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SUMMARY 

 

This work focuses on the synthesis of 1,3-dialkylimidazolium based ionic liquids (ILs) 

and methods development, optimization and applications of these materials in capillary 

electrophoresis (CE). 

 

A series of ILs were synthesized with different methods and their yields were compared. 

The properties of the ILs were investigated with mass spectrometry (MS), indicating 

their different combining modes in organic solvents which would partially relate to their 

behavior in CE. A capillary electrophoresis (CE) method for determining the main 

impurity (1-methylimidazole) and by-products during the synthesis was developed with 

detection limits as low as 0.42 µg/ml.  

 

The IL-cations are UV active and their electrophoretic mobilities are relatively stable 

over a wide pH range, making them suitable as background chromophores in CE. 

Research obtained in this study showed that 1-ethyl-3-methylimidazolium (EMIM) was 

a good chromophore between pH 3.5 and pH 11.5, while imidazole could only work 

below pH 7. Ammonium in human urine was successfully separated from the high-

concentration potassium without additives and determined by CE using EMIM as 

background chromophore at pH 8.5. 

 

Research on ILs as coating materials showed that the electroosmotic flow (EOF) of the 

capillary was reversed and its magnitude could be controlled by manipulating coating 

parameters such as reaction time. The interaction between the cationic analytes and the 

silica wall was reduced and hence the peak shapes and the recoveries were improved. 

 x



 xi

With careful design and operation, the co-migrating sildenafil and its metabolite were 

baseline separated and determined by CE-mass spectrometry. Application of IL-coated 

capillary (ILCC) in DNA separation depicts that in the presence of weak self-coating 

sieving matrix hydroxyethylcellulose (HEC), the fragments were separated in similar 

patterns as obtained in polyacrylamide-coated capillary with shorter analysis time due 

mainly to the anodic EOF. Also, the experimental data indicate electrostatic interaction 

between DNA and the cationic coating, which is dependent on the charge density of the 

fragments. 

 

Combination of ILs as both background electrolytes and coating materials were 

employed in the separation of metal ions. Eleven metal ions were baseline separated in 

IL-coated capillary with detection limits as low as 0.27 ng/ml. The detection limits were 

lowered by two approaches. First, field-amplified sample injection was employed. 

Secondly, the sensitivity of potential gradient detector was improved by reducing the 

mobility of the background co-ion, the IL-cation, by addition of α-cyclodextrin (α-CD).  

 

Fast separation of 7 phenoxy and benzoic acid herbicides was accomplished by using IL 

as additive. In phosphate-acetate buffer, the EOF of the capillary was reversed with 

addition of IL, and the analytes were baseline separated within 7 minutes under negative 

voltage. In addition, the resolution of position isomers was significantly improved. A 

solid-phase extraction (SPE) procedure was also developed and coupled with the CE 

method in the analysis of a local surface water sample for residual herbicides. 
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CHAPTER   1 INTRODUCTION 

1.1 Ionic liquids 

The ionic liquids (ILs) are those compounds composed of organic cations and inorganic 

or organic anions which are liquids at room temperature or whose melting points are 

slightly higher than ambient temperature. The first ambient temperature ionic liquid was 

synthesized in 1951 [1], an alkylpyridinium based salt (N-ethylpyridinium bromide-

aluminium chloride). However, it was not until the discovery of the 1,3-

dialkylimidazolium based ionic liquids in 1982 that this group of materials engendered 

dramatic interests [2] because the later exhibit both a wide liquidus range and 

electrochemical window that are useful in both electrochemistry and synthesis; 

moreover, the dialkylimidazolium based ILs are more stable [3].  Investigations have 

been carried out mainly on this group of compounds from then on. Low melting point 

ILs typically exhibit mixed organic and inorganic character. The cation containing 

imidazole ring and attached alkyl groups is relatively large compared to simple 

inorganic cations, accounting for the low melting point of the salt. The chemical 

property of the IL is determined prominently by the anion. 

 

The research in this thesis is focused on applications of the 1,3-dialkylimidazolium 

based ILs. The terms “ionic liquid”, “IL”, “dialkylimidazolium based IL” and “ILs” in 

the thesis are related to the same group of ILs.   
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N N
R1

+
R2

X -

X can be Cl  ,Br , BF4  , PF6
   , etc- - - - -

 
 
Fig. 1-1 Schematic representation of ionic liquid 

 

Fig. 1-1 shows the schematic representation of the 1,3-dialkylimidazolium based IL. 

Generally R1 and R2 are alkyl groups as reported in many publications [3-5], but 

actually they can be any groups that can be added onto the imidazole ring via chemical 

reaction. Halides are the primary ILs synthesized, and are usually the beginning 

materials for other ILs. Tetrafluoroborate and hexafluorophosphate have drawn 

enormous interests owing to their feasibilities as electrolyte in solar battery and as 

solvents for liquid-liquid extraction. The following is the brief introduction of 

applications of this kind of materials. Although some of the applications are still 

potential, IL has shown promise. 

 

1.1.1 Use as electrolyte in solar battery 

The electrolytes used in many conventional solar cells are salts dissolved in organic 

solvents. There are some drawbacks with the electrolytes used: 1) because the organic 

solvents are volatile, the cell must be absolutely tight, leading to high cost; moreover, 

the life time of the cell is influenced by the leakage of the solvents [5]; 2) when the cell 

works at lower temperature than anticipated, the salts may precipitate out due to the 

reduced solubility. 3) The organic solvents are often incompatible with the glues used to 
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seal the cell. 4) For the dye-sensitized nanocrystalline solar cell, UV exciting of the dye-

supporting semiconductor may cause oxidization of the salts [3]. 

 

ILs are liquids that are composed entirely of ions with negligible vapor pressure. But 

unlike the normal salts, they are liquids with wide liquidus range and are non-corrosive. 

They can be utilized in a wide range of electrochemical applications where high 

conductivity and ionic mobility are required. These properties as well as relatively low 

viscosity, the large electrochemical window, resistance to oxidation, low melting point, 

thermal stability, miscibility with other solvents or salts and hydrophobicity are the 

desirable qualities rendering them attractive alternatives for use as electrolytes and 

solvents in the solar cell. Furthermore, ILs are now appear to be undemanding and 

inexpensive to prepare. One of the ILs, 1-hexyl-3-methylimidazolium iodide, has been 

found to be of lowest viscosity at room temperature, not sensitive to water, and stable 

under the operational conditions of the photoelectrochemical cell utilizing the 

iodide/triiodide couple as redox mediator [5].  

 

1.1.2 As solvent for extraction 

Liquid-liquid extraction has been a widely used technique in separation science. 

However, the traditional solvent extraction, in which an organic solvent and an aqueous 

solution were used as the two immiscible phases, is increasingly challenged by the 

emphasis on clean manufacturing processes and environmentally benign technologies 

because it employs toxic, flammable, volatile organic compounds as solvents. The costs 

of solvents are high and disposal of spent extractants and diluents will also bring 

increasing costs through the impact of environmental protection regulations. A report 
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stated that the current worldwide usage of these organic materials has been estimated at 

over 5 billion dollars per annum [5]; these organics will have profound influence on 

environment and human health. Design of safe and clean separation media is now 

becoming an increasingly important role in the development of clean manufacturing 

processes.  

 

The ILs used for liquid-liquid extraction are water and air stable; they have relatively 

favorable viscosity and density characteristics; they have high solubility in organic 

species while the water immiscible ionic liquids are also available. Water immiscible 

ILs may render such systems as being uniquely suited to the development of completely 

novel liquid-liquid extraction processes. The most important feature of the ILs for these 

purposes may be their very low vapor pressure due to the high coulombic forces present 

among the ions. With ionic liquids, one does not have the concerns as with volatile 

organic solvents. In addition, the R1 and R2 groups of the cation (Fig. 1-1) are variable 

and may be used to finely tune the properties of the IL. It was reported that such ionic 

liquids are able to solvate a wide range of species including organic, inorganic and 

organometallic compounds [6]. 

 

1.1.3 As solvent and catalyst for chemical reaction 

Research was carried out in the early 1980s on IL feasibility as reaction media and it has 

attracted industrial interest from late 1990s.  
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Industrial chemical syntheses usually take place in liquid media, so the solvent 

properties play an important role in the reaction. Most chemical synthesis are catalyzed 

for the following reasons: 1) greater reaction selectivity and therefore less by-products; 

2) enhanced reaction rates which means reduced plant size and hence the costs; 3) 

milder operating conditions (in terms of temperature and pressure) due to highly 

efficient catalysts, which may lead to both reduced energy consumption and enhanced 

safety. There are two factors determining the catalysis effects, one is the active site of 

the catalyst, another is the concentration of the catalyst. But classical solvent-catalysts 

system usually cannot simultaneously satisfy both the two requirements. For example, 

some metal-complex catalysts have to be dissolved in polar solvents in order to achieve 

the higher concentration. But the polar solvent often coordinates onto the active site of 

the catalyst and consequently blocks it.  

 

Ionic liquids offer a highly polar but noncoordinating environment for chemical 

reactions. They can dissolve the metal complex catalyst to a high concentration while 

not blocking the active sites. Most of the known transition metal-catalyzed reactions can 

be carried out in ionic liquids. These include alkylation, acylation, reduction [7], 

oxidation, oligomerization, Diels-alder reaction [8,9] and polymerization [10-14]. 

Moreover, the solvation and solvolysis phenomena which occur in conventional 

solvents can be effectively suppressed in IL-media and therefore, waste production 

through side reactions are reduced to a minimum [5,15,16]. 

 

The ILs’ wide liquid range is also an amazing parameter for chemical engineering. For 

chemical reactions, the higher the reaction temperature, the higher the reaction speed. It 

is important for the solvents to be in liquid state so that the reaction can take place 
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successfully. However, liquid ranges of most organic solvents are usually less than 

100°C. As reported [4], some ILs have a liquid range of about 300°C (e.g. 1-ethyl-3 

methylimidazolium chloride-aluminum chloride, the archetypal IL, is liquid and 

thermally stable from almost –100 to 200 °C), far in excess of the 100°C range for water 

or 44°C degree for ammonia. 

 

In some cases, the ILs act as both solvents and catalysts for chemical reactions, for 

example, the 1-ethyl-3-methylimidazolium aluminum chloride (EMIMCl·AlCl3) system 

can be used as a solvent and catalyst for Frieldel-Crafts reactions. A typical Friedel-

Crafts reaction takes six or seven hours to produce about 80% yield of an isomer 

mixture; while in an IL, the reaction is complete in about 30 seconds with nearly 100% 

conversion [17]. Furthermore, the chemical properties of the IL such as complexing 

ability and acidity can be tuned at will.  

 

The following characters of ILs also contribute to their ability as solvent for chemical 

reactions: very low vapor pressure, high heat conductivity, stable toward various 

organic chemicals, controlled miscibility with organic compounds, easy to separate 

from a large range of organic products, tunable Lewis acidity (for EMIMCl·AlCl3 

system), compatible with organometallics, and adjustable coordinating ability. 

 

1.1.4 Use in capillary electrophoresis 

With the increasing interests with this kind of new materials, some analysts expanded 

the application of ILs to capillary electrophoresis (CE).  In the works of Vaher et al 
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[18], it was employed as electrolytes in nonaqueous capillary electrophoresis (NACE) 

for separation of water-insoluble dyes. Recently they also published a paper on the 

separation of phenolic mixture with NACE [19]. It was found that the EOF of the 

capillary was efficiently reversed, comparable to that of alkaline aqueous buffer in 

magnitude with addition of 4 mM IL in pure acetonitrile. Also, the ILs showed 

significant resolving ability towards position isomers: the peaks of resorcinol and 

pyrocatechol were baseline resolved in the presence of 1.3 mM 1-ethyl-3-

methylimidazolium fluoroacetate. Stalcup and co-workers [20] used ILs as electrolytes 

in aqueous capillary electrophoresis for separation of phenolic compounds extracted 

from grape. They found that EOF of the capillary was reversed by adsorption of the IL 

cations onto the silica wall, and the magnitude of the anodic EOF increased with the 

amount of IL added.  The neutral analytes were separated based on their different 

interaction abilities with dialkylimidazolium. Interestingly, they also found superior 

resolution ability of IL (1-butyl-3-methylimidazolium tetrafluoroborate) toward the 

mixtures. However, there is to date no reported systematic study of the application of 

ILs in this emerging area. 

 

1.2 Capillary electrophoresis 

There has been tremendous growth of capillary electrophoresis (CE) in the past decades 

since the launch of the first commercial CE instrument in 1989. CE is characterized by 

the use of narrow bore capillaries, usually in the range of 10-100 µm internal diameter 

(I.D.); operated at high applied potential (Normally less than 30 kV, but recently higher 

voltage, up to half million was utilized [21]).  CE has notable advantages over the 
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previous methods in high separation efficiency: short analysis time, and low sample 

consumption. Nowadays it is widely used in analytical laboratories.  

 

The separation mechanism of CE is based on the differences in mobilities of species 

(either caused by the different electrophoretic mobilities or by their different partition 

abilities between the aqueous buffer and the other phase) in small capillaries. The 

pioneering work of Hjerten [22] demonstrated the separation of inorganic and organic 

ions, peptides, proteins, and bacteria in a tube of 3mm I.D. in 1967. He termed it as free 

solution electrophoresis. But due to overloading of the samples, the high efficiencies of 

the technique were unable to obtained. By using capillaries of 200 µm I.D., plate 

heights smaller than 10 µm were obtained in the work of Mikkers et al [23]. 

 

The most widely accepted initial demonstration of the power of CE was carried out by 

Jorgenson and Lukacs [24]. Their paper included a brief discussion of simple theory of 

dispersion in CE and provided the first demonstration of high separation efficiency with 

high field strength in narrow capillaries. Applications also include the separation of 

protein and peptides, tryptic mapping, DNA sequencing, serum analysis, analysis of 

neurotransmitters in single cells and chiral separations. The technique provides 

efficiencies up to two orders greater than high-performance liquid chromatography 

(HPLC). With the more and more sophisticated instruments commercially available 

since the beginning of 1990s, CE is now gaining popularity, not only as an alternative 

analytical tool for some routine analytical application, but also a promising technique in 

some modern field. 
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1.2.1 System and Mechanism 

1.2.1.1 System setup 

 

 
 
Fig. 1-2 Diagram of the essential components of a capillary electrophoresis system 

 

A typical CE apparatus is shown in Fig. 1-2. It consists of a high-voltage power supply, 

two buffer reservoirs, a capillary and a detector. Separations are carried out in a 

capillary tube whose length differs in the range of 20 to 100 cm. The capillary is filled 

with running buffer and the sample is introduced by dipping one end into the sample 

and applying an electric field (electrokinetic injection) or by applying gas pressure 

(hydrodynamic injection) or by gravity. Migration through the capillary is driven by an 

electric field, and analytes are detected as they pass the window at the far end. The 

signal from the detector is usually sent to an integrator or recorder; but nowadays more 

and more computers are used in data acquisition, the electropherograms are saved 

digitally and the separation performance and quantification are evaluated by 
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professional software. Further, the computer-interfaced CE system can usually be 

operated under automated mode, which is helpful in improving reproducibility of the 

operation favoring its application in industrial analysis. 

     

1.2.1.2 Capillary 

The capillary is the crucial part of the CE system; they can be differentiated by 

dimensions, shapes and materials. The dimensions (length and radius) are important for 

the electric field and the heat dissipation as will be discussed. The capillary material is 

important for successful separation since it determines parameters such as magnitude 

and direction of EOF, heat dissipation and wall-analyte interaction. By far, fused silica 

has been the material of choice for its superior characteristics compared to other 

materials, including optical transparency across the UV and visible regions, high 

thermal conductance, mechanical stability when coated with polyimide and feasibility 

of manufacture with inner diameters down to a few microns.  

 

Efforts were also made using polymeric materials as alternatives by many authors. 

Polymeric materials such as polyester (PE), polyurethane (PU), polypropylene (PP), 

polymethylmethacrylate (PMMA), ethylene vinylacetate (EVA) and others have been 

tested and used for CE separations [25-27]. Although the polymer hollow fibers also 

exhibit cathodic EOF as in fused silica capillaries, it is lower [25]. Because all polymer 

materials have their own physical and chemical properties, the quality of separations 

and selectivities may differ from one to another. But in general because their low heat 

conductivity, they are not good at dissipating heat and hence the separation voltage is 

lower compared to that across fused silica capillary, leading to long analysis time, low 

efficiency and even poor reproducibility. Other disadvantages of using these polymer 
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materials as separation capillary also include UV absorbance and hydrophobic 

interactions of the capillary with analytes which may cause significant adsorption 

problems. The advantage of using the polymer capillaries lies in the ease of preparing 

dynamic or permanent capillary coatings for a particular separation [27,28]. 

 

1.2.1.3 Migration of ions under electric field 

Under the influence of an applied electric field, sample ions will move towards their 

appropriate electrode; cations move towards the cathode and anions towards the anode. 

When a particle moves in a solution, it also experiences a frictional retarding force that 

is proportional to its velocity and the solution viscosity. Its migration speed is such 

determined that the electric driving force is in magnitude equal to frictional retarding 

force. So the speed of their movement towards the electrode is governed by their size, 

charge state and the properties of the solution as well. Smaller molecules with a large 

number of charges will move more quickly than larger or less charged compounds. The 

electrophoretic mobility epµ is theoretically expressed as 

 
r

q
ep πη

µ
6

=                                                                                               
  
(1-1) 

 

where, q is the number of ionic charges, η is the solution viscosity and r the 

hydrodynamic radius. 

 

The velocity of a particle is linked to its electrophoretic mobility by 

 
L
VEv epepep µµ ==                                                                                   

 
(1-2) 
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where, epv  is the velocity; E is the electric field strength; V is the applied voltage, and L 

is the total capillary length. Eq (1-2) shows that the velocity is directly related to the 

magnitude of the strength of the applied electric field.  

 

The time t taken by a solute to migrate through a capillary of length l is: 

 
V

Ll
E

l
v

lt
appappapp µµ

===                                                                        
 
(1-3) 

 

For the components of different mobilities, their migration time will be different and 

thus they are physically separated. Please note that in eq (1-3), the velocity and the 

mobility of the particle are expressed as appv  and appµ (apparent mobility) respectively. 

This term also includes the movement arising from the electroosmotic flow (EOF) of 

the bulk electrolyte. This is because when an electric field is applied across a capillary, 

electroosmotic flow moving longitudinally is usually generated (which will be 

discussed later); separation of the analytes depends upon their apparent mobilities. 

Under some operational modes such as micellar electrokinetic chromatography 

(MEKC), the neutral analytes migrate in the presence of EOF with different velocities 

according to their individual partition coefficients between the pseudo-stationary phase 

and the aqueous buffer; a similar situation applies to the migration under capillary 

electrochromatography mode (CEC) while under capillary gel electrophoresis (CGE) 

mode, the mobility of the macromolecules are determined by their sizes, not solely by 

the charge-to-size ratios. In CGE, migration velocities decrease with molecular size in 

the presence of the sieving matrices, although electrophoretic mobilities generally 

increase with size (up to 400 bp for DNA). Even under capillary zone electrophoresis 

(CZE) mode, the mobilities of the analytes may be influenced by complexing reagents, 
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buffer pH and ion-pair effects. While the electrophoretic mobilities are useful in 

qualitative evaluation and explanation of the phenomena, the apparent mobilities are 

useful in quantitative prediction for separation. 

 

1.2.1.4 Electrolyte system 

The electrolyte system is also called the electrophoretic media, background electrolytes, 

or carrier electrolytes. It plays key important role in CE because it provides the 

chemical environments that solutes migrate in. The functions of buffers, includes 

supplying a medium for maintaining a small electric current between the anode and the 

cathode and to provide a medium that resists changes in pH. The properties of the 

electrolyte system influence the EOF, electrophoretic mobilities of analytes and analyte-

wall interactions. A suitable electrolyte system must ensure the correct electrophoretic 

behavior of all individual solutes, the overall stability of the system and satisfactory 

separation of the analytes. The following are the factors relating to the buffer properties: 

 

The types and the concentrations of the anions or cations in the buffer may affect the 

mobilities of the analytes and the properties of the capillary surface hence the EOF rate. 

Also, buffer influences the current produced and amount of Joule heat generated. For 

example, using of potassium or chloride ions in buffer may lead to high current. 

 

Buffer pH is one of the key parameters for optimizing selectivity in separation. It affects 

the ionic state of the silanols on capillary surface thus EOF and thereby analysis speed 

and resolution. The ionic equilibrium states of the analytes are also influenced by buffer 

pH, so changes in pH may cause changes in effective mobilities of the analytes (weak 

acids or bases) and even their migration orders: the merged peaks under one pH can be 
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separated under another. Effective buffer systems have a range of approximately two 

pH units centered on the pKa value of the acid/base conjugate pair.  

 

Modifiers are a group of chemicals affecting electrophoretic parameters; they are 

usually added to enhance the CE separation [29]. Their functions include improving 

analyte solubility, manipulating or suppressing EOF; preventing adsorption of analytes 

and improving reproducibility and peak shape, etc. 

 

1.2.1.5 Detection 

Detection is always an important issue in almost all analytical separation methods 

because it provides information for qualifying and /or quantifying analytes. Sensitive, 

selective and universal detectors are highly demanded for CE. A general challenge 

encountered in CE detection techniques is to maximize sensitivity without a losing or 

reducing separation efficiencies. Probably all the detectors now used in CE were 

adapted or modified from those previously used in HPLC. Detectors in CE include 

mainly those based on ultraviolet-visible (UV-Vis) absorbance, fluorescence 

absorbance, electrochemistry and mass spectrometry. Indirect detection is applicable to 

optical and some of the electrochemical (such as potential gradient) detection methods.  

 

1.2.1.5.1 UV-Vis detection 

UV-Vis is to date the most widely used detection technique in CE because it is easy to 

operate and widely available. The principle of UV-Vis detection in CE is determined by 

Lambert-Beer’s law under certain assumptions. UV detection is performed on-column 

for high efficiency and convenience in operation; but this leads to lower sensitivity 
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compared to that in HPLC because of the very short optical path length which is 

approximately the inner diameter of the capillary. There is always a trade-off between 

the use of low cell volumes (small-diameter capillary) for high separation performance 

and the use of larger diameter for high sensitivity. 

 

1.2.1.5.2 Fluorescence detection 

Fluorescence detectors, using either an arc lamp or a laser as the excitation source, are 

also increasingly used in CE. The fluorescence detector adopting low cost and widely 

available incoherent light sources, can provide sensitivity 1-2 orders higher than the UV 

absorbance detector [30]. In 1985, Gassmann and co-workers published their pioneering 

work on complying laser induced fluorescence (LIF) detection with CE [31]. Compared 

with the previously used fluorescence detector, the sensitivity of the LIF detector is 

further improved owing to the monochromaticity and coherent nature of the light 

sources, which can focus a large amount of light onto the detection window. Currently, 

LIF is the best choice as far as the detection sensitivity is concerned for on-column 

detection. Fluorescence detection has been used for quite a number of analytes, 

especially for those containing primary amines, such as amino acids, peptides, and it is 

now an important detection tool in DNA sequencing [32]. 

 

1.2.1.5.3 Electrochemical detection 

Electrochemical detection, based on potentiometric measurement [33], conductivity 

measurement [34,35], or amperometric detection [36], can be coupled to CE either by 

on-column or off-column format. Compared to the limited light pass length encountered 
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in the optical detection method (in CE), the electrochemical detection method suffers 

little or no loss in detection sensitivity. 

 

Both potentiometric and conductivity measuring methods are suitable for detecting 

ionic analytes; sensitivity of these detectors depends strongly on the composition and 

concentration of the electrophoretic media. Potentiometric detection is based on 

measuring the Nernst potential changes at the surface of an indicator electrode or across 

an ion-selective barrier [37]. Conductivity detection was reported by Mikkers et al in 

1979 [23]. It is a universal, relatively simple method for detection of ionic species in 

solution. On-column conductivity detection was first reported by Zare and co-workers 

[38] by fixing platinum wires through diametrically opposed holes on a capillary tube.  

 

Amperometric detection is based on electron transfer between the electroactive solutes 

and the surface of a solid electrode under the influence of a constant potential. 

Wallingford and Ewing first reported such a detection system in CE with a porous glass 

coupler to decouple the electrode from the separation voltage [39]. Since then, there 

have been several reports on further improvements and applications of this technique. It 

is particularly useful in detection of solutes easily oxidized or reduced and is potentially 

one of the most sensitive detection techniques for CE separations. The disadvantage of 

the amperometric detection is that it is only suitable to those compounds that are readily 

oxidized on the electrode. Development of indirect detection may expand its application 

range.  

 

1.2.1.5.4 Indirect detection 
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In indirect detection method in CE, the detector response is a result of the absence of a 

detector-active component in the electrophoretic media owing to the charge 

displacement for maintaining electroneutrality in the presence of ionic analytes. This 

general approach applicable to UV-Vis [40], Fluorescence [41,42], and electrochemical 

[43] techniques. A comprehensive study of indirect detection methods has been given 

by Yeung [44].  

 

Generally, the indirect detection method has the following advantages: 1) it is universal; 

it can be expanded to compounds which are detector-inactive; 2) quantitation may be 

easier with indirect direction for analytes sequencing if tedious chemical derivatization 

procedure used for the direct detection can be avoided.  

