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Summary 
 
 

Video surveillance using recorded video captured by Closed Circuit 

Television (CCTV) cameras is a common means of increasing the security of a given 

environment. However, tracing back an incident using such video is a tedious task as 

the amount of video images to be searched is quite large. 

 

 Recent advances in Computer and Video Technology have resulted in the 

availability of powerful hardware for acquisition and processing of images and video, 

at a fairly low cost. However, the current state of the art in computer vision 

algorithms is not mature enough to be used in a system for fully automated 

surveillance. Hence the approach we have taken is to analyze videos and provide an 

index which will enable manual search time to be reduced significantly. 

 

If the videos can be analyzed automatically and indexed according to events 

such as a person entering the scene, the search time can be reduced significantly. The 

index, which is much shorter than the video sequences, can now be searched for the 

related events and the appropriate portions of the video can be displayed.  

 

In this thesis, we propose a system that analyses image sequences acquired 

from a particular scene to detect humans and their actions, such as entering/leaving 

the scene, walking, using a computer etc, and index the sequence according to these 

actions. Images from multiple stationary cameras mounted in the scene are used to 

acquire video image sequences. An innovative approach for background modeling 

and adaptation is used to identify image features corresponding to humans and 

foreground objects in the scene. A novel method for human detection is used to detect 



 xii

humans present in the scene and acquire human model parameters. This method is 

capable of detecting humans from incomplete views and modeling them accurately. 

Also, the method is not dependent on the skin color or the size that the humans appear 

in images. The detected humans are tracked and the recorded model parameters are 

validated against a set of rules and a state machine to recognize actions and events. 

 

The image sequence is indexed using the results for faster searching. Key 

frames are extracted from the image sequences for each entry in the index, to facilitate 

visual inspection without browsing the image sequence. In addition to the index, 

visualizations of motion paths for humans in the scene are created to provide a faster 

way of tracking human movements in the scene. 

 

 Different functional components of the system have been tested using a 

number of images and image sequences. Both subjective and quantitative evaluations 

have been carried out, defining measures for evaluation where necessary. According 

to the test results, the average overall accuracy of the system is 90.5%. 
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Chapter 1 
 

Introduction 
 
 

Video surveillance using Closed Circuit Television (CCTV) cameras is a 

common means of increasing the security of a given environment. Often, instead of 

monitoring the video online, the videos are recorded and archived continuously, so 

that an incident can be traced back. However, this process of tracing is manual and 

can be a tedious task. The amount of video information that has to be searched can be 

extremely large, depending on the number of cameras in the scene and the timescale 

of tracing.  In most cases video information has to be ‘searched’ sequentially to find 

out when a particular event (for example, a person coming in to a particular location 

of the scene and taking some object away). 

 

Recent advances in Computer and Video Technology have resulted in the 

availability of powerful hardware for acquisition and processing of images and video, 

at a fairly low cost. Computer Vision has been a very active area of research during 

the past couple of decades. If the videos can be analyzed automatically and indexed 

according to events taking place, the search time can be reduced significantly. The 

index, which is much shorter than the video sequences, can now be searched for the 

related events and the appropriate portions of the video can be examined manually. In 

the above example, the search domain may now be reduced to the number of 

situations where a person was present in that location, instead of the entire video 

sequence. In this thesis, we propose a system that analyses image sequences acquired 

from a particular scene to detect humans and their actions (such as walking, sitting, 

using a computer etc.), and index the sequence according to these actions.  
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1.1 Motivation 
 

The work presented in this thesis is motivated by its immediate applications in 

the area of automated surveillance. By incorporating real-time processing capability 

to this work, active security and surveillance systems can be developed. Action 

recognition can play a very important role in active surveillance, serving as the 

initiating stage of automatic indexing. 

 

The following are some of the other application areas where the outcomes of 

this research are useful: 

 

1.1.1 Smart Environments 
 

Humans interact with the environment that surrounds them in a number of 

ways.  Living beings, present in an environment, perceive the environmental 

conditions and act, react or adjust accordingly. If the environment itself can behave in 

the same way, there can be several advantages. It can facilitate the people in the 

environment by reacting to their actions, verbal expressions, body gestures and facial 

expressions. They can be used to give an interpretation of the status of and 

occurrences in the environment to interested parties outside the room, as in the case of 

distance learning and surveillance. Such an environment is called a Smart 

Environment. Our work can be directly applied to the task of processing video inputs 

in a smart environment. The Smart Rooms [1] and the Kids’ Room [2] designed and 

implemented by the MIT Media Lab [3] are two examples for existing smart 

environments.   
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1.1.2 Video Annotation 
 

Automatic annotation of video based on content is one very important 

application of this work. The amount of digital content that is available to us is very 

large, and is increasing at a very high rate. Automatic annotation of this large amount 

of content based on human actions will be very useful for various applications. 

 

1.1.3 Effective Human Computer Interaction 
 

If human body gestures can be robustly recognized by a computer using real-

time video, communication with the computer can be enhanced. A computer capable 

of such recognition can interact more effectively with the user, as reliance on the 

conventional input devices can be minimized. The Mouthesizer interface for vision-

based analog input [4] and vision-based cursor control systems using facial gestures 

[5][6] are some recent research outcomes in this area. 

 

1.1.4 Entertainment and Education 
 

Applications in the entertainment and the education areas are growing very 

rapidly. Computer vision methods for action and body gesture recognition can have a 

considerable impact in this area. An intelligent tutor for training body gesture related 

activities such as aerobics is one prospective application. Computer games can 

directly use this work. One example is substituting pressure plates used for the 

recognition of dance steps in dance games [7], by using a vision based interface. 
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1.2 Problem Statement and Description 
 

The tasks as described in Section 1.1 are quite ambiguous in several ways. The 

nature and positioning of cameras and the quality of images can vary. Since video 

input contains a lot of information from the scene, it is necessary to identify clearly 

what is expected to be detected and identified. This section describes the specific 

problem that we are trying to solve with respect to these issues. 

 

Figure 1.1 illustrates the basic functionality of the proposed system and how it 

is interfaced to its inputs and outputs.  

 
 

Figure 1.1: System Overview. 
 

The following subsections describe the scene used for acquiring video 

sequences, the nature and the format of the images, the main functions of the system 

and its outputs. 

 

1.2.1 Layout of the Scene and Camera Positioning 
 

In this research a room at a research laboratory is selected as the environment 

for implementing and evaluating the system. This is a closed room with no windows 
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and has a single entrance. The room is furnished with tables, chairs and computers, 

objects that can be found in a typical office environment. Three cameras are mounted 

on the walls, for image acquisition. . Figure 1.2 illustrates the layout of the room.   

 

 
 

 
Figure 1.2: Layout of the Scene. 

 
 

For the work presented in this thesis, only video sequences from cameras 1 

and 2 are used. Figure 1.3 shows images acquired using these two cameras. The main 

reason for this is that camera 3 has been fitted with motorized zoom and focus 

controls and used for other research projects on face detection and recognition. 

Therefore it is difficult to readjust this camera and use in this work. 
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Figure 1.3: Views from the Cameras Used.  
 

However, it should be noted that by selecting this particular location the 

applicability of the system is not restricted. Our objective is to develop a system that 

is usable in similar environments without major changes. More details will be 

discussed in Section 1.2.5. 

 

1.2.2 Input Video Sequences to the System 
 

Two stationary cameras (numbered 1 and 2 in Figure 1.2), mounted on the 

walls of the room are used to obtain synchronized color images at a maximum rate of 

25 frames per second (this can vary according to the CPU load on other processes 

running on the server handling the cameras). These images have a resolution of 

768×576 pixels. The images are in uncompressed RGB format, where 8 bits are used 

to represent the intensity of each color component. Once acquired, the images are 

stored in a hard disk for processing. 
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1.2.3 Functional Overview of the System 
 
 

The system processes the image sequences offline to perform the following 

tasks: 

 
• Recognition of known events 

o Detect persons entering/leaving the room (recognition of person 

identity is out of the scope of this work, but it is possible to incorporate 

this if it can be obtained by any other means). 

o Introduction/removal of objects to/from a table in the room. 

• Track persons in the scene: 

o Location: The terms Tracking and Location do not refer to the real 

world coordinates of the room. Rather, an attempt is made to track a 

person’s position in the room in relation to the stationary objects in the 

scene. In our work, the computers in the room (under the assumption 

that they are not moved to other locations) are used as a reference for 

tracking. In addition, a simple visualization of the movements of each 

person in the room is generated by sketching the path of his/her 

movement on an image showing only the static background.  

• Actions: The term “actions” here refers to the three body gestures, 

standing, sitting and walking. 

• Detect unusual events and actions 

o If a large change in the scene, such as one caused by moving the 

camera, is detected, the scenario is referred to as an unusual event. For 

such scenarios an index entry is created to facilitate manual 

observation. 



 8 

1.2.4 Outputs Generated by Analyzing the Images 
 

An index containing the recognized and detected events and pointing to their 

locations in the sequences is generated as output. In addition to keeping an index, a 

key frame is extracted from the sequence for each entry in the index. The key frame is 

an image frame, which is supposed to contain visual information for the particular 

entry. For example, the key frame for the event of a person entering the room is a 

frame showing that person entering the room. Providing key frames makes manual 

checking of the index easier. 

 

1.2.5 Issues Related to the Scene 
 

The scene that we have selected is a room in a research laboratory that is being 

used by students for their regular work, not a scene specifically restricted for our 

work. This has a few implications. There can be considerable movements of the 

objects such as chairs in the room, slight adjustments in the positioning of some 

objects such as tables, objects like bags, stationery and measuring instruments can be 

introduced to or removed from tables. 

 

Another set of issues is posed by camera positioning and illumination. In most 

of the places in the room, a full view of the body of the person cannot be acquired 

using the cameras. Therefore the human detection and tracking algorithms dependent 

on a full body view cannot be employed. The room is illuminated with ordinary 

fluorescent lamps. This suggests that the algorithms used in the early stages of the 

system have to cope with flicker. 
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1.3 Contributions 
 

The following summarizes the contributions presented in this thesis: 

o An innovative technique for accurate background modeling, segmentation and 

background adaptation is presented.  

o A novel approach for human detection and body model extraction is presented. 

This approach is different from the existing techniques (described in Section 

2.3), as it is based on the minimal amount of information from the head-

shoulder region of a human in an image. This facilitates defining an initial 

body model despite the presence of occlusion, which is subsequently refined 

to acquire a complete parameterized body model. 

o An innovative method of integrating multi-camera data has been developed for 

accurate tracking using uncalibrated cameras. 

o A centralized knowledge base containing context data related to the scene has 

been designed and used for improving the system performance. 

o An additional contribution resulting from this research is a Facial Gesture 

Interface for Vision based cursor control. 

 

1.4 Organization of this Thesis 
 

The remainder of this thesis is organized as follows: 
 

 
Chapter 2 presents the literature review of related work, in the areas of computer 

vision, image sequence analysis and object tracking. It also briefly describes some 

existing systems and ongoing research in this area. 

 



 10 

Chapter 3 gives an overview of our approach. A detailed description of the 

incorporation of the context data related to the scene is included here.  

 

Chapter 4 describes the algorithms that we use for background modelling of the 

scene and foreground extraction. Foreground extraction is combined with adaptation 

of the background model to achieve good performance under changes in the 

background.  

 

Chapter 5 explains how human detection and modelling is performed after extracting 

foreground. A human head-shoulder model is created and used for detecting human 

presence in images. After detection, the parameters of a 2 dimensional human body 

model are extracted for each human detected. 

 

Chapter 6 discusses how the index of events is generated and key frames extracted 

using the human models detected. The issues in tracking using multiple uncalibrated 

cameras and in the presence of occlusion are discussed here. The state machine based 

approach for tracking humans is described subsequently. 

  

Chapter 7 evaluates the results obtained by testing the system with a number of 

image sequences. Both quantitative and qualitative evaluations are performed on 

intermediate and final results. A discussion of these results is also included. 

 

Chapter 8 contains the conclusion, and a brief discussion of possible future 

directions. 
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Chapter 2 
 

Literature Review 
 

2.1 Introduction 
 

The problem addressed in our research is in the area of Computer Vision and 

sub-topics such as image segmentation, human detection, human/object modeling, and 

image sequence analysis. The remainder of this chapter contains a review of recent 

research in these areas. Also included in this chapter is a review of systems with 

similar functionality. 

 

2.2 Image Segmentation 
 

Foreground segmentation is necessary to identify the regions in the images 

that correspond to persons/objects appearing in the images. There are several 

approaches for image segmentation. We review a few approaches that are applicable 

to our work, in the following sub-sections. 

 

2.2.1 Background Modelling and Subtraction 
 

Since we are using stationary cameras, it is possible to segment foreground by 

looking for a significant difference in an acquired image from a representation of the 

static scene (hereafter referred to as background) seen by the particular camera. This 

technique is also known as backgrounding [8]. 

 

Backgrounding is a popular technique for foreground extraction due to its 

simplicity. Assuming that the camera is stationary and the background changes slowly 
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when compared with the moving foreground, it provides an easy way to segment the 

foreground. Adaptive background modeling can be used to dynamically remodel the 

background to ensure good results in the presence of background changes. 

Backgrounding is versatile in the sense that it is applicable to monochrome images, 

and color images in different color spaces. Although background subtraction will not 

produce extremely accurate motion segmentation in all situations, it provides 

sufficient amount of information to the intermediate levels of the system, where 

further processing is performed [8].  

 

However, it is desirable to monitor background changes, such as introduction 

of a new static object. Changes in illumination are possible, due to opening of doors 

and power fluctuations. The backgrounding algorithm should be robust to these 

effects. Therefore, it is necessary to use an adaptive backgrounding technique which 

is capable of robust motion segmentation. At the same time, since motion 

segmentation is only the initial stage of the system, it is desirable to use 

computationally less intensive techniques. 

  

The most common method of creating a background model for a scene is 

averaging a selected image sequence, of a short duration, over time. The background 

model, in this case, consists of only the resulting average image. The entire sequence 

should contain only the background, for acceptable results. This process is sometimes 

referred to as “background initialization”. The difference between a frame and the 

background image is thresholded using a scalar value to segment moving objects. 

However, this simple scheme has been found to be inadequate for effective motion 

segmentation in the presence of illumination changes, flickering in the illumination 
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source and noise. Therefore, several modifications have been incorporated into this 

basic method by various researchers. 

