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SUMMARY 

 

In deep excavation in soft ground, the maximum deflection of retaining wall 

usually occurs below the final excavation level where it is impossible to install struts. To 

limit the wall deflection at this level, one effective solution is to improve a layer of soft 

soil below the base prior to an excavation. A common approach is to improve the entire 

soil layer within the excavation zone so as to provide full contact between retaining 

walls. Nevertheless, carrying out grouting works especially close to the retaining wall is 

difficult and this often leads to a small region of untreated soil between the retaining wall 

and improved soil layer. Often, this is overlooked and ignored in design. In the case of a 

wide excavation, the use of an embedded improved soil berm is usually considered 

because improving the entire area may not be economically viable.  

This research covers the experimental and numerical studies of the behaviour of 

three different configurations of embedded improved soil layer; namely an improved soil 

strut, an improved soil strut with a small gap next to the retaining wall and an improved 

soil berm. The initial scope of the study is to understand the material properties of 

Singapore marine clays improved by cement mixing. A series of samples with different 

mix proportions was prepared and tested in the laboratory. This is followed by a series of 

100G centrifuge model excavation tests, prepared using different configurations of soil 

improvement so as to understand the behaviour of a monolithic improved soil layer. All 

the excavation tests were carried out using the new in-flight excavator (Mark II), which 

was developed for this study. Numerical analyses using the finite element program 

(CRISP) were finally carried out to complement the results obtained from centrifuge 

tests. 

The centrifuge results show that the effectiveness of an embedded improved soil 

strut is very much dependent on its stiffness. The test results confirm that when a stiffer 
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improved soil layer is used, though it provides a higher passive resistance to the retaining 

wall, it also induces a much higher bending moment in the wall. This finding becomes 

substantially important because the Young’s modulus (E) of improved soil observed 

during the material study could be anticipated to be much higher. Results from a 

parametric study using the FE analyses show that there is a considerable increase in the 

wall bending moment (15-20%) when a stiffer improved soil layer is used. However, 

when the E value of improved soil strut approaches 1000MPa, the increase of wall 

bending moment becomes nominal. It is also shown that there exists a threshold range of 

between 100-200MPa, below which the improved soil strut will be ineffective, and 

above which the increased effectiveness is marginal. 

In the case when the soil improvement has a gap of untreated soil in between the 

retaining wall and improved soil layer, the overall composite stiffness of the improved 

soil layer drops significantly. Besides demonstrating that a larger gap will lead to a lower 

composite stiffness (Ec), the results also show the detrimental effect of reducing the 

confining pressure due to excavation. As the excavation proceeds, the stiffness of the 

untreated soil (Egap) changes from a constrained modulus under 1-D condition at 

shallower excavation to a tangential stiffness of an unconfined axial compression test at 

deeper excavation, thus greatly affecting the composite stiffness of such improved soil 

system. 

In the case of a wide excavation, the use of embedded improved soil berm is more 

economical and proves to be as effective as an embedded improved soil strut in the early 

stage of excavation. The passive resistance is provided mainly through the contact area 

of the shear resistance and end bearing. It is also shown that the stiffness of improved soil 

berm does not have a significant effect on the performance of the excavation. 

 

Keywords: Excavation, soft soil, improved soil, untreated soil gap, berm, centrifuge 
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NOMENCLATURE 

 

G Earth gravity 

φ Angle of internal friction 
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Chapter 1 

INTRODUCTION 

 

1.1   Background on Deep Excavation 

To optimise high land cost in urban development, underground space is 

commonly exploited, both to reduce the load acting on the ground and to increase the 

space available. Many deep excavation works have been carried out to construct 

various types of underground infrastructures such as deep basements, subways and 

services tunnel [Tan et al. (1995), Yong et al. (1998)]. Often, the execution of these 

deep excavation works requires the use of appropriate retaining wall and bracing 

systems. An inadequate support system has always been a major concern, as any 

excessive ground movement induced during excavation could cause damage to 

neighbouring structures, resulting in delays, disputes and cost overrun. 

Most of the prime land areas in major world cities are located around river 

mouth and coastal regions where there usually exists a thick marine clay stratum. 

Depending on the sedimentary deposition, the thickness of this clay layer could vary 

from few meters to great depths exceeding 50m. Very often, this clay layer is soft in 

nature. In such poor soil condition, large ground movements are expected during deep 

excavation. To mitigate such movement, the common solution is to use a stiff retaining 

wall system. Nonetheless, this provision might not be sufficient since the maximum 

wall deflection could occur below the final excavation level where it is impossible to 

install struts or anchors. 

 

1.2 Stabilisation of Deep Excavation using Soil Improvement Techniques 

To ensure that the wall movement is controlled, it is important to restrain the 
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wall by some form of support system that could be embedded below the final 

excavation level. One effective solution is to improve the soft soil at this particular 

depth into a stiff composite improved soil layer by using one of the grouting 

techniques. As a result of this provision, the wall deflection, surface settlement and 

base heave are significantly reduced [Figure 1.1]. The effectiveness of such improved 

soil technique in stabilizing a deep excavation has been proven in several successful 

projects worldwide [Lee and Yong (1991), Tanaka (1993), Liao and Tsai (1993) and 

Takada et al. (1998)]. 

A more recent grouting techniques used to stabilise deep excavation works is 

the Deep Cement Mixing (DCM) Method. Though jet grouting is still the preferred 

approach in Singapore, the DCM Method is fast becoming popular among local 

contractors and its usage is set to increase in the near future. Being part of the Deep 

Mixing Method (DMM) family, the DCM Method performs mixing of soil with 

injected cement grout by using a set of mechanical cutting blades. This is unlike jet 

grouting which requires a high-pressure of water jet to perform cutting and mixing. 

Considering the way mixing is performed, the DCM Method has always the edge over 

jet grouting because it does not produce excessive waste nor cause uncontrolled 

displacement. Both aspects are critical in the context of Singapore owing to the fact 

that the cost of disposing this waste is extremely expensive and the local requirement 

on the allowance of ground movement nearby critical structures is very stringent. 

When the DCM Method was first developed by the Port and Harbour Research 

Institute (PHRI), Japan in the late 1960s [Okumura and Terashi (1975)], its usage was 

limited to improve the bearing capacity of port structures built on soft seabed. 

Development over the years has broadened its usage where it has now been applied in 

many substructure works. Among its numerous applications, the use of this method to 



    

 3

stabilise deep excavation works has been only a very recent development. In fact, the 

DCM method was only introduced in Singapore in the early 1990s [Figure 1.2] after 

its first successful execution in a deep excavation project in Japan a few years earlier 

[Mihashi et al. (1987)]. 

Though the DCM Method has now been used in a number of deep excavation 

projects, the design concept is still highly empirical and depends on the “know-how” 

experience [Okumura (1996)]. In view of such uncertainty, its application cost is 

relatively high and less competitive [Kitazume et al. (1996)]. Considering the high 

potential of DCM Method to be used in stabilisation of deep excavations, the 

immediate challenge will be to look into ways to lower its implementation cost, by 

means of optimising the design. This involves resolving important issues pertaining to 

the use of DCM Method in deep excavation, which would require a fundamental 

understanding of the mechanics involved for such soil improvement technique. 

 

1.3   Issues Related to the Use of DCM Method in Deep Excavation 

Due to the short history of DCM Method in Singapore, there is very limited 

data on the properties of such improved soil for local marine clays. Most of the 

adopted design parameters were based on published results derived mainly from works 

carried out on Japanese clays. As the clay mineralogy and climatic condition in both 

countries are different, there is concern regarding the properties assumed. Often, 

numerous field trials have to be carried out to justify its applicability to local 

condition, which essentially involves a trial and error approach instead of a proper 

design methodology. Therefore, it is important to establish the properties of local 

marine clays improved by the cement mixing technique. 

Considering the fact that the DCM Method was initially introduced to improve 
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the bearing capacity of a weak foundation, it would be expected that most of the 

published data to-date were based on its mobilized shear strength. This is justifiable 

simply because the primary concern for such application is stability. However, when 

the improved soil layer is used as a strut below the final excavation level, it is clear 

that the main focus is to control the movement and thus, the evaluation of stiffness 

becomes crucial. Unfortunately, very little study has been done focusing on this and it 

has affected the way that the stiffness value is typically chosen in design. 

A smaller stiffness value is often used in design if calculations indicate that the 

movement is well controlled. Assigning a smaller stiffness value may not be a 

conservative assumption, bearing in mind that the overlapping of improved soil 

columns to form a composite layer in the field may not be perfect. It is deemed to be a 

safer approach as a smaller stiffness will mean that the movement predicted will be 

larger than anticipated. However, with a stiffer improved soil layer, the bending 

moment in the retaining wall may increase. This is somewhat contradictory to the 

earlier intention and the wall may run the risk of being overstressed. To establish a 

more rational design, it is therefore important to understand the influence of this 

stiffness property on the performance of the improved soil layer to the overall 

behaviour of a stabilised excavation. 

Carrying out grouting works especially close to the retaining wall is tedious 

owing to the fact that the retaining wall itself is not always perfectly even and free 

from obstruction. Incomplete grouting usually causes gap of untreated soil in between 

the retaining wall and improved soil layer to form. Although in most cases this gap can 

be avoided with the use of thorough jet grouting, it is unfortunately not the case in 

DCM Method, which uses rotating blades of a pre-defined diameter. Depending on the 

skill of the machine operator, this gap may vary from few to tens of centimetres. If the 
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gap is large, jet grouting is usually used to fill the gap. However, when the gap is 

small, it is often overlooked and ignored in design. Such small gap might have an 

enormous effect on the overall performance of improved soil layer since its intended 

function is to restrain the wall. To shed away the scepticism on whether the soil gap is 

critical or not, it is therefore important to assess its detrimental effect on the overall 

behaviour of an excavation. 

In the case of a large excavated area, improving the entire soil layer within the 

excavation side often proves to be economically not viable. A cost-effective solution is 

to improve only a portion of soil in front of the retaining wall, allowing an improved 

soil berm to be formed. This form of improvement is treated as being equivalent to 

providing a full-improved soil layer with the implicit assumption that if the improved 

soil berm is sufficiently long, it will still behave effectively like a strut. At present, no 

clear rationale is available on the design of such improved soil berm though most 

analyses will treat it similar to improving the entire layer by assigning an equivalent 

composite value [Borin (1997)].  This is clearly not a rational approach unless a 

mechanistic study is undertaken to understand its behaviour during an excavation. 

  

1.4   Difficulty in Modelling an Excavation Problem 

The number of studies undertaken to understand the fundamental behaviour of 

deep excavation has been rising rapidly in the past two decades. Knowledge in this 

field is particularly important when an excavation has to be carried out under a poor 

ground condition. Often, geotechnical engineers have problems predicting the 

movement, evaluating the mechanism involved and assessing the potential failure 

caused by the excavation. Studies that were undertaken to model the excavation 

behaviour could be summarized into 3 main categories, depending on how the 
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simulation of excavation had been carried out. They are findings interpreted from 

analyses of field-instrumented excavation [Hsi and Small (1992), Tanaka (1993, 

1994)], finite element method [Bolton et al. (1989), Whittle (1997)] and physical 

modelling in centrifuge [Bolton and Powrie (1988), Kimura et al. (1993)]. 

Analysis from field-instrumented excavation has been commonly used to 

examine the mechanics of an excavated ground despite the fact that the process of 

excavation in the field is highly complicated. Besides the complexity and variability of 

the in-situ soil strata, the fact that the characteristics of soil, the groundwater 

condition, the construction sequence and the configuration of support system differ 

from site to site often leads to a low degree of repeatability. Furthermore, it is 

particularly acute in the present study as there is no way at this stage to know what is 

the true mobilised stiffness of the composite improved soil layer. Therefore, the 

interpretation of field-instrumented results remains difficult and speculative. 

Alternatively, the finite element method (FEM) has been used and thus is a 

comprehensive tool for analysing the multiple facets of an excavation problem. In 

recent years, the FEM has gained widespread acceptance through their capability to 

model complex construction sequences involving various detailed site-specific 

properties of the structural system and surrounding soils. However, the ability to 

perform a class-A prediction has not been proven convincingly, as most of the reported 

comparisons are based on back analysis rather than real prediction. Back-analyses 

carried out without a clear understanding of the mechanics involved can be very 

dangerous as it may produce erroneous correlation. Hence, the FEM method requires 

very careful calibration so as to capture the right behaviour observed in the field. 

As explained earlier, due to the complexity involved in interpreting the results 

obtained from field-instrumented excavations, they will not be used in this study to 
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understand the underlying mechanics in play. One solution is to perform a correctly 

scaled physical model in centrifuge where an artificial acceleration field can be created 

to simulate the prototype behaviour of an excavation. The usage of centrifuge has been 

well known worldwide and numerous works done on modelling of excavations [Bolton 

et al. (1989), Kimura et al. (1993)] has shown satisfactory comparisons between the 

model and prototype behaviour. However, due to the difficulties involved in sample 

preparation and setting up of equipment for the excavation test, very limited 

experiments could be conducted during the period of this study. This was where the 

FEM analysis had been adopted to complement the experimental investigation. It can 

be used to verify and interpret certain behaviour observed from the centrifuge tests but 

can also be used to obtain further in-sight to better understand the different 

mechanisms in play through a detailed parametric study. 

In order to have a realistic excavation technique to simulate the removal of soil 

in-flight in high gravitational field, a robotic miniature in-flight excavator is necessary. 

As the development works involved substantial amount of resources (e.g. time and 

manpower) in fabricating such an advanced machine, at the moment, only two 

geotechnical centrifuge research centres in the world have this sophisticated in-flight 

excavator. The first in-flight excavator was developed in the Tokyo Institute of 

Technology (TIT), Japan [Kimura et al. (1993)]. The second and third excavators were 

developed in the National University of Singapore (NUS); the former, which was a 3D 

in-flight excavator, was developed by a previous doctoral student [Loh et al (1998)] 

while the latter was developed by the author for the current study. 

 

1.5   Objectives and Scope of Study 

The objectives of this study are as follows: - 
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• To gain a basic understanding of the strength and stiffness properties of 

Singapore marine clays improved by mixing with cement. 

• To establish the key parameters controlling the performance and behaviour 

of fully improved soil layer in an excavation. 

• To investigate the detrimental effects of having a gap of untreated soil in 

between the retaining wall and improved soil layer. 

• To distinguish the difference in mechanism of an embedded improved soil 

berm. 

• To carry out numerical analyses to re-affirm the different underlying 

mechanisms involved and conduct further parametric studies to identify the 

optimal condition. 

Knowledge of the properties, especially the stiffness of cement treated clays is 

crucial as it has a predominant effect on the overall pre-failure deformation behaviour 

of a stabilised excavation. Therefore, the first part of the study is aimed at 

understanding the material properties of Singapore marine clays improved by cement 

mixing. A series of samples with different mix proportions was tested systematically 

in the laboratory. Unconfined compression tests were carried out for 3 types of clay 

taken from different parts of Singapore. The strength and stiffness of cement treated 

clays were evaluated and simple prediction formulae and important relationships 

between them were established. 

In the second part of the study, the behaviour of an embedded improved soil 

layer in a stabilised excavation was studied by means of both physical and numerical 

modelling. The physical modelling was carried out in the NUS Geotechnical 

Centrifuge using the in-flight excavator developed in this study. Numerous model 

excavation tests with various arrangements of soil improvement were conducted. 
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Results from these centrifuge tests would form the basis to gain an understanding of 

the behaviour of improved soil layer in an excavation. Subsequently, numerical 

simulations of these excavations were carried out using the finite element program 

known as CRISP (CRItical State Program). Finally, the results from the centrifuge 

experiments and numerical analyses were collated so as to derive a clear conclusion on 

the underlying mechanics of an embedded improved soil layer in an excavation. 

 

1.6   Scope of Study 

The thesis contains seven chapters. Chapter 1 is the introductory chapter and it 

describes the objectives and scope of works. Chapter 2 is the literature review in which 

some pertinent deep excavation research works with different soil improvement 

techniques are discussed. The chapter demonstrates that very limited data has been 

published on the properties of Singapore marine clays improved by cement mixing. In 

addition, not many results are available pertaining to the behaviour of an excavation 

stabilised by an embedded improved soil layer. Chapter 3 presents the fundamental 

studies on the strength and stiffness properties of Singapore marine clays improved by 

cement mixing. It is crucial to carry out such material study before investigating 

further into the underlying mechanics of an embedded improved soil layer. Chapter 4 

demonstrates the set up of the excavation test, which involves the development of an 

in-flight excavator and preparation procedures required to conduct an in-flight 

excavation test in the centrifuge. In Chapter 5, the experimental results were evaluated 

to distinguish different behaviours on various configurations of the embedded 

improved soil layer system. Chapter 6 discusses the important findings in this study. 

Numerical analyses were presented to complement the findings from the experiments 

and collaterally, they would provide a coherent view into understanding the mechanics 
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of an embedded improved soil layer in an excavation. Finally, the main conclusions 

drawn from this study are presented in the last chapter – Chapter 7. 
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Figure 1.1   Effect of soil improvement works in Bugis Junction  
  project, Singapore [after Sugawara et al. (1996)] 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Figure 1.2   Soil improvement works for a deep excavation project nearby  

  a railway station in Singapore 

Excavation Depth = 9m 
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Chapter 2 

LITERATURE REVIEW 

 

2.1   Introduction 

Deep Mixing Method (DMM) is a ground improvement technique, in which 

chemical admixtures (e.g. lime or cement) are mixed with soft soils deep inside the 

ground using a set of rotating blades. After mixing, chemical reactions will take place 

between the chemical admixtures and soil particles, allowing columns with much 

higher strength and stiffness than the original soil to form in the field. These improved 

soil columns, when being overlapped and arranged systematically, will form stiff 

composite mass of various configurations to spread the load within the rigid system. 

As such, wide applications of this soil improvement technique have been found. 

Among these applications, the use of DMM in stabilizing deep excavation works has 

been a very recent advancement. 

After its first application in the mid 1970’s in Japan and Sweden, extensive 

investigations have been carried out to assess the properties of improved soil using 

various chemical admixtures in many kinds of soft soils. Most of the published 

properties found in the literature were carried out on Japanese soils [Terashi et al. 

(1979), Kawasaki et al. (1981)]. There was barely any research work outside Japan in 

the 1980s, except some from the Scandinavian countries [Assarson et al. (1974)]. 

However, in the late 1990s, such characteristic studies started to gain momentum in 

other countries as well [Uddin et al. (1995), Goh et al. (1999)], driven by the fact that 

the use of the correlations developed in Japan may not be accurate for other type of 

clays and likely to be affected by the differences in clay mineralogy and climatic 

conditions. 
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The examination of published properties in the literature showed that most of 

the studies focussed mainly on strength. This was expected since the initial usage of 

DMM was to improve the stability of foundation, where the strength is the governing 

parameter in design. However, with the recent application of DMM to stabilise deep 

excavation, the evaluation of stiffness becomes important. Very little research work 

has been reported on this. Besides such limited information, the fact that the entire 

treated ground consists of multiple overlapped improved soil columns with specific 

configuration makes the evaluation of composite stiffness even more complicated. It is 

almost impossible at the current state for anyone to know the true mobilised improved 

soil stiffness in the field. The design for such soil improvement works is still very 

premature and most designers would assign some ambiguous composite stiffness to the 

improved soil based on simplistic assumptions from mixture theory. This is clearly not 

a rational approach but based mainly on experience. 

In addition, the behaviour of embedded improved soil layer in deep excavation 

is complicated and cannot be explained by just considering its stiffness. Other factors 

such as the existence of gap and the use of improved soil berm in a large excavated 

area could also influence the performance of excavation and thus, they may change the 

way in which the improved soil layer behaves. Since no clear rationale is available for 

design, most engineers would treat any form of soil improvement in front of retaining 

wall to behave in a similar manner like an improved soil strut and assign a composite 

stiffness to this entire layer [Borin (1997)]. Such implicit approach, though 

straightforward, may lead to an erroneous solution. Before a more rational and cost-

effective design could be developed, it is important to fully understand the underlying 

mechanics involved. 

Even though there were several papers published in this area, very little works 
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dealt in-depth into the underlying mechanics involved and therefore, the understanding 

of the behaviour of improved soil layer remain rudimentary. Review of literature 

showed that most of the reported studies were based mainly on numerical works using 

the finite element method. The accuracy of such studies is strongly influenced by the 

input properties and selected soil models. It was also observed that most of these 

works were only focusing on sensitivity analyses to obtain an economical design. 

