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Summary 

Summary 

This project focuses on the simultaneous control of temperature and relative humidity 

of a conditioned space, which is required by some industrial and scientific 

applications.  

HVAC plants are typical nonlinear systems and obtaining accurate models for these 

systems is a difficult and challenging task. In this project, a new tool—support vector 

regression (SVR) — is used to model the inverse and forward dynamics of this highly 

nonlinear system. 

 

Support vector regression is a type of model that is optimized so that prediction error 

and model complexity are simultaneously minimized. Because of its universal 

approximation ability, support vector regression can be used to model nonlinear 

processes, just as neural networks are.  

 

Both the SVR inverse control and SVR model predictive control consist of two stages: 

The first is the system identification for the HVAC system. For inverse control, SVR 

inverse models are needed while for model predictive control, SVR forward models 

are needed. Choosing optimal hyper-parameters for the models is an important step in 

the identification stage. k-fold cross validation is a reliable way to determine the 

optimal hyper-parameters. The optimal values are firstly searched in coarse grids, and 

then searched in finer grids. The final models are obtained after training the SVRs 

using these optimal hyper-parameters. The models obtained this way are found to have 

good generalization property.  
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Summary 

In inverse control, the inverse model is simply cascaded with the controlled system in 

order that the whole system results in identity mapping between the desired response 

and the controlled system output. Thus, SVR models act directly as the controllers in 

such a configuration. It is important to design an appropriate reference for the system 

to follow. The controller has the ability of set point tracking and disturbance rejection. 

The controller can work effectively in the start up period which is difficult to be 

described by a linear model around certain operating points. However, the 

disadvantage of the SVR inverse controller is that the response time is quite slow.  

 

The basic idea of Model Predictive Control (MPC) is to predict the controlled 

variables over a future horizon using a prediction model of the process, the control 

signals are then computed by minimizing an objective function, and only the first 

control action is finally applied to the process. The procedure is repeated at every 

sampling instant using the updated information (measurements) of the process. A key 

advantage of MPC over other control schemes is its ability to deal with constraints in a 

systematic and straightforward manner. The online MPC problem is solved by iterative 

dynamic programming (IDP). The items in the performance index are found to have 

significant impact on the controller performance. The MPC strategy has been proved 

to be successful experimentally. Experimental results show that both the room 

temperature and the room relative humidity are accurately controlled to their desired 

values respectively within the system operating range. The control performances are 

quite satisfactory in terms of reference tracking ability, steady-state error, amplitude of 

overshooting and consideration of control constraints.  
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Nomenclature 

Nomenclature 
 

b    Constant offset (or threshold) 

C    Regularization parameter 

g    Composite hyperparameter, )2(1 2σ=g  

k    Sampling instant 

ijk    Dot product of two feature vectors, ),( jiij xxKk =  

K    Feature map 

M    Number of randomly chosen control candidates 

N    Number of y-grid points 

iN    Number of iterations in each pass 

1r    Reference value of room temperature 

2r    Reference value of room relative humidity 
ir    Allowable control region 

RRH   Room relative humidity 

RT    Room temperature 
*s    Constant sum,  ***

vuvus λλλλ +=+=

SRH   Supply air relative temperature 

ST    Supply air temperature 

u    Input vector 

1u    Supply air fan speed 

2u    Chilled water valve opening 

v    Input vector to dynamic model 

ijv    Support vector in dynamic model 

w    Weigh vector in feature space 

1x    Room temperature 

2x    Room relative humidity 

ix    Vector with feature elements 

y    Output vector 

1y    Room temperature 
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Nomenclature 

2y    Room relative humidity 

1y    Initial value of room temperature at the start of the sampling period 

2y    Initial value of room relative humidity at the start of the sampling period 

iy    Target value or system output 

iα    Lagrange multiplier or expansion coefficient 

iγ    Penalty coefficient on error between current value and reference value 

ε    Parameter of the ε -insensitive loss function 

1ϕ    Contraction factor after each iteration 

2ϕ    Restoration factor after each pass 

iϕ     Penalty coefficient on change rate of control signal 

η    Constant, uvuuvv kkk 2−+=η  

iη    Terminal cost coefficient or Lagrange multiplier 

iλ    Composite Lagrange multiplier,  *
iii ααλ −=

iθ    Penalty coefficient on magnitude of control signal 

σ    Width parameter in Gaussian kernel function 

iξ    Slack variable 
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Chapter 1 Introduction 

Chapter 1 Introduction 

1.1 Background  

Temperature and relative humidity (RH) are among the most important thermodynamic 

parameters in commercial and industrial air-conditioning and in process control. Some 

industrial and scientific processes require simultaneous and accurate control of 

temperature and relative humidity. Temperature and relative humidity can influence the 

rate of chemical and biochemical reactions, the rate of crystallization, the density of 

chemical solutions, the corrosion of metals and the generation of static electricity and the 

manufacturing of printed circuit boards (PCB) in clean rooms(ASHRAE Handbook, 

1999). In textile and paper processing, the high-speed machinery used requires accurate 

control of both temperature and relative humidity for proper functioning (Krakow et al., 

1995). Some scientific experiments can be performed properly only under some specific 

controlled environments.  

 

Space temperature is dependent on the sensible heat load and system sensible cooling 

capacity, while the relative humidity is dependent on the latent heat load and system 

latent cooling capacity. In order to accomplish the simultaneous control of temperature 

and relative humidity, HVAC (Heating, Ventilation and Air-Conditioning) systems must 

be designed to cater to both sensible and latent components of the heat load. The 

conventional way of the accurate control of temperature and relative humidity of a 

conditioned space is to cool the air to the required specific humidity and reheat it to the 

desirable temperature. Obviously, this method is not energy-efficient. According to heat 

transfer theories, chilled water flow rate and supply airflow rate decide the system 
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Chapter 1 Introduction 

cooling capacity jointly. In this project, the simultaneous control of room temperature 

and relative humidity is carried out by the means of varying both the supply airflow rate 

and the chilled water flow rate. 

 

The behavior of the controller has direct impact on the performance of a HVAC system. 

The objective of a control system is to adjust the plant cooling capacity to adapt to the 

varying thermal load. Because of their simplicity, PID (Proportional-Integral-Derivative) 

controllers are widely used in industry and have been proven to be valuable and reliable 

in HVAC applications (Rosandich, 1997). Consisting of many mechanical, hydraulic and 

electrical components, HVAC plants are typical nonlinear systems. Conventional PID 

controllers work well for linear plants. When used on a nonlinear plant, the PID 

controller can perform well around a small region of an operating point. The PID 

controller does not adapt well to changes in the plant characteristics brought about by 

shifting of operating points. If a PID controller is intended to work in a wide operating 

range of a nonlinear plant, it must be tuned very conservatively to provide stable 

behavior. When a well-tuned PID controller is applied to another system with different 

model parameters, or when the system parameters change during operation, its 

performance degrades (Kasahara et al., 1999).  In view of the shortcomings of linear 

controllers, it is necessary to adopt a nonlinear controller for better performance.  

 

With theoretical developments in model-based control strategies and availability of 

cheap and fast computers, the design and analysis of nonlinear control systems have been 

received considerable attention from both academia and industry in the past decades. 

Fuzzy logic (Arima 1995) and neural networks (Khalid et al. 1995) have been 

successfully used to design nonlinear controllers for HVAC plants.  In this project, a new 
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method of support vector regression (SVR) will be used to build inverse and forward 

dynamic models. Two nonlinear controllers, an inverse controller and a nonlinear model 

predictive controller, are designed based on the inverse and forward dynamic models.  

 

A support vector machine (SVM) is a type of model that is optimized so that prediction 

error and model complexity are simultaneously minimized (Vapnik, 1995). Support 

vector machines have been developing very fast in recent years. SVMs not only have a 

more solid foundation than artificial neural networks, but are able to serve as a 

replacement for neural networks that perform as well or better, in a wide variety of fields 

(Scholköpf and Smola, 2002). SVMs work by mapping the input space into a high-

dimensional feature space using kernel tricks. Like conventional neural networks 

(Haykin 1999), SVMs have been used by researchers to solve classification and 

regression problems. One advantage of the SVM over neural networks is that the SVM 

formulates classification and regression as a quadratic optimization problem which 

ensures that there is only one global minimum. The training of neural networks may get 

trapped at a local minimum. Another advantage is that training of the SVM is generally 

faster than that for the neural networks. This is a desirable property for online 

applications.  

 

Because of its universal approximation ability, support vector regression can be used to 

model nonlinear process, just as neural networks are. Support vector regression has been 

reported to be used in control area.  
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In this project, SVR is used to model the inverse and forward dynamics of a HVAC 

system. Based on these models, an inverse controller and a model predictive controller 

are designed, respectively. Direct inverse control utilizes an inverse system model. The 

inverse model is simply cascaded with the controlled system in order that the composed 

system results in identity mapping between desired response and the controlled system 

output. Thus, the inverse SVR model acts directly as the controller in such a 

configuration. Model predictive control (MPC) or receding horizon control (RHC) is a 

form of control in which the current control action is obtained by solving on-line, at each 

sampling instant, a finite horizon open-loop optimal control problem, using the current 

state of the plant as the initial state. The optimization yields an optimal sequence and the 

first control in this sequence is applied to the plant (Mayne et al., 2000). A key 

advantage of MPC over other control schemes is its ability to deal with constraints in a 

systematic and straightforward manner. Within the framework of constrained 

optimization, the constraints that can be handled include not only saturation limits but 

also sorts of performance and safety constraints on inputs, outputs and state variables of 

the process. 

 

1.2 Objectives and Scope 

This project studies the simultaneous control of the temperature and relative humidity in 

a conditioned space using support vector regression. The strategy of controlling space 

temperature and relative humidity by varying the supply airflow rate and the chilled 

water flow rate was investigated. The system energy efficiency was improved because 

the fan need not always run at its maximum speed and reheat of the air is not needed.  
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Support vector regression was utilized to model the inverse and forward dynamics of the 

HVAC system. The optimal tuning parameters are chosen by k-fold cross validation. 

Based on the inverse dynamic model, a relatively simple SVR inverse controller was 

designed. Experimental results show that the SVR inverse controller has the ability of 

simultaneous control of both room temperature and relative humidity.  However, the 

response time of the SVR inverse controller is slow. In view of the shortcomings of the 

inverse controller, a more sophisticated control strategy of model predictive control, 

which utilizes the forward dynamic model of HVAC system, was investigated. 

Experimental results demonstrate that the SVR model predictive controller not only has 

good reference tracking ability, small steady errors and shorter response time, it also has 

the ability of considering control limits. 

 

The HVAC system for this project is a chilled water system for a thermal chamber in the 

Department of Mechanical Engineering, National University of Singapore. Two three-

way valves were used to modify the chilled water flow rate and one variable speed fan 

was installed in the air-handling unit. System data such as the supply air temperature and 

relative humidity, room temperature and relative humidity, three-way valve position, and 

supply air fan speed were recorded in the experiments. The designed control system was 

implemented and applied to the thermal chamber to study its performance. The 

feasibility of the control strategy was confirmed by experimental results.  

 

1.3 Outline of Thesis 

This thesis is divided into seven chapters. Chapter 1 gives the background, objectives 

and scope, and outline of the thesis. Chapter 2 reviews previous literature on temperature 
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and relative humidity control of HVAC systems. An overview of support vector 

machines and the training algorithm--sequential minimal optimization-- are given in 

Chapter 3. The inverse and forward modeling of the HVAC system is done in Chapter 4. 

Chapter 5 discusses the design of the SVR inverse controller and the experimental 

results. Chapter 6 describes the design of the model predictive controller and the 

experimental results. The online optimization algorithm of iterative dynamic 

programming is also introduced. The parameters that affect the control performance are 

investigated. The conclusions are given in Chapter 7 as well as some recommendations 

for future developments. 
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Chapter 2 Literature Review   

2.1 HVAC  

Heating, ventilation and air-conditioning (HVAC) is widely used and affecting aspects of 

our lives.  Simultaneous control of temperature and relative humidity will be discussed in 

this project. Before doing that, it will be helpful to introduce some aspects of HVAC 

relating to this project. 