 

During electrophoresis, the analyte physically displace a component which may be a 

chromophore, fluorophore or electroactive species. It is important that the mechanism 

for displacement is clear and unambiguous (e.g., the replaced species is the only co-ion 

in the buffer), and the operation conditions are amenable to optimization at low analyte 

concentration.  

 

An important parameter used in indirect detection is the transfer ratio, TR, which is 

defined as the number of coions in the buffer displaced by an analyte. Another 

parameter is the dynamic reserve, DR, which is defined as the ratio of the background 

signal to the background noise. The limit of detection (Clim) of the indirection method 

can be expressed as [44] 
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(1-4) 

 

where, Cm is the concentration of the relevant co-ion detector-active species. In indirect 

detection, a large background is required hence there exists degraded DR value. 

Theoretical calculation and experimental demonstration has shown that the well-

matched mobilities between the analytes and the detector-active species will provide 

low detection limit as well as well-shaped peaks that favor quantitative determination. 

The detection limit of indirect detection is high compared with the direct detection 

mode, but is still impressive. 

 

1.2.1.5.5 Mass spectrometry 

Mass spectrometry (MS) is a detection technique of high sensitivity, universality and 

specificity; it has the advantage of providing structural information for the analytes [45]. 

For the electropherograms obtained from unknown samples or samples containing 

complicated matrices or contaminants, identification problems can be solved by 

coupling CE with MS. The main difficulty of coupling CE with MS lies in the fact that 

the MS system operating under high vacuum and interfacing to CE can reduce 

hydrodynamic flow in the capillary. An interface is needed for transferring the analytes 

and electrolyte liquid from the capillary while vaporizing for MS analysis without 

thermal degradation. 

 

Since the pioneering work of Olivares et al in 1987 [46], there have been rapid 

developments in CE-MS. MS operated in two ionization modes, electrospray ionization 

(ESI) [47,48] and fast atom bombardment (FAB) [49,50e] have been coupled to CE for 
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on-line analysis. While matrix-assisted laser desorption/ionization mass spectrometry 

(MALDI-MS) [51] is also commonly used CE off-line analysis because the operation 

conditions may be less complicated and the detector has high sensitivity and wide mass-

detection range [52].  

 

1.2.2 Operation Modes of CE 

From its invention, the CE method has generated great interest and undergone rapid 

development. A number of operation modes have been developed by combining 

electrophoresis with other techniques such as chromatography, and more new modes are 

being added into this family. These modes can be performed with the standard CE 

system described above. In this section, some often used modes and those closely 

related to the research topic of this thesis are briefly discussed. 

 

1.2.2.1 Capillary zone electrophoresis (CZE) 

In CZE mode, a narrow band of sample is placed between two identical buffer solutions 

in a capillary and a voltage is applied across it. Charged solutes migrate at different 

rates in the potential field according to their charge-to-size ratios. Generally, 

components with high charge-to-size ratios will move fast. Separation of components is 

based on the difference of their mobilities in a uniform electrophoretic medium 

[24,53,54]. Selectivity may be manipulated by changing pH so as to vary equilibriums 

between various subspecies of analytes or by introducing additives to the buffer. 

Ideally, each substance will be eventually separated from the others and form separated 

“zones”. To date, CZE has been applied in separating charged species ranging from 

small inorganic ions to macromolecules such as proteins.  
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1.2.2.2 Micellar electrokinetic chromatography (MEKC) 

The main limitation of CZE is its inability to separate neutral compounds. In 1984, 

Terabe et al. [55] introduced a modified version of CZE in which surfactant-based 

micelles were included in the running buffer to provide a two-phase pseudo-

chromatographic system for separating neutral and ionic compounds by making use of 

partition equilibria of solutes between aqueous buffer and the pseudo-stationary phase. 

Since then, there have been increasing numbers of papers on this topic [56,57]. The 

analytes include herbicides, pesticides, drugs and bioactive peptides, etc. The pseudo-

phases used in MEKC include not only ionic surfactants, (e.g. sodium dodecyl sulfate 

(SDS), hexadecyltrimethylammonim chloride (CTAC)), but also neutral surfactants 

such as polyoxyethylene-t-octylphenol (Triton X-100). Other materials such as charged 

cyclodextrin, and polymer ions have also been employed [58]. 

 

1.2.2.3 Capillary gel electrophoresis (CGE) 

The first work on CGE carried out in late 1980s [59,60] showed an opportunity for 

significant advances in the practice of separation science, and dramatic interests have 

since then been generated by the promise of the combination of separation ability of 

hydrophilic gels for biopolmers with the fast, quantitative, and microsample capabilities 

of CE. In CGE, separations are carried out in gel-filled columns. The gels contain pores 

which act as sieves and solutes are separated based on their charges as well as sizes. 

Solutes having very close molecular weights have been separated by the high 

efficiencies of this technique. Karger and co-workers [61] reported achievements of 

single-base separation of oligonucleotides within minutes. Drossman et al demonstrated 
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the utility of CGE in the fast sizing of DNA fragments [32]. Molecular-weight sizing of 

proteins has been accomplished in gels with buffer containing SDS. Recent 

developments were to use entangled polymer solutions which eliminates the problem of 

bubble formation in gel preparation and provides better run-to-run reproducibility with 

only slightly inferior separation efficiencies [62,63].  

 

1.2.2.4 Capillary electrochromatography (CEC) 

CEC combines the techniques of micropacked liquid chromatography and capillary 

electrophoresis. The capillary is packed with a chromatographic packing which can 

retain solutes by the normal distribution equilibria upon which chromatography 

depends. However, separation in CEC depends not only on partition of the solutes 

between mobile phase and stationary phase but also their different electrophoretic 

mobilities as well. CEC combines the simplicity of controlling retention and selectivity 

in HPLC by manipulation of mobile phase and stationary phase and high separation 

efficiency due to the flat electroosmotic profile in CE. The work of Knox and Grant [64] 

demonstrated the lower plate height in CEC than in HPLC. Furthermore, there is no 

column back pressure and longer columns than in HPLC can be used. Nowadays, CEC 

is applied in separating a wide range of materials including phenols, PAHs, amines, 

carbonyls, dyes, and even inorganic and small organic ions. 

 

However, this technique also encounters some problems [65]. One is the difficulty in 

fabricating the frits holding the packing materials; another is the bubbles formed around 

the packing materials and the frits during electrophoresis, which would lead to unstable 

baseline or interruption of the current. Several solutions to the problem have been 
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developed of which the simplest is to bond the appropriate moiety to the capillary wall 

and utilize solute-bonded phase interactions in a manner similar to open-tubular GC 

[66,67]. This technique is termed as open-tubular capillary electrochromatography (OT-

CEC) and has been study actively because of its simplicity in operation [68,69]. 

 

1.2.2.5 Capillary isoelectric focusing (CIEF) 

Isoelectric focusing is achieved by the electrophoretic migration of ampholytes in a pH 

gradient [70]. Before Hjerten and co-workers [71,72] transferred it to CE for focusing 

protein in glass capillary, the technique had long been used in slab gel electrophoresis. 

Before separation, the anodic end of the capillary is placed into an acidic solution, and 

the cathodic end in a basic solution; hence a pH gradient will be formed through the 

capillary after a voltage is applied. During the separation the samples will migrate in the 

solution until they reach a region of pH (for protein, the isoelectric points or pI values) 

where they become electrically neutral and therefore stop migrating. Zones are 

consequently focused until a steady state condition is reached. After focusing, the zones 

can be driven to the detector either by a salt mobilization or the pressurized 

mobilization. The technique has advantages of good reproducibility, useful 

concentrating effect and high resolution. 

 

1.2.2.6 Capillary isotachophoresis (CITP) 

CITP is characterized by discontinuous buffer systems consisting of leading and 

terminating electrolytes, between which the samples migrate under electric field. Thus, 

it is different from other modes, such as CZE, which are operated in a uniform buffer. 

The procedure can be separated into two stages: during the separation stage, individual 
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components of the sample migrate at different velocities according to their 

electrophoretic mobilities, forming separated zones; during the isotachophoretic 

migration, the equilibrated zones are separated into individuals and migrate at the same 

velocity. The advantage of CITP is the concentrating effect for diluted samples. 

  

1.2.3 Concepts related to CE  

Quite a number of concepts in CE should be concerned during operation; these include 

EOF, the analyte-wall interaction, and mobilities of the analytes that have been 

discussed in section 1.2.1. There are several criteria for evaluating the separation 

performance, such as analysis time (which can be observed directly from 

electropherograms), resolution, efficiency, etc. Theoretically, there exist links among 

these factors, and understanding the relations behind these concepts is critical for 

optimization of the separation conditions.  

 

The concepts described in this section are basic to CE and they are closely related to the 

work in the subsequent chapters. In fact, most of the equations and assumptions in this 

section are based on CZE; theory and concepts related to other operation modes, such as 

open tubular capillary electrochromatography (OTCEC), are regarded as specific cases 

which will be discussed in the individual chapters. 

 

1.2.3.1 Electroosmotic flow (EOF) 

When dealing with CE we have to consider EOF. It has a significant impact on analysis 

time and resolution, two important criteria in separation.  
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The EOF is the bulk flow of solvent in the capillary under an applied electric field. As 

shown in Fig. 1-3, the silanol groups (Si-OH) on surface of the fused silica capillary. In 

buffer of pH higher than 2.5 the silanols dissociate; the negative charges attract cations 

from the buffer and this layer of positive charges forms the double layer, which would 

creates a potential difference very close to the wall (zeta potential, ζ ). According to 

Stern’s model [73], a rigid double layer of adsorbed ions (Stern layer) is in equilibrium 

with an outer diffuse layer (Debye-Huckel or Gouy Chapman layer). The cationic 

electric double layer extends into the diffuse layer which is mobile. When a voltage is 

applied across the capillary, the mobile cations in the diffuse layer migrate toward the 

cathode, causing the bulk solvent to migrate in the same direction.  
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Fig. 1-3 Schematic representation of migration direction of anion, cation and 

EOF in a fused silica capillary 

 

The magnitude of the EOF depends on the surface concentration of silanol groups and 

on their degree of dissociation. The latter increases with increasing pH of the 

background electrolyte (BGE). The magnitude of EOF is given by eq (1-5) 
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(1-5) 

 

where, µeo is the EOF rate, η is buffer viscosity and ζ  is zeta potential. 

 

The velocity of the electroosmotic flow, veo, can be calculated similarly from eq (1-2). 

The EOF rate is highly dependent upon electrolyte pH as the zeta potential is largely 

governed by the ionization of the acidic silanol on the capillary wall. Below pH 4, the 

ionization is small and the EOF flow rate is therefore not significant; above pH 8, the 

silanols are fully ionized and EOF is high. 

 

The EOF is generated by the entire length of the capillary and thus produces constant 

flow rate along the capillary. This means the flow profile of EOF is plug-like (Fig. 1-4) 

and the solutes are being swept along the capillary at the same rate, which minimizes 

sample dispersion. This is an advantage of CE over HPLC where hydrodynamic 

pumping produces laminar flow (Fig. 1-4). In laminar flow, the solution is pushed from 

one end of the column and the solution at the edges of the column is moving slower 

than that in the middle, which results in a distribution of velocities across the column. 

Therefore, laminar flow broadens the peaks more than the plug-like flow as they travel 

along the column.  

 

As expressed in eq (1-3), the overall migration time of a solute is related to both the 

mobility of the solute and EOF. The apparent mobility (µapp) is measured from the 

migration time, and is the sum of both µep and µeo. Reproducible migration time requires 

that the EOF should be controlled or even suppressed. But sometimes it is necessary.  
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EOF can be measured readily either by injection of a neutral solute such as acetone or 

dimethyl sulfoxide (DMSO) and measuring the time taken from the injection end to the 

detector, or using the method described by Vigh et al [74] for weak EOF.  

 

 
 
Fig. 1-4 Comparison of flow profiles of chromatography and CE 

 

 

1.2.3.1.1 Control of EOF 

It is desirable to manipulate the magnitude of EOF in order to optimize the separation 

performance under some circumstances. As can be implied from eq (1-5), change of the 

following parameters can vary EOF. 
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Buffer concentration 

Increasing the buffer concentration will serve to reduce the double layer thickness, 

leading to the decreased EOF. Fujiwara and Honda [75] reported in detail the effect of 

NaCl concentration on the intensity of EOF.  

 

Organic solvents 

Introduction of organic solvents reduce the permittivity (ε) of the buffer [76] while 

increasing the viscosity and hence reduce the EOF according to eq (1-5). It was also 

reported [77] that addition of organic solvents would dramatically lower EOF and zeta 

potential by shifting the pk values of the silanols to higher pH ranges.  

 

Cations 

Cationic ions adsorbed onto the silica surface partially neutralize the deprotonated 

silanols and hence reduce the surface charge density. In the work of Atamna et al [78] 

and Issaq et al [79], 0.1 M each of the alkali metal acetates was used as buffer and the 

correlations between EOF and the crystal radius was investigated. It was found that the 

larger the crystal radius, the higher the effect of the cation in quenching EOF. Another 

approach was to add alkylamines into the background electrolyte. Cohen and Grushka 

[80] hypothesized that the amines changes EOF by shielding the wall from impurities in 

the buffer that otherwise might be adsorbed onto it and by changing the nature of the 

double layer. Meanwhile other long-chain amines were tested for feasibility in varying 

EOF. In 1986, Altria and Simpson [81] used cetyltrimethylammonium to reduce the 

magnitude of EOF; other salts such as tetradecyltrimethylammoniun bromide, and 

benzylthiouronium chloride have also been employed [82-84]. Recently, the 
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dialkylimidazolium based ionic-liquids (ILs) were investigated as background 

electrolytes by some authors [85,86], it was found that in acetonitrile, 2% 1-butyl-3-

methylimidazolium can reverse EOF by adsorption onto the silica wall; while reversed 

EOF was observed in the presence of ca. 50 mM 1-ethyl-3methylimidazolium in water 

matrix buffer.  

 

Chemical modification 

Jorgenson and Lukas [87] treated the capillary with trimethylchlorosilane to reduce the 

number of the ionizable silanols on the capillary surface; Hjerten [88] modified the 

surface by first introducing a bifunctional compound, (γ-methacryloxypropyl)-

trimethoxysilane to produce a Si-O-Si covalent, attachment for a monomer for 

subsequent polymerization. 

 

Polymers 

Addition a polymer which adsorbs onto the capillary wall to the buffer greatly increase 

the effective viscosity of the buffer near the capillary-buffer interface and hence 

effectively reduces the magnitude of EOF. Herrin and co-workers [89] reported the 

influence of different noncovalently bond polymers for this purpose. 

 

1.2.3.2 Separation efficiency and the influence factors 

1.2.3.2.1 Theoretical plate number 

The plate number N is often used in assessing separation efficiency. The theoretical 

plate number is determined by 
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2

T

lN
σ

=                                                                                                    
 
(1-6)          

 

where l is the distance migrated by a zone and 2
Tσ  is the total spatial variance of the 

concentration profile of the zone (band broadening) caused during the migration.  

 

1.2.3.2.2 Band broadening 

Band broadening is encountered in all separations and thus has been actively studied 

both theoretically and experimentally. The band is the volume of buffer in the capillary 

that the analytes are localized. All analyte bands broaden during the separation process, 

leading to a decrease in both detection sensitivity and peak resolution.   

 

One of the main advantages of CZE over conventional chromatography is that it 

minimizes or eliminates most sources of band broadening that occur in the later; indeed, 

broadening is 6-10 times higher in chromatographic systems. That does not mean we 

can neglect this effect during operation; careless in buffer design or operation will result 

in high band broadening. 

 

A number of dispersive factors contribute to the spreading of the sample zone. Band 

broadening is usually expressed as variance σ2. Τhe total variance σt
2 is the sum of 

individual variances due to different sources of dispersion:  

 σt
2 = σD

2 + σE
2 + σJ

2 + σA
2 + σI

2 + σW
2  + σO

2  (1-7)  
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where σD
2 represents the variance due to longitudinal diffusion (molecular diffusion); 

σE
2 the variance due to electrodispersion; σJ

2 the variance due to Joule heating; σA
2 the 

variance due to wall adsorption; σI
2 the variance due to injection overloading; σW

2 the 

variance due to the width of the detection zone and σO
2 the variance due to other effects. 

 

Longitudinal diffusion 

Longitudinal diffusion is one of the main factors contributing to the zone dispersion in 

CE. The initial sharp sample plug broadens through diffusion during migration through 

the capillary. The degree of diffusion depends on the difference between the 

concentrations of the sample zone and the background electrolyte (BGE) and on the 

diffusion coefficients of the analytes. For a particle in solution, its diffusion coefficient 

can be defined by Fick’s law as 

 
r

kTD
πη6

=             
    
(1-8) 

 

where k is a constant; T is the temperature, r is the hydrodynamic radius of the 

molecule, and η the viscosity of the solution. 

 
The Einstein equation for diffusion in liquids is written as: 

 σD
2 = 2Dt     (1-9)  

 

where, t is the migration time. As a consequence of eq. (1-8), the diffusion is low for 

large molecules such as proteins that have small diffusion coefficients. Therefore, it is 

possible to obtain theoretical plates (N) of several million for these macromolecules. 

Because diffusion is dependent directly on temperature and inversely on viscosity, 
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lowering the temperature of the buffer will reduces diffusion and consequently, band 

broadening.  

 

Electrodispersion 

Electrodispersion is caused by the conductivity differences between the sample zone 

and the BGE that lead to different mobilities between these two zones. If the sample has 

a higher mobility than the BGE, the front edge of the sample zone, which diffuses in the 

direction of migration, encounters a higher voltage drop on entering the buffer zone. 

This causes the diffusion sample to accelerate away from the solute zone, which results 

in zone fronting. When the solute at the trailing edge diffuses into the BGE it also 

encounters an increase in voltage drop but in the direction of the migration which 

accelerates the analytes back into the sample zone, keeping the trailing edge sharp (Fig. 

1-5). When the sample zone has lower conductivity than the BGE the opposite effect is 

obtained. Neutral species are unaffected by this conductivity differences. 
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migration of the analyte

analyte (A) background electrolyte (B)

µA >  µB

µA =  µB, or A is neutral

µA <  µB

 
 
Fig. 1-5 Schematic illustration showing the mechanism of band broadening due to electrical 
conductivity differences between the sample zone and the running buffer.  
µA and µB in the figure represent the mobilities of the analyte and the background co-ion, respectively. 

 

Hjerten [90] has derived a simple approximate expression to describe conductivity-

induced band broadening: 

 22
2

16
)(








 ∆
=

e

eapp
E

Et
λ
λµ

σ                                      
 
(1-10) 

 

where, appµ is the apparent mobility of the analyte in the buffer, E is the electric field 

strength, t is the migration time, eλ∆  is the conductivity difference between the BGE 

and the migrating zone, and eλ is the conductivity of the buffer. Thus, one should make 

eλ∆  as small as possible to lower the electrodispersion. The eλ∆  can be expressed as 
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(1-11) 

 

where z is the valence of the sample ion, C is the molar concentration of the sample, F 

is Faraday’s constant, and Aµ , countµ , and coµ  are the mobilities of the sample ion, 

counterion and coion, respectively. 

 

Heat dissipation 

Joule heat is the major factor limiting the analysis speed, efficiency and resolution in 

CE. It is inevitably generated as result of the electric current passing through the 

electrolyte solution, and the amount of heat generated would be quite significant if very 

high voltage is applied through a BGE of high ionic strength. Moreover, the heating 

also leads to a radial temperature gradient because the heat is better dissipated near the 

wall than in the center. Joule heating and the temperature gradient generated therefore 

can adversely affect the quality of the separation in a number of ways [91]. First, 

temperature gradients can cause density gradients in the buffer which will lead to 

convection. Secondly, an increase in temperature will cause a decrease in viscosity and 

hence an increase in electrophoretic mobility. Thus, the ions in the center of the 

capillary will move fast than those closer to the wall, resulting in deformation of 

migrating zones which contributes to band broadening and peak distortion. 

Furthermore, viscosity changes affect the EOF and may result in parabolic flow profiles 

and consequently a decrease in peak efficiency. In addition, if the temperature of the 

buffer becomes too high, thermal decomposition of the analytes may occur. The poor 

dissipation of Joule heating may also cause poor reproducibility of migration time and 

peak areas. 
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On-capillary detection 

The length of the detector window (ldet) and the time constant of the detector can 

contribute to peak dispersion. For practical purposes, the contribution of detection to 

peak variance is defined as [57]: 

 
12

2
det2 l

W =σ               
 
(1-12) 

 

For the high theoretical plates, the maximum allowable detector length is [92] 

 
N
Ll 4.0

det =               
 
(1-13) 

 

where L is the total length of the capillary and N is the theoretical plate number. 

 

Wall adsorption of the analytes 

The tendency of the capillary wall to adsorb solute species is mainly due to the 

electrostatic charge of the silica surface; other factors include hydrophobic interaction 

and hydrogen bonding. The interaction of analytes with the capillary wall has a negative 

influence on the overall efficiency of a CE separation. Even very small degrees of 

interaction can dramatically increase the variance. Martin et al. [93] developed an 

expression relating variance to the degree of solute-wall interaction: 

 
t

D
vrCM

A

2
2 =σ               

 
(1-14) 

 

where v is the velocity of the solute moving through the capillary; CM is the constant 

determined by eq (1-15) 
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(1-15) 
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In the above equation, k’ is the solute capacity factor and n=r/k +3/2 in which k is the 

thickness of the electrical double layer adjacent to the wall. 

 

They proposed that under ideal CE conditions (i.e., no solute-wall interaction (k’=0)), 

the theoretical plate height of a 50 cm long, 50 µm I.D. capillary under 36300V/cm was 

estimated to be 3.34 × 10-11 m (corresponding to σ =1.67 × 10-11 m2). Thus, pure 

electroosmosis does not significantly contribute to band broadening. But the finite value 

of k’ has a dramatic impact on the peak height.  

 

Generally, the solute-wall interactions can be alleviated by 1) operating at pH values 

where the silanol group are uncharged; 2) using high ionic strength BGE to reduce the 

effective charge of the surface; 3) using zwitterionic salts or other additives competing 

with the analytes for the charged sites of the silica surface; 4) modifying the silica 

surface. 

 

Injection and related broadening 

CE is a microanalytical technique and the injection of sample in CE can have dramatic 

effects on the performance. Principally, introducing a great volume of sample can 

enhance detection sensitivity. However, the large volume usually negatively influences 

the number of theoretical plates, resolution, reproducibility and reliability of the results. 

Investigations [57,94,95] suggest that it is the length of the sample plug rather than the 

volume that influences performance parameters. If the injection plug is longer than the 

dispersion caused by diffusion, the efficiency and resolution can be diminished. The 
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contribution of the sample injection to the total peak dispersion can be expressed as 

[96]: 

 

12

2
2 inj
I

l
=σ               

 
(1-16) 

 

where linj is the length of the injected plug. Practically, it is 1-2% of the total capillary 

length. However, specialized techniques such as sample stacking can 

 

Generally samples are injected into capillaries by hydrodynamic injection or 

electrokinetic injection, or simply by gravity. For hydrodynamic injection and gravity, a 

pressure difference between injection and the detection ends is employed to drive 

sample into the capillary.  

 

The sample plug length injected into the capillary can be calculated by Poiseuille’s 

equation 

 
t

L
Prlinj η8

2∆
=                               

 
(1-17)   

 

where P∆  is the pressure difference between the two ends of the capillary; r is the 

capillary inner radius; L is the total length of the capillary; η is the viscosity of the 

solution; t is the injection time. The variance due to hydrodynamic injection, derived 

form eq (1-16), can be expressed as: 

 
DL

tPr
I 22

26
2

1536 η
σ ∆

=               
 
(1-18) 

 

in the above equation, D is the diffusion coefficient of the analyte. 
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Under electrokinetic injection mode, a sample enters into the capillary by joint efforts of 

electrophoretic migration and electroosmotic flow under the influence of an electric 

field. The quantity Q of a component injected into the capillary can be represented by 

[97] 

 

L
VtrC

Q eoep
2)( πµµ +

=               
 
(1-19) 

 

where epµ  and eoµ are the electrophoretic mobility of the component and 

electroosmotic mobility, respectively; C is the concentration of the component in the 

sample solution; V is the applied voltage. 

 

Eq (1-19) holds if the conductivity of the sample and the buffer in the capillary are 

equal. If this condition is not met, the following equation may be more precise:  

 

S

Beoep tErC
Q

λ
λπµµ 2)( +

=               
 
(1-20) 

 

where E is the field strength; Bλ  and Sλ  are the conductivities of buffer and sample 

solution, respectively. Eq (1-20) suggests that neutral analytes may be electrokinetically 

injected into the capillary when the EOF is directed toward the detector. 

 

The variance caused by electrokinetic injection is determined by 
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(1-21) 

 

where, TΩ  is the temperature coefficient of electrophoretic mobility. 
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Other factors, such as siphoning caused by height difference between the ends of the 

electrophoresis capillary, also may contribute to the variance.  

