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Summary

The objective of the research described in this thesis is to investigate some proper-

ties of a class of linear systems with input saturation, and to design the correspond-

ing composite nonlinear feedback controller to achieve satisfactory certain tracking

performance.

In this thesis, we have extended the composite nonlinear feedback control law

from single-input-single-output systems to multi-input-multi-output systems, from

continuous time systems to discrete time systems. We have explored the problem of

asymptotic time optimal tracking for a class of linear systems with input saturation.

A formula on the optimal settling time is given and the corresponding composite

nonlinear feedback control law can serve as a proper control law to approximate

the optimal settling time.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Composite Nonlinear Feedback Control

Nonlinearities are widely coexisting with real physical systems. One of the com-

monly seen nonlinearities is the actuator saturation. For this actuator saturation,

it can be described as the following mapping from input x to output y:

y =




a if x > x+

f(x) if x+ ≥ x > x−
b if x ≤ x−

(1.1)

For linear actuator saturation with equally distribution, a = −b and f(x) = x

and x+ = −x− > 0. It is well known that there are two main approaches to deal

with actuator saturation. The first approach is to neglect the saturation in the

first stage of the controller design and then add some problem-specific schemes to

overcome the adverse effects caused by the saturation. The basic idea behind these

schemes is to introduce additional feedbacks in such a way that the actuator stays

properly within its limits. Most of these schemes lead to improved performance

1



Chapter 1. Introduction 2

but poorly stability properties.

Another approach is more systematic. The control law designed should meet

either the performance or stability requirement. It analyzes the closed-loop system

under actuator saturation systematically and redesigns the controller in such a way

that the performance is retained while stability is improved. This is the approach

we will take in the thesis.

The composite nonlinear feedback control was first proposed by Chen et. al.

in ([1]) and has been applied successfully to the single input single output (SISO)

linear systems with actuator saturation. In this thesis, we will extend this controller

design scheme to the multi-input multi-output (MIMO) linear systems and discrete

time systems.

1.1.2 Asymptotic Time Optimal Tracking

Time optimal control has been the research focus of a lot of researchers and engi-

neers since the middle of last century. In [23], Ryan first described the trajectory of

a system output in his historical paper. In [16], Bushaw gave a mathematical solu-

tion to a relatively simple optimal control problem in 1953. Contiuous research has

been done by a lot of researchers, including Rose (1953, [24]), LaSalle (1953, [25]),

(1960, [26]), Bellman (1956, [27]), Pontryagin (1956, [28]), et. al. However, we

have paid much attention to the problems about asymptotic time optimal control

and tracking.
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Nearly all the previous issues on time optimal control have been focused on

point-point time optimal control and tracking. But in real physical systems, we

have some other issues to deal with, such as fast tracking, less overshoot and less

undershoot. Moreover, it is generally not necessary to have a precise point to point

tracking in practical situations, such as in missile tracking. When the missile is

approaching the target aircraft, it can destroy the aircraft effectively if the missile

explodes in a nearby region. So it does not necessarily hit the aircraft. Instead,

in some applications, it would be more preferable to consider asymptotic tracking

where the tracking target is defined as a small neighborhood of the given reference.

We would like to track the reference as soon as possible. So the issues concerned

the optimal settling time will be of importance.

The settling time quantifies the time it takes the transient to decay below

a given settling level, say ε, commonly between 1% and 10%. It is defined, as in

([22]), by

ts = infδ {δ : |y(t) − 1| ≤ ε, for all t ∈ [δ,∞)} (1.2)

Here the step response of the system has been normalized to have a constant final

value.

In this thesis, we will quantify the optimal settling time (1.2) to a specific

system, a linear system with actuator saturation at input. And moreover, the cor-

responding controller design will be presented to approximate the optimal settling

time.
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1.2 Organization of Thesis

The thesis is organized as following:

In Chapter 2, we extend the composite nonlinear feedback control law from single-

input-single-output systems to multi-input-multi-output systems. The state feed-

back control law and the output feedback control law are both given to achieve

asymptotic tracking for a linear input-saturated system.

In Chapter 3, we derive the discrete time composite nonlinear feedback control law.

Then a whole controller design process with identification, design and simulation

on a dual-stage hard disk drive is given in Chapter 4.

In Chapter 5, we explore the problem of asymptotic time optimal tracking for a

class of linear systems with actuator saturation. A formula on the optimal settling

time is given and the corresponding composite nonlinear feedback control law can

serve as a good control law to approximate the optimal settling time.

Then in the last chapter, concluding remarks and recommendations for future work

are included.



Chapter 2

CNF Control for Linear MIMO
Systems with Input Saturation

2.1 Introduction

Every physical system in our real life has nonlinearities and very little can be

done to overcome them. Many practical systems are sufficiently nonlinear so that

important features of their performance may be completely overlooked if they are

analyzed and designed through linear techniques (see e.g., Hu and Lin [18]). For

example, in the computer hard disk drive (HDD) servo systems (see e.g., Chen et

al. [1]), major nonlinearities are friction, high frequency mechanical resonance and

actuator saturation nonlinearities. Among all these, the actuator saturation could

be the most significant nonlinearity in designing an HDD servo system. When the

actuator is saturated, the performance of the control system designed will seriously

deteriorate. As such, the topic of nonlinear control for saturated linear systems has

attracted considerable attentions in the past (see e.g., Garcia et al. [39], Henrion

et al. [40], Suarez et al. [42], and Wredenhagen and Belanger [46] to name a few).

5
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Most of these works are using approaches based on certain parameterized Riccati

equations.

Typically, when dealing with “point-and-shoot” fast-targeting for single-input

and single-output (SISO) systems with actuator saturation, one would naturally

think of using the well known time optimal control (TOC) (known also as the bang-

bang control), which uses maximum acceleration and maximum deceleration for a

predetermined time period. Unfortunately, it is well known that the classical TOC

is not robust with respect to the system uncertainties and measurement noises. It

can hardly be used in any real situation. For SISO systems with input saturation,

another commonly used controller for target tracking is known as the proximate

time-optimal servomechanism (PTOS), which was originally proposed by Workman

[9] to overcome the above mentioned drawback of the TOC design.

Inspired by a work of Lin et al. [8], which was introduced to improve the

tracking performance under state feedback laws for a class of second order systems

subject to actuator saturation, Chen et al. [6] have recently extended the technique

to general SISO systems with measurement feedback. The work of Chen et al. [6]

has been successfully applied to design an HDD servo system, which outperforms

conventional methods by more than 30%. The extension of the results of [8] to

multi-input and multi-output (MIMO) systems under state feedback was reported

in a nice work by Turner et al. [44]. However, the extension was made under a

pretty odd assumption on the system that excludes many systems including those

originally considered in [8]. The restrictiveness of the assumption of [44] will be
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discussed later. Also, as in [8], only state feedback is considered in [44].

In this chapter, we present a design procedure of composite nonlinear feedback

(CNF) control for general multivariable systems with actuator saturation. We

consider both the state feedback case and the measurement feedback case without

imposing any restrictive assumption on the given systems. As in the earlier works

[6, 8, 44], our CNF control consists of a linear feedback law and a nonlinear feedback

law without any switching element. The linear feedback part is designed to yield

a closed-loop system with a small damping ratio for a quick response, while at

the same time not exceeding the actuator limits for the desired command input

levels. The nonlinear feedback law is used to increase the damping ratio of the

closed-loop system as the system output approaches the target reference to reduce

the overshoot caused by the linear part.

The chapter is organized as follows. In Section 2.2, the theory of the com-

posite nonlinear feedback control is developed. Three different cases, i.e., the state

feedback, the full order measurement feedback, and the reduced order measurement

cases, are considered with all detailed derivations and proofs. We will address the

issue on the selection of nonlinear gain parameter in this section. The application

of the CNF technique to an MIMO system will be presented in Section 2.3, which

shows that the proposed design method yields a very satisfactory performance.

Finally, we draw some concluding remarks in Section 2.4.
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2.2 Composite Nonlinear Feedback Control for

MIMO Systems

We present in this section the CNF controller design for the following multivariable

linear system Σ with an amplitude-constrained actuator characterized by




ẋ = A x + B sat(u), x(0) = x0

y = C1 x
h = C2 x + D2 sat(u)

(2.1)

where x ∈ IRn, u ∈ IRm, y ∈ IRp and h ∈ IR� are respectively the state, control

input, measurement output and controlled output of the given system Σ. A, B, C1

and C2 are appropriate dimensional constant matrices, and the saturation function

is defined by

sat(u) =




sat(u1)
sat(u2)

...
sat(um)


 , (2.2)

with

sat(ui) = sign(ui) min(|ui|, ūi), (2.3)

where ūi is the maximum amplitude of the i-th control channel. The objective

of this chapter is to design an appropriate control law for (2.1) using the CNF

approach such that the resulting controlled output will track some desired step

references as fast and as smooth as possible. We will address the CNF control

system design for the given system (2.1) for three different situations, namely,

the state feedback case, the full order measurement feedback case, and the reduced

order measurement feedback case. For tracking purpose, the following assumptions

on the given system are required: i) (A, B) is stabilizable; ii) (A, C1) is detectable;
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and iii) (A, B, C2, D2) is right invertible and has no invariant zeros at s = 0. Our

objective here is to design control laws that are capable of achieving fast tracking

of target references under input saturation. As such, it is well understood in the

literature that these assumptions are standard and necessary.

2.2.1 State Feedback Case

We first proceed to develop a composite nonlinear feedback control technique for

the case when all the state variables of the plant Σ are measurable, i.e., y = x.

The design will be done in three steps, which is a natural extension of the results

of Chen et al. [6]. We have the following step-by-step design procedure.

Step s.1: Design a linear feedback law,

uL = Fx + Gr, (2.4)

where r ∈ IRm contains a set of step references. The state feedback gain

matrix F ∈ IRm×n is chosen such that the closed-loop system matrix A+BF

is asymptotically stable and the resulting closed-loop system transfer matrix,

i.e., D2 + (C2 + D2F )(sI −A−BF )−1B, has certain desired properties, e.g.,

having a small dominating damping ratio in each channel. We note that such

an F can be worked out using some well-studied methods such as the LQR,

H∞ and H2 optimization approaches (see, e.g., Anderson and Moore [38],

Chen [2] and Saberi et al. [5]). Furthermore, G is an m×m square constant

matrix and is given by

G := G′
0 (G0G

′
0)

−1
, (2.5)



Chapter 2. Continuous Time CNF Control 10

with G0 := D2− (C2 +D2F )(A+BF )−1B. Here we note that both G0 and G

are well defined because A+BF is stable, and (A, B, C2, D2) is right invertible

and has no invariant zeros at s = 0, which implies (A + BF, B, C + D2F, D2)

is right invertible and has no invariant zeros at s = 0 (see e.g., Lemma 2.5.1

of Chen [2]).

Step s.2: Next, we compute

H :=
[
I − F (A + BF )−1B

]
G (2.6)

and

xe := Ge r := −(A + BF )−1BG r. (2.7)

Note that the definitions of H , Ge and xe would become transparent later

in our derivation. Given a positive definite matrix W ∈ IRn×n, solve the

following Lyapunov equation:

(A + BF )′P + P (A + BF ) = −W, (2.8)

for P > 0. Such a P exists since A + BF is asymptotically stable. Then, the

nonlinear feedback control law uN is given by

uN = ρ(r, y)B′P (x − xe), (2.9)

where

ρ(r, y) = diag{ρ1, · · · , ρm} =




ρ1 · · · 0
...

. . .
...

0 · · · ρm


 , (2.10)

and ρi = ρi(r, y), i = 1, 2, · · · , m, are respectively some nonpositive functions,

uniformly bounded and locally Lipschitz in y, which are used to change the
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closed-loop system damping ratios as the outputs approach the targets. The

choice of these nonlinear functions will be discussed at the end of this section.

Step s.3: The linear and nonlinear feedback laws derived in the previous steps

are now combined to form a CNF controller:

u = uL + uN = Fx + Gr + ρ(r, y)B′P (x − xe). (2.11)

This completes the design of the CNF controller for the state feedback case.

For further development, we partition B ∈ IRn×m, F ∈ IRm×n and H ∈ IRm×m

as follows:

B = [ B1 · · · Bm ] , F =




F1
...

Fm


 , H =




H1
...

Hm


 . (2.12)

The following theorem shows that the closed-loop system comprising the given

plant in (2.1) and the CNF control law of (2.11) is asymptotically stable. It also

determines the magnitudes of the step functions in r that can be tracked by such

a control law without exceeding the control limit.

Theorem 2.1 Consider the given system in (2.1) with y = x, which satisfies the

assumptions i) and iii), the linear control law of (2.4) and the composite nonlinear

feedback control law of (2.11). For any δ ∈ (0, 1), let c
δ
> 0 be the largest positive

scalar such that for all x ∈ Xδ, where

Xδ :=
{
x : x′Px ≤ c

δ

}
, (2.13)

the following property holds,

| Fi x |≤ (1 − δ)ūi, i = 1, · · · , m. (2.14)
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Then, the linear control law of (2.4) is capable of driving the system controlled

output h(t) to track asymptotically a set of step references, i.e., r, provided that

the initial state x0 and r satisfy:

x̃0 := (x0 − xe) ∈ Xδ, |Hi r| ≤ δūi, i = 1, · · · , m. (2.15)

Furthermore, for any nonpositive function ρ(r, y), uniformly bounded and locally

Lipschitz in y, the composite nonlinear feedback law in (2.11) is capable of driving

the system controlled output h(t) to track asymptotically the step command input

of amplitude r, provided that the initial state x0 and r satisfy (2.15).

Proof. Let us first define a new state variable x̃ = x − xe. It is simple to verify

that the linear feedback control law of (2.4) can be rewritten as

uL(t) = F x̃(t) + [I − F (A + BF )−1B]Gr (2.16)

= F x̃(t) + Hr, (2.17)

and hence for all x̃ ∈ Xδ and, provided that |Hi r| ≤ δūi, i = 1, · · · , m, the

closed-loop system is linear and is given by

˙̃x = (A + BF )x̃ + Axe + BHr. (2.18)

Noting that

Axe + BHr =
{
B[I − F (A + BF )−1B]G − A(A + BF )−1BG

}
r

=
{
[I − BF (A + BF )−1]BG − A(A + BF )−1BG

}
r

=
{
I − BF (A + BF )−1 − A(A + BF )−1

}
BGr

= 0, (2.19)
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the closed-loop system in (2.18) can then be simplified as

˙̃x = (A + BF )x̃. (2.20)

Similarly, the closed-loop system comprising the given plant in (2.1) and the CNF

control law of (2.11) can be expressed as

˙̃x = (A + BF )x̃ + Bw, (2.21)

where

w = sat(F x̃ + Hr + uN) − F x̃ − Hr. (2.22)

Clearly, for the given x0 satisfying (2.15), we have x̃0 = (x0 − xe) ∈ Xδ. We note

that (2.21) is reduced to (2.20) if ρ(r, y) = 0.