 

2.1.1 Variable Air Volume System vs. Constant Volume System 

HVAC can be broadly classified into constant air volume (CAV) and variable air volume 

(VAV) systems. Our HVAC control will be performed on a variable air volume (VAV) 

system. The popularity of VAV systems has grown rapidly due to their ability to save 

large amounts of heating, cooling and fan energy when compared to other HVAC 

systems. The increasing applications of direct digital control (DDC) also intensify the 

uses of VAV technology. Variable speed drive (VSD) technology has helped the greater 

use and has especially shown the advantage of VAV systems.  

 

In CAV systems, the volume flow rates of conditioned air are maintained constant to a 

conditioned space while the supply air temperature is continuously varied to match the 

thermal load (Shepherd, 1998). The chilled water flow rate is controlled to get the 

desired supply air temperature. In such systems, fans run at a fixed high speed, designed 

to meet the peak load. However, for most of the time, systems actually operate at part 
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load. Thus, a large amount of energy is wasted since the energy consumption of the fan 

is approximately proportional to the cubic of its speed. It is also observed that the use of 

a constant volume air flow rate without regard to  thermal loads leads to high space 

relative humidity in part-load conditions.  

 

In the alternative approach of VAV systems, conditioned air is supplied at a constant 

temperature to a conditioned space while the volume flow rates are continuously varied 

to match the thermal load. Therefore, smaller amounts of conditioned air are used at part 

loads. A variable speed drive (VSD) for the fan can be used for this purpose. Energy 

savings are achieved and high relative humilities are not experienced at part-load 

conditions by using VAV systems.  

 

2.1.2 HVAC Control 

The performance of the controller has a direct effect on the performance of HVAC 

systems. The objective of a HVAC controller is to adjust the plant cooling capacity to 

adapt to the varying thermal load. PID controllers are by far the most widely used and 

have been proven to be valuable and reliable in HVAC applications (Rosandich, 1997). 

However, PID control works most favorably when the system model parameters do not 

change much. HVAC systems have complex dynamics with nonlinearity, distributed 

parameters, and multi variables and are subject to external disturbances, such as the 

weather variation and changing heat loads. The conventional PID controllers work well 

for linear plants. When used on a nonlinear plant, PID controllers can perform well only 

in a small region around a certain operating point. PID controllers cannot adapt to 

changes in the plant characteristics brought about by the shifting of the operating point. 

When a well-tuned PID controller is applied to another system with different model 
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parameters, or when system parameters change during operation, its performance 

degrades (Kasahara et al., 1999). So it is necessary to adopt a nonlinear controller. Fuzzy 

logic (Arima 1995) and neural networks (Khalid et al. 1995) have been successfully used 

in nonlinear controllers for HVAC plants.   

 

In this study, a new method of support vector regression will be used to build inverse and 

forward dynamic models for a HVAC system. Two nonlinear controllers, i.e. inverse 

controller and a nonlinear model predictive controller, are designed based on the inverse 

and forward dynamic models, respectively.  

 

2.2 Nonlinear Control 

In the past decades, the control of nonlinear systems has received considerable attention 

in both academia and industry. The recent interest in the design and analysis of nonlinear 

control systems is due to several factors. Firstly, linear controllers usually perform poorly 

when applied to highly nonlinear systems. Secondly, significant progress has been made 

in the development of model-based controller design strategies for nonlinear systems. 

Finally, the developments of inexpensive and powerful computers have made on-line 

implementation of these nonlinear model-based controllers feasible (Henson and Seborg, 

1997). 

 

Many common process control problems exhibit nonlinear behavior, in that the 

relationship between the input and output variables depends on the operating conditions. 

For examples, if the dynamic behavior of a nonlinear process is approximated by a linear 

model with a transfer function, the model parameters (e.g. steady state gain, time 
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constant, time delay) depend on the nominal operating condition. If the process is only 

mildly nonlinear or remains in the vicinity of a nominal steady state, then the effects of 

the nonlinearities may not be severe. In these situations, conventional feedback control 

strategies can provide adequate performance. However, many important industrial 

processes exhibit highly nonlinear behavior. The process may be required to operate over 

a wide range of conditions due to large process upsets or set-point changes. When 

conventional PID controllers are used to control such highly nonlinear processes, the 

controllers must be tuned very conservatively in order to provide stable behavior over the 

entire range of operating conditions. But conservative controller tuning can result in 

serious degradation of control system performance.  

 

In view of the shortcomings of linear controllers for highly nonlinear processes, there are 

considerable incentives for developing more effective control strategies that incorporate 

knowledge of the nonlinear characteristics of the plant under control. During the past 

decade, there have been intensive research interests in developing nonlinear control 

strategies that are appropriate for process control. There are several kinds of nonlinear 

controller such as, but not limited to, fuzzy control, input/output linearization (i.e. 

feedback linearization control), and nonlinear model predictive control.  

 

Fuzzy control is a kind of control approach that uses fuzzy set theory. Fuzzy sets were 

first proposed by Zadeh (1965). Fuzzy control offers a novel mechanism to implement 

such control laws that are often knowledge-based (rule-based) expressed in linguistic 

description (Cai, 1997). The drawback for fuzzy control is that it is often very difficult to 

build up appropriate rule sets for MIMO system, especially when the system has cross-

strong couplings between inputs and outputs. 
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The input/output linearization controller design method provides exact linearization of 

nonlinear models. Unlike conventional linearization using Taylor series expansion about 

some operating point, this technique produces a linearized model that is independent of 

operating points. An analytical expression for the nonlinear control law can then be 

derived for broad classes of nonlinear systems. The approach is based on concepts from 

nonlinear system theory. The resulting controller includes the inverse of the dynamic 

model of the process, providing that such an inverse exists. The general approach has 

been utilized in several process control design methods such as: generic model control, 

globally linearizing control, reference system synthesis and a nonlinear version of 

internal model control.  

 

Within the last decades, model-based control strategies such as model predictive control 

(MPC) have become the preferred control technique for difficult multivariable control 

problem (Camacho and Bordons, 1995). Morari and Lee (1999) gave a good overview 

on the past, present and future of MPC. It has been proven that MPC has desirable 

stability properties for nonlinear systems (Keerthi and Gilbert, 1988; Mayne and 

Michalsha, 1990).   

 

Because the current generations of MPC systems are largely based on linear dynamic 

models such as step response and impulse response models, the resulting linear 

controllers must be conservatively tuned for highly nonlinear processes. The success of 

linear model predictive control systems has motivated the extension of this methodology 

to nonlinear control problems. The general approach is referred to as nonlinear model 

predictive control. The control problem formulation is analogous to linear model 

predictive control except that a nonlinear model is used to predict future process 
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behavior. The required control actions are calculated by solving a nonlinear 

programming problem at each sampling instant.  

 

2.3 Neural Networks in Nonlinear Control 

Before we discuss support vector regression (SVR) in control, it is necessary to discuss 

the application of neural networks in control. A comprehensive survey paper on this 

topic was given by Hunt et al. (1992). Due to their theoretical ability to approximate 

arbitrary nonlinear mappings, neural networks can be used to build forward or inverse 

models of a dynamic system. Judged by the control structures, neural direct inverse 

control and neural internal model control belong to feedback linearizing control while 

neural model predictive control falls into the category of nonlinear model predictive 

control. Direct inverse control utilizes an inverse system model. The inverse model is 

simply cascaded with the controlled system in order that the composed system results in 

an identity mapping between the desired response and the controlled system output 

(Hunt et al. 1992). Internal model control (IMC) uses both the system forward and the 

inverse models as elements within the feedback loop. IMC has shown good performance 

of robustness and stability (Li et al., 1995). In nonlinear model predictive control, a 

neural network model provides prediction of the future plant response over a specified 

time horizon. Much work has focused on the neural model predictive control (Potocnik 

and Grabec, 2002; Duarte et al., 2001; Gu and Hu, 2002). The neural networks model is 

obtained by training the neural network using actual input-output data from the plant 

under control.  
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2.4 A New Tool – Support Vector Regression 

The Support Vector Machine (SVM) (Schölkopf and Smola, 2002) has been developing 

very fast in recent years. Like conventional neural networks, SVM has been used by 

researchers to solve classification and regression problems. One advantage of the SVM 

over neural networks is that the SVM has only one global minimum. Another advantage 

is that the training of the SVM is faster than that of neural networks. Because of its 

universal approximation ability, support vector regression (SVR) can be used to model 

nonlinear processes, just as neural networks are.  The problem formulation of SVR and 

its training algorithm will be discussed in the next chapter.  

 

Support vector regression has been reported to be used in the control area. Miao and 

Wang (2002) used a SVR model in nonlinear model predictive control for a SISO 

system. Suykens et al. (2001) used the least squares support vector machines (LS-

SVM’s) for the optimal control of nonlinear systems. An N-stage optimal control 

problem is incorporated with a least squares support vector machines which is used to 

map the state space into the action space.  Kruif & Vries (2001) has proposed the support 

vector machine as a learning mechanism in Feed-Forward control.  

 

In this project, the feasibility of applying SVR in control has been explored. A SVR 

inverse model controller is designed for a nonlinear HVAC system in Chapter 5. Chapter 

6 will discuss using the SVR forward model in nonlinear model predictive control for the 

HVAC system.  
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Chapter 3 Support Vector Regression 

In this chapter, the formulation of support vector regression (SVR) and its training 

algorithm are discussed in details.  We start by giving a brief introduction of the 

motivations and formulations of a SV approach for regression estimation, followed by a 

derivation of the associated dual programming problems. Finally the sequential minimal 

optimization (SMO) algorithm especially the step size derivation will be studied.  

 

3.1  Introduction to Support Vector Machine  

A support vector machine (SVM) is a type of model that is optimized so that prediction 

error and model complexity are simultaneously minimized (Vapnik, 1995). The support 

vector machine has been developing fast in recent years. SVMs not only have a more 

solid foundation than artificial neural networks, but are able to serve as a replacement for 

neural networks and perform as well or better, in a wide variety of fields (Scholköpf and 

Smola, 2002). The SVM works by mapping the input space into a high-dimensional 

feature space using kernel tricks. Like conventional neural networks (Haykin 1999), the 

SVM has been used by researchers to solve classification and regression problems. One 

advantage of the SVM over neural networks is that the SVM formulates classification 

and regression as a quadratic optimization problem which ensures that there is only one 

global minimum whereas the training of neural networks may be “trapped” at a local 

minimum. Another advantage is that the training of the SVM is faster than that of neural 

networks. Because of its universal approximation ability, Support vector regression can 

be used to model nonlinear processes, just as neural networks are.  
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3.1.1 Basic Ideas 

Suppose we are given training data }{ RXyxyx ll ×⊂),(,),,( 11 L , where X  denotes the 

space of the input patterns---for instance mR . In ε -SV regression, our goal is to find a 

function f(x) that deviates at most ε  deviation from the desired targets  for all the 

training data, and, at the same time, is as flat as possible. In other words, we do not care 

about errors as long as they are less than

iy

ε , but will not accept any deviation larger than 

this.  

 

We begin by describing the case of linear functions f(x), taking the form of: 

 

bxwxf += ,)( , with RbXw ∈∈ ,           (3.1) 

 

where ⋅⋅,  denotes the dot product. Flatness in the case of (3.1) means that one seeks 

small values for . One way to ensure this is to minimize the Euclidean norm, i.e. w 2w . 