 

1.2.3.2.3 Resolution 

In order to achieve complete separation of two components, the separation of the band 

centers of the two neighboring peaks must be increased so that they do not merge 

together. The resolution (Rs) between two peaks is defined by: 

 
 
 21

12 )(2
WW

ttRs +
−×

=     
 
(1-22) 

 

where, t2 and t1 are the migration times and W1 and W2 are the basal widths (in unit of 

time) of the peaks 1 and 2, respectively. If the peak widths W1 and W2 are very similar, 

the above equation reduces to Rs=∆t/W. 

t1 t2

w1 w2  

Fig. 1-6 Schematic representation of two peaks in electropherogram 
 

Theoretically, resolution is affected by factors including peak efficiency and selectivity. 

The following equation describes resolution under CZE mode [98]. 

 

eo

NR
µµ
µ

+
∆
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4
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(1-23) 
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in eq (1-23), 
eoµµ

µ
+
∆ is regarded as the selectivity of the two components, where 

µ∆ and µ  are the difference and average of the mobilities of the two components, 

respectively, and eoµ is the magnitude of EOF. 

 

1.3 Scope of study 

The experiments in this thesis can be divided into two parts: synthesis (Chapter 2) and 

application (Chapter 3 to 6). 

 

In Chapter 2, methods of synthesizing different ILs were described. Purity of the 

reagents used as buffer electrolyte in CE is important for good performance especially 

for the CE conducted using IL cations as background chromophores. A method for 

detecting by-products and precursors of ILs was developed; it was also applied to the 

real sample analysis and a reaction mechanism study. Also the mass spectrometric 

studies of the ILs were presented.  

 

In Chapter 3, the 1-ethyl-3-methylimidazolium (EMIM) based ILs were tested as 

background chromophores for indirect detection of inorganic cations. The EMIM was 

also employed in determination of NH4
+ in human urine. 

 

Coating the internal capillary surface is one important approach in manipulating EOF, 

controlling analyte-wall interaction and therefore enhancing separation performance. In 

Chapter 4, IL was covalently bonded onto the silica capillary surface and the EOF was 
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reversed. The covalently modified silica capillaries were used for determination of 

sildenafil (SL) and its metabolite UK-103,320 (UK) in human serum; in another 

application, they were used in separation of ΦX174 DNA-Hae III digest fragments.  

 

In Chapter 5, investigations were carried out to improve both resolution and detection 

sensitivity of 11 cations by using IL as both background electrolyte and coating 

material. Factors influencing separation and detection were studied.  

 

ILs was used as additives in buffer in Chapter 6. The effect of ILs on migration time, 

selectivity was investigated.  
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CHAPTER   2 SYNTHESIS AND TEST OF IONIC 
LIQUIDS  

 

The most often-studied ILs are those based on 1-alkyl-3-methylimidazolium. The 

halides, which can be synthesized readily with relatively high yield, are often the 

starting materials for the ILs of other anions (Fig. 2-1). A number of synthetic methods 

are frequently used and cited in the literature; the methods were employed or modified 

in the synthesis in the present work and were compared for the yields.  

 

NN R  
+ X -NN + RX

HPF6, water

NaBF4, acetone

NN
R  

+ PF6
-

NN
R  

+ BF4
-

NN
R  

+ - Ion-exchange resin
OH

 
 

Fig. 2-1 Schematic representation of synthesis of ionic liquids 
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RX in Fig. 2-1 is an alkyl halide, where, X=Cl, Br, or I. The ILs synthesized in this work 

are tabulated in . Because the 1-ethyl-3-methylimidazolium (EMIM) based ILs 

are commercially available, we will not discuss their synthesis here. 

Table 2-1

  

2.1 Chemicals 

Sodium tetrafluoroborate, lithium tetrafluoroborate and imidazole were purchased from 

Fluka (Buchs, Switzerland). 1-ethyl-3-methylimidazolium chloride, 1-bromobutane, 1-

bromohexane, 1-methylimidazole, 1,2-dimethylimidazole, 1-bromo-2-methylpropane, 

70% hexafluorophosphoric acid (water solution), 1-chlorodecane and 4-bromo-1-

butanol were products of Aldrich (Milwaukee, WI, USA). Triethylamine and 

dimethylsulfoxide (DMSO) were obtained from Merck (Darmsradt, Germany). The 2-

ethylimidazole (purity ≥ 98%) was obtained from Acros Organics (NJ, USA). α-

Cyclodextrin (α-CD) was purchased from Sigma (Louis, MO, USA). HPLC grade ethyl 

acetate was a product of J. T. Baker (Phillipsburg, NJ, USA).  

 

2.2 Apparatus 

Most of CE experiments in this thesis were carried out on the following instruments and 

hence they are described here. For the specific apparatus used, they will be described in 

the appropriate chapters. 
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Capillary: fused-silica capillaries of 50 (or 75 for mass spectrometer in Chapter 4) µm 

I.D. and 360 µm O.D. were purchased from Polymicro Technologies (Phoenix, AZ, 

USA).  

 

High voltage supplier: A CE-L1 (CE Resources, Singapore, Republic of Singapore), a 

Prince CE System (Lauerlabs, Emmen, Netherlands) or a Spellman CZE 1000R 

(Plainview, NY, USA) power supply was used to apply high voltage across the capillary 

and inject sample.  

 

UV-Vis detector: UV detection was carried out with a Linear Instrument UVIS 200 

(Reno, NV, USA) or Perkin Elmer LC 290 (Wellesley, MA, USA) detector.  

 

Data recording and processing: Electropherograms were recorded and evaluated with a 

CSW17 data acquisition system (DataApex, Prague, The Czech Republic) or with an 

HP 3394A integrator (Hewlett-Packard, Avondale, PA, USA).  

 

CE-MS system: For CE-MS separation, a Finnigan LCQ ion trap instrument (San Jose, 

CA, USA) coupled with an electrospray ionization (ESI) source was connected to a 

capillary of 75 µm I.D. A Prince CE System was employed as the high-voltage supplier. 

The mass spectrometer was controlled, and the data from the instrument was recorded 

and evaluated, by the Xcalibur 1.0 software (Finnigan). 
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Apparatus for solution preparation: The ultrapure water in the experiments was 

prepared by a MILLI-Q system (Bedford, MA, USA). All solutions were filtered by 

0.20 µm Millipore filters (Bedford, MA, USA) or 0.20 µm Minisart (Goettingen, 

Germany) filters. 

 

2.3 Synthesis of ILs 

2.3.1 1, 3-Dialkylimidazolium (DAIM) halides 

There are numerous reported methods on the synthesis of this group of basic ILs, but we 

found that the reaction temperature, solvent, reaction time, crystallization procedure as 

well as the reactants themselves have influence on the yields. We tried the following 

reactions and measured their yields in order to obtain the optimal synthetic parameters. 

In each method, synthesis of one halide-IL was given as example and other halides were 

synthesized using the same parameters unless otherwise stated. 

 

Method 2-1 The method was modified from the procedure described by Dzyuba and 

Bartsch [1]. A 250 ml two-neck round-bottomed flask with stirring bar was connected 

to a reflux condenser which was filled with cooling water while both the inlet and outlet 

of the condenser were blocked for convenience of the subsequent operations. 0.1 mol 1-

methylimidazole and 0.1 mol alkyl halide were slowly added into the flask through a 

funnel. After addition, the funnel was replaced by a thermometer whose tip was below 

the surface of the liquid. The flask was then put into an oil bath and was slowly heated 

to 140 °C at which the exothermic reaction between 1-methylimidazole and alkyl halide 

occurred. Care was taken to avoid overheating of the mixture; when the reaction 
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temperature reached 150 °C the flask was taken out of the bath to cool and placed back 

into the bath again when the temperature was below 125 °C. After 10 minutes, the flask 

was taken out and allowed to cool to room temperature. After that it was put into the oil 

bath for another 10 minutes and the same procedures were applied to control the 

temperature of the mixture. The resulting viscous liquid was allowed to cool to room 

temperature and was washed three times with 5 ml portions of ethyl acetate. After the 

last washing, the remaining ethyl acetate was removed by heating and stirring the liquid 

at 80°C under vacuum.  

 

Method 2-2 In this method, recrystallization was employed for the product. Before 

reaction, 1-methyllimidazole was distilled from calcium hydride and 1-chlororbutane 

was distilled from magnesium sulphate. To a round-bottomed flask, equal moles of 1-

methylimidazole and chlorobutane were added. Dry nitrogen was introduced into the 

flask and the mixture was heated under reflux for 5 hours. The mixture was left to cool 

overnight and the resulting solid was dissolved in a small aliquot of acetonitrile and 

filtered in a fume hood subsequently. Dry ethyl acetate was added to the filtrate and the 

mixture was cooled to –10°C, the resulting precipitate was isolated by filtration and 

recrystallized from a minimum amount of ethyl acetate; the solid was then dried in 

vacuum for 10 hours. 

 

Method 2-3 [2-5], 1-butyl-3-methylimidazolium chloride (BMIMCl) was prepared by 

adding equal amounts of 1-methylimidazole and chlorobutane to a round bottomed flask 

fitted with a reflux condenser; the mixture was kept at 70 °C for 48 hours. The resulting 

viscous liquid was allowed to cool to room temperature and then was washed three 
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times with 50 ml portions of ethyl acetate. After the last washing, the remaining ethyl 

acetate was removed by heating the liquid to 70°C under vacuum.  

 

Method 2-4 [6] To a 3-liter three-neck round-bottomed flask with stirring bar, 50 g of 

distilled, dry 1-methylimidazole and 160 ml of distilled dry acetonitrile were added and 

a reflux condenser was then connected to the flask. When the temperature reached 

70°C, chlorobutane of 3-fold amount of 1-methylimidazole was slowly added into the 

solution via funnel. When addition was completed, the funnel was replaced by a 

thermometer whose tip was below the surface of the liquid. The reaction was performed 

in a hood for 3 days and a slightly yellow liquid was obtained. The condenser was then 

removed and subsequently the flask was connected to a vacuum pump to evaporate the 

acetonitrile and excess chlorobutane. When the residual volume was about 100 ml, the 

solution was allowed to cool to room temperature and then the put into a refrigerator at 

5°C.  BMIMCl crystallized slowly from the cooled solution. After crystallization was 

complete, the supernatant was removed and replaced by 30 ml of dry acetonitrile. A 

colorless crystal was obtained from the recrystallization step. It was then collected and 

ground to powder in a nitrogen-atmosphere glove box, and dried under vacuum.  

 

2.3.2 DAIM tetrafluoroborate 

Method 2-5 [7] In this reaction, the tetrafluoroboric acid first reacts with silver oxide to 

produce silver tetrafluoroborate, which will then react with DAIM halide and results in 

DAIM tetrafluoroborate. 23.2 g solid Ag2O (0.1mol) was stirred with 36.9 g 48% 

aqueous HBF4 (0.2 mol) in 200 ml of water until the Ag2O had reacted completely with 

HBF4 giving a clear solution. 34.9 g BMIMCl (0.2 mol) dissolved in water was then 

 52



                                                                                                                                                           Chapter 2 

added to the solution. After 2 hour of stirring, the AgCl precipitate was filtered out, and 

the filtrate was concentrate with a rotor-evaporator. The resulting clear, colorless 

solution was dried overnight under vacuum at 70°C.  

 

Method 2-6 [4] The reaction is based on immiscibility of sodium chloride in acetone so 

that it is separated from the product. To a 50 mmol BMIMCl acetone solution was 

added 50 mmol sodium tetrafluoroborate. After 24-hour stirring, the reaction mixture 

was filtered through a celite filter and the volatiles were removed under reduced 

pressure at 60°C.  

 

2.3.3 DAIM hexafluorophosphate 

Method 2-7 [2-5] Synthesis of DAIM hexafluorophosphate was conducted in water 

because it is water-immiscible. But according to our experiments, this kind of IL is 

slightly dissolved in water (ca. 50 mM for EMIMPF6 and solubility decreases with 

increasing alkyl length), thus it is important to control the amount of water in order to 

obtain high yield. 0.02 mol BMIMCl was dissolved in 100 ml deionized water in a 250-

ml plastic beaker. The solution was stirred with a magnetic stirrer. 6.0 ml 

hexafluorophosphoric acid (ca. 70%) was added in to the solution. Addition was made 

slowly to prevent the reaction temperature from rising too high. As the addition 

proceeds, two phases were formed: the BMIMPF6 formed the lower phase and the upper 

phase was acidic. After stirring for 12 hours, the upper phase was decanted and repeated 

washings of the ionic liquid with small aliquots of water were carried out until the upper 

aqueous phase was no longer acidic. The ionic liquid was heated under vacuum at 70°C 

to remove water (optional).  
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Method 2-8 [8] In a plastic beaker, a stirred solution of BMIMCl of 0.02 mol in 100 ml 

deionized water was cooled to 0°C in an ice-water bath, and hexafluorophosphoric acid 

was added slowly with rapid stirring. The resulting biphasic mixture was stirred for 2 

hours, and then allowed to cool to room temperature. The (upper) aqueous phase was 

decanted; the ionic liquid phase was washed with 100 mM NaHCO3 water solution and 

then extracted with dichloromethane. The organic phase was dried over MgSO4 and 

filtered, the solvent was removed under reduced pressure and the ionic liquid was dried 

under vacuum at 70°C for 6 hours to produce colorless liquid. 

 

2.3.4 DAIM hydroxide 

Method 2-9 A column filled with Purolite A510 (Bala Cynwyd, PA, USA) anion ion-

exchange resin was used during the preparation. The resin was activated by 4 N sodium 

hydroxide solution and rinsed with deionized water till the pH of the eluent was around 

7. The EMIMCl solution was loaded and passed through the column at a flow rate of ca. 

1ml/min. The eluent was collected at pH >13. The concentration of EMIM in the eluent 

was determined by CE with external standard method. 
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2.3.5 Comparison of the yields of the methods 

Table 2-1 Comparison of the yields of DAIM based ILs 

R Structure of the cation Abbrev.  

of cation 

Anion No. Optimal 
Method and 
yielda 

Butyl BMIM Cl- 1 2-1 (86%) 

  BF4
- 2 2-5 (90%) 

  PF6
- 3 2-8 (79%) 

 

NN +
 

 OH- 4 97% 

Isobutyl iBMIM Cl- 5 2-1 (93%) 

  BF4
- 6 2-5 (82%) 

  PF6
- 7 2-8 (74%) 

 

NN +
 

 OH- 8 99% 

Hexyl HMIM Cl- 9 2-4 (90%) 

  BF4
- 10 2-5/6 (88%) 

  PF6
- 11 2-7/8 (82%) 

 

 

NN +
(CH2)5CH3

 
 OH- 12 98% 

Octyl OMIM Cl- 13 2-1 (94%) 

  BF4
- 14 2-6 (84%) 

  PF6
- 15 2-7 (82%) 

 

 

NN +
(CH2)7CH3

 
 OH- 16 100% 

Decyl DMIM Cl- 17 2-2 (91%) 

  BF4
- 18 2-6 (81%) 

  PF6
- 19 2-8 (86%) 

 

 

NN +
(CH2)9CH3

 
 OH- 20 95% 

1-Hydroxy-
Butyl 

HBMIM Cl- 21 2-1 (87%) 

  BF4
- 22 2-5 (91%) 

  PF6
- 23 2-8 (76%) 

 

 

NN + OH

 

 OH- 24 99% 
 

a for the ILs of hydroxide form (OH-), only Method 2-9 was employed. The 
corresponding data are the convert ratios based on the concentrations of the DAIM and 
halide impurities measured.  
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It was found that the chain length of alkyl halides affected its reactivity with 1-

methylimidazole. From butyl to decyl, the longer the chain, the higher the reactivity. 

Cloudiness, indicating presence of IL, could be found after 20-minute heating of the 

mixture of decylchloride and 1-methylimidazole at 70°C, while for the yellowish 1-

butyl-3-metylimidazolium, cloudiness did not appear until after ca. 4-hour reaction. 

Also alkyl bromide was found to have higher reactivity than chloride in most cases.  

 

The yields of hexafluorophosphates are generally low mainly owing to considerable 

amount of water used both in synthesis and purification. For , care should be 

taken not to use too much water during the washing procedures. Theoretically, 

 may offer higher yield, but the organic solvent is harmful and the operation is 

complicated. If yield is not a crucial factor to be considered,  is a better 

choice, especially in this work which does not require dry products. 

Method 2-7

Method 2-7

Method 

2-8

 

High yields could be obtained with  to convert bromides to 

tetrafluoroborates. For chlorides,  is more suitable. 

Method 2-5

Method 2-6

 

2.4 Mass spectrometry study of the ILs 

The physical properties of the ILs such as melting point, density and viscosity are 

important parameters for their applications as electrolytes in solar batteries, solvents for 

chemical reaction and liquid-liquid extraction [9-11]. But in this study, the ILs will be 

dissolved in solvents as background electrolyte or additives, or be used as coating 

materials, so their physical properties may not significantly affect their performances in 

such applications and hence they will not be discussed in detail here. However, 
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understanding of the interactions between the IL-cation and IL-anion in solvents will be 

helpful in interpreting experimental phenomena and in experiment design.   

   

Mass spectrometry (MS) is an important tool to obtain structural information of species 

in volatile solvents, and can also detect impurities in a mixture provided that the 

impurities are at significant levels that can be detected by the spectrometer. The aims of 

this experiment were to detect the impurities (mainly the residuals of the reactants) in 

the synthesized ILs. In order to obtain high specificity, selected reaction monitoring 

(SRM) mode was used for some fragments. Before SRM, full scan mode (under which 

the collision energy was set to zero) was first applied on the sample and operation 

parameters (infusion flow rate, capillary temperature and sheath gas pressure) were 

optimized to obtain the highest current for the mother fragments. During SRM, the 

collision energy (in this instrument, the energy is controlled by voltage applied between 

the capillary end the lens, and the percentage of the voltage) was optimized so that the 

intensity of the daughter fragments is significant. The synthesized ILs were analyzed by 

infusing their water-methanol (5:95, v/v) solution into the mass spectrometer with a 

syringe pump at a flow rate of 3 µl/min. The temperature of the capillary in the 

spectrometer was set to 260 °C. The sheath gas (N2) pressure was at 50 arbitrary and the 

auxiliary gas pressure was set to zero. For the SRM mode, the voltage was in the range 

of 30 and 50 V, and the percentage was in the range of 10 to 25. 
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Table 2-2 m/z values of the analytes 

Cation m/z Anion m/z 

BMIM 139.15 OH- 17.01 

EMIM 111.07 Cl- 34.45 

HMIM 167.17 Br- 79.90 

iBMIM 139.15 BF4
- 86.80 

DMIM 195.21 PF6
- 145.18 

HBMIM 157.13 TFMS 149.09 

 

2.4.1 Monitoring the IL-cation 

The most basic ILs synthesized are the halides, usually in chloride form which has a 

m/z of 34.5. Since the working m/z range of the mass spectrometer we used is 50-2000, 

it is reasonable to monitor the IL-cations, whose m/z are in the range of 100-200. 

 

The spectra of the cations show (for example in Fig. 2-2) no residual reactant 1-

methylimidazole (the protonated quasi-molecule at m/z = 84 at positive ESI mode)  

 

2.4.2 Association modes of the IL-cations and IL-anions in 

methanol 

Positive and negative ESI modes were used to assess IL aggregation. More peaks were 

observed for negative ESI; these peaks were attributed to fragment aggregates. 
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Although methanol can be both as proton donor and acceptor [12], the ILs may not fully 

dissociate in it. As shown in Fig. 2-3, the cation and anion associate in the organic 

solvent under the operation conditions. For HMIMCl, the association of chloride with 

IL molecule by the following pattern: 

 

 
−

+

−−−

→→

+→+→+

][...

][][

1

322

nnClHMIMHMIMCl

ClHMIMHMIMClHMIMClHMIMClCl
            

 
 
(2-1) 

 

It can be seen from Fig. 2-3 that with the increasing collision energy, the association 

ability of anions with molecule decreases, especially for high-level aggregates (Fig. 

2-3C). Under this situation, more IL molecules will be freed from the aggregations, and 

the concentration of the free IL-molecules in the organic solvent will increase hence the 

chance of cations associating with IL-molecules (with similar pattern as eq (2-1)) will 

be enhanced and the cationic aggregations can be detected (Fig. 2-2B and C). Fig. 2-3 and 

Fig. 2-4 show that in the presence of collision energy, the most stable negative 

aggregations are not the fragments consisting one anion and one IL molecule; in fact 

they are made up of one anion and two IL-molecules, i.e. [(HMIM)2Cl3]-, 

[(BMIM)2Cl3]- and [(BMIM)2(PF6)3]-. However, association abilities of anions with IL-

cations (or IL molecules) varied with ionization conditions. For example, BMIMCl and 

BMIMPF6, Fig. 2-4 shows that without collision, the high-level aggregation form of 

BMIMCl indicates higher abundance; when collision energy is applied, [(BMIM)2Cl3]- 

is the most abundant. But [(BMIM)2(PF6)3]- shows the highest abundance both in the 

presence of and without the collision energy (Fig. 2-4A and B). The above experiments 

also suggest different ILs have different cation-anion association patterns in organic 
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solvent. As we know, the abundance of the fragments is related to the stability of that 

species.  

 

More interesting results were obtained with EMIMCl. Under the positive ESI mode, the 

cationic aggregations can be observed (Fig. 2-5A and B), while under negative mode 

there is visually no significant fragment detected (the highest NL is 2.59 × 104 

compared to 2.59 × 105 under the positive ESI mode). Moreover, the most stable 

fragment consists of one cation and one IL molecule ([(EMIM)2Cl]+); it appears even in 

the environment without collision energy applied. 
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Fig. 2-2 Mass spectra of HMIMCl (positive ESI) 
Experimental conditions: positive ESI mode, collision energy: A, 0V; B, 20 V; C, 40V 
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Fig. 2-3 Mass spectra of HMIMCl (negative ESI) 
Experimental conditions: negative ESI mode, collision energy: A, 0V; B, 10 V; C, 
20V 
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Fig. 2-4 Comparison of Mass spectra of BMIMCl and BMIMPF6 
Experimental conditions: negative ESI mode. IL and collision energy: A, BMIMPF6, 0 V; B, BMIMPF6,  
40 V; C, BMIMCl, 0V; D, BMIMCl, 30 V. 

 63



                                                                                                                                                           Chapter 2 

 

 
 
 
Fig. 2-5 Mass spectra of EMIMCl and EMIMTFMS 
Experimental conditions: A, positive ESI mode, collision energy, 0 V; B, negative ESI mode, collision 
energy, 0 V;C, negative ESI mode, collision energy, 0 V. 
 

 64



                                                                                                                                                           Chapter 2 

2.4.3 Identification of species by MSn 

The components of aggregations were identified by MS/MS method. An example is 

shown in Fig. 2-6. Fragmentation may occur as  

 −−− →→ 626362 ])([])()[( PFPFBMIMPFBMIM                              (2-2) 

 

 
 
Fig. 2-6 MS/MS analysis of [(BMIM)2(PF6)3]- 
Experimental conditions: negative ESI mode. A, 20% of the collision energy (50 V); B, 15% of the 
collision energy (30 V). 
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Fig. 2-7 MS/MS analysis of iBMIM 

Fig. 2-7

Experimental conditions: positive ESI mode. A, MS full scan (50 V); B, MS/MS on 25% of the collision 
energy (50 V). 
 

For the DIAM cations, the MS/MS spectra indicated that under collision, the mother 

cation fragmented into 1-methylimidazole quasi-molecule and the long-chain alkyl 

group. For example, for iBMIM (spectra shown in ):  

 

NN + NN + CH2CH(CH3)2+
 

 
(2-3) 

 
The above experiments suggest different interactions between the cations and anions. 

Such interaction will influence polarity and hydrophobicity of the aggregates, which 
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would have different affinities towards the analytes if they were used as BGE or 

additives in CE. It has been reported by a recent publication [12] that ILs with the same 

cation but different anions in aprotic solvent (acetonitrile) have different abilities in 

reversing the EOF of the capillary. Although our experiments in Chapter 3 showed that 

the electrophoretic mobilities of EMIM with different anion were the same in aqueous 

buffer when they were analyzed as samples in the range of 0.5-1.5 ppm, another report 

[13] demonstrated that ILs of different anions had different effects on analytes when 

they were used as buffer electrolytes of high concentration (50-300 mM). In this paper, 

the authors reported that the EMIM based ILs with tetrafluoroborate and 

hexafluorophosphate could separate the analytes (phenolic compounds), while no 

separation was obtained with trifluoromethanesulfonate (TFMS). The mass spectrum of 

EMIMTFMS was shown in Fig. 2-5C. It can be seen that it is significantly different from 

that of hexafluorophosphate (Fig. 2-4A and B); there is an order of magnitude in 

difference in their fragment abundances. In fact, EMIMTFMS is more similar to 

EMIMCl. The aggregation of IL in solutions was also found by other authors [14,15], 

one paper [15] pointed out that larger aggregates with a small charge density are 

generated in less polar solvents, small aggregates with a higher charge density are built 

in polar solvents. Among the above discussed anions, Chloride is a small ion. Compared 

with tetrafluoroborate and hexafluorophosphate, it has higher charged density and 

cannot form large aggregate in water solution. The larger aggregate may have stronger 

interaction with the phenolic compounds in the reference 13 of this chapter; this may 

partially explain why the tetrafluoroborate and hexafluorophosphate based ILs can 

improve the separation. Although we did not further investigate mechanisms behind the 

phenomena, we think understanding of these MS results may be of help in designing 
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electrophoretic buffer, especially for those using ILs as electrolytes in non-aqueous 

capillary electrophoresis.  