Next, we define a Lyapunov function V = x̃′P x̃ and evaluate the derivative

of V along the trajectories of the closed-loop system in (2.21), i.e.,

V̇ = ˙̃x
′
P x̃ + x̃′P ˙̃x

= x̃′(A + BF )′P x̃ + x̃′P (A + BF )x̃ + 2x̃′PBw

= −x̃′Wx̃ + 2x̃′PBw. (2.23)

Note that for all

x̃ ∈ Xδ = {x̃ : x̃′P x̃ ≤ c
δ
} ⇒ |Fi x̃| ≤ (1 − δ)ūi, i = 1, · · · , m. (2.24)

In the remainder of this proof, we adopt similar lines of reasoning as those of Turner

et al. [44] by considering the following different scenarios. For simplicity, we drop

the dependent variables of the nonlinear function ρ in the rest of this proof.
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Case 1. All input channels are unsaturated. It is obvious that we have

V̇ = −x̃′Wx̃ + 2x̃′PBρB′P x̃ ≤ −x̃′Wx̃. (2.25)

Case 2. All input channels are exceeding their upper limits. In this case, we have

Fix̃ + Hir + ρiB
′
iP x̃ ≥ ūi, i = 1, · · · , m. (2.26)

For all x̃ ∈ Xδ, which implies (2.24) holds, and r satisfying (2.15), we have

Fix̃ + Hir ≤ ūi, i = 1, · · · , m, (2.27)

and thus

wi = sat(Fix̃ + Hir + ρiB
′
iP x̃) − Fix̃ − Hir = ūi − Fix̃ − Hir ≥ 0 (2.28)

and

ρiB
′
iP x̃ ≥ ūi − (Fix̃ + Hir) ≥ 0 ⇒ B′

iP x̃ = x̃′PBi ≤ 0. (2.29)

Hence,

V̇ = −x̃′Wx̃ + 2
m∑

i=1

x̃′PBiw̄i ≤ −x̃′Wx̃. (2.30)

Case 3. All input channels are exceeding their lower limits. For this case, we have

Fix̃ + Hir + ρiB
′
iP x̃ ≤ −ūi, i = 1, · · · , m. (2.31)

For all x̃ ∈ Xδ, which implies (2.24) holds, and r satisfying (2.15), we have

Fix̃ + Hir ≥ −ūi, i = 1, · · · , m, (2.32)

and thus

wi = sat(Fix̃ + Hir + ρiB
′
iP x̃) − Fix̃ − Hir = −ui − Fix̃ − Hir ≤ 0 (2.33)
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and

ρiB
′
iP x̃ ≤ −ūi − (Fix̃ + Hir) ≤ 0 ⇒ B′

iP x̃ = x̃′PBi ≥ 0. (2.34)

Hence,

V̇ = −x̃′Wx̃ + 2
m∑

i=1

x̃′PBiwi ≤ −x̃′Wx̃. (2.35)

Case 4. Some control channels are saturated and some are unsaturated. In view

of Cases 1 to 3, it is simple to note that for those unsaturated channels, we have

x̃′PBiwi = ρix̃
′PBiB

′
iP x̃ ≤ 0, (2.36)

and those input channels whose signals exceed their upper limits, we have

wi ≥ 0, x̃′PBi ≤ 0 ⇒ x̃′PBiwi ≤ 0, (2.37)

and finally for those channels whose signals exceeds their lower limits,

wi ≤ 0, x̃′PBi ≥ 0 ⇒ x̃′PBiwi ≤ 0. (2.38)

Thus, for this case, again we have

V̇ = −x̃′Wx̃ + 2
m∑

i=1

x̃′PBiwi ≤ −x̃′Wx̃. (2.39)

In conclusion, we have shown that

V̇ ≤ −x̃W x̃, x̃ ∈ Xδ, (2.40)

which implies that Xδ is an invariant set of the closed-loop system in (2.21). Noting

that W > 0, all trajectories of (2.21) starting from inside Xδ will converge to the
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origin. This, in turn, indicates that, for all initial state x0 and the step command

input r that satisfy (2.15), we have

lim
t→∞x(t) = xe, (2.41)

which implies

lim
t→∞u(t) = F lim

t→∞ x(t) + Gr + lim
t→∞ ρB′P [x(t) − xe] = Fxe + Gr, (2.42)

since ρ(r, y) is uniformly bounded. Hence,

lim
t→∞h(t) = C2 lim

t→∞x(t) + D2 lim
t→∞u(t)

= C2xe + D2(Fxe + Gr)

= (C2 + D2F )xe + D2Gr

= −(C2 + D2F )(A + BF )−1BGr + D2Gr

= [D2 − (C2 + D2F )(A + BF )−1B]Gr

= G0G
′
0(G0G

′
0)

−1r = r. (2.43)

This completes the proof of Theorem 2.1. ♦

Lastly, assuming that the dynamic equation of the given system is trans-

formed into the following form,

ẋ =
[
A11 A12

A21 A22

]
x +

[
0
B̄

]
sat(u), (2.44)

where B̄ is nonsingular, Turner et al. [44] have solved the problem under a rather

strange condition, i.e., A11 is nonsingular. It was suggested in [44] to add some small

perturbations to A11 if it is singular. Recently, it has been pointed by Turner and



Chapter 2. Continuous Time CNF Control 17

Postlethwaite [43] for the case when the system is stabilizable and B is of full rank,

there exists nonsingular state transformation that would convert the given system

with the form of (2.44) with A11 being nonsingular. Nonetheless, it is obvious from

our development that such a transformation is totally unnecessary. We further

note that our approach to the CNF design is much more elegant compared to that

given in [44], and it carries over nicely to the measurement feedback cases in the

following subsections.

2.2.2 Full Order Measurement Feedback Case

The assumption that all the state variables of the given system Σ are measurable

is, in general, not practical. For example, in HDD servo systems (see Chen et al.

[1]), the velocity of the actuator is usually hard to be measured. As such, in this

subsection and the next subsection, we proceed to develop CNF design using only

measurement information. We first deal with the full order measurement feedback

case, in which the dynamical order of the controller is exactly the same as that

of the given plant. The following is a step-by-step procedure for the CNF design

using full order measurement feedback.

Step f.1: We first construct a linear full order measurement feedback control

law, {
ẋv = (A + KC1)xv − Ky + B sat(uL)

uL = F (xv − xe) + Hr,
(2.45)

where r is the set of step reference signals and xv is the state of the controller.

As usual, K, F are gain matrices and are chosen such that (A + KC1) and
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(A + BF ) are asymptotically stable and the resulting closed loop system has

desired properties. Finally, G, H and xe are as defined in (2.5)–(2.7).

Step f.2: Given a positive definite matrix WP ∈ IRn×n, solve the Lyapunov

equation

(A + BF )′P + P (A + BF ) = −WP , (2.46)

for P > 0. As in the state feedback case, the linear control law of (2.45)

obtained in the above step is to be combined with a nonlinear control law to

form the following CNF controller:

{
ẋv = (A + KC1)xv − Ky + B sat(u)

u = F (xv − xe) + Hr + ρ(r, y)B′P (xv − xe),
(2.47)

where ρ(r, y) is as given in (2.10) with all its diagonal elements being respec-

tively a nonpositive function, locally Lipschitz in y, which are to be chosen

to improve the performance of the closed-loop system.

It turns out that, for the measurement feedback case, the choice of ρi(r, y),

i = 1, . . .m, the nonpositive scalar functions, are not totally free. They are subject

to certain constraints. We have the following result.

Theorem 2.2 Consider the given system in (2.1), which satisfies the standard

assumptions i) to iii), the full order linear measurement feedback control law of

(2.45) and the composite nonlinear measurement feedback control law of (2.47).

Given a positive define matrix WQ ∈ IRn×n with

WQ > F ′B′PW−1
P PBF, (2.48)
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Let Q > 0 be the solution to the Lyapunov equation,

(A + KC1)
′Q + Q(A + KC1) = −WQ. (2.49)

Note that such a Q exists as A + KC1 is asymptotically stable. For any δ ∈ (0, 1),

let c
δ
> 0 be the largest positive scalar such that for all x ∈ XFδ, where

XFδ :=

{(
x
xv

)
:
(

x
xv

)′ [P 0
0 Q

] (
x
xv

)
≤ c

δ

}
, (2.50)

the following property holds

∣∣∣∣[Fi Fi ]
(

x
xv

)∣∣∣∣ ≤ (1 − δ)ūi, i = 1, · · · , m. (2.51)

Then, the linear measurement feedback control law in (2.47) will drive the system’s

controlled output h(t) to track asymptotically a set of step references, i.e., r, from

an initial state x0, provided that x0, xv0 = xv(0) and r satisfy:

(
x0 − xe

xv0 − x0

)
∈ XFδ and |Hi r| ≤ δūi, i = 1, · · · , m. (2.52)

Furthermore, there exist positive scalars ρ∗
i > 0, i = 1, . . .m, such that for any

nonpositive functions ρi(r, y), i = 1, · · · , m, locally Lipschitz in y and |ρi(r, y)| ≤ ρ∗
i ,

i = 1, · · · , m, the CNF control law of (2.47) will drive the system controlled output

h(t) to track asymptotically the reference r from an initial x0, provided that x0,

xv0 and r satisfy (2.52).

Proof. For simplicity, we again drop r and y in ρ(r, y) throughout the proof of

this theorem. Let x̃ = x − xe and x̃v = xv − x. The linear feedback control law of

(2.45) can be written as

˙̃xv = (A + KC1)x̃v, uL = [ F F ]
(

x̃
x̃v

)
+ Hr. (2.53)
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Hence, for all

(
x̃
x̃v

)
∈ XFδ ⇒

∣∣∣∣[ Fi Fi ]
(

x̃
x̃v

)∣∣∣∣ ≤ (1 − δ)ūi, i = 1, · · · , m, (2.54)

and for any r satisfying

|Hi r| ≤ δūi, i = 1, · · · , m, (2.55)

each channel of uL, say uL,i, has the following property

uL,i =
∣∣∣∣[Fi Fi ]

(
x̃
x̃v

)
+ Hi r

∣∣∣∣ ≤
∣∣∣∣[ Fi Fi ]

(
x̃
x̃v

)∣∣∣∣ + |Hi r| ≤ ūi. (2.56)

Thus, for all x̃ and x̃v satisfying the condition as given in (2.54), the closed-loop

system comprising the given plant and the linear control law of (2.45) can be

rewritten as ( ˙̃x
˙̃xv

)
=

[
A + BF BF

0 A + KC1

] (
x̃
x̃v

)
. (2.57)

Similarly, the closed-loop system with the CNF control law of (2.47) can be ex-

pressed as ( ˙̃x
˙̃xv

)
=

[
A + BF BF

0 A + KC1

] (
x̃
x̃v

)
+

[
B
0

]
w, (2.58)

where

w = sat
[
[ F F ]

(
x̃
x̃v

)
+ Hr + ρ [ B′P B′P ]

(
x̃
x̃v

)]
− [ F F ]

(
x̃
x̃v

)
− Hr.

(2.59)

Clearly, for x0 and xv0 satisfying (2.52), we have

(
x̃0

x̃v0

)
∈ XFδ, (2.60)

where x̃0 = x̃(0) and x̃v0 = x̃v(0). We note that (2.57) and (2.58) are identical

when ρ = 0. Again, the results of Theorem 2.2 for both the linear and the nonlinear

feedback case can be proved in one shot.
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Next, we define a Lyapunov function:

V =
(

x̃
x̃v

)′ [P 0
0 Q

] (
x̃
x̃v

)
, (2.61)

and evaluate the derivative of V along the trajectories of the closed-loop system in

(2.58), i.e.,

V̇ =
(

x̃
x̃v

)′ [ −WP PBF
F ′B′P −WQ

] (
x̃
x̃v

)
+ 2x̃′PBw. (2.62)

Note that for all

(
x̃
x̃v

)
∈ XFδ ⇒

∣∣∣∣[ Fi Fi ]
(

x̃
x̃v

)∣∣∣∣ ≤ (1 − δ)ūi, i = 1, · · · , m. (2.63)

Again, as done in the full state feedback case, let us find the above derivative of V

for four different cases.

Case 1. All input channels are unsaturated. For this case, we have

∣∣∣∣[Fi Fi ]
(

x̃
x̃v

)
+ Hir + ρi [B

′
iP B′

iP ]
(

x̃
x̃v

)∣∣∣∣ ≤ ūi, i = 1, · · · , m, (2.64)

which implies

wi = ρi [B
′
iP B′

iP ]
(

x̃
x̃v

)
, (2.65)

and

V̇ =
(

x̃
x̃v

)′ [ −WP PB(F + ρB′P )
(F + ρB′P )′B′P −WQ

] (
x̃
x̃v

)
+ 2x̃′PBρB′P x̃

≤
(

x̂
x̃v

)′ [−WP 0
0 −W̃Q

] (
x̂
x̃v

)
, (2.66)

where

x̂ = x̃ − W−1
P PB(F + ρB′P )x̃v (2.67)

and

W̃Q = WQ − (F + ρB′P )′B′PW−1
P PB(F + ρB′P ). (2.68)
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Noting (2.48), i.e., WQ > F ′B′PW−1
P PBF , and ρi is locally Lipschitz, it is clear

that there exist positive scalars ρ∗
i,1 > 0, i = 1, · · · , m, such that for any scalar

function satisfying |ρi| ≤ ρ∗
i,1, i = 1, · · · , m, we have W̃Q > 0 and hence V̇ ≤ 0.

Case 2. All input channels are exceeding their upper limits. In such a situation,

we have for all i = 1, · · · , m,

[ Fi Fi ]
(

x̃
x̃v

)
+ Hi r + ρi [B

′
iP B′

iP ]
(

x̃
x̃v

)
≥ ūi. (2.69)

For all the trajectories inside XFδ,

∣∣∣∣[ Fi Fi ]
(

x̃
x̃v

)
+ Hir

∣∣∣∣ ≤ ūi, (2.70)

we have for i = 1, · · · , m,

0 ≤ wi ≤ ρi [ B
′
iP B′

iP ]
(

x̃
x̃v

)
. (2.71)

Next, let us express

wi = qiρi [ B
′
iP B′

iP ]
(

x̃
x̃v

)
, (2.72)

for some appropriate positive continuous function matrix qi(t) bounded by 1 for all

t. In this case, the derivative of V becomes

V̇ =
(

x̃
x̃v

)′ [ −WP PB(F + qρB′P )
(F + qρB′P )′B′P −WQ

] (
x̃
x̃v

)
+ 2x̃′PBqρB′P x̃

≤
(

x̂+

x̃v

)′ [−WP 0
0 −W̃Q+

] (
x̂+

x̃v

)
, (2.73)

where

q = diag
{
q1, · · · , qm

}
, (2.74)

x̂+ = x̃ − W−1
P PB(F + qρB′P )x̃v (2.75)
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and

W̃Q+ = WQ − (F + qρB′P )′B′PW−1
P PB(F + qρB′P ). (2.76)

Again, noting (2.48), i.e., WQ > F ′B′PW−1
P PBF , and ρi is locally Lipschitz, it is

clear that there exist positive scalars ρ∗
i,2 > 0, i = 1, · · · , m, such that for any scalar

function satisfying |ρi| ≤ ρ∗
i,2, i = 1, · · · , m, we have W̃Q+ > 0 and hence V̇ ≤ 0.

