone and the estimated spectra are all 

targeted at the peaks m/z 43 and 58. Table 4.4 shows the IP values between the reference 

and the estimated spectra. 

Table 4.4: Validity tests of different number of variables 

IP results 
30 starting points 25 starting points 20 starting points 

Number 
of 

variables Max Min Avg. Max Min Avg. Max Min Avg. 
10 0.9970 0.9968 0.9969 0.9987 0.9791 0.9959 0.9981 0.9688 0.9943 
35 0.9970 0.9960 0.9967 0.9976 0.9728 0.9960 0.9970 0.9464 0.9921 
60 0.9960 0.9853 0.9931 0.9970 0.9621 0.9944 0.9981 0.9443 0.9889 

The results show that the performance of the FMSS depends on the number of starting 

points. When 20 and 25 starting points are used, some estimated spectra are quit well; 

some of the estimated spectra are poor. It shows that FMSS is not reliable when only 20 
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or 25 initial points are used in one reconstruction. However, when 30 starting points are 

used, all the estimated spectra are quite well even when 60 variables are used in the 

optimization. Comparison of the worst estimated spectrum with the reference spectrum 

under 30 initial points is shown in Figure 4.8, which shows that even the worst one is 

acceptable. 

  

Although it seems not safe that using only 30 starting points for an optimization problem 

with 60 variables, the results in Table 4.5 indicate that 30 initial points are enough. The 

reason is probably due to the nature of simplex method. Although simplex is not a global 

optimization method, it is able to follow the gross behavior of the test functions despite 

many local minima, and is not easy to be trapped in shallow local minima.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4.8: The worst estimate (4.8b) and the reference spectrum (4.8a) 
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4.3.4  Computational efficiency 

SA is a popularly used global optimization method; it has been successfully used in 

BTEM and tBTEM. In this section, optimization speed of FMSS is compared with SA 

and multi-start simplex (MSS) methods. Several tests under different number of 

variables are carried out to compare the optimization speeds of three methods. Table 4.5 

shows the computational times of different optimization methods under different 

number of variables. Every method is tested 30 times under a certain number of 

variables.  The stopping criteria of the objective function values for MSS and SA 

methods are set to 10-3. The stopping criterion of FMSS is converged to 10-3 step by step 

as in section 4.3.2. 

Table 4.5: The computational time of FMSS, MSS and SA  
Computation Time (s) 

Fast Multi-start Simplex Method Multi-start Simplex Method Simulated Annealing (SA) 
Number 

of 
variables Min Max Avg. Min Max Avg. Min Max Avg. 

10 14.8 56.9 34.3 110.8 130.5 117.3 98.2 151.2 109.7 
35 59.8 319.9 201.8 927.0 1009.2 962.3 445.6 556.5 460.4 
60 132.0 865.6 460.4 2815.3 2929.2 2882.6 937.2 1072.0 955.7 

Among these three optimization methods, the variation of FMSS optimization speed is 

the biggest. The other two methods are relatively constant. The average optimization 

time of FMSS is the smallest among these three methods at j = 10, 35 and 60. Comparing 

the longest time of FMSS to the shortest time of MSS and SA at different j, even the 

slowest speeds of FMSS are always faster than the fastest speeds of MSS and SA.  The 

average optimization speed ratios of FMSS to SA at j = 10, 35 and 60 are 31.27%, 

43.83% and 48.17% respectively.  

 

It is demonstrated that 30 initial points for FMSS method are enough for reconstruct 

pure mass spectra; the optimization speeds of FMSS at different number of initial points 
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are also studied. These tests would help us to understand at what number of initial points 

where FMSS would be slower than SA. Table 4.6 shows the results of average 

optimization time of SA and FMSS under different kinds of parameters. SA is tested by 

7 different numbers of variables (j from 10 to 60). Besides using 7 different numbers of 

variables, FMSS also is tested under different number of starting points (30, 50 and 70). 

Every result in Table 4.6 is a mean of 30 repeated tests. 

