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Summary

In this thesis, we extract the fetal ECG from a single-channel abdominal ECG. The

abdominal ECG consists of three parts: maternal ECG, fetal ECG and noise.

we propose a novel blind-source separation method to extract Fetal ECG from

a single-channel signal measured on the abdomen of the mother. Our proposed

method includs two parts: first is to detect the heart beats occurrence, the second

part is to extract the fetal ECG and compute the ECG complex.

In the first part, the key idea is to compute the spectrogram of the original sig-

nal, and then use an assumption of statistical independence to find trends of the

original signal. This is achieved by applying Singular Value Decomposition (SVD)

on the spectrogram, followed by an iterated application of Independent Component

Analysis (ICA) on the principle components. The SVD contributes to the separa-

bility of each component and the ICA contributes to the independence of the two

components. We further refine and adapt the above general idea to ECG by ex-

ploiting a-prior knowledge of the maternal ECG frequency distribution and other

characteristic of ECG. Experimental studies show that the proposed method is more

vi



Summary vii

accurate than using SVD only. Because our method does not exploit extensive do-

main knowledge of the ECGs, the idea of combining SVD and ICA in this way can

be applied to other blind separation problems.

In the second part, we construct a pure maternal ECG and then subtract it from

the mixture to obtain the fetal ECG. Fetal ECG can then be produced by time

domain averaging.

Experimental results on both synthetic and real-life data gives good results.
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Chapter 1
Introduction

1.1 General Introduction

Fetal Electrocardiogram(ECG) plays an important role for determining the neu-

rological status after birth[25, 42]. Even though the accurate fetal ECG may be

obtained by placing an electrode on the fetal scalp, however, as long as the mem-

branes protecting the child have not been broken, one should look for noninvasive

techniques. So, the most popular approach to get fetal ECG is studying the ECG

recordings measured by placing electrodes on the mother’s skin.

Considering the small heart of the fetus and the low voltage current it generates

compared with that of the mother, electrodes are usually placed on the abdomen

of the mother(it is called abdominal ECG or the mixture) as close as possible to

the fetal heart, and expect that at least one of the electrodes will have the fetal

ECG with high enough SNR(signal-to-noise ratio). Thoracic ECG(measured on the

thorax of the pregnant woman) is also needed for some methods which could be

used to cancel out the effects of the maternal trace[3, 14, 30, 32, 35, 37].

However, signals recorded in this way are severely contaminated by the existence

1



1.1 General Introduction 2

of the maternal ECG which could be 5–1000 times higher than fetal ECG in its in-

tensity. Furthermore, the weak recordings of fetal ECG may contain a relatively

large amount of noise and may also be distorted by muscle and breathing contrac-

tions. Moreover, this is further complicated by the positioning of electrodes which

by no means nontrivial.

Thus, we face a twofold problem: one is to separate the fetal ECG from the

strong maternal trace, the other is to separate the fetal ECG from the noise.

In the past decades, engineers developed many different techniques to extract

the FECG signals. In the 1960s, conventional filters and direct cancellation were

used separately to remove the maternal ECG from the abdominal mixtures. Based

on the Least Mean Square algorithm, Widrow in 1975 proposed an adaptive filter-

ing technique to separate fetal ECG from maternal ECG. Later in 1977, Reichert

generated three spatially orthogonal ECG signals from three linearly independent

thoracic ECG signals, and then the proper coefficients with the three signals were

selected to simulate the MECG component in abdominal ECG signals. In 1981,

Bergveld adopted six independent abdominal signals to obtain maternal ECG in-

terference suppression. Vandershoot in 1987 applied two matrix methods for the

optimal maternal ECG elimination and fetal ECG detection. The more recent ap-

proach includes blind source separation which aims to find the sources from blind

source separation(BSS) and SVD.

Most of these methods focus on multi-channel mixtures of signals [5, 6, 50,

51].Relatively few works address the problem separating ECG signals recorded on

a single-channel. Kanjilal et. al. [29] developed a method for single-channel signals

by first detecting both the maternal and fetal heart beats. Next, “cut” the signal

into pieces. These pieces are aligned (to form a matrix) and SVD is then performed

to obtain the ECG complex.
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In this thesis, we consider a single-channel recording. By projecting into a higher

dimension, we can then employ a multi-channel technique. The proposed method

has two unique features: 1) only a single abdominal signal is required and 2) the de-

tection could be achieved as real-time applications. In later chapter, we will give the

details on both the theoretical backgrounds and the procedure of implementations.

1.2 Previous techniques for fetal ECG extraction

Since 1960, many methods are proposed to extract the fetal ECG. According to the

different input of each method, the methods can be classified into three categories.

Two categories need one more mixture, and the difference between them is whether

the thoracic signals are required, while the third category mainly focus on the fetal

ECG extraction from single-channel abdominal ECG which is also the aim of our

proposed method.

Mathematical Model:

Signals can be written as:

Aa
i (t) = Ma

i (t) + F a
i (t) (1.1)

T t
i (t) = M t

i (t) (1.2)

where Ma
i (t),F a

i (t) and M t
i (t) are the abdominal MECG,FECG and thoracic MECG

respectively. Ti(t) just contains thoracic MECG while Ai(t) is the mixture of the

abdominal MECG and FECG.

The model would be more realistic to assume that there is some noise in Aa
i (t)

and T t
i (t), however, since the estimation of the noise-free model is difficult enough

itself, the noise terms are usually omitted in practice. Anyway, we could denoise

before we use any methods to make sure that this model is enough.
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Different methods have different assumption on the relationship between the

abdominal MECG and thoracic MECG. Some simple methods assume that they

are the same, some generate a new MECG for abdominal ECG by using several

thoracic signals, some obtain an abdominal MECG from several abdominal signals,

and single-channel fetal ECG extraction are trying to cancel out the interference of

maternal ECG from the same abdominal signal.

Subtraction: Subtraction method was the first and simplest technique for detect-

ing and enhancing the fetal ECG. It assumes that Ma
i (t) = Ma

i (t). By applying the

model, the fetal ECG can be obtained by:

Fi(t) = Ai(t)− Ti(t) (1.3)

Orthogonal analysis: However, this simplest method does not produce very good

results. The reason that direct subtraction fails is the mismatch between Ti(t) and

Ma
i (t). In order to overcome this problem, R.L. Longini in 1977 took three separate

thoracic signals and constructed the fourth ECG signal which serves as Ma
i (t) the

maternal ECG part of the abdominal ECG.

Ma
i (t) = Γ1T

t
1(t) + Γ2T

t
2(t) + Γ3T

t
3(t) (1.4)

After getting Ma
i (t), fetal ECG could be computed similarly as the subtraction

method by Eq.1.3.

Orthogonal analysis is better than subtraction in the sense that it tries to avoid

the mismatch between the thoracic MECG and abdominal MECG, but the orthog-

onalization requirement of the three thoracic ECG signals by Gram-Schmidt proce-

dure makes it difficult to implement in practice.

Linear combination: Bergveld, Meijer, Kolling and Peuscher developed a linear
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combination method based on the fact that any abdominal ECG may be represented

by Eq.1.1.

Specifically, the abdominal ECG could be written as(note here the superscript

is omitted since no thoracic ECG) :

A(t) =
∑

i

ΓiVi(t) (1.5)

Vi(t) = Mi(t) + Fi(t) (1.6)

where Γi are optimized to produce a clear FECG. Now, rewrite the abdominal signal

as:

A(t) =
∑

i

ΓiMi(t) +
∑

i

ΓiFi(t) (1.7)

The goal is to optimize the Γi coefficients to produce an FECG from the chosen

number of original signals such as:

∑

i

ΓiMi(t) = 0 (1.8)

∑

i

ΓiFi(t) 6= 0 (1.9)

Thus the fetal ECG could be achieved when several abdominal ECGs are com-

bined through optimizing bounded coefficients.