Case 3. All input channels are exceeding their lower limits. In this case, we have

for i = 1, · · · , m,

[ Fi Fi ]
(

x̃
x̃v

)
+ Hi r + ρi [B

′
iP B′

iP ]
(

x̃
x̃v

)
≤ −ūi. (2.77)

For all the trajectories inside XFδ,

∣∣∣∣[ Fi Fi ]
(

x̃
x̃v

)
+ Hir

∣∣∣∣ ≤ ūi, (2.78)

we have for i = 1, · · · , m,

ρi [ B
′
iP B′

iP ]
(

x̃
x̃v

)
≤ wi ≤ 0. (2.79)

Next, let us express

wi = qiρi [ B
′
iP B′

iP ]
(

x̃
x̃v

)
, (2.80)

for some appropriate positive continuous function matrix qi(t) bounded by 1 for

all t. Following the similar arguments as in the previous case, we can show that

there exist positive scalars ρ∗
i,3 > 0, i = 1, · · · , m, such that for any scalar function

satisfying |ρi| ≤ ρ∗
i,3, i = 1, · · · , m, the corresponding V̇ ≤ 0.
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Case 4. Some control channels are saturated and some are unsaturated. Following

the similar arguments as those in Cases 1 to 3, we can express that for i = 1, · · · , m,

wi = qiρi [ B
′
iP B′

iP ]
(

x̃
x̃v

)
, (2.81)

for some appropriate positive continuous function matrix qi(t) bounded by 1 for all

t, and show that there exist positive scalars ρ∗
i,4 > 0, i = 1, · · · , m, such that for

any scalar function satisfying |ρi| ≤ ρ∗
i,4, i = 1, · · · , m, the corresponding V̇ ≤ 0.

Finally, we let ρ∗
i = min{ρ∗

i,1, ρ
∗
i,2, ρ

∗
i,3, ρ

∗
i,4}. Then, we have for any scalar

functions ρi satisfying |ρi| < ρ∗
i , i = 1, · · · , m,

V̇ ≤ 0, ∀
(

x̃
x̃v

)
∈ XFδ. (2.82)

Thus, XFδ is an invariant set of the closed-loop system in (2.58), and all trajectories

starting from XFδ will remain inside and asymptotically converge to the origin.

This, in turn, indicates that, for the initial state of the given system x0, the initial

state of the controller xv0, and step command input r that satisfy (2.52),

lim
t→∞ x̃v(t) = 0 and lim

t→∞x(t) = xe, (2.83)

and then it follows from (2.43) that the controlled output h(t) converges asymp-

totically to the target reference r. This completes the proof of Theorem 2.2. ♦

2.2.3 Reduced Order Measurement Feedback Case

For the given system in (2.1), it is clear that there are p state variables of the

system, which are measurable if C1 is of maximal rank. Thus, in general, it is not
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necessary to estimate these measurable state variables in measurement feedback

laws. As such, we will proceed in this subsection to design a dynamic controller

that has a dynamical order less than that of the given plant. For simplicity of

presentation, we assume that C1 is already in the form

C1 = [ Ip 0 ] . (2.84)

Then, the system in (2.1) can be rewritten as




(
ẋ1

ẋ2

)
=

[
A11 A12

A21 A22

] (
x1

x2

)
+

[
B1

B2

]
sat(u)

y = [ Ip 0 ]
(

x1

x2

)

h = C2

(
x1

x2

)
, x0 =

(
x10

x20

) (2.85)

where the original state x is partitioned into two parts, x1 and x2 with y ≡ x1.

Thus, we will only need to estimate x2 in the reduced order measurement feedback

design. Next, we let F be chosen such that i) A + BF is asymptotically stable,

and ii) (C2 + D2F )(sI − A − BF )−1B + D2 has desired properties, and let KR be

chosen such that A22 + KRA12 is asymptotically stable. Here we note that it can

be shown that (A22, A12) is detectable if and only if (A, C1) is detectable. Thus,

there exists a stabilizing KR. Again, such F and KR can be designed using an

appropriate control technique. We then partition F in conformity with x1 and x2:

F = [ F1 F2 ] . (2.86)

We further partition F2 as follows:

F2 =




F2,1
...

F2,m


 . (2.87)
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Also, let G, H and xe be as given in (2.5)–(2.7). The reduced order CNF controller

is given by

ẋv = (A22+KRA12)xv+ (B2+KRB1) sat(u)+
[
A21+KRA11−(A22+KRA12)KR

]
y (2.88)

and

u = F
[(

y
xv−KRy

)
−xe

]
+Hr + ρ(r, y)B′P

[(
y

xv−KRy

)
−xe

]
, (2.89)

where ρ(r, y) is as given in (2.10).

Next, given a positive definite matrix W ∈ IRn×n, let P > 0 be the solution

to the Lyapunov equation

(A + BF )′P + P (A + BF ) = −WP . (2.90)

Given another positive definite matrix WR ∈ IR(n−p)×(n−p) with

WR > F ′
2B

′PW−1
P PBF2, (2.91)

let QR > 0 be the solution to the Lyapunov equation

(A22 + KRA12)
′QR + QR(A22 + KRA12) = −WR. (2.92)

Note that such P and QR exist as A + BF and A22 + KRA12 are asymptotically

stable. For any δ ∈ (0, 1), let c
δ

be the largest positive scalar such that for all

(
x
xv

)
∈ XRδ :=

{(
x
xv

)
:
(

x
xv

)′[P 0
0 QR

](
x
xv

)
≤ c

δ

}
(2.93)

the following property holds:

∣∣∣∣[ Fi F2,i ]
(

x
xv

)∣∣∣∣ ≤ ūi(1 − δ), i = 1, · · · , m. (2.94)

We have the following theorem.
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Theorem 2.3 Consider the given system in (2.1), which satisfies the usual as-

sumptions i) to iii). Then, there exist positive scalars ρ∗
i > 0, i = 1, · · · , m, such

that for any nonpositive function ρi(r, y), i = 1, · · · , m, locally Lipschitz in yi and

|ρi(r, y)| ≤ ρ∗
i , the reduced order CNF law given by (2.88) and (2.89) will drive

the system controlled output h(t) to asymptotically track the reference r from an

initial state x0, provided that x0, xv0 and r satisfy

(
x0 − xe

xv0 − x20 − KRx10

)
∈ XRδ, |Hir| ≤ δūi, i = 1, · · · , m. (2.95)

Proof. Let x̃ = x − xe and x̃v = xv − x2 − KRx1. Then, the closed-loop system

comprising the given plant in (2.1) and the reduced order CNF control law of (2.88)

and (2.89) can be expressed as

( ˙̃x
˙̃xv

)
=

[
A + BF BF2

0 A22 + KRA12

] (
x̃
x̃v

)
+

[
B
0

]
w (2.96)

where

w = sat
{
[ F F2 ]

(
x̃
x̃v

)
+Hr+ρ(r, y)B′P

[
x̃+

(
0
x̃v

)]}
− [ F F2 ]

(
x̃
x̃v

)
− Hr.

(2.97)

The rest of the proof follows along similar lines to the reasoning given in the full

order measurement feedback case.

2.2.4 Selecting the Nonlinear Gain ρ(r, y)

The freedom to choose the function ρ(r, y) is used to tune the control laws so as

to improve the performance of the closed-loop system as the controlled output h
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approaches the set point. Since the main purpose of adding the nonlinear part to

the CNF controllers is to speed up the settling time, or equivalently to contribute

a significant value to the control input when the tracking error, r − h, is small.

The nonlinear part, in general, will be in action when the control signal is far away

from its saturation level, and thus it will not cause the control input to hit its

limits. Under such a circumstance, it is straightforward to verify that the closed-

loop system comprising the given plant in (2.1) and the three different types of

control law can be expressed as

˙̃x = (A + BF )x̃ + ρ(r, y)BB′P x̃. (2.98)

We note that the additional term ρ(r, y) does not affect the stability of the esti-

mators. It is now clear that eigenvalues of the closed-loop system in (2.98) can

be changed by the function ρ(r, y). There are different types of nonlinear gains

that have been suggested in the literature (see e.g., [6, 8, 44]). Assuming that h is

available, we follow the work of [6] to propose the following nonlinear gains,

ρi(ri, hi) = −βi

∣∣∣e−αi|hi(t)−ri| − e−αi|hi(0)−ri|
∣∣∣ , i = 1, · · · , m, (2.99)

which starts from 0 and gradually increases to a final gain of −βi

∣∣∣1 − e−αi|hi(0)−ri|
∣∣∣

as hi approaches to the target reference ri. αi is used to determine the speed of

change in ρi. Thus, one could properly select scalar gains αi and βi, i = 1, · · · , m, to

yield a desired performance. We further note that for the case when (A, B, C2, D2)

is a SISO system, Chen et al. [6] have recently shown a nice interconnection on

the mechanism of the nonlinear gain ρ with the classical root-locus theory. They

have also shown that W can actually be connected to the zero placement for an
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auxiliary system. Unfortunately, these nice properties generally do not carry over to

the MIMO systems. As a rule of thumb, we might follow the idea of the so-called

sequential loop closing method in multivariable control system design (see e.g.,

Stephanopoulos [41]) to select nonlinear gain βi for each individual input channel.

2.3 An MIMO System Design

To illustrate the concept of the CNF control, we present in this section a roll-yaw au-

topilot system for the Extended Medium Range Air-to-Air Technology (EMRAAT)

airframe. We will compare the performance of the CNF design with a correspond-

ing LQR design. The airframe is a generic, non-axisymmetrical airframe and as

such, lends itself to highly g coordinated bank-to-turn maneuvers. The linearized

roll-yaw state space model for the EMRAAT airframe for the flight conditions of

Mach = 2.5, Velocity = 2420 ft/sec, Dynamic Pressure = 1720 lbs/ft2, and Angle

of Attack = 10◦, is given by

ẋ =




−0.501 −0.985 0.174 0 0.109 0.007
16.83 −0.575 0.0123 0 −132.8 27.19

−3227 0.321 −2.10 0 −1620 −1240
0 0 1 0 0 0
0 0 0 0 −179 0
0 0 0 0 0 −179




x +




0 0
0 0
0 0
0 0

179 0
0 179




sat(u),

(2.100)

where

x =




β
α
p∫
p

δr

δa




, u =
(

δrc

δac

)
. (2.101)
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and where β is sideslip, α is yaw rate, p is roll rate,
∫
p is roll angle, δr is rudder

position, δa is aileron position, and δrc and δac are respectively the controls applied

to the rudder and aileron. The measurement of the system is given by

y =




β
α
p∫
p


 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


 x. (2.102)

This air-to-air missile system is taken from the work of Wilson et al. [45], in which

the authors had designed an autopilot system based on a Lyapunov-constrained

eigenstructure assignment approach. We note that in [45], they did not consider any

input saturation in their formulation. The same system was adopted by Turner et

al. [44] for illustration of their work, although they had added a small perturbation

in the (4, 4) entry in the system matrix A into order to make A11 nonsingular.

However, in [44], the authors had assumed that all the state variables of the system

are measurable and assumed that both input channels are bounded by ±20◦. The

controlled output of the system is defined as the the sideslip and the the roll angle,

i.e.,

h =
(

h1

h2

)
=

(
β∫
p

)
=

[
1 0 0 0 0 0
0 0 0 1 0 0

]
x +

[
0 0
0 0

]
u. (2.103)

To demonstrate our results, we choose a command reference:

r =
(

r1

r2

)
=

(
8
80

)
. (2.104)

Our aim is to design appropriate CNF controllers with full state feedback, full or-

der measurement feedback and reduced order measurement feedback, which would

control the controlled output of the system to track the command reference as fast
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as possible and as smooth as possible. Following the procedures given in the previ-

ous section and with appropriate selections of design parameters, we have obtained

the following CNF control laws. We note that the linear parts of the control laws

are carried out using the standard LQR design.

1. CNF controller using full state feedback:

u = Fx + Gr + ρ(r, y)Fn(x − xe), (2.105)

where

F =
[−2.573875 0.124261 0.037199 1.891459 −0.351318 −0.186503
−0.039226 −0.131115 0.037657 1.192637 −0.186503 −0.235628

]
,

G =
[

1.675090 −1.891459
−2.656604 −1.192637

]
,

Fn =
[
2.573875 −0.124261 −0.037199 −1.891459 0.351318 0.186503
0.039226 0.131115 −0.037657 −1.192637 0.186503 0.235628

]
,

xe = [ 8 3.66 0 80 −2.5755 −19.4536 ]′

and

ρ(r, y) = diag
{
ρ1(r1, h1), ρ2(r2, h2)

}
,

and where

ρ1(r1, h1) = −200
∣∣∣e−0.005|h1(t)−r1| − e−0.005|h1(0)−r1|

∣∣∣ ,

and

ρ2(r2, h2) = −200
∣∣∣e−0.025|h2(t)−r2| − e−0.025|h2(0)−r2|

∣∣∣ .

2. CNF controller using full order measurement feedback:

{
ẋv = (A + KC1)xv − Ky + B sat(u)

u = F (xv − xe) + Hr + ρ(r, y)Fn(xv − xe),
(2.106)
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where F , Fn, xe, ρ(r, y) are as given in the state feedback case, and

K =




−29.6237 0.7142 −0.1485 0
−46.2737 119.3702 −0.6416 0
3495.4107 18.1069 105.4275 0

0 0 −1 −60
−20.7195 131.5970 2.0269 0

56.8973 −169.5411 13.2893 0




, H =
[−0.321939 0
−2.181703 0

]
.

3. CNF controller using reduced order measurement feedback:

ẋv = Acmpxv + Kcmpy + Bcmp sat(u) (2.107)

and

u = F
[(

y
xv−KRy

)
−xe

]
+Hr + ρ(r, y)Fn

[(
y

xv−KRy

)
−xe

]
, (2.108)

where

Acmp =
[−15 0

0 −20

]
, Kcmp =

[
52.553834 −14.061997 −0.287191 0

347.215285 23.940526 −1.796177 0

]
,

Bcmp =
[
179 0

0 179

]
, KR =

[
0.000578 −0.974320 −0.021364 0

−0.000730 1.234094 −0.101165 0

]
,

and F , H , xe, ρ(r, y) and Fn are the same as those given in the previous two

cases.