Formally we can write this problem as a convex optimization problem by requiring: 

 

      2

2
1min w     

subject to ε≤−+ ii ybxw,             (3.2) 

 

The tacit assumption in (3.2) is that such a function  that approximates all pairs 

 with 

f

),( ii yx ε  precision actually exists or, in other words, that the convex optimization 

problem is feasible. Sometimes, however, this may not be the case, or we also may want 

to allow for some errors. Analogously to the “soft margin” loss function in the case of 
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support vector machines for classification, one can introduce slack variables  to 

cope with otherwise infeasible constraints of the optimization problems (3.2). Hence we 

arrive at the formulation stated in Eq. (3.3): 

*, ii ξξ
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          (3.3) 

 

The constant  determines the trade off between the flatness of  and the amount 

up to which deviations lager than 

0>C f

ε  are tolerated. The formulation above corresponds to 

dealing with a so-called ε -insensitive loss function 
ε

ξ described by  

 

⎩
⎨
⎧

−
≤

=
otherwise

0
:

εξ
εξ

ξ
ε

              (3.4) 

 

The ε -insensitive loss function is illustrated in Figure 3.1. Only the points outside the ε  

tube contribute to the cost function, as the deviations are penalized in a linear fashion. It 

turns out that the optimization problem (3.3) can be solved more easily in its dual 

formulation. Moreover, the dual formulation provides the key for extending SVMs to 

nonlinear functions. Hence we will use the standard dualization method utilizing 

Lagrange multipliers. 
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Figure 3.1 ε -insensitive loss function for a linear SV regression 

 

3.1.2 Dual Formulation and Quadratic Programming 

The key idea is to construct a Lagrange function from both the objective function 

(known as the primal objective function) and the corresponding constraints, by 

introducing dual variables. It can be shown that this function has a saddle point with 

respect to the primal and dual variables at the optimal solution. The objective is thus to 

maximize the following Lagrange function with respect to the dual variables. 
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where { }*, ii αα  and { }*, ii ηη  are the two sets of  dual variables such that: 
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0, * ≥ii αα                 (3.6)  

0, * ≥ii ηη                 (3.7) 

 

From the saddle point condition, the partial derivatives of L with respect to the primal 

variables  have to vanish for optimality.  ),,,( *
iibw ξξ
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i
iib

L αα              (3.8) 
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i

m

i
ii xw
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0=−−=
∂
∂

iim
CL ηα

ξ
                  (3.10.a) 

0**
* =−−=

∂
∂

iim
CL ηα

ξ
                 (3.10.b) 

 

From (3.7) and (3.10), we notice that: 

 

0≥−= ii m
C αη                   (3.11.a) 

0** ≥−= ii m
C αη                    (3.11.b) 

 

also according to (3.6), the new constraints for  are derived as follows: *, ii αα

 

m
C

ii ≤≤ *,0 αα                (3.12) 
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From (3.9), the two items of ixw,  and 2w  in (3.5) can be expressed as follows: 

  

∑
=

−=
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j
jijji xxxw

1

* ,)(, αα              (3.13) 
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= =
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1 1
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Now substituting (3.8), (3.10), (3.13) and (3.14) into (3.5) yields the dual optimization 

problem. 
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 (3.9) can be rewritten as: 
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This is the familiar SV expansion, which states that  can be completely described as a 

linear combination of a subset of the training patterns . The complete algorithm can be 

described in terms of dot products between the data. Even when evaluating f(x), we need 

not compute  explicitly. This will allow the formulation of a nonlinear extension using 

kernels.  

w

ix

w

 

According to KKT conditions (Fletcher, 1987), at the point of solution, the product 

between dual variables and constraints has to vanish. This gives: 

 

0),( =−−++ bxwy iiii ξεα                 (3.18.a) 

0),( ** =++−+ bxwy iiii ξεα                       (3.18.b) 

and  

0=iiξη  and              (3.19) 0** =ii ξη

 

Substituting (3.11) into (3.19), we have the following: 

 

0=⎟
⎠
⎞

⎜
⎝
⎛ − iim

C ξα  and 0** =⎟
⎠
⎞

⎜
⎝
⎛ − iim

C ξα           (3.20) 

 

This will allow us to draw some useful conclusion: 

 

Firstly, referring to Figure 3.1 and (3.3), for training points  lying below the ),( ii yx ε -

tube, . From (3.20), for such points 0,0 * => ii ξξ 0=− im
C α . This gives 

m
C

i =α . Also 

we notice that: 
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 iii ybxw ξε +=−+, , with 0>iξ           (3.21)  

 

This implies that 

02,* >+=++−+ iiii bxwy ξεξε           (3.22) 

 

From (3.18.b), we can get . Similarly, for training points  lying above the 0* =iα ),( ii yx

ε -tube,  (Figure 3.1, Area 1), we can get 0,0 * >= ii ξξ 0=iα , 
m
C

i =*α .  

 

Secondly, for points that lie inside the tube (Figure 3.1, Area 3), we have , 0* == ii ξξ

 

0, >−−++ bxwy iiiξε             (3.23) 

0,* >++−+ bxwy iiiξε             (3.24) 

 

 According to (3.18.a), (3.18.b), we get  0* == ii αα

 

Thirdly, for those points lying exactly on the lower bound of the tube (Figure 3.1, 

Area 4), . We notice that: 0* == ii ξξ

 

iii ybxw ξε +=−+, , with 0=iξ            (3.25)  

 

This implies that: 

022, ** >=++=++−+ εξξεξε iiiii bxwy         (3.26) 
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From (3.18.b), we can get . From (3.25), we get 0* =iα 0, =−−++ bxwy iiiξε . 

From (3.18.a) and (3.12), we can derive that iα  can be any value within the constraint, 

i.e. mCi /0 ≤≤α . Similarly, for points lying exactly on the upper bound of the tube 

(Figure 3.1, Area 2), we get iα =0, .  It is worth noting that some of the 

points lying exactly on the boundary may have zero multipliers, which are not called 

SVs. Only those boundary points that have non-zero multiplier are called SVs.  

mCi /0 * ≤≤ α

 

From the above discussion, we conclude that  in all cases. In other words, a set 

of dual variables 

0* =iiαα

iα  and  cannot be simultaneously nonzero. The summary of the 

above analysis is shown in Table 3.1 

*
iα

 

Table 3.1 Lagrange multipliers in different areas 

Area iξ  *
iξ  iα  *

iα  

1 0 *
iξ >0 0 mC /  

2 0 0 0 mCi /0 * ≤≤ α  

3 0 0 0 0 

4 0 0 mCi /0 ≤≤α  0 

5 iξ >0 0 mC /  0 

 

 

For those points in Area 2 or Area 4 in Figure 3.1, we have 0=iξ and ,  can be 

computed as follows: 

0* =iξ b
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mCxwyb
mCxwyb

iii

iii

/0for,
/0for,

* ≤≤−−=
≤≤+−=

αε
αε

         (3.27) 

 

Now consider the sparsity of the SV expansion. From (3.13), we can see that the 

multipliers can be nonzero only for the points ε≥− iyxf )( . That means for those 

examples lying inside the tube, the multipliers of  vanish. The examples with 

nonzero multipliers are called the Support Vectors. In other words, we can remove any 

points inside the tube and still get the same result. After training, only those examples 

with nonzero of 

*, ii αα

iα and  are support vectors and will enter into the model. So the 

number of support vectors must be less than or equal to the number of training examples.  

*
iα

 

3.1.3 Nonlinear Regression and Kernel Tricks 

The regression estimate which takes the form of (3.12) is actually a linear regression. For 

a nonlinear case, we can use kernel tricks to map the input vector in the original space to 

a higher dimensional feature space and obtain the following: 

 

( ) ( ) ( ) bxxKbxxxf i

m

i
iii

m

i
ii +−=+ΦΦ−= ∑∑

==

,)(),()(
1

*

1

* αααα      (3.28) 

 

)( ixΦ and  are the mapped vectors of and  in the feature space respectively. )(xΦ ix x K  

is referred to as the kernel function which is used to compute the dot product of two 

feature vectors of  and)( ixΦ )(xΦ without actually forming those feature space vectors. 

As long as a given function satisfies Mercer’s Theorem (Schölkopf and Smola, 2002), it 

 
23



Chapter3 Support Vector Regression 

can be used as a kernel function. Inhomogeneous polynomial kernel, homogeneous 

polynomial kernel, Gaussian kernel and sigmoid kernel are the commonly used kernel 

functions. In this project, the most popular Gaussian kernel is used. An interesting aspect 

of Gaussian kernel is that its corresponding feature space is infinite dimensional. 

Gaussian kernel has the following form: 

 

)2~exp()~,( 22 σxxxxK −−=             (3.18) 

 

When we choose the Gaussian kernel function, there are three tuning parameters, and 

these are the width parameter σ  in the kernel function, ε  forε -insensitive loss function 

and the penalty constant .  C

 

(a) The width parameter σ is used to control the power of the feature space. When σ  is 

very small, x and x~ do not “interact” even when they are reasonably close. Small values 

of σ  lead to very powerful feature spaces. On the other hand, when σ  is large, x and 

x~ have “interaction” even when they are far away from each other (Keerthi, 2002).  

 

(b) ε  can control the range of the ε -insensitive loss function. The smaller the value ofε  

is, greater accuracy is obtained by learning the training examples. However, too small an 

ε  value will force the SVR to remember the noise in the training examples, thus 

sacrificing the generalization property of SVR. A good choice of ε  should be a trade-off 

between the training accuracy and the generalization property.  
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(c) C is a constant determining the trade-off with the complexity penalizer 

2w (Scholköpf and Smola, 2002). In short, minimizing (3.3) captures the main idea of 

statistical learning theory: in order to obtain a good generalization performance, it is 

necessary to control both training error and model complexity, by explaining the data 

with a simple model.  Large values of C will not tolerate errors while small values will 

allow too many errors. So an intermediate choice of C needs to be found. 

 

ε , σ  and C are also are referred to as hyperparameter values in literature. Choosing 

optimal hyperparameter values for support vector machine is an important step in SVM 

design (Duan et al., 2003). This is usually done by minimizing either an estimate of the 

generalization error or some other related performance measure. In this project, k-fold 

cross validation is used to choose the optimal value of σ  and C while ε  is set to 0.001.  

 

3.2  Sequential Minimal Optimization 

SVM can be optimized by decomposing a large quadratic programming (QP) problem 

into a series of smaller QP subproblems. Optimizing each subproblem minimizes the 

original QP problem in such a way that once no further progress can be made with all the 

smaller subproblems, the original QP problem is solved. Many experimental results 

indicate that decomposition can be much faster than QP. More recently, the sequential 

minimal optimization algorithm (SMO) was introduced (Platt, 1998) as an extreme 

example of decomposition.  It puts decomposition of the original problem to the extreme 

by iteratively selecting subsets of size two and optimizing the target function with 

respect to them. The key point of SMO is that for a subset of size two, the optimization 
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subproblem can be solved analytically without resorting to a quadratic programming 

(QP) solver. SMO has been shown to be an effective method for training support vector 

machines.  

 

Smola and Schölkopf (1998) derived regression rules for SMO that use four separate 

Lagrange multipliers, where one pair of multipliers forms a single composite parameter. 

Properly handling all special cases for the four Lagrange multipliers is somewhat 

difficult as two pages of pseudo-codes are required to describe the update rule.  Its 

modified version for regression was given by Shevade et al. (2000). Flake and Lawrence 

(2002) has made one of the simplest and most complete derivations of SMO the 

regression algorithm and gave some heuristics that can improve the convergence time by 

over an order of magnitude. While other existing SMO regression algorithms compute 

the two multipliers of each training example, Flake and Lawrence (2002) combined the 

two multipliers into one variable so that the implementation becomes more concise and 

understandable. 