 

It was also found that MS is not very sensitive in detecting impurities in the synthesized 

ILs, partially due to the low sample concentration infused or due to discrimination in 

sample introduction into the MS. There is a need to develop sensitive and reproducible 

method for assessing the quality of the products, which will be discussed in the 

following section. 

 

2.5 Determination of the impurities in the ILs and the 

related imidazoles 

The impurities in ILs will tremendously affect their performances. For instance, when 

they are used as battery electrolytes, large amount of impurities in the ionic liquids 

affect the transport numbers of the species involved in the system [16]. Previous studies 

suggest that different alkyl substitutes of the imidazolium cations, even the isomers, 

may result in different properties of the ILs [17]. Capillary electrophoresis is a 

microanalysis technique whose performance relies on the quality of buffers and the state 

of the internal capillary surfaces, etc. The impurities in the buffer will cause unexpected 

results not only from the interaction with analytes, but also from change in the 

properties of the capillary surface. As we mentioned in Chapter 1, a little adsorption of 

the electrolytes on the surface lead to tremendous influence on the electrophoretic 

results. Evaluating the purities of the starting materials or the products provides 

important information for application or for further purification.  
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A number of methods [17-20], such as NMR, IR, UV and MS, have been employed to 

test properties of ILs and detect impurities as well. These methods are either expensive 

to operate or are not suitable for routine quantitative analysis of the impurities typically 

present in ILs. Alkylimidazoles are the usual starting materials and are the main 

impurities in many IL products. Moreover, they are also basic starting materials in 

pharmacy industry [21] and commonly used chromophores in CE. Separation of these 

simple imidazoles has been actively studied [13,16,22,23]. In the work of Ong and Li 

[24], four imidazoles were baseline separated by MEKC within 12 minutes. A 

commercially available chemical, 2-ethylimidazole, was analyzed by high performance 

liquid chromatography (HPLC) and capillary electrophoresis (CE); but no quantitative 

or qualitative information of the impurities in the material was reported. Holbrey and 

co-workers [25] recently reported a colorimetric method determining imidazoles in 

EMIM based ILs. The concentration of 1-methylimidazole was measured by monitoring 

the change of the maximum absorbance wavelength of the solution caused by the 

coordination of copper (II) ion to 1-methylimidazole. The limit of detection (LOD) of 

this method was reported to be 0.2 mol% in EMIMCl. However, since determination of 

1-methylimidazole is based on measuring the shift of the maximum absorbance 

wavelength, one cannot determine whether there is 1-methylimidazole in an IL without 

the spectrum of the pure standard. Moreover, other imidazoles such as imidazole and 

1,2-dimethylimidazole may be interferences for the detection since they can also 

complex with cupric ion. 

 

In acidic or neutral environment, the simple imidazoles are partially protonated, while 

the dialkylimidazolium are cations. They may be separated by CZE. The goal of this 
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work is to develop appropriate CZE working conditions to separate different 1,3-

dialkylimidazolium cations (including isomers) and the related imidazoles. The method 

will be also applied in separation and detection of impurities in commercial chemicals 

as well as in monitoring the reaction process during preparation of the ILs used in this 

study.  

 

2.5.1 Dependence of mobilities on pH 

The effective mobilities of the analytes under different pH were measured to find the 

optimal separation pH. Dimethyl sulfoxide was employed as neutral marker for EOF 

and the effective mobilities were calculated by the following equation: 

 
)11(

00 ttV
Ll

Vt
Ll

Vt
Ll

eoapef −=−=−= µµµ                                            (2-4) 

 

Where, µef , µap , µeo, L, l, V, t, t0 are effective mobility, apparent mobility, EOF, length 

of capillary, length of capillary from injection side to detection window, voltage 

applied, migration time of the sample and migrating time of the EOF,  respectively. Fig. 

2-8 shows that between pH 3 – 4.5, all the species except BMIM and iBMIM can be 

baseline separated. Imidazole and its derivatives are weak bases that can be protonated 

in acidic or weakly basic solutions (e.g. pKa values of imidazolium and 1-

methylimidazolium are 6.993 and 7.16, respectively [26]). Since the above imidazoles 

are differently substituted, the pKa values of the imidazoliums will be different. 

Therefore changes of pH will have different effects on their degrees of dissociation and 

consequently their effective mobilities. Because the separation time was long under low 

pH due to the low EOF, the buffer pH was kept at 4.5 in our experiment. 
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Fig. 2-8 Effect of pH on the mobilities of 1-alkyl-3-methylimidazoliums and the simple imidazoles 

Buffer: 10mM NaH2PO4 adjusted to desired pH by 4M NaOH. Fused-silica capillary: 50µm I.D./ 360µm 

O.D., 53.6 cm length/43.5 cm effective length. Voltage: +14 kV. Injection: 5s by gravity (8 cm height). 

Detection wavelength: 210 nm. = imidazole; =1-methylimidazole; =1,2-dimethylimidazole; 

=EMIM; = 2-ethylimidazole; = BMIM + iBMIM 

 

2.5.2 Composition of the buffer and the buffer concentration 

In order to obtain symmetric peaks for quantitation, the co-ion should be of similar 

mobility as the analytes. It can be seen from Fig. 2-8 that the mobilities of the analytes 

range between 3.0-4.5 x 10-8 m2 s-1 V-1. Although the mobilities were not adjusted 

against the ionic strength and viscosity of the buffer, they could be used as reference for 

choosing buffer co-ions. In this experiment triethylamine was chosen as the co-ion in 

the acidic buffer because its mobility (triethylammonium) is 3.48 x 10-8 m2 s-1 V-1 [26]. 
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It was reported by other authors [24] and also observed in this experiment that the 

baseline was not stable with ordinarily treated capillary (Fig. 2-9A). But we found that, 

without addition of any additives recommended by references 24 and 27, the capillary 

pretreated with 50 mM sodium acetate or 50 mM triethylammonium acetate for ca. 6 

hours could offer stable baseline (Fig. 2-9B). It can be seen that the analysis time after 

pretreatment lengthened, which may result from decreased electroosmotic flow (the 

EOF decreased from ca. 2.5 to 2.0 x 10-8 m2 s-1 V-1).  

 

The buffer concentration is another important parameter in CE; the high concentration 

favors the stacking of the analyte as well as reproducibility of results. From the buffer 

concentration of 2 mM onward, reproducible migration times and peak areas of the 

analytes could be obtained. Maybe because the target concentration was not very low, 

we did not observe obvious further stacking effect of the analytes with increasing buffer 

concentration. On the other hand, the analysis time was heavily influenced by the buffer 

concentration. At 15 mM, the analysis time was ca.11.7 minutes. Considering the above 

factors, the buffer concentration was chosen to be 5.0 mM 
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Fig. 2-9 Effect of capillary pretreatment  
Capillary pretreatment: A, Fresh capillary was flushed by 0.5 M sodium hydroxide for 1 hour, 
followed by 10 minutes of deionized water, then by 10 minutes of running buffer; B, after flushed 
by 0.5 M sodium hydroxide, the capillary was rinsed with 50 mM sodium acetate for 6 hours and 
then flushed by deionized water and running buffer consecutively.  Buffer: 5.0 mM sodium acetate 
adjusted by acetic acid to pH 4.5. Peaks (in the following order): 1, imidazole; 2, 1-
methylimidazole; 3, 1,2-dimethylimidazole; 4, EMIM; 5, 2-ethylimidazole; 6, iBMIM; 7, BMIM. 
Other conditions as in Fig. 2-8. 
 

2.5.3 Effect of α-CD  

Cyclodextrins (CDs), also known as Schardinger dextrins, cycloglucopyranoses or 

cycloglucans, are cyclic oligosaccharide molecules built of glucopyranose units (Fig. 

2-10). They can generally be dissolved in water to a certain extent. However, their 

cavities are hydrophobic and can form inclusion complexes with organic molecules 

according to their molecular sizes, structure conformations and hydrophobicities as 

well.  
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Fig. 2-10 Chemical structure and schematic model of cyclodextrin 
 

The cavity diameter of α-CD is slightly larger than that of the imidazole ring, which 

may render the reagent the resolving abilities towards position isomers iBMIM and 

BMIM based on their slight steric differences. Fig. 2-11 shows that the migration time of 

BMIM increases more significantly than those of others with addition of α-CD. 

Association of the analytes with the cyclodextrin increases migration times because of 

formation of bulky complex. With α−CD of 1.5 mM onward the isomers were baseline 

separated with BMIM migrating out first, followed by iBMIM. In order to further assess 

the complexation capability of α−CD with the isomers, the concentration of α−CD was 

increased till 30 mM (figures not shown). The peak patterns were similar to those in Fig. 

2-9, but the mobility of BMIM decreased more. The complex formation constant of 

isomer−CD can be calculated by the equations derived by Armstrong et al [28]:  

 
)(

1

0 µµ −
=

][)(
1

0 CDKc −− αµµ
+

)(
1

0 cµµ −
                                           

 
(2-5)   

 

Where, K is the complexation constant, [α−CD] is the concentration of α−CD  in the 

buffer, µ0, µc and µ are the mobility of the isomer in the α−CD-free buffer, the mobility 

of isomer-CD  complex and the mobility of the isomer in the presence of α−CD, 
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respectively. Since introduction of α−CD also changed the buffer viscosity, the 

mobilities measured in these buffers should be adjusted. We measured the mobilities of 

imidazole in buffers containing 0, 10, 20, 30 mM α-CD and the viscosities of these 

buffers. After adjusted against the buffer viscosities, the mobility of imidazole in the 

above buffers remained relatively stable. So imidazole was chosen as internal standard 

and the adjusted mobilities of the isomers were calculated by µ = µB µeΙ /µΙ (µB, µΙ and 

µeΙ are mobilities of isomers and imidazole in the α-CD containing buffer, and mobility 

of imidazole in the α-CD-free buffer, respectively). The K values of each isomer could 

be determined by plotting (µ0−µ)-1 versus [α−CD]-1. The regression equation for BMIM 

was y= 0.341+0.0196x (n=8, r=0.982). K was calculated from dividing the intercept by 

the slope to yield 17.4 M-1. For iBMIM, y= -8.83+0.0322x (n=8, r=0.127). The poor 

regression data of iBMIM suggests there may be other interaction. Because eq (2-5) is 

based on 1:1 interaction, the data may suggest higher order complexation between 

iBMIM and α-CD. The concentration of α-CD in our work was 2.0 mM considering the 

analysis time. 
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Fig. 2-11 Influence of α-CD concentration on the separation of the analytes 
The concentration of α-CD increases from A (0.5 mM) to F (3.0 mM) with an interval of 0.5 
mM. Other conditions and peak identifications are same as in Fig. 2-9. 

 

2.5.4 Linearity, reproducibility and detection limits  

Table 2-3 LOD, calibration data and precision obtained from the optimized conditions 

Analytes  LOD Correlation Coefficient RSD%  (N =5) 

 (ppm) (N =7) Migration Time Peak Area 

imidazole 0.44 0.999 0.64 1.9 

1-methylimidazole 0.42 0.996 0.72 2.3 

2-methylimidazole 0.54 0.996 0.49 1.9 

1,2-imethylimidazole 0.60 0.993 0.58 2.1 

EMIM 0.86 0.997 0.59 2.8 

iBMIM 1.36 0.990 0.47 2.1 

BMIM 0.92 0.992 0.53 2.1 
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LOD was determined at the signal to noise ratio (S/N) of three. Different concentrations 

ranging from 3 to 50 times of the LOD of each analyte were measured for the linear 

calibration. Five consecutive runs were performed for mixtures of 5 ppm each to assess 

the relatively standard deviation (RSD) of migration times and areas of the peaks. It can 

be seen from Table 2-3 that the LOD, linearity and reproducibility are within the regular 

working range for analysis of these compounds. 

 

2.5.5 Applications 

2.5.5.1 Detection of impurities in commercial chemicals 

In order for comparison, the commercial EMIMCl was treated to remove the residual 1-

methylimidazole. Eight grams of EMIMCl was transferred to a dry 200 ml round 

bottomed flask that would be kept at 90 °C. The melt was stirred with a magnet and 

bubbled with NaH dried ultra pure dinitrogen of 2 ml min-1 (measured under normal 

atmosphere). The flask was connected to a vacuum pump for 12 hours. 

 

The commercially available EMIMCl and 2-ethylimidazole were used directly to 

prepare solutions of desired concentrations and then were analyzed with the optimized 

conditions obtained from the above experiments. Although the migration times changed 

(Fig. 2-12A-C) because of the high concentration of the matrix, the impurities were 

identified by spiking the solution with purified 1-methylimidazole and commercial 

imidazole. Imidazole (0.55% ± 0.04%) in 2-ethylimidazole and 0.27% ± 0.02% 1-

methylimidazole in EMIMCl were found by the peak area method. For comparison, the 

concentration of 1-methylimidazole in EMIMCl was found to be 0.30 ± 0.04% by a 

colorimetric method (Shimadzu UV-160A, UV-Visible spectrophotometer); 0.61% ± 
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0.03% imidazole in the 2-ethylimidazole was detected with gas chromatography mass 

spectrometer (Shimadzu GCMS-QP506; the column: 30m, 0.25mm I.D., 

dimethylpolysiloxane). All the above data were obtained from three consecutive runs.  

 

 
 

Fig. 2-12 Electropherogram of commercial chemicals and reaction mixture during synthesis of BMIMCl. 

The concentration of α-CD was 2.0 mM. Other conditions are as in Fig. 2-11. The samples: A, 200 ppm 
treated EMIMCl; B, 200 ppm untreated EMIMCl; C, 200 ppm untreated 2-ethylimidazole; D, 60 ppm 
BMIMCl and 1-methylimidazole mixture. Peaks: 1, imidazole; 2,1-methylimidazole; 3, EMIM; 4, 2-
ethylimidazole; 5, BMIM. 
 

2.5.5.2 Process analysis during synthesis of BMIMCl 

About 2 ml of the mixture was taken from the reaction mixture after 12 hours of 

reaction during the preparation of BMIMCl. After the excess 1-chlorobutane was 

evaporated, a 60 ppm deionized water solution was prepared and analyzed (Fig. 2-12D).  

We found that 73.1% ± 0.75% (n=3) (compared with 72.4 ± 0.87% (n=3) from 

colorimetric method) of 1-methylimidazole had changed into BMIM. Moreover, no 

peak corresponding to iBMIM was found. In order to confirm, iBMIM was spiked into 

the solution to 2 ppm and it could be quantitatively detected (not shown in the figure). 
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Our experiments suggested that no rearrangement of the n-butyl occurred during the 

synthesis.  

 

2.6 Summary 

DAIM based ILs can be synthesized with high yields and acceptable purities with the 

optimized methods. The mass spectra of the ILs reveal some of their association 

properties in organic solvent, which may be useful in interpreting the experimental 

phenomena and in experimental design. 

 

The CE method developed can quickly separate and detect imidazole derivatives and 

1,3-dialkylimidazolium cations with high resolution, low detection limits and good 

reproducibility. It can be employed in routine analysis such as impurity testing of 

commercial products as well as in reaction mechanism research and synthetic reaction 

process control. 
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CHAPTER   3 IONIC LIQUID AS 
BACKGROUND CHROMOPHORE 

3.1 Introduction 

As we stated in eq (1-4) of Chapter 1, the limit of detection in indirect detection is 

determined by the BGE concentration, the transfer ratio (TR) and the dynamic reserve 

(DR). Low LOD can be obtained by applying low BGE concentration, high TR and DR. 

Nielen [1] proposed that the mobilities determine TR, while Foret and co-workers [2] 

further reported that a good-match between the effective mobilities of BGE and the 

analytes can offer high sensitivity. By its definition, TR can be expressed as 
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coion
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=                                                                                 
 
(3-1) 

 

Where, sample
anaC  is the concentration of analyte in the sample plug; sample

coionC  and buffer
coionC  are 

concentrations of background co-ion in sample plug and in background electrolyte, 

respectively. The background counterion in this experiment is UV inactive, and the 

absorbance change due to the replacement of background co-ion by the analyte is  

 TRlCCClClA sample
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coion εεε =−=∆=∆ )(                                         (3-2) 

 
Where ε  is the molar absorptivity of the background co-ion, and l is the path length of 

UV light, usually equal to the internal diameter of the capillary. 

 

Derived from Kohlrausch’s regulation function [3], TR can be expressed as [4,5] 
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Eq (3-3) suggests that TR is not only determined by the mobility ratio of the 

background co-ion to the analyte, but also by the mobility ratio of co-ion over 

background counterion.  

 

Fig. 3-1 shows that TR decreases with the increasing µco-ion/µana value. While the 

influence of µco-ion/µcounterion is a bit complicated: if µco-ion/µana <1, TR increases with µco-

ion/µana; if µco-ion/µana =1, TR equals 1 and is not influenced by µco-ion/µcounterion; if µco-

ion/µcounterion >1, TR decreases with the value. Compared with µco-ion/µana, the influence of 

µco-ion/µcounterion on TR is smaller and hence not discussed so frequently when choosing 

background counterions. However, when more counterions are available, it is 

theoretically favorable to choose counterions which can offer high TR. It can be seen 

from Fig. 3-1 that low µco-ion/µcounterion value and high µco-ion/µana favor high TR, while low 

µco-ion/µcounterion  and low µco-ion/µana  lead to low TR.  That means in buffers containing 

counterion of high mobility, there exist both chances of advantages and risks for the TR 

of the analytes. In real analysis, the influence of electrodispersion caused by mobility-

mismatch also should be considered for good peak shape and high separation efficiency. 

Empirically, the background co-ion for indirect detection is chosen at similar mobility 

as the analytes for the overall performance.  
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Fig. 3-1 Calculated value of TR versus different µco-ion/µcounterion and µco-ion/µana 
The values in the legend are the ratios of µco-ion/µana 

 
Another factor that should be considered is the applicable pH range of the background 

chromophore. The most often used chromophores for detection of cations are those N-

heterocyclic compounds containing nitrogen atoms that have lone electron pairs to be 

shared by protons and thus they are positively charged in acidic buffer. They are widely 

used in the determination of metal ions, amines, etc. The main disadvantage of those 

kinds of chemicals are that they are prone to undergo deprotonation in alkaline buffer. 

The high buffer pH often leads to the reduced detection sensitivity due to the decreased 

concentration of the cationic chromophore available, and sometimes even no peaks 

obtained for the analytes. 

 
Since EMIM is charged and has an imidazole ring which may have UV absorbance like 

imidazole, it may be a potential background chromophore for CE. To our best 

knowledge, however, there had been no report on this application until we reported this 

research.  
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Ammonium in urine comes chiefly from the decomposition of urea. Monitoring 

ammonium helps to understand the role of kidney in metabolism and to diagnose some 

diseases [6,7]. Methods determining NH4
+ in water include a laborious Kjeldahl 

Titration method, electrochemical method in which K+ is still an interfering ion to the 

electrode [8], a spectrophotometric method requiring expensive instruments, and CE 

with modifiers (such as 18-crown-6) which also have influences on the sensitivity of the 

analytes.  

 

The purpose of this chapter is to study the CE-related property of EMIM based ILs and 

to explore their feasibility as chromophores for indirect detection in high pH buffers. 

The buffer developed was applied to analysis a real sample. 

 

3.2 Experimental  

3.2.1 Adjustment of pH and calculation of ionic strength 

In order to study the mobilities of targets in wide pH range, NaH2PO4 solutions of 

known concentrations (the value was calculated according to eq (3-4) so that each 

solution was of same ionic strength; adjusted to different pH values by 4 M NaOH or 4 

M phosphoric acid) were employed as buffer electrolytes. Because of the high 

concentration of NaOH and phosphoric acid, the volume change caused by the pH 

adjustment was very small and thus negligible. The ions in the buffer are H2PO4
-, 

HPO4
2-, PO4

3-, H+, OH- and Na+. At any given pH and temperature, the concentrations 
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of H2PO4
-, HPO4

2-, PO4
3- and OH- can be calculated from the fraction equation of 

phosphoric acid and ionization product of water. The concentration of sodium is 

governed by                                      

 [Na+]  = [H2PO4
-] + 2[HPO4

2-] + 3[PO4
3-] +[OH-] - [H+] (3-4)  

 

The formula in square brackets represents the equilibrium concentration of that species 

in the buffer. The ionic strength can be calculated by I= 0.5 ∑Zi
2Ci, where, I, Zi and Ci 

are ionic strength, charge and concentration of the ions concerned, respectively [9].  

 

3.2.2 Treatment of urine specimen and stock solutions 

About 100ml urine specimen was collected from a healthy person. The specimen was 

diluted to 20%(v/v) with deionized water and filtered with Millipore filter then store at 

5°C. Each solution of K+, Na+ and NH4
+ of ca. 1000 ppm was prepared preciously with 

deionized water and filtered and then stored at 5°C. Before analysis, the analytes were 

further diluted with running buffer to desired ratios. 

 

3.3 Results and Discussion 

3.3.1 UV absorbance of imidazolium 

At 25°C, EMIMCl and imidazole water solutions ranged from 1×10-5mol/L to 3.5×10-

5mol/L were prepared and scanned with a spectrometer. EMIM and imidazole shows 

similar absorbance character with absorpitivities of 5870 ± 62 dm3mol-1cm-1 (n=3) at 

209 nm and 5071 ± 41 dm3mol-1cm-1 (n=3) at 207 nm, respectively (Fig. 3-2). We think 
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the slightly longer wavelength and high absorptivity of EMIM compared with that of 

imidazole may be attributed to the hyperconjugation of the alkyl groups attached on the 

N atoms of EMIM, which leads to a slight red shift of the spectrum. 

 

 
 
 
Fig. 3-2 UV absorbance of imidazole and EMIMCl 
A, imidazole; B, EMIMCl. Concentrations: water solutions of 1,2, and 3.5 ×10-5 M, respectively.  

 

3.3.2 Mobility of imidazoles and  EMIM 

The mobilities of species are affected by buffer concentration (ionic strength) and buffer 

viscosity. In order to eliminate these influences, phosphate buffers of different pH were 

prepared at equal ionic strength according to the method stated in 3.2.1. The viscosity of 

the buffers of different pH were measured and all the mobilities were adjusted against 

viscosity to pH 3 buffer by µi=µ3η3/ηi, where, µi, µ3, ηi and η3 are mobility of the metal 
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ion, mobility of this ion in pH 3 buffer, viscosity of the test buffer and viscosity of the 

pH 3 buffer, respectively. Mobilities of EMIM based ILs composed of different anions, 

namely, BF4
-, Cl-, PF6

- and TFO, were measured to evaluate the influence of these 

anions.  

 

Table 3-1 shows that the effective mobilities of imidazole and 1,2-dimethylimidazole 

decrease remarkably with the increasing pH and drop to zero at pH 9 and pH 10, 

respectively, while the mobility of EMIM remains relatively stable over the entire pH 

range studied.  

 

Imidazole and 1,2-dimethylimidazole are weak bases that can be protonated in acidic or 

weakly basic solutions. Their dissociation in water can be expressed by [10]: 
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(3-5) 

      

(a) and (b) in eq (3-5) are two of the resonance forms of imidazole and 1,2- 

dimethylimidazole , and ka is the equilibrium constant. The effective mobilities of 

imidazole and 1,2-dimethylimidazole are governed by: 

 µef = µ0[H+]/([H+]+ka)   (3-6) 

 

Eq (3-6) suggests that change of pH will significantly affect the effective mobility of the 

above weak acids and the compound with larger ka will suffer more decrement at higher 

pH. 
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Table 3-1 Adjusted mobility of imidazoles and EMIM in buffer of different pH 

 Adjusted Mobility (10-4 cm2V-1s-1) 

  Anion binding to EMIM pH 

Imidazole dimi b) Cl- BF4
- PF6

- TFO- 

3 4.76 4.50 4.56 4.67 4.5 4.62 

4 4.77 4.50 4.49 4.56 4.61 4.53 

5 4.60 4.46 4.52 4.42 4.51 4.43 

6 3.95 4.39 4.58 4.42 4.56 4.41 

7 2.24 3.78 4.4 4.7 4.39 4.41 

8 0.74 2.65 4.72 4.72 4.6 4.69 

9 0.08 0.95 4.66 4.65 4.43 4.57 

10 0.00 0.22 4.5 4.53 4.5 4.23 

11 0.00 0.00 4.34 4.33 4.48 4.77 

Ave ± SD a)   4.53 ± 0.12 4.56 ± 0.144.51 ± 0.07 4.52 ± 0.17

a) Average ± Standard deviation 
b) 1,2-dimethylimidazole 

 

Both the imidazole and 1,2-dimethylimidazole rings contain 2 nitrogen atoms having 

lone electron pair. One nitrogen atom contributes its electron pair to the aromatic π 

system. Another one has its electron pair in an orbital directed away from the ring [10]. 

This nitrogen atom can be protonated and thus the imidazole can act as base. Moreover, 

in 1,2-dimethylimidazole, the hyperconjugation effect of the methyl on C(2) makes both 

the protonated form stable. In its resonance form (a), the induction effect of the methyl 

on N(1) tends to reduce the positive charge, which also contributes to the stability of its 
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protonated form. So 1,2-dimethylimidazole is more basic than imidazole and thus has 

lower Ka and higher protonation ratio accounting for its higher mobility in basic buffer 

in spite of its lower change-to-size ratio in structure.  