Using Simulink in Matlab, we obtain a set of simulation results in Figures

2.1–2.3, which are done under the following initial condition,

x0 = [−10 0 0 10 0 0 ]′ , (2.109)

together with initial conditions for both full and reduced order controllers being

set to zero. The results clearly show that the control laws with the nonlinear

components, i.e., the CNF controllers, outperform their linear counterparts a great
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deal. It is interesting to note that the results for the CNF state feedback case

and the CNF reduced order measurement feedback case are almost identical, and

have very minimal overshoots in their controlled output responses. The controlled

output responses in the CNF full order measurement feedback case are, however,

having a small overshoot in the second channel.

2.4 Conclusions

We have proposed a nonlinear tracking control technique, i.e., the so-called compos-

ite nonlinear feedback (CNF) control design, which consists of two parts, a linear

component and a nonlinear component. The former is usually chosen to give fast

rising time while the latter is added to smooth out the transient peaks or overshoots

when the controlled output is approaching the target reference. The technique is

applicable to general multivariable system with some standard assumptions and a

natural extension of some recent work in the field. It is successfully demonstrated

by a practical example on an air-to-air missile system. Finally, we note that unlike

the SISO case, the mechanism of the nonlinear gains in the CNF design for MIMO

systems is still not clearly captured. It requires more investigations and research.
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Figure 2.1: Input and output responses under state feedback.
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Figure 2.2: Input and output responses under full order measurement feedback.
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Figure 2.3: Input and output responses under reduced order measurement feedback.



Chapter 3

Discrete-Time CNF Control for
Linear MIMO Systems with Input
Saturation

3.1 Introduction

In the previous chapter, we have presented the continuous time composite nonlinear

feedback controller design, and the illustrative example applied to the air to air

missile system is proved to be very successful. We want to explore deeper the

applicability of the theory on the discrete time controller design. Much of the

scheme in this chapter will follow last chapter. We will try to use our discrete time

composite nonlinear feedback control to design a controller for a dual stage hard

disk drive (HDD) system in Chapter 4.

37
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3.2 Discrete-Time Composite Nonlinear Feedback

Control for MIMO Systems

We present in this section the CNF controller design for the following multivariable

linear system Σ with an amplitude-constrained actuator characterized by




x(k + 1) = Ax(k) + B sat(u(k)), x(0) = x0

y(k) = C1x(k)
h(k) = C2x(k) + D2 sat(u(k))

(3.1)

where x ∈ IRn, u ∈ IRm, y ∈ IRp and h ∈ IR� are respectively the state, control

input, measurement output and controlled output of the given system Σ. A, B, C1

and C2 are appropriate dimensional constant matrices, and the saturation function

is defined by

sat(u) =




sat(u1)
sat(u2)

...
sat(um)


 , (3.2)

with

sat(ui) = sign(ui) min(|ui|, ūi), (3.3)

where ūi is the maximum amplitude of the i-th control channel. The objective

of this chapter is to design an appropriate control law for (3.1) using the CNF

approach such that the resulting controlled output will track some desired step

references as fast and as smooth as possible. We will address the CNF control

system design for the given system (3.1) for three different situations, namely,

the state feedback case, the full order measurement feedback case, and the reduced

order measurement feedback case. For tracking purpose, the following assumptions

on the given system are required:
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1. (A, B) is stabilizable.

2. (A, C1) is detectable.

3. (A, B, C2, D2) is right invertible and has no invariant zeros at z = 1.

Our objective here is to design control laws that are capable of achieving fast

tracking of target references under input saturation. As such, it is well understood

in the literature that these assumptions are standard and necessary.

3.2.1 State Feedback Case

We first proceed to develop a composite nonlinear feedback control technique for

the case when all the state variables of the plant Σ are measurable, i.e., y = x.

The design will be done in three steps, which is a natural extension of the results

of Chen et al. [6]. We have the following step-by-step design procedure.

Step s.1: Design a linear feedback law,

uL(k) = Fx(k) + Gr, (3.4)

where r ∈ IRm contains a set of step references. The state feedback gain

matrix F ∈ IRm×n is chosen such that the closed-loop system matrix A+BF

is asymptotically stable and the resulting closed-loop system transfer matrix,

i.e., D2 + (C2 + D2F )(zI −A−BF )−1B, has certain desired properties, e.g.,

having a small dominating damping ratio in each channel. We note that such

an F can be worked out using some well-studied methods such as the LQR,
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H∞ and H2 optimization approaches (see, e.g., Anderson and Moore [38],

Chen [2] and Saberi et al. [5]). Furthermore, G is an m×m square constant

matrix and is given by

G := G′
0 (G0G

′
0)

−1
, (3.5)

with G0 := D2− (C2 +D2F )(A+BF )−1B. Here we note that both G0 and G

are well defined because A+BF is stable, and (A, B, C2, D2) is right invertible

and has no invariant zeros at z = 1, which implies (A+BF, B, C2 +D2F, D2)

is right invertible and has no invariant zeros at z = 1 (see e.g., Lemma 2.5.1

of Chen [2]).

Step s.2: Next, we compute

H :=
[
I − F (A + BF )−1B

]
G (3.6)

and

xR := GR r := −(A + BF )−1BG r. (3.7)

Note that the definitions of H , GR and xR would become transparent later

in our derivation. Given a positive definite matrix W ∈ IRn×n, solve the

following Lyapunov equation:

P = (A + BF )′P (A + BF ) + W, (3.8)

for P > 0. Such a P exists since A + BF is asymptotically stable. Then, the

nonlinear feedback control law uN(k) is given by

uN(k) = ρ(r, y)B′P (A + BF )(x(k) − xR), (3.9)
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where

ρ(r, y) = diag{ρ1, · · · , ρm} =




ρ1 · · · 0
...

. . .
...

0 · · · ρm


 , (3.10)

and ρi = ρi(r, y), i = 1, 2, · · · , m, are respectively some nonpositive functions,

uniformly bounded and locally Lipschitz in y, which are used to change the

closed-loop system damping ratios as the outputs approach the targets. The

choice of these nonlinear functions will be discussed at the end of this section.

Step s.3: The linear and nonlinear feedback laws derived in the previous steps

are now combined to form a CNF controller:

u(k) = uL(k)+uN(k) = Fx(k)+Gr+ρ(r, y)B′P (A+BF )(x(k)−xR). (3.11)

This completes the design of the CNF controller for the state feedback case.

For further development, we partition B ∈ IRn×m, F ∈ IRm×n and H ∈ IRm×m

as follows:

B = [ B1 · · · Bm ] , F =




F1
...

Fm


 , H =




H1
...

Hm


 . (3.12)

The following theorem shows that the closed-loop system comprising the given

plant in (3.1) and the CNF control law of (3.11) is asymptotically stable. It also

determines the magnitudes of the step functions in r that can be tracked by such

a control law without exceeding the control limit.

Theorem 3.1 Consider the given system in (3.1) with y = x, which satisfies the

assumptions i) and iii), the linear control law of (3.4) and the composite nonlinear

feedback control law of (3.11). For any ∇ ∈ (0, 1), let c∇ > 0 be the largest positive



Chapter 3. Discrete Time CNF Control 42

scalar such that for all x(k) ∈ X∇, where

X∇ :=
{
x : x′(k)Px(k) ≤ c∇

}
, (3.13)

the following property holds,

| Fi x(k) |≤ (1 −∇)ūi, i = 1, · · · , m. (3.14)

Then, the linear control law of (3.4) is capable of driving the system controlled

output h(t) to track asymptotically a set of step references, i.e., r, provided that

the initial state x0 and r satisfy:

x̃0 := (x0 − xR) ∈ X∇, |Hi r| ≤ ∇ūi, i = 1, · · · , m. (3.15)

Furthermore, for any nonpositive function ρ(r, y), uniformly bounded and locally

Lipschitz in y, the composite nonlinear feedback law in (3.11) is capable of driving

the system controlled output h(t) to track asymptotically the step command input

of amplitude r, provided that the initial state x0 and r satisfy (3.15).

Proof. Let us first define a new state variable x̃(k) = x(k) − xR. It is simple to

verify that the linear feedback control law of (3.4) can be rewritten as

uL(k) = F x̃(k) + [I − F (A + BF )−1B]Gr (3.16)

= F x̃(k) + Hr, (3.17)

and hence for all x̃(k) ∈ X∇ and, provided that |Hi r| ≤ ∇ūi, i = 1, · · · , m, the

closed-loop system is linear and is given by

x̃(k + 1) = (A + BF )x̃(k) + AxR + BHr. (3.18)
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Noting that

AxR + BHr =
{
B[I − F (A + BF )−1B]G − A(A + BF )−1BG

}
r

=
{
[I − BF (A + BF )−1]BG − A(A + BF )−1BG

}
r

=
{
I − BF (A + BF )−1 − A(A + BF )−1

}
BGr

= 0, (3.19)

the closed-loop system in (3.18) can then be simplified as

x̃(k + 1) = (A + BF )x̃(k). (3.20)

Similarly, the closed-loop system comprising the given plant in (3.1) and the CNF

control law of (3.11) can be expressed as

x̃(k + 1) = (A + BF )x̃(k) + Bw(k), (3.21)

where

w(k) = sat(F x̃(k) + Hr + uN(k)) − F x̃(k) − Hr. (3.22)

Clearly, for the given x0 satisfying (3.15), we have x̃0 = (x0 − xR) ∈ X∇. We note

that (3.21) is reduced to (3.20) if ρ(r, y) = 0.

Next, we define a Lyapunov function V (k) = x̃′(k)P x̃(k) and evaluate the

increment of V (k) along the trajectories of the closed-loop system in (3.21), i.e.,

∇V (k + 1) = x̃′(k + 1)P x̃(k + 1) − x̃′(k)P x̃(k) (3.23)

= x̃′(k)(A + BF )′P (A + BF )x̃(k) − x̃′(k)P x̃(k)

+ 2x̃′(k)(A + BF )′PBw(k) + w
′
(k)B′PBw(k)

= −x̃′(k)Wx̃(k) + 2x̃′(k)(A + BF )′PBw(k) + w′(k)B′PBw(k)
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Note that for all

x̃(k) ∈ X∇ = {x̃(k) : x̃′(k)P x̃(k) ≤ c∇} ⇒ |Fi x̃(k)| ≤ (1−∇)ūi, i = 1, · · · , m.

(3.24)

In the remainder of this proof, we adopt similar lines of reasoning as those of Turner

et al. [44] by considering the following different scenarios. For simplicity, we drop

the dependent variables of the nonlinear function ρ in the rest of this proof.

Case 1. All input channels are unsaturated. It is obvious that we have

w(k) = uN(k) = ρB′P (A + BF )x̃(k) (3.25)

∇V (k + 1) = −x̃′(k)Wx̃(k) + 2x̃′(k)(A + BF )′PBρB′P (A + BF )x̃(k)

+ x̃(k)(A + BF )′PBρB′PBρB′P (A + BF )x̃

= −x̃′(k)Wx̃(k) + x̃′(k)(A + BF )′PBρ(2I + B′PBρ)B′P (A + BF )x̃′(k)

So if

2I + B′PBρ > 0 (3.26)

and because ρ < 0

∇V (k + 1) < −x̃′(k)Wx̃(k) < 0 (3.27)

Case 2. All input channels are exceeding their upper limits. In this case,define

uNi(k) = ρiB
′
iP (A + BF )x̃(k) (3.28)

Fix̃(k) + Hir + uNi(k) ≥ ūi, i = 1, · · · , m. (3.29)

uNi(k) ≥ ūi − Fix̃(k) − Hir, i = 1, · · · , m. (3.30)
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and

wi(k) = ūi − (Fix̃(k) + Hir) (3.31)

For all x̃(k) ∈ X∇, which implies (3.24) holds, and r satisfying (3.15), we have

Fix̃(k) + Hir ≤ ūi, i = 1, · · · , m, (3.32)

Hence,

0 < wi(k) < uNi(k) (3.33)

∇V (k + 1) = −x̃′(k)Wx̃(k) + 2x̃′(k)(A + BF )′PBw(k) + w′(k)B′PBw(k)

= −x̃′(k)Wx̃(k) + w′(k)[2B′P (A + BF )x̃]w(k) + w′(k)B′PBw(k)

= −x̃′(k)Wx̃(k) +
m∑

i=1

wi(k)[2ρ−1
i uNi(k)] + w′(k)B′PBw(k)

< −x̃′(k)Wx̃(k) +
m∑

i=1

wi(k)[2ρ−1
i wi(k)] + w′(k)B′PBw(k)

= −x̃′(k)Wx̃(k) + w′(k)[2ρ−1]w(k) + w′(k)B′PBw(k)

= −x̃′(k)Wx̃(k) +
m∑

i=1

w′(k)[2ρ−1 + B′PB]w(k)

< 0. (3.34)

∇V (k + 1) = −x̃′(k)Wx̃(k) + 2
m∑

i=1

x̃′(k)PBiw̄i(k) ≤ −x̃′(k)Wx̃(k). (3.35)

Case 3. All input channels are exceeding their lower limits. For this case, we have

Fix̃(k) + Hir + ρiB
′
iP x̃(k) ≤ −ūi, i = 1, · · · , m. (3.36)

Similarly, it can be shown that

∇V (k + 1) = −x̃′(k)Wx̃(k) ≤ 0. (3.37)
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Case 4. Some control channels are saturated and some are unsaturated. In view

of Cases 1 to 3, the increment is just a combination of the above three cases.

For those understaurated channels, we have

wi(k) = uNi(k) = ρiB
′P (A + BF )x̃(k) (3.38)

And

wi(k)[2ρ−1
i ]uNi(k) = wi(k)[2ρ−1

i ]wi(k) (3.39)

For those saturated channels, we have

wi = ūi − (Fix̃(k) + Hir) (3.40)

or

wi = −ūi − (Fix̃(k) + Hir) (3.41)

And

wi(k)[2ρ−1
i ]uNi(k) < wi(k)[2ρ−1

i ]wi(k) (3.42)

Thus, for this case, again we have

m∑
i=1

wi(k)[2ρ−1
i uNi(k)] ≤

m∑
i=1

wi(k)[2ρ−1
i wi(k)] (3.43)

and hence

∇V (k + 1) = −x̃′(k)Wx̃(k) ≤ 0. (3.44)

In conclusion, we have shown that

∇V (k + 1) ≤ −x̃(k)Wx̃(k), x̃(k) ∈ X∇, (3.45)
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which implies that X∇ is an invariant set of the closed-loop system in (3.21).