 

One popular approach in recent research is to model the background as a 

texture surface. On a texture surface, each point is associated with a mean color/gray 

value and a variance. This was first suggested by Pentland et al.[9] and successfully 

implemented in their Pfinder system for tracking a single person in a slowly varying 

background. The mean and the variance of the pixel values of the background image 

were used as input to an expectation maximization algorithm for motion 

segmentation. Modified forms of the above approach were adopted with minor 

changes by other researchers for similar applications [8][10][11][12][13]. 

 

A few other techniques have also been successfully employed for background 

modeling. Haritaoglu et al. [12], in their W4 system, use minimum and maximum 

pixel values in background image frames together with the maximum temporal 

derivative at each pixel. Utsumi et al. [14] use a distance transform together with the 

average background. Riddler [15] modeled the background using Kalman filters to 

handle illumination variations. Stauffer and Grimson [16] suggested that each pixel in 

a background image can be modeled with a mixture of Gaussians. O’Malley et al. [17] 

use squared Mahalanobis distance between a pixel value and the corresponding 

background pixel of segmentation. However, this results in an algorithm that is 

computationally intensive, making the algorithm less suitable for real-time 

applications. Khan and Shah [18] use the same calculation, in the YUV color space, 

with a few simplifications. However, the performance in terms of processing time has 

not been reported. 
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There are situations where it is not possible to find images with only the 

background, for background initialization, e.g. when using video of an expressway to 

measure vehicular traffic flows. Averaging over time can be applied in such 

situations, but the results will be poor. De Silva [19] has used statistical mode of 

pixels in an image sequence for successful modeling of the background in traffic 

image analysis. 

 

It is not possible to segment motion properly using a static background model 

as discussed above, if the scene is subject to variations in illumination, and the 

introduction and removal of static objects. This problem can be eliminated by 

periodically updating the background model created in initialization. However, it is 

essential to update the model using only the pixel values corresponding to the 

background or newly placed static objects, not those corresponding to moving objects. 

To enable this, binary support maps consisting of segmented blobs are used 

[8][9][10][12][16][20]. A less computationally intensive approach is to refrain from 

updating the model where the bounding boxes corresponding to moving objects are 

located [11]. Haritouglu and Flickner [21] use a decision support map constructed by 

studying the temporal variations in the binary support map, to improve segmentation. 

Background subtraction is usually followed by a couple of morphological operations 

to group blobs that are in proximity, and remove small blobs. After this, the results of 

background subtraction are used as input to another stage that identifies motion 

parameters and performs other functions as necessary. Any errors in background 

subtraction get passed over to this stage. The parameters of object models can be used 

to remove the errors and produce accurate outputs. 
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2.2.2 Segmentation Based on Edges and Contours 
 

Background modeling and subtraction cannot be employed in situations where 

the cameras are not stationary or the background is changing too fast for the 

adaptation algorithms to remodel the background properly. Rosenberg and Wermon 

[22] used image registration with the known background to handle this problem. 

Alternatively, for such situations, the edges or contours corresponding to the 

foreground can be used to assist the process of segmentation. Moreover, information 

about edges can be used to improve the performance of backgrounding [12]. 

 

Hyeon et al. [23] segment the upper body regions of humans in images by 

comparing the edges in the image with a predefined curvature model. Jabri et al. [25] 

combine an edge model, a background model and a confidence map for improved 

segmentation for detection and location of people in video images. Sminchisescu [25] 

uses a combination of intensity edge energy and horizontal flow field of motion 

boundaries for segmentation for monocular 3D body tracking. Snakes (active 

contours) can also be used for image segmentation. Tabb et al. [24]use active contour 

models to detect human objects in an image. However, this work needs user 

initialization. Schoephin and Chalana [26] use snakes to segment non-rigid objects for 

tracking objects that can be represented with a single closed curve. 
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2.2.3 Motion Based Segmentation 
 

Another approach to segmentation is to extract image features corresponding 

to object motion in the scene by using a pair of consecutive image frames of the 

sequence simultaneously as input. The simplest form of this approach is to calculate 

the difference between two consecutive image frames. This was first suggested by 

Jain [94] for image sequence analysis. Lee [28] uses difference images for 

segmentation of humans in cluttered indoor scenes. This is based on the fact that 

humans generally make at least a small movement between consecutive image frames 

whereas stationary foreground objects do not. 

 

Optical flow can be used as a means of segmenting moving objects in image 

sequences. A survey of the state-of-the-art for the computation of the optical flow can 

be found in [84]. Optical flow is classically extracted by assuming conservation of 

intensity between two consecutive frames. This problem, being ill-conditioned, 

requires regularization techniques [85][86]. Zhao and Nevatia [65] use optical flow 

for segmentation of moving human limbs for tracking human locomotion. However, 

the calculation of optical flow is computationally intensive, making it unsuitable for 

real-time applications constrained by limited processing power. 

 

It is possible to calculate motion parameters by collectively processing a 

number of image frames corresponding to a known time interval, instead of 

calculating optical from between each pair of frames. Motion history and motion 

energy are two measures derived in this manner. Rosales [90] uses Motion Energy 

Image (MEI) and Motion History image (MHI) to segment human actions. The work 
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of Davis and Bobick [91] is similar, except for the fact that they use MHI and MEI to 

classify a large set of action using low resolution images. 

 

Since recently, there has been a growth in the area of processing MPEG image 

sequences, due to the advantages achieved by data compression. For motion based 

segmentation, MPEG sequences present an advantage in the sense that they already 

contain an encoded representation of motion in the image, in terms of motion vectors.  

Ozer et al. [93][94] use MPEG motion vectors to segment human motion in MPEG 

sequences.  

 

2.2.4 Region Based Segmentation 
 

Another approach for segmentation is based on information from image 

regions. Rao and Shah [87][92] use skin detection together with connected component 

algorithms for segmentation of human hands in images. Most face detection systems 

are based on this approach. However, skin detection causes problems when 

background regions have colors within the range of skin tones, resulting in false 

positives. Moreover, the performance of skin detection algorithms also depends on 

illumination color. Therefore, additional constraints are often required. Stauffer and 

Grimson [89] use color similarity of random background patches for segmentation of 

pedestrians from street images. However, this technique performs well only when the 

background color distribution is limited, such as that of a road surface, rendering it 

unsuitable for cluttered backgrounds. 
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2.3 Human Detection and Modeling 
 

Detecting the presence of a human in a scene and acquiring parameters of a 

predefined body model are essential steps in many computer vision systems. The 

applications include intruder detection, human tracking and action recognition. There 

are numerous research works on these topics. However, most of them are based on 

some assumptions that make them difficult to be used in typical scenes where human 

detection and modeling is necessary.  For human detection, methods based on 

face/skin color detection [9][74] can only handle a limited number of head poses [28] 

and result in false positives in the presence of objects with similar tones. Edge based 

methods such as [23] are not suitable for cluttered scenes. Contour based methods are 

computationally intensive making them not suitable for real-time implementation 

[75]. A common approach is to perform background subtraction on the image and 

detect foreground blobs as corresponding to humans, based on size, aspect ratio, 

shape and orientation constraints [76][57]. However, for monocular images, this 

method fails in the presence of occlusion as the said constraints are based on a 

complete view of the human body.  

 

After human detection, the image features corresponding to a human in the 

scene are used to extract parameters for the human body model. There is a wide 

variety of the models used [63][64]. Some of the existing researches use multiple 

cameras to obtain a full view of the human body so that the model parameters can be 

specified completely. Where monocular images are employed, using markers for 

identifying different parts or joints of the body is common. In most systems based on 

monocular images, it is assumed that the human body is occluded only by itself. 
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Marker-less automated human body model acquisition using monocular video in the 

presence of occlusion is still a challenging task. 

 

There has been a substantial amount of research on human detection and 

modeling during the past few years. Petkovic et al. [36] have employed the above 

mentioned features and masks constructed in the shape of a person to identify players 

in tennis videos. Pentland’s Pfinder system [9] uses maximum likelihood based on the 

same features to identify moving persons. Hua et al. [37] use skin color to detect 

human faces in images. Utsumi et al. [14] employ a cylindrical model of a human to 

identify humans in images. Ju et al. [66] used a cardboard model to parameterize 

human limb motion in video. Zhao and Nevatia [13] show that an ellipsoidal 2D 

model is sufficient for tracking people, but  use a 2d skeleton model for tracking 

human locomotion with higher accuracy [65]. Kakadiaris and Metaxas have 

developed a system for 3D human body model acquisition [67] and tracking [68] 

using three cameras placed in a mutually orthogonal configuration. In one of the 

techniques, the person under observation is requested to perform a set of movements 

according to a protocol that incrementally reveals the structure of the human body. 

Once the model has been acquired, the tracking is performed using a physics-based 

framework [69].  

 

2.4 Image Sequence Analysis 
 

2.4.1 Tracking of Moving People 
 

The most common method used for tracking moving people is to match the 

blobs in one image frame to the subsequent frames in the sequence. If the frame rate 
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is reasonably high, or if the movements are slow, similar blobs in consecutive frames 

will be produced by a moving person. By continuously matching the blobs and 

recording the position information, the person/object can be tracked. The measure of 

similarity is usually a combination of attributes such as the size, color and position. 

However, the position is sufficient for matching objects in most cases, as shown by 

McKenna et al. [8]. Wren uses the constraints on human movement to model human 

motion, and thereby track moving humans [38]. Histogram matching is the most 

common approach for tracking humans [50][13][62][21]. Expectation maximization 

algorithms have been employed for most model-based tracking systems [57][18]. 

O’Malley et al. use a color model with a mixture of Gaussians for tracking humans in 

a wide area [17]. Techniques based on Kalman filtering have been used to improve 

the accuracy of the estimated position [10][13][51][63][64]. An algorithm using 

products of exponential maps and twist motions to describe the connectedness of body 

parts and relative motion of parts connected by joints is described by Bregler in [70]. 

Measurements are based on optical flow. This method assumes that the body model 

and initial pose are known. However, hand initialization is required, making it 

unsuitable for most applications. Pavlovic et al. used a Dynamic Bayesian Network 

models for tracking. Again, the templates for body parts are initialized manually [63]. 

 

Deutscher et al. [71][72] develop a system based on the CONDENSATION 

algorithm [73], which uses non-parametric densities represented by a set of samples 

for observation process and posterior density. Two image features are used in 

combination for tracking: edges and foreground silhouettes. Good tracking results are 

achieved using this approach [63].  
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Tracking multiple humans is a much more complex task compared to tracking 

a single human. This is due to occlusions and the increased number of possible 

matches. Reasoning based on predictions can be used to handle inconsistencies in 

matching caused by occlusion. Khan and Shah [18] use maximum a-posteriori 

probability of similarity of colors to handle occlusion implicitly. Zhao and Nevatia 

[13] explicitly handle occlusion using both the human body models and walking 

speeds to separate occluded humans. Haritaoglu et al. [21] use temporal segmentation 

of foreground based on geometry and motion cues to separate foreground segments of 

multiple people into individuals. This method is more suitable for our work as it can 

be applied directly on the results of foreground segmentation. 

 

2.4.2 Action and Body Gesture Recognition 
 

There has been a growing amount of research on image sequence analysis for 

hand/body gesture recognition. There have been two main approaches to which this 

work can be categorized, namely configuration-based recognition and motion-based 

recognition. 

 

(a)  Configuration-based tracking and recognition 

The basic idea in configuration based tracking and recognition is to identify 

the structural appearance of human body in each image frame and observe how it 

changes within the sequence of frames during a specified time interval. For instance, 

if frame k shows a standing person, subsequent frames up to frame k+m shows the 

person’s body gradually reaching a seated posture (where the value of m depends on 

the frame rate), and frame k+m+1 shows the person seated, it can be recognized that 

the image sequence contained the action “sitting” of a person. There are three main 
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tasks involved in this approach. The first task is to detect the presence of a human in a 

given image frame. This includes recognition of the initial posture and fitting the data 

into a structural model representing a human. The second task is to track the detected 

human along the sequence of frames. The third task is to recognize the gesture or 

action using the spatio-temporal data thus gathered. This is a pattern recognition task 

where the difficulty is governed by the number of gestures to be distinguished, the 

nature of the data and the amount of noise present in the data. 

 

Several researchers have followed this approach using different techniques to 

perform each of the above tasks. . Rehg and Kanade [45] used a 27-degree of freedom 

model of a human hand in their “DigitEyes” system for hand gesture recognition. 

Hogg [46] and Rohr [47] use a cylindrical model for the full human body for tracking 

a walking human in natural scenes. Gavrilla and Davis [48] use a full body model 

with 22 degrees of freedom for tracking human motion. However, this system requires 

the humans to wear tight fitting body suits with contrasting limb colors. All these 

techniques involve a 3 dimensional model of the human body. Davis states that a 3 

dimensional model is necessary and sufficient for understanding action [49].  Roberts 

and McKenna [50] map image data to the surface of a 3D body model for tracking 

highly textured human subjects in a cluttered indoor scene. Zhao, Nevatia and 

Fengjun [13] use a 3D ellipsoidal model for segmentation and tracking of multiple 

humans in complex situations. Mikic et al. [51] use multi-camera voxel data to 

acquire a 3d human body model consisting of cylinders and ellipsoids. Sminchisescu 

and Triggs [52] extract a 30-joint 3D body model using edge and intensity data using 

monocular image sequences. 
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Some researchers have attempted to use only the 2 dimensional appearances of 

actions for action recognition. Although this has the advantage of being simpler than 

fitting a 3 dimensional model, it can make recognition more difficult as actions that 

include the appearance of the total body are not as visually consistent across different 

people due to natural variations and different clothing [49]. Yamato et al. uses low-

level body silhouettes of human actions together with Hidden Markov Models [53]. 

Akita [54] uses body contours and edges together with some knowledge about the 

human body structure. Rosales and Sclaroff [55] use silhouettes and trajectory guided 

recognition for adaptive classification of action. Darrel et al. [56] construct the visual 

hull of a foreground object for human detection, using multiple cameras. The visual 

hull, being the maximum volume that creates all the given silhouettes of an object, is 

a 3D entity. However, projections of the visual hull are used for creating the 2D 

model. Rosales et al. [57] use a 2D model that consists of body joint locations for 

estimating 3D body pose using multiple, uncalibrated cameras. 

 

(b) Motion-based Recognition 

Motion based approaches attempt to characterize the motion itself without 

referring to the underlying static poses of the body. Two main directions within this 

approach are treating the entire body region as a single blob-like entity and the 

tracking of predefined body regions using motion instead of structural features. 