Table 4.6: Comparison of optimization time of FMSS and SA at different kinds of 
parameters 

Optimization time at different number of variables (s) Number of 
starting 
Points 10 18 26 35 43 51 60 

30 34.3 74.4 147.3 201.8 316.8 410. 8 460.4 
50 62.5 130.2 257.5 398.3 472.8 629.5 801.2 
70 77.8 185.2 344.3 545.7 655.5 831.2 1070.2 

SA results 109.7 203.1 334.5 460.4 628.3 793.5 955.7 

 

The variation of optimization times of FMSS and SA under different numbers of 

parameters are shown in Figure 4.9. The line 2 is the optimization times of SA; the lines 

1, 3 and 4 are those of FMSS. The trends of these 4 lines indicate that in our synthesized 

system: 1) when 30 and 50 initial points used in optimization, FMSS would always 

faster than SA at different number of variables. 2) When 70 initial points used in 

optimization, the relative optimization speed of FMSS would slow down compared with 

SA when the number of variables increases. It seems that around 60 points, the speed of 

FMSS would be equal to the speed of SA. 
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4.4  Summary 

In this chapter, tBTEM and FMSS methods are tested on synthesized mixture. The 

advantages of modifications of tBTEM are explained by examples.     

 

By reformulating the objective function with the peaks heights instead of their 

derivatives, the algorithm is able to reconstruct pure component spectra from mixture 

mass spectra. Furthermore, the algorithm is more computationally efficient as fewer 

mathematical operations are needed for the evaluation of the objective function. 

 

Weighting of the abstract VT vectors reduces the adverse effect of noise and the 

sensitivity of choosing the number of VT vectors.  As a result, the algorithm is more 

robust. Weighting also allows a larger number of VT vectors to be used thereby 

increasing the amount of recoverable information even with the presence of more noise.  
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A significant improvement in the reconstruction of highly overlapped spectra has been 

achieved by using the tBTEM algorithm where two peaks are used in targeting.  In 

principle, the salient idea in tBTEM might be extended to deal with really highly 

overlapped spectra by considering multiple (>2) targeted peaks.   

 

Since the tBTEM algorithm is based on the idea that each component spectrum is 

reconstructed one-at-a-time by choosing of targeted peaks, an exhaustive search method 

provides a strategy for generating all possible pure component spectra. The searches 

execute tBTEM many times and then reduce the super-set of estimates to the sub-set of 

only real component spectra.    

 

A global optimization method named fast multi-start simplex method (FMSS) is 

developed. It dramatically reduces the optimization time compared with multi-start 

simplex method and is much faster than SA. FMSS method optimizes its speed by not 

wasting time in searching useless points. Compared with SA, which is difficult to be 

paralleled, FMSS has advantage for its parallel nature. FMSS method is a totally parallel 

method; it can be changed to any number of parallel jobs without changing the algorithm. 

Following the idea of FMSS, many local searching methods can be used to find global 

optimums with faster speeds. Furthermore, FMSS can also find many local minima 

other than global minimum. It would be possible to use FMSS to find many if not all 

components by one targeting using BTEM or tBTEM.  
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Chapter 5: tBTEM on Real System 

 

In the chapter 4, tBTEM was successfully applied to synthesized discrete spectra. In 

this chapter, tBTEM is applied on a real system by using FMSS optimization method.  

 

5.1  Challenge of real mass spectra 

Commonly, when one uses a GC-MS system to find pure component spectra in 

mixture, first, he/she will try to separate mixture into pure components by using 

suitable GC columns and parameters (mobile phase, flow speed and column 

temperature etc.). The separated mixture would go into MSD to get pure component 

spectra. Although it is possible to separate a mixture into all pure components before 

MS detection, much effort should be dedicated to find suitable columns and to adjust 

parameters. If a mixture has many components such as food samples and Chinese 

traditional medicines, it would spend much time and much money in separating these 

kinds of mixtures into pure components. As it is shown in the previous chapter, tBTEM 

is very powerful in dealing with a MS mixture with 10 components on synthesized 

data set. If tBTEM can be used in real system, it would have many advantages.  