Noting that W > 0, all trajectories of (3.21) starting from inside X∇ will converge

to the origin. This, in turn, indicates that, for all initial state x0 and the step

command input r that satisfy (3.15), we have

lim
k→∞

x(k) = xe, (3.46)

which implies

lim
k→∞

u(k) = F lim
k→∞

x(k) + Gr + lim
k→∞

ρB′P [x(k) − xR] = FxR + Gr, (3.47)

since ρ(r, y) is uniformly bounded and

2I + ρB′PB > 0, (3.48)

Hence,

lim
k→∞

h(k) = C2 lim
k→∞

x(k) + D2 lim
k→∞

u(k)

= C2xR + D2(FxR + Gr)

= (C2 + D2F )xR + D2Gr

= −(C2 + D2F )(A + BF )−1BGr + D2Gr

= [D2 − (C2 + D2F )(A + BF )−1B]Gr

= G0G
′
0(G0G

′
0)

−1r = r. (3.49)

This completes the proof of Theorem 3.1. ♦

Note that this conclusion follows from the fact that uN(k) decays to zero

as t → ∞, which is the reason for the uniform boundedness condition. This
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assumption is not required if either D = 0 or if only stability and not asymptotic

tracking is required. Obviously this note applies also to full-order and reduced-

order measurement feedback cases and we will not repeat it later.

3.2.2 Full Order Measurement Feedback Case

The assumption that all the state variables of the given system Σ are measurable

is, in general, not practical. For example, in HDD servo systems (see Chen et al.

[1]), the velocity of the actuator is usually hard to be measured. As such, in this

subsection and the next subsection, we proceed to develop CNF design using only

measurement information. We first deal with the full order measurement feedback

case, in which the dynamical order of the controller is exactly the same as that

of the given plant. The following is a step-by-step procedure for the CNF design

using full order measurement feedback.

Step f.1: We first construct a linear full order measurement feedback control

law,

{
xR(k + 1) = (A + KC1)xR(k) − Ky(k) + B sat(uL(k))

uL(k) = F (xR(k) − xR) + Hr,
(3.50)

where r is the set of step reference signals and xR(k) is the state of the

controller. As usual, K, F are gain matrices and are chosen such that (A +

KC1) and (A + BF ) are asymptotically stable and the resulting closed loop

system having desired properties. Finally, G, H and xR are as defined in

(3.5)–(3.7).
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Step f.2: Given a positive definite matrix WP ∈ IRn×n, solve the Lyapunov

equation

P = (A + BF )′P (A + BF ) + WP, (3.51)

for P > 0. As in the state feedback case, the linear control law of (3.50)

obtained in the above step is to be combined with a nonlinear control law to

form the following CNF controller:

{
xR(k + 1) = (A + KC1)xR(k) − Ky(k) + B sat(u(k))

u(k) = F (xR(k) − xR) + Hr + qρ(r, y)B′P (A + BF )(xR(k) − xR),

(3.52)

where ρ(r, y) is given in (3.10) with all its diagonal elements being respectively

a nonpositive function, locally Lipschitz in y, and q is a diagonal matrix with

each diagonal element positive but less that one, which are to be chosen to

improve the performance of the closed-loop system.

It turns out that, for the measurement feedback case, the choice of ρi(r, y),

i = 1, . . .m, the nonpositive scalar functions, are not totally free. They are subject

to certain constraints. We have the following result.

Theorem 3.2 Consider the given system in (3.1), which satisfies the standard

assumptions i) to iii), the full order linear measurement feedback control law of

(3.50) and the composite nonlinear measurement feedback control law of (3.52).

Given a positive define matrix WQ ∈ IRn×n with

WQ ≥ µ I (3.53)
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where

µ = max{||(F + qρB′P (A + BF ))′B′PB(F + qρB′P (A + BF ))||} (3.54)

where q = diag{q1, q2, · · · qn} with each element, qi ∈ [0, 1], i = 1, 2, · · ·n, whose

definition will become transparent later, and ρ is a diagnal matrix with each element

being non-positive function satisfying

2I + B′PBρ > 0 (3.55)

Let Q > 0 be the solution to the Lyapunov equation,

Q = (A + KC1)
′Q(A + KC1) + WQ. (3.56)

Note that such a Q exists as A+KC1 is asymptotically stable. For any ∇ ∈ (0, 1),

let c∇ > 0 be the largest positive scalar such that for all x(k) ∈ XF∇, where

XF∇ :=

{(
x(k)
xv(k)

)
:
(

x(k)
xv(k)

)′ [P 0
0 Q

] (
x(k)
xv(k)

)
≤ c∇

}
, (3.57)

the following property holds

∣∣∣∣[ Fi Fi ]
(

x(k)
xR(k)

)∣∣∣∣ ≤ (1 −∇)ūi, i = 1, · · · , m. (3.58)

Then, the linear measurement feedback control law in (3.52) will drive the system’s

controlled output h(t) to track asymptotically a set of step references, i.e., r, from

an initial state x0, provided that x0, xR0 = xR(0) and r satisfy:

(
x0 − xR

xR0 − x0

)
∈ XF∇ and |Hi r| ≤ ∇ūi, i = 1, · · · , m. (3.59)

Furthermore, there exist positive scalars ρ∗
i > 0, i = 1, . . .m, such that for any

nonpositive functions ρi(r, y), i = 1, · · · , m, locally Lipschitz in y and |ρi(r, y)| ≤ ρ∗
i ,
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i = 1, · · · , m, the CNF control law of (3.52) will drive the system controlled output

h(t) to track asymptotically the reference r from an initial x0, provided that x0,

xR0 and r satisfy (3.59).

Proof. For simplicity, we again drop r and y in ρ(r, y) throughout the proof of

this theorem. Let x̃ = x− xR and x̃R = xR − x. The linear feedback control law of

(3.50) can be written as

x̃R(k + 1) = (A + KC1)x̃R(k), uL(k) = [F F ]
(

x̃(k)
x̃R(k)

)
+ Hr. (3.60)

Hence, for all

(
x̃(k)
x̃R(k)

)
∈ XF∇ ⇒

∣∣∣∣[ Fi Fi ]
(

x̃(k)
x̃R(k)

)∣∣∣∣ ≤ (1 −∇)ūi, i = 1, · · · , m, (3.61)

and for any r satisfying

|Hi r| ≤ ∇ūi, i = 1, · · · , m, (3.62)

each channel of uL, say uL,i, has the following property

uL,i(k) =
∣∣∣∣[ Fi Fi ]

(
x̃(k)
x̃R(k)

)
+ Hi r

∣∣∣∣ ≤
∣∣∣∣[ Fi Fi ]

(
x̃(k)
x̃R(k)

)∣∣∣∣ + |Hi r| ≤ ūi. (3.63)

Thus, for all x̃(k) and x̃R(k) satisfying the condition as given in (3.61), the closed-

loop system comprising the given plant and the linear control law of (3.50) can be

rewritten as

(
x̃(k + 1)
x̃R(k + 1)

)
=

[
A + BF BF

0 A + KC1

] (
x̃(k)
x̃R(k)

)
. (3.64)

Similarly, the closed-loop system with the CNF control law of (3.52) can be ex-

pressed as

(
x̃(k + 1)
x̃R(k + 1)

)
=

[
A + BF BF

0 A + KC1

] (
x̃(k)
x̃R(k)

)
+

[
B
0

]
w(k), (3.65)
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where

w(k) = sat
[
[ F F ]

(
x̃(k)
x̃R(k)

)
+ Hr + ρ [ B′P B′P ] (A + BF )

(
x̃(k)
x̃R(k)

)]

− [ F F ]
(

x̃(k)
x̃R(k)

)
− Hr. (3.66)

If some channels are undersaturated, i.e.,

[
[ Fi Fi ]

(
x̃(k)
x̃R(k)

)
+ Hir + ρi [ B

′
iP B′

iP ] (A + BF )
(

x̃(k)
x̃R(k)

)]
≤ ūi (3.67)

then

wi(k) = ρi [ B
′
iP B′

iP ] (A + BF )
(

x̃(k)
x̃R(k)

)
(3.68)

else if some channels are saturated from above, i.e.,

[
[ Fi Fi ]

(
x̃(k)
x̃R(k)

)
+ Hir + ρi [ B

′
iP B′

iP ] (A + BF )
(

x̃(k)
x̃R(k)

)]
≥ ūi (3.69)

then

wi(k) = ūi − [ Fi Fi ]
(

x̃(k)
x̃R(k)

)

− Hir ≤ ρi [B
′
iP B′

iP ] (A + BF )
(

x̃(k)
x̃R(k)

)
(3.70)

Define a diagonal matrix q = diag{q1, q2, · · · qn} with each element, qi ∈ [0, 1], i =

1, 2, · · ·n, then wi(k) can be expressed as following:

wi(k) = qiρi [ B
′
iP B′

iP ] (A + BF )
(

x̃(k)
x̃R(k)

)
(3.71)

similarly if some channels are saturated from below, or some channels are saturated

and some undersaturated, we can still define w(k) as following:

wi(k) = qiρi [ B
′
iP B′

iP ] (A + BF )
(

x̃(k)
x̃R(k)

)
(3.72)



Chapter 3. Discrete Time CNF Control 53

or

w(k) = qρ [B′P B′P ] (A + BF )
(

x̃(k)
x̃R(k)

)
(3.73)

So we use (3.72) or (3.73) to cover all cases.

Clearly, for x0 and xR0 satisfying (3.59), we have

(
x̃0

x̃R0

)
∈ XF∇, (3.74)

where x̃0 = x̃(0) and x̃R0 = x̃R(0). We note that (3.64) and (3.65) are identical

when ρ = 0. Again, the results of Theorem 3.2 for both the linear and the nonlinear

feedback case can be proved in one shot.

Next, we define a Lyapunov function:

V (k) =
(

x̃(k)
x̃R(k)

)′ [P 0
0 Q

] (
x̃(k)
x̃R(k)

)
, (3.75)

and evaluate the increment of V (k) along the trajectories of the closed-loop system

in (3.65), i.e.,

∇V (k + 1) =
(

x̃(k + 1)
x̃R(k + 1)

)′ [P 0
0 Q

] (
x̃(k + 1)
x̃R(k + 1)

)
−

(
x̃(k)
x̃R(k)

)′ [P 0
0 Q

] (
x̃(k)
x̃R(k)

)

=
(

x̃(k)
x̃R(k)

)′ [ −WP (A + BF )′PBF
(BF )′P (A + BF ) −WQ + (BF )′PBF

] (
x̃(k)
x̃R(k)

)

+ w′ [ B′P (A + BF ) B′PBF ]
(

x̃(k)
x̃R(k)

)
+

(
x̃(k)
x̃R(k)

)′ [ (A + BF )′PB
(BF )′PB

]
w(k)

+ w′(k)B′PBw(k) (3.76)

So substitute (3.73) into ∇V (k + 1), we have

∇V (k + 1) =
(

x̃(k)
x̃R(k)

)′ [ −WP (A + BF )′PBF
(BF )′P (A + BF ) −WQ + (BF )′PBF

] (
x̃(k)
x̃R(k)

)
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+
(

x̃(k)
x̃R(k)

)′ [ (A + BF )′PB
(A + BF )′PB

]
qρ[B′P (A + BF ) B′PBF ]

(
x̃(k)
x̃R(k)

)

+
(

x̃(k)
x̃R(k)

)′ [ (A + BF )′PB
(BF )′PB

]
qρ[B′P (A + BF ) B′P (A + BF )]

(
x̃(k)
x̃R(k)

)

+
(

x̃(k)
x̃R(k)

) [
(A + BF )′PB
(A + BF )′PB

]
qρB′PBρ[B′P (A + BF ) B′P (A + BF )]

(
x̃(k)
x̃R(k)

)

Define T = B′P (A + BF ), then

∇V (k + 1) =
(

x̃(k)
x̃R(k)

)′ [−WP T ′F
F ′T −WQ + (BF )′PBF

] (
x̃(k)
x̃R(k)

)

+
(

x̃(k)
x̃R(k)

)′ [ 0 T ′qρB′PBF
T ′qρT T ′qρB′PBF

] (
x̃(k)
x̃R(k)

)

+
(

x̃(k)
x̃R(k)

)′ [ 0 T ′qρT
F ′B′PBqρT F ′B′PBqρT

] (
x̃(k)
x̃R(k)

)

+
(

x̃(k)
x̃R(k)

)′ [ 0 T ′qρB′PBqρT
T ′ρB′PBqρT T ′qρB′PBqρT

] (
x̃(k)
x̃R(k)

)

+ x̃(k)′T ′qρ[2I + B′PBqρ]T x̃(k)

= −
(

x̃(k)
x̃R(k)

)′ [ WP −Wd

−W ′
d Wqm

] (
x̃(k)
x̃R(k)

)

+ x̃(k)′T ′qρ[2I + B′PBqρ]T x̃(k) (3.77)

where

Wd = T ′F + T ′qρT + T ′qρB′PBF + T ′qρB′PBqρT

= T ′(I + qρB′PB)(F + qρT ) (3.78)

Wqm = −WQ + F ′B′PBF + T ′qρB′PBF + F ′B′PBqρT + T ′qρB′PBqρT

Define four matrices

M1 =
[

I 0
−W ′

dWP
−1 I

]
(3.79)

M2 =
[

I 0
W ′

dWP
−1 I

]
(3.80)
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and

N1 =
[
I WP

−1Wd

0 I

]
(3.81)

N2 =
[
I −WP

−1Wd

0 I

]
(3.82)

Note the properties: M1M2 = I, N1N2 = I and N ′
1 = M2, N ′

2 = M1. So in

(3.77), we have

∇V (k + 1) = −
(

x̃(k)
x̃R(k)

)′
M1(M2

[
WP −Wd

−W ′
d Wqm

]
N1)N2

(
x̃(k)
x̃R(k)

)

+ x̃(k)′T ′qρ[2I + B′PBqρ]T x̃(k) (3.83)

Define

x̂m(k) = N2

(
x̃(k)
x̃R(k)

)
(3.84)

We have

∇V (k + 1) = −x̂m(k)′
[
WP 0
0 Wqq

]
x̂m(k)

+ x̃(k)′T ′qρ[2I + B′PBqρ]T x̃(k) (3.85)

where

x̂m(k) = N2

(
x̃(k)
x̃R(k)

)
=

(
x̃(k) − W−1

P Wdx̃R(k)
x̃R(k)

)
(3.86)

and from (3.53), we can get WQ ≥ (F + qρT )′B′PB(F + qρT )

Wqq = Wqm − W ′
dW

−1
P Wd

= −WQ + F ′B′PBF + T ′qρB′PBF + F ′B′PBqρT + T ′qρB′PBqρT − W ′
dW

−1
P Wd
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= −[WQ + W ′
dW

−1
P Wd − (F + qρT )′B′PB(F + qρT )]

≤ −[WQ − (F + qρT )′B′PB(F + qρT )]

≤ 0 (3.87)

So

−x̂m(k)′
[
WP 0
0 Wqq

]
x̂m(k) ≤ 0 (3.88)

Since in (3.55), 2I + B′PBρ > 0 and ||q|| ≤ 1, then

x̃(k)′T ′qρ[2I + B′PBqρ]T x̃(k) ≤ 0 (3.89)

Combing (3.88) and (3.89), we have ∇V (k + 1) ≤ 0

Thus, XF∇ is an invariant set of the closed-loop system in (3.65), and all

trajectories starting from XF∇ will remain inside and asymptotically converge to

the origin. This, in turn, indicates that, for the initial state of the given system

x0, the initial state of the controller xR0, and step command input r that satisfy

(3.59),

lim
k→∞

x̃R(k) = 0 and lim
k→∞

x(k) = xR, (3.90)

and then it follows from (3.49) that the controlled output h(t) converges asymp-

totically to the target reference r. This completes the proof of Theorem 3.2. ♦

3.2.3 Reduced Order Measurement Feedback Case

For the given system in (3.1), it is clear that there are p state variables of the

system, which are measurable if C1 is of maximal rank. Thus, in general, it is not
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necessary to estimate these measurable state variables in measurement feedback

laws. As such, we will proceed in this subsection to design a dynamic controller

that has a dynamical order less than that of the given plant. For simplicity of

presentation, we assume that C1 is already in the form

C1 = [ Ip 0 ] . (3.91)

Then, the system in (3.1) can be rewritten as




(
x1(k + 1)
x2(k + 1)

)
=

[
A11 A12

A21 A22

] (
x1(k)
x2(k)

)
+

[
B1

B2

]
sat(u(k))

y(k) = [ Ip 0 ]
(

x1(k)
x2(k)

)

h(k) = C2

(
x1(k)
x2(k)

)
, x0 =

(
x10

x20

) (3.92)

where the original state x is partitioned into two parts, x1 and x2 with y ≡ x1.