 

Two factors may account for stable mobility of EMIM. First, there is no lone electron 

pair in any carbon or nitrogen atoms in the EMIM cation to be shared by a proton thus it 

cannot be protonated. Second, all hydrogen atoms combine with carbon atoms via 

covalent bonds; the dissociation constants of the most active hydrogen atoms, those 

combined to the sp2 hybridized carbon atoms on the ring, are so small that change of pH 

cannot produce neutral 1,3-dialkylimidazole of detectable level to vary the mobility. 

 

For EMIM with different anions, the Chi Square (x2) distribution of the four sets of data 

is x2=0.535, suggesting no difference among the mobilities according to the x2 

distribution table [11]. It may imply that these EMIM based ILs, although with different 

anion, are dissociated completely in water. 

 

The mobilities of the two other permanent cationic chromophores, 

trimethyl(benzyl)ammonium and  N-butylpyridinium, were measured to be 3.70 and 

3.63 ×10-4 cm2V-1s-1, respectively. Considering the mobility range of the metal ions are 

usually between 4.0 and 7.0×10-4 cm2V-1s-1, EMIM may be the better choice as 

“permanent” cationic chromophores for their indirect detection. 
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3.3.3 Demonstration and application 

The buffer pH is one of the most important factors affecting CE performance. As we 

discussed in Chapter 1, it influences effective mobilities of weak basic or acidic 

analytes, solubilities of some metal ions, and EOF which is a key parameter in CE. 

There will be more options to optimize the separation conditions if the BGE co-ion can 

work over wide pH range. The stable mobility of EMIM is advantageous for 

applications in CE, particularly for indirect UV detection of metal ions in high pH 

buffer since its mobility is closer to those of metal ions compared to the cationic 

chromophores reported [12]. 

 

 

3.3.3.1 Performance of the IL-containing buffer  

In this experiment, EMIMCl and imidazole were employed separately as BGE in 

separating inorganic cations K+, Na+ and NH4
+ in a standard solution. NH4

+ is a weak 

acid whose pKa is 9.24. At low pH, it will co-migrate with K+ since they have almost 

the same mobility [13]. It can be seen from Fig. 3-3 that BGEs composed of EMIM 

performances well between pH 3.5 and 11.5, and NH4
+ and K+ can be baseline separated 

in buffers of pH ≥ 8.5. However, no peaks can be obtained corresponding to the analyte 

cations when imidazole was employed as BGE in buffers of pH ≥ 8.5. This is because 

the pKa of protonated imidazole is about 7.0 [14], and only about 3% of the species is 

protonated at pH 8.5. Consequently, the absorbance change due to the replacement of 

the protonated imidazole by the UV inactive analyte will be too small to be detected.  
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Fig. 3-3 Comparison of EMIM and imidazole as background chromophores 

Experimental conditions: fused-silica capillary: 50µm I.D./ 360µm O.D., 43.5cm length/34.5 cm effective 
length; voltage: +6 kV; injection: 5s by gravity (8 cm height). Detection at 210 nm. Buffers: A, mixture of 
3mM EMIMCl and 8 mM tetraethylammonium hydroxide adjusted to desired pH with 4 M phosphoric acid; 
B, mixture of 3mM imidazole and 8 mM tetraethylammonium hydroxide adjusted to desired pH with 4 M 
phosphoric acid. 

 



                                                                                                                                 Chapter 3 

 93

 

It should be noted that the buffers for Fig. 3-3 contain tetraethylammonium hydroxide, 

which is used to adjust the buffer pH but it also introduce co-ion (tetraethylammonium) 

into the buffer and hence reduce the TR value for the analytes. The experiment in this 

section is not designed to find optimal buffer conditions for imidazole and EMIM as 

background chromophores, but to compare their feasibilities as cationic chromophores 

under different pHs. 

 

For the weak bases or acids, their mobilities change with buffer pH, and can be 

calculated using eq (3-6); hence, their migration orders can be predicted theoretically. 

The mobilities of potassium and sodium theoretically will not change with pH; while 

the pKa of ammonium is 9.24, its mobility will not change noticeably in acidic buffers. 

In order for the accuracy of prediction, we did not take their reported mobilities as µ0 in 

eq (3-6); their mobilities in buffer of pH 3.5 were measured and used as µ0 in the 

calculation.  

 

Fig. 3-4 shows that the theoretical and experimental values of mobilities have the same 

trend with pH, and they match well within experimental error. It can be found from the 

theoretical calculation that potassium and ammonium can be separated between pH 8 

and 9, which was confirmed from our experiment.  
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Fig. 3-4 Comparison of the calculated and measured mobilities of ions 
Buffer: EMIMOH solution adjusted to the desired pH values by 4 M 4 M phosphoric acid; the ionic 
strength of the buffer was kept at 20 mM, the amount of EMIMOH used was calculated as described in 
3.2.1. Capillary, applied voltage and detection are same as Fig. 3-3. 

 

3.3.3.2 Detection of ammonium in human urine  

The buffer of our method only consists of EMIMOH and phosphoric acid; thus, the 

conditions are easy to control. Additionally, fairly high sensitivity can also be expected 

because no modifier is added. The separation conditions were optimized before 

analyzing the real sample. The buffer was composed of 5 mM EMIMOH adjusted to pH 

8.8 by phosphoric acid; the applied voltage was set to 10 kV. The detecting wavelength 

was 207 nm. Under the above conditions, NH4
+ is baseline resolved from K+ and 

consequently the concentration of K+ can also be quantitatively determined (Fig. 3-5). 

The LOD for NH4
+ is 2 µg/ml (S/N=3), the linear range is 5-500 µg/ml. Based on 

external standard method, the concentration of NH4
+ in urine was determined to be 

0.37% ± 0.012% (n=5) from its peak area. For comparison, it was detected to be 0.34% 

± 0.014% (n=5) by Kjeldahl Titration. 
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Fig. 3-5 Separation of K+ and NH4
+ in human urine 

Buffer conditions are described in text. Peaks: 1, K+; 2, NH4
+; 3, Na+ and Ca2+; 4, system peak; 5, 

EOF.  

 

3.4 Summary 

TR value of an analyte is not only determined by the ratio of its mobility to that of 

background co-ion, but also is affected by the mobility of the background counterion. 

High TR can be obtained in the presence of high-mobility counterion. The EMIM cation 

has similar UV absorbance characters as imidazole but with a bit higher absorptivity 

and its mobility is independent on the pH of the buffer. Unlike the conventional 

chromophores for indirect detection, EMIM based ionic liquids performed well not only 

in acid buffer but also in buffers of very high pH. With the help of these ionic liquids, 

the pH range of the buffer in CE with indirect detection mode can be expanded and 

some analytes that cannot be separated in low pH buffers may be separated easily.  
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CHAPTER   4 IONIC LIQUID AS COATING 
MATERIALS 

 

It has been recognized that in order to approach ideal conditions for CE, EOF should be 

controlled and analyte adsorption to the capillary wall should be eliminated. In fused-

silica capillary, the EOF driving force is the ionized silanol groups at the capillary 

surface. These groups are also responsible for the adsorption of analytes. In most cases, 

surface coating blocks these active sites; some times, for example, the cationic coating 

can even neutralize the surface charge. Thus the coating serves to eliminate or even 

reverse EOF and to reduce the adsorption of analytes, especially cationic analytes, to the 

capillary wall. 

 

Coating can be physically adsorbed or chemically bonded to the surface. It was reported 

that physical coatings are likely result in poor detection limits [1]. Nowadays, chemical 

coatings are increasingly employed. 

 

Buffer concentration and buffer pH are important parameters in CE. Buffer pH relate to 

the velocity of EOF and the resolution of analytes, while buffer concentration influences 

the separation of macromolecules.  

 

In this work, the ionic liquids were tested as coating materials for the fused silica 

capillary. The IL-coated capillaries were employed in the separation of sildenafil from 

its metabolite; separation of DNA fragments was also investigated in IL-coated 

capillaries. 
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4.1 Materials 

Acrylamide, γ-methacryloxypropyltrimethoxysilane, N,N,N’,N’-tetramethylenediamine, 

3-chloropropyl-trimethoxysilane (CPTMS), 3-chloropropyl-trichlorosilane (CPTCS), 

hydroxyethylcellulose (HEC, CAS number: 9004-62-0), and potassium persulphate 

were obtained from Fluka (Buchs, Switzerland). The 1-methylimidazole was from 

Aldrich (Milwaukee, WI, USA). Dimethyl sulfoxide (DMSO) was supplied by Merck 

(Darmstadt, Germany). The ΦX174 DNA-Hae III digest was purchased from Sigma 

(Saint Louis, MO, USA).  The 36-mer 

(TTTTTTTTTTTTTTTTCAGATCCCCAAAGGACTCAA) and 7-mer (5’-FGGCGCL-

3’) oligonucleotides were bought from Operon (Alameda, CA, USA). Research samples 

of sildenafil and UK103,320 were kindly provided by Dr. Liu of the Institute of 

Molecular & Cell Biology (Singapore). HPLC grade ethyl acetate was a product of J. T. 

Baker (Phillipsburg, NJ, USA). HPLC grade methanol was obtained from Fisher 

Scientific (Fair Lawn, NJ, USA). Polyvinylpyrrolidone (PVP, average molecular mass: 

1,000,000) was product of Polysciences (Warrington, PA, UAS). Tris-Boric acid-EDTA 

(TBE) solution containing 445 mM Tris, 445 mM boric acid and 10 mM EDTA at pH 

8.3 was prepared and diluted to desired concentrations for use. Stock solutions of PVP 

and HEC of 10% (w/v) each were prepared by adding precisely weighted PVP or HEC 

to distilled water in a beaker, stirred in a water bath at 70°C. The homogeneous solution 

was then transferred to a conical flask, which was subsequently sonicated and connected 

to a vacuum pump for degassing. The stock solutions were kept at 5°C in a refrigerator. 

All solutions were prepared with deionized water from a MILLI-Q System (Millpore, 

MA, USA) and were filtered with 0.20µm Millipore filters before use. 
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4.2 Capillary coating 

Capillary coating with linear polyacrylamide was carried out following the method 

proposed by Hjertén [1].  

 

Coating of the capillary with ILs generally contains three steps. Step 1: bonding of the 

bifunctional compounds; step 2: introduction of imidazole ring; step 3: addition of alkyl 

group to the imidazole ring.  

 

Two compounds, CPTMS and CPTCS, were studied in step one. During the reaction, 

Si-O-Si bonds were formed between the reagents and the surface silanol. From CE 

studies, it was found that the CPTMS provided a lower EOF, suggesting a more 

complete coverage of the silica silanols than was obtained with the CPTCS. 

 

In the second step, the imidazole ring was covalently attached to the llinker. The solid 

imidazole was dissolved in organic solvents such as toluene before being introduced 

into capillary, while 1-methylimidazole was injected directly. The EOF of imidazole-

coated capillary without further alkylation was lower than that of 1-methylimidazole 

due to the deprotonation of the imidazole under the pH of testing buffer. The EOF of the 

coated capillary could be controlled by varying the concentration of imidazole solutions 

[2]. In our experiment, the reaction time of this step was employed to control the 

magnitude of EOF. 
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In the third step, an alkyl group was added to the imidazole ring. This is only applicable 

to the imidazole-coated capillary. After reaction, the coating is cationic over a wide 

range of pH range. Meanwhile, with the attached alkyl chain of different lengths, the 

hydrophobicity of capillary surface is varied thus having different influences on 

separation. 

 

Table 4-1 Reagents used in the coating procedure  

A (for Step 1) B (for Step 2) C (for Step 3) 

1: R1=methoxy, CPTMS 1: 1-methylimidazole 0: no reagents 

2: R1=Cl, CPTCS 2: imidazole 1: 1-bromobutane 

  2: chlorohexane 

  3: 1-bromodecane 

 

For convenience, the coatings are classified by the reagents used in each step (A, B, C) 

and noted as CTABC. For example, CT210 stands for the coating formed by CTPCS (step 

1) and 1-methylimidazole (step 2) with no further alkyl-addition reactions. The structure 

is shown in Fig. 4-1. 
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Fig. 4-1 Schematic representation of the IL coating procedure 

 

The coating reaction is very straightforward. We describe here as an example the 

coating procedure for CT223: 

 

The fresh capillary was treated for two hours with 0.5 M sodium hydroxide, one hour 

with 1 M hydrochloric acid, 10 minutes with deionized water, and 10 minutes with 

methanol consecutively. It was then heated in a 120°C oven and flushed gently with 

pure nitrogen to drive out the residual water and methanol. The Si-O-Si bond was 

generated on the silica surface by filling the capillary with CPTCS followed by sealing 

both ends and keeping it at room temperature for two hours. After that the column was 

rinsed with toluene for 20 minutes. At room temperature, excess imidazole was 
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dissolved in toluene; the supernatant was filtered and introduced into the capillary by a 

positive pressure. After the column was heated at 90°C for 6 hours, the capillary was 

rinsed with toluene and dichloromethane successively and subsequently dried with 

nitrogen under 70°C for 2 hours. It was rinsed with 1-bromodecane for 10 minutes then 

sealed at both ends and heated in oven at 90°C for 10 hours. The pretreated capillary 

was rinsed successively for 10 minutes with toluene, 10 minutes with methanol and 30 

minutes with deionized water before use.  

 

4.3 EOF of the IL-coated capillary 

Measuring the EOF is an effective way to evaluate the properties of the coating. The 

fast EOF was measured by the migration time of a neutral marker (DMSO solution) 

from inlet to detector under electric field. If the migration time was longer than 30 

minutes, the procedure described by Williams and Vigh [3] was employed. Three 

consecutive runs were carried out on each capillary for the EOF measurement. 

 

4.3.1 Influence of pH and reaction time 

Fig. 4-2 shows that cationic EOF increases with pH for the bare-silica capillaries, while 

reversed EOF is observed for the IL-coated capillary (CT110) due to the cationic surface-

bonded imidazolium and the velocity decreases with increasing pH value. The 

cathodically increasing EOF of IL-coated capillary (ILCC) under alkaline conditions 

suggests incomplete coverage of IL-coating on the capillary surface; more uncovered 

silanols (Fig. 4-3) will deprotonate at higher pH thus the surface negative charge density 

increases. The coating procedure parameters also affect EOF; our experiments on 
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reaction time of the 1-methylimidazole alkylation indicated that the reversed EOF 

reached maximum after 8-hour reaction under 80°C (Fig. 4-2), which suggested the 

maximal coverage of the dialkylimidazolium on the capillary surface.  
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Fig. 4-2 Influence of alkylation time and buffer pH on the EOF of CT110 

Legend: ( ) bare silica capillary; ( ) 2 hours; ( ) 4 hours; ( ) 6 hours; ( ) 8 hours. 

 

 



                                                                                                                                 Chapter 4 

 104

Si

Si

O

O
Si

Cl

Si

Si

O

O
Si

Cl

Si

+ NN

A

B

C

A

B C

= coated IL cation

= uncovered silanol =coated CPTCS

OH

Cl

 
 
Fig. 4-3 Schematic representation of the CT210 Surface 
 

4.4 Application 1: Separation of sildenafil and its 

metabolite  

Sildenafil citrate (Viagra), used for the treatment of erectile dysfunction, has become 

one of the most popular and widely used drugs. Sildenafil (SL), 1-[4-ethoxy-3-(6,7-

dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo-[4,3-d]pyrimidin-5-

yl)phenylsulphonyl]-4-methylpiperazine, is a potent inhibitor of the cyclic guanosine 

monophosphate (cGMP)-specific phosphodiesterase type 5 enzyme (PDE5) found 

predominantly in the penile corpus cavernosum [4]. After oral administration, it is 

absorbed and metabolized to UK-103,320 (UK), 1-[4-ethoxy-3-(6,7-dihydro-1-methyl-

7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)phenyl-sulphonylpiperazine, which 
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exhibits approximately 50% of the potency of the parent drug and contributes to the 

observed pharmacological effects [5]. Because of its increasing usage and potential 

side-effects [6,7], detection of both sildenafil and its metabolite in biological sample is 

becoming important.  

 

There is only one methyl difference between the two compounds (Fig. 4-4A, B) and both 

have basic functional groups with a pKa value of ca. 8.7 [8]; hence their intrinsic 

mobilities will very close to each other under a wide pH range. Our experiments 

demonstrated that the electrophoretic mobilities of SL and UK in 10 mM ammonium 

acetate at pH 4.5 ranged from1.7 to 1.9 × 10-4 cm2V-1s-1 and they could be only partially 

separated under capillary zone electrophoresis (CZE) mode in a 70 cm bared-silica 

capillary. High performance liquid chromatography (HPLC) was employed to 

determine the two drugs in human blood and urine, etc [9-11]. They were also separated 

by gas chromatography (GC) [12]. Nevado and co-workers [10] determined SL and UK 

in human serum by micellar electrokinetic capillary chromatography (MEKC).  

 



                                                                                                                                 Chapter 4 

 106

 
 

Fig. 4-4 Structure and mass spectra of SL and UK 

C and D are mass spectra of UK and SL, respectively. The MS conditions: syringe infusion flow rate at 
10 µl/min; capillary temperature at 270°C/; concentrations of SL and UK are 100ng/ml each.  

 

A theoretical equation derived from eq (1-23) of Chapter 1 for resolution of two zones 

in CZE considering the effect of electroosmotic flow (EOF) can be expressed as [13]: 

 
R  = 

)(24
1

eofDL
lV

µµ
µ

+
∆       

 
(4-1) 

 

Where, R is the resolution of the neighboring peaks; µ∆ the difference between 

electrophoretic mobilities of the analytes; V the separating voltage; l the migration 

length of the analytes, L the total length of the capillary, D the diffusion coefficient of 
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the analytes in the buffer; µ the average electrophoretic mobility of the analytes; 

eofµ the EOF. 

 

Eq  (4-1) suggests that EOF affects the separation of analytes: when EOF migrates in 

the same direction with targets, the resolution will decrease. When they migrate at 

opposite directions, there is a chance that the resolution between analytes can be 

improved. The enhancement of the resolution depends upon the difference between 

EOF and the electrophoretic mobility of the analyte; the highest resolution could be 

reached when eofµ =-µ , however the analysis time will be infinite. The EOF of the 

silica capillary can be reversed by dynamic or static coatings [2,14,15], in which 

cationic ions adsorb or covalently bond to the internal capillary surface.  

 

At pH lower than 7, the drugs are positively charged and the interactions between the 

drugs and the cationic coating will be predominantly electrostatic repulsion, so the 

analytes may be separated under CZE mode rather than CEC. Since there is no 

involatile surfactant added in the buffer which is needed in dynamic coating, the 

analytes can be detected by mass spectrometer. MS has been coupled to various 

separation techniques including HPLC, GC and CE in gathering structural information 

of separated compounds. Targets in complicated matrices can be identified by 

techniques such as MSn scan or consecutive reaction monitoring (CRM) modes. In this 

section, a method was developed for determining SL and UK in human serum by solid-

phase extraction followed by CZE-MS/MS conducted in an ionic liquid coated 

capillary.  
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4.4.1 Experimental 

4.4.1.1 Serum sample and Solid-phase extraction procedure 

Fresh serum obtained from volunteers was stored at –15°C and defrosted before use 

every time. Solid phase extraction (SPE) of SL and UK was performed on a 500mg 

Varian (Harbor City, CA, USA) octadecylsilane (C18) bonded silica cartridge. The 

cartridge was first rinsed with 3 ml methanol, then with 3 ml of 20 mM NH4HCO3 

solution. Care was taken not to dry the column prior to sample loading. Three milliliters 

of human serum spiked with desired concentration of drugs was loaded and slowly 

passed through the cartridge. The cartridge was then washed with 3 ml of the aforesaid 

NH4HCO3 solution, and dried with nitrogen for 10 minutes. The analytes were eluted 

from the cartridge with 3 ml ethyl acetate. The eluent was evaporated to dryness under 

40°C by a stream of nitrogen gas. The residue was dissolved in 500 µl water-methanol 

(70:30, v/v) for analysis.  

 

4.4.1.2 Drug recovery in CE 

The method measuring protein recovery described by Regnier and Towns [16] was 

modified to determine recoveries of SL and UK. A bare or IL-coated capillary of 80 cm 

length was burned at 40 and 70 cm from the inlet to make detecting windows. CZE was 

conducted in 10mM acetic acid-ammonia buffer (pH 4.5) under 313 V/cm electric field. 

Only one UV detector (set to 230 nm) was used and the recovery of drug of interest was 

determined by areas in two consecutive runs, in which all the other experimental 

conditions were same except that the UV detector was put on different detecting 

windows. The capillary was rinsed progressively after each run to remove the adsorbed 

analytes (if any). For the bare capillary: 2 minutes with deionized water, 10 minutes 
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with 50 mM acetic acid-ammonia buffer at pH 9.5, 2 minutes with deionized water, 2 

minutes with running buffer; for IL-coated capillary: 10 minutes with 50 mM acetic 

acid-ammonia buffer at pH 4.5, 2 minutes with deionized water, 2 minutes with running 

buffer. A lab-made cartridge was used to hold tightly the un-used detecting windows to 

avoid breakage. 

 

4.4.1.3 CZE-MS/MS analysis 

The CE separation voltage was set to -25 kV; a capillary of 70 cm × 75 µm I.D. was 

used for separation. The auxliary gas pressure was set to zero; sheath gas (N2) pressure 

was at 20 arbitrary units and a mixture of methanol-water (70:30, v/v) containing 0.5% 

acetic acid at a flow rate of 2 µl/min was used as sheath liquid. The ion spray voltage 

was 3.8 kV; the temperature of the heated capillary was set to 230°C. The instrument 

was controlled by the Xcalibur 1.0 software (Finnigan). To optimize MS conditions for 

CZE analysis, the buffer solution of the analytes was injected into the mass 

spectrometer through the capillary by a positive pressure of 35 mbar, under which the 

migration velocity of the analyte was approximately same as that in the CZE procedure. 

The initial ionization evaluation of the analytes using both positive and negative ESI 

source indicated that the positive mode provided greater signal to noise ratios. The ESI 

conditions were optimized by auto tuning to the best signal of quasi-molecular ion of 

sildenafil ([M+H]+ at m/z = 475.3). MS/MS was performed during the detection and the 

full spectra were used for identification and confirmation. Two unique fragments, at 

m/z=282.3 and 311.2, were found to have the highest abundance in MS/MS spectra of 

both SL and UK and they were summed for quantitation.  
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4.4.2 Results and discussion 

4.4.2.1 Adsorption of the analytes onto the internal wall of the capillary 

Adsorption of the drugs onto both the bare and coated capillaries were tested by first 

filling the capillary with drug standard solution and then rinsing it with run buffer at 

positive pressure of 100 mbar (corresponding to ca. 120 nl in volume). It was observed 

that SL and UK were prone to adsorb onto the bare capillary surface over pH range of 

3.5 to7: the drug residues could be found from the mass spectrum even after 10-minute 

flush. For the IL-coated capillary, electrostatic repulsion between the coating and 

analytes results in no detectable analyte residue found after a 5-minute rinse with run 

buffer. To assess the adsorption quantitatively, their recoveries after passing through a 

30-cm capillary were determined by three consecutive runs. For the bare capillary: SL, 

79.2% ± 2.4%; UK, 77.9 ± 3.7%. For the IL-coated capillary: SL, 98.2% ± 1.9%; UK, 

100.0 ± 2.7%. 

 

4.4.2.2 Influence of pH  

Buffer pH influences both mobilities of the analytes and the EOF of IL-coated capillary. 

In this study, the EOF migrated at higher velocity but in opposite direction to 

electrophoretic mobilities of the drugs, and the drugs were drawn to the detector by the 

EOF. Change of pH would affect the resolution between the analytes according to eq 

(4-1), and would substantially influence the analysis time. Fig. 4-5 shows that both 

migration time and resolution increase with pH. The analytes can be baseline separated 

in the pH range investigated. However, at pH higher than 6, the repeatability of 

migration time was not good, which might due to the low buffer capacity of acetate 
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(pKa of acetic acid is ca. 4.75). Additionally, analysis time increased significantly at 

higher pH; at pH 7, the migration time of UK was even longer than 30 minutes. 

Considering the above factors, a pH value of 4.5 was chosen.  
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Fig. 4-5 Influence of pH on the CZE performance 

The capillary: 75 µm I.D. × 70 cm. Applied voltage: -25 kV. The running buffer: 10 mM 
acetic acid adjusted to desired pH by 1 M ammonia. Other conditions are described in 
text. 

 

4.4.2.3 Influence of injection time 

The sample amount introduced into the capillary is proportional to the injection time in 

hydrodynamic injection; hence the detection limit decreases due to the stacking effect. 

However, both the separation efficiency and resolution decreased due to lengthened 

sample plug. Injection time of 12 seconds at 130 mbar (ca. 160 nl in volume) was 

optimal; when the injection time was longer than 15 sec, there showed obvious peak 

broadening (Fig. 4-6).  
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Fig. 4-6 Influence of injection time 

The spiked concentrations before SPE are 100 ng/ml each. Injection time: 20 s at 130 mbar.  Detected by 
TIC, the detecting m/z range is 50-500. Peaks: 1, SL; 2, UK. CE conditions as in Fig. 4-5. 
 