 

SMO actually consists of two parts: (1) a set of heuristics for efficiently choosing pairs 

of Lagrange multipliers to work with, and (2) the analytical solution to a QP problem of 

size two. Here only (2) will be introduced; more details of (1) are given in Flake and 

Lawrence (2002).  
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3.2.1 Step Size Derivation 

We begin by substituting , and*
iii ααλ −= *

iii ααλ += . Thus, the new unknowns will 

obey the box constraints iCC i ∀≤≤− ,λ . We will also use the shorthand 

and always assume that),( jiij xxKk = jiij kk = . The model output and objective function 

can now be written as  
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with linear constraints . Our goal is to analytically express the minimum of 

Eq. (3.20) as a function of two parameters. Let these two parameters have indices u and v 

so that 

∑=
=

l

i i1
0λ

uλ and vλ are the two unknowns. We can rewrite Eq. (3.20) as 

   

                   
                  

2
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      (3.21) 

 

where is a term that is strictly constant with respect to cW uλ and vλ ,and is defined as: *
iz
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*

,
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vuj
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≠
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with . Note that superscript * is used to indicate that values are 

computed with the old parameter values. If we assume that the constraint, , is 

true prior to any change to

),,( ** bxff ii λ=

∑ =
=

l

i i1
0λ

uλ  and vλ , then in order for the constraints to be true after a 

step in parameter space, the sum of uλ and vλ must be held fixed. With this in mind, let 

. We can now rewrite Eq. (3.21) as a function of a single Lagrange 

multiplier by substituting : 

***
vuvus λλλλ +=+=

vu s λλ −= *
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To solve Eq. (3.23), we need to compute its partial derivative with respect to vλ ; 

however, Eq. (3.23) is not strictly differentiable because of the absolute value function. If 

we take )sgn(/ xdxxd = , the resulting derivative is algebraically consistent: 
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Now setting Eq. (3.24) to zero yields: 
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From Eq. (3.25), we can write a recursive update rule for vλ in terms of its old value: 

 

)))sgn()(sgn((1 ***
vuvuuvvv ffyy λλε

η
λλ −+−+−+=        (3.26) 

where uvuuvv kkk 2−+=η . 

 

vu λλ << 0uv λλ << 0
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Figure 3.2 The derivative as a function of vλ  
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3.2.2 Finding Solutions 

Figure 3.2 illustrates the behavior of the partial derivative (Eq. 3.24) of the objective 

function with respect to vλ . If the kernel function of SVM obeys Mercer’s condition (as 

all common ones do), then it will be guaranteed that 02 ≥−+= uvuuvv kkkη is true 

(Schölkopf and Smola, 2002). If η is strictly positive, then Eq. (3.24) will always be 

increasing. Moreover, if is not zero, it will be piecewise linear with two discrete 

jumps, as illustrated in Figure 3.2. Putting these facts together means that we only have 

to consider five possible solutions for Eq. (3.24), three possible solutions correspond to 

using Eq. (3.26) with 

*s

))sgn()(sgn( vu λλ − set to -2, 0 and 2. The other two candidates 

correspond to setting vλ to one of the transitions in Figure 3.2: 0=vλ or . The update 

rules for 

*s

uλ and vλ must also ensure that both parameters take values within . C±

 

Table 3.2 shows the pseudo-code that implements a single step for SMO with regression. 

Basically, lines 4 and 5 set the Lagrange multipliers to values appropriate if the two have 

the same sign. If the two multipliers differ in sign, then line 8 adjusts the multipliers by 

ηε2  if the adjustment can be made without affecting the sign of either multiplier. If 

such an adjustment cannot be made, the only solution is for the two multipliers to take 

the values of and 0. Lines 12 and 13 calculate boundaries that keep both multipliers 

within . Finally, lines 14 and 15 enforce the constraints. Lines 16 and 17 get the four 

separate multipliers at a single step size.  

*s

C±

 

A set of heuristics given in a modified version of SMO (Shevade et al., 2000) is followed 

for efficiently choosing pairs of Lagrange multipliers to work with. When no pairs of 
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multipliers have been found to have violated the optimality criteria, the training of SVR 

is finished.  

 

Table 3.2 Pseudo-code for analytical step for SMO generalized for regression 

1.  ; ***
vus λλ +=

2.  uvvvuu kkk 2−+=η ; 

3.  η/2s=∆ ; 

4.  )(1 ***
vuuvvv ffyy −+−+=

η
λλ ; 

5.  ; vu s λλ −= *

6.  if( vu λλ ⋅ )<0{ 

7.           if )&&( ∆≥∆≥ uv λλ  

8.                      ∆⋅−= )sgn( vvv λλλ ; 

9.          else 

10.                     =vλ step *)( suv ⋅− λλ ; 

11.   } 

12.   ; ),max( * CCsL −−=

13.   ; ),min( * CsCH +=

14.   )),,min(max( HLvv λλ = ; 

15.   ; vu s λλ −= *

16.   )0,max(),0,max( *
uuuu λαλα −==

17.   )0,max(),0,max( *
vvvv λαλα −==
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Chapter 4 System Identification with Support Vector 

Regression 

In this project, inverse control and model predictive control for the HVAC system will be 

investigated. Both control strategies are model-based. For inverse control, the inverse 

dynamic model is needed while for model predictive control, the forward dynamic model 

is needed. In this chapter, the inverse and forward dynamics of the HVAC system will be 

modeled by support vector regression. 

  

4.1 HVAC System  

A simple diagram of the experimental system is depicted in Figure 4.1. A fan and a 

motor equipped with a variable speed drive (VSD) are installed in an air handling unit 

(AHU) to provide a variable airflow rate. The frequency of the input electrical power to 

VSD varies from 0-37.5Hz, modulated by a frequency converter. Therefore the speed of 

the fan motor can be varied. The flow rate of the air is assumed to increase with an 

increase in fan speed. Variable airflow can be made to pass through the cooling coils by 

varying the fan speed. Two three-way regulating valves are appended to the chilled water 

pipe. The valves are used in conjunction with an actuator to provide completely close to 

fully open operation. The actuator’s 0-10 VDC signal corresponds to the valve’s 0-100% 

opening. Varying the valve opening modifies the chilled water flow rate to the AHU, 

with 100% opening corresponding to the maximum flow rate.  
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An electrical resistance heater and a humidifier (The humidifier is simply a container of 

heated water) are used to simulate the sensible and latent heat load in the conditioned 

room respectively. The rate of heat emitted from the electrical heater can be varied by 

resetting the temperature of the thermostat. Two sensors are installed at the end of the 

supply air duct. These are capable of measuring the supply air temperature and relative 

humidity. The room temperature and relative humidity are measured by two RTD 

sensors.  

 

chiller water
tank

chilled water

cooling coils
variable speed fan

three way valve

fresh air

return air

supply air

conditioned room

 

Figure 4.1 Simple diagram of the experimental HVAC system 

 

The start and stop operation of the chiller and dampers are controlled by a METASYS 

building management system. A Pentium III 800 MHz PC with an ISA bus Servo To Go 

interface card is used for the experiments. The supply air temperature and relative 
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humidity, and the room temperature and relative humidity are measured and recorded as 

well as the valve openings and fan speeds. The PC performs the data acquisition and 

controls the frequency converter and valve actuators.  

 

4.2 System Identification 

The heart of model-based control is the process model itself. Models can be classified by 

various features. The form of the model selected has a large impact on its ability to 

implement these control strategies. Some choices must be made in the identification 

process.  

 

Linear or nonlinear:  The experimental HVAC plant consists of many mechanical, 

hydraulic and electrical components.  So the overall dynamics of the system is nonlinear. 

Although some linear models such as state space, transfer function can be used, they are 

only applicable around certain operating points. 

 

Continuous-time or discrete time: Most of the physical laws that are used by engineers 

to develop models are presented as differential equations with time as the independent 

variable. Before the widespread availability of digital computers, differential equation 

models were the central tool for the study of dynamic systems. With the availability of 

cheap and fast computers, the study of difference equation, which has been previously 

relegated to a minor role, assumed a new significance. A nonlinear difference equation 

can be expressed as . Since both inverse control and MPC are 

implemented via digital computer, difference equations are the models of choice. 

),(1 kkk uxfx =+
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First-principles or “black box”: Models that are derived from heat, mass and 

momentum balances are frequently called “first-principles” models, in contrast to other 

data fitting schemes. As mentioned above, the HVAC system consists of many 

mechanical, hydraulic and electrical components, so it is very difficult to built “first-

principles” model. An easy and practical way is to model the system based on the data 

collected within the operating range of the system. A first principle model can 

presumably predict over a wide range of conditions, even without prior operating 

experience. On the other hand, the “black box” method has its own disadvantages. The 

data-based model lacks its predictive value outside the range of operating conditions 

where data has been collected.  

 

In this project, a new approach--support vector regression will be used to build the 

dynamic models of the HVAC system. In later chapters, these models will be used to 

implement two model-based control strategies, i.e. SVR inverse control and SVR model 

predictive control. 

 

4.2.1 Sampling Interval 

One important issue in modeling is the sampling interval. When a model is meant for 

control purpose, the sampling interval for model development must be the same as that 

for control application (Ljung, 1999). When choice is available, sampling interval should 

be taken fairly short compared with the time constant of the system. A sampling interval 

that is much larger than the significant time constants of the system would yield data 

with little information about the dynamics. A small sampling interval, on the other hand, 

would not allow for much noise reduction, and the data might be less informative for that 

reason. A good choice of sampling interval should be a trade-off between noise reduction 
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and relevance for dynamics. In practice, it is useful to first record a step response from 

the system, and then select the sampling interval based on these responses. 

 

In this project, the two controlled variables are room temperature and room relative 

humidity. From the step response of the system (Figure 4.2, Figure 4.4), we find that the 

dynamics of room relative humidity is faster than that of room temperature. Because 

simultaneous control of both room temperature and room relative humidity is required, 

the sampling interval is determined by the faster dynamics, i.e. dynamics of room 

relative humidity. Isermann (1981) recommended that sampling interval time can be 

chosen between 1/15 and 1/4 of  (the time needed by the system to reach 95 % of the 

final output value).  

95T

 

First, we will check the supply air fan step response. The normalized fan input was set to 

0.7 from 0.4 at the 30th sampling instant. The room relative humidity rises from the value 

of 0.765 at the 30th sample to its final value 0.862 at the 149th sample. So  

value=0.765+0.95*(0.862-0.765)=0.8571, which is reached at the 122

95T

th sample. Each 

sample is 10 seconds. The rise time is therefore equal to (122-30)*10=920 seconds. The 

choice of sampling interval should be within the range of 61-230 seconds.  
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Figure 4.2  Fan step responses of temperature and RH 

 

Figure 4.3 Fan step change 
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Figure 4.4 Valve step responses of room temperature and RH 

 

Figure 4.5 Valve step change 
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Now we will check the chilled water valve step response. The chilled water valve was 

changed from 0.3 to 0.7 opening at the 30th sample. The room relative humidity changes 

from its initial value of 0.740 to its final value of 0.589 at the 165th sample. So the 

=0.740-0.95*(0.740-0.589)=0.5965, which is reached at the 12795T th sample. So  rise 

time is (127-30)*10=970 seconds. By the step response of chilled water valve, the choice 

of sampling interval should be within the range of 65 – 243 seconds. Both step responses 

give the similar range of choice for sampling interval. Finally, a relatively shorter 

sampling interval of 60 seconds is chosen throughout this project. 

95T

 

4.2.2 Training Data 

From the step responses of both supply air fan and chilled water valve, we can notice that 

both control input signals will affect the room temperature and relative humidity. So it is 

a strongly coupled system. For the purpose of identification, the system must be excited 

fully within its operating range. In this project, uniformly distributed random signals 

were used to excite the system. The supply air fan was varied in the range of 0-0.75 of 

the rated speed of 3000 rpm. The chilled water valve was varied in the range of 0-100 % 

of its full opening.  

 

The data was collected over 4 days. In order to collect as informative data as possible 

within the system’s operating range, each day the HVAC system was started from a 

different initial condition. The heater and boiler inside the thermal chamber were used to 

increase the room temperature and relative humidity, respectively. 
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4.2.3 NARX Models  

NARX denotes Nonlinear ARX (auto-regressive models with exogenous inputs). A 

NARX model is a subset of the general NARMAX model (MA stands for “Moving 

Average”) in which additional moving average terms are present for modeling the 

stochastic components of a dynamic process. In a sampled data system where only input 

and output are available, a dynamic process is usually described by the following 

equation: 

 

noisemkukukunkykykyFky p ++−−+−−−= ))1(,),1(),(),1(,),2(),1(()( KK  (4.1) 

 

where  and  are vectors that represent the system outputs and inputs respectively. 