Thus, we will only need to estimate x2 in the reduced order measurement feedback

design. Next, we let F be chosen such that i) A + BF is asymptotically stable,

and ii) (C2 + D2F )(sI − A − BF )−1B + D2 has desired properties, and let KR be

chosen such that A22 + KRA12 is asymptotically stable. Here we note that it can

be shown that (A22, A12) is detectable if and only if (A, C1) is detectable. Thus,

there exists a stabilizing KR. Again, such F and KR can be designed using an

appropriate control technique. We then partition F in conformity with x1 and x2:

F = [ F1 F2 ] . (3.93)

We further partition F2 as follows:

F2 =




F2,1
...

F2,m


 . (3.94)
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Also, let G, H and xR be as given in (3.5)–(3.7). The reduced order CNF controller

is given by

xR(k+1) = (A22+KRA12)xR(k)+ (B2+KRB1) sat(u(k))+
[
A21+KRA11−(A22+KRA12)KR

]
y

(3.95)

and

u(k) = F
[(

y(k)
xR(k)−KRy(k)

)
−xR(k)

]
+Hr+ρ(r, y)B′P

[(
y

xR(k)−KRy(k)

)
−xR(k)

]
,

(3.96)

where ρ(r, y) is as given in (3.10).

Next, given a positive definite matrix W ∈ IRn×n, let P > 0 be the solution

to the Lyapunov equation

P = (A + BF )′P (A + BF ) + WP. (3.97)

Given another positive definite matrix WR ∈ IR(n−p)×(n−p) with

WR ≥ µ I (3.98)

where again

µ = max{||(F + qρB′P (A + BF ))′B′PB(F + qρB′P (A + BF ))||} (3.99)

let QR > 0 be the solution to the Lyapunov equation

(A22 + KRA12)
′QR + QR(A22 + KRA12) = −WR. (3.100)

Note that such P and QR exist as A + BF and A22 + KRA12 are asymptotically

stable. For any ∇ ∈ (0, 1), let c∇ be the largest positive scalar such that for all

(
x(k)
xR(k)

)
∈ XR∇ :=

{(
x(k)
xR(k)

)
:
(

x(k)
xR(k)

)′[P 0
0 QR

](
x(k)
xR(k)

)
≤ c∇

}
(3.101)
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the following property holds:

∣∣∣∣[Fi F2,i ]
(

x(k)
xR(k)

)∣∣∣∣ ≤ ūi(1 −∇), i = 1, · · · , m. (3.102)

We have the following theorem.

Theorem 3.3 Consider the given system in (3.1), which satisfies the usual as-

sumptions i) to iii). Then, there exist positive scalars ρ∗
i > 0, i = 1, · · · , m, such

that for any nonpositive function ρi(r, y), i = 1, · · · , m, locally Lipschitz in yi and

|ρi(r, y)| ≤ ρ∗
i , the reduced order CNF law given by (3.95) and (3.96) will drive

the system controlled output h(t) to asymptotically track the reference r from an

initial state x0, provided that x0, xR0 and r satisfy

(
x0 − xR

xR0 − x20 − KRx10

)
∈ XR∇, |Hir| ≤ ∇ūi, i = 1, · · · , m. (3.103)

Proof. Let x̃(k) = x(k) − xR and x̃R(k) = xR(k) − x2(k) − KRx1(k). Then, the

closed-loop system comprising the given plant in (3.1) and the reduced order CNF

control law of (3.95) and (3.96) can be expressed as

(
x̃(k + 1)
x̃R(k + 1)

)
=

[
A + BF BF2

0 A22 + KRA12

] (
x̃(k)
x̃R(k)

)
+

[
B
0

]
w (3.104)

where

w = sat
{
[ F F2 ]

(
x̃(k)
x̃R(k)

)
+Hr+ρ(r, y)B′P

[
x̃(k)+

(
0

x̃R(k)

)]}

− [ F F2 ]
(

x̃(k)
x̃R(k)

)
− Hr. (3.105)

The rest of the proof follows along similar lines to the reasoning given in the full

order measurement feedback case.



Chapter 4

A Dual Stage HDD Servo CNF
Controller

4.1 Introduction

In recent years, a lot of researchers and engineers have paid much attention to

hard disk drive controller design techniques. Gradually, to achieve smaller-size

hard disks with increasingly larger capacities, dual stage hard disk drive has been

drawn the attention of the public.

One limitation in the conventional hard disk drives to achieve higher data

capacity is the bandwidth. That is, the voice coil motor (VCM) as an actuator

has a lot of flexible resonances in high frequencies over 2kHz, which limits the

increase of bandwidth. A possible solution to this kind of problems is to introduce

an additional micro-actuator on top of the conventional VCM actuator to provide a

faster and finer response. Dual stage actuator refers to the fact that there is a small

actuator mounted on a large conventional VCM actuator. This small actuator or

60
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micro-actuator will be used only to follow a small data track. The following figure

(4.1) shows the configuration of a dual stage hard disk drive:

Figure 4.1: A hard disk drive servo mechanism with dual stage actuator

4.1.1 Modeling and Identification of Dual Stage HDD

The following four graphs (4.2), (4.3),(4.4) and (4.5) are the instruments we have

used in the modeling and identification process.

A detailed VCM model of an HDD can be as high as 40th order, see ([31]).

Factors needed to be considered include: nonlinearities in power amplifier satura-

tion, in voice coil hysteresis, saturation, in actuator material damping, in torque

factor, in friction and in striction.

Using non-linear least squares as the algorithm for identification, we will get

the following graph (4.6) :
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Figure 4.2: Modeling system configuration

Figure 4.3: Signal analyzer

And the transfer function of VCM is (4.1):

Gv(s) =
num1 + num2 + num3

den1 + den2 + den3

(4.1)

where

num1 = 1.531e012s11 − 5.246e016s10 + 4.801e021s9 − 1.687e026s8

num2 = 5.36e030s7 − 1.841e035s6 + 2.577e039s5 − 8.584e043s4



Chapter 4. A CNF Hard Disk Drive Servo Controller 63

Figure 4.4: Polytech meter

Figure 4.5: Laser meter

num3 = 5.276e047s3 − 1.738e052s2 + 3.574e055s − 1.205e060 (4.2)

and

den1 = s14 + 5454s13 + 4.271e009s12 + 1.807e013s11 + 6.909e018s10

den2 = 2.14e022s9 + 5.265e027s81.097e031s7 + 1.929e036s6

den3 = 2.421e039s5 + 3.209e044s4 + 1.841e047s3 + 1.883e052s2 (4.3)
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Figure 4.6: Nonlinear least square approach to identify VCM model

The transfer function of micro-actuator is (4.4):

Gm(s) =
num4 + num5 + num6

den4 + den5 + den6
(4.4)

where

num4 = 1.531e012s11 − 5.246e016s10 + 4.801e021s9 − 1.687e026s8

num5 = 5.36e030s7 − 1.841e035s6 + 2.577e039s5 − 8.584e043s4

num6 = 5.276e047s3 − 1.738e052s2 + 3.574e055s − 1.205e060 (4.5)

and

den4 = s14 + 5454s13 + 4.271e009s12 + 1.807e013s11 + 6.909e018s10
den5 = 2.14e022s9 + 5.265e027s8 + 1.097e031s7 + 1.929e036s6

den6 = 2.421e039s5 + 3.209e044s4 + 1.841e047s3 + 1.883e052s2 (4.6)

Unfortunately, the above identified model is a fourteenth order system, which is

too complicated to be used to design a controller. Moreover, there is no need to

use such a complicated model to identify the system. What the model we need is

that the model can grasp the main characteristic of the system, not to re-draw the

system. So we will use a model with fourth order to identify the system.
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Figure 4.7: Nonlinear least square approach to identify micro-actuator model

Refered to ([4]), we use the data from actual systems and the correspond-

ing algorithms by Eykhoff ([30]) and identify a fourth order model for the VCM

actuator,

Gv(s) =
6.4017e07

s2

w2
n

s2 + 2ξwns + w2
n

(4.7)

where ξ = 0.085, wn = 1.1309e04rad/sec and a fourth order model for the micro-

actuator,

Gm(s) =
b0s

2 + b1s + b2

s4 + a3s3 + a2s2 + a1s + a0
(4.8)

where

b0 = 1.1593e09

b1 = 1.708e12

b2 = 2.512e18

a3 = 4256
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a2 = 3.506e09

a1 = 7.496e12

a0 = 2.512e18 (4.9)

The only measured output, y is

y = yv + ym (4.10)

where yv and ym are outputs of VCM and micro-actuator respectively. The units

are set in volts and µm respectively for the input and output in the models. These

models compose the model of the dual stage actuator HDD servo system, which

will be used throughout the rest of the chapter.

Then we will convert these two models into state space representation and

transform them into discrete time system. The sample time for VCM is

Ts1 = 1e05Hz (4.11)

and the sample time for micro-actuator is

Ts2 = 1e05Hz (4.12)

4.1.2 CNF Controller Design Preparation

Transform the models into the discrete time state space representation, we will

have two models, one is for VCM and the other is for micro-actuator.

The VCM model is represented by Av, Bv, Cv, Dv:

Av =


 3.9680 −5.9180 3.9300 −0.9810

1.0000 0 0 0
0 1.0000 0 0
0 0 1.0000 0


 ; Bv =


 1

0
0
0


 (4.13)
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Cv = 1.0e − 004 [ 0.4026 0.0041 0.4006 0.0010 ] ; Dv = 5.0520e − 006 (4.14)

And the micro-actuator is represented by Am, Bm, Cm, Dm:

Am =


 3.6170 −5.2240 3.5410 −0.9583

1.0000 0 0 0
0 1.0000 0 0
0 0 1.0000 0


 ; Bm =


 1

0
0
0


 (4.15)

Cm = [ 0.0776 −0.0655 −0.0640 0.0759 ] ; Dm = 0 (4.16)

Simplified as a second order system in Chapter 5, which will be discussed later,

now the hard disk drive will be presented as a fourth order system and has been

decoupled as two parts, VCM part and micro-actuator. So it is easier to design

two independent controller to control each part. However, as the output is a com-

bination of outputs from VCM and micro-actuator (4.17),

y = yv + ym (4.17)

So the problem is the coordination between yv and ym. But the internal struc-

tures of VCM and micro-actuator are quite different, the outputs to the reference

signal are quite different too. Moreover, during the low frequency, VCM model is

dominant, while, during the high frequency, the micro-actuator is dominant. How

to design the controller and coordinate the two models will need some tricks and

non-standard design strategies.

However, if we apply the CNF control law, the process is systematic and

simple. The CNF controller is basically stable, however, the performance can not

be guaranteed if we cannot select the nonlinear part properly. So we use the

approaches by try and error in the simulation.
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4.1.3 Controller Design

In ([32]), a typical design specification for dual stage HDD servo is summarized in

the following table (4.1.3):

Table 4.1: Specifications for a dual stage HDD controller design

Items Objective

Open-loop bandwidth f0: more than 200 Hz

Disturbance attenuation: more than 40 dB below 100 Hz

Phase margin (PM): more than 40 degree

Gain margin (GM): more than 6 dB

Rise time: less than 0.2 ms

Overshoot: less than 20%

Sensitivity transfer function peak: less than 10 dB

Combine the two subsystems together, we will get system parameters as fol-

lowing:

{
xc(k + 1) = Acxc(k) + Bcuc(k)
yc(k) = yv(k) + ym(k) = Cc(k)xc(k)

(4.18)

where

Ac =
[

Av 0
0 Am

]
, Bc =

[
Bv 0
0 Bm

]
, Cc = [ Cv Cm ] (4.19)

In ([17]), they proposed two auxiliary states , which were integrals of tracking

errors of secondary-stage actuator and VCM, respectively,

xci(k + 1) = xci(k) + r(k) − yc(k) (4.20)

xvi(k + 1) = xvi(k) + r(k) − yv(k) (4.21)
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Then it follows that the generalized system is

{
x(k + 1) = Ax(k) + Bu(k) + Brr(k)
y(k) = C(k)x(k)

(4.22)

where x = [xT
c xT

ci xT
vi], C = [Cc 0 0] and

A =

[
Ac 0 0−Cc 1 0
[0 − Cv] 0 1

]
, B =

[
Bc
0
0

]
, Br =

[
0
1
1

]
(4.23)

We will design our CNF controller through two phases. In step 1, we can

use LQR to design linear controller. In step 2, we can add the nonlinear part and

adjust the nonlinear parameter ρ(y, r) to improve the dynamics of the system.

(1). LQR Design.

Introduce the following quadratic performance index,

J =
∞∑
0

z(k)T R1z(k) + u(k)TR2u(k) (4.24)

where R1 ≥ 0, R2 > 0 are weight matrices and z(k) = [xci xvi]
T . Then our

design problem can be formulated as : find a proper controller for the generalized

system such that the closed-loop systems is stable and the performance index J is

minimized.