 

Problems encountered when applying tBTEM to real systems due to the nature of mass 

spectra. For a pure component mass spectrum, there is no fixed pattern for it. Mass 

spectra of the same component would have different patterns from different machines 

and from different retention time even in one injection. For example, the two highest 
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peaks of acetone in Figure 4.1 would change their order or ratio at different spectra. 

We call this phenomenon as non-stationary effect. As mentioned before, the basic rule 

applying BTEM or tBTEM to a system is that the mixture spectra should be a linear 

mixture of different pure component spectra. Recall the equation (2.1), ideally, every 

pure component spectrum in matrix sk×α should have fixed pattern, and there should 

has no error in system. In terms of equation (2.1), the non-stationary aspects would 

make the mixture spectra not a linear combination of different pure spectra, i.e. 

non-stationary effect would cause the system have big “non-linearity” in terms of our 

algorithms. We know that MS has bigger signal to noise ratio in terms of a single mass 

spectrum. When a set of mixture spectra is under investigation, because of the nature 

of our algorithms, the non-stationary effect would make MS has “small S/N” 

especially the small peaks in MS. 

 

Other than the non-stationary effect of pure spectra, there is another major difference 

between synthetic mixtures discussed in chapter 4 and real mixture mass spectra 

analyzed in this section. The most significant difference is that fragments from the 

various components injected as a mixture will undergo a host of complex 

recombination and new signals will appear. The resulting spectral reconstructions from 

the major components may possess some contributions from these new signals, and 

these may even exist in channels where zero intensity is expected. This can lead to 

considerable complications when further identification is required.  
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Although BTEM is known to be able to deal rather well with non-stationary signals 

from FTIR and RAMAN data, such non-linearity can be tolerated because of the 

relatively good S/N ratio typical of these spectroscopes. Therefore, in MS data where 

S/N ratio is typically lower, non-stationary pure component spectra may be more 

difficult to recover.  

 

5.2  Experimental setup and data collection 

A GC-MS spectrometer (GC: Hewlett-Packard 6890, MS: Hewlett-Packard 5973) with 

a 5 meter long 100% methyl stationary phase capillary column were used together with 

a helium mobile phase and a 1µL syringe. It should be noted that this column has low 

separation ability and therefore is usually used for retention gaps and guard columns in 

GC but not for separation purposes. The use of a 1µL syringe injection into the 

GC-MS system lowers the level of fragment recombination because of the lower 

overall amount of solutes/solvent.  Each mixture sample was injected slowly and 

smoothly, resulting in a somewhat flat total-ion-count (TIC) peak at the detector. 

Consequently, little separation of components occurred.   

 

Five samples were prepared from four low molecular weight compounds, i.e., ethanol, 

hexane, toluene and acetone. Every sample is randomly mixed by 4 compounds. Each 

1µL mixture sample was injected over a period of a few seconds (around 5 seconds). 

Some variation in the composition of the components occurred at the detector during 

the detection period. The range of the exported data was from m/z 10 to m/z 100 with 
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the interval of 1 m/z.  As a result, a series of circa 400 MS spectra data were acquired 

from the five sample injections. Only a small number of these spectra were used in the 

analysis. The manually selected mass spectra were collected in the more-or-less flat 

regions of the TIC peaks. This yielded 16 mixture mass spectra (as shown in Fig. 5.1) 

used in the subsequent reconstructions. It is noted that there is no mixture containing 

only one component.  

 

The FMSS parameters are the same as the parameters used in section 4.4.1 with 30 

initial points.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
 
 
 

Figure 5.1:  2-D sixteen mass spectra of the real mixtures 
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5.3  Results of spectral reconstruction 

In the spectral reconstructions performed with tBTEM, all 16 VT vectors were weighed 

by the singular value matrix, i.e. the diagonal matrix S from SVD. As shown in Table 

5.1, each pure component spectrum was reconstructed by targeting two specified peaks.  