Polana and Nelson [58], follow a blob-based approach to recognize cyclic walking 

motions. They use periodicity measures together with a feature vector describing 

optical flow magnitudes on blobs. Shavit and Jepson [59] model the motion of the 

person in to that of an ellipsoidal body model. Little and Boyd [60] recognize people 

walking by analyzing the motion associated with two ellipsoids fitted to the detected 
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human body. Rao and Shah [61] use spatio-temporal curvature of trajectory to achieve 

view invariant action recognition. O’Malley et al. [17] employ position based data 

association based on color models of mixtures of Gaussians to track human activity 

for wide area surveillance. 

 

(c) Mixed approaches 

It has been demonstrated that both configuration based and motion based 

approaches can be used to recognize human actions and body/hand gestures. 

Configuration based approaches facilitate recognition of a large number of gestures, 

but are computationally intensive due to the high amount of processing involved in 

modeling and matching. Mikic [51][63] and Roberts et al. [50] emphasize the need of 

computationally efficient implementations of configuration-based algorithms. 

Improved human body models have been suggested to facilitate more accurate 

recognition [13][51][52][64]. Motion-based techniques are faster, but motion data 

may be more difficult to classify compared to structural data fitted to a highly 

constrained body model. Refinement of available motion data is suggested by Zhao et 

al. [65]. 

 

A mixed approach, where both configuration-based information and motion-

based information are used can be suggested as a means of improving recognition. 

One such approach for view based human activity recognition has been taken by Ben-

Arie et al. [62]. They represented activity by a set of pose and velocity vectors, 

thereby combining both approaches. Recognition was performed by searching within 

a multi-dimensional hash table containing these vectors. However, processing speed is 

an additional issue to be dealt with in this approach. 
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Most of the work deals with off-line image sequences due to the inability to 

perform the large amount of processing involved in real time. Most of the systems 

function only on selected sets of image sequences. When the systems used in smart 

environments are considered, it is evident that the main focus has been hand gesture 

recognition, not body gesture recognition. Therefore, there is sufficient room for 

improvement. 

 

In environments where background is cluttered and more than one person is 

present at a given time, we have to deal with additional problems like partial 

occlusions of objects. Most of the current research is focused on body gesture 

recognition using images of a single person [50][51][56][57][61][62]. In cases of 

monocular images, it has been ensured that only self-occlusion takes place [52]. Even 

where multiple cameras are used, all cameras see a complete view of the human, not 

occluded by any object [50][51][56][57][61], other than for the approach by Zhao et 

al. [13]. Both these are simpler situations compared to a situation with occlusions and 

multiple humans. Therefore, this can be considered as a good situation to look for a 

mixed, modified or novel approach. 

 

Recent research has resulted in systems that can recognize body pose in 

general, and specific body gestures such as standing, sitting, walking, jumping, 

kneeling etc. [50][56][57][62][63][64]. However, all these systems require the view of 

the full human body in image sequences. 
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2.5 An Overview of Existing Systems 
 

Several types of vision-based systems for surveillance and monitoring of 

closed environments have been described and built over the past 20 years [1][2][3]. 

Smart environments are an immediate application of this work. Alex Pentland’s 

research group at MIT Media Laboratory designed a smart room in 1991 [1]. This has 

evolved from its initial design to its current state of five networked smart rooms in the 

United States, Japan and the United Kingdom. These rooms use several machines, 

none more powerful than a personal computer, to identify the following: 

 

• Location of a person in the room 

• Identity of each person 

• Facial expression  

• Hand gestures (in American Sign Language) 

 

The college of computing, Georgia Institute of Technology, has constructed 

several smart classrooms [27]. These rooms are equipped with multiple data 

projectors, cameras and active white boards, to facilitate capturing of lectures for later 

review by students. The classrooms are also equipped with stylus based tablets for the 

use of the students.  

 

Xerox PARC uses infrared beacons to provide improved user interfaces for 

smart rooms [30]. A graphical user interface is used to control equipment in the room, 

with the aid of these beacons. 
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2.6 Limitations in Existing Systems 
 

The smart rooms, at their current state, can perform accurately only in simple 

situations. For instance, a situation where there is only a single person in the room. 

There is a lot of room for improvement, especially in the areas of action/body gesture 

recognition and recognition of collective human behavior. 

 

Another important issue is the design of a data model for the interpretations 

obtained from a smart environment. Most of the existing researches look at providing 

results to be used directly by persons in the room or observers monitoring the results 

from outside the smart room. Our idea is to store the results in a relational data base to 

facilitate content based indexing of the acquired image/voice inputs, and also 

querying the results to obtain relevant information; for example, when a person has 

been walking in the room during the last ten days. 

 

2.7 Summary 
 

The main research areas and the related work to this thesis, were reviewed in 

this chapter.  We first examined techniques for image segmentation. Approaches 

based on background modeling and subtraction, edge/contour based segmentation, 

motion-based segmentation and region-based segmentation were discussed. The other 

areas reviewed are human detection, human modeling, and image sequence analysis. 

 

The following tables summarize the approaches and techniques reviewed in 

this chapter. Table 2.1 outlines the techniques used for foreground segmentation. 

Table 2.2 presents approaches for human detection and tracking in image sequences. 
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A summary of research work on human action and body gesture recognition is 

contained in Table 2.3. 

 



 29 

Table 2.1: A summary of research on segmentation 

Authors Application Scene No. of 
Cameras 

Segmentation technique Adaptive 
technique? 

Haritaoglu et al. [12] Real-time Visual surveillance Outdoor environment 1 Background subtraction Yes 

Pentland et al. [9] Real-time tracking of human body Indoor scene 1 Background subtraction Yes 

Utsumi[14] Tracking multiple humans Indoor scene >3 Background subtraction Yes 

de Silva[19] Traffic image sequence analysis Road scene 1 Background subtraction No 

Hyeon et al. [23] Human detection in still images General 1 Edge-based Yes 

Jabri et al. [25] Finding people in video images general 1 Edge-based Yes 

Sminchicescu [64] 3D human body modeling and 
motion reconstruction 

Controlled 
background 

1 Edge-based No 

Tabb et al. [21] Detecting partial occlusion of 
humans in video 

General 1 Contour-based No 

Lee [28] Detecting people Indoor scene 1 Motion based No 

Zhao and Nevatia [65] 3D tracking of human motion Outdoor scene 1 Motion based No 

Rosalez [90] Human action recognition Controlled 
background 

1 Motion based No 

Stauffer and Grimson 
[89] 

Pedestrian detection Road scene 1 Region based No 
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Table 2.2: A summary of research on Human detection, modeling and tracking 

Authors Application Human model Incomplete 
view 

Method of Tracking 

Utsumi [14] Tracking multiple humans Elliptic pillar - Matching Center of 
Gravity  

Hyeon et al. [23] Human detection in still images Curvature model of 
upper-body region 

Yes - 

Jabri et al. [25] Finding people in video images - No Matching silhouette 
features 

Sminchicescu [64] 3D human body modeling and motion 
reconstruction 

3D No Eigen vector tracking 

Tabb et al. [21] Detecting partial occlusion of humans in video Spline  No Neural networks 
Lee [28] Detecting people in images Polygonal Head 

shoulder model 
- - 

Stauffer and Grimson [89] Pedestrian detection Template No Matching conditional 
color models 

Pentland et al. [9] Real-time tracking of human body Statistical color and 
shape model 

Yes Contour & shape 
analysis 

Ju et al. [66] Modeling articulated human motion 2D Rectangular 
(cardboard)model 

No Corner matching 

Mikic [63] Human body model acquisition and tracking 3D ellipsoidal model No Extended Kalman 
filtering 

O’malley et al. [17] Wide area surveillance Silhouette features No Matching silhouette 
features 

Khan and Shah [18] Tracking people using video Silhouette features No Matching color 
information 

Haritaoglu et al. [21] Tracking shopping groups in stores Silhouette regions No Matching color and 
shape information 
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Table 2.3: A summary of research on Human action and body gesture recognition 

Authors Application Scene Segmentation 
technique 

Human 
Model 

Tracking method Recognized Gestures Recognition 
with 

incomplete 
view? 

Haritaoglu et 
al. [12] 

Real-time 
Visual 
surveillance 

Outdoor 
environment 

Background 
subtraction 

2D 
rectangular 
(cardboard) 
model 

Matching torso 
regions in 
consecutive frames 

§ Walking 
§ Standing 

No 

Zhao and 
Nevatia [65] 

3D tracking of 
human motion 

Outdoor 
scene 

Motion based Motion 
template  

Maximum 
likelihood 
estimation of 
motion parameters 

§ Standing 
§ Walking 
§ Running 

No 

Rosalez [90] Human action 
recognition 

Controlled 
background 

Motion based None Maximum 
likelihood 
estimation of 
motion parameters 

§ Crouching-down  
§ Jumping 
§ Arm waving 
§ Kicking 
§ Leaning over 
§ Sitting 
§  walking 

No 

Ayers and 
Shah [31] 

Monitoring 
Human 
behavior using 
video 

Office  Skin 
detection and 
background 
subtraction 

None Matching color 
information from 
silhouette regions 

Actions related to the 
scene, including Entering, 
leaving, Standing up, etc. 

No 
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After reviewing these research directions, we observed that there is still room 

for improvement in the existing approaches and algorithms related to our work. In the 

light of the above survey, we propose our approach for solving the problem defined in 

Section 1.2, in Chapter 3. 
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Chapter 3 
 

Overview of the System 
 

3.1 Introduction 
 

The objective of this research is to detect humans, track them, recognize their 

actions and index image sequences based on this information. In order to achieve 

improved performance compared to those described in the previous chapter, we 

suggest a context-based approach. Here, we use the scene context (knowledge about 

the scene) extensively to perform this task. We divide the main task of achieving the 

objective into a number of sub tasks that depend on the same scene context. A mixture 

of the approaches described in Chapter 2 will be used in these sub tasks, while 

employing novel or modified techniques where necessary.  

 

The remaining sections of this chapter describe design of the system briefly, 

while subsequent chapters provide a detailed description of the main functional 

components. 
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3.2 System Overview 
 

Figure 3.1 outlines the functionality of the proposed system, showing its 

inputs and outputs. 

 

 
 

 
Figure 3.1: System Overview. 

 
 

Image sequences acquired using two wall-mounted cameras are the main input 

to the system. The scene context contains knowledge about the scene, constructed 

both from human observers and the system itself. This acts as an auxiliary input. The 

output of the system consists of an index to the image sequences, and key frames 

extracted from the same. The specifications of the inputs, system and outputs are as 

stated in Section 1.2. A detailed specification of the scene context is found in Section 

3.4. 
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3.3 System Design 
 

3.3.1 Functional Design 
 

The system consists of 5 functional modules performing separate tasks. Figure 

3.2 illustrates the functional model of the system according to Yourdon notation for 

functional modeling [83]. 

 

 
 
 

Figure 3.2: System Data Flow Diagram. 
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3.3.2 Algorithm 
 

We use the following algorithm to obtain the desired results using the image 

sequences: 

 
1. Foreground extraction: 

Background is subtracted from the images to obtain binary images containing 

only the features corresponding to foreground objects and humans. 

2. Human detection and modeling: 

Humans present in the images are detected and model parameters 

corresponding to each human are acquired. 

3. Tracking and generation of results: 

Using the information from image sequences from each camera, humans are 

tracked. After tracking, information from multiple cameras is integrated. The 

results are then analyzed to generate the index and acquire the key frames 

from the sequence. 

 
The main steps in the above algorithm are described in detail in Chapters 4, 5 

and 6. 

 

3.4 Scene Context  
 

Images captured from the environment specified in Section 1.2 provide only a 

limited amount of information, namely visual information, to the system. For 

example, a lot of important information such as depth information is lost in the 

process of creating an image. 
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However, a human looking at a particular scene can make quite correct 

interpretations. The reason is that the interpretations are not solely based on visual 

information. A human combines his knowledge about the scene and the objects in the 

scene to the visual information, and thereby completes the partial information. This 

phenomenon is known as visual completion. A simple example of visual completion 

is the ability to identify a chair that is almost completely occluded by a table, by 

simply seeing its top part above the table. 

 

Since a smart environment is not a scene where arbitrary changes and events 

take place, it is possible to provide a lot of information about the room, its contents 

and the possible events. Such knowledge is referred to as scene context in literature 

related to smart environment research [31][96]. We propose the use of scene context 

to facilitate more accurate body gesture recognition in a smart environment. 

 

Most of the existing systems make use of scene context by incorporating it 

into the algorithms. However, there is a disadvantage in this approach. If such specific 

information is hard coded in the algorithms, a system that works for a particular 

environment will be unusable or difficult to customize when it is used in a different 

environment or changes have been made to the environment. 

 

Our idea is to store the scene context in a centralized knowledge base. Some 

of the contents of the knowledge base can be manually created, whereas others can be 

created automatically. This knowledge base is centralized in the sense that all 

components of the system use the information in the knowledge base for their tasks, 

instead of embedding scene context in the components. Thus, the system can be 
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configured to be used in a new or changed environment by simply modifying the 

knowledge base accordingly. The following sub sections describe the information 

stored in the knowledge base. 

 

3.5 Extraction of Scene Context 
 

Some of the information in the scene context can be extracted automatically. 

For example, probability distributions of the pixel intensities of the background can 

be constructed while modelling the background. Another approach to extract scene 

context is unsupervised learning. An example is training a system with several image 

sequences showing people entering a room, so that the system can extract information 

about the image regions corresponding to entrances of the scene. However, in most 

cases, it is simpler to provide these parameters manually.  

 

3.6 Contents of Scene context 
 

Different types of information are combined from the acquired images to form 

the scene context. The following sub-sections briefly describe the content of the scene 

context that we use. 

 

3.6.1 Background Information 
 

This information is useful for performing motion segmentation on the image 

frames in the captured image sequences. A detailed description about these items is 

presented in Chapter 4. 
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3.6.2 Region-Specific Information 
 

The information from particular regions can be more significant that those 

from other regions, when it comes to the detection of particular events. These are 

regions where the system has to perform processing in order to detect entry or leaving 

of a person. By specifying these regions, processing for them in the entire image can 

be avoided. 

 

3.6.3 Camera-Specific Information 
 
 Since we are designing a multi-camera system with overlapping views, the 

parameters for different cameras may not be the same. The image resolution and 

frame rate are stored for each camera. Since the cameras are overlapping, the region 

of overlap is specified and stored in the scene context to facilitate accurate analysis of 

human features. This will be discussed in detail in Chapter 6. 