Later, a lot of statistical methods are employed. The most popular one is the

Blind Source Separation or Blind Signal Separation(BSS). Independent Component

Analysis(ICA) is one of the most important approach for BSS. ICA needs at least

the same number of mixtures as the number of the sources. Recently, Lathauwer et

al.[11, 12, 13, 16, 38, 48], Zarzoso et al.[53] have attempted to separate maternal and

fetal ECGs from cutaneous 8− 32 channel recordings, by using ICA which assumes

that the sources are statistically independent. For all the methods which need more

than one mixtures, one aspect often ignored is the problem of eliminating the effects
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of different interferences of extraneous reasons (e.g. the influence of respiratory

activity), all the methods for multi-channel extraction suffer from this problem.

However, few works address the fetal ECG extraction on single channel abdominal

ECG.

Single-channel extraction: P. P. Kanjilal[29, 31] exploits the nearly-periodic fea-

ture for separating M-ECG and F-ECG components by using SVD. Firstly, the data

are arranged in the form of a matrix A such that the consecutive maternal ECG

cycles occupy the consecutive rows, and the peak maternal component lies in the

same column. SVD is performed on A : A = UΣV , and AM = u1σ1v
t
1 is separated

from A(where w1 and v1 are the first columns of the matrix U and V respectively),

forming AR1 = A− AM .

After separating the MECG component from composite signal, the time series

formed from the successive rows of AR1 will contain FECG component along with

noise; this series is rearranged into a matrix B such that each row contains one fetal

ECG cycle, with the peak value lying in the same column. SVD is performed on B,

from which the most dominant component u1σ1v
t
1 is extracted, which will give the

desired FECG component.

One point should be noted here is that the aligning is required in advance. In

fact, even though the MECG peaks is easy to find, it is quite difficult to align the

FECG which makes the algorithm difficult to implement.

There are still many other methods for fetal ECG extraction, such as subspace

projection[46], nonlinear recursive algorithm[47] and wavelet-based method[33] etc..

Here, we will not introduce them one by one.
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1.3 Outlines

In this thesis, we propose a novel method to extract fetal ECG from single-channel

abdominal signal. This method is made up of two parts: one to detect the heart

beats occurrence and the other is to extract the fetal ECG and detect the ECG

complex.

By working on single-channel abdominal signal, the proposed method avoids

the multi-interferences of extraneous reasons which all the multi-channel extraction

suffer.

Results show that the proposed method works well not only for synthetic data

but also for real-life data.

This thesis includes six chapters:

Chapter 2 introduce the Independent Component Analysis and the FastICA

algorithm. Chapter 3 gives the algorithm for ICA. In Chapter 4, our proposed

method on how to detect the heart beats occurrence and the ECG complex will be

described. Chapter 5 are the experimental results on synthetic data and real-life

data. The last chapter is the conclusion.



Chapter 2
Independent component analysis

2.1 Motivation

Cock-tail party problem: In a room, two people are speaking simultaneously, and

two microphones are putting in different locations which are used to provide two

recorded mixtures of the two speech signals. Denote the two mixture signals as x1(t)

and x2(t), the two speech signals as s1(t) and s2(t). Here, t is the time index, and

x1, x2, s1 and s2 are the amplitudes of the signals.

Since x1(t) and x2(t) are the weighted sum of s1(t) and s2(t), this relation could

be expressed as a linear equation:

x1(t) = a11s1(t) + a12s2(t) (2.1)

x2(t) = a21s1(t) + a22s2(t) (2.2)

where a11,a12,a21 and a22 are some parameters which rely on the distances of the

microphones from the speakers. If the two speech signals s1(t) and s2(t) could be

estimated based only on x1(t) and x2(t), such estimation will be quite useful. For

simplicity, any time delay or other extra factors are not be taken into account.

8



2.2 Mathematical model 9

If the parameters aij are known, s1(t) and s2(t) would be obtained by solving

the linear equation. However, the point is, if aij are unknown, how to solve the

problem?

Such a problem is often called Blind Source Separation or Blind Signal Separa-

tion(BSS). There are many approaches to the BSS problem.

Several approaches are to exploit some information on statistics properties of

s1(t) and s2(t) to estimate aij. Independent Component Analysis(ICA) is the ap-

proach which assumes that s1(t) and s2(t), at each time instant t, are statistically

independent. Amazingly, it proves to be enough to solve the cock-tail party problem

by such assumption.

ICA was first developed to solve problems which are closely related to the cock-

tail party problem. In recent years, due to the increase interest in ICA, ICA is

found to be useful in many other applications[24, 34], such as feature extraction,

EEG separation and data analysis etc. .

2.2 Mathematical model

Assume we have n linear mixtures x1, x2, . . . , xn of n independent components

s1, x2, . . . , sn. Noting that the time index t is dropped in ICA model. Here, we

assume each mixture xj or each source sk is a random variable.

Under such assumption, xj(t) is a sample of the random variable xj. Further-

more, we assume that all xj and sk are zero-mean(We can always preprocessing the

mixtures to satisfy this requirement).

For convenience, we will use vector matrix notation from now on. All vectors

are column vectors. Then the above model could be written as:

x = As (2.3)
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(a)  Joint density of s1 and s2 (b) Joint density of x1 and x2 

Figure 2.1: Joint pdf for sources and mixtures

Here, A is the mixing matrix with elements aij, x = [x1x2 . . . xn]t and s = [s1s2 . . . sn]t.

In ICA model, the independent components(or the sources) can not be directly

observed, and the mixing matrix A is also assumed to be unknown. In another word,

ICA estimates both s and A only when the mixture x are given. Such a problem

must be done under as general assumptions as possible.

2.3 Illustration of ICA

Consider the cock-tail party problem, if we assume the sources si have the following

uniform distribution:

p(si) =
1

2
√

3
if|si| ≤

√
3 (2.4)

Such distribution could guarantee the zero-mean and unit variance as was assumed

in the section 2.2. Since the joint density of two independent components are the

product of their marginal density, the square in Figure.2.1(a) shows the joint density

of s1 and s2.
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Now let’s mix s1 and s2 using the following mixing matrix:

A =




2 3

2 1




Then we can get the two mixtures x1 and x2 and also their joint density(Figure.

2.1(b) is their joint density). Clearly, the random variables x1 and x2 are not inde-

pendent any more.

The problem of ICA is now to estimate the mixing matrix A when only infor-

mation for x1 and x2 are available. Actually, an intuitive way to estimate A is to

compute the edges of the parallelogram in Figure. 2.1(b). This implies that we

could estimate the ICA model by first estimating the joint density of the mixtures,

and then locating the edges.

Here, one point should be noted is for the gaussian variables. Since the joint

density of two gaussian variables are symmetric, no information could be obtained

from locating the edges. Therefore, A could not be estimated by ICA for gaussian

variables. More rigourously, for two gaussian independent components (s1, s2), the

distribution of any orthogonal transformation of (s1, s2) has exactly the same distri-

bution of (s1, s2). Therefore, for gaussian variables, the matrix A is not identifiable

for guassian independent components.

So now, it seems there is a solution for ICA model for variables except the

gaussian case. However, in reality, such method only works with variables which

have uniform distribution, and even for these variables, the computation could be

very complicated. Some practical approaches to ICA model will be given in later

sections.

2.4 Independence

The main concept for Independent Component Analysis is statistical independence.



2.4 Independence 12

Basically, independence between two different scalar random variables x and y

means that information on the value of x does not give any information on the value

of y and vice versa.

Technically, it is defined by the probability densities:

Definition: Denote the joint density of two random variables x and y as pxy(x, y),

then the marginal density functions are:

px =
∫

pxy(x, y)dy (2.5)

py =
∫

pxy(x, y)dx (2.6)

x and y are said to be independent if the following relation holds:

pxy(x, y) = px(x)py(y) (2.7)

In other words, if the joint density of the two variables is the product of their

marginal densities, the two variables are called independent.

Independent random variables satisfy the basic property:

E{g(x)h(y)} = E{g(x)}E{h(y)} (2.8)

Here, g(x) and h(y) are any absolutely integrable functions of x and y.