There were some works based on field-instrumented excavations that compared the 

performance of the excavation with and without the improved soil layer. Although 

these findings were important, there was very little attempt to understand the 

mechanisms involved. 

In this chapter, the literature review begins with the general design 

considerations to control ground movements based on conventional support system. 

Subsequently, attention was paid to evaluate the effectiveness of having an embedded 

improved soil layer to control associated movements during excavation works in soft 

ground. The central idea is to evaluate the fundamental behaviour of an embedded 

improved soil layer. Therefore, most of the previous research works of significance to 

this research studies were reviewed. Critical comments are given in the review, which 

are of importance to this study. 

 

2.2   Design Considerations in Deep Excavation 

In Singapore and major cities around the world, excavation works for urban 

development and civil engineering works are often carried out close to property 

boundary. Ground movements are expected to occur as a result of changing stresses in 

the surrounding soil during excavation. To ensure that the excavation is safe, adequate 

support system in the form of retaining wall and bracing members are employed. 
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To ensure stability of an excavation, the following design checks are usually 

carried out: - 

• provide sufficient embedment depth of wall to prevent overturning or toe-kick-

out 

• ensure that the lateral wall supports do not buckle or overstressed 

• limit the base heave at the formation level 

Beside stability requirements, a more critical problem involving excavation in 

densely built-up area is the serviceability consideration. To ensure that the ground 

movements do not cause potential damaging effects to the nearby structures, the 

following design checks are recommended: - 

• control excessive surface settlement at nearby buildings and infrastructures 

• control excavation induced wall deformation and base heave 

 

2.3 Limitations of Conventional Excavation Support System 

To avoid excessive ground movements, it is important that the excavation 

support system is effective in providing lateral restrain to the retaining wall. It is 

therefore necessary to examine the wall deformation and ground settlement pattern 

associated with deep excavation before one can better understand the effectiveness of a 

particular excavation support system. Yong et al. (1990) presented the time behaviour 

of excavation support system by comparing the results of consolidation analyses with 

data from an instrumented excavation project. From the lateral deformations of the 

sheet pile wall shown in Figure 2.1, it is obvious that the maximum wall movements 

occur around the final formation level. 

Wong and Patron (1993) presented the excavation induced ground movement 

patterns for 8 deep excavation sites in Taipei area with geological profile consisting of 
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alternating layers of grey silty fine sand and grey silty clay. Inclinometers’ 

measurements from these deep excavation cases were obtained and analysed. As 

shown in Figure 2.2, again, the maximum wall deflection occurred around the final 

excavation level, when soil at the excavation base was not improved. Kusakabe (1996) 

had also reported similar behaviour in the case of an excavation in a very soft alluvial 

clay near Tokyo. This indicates that the soft soil has inadequate strength and stiffness 

to provide sufficient passive resistance to restrain the wall. 

When the wall deforms at such level, it would not be practical that the induced 

movement could be controlled using the conventional bracing system. Though the 

common solution is to use a much stiffer retaining wall system, in this case, the 

expected reduction of wall movement will be limited because the wall is not propped 

at the most critical level. One alternative is to bring down the lowest strut to the utmost 

bottom level. This is not always favourable because it obstructs the base slab 

construction. 

 

2.4 Stabilisation of Deep Excavation by Improved Soil Techniques 

The presence of the embedded improved soil layer prior to excavation has 

significantly improved the performance of excavation. This is contrary to conventional 

excavation support system where strut, tieback or anchor can only be installed after an 

excavation to the underside of the strut level is done when the wall is acting as a 

cantilever in the initial stage. The provision of an earlier embedded strut will greatly 

limit the wall movement. 

The success of improved soil techniques to reduce the wall deflection has been 

reported in many completed excavation projects [Tanaka (1993), Yong and Lee 

(1995), Okumura (1996), Wong et al. (1999)]. In Singapore, such soil improvement 
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techniques had been successfully used during the construction of Singapore Mass 

Rapid Transit (MRT) System in the 1980s. Jet grouting was used at the Dhoby Ghaut 

MRT Station [Tornaghi and Perelli Cippo (1985)] and Newton Circus Station [Gaba 

(1990)] while Deep Lime Mixing (DLM) Method was used at the Bugis and Lavender 

stations [Hume et al. (1989)]. The use of jet grouting was reported again at the 

Esplanade Theatres by Wong et al. (1999). More recently, the Deep Lime Mixing 

(DLM) Method was also used in the construction of the proposed HDB Centre next to 

Toa Payoh MRT Station [Tan et al. (2001)]. 

The above trend indicates that the use of this method is increasing. 

Nevertheless, most of the reported case histories are mainly success stories, justifying 

the necessity of such improved soil techniques in deep excavations. Though its use is 

becoming more extensive, unfortunately, no studies are focussed to unveil the 

underlying mechanics involved on how the improved soil layer behaves. The present 

state of design concept is still highly empirical, consisting of many implicit 

assumptions which may be very conservative resulting in high construction cost. 

 

2.5   Previous Works on Properties of DCM Improved Soil by Cement Mixing 

The investigation of the engineering properties of DMM improved clays started 

in Sweden and Japan in the late 1960s where the method was first developed. The 

Swedish Geotechnical Institute together with Linden-Alimak AB have done extensive 

works on the use of lime column technique to improve the foundation of embankments 

on soft clays [Assarson et al. (1974)]. In Japan, the research work started at the Port 

and Harbour Research Institute (PHRI) in 1967 [Okumura et al. (1972)], initially using 

granular quick lime as the hardening agent and later, using cement slurry and powder. 

A variety of Japanese marine clays were first collected and tested in the laboratory to 
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check its effectiveness. Subsequently, field trial tests were performed to confirm its 

degree of improvement at different sites [Terashi et al. (1979)]. 

In Singapore, the first major application of deep mixing was in the 1980s when 

it was used to improve the bearing capacity of a reclaimed land [Kado et al. (1987)]. In 

the early stage, the method used lime as the hardening agent. As the cost of cement is 

lower and some problems have been encountered in storing unslaked lime in the hot 

and humid climate in Singapore [Broms (1984)], Ordinary Portland Cement (OPC) 

was introduced later to suit the local environment. Currently, there are limited reported 

results on local marine clays improved by cement mixing. Therefore, the design 

approach has to rely on the published results obtained mainly from Japanese improved 

clays. This is obviously not a good practice unless an independent study on such 

improved properties for local marine clays is carried out. 

 

2.5.1   Unconfined Compressive Strength (qu) 

As the original intention of DMM is to improve the bearing capacity of 

foundation works in soft ground, the principal objective is to transfer the structural 

load vertically down to a firm stratum. To achieve the safety factor for such design, the 

stability against shear failure has to be considered and therefore, the mobilised shear 

strength of the improved soil is important. According to Kawasaki et al. (1984), the 

shear strength (τf) of improved soil can be estimated from the unconfined compression 

strength (qu) where τf is approximately qu/2 if the value of qu is less than 1000 kN/m2. 

When qu becomes larger, the τf has to be estimated at a value lower than qu/2 

depending on its corresponding compressive strength [Figure 2.3]. 

In the laboratory, the unconfined compressive strength (qu) of a stiff material 

can be easily determined. qu represents the highest stress that the material can sustain 
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in an unconfined compression before shear failure occurs. Due to the simplicity of 

stress measurement, the unconfined compression test is commonly carried out to 

evaluate the degree of improvement for a particular improved soil. Hence, many 

researchers [Saitoh et al. (1985)] used the unconfined compressive strength (qu) to 

represent the strength results. 

 

2.5.2   Modulus of Elasticity (E) 

The control of wall deformation and ground movement normally governs the 

success of a support system in deep excavation in an urban area. An excavation is 

considered a failure when the allowable limit of ground movement is exceeded even 

though there is no sign of stability failure. When the improved soil layer is used as a 

strut, the safety factor for such design shall be treated differently as the loading 

conditions and failure criterion are not the same as those for the foundation problem. 

Since the serviceability criterion are more crucial in this case, it is therefore important 

to evaluate the stiffness of improved soil in addition to its strength. Nonetheless, very 

limited studies on the stiffness property of improved soil are available in the literature. 

Unlike the evaluation of qu, the determination of stiffness requires careful 

measurement of the strain. Often, the evaluation of strain is tedious and sensitive to 

how the measurements are made. The modulus of elasticity can be determined using 

the unconfined compression test by assessing the gradient from the stress-strain curve. 

Many researchers prefer to use E50, which represents the secant modulus at 50% of the 

ultimate strength. This is only a rough indicator and is based on the assumption that 

the cement mixed clay is behaving roughly like a linear elastic material. 

However, Saitoh et al. (1996) found that the initial elastic modulus (Ei) of 

cement treated clay is much higher, which is 10-20% greater than E50. This also 
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indicates that the behaviour at small strain of cement treated clay may be non-linear. 

The significance of such non-linear behaviour for hard soils, soft rock and cement 

treated clays has been widely recognised [Tatsuoka et al. (1996)]. According to 

Burland (1989), strains in the ground near structures in stiff soils are generally in the 

small strain region, reflecting the importance of considering the non-linearity 

behaviour of a stiff material such as the improved soil at small strain. 

To determine the strain reading during the unconfined compression test, 

differential displacement gauges are commonly placed between the top and bottom of 

loading caps. Recently, this conventional approach has been seriously criticised for 

hard soil testing [Tatsuoka et al. (1996)]. Due to the effect of bedding error, this 

external method of strain measurement has led to an underestimation of stiffness 

[Kohata et al. (1996)]. According to Tatsuoka and Shibuya (1992) [Figure 2.4], the 

bedding error at the top and bottom ends of the specimen may be due to: - 

a) a loose layer formed at both ends of specimen during preparation, 

b) the imperfect contact between specimen and rigid cap and pedestal, and 

c) the compression of lubrication layer when it is in use. 

To overcome such inaccuracy in strain measurements, Burland (1989) has 

suggested using local axial gauges for measuring the deformation of the specimen at 

the centre of the sample. Subsequently, different types of local axial gauge have been 

developed and some of those that are commercially available include the Hall’s effect 

gauge, the local displacement transducer (LDT), the inclinometer gauge, etc. 

As the evaluation of strain is tedious, prone to error and very much depended 

on the strain measurement methods, the process of the stiffness determination is often 

difficult. Therefore, it is more convenient in practice to relate the stiffness (E) with the 

unconfined compression strength (qu), enabling the E of the improved soil to be 
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estimated from its corresponding qu. Some correlations obtained from the Japanese 

cement mixed clays are listed in Table 2.1 and shown in Figures 2.5 and 2.6. 

Besides having difficulties in evaluating the individual stiffness of an improved 

soil sample in the laboratory, it is also noted that the evaluation of the true mobilised 

stiffness of the entire improved soil mass in the field will be even harder. The 

complexity in understanding the composite interaction between treated soil columns 

and surrounding clays has made the accurate assessment of stiffness for design very 

difficult. Sometimes, a smaller value is being assigned in design, which will be 

considered conservative as decreasing the stiffness means that the movement induced 

is expected to be even larger. This is valid, provided only the movement is considered. 

No study has been undertaken to investigate the implication of such approach on the 

retaining wall system in an excavation. 

 

2.5.3   Factors Influencing the Degree of Improvement 

As the changes in the strength will finally affect the stiffness as well, it is 

therefore important that the factors affecting the strength development of the cement 

treated clays are studied together. Various controlling factors of strength over different 

types of soft soil have been reported [Kawasaki (1984), Gotoh (1996)]. Based on the 

results of research work done in Japan over the last ten years, Babasaki et al. (1996) 

has categorised the relationships of various factors on the improved soil [Table 2.2]. 

To proceed with this kind of soil improvement technique, predictions on the 

strength and stiffness of improved soil are important. The prediction would include the 

factors influencing the degree of improvement, which are normally a function of 

strength as shown below: - 

 
qul = function (S, A, C/Wt, Oc, Fc, Tc)      (2.1) 
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quf = function (qul, Tc, θ , M, H)      (2.2) 

where qul = laboratory strength under thorough mixing and constant curing 

conditions 

quf = field strength under different mixing and curing conditions 

according to site and equipment used 

S = characteristics of the soil 

A = type and content of hardening agent 

C/Wt = ratio of weight of hardening agent and total water (including 

mixing water) 

Oc = organic matter content (pH or lg. loss may be substituted) 

Fc = fine’s content (soluble silica, alumina may be substituted) 

Tc = curing time 

θ = curing temperature 

M = degree of mixing 

H = humidity and manufacturing conditions. 

 
Though there are a number of prediction formulae available [Nagaraj et al. 

(1996), Gotoh (1996)] to estimate the strength of cement treated clays, the prediction is 

normally derived from only a particular site, which could not be used in general in 

other areas. Most of these predictions are made by carrying tests on samples prepared 

in the laboratory and then, estimating the field strength on the basis of past experience. 

Consequently, most predictions made are not accurate for local clays and often, they 

have to be re-confirmed by field trials. 

An accurate prediction of the properties of improved soil is important. If the 

required properties are under-predicted during construction, time and cost will be 

wasted unnecessarily as rectification works have to be carried out later. To avoid this, 

contractors will normally ensure that the properties of improved soil are much higher 

than required by over-estimating it from the prediction. This approach is conservative 

but it may cause other negative impact such as increased bending moment in the 
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retaining wall, which needs to be evaluated more carefully. 

 

2.6   Previous Works on Improved Soil Techniques in Deep Excavation 

The first few successful applications of this soil improvement technique for 

excavation works in soft ground have been reported in the late 1980s by Mihashi et al. 

(1987) and Furuya et al. (1988). Most of the soil improvement works were performed 

inside the excavation below the final formation level. Although, the effectiveness of 

this soil improvement technique in deep excavation has been recognised in many 

countries, the analysis method and design concept are still highly empirical, and an 

explicit design methodology has not been fully developed. The underlying mechanics 

on how the embedded improved soil layer behaves in deep excavation has not been 

thoroughly investigated. Studies undertaken to-date by several other researchers are as 

follows: - 

 

2.6.1   Studies by Gaba (1990) 

Gaba (1990) reported the use of a 3.5m thick jet grouted raft immediately 

below the final excavation level, spanning between the diaphragm walls for a 15m top-

down excavation in Singapore marine clay [Figure 2.7]. At this formation level, there 

existed a soft marine clay stratum, which was subsequently improved into a stiff 

improved soil layer. The author presented records of wall inclinometer, which showed 

the benefits of the improved soil layer in reducing the lateral wall deformation. This is 

solely to prove the effectiveness in providing an embedded improved soil layer to 

mitigate the wall movement. 
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2.6.2   Studies by Lee and Yong (1991) 

Lee and Yong (1991) reported the use of jet grouting to improve the soil 

beneath formation level for two case studies of deep excavations in soft Singapore 

marine clay. The improvement of the soil stiffness at critical depths below the 

formation level helped to reduce the wall and ground movements as shown in Figures 

2.8 (a) and 2.8 (b). The schemes used were in the form of single (2m thick) or double 

layer jet grouted rafts installed at critical sections along the excavation to control wall 

deformations. The grouted rafts acted as 'base struts', which transferred the excavation-

induced forces to the retaining walls. The rationale behind the schemes used was to 

install the grouted rafts at the point of maximum deformation as ascertained from 

analyses without grouted rafts. The authors proposed the two layers grouting scheme 

to take advantage of the residual effects of an increase in stiffness of the soil 

sandwiched between the grouted layers. 

 

2.6.3   Studies by Tanaka (1993) 

Tanaka (1993) drew attention to an interesting aspect of stabilising a braced 

excavation with the retaining wall not reaching a hard stratum, allowing the wall to be 

floated in soft ground [Figure 2.9 (a)]. The thickness of the clay layer is over 50m at 

some sections and due the high stiffness of the stabilised soil layer, existing design 

approach allowed the retaining wall to be terminated at a much shallower depth. The 

soil stabilisation scheme was in the form of a layer of overlapping DCM columns 

spanning across the excavation. The field measurements of wall deformation are 

shown in Figure 2.9 (b). Observing the large basal heave as shown in Figure 2.9 (c), 

the author reported that the ground stabilised by DCM has offered only a very low 

resistance against lateral forces [Figure 2.9 (d)]. 
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2.6.4   Studies by Liao and Tsai (1993) 

Liao and Tsai (1993) studied the passive resistance of partially improved soft 

soil through two types of reinforcement patterns, namely the column and buttress types 

[Figure 2.10]. A horizontal-moving wall was used to load the reinforced soil 

specimens to failure and the deformation of the wall was being monitored throughout 

the entire loading period. From a series of tests with different reinforcement patterns, 

the column-reinforced soil tends to yield a higher passive resistance against the 

retaining wall movement than the buttress type reinforcement. For the buttress type 

soil reinforcement, the double “L” pattern showed a higher passive resistance than the 

box shape and the panel patterns due to its greater ability to mobilise the end bearing 

resistance and the side friction of the buttress effectively. 

 

2.6.5   Studies by Ou and Wu (1996) 

Ou and Wu (1996) reported the study of grouted column (soilcrete pile) type 

soil improvement for deep excavations at Kon-Her Building in Taipei. The authors 

employed 2-D and 3-D finite element analyses in their study and verified them using 

field-instrumented results. The primary objective proposed by the study was to 

formulate a method to evaluate the composite material properties of the treated soil 

mass whereby the treated area of soil could be replaced by a single material in the FE 

analysis instead of explicitly representing finite elements of appropriate geometry 

[Figure 2.11]. This method could eliminate the need for a very fine 3-D FE mesh, 

which would demand substantial computational resources such as enormous computer 

storage and computation time. 
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2.6.6 Studies by Uchiyama and Kamon (1998) 

Uchimaya and Kamon (1998) presented field excavation results on the 

movement of DMM buttress walls. The buttress wall type was installed by using a 

double mixing wing machine, which makes overlapping soil cement columns of 1m in 

diameter. The buttress walls were 2m thick with two rows of columns, arranged with 

different spacing and depth [Figure 2.12]. Field measurements showed that the 

buttress-wall type was successful in reducing lateral deformations of retaining walls 

during excavation. From a series of buttress wall configurations carried out, it was 

found that the wall deformation reduces as the buttress walls are spaced closer, which 

apparently formed a composite ground. This study pointed to the effectiveness of 

stabilised composite ground to control movement in an excavation but no underlying 

mechanics was discussed. 

 

2.6.7 Studies by Yong et al. (1998) 

Yong et al. (1998) studied the effectiveness of grouted layer in an excavation 

analysed using 2-D and 3-D finite element method. The configuration of grouted layer 

used in this parametric study was a whole block with thickness 3m installed across the 

entire excavated area [Figure 2.13]. The presence of the grouted layer below the final 

formation level had altered the wall deformation magnitude significantly. 

 

2.6.8 Studies by Wong et al. (1998) 

Wong et al. (1998) carried out sensitivity analyses to study the optimal condition 

of jet grout configuration for braced excavation in soft clay based entirely on finite 

element analyses. A series of simulation were performed with different jet grout 

configurations where the wall deflection and bending moment were compared. The 



 27

excavation is based on 52m wide and 13m deep with three levels of strut while the 

retaining wall consisted of a 42.5m length of 600mm thick diaphragm wall, being 

keyed into the hard stratum. A 1.5m thick layer of jet grout was used just below the 

formation level [Figure 2.14]. The presence of a 1.5m layer of jet grout greatly 

enhanced the performance of the braced excavation with a reduction of 20-30% in strut 

forces, bending moment, wall deflection and ground settlement. Though the study 

resulted in an optimum condition in providing the improved soil layer to control the 

ground movement and lateral wall deformation, there was no specific mention on the 

behaviour of the improved soil layer. 

 

2.7 Model Tests in Geotechnical Engineering 

To obtain reliable and controlled data that is essential to better understand the 

behaviour of embedded improved soil layer during the process of excavation, the 

simulation should be realistic and reproducible. Though the field-instrumented 

excavation is the most straightforward and effective method, the major obstacle of 

using field test results for mechanistic study is the low degree of repeatability. The soil 

condition and construction sequence are different from one site to the other, often 

making correlation and comparison difficult. More so, it is almost impossible to know 

the true mobilised stiffness of the composite ground consisting of multiple overlapped 

improved soil columns. However, field measurements remain important and should be 

used as a means of calibration and verification of physical and numerical models. 

The most cost-effective method to analyse the soil-structure interaction 

problem is to use the finite element method. It has been proven to be a very powerful 

tool to model complex construction sequences and detailed site-specific properties of 

the structural system. However, the ability to predict ground movements reliably is 
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strongly related to input material properties. Sensitivity analysis will provide the 

optimum condition but it is unlikely to be effective in furnishing the kind of database 

needed for mechanistic studies unless the results is collated with other type of 

modelling results. 