 

3.6.4 Geometric and Scale-Related Information 

Although we are not planning to calibrate the cameras in the smart room, it is 

useful to store some information regarding the relation between image sizes and 

actual object sizes. For example, size information related to humans as seen by each 

camera can be used to discard small blobs in human detection, as described later in 

Chapter 5. 
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Chapter 4 
 

Background Modelling and Foreground 
Extraction 

 
 

4.1 Introduction 
 

The first step in our approach is to detect image regions that correspond to 

foreground objects and humans in the scene using background subtraction. Our 

objective is to design a technique for background modeling and adaptation that is 

suitable mainly for an indoor scene as specified in Section 1.2. Scene context is 

incorporated into the technique to achieve better performance.  

 

Our technique consists of two phases. Background initialization is performed 

in the first phase. In the second phase, both object segmentation and background 

model adaptation take place. These two phases, and experimental results, are 

described separately in the following sections. 

 

4.2 Background Initialization and Modeling    
       

In this phase, an initial background model is created by analyzing an image 

sequence with no foreground objects. An outline of the background initialization 

phase is illustrated in Figure 4.1. 
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Figure 4.1: Background initialization. 

 

The input video sequence is at least 6 seconds in duration, acquired at 10 

frames per second. This number of frames and duration has been selected so that there 

are sufficient frames for estimation of the parameters of the background model 

accurately, and also conforms to the number of frames used in similar work [9]. 

 

The objective of preprocessing is to perform basic tasks like noise reduction 

and color space conversion. We employ Gaussian filtering for noise reduction, and 

convert to the 24-bit RGB color space if the images are not in this format already. 

This choice of color space has been made mainly for simplicity. The algorithms are 

applicable for other color spaces with only minor changes. 

 

The knowledge base, which is part of the scene context, contains additional 

knowledge about the scene that can be utilized in both background modeling and 

adaptation. Most of the existing systems attempt to improve performance by hard 

coding such knowledge into the algorithms. Presenting both the knowledge and the 

images as an input enables the system to be optimized while preserving flexibility to 

adapt for different scenes. Our knowledge base consists of the following information: 
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(1) Regions in the image where specific events take place: 

 Since the events taking place in the scene are usually not arbitrary, the 

process of image analysis need not seek for the events in an arbitrary manner. 

For example, if a person enters a room that is currently empty, the entry can be 

detected by examining only the regions in each frame corresponding to the 

neighborhoods of entrances. 

 

(2) Expected pattern of modality of the background model: 

For a background region that is not changing, the corresponding pixels 

in the background image show a Gaussian normal distribution over time, due 

to the presence of flickering of illumination and camera noise etc. But there 

can be other regions with bimodal distributions, for instance a region 

corresponding to a window that can be open or closed. In general, there may 

be regions in the background image where pixels exhibit a multimodal 

distribution. 

 

(3) Regions in the image corresponding to locations in the scene where 

foreground objects cannot be present due to physical constraints: 

 These regions can be disregarded in the processes of background 

initialization and motion segmentation, to save processing time and system 

resources. 
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Let the image sequence in consideration be I where I consist of 3 components 

R(x, y, t), G(x, y, t) and B(x, y, t) corresponding to the red, green and blue components 

of the image sequence respectively and 

 x = 1, 2 ... w  

 y = 1, 2 ... h  

 t = 1, 2 ... N, 

 where 

  w = image width 

   h = image height 

N = number of frames in the sequence 

 

The background model consists of the following parameters: 

(1) Mean of the pixel values, ),( yxµ  given by 

),( yxRµ  = 
N

tyxR
t

∑ ),,(
 (4.1) 

),( yxGµ  = 
N

tyxG
t

∑ ),,(
 (4.2) 

),( yxBµ  = 
N

tyxB
t

∑ ),,(
 (4.3) 

 

 

(2) Standard deviation of the pixel values, ),( yxσ  given by 

),( yxRσ  = 
N

tyxR
t

R∑ − 2}y)(x,),,({ µ
 (4.4) 

),( yxGσ ) = 
N

tyxG
t

G∑ − 2}y)(x,),,({ µ
 (4.5) 
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),( yxBσ ) = 
N

tyxB
t

B∑ − 2}y)(x,),,({ µ
 (4.6) 

 

(3) Statistical mode of the L(x,y,t), brightness component of the pixel 

values, defined by 

3
),,(),,(),,(

),,(
tyxBtyxGtyxR

tyxL
++

=  (4.7) 

(4) Selection map of the background, S(x,y). 

 

The following table describes the encoding of S(x,y) according to the 

properties of pixel (x,y): 

 

Table 4.1: Contents of the Selection Map. 

S(x,y) Description 

0 Not part of background model 

1 Uni-modal distribution with  low variance 

2 Multimodal distribution 
 

Depending on the problem and the scene, more information can be encoded in 

S(x, y). 

 

4.3 Segmentation and Background Adaptation    
    

In this phase, the background model created in the previous phase is used for 

segmenting the foreground. At the same time, the background model is updated to 

achieve accurate segmentation in the presence of slow changes in the background. An 

outline of this phase is shown in Figure 4.2.  
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Figure 4.2: Foreground Segmentation and Background Adaptation. 

 

4.3.1 Foreground Segmentation 
 

The process of motion segmentation is outlined briefly, to demonstrate how it 

makes use of the background model. From each color component of the current 

frame, the mean background component is subtracted. The magnitude of the resulting 

difference image is then thresholded with 3 times the standard deviation of that 

component. This allows different thresholds for different pixels. This results in three 

separate binary images, corresponding to R, G and B channels of the input frame, 

which are then combined into a single binary image. For the pixels with a uni-modal 

distribution and low variance, a logical OR operation is adequate. But for pixels with 

high variance and multimodal distributions, better results can be obtained by looking 

for presence of foreground in at least two images. 

 

A series of morphological operations are employed to clean the isolated noise 

pixels and to fill small holes within blobs. Then the information in the selection map 
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can be utilized to set pixels in the regions that need not be segmented to zero. 

Labeling the binary image now can yield the blobs corresponding to objects. 

 

4.3.2 Background Adaptation 
 

Unlike background modeling, background adaptation takes place when the 

system is actually running and performing its tasks. These include calculation of 

motion parameters, recognition of moving objects/persons, recognition of 

actions/events etc. These tasks are computationally intensive, and tend to take a 

substantial amount of processing time and system resources. Therefore, the 

background adaptation process has to be sufficiently lightweight, not involving a large 

amount of processing and storage. However, at the same time, it should either 

improve or at least maintain performance under varying background conditions. For 

these reasons, the results of segmentation have been used as the primary inputs for 

this phase. Since the intermediate results of segmentation are available without any 

additional computations, they are also utilized. 

 

In the current system, background update is performed only on µ(x,y) and 

s (x,y). However, it is possible to extend this to update the selection map S(x,y) as 

well, if necessary. The updates are not performed on regions that are not subject to 

background modeling (as specified in the selection map) and the regions covered by 

the segmented blobs. For the other pixels, the selection of update algorithm is based 

on the entries in the selection map. At present, the system does not update the pixels 

with a multimodal distribution. For the others, the update formulae are  

 

µ’(x,y) = af(x,y) + (1 – a) µ(x,y)       (4.8)                                        
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s’(x,y) =  (x,y)s (x,y)} ß{f(x,y) - 2)1(2 βµ −+            (4.9)        

where 

µ’(x,y) = mean of the pixel values after updating   

s’(x,y) =  Standard deviation of the pixel values after updating 

 

The values of a and ß are small, and in the range 0 to 1. These formulae are widely 

used in updating background models [8][9][11]. 

 

The system was tested on a number of image sequences. The sequences were 

selected to contain different combinations of inconsistencies that call for dynamic 

background adaptation. Chapter 7 contains a detailed description of test image 

sequences and the results. 
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Chapter 5 
 

Human Detection and model Acquisition 
 
 

After segmentation, we have a binary image with blobs corresponding to 

foreground objects and humans. In addition to these, it is possible that there are some 

blobs corresponding to scene features that we are not interested in. For example, a 

chair that has been moved can create a blob of considerable size, depending on its 

position in relation to the camera. An additional problem that has to be tackled is the 

presence of occlusion. A human in the scene can be partially occluded by stationary 

objects such as tables. Therefore, at this stage, it is necessary to use a technique for 

accurate human detection under these conditions and for modeling detected humans 

so that they can be tracked in subsequent frames. The remainder of this chapter 

describes the algorithms that we use for human detection and modeling. 

 

5.1 Introduction 
 
 

Our objective in this research is to detect humans and acquire body model 

parameters despite the presence of occlusion and absence of predefined markers, 

using monocular images. To achieve this we attempt to use the minimum possible 

amount of image features for human detection. The neck is the region that has the 

least diameter when this region is considered, whereas the shoulders form the 

broadest region in the human body. This variation of breadth can be used for human 

detection with ease. Because of this variation in breadth, the silhouette of the head and 

shoulder region of a human has sufficient features so as to be recognized by the 

human eye, as illustrated in Figure 5.1. Moreover, these portions of the body are less 
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likely to be occluded by objects placed on the floor, assuming that the cameras are 

located at or above the eye level. This assumption is valid and realistic for most 

practical situations. We employ a predefined model of human head and shoulder 

silhouettes for view invariant human detection. This is similar to the idea used in [28]. 

However, rather than using a simple model merely for detecting the presence of a 

human, we use a more general and advanced model that enables us to extract the 

height of the head (in pixels) and the angle of the human body with respect to the 

image plane, results that are useful for accurate human  body model acquisition.  

 

Figure 5.1: Silhouettes that Give the Perception of the Presence of Humans. 
 

Instead of acquiring parameters of a complex geometric model of a human, we 

use a two-stage approach. Artists have long observed that the proportions of a human 

body can be specified completely to a high accuracy using the height of the human 

head [77][78][79]. We use this property to define an initial body model. Thereafter 

this model is refined using the image features and geometric constraints. Where 

portions of the body are found to be occluded, parameters of the initial body model 

are used to determine parameters of the final model. 
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5.2 Overview of the Algorithm 
 

Figure 5.2 illustrates an overview of our approach for human detection and 

modeling. First, the images are segmented by subtracting the background, leaving 

only the humans and objects in the scene. Human detection is performed on the 

resulting foreground based on the head-shoulder model, and a coarse initial model is 

created for each human detected. This model is then refined to achieve a complete 

human body model. The following subsections describe each of these functions and 

models in detail. 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 
 
 
 
 

Figure 5.2: Overview of Human Detection and Modeling. 
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5.3 Head-Shoulder Model 
 

In order to achieve scale independent human detection, we have constructed a 

head-shoulder model using 300 head-shoulder images.  Figure 5.3 shows an overview 

of the construction of this model. Since the head-shoulder region is seen in different 

shapes from different angles with respective to the direction the human is facing, the 

images were categorized and averaged to form 3 different templates, T1, T2 and T3. 

The angles corresponding to the different templates are marked in Figure 5.3. 

Projections P1, P2 and P3 were then created by projecting T1, T2 and T3, respectively 

onto the vertical axis. These projections were normalized by obtaining samples by 

dividing the projection into 100 equal-sized intervals along the vertical axis. 

Amplitude of the projections was normalized by dividing by the maximum value of 

the projection. 

 
 

Figure 5.3: Construction of Head-Shoulder Model. 
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It was observed that the P1 and P2 have a distinct shape that can be used for 

human detection. However, it was evident that the variation in P3 was not as 

prominent as in the other two templates. Moreover, different hairstyles can make the 

silhouette wider in the neck region and make detection less accurate. Therefore we 

have made a refinement when P3 is created. The portion corresponding to the back of 

the head –shoulder region of T3 is removed before projection. It is evident that a more 

prominent variation is present in the new template P3 after this modification. 

 

5.4 Human Detection 
 

After segmentation using the algorithm described in Chapter 4, we project 

each blob onto the vertical axis (under the assumption that the human is not stooping 

forward substantially). The next step is to match this projection with the three 

projections in the head-shoulder model. For this it is necessary to use a matching 

algorithm that is invariant to scale as both the size of the blob and the degree of 

occlusion can vary. Therefore, we use the following approach. 

 

Since all three projections in the head-shoulder model contain a sharp local 

minimum, we look for local minima along the projection of the blob from top to 

bottom. When we find a local minimum, we obtain three sub-projections by sampling 

the blob projection to the same dimension of the model projections such that for each 

sub-projection, the local minimum in the blob projection coincides with the global 

minimum in the corresponding model projection. Three sub projections are required 

as P1, P2 and P3 have local minima at different positions. These sub-projections are 

now matched with the P1, P2 and P3 to identify a strong match (90% normalized 

correlation). However, for matching with P3, the blob is split along the vertical axis 
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and two sub-projections have to be created as the person appearing in the image can 

be looking either left or right. If there is a strong match, a human is detected. The 

height of the human head in the image (in pixels) can be determined using the 

position of the local minimum that results in the match. By finding the best matching 

template, we can get a rough idea of the angle of view.  

 

At this point, it is possible to validate the result with scene context to avoid false 

detections. Since the room is a closed space, the humans seen in images cannot appear 

arbitrarily small. The minimum possible head height in pixels, for each camera, is 

stored in the scene context. The detected head height can be validated against this 

before further processing. 

 

5.5 Model Initialization 
 

The results of matching are the human head height and the angle of view. The 

basis of the body model acquisition is that the proportions of a human body can be 

specified to a high degree of accuracy using the height of the head. Figure 5.4 

illustrates the proportional model that we are using. This model, referred to as “the 

eight-head model”, is widely used in life drawing by artists [82].  
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Figure 5.4: Proportions of the Human Body With Respect to the Height of the Head. 
 

However, this is not a universal model. The overall height of a human can 

vary between 7-8 heads, depending on the gender, age and ethnic group [78]. 

Moreover, any small error in head height estimate can result in a larger error in 

estimating the full body. Therefore, only an initial model can be created at this stage 

and it needs to be refined subsequently. Because of this, we create an initial model 

with the blob and the bounding rectangles for 3 body regions. For a blob B, bounded 

by the top-left and bottom-right coordinates (TB
Left, TB

Top) and (TB
Right, TB

Bottom ) 

respectively on the X-Y plane,  and a head-height of h, these body regions are 

specified as shown in Table 5.1. 

 
Table 5.1: Specification of the Initial Body Model. 