Uncorrelation between x and y means

E{xy} = E{x}E{y} (2.9)

Let g(x) = x and h(y) = y in Eq.2.8, we could obtain Eq.2.9. Therefore,

statistical independence is a much stronger property than uncorrelatedness.

Independent variables must be uncorrelated, but uncorrelated variables are not

necessarily independent. For this reason, many ICA methods constrain the esti-

mation procedure so that it always gives uncorrelated estimates of the independent

components. This could help to reduce the number of free parameters and simplify

the problem.
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2.5 Information theory background

2.5.1 Entropy

Entropy is a basic concept in information theory[10]. The entropy of a random

variable can be interpreted as the degree of randomness. The more “random”, i.e.

the more unpredictable and unstructured the variable is, the larger the entropy is.

For a discrete random variable Y , entropy H is defined as:

H(Y ) = −ΣiP (Y = ai)logP (Y = ai) (2.10)

= Σig(P (Y = ai)) (2.11)

Where ai is the possible value of Y and P (Y = ai) is the probability of Y = ai and

g(p) = −plogp 0 ≤ p ≤ 1.

For a continuous random vector y, the entropy H(y) is often called differential

entropy, it is defined as:

H(y) = −
∫

f(y)logf(y)dy (2.12)

=
∫

g(f(y)dy (2.13)

Here, f(y) is the probability density function(pdf) of y and g(p) = −plogp p ≥ 0.

A fundamental result in information theory is: a gaussian variable has the largest

entropy among all other random variables of equal variance, for a proof, see [10, 43].

This also indicates that entropy could be a measure of nongaussianity.

More rigourously, entropy could be connected with coding length of the random

variables. Actually, under some simplified assumptions, entropy gives roughly the

average minimum code length of the random variable.
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2.5.2 Negentropy

Negentropy comes from the concept of entropy, it is defined as a slight modification

version of entropy.Negentropy of a random variable y is:

J(y) = H(ygauss)−H(y) (2.14)

where H(ygauss) is the entropy of a gaussian random variable of the same covariance

matrix as y and H(y) is the entropy of y. Thus, negentropy is always non-negative

and it is zero if and only if y is gaussian. Negentropy is an important measure of

nongaussianity. Since it is well justified by statistics, negentropy could be considered

the optimal estimator of nongaussianity in some sense as far as statistical properties

are concerned.

As above stated, negentropy is a principled measure of nongaussianity. However,

since the integral involves the probability density, it is quite difficult to compute the

differential entropy or negentropy. Even though the density may be estimated by

basic density estimation methods such as kernel estimators, whether the simple

approach would be correct depends heavily on the correct choice of the kernel pa-

rameters. Furthermore, it would also become computationally rather complicated.

Therefore, in practice, some approximations have to be used for computing negen-

tropy.

2.5.3 Mutual information

Mutual information is defined based on the concept of the entropy. Given m (scalar)

random variables yi, i = 1, 2, . . . , m, the mutual information between them are:

I(y1, y2, . . . , ym) = H(ygauss)−H(y) (2.15)

where y = [y1, y2, . . . , yn], ygauss is a Gaussian random variable of the same covari-

ance matrix as y.
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By using the interpretation of entropy as code length, mutual information indi-

cates what code length reduction is obtained by coding the whole vector y instead

of the separate components yi. Generally, better codes could be produced if coding

the whole vector. However, if the components are independent, they give no infor-

mation on each other, and consequently, coding the whole vector will give the same

length as coding its components individually.

2.6 Approach to ICA with data model assump-

tion

One popular way of formulating the ICA problem is to consider the estimation of

the following generative model for the data([1, 2, 4, 7, 19, 20, 27, 28, 41].

x = As (2.16)

where x is an observed m−dimensional vector, s is an n−dimensional random

vector whose components are assumed mutually independent, and A is a constant

m× n matrix to be estimated. The matrix W defining the transformation as in

s = Wx (2.17)

is obtained as the (pseudo) inverse of the estimate of the matrix A.

2.6.1 Nongaussianity for ICA model

“Nongaussian is Independence[24]:” Let y = wtx, x is the mixture vector and w

is a vector to be determined. (For simplicity, we assume in this section that all

the independent components have identical distribution). If w were one of the rows
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of A−1, then the linear combination y should be equal to one of the independent

components.

Define z = ATw, then y = wtx = wtAs = zts. Now we can see that y is a linear

combination of si. From the Central Limit Theorem, we know the distribution of

a sum of independent random variables are more Gaussian than any of the original

random variable. Thus, y is least gaussian when it in fact equals to one of the

si. Here, obviously only one of the elements zi of z is nonzero(Note that si were

assumed to be i.i.d).

Therefore, w can be determined by maximizing the nongaussianity of wtx. After

that, a vector with only one nonzero component could be obtained,that is, wtx = zts

is one of the independent component.

Actually, since there are 2n local maximum during optimizing for nongaussianity

in the n-dimensional space of vector w, si and −si for one independent component

si. Considering the uncorrelation between the different independent components, it

is not difficult to find all the sources. Therefore, nongaussianity of the independent

components is necessary for the identifiability of the model.

2.6.2 Measures of Nongaussanity

Kurtosis

Kurtosis is the classical measure of nongaussianity, it is defined as:

kurt(y) = E(y4)− 3(E(y2))2 (2.18)

= E(y4)− 3 because y is unit variance (2.19)

If y is a guassian variable, then E(y4) = 3(E(y2))2, and thus kurt(y) = 0. For

most(not all) nongaussian random variables, kurtosis is nonzero, either positive or

negative. Variables with positive kurtosis have typically “spiky” probability density
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function(pdf) and they are called supergauusian. Those with a negative kurtosis are

called subgaussian whose distributions are more “uniform” than that of gaussian

variables.

Usually, the absolute value or the square value of kurtosis are used to measure the

nongaussianity. Thus, the kurtosis is zero for a gaussian variable and greater than

zero for most nongaussianity random variables.(There are still some other random

variables with zero kurtosis, but they are quite rare).

kurtosis has two main characteristics:

1. kurtosis could be estimated by simply calculating the fourth moment of the

sample data.

2. kurtosis has the linearity property, that is: if x1 and x2 are two independent

random variables,

kurt(x1 + x2) = kurt(x1) + kurt(x2) (2.20)

kurt(αx1) = αkurt(x1) (2.21)

Such properties make kurtosis easy to use for its computational and theoretical

simplicity, and thus become a popular measure of nongaussianity.

Even though kurtosis gives a simple ICA estimation, it is very sensitive to the

outliers since it has to be estimated from a measured sample, and thus the value

of kurtosis may depend heavily on few observations. That means kurtosis is not a

robust measure of nongaussianity.
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Negentropy

As we have stated in section 2.5.1 that a gaussian variable has the largest entropy [34]

among all random variables with equal variance. This means that the gaussian dis-

tribution is the “most random” or the least structured of all distributions. Entropy

is small for distributions that are clearly concentrated on certain values, i.e., when

the variable is clearly clustered, or has a pdf that is very “spiky” and entropy is

large when the pdf is “uniform”.

Negentropy is a slightly modified version of entropy. Negentropy is zero for a

guassian variable and always nonnegative, thus, it can be a measure of nongaussian-

ity and is the optimal measure of nongaussianity as far as the statistical performance

is concerned. Negentropy is defined in Eq.2.14.

However, as we have stated in section 2.5.2, the problem of negentropy is its

computational complexity. Methods to approximate negentropy is necessary for

practical use. Many methods have been proposed to approximate. Among them,the

classical approximating method is using higher-order cumulants[26], this gives the

approximation:

J(y) ≈ 1

12
E{y3}2 +

1

48
kurt(y)2 (2.22)

The random variable y is assumed to be zero-mean and unit variance. Actually,

when the random variables have approximately symmetric distributions(this is of-

ten the case), E{y3} = 0 and then J(y) ≈ 1
48

kurt(y2). This indicates that such

approximation will often leads to the use of kurtosis.
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Conclusion

Usually, kurtosis and negentropy are thought to be two important measures of non-

gaussianity. From the above analysis, Kurtosis is in fact an approximation form

of negentropy. In practice, many other approximations of negentropy instead of

kurtosis have been proposed. In section 2.9, we will give another important, more

generative and practical approximate form of negentropy for measuring the non-

gaussianity.