As an alternative method to simulate the prototype behaviour of an excavation, 

small-scale centrifuge model has been used. A centrifuge is used to create an artificial 

acceleration field to simulate the gravitational stress needed to ensure correct scaling 

in a small model. Centrifuge modelling provides a correctly scaled physical model to 

enable the simulation of the prototype behaviour of excavation so that it could 

effectively be used to investigate the importance of various mechanisms at work when 

soil layers are improved. Nevertheless, it recognizes the sophistication in model 

ground preparation and difficulty in carrying out in-flight excavation. The beauty of 

this method is that the test can always be repeated and the excavation test can be tested 

until failure stage, which will be abnormal to happen in the field. Even most finite 

element programmes will not be executable to such failure stage. Due to these facts, 

physical modelling in centrifuge has gained acceptance worldwide and it is therefore 

chosen as the main physical modelling tool for this study. 

 

2.7.1  Current Methods Used to Perform An In-flight Excavation 

To model an excavation in a centrifuge, a method of simulating the soil 

removal has to be carried out in-flight. Currently, the following four methods are used 

to model an in-flight excavation in the centrifuge: - 

a) Increasing centrifugal acceleration till failure [Lyndon and Schofield (1970)]. 

b) Draining of a heavy fluid [Kusakabe (1982), Powrie (1986)]. 

c) Removal of a bag of material from the excavation area [Azevedo (1983)]. 
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d) An in-flight excavator [Kimura et al. (1993), Loh et al. (1998)]. 

In the first method, soil in the excavation area is initially removed in 1G 

environment before being subjected to an increasing centrifugal acceleration until 

failure. Although the overall total stress of model ground could be re-produced, the 

characteristics of the soil would have changed correspondingly to the increased G-

level. This method is only suitable for modelling excavation in sand but not in clayey 

soil. For sandy material, the effective stress can develop almost instantaneously with 

the increased in G-level, as the dissipation of excess pore water pressure occurs almost 

immediately. However, for clayey material with a much lower permeability, the 

consolidation process requires a much longer period for the dissipation of excess pore 

water pressure. Nevertheless, this method is the simplest and it can only be used to 

provide a quick preliminary result on the potential failure pattern of an immediate and 

undrained excavation for a clayey material. 

In the second method employed, the key idea is to replace the soil to be 

excavated by a fluid of identical density. The excavation process was simulated by 

draining the heavy fluid [Figure 2.15]. This method was employed by a number of 

researchers [Kusakabe (1982), Powrie (1986)] working on excavation in heavily 

consolidated clay. The main setback of this method is that for a fluid, the coefficient of 

lateral stress is always 1. For a heavily over-consolidated soil, the Ko is also expected 

to approach 1 and thus, this method is considered a reasonable approximation to the 

excavation in such a soil. However, Ko value of 1 is not typical for normally 

consolidated clays, which falls within the range of 0.55 to 0.65 [Kimura et al. (1993)]. 

Even then, it is recognised that during the excavation, the Ko on the passive side still 

remains as 1, which is not consistent with what happen in the field where the Ko value 

will approach Kp. 
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In the third method, soil bags were placed at the zone to be excavated and were 

removed during the excavation process. This method has the advantage over the first 

two methods, as the modelling of stress history of the soil model is more 

straightforward. Since the soil used in the bags is similar to the soil model, the 

coefficient of lateral stresses is consistent. Nevertheless, the interaction behaviour 

between the interface of soil bags with both the retaining wall and improved soil layer 

is difficult to be quantified. 

Therefore, the first three methods cannot satisfactorily model a proper 

excavation in a clayey material in the centrifuge. This is because the actual excavation 

has not been carried out and the process of removing soil is not simulated in each case. 

In view of the above problems, researchers at Tokyo Institute of Technology, Japan 

(TIT) and National University of Singapore (NUS) have developed the fourth method, 

which uses a small-scale robotic excavator to remove the soil in-flight in the 

centrifuge. 

 

2.7.2   The In-flight Excavator 

The first in-flight excavator was reported by Kimura et al. (1993). This 

excavator consists of a movable table, a cutting blade and a soil retaining gate as 

shown schematically in Figure 2.16. The movable table sits on a pair of linear rails. 

The thrust is provided by a stepping motor through a timing belt and a pair of screw 

rods to the table. The vertical movement of the cutting blade and soil retaining gate is 

conducted by worm gears built into the stepping motors. The three stepping motors 

used in the excavator are small 5 phase stepping motors (UPD544HGI-NA, Oriental 

Motor), which make the accurate position of control possible. The excavator is finally 

mounted on a steel-made strong box with 500mm in length, 360mm in depth and 
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150mm in width. 

Loh et al. (1998) reported the second in-flight excavator, which was designed 

to perform a 3-D excavation in the centrifuge. This excavator consists of a detachable 

lift-shaft and a centrifuge container as shown schematically in Figure 2.17. The 

centrifuge container has a width and length of 435mm, and a depth of 550mm. The 

stepper motor 1 (N43HCHL, Pacific Scientific Motor) is mounted on the top of the 

centrifuge container. Inside the detachable lift-shaft, a scrapper platform is mounted on 

the wall, and a cutting blade and soil-retaining gate are then rested on it. The 

horizontal movement of the cutting blade is powered by an intermediate size stepping 

motor (M22NSXB, Pacific Scientific Motor). Commands are sent via personal 

computers located in the remote control room through a pair of on-board 

indexers/drivers to control the motors. 

To simulate an excavation using either of the above in-flight excavators, the 

cutting blade is first pushed down into the clay near to the wall and then pulled 

backward, skimming off a layer of clay and subsequently dumping it into the open 

space at the bottom. This cycle is repeated until the excavation reaches the required 

depth. The soil-retaining gate is allowed to move up and down corresponding to the 

cutting blade movements. When the cutting blade is lowered into the clay to perform 

an excavation, the gate is also lowered so that the top of gate comes just a little lower 

than the level of the blade edge. 

The development of both in-flight excavators has unveiled a new chapter in 

centrifuge modelling of deep excavation problems in soft ground. Taking into 

consideration that only two groups have such facility to conduct scaled down 

centrifuge modelling, it is expected that the quantum of research studies carried out on 

deep excavation related works in the centrifuge are still limited. Even though several 
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research works on deep excavation were carried out in TIT, no work has been reported 

on the behaviour of an excavation stabilised by an embedded improved soil layer. 

 

2.8   Concluding Remarks 

Ground improvement techniques in the form of deep mixing and jet grouting 

have been the main focus at the Second International Conference on Ground 

Improvement Geosystem (IS-Tokyo’96), reflecting the growing importance of these 

new soil improvement methods for solving various geotechnical problems in soft 

ground. Among these numerous applications, the use of DCM Method in controlling 

ground movement in deep excavation works in different types of underground 

infrastructures has been a recent discovery. Its application in deep excavation looks set 

to increase due to fact that there is no better solution available to restrain the maximum 

deflection occurring at the bottom or just below the final excavation level other than to 

provide an embedded improved soil layer. 

As the DCM Method was first introduced to improve the bearing capacity of 

soft ground to support structures, most research to-date concentrated on the strength 

properties. Nevertheless, very little study has focussed on evaluation of its stiffness 

property, which is of primary concern when the improved soil is used as an embedded 

soil strut. Taking into consideration the complexity in evaluating the composite 

stiffness of treated columns with surrounding untreated soil, it is expected that the 

determination of mobilized stiffness of the entire embedded improved soil layer in 

actual field is almost impossible. Furthermore, the strain measurements from the field 

instrumentation is often tedious and inaccurate, and hence, the composite stiffness 

assigned to the improved soil layer is basically a guessing work. 

More importantly, the current design guideline of embedded improved soil 
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layer in deep excavation has been found to be inadequate. Though there are a number 

of reported field studies and numerical simulations on such soil improvement method 

in deep excavation, the understanding of the fundamental mechanics of the embedded 

improved soil layer is far from adequate. Postulations presented by different 

researchers to explain the behaviour are at times contradicting or not supported by 

experimental evidence. In addition, many studies have been performed merely to 

obtain economical configurations of improved soil without understanding in depth 

how the improved soil layer works in an excavation. 

Due to the absence of data to describe the behaviour of the improved soil layer, 

the current design is based on ‘know-how’ experiences. Not many well-instrumented 

sites are available, and if there is any, the difficulties to interpret the interaction 

between the improved soil layer, the untreated soil and the excavation support system 

in the field further complicate the investigation. The finite element method has proven 

to be a very powerful tool for estimating the amount of ground settlement due to 

excavation but the accuracy of analysis is questionable due to the lack of proper 

calibration. Furthermore, other factors such as construction sequence, site control, 

local perturbation and variation in soil stratification further complicate the 

investigation. 

The most accepted alternative to overcome the above problems is through 

model testing in a geotechnical centrifuge [Taylor (1995)]. The increasing use of 

centrifuge in geotechnical modelling is evident by the number of papers presented in 

international centrifuge conferences namely Centrifuge ’88, Centrifuge ’91, Centrifuge 

’94 and Centrifuge ’98. This is simply because the small-scale model can be 

instrumented intensively, more reliably monitored and less expensive. More 

importantly, the stiffness properties of the improved soil layer could be determined 
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realistically. 

In retrospect, some of the main points that could be extracted from the previous 

case studies are summarised as follows. Detailed investigation needs to be carried out 

for each case to further understand the behaviour of such improved layer in an 

excavation in soft ground. 

(a) The embedded improved soil layer has been used to increase the passive resistance 

on the retaining wall. Consequently, the wall deflection and ground movements 

were significantly reduced, which very much depended on the stiffness of the 

improved soil. Nevertheless, the underlying mechanics behind such improvement 

for retaining wall has not been well investigated especially when the wall is 

floating in soft ground. Due to this uncertainty, some engineers would still insist to 

have the retaining wall keyed into a hard stratum even if the hard stratum is very 

deep. 

(b) The existence of gap of untreated soil in between the stabilised ground and 

retaining wall could not be avoided during the installation process of the DMM 

[Tanaka (1993)]. Due to conservative thoughts, some contractors have already 

taken measure to improve this untreated soil portion by a high pressure jet 

grouting. Others may just ignore the existence of the gap or some even do not 

realise that such gap could exist. The necessity of such additional rectification 

work was not verified, as not even a single attempt has been carried out to 

investigate its effect to the overall behaviour of the support system in an 

excavation. 

(c) The ‘berm’ improvement scheme is becoming popular among contractors in a large 

excavation project. Nevertheless, the selection of the pattern of improved soil berm 

is still highly empirical and at times, very conservative. Previous works have only 
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reported a comparison study on several patterns but no work has been done to 

understand how such improved soil berm works and no one has attempted to 

investigate the mechanism involved. 

It is obvious that the knowledge on the behaviour of the improved soil layer in 

deep excavation has not been satisfactorily understood. To address these issues, 

detailed experimental programmes and numerical analyses were planned and described 

in the subsequent chapters. 
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Table 2.1   Relationships between E and qu from different references 

References Relationship 

Kawasaki et al. (1982) 

(refer to Figure 2.3)  

               E50 ~ 350 to 1000 qu 

Asano et al. (1996) 

(refer to Figure 2.4) 

               E50 ~ 150 to 400 qu 

Futaki et al. (1996)                E50 ~ 150 to 200 qu 

Tatsuoka et al. (1996)                Emax ~ 1000 qu 

 
 
 
 
 
 

      Table 2.2   Factors affecting improvement effect [after Babasaki et al. (1996)] 

 

Category I:   

Characteristics of cement 

 

1. Type 

2. Quality 

3. Mixing water and additives 

 

Category II: 

Characteristics and condition of 

soils 

 

1. Individual characteristics of soil 

2. Organic content 

3. pH value of pore water 

 

Category III: 

Mixing conditions 

 

1. Water cement ratio 

2. Degree of mixing 

3. Period of mixing / re-mixing 

 

Category IV: 

Curing conditions 

 

1. Quantity of cement 

2. Temperature 

3. Curing time 

 



 37

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1   Lateral deformation of sheet pile wall [after Yong et al. (1990)] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

 
 

Figure 2.2   Lateral movement of diaphragm walls  
  [after Wong and Patron (1993)] 
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Figure 2.3   Relationship between shear strength (W) and unconfined 
  compressive strength (qu) [after Kawasaki et al. (1984)] 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) a loose layer formed at both ends of specimen during preparation 
(b) imperfect contact between specimen and rigid cap and pedestral 
(c) compression  of lubrication layer when it is in use 

 
Figure 2.4   Factors of bedding error [after Tatsuoka and Shibuya (1992)] 
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Figure 2.5   Relationship between unconfined compressive strength (qu) and  
  elastic modulus (E50) for improved soil [after Kawasaki et al. (1984)] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6   Relationship between unconfined compressive strength (qu) and  

  elastic modulus (E50) for improved soil [after Asano et al. (1996)] 
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Figure 2.7   Base stabilisation of top-down excavation in Singapore 
  marine clay [after Gaba (1990)]  
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Figure 2.8 (a)   Base stabilisation with one layer of jet-grouted 
   soil scheme [after  Lee and Yong  (1991)] 

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 

Figure 2.8 (b)   Base stabilisation with two layers of jet-grouted 
  soil scheme [after  Lee and Yong  (1991)] 
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Figure 2.9 (a)   Section of braced excavation with soil improvement  

  work [after Tanaka (1993)] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.9 (b)   Wall deformation from field measurements 
   [after Tanaka (1993)] 
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       Figure 2.9 (c)   Large heave of vertical supports due to  
    basal heave [after Tanaka (1993)] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
 

Figure 2.9 (d)   Predicted deformed shape of the treated soil 
   [after Tanaka (1993)] 
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Figure 2.10 (a)   Layout patterns for reinforced soil specimens 

   [after Liao and Tsai (1993)]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

 
Figure 2.10 (b)   Load deformation relationship for specimens reinforced  

    with different layout patterns [after Liao and Tsai (1993)] 
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Figure 2.11   Column type of ground improvement in hypothetical excavation  
     [after Ou and Wu (1996)] 
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Figure 2.12   The shapes of DMM buttress showing the improvement and  
    excavation stages [after Uchiyama and Kamon (1998)] 
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Figure 2.13   Wall deflection profiles with and without grouted layer 
    [after Yong et al.  (1998)]  

 
 
 
  
 
 
 
 
                   
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2.14   Effect of jet grouting layer in excavation 

    [after Wong et al. (1998)] 
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Figure 2.15   Draining a heavy liquid to simulate an in-flight excavation  
    [after Bolton et al. (1989)] 
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PLAN VIEW 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FRONT VIEW 
 
 

Figure 2.16   In-flight Excavator at TIT [after Kimura et al. (1993)] 
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Figure 2.17   In-flight Excavator (MARK I) at NUS [after Loh et al. (1998)] 
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Chapter 3 

PROPERTIES OF SINGAPORE MARINE CLAYS  

IMPROVED BY CEMENT MIXING 

 

3.1   Introduction 

To control movement in an excavation in soft ground, soil improvement 

technique is often needed to improve the strength and stiffness of the ground. In-situ 

stabilisation technique by feeding cementing agents into soft ground is one such 

approach and has become increasingly popular. In this technique, chemical reactions 

among the stabilising agent, clay minerals and water are allowed to take place deep 

below the ground to produce a high strength product rapidly and which will continue to 

strengthen with time. Several such techniques are presently used in Singapore, including 

jet grouting, deep cement mixing and lime column methods. 

The Deep Mixing Method (DMM), a mechanical mixing method, nowadays is 

considered as an alternative to jet grouting which is still the more popular choice in 

Singapore. In DMM, a blade is pushed into the ground and mixes the soil while cement 

grout or dry cement is injected into the mix. In jet grouting, air and water are first used to 

cut the soil and mix it while grout is injected, and all these are carried out under fairly 

high pressure. As a result, DMM causes little expansion to the surrounding soil during 

installation and thus minimises uncontrolled movement in adjacent ground. 

Furthermore, as it mixes the soil at the in-situ water content, it does not produce any 

slime. In contrast, the jet grouting method produces a large amount of slime, which is an 

industrial waste and must be properly disposed. From the perspective of improved 

property, the principal difference between a jet grouted soil and deep mixed soil is the 

range of water content of the soil mixed; this is usually much higher in a jet-grouted soil. 
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In the early days of DMM application, lime was used as the hardening agent, but later, 

Ordinary Portland Cement (OPC) was introduced due to problems encountered in 

storing unslaked lime in a hot and humid country like Singapore [Broms (1984)]. The 

method is now known as the Deep Cement Mixing (DCM) Method. 

Research and development of this method was initiated in Japan in the late 1960s 

[Okumura and Terashi (1975)]. Stimulated by the successful applications of this 

technology in Japan in the 1970s, many related studies on the engineering properties 

improved soils have been carried out [Terashi et al. (1979), Kawasaki et al. (1981)]. The 

first major application of DMM in Singapore was in the 1980s when it was used to 

improve the bearing capacity of a reclaimed land located southeast of the island [Kado et 

al. (1987)]. This method was used again in subsequent years to improve the foundations 

of various Mass Rapid Transit stations [Kado et al. (1987)], which are founded in soft 

clay. In a recent project in Singapore, this method was adopted to stabilise a deep 

excavation located next to a Mass Rapid Transit’s station in the eastern part of 

Singapore. The consultants in that project were concerned about the strength and 

stiffness of local improved clays, and also the effect of continual increase in stiffness of 

the improved soil on the design of the diaphragm wall. Thus far, only limited data, 

mainly from contractors’ records, are available on such improved properties in 

Singapore. 

As the clay mineralogy and climatic conditions in various countries are different, 

often, there is concern about using correlations from elsewhere for local application. 

This study is carried out to establish the characteristics of improved Singapore marine 

clays, but more importantly, also to investigate the possibility of using a normalised 

approach to ensure greater applicability of results. In this study, the interaction among 

various constituents and their impact on improvement with time will be evaluated. 
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Measurements with local strain transducer indicated significantly higher stiffness values 

compared to the conventional approach. Though this point is well understood in the 

testing of solid material, it is not so in the testing of soil. As an improved soil is very 

much like stiff clay, most studies continued to use conventional soil testing approach. 

Therefore, there is a need to carry out independent study using the more advanced local 

strain measurement transducer. 

 

3.2   Properties of Clays and Cement Used 

The majority of marine clays found on Singapore Island are composed of a 

sedimentary deposit known locally as the Kallang Formation. This deposit is widely 

distributed and covers nearly 25% of the total land surface of the island [Yong and 

Karunaratne (1983)]. This formation usually consists of Upper Marine Clay and Lower 

Marine Clay separated by a stiff desiccated intermediate layer [Chong et al. (1998)]. 

Common properties of Singapore marine clay around the Singapore Island have been 

extensively reported [Yong and Karunaratne (1983), Tan (1983) and Chong et al. 

(1998)]. The Upper Marine Clay is highly plastic with the liquid and plastic limits 

typically ranging from 76 to 101 and 45 to 69 respectively. The average bulk unit weight 

is 16.3 ± 0.5 kN/m3 and the natural moisture content is about 60% to 92%. The Lower 

Marine Clay is highly plastic with the liquid and plastic limits typically ranging from 65 

to 85 and 38 to 55 respectively. The average bulk unit weight is 15.2 ± 0.6 kN/m3 and the 

natural moisture content is about 50% to 69%. Typically, the organic content for both 

clay members is around 3% with moderate contents of kaolinite, illite, chloride and 

smectite. 

In this study, three clays from the Kallang Formation were used [Figure 3.1]. 

Clays collected from Eunos and City Hall sites are from the Upper Marine Clay, while 
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the clay from the Singapore Art Centre (SAC) site is from the Lower Marine Clay. Prior 

to cement treatment, the physical and chemical properties of these marine clays and their 

pore fluids were determined and the results are summarised in Table 3.1. The cement 

used in the test was Ordinary Portland Cement. To ensure that the cement used 

throughout the study has consistent physical properties and chemical compositions, 

cement from the same batch of production had been used. Table 3.2 shows the physical 

properties and chemical compositions of the cement used. 

 

3.3   Sample Preparation and Testing 

Besides the three main constituents of mixture (clay, water and cement), other 

factors such as the mixing time, kind of blades, rotational speed of blades, curing 

temperature and humidity also have an effect on the properties of the cement treated clay 

[Babasaki et al. (1996)]. Thus, to investigate only the effect of the constituent materials 

on the strength of improved clay, it is necessary to adopt a standard procedure for 

preparing the sample. 