We just assume all the states are available and design a state feedback con-

troller. The control law is

u(k) = Fx(k) (4.25)

where F is obtained by

F = −(R2 + BT PB)
−1

BT PA (4.26)
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and P > 0 is the solution of the following Riccati equation:

AT PA − P + R1 − AT PB(R2 + BT PB)
−1

BT PA = 0 (4.27)

(2). CNF Controller.

The CNF controller consists of two parts. One is linear part, which we can

obtain in the above step, and the other one is nonlinear part, which we will try to

construct in the following.

u = uL(k) + uN(k) (4.28)

= Fx(k) + Gr(k) + ρ(y, r)BTP (A + BF )(x(k) − xe(k)) (4.29)

where F can be chosen from (4.26) and G is given by

G = G
′
0(G0G

′
0)

−1
(4.30)

G0 = −C(A + BF )−1B (4.31)

4.1.4 Simulation

We use the following Simulink block (4.8), where the parameters are given as

following:

Fc1 =
[ −1.1508 2.8011 −2.3559 0.6756 −0.0046−0.0027 0.0061 −0.0046 0.0008 −0.6260

]
(4.32)

Fc2 =
[

0.0085 −0.0059 0.0014 0.0079 −0.0003
1.5629 −1.4208 0.4673 0.0004 0.0101

]
(4.33)

And

Fc = [Fc1; Fc2]
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Figure 4.8: Simulink block for the simulation

Gc =
[

0.0757
6.4663

]
(4.34)

The nonlinear part is

ρ1(r, y) = −α1 ∗ (e(−|(1−λ1∗u(2)/u(1)| − e−1) (4.35)

ρ2(r, y) = −α2 ∗ (e−|1−λ2∗u(4)/u(3)| − e−1) (4.36)

where

α1 = 0.001; α2 = 0.003; λ1 = 0.8; λ2 = 0.2 (4.37)

The simulation result is the Figure (4.9). In Figure (4.9), a fast and stable tracking

is achieved.
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Figure 4.9: Output of a dual stage hard disk drive via CNF controller

4.2 Conclusions

In this chapter, we have successfully designed a CNF discrete-time controller which

can control the dual stage hard disk drive and achieve a very good performance.



Chapter 5

Asymptotic Time Optimal
Tracking

5.1 Introduction and Problem Statement

It is well known (see e.g., Hu and Lin [18]) that every physical system in our real

life has nonlinearities and very little can be done to overcome them. Many practical

systems are sufficiently nonlinear so that important features of their performance

may be completely overlooked if they are analysed and designed through linear

techniques. For example, as pointed out in Chen et al. [1],[6] that the actuator

saturation in a hard disk drive has seriously limited the performance of its overall

servo system. Traditionally, the most popular nonlinear control technique used in

the design of servo systems, especially the hard disk drive servo systems, is the so-

called proximate time-optimal servomechanism (PTOS) proposed by Workman [9],

which achieves near time-optimal performance for a large class of motion control

systems characterised a double integrator, e.g., hard disk drives and spring-mass

mechanical systems. The PTOS was actually modified from the well-known time-

73
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optimal control or bang-bang control. However, it is made to yield a minimum

variance with smooth switching from the track seeking to track following modes

via a mode switching controller. It was shown in Workman [9] that by properly

adjusting the controller parameters, the settling time for tracking a step reference

in the resulting servo system with the PTOS controller can be made as close as

possible to the optimal time achieved by the bang-bang control.

We note that the time-optimal control or bang-bang control indeed yields

the best performance in point-to-point tracking, although such a technique cannot

be used in practical situations. It is well known that the resulting system is very

sensitive to the uncertainties and noises. Moreover, it is generally not necessary

to have a precise point to point tracking in practical situations. Instead, it would

be more preferable to consider asymptotic tracking in which the tracking target

is defined as a small neighbourhood of a given setpoint. We believe that such a

consideration is very practical. For example, in a hard disk drive servo system (see

e.g., [1, 6]), it is a common practice to activate its read/write head to read or write

data once it enters ±5% of the data track-width of the target setpoint.

Interestingly, it has been recently demonstrated by an example in [1, 6] that

the time-optimal control or bang-bang control, and consequently the PTOS, do not

necessarily yield the best performance in asymptotic tracking situations. There are

control laws that would yield a better performance than that of the time-optimal

control. This is actually the motivation for the work in this chapter. Our goals or

contributions are two-fold: 1) to derive the optimal settling for asymptotic tracking;
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and 2) to find a control law that achieves this optimal performance.

To be more specific, we consider a class of second order linear systems Σ

characterized by

ẋ =
[
0 1
0 0

]
x +

[
0
a

]
sat(u), y = [ 1 0 ] x, x =

(
x1

x2

)
, x(0) = x0 =

(
x10

x20

)
,

(5.1)

where x is the state, y is the measurement output, a is a constant and sat(u) is

control input to the system with

sat(u) = sign(u) × min{umax, |u|}. (5.2)

As pointed out earlier, there are a large class of real life problems, such as hard disk

drives and spring-mass mechanical systems, can be modeled as a double-integrator

system characterized by (5.1). The problem we consider and solve in this chapter

is the following:

Definition 5.1 Consider the system of (5.1) with actuator nonlinearities. Let r

be a reference target and δ be a positive scalar and δ ∈ [0, 1]. Let

u = φ(y, r, δ) (5.3)

be an internally stabilizing controller for the system, i.e., the closed-loop system

comprising of the given system Σ of (5.1) and the control law of (5.3) is asymp-

totically stable. Let ts(x0, r, δ, φ) be the corresponding settling time for the result-

ing system output y(t, φ) to enter the δ-neighbourhood of the target reference, i.e,

ts(x0, r, δ, φ) is the smallest scalar such that for all t ≥ ts(x0, r, δ, φ),

|y(t, φ)− r| ≤ δ · |r| and lim
t→∞ y(t, φ) = r. (5.4)
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Finally, we let t∗s(x0, r, δ) be the optimal settling time over all the internally stabi-

lizing controllers, i.e.,

t∗s(x0, r, δ) := inf
{

ts(x0, r, δ, φ)
∣∣∣ φ(y, r, δ) internally stabilizes Σ

}
. (5.5)

The asymptotic time-optimal tracking (ATOT) control problem is to find a stabiliz-

ing measurement feedback control law φ∗(y, r, δ) such that ts(x0, r, δ, φ
∗) = t∗s(x0, r, δ).

The detailed derivations for the optimal asymptotic tracking performance t∗s

and the optimal controller φ∗ are given respectively in Sections 5.2 and 5.3.

5.2 Optimal Settling Time

We derive in this section the optimal settling time t∗s(x0, r, δ) for the asymptotic

time-optimal tracking problem defined in Definition 5.1. We will focus on the

case when the target reference r is a step function, i.e., r is a constant. First,

we note that x1 in (5.1) usually represents the displacement of its corresponding

physical system, while x2 represents its velocity. For simplicity of presentation, we

assume that the initial velocity of the system is zero, i.e., x20 = 0. Without loss

of generality, we can also assume that the initial displacement is zero x10 = 0. If

x10 �= 0, we can re-define a new target reference rnew = r− x10. Then, the problem

of tracking r with nonzero initial condition is equivalent to that of tracking rnew

with zero initial condition. Similarly, for simplicity, we assume a = 1 and umax = 1

in (5.1). This can be done by a proper scaling on u and r. We have the first main

result of the chapter.
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Theorem 5.1 Consider the given system Σ of (5.1) with a = 1, umax = 1 and

x0 = 0. Given a step target reference r (for simplicity, we assume r ≥ 0) and a

positive scalar δ ∈ [0, 1], the optimal settling time for Σ under all possible stabilizing

control laws (see, e.g., Definition 5.1) is given by:

t∗s(r, δ) =




2(
√

r(1 + δ) −√
rδ), 0 ≤ δ < 1

3
,√

2r(1 − δ), 1
3
≤ δ ≤ 1.

(5.6)

Note that x0 is dropped from the above expression as x0 is assumed to be zero.

Proof. Since the system is a double integrator system, if we figure out x2 versus

time t (see figure (5.1)), then the ouput y = x1 =
∫ Tt
0 x2(τ)dτ , where Tt ≥ 0 is

the desired time instant, is simply the net area (with ± signs) enclosed by t = 0,

t = Tt, x2(t) and the time axis x2 = 0.

Figure 5.1: Plot of x2(t) versus t

Let us construct �OAB as shown in the figure (5.2) where OA = AB and

the slope of OA is equal to max(u) = umax = +1 while the slope of AB is equal to

min(u) = umin = −umax = −1.
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Figure 5.2: Case 1: 1/3 ≤ δ ≤ 1

For the case of 1
3
≤ δ ≤ 1, we first apply u(t) = umax = +1 from t = 0 to

t = tA = 2
√

1
3
r and then apply u(t) = umin = −umax = −1 till t = tB = 4

√
1
3
r, as

shown in figure (5.2). Since umax = 1, x1 =
∫ t
0 au(τ)dτ ≤ ∫ t

0 aumax(τ)dτ =
∫ t
0 adτ =

1
2
at2 = 1

2
t2, or t ≥ √

2x1 for x1 ≥ 0, t∗s is the time at which x1 arrives at (1 − δ)r

along OA, which is
√

2r(1 − δ). At t = tB = 4
√

1
3
r, the output x1 = 4

3
r ≤ (1 + δ)r

as 1
3
≤ δ ≤ 1, so the ouput is within the region of [(1 − δ)r, (1 + δ)r]. After that,

if we remove any control, x2 = 0 and x1 keeps unchanged, i.e., the ouput is always

within the region of [(1 − δ)r, (1 + δ)r]. This justifies our calculation of t∗s for the

case of 1
3
≤ δ ≤ 1.

For the case of 0 ≤ δ < 1
3
, we first apply u(t) = +1 from t = 0 to t = tA =

√
(1 + δ)r where the time coordinate tA correponds to A, and then apply u(t) = −1

till t = tB = 2
√

(1 + δ)r where, again, the time coordinate tB correponds to B, as

shown in figure (5.3). In this case, t∗s is the time at which x1 arrives at (1−δ)r along

OAB, which is, after some simple calculations, exactly 2(
√

(1 + δ)r − √
δr). We

shall prove that there exists no shorter settling time. First we claim that t∗s > tA.
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x1 =
∫ tA
0 au(τ)dτ ≤ ∫ tA

0 aumax(τ)dτ =
∫ tA
0 adτ = 1

2
at2A = 1

2
t2A = 1

2
(1+ δ)r < (1− δ)r

for 0 ≤ δ < 1
3
. Therefore, at tA, x1 will not arrive at (1 − δ)r and hence t∗s > tA.

Suppose we have another settling time t′s which satisfies t′s < t∗s, then, if we

indicate the point corresponding to ts as P , there are only three possible cases for

the location of the point corresponding to t′s, namely Pa, Po or Pb, see figure (5.3),

where Ha, H ′
p and Hp are projection points corresponding to A, Po (or Pa and Pb)

and P respectively. Now we shall prove that all these cases are impossible. To

this sequel, we will first introduce a proposition. This proposition shows that the

trajectories leaving or enetring some point x2(t0) can only take the slope between

−a and +a, which complies with d
dt

x2(t) = au(t).

Figure 5.3: Case 2: 0 ≤ δ < 1/3

Property 5.1 Suppose x2(t0) is located at some point A, then the trajectories leav-

ing (t > t0) or entering (t > t0) A will be confined to the slanted shade area shown

in the figure (5.4).



Chapter 5. Asymptotic Time Optimal Control 80

Figure 5.4: The Trajectories leaving or entering x2(t0)

Proof of the Proposition.

First we assume t > t0. x2(t) =
∫ t
t0

au(τ)dτ , but −1 ≤ u(τ) ≤ +1, which means

∫ t
t0
−adτ ≤ x2(t) =

∫ t
t0

au(τ)dτ ≤ ∫ t
t0

adτ or, x2(t0) − a(t − t0) ≤ x2(t) ≤ x2(t0) +

a(t − t0). Hence the result for the trajectories leaving A. For the case of t < t0,

we have
∫ t
t0

adτ ≤ x2(t) =
∫ t
t0

au(τ)dτ ≤ ∫ t
t0
−adτ or, x2(t0) + a(t − t0) ≤ x2(t) ≤

x2(t0) − a(t − t0). Hence the result for the trajectories entering A. Now we go on

with our proof of the theorem. Suppose that x2(t
′
s) stays at Pa, we draw a line

PaBa parallel to PB. According to the above proposition, trajectories leaving Pa

will be on or above the line PaBa, which implies that the area of �H ′
pPaBa is the

infimum for all possible x2(t), t ≥ t′s. Since at t′s, the area is already 1−δ, the area

or the output x1 will definitely exceed 1 + δ as the area of �H ′
pPaBa is larger than

that of �HpPB, which contradicts the definition of settling time, see Definition

1.1.

Suppose now that x2(t
′
s) stays at Pb, we draw a line PbAb parallel to BP .

Again, according to the above proposition, trajectories entering Pb will be on or
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below the line PbAb, which implies that the area of the polygon OAbPbH
′
pO is the

supremum for all possible x2(t), 0 ≤ t ≤ t′s. Since at ts, the area is already (1−δ)r,

we see that the area of OAbPbH
′
pO or the output x1(t

′
s) will be smaller than (1−δ)r,

which, again, contradicts the definition of settling time in Definition 1.1.

For the last case that x2(t
′
s) stays at Po, using the same arguement as the case

of x2(t
′
s) staying at Pb shown above, we can claim too, that there doesn’t exist such

a t′s which satisfies t′s < ts. In summary, t∗s is indeed the desired optimal settling

time for the system.

Therefore, we have

t∗s =


 2(

√
r(1 + δ) −√

rδ), 0 ≤ δ < 1
3
,√

2r(1 − δ), 1
3
≤ δ ≤ 1.

(5.7)

This completes our proof of the theorem.

When r = 1, the relationship between ts and δ can be easily plotted in Figure

(5.5):
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Figure 5.5: The Relationship between δ and ts, r = 1
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Assuming δ = 0.01, the corresponding optimal settling time is t∗s = 1.8100,

which will be used in the illustrative example in Section 5.4.

Furthermore, assuming δ = 1
3
, the corresponding optimal settling time is

ts = 1.1547, which is the joint point for the two different cases of δ. The point with

the star is the switching point corresponding to δ = 1
3
.