4.4.2.4 Influence of separating voltage 

The separating voltage is an important parameter to be considered in a CE system. The 

effect of separation voltages ranging from -10 to -30 kV was investigated. Although the 

two peaks could be separated at -10 kV, the analysis time was longer than 25 minutes. 

The analysis time decreased with increasing applied voltage, while the resolution of the 

analytes reached maximal at -20 kV and began to decrease from -25 kV. The separation 

voltage was set to -25 kV producing good resolution and short analysis time. 

 

4.4.2.5 Validity of the method 

Fig. 4-7 shows the representative electropherogram of SL and UK in human serum 

separated using the optimal parameters obtained and detected under both MS/MS and 

total ion chromatogram (TIC) modes. It can be seen that the signal/noise ratio in 

MS/MS is much higher than that under TIC mode due to the enhanced specificity by 



                                                                                                                                 Chapter 4 

 113

monitoring the mother-daughter fragments reaction. The recovery of the SPE procedure 

and the run-run precision of CE analysis were studied and recorded in Table 4-2. It 

should be stated that all the concentrations in this section correspond to the spiked 

concentrations in human serum before SPE procedure. The linear dynamic range (LDR) 

of detection was determined by analysis of drug-spiked serum. The LDR of the 

calibration curves were 40-400 ng/ml for SL and 50-600 ng/ml for UK. Five 

concentration levels, namely 50, 100, 150, 200 and 300 ng/ml were used for linearity 

study. The calibration curve of peak area (after correcting against migration time) y vs. 

concentration x (ng/ml) for each drug was constructed and their regression equations 

and correlation coefficients r were calculated: SL, y =335.9x – 154.7 (r = 0.9994); UK, 

y = 318.3x – 190.0 (r = 0.9991). In order to assess the reproducibility of the calibration 

curve, a three-day validation was carried out. In each day, all the five levels of standard 

solutions were measured three times. Each drug was evaluated with all the nine curves. 

The correlation coefficients for the linear best fit were better than 0.99, and the relative 

standard deviations (RSD) for the slopes were no more than 4.21%. The RSD of the 

migration times of the drugs within the three days were no more than 1.1%. 
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Fig. 4-7 Electropherogram of SL and UK in human serum 

The spiked concentrations before SPE are 100 ng/ml each.  A: detected by MS/MS, MS/MS 
conditions were described in the text; B: detected by TIC, the detecting m/z range is 50-500. 
Peaks: 1, SL; 2, UK. CE conditions as in Fig. 4-5.  

 

Table 4-2 Recovery, repeatability and LOD of the SPE-CZE-MS/MS method  

%Recovery ± %RSD  (n=5)  

30 ng/ml 100ng/ml 300ng/ml 

RSD of tm, %  

(n=5) 

RSD of Ap, % 

(n=5)a) 

LOD 

(ng/ml)  

SL 97.6 ± 7.1 100.5 ± 4.9 98.0 ± 4.2 0.69 2.5 14 

UK 102.3 ± 6.7 98.3 ± 5.1 98.3 ± 4.6 0.76 3.4 17 

a) The spiking concentration was 100 ng/ml  
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4.5 Application 2: Separation of DNA in ILCC 

4.5.1 Introduction 

CE is increasingly used in the separation of DNA; in fact, it has been an attractive 

alternative to the conventional slab gel method. However, coating of the internal silica 

surface, either by covalent bonding or self-adsorption of the sieving polymer, is usually 

needed to suppress EOF and DNA-wall interaction [17] so that both recovery of the 

fragments and reproducibility of their migration times can be improved. Polymers such 

as linear polyacrylamide (PA) and its derivatives [18-20], polyvinylpyrrolidone [21], 

cellulose and its derivatives [22-24]  and poly(ethylene oxide) (PEO)[25-27] have been 

used as sieving matrices, and some of them were also employed as self-coating 

reagents. Self-coating is compelling because of its simplicity. But for capillaries coated 

by static adsorption, performance deteriorates with multiple runs and rinsing with the 

coating polymer between runs is usually required. The covalent coating exhibits longer 

lifetime than the dynamic coating and needs less maintenance [28]. Since Hjerten 

proposed silanization of the capillary surface [1], a number of new materials or methods 

have been reported for the covalent bonding [29-45]. 

 

PEO and HEC, the weak self-coating polymers, are often-used sieving matrices for 

DNA separation and are efficient for large-size fragments. However, the large DNA 

fragments migrate at very low speed due to the sieving effect of the matrix and their 

migration times are usually very long in the presence of the large opposite residual 

EOF; sometimes, the fragments do not even reach the detector. In order to improve the 

separation speed, the silica surface is usually covalently coated to reduce the EOF. But 

as we observed in our experiment and as reported by other authors, there is still residual 
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EOF after the coating procedure. Another approach for fast analysis is separating DNA 

fragments in the presence of EOF [23,46,47] in which the analytes were drawn to the 

detector by the high-velocity EOF. Detection of the large-fragment DNA will not be a 

problem because they are drawn out first, but the migration times for the small 

fragments will be long. Due to the low concentration of sieving matrix used to obtain 

high residual EOF, the separation was only fast and better for large DNA fragments 

under normal polarity mode [46].  

 

For the capillary coated with charged materials, the coating may act as both stationary 

phase and ion exchanger. The (small) oppositely charged species are separated under a 

different mode from conventional CZE and it was termed as ion-exchange open tubular 

capillary electrochromatography (IE-OTCEC). The technique was studied theoretically 

and experimentally in the past couple of years [48]. Generally, cationic coating is not 

chosen for DNA separation because the negatively charged DNA fragments will 

strongly interact with or even adsorb onto the wall. But adsorption of macromolecule 

onto the oppositely charged wall does not occur in all circumstances. It was reported 

that proteins, which are more prone to suffer adsorption during electrophoresis, would 

not be adsorbed onto a surface when the association constant of the protein-surface 

interaction was smaller than 103 dm3mol-1 [49]. If the silica surface is covered with 

cationic coating, the EOF will be reversed so that it moves codirectionally with the 

DNA fragments and there exists a chance that the analysis times of the fragments are 

shortened provided that the electrostatic interaction between DNA fragments and the 

cationic coating is efficiently controlled. We think such coating may be an alternative 

approach for fast separation of these multivalent macromolecules. 
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In the work of Valkenberg et al [50], one IL was coated onto the silica powder surface 

for catalysis study. Although IL-cation also contains an imidazole ring, it remains 

cationic in alkaline buffer for DNA separation; moreover it is transparent at the DNA 

detection wavelength. Studies were carried out in this work on preparation of ILCC 

(CT223) and assessment of its properties relating to DNA separation.  

 

4.5.2 Results and discussion 

4.5.2.1 Electrophoresis of DNA fragments in free TBE buffer 

4.5.2.1.1 dsDNA 

When the ΦX174 DNA-Hae III digest was electrophoresed in free TBE buffer (without 

sieving polymer), the mixture comigrated in both ILCC and PACC, and the peak 

heights increased with buffer concentration. All peaks in Fig. 4-8 show peak tailing, 

extenuating with increasing buffer concentration, due to DNA-wall interaction. The 

electrophoretic behavior of DNA fragments varied dramatically in different coatings. In 

ILCC, the migration time of the DNA fragments was longer, and it decreased with 

increasing buffer concentration, from 33.3 min in 1× TBE to 18.3 min in 3× TBE. 

While in PACC DNA migration was in the range of 8-10 min and slightly increased 

with buffer concentration. Moreover, the peaks in ILCC were more asymmetric due to 

the electrostatic interaction between DNA and the positive IL-coating. The above 

experiments suggest that DNA interacts with both IL- and PA-coated capillaries, while 

the electrostatic DNA-IL interaction is stronger and is the predominant factor 

determining the migration time of the fragments in ILCC. The cations in TBE buffer 

compete with the coating for the negatively charged DNA, so the higher the 
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concentration, the weaker the adsorption of DNA onto the IL-coating and hence the 

shorter the migration time. The behavior of DNA fragments in the ILCC is similar to 

that described in capillary electrochromatography (CEC) [51]. The interaction between 

DNA and the residual siloxane or the coated PA in the PACC may be attributed to 

hydrogen bonding or hydrophobic adsorption, which is weaker compared with that in 

the ILCC. Although increasing concentration of the buffer can help to elute it from the 

surface (which can be confirmed from the increasing peak height), the increasing ionic 

strength leads to the reduced the double layer thickness and increased buffer viscosity 

which will cause decreased migration rates of the fragments in the buffer. So the 

behavior of DNA fragments in PACC is more CZE-characterized in free solution. 
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Fig. 4-8 Electropherograms of DNA in ILCC (CT223) and PACC 

A: PACC; B:ILCC. Running buffer: TBE with concentrations stated in the figure. Length of ILCC and 
PACC: 50/38.5 cm (total/effect length). Concentration of the DNA: ΦX174 DNA-Hae III digest diluted 
to 40.4 µg/ml.  Sample injection: 3 kV × 3 s. The Applied voltage:  -15 kV. UV detection was set at 
266 nm.  
 

 

4.5.2.1.2 ssDNA  

CE results were also obtained with ssDNA (Fig. 4-9). It was observed that the mobility of 

the 39-mer ssDNA was not always higher than that of the 7-mer in the PACC; in buffer 
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concentration higher than 0.5× TBE, the 7-mer was higher. But may be due to the 

influence from the cationic coating, the mobility of the 39-mer DNA was higher in the 

ILCC over the investigated buffer range. 
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Fig. 4-9 Mobility differences of ssDNA in ILCC (CT223) and PACC 

The electric field strength was 200 V/cm. : 39-mer in ILCC; ∆: 7-mer in ILCC; : 39-mer 
in PACC; ◇: 7-mer in PACC. Other conditions were same as in Fig. 4-8 

 

4.5.2.2 Electrophoresis of DNA fragments in the presence of sieving 

matrix 

4.5.2.2.1 Dependence of EOF on sieving matrix 

Both HEC and PVP added into buffer suppress EOF by adsorbing onto the silica surface 

and by increasing the buffer viscosity as well. However, PVP was found to be more 
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efficient in suppressing EOF. The residual EOFs in the above two capillaries were 

negligible in the presence of 1% PVP. While in buffer consisting of 1 ×TBE and 1% 

HEC, anodic and cathodic EOFs were observed in ILCC and PACC respectively. PVP 

is more efficient in suppressing EOF than HEC because it is more hydrophobic [52,53]. 

It was reported that even in a bare silica capillary, the interaction between the 

hydrophobic PVP and the hydrophobic siloxane on the silica surface favors its 

adsorption [54]; also, as pointed out by Chiari et al [55], hydrogen bonding between the 

surface silanol and PVP plays a role in the adsorption and stability of the coating. 

 

4.5.2.2.2 Dependence of DNA-IL interaction on fragment size 

HEC is not a strong self-coating polymer and it was employed to obtain high residual 

EOF rate for DNA separation [23]. In our experiments, the anodic EOF of ILCC in the 

presence of 1% HEC suggests that the coated IL-cations are not completely shielded by 

the polymer. Although there exists interactions between DNA and the PA coating, the 

free mobility of DNA fragment is virtually unchanged [19]. So it may be possible to 

investigate DNA-IL interaction by plotting the mobility difference of the fragment 

between the PACC and IL coated capillaries vs. the fragment size. (Fig. 4-10) shows that 

the mobility of a given DNA fragment in ILCC is lower than that in PACC. The 

mobility difference, within experimental error, is obviously size-dependent; it increases 

with fragment size and becomes constant at a certain number of base pairs (near 900 

bp). Since the electrophoretic conditions were identical for the two capillaries, the low 

mobilities of the DNA fragments in ILCC may be the direct consequence of the 

electrostatic DNA-IL interaction, which increases with charge density of DNA 

fragments. The above experiments suggest that the charge density of DNA fragments 

increase with fragment size till 900 bp; the result is similar to a previous report stating 
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that the charge density of DNA fragment increases with size and become constant from 

400 onwards [19]. But such interaction does not lead to resolution of the corresponding 

fragments in buffer free of sieving polymer, their peaks merged as shown in Fig. 4-8B.  

 

Fig. 4-10 also illustrates that the mobility difference decreases with increasing 

concentration of sieving matrix, which suggests that the capillary wall was further 

covered by the increasing amount of HEC added into the buffer; thus the interaction 

between DNA fragments and IL cations became weaker. Moreover, the collision 

frequency between DNA and the wall decreased in the presence of high concentration 

sieving polymer [56] 
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Fig. 4-10 Dependence of DNA-IL interaction on No. of base pairs 

Buffer: 2× TBE plus desired concentration of HEC as stated in the figure. Other conditions as 
in Fig. 4-8. 
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4.5.2.2.3 Influence of buffer concentration 

Buffer concentration is another important parameter in DNA separation. The 

electropherograms obtained in ILCC and PACC were similar (Fig. 4-11), and resolution 

of the peaks improved in both capillaries due to solvent-fragment interaction [57]. Peak 

heights enhanced from low to high buffer concentration in both capillaries mainly due 

to the increasing stacking factor during electrokinetic injection, but less due to the 

increasing elution ability of the high concentration buffer - in the buffer containing 

sieving polymer PVP, the adsorption of DNA fragments onto the internal capillary 

surface was significantly suppressed because it was effectively covered  
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Fig. 4-11 Influence of buffer concentration on DNA separation 

Buffer: desired concentration of TBE mixed with 2% PVP. Capillaries: A, PACC; B, ILCC. Other 
conditions as in Fig. 4-8.  

 

 

4.5.2.2.4 Influence of electric field strength 

Electric field strength affects the mobility of DNA migrating in a porous matrix [58] 

(both HEC and PVP were entangled at the concentrations in the experiment). Generally, 
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the separation is improved in lower field strength because of the longer interaction time 

of DNA with the sieving polymer. Fig. 4-12 shows that the influence of separation 

voltage on the migration of DNA fragments depends on polymer concentration and 

species. In 1% HEC sieving matrix, apparent mobilities of all the fragments in ILCC 

and PACC were obviously changed (top right panel of Fig 4A) with applying voltage; 

the migrations of large fragments were more retarded under the low electric field 

strength and the resolution corresponding peaks was notably improved, from partially 

merging to baseline separation. But for the separation in 2% PVP matrix in ILCC, 

although migration times of the fragments changed with the electric field strength, the 

migration patterns of the DNA fragments under different separation field strengths were 

almost same and there was no significant improvement in peak resolution in lower 

electric field strength. The experiments in PACC showed similar results 

(electropherograms not shown).  
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Fig. 4-12 Influence of electric field strength 

Buffer: A, 2× TBE + 2% HEC; B, 2× TBE + 2% PVP. The experiments were conducted in ILCC. 
 

 

4.5.2.2.5 Influence of sieving polymers 
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Although resolution between fragments generally improves with the increasing matrix 

concentration, HEC and PVP showed different influences on DNA fragments. When the 

running buffer contained PVP, there showed little difference between PACC and ILCC 

in terms of analysis time and resolution of the fragments (Fig. 4-12A). The coating 

difference was almost eliminated by the strongly adsorbed PVP. In the presence of 2% 

HEC, DNA fragments migrated in similar patterns in the two capillaries (Fig. 4-11).  But 

the fragments of 72 and 118 bp, separated in PACC, comigrated in ILCC probably due 

to the influence from the IL coating. They were baseline resolved in 4% HEC 

(electropherogram not shown). From HEC concentration of 2% onward, the analysis 

times in the ILCC were shorter.  

 

4.5.2.3 Stability of the IL coating 

The stability of the IL- and PA-coating was investigated in a 4-day period with two runs 

a day. 2% HEC was chosen as sieving matrix because it could separate the DNA 

fragments (although partially, but enough for performance assessment) and did not 

completely cover the coating surface. Every day in the morning, the ΦX174 standard 

was electrophoresed in the fresh buffer; eight hours later, another run was carried out. 

The buffer was left in the capillary over night. The migration times of the fragments 

showed detectable trends in the two capillaries, which suggests the gradual hydrolysis 

of the Si-O-Si bond. But the change was very slow and the maximum relative errors in 

migration time were 4.78% for ILCC and 3.71% for PACC (Table 4-3). While plate 

number and resolution between peaks did not decrease significantly, suggesting that the 

deterioration of the capillary coating was not so serious. Considering the capillary 

effective length, the separation efficiencies were all more than 105 plates/meter. The 
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ILCC can be used with the separation buffer for at least 96 hours without substantial 

deterioration in performance. 

 

Table 4-3 Comparison of stability and reproducibility of ILCC with PACC 

 Migration time (min.) Plate number (× 104) Resolution 

No. of bp ILCC PACC ILCC PACC ILCC PACC 

 1st 96th 1st 96th 1st 96th 1st 96th 1st 96th 1st 96th 

72   22.89 23.69   11.4 19.7     

118 21.77 a) 22.81 23.96 24.71 33.0 38.8 12.4 11.4   3.9 3.8 

194 + 234 28.85 29.52 30.22 31.07 22.0 20.5 14.5 11.6 46.3 47.9 21.3 22.5 

271+281 29.81 30.50 31.23 31.91 8.6 7.9 9.4 10.2 3.1 2.7 2.8 2.8 

310 30.46 31.21 31.99 32.71 13.8 10.7 9.9 13.2 1.8 2.1 1.9 2.0 

603 36.65 37.71 38.84 39.80 6.7 7.0 7.0 6.9 13.8 13.6 13.7 13.4 

872 40.93 42.30 43.77 44.94 4.3 4.5 5.0 5.9 6.3 7.0 7.2 7.4 

1078 42.93 44.51 46.21 47.52 4.6 4.1 4.6 6.1 2.5 2.5 3.0 3.1 

1353 44.37 46.20 48.19 49.98 6.8 7.3 4.8 4.2 1.9 1.8 2.3 2.5 

a) in ILCC, the peaks of 72 bp and 118 bp merged 

 

4.6 Summary 

The EOF of capillary was reversed with covalently bonded IL-coating; the rate of the 

EOF was influenced by the buffer conditions and the coating parameters as well. The 

ILCC (CT223 as example) could be used for at least 96 hours with relatively stable EOF.  
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The resolution between SL and UK was enhanced in the ILCC due to the modified 

EOF. Additionally, the adsorption of the drugs onto the internal capillary surface which 

occurred in bare capillary was eliminated due to the electric repulsion between the 

positively charged analytes and the coating. The SPE-CZE-MS/MS method developed 

in this study is of good recovery, high sensitivity and selectivity; it can detect SL and 

UK in human serum at concentrations as low as 14 and 17 ng/ml, respectively.  

 

When it was employed in separation of DNA fragments, ILCC showed strong 

interactions with DNA fragments in buffers of low ionic strength because of their 

opposite charges. The interaction between DNA and the IL-coating in buffer containing 

sieving matrix is determined by the electrostatic attraction that increases with fragment 

charge density; the DNA fragment with higher charge density is more retarded. With 

introduction of sieving polymer, DNA fragments can also be separated in ILCC in 

similar patterns as that of PACC.  In TBE buffers containing HEC higher than 2%, the 

analysis time is shorter in ILCC. Our experiments showed that the ILCC exhibits 

comparable long-term stability as the PACC in DNA separation. 

 

This chapter demonstrates applications of IL-coated capillary in separation of both 

cationic and anionic species. The results suggest that the ILCC can offer good 

performance.  
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CHAPTER   5 IONIC LIQUIDS AS 
BACKGROUND ELECTROLYTE 
AND COATING MATERIAL 

5.1 Introduction 

CZE is an increasingly used technique in the separation of ionic species because of its 

high resolution, short analysis time, little buffer consumption and simplicity in 

operation [1]. Separation of alkali and alkaline-earth metals, and ammonium ion by 

CZE has been actively studied due to the real-world requirements [2-9]. The chelating 

reagents such as lactic acid, melonic acid and tartaric acid can be added into the 

separation buffer to modify the mobilities of alkaline-earth metal ions, while inclusion 

complex reagents such as 18-crown-6 ether [5-8] and poly(ethylene glycol) [10] were 

used to separate the co-migrated ammonium and potassium ions, and to improve the 

resolution between some alkaline-earth metal ions. 

 

Optical detection is the most commonly used detection method in CE. Because most 

metal ions are UV and fluorescence inactive, the ions have to be detected by indirect 

mode in which imidazole, nicotinamide, pyridine, benzylamine and benzimidazole have 

been used as background visualization ions [11-13]. However, indirect detection usually 

results in lower sensitivity than the direct modes [14,15]. Furthermore, optical detection 

presents a disadvantage for CE because the optical path length (diameter of the 

capillary) is generally less than 100 µm in order to favor better dissipation of Joule heat 

during the separation process. Potential gradient detection (PGD), one of the 

electrochemical detection methods, is based on the changes of the electric field strength 

during electrophoresis. Because the electric field strength is inversely proportional to 
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the ionic mobility, a change in signal will be generated when the sample zone of 

different mobility than the buffer passes through the detecting electrodes. It is a 

universal detecting method for charge-carrying species. Like the optical method, the 

direct PGD method, in which the mobility of the analyte is higher than that of the 

background co-ion, offers higher detection sensitivity than the indirect mode. Although 

PGD is the most straightforward method and simple to be applied [14], it is not widely 

used possibly due to difficulties in achieving high sensitivity so far.  

 

As stated in eq (1-23) of Chapter 1, resolution (Rs) of CZE is the function of the column 

efficiency (N) and the relative mobility. It is obvious that besides the column efficiency, 

relative mobility is another factor which should be considered in optimizing resolution. 

The apparent mobility of a species is the sum of its intrinsic mobility and the EOF. 

Cations in bare silica capillary move codirectionally with EOF and hence their relative 

mobilities are low. There are several ways to control the relative mobility of the 

analytes. One is to alter, or better to reverse, the EOF of capillary so that apparent 

mobilities of the analytes can be lowered. Another approach is addition of organic 

solvents into the running buffer [16-19]. Besides changing the mobilities of the 

analytes, organic solvents added into the running buffer also suppress EOF, but they 

normally do not result in reversed EOF. As reported [18], the electrophoretic mobilities 

of the analytes decreased almost linearly as the percentage of the methanol in the 

background electrolyte increased, and hence the separation of metal ions having 

adjacent migration times was improved. However, there were also reports stating that 

addition of methanol changes the selectivity of separation by solvating cations through 

ion-solvent dipole interaction [3,4] and therefore crossover of the peaks might occur. 

Introduction of organic solvent into the buffer also brings a disadvantage, e.g., some of 
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the organic solvents in the buffer may evaporate gradually during storage and such 

evaporation may become faster during the electrophoresis process due to Joule heating 

generated, and consequently leads to poor reproducibility.  

 

Generally, EOF can be reversed by three approaches: a) adding cationic surfactant 

directly into the run buffer; b) making the surfactant adsorb onto the internal capillary 

surface by rinsing the capillary with cationic surfactant solution before run, while the 

running buffer containing no surfactant; c) covalently bonding the cationic surfactant 

onto the capillary surface [20]. However, problems were often encountered with the 

non-covalent coatings. In method a), the surfactant added is likely to form ion pairs with 

background electrolytes and sometimes may lead to precipitation [21]; while 

reconditioning steps of the polymeric coating are usually required between each run for 

method b) [22,23]. The covalent bond coating showed a strong beneficial influence on 

the CE performance. It is more efficient in suppressing EOF and can show great 

stability at high pH [24]. 

 

Our experiments in Chapter 2 showed that some 1,3-dialkylimidazolium cations could 

complex with α-CD and resulted in very low mobilities [25]. Thus it is possible to 

improve the detection sensitivity if such α-CD-complexed dialkylimidazolium is 

employed as background co-ion in PGD.  
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Fig. 5-1 Schematic diagrams illustrating the procedures of FASI 

 

Field-amplified sample injection (FASI) is an effective way for on-column 

preconcentration of charged species [26-29]. This technique requires analytes migrating 

oppositely with EOF. To perform FASI, the samples are prepared in a low-conductivity 

solution, sometimes in water. A field enhancement can be achieved at the injection 

point during electrokinetic injection. Because the analytes migrate oppositely with EOF, 

it is possible to push the injected water plug out of the capillary by EOF during 

injection. The technique employed in this research generally contains four steps as 

shown in Fig. 5-1. During Step 1, a plug of low-conductive solution is hydrodynamically 

injected into the capillary. During step 2, the inlet end of the capillary is transferred to 

the sample solution and a voltage is applied to inject metal ions to the capillary. The 

ions would experience a field-amplified enrichment and concentrate at the boundary of 
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plug and buffer. Meanwhile, the plug moves out of the capillary from the injection end 

under the effect of anionic EOF. During this period, the signal from the potential 

gradient detector will increase due to the increasing conductivity in the capillary. At the 

end of sample injection, the inlet is transferred to the run buffer (Step 3) and then a 

separation voltage is applied across the capillary (Step 4). Because the potential changes 

measured by the PGD detector reflects the process of water plug removal, the procedure 

can be conveniently and precisely monitored. Also because no polarity switching is 

needed between injection and separation, high reproducibility may be obtained [27]. 

 

There are usually a number of factors affecting the experiment results. Experiments are 

often carried out firstly to determine the relationship between performance (response) 

and some set of factors (variables) of interest, usually by constructing a curve that 

describes the response over an appropriate range of these variables. These curves may 

be referred to as response surfaces which can in turn be useful in characterizing the 

response for optimization purposes. The face-centered composite design is one of the 

often-used methods in optimizing experimental conditions. There are three trials for 

each variable, two for extreme level settings and one at the midpoint of the study range. 