2.7 Approach to ICA without data model assump-

tion

Comon [9] showed how to obtain a more general formulation for ICA that does not

need to assume an underlying data model. This definition is based on the concept

of mutual information.

As defined in last section, the differential entropy of a random vector y =

(y1, . . . ,yn)T with density f(.) is Eq.2.12. The negentropy is given in Eq.2.14

and Eq:2.15 is the mutual information I between the n(scalar) random variables

yi, i = 1, 2, . . . , n [9, 10].

If we constrain the variables to be uncorrelated, the mutual information could

be expressed as following[9]:

I(y1, y2, . . . , yn) = J(y)− ΣiJ(yi) (2.23)

AS the information-theoretic measure of independence of random variables, mu-

tual information could be used as the criterion for finding the ICA transform. There-

fore, the ICA of a random vector x as an invertible transformation s = Wx where



2.8 Other approaches to ICA 20

the matrix W is determined so that the mutual information of the transformed

components si is minimized.

Because negentropy is invariant for invertible linear transformations[9], it is ob-

vious from Eq.2.23 that finding an invertible transformation W that minimizes the

mutual information is roughly equivalent to finding directions in which the negen-

tropy is maximized.

Therefore, the two approaches to ICA is equivalence to each other and negentropy

is their common contrast function.

2.8 Other approaches to ICA

Besides the two main approaches to ICA, Maximum Likelihood estimation[40] and

the Infomax principle[2, 39] are always used as another two approaches. Even though

all of the approaches seem to be different in the notations, several authors have

demonstrated that these approaches could be equivalent under some conditions for

the parameter functions. For details, see [8, 44].

2.9 Practical Contrast Functions

There are several contrast functions for ICA models based on the different ap-

proaches, such as the kurtosis, negentropy, maximum likelihood, mutual informa-

tion and infomax (maximum of the output entropy) and etc.. However, as we have

analyzed above, kurtosis is one form of negentropy, approaches of maximum likeli-

hood and infomax prnciple are equivalent to mutual information estimation which

uses negentropy as the contrast function. So here, we will focus on the practical

negentropy contrast function.

Usually, the computational complexity makes the negentropy impossible to use
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without approximation. There have been many methods to approximate the negen-

tropy. Here, we will introduce one class of new approximations developed in [21]. In

[21] it was shown that these approximations are often considerably more accurate

than the conventional, cumulant-based approximations in [1, 9, 26]. In the simplest

case, these new approximations are of the form:

J(yi) ≈ c[E{G(yi)} − E{G(v)}]2 (2.24)

Where G is practically any nonquadratic function, c is an irrelevant constant,

and v is a Gaussian variable of zero mean and unit variance(i.e. standardized). The

random variable yi is assumed to be of zero mean and unit variance. For symmetric

variables, this is a generalization of the cumulant-based approximation in [9], which

is obtained by taking G(yi) = y4
i .

The approximation of negentropy given above gives readily a new objective func-

tion for estimating the ICA transform. First, to find one independent component,

or projection pursuit direction as yi = wtx, we maximize the function JG given by

JG(w) = [E{G(wtx)} − E{G(v)}]2 (2.25)

for practically any nonquadratic function G. Here w is an m-dimensional vector

constrained so that E{(wtx)2} = 1 (we can fix the scale arbitrarily). Several

independent components can then be estimated one-by-one.

If the function G could be wisely chosen, such approximations in Eq.2.25 would

be better than the higher-oder cumulants approximation given in Eq.2.22. Especially

when choosing a G that does not grow too fast, a robust estimator could be expected.

The following choices of G have proved very useful:

G1(y) =
1

a1

log cosh a1y (2.26)

G2(y) = − exp(−y2/2) (2.27)
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where 1 ≤ a1 ≤ 2 is some suitable constant, often taken equal to one.

2.10 Conclusion

ICA is a very general-purpose statistical technique. In ICA, the observed random

data(mixtures) are linearly transformed into sources which are as independent as

possible from each other. The intuitive way to estimate ICA model is to maximize

nongaussianity, and furthermore, different ways which are approximately equivalent

could also be derived. Finally, a class of negentropy approximations are given for

practical use.

When using ICA for single-channel fetal ECG extraction, we have two problems:

1. Since ICA requires the number of the mixtures can not be less than the number

of the sources, which, in our case, only one mixture available for obtaining at

least three sources(maternal ECG, fetal ECG and noise).

2. Another problem is that ICA gives random components and we could not know

which component is the one for maternal ECG, fetal ECG or for noise.

In later chapters, we will give the algorithm and our novel method which could

provide a good way to solve these problems and leads to a promising extraction.



Chapter 3
FastICA—an algorithm for ICA

3.1 Introduction

The current algorithms for ICA can be roughly divided into two categories. In the

first category(Cardoso, 1992; Comon, 1994), the algorithms rely on batch computa-

tions minimizing or maximizing those contrast functions. The requirement of very

complex matrix or tensorial operations of these algorithms makes this kind of al-

gorithm difficult to implement. The second category contains adaptive algorithms

often based on stochastic gradient methods, which may have implementations in neu-

ral networks(Amari et al., 1996; Bell and Sejnowski, 1995; Delfosse and Loubaton,

1995; Hyvärinen and Oja, 1996; Jutten and Herault, 1991; Moreau and Machi, 1993;

Oja and Karhunen, 1995). The main problem with this category is the convergence

which is very slow and crucially dependent on the correct choice of the learning rate

parameters. A bad choice of the learning rate can, in practice, destroy convergence.

Therefore, it would be important in practice to make the learning faster and more

reliable. This can be achieved by the following algorithm—FastICA[17, 18, 19].

FastICA uses the fixed-point iteration scheme and it is very simple but highly

efficient in finding the extrema for ICA. Meanwhile, the fixed-point algorithms have

23
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very appealing convergence properties which make them a very interesting alterna-

tive to adaptive learning rules.

In this thesis, FastICA was used for our ICA model. The following is a detailed

discussion for this algorithm.

3.2 Fixed-point algorithm for one unit

To begin with, we firstly show the one-unit version of FastICA. A “unit” is referred

to a computational unit, eventually an artificial neuron which has a weight vector w

that the neuron is able to update by a learning rule. FastICA learning rule finds a di-

rection, i.e. a unit vector w such that the projection wTx maximizes nongaussianity

or minimizing the mutual information. Here we used the approximation of negen-

tropy we introduced in Eq.2.25 as the contrast function. The variance of wTx must

here be constrained to unity; for whitened data this is equivalent to constraining

the norm of w to be unity.

The derivations of FastICA is as follows: first note that the maxima of the ap-

proximation of the negentropy wTx are obtained at certain optima of E{G(wTx)}.
According to the Kuhn-Tucker conditions[36], the optima of E{G(wTx)} under the

constraint E{G(wTx)2} =‖ w ‖2= 1 are obtained at points where

E{xg(wTx)} − βw = 0 (3.1)

Solve this equation by Newton’s method. The Jacobian matrix of the above

equation is:

JF(w) = E{xxTg′(wTx)} − βI (3.2)

To simplify the inversion of this matrix, the first term is approximated in the

following. Since the data is sphered, a reasonable approximation seems to be:
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E{xxTg′(wTx)} ≈ E{xxT}E{g′(wTx)} = E{g′(wTx)}I. Thus, the jacobian ma-

trix becomes diagonal, and can easily be inverted. Therefore, the following approx-

imative Newton iteration is obtained:

w+ ⇐ w − [E{xg(wTx)} − βw]/[E{g′(wTx)} − β] (3.3)

Multiplying both sides by β − E{g′(wTx)}, the following FastICA iteration

could be obtained after algebraic simplification,

1. Choose an initial(e.g. random) weight vector w

2. Let w+ ⇐ E{xg(wTx)} − E{g′(wTx)}w

3. Let w ⇐ w+/ ‖ w+ ‖

4. If not converged, go back to 2.

Note that convergence means that the old and new values of w point in the

same direction, i.e. their dot-produce is (almost) equal to 1. It is not necessary that

the vector converges to a single point, since −w and w define the same direction.