Subscript denotes the plant. The procedure for identifying a model for (4.1) depends 

on the assumption of the characteristics of the noise. Conventionally, one takes the 

following NARX model as a representation of the process shown in Eq. (4.1) 

y u

p

 

))1(,),1(),(),1(,),2(),1(()( +−−+−−−= mkukukunkykykyFky KK    (4.2) 

 

In this case, the plant output is used directly as the input to the model as indicated in 

the parenthesis of Eq. (4.2).  

y
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4.2.4 SVR NARX Modeling  

In most of the applications to date, a multilayer feedforward network is employed as a 

nonlinear NARX in which the network used a number of past plant inputs and outputs to 

predict the future output. In this project, Support Vector Regression (SVR) will be used 

as a new tool to build a NARX model for a nonlinear dynamic process.  

 

Compared with the neural network models, the SVR model has its own advantages. The 

first advantage is that the training of SVR is normally faster than that of neural networks. 

This will be desirable in a situation where an online model should be developed. The 

second advantage is that the SVR model is the training result after the original SVR 

optimization problem reaches its global minimum. This is due to a fact that SVR 

formulates regression as a quadratic optimization problem which ensures that there is 

only one global minimum while the training of neural networks may stop at a local 

minimum. For neural networks, apart from global minima in the weight space, there are 

also many local minima where the value index is bigger than the value index at the 

global minima (Haykin, 1999). Most optimization algorithms (such as back-propagation) 

are based on gradient descent and it is most likely that they will get “trapped” when they 

reach a local minimum point since the gradient at that point is zero. So mathematically 

speaking, the SVR model has some nicer properties than the neural network model. The 

third advantage is that the number of tuning parameters for SVR training is fewer than 

that for the neural network. When training a neural network model, the first thing that 

should be decided is how to choose the structure of neural networks: how many layers, 

how many neurons per layer, for how many epochs the neural networks should be 

trained. On the other hand, for SVR, if the type of kernel is determined, there are only 

three tuning parameters. The fourth advantage is the generalization property. 
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Generalization refers to how well the trained model performs on unseen examples. Even 

when the network has been trained satisfactorily with respect to the training set, it is still 

possible that the trained neural network gives very poor accuracy on the unseen 

examples. This is attributed to the fact that the neural network has been over-trained, i.e. 

it remembered the noise within the training set. While preventing over-training of neural 

networks needs a lot of careful considerations, with SVR it is relatively easier to achieve 

generalization. Given a certain set of tuning parameters, we try to obtain a SVR model 

that gives a minimal prediction error by a minimal complexity of the model. In the 

formulation of SVR, C is a constant determining the trade-off with the complexity 

penalizer 2w . In short, the formulation of SVM captures the main insight of statistical 

learning theory, i.e. in order to obtain a good generalization, we need to control both 

training error and model complexity, by explaining the data with a simple model 

(Schölkopf and Smola, 2002).  

 

As mentioned in Chapter 3, choosing optimal hyper-parameter values for support vector 

machines is an important step in SVM design. This is usually done by minimizing either 

an estimate of generalization error or some other related performance measure (Duan et 

al., 2002). It was found that k-fold cross-validation is very reliable to find the optimal 

hyper-parameters. Cross-validation is a popular technique for estimating generalization 

error and there are several versions. In k-fold cross-validation, the training data is 

randomly split into k mutually exclusive subsets (the folds) of approximately equal size. 

The SVM decision rule is obtained using k-1 subsets and then tested on the subset left 

out. This procedure is repeated k times and in this fashion each subset is used for testing 

purpose once. Averaging the test error over the k trials gives an estimate of the expected 

generalization error. 
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4.3 Obtaining Forward Dynamic Model of HVAC System 

Suppose we are dealing with Multi-Input-Multi-Output (MIMO) system. After 

stimulating the system with random input signals within the operating range of the 

system, sufficient input-output data has been collected which can be used as the training 

set for SVR models of the system. 

 

The result of training the SVR is in the form of  
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where  is number of outputs, n niyi ,,1, K=  are the outputs. K  is the kernel function. 

 are the support vectors in the model. iij mjv ,,1, K=

 

If we use the Gaussian Radial Basis Function (RBF) kernels, the expression could be 

written explicitly as follows: 
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where  is the vector that contains state variables , input , and measurable 

disturbances . , and  are column vectors. For a MIMO system, n individual SVR 

v x u

d x u d
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models are needed for n output variables. Each output variable has its own independent 

SVR model which has a different number of support vectors and different corresponding 

weights from models for other output variables.  

  

For the specific dynamics of the air-conditioning system used in this project, the output 

of the plant at any sampling interval can generally be written as  

 

)]2(),2(),2(
),2(),2(),2(),1(),1(

),1(),1(),1(),1(),(
),(),(),(),(),([)1( 1

−−−
−−−−−

−−−−
=+

kValvekFankSRH
kSTkRRHkRTkValvekFan

kSRHkSTkRRHkRTkValve
kFankSRHkSTkRRHkRTFkRT

         (4.4) 
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        (4.5) 

 

where is the sampling instant, k RT is the room temperature, RRH is the room relative 

humidity, is the supply air temperature, is the supply air relative humidity, 

is the supply air fan speed, Valve is the chilled water opening and are 

nonlinear functions in the form of support vector regression.  

ST SRH

Fan 21, FF

 

As we see from Eq. (4.4) and (4.5), the temperature dynamic model  and the relative 

humidity dynamic model  share the same input vector v which has 18 elements. Each 

feature element will contribute to a value of kernel function. One thing that should be 

noted is that different feature elements have different ranges. For the case of input vector 

1F

2F
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of , for example, the first element of room temperature has a range of 17- 30  while 

the second element of room relative humidity has a range of 40% to 99%.  Every 

element will affect a value of kernel through the form of square of error. If some 

elements have larger original absolute values than others, their influence will dominate 

the final kernel value. It is necessary, therefore, to do some prepossessing to the raw data 

before feeding them into the SVR model. In this project, all the feature elements and the 

target values are scaled so that they fall in the range of [-1, 1].  When using these SVR 

models, the computed target value should be converted back into the same scales that 

were used for the original targets values.  

1F C0

 

For convenience, we use a composite hyperparameter )2(1 2σ=g . As discussed 

before, k-fold cross validation was used to determine the optimal values of C and g for 

the room temperature and relative humidity dynamic models. Here k is chosen as 5. We 

first search for the optimal values of C and g in relatively coarse grids, followed by a 

search in finer grids. Finally we obtained the optimal value of C and g for these two 

models. Figure 4.6 is the contour of cross validation squared correlation coefficients 

for temperature dynamics and Figure 4.7 is for relative humidity dynamics. C and g are 

searched in the range of ,pC 2= 15,,3,5 L−−=p  and ,qg 2= 3,,13,15 L−−=q . From 

these contours of raw search, we can find smaller area where a finer search can be 

carried out. 

 

For room temperature dynamics, a finer search was made in the range of 

and . Finally the highest value was 

found to be 0.977311 which is obtained at  and .  

15,,12,11,2 L== pC p 13,,10,9,2 −−−== Lqg q

40962212 ==C 44414.22 12 −== − Eg
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Figure 4.6 Raw search of C and g for temperature dynamics 

 

Figure 4.7 Raw search of C and g for RH dynamics 
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Figure 4.8 Fine search of C and g for temperature dynamics 

 

Figure 4.9 Fine search of C and g for RH dynamics 
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For relative humidity dynamics, a finer search was made in the range of 

and . The best value was found at C=14 

and , and the corresponding cross validation squared correlation 

coefficient is 0.9785.  

.32,,5,4 L=C 3,4,5,2 −−−== qg q

03125.02 5 == −g

 

Figure 4.10 Comparison of model and actual data for temperature and RH dynamics 

 

After obtaining the optimal values of C and g, the two models, i.e. temperature and 

relative humidity dynamics models, were then trained using these optimal hyper-

parameter values. These forward dynamic models are used in the nonlinear model 

predictive control experiment for the HVAC system.  To check the generalization 

property of these models, another data set, which has not been used in training, is used to 

test the models. A comparison of the model outputs and the actual outputs is shown in 

Figure 4.10. From these figures, we can see that the model outputs closely follow the 
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actual data. This shows that the SVR forward models have captured the dynamics of the 

HVAC and have good generalization ability. 

 

PlantModel

Learning
algorithm

u

y

+-

e

û

 

Figure 4.11 inverse modeling 

 

4.4 Obtaining Inverse Dynamic Model of HVAC System 

In the SVR inverse control, the SVR directly computes the control signals in order to 

make the plant output follow the desired setpoint. Given this goal, the learning objective 

is to model the functionalities between the input and the output of the plant. With the 

inverse dynamics modeling methodology (Thibault et al., 1991), the training data is 

obtained in applying input values to the plant in an open-loop structure. These inputs can 

be randomly generated, but they must preferably cover the entire input domain. The plant 

input and output are recorded during the experiments. The direct inverse modeling is 

shown schematically in Figure 4.11. Here, a random control signal is introduced to the 

system. The system output is then used as input to the model. The learning algorithm is 

to obtain a model with minimal complexity that gives the minimal error between the 

u
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actual control signal and the model predicted value u . However, there are some 

drawbacks to this approach: If the nonlinear system mapping is not one-to-one then the 

model cannot be trained. 

u ˆ

 

If Eq.(4.4) and (4.5) are invertible, we write the control signals as 

functions of the other terms: 

)(),( kValvekFan
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Here are nonlinear functions in the form of support vector regression. 21,GG

 

The same procedure is followed as in the case of forward dynamic model. k-fold cross 

validation will be used to determine the optimal value of C, g for supply air fan and 

chilled water valve dynamics models. The optimal values of C and g are first searched 

in relatively coarse grids, followed by a search with finer grids. Figure 4.6 is the 

contour of cross validation squared correlation coefficients for fan dynamics and 

Figure 4.7 is that for valve dynamics. C and g were first searched in the range 

of  and . From these contours of raw 

searches, a smaller area for a finer search is determined. For fan dynamics, a finer  

15,,3,5,2 L−−== pC p 3,,13,15,2 L−−== qg q
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Figure 4.12 Raw search of C and g for fan dynamics 

 

Figure 4.13 Raw search of C and g for valve dynamics 
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Figure 4.14 Fine search of C and g for fan dynamics 

 

Figure 4.15 Fine search of C and g for valve dynamics 
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search was performed in the range of and 

. The highest value found is 0.493994 which is obtained at 

and . For chilled water valve dynamics, a finer search was made 

in the range of and . The best value was found at 

C=13 and . The corresponding cross validation squared correlation 

coefficient is 0.386867.  

64,,17,16,2 L== pC p

2,3,4,2 −−−== qg q

21=C 125.02 3 == −g

32,,9,8 L=C 2,3,4,2 −−−== qg q

125.02 3 == −g

 

 

Figure 4.16 Comparison of model and actual data for temperature and RH dynamics 

 

The final models for the inverse dynamics are obtained by training the SVR using these 

optimal hyper-parameters. A validation data set is used to check the generalization 

property. A comparison of model outputs and actual values is shown in Figure 4.16. 
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Compared with the forward dynamic models, the generalization property of the inverse 

dynamic models is not so good. The SVR model predicted values are almost in the same 

trend with the actual data, but there still exist small differences in their magnitudes. This 

also reflected in the lower value of the cross validation squared correlation coefficients.  
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Chapter 5 Inverse Control Using SVR Model 

In the previous chapter, SVR was used to model the inverse dynamics of the HVAC 

system. In this chapter, a SVR inverse controller is designed based on these inverse 

models. An appropriate reference model is the key to controller design. The nonlinear 

equations are solved by Newton methods. This control strategy is tested on the HVAC 

system. 