The four pure component spectra were successfully recovered as shown in Figure 5.2.   

Table 5.1: Peaks targeted for reconstructing pure component spectra in the real system 

Component ethanol acetone hexane toluene 
Targeted peaks (m/z) 31 and 45 43 and 58 57 and 86 91 and 92 

The characteristic fragmentation patterns for the ethanol, acetone, hexane and toluene 

are readily apparent in the spectral reconstructions – they are rather good. Closer 

comparison of these reconstructions with the “references” provided in Figure (5.2) 

indicates an interesting artifact. The reconstructions are in some ways “cleaner” i.e. the 

small peaks of spectra are not reconstructed well. Although the primary fragments are 

still very prominent, the intensities of some of the other fragments are reduced. This is 

the case for all four component spectral reconstructions. This reduction in the intensity 

of the other channels is probably related to the non-stationary quality of the mass 

spectra, since the high non-linearity of real mass spectra set, the small peaks would 

have poor signal to noise ratio in terms of tBTEM algorithm i.e. the small peaks are all 

merged by high level of noise which results in “smooth” reconstruction. 
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Again, it is important to emphasize the utility of using weighted VT vectors. Ideally, if 

the experimentalist had prior knowledge of the system, the number of the VT vectors 

used would be equal to the number of pure components in the system in order to get 

the best results. However, the experimentalist probably wants to explore an unknown 

system, and therefore information of the number is unknown a priori. Another reason 

is that the information in every VT vector reduces smoothly, which makes difficult to 

decide how many VT vectors should be used in optimization. Consequently, more VT 

vectors are used than really needed, but much noise is introduced at the same time.  

Figures 5.3a and 5.3b are the reconstructed ethanol spectra using un-weighted four and 

six VT vectors respectively.  As can be seen from these two figures, spectral features 

belonging to toluene at m/z 91 and 92 appear. This is more prominent in the six VT 
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Figure 5.2: Reconstructed spectra from real mixture spectra  
5.2a: ethanol; 5.2b: acetone; 5.2c: hexane. 5.2d: toluene. 
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case (Figure 5.3b) than the four VT case (Figure 5.3a). Clearly, the weighted 16 VT 

vector solution presented in Figure 5.2 is much better. 

 

 

 

 

 

 

 

 

 

 

5.4  Conclusion and discussion 

For real systems, difficulties can be encountered and these are related to the presence 

of non-stationary signals, and the presence of fragmentation recombination in 

electron-impact ionization which would occur in high pressure MSD. With the present 

experimental configuration, two difficulties arose: namely a slight order simplification 

of the pure component spectra after tBTEM, and difficulties related to the exhaustive 

search. The difficulties observed here do not negate the possibility that analysis from 

other types of experimental configurations / methods may be easier.  Good examples 

may include (1) ultra-high vacuum studies of desorbed species in surface science 

studies, (2) chemical vapor deposition at low system pressures, (3) time-of-flight data 

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

5.3a 

5.3b 

Figure 5.3: Results of estimated ethanol spectra with different number of VT vectors 
5.3a: using 4 un-weighted VT vectors; 5.3b: using 6 un-weighted VT vectors. 
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from reactive systems, and (4) electrospray ionization Mass Spectrometry (ESI MS). 

In the last case, the tBTEM may work rather well as fewer fragments are present and 

the spectral patterns are perhaps more stationary. A successful application to ESI MS 

may greatly facilitate spectral reconstruction in the fields of biochemistry and 

organometallics where complex and poorly separable mixture are common.  

 

One may argue that since a good separation can be achieved if GC is used, the use of 

the GC column alone may not be necessary. As mentioned in section 5.2, a 

poor-performance GC column was used to induce a series of different experimental 

measurements from 1 sample for testing tBTEM. This idea might actually be of some 

utility when sample size is very small / limited. One does not have to find a really good 

column for the separation. Accordingly, one could use tBTEM plus a 

poor-performance GC column before MS to obtain pure component information. It 

would be possible to get good reconstructions from using any “poor” separation of 

sample on any arbitrarily “poor” column. 