This is again because the independent components can be defined only up to a

multiplicative sign. Note also that it is here assumed that the data is prewhitened.

In practice, the expectations in FastICA must be replaced by their estimates.

The natural estimates are the corresponding sample means.

3.3 FastICA for several units

The one-unit algorithm of the preceding subsection estimates just one of the in-

dependent components, or one projection pursuit direction. To estimate several

independent components, it is necessary to run the one-unit FastICA algorithm

using several units(e.g. neurons) with weight vectors w1, . . . ,wn.
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One problem here is to avoid different vectors from converging to the same

maxima. Therefore, decorrelation should be done on the outputs wT
1 x, . . . ,wT

n x

after every iteration. Usually three methods are widely used for achieving this.

The simple way is the deflation scheme based on a Gram-Schmidt-like decor-

relation. This means that the independent components is estimated one by one.

When p independent components have been estimated, or p vectors w1, . . . ,wp are

known, run the one-unit fixed-point algorithm for wp+1, and after every iteration

step subtract from wp+1 the “projections” wT
p+1wjwj, j = 1, . . . , p of the previously

estimated p vectors, and then renormalize wp+1:

wp+1 ⇐ wp+1 −Σp
j=1w

T
p+1wjwj (3.4)

wp+1 ⇐ wp+1/
√

wT
p+1wp+1 (3.5)

Another two methods are all used for certain applications where a symmetric

decorrelation may be desired. In such cases, no vectors are “privileged” over others.

For details, see [17, 28].

3.4 FastICA algorithm

The main steps of FastICA includes:

1. Preprocessing:

(a) Center the data matrix by subtracting the mean of each column of the

data matrix.

(b) Whiten the data matrix by projecting the data onto its principle compo-

nent directions.

2. Algorithms
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(a) i ⇐ 0;

(b) i ⇐ i + 1; if i > n, stop.

(c) Choose initial weight vectors:w1,w2, . . . ,wn

(d) Let w+
i ⇐ E{xg(wT

i x} − E{g′(wTx)}w

(e) Let w+
i ⇐ w+

i /‖w+
i ‖

(f) If not converged, go back to 2c.

(g) Let wi ⇐ wi −∑i
j=1 wT

i wjwj

(h) Let wi ⇐ wi/
√

wT
i wi

(i) if i < n, go to 2b.

In FastICA, if we select the derivative g as the fourth power as in kurtosis, it

will lead to the method for maximizing kurtosis by fixed-point algorithm, while if

the nonquadratic function G used Eq.2.26 and Eq.2.27, FastICA will give robust

approximations of negentropy.

Note, the derivatives of the nonquadratic functions in Eq.2.26 and Eq.2.27 are:

g1(u) = tanh(a1u) (3.6)

g2(u) = u exp(−u2/2) (3.7)

FastICA algorithm was derived for optimization of E{G(wTz)} under the con-

straint of the unit norm of w. FastICA also works for maximum likelihood estima-

tion. Actually, if the estimates of the independent components are constrained to be

white, maximization of likelihood gives an almost identical optimization problem.

See[22]
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3.5 Conclusion

Compared to the stochastic gradient descent methods, FastICA has the following

properties[23]:

1. FastICA has a very fast convergence which is at least quadratic.

2. Since no step-size parameters are needed, FastICA is very easy to use.

3. FastICA could estimate the independent components one by one, this makes

FastICA quite useful in exploratory data analysis and decreases the computa-

tional load of the method.

4. Performance of FastICA could be optimized by choosing a suitable nonlinear-

ity function g, especially when concerning the robust and/or the minimum

variance of the algorithm. Actually, the two nonlinearities G in Eq.3.6 and

3.7 have some optimal properties.

Such properties make FastICA a very popular algorithm for ICA model. In this

thesis, FastICA is the algorithm we used and it proves to be very efficient.



Chapter 4
Fetal ECG extraction

4.1 Introduction

In this work[15], we are given a single-channel abdominal ECG and we are expected

to extract the fetal ECG from this mixture. Like the adults, among all the informa-

tion from fetal ECG, the fetal ECG complex and the heart rate variability are two

important measures.

In our case, each given signal is about 10-minute long, with a sampling rate

300HZ(roughly 1.8×105 samples. Figure.4.1 shows one whole signal. For clarity,

Figure.4.2 gives a half-minute part of Figure.4.1. In the figures, the prominent

repeating peaks are the maternal R-wave(the peak of the ECG complex), while the

less visible peaks are from the fetus.

Our aim is to detect the fetal heart rate and extract the fetal ECG complex. In

this chapter, we will introduce our approach to this two aspects. The main challenge

is the detection of the occurrence of fetal heart beats, then it is trivial to find the

‘beat-to-beat’ heart rate. In the mean time, once the locations of the fetal heart

beats are detected, the fetal ECG complex could be obtained by averaging, SVD or

ICA.

29
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Figure 4.1: The whole original signal
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Figure 4.2: Detail of the original signal

For fetal heart beats detection, we propose a blind-source separation method

using a SVD of the spectrogram, which is followed by an iterative application of

ICA on both the spectral and a temporal representations of the ECG signals. This

proposed method could give us a heart beats trend which is a sinusoidal with each

cycle corresponding to a heart beat. Using this sinusoidal, the heart beats could

be located by simple search routines. Next,time domain averaging is employed to

compute the fetal ECG complex.

This chapter includes three main parts: the first part is on the heart beats
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occurrence detection, the second part mainly focus on how to compute the fetal

ECG complex, and the last section introduces two refining method which is used in

the proposed method.

4.2 Heart beats occurrence detection

4.2.1 Motivation

Consider a series X, rearrange it into a matrix B such as

B =




x(1) x(2) . . . x(L)

x(L−m+ 1) x(L−m+2) . . . x(2L−m)

...
...

...
...

x(nL−nm+1)x(nL−nm+2). . .x(nL−(n−1)m)




where L is the segment length and L − m is the overlap. B is an n × L matrix.

The SVD on A is given by B = UΣVT where U and V are n × n,L × L matrix

respectively. Σ is a diagonal matrix and Σ = [diag(σ1, σ2, σ3, . . . , σr),0], r is the

number of non-zero elements in Σ and σ1, σ2, σ3, . . . , σr are the non-zero singular

values.

When x is a strictly periodic series, L is the periodic length and m = 0 (that

means the rows are identical), only σ1 is non-zero, and B = u1 ∗ σ1 ∗ vT
1 where u1

and v1 are the first column of U and V respectively, here, B is one-rank matrix.

The information energy will be concentrated in the unique dyad u1 ∗ σ1 ∗ vT
1 .

When x is a nearly periodic series, L is the average period length and m = 0, then

even though r will be bigger than 1, but σ1

σ2
À 1, the most dominant information

energy will still be concentrated in the dyad u1∗σ∗vT
1 . The most dominant periodic

component present in the series x is given by Bd1 = u1 ∗ σ ∗ vT
1 . The time series of
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Bd1 will have the same repeating pattern given by vT
1 up to a scaling factor u1jσ1

where u1j is the jth element of u1.

When x is a random series, no matter what is L and m, B will be a full rank

matrix and all the singular values will be almost the same, and all the information

energy is distributed uniformly among all the singular values.

Now we define a matrix S based on the fourier transform of B:

S = fft2(Bw) w is a window function with length L. (4.1)

When x is a random series and B is a full-rank matrix, let m = 1, then the con-

secutive rows of S will be a little different, since the overlap L−2 elements are same

before transformation(Here, we assume L À 1). It is reasonable to expect any two

consecutive rows are almost identical when we use the window: w = blackman(L)

for the weight is nearly zero for the first element and the last element which are the

different elements between the two rows.

Since S has repetitive frequency patterns between consecutive rows, that means

we have transformed the random signal into a matrix which has certain basic pat-

terns.