Remarks

1. As shown in the proof for the case of 1
3
≤ δ ≤ 1, we let the output stay at

x1 = 4
3
r ∈ [(1 − δ)r, (1 + δ)r] while x2 = 0. As a matter of fact, we can set it to

be any x1 ∈ [2(1 − δ)r, (1 + δ)r], which can be realized by let x2(t) go along the

lines PHa, PP1, PP2, PP3, PB, PP4 · · · as shown in figure (5.2), corresponding to

the decreasing amplitude of control input gradually. Obviously, we have infinitely

many choices. In the following remarks, we simplify t∗s(r, δ, x10, u−, u+) as t∗s.

2. For the general case when a > 0, r > 0, x20 = 0, x10 < (1 − δ)r where

δ ≥ 0 is desired tracking bound, and max(u) = u+ > 0, min(u) = −u− < 0 where

u+ doesn’t necessarily equal u−, by introducing new tracking area of [(1 − δ)r −

x10, (1 + δ)r− x10] and hence artificially set a new zero initial condition for x1, we

have the following formula:

t∗s =




√
2[(1+δ)r−x10]u−

au+(u++u−)
+

√
2[(1+δ)r−x10]u+

au−(u++u−)
− 2

√
rδ

au− , 0 ≤ δ < m1,√
2[(1−δ)r−x10]

au+
, m1 ≤ δ ≤ 1.

(5.8)

where m1 = u+(r−x10)
(u++2u−)r

.
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By applying max(u) first and then min(u), we obtain the desired control

input.

3. For the case when a > 0, r > 0, x20 = 0, (1 − δ)r ≤ x10 ≤ (1 + δ)r where

δ ≥ 0 is desired tracking bound, obviously t∗s = 0.

4. Fot the case when a > 0, r > 0, x20 = 0, x10 > (1 + δ)r where δ ≥ 0 is

desired tracking bound, the settling time shall be the infimum of the time instant

at which the system output reaches (1 + δ)r. The formula for t∗s can be revised as

follows.

t∗s =




√
−2[(1−δ)r−x10]u+

au−(u−+u+)
+

√
−2[(1−δ)r−x10]u−

au+(u−+u+)
− 2

√
rδ

au+
, 0 ≤ δ < m2,√

−2[(1+δ)r−x10]
au−

, m2 ≤ δ ≤ 1.
(5.9)

where m2 = −u−(r−x10)
(u−+2u+)r

By applying min(u) first and then max(u), we obtain the desired control

input.

5. For the case when a > 0, r < 0, x20 = 0, x10 > (1 − δ)r where δ ≥ 0

, by introducing new tracking area of [(1 + δ)r − x10, (1 − δ)r − x10] and hence

artificially set a new zero initial condition for x1, we apply the following formula

(5.10) to get the optimal settling time.

t∗s =




√
−2[(1+δ)r−x10]u+

au−(u−+u+)
+

√
−2[(1+δ)r−x10]u−

au+(u−+u+)
− 2

√−rδ
au+

, 0 ≤ δ < m3,√
−2[(1−δ)r−x10]

au−
, m3 ≤ δ ≤ 1.

(5.10)

where m3 = u−(r−x10)
(u−+2u+)r

.
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By applying min(u) first and then max(u), we obtain the desired control

input.

6. For the case when a > 0, r < 0, x20 = 0, (1 + δ)r ≤ x10 ≤ (1 − δ)r where

δ ≥ 0 is desired tracking bound, obviously t∗s = 0.

7. For the case when a > 0, r < 0, x20 = 0, x10 < (1 + δ)r where δ ≥ 0 ,

we apply the following formula (5.11) to get the optimal settling time. Again, the

settling time shall be the infimum of the time instant at which the system output

reaches (1 + δ)r.

t∗s =




√
2[(1−δ)r−x10]u−

au+(u++u−)
+

√
2[(1−δ)r−x10]u+

au−(u++u−)
− 2

√−rδ
au− , 0 ≤ δ < m4,√

2[(1+δ)r−x10]
au+

, m4 ≤ δ ≤ 1.
(5.11)

where m4 = −u+(r−x10)
(u++2u−)r

.

By applying max(u) first and then min(u), we obtain the desired control

input.

8. For the case when a < 0, r < 0, x20 = 0, x10 > (1 − δ)r where δ ≥ 0, we

have the following formula (5.8). By applying max(u) first and then min(u), we

obtain the desired control input.

9. For the case when a < 0, r < 0, x20 = 0, (1 + δ)r ≤ x10 ≤ (1 − δ)r where

δ ≥ 0 is desired tracking bound, obviously t∗s = 0.

10. Fot the case when a < 0, r < 0, x20 = 0, x10 < (1 + δ)r where δ ≥ 0,

the settling time shall be the infimum of the time instant at which the system



Chapter 5. Asymptotic Time Optimal Control 85

output reaches (1 + δ)r. The formula for t∗s is exactly the same as formula (5.9).

By applying min(u) first and then max(u), we obtain the desired control input.

11. For the case when a < 0, r > 0, x20 = 0, x10 < (1 − δ)r where δ ≥ 0 ,

we apply formula (5.10) to get the optimal settling time. By applying min(u) first

and then max(u), we obtain the desired control input.

12. For the case when a < 0, r > 0, x20 = 0, (1− δ)r ≤ x10 ≤ (1 + δ)r where

δ ≥ 0 is desired tracking bound, obviously t∗s = 0.

13. For the case when a > 0, r > 0, x20 = 0, x10 > (1 + δ)r where δ ≥ 0 , we

apply formula (5.11) to get the optimal settling time. Again, the settling time shall

be the infimum of the time instant at which the system output reaches (1 + δ)r.

By applying max(u) first and then min(u), we obtain the desired control input.

14. We have given the formulae for all the possible cases when x20 = 0.

When x20 �= 0, things become more complicated as there are too many different

combinations of conditions regarding a, x10, r, and max(u) = u+ > 0, min(u) =

−u− < 0. However, for each specified case, using almost the same reasoning as the

proof of Theorem 5.1, we can obtain the corresponding results.
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5.3 Asymptotic Time-Optimal Tracking Controller

Design

We now proceed to design a controller that would achieve the optimal settling time

as given in Theorem 5.1. We have already shown in the proof of Theorem 5.1 that

by applying u = +1 from t = 0 to t = tA =
√

(1 + δ)r and then apply u = −1 till

t = tB = 2
√

(1 + δ)r for the case of 0 ≤ δ ≤ 1
3
, we end up with x1(tB) = (1 + δ)r

and x2(tB) = 0. For the case of 1
3

< δ ≤ 1, we apply u = +1 from t = 0 to

t = tA = 2
√

1
2
r and then apply u = −1 till t = tB = 4

√
1
2
r and end up with

x1(tB) = (1− δ)r and x2(tB) = 0. The next step to drive the system output to the

target r is a trival design problem. There are many available methods which can

reach this goal, which further drives x1 to r and x2 to 0 asymptotically without

making x1 exceeding the tracking region of [(1−δ)r, (1+δ)r]. A simple choice is to

use time-optimal control. It drives the system output to the target monotonically

and hence will never exceed the tracking bound while at the same time x2 reaches

0. We can use umax and umin for the time-optimal control design or even we can

use smaller control signals, say αumax and αumin where 0 < α < 1, as saturation

levels, which only makes the time to the target longer.

However, this controller can not be used in practical situations as it is basically

the same as time-optimal controller. We will turn to other methods although we

may only obtain sub-optimal ATOT controllers.

Again, we try to apply the composite nonlinear feedback (CNF) control to
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achieve a fast settling time. Rewrite (5.1) in the following form:

{
ẋ = Ax + Bsat(u)
y = Cx

(5.12)

where A, B, C are the corresponding matrices in (5.1). We present the control

algorithm step by step.

Step 1: Linear Part

uL = Fx + Gr (5.13)

where F and G are chosen such that (1) (A + BF ) is an asymptotically stable

matrix, (2) The closed system C(sI − A − BF )−1B has certain properties,such as

having a small damping ratio, (3) G is a scalar given by G = −[C(A + BF )−1B]
−1

and r is the command input.

Step 2: Nonlinear Part

uN = ρBT P (x − xe) (5.14)

where ρ is a nonpositive, Lipschitz continuous function and P is the solution of the

following Lyapunov equation,

(A + BF )T P + P (A + BF ) = −W (5.15)

W is a positive definite matrix, xe = −(A + BF )−1BGr and H := [1−F (A + BF )−1B]G.

For any δ ∈ (0, 1), let cδ be the largest positive scalar satisfying the following con-

dition:

|Fx| ≤ (1 − δ)ū, ∀x ∈ Xδ := {x′Px ≤ cδ} (5.16)
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The following two conditions should be guaranteed in the CNF control design.

x̂0 = x0 − xe ∈ Xδ (5.17)

|Hr| ≤ δū (5.18)

Step 3: Composite Control

u = φcnf(y, r, δ, ε) = uL + uN

= Fx + Gr + ρBT P (x − xe)
(5.19)

The following theorem (5.2) is adopted from Chen et al. [1], which tells us

the CNF controller can achieve the asymptotic tracking for an SISO linear system.

Theorem 5.2 The control law (5.19) is capable of driving the controlled output

y, to track asymptotically a step command input r, provided that conditions (5.17)

and (5.18) are satisified.

There are many choices for ρ, only if ρ is a non-positive function, locally

Lipschitz. In Lin et al. ([8]), it gave some ideas how to choose the nonlinear part for

a second order SISO system, such that the damping ratio tended, asymptotically, to

infinity. In this chapter, we choose ρ in (5.19) as following, which is a non-positive

function, locally Lipschitz in y,

ρ = ε(e−r − e−|r−y|), ε > 0 (5.20)

The transient performance of this system can be improved dramatically: a faster

rise time, a shorter settling time, with less overshoot, which is inherently the ad-

vantage for CNF control over the linear feedback control.
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Then we shall note that the above CNF controller (5.19) is parameterized

by another additional tuning parameter ε, which is to be adjusted to achieve the

optimal settling time. In Section (5.4), the simulation will show how this parameter

affects the settling time. And Figure (5.9) shows the trend there is one point, where

ε = ε∗, and ts = t∗s, although there is no rigorous proof. However, it is easy to tune

only one parameter to approximate the optimal settliing time by simulation.

Moreover, we can provide some guidelines to choose the parameters to achieve

a faster tracking,

1. Choose F such that the eigenvalues of (A+BF ) such that conditions (5.17),

(5.18) are satisfied. Furthermore, if there is no nonlinear part in the control

law, there should exist overshoot outside the desired region.

2. Choose proper ε, and the nonlinear part will gradually change the damping

ratio such that the settling time can approximate the optimal value t∗s.

First randomly choose an ε, if the overshoot is beyond the scope you expect,

then choose a smaller one ε accordingly. If the output reaches the destination

increasingly at infnity, choose a bigger one. But for the ε you have chosen,

there should have overshoot in order to get a faster settling time.When the

overshoot is bounded in the region, tune this parameter ε gradually and

slightly around this value.

Because we add one dynamic term in the control signal, the system will move the

eigenvalues away from the imaginary axis, due to the nonlinear part, which will
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enhance the robustness of the system. And the only part we need to change is the

coefficient term ε in ρ after we choose the feedback gain F .

5.4 Simulation

We now illustrate the results in the following example. We will use the model in

(5.1) with a = 1, δ = 0.01 and r = 1. And we will present our results with the

comparison to time optimal control.

The parameters we chose are:

W =
[

10 0
0 10

]
, F = [−50 − 10], ε = 133.5 (5.21)

Figure (5.6) gives the controlled output y under the TOC ( The dot dash

line) and ATOT ( The solid line) approaches.
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Time(millisecond)

CNF
TOC

Figure 5.6: Controlled output for the whole process
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The settling time under ATOT is ts = 1.8110, which is very close to the

optimal value ts = 1.8100. While the settling time with TOC is 1.8586. We can

see there exists much difference.

0 100 200 300 400 500 600 700 800
0.96

0.97

0.98

0.99

1

1.01

1.02

Time(millisecond)

CNF
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Figure 5.7: Controlled output for a selected period

In Figure (5.7), we can conclude that the ATOT is faster that the TOC under

the same definition of settling time. Although the time we can spare is very short,

this small improvement will be very useful in some actual physical system, such as

the hard disk drive servo system. Furthermore, the controller of ATOT is robust

and can reject noise as well. It shows the advantage over the TOC.

Figure (5.8) gives the controlled signal, which is continuous and will decay

when the output converges to the desired position. Both linear part and nonlinear

part contribute different weight to the CNF control law at different stages of the

control.
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Figure 5.8: The control singal

Moreover, we present a figure in (5.9) about the relationship between different

values of ε and settling time. It reveals that near the optimal value of ε, the settling

time does not change much. Once it is away from the nearby region, it grows up

very quickly.
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Figure 5.9: Relationship between ε and settling time
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5.5 Conclusion

In this chapter, we propose the ATOT problem and present the formula of the

optimal settling time under ATOT control. And the composite nonlinear feedback

control can serve as a solution to approximate the optimal settling time. Further

research will be focused on the rigorous findings on the optimal settling time for

CNF controllers and higher order systems.



Chapter 6

Conclusions and Future Directions

6.1 Summary of Results

In this thesis, we have addressed some issues in nonlinear control. We have con-

sidered a class of linear systems with input saturation and we have a systematic

controller design process. In these areas of research, so far we have achieved the

following:

• The work is mainly to complete and extend the composite nonlinear feedback

controller design techniques.

We have extended the composite nonlinear feedback control to the multi-input

multi-outpu systems and discrete time systems. We have sucessfully constructed

a state feedback controller, a full order measurement feedback controller and a

reduced order measurement feedback controller.

We have showed the efficiency of the CNF controller design scheme by two

94
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examples. In the air to air missile system, we even compared our results with

those of linear controller and others’ controllers. The composite nonlinear feedback

control has demonstrated advantage over them. In a dual-stage hard disk drive

system, we have given the process for identification, modelling, and simulation in

a CNF controller design.

• We have deduced the optimal setting time for a second order system with input

saturation. We present a formula which gives the explicit optimal setting time

according to the system parameters. This optimal settling time is a good indication

to which level we can get at the first stage of the controller design. The proposed

composite nonlinear feedback control has only one tuning paramenter, which is

adjusted to approximate the optimal settling time.

6.2 Prospect of Research

Despite the work we have finished and the results we have obtained, there are still

a lot of work we can do for the future directions.

◦ Extend the CNF control to more general systems and find other ways to determine

the invariant set. We can try to find a more general way to select the nonlinear

parameters in the CNF controller. And we can explore the possibility to track other

kinds of signal, other than the constant setpoint, asymptotically. Furthermore, we

may consider the problem of disturbance rejection based on CNF control.
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◦ Extend the formula on the optimal settling time to more general systems. Due

to some constraints we currently have, we can only apply this formula to a second

order system. Acutally, we can try to extend it to a higher order system, even to a

general linear system with no constraints on the system matrix, input matrix and

output matrix.
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