After the water content of each batch of clay was determined, water was added to 

fix the water content at 90%, 120% and 150%. Subsequently, a specified weight of dry 

cement powder was added into the clay to fix the cement content at 10%, 20% and 30%, 

this is defined as the ratio of mass of cement, C to the mass of dry soil, S. The water and 

cement contents considered in the study are within the practical ranges encountered in 

the Deep Cement Mixing (DCM) Method. The sequence of mixing was also 

standardised; first the soil is mixed with water and then with cement, as the sequence 

will also influence the strength of the cement clay mix [Fam and Santamarina (1996)]. 

The hydrated clay and cement powder was mixed thoroughly by a ‘Hobart’ mixer for 

exactly 10 minutes with a rotational speed of 48 revolutions per minute. 
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After mixing, the cement clay paste was placed into a cylindrical mould with an 

inside diameter of 70mm and length of 140mm. To reduce the trapping of air bubbles, 

the paste was compacted in three layers by slowly tamping the mould on the ground. 

Compaction by vibrating and ramming were tried but was unable to provide sufficient 

densification due to the high viscosity and low workability of the cement clay paste. 

Hence, all the samples were compacted by the tamping method to a percentage of air 

voids below 1.5%. This is important in order to produce samples with almost identical 

compaction effort. 

The presence of air voids has an adverse effect on strength development of the 

cement treated clay. To illustrate this, several samples were compacted using different 

amount of tamping effort and consequently have different percentage of air voids in 

them. These samples were then cured for 3 days and after that, the strength of each 

sample was determined. Figure 3.2 shows that the strength reduces linearly with an 

increase in air voids, the reduction is about 5% for every 1% increase in air voids for the 

range evaluated in this study. It is therefore important to control the amount of air voids 

in the sample, and for the study, the percentage of air voids is kept within 1.5%, 

allowing the strength to only vary within a very small range. 

After compaction, samples were left overnight and de-moulded on the following 

day. Each sample was then sealed inside a polyethylene bag and covered with wet textile 

to preserve the humidity during curing at a controlled temperature of 26oC. Unconfined 

compression tests were performed on the cement mixed samples to evaluate its strength 

and elastic modulus. The test was conducted in accordance to BS 1377: Part 7: 1990. All 

the tests conducted in this study are summarised in Table 3.3. Two methods were used to 

measure the axial displacement of the specimen [Plate 3.1]. The first method, a 

conventional approach, measures the external displacement between the two end platens 
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using a set of Linear Variable Displacement Transducers (LVDTs). The method of 

measurement does not have to be corrected for apparatus compliance as the LVDTs are 

directly placed between the platens. The second method uses a Hall’s effect strain 

transducer placed at the centre part of a sample to measure the displacement [Clayton et 

al. (1989)]. 

For testing of solid materials such as concrete and steel, the issue of bedding 

errors is well understood and measuring displacement between end plates is rarely done. 

Usually, strain gauges are attached directly to the specimen to measure the deformation. 

However, in soil testing, this issue is only recognised more recently. As the clay-cement 

mix is more like very stiff clay, engineers have continued to use conventional soil 

testing apparatus for such measurement. A second relevant issue is that for materials like 

concrete and steel, it is generally accepted that the behaviour is linearly elastic at small 

strain. However, for soil, at strain level between 0.001% and 0.1%, the behaviour is 

generally recognized to be non-linear elastic. It is therefore important to establish 

whether this also holds for the clay-cement mix. To date, only Tatsuoka et al. (1996) 

have specifically investigated this aspect on Japanese clays. 

 

3.4   Results and Discussions 

3.4.1   Typical Stress Strain Curves 

For each mix proportion, two samples were tested and to ensure reliability of the 

result, a third sample would be used if the first two did not show good agreement. Figure 

3.3(a) shows a set of typical stress strain curves for two samples of cement mixed clay 

with the same cement content (30%) and water content (90%) tested after 7 days of 

curing. The stress strain curves for the two samples using the Hall’s effect transducer for 

strain measurement are virtually identical, indicating that the results are consistent and 



 57

repeatable. However, for external measurements, the strain measured is considerably 

larger, and there is significant difference between the two samples tested. Closer 

examination indicates that the initial movement measured by the LVDT for Sample 2 is 

unusually large, clearly showing that bedding error due to imperfect end-restraints in 

this case is more substantial than in Sample 1. This set of results reinforces the reliability 

of using local strain transducers. 

Figure 3.3(b) shows the comparison of stress strain curves for the untreated and 

cement treated clays, which are plotted for different cement contents after 28 days of 

curing. The stress strain curves of cement treated clays were found to increase sharply 

up to a peak strength, and then suddenly decreased to a low residual value upon further 

straining. It is observed that the cement treated clays have changed into a more brittle 

material, which fails at a much smaller strain. It is also noted that with increasing cement 

content, there is a corresponding increase in the strength, as well as in the stiffness of the 

cement treated clay. 

 

3.4.2   Strength Results 

The unconfined compression test is frequently used to evaluate the degree of 

improvement of treated soil. Many factors affect the unconfined compressive strength, 

qu, of a cement-mixed clay, but the more important factors are the type of clay, cement 

content, water content and curing time. Therefore, an investigation was carried out on 

how each of these factors would influence the strength of the improved clays. 

 

(a) Effect of Clay Type 

Figure 3.4(a) shows the stress strain curves of the clay-cement mix of the three 

clays after 7 days of curing, and where the cement content is 20% and the water content 

is 90%. This shows that the unconfined compressive strength, qu, varies considerably 
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according to the type of clay even though these clays come from the same sedimentary 

deposit. Figure 3.4(b) shows the correlation of the unconfined compressive strength of 

improved City Hall Clay and SAC clay versus that of Eunos marine clay under similar 

mix proportion and testing conditions. This shows that the improved Eunos clay attains 

the highest strength, followed by City Hall clay, which achieves only 85% of that for 

Eunos clay and the SAC clay achieves only 70% of that for Eunos clay. A more 

pertinent and interesting observation from Figure 3.4(b) is the fact that the shear 

strengths of the different improved clays show nearly linear correlation with each other. 

This observation provides the motivation for a normalised approach to be discussed 

next. 

Every type of clay has its own mineralogy with different physical and chemical 

properties, and each of these properties may affect the strength improvement [Gotoh 

(1996)]. Although no X-ray diffraction was carried out on the 3 samples used in this 

study, the difference in mineralogy may explain the results in Figure 3.4. To derive a 

strength relation that incorporates all relevant factors, especially at a fundamental level, 

is ideal and desirable, but is extremely complicated and difficult. However, if the 

improved strengths of different clays under the same conditions show a consistent 

pattern, then an effective alternative is to explore if a normalised strength shows the 

same consistent pattern. This is motivated by the linear correlations observed in Figure 

3.4(b) for the three clays studied. 

In this study, it is proposed that the strength of any improved soil, qu, is 

normalised against a reference unconfined compressive strength of the same clay 

improved at a specified cement content (Aw), water content (w) and curing age (t), qu 

(Aw.w.t) as follows: - 

Normalised strength of improved soil = 
)t.w.A(q

q

wu

u   (3.1) 
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First, it is important to establish whether this approach works only for a special 

case where the strength has to be normalised against a specific reference value 

determined through trial and error, in which the case, the usefulness is limited. 

However, if the reference value is general, and the normalised behaviour shows 

consistent pattern, then this is a powerful approach. To evaluate this, the normalised 

strengths for improved City Hall clay and SAC clay, following the definition in 

Equation 3.1, are plotted against that for improved Eunos clay, as shown in Figures 

3.5(a) to (d) for four widely different reference values. 

As an example, Figures 3.5(a) shows the normalised strength of improved City 

Hall and SAC marine clays compared against those from Eunos marine clay, where the 

reference strength for normalisation is the unconfined compressive strength for a clay 

improved with cement content, Aw of 10%, water content, w of 90% and curing age, t of 

1 day, qu(10.90.1). This figure indicates that a very good correlation between the 

normalised strengths of the improved clays. Figures 3.5(b), (c) and (d) show the results 

when the reference unconfined compressive strengths are set for conditions of 

(20.90.14), (30.120.7) and (30.150.28) respectively, and again very good correlations 

are obtained. This is an important result, and leads to the conclusion that though 

different clays were used, the normalised strengths for these clays are consistent with 

each other. Based on this observation, a generalised relationship between the normalised 

strength of improved soil for the three different marine clays studied can be proposed as 

follows: - 

 
)t.w.A(q

q
)t.w.A(q

q
)t.w.A(q

q

wSACu

SACu

wCityHallu

CityHallu

wEunosu

Eunosu ==   (3.2) 

However, if this relation is applicable only to the three clays studied here, again 

the usefulness is limited. Thus, this idea is extended to the normalised improved strength 
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of two Japanese clays, namely Tokyo-4 and Kanagawa-2; inferred from the results 

presented by Kawasaki et al. (1984). These Japanese clays have water content of 

approximately 90%. In this case, the reference unconfined compressive strength used is 

that for clays improved with cement content of 30%, water content of 90% and cured for 

28 days. Earlier, Figure 3.5 showed that the actual reference mix proportion used is not 

critical, as long as it is from the same clay. The results of Figure 3.5 also mean that the 

choice for cross-referencing is not critical; any clay could have been chosen. Figure 3.6 

shows the normalised results using the strength of Eunos Clay for cross-referencing, and 

again a very good correlation is obtained, though very different clays are now used. This 

suggests that Equation (3.2) is quite universal and can be used for different types of clay. 

This is an important point, as this approach means that cross-referencing of results from 

literature on different clays can now be done. To use this with confidence, a detailed 

statistical study is needed but this is beyond the scope of the present study. 

 

(b) Effect of Water Content (w) and Cement Content (Aw) 

In the field, using the DCM technique, the only parameter that can be controlled 

is the cement content. However, the cement content to be added is influenced very much 

by the in-situ water content of the clay. In this section, these two factors will be 

investigated. First the influence of water content on the strength of improved soils is 

studied. For this, it is necessary to fix the cement content and the curing age of the 

sample. Three water contents were used in the study, namely 90%, 120% and 150%. All 

three clays were tested, and their results normalised with the respective qu (30.90.28). As 

pointed out in the previous section, the precise choice of this particular set of reference 

parameters is not a critical issue. 

Figure 3.7(a) shows the effect of water content on the normalised strength for the 

three local clays, tested after 28 days of curing. Though different clays were used, the 
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normalised results show a consistent trend confirming the usefulness of this approach. 

As expected, the lower the water content of the clay, the greater is the strength 

improvement and this inverse relationship was also reported in the literature [Kawasaki 

et al. (1984), Babasaki et al. (1996)]. Because of this, to boost the strength improvement, 

a dryer mix proportion is often desired. This is one reason why dry cement powder has 

been introduced and proved to be successful in the Dry Jet Mixing Method, which is a 

new technique in DMM. However, mixing the clay in a dryer condition creates 

problems of homogeneity and workability that affect the degree and efficiency of 

mixing, and therefore the improvement. 

Figure 3.7(b) shows the variation of normalised strength with cement content for 

samples at three different water contents and cured for 28 days. The normalised strength 

for different clays at a fixed water content is seen to increase nearly linearly with the 

cement content. Though the increase is expected, the nearly linear increase is not, and 

has important practical implications. But due to the limited number of tests used in this 

study, it is not possible to explore this further. Another point to note is that the rate of 

increase of strength with increasing cement content is also increasing with reducing 

water content of samples. As many factors influence the strength improvement, it is 

equally important to look at the relative proportion of the constituents in the mix. 

 

(c) Effect of Water-to-Cement (W/C) Ratio 

To illustrate the influence of water-to-cement (W/C) ratio on the strength, the 

normalised soil strength at 28 days is plotted against W/C ratio, for different cement 

content [Figure 3.7(c)] and different water content [Figure 3.7(d)]. As shown in these 

two figures, the greater the W/C ratio, the lower is the strength. This inverse relationship 

of strength with W/C ratio has also been reported in the studies of concrete and is 
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referred to as Abrams’ rule [Neville (1995)]. 

However, Figure 3.7(c) also shows an intuitively not obvious trend. When W/C 

ratio is kept constant (say, W/C = 6), the improved strength at 20% cement content is 

higher than at 30% cement content, suggesting that a decrease in cement content will 

result in an increase in the strength, an apparently counter-intuitive observation. To 

make sense of this requires an evaluation of the interactions among the parameters. 

Table 3.4 provides a summary of these interactions, and shows that an increase in qu 

under condition (1) and (2) is intuitively expected but not for condition (3). In condition 

(1), if the amount of water (W) and soil (S) are kept constant and the amount of cement 

(C) is increased, W/C ratio will reduce while C/S ratio will increase, and both cause an 

increase in qu. In condition (2), if C and S are kept constant and W is reduced, W/S and 

W/C ratios will reduce, and both cause an increase in qu. In condition (3), if W and C are 

kept constant and the amount of soil treated, S, is increased, W/S and C/S ratios will 

both decrease, but a reduction in W/S will cause an increase in qu, whereas a reduction in 

C/S will cause a reduction in qu. Therefore, the trend of qu depends on whether the effect 

of decreasing the W/S ratio or C/S ratio is more dominant for a particular mix 

proportion. 

In the range of water and cement contents used in this study, decreasing the 

water content seems to be more effective than reducing the cement content, which 

results in an increase in the compressive strength even though the C/S ratio has reduced, 

as the results of Figure 3.7(c) suggest. This understanding is important for the field 

application of DCM stabilisation whereby the W/C ratio is often kept constant 

[Yoshizawa et al. (1996)] while determining the proportion of mix design. Hence, the 

accurate determination of water content, including the natural water content of clay, is 

important before a decision to fix the W/C ratio can be made. 



 63

(d) Effect of time (t) 

The ability to estimate the strength development of the improved clay at various 

construction stages is an important consideration in giving an early indication of 

whether the particular mix proportion can achieve the desired strength at 28 days, the 

usual benchmark for determination of strength. To be able to estimate the future 

expected strength from early tests, empirical relationships have to be established to 

relate the strength of the stabilised clays at various periods of curing time. These 

relationships are summarised from all the experimental results conducted in this study. 

By co-relating the normalised strength at 28 days to the normalised strength at 1, 3, 7 

and 14 days, as shown in Figure 3.8(a), reasonably linear relationships can be obtained 

from the data. The following empirical linear relations can thus be established: - 

 
qu28  ≈  2.9 x qu1 

qu28  ≈  2.1 x qu3 

qu28  ≈  1.6 x qu7 

qu28  ≈  1.2 x qu14       (3.3) 

Figure 3.8(b) shows the increase in strength development of Singapore cement 

treated clays normalised to the strength at 28 days. It is obvious that the hardening of 

cement treated clays is a time dependent process. The rate of strength development is 

exponential initially, whereby the greatest rate of strength gain occurs within the first 14 

days. Thereafter, the improved clays continue to strengthen even after 28 days. 

 

3.4.3   Stiffness Results 

Most of the previously reported results were on the strength of improved clays, 

which is important in stability design. However, if ground movement is the key design 

consideration, then the stress-strain relation is more important. For soils, it is now 
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recognised that even at very small strain, the stress-strain behaviour is highly non-linear, 

but thus far, only Tatsuoka et al.’s study (1996) has specifically focused on this for an 

improved soil. The variation of stiffness with strain is vital as it can affect the design of 

the improved clays considerably. 

Accurate determination of stiffness is never easy. Tatsuoka et al. (1996) had 

pointed out that measurement of deformation between end-platens, frequently used for 

soils and also improved soils usually underestimated the stiffness considerably. Clearly, 

the way strain is measured has an important bearing on the correlation of stiffness with 

the unconfined compressive strength, qu.  Published literatures yield an extremely wide 

range of values as summarised in Table 3.5. 

 

(a) Non-linear Stress-strain Behaviour 

In order to investigate the non-linear behaviour of cement treated clays, the 

sample is first loaded and unloaded in compression to about 30% of the ultimate 

strength. As shown in Figure 3.9, the cement treated clay is actually a non-linear and 

non-elastic material. A permanent deformation exists after removal of load. This 

behaviour has made the determination of stiffness complicated. For such case, two 

methods for stiffness determination are proposed and given as 

Tangent stiffness, Etan = 
δε
δσ      (3.4) 

Secant stiffness, Esec = 
ε
σ
∆
∆      (3.5) 

Like concrete, the cement treated clays behave as elastic material to a certain 

degree. The non-linearity in cement treated clays is mainly due to creep; consequently, 

the demarcation between the elastic and creep strain is difficult [Neville (1996)]. 

According to Neville, an arbitrary distinction can be made for practical purposes; the 
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deformation resulting from application of the design stress is considered elastic and the 

subsequent increase in strain under sustained loading is regarded as creep. In this way, 

the material can be defined as an elastic material, having stiffness based on the secant 

modulus, Esec. This stiffness is normally measured at 50% of the ultimate strength and is 

notated as Esec50. 

 

(b) Stiffness at small strain 

The variation of stiffness with strain for SAC clay is shown in Figure 3.10 by 

plotting the results in terms of Esec/qu versus log ε, where the strain (ε) was measured 

using the Hall’s effect strain transducer. Esec is the secant Young’s modulus, while qu is 

the unconfined compressive strength. The behaviour of the cement treated clay is clearly 

non-linear, with Esec/qu decreasing from about 1400 at 0.005% strain to less than 100 at 

1% strain for improved clay with 30% of cement. The same behaviour is also observed 

for samples with lower cement content. It is therefore important to consider such 

non-linearity for the improved clays as in practical excavation, the strain induced in this 

layer is expected to be very small. However, it must be noted that the behaviour is more 

brittle and will fail at a smaller strain. 

 

(c) Comparative stiffness between external and local strain measurement methods 

Nowadays, it is recognised that the conventional method of measuring axial 

strain, derived from external displacement between loading piston or the specimen cap 

can cause serious errors due to bedding and other related errors involved [Tatsuoka and 

Shibuya (1992)]. This has resulted in the stiffness of soil measured in the laboratory to 

be much lower than that of the actual value. A comparison between the externally and 

locally measured strains is shown in Figure 3.3(a). The stiffness results using both 
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methods of strain measurements are correlated in Figure 3.11. From this plot, the 

external strain measurement was found to underestimate the stiffness by approximately 

2.3 times. 

 

(d) Effect of time (t) 

The effect of time has been studied before, but the primary concern to structural 

engineers is the change in stiffness with time and the effect of this on the design bending 

moment of the diaphragm wall. Figure 3.12 shows the increase in stiffness normalised at 

28 days. It is obvious that the improved clays continue to stiffen even after 28 days. This 

is an important observation, as excavation works usually will take many months, and 

often the more critical work is carried out at the later stages. 

 

(e) Relationship between Esec50 and qu 

It is common practice to relate the Young’s modulus (E) with the unconfined 

compression strength (qu), so as to establish a correlation between the two parameters. 