For any source signal x, with a large enough overlap, its spectrogram could

actually serve as S. Therefore, S is a matrix with each row corresponding to the

spectrum at a particular time(Figure.4.3(a)).

Consider a signal which consists of a repeating ECG complex. Its spectrogram

also consists of repeating patterns(in this case, the overlap length could be decreased

since the ECG is a nearly periodic signal). This can be seen in Figure.4.3(a)(Here,

m is 10, L is 301).

Therefore, the problem now becomes how to find the pattern and how the pattern

changes along with time.
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Figure 4.3: Spectrogram of the original signal(108.raw).

4.2.2 Problem formulation

We assume that S is the mixture of the column vector um,vm and uf ,vf in the

following way,

S = umvT
m + ufv

T
f + n, (4.2)

where n is the noise. We call the vector um and uf the maternal and fetal heartbeat

trend respectively.

Consider a signal which consists of a repeating ECG complex. Its spectrogram

also consists of repeating patterns. This can be seen in Figure.4.3(a). By carefully

choosing the right window width for the spectrogram, the spectrogram of a ECG
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complex could be separable. In this case, we would expect the heartbeat trends

um and uf to be approximately sinusoidal with each cycle corresponding to a heart

beat, and expect vm and vf to approximate the spectrum of the ECG complex.

Therefore, an accurate estimation of uf is sufficient to determine the heartbeat,

which in-turn can be used to obtain the ECG complex.

Now, given S, our problem is to estimate um,vm, uf , and vf . If we attempt

to minimize the energy of n, then this amounts to finding the two best separable

functions whose sum approximates S, which can be obtained using SVD. However,

numerical experiment on the synthetic signal (Figure.5.5) gives disappointing results.

Alternatively, we can borrow the idea of ICA. Besides minimizing the noise, we

propose finding the components such that um and vm are respectively statistically

independent from uf and vf . In next section, we describe a method that attempts

to find such components.

4.2.3 Proposed method for finding trends of original signal

Given the source signal x, we first compute its spectrogram, S (the choice of window

width will be discussed in Section 4.4.1).

1. Perform SVD on S. Let S = UΣV T .

Here, S is the spectrogram with rows representing time slices. Σ is a square

diagonal matrix with weights corresponding to the significance of the related

spectral vector in V, U is oriented the same way as the spectrogram with

columns that are orthonormal time-indexed weights associated with a given

spectral vector from V which sum to create spectral slices of S.

2. Based on the property of SVD, the first k columns of U, and V are the k most

significant components, S then could be written as:
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S ≈ UkΣkV
T
k

where Σk is the diagonal matrix whose elements are the first k singular values

of S. Here k > 2 is a fixed constant.

3. Apply ICA on the k most significant spectral components v1,v2, . . .vk (columns

in Vk), the corresponding independent components are v0
1, . . . ,v

0
k (columns in

V0
k) and the “mixing” matrix for Vk is A. That is:

V T
k = AV 0T

k

4. Update the time vectors to recover the one-to-one correspondence between U

time vectors and V spectral vectors.

That is, compute [u0
1,u

0
2, . . . ,u

0
k] by

[u0
1,u

0
2, . . . ,u

0
k] = [u1,u2, . . . ,uk]ΣkA.

where A is the same “mixing” matrix determined in the previous ICA step for

,and u1,u2, . . . ,uk are columns of Uk.

By doing so, the independence of v0
1, . . . ,v

0
k is guaranteed and the energy of

S is kept constant, which are helpful for the solution stability.

5. Make the time vectors as independent as possible.

This is achieved by performing ICA on the u0
1,u

0
2, . . . ,u

0
k. Let u1

1, . . . ,u
1
k be

the independent components.

6. Select and output the two best components as um and uf from u0
1,u

0
2, . . . ,u

0
k.

(see Section 4.4.2)

The above algorithm requires a parameter k, which we take it as 10 in our exper-

iment. That is, we choose the 10 most significant components from the much larger

set corresponding to the number of frequency channels in the spectrogram. The
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number is chosen to be large enough to retain the significant information from the

original signal, but is reduced for fast computation and so that we have a reasonable

number of channels for the ICA algorithm to work on.

4.3 Fetal ECG complex detection

Fetal ECG complex is another important measure for clinical diagnosis. In this

section, we will provides a way to compute fetal ECG complex when the maternal

and fetal heart beats occurrences are known.

4.3.1 Main idea

In this thesis, we adopt the most straightforward way–subtraction to extract the fetal

ECG and then the time domain averaging is employed to get the ECG complex.

Even though the direct subtraction of the maternal ECG(usually the thoracic

ECG could be a reasonable assumption) from the mixture does not give a good

result, this method is not necessarily useless. Actually, if the suitable maternal ECG

is available, a pure fetal ECG could be expected by this simple method. Hence, our

approach will mainly focus on finding the appropriate maternal ECG which could

match the abdominal mixture as well as possible .

In order to generate a pure maternal ECG, aligning,correlation, shifting and

scaling are all used in our method. Here, we will give a brief introduction to the

concept of correlation.

Correlation: Cross-correlation between two real random process y and zis defined

as:

Ryz(m) = E{yn+mzn} = E{ynzn−m} (4.3)
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When y is equal to z, the cross-correlation is also called the autocorrelation.

In practice, we often use:

R̂yz(m) =





∑N−m−1
n=0 yn+mzn m ≥ 0

R̂zy(−m) m ≤ 0

When y = z, Ryz(0) ≥ Ryz(m) for any m 6= 0.

Signals y and z are said to be correlated if the shapes of the waveforms of the

two signals match one another. Here, we define a correlation coefficient r between

y and z as:

r =
Ryz(m)

Ryy(0)
(4.4)

Such a ratio determines the degree of match between the shapes of y and z.

4.3.2 Proposed method for fetal ECG extraction

Method

1. Segment the original ECG signal such that each segment contains the maternal

ECG complex.

2. Select the ‘good’ maternal ECG complex segments, average them to get the

maternal ECG complex template.

3. Compare each segment in the original signal with the template, shift it if

needed to make sure the location of ECG peak is the same as the template.

4. Compute all the correlation coefficients between the template and each seg-

ment. Then scale the segments by their correlation coefficients and construct

a purely maternal ECG by connecting the segment-templates.

5. Subtract the purely maternal ECG from the original ECG to obtain the fetal

ECG.
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6. Segment the fetal ECG and average to get the fetal ECG complex.

Even though a large sampling rate may indicate high precision, it is impossible

and unnecessary to adopt a very large sampling frequency. To overcome the mis-

match between the template and the composite due to a relatively small sampling

rate, shifting is adopted when aligning the template and the composite. Further-

more, the energy for each ECG complex wave may vary greatly, scaling could help

to cancel out such influence. By carefully subtracting the maternal ECG which

matches the mixture, a pure fetal ECG is then obtained.

A simple example

For illustrating the above method, we give a simple example. Note that this is not

a synthetical ECG signal, it is only one signal with quasiperiodic ‘peaks’. Time

domain averaging only works when there are enough periods. For simplicity, we use

“Large complex” and “Small Complex” to refer to the stronger and weaker patterns

which is similar as “maternal ECG complex”,“fetal ECG complex”.

Figure.4.4 is the example signal.

1. Segment the signal: 1, 2, 3, 4, 5, 6, ... are the segments.

2. Average the 1rd, 2nd, 3th, 4th and 6th segments(those are the ‘good’ ones) to

obtain the maternal ECG complex template, that is Figure.4.5.

3. Compare Figure.4.5 with each segments in Figure.4.4. Do shifting for the

segments which do not match the shape of the template(it often occurs due

to not large enough sampling rate). After that, scaling the shifted segments

based on their corresponding correlation coefficients with the template.