 

5.1 Introduction to Inverse Control 

In inverse control, the inverse model is simply cascaded with the controlled system in 

order that the whole system results in identity mapping between desired response and the 

controlled system output. Thus, the SVR inverse model acts directly as the controller in 

such a configuration. Clearly, this approach relies heavily on the fidelity of the inverse 

model used as the controller. For general purpose use, serious questions arise regarding 

the robustness of direct inverse control (Hunt et al. 1992). This lack of robustness can be 

attributed primarily to the absence of feedback. The problem can be overcome to some 

extent by using online learning with which the parameters of the inverse model can be 

adjusted online. 

 

5.2 Design of SVR Inverse Controller 

The inverse dynamics of the HVAC system had been obtained in the form of (4.6) and 

(4.7) in the previous chapter. In this chapter, Equations (4.6) and (4.7) are used as the 
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inverse control laws. We replace the outputs, )1( +kRT and , at the 

instant with the desired values, 

)1( +kRRH

)1( +k )1( +kRTref and . With these 

replacements, functions and  can be rewritten in the following forms: 

)1( +kRRH ref

1G 2G
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    (5.2) 

 

After obtaining the two inverse models, a controller can be designed based on these 

models. The new control signals are computed at every sampling instant. Due to the slow 

dynamics of the HVAC plant, the room temperature and the room relative humidity 

cannot change by too large a magnitude within one sampling interval. It is therefore 

important to design an appropriate reference trajectory so that the room temperature and 

the room relative humidity can reach their set points in a smoother manner with the 

physical limitation of the plant. The reference trajectories, based on first-order models, 

are calculated as shown by the quasi-code in Table 5.1 : 
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Table 5.1 Reference model for inverse control 

If TkRTkTref ∆>−+ )()1(  

        If  )1()( +> kTkRT ref

             TkRTkTref ∆−=+ )()1(            

          else 

                 TkRTkTref ∆+=+ )()1(  

If TkRTkTref ∆≤−+ )()1(  

)()1( kRTkTref =+  

 

If RHkRRHkRH ref ∆>−+ )()1(  

        If  )1()( +> kRHkRRH ref

                 RHkRRHkRH ref ∆−=+ )()1(          

         else  

           RHkRRHkRH ref ∆+=+ )()1(  

If RHkRRHkRH ref ∆≤−+ )()1(  

)()1( kRRHkRH ref =+          

 

By setting 05.0,5.0 =∆=∆ RHT , and following the above procedures, we can get the 

control signals . )(),( kValvekFan

 
57



Chapter 5 Inverse Control Using SVR model 

The Equations (5.1) and (5.2) are a set of simultaneous nonlinear equations for which the 

solutions for and are needed. Note that there two parameters also appear 

on the right hand side of the equations. We use the Newton methods to solve this 

problem (Yakowitz and Szidarovszky, 1989).  

)(kFan )(kValve

 

This is shown as follows. At any sampling instant, , only  are 

unknown, other parameters are all known. Replacing and  by and , 

respectively. (5.1) and (5.2) can be rewritten as follows: 

k )(),( kValvekFan

)(kFan )(kValve 1x 2x
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where  and  are SVR functions of and , respectively. Define: )( 21 xg )( 12 xg 2x 1x
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or 
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 We can obtain a unique solution of (5.5). A better solution is then given by 
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The process is repeated until the desired accuracy is reached. In our case, the process is 

stopped when both )(
1

kx∆  and 6)(
2 10−<∆ kx . 

 

In Eq. (5.3), the SVR functions,  and , are in the form of: )( 21 xg )( 12 xg
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where  is the input vector to the SVR function , whose elements are listed in the 

parenthesis of Eq. (5.1).  are the support vectors in  . , i.e. , 

is the 7

1v 1G

11 ,,1, miv i K= 1G 2x )(kvalve

th element of . 1v 12 ,,1, mix i K=  are the 7th elements in support vector 

. Since other elements except  are all known, 11 ,,1, miv i K= 2x 2
11 ivv − can be 

expressed as a summation of  and .  is a constant with respect to . 

Similarly,  is the input vector to the SVR function , whose elements are listed in the 

parenthesis of Eq. (5.2). 

2
22 )( ixx − 1A 1A 2x

2v 2G

22 ,,1, miv i K=  are the support vectors in  . , i.e. , is 

the 7

2G 1x )(kfan

th element of . 2v 21 ,,1, mix i K=  are the 7th elements in support vector 

.  is a constant with respect to . 22 ,,1, miv i K= 2A 1x

 

The partial derivative terms required in Eq. (5.5) are given by   
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The solution process starts with some appropriate initial value , and iterates to the 

final solution, i.e. . This computed values of the control signals are the 

input to the plant. The same procedure is repeated at each sampling instant. 

⎥
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5.3 Experimental Results 

Only after the startup of the system, will the chiller begin to cool down the chilled water. 

During the process of the experiment, the chiller will turn on or off according to the 

temperature of the chilled water leaving the chiller. The plant controller itself can not 

control the switch of the chiller. As such there will be fluctuations in the chilled water 

temperature. Besides the two manipulated variables, i.e. supply air fan speed and chilled 

water valve opening, that affect the temperature and relative humidity of the supply air, a 

third parameter, the chilled water temperature, also affects the state of the supply air. In 

the experiment, the chilled water temperature is considered as a measurable disturbance.  

 

The experimental results are shown in Figure 5.1 and Figure 5.2. The room temperature 

and relative humidity were initially set to 24 and 65% respectively. From the results 

shown in Figure 5.1, we note that the room temperature and the room relative humidity 

can reach the set points in a very smooth manner, with very small overshoots. After 

reaching the set points, the controller can keep this steady state with a temperature error 

of less than 0.2 and relative humidity error of less than 1%.  The changes of the 

control signals, i.e. supply air fan speed and chilled water valve opening, is relatively 

drastic during the startup, then the control signals decrease gradually to a small value in 

Co

C0
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the steady state. The small fluctuations in the control signals are meant to offset the 

fluctuations in the chilled water. This is the demonstration that SVR inverse controller 

has the ability of disturbances rejection. 

 

The reference settings were changed to 23 and 60% at the 390C0 th sampling instant. 

From Figure 5.2, the control signals increase to react to the change of setting. After about 

100 sampling instants (16.7 minutes), the room temperature and relative humidity have 

settled to the new settings, with small steady-state errors. The third setting of 22 and 

65%, made at the 570

C0

th sampling instant, can also been reached at around the 730th 

sampling instant. From these responses, it is noted that there is negligible overshoots for 

the temperature while the relative humidity has some small overshooting before the 

temperature has reached its setpoint. This is due to the fact that the dynamics of relative 

humidity is faster than that of temperature.  

 

5.4 Conclusion of SVR Inverse Control 

The feasibility of the SVR inverse control strategy has been investigated. The design of 

SVR inverse controller consists of two steps: the first is building up the inverse SVR 

model of the system, and the second is the design of the SVR inverse controller. The 

strategy has been shown to be successful experimentally. The controller has the ability of 

set point tracking and disturbance rejection. The controller can work effectively in the 

start up period which is difficult to be described by a linear model around some operating 

point. The good performance of the controller is based on the availability of training data 

within the plant operating range. The control strategy can be used to produce the  
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Figure 5.1 Changes of room temperature and relative humidity using SVR controller 

 

Figure 5.2 Changes of supply air fan speed and chilled water valve opening 
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environmental space where accurate temperature and relative humidity control is 

required.  

 

However, the disadvantage of the SVR inverse control is that the response time is quite 

long (roughly two times that of MPC control which will be discussed in the next 

chapter). Here, the cooling capacity is not exploited to its full potential, which is 

demonstrated by the fact that the fan never runs at its maximum speed and the valve is 

never fully open. Although the controlled system has good reference tracking ability and 

small steady state errors, the slow response makes it less desirable to be used in practical 

situations. Also, few choices are available to tune the performance of the controller. So 

in this project, no further efforts were put into improving the design of the SVR inverse 

controller. Instead, research is focused on the MPC using SVR forward models, which 

will be discussed in more details in next chapter. 
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Chapter 6 Model Predictive Control Using SVR 

Models 

Model predictive control has been increasingly used in industry because of its attractive 

properties. The model itself has significant impact on model predictive control. The 

excellent generalization property of SVR forward models motivates their use in model 

predictive control. In this chapter, we will discuss the model predictive control using 

SVR forward models.  

 

6.1 Introduction of Model Predictive Control 

The past two decades have witnessed great success in the use of model predictive control 

(MPC) in a variety of industrial processes (Camacho and Bordons, 1999). MPC is 

sometimes referred to as receding horizon control (RHC) in the literature. MPC is a form 

of control in which the current control action is obtained by solving on-line a finite 

horizon open-loop optimal control problem  at each sampling instant, using the current 

state of the plant as the initial state (Mayne et al., 2000). Only the first action of the 

optimal control consequence, which is computed as a result of the optimization, is 

actually applied to the plant. This procedure is repeated at every sampling instant using 

the updated information (measurements) of the process. A key advantage of MPC over 

other control schemes is its ability to deal with constraints in a systematic and 

straightforward manner. Within the framework of constrained optimization, the 

constraints that can be handled include not only saturation limits but also other 

performance and safety constraints on inputs, outputs and state variables of the process. 
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Different norms can be used in the objective function that leads to different optimization 

problems. The most popular choice is the 2-norm type objective function which contains 

quadratic terms in outputs errors and control efforts. In general, the 2-norm objective 

function leads to a quadratic programming (QP) type optimization problems the solution 

of which gives the control law. 

 

6.1.1 MPC Strategy 

The basic ideas of MPC is characterized by the following strategy (Camacho and 

Bordons, 1999), represented in Figure 6.1. 

 

The future outputs for a pre-determined horizon P , called the prediction horizon, are 

predicted at each instant k using the process model, The predicted outputs  for 

 depend on the known values up to instant t (past inputs and outputs) and on 

the future control signals 

)|(ˆ tkty +

Nk ,,1K=

1,,0),|( −=+ Pktktu K . 

 

The set of future control signals is computed by optimizing a specified criterion so as to 

keep the process as close as possible to the reference trajectory  subject to certain 

constraints. This criterion usually takes the form of a quadratic function of the errors 

between the predicted output signal and the predicted reference trajectory. Control effort, 

rate of change of control signals and terminal cost are usually included in the objective 

function.  

)( ktr +

 

The first computed optimized control  is sent to the process whilst the subsequent 

control signals that were computed are discarded. At the next sampling instant, 

)|( ttu

)1( +ty  
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will become known and step 1 repeated with this new value and all the sequences are 

brought up to date. Thus a new )1|1( ++ ttu  is calculated (which in principle will be 

different from the  because of the additional new information available) using 

the receding horizon concept. 

)|1( ttu +

 

u(t)

y(t)

tt-1 t+1 t+k ... t+N...

r(t+k|t)

e(t+1)

e(t+k)
y(t+k|t)^

 

Figure 6.1 MPC strategy 

 

6.1.2 Nonlinear Models 

Although industrial processes usually contain complex nonlinearities, most of the MPC 

algorithms are based on a linear model of the process. Linear model such as step 

response and impulse response models are preferred, because they can be identified in a 

straightforward manner from process data. In addition, the goal for most of the 

applications is to maintain the system at a desired steady state, rather than moving 

rapidly between different operating points. A precisely identified linear model is 
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therefore sufficiently accurate in the neighborhood of a single operating point. But if the 

process is highly nonlinear and subject to large frequent disturbances, a non-linear model 

will be necessary to describe the behavior of the process. Also in servo control problems 

where the operating points are changing, a nonlinear model of the plant is necessary. 

 

Because of its universal approximation ability, neural networks (NN) have been used in 

model predictive control. Potocnik and Grabec (2002) proposed a nonlinear MPC which 

combines a neural network model and a genetic algorithm based optimizer in a simulated 

chaotic cutting process. Duarte et al. (2001) investigated a direct neural network 

multivariable predictive controller applied to a grinding plant. Gu and Hu (2002) 

presented a path tracking scheme for a car-like mobile robot based on neural predictive 

control. Possessing the similar universal approximation ability, SVR can also be used to 

model nonlinear processes, just as neural networks are. Support vector regression has 

been reported to be used in the model predictive control area. Miao and Wang (2002) 

studied the MPC using SVR model for a SISO system.  