The relation between Esec50 and qu, based on conventional method of strain 

measurement, for the three improved Singapore marine clays is shown in Figure 3.13(a), 

where Esec50 is the secant Young’s modulus at 50% of the ultimate strength. This shows 

that the all the data fall within the range of Esec50=150 to 400qu, similar to those reported 

by Asano et al. (1996) and Futaki et al. (1996). Figure 3.13(b) shows the relation 

between Esec50 and qu, using local strain measurement by a Hall’s effect transducer. The 

results now fall within the range of EHsec50=300 to 800qu, much higher than that from 

using the external strain measurements, and more in line with that observed by 

Kawasaki et al. (1984) and Tatsuoka et al. (1996), who used a similar method of 

measurement. These comparisons were presented previously in Table 3.5. 
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3.5   Concluding Remarks 

The study reported in this chapter was carried out to establish the properties of 

cement mixed clays for a range of mixed proportion commonly associated with the 

Deep Cement Mixing (DCM) Method. More importantly, it forms the initial part of the 

study into understanding the behaviour of embedded improved soil layer in an 

excavation. Based on the experimental results, the following conclusions can be drawn: 

- 

a) When different marine clays are improved using cement mixing, the degree of 

improvement for each type of clay is different. Many physical and chemical factors 

contribute to this and it is difficult to isolate the effect of each factor. However, the 

results of this study show that using a normalisation approach, as given in Equation 

(3.2), the behaviour of these different improved clays gives a unified behaviour. 

b) There are three key constituents in cement mixed soils, namely water, cement and 

soil. It is important to recognise that the interactions among these constituents do not 

always produce an obvious trend about the way the soil will improve. For example, 

when the water to cement ratio is fixed, decreasing the cement content gives rise to 

an increase in strength, an observation that is not intuitively obvious. The 

interactions among these constituents and their impact on strength improvement are 

summarised in Table 3.4. 

c) Hardening of cement mixed clay is a time dependent process. Some empirical 

relationships have been proposed to relate the strength at 28 days with that at 1, 7 

and 14 days. 

d) The cement mixed clays are seen to behave non-linearly at very small strain, just like 

most of the soils. Thus, it is important to ensure that the correct strain measurement 

is made. Due to bedding errors, external strain measurement method (LVDT) 
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generally shows a softer behaviour as compared to local strain measurement method 

(Hall’s effect transducer). This is known in testing of solid, but less so in soil testing, 

including stiff soil. 

e) Correlation between stiffness and unconfined compression strength has been 

obtained, but this relationship is very much dependent on how the strain 

measurement is taken as concluded earlier. If the conventional method is used to 

measure the strain, the Esec50 falls within a range of 150 to 400qu. However, if the 

Hall's effect transducer is used, the EHsec50 falls within a range of 300 to 800qu, 

representing approximately an increase of 2.3 times. 
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Table 3.1   Properties of the Eunos, City Hall and Singapore Art Centre marine clays 

Properties Eunos City Hall Singapore Art 
Centre (SAC) 

Specific Gravity 2.61 2.61 2.62 
Natural Water Content (%) 66.23 61.52 57.62 

Liquid Limit (%) 71.89 65.12 72.63 
Plastic Limit (%) 31.89 30.03 30.82 

Organic Content (%) 2.09 1.66 1.37 
Chloride Content (%) 0.38 0.30 1.10 
Sulphate Content (%) 1.70 1.60 0.92 

PH 7.4 7.4 6.5 
 
 
 
 
 
 
 
 

      Table 3.2   Physical properties and chemical compositions of Portland Cement 

Physical Properties Value 
Density 3140 ± 3 kg/m3 
Fineness 327 ±  2 m2/kg  

Chemical Composition Unit (% w/w) 
Silica, SiO2 21.3 ± 0.2 

Alumina, Al2O3 4.7 ± 0.2 
Ferric Oxide, Fe2O3 3.1 ± 0.1 
Calcium Oxide, CaO 64.4 ± 0.3 

Magnesia, MgO 2.3 ± 0.1 
Sulphur as SO3 2.3 ± 0.1 

Sodium as Na2O 0.47 ± 0.1 
Potassium as K2O 0.63 ± 0.1 
Loss at Ignition 0.7 ± 0.1 

Insoluble Residue 0.1 ± 0.1 
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  Table 3.3   Mix proportions and curing period prepared for testing of different clay types 

Curing (days) Type of 
clays 

Cement 
content 

(%) 

Water 
content 

(%) 
1 3 7 14 28 70 77 140 154 161 

10 90 • • • • • •  • •  
20 90 • • • • • •   •  
30 90 • • • • • •   •  
10 120   • • •     • 
20 120   • • •     • 
30 120   • • •     • 
10 150   • • •    •  
20 150   • • •    •  

Eunos 

30 150   • • •    •  
10 90 • • • • •  • •   
20 90 • • • • • •     

City Hall 

30 90 • • • • • •     
10 90 •  • • •   •   
20 90 •  • • •      
30 90 •  • • •      
30 120 •  • • •      

SAC 

30 150 •  • • •      
 

 

Eunos (20.120.28) 
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Table 3.4   Influence of the three main constituents of mixture 

Condition W/S 

(water 

content) 

W/C 

(water to 

cement 

C/S 

(cement 

content) 

 qu Comments 

 

(1) 

S constant 

W constant 

C↑ • ↓ ↑ = ↑ Obvious 

 

(2) 

S constant 

C constant 

W↓ ↓ ↓ • = ↑ Obvious 

 

(3) 

W constant 

C constant 
S↑ ↓ • ↓ = ↑ Not obvious

   • denotes value that is constant 
 

 
 
 
 
 
 
 

Table 3.5   Relationships between E and qu from different references 

Reference Relationship 

Kawasaki et al.  (1984) EHsec50   ~   350 to 1000qu 

Tatsuoka et al.  (1996)  EHmax    ~   1000qu 

Futaki et al.  (1996) Esec50  ~   100 to 250qu 

Asano et al.  (1996) Esec50   ~   140 to 500qu 

Present Study  - External Strain Transducer 

    - Local Strain Transducer 

Esec50   ~   150 to 400qu 

EHsec50 ~   300 to 800qu 
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Figure 3.1   Kallang Formation of Singapore Island 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.2   Effect of air voids on the strength of cement treated clay 
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Figure 3.3   Typical stress strain curves of unconfined compression test 
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Figure 3.4   Effect of different types of Singapore marine clay improved 

  by cement mixing 
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Figure 3.5   Relationship between normalised strength of Eunos, City Hall and SAC  
 marine clay mixed with cement, normalised with 
 (a) qu(10.90.1)     (b) qu(20.90.14)     (c) qu(30.120.7)     (d) qu(30.150.28) 
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Figure 3.6   Relationship between normalised strength of Singapore and 
  Japanese improved clays normalised with 
   (a) qu(30.90.28)     (b) qu(30.120.28) 
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(a)   Effect of water content       (b)   Effect of cement content 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)   Effect of water-cement-ratio,          (d)   Effect of water-cement-ratio, 
  differentiated by cement content       differentiated by water content  

 
Figure 3.7   Effect of water and cement contents on the normalised 

  strength of Singapore improved clays 
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(a)              (b) 
 

  Figure 3.8   Strength relationship of Singapore improved clays 
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Figure 3.9   Non-linear and non-elastic stress strain behaviours 
 of cement treated clay 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.10   Variation of stiffness with strain 
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Figure 3.11   Comparative stiffness between external and local strain 

   measurements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3.12   Stiffness development of Singapore cement treated clays 
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      (a)              (b) 
 

Figure 3.13   Correlation between Esec50 and qu, derived using 
(a) external strain measurement method 
(b) local strain measurement method 
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Plate 3.1 Apparatus for unconfined compression test with Hall’s effect axial gage 
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Chapter 4 

CENTRIFUGE MODEL TESTING 

 

4.1   Introduction 

Soil is a highly non-linear and stress dependent material. These characteristics 

have made it almost impossible for a small-scaled geotechnical model tested under 1-g 

condition to simulate the behaviour of a prototype. However, by subjecting the model to 

an appropriate gravity field, prototype stress levels can be simulated at geometrically 

similar points throughout the model and thus, prototype soil behaviours can be 

reproduced in the model. In other words, if a prototype is simulated by a 

1/Nth-scaled-model, the prototype soil behaviour can be replicated in a small-scaled 

model if the test is carried out under a gravitational field of N times the earth gravity. 

The usage of centrifuge model testing has been rapidly increasing since 1970 

[Schofield (1980), Craig et al. (1981), Craig (1984), Corte (1988), Ko and McLean 

(1991), Leung et al. (1994) and Kimura et al. (1998)]. The acceptance of its usefulness 

has contributed to the steady growth in the number of application, necessitating more 

development of centrifuge facilities to be carried out. The increase in its utilisation is 

mainly due to its practicality in setting out certain critical parameters such as the 

geological profile and material properties, which is unlikely to occur at two different 

locations in the field. Recent developments in data acquisition and signal processing 

technology have further improved the data processing technique, resulting in higher 

quality of centrifuge test results. 

However, the major obstacle of using centrifuge is the unavailability of ready 

tools to simulate a particular geotechnical problem. Often, the development of specified 

equipment would take several years before the first successful centrifuge test results 
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could come in. The centrifuge technique applied in this present study is very much 

advanced which necessitated the fabrication of a sophisticated miniature in-flight 

excavator. This robotic in-flight excavator was designed to simulate the excavation 

process at 100G and moreover, it also allows the retaining wall to be propped at one 

specified level. This is an important advancement in centrifuge technology, as it would 

enable a supported excavation to be correctly modelled in the centrifuge environment. 

In particular, this improved in-flight excavator was developed in this study so that model 

excavation tests could be carried out to understand the behaviour of an excavation 

stabilised by an embedded improved soil layer. This modelling technique is believed to 

be the optimal way in making use of centrifuge technology in establishing a coherent 

understanding of the behaviour of the embedded improved soil layer during an 

excavation. 

In this chapter, the development of the in-flight excavator, which involves the 

design and fabrication works are initially presented. Subsequently, procedures used to 

prepare the soil model with specific stress-state condition are described. Other 

supporting facilities such as the data acquisition system, the image processing, the 

instrumentation and monitoring are shown. It is the central focus to ensure that the 

simulation of an excavation is properly done in order to obtain consistent test results 

throughout the study. Critical comments are given during the reporting, which are of 

importance in this study. 

 

4.2   The Development of An In-flight Excavator 

4.2.1 The Importance of A New In-flight Excavator 

Simplified methods to model an excavation process in centrifuge test which 

often involve artificial simulation techniques such as the “draining of a heavy liquid” 
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method have been found to be inadequate [Kimura et al. (1993), Loh et al. (1998)] for 

inappropriate soil condition especially in the normally consolidated clays. In order to 

have a proper simulation of an excavation that can generally be applicable to all soil 

conditions, the modelling of excavation in centrifuge must reflect the actual process of 

soil removal in the field. This has led to the development of a miniature in-flight 

excavator, which could perform an excavation during centrifuging, similarly like a 

prototype excavator in the field. 

The first in-flight excavator has been developed at the Tokyo Institute of 

Technology, Japan [Kimura et al. (1993)]. Though the excavator has been successfully 

used to model different excavation tests, it was reported to be operating smoothly only 

until 50G, whereas, the original design was to provide the excavator with the ability to 

carry out excavation up to 100G [Kimura et al. (1993)]. The performance is reduced 

significantly by 50% from the initial design due to the drop in efficiency caused by the 

friction of worm gears and the resistance between soil retaining gate and wall of the 

model container. Stepping motors with higher capacity could not be used, as the set-up 

is very tight and does not have space for modification. 

The major setback of that set-up is that the movement of cutting blade, which 

protruded from the moving table above, could not be extended very close to the 

retaining wall once the wall starts to incline inwards during excavation [Figure 2.17]. 

Hence, part of the soil in front of wall could not be excavated and this non-excavated 

soil would impose some additional passive resistance onto the retaining wall. 

Furthermore, this excavator could not physically accommodate a strut device since any 

propping device in the horizontal direction would obstruct the movement of the cutting 

blade. To simulate a braced excavation using such excavator, a 'tieback wall' system is 

used instead [Kimura et al. (1993)]. This could be done by having ties attached to the 
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back of retaining wall with load-measuring cells on them. Although this type of bracing 

is extremely useful, the system is only an approximation to the actual propping in field. 

The methodology in propping a retaining wall has been developed earlier in the 

Cambridge University [Powrie et al. (1994)]. In this study, two struts were performed 

and each strut was supported with linear bearings at two locations through a Bosch 

pneumatic locking device outside the strongbox. This method of propping is extremely 

effective, but the level of propping has to be fixed at a stationary location. The 

conventional technique of “draining of a heavy liquid” method was used instead of an 

in-flight excavator due to the space constraint. This is acceptable since the excavation 

tests have performed in heavily over-consolidated clay. However, this method would 

not be acceptable if the excavation test was performed in normally consolidated clay due 

to the difference of Ko condition simulated by a heavy fluid as explained earlier. 

Due to the above limitations, it is therefore necessary to develop a new in-flight 

excavator that could model a proper in-flight excavation and allows propping to be 

performed concurrently during centrifuging. The special features being incorporated 

into the new in-flight excavator are as follows: - 

a) it could work easily under 100G-environment, 

b) it could control scrapping of the soil at an accurate speed, and 

c) it allows propping of retaining wall by introducing a strut device. 

 

4.2.2   Outlines of the In-flight Excavator (Mark II) at NUS 

The new in-flight excavator (MARK II) developed in this study is an extended 

version of the existing excavator (MARK I) [Loh et al. (1998)] at the National 

University of Singapore. Limitations have been identified from the existing excavator 

(MARK I) and substantial modifications were made to increase its overall capability. 
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Similar to the existing excavator [Figure 2.18], this new excavator set-up consists of a 

detachable lift-shaft and a strongbox container [Figure 4.1]. The strongbox container has 

a width of 150mm, length of 400mm and a depth of 480mm. The detachable lift-shaft 

has been dimensioned to allow for plane strain model container but larger container such 

as the one used for 3D-excavation test [Loh et al. (1998)] can also be fitted. This 

lift-shaft will be replaced by a detachable side-wall during the initial stage of 

consolidation. 

Instead of having only two motors in MARK 1, an additional motor was installed 

in MARK II to facilitate the movement of strut. Dimensions of these motors were 

reduced significantly in order to create more space to house additional mechanical parts. 

An intermediate size servomotor (Motor 3) was mounted on top of the lift-shaft, which 

has a maximum torque capacity of 0.95Nm (S22HMNA, Pacific Scientific Motor). This 

servomotor was specially chosen as it has the capability to drive the shaft to a very high 

speed exceeding 10,000 rpm. This is about two times faster than the stepper motor used 

in the existing MARK I.  More importantly, the torque reduction for this servomotor 

during high rotational speed (about 20% reduction at 5000 rpm) is less than that of a 

stepper-motor (about 80% torque reduction at similar speed). To further increase the 

torque capacity, a special harmonic drive with a gear ratio of 1:160 was mounted in front 

of the servomotor. 

Two platforms (one for scrapping of soil, called the 'Scrapper Platform' and the 

other for propping of retaining wall, called the 'Strut Platform') were mounted inside the 

lift-shaft wall by 2 pairs of identical linear rail. The Scrapper Platform holds the cutting 

blade and a soil-retaining gate while a movable propping tool is rested on the Strut 

Platform. Each platform was specially machined to form a continuous solid section with 

many hollow blocks in it in order to reduce its self-weight and overall thickness. The 
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vertical movement of the cutting blade and soil-retaining gate has been synchronised in 

such a way that the top of the gate is always 1mm lower than the bottom edge of the 

cutting blade. In order to reduce the large holding torque caused by the weight of 

platforms on the servomotor (Motor 3), a counter weight system has been introduced 

[Figure 4.2]. With this system, approximately 80% of the weight could be countered and 

this has therefore significantly reduced the working torque required. 

The horizontal movement of the cutting blade and strutting tool are each 

controlled by an intermediate size stepping motor with a maximum torque capacity of 

5.68Nm (K31HRFH, Pacific Scientific Motor). To move the cutting blade, the stepper 

motor drives a ball-screw through timing belt. To move the strut device, a spear gear is 

connected to the motor shaft and another ball-screw. Commands to control the motors 

are sent via personal computers located in the remote control room through a pair of 

on-board drivers. Since the first day after full commissioning, this in-flight excavator 

has been operating smoothly at 100-G with its performance shown in Table 4.1. 

 

4.3   The NUS Geotechnical Centrifuge 

The NUS Geotechnical Centrifuge has been used throughout the physical 

modelling exercise carried out in this study [Plate 4.1]. This machine is a beam type 

centrifuge with a radius of 2m and a capacity of 40g-ton. The working area of the 

swinging platform measures 750mm x 700mm and the maximum allowable height of 

the package is 1187mm. Detailed description of the NUS Geotechnical Centrifuge are 

given in Lee et al. (1991) and Lee (1992). 

 

4.4   Centrifuge Scaling Relations 

The scaling relations between a small-scale model in the centrifuge and its 
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full-scale prototype can be derived either by dimensional analysis or consideration of 

the governing equations and system mechanics. A list of commonly used scaling 

relations is shown in Table 4.2 [Leung et al. (1991)]. The centrifuge model test results in 

the present study will be extrapolated to their prototype scale by appropriate scale 

factors shown in this table. 

 

4.5   Experimental Set-up 

4.5.1   Preparation Procedure of Soil Model 

Preparation of soil model is one of the very basic but most important aspects in 

physical modelling in the centrifuge. Test results from centrifuge modelling are difficult 

to interpret unless the soil condition is carefully established. Therefore, utmost attention 

was taken during the preparation stage so that the initial soil condition is simulated 

correctly. The following shows the standard procedure used to obtain the soft ground 

condition of soil used for this study. 

The preparation of model ground adopted here is to a large extent, similar to 

those of Kimura et al. (1993) and Loh et al. (1998). Kaolin clay is chosen instead of 

marine clay, principally due to the greater consistency achieved in the model ground and 

because of its high permeability (k = 2 x 10-8m/s), which allows a shorter consolidation 

time. This was decided after having several preliminary failures using marine clay after 

spinning continuously for 72 hours in achieving the degree of consolidation required. 

The physical properties of kaolin used are shown in Table 4.3. Figure 4.3 

illustrates its compressibility behaviour obtained from the oedometer tests. Before the 

soil model is prepared inside a centrifuge container, the clay was first soaked in de-aired 

water overnight, and then mixed uniformly in a rotating mixer with water content of 

approximately 1.5 times of its liquid limit. Subsequently, the clay slurry was de-aired in 
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a vacuum chamber for 1 day to evacuate air bubbles and to ensure that an almost 

saturated soil sample slurry is achieved [Plate 4.2]. Mixing of clay at greater water 

content was not performed due to the restriction of container height. However, de-airing 

of the soil sample slurry will ensure the consistency of the model ground prepared in 

each test. 

Prior to pouring of slurry into the container, coarse sand was rained down into 

the container bottom and then compacted to form a 20mm thick of bottom drainage 

layer. Two layers of thin polyethylene sheets with a coating of grease in between the 

sheets were then wrapped around the walls. Khoo et al. (1994) has shown that this 

lubrication method is able to minimise the friction between concrete-sand, steel-sand 

and perspex-sand interfaces in 100G-centrifuge testing. 

During the placement of clay slurry into the container, attention was paid to 

prevent the trapping of air pockets. The air pockets can be minimised if the clay slurry is 

transferred under a layer of water. A trowel was then used to level the surface of clay 

slurry, providing an even surface to ensure uniform loading. The clay was then loaded to 

a pressure of 20kPa at 1G-environment by a pneumatic compression machine. The 

consolidation load was applied stepwise to ensure that the clay slurry did not squeeze 

through the gap between the loading plate and container. A load cell was placed below 

the pneumatic piston to measure the load and to ensure that an accurate pressure was 

applied to the soil model at all time. The initial loading was applied by the self-weight of 

loading plate (1.7 kN/m2), followed by pneumatic loading (3, 6, 10 and 20 kN/m2). The 

clay was allowed to consolidate until at least 90% degree of consolidation is achieved at 

the final loading stage. Eventually, a normally consolidated soil with uniform 

consolidation pressure of 20kN/m2 throughout the depth is obtained. 
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The model ground container was then transferred onto the centrifuge’s swing 

platform for self-weight consolidation at 100G for several hours until more than 90% 

degree of consolidation was achieved. The model ground was spun down to 1G 

condition to allow the insertion of model retaining wall and improved soil layer, the 

installation of instruments and finally, attaching the in-flight excavator to the model 

container. Subsequently, the model was re-consolidated in the centrifuge again until 

more than 90% degree of consolidation has been achieved. This will ensure that an 

almost equilibrium stress state of soil model is obtained prior to excavation test. 

To monitor the level of self-weight consolidation, several pore pressure 

transducers were inserted into the model ground besides having settlement transducers 

placed on the surface. Typical surface settlement reading and pore pressure responses 

during the first stage of consolidation and second stage of re-consolidation in centrifuge 

are shown in Figures 4.4 (a) and 4.4 (b) respectively. As shown in both figures, the 

degree of consolidation exceeded 90% for the two consolidation stages. Calculation of 

the degree of consolidation was based on the Hyperbolic method [Tan et al. (1971)] and 

being confirmed using the Asaoka procedure [Asaoka, (1974)]. 

 

4.5.2   Stress History of Model Ground 

In this study, the intention was to prepare a soil model consisting of a normally 

consolidated (NC) soil with increasing strength profile and having a thin layer of 

over-consolidated (OC) layer on the top surface [Figure 4.5 (a)]. This type of ground 

profile is quite common in Singapore [Chang (1991)]. Confirmation tests have to be 

carried out initially to validate the actual characteristic of the soil model. Such related 

tests have to be performed at 1G-environment after completing the process of 

self-weight consolidation, as at the time of testing, in-flight profiling devices were not 



 91

available. These tests were carried out immediately after spin down from high G since 

the clay can swell with time, which will then change its properties [Mair (1979), Kimura 

and Saitoh (1982)]. 

The vane shear test was used to check the strength profile of the model ground 

[Plate 4.3]. As shown in Figure 4.5(b), it is obvious that the undrained shear strength of 

a typical model ground increased with depth, varying from 10 to 30 kN/m2. The stress 

profile in the model ground is re-confirmed by checking the water content along its 

depth [Plate 4.4]. Water contents were then compared with those estimated based on 

oedometer test results [Figure 4.5 (c)].  It is obvious that both results have shown good 

agreement. 