 
Rectangle Left Top Width Height 

Head TB
Left TB

Top  TB
Right  - TB

Left  h 

Torso  TB
Left TB

Top + h TB
Right  - TB

Left 3 h  

Legs TB
Left TB

Top+ 4h TB
Right  - TB

Left 4 h  
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This model, superimposed on an example blob, is shown in Figure 5.5.  It is 

evident that only the upper part of the leg region of the initial model has pixel 

information due to occlusion. Also, it should be noted that some regions of the initial 

model can be out of the pixel bounds of the image. The next step is to refine the 

model and acquire a full body model, while tackling with such situations.  

 

 
 

Figure 5.5: Initial Human Body Model. 
 

 

5.6 Model Refinement 
 

This stage has two main functions. Firstly, it deals with errors in 

approximating the initial model caused by inaccurate segmentation. Secondly, it uses 

the proportional model together with the available blob features to acquire the 

parameters of the complete body model. 
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The initial model contains only the height and position details of each region. 

First, the width and centroid of the head are calculated. The height of the head is 

refined by validating it with the aspect ratio of a human head when viewed in 

different angles. Refinement of the head region is relatively simple as it is assumed 

that the entire head region is present in the image, for a successful detection. 

However, this may or may not be the case for other regions. 

 

For the torso region, the width is calculated using the head height, as shown in 

Figure 5.4. The axis of the torso region is calculated by joining the centroids of the 

head region and the upper part of the torso region.  

 

The arms are modeled by removing the refined torso region from the torso 

region of the initial model. Length constraints of the arms, as imposed by the 

proportional model, are combined with the pixel information of the arm region to 

identify the elbow and forearm. The width of an arm region is calculated using the 

dimensions of the initial model. If a region corresponding to an arm is not found or is 

narrower than half of the head-height, it is assumed that the arm is occluded by the 

torso. The position of the arm is assumed to be straight and lowered.  

The refinement of the leg regions is similar, other than for the position and 

length constraints. Possible shadows segmented as foreground can be eliminated 

during this step.  

 

After the refinements, the final model can be as in Figure 5.6. If the blob is not 

covering the torso and leg regions, it is assumed that the parts pf the body are 

occluded.  
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Figure 5.6: Refined Human Body Model. 
 

The ability to detect humans in images was tested by using several images 

with a number of human subjects appearing in them, both alone and together. Subjects 

with different hairstyles and attire were selected to identify weaknesses in detection. 

The results of testing are presented in Chapter 7. 
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Chapter 6 
 

Human Tracking and Indexing of Actions 
 

 

After human detection and modeling, a set of instances of human models is 

available. The next step is to keep track of these model instances along the frame 

sequences and create an index of the selected actions. The remaining sections of this 

chapter discuss how we perform this task. 

 

6.1 Problems related to tracking 
 

6.1.1 Tracking with Multiple Cameras 
 

The room is equipped with two cameras, having an overlapped view. A person 

inside the room can be seen in different scales and positions in the images acquired by 

the two cameras. Since the cameras are not calibrated, and more than one person can 

occupy the room at the same time, it is important that accurate tracking has to be 

performed using the information from the images themselves, to prevent 

inconsistencies such as tracking one person as two persons. 

 

6.1.2 Dealing with Occlusion 
 

There are two types of occlusions that have to be dealt with in human tracking 

in the selected environment. As a person moves within the room, parts of his body 

may be occluded by the objects in the room. An example is the occlusion by the table 

in the middle of the room. The other possible type of occlusion is when multiple 

humans occlude each other. Since multiple cameras are used in the scene, it is 
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possible that at least one camera can provide an unoccluded view of each human. 

However, this cannot be guaranteed in most practical situations. 

 

6.2 Overview of the Tracking Algorithm  
 

The following is an outline of the tracking algorithm used in our work: 

1. Start with empty tracking database 

2. For each human model acquired from the current image: 

a. Extract head-shoulder region 

b. Acquire the following attributes of this region 

i. Head height 

ii. Bounding rectangle 

iii. Centroid 

iv. Color histogram of the shoulder region 

3. For each human model in the tracking database 

a. Match with the attributes obtained in step 2 

b. Record the degree of matching for each attribute 

4. Find the best match and record the current set of attributes 

5. For any human models not matched to the models in the tracking database, 

a. Add a new model to the tracking database 

6. Repeat steps 2-6 until the last image frame has been visited. 

 

The following sub-sections will describe each of the main steps stated above 

in detail. 
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6.2.1 Head-Shoulder Region Extraction 
 

We use only the head-shoulder region of the complete body model for 

tracking, due to a few reasons. Firstly, this region is least likely to be occluded by 

static objects in the background, such as tables. Secondly, changes of attributes due to 

limb motion are relatively low for this region. For example, the attributes of the 

bounding box of a full human body will change drastically with limb motion such as 

walking. An additional advantage is that chances of this region containing objects 

carried by a person are also low for the type of office environment we consider.  

 

The head-shoulder region is extracted from the human model using head 

height to calculate sizes and positions as specified in Chapter 5. The region is 

resampled to a resolution of 100×100, to achieve scale invariance. The following 

attributes for this region are extracted and/or calculated: 

 

1. Head height, in pixels 

2. Centroid of the region 

3. Bounding box of the region 

4. Histogram of the normalized shoulder region. 

 

Figure 6.1 illustrates the head-shoulder region together with these attributes. 
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Figure 6.1: Head-Shoulder Region and its Attributes. 

 

6.2.2 Similarity Measures for Tracking 
 

Tracking a human/object between a pair of frames is performed by finding 

corresponding features in the frames. The process can be repeated to track within a 

sequence of images. The following measures are used to evaluate similarity between 

the features that we have selected: 

 

1. Overlapping bounding boxes: 

 Given that the duration between image frames is close to 25 frames per 

second, and the normal speeds of human movement within a closed 

environment, the bounding boxes corresponding to the head-shoulder regions 

of the same human in two consecutive frames should have a considerable 

overlap. This is illustrated in Figure 6.2. For our work, we consider above 

75% of the area of the bounding box from the earlier frame as the threshold 

for matching.  
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Figure 6.2: Overlapping Bounding Boxes. 

 

2. Nearly equal head height 

 The head heights for head-shoulder regions corresponding to the same 

human in two consecutive frames may not be the same, as the human can be 

moving either towards or away from the camera. The presence of noise also 

can contribute to some difference. However, the difference, in any of these 

cases, cannot be significant owing to the high frame rate. We consider a 

difference less than 10% as the threshold for matching. 

 

 
3. Head centroids located closely 

 This condition can be used as an alternative to the first condition, due 

to its simplicity of computation. However, the weakness in this approach is 

that the distance between centroids becomes larger when the humans are 

closer to the camera. The first method provides automatic normalisation for 

distance, as the percentage of overlap area is independent of blob size. 
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4. Similar histograms for the shoulder region 

 The previous conditions can be used for tracking only when the two 

consecutive images are from the same camera, and the humans/objects are 

moving at low speeds compared to the frame rate. However, when these 

conditions are not satisfied, there should be a method for accurate tracking in 

image sequences. 

 

One common approach is to match the pixel distribution of the blobs in the 

two consecutive frames. For this, histograms of the foreground regions 

corresponding to the blobs are constructed and matched. However, the method 

is not robust in the presence of occlusion, as the histogram can change 

drastically if a region containing pixels with values close to the statistical 

mode of the distribution is occluded. We minimize this problem by using only 

the head-shoulder region. However, head rotations can result in significant 

changes in the histogram of the entire head-shoulder region, as the proportions 

of skin colour and hair colour change drastically with head rotations. 

Therefore we select only the chest region for histogram matching. Another 

advantage of this method is that it is possible to match views of a human from 

two cameras using this method, for most types of clothing and hair styles. 

However, the method cannot be employed alone in the presence of multiple 

humans with similar clothing. In such cases, additional information is required 

for accurate matching. Figure 6.3 illustrates the process of histogram 

computation and matching for the chest region. For this work we consider 

80% correlation as the threshold for matching histograms. 
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Figure 6.3: Histogram Computation and Matching for the Chest Region. 

 

6.3 Recognition of Events 
 

We use a state-based approach to recognize events and actions. Each human 

detected in the room is considered to be in one of the states of a predefined state 

machine. According to actions and events detected, the state of a human is changed.  

 

6.3.1 State Model 
 

The state diagram in Figure 6.4 shows the transitions between states defined 

for a tracked human in the image sequence. 

 



 65 

 
 
 

Figure 6.4 State Transitions for a Human Detected in the Scene. 
 
 

The rules governing the state transitions in the above diagram are specified in 

Table 6.1. 
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Table 6.1: Set of Rules for State Transitions. 
 

Rule 
number 

State moved to Specification 

1 Enter (initial 

state) 

New human model instance detected near the 

entrance region for 10 frames 

2 Walk coordinates of the centroid of the head-shoulder 

region changes gradually over 20 frames 

3 Exit (final state) Human model instance located near the entrance 

region for more than 10 frames, and could not be 

tracked thereafter 

4 Stand Y coordinate of the head centroid increases by 

more than 2 head-heights, with less than 10% 

change in head-height 

5 Take object Location of object changes together with the 

location of the person 

6 Place object New object detected on the table region for more 

than 15 frames  

7 Sit Y coordinate of the head centroid decreases by 

more than 2 head-heights, with less than 10% 

change in head-height 

8 Use a computer Person sitting near computer with only small 

movements below shoulder region 
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6.4 Detection of Unusual Events and Actions 
 

The rules specified in Table 6.1 correspond to the most common events that 

could take place in a scene we have selected. However, it is possible that other actions 

or events that are important to be recorded take place. For example, there can be a 

situation where a person trying to block the camera. We keep an index to such an 

action as “unrecognized” to facilitate human observation to recognize the action. If 

the amount of scene change occurring between two frames is substantial and the 

action/event cannot be recognized, the scenario is identified as an unrecognized event. 

Key frames showing the scene change are extracted from the image sequence.  

  

6.5 Tracking Persons in the Scene 
 

Since only two uncalibrated cameras are employed for image acquisition, it is 

impossible to determine the location of a human or object in the room using the 

available images. Instead, a person in the scene is tracked by recording the path of the 

human on an image of the static background. Once a human enters the scene, a new 

background image is used to record his position. The resulting track images contain 

only one person per image even when there are multiple humans in the scene. Figure 

6.5 illustrates how the track of a human is visualized.  
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(a) (b) 

Figure 6.5: Visualization of Human Tracking Results. 

 

The regions corresponding to the human in the sequence of frames are 

superimposed on the background with time, resulting in a trail as shown in Figure 6.5 

(a). Since this image can be cluttered for a large amount of movement close to the 

camera, another image is created by recording only the position of the centroid of the 

head region. The color of the centroid varies from green to red, giving an indication of 

the direction of movement and the time spent in the room. Again, trails for different 

persons are plotted on different frames. This is shown in of Figure 6.5 (b). 

 

6.6 Indexing and Recording Key Frames 
 

For each action/event detected, we record an index entry with the following 

attributes: 

1. Frame number ( can be converted to time for more convenient tracing) 

2. Event type 

3. Key frame/s 
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The entries can be indexed both by the frame number and the type of the 

event, facilitating fast searching. The key frames assist human verification without 

browsing the image sequence. Table 6.2 contains some possible index entries and key 

frames. 

 

Table 6.2: Sample Entries of the Scene Index. 
 

Frame 
number 

Event type Key frame/s 

118 Entering person 

 
223 Standing person 

 
432 Sitting person 
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For a sitting person and standing person, a pair of key frames is stored, showing both 

the seated and standing person. For a walking person, key frames are not saved. 

 

By looking up the index and key frames, the image sequence can be browsed 

quickly without tracing sequentially for actions and events. Chapter 7 describes in 

detail the results obtained by evaluating the system using a number of image 

sequences.  
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Chapter 7 
 

Results and Discussion 
 

This chapter presents the evaluation of the performance of the algorithms 

designed and implemented in previous chapters, and the results obtained. The results 

are categorized by the stages of the functional model. Also presented in this chapter is 

a critical discussion of these results. 

 

7.1 Background Modeling and Foreground Extraction  
 

7.1.1 Methods of Evaluation 
 
 There is no standard methodology for evaluating the performance of a 

technique for background modeling and foreground extraction. In some researches the 

accuracy of foreground segmentation as a separate stage is not evaluated, as it is an 

intermediate result. However, it is important to ensure that foreground extraction 

performs well, as subsequent processing is dependent on its output. 

 

 In most of the related research, the accuracy of background modeling and 

motion segmentation is demonstrated using images. Background image and other 

components of the model are shown to visualize background features. Segmented 

foreground is shown together with the background images and/or acquired images, to 

demonstrate how well segmentation has been performed [8][9][10][12][14][49][51]. 

This is a relatively convenient method, and the strong points and limitations of 

algorithms can be identified easily if sufficient information about the scene is 

available. However, this method of evaluation is subjective. Moreover, visual 

completion can make foreground appear more complete than it actually is. 
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 If quantitative evaluation of segmentation algorithms is possible, it is possible 

to compare their performances more accurately and identify which algorithms are 

suitable for particular applications. The number of pixels that have been segmented 

incorrectly can be used as a metric of performance. However, this requires human 

intervention to determine ‘correct foreground’. De Silva [19] uses the percentage of 

inaccurately segmented pixels in the image to compare three techniques of 

background image construction and foreground segmentation. 

We have used two methods for evaluating the performance of our algorithm. The first 

method is qualitative evaluation using images and foreground extracted from different 

image sequences. The second method is to measure the amounts of incorrectly 

segmented pixels of the following two categories: 

(a) False positive pixels: pixels that have been segmented as foreground, but 

correspond to background when segmented manually 

(b) False negative pixels: pixels that have been segmented as background, but 

correspond to foreground when segmented manually 

Figure 7.1 illustrates these two types of pixels by showing them on a 

segmented binary image masked with the foreground. 

 

 

Figure 7.1: False Positive and False Negative Pixels. 
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 We use the following formulae to calculate Accuracy and Pixel Ratio for the 

above types of pixels: 
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Where 

 Nf = No. of pixels that correspond to the foreground 

 Nb = No. of pixels that correspond to the background 

 Nfp = No. of false positive pixels 

 Nfn= No. of false negative pixels 

 

 A logarithmic scale is used in equations (7.2), (7.4) and (7.6) since the ratios 

can have a wide range of values. Sections 7.1.2 and 7.1.3 describe the evaluation of 

foreground segmentation using these two methods. 
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7.1.2 Subjective Evaluation 
 
 
Sequence 1: Stable scene 

The scene contains a fairly consistent background with no multimodal regions. 