Figure.4.6 is an example for shifting the second segment. CV BA is the original

segment part. Firstly, shift CV BA one pixel left to C ′B′V ′A′. V ′′ is obtained
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Figure 4.4: Original mixture and the segments
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Figure 4.5: Large complex template

by extrapolation. V ′′′ has the same magnitude as V ′′. Then C ′V ′V ′′′A′B′

becomes the part of the segment-template. Scaling the C ′V ′V ′′′A′B′ by its

correlation coefficient with the template V0C0B0. Note the above shifting and

scaling is done on the whole second segment which including CV BA as a part.

4. Connect all the segment-templates to construct a purely maternal ECG signal.

5. Subtract the maternal ECG from the original mixture. Figure.4.8 is the result.

6. Average the fetal ECG complex segments in Figure.4.8, the fetal ECG complex

could be obtained, that is Figure.4.9
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Figure 4.6: Shift procedure
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Figure 4.7: Purely large complex signal
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Figure 4.8: Small complex signal(after removing the large complex signal)
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Figure 4.9: Small complex

Note: for clarity, only six segments are shown here. Actually, 600 segments are

used for averaging.

4.4 Refining for ECG

During the procedure to detect the occurrence of heart beats, there are two main

problems where special attention is needed.

4.4.1 Choice of window width of spectrogram

The choice of window width is essential to retain sufficient information in the spec-

trogram, and at the same time gives the nice separability property. If the window

is too long, say triple the duration of one ECG complex, then the spectrogram is

smooth along the time and no interesting heartbeat trend can be obtained. On

the other hand, if the width is small, say only a fifth of the duration of one ECG

complex, then the spectrogram capture the fine details of the non-stationary ECG

complex. Due to these details, its spectrogram is no longer separable. In our ex-

periment, we use the Blackman window with the width of a healthy maternal ECG

complex.
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Figure 4.10: Frequency (108.raw).

4.4.2 Selecting the best component after ICA

ICA yields the components in arbitrary order. In order to find which component

is for maternal heartbeats and which is for fetal heartbeats, we take the frequency

characteristic into account. Since the ECG signal is quasi-periodic, the expected

spectrum should have only one peak whose location and height can be estimated

by the approximate heart rate. Therefore, the sampling frequency will be enough

for us to select the correct heart beats trend. Assigning maternal and fetal labels

is facilitated by the a priori knowledge that the fetal heartbeat frequency is higher

than the maternal.

4.5 Conclusion

In this chapter, we give a method which combines SVD and ICA to detect the fetal

heart beats occurrence and the fetal ECG complex.

By using the spectrogram of the single-channel ECG singal, we can use the mul-

tichannel segregation techniques of ICA. Furthermore, by using frequency domain

knowledge, we overcome the ambiguities of ICA and could determine which is the
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expected component automatically.

For the fetal ECG complex detection, we first subtract a suitable maternal ECG

from the mixture, next, time domain averaging is employed to get the fetal ECG

complex. In this procedure, the main challenge is to generate the matched maternal

ECG. To produce a ‘good’ match, the template are produced carefully, then scaling

and shifting help to refine the maternal ECG.

In the last section of this chapter, two aspects which are important in the im-

plementation of the proposed method are given.

Results in chapter 5 show the proposed method works well for detecting the heart

beats occurrence and extract the fetal ECG from single-channel abdominal ECG.



Chapter 5
Programmes and experimental results

5.1 Programmes structure

Programmes are written in Matlab scripts, and are tested in Matlab 6.1. The

running time depends mostly on how many iterations ICA need to find the heart

beat trend. Normally, one iteration for maternal trend and two or three iterations

for fetal trend, time range from two minutes to four minutes under Pentium III 700

with a 256M RAM.

Figure.5.1 shows the structure of the programmes.

The analysis includes seven parts:

1. Using SVD for maternal heart beats occurrence detection.

2. Using SVD for fetal heart beats occurrence detection.

3. Using ICA and SVD for maternal heart beats occurrence detection.

4. Using ICA and SVD for fetal heart beats occurrence detection.

5. Computing fetal ECG when the maternal heart beats are given.

6. Apply ICA and SVD on fetal ECG for its heart beats detection.

44
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Figure 5.1: Programme Structure
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7. Compute the fetal ECG complex.

Using the programmes, the following experiments have been done:

1. Compare the heart beats occurrence detection for synthetic data, by SVD and

ICA+SVD.

2. Compare the maternal heart beats occurrence detection for the real life data

sets, by SVD and ICA+SVD.

3. Compare the fetal heart beats occurrence detection for the real life data sets,

by SVD and ICA+SVD, without knowing the maternal ECG complex.

4. Compute the fetal heart beats occurrence detection for the real life data sets

after knowing the maternal ECG complex.

(a) Extract the fetal ECG from the mixture

(b) Detect the fetal heart beats occurrence by working on the fetal ECG

instead of the mixture

5. Compute the maternal ECG complex and fetal ECG complex for the real life

data sets.

5.2 Experimental results

5.2.1 Synthetical data and results

Due to the lack of ground truth, we evaluate the performance on a few signals by

visual inspection. We also compose a few synthetic mixtures where ground truth

are available.

Synthetic data: The synthetic mixture(Figure.5.5 is constructed from two simulated

ECG complexes (Figure.5.2 and Figure.5.3). Note that the energy of one complex
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Figure 5.2: Synthetic maternal ECG complex
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Figure 5.3: Synthetic fetal ECG complex

is higher than the other. This is to emulate the relatively strong maternal ECG and

weak fetal ECG. One period of the maternal and fetal ECG complex is 240 and 100

samples respectively.

We compare the proposed method with the method that uses SVD as described

in Section 4.2.1, which finds the um, vm, uf , and vf , that minimize the noise.

Figure.5.5 compares the fetal heart beats detected by our method with those

found using SVD. Clearly, our proposed method is much better even for the periodic

synthetic signal than using solely SVD.
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Figure 5.4: Synthetic data: Constructed by Figure.5.2 and Figure.5.3
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Figure 5.5: Comparison for the results from SVD and SVD+ICA on synthetic data

In order to check the suitability of this method, synthetical signals with different

strength ratio of the maternal heart beats and fetal heart beats are composed and

analyzed. Fig.5.6-Fig.5.8 show that for strength ratio up to 6, the proposed method

works well. We can also see the detection accuracy trend in Fig.5.9. Furthermore,

regarding the noise level, experiments show that the proposed method will not be

affected when noise level(the variance of the noise) is less than 10. Fig.5.10 gives

the result when the noise level is 10.
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Figure 5.6: Synthetical data detection result for strength ratio=4
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Figure 5.7: Synthetical data detection result for strength ratio=5
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Figure 5.8: Synthetical data detection result for strength ratio=6
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Figure 5.9: Detection accuracy for different strength ratio between maternal and

fetal ECG
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Figure 5.10: Syntehtical data detection result when noise level= 10
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Figure 5.11: Original recorded data:108.raw
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Figure 5.12: Original recorded data:292.raw

5.2.2 Experiments on real-life data

Recorded signal: In the second set of experiments, we performed the comparison

for a number of recorded signals. We will present two in this section. The signals

are obtained from two patients with a gestation period of 37 weeks. Each signal is

about 10 minutes long, with sampling rate 300Hz (roughly 1.8× 105 samples). The

heart rate can vary across the time, especially for the fetus who might move during

the recording. Nevertheless, the maternal heart rate is slower, and ranges around

60-110 times per minute. Figure.5.11 and 5.12 shows a short part of the original

signals.
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Figure 5.13: Comparison of results by SVD and SVD+ICA for maternal heart beats

occurrence detection(108.raw)
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Figure 5.14: Comparison of results by SVD and SVD+ICA for maternal heart beats

occurrence detection(292.raw)
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Figure 5.15: Another example: fetal heart beats occurrence detection by SVD +

ICA. Arrows indicates heart beats that are difficult to detect.
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Figure 5.16: Fetal trend comparison of SVD and ICA for 292.raw. Arrows indicates

heart beats that are difficult to detect.

Comparison of results by SVD and SVD+ICA

Figure.5.13 and Figure.5.14 is a comparison for detection of maternal heart beats oc-

currence using SVD and our method. Both methods give good detection. However,

our method is able to detect some occurrences where SVD fails.