To further assess the quality of model preparation, an in-flight in-situ soil 

investigation tests were later undertaken by another doctoral student who is also using 

identical soil model for his test [Thanadol (2003)]. The in-flight miniature T-bar, 

developed by Stewart and Randolph (1991) was used to check the strength profile of the 

soil model in the 100G after the completion of consolidation. The undrained shear 

strength profile of the model ground obtained was compared using the SHANSEP 

(Stress History And Normalised Soil Engineering Properties) method (Ladd and Foott, 

1974). Thanadol (2003) reported in his research study using the same material for the 

model ground that the correlation obtained to estimate the undrained shear strength in a 

normally consolidated clay is consistent with that proposed by Ladd and Foott (1974) 

and Trak et al. (1980), which is given as follows: - 

v

us
'σ

 = 0.22      (4.1) 

 

4.5.3   Modelling of Retaining Wall 

The retaining wall was modelled using a 4 mm thick aluminium alloy with an 
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equivalent stiffness (EI) of 384 x 103kNm2/m in prototype scale [Plate 4.5]. The 

property of the aluminium alloy used is shown in Table 4.4. This wall stiffness could 

simulate a concrete diaphragm wall with a thickness of about 0.6m in the field. This is 

quite common as the thickness of diaphragm wall typically ranges from 0.6m to 1.2m. 

Aluminium alloy is chosen as it is stiff but has a relatively low density. Such a 

light plate minimises the settling of the wall in soft ground during the self-weight 

consolidation stage. Rubber wiper with flips was used to prevent water from seeping 

through edges of the wall on both sides of the strong box [Plate 4.6]. The flips were 

lavishly greased to ensure that almost free sliding condition with negligible friction is 

produced. The wall was then installed at a depth of 160mm (equivalent to 16m in 

prototype scale) into the original ground level. A set of vertical guide was used during 

the wall insertion to ensure the verticality of the retaining wall. 

 

4.5.4   Modelling of Improved Soil Layer 

The improved soil layer was prepared under similar condition as described in 

Chapter 3. A wooden framework had been used to mould the cement treated clay into 

the required shape and size. Two additional cylindrical samples were also prepared 

during the same batch. The samples were then tested to determine its stress strain 

behaviour. To install the improved soil layer, the soil in front of the excavation side was 

first removed from the model ground while the retaining wall is held vertical by the 

guide. The improved soil layer was then installed into the model ground and thereafter, 

the appropriate block of pre-cut soil was inserted back into the model ground again 

[Figure 4.6]. The improved soil layer was inserted at 80mm (equivalent to 8m in 

prototype scale) below the ground level in front of the retaining wall. 
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4.5.5   Instrumentation and Monitoring 

In this study, four different types of miniature transducers were used; namely the 

potentiometer, strain gage, pore pressure transducer and total stress cell. The locations 

of these miniature transducers are shown in Figure 4.7. Prior to installation of model 

retaining wall, miniature total stress cells (Model: Entran – EPL Series) and strain gages 

(Model: Kyowa – KFG Series) were placed on the wall. Pore pressure transducers 

(Model: Druck – PCDR81 Series) were then inserted into the model ground around the 

retaining wall. Finally, several potentiometers (Model: Sakae – FLP Series) were 

assembled vertically on the ground settlements and horizontally on the wall. The 

frequency of monitoring of all instruments is set to 1 second per sampling. 

 

4.5.6   Excavation Test Procedure 

Since the clay had swelled during the installation process in the 

1G-environment, each time, the model was re-consolidated back to the original 

normally consolidated soil condition. Then, the excavation test was started. The 

sequence in carrying out an excavation was pre-programmed and controlled from the 

remote control room. When the excavation stage began, the servomotor at the top was 

first activated, moving the cutting blade, strutting tool and soil retaining gate 

downwards. This movement was terminated as soon as the cutting blade penetrated into 

the soil. Stepper motor 1 at the scrapper platform would then be activated, allowing the 

cutting blade to pull and scrap a small portion of soil horizontally into the base of 

lift-shaft, simulating an excavated layer of soil. The scrapper platform was then moved 

up again till a level slightly higher than the excavated level. Subsequently, the cutting 

blade was extended out to a point near to the model retaining wall. This sequence is then 

repeated until the required excavation depth is reached [Figure 4.8]. 
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To allow propping of the strut device, stepper motor 2 at the strut platform was 

activated to move the propping device horizontally towards the wall.  This movement 

would be terminated once it touched the retaining wall. To model a braced excavation, 

the sequences of scrapping and propping were synchronised. Initially, the scrapping and 

propping devices moved together. Once the wall was propped, the propping device was 

de-coupled from the scrapping device and the sequence of scrapping was allowed to 

continue until the final excavation depth [Plate 4.7]. For the current test, every sequence 

of scrapping will remove a 5mm layer of soil at 50 seconds, which is equivalent to the 

removal of 0.5m thickness of soil in about 6 days in prototype scale, which is quite 

realistic in the field for large excavation. 

 

4.5.7   Data Acquisition System 

All the analogue output signals from the transducers were transmitted by cables 

via electrical slip rings to the control room. The analogue signals were low-pass filtered 

and subsequently, amplified for better resolution. These signals were then sent into the 

acquisition system in which they were converted into a 12-bit digital format by 

Microstar A/D converter, running under the Dasylab software environment [Plate 4.8]. 

In this software, the digital signals were smoothened by the block averaging facility. A 

real time display of the selected incoming signals could be viewed on the computer 

screen before it was finally stored in the hard disk. Conversion to the engineering unit 

according to the respective calibration factor was done after each test. 

 

4.5.8   Image Processing 

Bits and grid lines were placed on the surface of the ground in front of the 

perspex plate prior to excavation test. Close circuit TV (CCTV) camera, which was also 
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mounted in front of the perspex plate captured the deformation of the model ground by 

dictating the movement of the bits and gridlines during the excavation test. Plate 4.9 

shows the bits and gridlines of a model ground prior to excavation. A video cassette 

recorder (VCR) was used to record the entire excavation process [Plate 4.10]. The 

images were then played back from the recorded tape and digitised by a frame grabber 

board installed on the computer. The image processing software, Global Lab was used 

to sharpen the images before the vectors of movement were analysed. This software has 

facilities such as image enhancement, morphological filtering, intensity analysis and 

other operations, which produces a better image. The movement of each point on the 

surface of the model ground can be detected by superimposing the images at different 

stages of the excavation test. The distance travelled between two points can be 

calculated from the vectors of the movement based on the calibrated pixels. 

 

4.6   Excavation Tests Programme 

The entire centrifuge model excavation tests that have been performed for this 

study are summarised in Figure 4.9. All the model excavation tests were conducted at 

100 G, corresponding to a linear scale factor of N = 100. 

 

4.6.1   Preliminary Model Excavation Tests 

In the initial stage, preliminary model excavation tests were carried out by using 

the “draining of a heavy liquid” method to simulate the excavation process since an 

in-flight excavator was unavailable to the author. For the first model excavation test, the 

soil used was marine clay. As this marine clay has a low permeability of 2 x 10-10 m/s, 

the process of consolidation is extremely long. For the preparation of a normally 

consolidated soil model with increasing strength profile, approximately 5-6 days of 
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continuing self-weight centrifuging is needed. Hence, it was found unrealistic to prepare 

this kind of soil model in order to achieve a high degree of consolidation in the 

centrifuge. 

A normally consolidated soil model with constant strength profile was prepared 

in the laboratory floor instead. To prepare the model ground with such stress history, the 

soil was initially compressed by a pneumatic jack to a pressure of 80kPa until at least 

90% degree of consolidation has taken place. Upon releasing the load, part of the soil in 

front of the retaining wall was quickly cut and replaced with a rubber bag. This bag was 

subsequently filled with a liquid (zinc chloride) of identical unit weight of the excavated 

soil. The soil model was spun quickly to 100g and the simulation of excavation was 

performed immediately. Nevertheless, this model test failed to provide realistic results 

due to the following reasons: - 

(a) The swelling effect of soil occurred immediately after the release of load. Though 

the swelling of marine clay was low, the effect became important when the time for 

the preparation of model ground was long. As the swelling effect altered the stresses 

in the soil, it became extremely difficult to know the true soil condition. 

(b) The effect of self–weight consolidation during the swinging up process to 100 G 

could not be neglected. As the whole process of swinging up, which includes the 

time required for performing the excavation test could take more than an hour to 

complete, the effect of self-weight consolidation of soil could not be ignored. This 

caused further confusion to the stress state of soil. 

As the effect of swelling and self-weight consolidation occurred simultaneously, 

the soil model could not reach the state of equilibrium before the excavation test begun. 

Therefore, this preliminary model test was discarded to avoid inconsistent data and 

wrong interpretation. The marine clay was then replaced with kaolin clay, which has a 



 97

higher permeability (2 x 10-8 m/s). Normally consolidated clay with increasing strength 

profile was prepared and the process of self-weight consolidation could be 

accomplished within a shorter duration of about 8-10 hours. 

Nevertheless, several problems were encountered when using the “draining of a 

heavy liquid” method to simulate the excavation process of a normally consolidated soil 

model. Besides the Ko deficiency, which causes the wall to move backward during 

centrifuging, other problems encountered are: - 

(a) the original level of ground surface could not coincide with the level of heavy liquid. 

This is simply because the heavy liquid does not behave like a clay undergoing 

consolidation. 

(b) the interaction between the improved soil and surrounding soil could not be 

simulated accurately. When the rubber bag replaced the pre-excavated soil, the 

friction property between the improved soil layer and surrounding soil is 

significantly altered. This is crucial, as the effectiveness of improved soil is much 

dependent on the interaction between the improved soil layer and soil above it. 

Although both preliminary model tests have not produced realistic results for 

this study, they have assisted in the design of the final experimental set-up used in this 

study. As described in the above evaluation, the “draining of a heavy liquid” method is 

not suitable for normally consolidated clay. Therefore, excavations in subsequent tests 

were carried out by the in-flight excavator, which was available later, and this was 

described earlier in section 4.2. 

 

4.6.2   Model Excavation Tests 

The excavation tests programme is subdivided into 4 distinct categories, 

depending on the configuration of soil treatment and they are generally referred to as 



 98

‘NTreat’, ‘FTreat’, ‘Gap’ and ‘Berm’ [Figure 4.10]. All these model excavation tests 

were prepared in accordance to the procedure described earlier and hence, all the soil 

models, retaining walls and improved soils would have identical properties (unless 

otherwise stated) to allow direct comparison to be made. 

The first model excavation test was ‘NTreat’, which was carried out initially to 

evaluate the behaviour of an unsupported excavation in soft ground. No soil 

improvement was done and this untreated model excavation test is a benchmark test for 

comparison with other model excavation tests involving soil improvements, which were 

subsequently carried out. 

The second model excavation test was ‘FTreat-7d’, which was to investigate the 

effect of fully improved soil layer in an excavation. The entire soil layer in front of the 

retaining wall at 80mm (equivalent to 8m in prototype) below the ground level was 

replaced by a 20mm block (equivalent to 2m in prototype) of SAC30.90.7 improved soil 

(please refer to Chapter 3 on the properties of SAC30.90.7 improved soil). Both ends of the 

improved soil layer were in contact with the retaining wall in front and the wall gate of 

excavator’s lift-shaft behind. To evaluate the behaviour of the improved soil layer in a 

braced excavation condition, the excavation test was then repeated with allowance for 

one strut to be installed at the ground level after 3m of excavation. This test was called 

‘FTreat-7d-Strut’. The subsequent test, referred to as ‘FTreat-28d’, would involve 

investigating the effect of stiffness increase in the improved soil layer due to a longer 

curing age. 

Taking into consideration on the effectiveness of full-improved soil layer 

behaving like a strut, subsequent model excavation tests would involve the study on the 

effect of having a small gap of untreated soil in between the improved soil layer and the 

wall. Two model excavation tests with varying widths of gap were conducted; 
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‘Gap-800-7d’ with 8mm gap (equivalent to 800mm gap in prototype) and ‘Gap-400-7d’ 

with 4mm gap. Both improved soil layers have identical properties of the SAC30.90.7, 

which had been previously used in Test ‘FTreat-7d’. The geometry and arrangement of 

the improved soil layer in both model tests were almost similar to model excavation test 

‘FTreat-7d’, except for the fact that the front edge has a gap via untreated soil in between 

the improved soil layer and retaining wall. 

Model excavation test involving improved soil berm was finally performed. This 

is to evaluate the effectiveness of improved soil berm in an excavation where only a part 

of the soil in front of the retaining wall was treated. This would further mean that the 

length of the improved soil layer was shortened and part of the clay behind the improved 

soil berm was left untreated. However, no gap was left in between the front end of the 

improved soil and retaining wall. The back edge of the improved soil layer is therefore 

not restrained by any rigid structure and it is left floated on the surrounding soft clay. To 

assess the effect of stiffness of improved soil berm, results from two model excavation 

tests were compared; ‘Berm-7d’ and ‘Berm-6m’ where these excavation tests were 

carried out with improved soil berms of increase in stiffness due to longer curing age. 
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Table 4.1   Performance of In-flight Excavator (MARK II) at NUS 

Moving Parts  Effective Maximum Minimum  Accuracy Accel. 

Of Excavator  Stroke  Speed  Speed  Of Disp.   

Vertical Lift-shaft 150mm 2.0mm/sec 0.1mm/sec ±0.001mm 100g 

Cutting Blade  150mm 50mm/sec 0.01mm/sec ±0.1mm 100g 

Strutting Tool  30mm  5mm/sec 0.01mm/sec ±0.01mm 100g 

 

 

Table 4.2   Scaling Relation of Centrifuge Modelling [after Leung et al. (1991)] 

Parameter Prototype Model at Ng 

Linear dimension 1 1/N 

Area 1 1/N2 

Volume 1 1/N3 

Density 1 1 

Mass 1 1/N3 

Acceleration 1 1/N 

Velocity 1 1 

Displacement 1 1/N 

Strain 1 1 

Energy 1 1/N3 

Stress 1 1 

Force 1 1/N2 

Time (viscous flow) 1 1 

Time (dynamics) 1 1/N 

Time (seepage) 1 1/N2 

Energy density 1 1 

Flexural rigidity 1 1/N4 

Axial rigidity 1 1/N2 

Bending Moment 1 1/N3 
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            Table 4.3   Physical properties of kaolin clay 

Properties Sample 1 Sample 2 

Compression Index (Cc) 0.604 0.520 

Swelling Index (Cs) 0.1238 0.1197 

Bulk Density (γbulk), kN/m3 16.39 

Permeability (k), m/s 2.0 x 10-8 

Specific Gravity (Gs) 2.60 

Liquid Limit (wL), % 79.8 

Plastic Limit (wP), % 35.1 

 

 

 

     Table 4.4   Properties of the aluminum alloy 

Properties Value 

Modulus of Elasticity (Eo), kPa 72 x 106 

Ultimate Strength (C), kPa 275 x 103 
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Figure 4.1   In-flight Excavator (MARK II) at NUS 
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   Figure 4.2   Mechanical Details of In-flight Excavator (MARK II) at the NUS 
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                Figure 4.3   e-log p’ of kaolin clay from oedometer test 
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Figure 4.4 (a)   Typical settlement results of model ground 
 during consolidation 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 4.4 (b)   Typical pore water pressure results of model 
 ground during consolidation 
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(a) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

     (b) 
 
 
 
 
 
 
 
 
 
 
 
 

 

(c) 

Figure 4.5   Profiles of OCR, undrained shear strength and 
       water content of model ground 
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Figure 4.6   Schematic diagram of model preparation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.7   Location of various instruments in model ground 
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Figure 4.8   Schematic diagram of in-flight excavation sequence  
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Figure 4.9   Stages of development in centrifuge model tests 
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Category Test ID. Description 

I.    NTreat  
NTreat 

No soil treatment 
No improved soil, unbraced excavation 
 

II.   FTreat  
FTreat-7d 
FTreat-7d-Strut 
FTreat-28d 

Full-improved soil layer 
Improved soil cured for 7 days, unbraced excavation 
Improved soil cured for 7 days, braced excavation 
Improved soil cured for 28 days, unbraced excavation 
 

III.  Gap  
Gap-800-7d 
Gap-400-7d 

Soil gap 
Gap width of 800mm, unbraced excavation 
Gap width of 400mm, unbraced excavation 
 

IV.  Berm  
Berm-7d 
Berm-6m 

Improved soil berm 
Improved soil cured for 7 days, unbraced excavation 
Improved soil cured for 6 months, unbraced excavation 
 

 

Figure 4.10   Schematic diagrams on typical excavation tests 



 111
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plate 4.1  Model Set-up on the NUS Geotechnical Centrifuge  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plate 4.2   De-air Chamber 
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Plate 4.3   Vane Shear Test 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plate 4.4   Determination of Water Content 
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Plate 4.5   Model Retaining Wall 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 Plate 4.6   Rubber Wiper with flips 
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Plate 4.7   Excavation and strutting action on model ground 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plate 4.8   Data Acquisition System 
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Plate 4.9   Bits and Gridlines on the model ground 

 prior to excavation test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Plate 4.10   Video Recording Process in Control Room 
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Chapter 5 

BEHAVIOUR OF AN EXCAVATION STABILISED 

BY AN EMBEDDED IMPROVED SOIL LAYER 

 

5.1   Introduction 

In deep excavation in thick deposits of soft clay, the maximum wall deflection 

usually occurs below the final excavation level, even when a stiff retaining wall with 

an appropriate bracing system is adopted. To limit the wall deflection in such situation, 

one cost-effective solution is to improve the soft soil around the location where the 

maximum deflection would occur, prior to excavation. Deep mixing method or jet 

grouting can be used for that purpose. In either method, soft soil of a particular 

thickness at a required depth can be improved by in-situ cement mixing, producing 

multiple overlapped soil-cement columns, which collectively form an embedded stiff 

composite improved soil layer. The term ‘embedded’ is used to emphasize the fact that 

the improved soil layer is located below the final excavation level. 

The study presented in this chapter first reviews the function of the embedded 

improved soil layer, which has been well recognised to behave like a strut [Lee and 

Yong (1991), Tanaka (1993)]. To function as a strut, the improved soil layer must be 

able to transmit the lateral force from the retaining wall to another stiff member, 

usually the opposing wall. Therefore, the stiffness of the improved soil, which will 

directly affect the composite stiffness of passive ground, will be the key parameter in 

governing the performance of the excavation. To ensure adequate lateral rigidity in 

restraining the retaining wall during excavation, ideally, soil improvement works shall 

be carried out at the required depth on the entire area within the excavation zone so 

that the layer is in contact from one side of the wall to the other side. 
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Continuous grouting of a large area requires skill, experience and precision to 

ensure that the soil-cement columns are properly overlapped to form a homogeneous 

monolithic composite improved soil layer. Nevertheless, carrying out grouting works 

especially close to the retaining wall is often difficult, given the fact that the wall itself 

is not perfectly even. Incomplete grouting will lead to a region of untreated soil in 

between the retaining wall and improved soil layer. This gap of untreated soil is often 

quite small and is sometimes ignored in design, as it is considered an issue of 

workmanship. As the function of an improved soil layer is to provide an effective strut 

to the retaining wall, it is important to evaluate the detrimental effect of the existence 

of such an untreated gap on the performance of the excavation system. An important 

aspect is to establish the threshold value on the gap width, if any, smaller than which, 

the overall excavation performance might not be significantly affected. 

In the case of a large excavated area, improving the entire layer so as to form a 

strut is usually a very expensive option. One cost-effective solution is to provide an 

improved soil berm, which only requires soil improvement to be carried out to a 

certain distance away from the retaining wall. This will imply that one end of the 

improved soil berm is in contact with the retaining wall while the other end is 

embedded in soil. In such a condition, the underlying mechanics by which the 

improved soil berm mobilises its resistance needs to be understood, especially in 

relation to the behaviour of a strut. 

In view of limited experimental and field data on the behaviour of an 

excavation stabilised by an embedded improved soil layer, the first part of the study 

focused on a series of model excavation tests in the centrifuge with different 

configurations of soil improvement. The tests are highly complicated, conducted in 

100G-environment using the newly developed miniature robotic in-flight excavator 
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developed in this study as explained in the previous chapter. Signals from all the 

instruments were regularly calibrated and carefully converted so that correctly scaled 

high quality test data could be captured consistently in each test. This is crucial in 

facilitating a meaningful comparison so as to understand how various forms of soil 

improvement work. 