Figure 7.2 illustrates the results of background initialization, and the selection map. In 

this case, the selection map contains 1 in all pixels. The standard deviation image 

contains values roughly between 0 and 10. Its contrast has been increased drastically 

to make the patterns visible. A frame in the test sequence and the result of motion 

segmentation masked with the original frame, are shown in Figure 7.3. 

 

 

Figure 7.2: Background Initialization. 

 

 

Figure 7.3: Motion Segmentation. 

 

Video frame Segmented blobs masked image 

Mean background Standard Deviation Selection map 

(1) 
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Sequence 2: Scene with high variation of illumination 

Here the background is consistent. But there is a drastic change in lighting, in 

the middle of the sequence. Figure 7.4 illustrates the results of background 

initialization, together with the selection map superimposed on the mean background 

image. Again, the contrast of the standard deviation image has been increased 

drastically to make the patterns visible. In this case, motion segmentation is not 

needed in an area to the right of the image.  Figure 7.5 displays the result of the abrupt 

change in lighting, if background adaptation was not used. Figure 7.6 illustrates how 

background adaptation produces better segmentation and recovers quickly. A few 

small blobs still remain, but these can be removed easily using size constraints in the 

subsequent modules for analyzing blobs. 

 

 

Figure 7.4: Background Initialization. 

 

 

Figure 7.5: Motion Segmentation without Adaptation & Selection Map. 

 

Mean background Standard Deviation Selection map 

(1) 
(0) 

Video frame Segmented blobs masked image 
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Figure 7.6: Adaptive Motion Segmentation. 

 

Sequence 3: Scene with multimodal areas 

The computer Monitor in this scene results in a bimodal region in the images. 

Figure 7.7 illustrates background initialization, and the selection map superimposed 

on the mean background image. The contrast enhanced standard deviation image 

shows that there is high variance in the region corresponding to the Computer 

monitor. Note the region with bimodal variance in the selection map. Two frames in 

the test sequence and the result of motion segmentation masked with the original 

frames are shown in Figures 7.8 and 7.9. Figure 7.9 illustrates how the foreground 

region in front of the multimodal region has been segmented with a reasonable 

accuracy. 

 

Note that the standard deviations of all pixel values have been exaggerated so 

that their pattern can be visualized. Their actual levels are much lower. 

 

Video frame Segmented blobs masked image 
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Figure 7.7: Background Initialization. 

 

 

Figure 7.8: Adaptive Motion Segmentation. 

 

 

Figure 7.9: Adaptive Motion Segmentation in Multimodal Regions. 

 

It is evident that the system performs motion segmentation accurately in all 

three sequences. The background adaptation enables accurate motion segmentation in 

a changing background. The results of segmentation are used as input to the next 

stage. 

 

Video frame Segmented blobs Masked image 

Video frame Segmented blobs Masked image 

Mean background Standard Deviation Selection map 

(1) 

 (3) 
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7.1.3 Quantitative Evaluation 
 

For quantitative evaluation, the set of sequences described in Section 7.1.1 

were used. Table 7.1 shows the values for accuracy and pixel ratio calculated for 

conventional non-adaptive foreground segmentation, using the equations 7.1 to 7.6. 

 

Table 7.1: Results for Non-adaptive Foreground Segmentation. 

Accuracy (%) Pixel Ratio(dB) Image 

sequence Foreground Background Overall Foreground Background Overall 

1 99.36 97.28 99.28 21.92 15.54 21.41 

2 93.14 97.95 94.42 11.33 16.79 12.28 

3 98.24 92.30 97.48 17.48 10.79 15.88 

Average  96.92 95.84 97.06 16.91 14.37 16.52 

 

Table 7.2 shows the results obtained using the adaptive foreground 

segmentation technique that we designed and implemented. 

 

Table 7.2: Results for Adaptive Foreground Segmentation. 

Accuracy (%) Pixel Ratio(dB) Image 

sequence Foreground Background Overall Foreground Background Overall 

1 99.39 97.86 99.33 22.09 16.61 21.70 

2 99.22 97.62 98.86 21.02 16.12 19.38 

3 99.59 91.83 98.71 23.80 10.51 18.85 

Average  99.40 95.77 98.97 22.30 14.41 19.98 

 

It is evident that the accuracy and the pixel ratio are nearly equal for the 

background for both techniques, in all three sequences. Moreover, foreground 

accuracy and SNR for sequence 1 have nearly equal values for both techniques. 

However, the adaptive segmentation technique provides much better results for 
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sequences 2 and 3, which include illumination changes and multi-modal regions 

respectively. 

 

In addition to the above calculations, background accuracy was calculated for 

an image sequence with no foreground present. This calculation was made for every 

frame in the sequence, and the results were plotted against the frame numbers. The 

resulting graph is shown in Figure 7.10. 
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Figure 7.10: Variation of Background Accuracy over Time. 

 

It is evident that background accuracy varies around an average of about 

99.985%. This value is much higher than that for the image sequences analyzed 

before. The reason for this is the addition of false positive pixels due to morphological 

operations, in the presence of foreground. The amount of false positive pixels reduces 

in time due to background adaptation. It should be noted that this calculation can be 

automated since there is no foreground in any of the frames. A study of an image 

sequence with foreground requires an extremely large amount of manual image 
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processing, as the correct foreground for each frame has to be identified. Therefore, 

this calculation was not performed. 

 

7.2 Human Detection and Body model Acquisition 
 

The ability to detect humans in images was tested by using 400 images with 

10 human subjects appearing in them, both alone and together. Subjects with different 

hairstyles and attire were selected to identify weaknesses in detection. These subjects 

appeared in images in different sizes and different degrees of occlusion. Objects were 

introduced to some of the images to test for false detections of them as humans. For 

convenience, the images were extracted from several image sequences from different 

scenes. For each scene, the background modeling and foreground extraction was 

carried out using the algorithms in Chapter 5. 

 

7.2.1 Methods of Evaluation 
 

The following parameters were defined to measure the performance of human 

detection: 

                Accuracy = %100×
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where 

 
hT  = Total number of human presences in the set of images 

cT  = Number of humans detected correctly 

fT  = number of false detection of foreground objects as human 
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One simple method of evaluation of the accuracy of human body model 

acquisition is subjective evaluation. The detected model was superimposed on the 

image to get a visual estimate of the accuracy of model acquisition. This method is 

straightforward and it is possible to get results using a large set of images. 

 

Subjective evaluation of body model acquisition has two limitations. One 

problem is that the ranking system is subjective. The second problem is that it does 

not provide any quantified measure that can be used for improving the system or 

comparing its accuracy against other techniques where necessary. Therefore we 

proposed the following approach for quantitative evaluation of model acquisition. We 

manually acquired model parameters of 100 images, and compared with those 

obtained using the system. The manual acquisition of model parameters is a tedious 

task and cannot be guaranteed to be accurate or consistent in all images. For example 

one might estimate torso height with some error. This was performed only on images 

without occlusion as manual estimation of sizes for occluded regions is subjective. 

For each model parameter Mp, the accuracy of model acquisition was measured as 

 

Accuracy for Mp = %
  M

   M

p

p 100
manually obtained asof  valueThe

system by the obtained asof  valueThe
×  (7.9) 

 
 

The average accuracy for each parameter is calculated by averaging the 

accuracy over the selected set of images. Overall accuracy is calculated by averaging 

these accuracy values together. 
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7.2.2 Results of Human Detection 
 

Table 7.3 summarizes the results of the evaluation of human detection. It is 

evident that the system has a very high accuracy in human detection and a very low 

false detection error. 

 
Table 7.3: Results of Human Detection. 

 
Number of images used 400 

Number of human presences( hT ) 520 

Number of humans detected correctly( cT ) 509 

Number of false detection of foreground objects as humans( fT )     4 

Accuracy 97.8% 

False detection rate 0.77% 

 
 

Figure 7.11 shows some situations where accurate detection was possible. The 

background image which has a resolution of 640×480 pixels is included to 

demonstrate the performance of the system in detecting humans appearing in different 

sizes. 
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Figure 7.11: Results of Human Detection. 
 

 
It is evident that human detection performs well despite very small regions 

representing a human, a high degree of occlusions and different angles of view. 

 

7.2.3 Subjective Evaluation of Model Acquisition 
 

A selected set of images where the detected model is superimposed on the 

image are shown in Figure 7.12. It is evident that the system has accurately detected 

the regions properly in images where the body is fully visible. 
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Figure 7.12: Images Used for Subjective Evaluation. 
 

 
In the presence of occlusion, the proportions of the detected regions seem 

correct. It has been possible to estimate the model parameters with a reasonable 

accuracy, despite the presence of different hair styles.  

 

7.2.4 Quantitative Evaluation of Model Acquisition 
 

The results of the quantitative evaluation are summarized in Table 7.4. It is 

evident that an overall accuracy of above 94% can be achieved in complete body 

model acquisition. 
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Table 7.4: Accuracy of Body Model Acquisition. 
 
Model parameter Average accuracy (%) 

Height of the head region 95.01 

Height of the torso region  94.58 

Width of the torso region 94.73 

Length of arm 92.70 

Length of leg 94.85 

Distance between shoulder and elbow 93.68 

Distance between waistline and knee 92.55 

Overall average accuracy 94.01 

 
 

7.3 Tracking 
 

7.3.1 Quantitative Evaluation 
 

Since tracking is an intermediate step of the system, there is no immediate 

method for evaluation. A method for quantitative evaluation is designed as follows. 

 

We use 20 image sequences for evaluating the performance of tracking. For 

each image sequence, a set of frames is selected for evaluation of tracking. Each set of 

frames starts from the frame following the frame where a human is detected, and ends 

when the human leaves the scene or the sequence ends. 

 

The accuracy of tracking, tA , is measured as defined in equation 7.10. 

 

%100×=
N
N

A t
t  (7.10) 
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where 

N  = total no. of frames selected 

tN  = number of frames where the human has been tracked accurately 

 

Table 7.5 shows the results of the quantitative evaluation using the selected 

image sequences. The average accuracy for tracking is around 90%. 

 
Table 7.5: Results of Evaluation for Human Tracking. 

 
Sequence No. of 

Frames( N ) 
Tracked 

Frames( tN ) 
Accuracy( tA ) 

1 461 435 94.36 
2 249 225 90.36 
3 179 165 92.18 
4 180 158 87.78 
5 190 179 94.21 
6 139 127 91.37 
7 74 67 90.54 
8 34 27 79.41 
9 80 73 91.25 
10 145 125 86.21 
11 215 198 92.09 
12 188 176 93.62 
13 124 100 80.65 
14 42 34 80.95 
15 87 77 88.51 
16 118 106 89.83 
17 106 99 93.40 
18 54 45 83.33 
19 82 75 91.46 
20 136 120 88.24 

Total 2883 2611 90.57 
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7.4 Generation of the Index and Key Frames 
 

An index generated by the system after running on a test image sequence and a 

set of key frames acquired for the same are presented in the following sub-section. 

The key frames corresponding to all events and actions recognized by the system are 

presented separately for clarity. 

 

7.4.1 Index of Events and Actions 
 

Table 7.6 is an index created for one of the image sequences the system was 

tested on. The key frames are also included together with the index. 
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Table 7.6: Sample Index after Image Sequence Analysis. 
 
Frame Number Event/Action Key frames 

23 Enter 

 
43 Walk 

 
90 Stand 

 
153 Sit 

 
219 Stand 
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239 walk 

 
310 Sit 

 
350 Use PC 

 
394 Stand 

 
414 Walk 
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7.4.2 Key Frames 
 

The following images are key frames corresponding to actions and events, 

extracted from different image sequences used for testing the system. Figure 7.13 

shows a key frame saved when a person entered the room, while Figure 7.14 shows a 

key frame saved when a person left the room. The key frame shown in Figure 7.15 

shows a person standing at one place in the room.  

 

 

Figure 7.13: Key Frame Showing a Person Entering the Room. 
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Figure 7.14: Key Frame Showing a Person Leaving the Room. 

 

 

Figure 7.15: Key Frame Showing a Standing Person. 

 

When a person is sitting, a pair of key frames is generated showing the body 

postures before and after sitting. Figure 7.16 shows a pair of key frames saved when a 

person sits down. 

 



 92 

 

Figure 7.16: Key Frames Showing a Person Sitting. 

Figure 7.17 shows a key frame saved when a person is using a computer. The 

key frames recorded for the actions of placing an object on the table and taking an 

object away from the table are shown in Figures 7.18 and 7.19 respectively. Figure 

7.20 shows a key frame recorded when a person in the room blocks the view of the 

camera. 

 

 

Figure 7.17: Key Frame Showing a Person Using a Computer. 
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Figure 7.18: Key Frame Showing a Person Placing an Object. 

 

 

Figure 7.19: Key Frame Showing a Person Removing an Object. 
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Figure 7.20: Key Frame Showing an Unusual Event. 

7.4.3 Visualization of the path of movements 
 

Figure 7.21 is an image frame extracted from an image sequence showing a 

person moving in the scene. Figure 7.22 illustrates the visualization of the path of 

movement for a single person in the scene.  

 

 
 

Figure 7.21: Sample Frame from an Image Sequence Showing a Single Person. 
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Figure 7.22: Visualization of Motion Path for a Single Person. 
 

 
Figure 7.23 is an image frame extracted from an image sequence showing two 

persons in the scene. Figures 7.24 shows how the paths of these two persons are 

visualized, enabling easy monitoring. 

 

 
 

Figure 7.23: Sample Frame from an Image Sequence Showing Two Persons. 
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Figure 7.24: Visualization of Motion Path for Two Persons. 
 
 

7.4.4 Evaluation of Event Recognition 
 

The accuracy of action and event recognition was evaluated using 20 image 

sequences containing different actions and events. Table 7.6 shows the accuracy of 

recognition of events and actions in the image sequences that we used with the 

system.  
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Table 7.7: Accuracy of Action and Event Recognition. 

Classified as 
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Enter(10) 
 

10 0 0 0 0 0 0 0 0 0 100 

Walk(20) 
 

0 18 2 0 0 0 0 0 0 0 90 

Exit(10) 
 

0 0 10 0 0 0 0 0 0 0 100 

Stand(10) 
 

0 0 0 8 0 0 0 0 0 2 80 

Sit(10) 
 

0 0 0 0 9 0 0 0 0 1 90 

Use 
PC(10) 

0 0 0 0 1 9 0 0 0 0 90 

Take 
object(5) 

0 0 0 0 0 0 5 0 0 0 100 

Place 
object(5) 

0 0 0 0 0 0 0 5 0 0 100 

Unusual 
event (5) 

0 0 0 0 0 0 0 0 5 0 100 

 
 

The values obtained for classification accuracy are between 80% and 100%. 