 

6.2 Problem Formulation 

Nonlinear models are used to predict the effect of sequences of control actions on the 

controlled variables. The aim is to derive an optimal set of control sequences, which will 

drive the outputs to the desired state setpoints, based on optimizing some specified 

performance index. For the HVAC system under control, the performance index is 

devised as follows: 
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In the above equation, and  are the room temperature and the room relative 

humidity respectively, 

1y 2y

1y and 2y  their respective initial values that is at the start of the 

sampling period, and  their respective reference values, and are the supply air 

fan speed and the chilled water valve opening respectively, and 

1r 2r 1u 2u

iiii ηϕθγ ,,,  are the 

tuning coefficients.  

 

The variables iy are such that:   

 

i           
)0(

ε=
−=− iiii ryry

  
otherwise

0)0(for  >≥− iii ry ε          (6.3) 

 

The above condition is introduced to avoid the denominators, ii ry − , becoming too 

small as the controlled system reaches steady-state values. The parameters iε  are chosen 

based on the relative importance, or precision, of parameters under control. In this 

project, 1ε  is chosen as 1  and C0
2ε  is chosen as 5.5%. At each sampling instant, the 
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initial conditions, 1y and 2y , are updated by Eq. (6.3). This method is referred to as the 

strategy of updating conditions in later chapters. 

 

From the formulation of the problem, it is clear that MPC involves nonlinear 

programming which is to minimize a performance index subject to system dynamics and 

control constraints. The performance index contains the cost incurred from 0 to P-1 stage 

and the terminal cost at P stage. From 0 to P-1 stage, the three items are 1) squared errors 

between the current outputs and the reference values, 2) squared magnitude of the 

control signals and 3) squared change rates of the control signals. To make the different 

items in the performance index comparable, it is important to make different items 

dimensionless. iiii ηϕθγ ,,, are the coefficients that allow the relative importance of 

different items to be adjusted. In the experiments, it is found that these coefficients have 

significant influence on the performance of the controller. The details of the effects of the 

coefficients will be discussed in later sections. 

 

Although in the identification phase, the lower bounds for both controls, and are 0, 

in the control experiments these lower bounds were all modified to 0.1 empirically to 

prevent the control process from getting stuck at certain points. This is attributed to the 

fact that the sensors of the supply air temperature and relative humidity are installed in 

the ducting after the air-handling unit. If the supply fan almost stops and the chilled 

water valve is almost closed, then very little heat exchange will happen between the air 

and the chilled water and the supply air will remain to be at its original state.  

1u 2u
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At each sampling instant, iterative dynamic programming (IDP) was used to compute the 

optimal control sequences and the first control action is actually implemented. IDP will 

be discussed in details in the next section. 

 

6.3 Iterative Dynamic Programming 

6.3.1 Brief Introduction to Iterative Dynamic Programming 

The initial ideas on iterative dynamic programming (IDP) were developed and tested by 

Luus (1990), who gave a comprehensive coverage in a monograph (Luus, 2000). IDP 

has attracted the attention of researchers due to its many very favorable properties. It is 

easy to implement, is quite robust, does not involve solution of a nonlinear programming 

(NLP) problem even in the case of input constraints, is reported to be capable of finding 

a global optimum and does not require any differentiation of process equations that is 

sometimes very difficult (Rusnák et al., 2001). The original IDP method was developed 

for systems described by a set of differential equations. Its detailed theoretical analysis 

can be found in Bojkov and Luus (1993) and Dadebo and Mcauley (1995). Rusnák et al. 

(2001) proposed a modified version of IDP which uses discrete input-output models 

rather than differential equations.  

 

As its names suggests, IDP is based on Bellman’s principle of optimality. Its basic 

principle is to optimize P single control stages in turn by starting at the last stage instead 

of optimizing all P stages simultaneously. Thus, whenever the final i stages of the 

optimal control have been established, the preceding stage may be obtained by simply 
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considering one new stage and then continuing with the already established control 

policy in the remaining stages. 

 

6.3.2 IDP Problem Formulation for Discrete Time Models 

The IDP algorithm in this project is modified from the algorithm proposed by Rusnák et 

al. (2001). While the latter one is implemented in one pass, the former is done in a multi-

pass fashion. Consider the discrete system: 

)),2(),1(,),2(),1(()( KK −−−−= tututytyfty         (6.4) 

 

where  is the current instant and suppose that the input t )( jtu + has to be within limits: 

 

ujj Njujtuu ,,2,1,)( maxmin L=≤+≤           (6.5) 

 

and  is the number of inputs. The associated performance index to be optimized is: uN

 

))1(,),1(),(),(ˆ,),1(ˆ( −++++= PtututuPtytyFJ KK        (6.6) 

 

)(ˆ,),1(ˆ Ptyty ++ K  denote the model predicted values. The optimal control problem is 

to find the piece-wise constant control policy 1,,0),( −=+ Pjjtu K such that the 

performance index given is minimized. 
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6.3.3 IDP Algorithm 

Before discussing an approach to solving the IDP problem, the following parameters are 

defined:  

 

P, number of stages (or equivalently prediction horizon);  

M, number of randomly chosen control candidates;  

N number of y-grid points;  

0r , initial size of control region; 

1ϕ , contraction factor after each iteration, ]9.0,7.0[1 ∈ϕ ;  

2ϕ  , restoration factor after each pass which consists of several iterations, ]9.0,7.0[2 ∈ϕ ;  

iN , number of iterations in each pass;  

pN , number of passes.  

 

Some detailed descriptions that are helpful to understand the implementation of IDP are 

given in Appendix. The proposed algorithm can be concisely described by the following 

steps: 

1) Choose an initial control trajectory and let initialize the iteration counters by 

setting up and . 1=i 1=p

2) Set the control region by 

 

1
2

0 −= pi rr ϕ               (6.7) 

where  is the pass index.  p

3) Choose N control trajectories by perturbing the optimal (or initial if i=1 and 

=1) control trajectory p [ ])1(,),( 111 −+= −−− Ptutuu iii K  uniformly inside the 
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admissible region that is given as the intersection of the control region ir  and the 

constraints Eq. (6.5). 

4) Use the N control trajectories to obtain N model output trajectories for the 

interval within the prediction horizon P and store the system output trajectories. 

5) Start at the last stage P and generate for each grid point ),1(ˆ nPty −+  

( ) M admissible values for control by Nn ,,1K=

 

u
i
jj

i
j

i
j NjrdPtuPtu ,,1,)1()1( 1 K=+−+=−+ −       (6.8) 

 

where  is the iteration index, and  is a random number with the range of [-1, 

1].  is the jth element of , which is the best value 

vector of the control action for the particular 

i jd

)1(1 −+− Ptui
j )1(1 −+− Ptu i

),1(ˆ nPty −+ grid point obtained in 

the previous iteration. Eq. (6.8) is used M times for each grid point 

),1(ˆ nPty −+ to generate M allowable control . Also,  

must satisfy the control constraints Eq. (6.5). If the limits are exceeded, its value 

are truncated to its nearest bounds. Apply these control actions to the process 

model and obtain the set of corresponding output predictions at 

stage

)1( −+ Ptui )1( −+ Ptui

),,(ˆ MnPty +

1+P . Compute M values of the cost function at stage 1+P and choose the 

control action that minimizes it. Store the best control actions 

for the next step This comparison of M values of J is repeated for 

 times for each grid point

),1( nPtu i −+

),1( nPtu i −+

N ),1(ˆ nPty −+ , Nn ,,1K= . 

6) Step back to stage P-1. For each y-grid ),2(ˆ nPty −+ , Nn ,,1K= calculate the 

predictions by Eq. (6.4) from stage P-1 to stage P once with each of the M 

allowable values for control. To continue the prediction from stage P to stage 
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P+1, choose the optimal control obtained from step 4) that corresponds to the 

closest grid point at stage P. For each y-grid point at stage P-1, compare with the 

M values of J and store the control that gives the minimum value.  

This comparison is also repeated for N y-grid points 

),2( nPtu i −+

),2(ˆ nPty −+ , . Nn ,,1K=

7) Repeat the previous step until the initial time (stage 1) is reached. At stage 1, 

there is only one y-grid point . Among N different control trajectories 

choose the one that minimizes the performance index. 

)1,(ty

8) Reduce the region for the admissible control values by an amount 1ϕ  

 

ii rr 1
1 ϕ=+

              (6.9) 

 

and increase the iteration index, 1+= ii . If the maximum number of iterations in 

each pass in not reached, i.e. iNi ≤  , then go step (3). 

9) Increase the pass index, 1+= pp . If the maximum number of passes is not 

reached, i.e.  then repeat from step (2). pNp ≤

 

6.3.4 Online Implementation of IDP 

Due to the online nature of MPC, the speed of computation for the optimization of MPC 

is very important. From the above discussion, it is clear that the tuning parameters will 

determine the online computational load. These parameters are the length of prediction 

horizon P, the number of randomly chosen control candidates M, and the number of y-

grid points . Fortunately, Luus (2000) made a fairly comprehensive discussion for the 

choices of these parameters. 

N

 
75



Chapter 6 Model Predictive Control Using SVR Models 

In the early years of IDP, control candidates were chosen uniformly inside the given 

region. For each control variable, we therefore have a minimum of 3 values, namely –r, 

0, and r distance from the optimum value obtained at the previous iteration, where r is the 

region size.  This method is easy to be implemented. However, with an increase in the 

number of control variables, the computational load will increase very fast. So it is 

recommended to randomly choose control variables inside the region. With this random 

choice strategy, it was reported that IDP has been successfully used in a system with 130 

differential equations and 130 control variables (Luus, 1993).  

 

The number of y-grid points will also affect the computational load. It has been reported 

that the use of more than 3 y-grid points at each stage will not increase the possibility of 

obtaining the optimal value (Luus, 2000). Without sacrificing convergence rate, we will 

use the minimum number of one, whenever possible. In this project, the HVAC system is 

a system. During the simulations and the experiments, one y-grid point at each 

stage was found to be good enough. 

22×

 

The computational parameters used for this online MPC are listed as follows: 

Number of randomly chosen control candidates M is 5; 

Number of y-grid points is 1; N

Number of passes is 2; pN

Number of iterations per pass is 10; iN

Region contraction factor after each iteration in a pass 1ϕ  is 0.75; 

 Region restoration factor after each pass 2ϕ  is 0.80. 
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6.4 Experimental Results 

Generally speaking, the performance of the SVR MPC controller is much better than that 

of the SVR inverse controller. A typical MPC control experiment is shown in Figure 6.2 

and Figure 6.3. The experiment begins with the initial condition of and 

. The initial setpoint is . The tuning parameters 

used are listed in Table 6.1.  

CRT 03.27=

%83=RRH %65,240 == RRHCRT

Table 6.1 Typical values in performance index 

P  1γ  2γ  1θ  2θ  1φ  2φ  1η  2η  

1 2 1 0 0 
275.0

6.0
 

0.6 4 4 

 

From Figure 6.2, we can see that both the room temperature and the room relative 

humidity slowly reach their first setpoint accurately at around the 150th sampling instant, 

which is 25 minutes. It is noted that the dynamics of the room relative humidity is much 

faster than that of the room temperature. There are some oscillations of the room relative 

humidity before the room temperature reaches its setpoint. Another noticed phenomenon 

is that the chilled water valve demonstrates violent oscillations in the transition period. 

Because of the faster dynamics of the room relative humidity compared with that of the 

room temperature, the relative humidity reaches its setpoint earlier than the temperature. 

If the chilled water valve keeps a large opening degree while the supply air fan run at 

high speed, the room relative humidity will further go down from its setpoint. Thus the 

amplitude of the error between the room relative humidity and its reference will increase. 

By using the strategy of updating initial conditions, the items of the error of the room 

relative humidity still have significant relative importance in the performance index, 
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which prevents the room relative humidity from deviating from its setpoint. If the error 

of the room relative humidity exceeds a certain value, the chiller water valve opening 

must be decreased to prevent the relative humidity from further straying away from its 

setpoint. Thus, keeping the relative importance of the error of the relative humidity in the 

performance index causes the oscillations of the chilled water valve opening in the 

transition period. 