 

In summary, the performance of the tBTEM algorithm was examined on experimental 

mixture spectra. The recovered spectral estimates are quite acceptable. These tests 

suggest that tBTEM has considerable potential for many real mass spectroscopy 

applications.   
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Chapter 6: Conclusions and Future Work 

 

In this thesis, studies mainly focus on mathematical aspects: 1) modify band-target 

entropy minimization method (BTEM) to apply to discrete data such as mass spectra.  

2) Propose a global optimization method to speed up optimization speed.  

 

A special objective function formula was developed to reconstruct pure mass spectra 

from mixture data set. Compared with original BTEM method, this new objective 

function of tBTEM has no derivative and is suitable for discrete data. Moreover it also 

has advantage in optimization speed since fewer evaluations are needed.  

 

It is found that the noise in system will affect the performance of BTEM. If the number 

of VT vectors used in optimization is much larger than the number of species in 

mixture, the result would be bad even for a system with less noise. Accordingly, a 

method that uses weighted VT vectors is proposed to lower the effect of noise.  

 

In real MSD method, for different pure components, there are many charged fragments 

which have same m/z values. Therefore, it would have many overlapped peaks in MS 

mixture. Furthermore, the non-stationary effect in MS is much bigger that in IR and 

RAMAN, therefore, targeting at the highest peaks which have the biggest S/N ratio is 

meaningful in MS systems. When more than 2 spectra whose highest peaks locate at 

the same place, It would have problem for BTEM to find all of them by using their 
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highest peaks. Hence, a two-peak targeting method is used to reconstruct all pure 

spectra by using their highest peaks. By targeting at different pairs of peaks, the 

objective function values would be rearranged, therefore all spectra which overlapped 

at their highest peak could be found. This method also has advantage on dealing with 

noise due to the use of more spectra information. 

 

By targeting at different pairs of peaks from a full permutation of selected peaks, 

tBTEM also enables to target all pure spectra out from mixture automatically. 

Following this idea, an exhaustive searching method successfully extracts all pure 

spectra from a huge collection of estimated spectra.  

 

A global optimization method, simulated annealing, is used in BTEM. When dealing 

with a data set which contains more than 2500 channels, the optimization time is about 

10 hours. When targeting at a series of peaks using SA, the overall optimization time 

of BTEM would be very long. Therefore, a new global optimization method named 

fast multi-start simplex method (FMSS) is developed to accelerate the searching speed. 

Although the original simplex is a local optimization method, it is extended as a 

(pseudo) global optimization method by using multiple starting points. The original 

multi-start simplex can find a global minimum, but its optimization speed is very slow 

due to a large number of unpromising points in evaluation. FMSS method discards lots 

of unpromising points in advance at different steps by different stop criteria. It 

dramatically reduces the optimization time. Compared with popular simulated 
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annealing method, FMSS is faster than SA more than 50%. 

 

With all these new mathematical methods, a real MS data is tested. Since the 

non-stationary effect is the nature of MS and its magnitude is high. Some experimental 

strategies were employed in dealing with non-stationary effect. First, a small volume 

syringe (1µL) was used in injection over long period of time which lowers the flow 

rate of mixture and results in less overall concentration in MS detection. Second, a 

smaller non-stationary effect is found in flat area. Therefore, spectra were picked from 

the flatter area. Based on these experimental strategies, a four components mixture was 

successfully studied and all four pure component spectra were reconstructed. 

 

The present work focuses on mathematical aspects and does limited application to real 

system. Future works may apply tBTEM to real systems. On the other hand, although 

discrete spectra cannot be treated as continuous spectra, continuous spectra could be 

treated as discrete spectra. To apply tBTEM to continuous data to take advantage of its 

fast optimization speed would be one meaningful application.  
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