 

7.5 Discussion 
 

In this research we designed and implemented a system that can detect humans 

and recognize a selected set of human actions and events using video image 

sequences acquired from stationary cameras mounted in an indoor scene. Context data 

related to the scene have been extensively used to achieve accurate results. 

 

The assumptions made in the system design make it possible to be applied 

directly in indoor scenes under CCTV camera surveillance. The use of centralized 
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scene context increases the flexibility of the system. With only minimum changes to 

the rest of the system, the system can be tailored to function at different locations by 

entering appropriate scene context. 

 

The results shown in the previous sections of this chapter indicate that the 

system is able to detect humans and recognize actions and events with a high 

accuracy. The following subsections will discuss the results obtained in different 

functional modules of the system. 

 

7.5.1 Background Modelling and Segmentation 
 

The background model that we have proposed uses a selection map to identify 

the algorithms most suitable for segmentation in each region. Since the technique is 

adaptive, slow changes in the background are allowed increasing the usability of the 

system. Background regions with high variance, such as those corresponding to 

computer monitors, are correctly segmented, as shown by the results. 

 

An inherent problem with segmentation based on background subtraction is 

that it fails if the camera is moving. However, for small movements of the camera, 

background adaptation can remodel the background corresponding to the new camera 

position. 
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7.5.2 Human Detection and Modelling 
 

The algorithm we propose here facilitates human detection in the presence of a 

very high degree of occlusion, as detection is based only in the head-shoulder region. 

As demonstrated by the high accuracy obtained, the algorithm is capable of human 

detection accurately irrespective of orientation, size and hair styles. The algorithm for 

modelling can acquire model parameters reasonably accurately, as seen in images 

used for subjective evaluation. The quantitative evaluation yields high accuracy, 

demonstrating that the algorithm is capable of modelling human bodies accurately 

despite the presence of occlusion. 

 

7.5.3 Tracking and Generation of Results 
 

Tracking of humans detected in the images is performed using three similarity 

measures. However, it seems that only two, namely overlapping bounding boxes and 

matching shoulder region histograms are sufficient. The histogram matching 

technique we suggest is quite suitable for situations where occlusion is present and 

tracking in images from multiple cameras is necessary.  

 

The recognition of actions and events are based on a simple set of rules and a 

state machine. The state machine facilitates more accurate action recognition as the 

number of possible actions at a particular state is less than the total number of actions. 

The results indicate that some actions and events, such as entering the room and 

standing are detected more accurately than others. 
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The generation of an index to the video sequence results in reducing the search 

time drastically when it comes to tracing an incident. A faster way of browsing the 

image sequence is facilitated by the key frames. However, it is possible for the index 

to become large very quickly in a situation where several humans occupy the room 

and perform actions for a prolonged period of time, or if humans often move in and 

out of the room. Although an attempt can be made to detect re-entry to the scene 

using the histogram matching technique, its accuracy cannot be guaranteed as people 

with similar attire can be recognized as re-entrants. If a method for person recognition 

can be incorporated to the system, then it is possible to create a secondary index based 

on the name or identifier of the person so that the searches can be made narrower. 

 

The visualization of the motion path is a simplified way of presenting how 

each human moved within the scene. However, the resulting image can be quite 

cluttered in case of a human moving a lot inside the scene.   
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Chapter 8 
 

Conclusion and Future Work 
 

8.1 Conclusion  
 

In this thesis, we have proposed the design and implementation of a system 

that can detect the presence of humans and recognize their actions in a closed 

environment, using video image sequences obtained from stationary cameras in the 

scene. An index to the sequences is created by recording the detected human 

presences and actions, facilitating faster searching of the image sequence for a 

particular event or action. Key frames extracted from the sequences and visualizations 

of paths traversed by the humans in the scene are recorded together with the index to 

provide a quick way of browsing the sequence. 

 

The scene context is fed into the system in addition to the images to achieve 

accurate results. By changing the scene context as appropriate, the system can be used 

in different scenes. 

 

The system uses Background subtraction for segmenting the foreground from 

the image frames. A new technique for background initialization and adaptation is 

used. The scene context and an initial image sequence are used for constructing a 

background model. This model is able to make a good representation of the scene due 

to the inclusion of a selection map. The selection map facilitates improved 

performance while avoiding unnecessary complexity in processing, by allowing 

different algorithms on different regions of the image. Segmentation and background 

adaptation take place together to ensure accurate segmentation under slow changes in 
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the background. The experimental results demonstrate that these techniques perform 

well in the presence of illumination changes and backgrounds with multimodal 

regions. It is possible to obtain an average segmentation accuracy of 99.0%, and a 

pixel ratio of 20.0 dB, as defined in Chapter 4. For image sequences with illumination 

changes, foreground segmentation has accuracy above 99%, compared to an accuracy 

of 93% using conventional foreground segmentation. . The background adaptation is 

robust and the background model stabilizes within 2-3 frames of an illumination 

change. 

 
 

Human detection, in the presence of occlusion, is performed by using a top-

down matching technique with a predefined head-shoulder model, up to an overall 

accuracy of 97.8%. The initial body model based on the detected height of the head is 

refined using image features and geometric constraints to achieve an average accuracy 

of 94% in constructing a complete body model. According to subjective evaluation, 

the accuracy of model acquisition was found to be reasonably accurate. 

 

Once detected and modeled, the humans are tracked in the subsequent image 

frames. The average accuracy of tracking was found to be 90%. The model features 

obtained by tracking are then evaluated against a set of rules and a state machine to 

recognize actions and events. After evaluating using 20 sets of image sequences, the 

accuracy of Recognition was found to be between 80% and 100%. Subjective 

evaluation of key frames shows that they represent the corresponding actions 

reasonably well. 
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8.2 Future Directions 
 

At its current state, the system can be used to facilitate semi-automated 

surveillance. Human intervention is necessary to search the index and key frames and 

observe the appropriate section of the video sequence to detect what exactly 

happened. However, the system can be improved in certain aspects such that it 

performs better and can be used as a system that can facilitate fully automated 

surveillance. The following sub-sections describe some such future directions. 

 

8.2.1 Incorporating Person Recognition 
 

As mentioned in section 7.5.3, the search time within the index can be reduced 

drastically if person recognition is incorporated to the system. This can be facilitated 

in a number of ways. It is possible to install smart-card enabled door locks and get the 

person identification from the card readers. However, the most common method used 

for person recognition in a smart environment is face recognition. This requires that a 

segmented image contains the face to be identified with a reasonable resolution. 

Several techniques for face recognition exist, while the most common techniques are 

based on Neural Networks and Elastic Graph Matching. Due to the high 

dimensionality of the problem, dimensionality reduction using Karhunen-Loeve 

Transform or Gabor wavelet transform is common. Although existing face 

recognition systems perform well on frontal images with consistent lighting, they are 

unable to recognize faces accurately in varying conditions using face images taken 

from different angles. 
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8.2.2 3D Human Body Modeling and Tracking 
 

The human body model currently used is a 2 dimensional model. However, 

certain actions can be ambiguous when represented by a 2D model. Moreover, the 

system does not use the information from the whole model for action recognition. If a 

3D body model can be acquired and used for action recognition, the results will be 

more accurate. 

 

The current system performs tracking only with respect to image coordinates, 

not real world coordinates. If 3D tracking is possible, the actions can be recognized 

more accurately as the exact position of a human in the room is known. A set of 

calibrated cameras can be used to facilitate this, as the cameras used by the system are 

stationary and having fixed focus throughout the sequences. 

8.2.3 Improving the Recognition Capability 
 

The set of actions and events recognized by the system is quite limited. More 

actions can be incorporated to make the system more useful. Instead of limiting the 

system to recognize actions in terms of body gestures such as walking, standing and 

sitting, Hand and head gestures can also be incorporated. However, the main 

requirement for this is the ability to acquire high resolution images using a sufficient 

number of cameras to ensure that the hands are visible to at least one of the images all 

the time. 

8.2.4 Facial Expression Recognition 
 

If facial expressions of humans in the scene can be recognized, the 

functionality of the system can be greatly enhanced. Facial expressions convey a large 
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amount of information about human emotions and behavior. They convey this 

information much quicker than any other source of information. Moreover, the facial 

expressions are the most difficult to suppress, implying that the accuracy of the 

information is high, provided that the facial expressions can be identified correctly. 

For these reasons, automated recognition of facial expressions has been a very active 

research topic.  

 

However, the task of automatic facial expression recognition is quite difficult, 

due to a number of reasons. The difference between some facial expressions is only a 

couple of muscular movements. Therefore adequate resolution in face images 

becomes a necessary condition. Some expressions, for example raising eye brows, 

have a temporal variation. In addition, noise, partial occlusions, different orientations 

of faces, has to be dealt with. 

 

A popular approach to facial expression recognition is based on the Facial 

Action Coding System (FACS) developed by Ekman and Friesen in 1978. In this 

system, a face is broken down into 44 action units (AUs), 30 of which are related to a 

contraction of specific facial muscles, and 14 which are unspecified [97].  Research 

laboratories such as Vision and Autonomous Systems Centre, Carnegie Mellon 

University, expand on this system and create their own databases, which encompass 

many more variables [98].  This database can be used in facial expression recognition 

systems with greater accuracy than FACS. 

 

However, there are other approaches for facial expression recognition. Most of 

them are common in the area of pattern recognition. These include maximum 
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likelihood estimates, artificial neural networks, Gabor filters and Eigen/Fisher face 

based algorithms [42][99]. 
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Appendix A: Additional Contributions 
 
 

The following research was carried out at ATR Media Information Science 

Laboratories, Kyoto, Japan, while the author was working there as an intern 

researcher. 

 

A.1 Overview 
 

A vision based interface for cursor control by head movement is presented. A 

face detection and tracking system was modified to map the tip of the nose of the user 

to the cursor position. Another vision-based algorithm allowed the user to enter a 

click by opening the mouth. The system was evaluated using the ISO 9241-9 

international standard techniques for testing input devices. The Fitts’ law information 

throughput rate of cursor movements was measured to be 2.0 bits/sec. Results of a 

usability assessment based on the same standard are also reported and discussed. The 

interface was used together with Dasher, a software system that can be used to enter 

text using cursor movements, as a hands free text entering application, and the results 

were studied. A typing speed of 7-12 words/minute was measured, depending on the 

level of user expertise. Performance of the system is compared to a conventional 

mouse interface. 

 

A.2 Background 
 

At present, the interfacing between computers and their users is dominated by 

keyboard and mouse. There is a growing interest in alternative input devices due to a 

number of reasons. Both keyboard and mouse requires extensive use of hands and 
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fingers, and therefore are difficult to use for people with disabilities related to 

hands/fingers. The human gestural capability is not restricted to hand movement, so it 

is possible to make use of this capability by developing devices that can interface 

these gestures and thereby enhance human computer interaction. Another advantage 

of alternative input devices is that they allow the hands to be used for some other 

purpose while allowing interaction with the computer. 

 

Head movement has some advantages over other gestures when it comes to 

interacting with a computer effectively. Head movement is independent of the 

movements of limbs. Moreover, head movement remains possible for most disabled 

persons. Therefore it can be considered a means of data input. These data can be text, 

graphics, or graphical user interface control. Numerous researches have studied head 

movement [7] and its use as a human-computer interface [1, 2, 8, 9]. 

 

Our main interest is on using the head movement for cursor control. For this, 

the three dimensional head movements have to be tracked and mapped to two 

dimensional cursor movements on the screen. This can be facilitated using wearable 

devices, infrared beams or computer vision. Wearable devices are intrusive to an 

ordinary user and expensive at their current state. Eye trackers based on infra red 

sources [12] are expensive, though they do not require wearables or markers. With the 

availability of powerful hardware and easy-to-install PC cameras at relatively low 

prices, the use of vision based interfaces have highly prospective. Some of the 

systems use markers on the head/face for head tracking. The Nouse system [4, 5] 

tracks the tip of the nose and uses it to control the cursor. However, this system needs 

initialization for nose detection, making complete hands-free operation impossible. 
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Another problem associated with Nouse is the fact that it maps the displacement of 

nose in the input image to the velocity, not displacement, of cursor movement in the 

same direction, making input tasks like drawing extremely difficult. 

 

The remainder of this chapter presents the development and evaluation of a 

vision based interface for cursor control using head movement. Head movement is 

used to control the cursor position while clicking can be performed by opening the 

mouth. Section A.3 describes the algorithms used in the system. Section A.4 describes 

the procedure and results of the performance evaluation. A brief description of the 

usability assessment is contained in Sections A.5 and A.6. Section A.7 presents the 

results of using the system to interface to the text entry software called Dasher [11] to 

create a hands-free text entering system, and compares the predicted and measured 

typing speeds. Section A.8 contains a brief description on using the system for figure 

drawing. Sections A.9 and A.10 present the conclusion and possible future directions 

respectively. 

 

A.3 Approach 
 

Figure A.1 outlines the functionality of the system. Images captured using the 

camera mounted on the computer are used to detect the user’s face. Face detection is 

initiated by blinking. The tip of the nose is subsequently detected. The movement of 

the nose tip is tracked and mapped to the movement of the cursor. The mouth region 

is found and tracked to detect whether the mouth is opened and clicking of the left 

mouse button is simulated by opening the mouth. The following sub-sections describe 

these functions in detail. 
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Figure A.1: Schematic of the Face Tracking Interface. 
 

A.3.1 Detecting and Tracking the Eyes 
 

Detection of the eyes is based on blink detection. This eliminates the need of 

initialization, and makes the system independent of skin color and lower face features 

that cause problems in color-based face detection systems. A modified version of a 

system that was previously developed by our group has been used. First, the 

difference image between the current frame and the previous frame is calculated and 

thresholded to extract pixels corresponding to the user’s movements. Then, head 

movement is estimated and cancelled out so that only eye movement remains in the 

resulting image. Blinking of eyes causes a symmetric pattern in this image. After 

connected component labeling, candidate patterns are selected and validated against a 

set of geometrical constraints (size, distance and alignment). This is possible under 

the assumption that the user is sitting in front of the computer while the camera is 

fixed just above the monitor. If a pattern satisfying the conditions is found, a face is 

detected. If there are multiple patterns, the best match is selected. 
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However, blinking does not result in a pattern that is suitable for tracking a 

face. Because of this, a “Between-the-Eyes” template is used to track the location of 

the face. This region of the face has a distinctive pattern; a relatively bright part at the 

nose-bridge and relatively dark parts at the eyes like wedges on both sides. Moreover, 

the region is relatively stable for changes in facial expressions. Therefore, face 

tracking is based on tracking this region and then locating the eyes by searching in a 

small area in relation to this region. To ensure accurate tracking under illumination 

changes due to face motion or background lighting, the between-the-eyes template is 

updated for each frame.  