Figure.5.15 and Figure.5.16 are comparisons for detection of fetal heart beats

occurrence between the two methods. The SVD performs poorly. It gives a heartbeat

trend that is seriously influenced by the maternal’s. The proposed method gives good

detection. It successfully detects all the heartbeat occurrences in both figures, but

falsely detects two occurrences in Figure.5.15 (the false detections can be filtered

out using domain knowledge). Note that it succeeds in cases where the maternal

and fetal heartbeat coincide.

5.2.3 Fetal ECG extraction

Figure.5.3 and Figure.5.3 are the fetal ECGs after subtracting the scaled and shifted

maternal ECG complex template.

Figure.5.17 and Figure.5.18 are the results of heart beats occurrence detection

on the fetal ECG signal.
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Figure 5.17: Fetal Trend by ICA for 108.raw after removing maternal ECG
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Figure 5.18: Fetal Trend by ICA for 292.raw after removing maternal ECG

5.2.4 ECG complex results

Figure.5.19, Figure.5.20,Figure.5.21 and Figure.5.22 are the Maternal and Fetal

ECG complex for 108.raw and 292.raw respectively which are all obtained by our

proposed methods.

5.3 Conclusion

From the results, we can see that our proposed method works well not only for syn-

thetic data, but also for real-life data. The comparison between SVD and SVD+ICA

indicates that when independence are taken into account, more promising detection
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Figure 5.19: Maternal ECG complex for 108.raw
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Figure 5.20: Maternal ECG complex for 292.raw
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Figure 5.21: Fetal ECG complex for 108.raw
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Figure 5.22: Fetal ECG complex for 292.raw

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−200

0

200

400

600

Figure 5.23: Original signal: 108.raw

could be expected.

For convenience, here, we give the original ECG and the fetal ECG we have

extracted.
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Figure 5.24: Fetal ECG for 108.raw
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Figure 5.25: Original signal: 292.raw
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Figure 5.26: Fetal ECG for 292.raw



Chapter 6
Discussion and Conclusion

6.1 Discussion

Many methods[5, 6, 49, 50, 51, 52] proposed to extract the fetal ECG. However, most

of the methods are working on multi-channel extraction. In multi-channel extrac-

tion, one aspect often ignored is the problem of eliminating the effects of differential

interferences due to extraneous reasons(e.g., due to respiratory activity[45]) on the

thoracic signals and on the composite abdominal ECG signals.

In this work, SVD and ICA have been combined to obtain the fetal ECG from

single-channel composite signal. By computing the spectrogram of the original sig-

nal, we can use the multichannel segregation techniques of ICA. The ambiguities of

ICA (lack of any ordering to the separated signals) is manageable with an obvious

application of domain knowledge.

The computational load due to SVD is not much because 1). fast implementation

are possible; 2). only partial SVD is necessary. In general, SVD-based methods

([5, 6, 50, 51]) including the proposed method are expected to be more immune to

noise than others.

58
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Most ICA algorithms, are either iterative fixed point algorithms (such as Fas-

tICA) or gradient descent algorithms, both of which optimize a solution only locally

and are sensitive to initial randomization conditions that can produce quite different

solutions, even for exactly the same signal. We view our technique of first separating

the spectral basis vectors before submitting the remixed time domain signals to ICA

as a way of setting up advantageous initial conditions that contribute to the stability

of the solutions for the time domain separation. Therefore, the above mentioned

interference problems do not affect the proposed method.

Results show that the proposed algorithm works well for extracting a fetal ECG

from the composite signal. Since it only uses single-channel recording, there are

no confounding issues that arise from having original signals that can differ more

complicated ways than simply signal mixture levels.

6.2 Conclusion

At first when we began to work on this project, we tried the direct methods: locate

the maternal heart beat by its peak, then get the template by averaging, deduct the

template from each ECG complex. Then the ‘pure’ fetal ECG signal (do not include

the maternal part) is obtained. Similarly for getting the Fetal ECG template com-

plex. Even though the ‘big picture’ seems alike as our new algorithms, the original

one need lots of manual interference. Furthermore, since no other characteristics of

the signal are used, the only information is the magnitude of the signal, it can only

work for quite limited cases and those with a larger strength ratio(≥ 1/4). However,

the normal ratio is usually less than 1/5 which makes our original method useless

for fetal heart beat detection.

When trying to improve the results, we were attracted by the popular ICA idea.
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It is very natural for this project to use ICA since fetal ECG and Maternal ECG

could be reasonably assumed to be independent.

Problems occurs when considering only single-channel mixture available, not that

as required by the ICA—at least the same number mixtures as the components(In

our case, at least three mixtures should be available for our three components:

maternal ECG, Fetal ECG and noise).

Fortunately, noticing that ECG is nearly periodic, we could transfer the single-

channel mixture to the multi-channel case. Such transformation makes it possible

to use ICA for single-channel mixture.

Compared with the existing works, the proposed method is better in the following

aspects:

1. Only one mixture is needed which makes the data collection much easier and

avoids the multi-interferences of extraneous reasons which all the multi-channel

extraction[5, 6, 50, 51].

2. In the single-channel fetal ECG extraction method proposed by P.P. Kanjilal

[29], the locations of the fetal heart beat peaks are required to be known

before doing the extraction. However, it is very difficult to do alignment for

fetal ECG in practice. Our method could detect the heart beats trend as well

as the locations of the heart beat peaks automatically and thus it is a feasible

way for fetal ECG extraction and could serve as the prepossessing procedure

for method in [29] or others which need the alignment.

3. The computational load which usually comes with SVD is avoided by using

Partial SVD. Approximately, the proposed method need several minutes(2-

4minutes) to extract the fetal ECG complex from the original mixture under

Matlab 6.1 on PC with Pentium III 700 and a 256M RAM.
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However, the method is far from perfect. there is still a big space for improve-

ment, such as:

1. After doing experiments on dozens of mixtures, we found that even though the

proposed method can detect the maternal heart beats very accurately, it fails

to detect the fetal heart beats when the ratio of the fetal heart beat strength

to the maternal heart beat strength is small. Experiments on synthetic data

give the limit ratio as 1/6.

2. Since no ground truth exists, the only way for us is to locate the Fetal ECG

by its peaks. In other words, if the accuracy for peak detection is high, that

means we have done a good job. This is our estimation method.

Here, one aspect should be noted: the data we use come from the FEMO—a

monitor of ECG, it could detect the heart beats for both mother and fetus.

However, before the data was recorded, the student(This project is cooperated

with professor Ho Ting-fei in Medical department of National University of

Singapore. All the data are collected by her students) who collected it removed

some unknown parts which may seem not ‘good’. Therefore, alignment is

impossible and no way to compare the two results. But one point for sure is

that when our method could detect most of the fetal heart beats(according to

our estimation method: peaks detection), the FEMO fails.

More work should be done later to set up a standard estimation system which

would be much useful for comparing all the methods and help to understand

the limits and advantages of each method.

3. In this project, even though all the algorithms such as averaging, SVD and

ICA have some ability to denoise. We did not denoise explicitly. This should

be done in future work.
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Abstract

In this thesis, we propose a novel blind-source separation method to extract fetal

ECG from a single-channel signal measured on the abdomen of the mother. The

signal is a mixture of the fetal ECG, the maternal ECG and noise. The key idea

is to compute the spectrogram of the original signal, and then use an assumption

of statistical independence between the components to find the trends of the orig-

inal signal. This is achieved by applying Singular Value Decomposition (SVD) on

the spectrogram, followed by an iterated application of Independent Component

Analysis (ICA) on the principle components. The SVD contributes to the separa-

bility of each component and the ICA contributes to the independence of the two

components. We further refine and adapt the above general idea to ECG by ex-

ploiting a-prior knowledge of the maternal ECG frequency distribution and other

characteristics of ECG. Experimental studies show that the proposed method is

more accurate than using SVD only. Because our method does not exploit extensive

domain knowledge of the ECGs, the idea of combining SVD and ICA in this way

can be applied to other blind separation problems.
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