To evaluate the general behaviour of an excavation stabilised by an improved 

soil layer, ground displacements, lateral wall movements, surface settlements, lateral 

stresses and pore water pressures were used to assess the differences and trends 

developed during the process of excavation. From the initial set of test results, 

preliminary postulations were made and further excavation tests were then performed 

to verify these postulations. This ensured that key behaviours were scrutinised in detail 

before arriving at a firm conclusion. All the model excavation test results have been 

reported in prototype scale, which makes it convenient for the reader to visualise and 

compare these results to those measured in the field. 

 

5.2 General Behaviour of An Excavation Stabilised by An Embedded Improved 

Soil Layer 

Four sets of experimental results will be discussed in this section. Though the 

conditions of all these tests have been elaborated broadly in the previous chapter, it is 

necessary to re-iterate the specific tests that will be used for the comparison in this 

section. The first excavation test, referred to as NTreat, was an excavation test without 

any soil improvement. The second excavation test, called FTreat-7d was for an 

excavation in which the entire layer of soil in the excavation side was improved so as 

to act as an improved soil strut. In the third excavation test, referred to as Gap-800-7d, 

the excavation model is identical to FTreat-7d except that an 800mm width of soft soil 
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was left untreated in between the retaining wall and improved soil layer. The fourth 

excavation test, called Berm-7d was performed with only 10m of soil in front of the 

retaining wall being stabilised. To ensure fair comparison, similar properties of model 

ground and improved soil were prepared in each test and instruments were also placed 

at identical locations. Though the new excavator has the ability to install strut at a 

particular level, all the four excavation tests were carried out unbraced, mainly 

because of constraint on the amount of channel that can be used to send relevant 

signals to activate the strutting device. Nevertheless, the main objective of the present 

comparison study is to evaluate the fundamental difference of various configurations 

of soil improvement in mobilising its resistance and therefore, it was felt that the 

excavation procedure should be kept simple initially. 

 

5.2.1   Ground Displacements with and without Treatment 

Test NTreat was initially carried out to understand the mechanics of an 

unbraced excavation without any soil improvement, that is, the only support is the 

retaining wall. In this test, the excavation was carried out to a depth of 4m. Images 

captured throughout the excavation process were processed and re-plotted in order to 

display the ground displacement vectors at the final excavation stage [Figure 5.1]. 

Large ground movements were observed close to the retaining wall and near to the 

surface but reduced towards the toe and away from the wall. The direction of the 

displacement vectors indicates that the wall has translated and rotated towards the 

excavation side, pivoted around the wall toe. The soil on the excavation side in front of 

the retaining wall was subjected to substantial lateral compression and some base 

heave was observed. Preliminary results show that there is insufficient passive 

resistance provided by the soil below the excavation level to resist the wall movement, 
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once the excavation exceeds a depth of 4m. 

Subsequently, Test FTreat-7d was conducted to investigate the effectiveness of 

having an improved soil strut below the excavation level in front of the retaining wall. 

To provide a comparison, images from Test NTreat after 2m and 4m of excavations 

are juxtaposed with those from Test FTreat-7d [Figure 5.2]. In Test NTreat where no 

soil improvement was provided, it was observed that the wall had rotated after 2m of 

excavation and the induced ground movements became even more pronounced when 

the excavation reached a depth of 4m. In contrast, in Test FTreat-7d, no such large 

movement was observed even though the excavation had reached a depth of 4m. This 

clearly demonstrates the effectiveness of providing an embedded improved soil strut to 

restrain the wall movement. It is especially effective as this is provided prior to 

excavation, in marked contrast to conventional braced excavation where the struts can 

only be installed after excavation. Ground displacement vectors were not presented for 

the rest of the excavation tests involving soil improvement due to the fact that the 

current image processor was unable to capture accurately the small movement between 

translating points. 

 

5.2.2   Comparison of Lateral Wall Movement and Surface Settlement 

The cumulative lateral wall movement during an excavation is a good indicator 

to quantify the effectiveness of different configurations of soil improvement and it 

could also be considered as an indirect measure of the mobilised stiffness of the 

passive ground. The lateral wall movements measured at a point approximately 3m 

above the ground level during the process of excavation for all the tests were 

compared in Figures 5.3. Except for Test NTreat, monitoring was carried out 

throughout the entire excavation process until a depth of 6m. For Test NTreat, the 
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excavation was terminated at a much shallower depth of 4m after it was observed that 

the wall had continued to move after the excavation at this step had been completed, a 

clear sign of an excavation failure. 

From the results of Test NTreat, it was observed that the wall started to move 

excessively at an early stage of excavation, even before the excavation reached a depth 

of 1m. This was in contrast with the other three excavation tests involving soil 

improvement where the wall movement at this point was very much controlled. With 

an improved soil strut in Test FTreat-7d, the wall moved only about 100mm 

throughout the entire excavation. In the case of an improved soil strut with a gap of 

untreated soil (Gap-800-7d), the lateral wall movement increased to about 700mm 

after reaching the final excavation level. This was almost 7 times larger than that of a 

stabilised excavation test without any gap of untreated soil (FTreat-7d). This means 

that the presence of a small layer of untreated soil in between the retaining wall and 

improved soil strut has greatly affected the overall performance of the stabilised 

excavation. 

As for Test ‘Berm-7d’, it shows that the provision of an embedded improved 

soil berm is also effective in restraining the lateral wall movement especially during 

the early stages of excavation. When the excavation was shallow, the behaviour of 

improved soil berm was almost indistinguishable from that of an improved soil strut 

(FTreat-7d). However, significant deviation was observed once the excavation 

exceeded a certain critical depth and thereafter, the lateral wall movement increased 

rapidly, showing a trend very much like that of an untreated excavation test (NTreat). 

This showed a dramatic shift in behaviour of an improved soil berm during the process 

of excavation, denoting that there might be a unique mechanism involved. 

To examine further, surface settlement during the process of excavation at a 
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distance of 2m behind the retaining wall for all the tests were evaluated. The surface 

settlement is another good indicator to assess the performance of the different 

configurations of soil improvement, driven by the fact that the composite stiffness on 

the passive side, which directly influences the wall movement, would affect the 

surface settlement behind the wall as well. In effect, one of the main objectives in 

stabilizing an excavation is to reduce the surface settlement behind the wall by first 

limiting the wall movement during an excavation. As shown in Figure 5.4, the trends 

of settlement profiles are largely consistent with the mechanics discussed in relation to 

the profiles of lateral wall movements. 

Based on this first series of test data involving three different configurations of 

soil improvement to stabilise an excavation as presented above, some preliminary 

observations of the different configurations can be made. In the case of Test FTreat-7d 

when an entire layer of soil at some depth was improved, as expected, only small 

lateral wall movement and surface settlement could be observed. This is because the 

improved layer acts as an embedded strut and provides an effective restraint on the 

inward movement of the wall, resulting in smaller wall movement and settlement. 

In the case of Test Gap-800-7d with a gap of untreated soil, the performance of 

the improved soil strut was found to deteriorate significantly. From the amount of 

lateral wall movement and surface settlement induced during the initial stage of 

excavation, it can be inferred that the untreated soil in between the retaining wall and 

improved soil strut has undergone significant compression. The impact of such 

compression would lead directly to larger wall movements and surface settlements 

even at the early stage of excavation. Nevertheless, it is important to note that these 

movements are induced gradually even with increasing depth of excavation. 

In the case of Test Berm-7d where an improved soil berm was provided, the 
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initial lateral wall movement and surface settlement were more in line to those from 

Test FTreat-7d where an improved soil strut was provided. However, its restraining 

behaviour becomes significantly less effective after excavation exceeds a certain depth 

and after that, the excavation behaviour is similar to the behaviour of an untreated 

excavation test (NTreat). It was also noted that in Test Berm-7d, the improvement 

ratio (66.7%) was smaller than that in Test Gap-800-7d (94.7%) but the performance 

of an improved soil berm was more superior to an improved soil strut with a gap of 

untreated soil in the early stages of excavation, though beyond a certain depth, sudden 

failure occurs. This is only true provided that there is sufficient resistance provided by 

the improved soil berm. The above case has demonstrated that poor workmanship can 

have a severe detrimental effect. Clearly, in such design, not only the compression of 

the improved soil alone needs to be considered, other factors such as the influence of a 

gap of untreated soil and the arrangement of the improved soil (e.g. improved soil 

berm) will affect the behaviour of a stabilised excavation. 

 

5.2.3   Comparison of Normalised Surface Settlement 

The surface settlement is now normalised with the excavation depth and re-

plotted in Figure 5.5 with respect to the distance away from the retaining wall. The 

surface settlement is from a distance of 2m to 20m behind the retaining wall. Larger 

surface settlement was observed close to the wall, but this reduced significantly further 

away from the wall. This trend of normalised surface settlement is consistent with 

general field measurements observed in most of the excavation projects [Peck (1969)]. 

As the data points presented by Peck (1969) referred to excavations in braced 

condition, the magnitude of movement was smaller as compared to the present 

unbraced excavations, except in Test F-Treat where the improved soil strut is 
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provided. 

With an improved soil strut (FTreat-7d), only a small value of normalised 

surface settlement was observed, affirming the effectiveness of this technique. As for 

Tests Gap-800-7d and Berm-7d, the effect of soil improvement is noticeable but they 

are less effective as compared to that of Test FTreat-7d especially at deeper 

excavation. However, all three excavations stabilised with improved soil showed a 

distinct contrast in behaviour when compared to the normalised surface settlement 

obtained from the untreated excavation test (NTreat). These trends confirm the 

effectiveness in stabilising a deep excavation using an embedded improved soil layer, 

the word ‘embedded’ is used to emphasize that the improvement is carried out below 

excavation level and usually prior to excavation. The consistency in the four sets of 

results also provides confidence in the reliability of the centrifuge tests. 

 

5.2.4 Comparison of Lateral Earth Pressure 

The response of lateral earth pressure from total stress cells placed on the 

retaining wall is another interesting parameter to provide a better understanding of the 

way earth stresses are mobilised during an excavation stabilised by an embedded 

improved soil layer. In particular, the total stress transducer on the passive side located 

at the level of the improved soil layer could provide useful information on how the 

stresses in the improved soil layer developed during the process of excavation. Figures 

5.6 and 5.7 show the development of an estimated deviatoric stress (σh-σv) during the 

process of excavation. σh was measured by the total stress transducer while σv, the 

total vertical stress was estimated from the weight of the remaining soil above the 

respective transducer. 

As shown in Figures 5.6 and 5.7, all deviatoric stresses in the active zone (T1, 
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T2 and T3) reduce while those on the passive side (T4, T5 and T6) increase during the 

process of excavation. This is expected, given the fact that during the process of 

excavation, the lateral earth pressure behind the wall will reduce to the active state 

while stresses in front of the wall will increase to the passive state. The rate of 

reduction (or increase) in deviatoric stress at active (or increase at passive) side is 

much faster in the case of an untreated excavation test (NTreat), as compared to other 

tests where an embedded improved soil layer has been provided. This means that the 

movement of the retaining wall is much larger, and the active state is approached more 

rapidly. 

For the total stress transducer T5, which was located in front of the retaining 

wall where the improved soil layer is located, the total stress in Test FTreat-7d 

increases at the fastest rate. The lateral stresses at this point develop continually until 

the end of the excavation. This is due to the fact that the improved soil layer is rigid 

enough to transmit the lateral force from the retaining wall to the other rigid end, 

which in this case is the sidewall of the strongbox container, effectively acting as an 

embedded soil strut. With the restraining effect provided by the improved soil layer, 

most of the lateral forces from the retaining wall would be attracted to this stiff layer. 

Consequently, the development of the total stresses at location T6 and T4 is lower as 

can be seen in Figures 5.7 (a) and 5.7 (c) respectively. The ability of the improved soil 

layer being able to attract higher lateral stress is a clear indication that the improved 

soil layer is behaving like a strut. 

The rate of increase in deviatoric stresses at T5 in Tests Gap-800-7d and Berm-

7d is much lower than that in Test FTreat-7d but they are still higher than that in Test 

NTreat. In the case of Test Berm-7d, it is noted that the lateral stresses for the 

improved soil berm have a sudden dip when excavation reaches a depth of about 3.5m. 
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Such a drop in lateral stress implies that the improved soil berm may have failed. After 

the excavation test, a closer visual inspection showed that the improved soil berm was 

still intact with no sign of any compression failure. Therefore, the more likely scenario 

is that the improved soil berm could have failed by a sliding mechanism similar to the 

behaviour of a floating pile when it’s being overloaded. 

The principal difference between an improved soil strut and an improved soil 

berm is that in the latter, one end is in contact with the wall while the other end is 

floating in the soft soil matrix. Thus, the improved soil berm cannot fully mobilise its 

compressive strength, as the end bearing will control the amount of compressive 

stresses that could be transferred. Clearly, the behaviour of an embedded improved soil 

berm is much more complex and cannot be explained by just considering the 

compressive stiffness as in the case of the improved soil strut. As the behaviour of 

such berm is quite different from that of a strut, the use of a composite layer to 

represent such berm with an equivalent stiffness, such as in most numerical programs 

based on sub-grade reaction, has to be re-considered. Clearly, the stiffness of improved 

soil, which plays a critical role in the case of improved soil strut, needs to be re-

assessed for an improved soil berm. This issue will be addressed at a later stage. 

 

5.2.5   Comparison of Pore Water Pressure 

 The response of pore water pressure on the active side at 5m behind the 

retaining wall was also monitored and provided another indicator to examine 

behaviour of the ground due to the excavation. Profiles of negative pore water pressure 

of these four tests are plotted in Figures 5.8 for 3 stages of excavation, namely 1m, 3m 

and 5m. After 1m of excavation, in Test NTreat, higher negative excess pore water 

pressure was registered near to the ground surface (P7), but reduced in magnitude 
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downwards to the wall toe (P5). However, the negative pore pressure increased again 

beyond the toe of the wall (P4); clearly indicating that at this location on the active 

side, the effect of load reduction on the excavation side was felt. This development of 

negative excess pore water pressure is consistent with the soil movement caused by the 

wall movement as shown by the displacement vectors in Figure 5.1. For the excavation 

tests where an improved soil layer is provided, the magnitude of negative pore water 

pressure is much smaller, clearly indicating less ground movement induced. At this 

early stage of excavation, the differences among the tests are small though it is also 

clear that the negative pore water pressure for Test FTreat-7d is smallest, followed by 

the case with a berm and finally with a gap. 

In all the stabilised excavation tests, the initial drop in pore water pressure is 

small but increases with increasing depth of excavation as seen in Figure 5.8b for an 

excavation depth of 3m. A larger drop in pore water pressure is now observed when 

there is a region of untreated soil in between the retaining wall and improved soil layer 

as in Test Gap-800-7d. This drop is slightly bigger than that of the excavation test with 

an improved soil berm (Test Berm-7d) at this stage of excavation, indicating that more 

wall movement have been induced in Test Gap-800-7d. This was expected due to the 

fact that the region of untreated soil would be compressed with the exertion of lateral 

force from the retaining wall. In the other two treated excavation tests that do not have 

such a gap of untreated soil (FTreat-7d and Berm-7d), the wall movement is much 

smaller at this point of excavation, resulting in smaller negative pore pressure. 

However, the drop in pore water pressure in Test Berm-7d became very 

significant after excavation reached a depth of 5m and in fact exceeded that of the case 

with a gap. The sudden increase was found at P6 where the improved soil berm was 

located. This was a clear sign of a failure in the improved soil berm, which then lost its 
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restraining capability. Due to the fact that only the front portion of soil next to the 

retaining wall was treated and there existed a large untreated soil behind, the improved 

soil berm has to transmit the lateral load from the retaining wall to the surrounding 

soil. Thus, the berm is behaving like a horizontal floating pile, which mobilises its 

passive resistance mainly through the skin friction and end bearing. At some point in 

time, the combined skin friction and end bearing is inadequate to resist the inward 

movement of the retaining wall and as a result, failure occurs. When this happens, its 

response becomes worse than the case with gap and hence, a much larger negative 

pore water pressure is developed. Clearly, this confirms that with an improved soil 

berm, the failure is sudden and thus this fact must be accounted for in design. 

The response of pore water pressure located below the wall toe, namely P4 was 

also examined for all 4 cases and 3 different excavation depths, to understand the 

behaviour of an excavation with a floating wall system. It was noted that the drop of 

pore water pressure at this point was always greater than those transducers above it. 

This is consistent with the fact that the wall toe was floated in soft ground and not 

keyed into a hard stratum. Though the improved soil layer can act as a screen to reduce 

the effect of load relief, it also shows that there is a greater potential of base heaving to 

occur in an excavation if a floating wall system is adopted. 

 

5.2.6   Performance of Composite Ground Resistance on Passive Side 

Hitherto, only cumulative effect of various parameters is examined for the 

different configurations of soil improvement. However, often at a particular stage of 

excavation, it is difficult to compare the composite stiffness of the system as a result of 

using different configurations of soil improvement based on these cumulative effects. 

A more useful parameter is to examine the performance of various parameters due to 
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the removal of one layer of soil at a fixed depth for the different configurations of soil 

improvement. Obviously, it is near impossible to obtain such data from field works. 

This is where correctly scaled physical models can prove to be extremely useful. In the 

present case, the resulting movement or change in load due to one scrapping operation 

at a fixed depth is compared for the different tests. This is termed the “incremental 

movement” and its direct comparison provides a useful benchmark to evaluate the 

composite stiffness available at that depth for different systems of soil improvement. 

An excavation step in the centrifuge test, as mentioned in Chapter 4, referred to 

the process of removing a soil layer of 0.5m thick using the excavator’s scrapper 

where this scrapper initially cut the soil next to the retaining wall and dragged it 

towards the lift-shaft at the other end. Since this is a controlled test with continuous 

data acquisition, incremental movements arising from each excavation step are being 

captured accurately. By comparing the behaviour of different incremental parameters, 

the behaviour of the composite passive ground during the removal of soil at a 

particular depth can now be studied. 

Figures 5.9 show the incremental lateral wall movements due to the removal of 

another 0.5m of soil at 3 different depths of excavation, namely at 1m, 3m and 5m. For 

example, if the scrapper is at a depth of 1m, this means the removal of soil from a 

depth of 1m to a depth of 1.5m. In the case of an untreated excavation Test NTreat, the 

incremental wall movement increases throughout the entire process of soil removal but 

at a more rapid rate in the early stage of removal near to the wall. However, this was 

not the case for Test FTreat-7d where an improved soil strut was provided. Besides 

having a much smaller movement, the way the incremental wall movement developed 

was completely different. As shown in Figure 5.9(c)(ii), the movement induced was 

very small when only 6m of soil layer in front of the retaining wall was removed and 
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only thereafter, the movement began to pick up. Nevertheless, the overall movement is 

still much smaller than in the other 3 cases. 

Clearly, the relief of overburden pressure during an excavation affects the 

composite stiffness on the passive side of the excavation as well as increasing the 

imbalance between the active and passive side. When the removal of soil happened at 

greater depths, the impact of soil removal would be more substantial, as the initial 

lateral stress acting against the wall increases with depth. Therefore, a larger 

incremental movement would be expected as the excavation goes deeper. This effect 

of stress relief was very significant for an excavation test without an improved soil 

layer (NTreat) since the soft soil on the passive side could only offer limited resistance 

to the inward movement of the wall. 

In the case of Test FTreat-7d, where an embedded improved soil strut was 

provided, during the early stage of the scrapping operation, only negligible movement 

occurred. It was only after some amount of soil had been removed before a more 

noticeable movement occurred. This is consistent with the behaviour of a strut, 

whereby only with certain amount of opening would the strut then be allowed to bend 

and as a result develop movement in the retaining wall. Hence, this incremental 

movement trend strongly suggests that the improved soil layer is behaving like a strut 

where the bending of strut will become significant after a certain amount of removal of 

soil has taken place from the retaining wall. Similarly like a strut, the improved soil 

layer would then be expected to depend on the stiffness and amount of bending to 

derive its resistance. 

In the case of soil improvement with a gap of untreated soil, the incremental 

wall movement was induced in the early stage of scrapping and continued to increase 

throughout the entire operation. This trend is somewhat similar to that of the untreated 
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excavation test (NTreat) though the magnitude of movement is much smaller. Thus, 

the presence of the untreated soil has affected the overall behaviour of the composite 

passive ground, and a significant movement is induced even at the early stage of soil 

scrapping. As the gap is located next to the retaining wall, the impact of soil removal 

will be felt directly once the overburden stress above the untreated soil portion is 

reduced. The reduction of the composite stiffness of the passive ground is seen to 

occur throughout the process of scrapping at the same depth. 