It provides information on both direct effects and curvilinear variable effects. For the 

three-dimension (three variables), only 15 runs are needed for optimization. 

 

In this study, the separation behavior of alkali and alkaline-earth metal, ammonium and 

heavy metal cations by CZE was investigated.  Four IL cations, 1-hexyl-3-

methylimidazolium (HMIM), 1-decyl-3-methylimidazolium (DMIM), 1-butyl-3-

methylimidazolium (BMIM) and 1-(4-hydroxy-butyl)-3-methylimidazolium  (HBMIM) 

were compared as background co-ion; and lactic acid 18-crown-6 ether were used as 
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chelating reagent and inclusive complex reagent respectively for the analytes in an 

ILCC. With addition of α-CD into run buffer, the mobility of the background electrolyte 

decreases and is lower than the analytes. So, the direct PGD method was employed in 

this experiment.  Under optimized conditions, baseline separation of the 11 analytes 

(Li+, Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, NH4
+, Ni2+, Pb2+) were accomplished within 

14 minutes with detection limits as low as sub-ppb level using the FASI technique. 

 

5.2 Experimental 

5.2.1 Synthesis of ionic liquids and coating  

Four ILs, namely, 1-decyl-3-methylimidazolium chloride (DMIMCl), 1-hexyl-3-

methylimidazolium bromide (HMIMBr), 1-butyl-3-methylimidazolium chloride 

(BMIMCl), 1-(4-hydroxy-butyl)-3-methylimidazolium bromide (HBMIMBr), were 

synthesized and converted to the hydroxide forms by the methods described in Chapter 

2. The capillary was coated by CT122 (please refer to Section 4.2 of Chapter 4 for 

details).  

 

5.2.2 Sample injection 

For the hydrodynamic injection, the metal ions dissolved in run buffer were injected 

into the capillary by 50 mbar × 5 s. For ILCC coupled with PGD, FASI was employed. 

The targets were dissolved in 50-fold diluted run buffer. Ultrapure water or run buffer 

diluted to different ratios (1/50, 1/100, 1/200 or 1/300) was injected into the capillary by 

50 mbar for different durations (20, 50, 100, 150 or 200s) as the “water plug” that 

would be removed by EOF during FASI. The injection end was then dipped into the 
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sample vial and a voltage of 4 kV was applied to electrokinetically inject the sample 

into the capillary. The injection procedure was monitored by the PGD detector (CE-P1, 

CE Resources, Singapore, Republic of Singapore). The signal from the detector was 

collected by CSW software, the signal would increase with the pushing out of the plug 

of low conductivity and introduction of the sample. When the signal reached 90% of the 

maximum, the voltage was increased to 8 kV till all the analytes had been detected. For 

the same sample and procedure, the time passed before the baseline reached 90% of the 

maximum was recorded and the quantitative runs were time-controlled.  

 

5.3 Results and discussion 

5.3.1 Background co-ion  

Detection of analytes in PGD is based on the mobility difference between the analyte 

and the background co-ion; the larger the difference, the higher the signal. In order to 

obtain high sensitivity, the mobility of the selected IL-cation should be lowered. Our 

previous study [25] suggested that the mobilities of BMIM could be modified by 

complexation with α-CD, while the mobility of imidazole was not affected even in the 

presence of the high concentration complex reagent. In this work, ionic liquids 

composed of BMIM, HBMIM, HMIM and DMIM were tested for the feasibility as co-

ions. Their mobility variations with α-CD concentrations were measured and plotted in 

Fig. 5-2. It can be seen that the mobilities of BMIM, HMIM and DMIM decrease with 

increasing α-CD concentration; the mobility of BMIM keeps dropping in the whole 

range investigated, while the mobilities of HMIM and DMIM drop and level off at ca. 5 

and 7 mM, respectively. Using the method described in the literature [25] and 
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employing imidazole as internal standard, the complexation constants of BMIM, HMIM 

and DMIM with α-CD were calculated to be 23, 80 and 117 respectively. The larger 

complexation constant of the cation with longer alkyl chain may be attributed to the 

higher hydrophobicity corresponding to the alkyl chain. It is strange for the mobility of 

HBMIM to remain unchanged because the only difference between HBMIM and BMIM 

is the group connecting to the terminal carbon of butyl: it is hydrogen for BMIM and 

hydroxy for HBMIM. One possible reason could be that the hydroxy group decreases 

the hydrophobicity of HBMIM.  

 

BMIM, HMIM and DMIM were tested as background co-ions in separation and 

detection of the analytes; the buffers were added to desired concentrations of α-CD. Our 

experiments showed that amongst the three IL cations, BMIM offered the lowest 

sensitivity for the analytes; while DMIM showed interaction with some of the targets 

such as lithium, which resulted in low sensitivity and bad-shape peaks. HMIM could 

offer desirable detection limits of the analytes with acceptable peak shape. 
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Fig. 5-2 Effect of α-CD on mobilities of IL cations 
Buffer: 20 mM sodium dihydrogen phosphate adjusted to pH 7.0 by 4 N sodium hydroxide. 
Capillary: 40/50 cm of effective/total length. Applied voltage: 14 kV. Detection:  UV at 210 nm. 
Injection: 50 mbar × 5 s. 
 

 

5.3.2 Influence of IL coating  

Reversed EOF was observed because the internal capillary surface was covered with 

CT122. The reversed EOF enhanced resolutions of the cationic analytes, but it also 

lengthened analysis time.  

 

Fig. 5-3 shows that the shoulder-merging peaks of magnesium and lead in the bare silica 

capillary was baseline separated in the CT122 coated capillry. It was also determined that 

the separation efficiency, in terms of plate number, increased from 8.70 –37.3 × 104 

plates/m with bare capillary (excluding the peaks of magnesium and lead) to 12.7-47.3× 

104 plates/m with the IL-coated capillary, which might be due to the repulsive force 

between the cations and the positively charged capillary surface [20]. The increased 

efficiency observed with the IL coated column is significant because the analyte-wall 
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interaction which can seriously degrade separation efficiency in bare capillary is 

alleviated. The baseline, although still showed drifting, was more stable than that of 

uncoated capillary, favoring a low detection limit. 

 

 

 
 

Fig. 5-3 Comparison of bare and ILCC (CT122) 

Capillaries: A) Bare silica; B) IL-coated (CT122). Buffer: 7.5 mM lactic acid, 0.6 mM 18-crown-6, 12 mM 
α-CD, adjusted to pH 4.0 by 100 mM HMIM hydroxide. Peak (concentration in µg/ml): 1, Cs+ (2.5); 2, 
NH4

+ (0.1); 3, K+ (0.5); 4, Ca2+ (0.5); 5, Sr2+ (1); 6, Na+ (0.5); 7, Pb2+ (5); 8, Mg2+ (0.5); 9, Ba2+ (2.5); 10, 
Ni2+ (2.5); 11, Li+ (0.5). Others as Fig. 5-2. 
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5.3.3 Effect of buffer pH 

Lactic acid is a weak complex reagent to the divalent and some of the monovalent ions 

such as lithium with a pKa value of 3.86 [30], thus change of pH should influence the 

degree of complexation of the metal ions. Fig. 5-4 shows variation of mobilities of the 

analytes with buffer pH. As expected, magnesium, calcium, barium, lead and nickel 

ions move at lower speed with the increasing buffer pH owning to the ion-lactate 

complex formed. Increase in pH would change the migration orders of some analytes, 

for example, sodium, calcium and lead: at pH 3.3, calcium and lead comigrated 

followed by sodium; from 3.5 to 4.3, they migrated in the order of calcium, lead and 

sodium; as pH further increased, sodium migrated out between the other two cations; at 

pH 4.8, the order changes to be sodium and calcium (merged) followed by lead. The 

best resolution of the analytes could be obtained between pH 3.75-4.25. 
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Fig. 5-4 Influence of buffer pH on mobilities of ions 
Buffer: 7.5 mM lactic acid adjusted to desired pH by 100 mM HMIM hydroxide. Capillary: 40 
cm. Applied voltage: 8 kV. Injection: 50 mbar × 15 s. Detection: PGD 
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5.3.4 Effect of 18-crown-6 

18-Crown-6 binds metal ions through its inside oxygen atoms which carry unshared 

pairs of electrons and thus can form inclusive complexes with some ions (Fig. 5-5) [31]. 

The binding leads to a new and bulky cation and therefore the migration velocity of the 

bound species is lowered in the electric field. It has a cavity diameter of 0.27 nm [3] and 

its selectivity to the ions is dependent on the size-fit between the cavity and the targets. 

The diameters of the target ions studied generally have the following order: Ni2+ < Mg2+ 

< Li+ < Ca2+ < Na+ < Sr2+ < Pb2+ < K+ < Ba2+ < Cs+. It should be noticed that there is 

inconsistency in the reported diameters of K+ and Ba2+. In reference [3], K+ < Ba2+; 

while in reference [32], K+ > Ba2+. However their diameters are very close. Of the 

above ions, Sr2+, Pb2+, K+ and Ba2+ have ion diameters close to that of 18-crown-6. The 

diameter of barium is 0.268 [3], nearest to cavity size of the crown ether, thus it is 

expected to have highest complexation constant which can be confirmed from Fig. 5-6 in 

which mobility of barium reaches its minimum at 0.5 mM 18-crown-6 and keeps 

constant with further addition. The mobility of potassium decreases over the whole 18-

crown-6 concentration range studied; while the mobilities of lead and strontium 

decreased then leveled off at 1.0 and 1.5 mM, respectively.  
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Fig. 5-5 Complexing of 18-crown-6 with metal ions and ammonium 
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Fig. 5-6 Effect of 18-crown-6 on the mobilities of ions 

Buffer: 7.5 mM lactic acid added by desired concentration of 18-crown-6 and adjusted to pH 4.0 by 
100 mM HMIM hydroxide. Others as Fig. 5-4. 

 

5.3.5 Effect of α-CD 

The detection sensitivity for the analytes should be enhanced with addition of α-CD due 

to the increasing mobility difference between the background co-ion and the analytes. 

Fig. 5-7 illustrates the variation of peak height ratios (of analyte in the α-CD containing 

buffer over that in non-α-CD buffer) versus concentration of α-CD. The peak height 

ratios increase significantly with α-CD concentration till 12 mM; from concentration of 

15 mM, there was no notable amplification of the peak heights (not shown). 

Introduction of α-CD did not bring obvious influence on the mobilities or migration 

order of the metal ions. α-CD does not form complex with 18-crown-6 or metal ion 

[33]. We also found that peak symmetry deteriorated with increasing α-CD 

concentration due to the increasing mobility mismatch between analytes and co-ion, 
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however, all the peaks were baseline resolved in the ILCC. Also, the analysis time 

slightly increased from ca 12.8 minutes of unmodified buffer to ca 13.1 minutes in 

buffer containing 12 mM α-CD. It should be pointed out that the signal intensity (peak 

height) is not only governed by the mobility difference (between the analyte and the 

background coion), but also determined by the mobility of background counterion and 

the TR value. The theoretical study can be found elsewhere [34]. 
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Fig. 5-7 Influence of α-CD on detection sensitivity of ions 

Buffer: 7.5 mM lactic acid, 0.6 mM 18-crown-6, added by desired concentration of α-CD and 
adjusted to pH 4.0 by 100 mM HMIM hydroxide. Others as Fig. 5-4. 

 

5.3.6 Effect of FASI 

Compared with Fig. 5-3B, the resolution of the ions changed after FASI-CZE process 

(Fig. 5-8). Plug length plays an important role in FASI. Generally, the longer the plug the 

higher the stacking ratio. However, the longer plug leads to not only long stacking time 

but also decreased resolution of the peaks. With injection of 200 seconds of water, the 
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peaks of magnesium and lead partially merged. Although the diluted plug will favor 

stacking of the analytes, we did not observe more significant stacking with solution of 

concentration lower than 1/300 of the run buffer; moreover, the reproducibility of both 

stacking factors and migration times of the analytes were notably improved when the 

plug concentration was changed to 1/200 of run buffer. Further dilution of the sample 

resulted in higher stacking factors; e.g., cesium of 1/200 of the original concentration (5 

µg/ml) would produce 270-fold stacking (in terms of detection limit) after FASI. But it 

was at the price of poor reproducibility and narrow linear range. There are two factors 

restricting stacking in this experiment: a) low buffer concentration and, b) the existed 

conductivity of the plug hydrodynamically injected. High buffer concentration is not 

favorable in PGD method because it will cause high background noise and a plug of 

moderate conductivity could offer good reproducibility, which is also favorable in CE. 

In our work, the plug was formed by 50 mbar × 100 s injection of 1/200 buffer. 

 

 
 
Fig. 5-8 Electropherogram of ions under FASI mode 

FASI conditions: solution of 1/200 run buffer in concentration was hydrodynamically injected 
into capillary by 50 mbar × 100 s; the sample ions (diluted to 100-fold of Fig. 5-3) in 1/50 run 
buffer was injected into the capillary by 4 kV ×4.3 min.; the separation voltage was set to 8 kV. 
The buffer contains 7.23 mM lactic acid, 0.67 mM 18-crown-6, 12 mM α-CD adjusted to pH 
4.1. 
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5.3.7 Optimization of the experimental conditions 

In this experiment, the buffer pH, buffer concentration and concentration of 18-crown-6 

are the main factors influencing the resolution and analysis time. Although α-CD also 

has influence on resolution, it does not change the migration order of the analytes and 

both sensitivity and resolution vary monotonically with its concentration; so it was not 

considered in the model. A three-factor, three-level, face-centered central composite 

design [35] coupled with multicriteria approach was employed in optimizing the 

operational conditions for simultaneous separation of the targets.  

 

x1

x2

x3

x1+ax1-a

 
 
 
Fig. 5-9 Experimental domain of the face-centered composite design 
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Suppose there are three variables x1, x2 and x3, whose optimal values are in the ranges 

of (x1-a, x1+a), (x2-b, x2+b) and (x3-c, x3+c), respectively. The experimental design of 

the three variables is shown in Fig. 5-9. Three testing points are chosen for each variable, 

for example, x1-a, x, x1+a are selected for x1. Theoretically, only 15 experiments  in the 

central point (as dotted in Fig. 5-9) are needed to estimate the effects and the various 

factors on the select response.  

 

The value of y from experimental data for each peak were then fitted into a polynomial 

equation: 

 
322331132112
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The individual responses functions (RF) in present work were analysis time (t) and 

resolution (R, which was chosen as the smallest in a single run). We define for this 

experiment, the resolution and analysis time of same significance, and the combined 

responses functions (CRF) for a single run can be expressed as [36] 
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(5-2) 

 

Where, Rmax is the maximum value from the 15 minimum resolutions obtained in each 

run; and tmax is the maximum analysis time observed in the 15 runs. From the primary 

runs above, we can choose the testing points of the criteria corresponding to that in Fig. 

5-9 as: pH (x1): 3.5, 4.0, 4.5; concentration of 18-crown-6 (x2, mM): 0.4, 0.6, 0.8; 

concentration of lactic acid in the buffer (x3, mM): 7.0, 7.5, 8.0. The 15 sets of data 

were obtained from different criteria from the face-centered composite design as 

indicated in Fig. 5-9. The constants in eq (5-1), from a0 to a23 were obtained by resolving 

the multi-equations, and the maximum response surfaces (example as Fig. 5-10) were 
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located by differentiating the fitted second-degree polynomial with respect to each 

factor and equating derivatives to zero. The optimal values were: pH, 4.10; 

concentration of 18-crown-6: 0.67 mM; concentration of lactic acid: 7.23 mM. They 

have been used in experiment combined with FASI as shown in Fig. 5-8. The pherogram 

we obtained with the calculated optimal criteria was similar to the one we got by rule of 

thumb because the parameters are very close (the empirical values were: pH 4.0; 

concentration of 18-crown-6, 0.60 mM; concentration of lactic acid, 7.5 mM. Please 

refer to Fig. 5-3B which was obtained under the hydrodynamic injection mode.). But the 

face-centered composite design is more useful when there are multiple factors (e.g., 

analysis time, resolution, number of peaks, etc.) of different significance (in our 

experiment, we consider the two criteria of same significance) should be considered for 

performance. The design can provide different criteria within a unified mathematical 

framework. 
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Fig. 5-10 Three-dimensional plots of the response function against pH and concentration of 
18-crown-6 
The concentration of lactic acid was set to 7.5 mM 

 

5.3.8 Quantitations 

Experiments were carried out on the analytes for evaluating LOD (defined as S/N=3 

from peak height) and run-to-run repeatability. The day-to-day reproducibility of the 

migration time was assessed from a 10-day validation (five runs a day). The method 

showed good run-to-run repeatability and day-to-day reproducibility (Table 5-1). The 

calibration curve of peak area (mV·s) vs. concentration (ng/ml) for each analyte in the 

range of 10 to 80-fold LOD was constructed based on 5 concentrations, namely, 10, 20, 

40, 60 and 80-fold of the LOD. The correlation coefficients of the calibration curves 

were between 0.992-0.998. LODs of analytes under hydrodynamic injection were also 

measured for comparison. It can be found that stacking factors of ions are different: 

Lithium has lowest mobility among the ions studied, its detection limit in FASI 
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decreased by a factor of 56, while the fastest ion cesium decreased by a factor of 122. 

Moreover, comparison of PGD with indirect UV method in terms of detection limits 

shows that PGD is generally more sensitive. 

 

Table 5-1 Quantification factors of the CZE-PGD method  

 Slope ± SD Intercept ± SD RSD% of tm LOD (ng/ml) 

 (× 102) (× 102) Run-run 

(n=5) 

Day-day 

(n=10) 

FASI HD a Literature (UV) 

Cs+ 37.5 ± 1.1 1.6 ± 0.12 0.34 1.13 1.8 220  

NH4
+ 278 ± 17.5 14.4 ± 0.76 0.88 1.01 0.27 32 148 [37] 

K+ 129 ± 3.0 3.8 ± 0.47 0.61 0.98 0.64 90 100 [38], 150 [39] 

Ca2+ 128 ± 4.9 5.6 ± 0.05 0.58 1.18 1.2 86 92 [38] 

Sr2+ 58.4 ± 2.2 -2.5 ± 0.17 0.77 1.18 2.6 210 133 [38], 180 [39] 

Pb2+ 24.8 ± 1.4 0.06 ± 0.02 0.75 1.65 7.3 560 364 [38] 

Ba2+ 37.8 ± 3.9 -2.0 ± 0.51 0.53 1.16 5.9 400 300 [38], 150 [39] 

Na+ 224 ± 9.1 6.8 ± 0.40 0.37 0.77 0.82 60 114 [38], 140 [39] 

Mg2+ 216 ± 6.8 -4.4 ± 0.28 0.51 1.09 1.0 64 105 [38], 80 [39] 

Ni2+ 88 ± 5.6 -2.6 ± 0.17 0.90 1.34 3.5 190 261 [38] 

Li+ 754 ± 12.4 39.4 ± 1.52 0.49 0.90 0.45 25 100 [38] 

a Hydrodynamic injection 
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5.4 Summary 

The resolution of the metal ions was greatly improved in the ILCC in which the EOF 

was reversed. With the buffer employed, ammonium and metal ions can be baseline 

separated. The FASI-CZE-PGD method developed can separate and detect the 11 ions 

with lower LOD than the conventional indirect optical detection method and with 

acceptable reproducibility. 
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CHAPTER   6 IONIC LIQUIDS AS ADDITIVES 

6.1 Introduction 

Herbicides are widely used for controlling weeds or fungi in many agricultural and non-

agricultural areas. Because most of them are readily dissolved in water, they can easily 

enter into surface or ground waters through natural drainage or filtration [1]; and their 

relatively slow degradation rates exacerbate their influences on the environment [2]. 

With the rapid development of herbicides and their increasing usage, careful monitoring 

of residue levels needs to be performed on crops, soil and water, etc, and there have 

been increasing needs for rapid and reliable detection of these herbicides [3]. A variety 

of analytical methods have been used for analysis of the targets in water including gas 

chromatography/mass spectrometry (GC/MS), gas chromatography/electron capture 

detection (GC/ECD) and high performance liquid chromatography (HPLC). Among 

these approaches, GC method is reliable for the analysis of herbicides in water and was 

adopted by US Environmental Protection Agency (EPA, Method 515.1). The 

disadvantage of the GC method is that derivatization of the carboxylic acid herbicides is 

usually needed before separation because some of them are not volatile or stable under 

the operating temperature [4], thus it is time consuming. Moreover, the sophisticated 

equipment is required which makes it expensive to operate [5].  

 

The most commonly used mode for separation of herbicides in CE is known as micellar 

electrokinetic chromatography (MEKC) [6-11]. Because of the high concentration of 

the running buffer (including the surfactant) and the opposite migration directions 

between the micelle (also the acidic herbicides) and the EOF, the analysis time is 



                                                                                                                                 Chapter 6 

 159

usually in the range of 10-25 minutes. For the charged species such as acidic herbicides, 

CZE is usually employed. Under cathodic EOF, fast separation can be obtained in 

alkaline buffer [12,13]; or with longer analysis time in the acidic buffer while the 

resolution of the analytes could be further adjusted by operating at a pH value near to 

the pKa of the analytes [14]. Nowadays, quite a number of separations are conducted in 

capillaries with modified internal surfaces. With reversed EOF, keeping high EOF 

velocity is not a crucial requirement under the CZE mode; hence, there is wider range 

for varying buffer pH in order for the optimal resolution, and the analysis time for the 

acids may be shortened. In the work of Marriott and coworkers [15], EOF was reversed 

by adding 0.001% hexamethrine bromide into the run buffer. The analytes, five 

chlorophenoxy acids and three neutral chlorophenols were nearly baseline separated 

within 17 minutes; but the charged phenoxy acids migrate out in less than 9 minutes. 
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Table 6-1 List of the analytes 

No. Name Formula Structure pKa  

[16-18] 

1 2,4-dichlorobenzoic acid  

(2,4-DCBA) 

C7H4Cl2O2 
Cl

Cl

COOH

 

2.68 

2 3,5-dichlorobenzoic acid  

(3,5-DCBA) 

C7H4Cl2O2 COOH

ClCl  

3.54 

3 4-chlorophenoxyacetic acid   

(4-CPA) 

C8H7ClO3 

Cl

O

H2C COOH

 

3.56 

4 2,4-Dichlorophenoxyacetic acid   

(2,4-D) 

C8H6Cl2O3 

Cl

Cl

O

H2C COOH

 

2.87 

5 2,4,5-Trichlorophenoxyacetic acid   

(2,4,5-T) 

C8H5Cl3O3 

Cl

Cl

O

Cl

H2C COOH

 

2.83 

6 2-(2,4-dichlorophenoxy)propionic 
acid (Dichlorprop) 

C9H8Cl2O3 

Cl

Cl

O

COOHCH3 CH

 

3.0 

7 2-(2-Methyl-4-
chlorophenoxy)propanoic acid  
(Mecoprop) 

C10H10ClO3 

CH3

Cl

O

COOHCH3 CH

 

3.78 

 

The concentrations of the herbicides in environment are usually very low, and 

extraction procedure is needed in order for the quantitative detection. Among these 
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methods, solid-phase extraction (SPE) is a widely used approach in preconcentration. 

Compared with liquid-liquid extraction, it consumes less organic solvent and is easy to 

operate. Recently, it has been combined with HPLC and CE in herbicide determination 

[19-25]. However, several different SPE columns are needed to clean up the sample 

solutions for HPLC analysis because the matrices of the real sample water such as 

humic and fulvic acids could interfere with the target analytes, which makes the 

operation complicated. Furthermore, the HPLC method was reported to lack adequate 

resolution for the acidic herbicides [26]. Because the separation mechanism in CZE is 

based on mass/charge ratios of the species, the neutral and positively charged 

compounds in surface water will not interfere with the determination of the negatively 

charged herbicides. This advantage of CZE makes pretreatment of sample solutions by a 

single SPE column possible. Several workers have studied the use of CZE in separation 

of acidic herbicides in standard mixtures [27,28] and in spiked lake water samples [10].  

In this chapter, ILs were tested as additives in CE buffer and SPE-CZE method was 

developed for enrichment and separation of chlorophenoxy and chlorobenzoic acids 

(Table 6-1). The method was also applied to real sample analysis. 

 

6.2 Experimental 

6.2.1 Chemicals and stock solutions 

All the chlorophenoxy and benzoic acid standards studied in this experiment were 

products of Aldrich (Milwaukee, WI, USA). Individual solutions of 1 mg/ml each were 

prepared by dissolving individual standards in pure acetonitrile, which were further 

diluted with deionized water to desired concentrations for the working standards. The 
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solutions were stored at 5 °C and the working standards were re-prepared every 5 days 

to avoid the potential errors from decomposition of the targets. 

 

6.2.2 SPE procedure 

The following procedures were employed in the SPE experiment unless otherwise 

stated. 

 

Stock solution of the herbicides of 20 ppm each were prepared daily. For the ppb-level 

standard solutions, Milli-Q water and surface water were spiked to desired 

concentrations with the stock solutions. All solutions were added to sodium sulphate 

(2% w/w) and acidified to pH 2 by 4 M hydrochloric acid. Solid phase extraction was 

performed on a 500mg Varian (Harbor City, CA, USA) octadecylsilane (C18) bonded 

silica cartridge. The cartridge was first cleaned by passing through 5 ml methanol and 

consequently dried with ultrapure nitrogen for five minutes, then it was rinsed with 

another 3 ml methanol followed by 10 ml deionized water. After being preconditioned, 

the sorbent was not allowed to dry until the sample loading procedure was completed.  