 

A.3.2 Detecting and Tracking the Nose Tip 
 

After the eyes are located, the tip of the nose is detected. This is located in a 

small region in relation to the eyes as shown in Figure A.2; therefore the search area 

is much smaller compared to the full image. The nose tip is convex shaped and 

appears bright when compared to the other regions of the face in this search area. 

Because of its approximately spherical shape, this bright point is relatively stable 

under head movement if the lighting is fixed. In the light of the above observations, 

the brightest point in the nose tip search area is selected as a candidate for nose tip. 

This is validated for approximately equal distance from the eyes. If this criterion is 

fulfilled, the nose tip is tracked in subsequent frames using an updating template; that 

is a small rectangular region around the detected nose tip. In subsequent frames, the 

best matching point with the template is searched around the previous position. Then 

the nose tip is registered again to the brightest point in a very small region around the 

matching point. Thereafter, the nose tip template is updated. If the template is found 

to lie out of the nose tip search area, nose detection is performed again. Figure A.3 
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shows the results of the face tracking algorithm, indicating positions of the detected 

eyes and nose tip. 

 

 

 
 

Figure A.2: Nose Tip Search Area Relative to the Eyes. 
 

 

 
 
Figure A.3: Detecting and Tracking Points Corresponding to Between-the-eyes, Eyes, 

and Nose Tip. 
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A.3.3 Mapping Nose Tip Movement to Cursor Movement 
 

At this point it is necessary to match the nose tip, which is specified in image 

coordinates, to the cursor position, which is specified in screen coordinates. We use a 

simple mapping scheme which needs very little calibration. The initial position of the 

nose tip, once detected, is mapped to the center of the screen. Assuming that a user 

looks faces the monitor and blinks when he starts using the system; this provides a 

quite comfortable mapping. However, it is possible to adjust the cursor position if the 

initial matching is found to be offset. 

 

The displacement of the nose tip from its initial position is mapped to the 

displacement of the cursor from the center of the screen. Setting of appropriate gain 

between these two displacements is very important. Too low a gain will result in neck 

fatigue as a large amount of neck movement is needed to reach the corners of the 

screen. On the other hand, if the gain is too high, cursor control will be more difficult. 

Also, jitter in cursor position (due to noise in images) increases with high gain. We 

adjusted the horizontal gain such that it is possible to cover the entire screen without 

uncomfortable neck movements. Since extension/flexion (looking up/down)requires 

more effort compared to rotation of the head (looking left and right), we set a ratio of 

1:1.4 between the vertical gain and the horizontal gain. 

 

To reduce the jitter in cursor movement, the cursor coordinate is refined by 

temporal low pass filtering. This is performed by taking a weighted average of the 8 

most recent cursor positions. 
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A.3.4 Using the Mouth to Click 
 

We use the gesture of opening the mouth as a click of the left mouse button. 

The algorithm we used for this is a simplified version of a system that was designed to 

use mouth movement as an analog input to a computer. For this, the first step is to 

locate the region of the image corresponding to the mouth region of the face. An 

initial approximation is made by using the results of face detection, that is, the 

positions of the eyes and nose. To ensure that the mouth region is extracted accurately 

under different head rotations, this has to be refined further. The local intensity 

minimum present beneath the upper lip is used for this purpose. 

 

The second step is to detect open mouth. Since open mouth is a cavity, it 

appears as a darker area than the rest of the face, under most lighting conditions. Also, 

the amount of red color present in this region is relatively high. Based on these 

observations, we evaluate the percentage of pixels that have intensity below a given 

threshold and red component above another threshold. If this percentage is found to 

be higher than a predetermined value, a single mouse click event is sent. Keeping the 

mouth open or closing the mouth does not have an effect. 

 

A.3.5 Implementation 
 

We used a Sony DFW-V500 digital camera with a Firewire interface for image 

acquisition. The reason for using the Firewire interface was to ensure a high data rate 

from the camera to the system. The system can be configured to run with a USB 

camera without a problem. However, it is desired to have a frame rate of at least 15 

frames per second, which some of the low end USB cameras are unable to provide. 



 132 

The system was written using C++, and runs at 30 frames per second on a PC with an 

Intel Pentium III 850 MHz processor. CPU utilization is 34% until face is detected, 

decreases to 22% afterwards. Memory usage is around 8-10 MB. 

 

A.4 Performance Evaluation 
 

We decided to evaluate the performance of our system as a pointing device. 

This is very useful for three main reasons. If it is possible to obtain a quantitative 

measure of usability for this system, it is possible to compare it with other input 

devices. Weaknesses of the system, if any, can be found so that improvements can be 

made. Strong points of the system can be detected to identify prospective applications. 

The remainder of this section describes the performance evaluation we conducted and 

the results of the same. 

 

A.4.1 The ISO 9241-9 Standard 
 

The ISO 9241-9 standard [6] defines the requirements and performance 

evaluation techniques for non-keyboard input devices. This defines the throughput, in 

bits/second, as a performance index for these devices. The calculation of the 

throughput is based on Fitts Law for moving to a target [3]. Procedures and formulae 

for calculating the throughputs for different tasks like tapping, and tracing are defined 

here. Also included in the standard is a usability assessment questionnaire. We 

selected the multi-directional tapping task defined in the standard and adopted the 

usability assessment questionnaire for evaluating our system. 
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A.4.2 Multi-direction Tapping Task 
 

Figure A.4 illustrates the ISO 9241-9 task [6] as implemented in our 

experiments. A 240 pixel diameter circle was displayed at the center of a 640x480 

pixel resolution monitor. Seventeen circular targets, each with a diameter of 21 pixels, 

were spaced equally around the perimeter of the circle. Subjects were required to 

move the cursor from one target to another, in the opposite side of the circle, 

according to the sequence indicated by arrows in the figure. Subjects pressed the 

space bar to indicate reaching a target, and the next target was highlighted by 

changing its color to red.  

 

 
 

Figure A.4: Multi-directional Tapping Task. 
 

A.4.3 Experimental Procedure 
 

Eight volunteers, who were regular computer users, participated in the 

experiment. None of them were involved in the development of the system, or had 

used it before the experiment. Each subject was briefed about the task at the 

beginning of each experiment. Since we wanted to observe the effect of learning to 

use the device, warm-up trials were not allowed. 
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Each test subject performed a total of 20 repetitions(hereafter referred to as 

blocks) of the multi-directional pointing task, alternating between using the mouse 

and the face-tracker to control the cursor, starting, in all cases with the mouse since 

the users are experienced mouse users. Breaks were allowed between blocks. Total 

time for completion of all 20 blocks was about 40 minutes. To calculate throughput 

values, pixel coordinates of the cursor at time of target selection were recorded, 

together with time taken to reach it.  

 

A.4.4 Results 
 

Figure A.5 shows sample trajectories for one user completing one block of the 

experiment.  It is evident that there are some shaky movements present in the cursor 

trajectories for the system. This is due to both the jitter in the movement and possibly 

head movement behavior too. Figure A.6 shows the variation of movement times, 

averaged over the eight subjects, for successive blocks. Learning effect of the task is 

shown by the decrease of movement time with block number. Lower values for 

movement time were observed for mouse while face tracker exhibited a better 

learning effect, especially for the first three blocks. Neither the mouse nor the vision-

based face tracker shows significant orientation dependence of movement times. The 

mouse throughput, averaged over our last five trials, was 4.7 bits/sec, which is similar 

to the value of 4.9 bits/sec measured recently also using the ISO task [6]. For the face 

tracking pointer, the average throughput was 2.0 bits/sec. This value exceeds the 1.8 

bits/sec reported for a joystick, but is lower than the 3.0 bit/sec for a trackball and the 

2.9 bit/sec for a touchpad, measured previously using the ISO task [8]. Individual user 

mouse and nose pointer throughputs were not significantly correlated (Pearson r = -
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0.05; Spearman’s ? = 0.05), suggesting that there is no strong relationship between 

motor skills for using these pointing devices. In contrast to findings with a head-worn 

head tracking system [9] the vision-based system we studied showed no significant 

dependence of throughput on movement direction orientation, as shown in the polar 

plot of throughput versus orientation, as may be seen in figure A.7.  

 

 
 
Figure A.5: Sample Trajectories for the ISO Standard Multi-directional Tapping Task. 
 

 

 
 

Figure A.6: Learning Curves. 
 



 136 

 
 

Figure A.7: Average Movement Time (sec) Versus Orientation (deg) for the ISO 
Standard Multi-directional Tapping Task. 

 

A.5 Usability Assessment 
 

A usability assessment was conducted together with the ISO tapping task. The 

eight subjects answered a questionnaire adopted from the ISO 9241-9 standard, rating 

the system on eight different criteria. The rating had a seven-point scale with 1 

representing the worst rating and 7 the highest. A summary of this rating is presented 

in Table A.1. 

 

Table A.1: Summary of Responses to the Usability Assessment Questionnaire 
 

Criterion Response mean Mode Range 

Strength required 4.5 5 3.5 
Smoothness 3.9 (2,3,6) 2-6 
Effort required 4.0 (3,5) 3-5 
Accuracy  3.5 (2,3,4,5) 2-5 
Speed   4.1 (2) 2-7 
Comfort  4.2 (4)  3-5 
Fatigue  4.0 (4)  2-6 
Overall  4.9 (6)  4-6 
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In addition to the above, Overall neck effort, when rated on Borg’s 11 point 

scale [6], was found to be 3.7 (3=weak, 4 = moderate), with the responses ranging 

from 0 to 6 with a mode of 4. 

 

The above responses indicate that all of the average responses are close to the 

middle of the scale. The strong points of the system are the overall usability and low 

strength. The main weaknesses are the lack of smoothness and accuracy. 

 

A.6 Descriptive User Feedback 
 

The users were asked two questions for which they were supposed to provide 

descriptive answers. The questions and the answers obtained are shown below. The 

number in brackets in front of each answer indicates the number of subjects who 

provided the answer. 

 

• First question: “What are your suggestions for improvements?”  

 

§ greater smoothness (3) 

§ greater accuracy (2) 

§ more displacement gain (2) 

§ less displacement gain (1) 

§ velocity rather than position control (1). 

 

Most users suggested improvements in smoothness and accuracy of the pointing 

device, in agreement with the results from the first part of the questionnaire, listed in 

the previous section.  
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• Second question: “How would you imagine the system being used?” 

 

§ interface for the disabled (5) 

§ for use as a dual pointer (2) 

§ interface for computer games (2).  

 

A.7 Hands-Free Text Entry 
 

Text entry to an electronic device is a task that involves a large amount of 

hand movement, making it a difficult task for disabled users. The Dasher system [11, 

12] is a text entering system based on 2 dimensional movements using a pointing 

device. The user moves the mouse cursor towards letters arranged vertically in 

alphabetical order. The speed can be controlled by the horizontal displacement of the 

cursor. When a letter is selected by reaching it, subsequent letters appear within 

regions proportional to their conditional probabilities so that it becomes easier to 

select more common words. These probabilities have been learnt into the system by 

training it with a large amount of text. Our objective was to test Dasher with the 

system we designed, to evaluate its usability for hands-free text entry. Figure A.8 

show a screen capture of Dasher being used together with our system to enter text. 

 

Dasher can provide an average typing rate of 90 characters per minute using 

mouse, that is, a pointing device with a throughput of 5 bits per second. Based on this 

observation, we predicted that the system should be able to enter text at a rate of 38 

characters per minute. To test whether we can achieve the predicted speed, we 

conducted an experiment using two subjects who were familiar with using the system. 
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The subjects entered eight excerpts, each contained approximately 20 words, using 

the system. The excerpts altogether contained 160 words and 819 characters. These 

were from Hans Christian Andersen’s story “The Little Match Girl”, which is not 

contained in the corpus of texts used to train Dasher’s language model. The text was 

dictated to the users while they were entering the text. The average typing rate was 38 

characters per minute (7.3 words/minute). It is evident that the measured rate is equal 

to the predicted rate of typing. A maximum rate of 61 characters per minute was 

achieved for the same task by one of the authors who have had considerable 

experience using Dasher.  

 

 
 

Figure A.8: Operating the Dasher Text Entry Interface with Head Movements. 
 

A.8 Drawing 
 

Drawing is a task for which the usability is difficult to assess compared to 

other tasks. However, we decided to test how useful the system for this task is. A 

simplified and self contained painting application was designed so that colors and 

brush shapes can be picked up with relatively small head movements. The images 

drawn were saved with a file name constructed using the date and time so that no text 
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entry is needed. Figure A.9 illustrates a simple drawing made by one of the authors. It 

was observed that jitter in the cursor position made drawing a bit difficult, but the 

drawings looked fairly similar to those done using the mouse. However, it was also 

observed that being able to look at the drawing directly while drawing is an advantage 

over using a tablet, and having no hard ‘pen’ or ‘brush’ did not cause a problem. 

 

 

 
 

Figure A.9: A Drawing Created Using Head Movements 
 

A.9 Conclusion 
 

We have developed a vision-based interface that allows the user to control 

cursor position by pointing with the nose and to enter single clicks by opening the 

mouth. No special hardware is required, other than for a Firewire or a USB camera. 

The system initialization and operation is completely hands-free, although novice 

users sometimes require minor calibration. Using the international standard method 

for evaluating pointing devices we measured the information throughput of the system 

and found it to be lower than a mouse but slightly higher than a joystick. Use of 

Dasher together with the system demonstrated how the system can be used directly 

for hands-free text entry. With the measured throughput, we were able to accurately 
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predict the typing rate for using Dasher with our system. Although there was no 

systematic evaluation, the system was used for drawing simple pictures and it was 

observed that the appearance of the images was similar to those drawn using mouse. 

  

A.10 Future Directions 
 

From the trajectories of cursor movement and user feedback, it is evident that 

the performance of the system can be improved further by reducing jitter present in 

the nose tip coordinate. Evaluation of the performance of mouth clicking will be 

useful. Functionality can be improved by incorporating other forms of inputs such as 

double clicks and drag-drops. Further applications will also be considered. Another 

important future direction is to evaluate the system with disabled users, to whom the 

system will be more useful than for others. 
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