 

It is found that the choices of the tuning parameters in the performance index have 

significant impact on the performance of the controller. In the next few subsections, the 

effects of some of these tuning parameters will be discussed in details. 

 

 

Figure 6.2 Typical MPC control for room temperature and RH 
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Figure 6.3 Typical MPC control signals 

 

6.4.1 Penalty on the Rate of Change of Control Signals 

The allowable control candidates are generated in a random fashion when IDP is used to 

solve the online MPC problem. In the earlier tries of the control experiments for the 

HVAC system, no penalty was imposed on the rate of change of the control signals. 

When the setpoint is  andCRT 021= %60=RRH , the experimental results are shown 

in Figure 6.4 and Figure 6.5. It can be seen that there are serious oscillations in the 

control variables in the steady state. Thus, the controller performance is not good. The 

controlled variables oscillate around the setpoint and the system cannot settle down at its 

setpoint. So imposing a penalty on the rate of change of the control signals is important 

to ensure that the controller has good reference tracking ability and achieve steady state. 
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Figure 6.4 Room temperature and RH when no penalty imposed on change of rate 

 

Figure 6.5 control signals when no penalty imposed on change of rate 
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6.4.2 Prediction Horizon 

Increasing the prediction horizon will significantly increase the burden of computation. 

The computer that was used in this project is a Pentium III, 800 MHz PC. Limited by its 

computational ability, the maximum prediction horizon tested in this project is 4. From 

the experiments, it was found that the prediction horizon of 1 is good enough for the 

control. The response of the system with a prediction horizon of 1 has been shown in 

Figure 6.2 and Figure 6.3. An increase in the prediction horizon to 2 made some, but not 

very significant, improvement to the control performance. When the prediction horizon 

is 2, as shown in Figure 6.6 and Figure 6.7, the trajectory of the relative humidity is 

found to be smoother as compared with others and there is no overshooting.  

 

Beyond 2, an increase in the prediction horizon causes system performance to degrade. 

For a prediction horizon of 3, there are significant overshoots in the room relative 

humidity, as shown in Figure 6.8 and Figure 6.9. This becomes worse when the 

prediction horizon was increased to 4 as shown in Figure 6.10 and Figure 6.11. The 

system can not track the setpoint of the room relative humidity and the steady error is 

quite big. The reason for the deterioration of the system response when the prediction 

horizon is increased beyond a certain point is due to the following reasons. Firstly, in 

MPC it is assumed that the supply air temperature and the relative humidity remain 

unchanged with the prediction horizon. However, in actual fact, these values change 

during this period and as the period is increased, the effect of the error caused by this 

assumption becomes more significant. A second reason is that when the prediction 

horizon is larger, the computational time required is larger. This computation time, 

which causes a time delay in sending the control signal, can become significant, 

particularly by with a slow computer, and thus cause error in the control performance. 
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Figure 6.6 Control performance when P=2 

 

Figure 6.7 Control signals when P=2 
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Figure 6.8 Control performance when P=3 

 

Figure 6.9 Control signals when P=3 
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Figure 6.10 Control performance when P=4 

 

Figure 6.11 Control signals when P=4 
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6.5 Conclusion of SVR Model Predictive Control 

By using MPC strategy, the control performance is found to be much better than that for 

inverse control. The iterative dynamic programming (IDP) is found to be a very reliable 

way to solve the online optimization problem for MPC. For IDP, constraints are 

necessary starting points of the computation. In this sense, IDP is suitable to the solution 

of the constrained MPC problem. Experimental results show that both room temperature 

and relative humidity are accurately controlled to their desired values respectively within 

the system operating range. The control performance is quite satisfactory in terms of 

reference tracking ability, steady-state error and amplitude of overshooting.  
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Chapter 7 Conclusion 

This project focuses on the simultaneous control of temperature and relative humidity of 

a conditioned space, which is required by some industrial and scientific applications. 

From the step responses, it is noticed that both control signals, the supply air flow rate 

and the chilled water flow rate, affect the sensible and latent cooling capacity of the 

HVAC system. The system under control has strong couplings between the inputs and 

the outputs. The simultaneous control of room temperature and relative humidity is 

carried out by the means of varying both the supply airflow rate and the chilled water 

flow rate. 

 

HVAC plants are typical nonlinear systems and obtaining accurate models for these 

systems is a difficult and challenging task. In this project, a new tool—support vector 

regression— is used to model the inverse and forward dynamics of this highly nonlinear 

system. 

 

Support vector regression is a type of model that is optimized so that prediction error and 

model complexity are simultaneously minimized. Because of its universal approximation 

ability, support vector regression can be used to model nonlinear processes, just as neural 

networks are. One advantage of SVR over neural networks is that SVR formulates 

regression as a quadratic optimization problem which ensures that there is only one 

global minimum while the training of neural networks may get “trapped” at a local 

minimum. Another advantage is that training of the SVM is faster than that of neural 

networks. This is a desirable property for most applications in general and online 

applications in particular.  
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Both the SVR inverse control and SVR model predictive control consist of two stages. 

The first is the system identification for the HVAC system. For inverse control, SVR 

inverse models are needed while for model predictive control, SVR forward models are 

needed. Choosing optimal hyper-parameters for the models is an important step in the 

identification stage. k-fold cross validation is a reliable way to determine the optimal 

hyper-parameters. The optimal values are firstly searched in coarse grids, and then 

searched in finer grids. The final models are obtained after training the SVRs using these 

optimal hyper-parameters. The models obtained this way are found to have good 

generalization property.  

 

In inverse control, the inverse model is simply cascaded with the controlled system in 

order that the composed system results in identity mapping between the desired response 

and the controlled system output. Thus, SVR models act directly as the controllers in 

such a configuration. It is important to design an appropriate reference for the system to 

follow. The controller has the ability of set point tracking and disturbance rejection. The 

controller can work effectively in the start up period which is difficult to be described by 

a linear model around certain operating points. However, the disadvantage of the SVR 

inverse controller is that the response time is quite slow. The cooling capacity is not 

exploited in its full potential, which is demonstrated by the fact that the fan never runs at 

its maximum speed and the valve is never fully open. 

 

The basic idea of MPC is to predict the controlled variables over a future horizon using a 

prediction model of the process, the control signals are then computed by minimizing an 

objective function, and only the first control action is finally applied to the process. The 

procedure is repeated at every sampling instant using the updated information 

 
87



Chapter 7 Conclusion 

(measurements) of the process. A key advantage of MPC over other control schemes is 

its ability to deal with constraints in a systematic and straightforward manner. The online 

MPC problem is solved by iterative dynamic programming (IDP).  

 

The items in the performance index are found to have significant impact on the controller 

performances. Because variables in the performance index have different dimensions and 

units, making the items of the performance index dimensionless will make the tuning 

process easier. It has also been found, in the work done here, that putting some penalty 

on the rate of change of the control signals helps to reduce fluctuations in the outputs 

once they have settle down. This is, in a way, akin to having derivative feedback. The 

strategy of updating initial conditions is found to be important for the controller to have 

faster response and good reference tracking ability. The length of the prediction horizon 

can affect both control performance and the computational burden. Initially, increasing 

the prediction horizon can help to improve control performance. However, beyond a 

certain point, increasing this will cause control performance to deteriorate. 

 

The MPC strategy has been proved to be successful experimentally. Experimental results 

show that both the room temperature and the room relative humidity are accurately 

controlled to their desired values respectively within the system operating range. The 

control performances are quite satisfactory in terms of reference tracking ability, steady-

state error, amplitude of overshooting and consideration of control constraints.  

 

Future research directions could include adaptive SVR controller and robustly stable 

model predictive control (MPC). 
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1. Adaptive SVR model predictive control 

Support vector model predictive control is data-based. Therefore, the performance of the 

controller is very sensitive to the quality of the data. The dynamics of a HVAC system 

will change after a period of operation. For example, the dust in air will adhere to the 

coils of AHU, so heat transfer coefficient will decrease by some extent. In order to adapt 

to the changing dynamics, it is necessary to adopt the adaptive SVR controller. It could 

be performed in such a way that the support vectors of the model will be updated 

periodically so that the SVR model will reflect the change of the plant dynamics.  

 

2.  Stability and robustness analysis 

In this project, the tuning process of the items in the performance index is just based on 

trial and error. Actually, the stability issue of MPC has reached to a fairly mature stage. It 

could be possible to be used to design a stable MPC controller. While the stability issue 

of MPC has reached a mature stage, the robustness is still an open topic. A promising 

way is to combine  control, which ensures robustness, and MPC, or receding horizon 

control, which is computationally feasible. 

∞H
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Appendix 

Implementation of Iterative Dynamical Programming 

1. First Iteration 

From the given initial condition   and constraints specified by Eq. (6.5), we can choose 

the centre point for the y-grid and allowable range for control. 

)0(y

 

1) Stage P 

Let us start the calculation at stage P.  For each y-grid point, evaluate M values of the 

performance index, where each of the M values of control used for in turn. 

Compare these M values of the performance index and choose the particular value of 

 that gives the minimum value. This is the best control to use at that particular y-

grid point. 

)1( −Pu

)1( −Pu

 

2) Stage P-1 

Now step backward to stage P-1. For each grid point, we again consider M allowable values 

for control. However, when we calculate the stage from P-1 to P stage, it is unlikely that the 

stage  will be exactly one of grid points at stage P, The problem of not hitting a grid 

point exactly is illustrated in Figure A.1. For simplicity we have taken ,

)(Py

2=n 5=N , 

4=M . Therefore the grid consists of a )55( × matrix. At the grid point (2, 3) of stage P-1 

we have shown 4 trajectories to stage P, corresponding to the use of the four allowable 
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values of control, namely u=a, b, c and d. None of these trajectories hits a grid point at stage 

P.  
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Figure A.1 Illustration of the difficulty of reaching the 

grid points by assigning 4 values for control 

 

To continue the prediction to the final stage P, we take the optimal control policy 

corresponding to the grid point that is closest to the state . This gives a good 

approximation if a sufficiently large number of grid points and allowable values for control 

)(Py
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are used. As shown Figure A.1, to continue the prediction for the first trajectory u=a, we use 

the optimal control at stage P corresponding to grid (2, 3); to continue the second trajectory 

corresponding to u=b, we use the best control policy at (3, 3); for u=c we use (5, 5); and to 

continue the trajectory corresponding to u=d, we use the optimal control policy established 

for the grid point (4, 2) at stage P, At the stage P+1, we have four values for the 

performance index to compare and we select the control policy that gives the minimum 

value. Therefore, the control policy for the grid (2, 3) at stage P-1 is established. This is 

continued for the remaining 24 grid points to finish the calculation for stage P-1. 

 

3) Continuation in with backward direction 

We proceed in this manner with stage P-2, P-3, …, etc., until stage 1 is reached. A stage 1 

the grid consists only of the initial condition . At this stage we compare the M values of 

the performance index and pick the control policy that gives the minimum value. This 

finishes the first iteration. Even if a reasonably large number of grid points and allowable 

values for control are chosen, the optimal control policy obtained is quite far from the global 

optimal solution. Therefore, it is necessary to improve the control policy obtained the first 

iteration, and we proceed to the main part of optimization procedure. 

)0(y

 

2. Iterations and Passes with Systematic Reduction in Region Size 

The optimal trajectory from the first iteration provides the centre for the y-grid at each stage, 

and the optimal control policy from the first iteration gives the central value for the 

allowable values for control at each stage. The corresponding regions are contracted by a 

small amount to provide a finer resolution and the procedure is continued for a number of 
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iterations. Several iterations consist of one pass. One method of preventing the collapse of 

the search region is to use the iterative dynamic programming in a multi-pass fashion, so 

that the region is restored to fraction of its size at the beginning of previous pass. When this 

procedure is carried out for a sufficiently large number of passes, it is expected that 

convergence to the optimal policy is obtained with sufficient accuracy. 
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