 

Herbicide solution was loaded and passed through the SPE cartridge at a flow rate of 

10-20 ml/min under positive pressure. After the cartridge was dried with nitrogen for 

about 2 minutes, the adsorbates were eluted using 2 ml of organic solvent (ethyl acetate, 

methanol, or acetonitrile as stated). The effluent was then heated to 50 °C and 

evaporated to dryness using a gentle stream of nitrogen. In order to avoid unexpected 

particles blown into the solution, the nitrogen delivery cable was connected to a filter 
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(0.22 µm). The residue was dissolved in 0.1 ml mixture of water and acetonitrile (50:50, 

v/v) before the CZE analysis.  

 

6.3 CZE method development 

6.3.1 Influence of buffer concentration 

Phosphate, borate and their mixtures were reported as good background electrolytes for 

separation of herbicide acids which were analyzed under CZE [14,15,29] or MEKC [6-

11] mode. Our preliminary runs without adding IL showed that the targets were not 

baseline resolved in 20 mM phosphate-borate at pH 8.5 (Fig. 6-1). Although reducing 

EOF enhances the resolution of the analytes, it also leads to longer analysis time. 

Furthermore, the two isomers presented in the mixture, 2,4-DCBA and 3,5-DCBA, were 

only partially separated and addition of resolving reagents were required, which will 

further extend the analysis duration. The phosphate-acetate buffer was employed as 

running buffer and 1,3-dialkylimidazolium was employed as additive in this study. 

Broaden peaks were obtained in low concentration phosphate-acetate; moreover, it was 

observed that high buffer concentration accelerated the adsorption of imidazolium onto 

the silica wall, which changed the capillary EOF (Fig. 6-2). In our experiments, 40 mM 

phosphate adjusted to desired pH by acetic acid was employed. 
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Fig. 6-1 Electrophoresis of standard mixtures in buffer without IL 

The buffer: 20 mM sodium borate adjusted to pH 8.5 by 1 M sodium dihydrogen phosphate. The 
capillary: 50 µm I.D. and 360 µm O.D. with effective and total length of 45.7 and 56.4 cm, 
respectively. Applied voltage: 20 kV. UV detection wavelength: 230 nm. The analytes corresponding 
to individual peak numbers are described in Table 6-1; the concentrations (in µg/ml): 1, 10.0; 2, 3.0; 
3, 3.0; 4, 5.0; 5, 5.0; 6, 3.0; 7, 5.0 

 

6.3.2 Influence of pH 

The pH affects both EOF of the capillary and the electrophoretic mobility of the 

analytes. High pH leads to the high migration velocity of the acids due to the high 

anionic fraction of the analytes. However, it also causes increase of EOF towards the 

cathode due to the further deprotonation of the silanols on the silica surface. Migration 

time of the analyte in the capillary is determined by the combined effects of the above 

factors. Fig. 6-3 depicts the variation of migration times of the analytes and velocity of 

EOF with change of pH. The analysis time decreases from 18 minutes at pH 3 to 5.7 

minutes at pH 5, then increase to 14 minutes at pH 6. At lower pH, the reversed EOF 

rate is high, while the mobilities of the analytes are low due to the low mole fraction of 

the deprotonated portion of the herbicides. At higher pH, although analytes are fully 

deprotonated, their apparent mobilities are lower after compensating for the cathodic 

EOF, and hence the analysis time is prolonged. In fact when we tried to separate the 
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mixture at pH 7, the migration of the analytes in the capillary was so slow that we did 

not see the first peak after 25 minutes.  

 

N N+ N N+
-  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

N N+

ClCl

OO

N

N
+- +

Electrophoretic mobility µep

EOF µeo

capillary

 
 

Fig. 6-2 Representative scheme of the electrophoresis of the analytes under the influence of the IL 
additive 
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Fig. 6-3 Influence of pH 

The buffer: 40 mM disodium hydrogen phosphate adjusted to desired pH by 10% (v/v) acetic acid. 
The buffer contains 10% acetonitrile and 10 mM BMIMPF6. Applied voltage: -30 kV. Other 
conditions are same as Fig. 6-1. 

 

6.3.3 Influence of organic solvents 

Organic solvents added into the buffer will have influence on analysis time and 

sometimes even on resolution of the analytes. There is a decrease of EOF with addition 

of the organic solvent because it will lead to changes in viscosity [30], and dielectric 

constant of the buffer solution that will affect both EOF of the capillary and the 

electrophoretic mobility of the analytes [31]. It was also reported that the pKa value of 

the silanol group of the capillary surface is increased when an increasing amount of 

organic solvent is added [32], so the surface density of protonated silanol groups will be 

decreased and hence resulting in low EOF.  The introduction of organic solvent will 

also bring about changes in hydrophobicity of the buffer and pKa of the analytes [30], 
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and variations in mobilities of the analytes and their migration orders may occur. Fig. 6-4 

shows that with addition of acetonitrile, the analysis time increases; all the analytes can 

be baseline resolved in the concentration range between 5% and 15%. At a 

concentration of 20%, 3,5-DCBA and 4-CPA comigrated with 2,4-D, also peaks of 

Dichlorprop and 2,4,5-T merged.  

 

 
Fig. 6-4 Influence of acetonitrile concentration  

The buffer containing 40 mM disodium hydrogen phosphate and 10 mM BMIMPF6 was added to 
desired concentration (v/v) of acetonitrile, then was adjusted to pH 4.5 by acetic acid solution. 
Other conditions are same as Fig. 6-3. 

 

6.3.4 Influence of additive concentration  

As reported by other authors [33,34] and observed in our experiments, IL-cations in 

buffer adsorb onto the internal silica wall, causing changes in EOF. To the buffer 

containing 40 mM phosphate-acetate at pH 4.5, the EOF began to reverse with addition 
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of 5 mM BMIMPF6, and the intensity increased with further addition. The velocity of 

the reversed EOF was not very high, e.g., -4.4 × 10-5 cm2V-1s-1 with 20 mM BMIMPF6.  

Equilibrium of IL-cation adsorbed onto the silica wall is not instantaneous; the EOF rate 

was observed to increase slowly from run to run and reach a relatively stable value after 

a period of time (usually tens of minutes, depending on the concentration added). The 

EOF rates in Fig. 6-5 were measured after 20-minute electrophoresis using the fresh 

buffers, so they should be considered as relative intensities rather than the equilibrated 

EOFs.  
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Fig. 6-5 Influence of BMIMPF6 

The buffer containing 40 mM disodium hydrogen phosphate and 10% (v/v) acetonitrile was added 
to desired concentration of BMIMPF6, then was adjusted to pH 4.5 by acetic acid solution. The 
mobilities of the analytes in buffer containing 2 mM IL were measured by the method described in 
reference [35]. Other conditions are same as Fig. 6-3. 
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The IL-cation is also UV-active. Its maximal absorbance wavelength was measured to 

be ca. 210 nm; the absorbance at 230 nm (the detection wavelength in this experiment) 

from the spectrum was so low compared to the maximum that it could be ignored. The 

influence of the IL concentration on the detection of the analytes was evaluated by 

measuring the peak heights of the individual standards in different concentrations of IL, 

showing no detectable decreasing trend of the peak heights with increasing IL 

concentration in range of 5-20 mM.   

 

BMIM also exhibited selectivity to some analytes (3,5-DCBA and Mecoprop), which 

helped to resolve 3,5-DCBA from 2,4-DCBA: without BMIMPF6, the peaks of the two 

compounds showed splitting but were not baseline separated; after addition of IL, 

mobility of 3,5-DCBA was reduced and was resolved from 2,4-DCBA, but no further 

separation was observed beyond 5 mM BMIM introduced. There was a report [33] on 

the resolution of positional isomer of phenols by ILs, in which it was believed to be 

caused by the heteroconjugation between the IL-anion with the analytes.  

 

For the buffer containing 10 mM BMIMPF6 and 10% acetonitrile, the analytes could be 

separated within 7 minutes after adsorption of BMIM onto the silica surface reaching 

equilibrium. The detection limits (in µg/ml, defined as S/N=3) of the analytes were: 2,4-

DCBA, 0.99; 3,5-DCBA, 0.99; 4-CPA, 1.0; 2,4-D, 0.94; 2,4,5-T, 1.10; Dichlorprop, 

3.5; Mecoprop, 2.2. 
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Fig. 6-6 Influence of different ILs 

The buffer containing 40 mM disodium hydrogen phosphate and 10% (v/v) acetonitrile was 
added to 10 mM IL labeled in corresponding electropherogram, then was adjusted to pH 4.5 by 
acetic acid solution. Other conditions are same as Fig. 6-3. 
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6.3.5 Influence of the IL-cation and IL-anion 

Influence of different IL-cations on the migration of the analytes was investigated and 

the electropherograms are shown in Fig. 6-6B. It can be seen that the cations generally 

have similar effects on the analytes due to the interaction between IL-cation and the 

anions. 3,5-DCBA was baseline resolved from 2,4-DCBA by all IL-cations. However, 

the cations showed different influence on the migration of Dichlorprop. With 10 mM 

BMIM, all the seven acids were separated; while Dichlorprop completely merged with 

2,4,5-T in the presence of 10 mM EMIM; it was partially resolved in HMIM. It is 

interesting that with addition of 10 mM HBMIM the migration order of 2,4,5-T and 

Dichlorprop changed; the Dichlorprop migrated faster and baseline separated from 

2,4,5-T, but shoulder-merged with 2,4-D. There does not seem to be a correlation 

between the length of the alkyl group connected to the dialkylimidazolium and the 

intensity of the cation-analyte interaction; amongst the cations studied, BMIM exhibits 

the strongest interaction with 3,5-DCBA. Comparison of electropherograms of ILs with 

different anions (EMIMCl and BMIMCl to EMIMPF6 and BMIMPF6) suggests that the 

IL anions, at least chloride and hexafluorophosphate, do not play as important a role as 

cations in influencing the migrations of the analytes. 

 

6.4 SPE of the herbicides 

6.4.1 Eluent and its influence on analysis 

Methanol, acetonitrile and ethyl acetate are commonly used in SPE and they were tested 

for the feasibilities as eluents for the analytes and the results are tabulated in Table 6-2. 

The recoveries of herbicides were above 90% (n=5) for all the solvents when each 
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eluent was spiked with the herbicides to 0.2 ppm each.  However, precipitation was 

observed when mixture of water-acetonitrile (10:90, v/v) was added to herbicides of 20 

ppm each and it disappeared when water was added to the ratio of 40:60. Methanol 

showed slightly higher solubility for the acidic herbicides than ethyl acetate (on average 

ca. 2% in recovery); but it was also observed to be a good solvent for humic acid. 

Humic and fulvic acids are the main interfering matrix for determination of trace 

herbicides in real water samples. It was pointed out by other workers [36] and was also 

observed in our experiment that ethyl acetate, while used as eluent, was effective in 

reducing the concentration of humic acids in the effluent. Although it was reported that 

addition of methylene dichloride into ethyl acetate could enhance the recoveries of the 

polar extractants, there was, to our observation, little improvement of recoveries of the 

analytes in ethyl acetate after 10-30% (v/v) methylene dichloride was added. Pure ethyl 

acetate was used as eluent in our experiment because it could offer satisfactory 

recoveries without addition of methylene dichloride which might be potentially more 

harmful to human body.    

 

Table 6-2 Recoveries of herbicides with different eluents 

%Recovery ± %RSD  (n=5) a  

 
Methanol 

 
Acetonitrile 

 
Ethyl acetate 

EA + MD b 

2,4-DCBA 109.7 ± 2.7 93.2 ± 6.4 97.4 ± 4.0 98.7 ± 6.5 

3,5-DCBA 104.2 ± 4.9 96.1 ± 4.9 96.6 ± 6.9 96.1 ± 5.6 

4-CPA 96.8 ± 3.1 98.0 ± 4.5 102.1 ± 5.0 99.4 ± 7.3 

2,4-D 99.1 ± 7.4 91.2 ± 5.3 99.2 ± 4.6 99.6 ± 6.0 

2,4,5-T 100.0 ± 4.0 93.5 ± 4.7 95.3 ± 4.0 107.1 ± 3.4 

Dichlorprop 98.5 ± 4.8 97.4 ± 3.8 98.1 ± 3.9 101.0 ± 4.4 
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Mecoprop 99.9 ± 5.5 104.7 ± 6.8 97.0 ± 6.4 98.2 ± 4.2 

 
a eluent was spiked with herbicides to 0.2 ppm each 
b ethyl acetate containing 30% (v/v) methylene dichloride 
 

Since CZE employs a different separation mechanism from HPLC, GC, or MEKC, the 

concentration of humic acid may affect the detection of the phenoxy acids to different 

extents. We found that acidic herbicides spiked to 5 ppb each in real samples could be 

detected by CZE without elimination of humic acids during the extraction procedure. 

For real samples containing sub-ppb level of targets, ethyl acetate should be used 

because of the high matrix concentration.  

 

Highest recoveries of all the analytes could be obtained with elution volume larger than 

1.5 ml, thus 2 ml eluent was used in the experiments. 
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6.4.2 Salt-out effect and concentration of sodium sulphate 
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Fig. 6-7 Influence of concentration of sodium sulphate on the recovery of herbicides 

Conditions: 400 ml 0.5 ppb standard solution, pH 2. Eluent: ethyl acetate. The dried residue was 
dissolved in 0.1 ml water-methanol (50:50, v/v) mixture.  

 

The recoveries of the herbicides were not satisfactory even after the sample was 

acidified to pH 1 with 27.1% for 2,4-D, 55.3% for 2,4,5-T and 71.7% for 2,4-DB. Some 

inorganic salts such as potassium chloride or sodium chloride [37] were added to the 

sample solution to improve the retention of the polar analytes onto the solid phase so as 

to increase the recoveries of the herbicide.  In this work, sodium sulphate was added to 

the sample and influence of concentration on the recoveries of the three targets was 

studied. Sodium sulphate of concentration higher than 0.5% (w/w) could offer 

maximum recoveries (higher than 95%) for all the analytes. In view of the complexity 

of the real samples, solutions were added by sodium sulphate to 2% (w/w) before 

passing through the cartridge. 
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6.4.3 Influence of pH 

The pKa values of the analytes are in the range of 2.6-3.6 and acidic environment will 

theoretically favor their adsorption on the C18 sorbent. Although not as significant as 

that of salt addition, the pH value did have some effects on the adsorption of the acids 

(Fig. 6-8). However, we did not find the obvious elimination of the humic / fulvic acids 

under neutral conditions as observed by other authors [24]. The sample solution was 

acidified to pH 1.5 before extraction because further acidification may cause hydrolysis 

of the Si-O-C bond of the sorbent. 
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Fig. 6-8 Influence of pH on the recovery 
Experimental conditions: 400 ml 0.5 ppb standard solution; concentration of sodium 
sulphate was 2%. Other conditions are same as in Fig. 6-7. 
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6.5 Validation of SPE-CE method 

A three-day validation was carried out in which all the freshly prepared standard 

solutions were measured three times. Each herbicide was evaluated with all the nine 

curves. The correlation coefficients for the linear best fit were no less than 0.992, and 

the relative standard deviation (RSD) for the slope and the intercepts were no more than 

4.21% and 5.17%, respectively.  

 

Table 6-3 Validation of the SPE-CZE method  

%Recovery ± %RSD  (n=5)a  

0.5ppb 5ppb 10ppb 

RSD of Ap, % 

(n=5)c 

LOD (ppb)  

2,4-DCBA 96.7 ± 7.0 100.7 ± 5.3 98.0 ± 4.6 2.4 0.25 

3,5-DCBA 99.0 ± 4.8 98.2 ± 5.4 100.0 ± 3.3 1.7 0.25 

4-CPA 95.9 ± 6.5 97.9 ± 5.3 96.2 ± 5.1 2.0 0.25 

2,4-D 97.8 ± 5.9 101.4 ± 4.8 98.5 ± 3.6 1.9 0.23 

2,4,5-T 98.8 ± 6.9 95.6 ± 4.7 99.4 ± 6.0 1.9 0.27 

Dichlorprop 98.7 ± 5.4b 97.4  ± 2.8 97.5  ± 4.1 3.4 0.87 

Mecoprop 107.4 ± 3.6b 99.1  ± 2.7 96.9  ± 4.0 1.0 0.55 

a evaluated based on 400 ml deionized water spiked to concentrations stated below 
b the spiking concentration was 1.0 ppb 
c For the 5 ppb extracts 
 

400 ml herbicide solutions of different concentrations were employed to evaluate the 

recoveries in SPE procedure, RSD of migration time (tm) and peak area (Ap) in CZE. 

Table 6-3 shows that the SPE-CZE method is of good repeatability and high sensitivity; 

it can be used in analyzing herbicides of sub-ppb levels. The method may be used in 

detecting herbicides of lower concentration because the sample volume can be as high 
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as 1000 ml without significant decrease in % recoveries. It was also assessed for the 

feasibility of detecting herbicides in real water sample. Compared to the unspiked real 

sample water as control, the recoveries between 86.1% and 107.0% were obtained from 

400 ml samples spiked with 0.2-2.0 ppb herbicide each.  

 

6.6 Real Sample Analysis 

The SPE-CZE method was applied to the determination of the concentrations of acidic 

herbicides in local pond surface water (Normanton Park, Singapore). Although the 

baseline after EOF was not very stable due to the high concentration of the interfering 

matrix, the species present could still be qualitatively identified by migration times (also 

by spiking in our experiment) and quantitatively determined by peak areas (Fig. 6-9). 

Two herbicides were identified by spiking method. One was 2,4-D; its concentration 

was determined to be 0.46 ± 0.06 ppb (n=3). Another was found to be 2,4-DB by 

spiking with the standards available in out laboratory. The concentration of 2,4-DB, 

considering its recovery in our previous work in SPE procedure [38], was estimated to 

be 0.33 ± 0.08 ppb (n=3). The extract eluted by ethyl acetate was also analyzed by a 

Waters HPLC system (chromatogram in Fig. 6-10) whose working conditions were 

similar to those in a previous publication [39]. Before analysis, the system was 

calibrated with standard solutions, and the linearity for each herbicide was determined 

from the peak areas of different concentrations over the range of 0.4 to 6 ppm (equal to 

0.1 to 1.5 ppb in 400 ml water before the SPE procedure). The relative coefficient 

values were all better than 0.99. The concentrations of 2,4-DB and 2,4-D were found to 

be 0.52 ± 0.13 ppb (n=3) and 0.31 ± 0.05 ppb (n=3), respectively. It can be seen that the 

baseline of the HPLC chromatogram was worse than that in the CZE electropherogram; 
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the poor baseline might be attributed to the interference from humic/ fulvic acids. Both 

HPLC and CZE methods do not require derivatization of the acidic herbicides. 

However, compared with SPE-HPLC, the SPE-CZE method here may be a better 

alternative/complement to Method 515.1 since interferences can be more easily 

alleviated.  

 

 

 
 
Fig. 6-9 Electropherogram of real sample 
A: the sampled was spiked by adding 1.5 ml mixture standards as used in Fig. 6-6 into 400 ml 
local surface water, eluted by methanol, the dried residue was dissolved in 2 ml water-acetonitrile 
(50:50, v/v). B: The sample: 400 ml local surface water, eluted by ethyl acetate, the dried residue 
was dissolved in 0.1 ml water-acetonitrile (50:50, v/v). The buffer: 40 mM phosphate-acetate 
containing 10 mM BMIMPF6 and 10% (v/v) acetonitrile at pH 4.5. Other conditions are same as in 
Fig. 6-6. 
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Fig. 6-10 Analysis of the real sample by HPLC 
The sample is same as in Fig. 6-9B. HPLC conditions: column: Spherisorb ODS1 
(150×4.6mm); eluent: 6 mM nitric acid in 60:40 (v/v) methanol-water mixture; flow rate: 
0.6 ml/min). UV detector was set to 230 nm. 

 

6.7 Summary 

Accompanying with high concentration buffer, ILs of considerably low concentration 

can effectively reduce or reverse the capillary EOF. The interactions between IL-cations 

and phenoxy /benzoic acids are complicated and further investigation is needed in order 

to quantitatively explain some of the phenomena. However, IL showed promising 

performance as additive in the separation of phenoxy and benzoic acids: compared to 

the conventional CZE or MEKC, it offers relatively short analysis time and potential 

ability in resolving positional isomers. Moreover, the acidic working environment, 

which is near pKa of the acids, renders a possibility for optimal separation. SPE-CZE is 

potentially a useful approach to determine acidic herbicides in the environment. Some 

advances, such as well matched SPE eluent and CZE buffer and improvement in 

detection sensitivity, will help to extend its application in routine analysis. 
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CHAPTER   7 CONCLUSION AND FUTURE 
WORK 

 

7.1 Conclusion 
 

ILs are a family of materials that shows promising properties for CE. They are easy to 

synthesize with high yields and are stable both in water and air. The impurities in the 

products can be detected by a α-CD-modified CZE method with low detection limit and 

good reproducibility. The fragmentation behaviors of ILs in organic solvent imply 

variations of their association patterns, which may partially correspond to their different 

performances in CE when they are used as background electrolytes. The lower charged 

anions tend to form larger aggregates, while higher charged anions form small 

aggregates. The large aggregates are stable in low polar media, while only small 

aggregates can exist in polar solvents such as water. So ILs can be important additives 

for CE in separation of neutral compounds, especially in NACE, in which the solvents 

are weak proton donors or acceptors compared with water.  

 

The IL-cations are ideal background chromophores for indirect detection of cationic 

analytes. The chain length of alkyl group connecting to the imidazole ring can be 

trimmed and thereby their mobilities can be finely tuned, rendering well-matched 

mobilities between the chromophore and the analytes with consequently high TR and 

symmetric peaks. IL cations have stable mobilities over wide pH range, the buffers 

employing ILs as background chromophores for indirect detection can easily visualize 

and separate some analytes that cannot be separated and visualized in conventional 



                                                                                                                                 Chapter 7 

 184

buffer. The inclusion complexation of the IL-cation with α-CD enables it to be an 

excellent background electrolyte for direct PGD detection.  

 

Coating of the capillary with IL-cations leads to reversed EOF and alleviation in 

interaction between cationic analytes and the silica surface. Significant enhancement in 

resolution and recovery of the cationic ions can be obtained. Compared with the 

imidazole-coated capillary, the IL-coating can be cationic over a wide pH range, 

especially in alkaline buffer, which not only offers relative stable EOF and hence the 

reproducibility of the experiment, but also high ion-exchange capacity for anionic 

analytes in high pH buffer, making it possible in separation of weak acids under IC-

OTCEC mode. Adsorption of DNA fragments onto the IL-coating due to the 

electrostatic attraction, increasing with electric density of the DNA fragments, can be 

controlled by addition of sieving matrices. The DNA fragments can be separated with 

shorter analysis time in ILCC than in PACC owing to the reversed EOF which moves 

codirectionally with the DNA fragments.  The ILCC is a potential attractive alternative 

for the widely used PACC in separation of large-sized DNA fragments in consideration 

of analysis time. 

 

In the presence of high concentration background electrolyte, relatively low 

concentration of IL-cation can be significantly and quickly adsorbed onto the negative 

capillary wall, leading to reversed EOF, although the magnitude is very low. Moreover, 

IL-additives showed discrimination effects on positional isomers, making the shoulder-

merged peaks baseline resolved for some analytes.  
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7.2 Future work 
 

The use of ILs in CE is still at its beginning stages and more work is needed to take full 

advantage of these new materials. For example, separation of anionic organics and 

neutral compounds in NACE using ILs as BGEs has been reported by several workers 

(Reference 18, 19 and 20, Chapter 1 and the work in Chapter 6); it may be an alternative 

or complement to the conventional MEKC method. However, due to the lack of precise 

data describing the behaviors of these materials in organic solvents, experiments 

conducted so far were restricted to empirically positive or negative results obtained after 

individual ILs added in the buffer. As reported in Chapter 2, there may exist relations 

between the mass spectra of the ILs and their performances as BGEs or additives in CE. 

MS is a tool for investigating the association patterns between the IL-cation and IL-

anion and it is helpful in finding the potential candidates as background electrolytes or 

additives in CE. One can chose the ILs purposefully with the aid of the mass spectra. 

Moreover, since ILs have different influences on the targets, satisfactory separation of 

the targets may be obtained with combination of several ILs; The mass spectrometry as 

tool in this case may be important in quickly finding the appropriate candidates and in 

efficiently design the buffer system.  

 

Our experiments showed that the IL-coated capillaries are efficient for separation of 

metal ions and DNA fragments as well. Stability of the coating is an important criterion 

in CE. Generally the thicker the coating, the higher resistance it possesses against the 

hydrolysis effect from the buffer and therefore the longer the duration. Furthermore, the 

thick coating may offer high ion-exchange capacity for the analytes when the capillary 

is operated under IC-OTCEC mode. There has been a report (M. Hirao, K. Ito, H. Ohno, 

Electrochim. Acta, 45, 2000, 1291) on polymerization of N-vinylimidazolium 
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tetrafluoroborate. The method can be applied to the polymerization of the IL-cation on 

capillary surface. By polymerization, the surface properties may be changed and new 

effects on the analytes may be expected.  
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