When an improved soil berm was provided, the incremental wall movement 

occurred mainly during the early stages of scrapping and beyond a certain distance 

from the retaining wall, further scrapping of soil did not induce additional movement. 

This trend, qualitatively, is the exact opposite of that observed for FTreat-7d. Despite 

the similarity shown in earlier comparison, the two behaviours are markedly different. 

It was found that the incremental movement almost ceased once the excavator’s 

cutting blade passed the edge of the improved soil berm. This is an interesting 

observation, which means that the incremental movement would only occur when the 

soil above the berm was removed. The behaviour of an embedded improved soil berm 

in many ways is similar to the behaviour of a floating pile. Thus, the removal of soil 

above the berm would reduce the skin friction. This means that the compression of 

improved soil berm is insignificant and therefore, the passive resistance would not be 

governed by its stiffness. Like a floating pile, the improved soil berm has to transmit 

the lateral force from the retaining wall to the surrounding ground through frictional 

resistance and end bearing. Since the improved soil berm was resting in soft clay, the 

contribution of end bearing to its composite stiffness of passive ground would not 

change much and therefore, it is mainly the interfacial shear resistance that is being 

increasingly mobilised to restrain the inward movement of the retaining wall. 
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5.2.7   Performance of Improved Soil Layer in A Braced Excavation 

In order to understand the behaviour of an embedded improved soil layer in a 

braced excavation, Test FTreat-7d-Strut was subsequently carried out. Similar to Test 

FTreat-7d, a 2m thick improved soil layer extending from wall to wall was placed at 

8m below the ground level in front of the retaining wall. During the initial stages of 

excavation, the retaining wall was not braced. When the excavation reached a depth of 

3m, the scrapping of soil ceased temporarily in order to allow a strut to be installed at 

the ground level in front of the retaining wall. After the strut was installed, the 

excavation proceeded till a depth of 6m. 

The profile of bending moment in the wall in Test FTreat-7d-Strut is shown in 

Figure 5.10. Two distinct sets of bending moment profiles were observed; the first 

profile was for an unbraced excavation and the other profile was after the wall had 

been propped. When the excavation was supported by a retaining wall but without 

bracing above the excavation level, the profile of bending moment was rather 

straightforward; the maximum bending moment in the wall occurred approximately at 

the level where the improved soil layer was located. However, the profile of the 

bending moment changed drastically after the wall was propped at the ground level. 

The direction of bending moment at the upper part of the retaining wall in between the 

improved soil layer and strut was reversed. This is consistent with the behaviour of a 

simply supported wall, which are restrained by two rigid supports: one being the strut 

device at ground level while the other being the embedded improved soil layer at the 

mid-level of the retaining wall. Similar trends of wall bending profiles were observed 

at the lower part of the retaining wall between the improved soil layer and wall toe 

though the magnitude was much smaller. 
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The above results demonstrated the impact of having an embedded improved 

soil layer regardless whether the excavation was braced or not. The observation points 

out the fact that the presence of an embedded improved soil layer has provided a rigid 

support to the retaining wall below the excavation level. With such a support, the 

lateral wall movement is restrained and the wall tends to bend about this level. Thus, 

the embedded improved soil layer behaves very much like a strut to the retaining wall, 

albeit this is below the excavation level. 

To further understand the stresses induced in the improved soil layer due to the 

propping action, the lateral stresses in the passive zone at T5 were presented in Figure 

5.11. The lateral stresses increased initially at a faster rate when the excavation was 

not braced but after the wall was propped, the stress development was much slower. 

Clearly, the strut member installed above the excavation has helped to bear part of the 

lateral load transmitted by the retaining wall, which were mainly resisted by the 

improved soil strut alone at the initial stage when the excavation was not braced. 

 

5.3 Effect of Stiffness of Improved Soil Strut 

Previous sections have put forth evidences that for a full-improved soil layer to 

function as a strut, it needs to be stiff enough to transmit lateral forces from the 

retaining wall to the other rigid end. Intuitively, this implies that the stiffer the 

improved soil, the more effective the improved soil layer will be in restraining the 

retaining wall. This is a valid assertion as far as control of movement is concerned. 

Usually in design, a smaller stiffness value is used in the analyses to provide an upper 

bound on the expected movement. This is considered to be conservative, as using a 

more realistic stiffness will mean that the predicted movement will be smaller. 

However, with a stiffer improved soil layer, the bending moment of wall will 



 

134 

increase. This is because when a stiffer improved soil strut is introduced, the capability 

of the wall to retain the soil increases and as a result, more forces would be attracted to 

the wall. Though this seems logical, to the author’s awareness and experience in 

industry in Singapore, this is rarely considered. To evaluate the extent of this effect, 

another test was carried out, namely Test FTreat-28d. In this test, the improved soil 

was cured for 28 days instead of 7 days as used in Test FTreat-7d. As expected, the 

longer curing time would increase the stiffness of improved soil. Reviewing the results 

obtained in Chapter 3, elastic modulus of the improved soil in Test FTreat-28d would 

be about 1.5 times higher than that in Test FTreat-7d. In reality, due to the nature of 

cement mixing and the way the improved soil layer is formed, the range of elastic 

modulus can be significantly larger. 

Figure 5.12 compares the surface settlement behind the wall in these two tests. 

The results show that the surface settlement for stiffer improved soil layer is 

consistently lower at every excavation stage. However, when the profile of bending 

moment in the wall is plotted in Figure 5.13, Test FTreat-28d, with a stiffer improved 

soil layer, clearly shows that the retaining wall experiences a much higher bending 

moment. Figure 5.14 shows that a higher resistance is mobilised in the improved soil 

layer where the lateral stresses develop at a faster rate for the stiffer improved soil 

layer. The trends of the incremental wall movements in both tests as shown in Figure 

5.15, are very similar, but again, the test with the stiffer improved soil layer proved to 

perform better in restraining the wall movement. 

These results consistently show that the effectiveness of an improved soil layer 

behaving like a strut is very much dependent on the stiffness of the improved soil 

layer. While a stiffer improved soil layer provides a higher resistance to the retaining 

wall, the bending moment in the wall also increases as well. If the curing time is much 
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longer than what is expected, the increase in wall bending moment will become more 

significant. This is an important point, and in design, it is recommended that the 

maximum expected stiffness in the improved soil, which will then produce a higher 

bending moment to be considered during the design of the retaining wall. On the other 

hand, in estimating the ground movement in adjacent ground, the lower expected 

stiffness should be used as per present practice. This is an important consideration that 

needs to be enforced to ensure a safer design and is currently overlooked by many 

geotechnical engineers. 

 

5.4 Effect of the Width of Gap of Untreated Soil 

The detrimental effect of having a gap via presence of untreated soil in 

between the retaining wall and improved soil layer had been demonstrated clearly in 

Test Gap-800-7d. The existence of a gap reduces the overall performance of the 

improved soil layer tremendously even at the early stage of excavation. As the 

untreated soil is highly compressed during the lateral load transfer stage, it would be 

crucial to investigate how the gap could still withstand this force if the width of the 

soil gap is made smaller. 

Therefore, an additional test, namely Gap-400-7d was carried out.  In this test, 

the width of the gap of untreated soil was reduced to 400mm, which was half of the 

gap width of Test Gap-800-7d. The behaviour of these tests was examined together 

with Test FTreat-7d where the excavation test was stabilised with an improved soil 

strut. In actual fact, FTreat-7d could be re-named as Gap-0-7d, as this test was very 

similar to the other two tests except that it had no gap in between the retaining wall 

and improved soil layer. 

Cumulative wall movement and surface settlement in Tests FTreat-7d, Gap-
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400-7d and Gap-800-7d are compared in global as shown Figures 5.16 (a) and 5.17 

(a). With the gap width halved, the reduction in wall movement and surface settlement 

was almost 50%. This shows that the gap width significantly influence the 

performance of the improved soil layer. A closer examination of the enlarged 

movements at the early stage [Figures 5.16 (b) and 5.17 (b)] shows that the improved 

soil layer with a smaller gap has almost similar behaviour to that of an improved soil 

layer without gap but beyond an excavation of 1m, significant deviation between the 

two starts to appear. This means that the mechanism of how the gap of untreated soil 

transfers the high compression load might be crucial in influencing the overall 

performance of its passive resistance. 

The behaviour of deviatoric stress σh - σv in the improved soil layer for these 

tests against the lateral wall deflection is shown in Figure 5.18. The way lateral 

stresses is mobilised in the three tests showed marked contrast. In the case of Test 

FTreat-7d, the lateral stress increases rapidly and continually all the way until towards 

the end of excavation. In contrast, for the two excavation tests with gap of untreated 

soil in between the retaining wall and improved soil layer, the lateral stresses also 

increase monothically but the rate of increase is significantly smaller. With a smaller 

gap, the mobilised lateral resistance is higher, but there is still a distinct difference 

with that in the case where there is no gap. 

The incremental lateral wall movements in the two tests, Gap-400-7d and Gap-

800-7d are shown in Figure 5.19. The incremental wall deflection in each and every 

step of soil removal for both tests increased with increasing depth of excavation and 

most of these movements were induced in the early stage of scrapping. When the gap 

was smaller, the wall movement ceased much earlier. This implied that the area of 

influence from the impact of reducing the overburden stress increased with wider gap. 
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Due to the fact that the presence of untreated soil in between the improved soil 

and the retaining wall, there is a discontinuity in lateral rigidity of the improved soil 

layer restraining the retaining wall. As a result, the composite ground resistance of the 

improved soil layer would be reduced. The net effect is as good as a drop in the 

stiffness of an equivalent improved soil strut. The presence of a soft untreated soil 

would mean that very high compression of this portion of soil could occur when the 

retaining wall exerted a lateral force on it, to be transmitted to the improved soil layer. 

As such, it is important to be able to have an assessment on how the presence of such 

untreated soil portion will affect the composite stiffness. This aspect will be dealt later 

in Chapter 6, which presents the numerical studies, as carrying out centrifuge tests to 

study this effect is expensive and lengthy. More importantly, a soil smaller than that as 

in Test Gap-400-7d (which is going to be smaller than 4mm in model scale) would be 

very difficult to place with any accuracy. 

 

5.5 Effect of the Stiffness of Improved Soil Berm 

To justify that the behaviour of improved soil berm is similar to the behaviour 

of a floating pile and not of an improved soil strut, the results from a test conducted by 

another student [Thanadol (2003)] is reported, namely Berm-6m. In this test, the 

length of the improved soil berm was kept the same as in Test Berm-7d, which was 

measured to be 10m from the retaining wall. Instead of 7 days curing, the improved 

soil berm in Test Berm-6m was cured for 6 months. From the results in Chapter 3 – 

Section 3.4.3(d), clearly in this case, the stiffness of improved soil berm would 

increase significantly with the ratio of elastic modulus for a sample cured for 6 months 

to be about 2 times higher than that at 7 days. 

The cumulative lateral wall movement above the ground level for both tests is 
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compared in Figure 5.20. The results show that the wall movements in both tests with 

improved soil berms of significantly different stiffness are pretty much the same. This 

showed that in the present case, doubling the stiffness of the improved soil berm has 

virtually no impact on its resistance. Further evaluation using a normalised surface 

settlement behind the wall showed consistent results [Figure 5.21], which again 

confirm the fact that increasing the stiffness did not make any difference. Obviously, 

these results show that the behaviour of using an improved soil berm is not the same as 

using an improved soil strut. 

To understand the behaviour of improved soil berm further, a comparison was 

made on the mobilised deviatoric stress of these tests as shown in Figure 5.22. The 

comparison indicated that the mobilised development of deviatoric stress in Test 

Berm-7d and Berm-6m were practically the same, and they were much lower than that 

of Test FTreat-7d. This shows a very interesting feature of an improved soil berm, in 

contrast with an improved soil strut. In an improved soil berm, the results suggest that 

the end bearing mobilised is virtually the same. This is reasonable for if the improved 

soil layer is sufficiently stiff, the end bearing will be a function of the location and 

dimension of the improved soil layer, in particular the thickness. The other resistance 

would then be mobilised by the interfacial friction between the berm and surrounding 

soil. In this scenario, as long as the stiffness of the improved soil layer exceeds some 

threshold, then raising the stiffness beyond that threshold will not improve the overall 

resistance provided by the berm. This is a complicated issue and has been studied by 

Thanadol (2003). Therefore, the main purpose to conduct the test with improved soil 

berm in this study is to understand its difference from an embedded improved soil 

strut. 

As before, the composite ground resistance could also be evaluated in greater 
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details by studying the incremental wall movement. As shown in Figure 5.23, there is 

very little difference in the behaviour between Test Berm-7d as compared to Berm-6m. 

Consistent with the observation made in Test Berm-7d earlier, the bulk of the 

movement in Test Berm-6m had also occurred when the soil directly above the 

improved soil berm was removed. Removal of soil beyond the edge of improved soil 

berm does not further contribute to the incremental wall movement. The results 

reinforce the postulation that the interfacial shear resistance is playing an important 

role in providing the resistance force and the end bearing is not as critical. 

Clearly, in the case of an embedded improved soil berm, the failure mechanism 

is, in many ways, similar to the behaviour of a floating pile, in spite of being subjected 

to a continually reducing confining stress, especially on the upper face. Therefore, the 

combined interfacial shear resistance and end bearing play a more dominant role than 

the compression of the improved soil berm itself. As discussed above, increasing the 

stiffness of the improved soil berm above a threshold value would not provide any 

improvement in the performance to restrain the retaining wall. 

 

5.6   Summary of Findings 

The main objective of conducting the series of excavation tests reported above 

was to investigate the behaviour of composite ground resistance provided to a 

retaining wall when different configurations of soil improvement are applied to the soil 

on the excavated side and below the level of excavation. By comparing the results of 

these experimental tests, an insight of the different mechanisms involved in mobilising 

these improved grounds to restrain the retaining wall is gained. Some of these insights 

have significant implications on the design of excavation with such soil improvement. 

The key findings established in this chapter are summarized as follows: - 
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(a) When an excavation is carried out in deep deposits of soft clay without soil 

improvement, the soil mass on the passive side in front of the wall is subjected to 

substantial lateral compression and some amount of basal heave. This indicates 

that insufficient ground resistance has been provided by the soil below the 

excavation level to restrain the retaining wall, and as result of this, causing large 

associated ground movements. 

(b) When soil of a certain thickness at a particular depth in the passive side is entirely 

improved, the ground resistance in front of the wall increases, resulting in reduced 

associated ground movements. This embedded improved soil layer was found to 

behave like a strut, mobilising its resistance from the compression effect of 

improved soil in between the two walls to transfer the lateral force from the active 

side. As a result of such provision, the stiffness of improved soil strut, which 

directly affects the composite stiffness of passive ground, is the key parameter to 

be considered in design. Notwithstanding the positive contribution of a stiffer 

improved strut in restraining the retaining wall, it is also noted that a stiffer 

improved soil strut would yield a higher bending moment in the retaining wall. 

This is an important consideration to ensure a safer design. 

(c) In the case when the soil improvement has a gap of untreated soil in between the 

retaining wall and improved soil layer, the performance of the excavation drops 

significantly with almost 100% increase when the width of gap is doubled. The 

ground movements were induced even during the initial stage of excavation but it 

was noted that these movement are gradual even at greater depth of excavation. 

Though the improved soil layer is still behaving like a strut, the high 

compressibility of the untreated soil in between the retaining wall and improved 

soil layer has affected the composite stiffness to a large degree. 
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(d) For a cost-effective design, an embedded improved soil berm is sometimes used in 

excavations, especially when the excavation area is large. The 10m berm was 

found to be almost as effective as a strut. Nevertheless, the way the berm transfers 

the lateral force from the retaining wall to the surrounding soil, which is by a 

combination of skin friction and end bearing, is totally different from the 

behaviour of a strut. Instead of compressive strength, the passive resistance is 

provided mainly through the contact area of the shear resistance and end bearing. 

What is also clear in this case is that the stiffness of the berm does not have a 

significant effect on the performance during excavation. It is important to note 

that the failure behaviour of a berm is sudden and therefore, adequate provision in 

design should be allowed to avoid a catastrophic failure. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 5.1   Ground displacement vectors in Test NTreat 142 



 143
 

     

 
(i) After 2m excavation       (ii) After 4m excavation 

 
(a)    Images of Test NTreat 

 
 
 
 
 
 
 
 
 
 

(i) After 2m excavation       (ii) After 4m excavation 
 

(b) Images of Test FTreat-7d 
 
 
Figure 5.2   Images of Tests NTreat & FTreat-7d 
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(a) Global 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Enlarged 

 
 

Figure 5.3   Lateral wall movement at 3m above ground level (GL) in  
  Tests NTreat, FTreat-7d, Gap-800-7d and Berm-7d 
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Figure 5.4   Surface settlement at 2m behind wall in Tests 

  NTreat, FTreat-7d, Gap-800-7d and Berm-7d 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5   Normalised surface settlement behind wall in Tests 
 NTreat, FTreat-7d, Gap-800-7d and Berm-7d 
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(a) Located at T3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Located at T2 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

(c) Located at T1 
 

Figure 5.6   Lateral earth pressure response in terms of deviatoric stress (Vh-Vv) in  
  active side in Tests NTreat, FTreat-7d, Gap-800-7d and Berm-7d 
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   (a) Located at T6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (b) Located at T5 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

   (c) Located at T4 
 

Figure 5.7   Lateral earth pressure response in terms of deviatoric stress (Vh-Vv) in  
  passive side in Tests NTreat, FTreat-7d, Gap-800-7d and Berm-7d 
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(a) After 1m Excavation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) After 3m Excavation 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

(c) After 5m Excavation 
 

Figure 5.8   Pore water pressure response in Tests NTreat,  
 FTreat-7d, Gap-800-7d and Berm-7d 
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(a) Excavation from 1m to 1.5m 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Excavation from 3m to 3.5m 

 
 
 
 
 

 
 
 
 
 
 
 

 
     

(i)  Global           (ii) Enlarged 
(c) Excavation from 5m to 5.5m 

 
Figure 5.9   Incremental lateral wall movement in Tests NTreat,  

   FTreat-7d, Gap-800-7d and Berm-7d 
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Figure 5.10   Profiles of wall bending moment in Test FTreat-7d-Strut 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.11   Mobilised lateral load resistance in Test FTreat-7d-Strut 
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    Figure 5.12   Surface settlement behind wall in Tests  
 FTreat-7d and FTreat-28d 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.13   Profiles of wall bending moment in Tests 

   FTreat-7d and FTreat-28d 
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    Figure 5.14   Mobilised lateral load resistance in Tests  
 FTreat-7d and FTreat-28d 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.15   Incremental lateral wall movement in Tests 

   FTreat-7d and FTreat-28d 
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(a) Global           (b) Enlarged 
 

Figure 5.16   Lateral wall movement at 3m above ground level in Tests  
    FTreat-7d, Gap-400-7d and Gap-800-7d 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(a) Global           (b) Enlarged 
 

Figure 5.17   Surface settlement at 2m behind wall in Tests  
    FTreat-7d, Gap-400-7d and Gap-800-7d 
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Figure 5.18   Mobilised lateral resistance with lateral wall movement  

   in Tests FTreat-7d, Gap-400-7d and Gap-800-7d 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.19   Incremental lateral wall movement in Tests 
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      (a) Global           (b) Enlarged 
 

Figure 5.20   Lateral wall movement at 3m above ground level in Tests 
    FTreat-7d, Berm-7d and Berm-6m 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.21   Normalised surface settlement behind wall in Tests 
   NTreat, FTreat-7d, Berm-7d and Berm-6m 
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Figure 5.22   Mobilised lateral resistance with lateral wall movement  

   in Tests FTreat-7d, Berm-7d and Berm-6m 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.23   Incremental lateral wall movement in Tests 

   Berm-7d and Berm-6m 

0 100 200 300 400

Lateral Wall Movement at 3m above GL(mm)

-50

50

150

250

350

V
�
�
�
�

�
�
�
V

Q
h

T5
FTreat-7d

Berm-7d

Berm-6m

(k
Pa

)

03691215
Distance of Scraper Away From Wall (m)

0

50

100

150

200

In
cr

em
en

ta
l L

at
er

al
 W

al
l M

ov
em

en
t 

at
 3

m
 a

bo
ve

 G
ro

un
d 

L
ev

el
 (

m
m

) Berm-6m

1m Exc.

3m Exc.

5m Exc.L
en

gt
h 

of
 B

er
m

 =
 1

0m



157 

Chapter 6 

BEHAVIOUR OF AN EMBEDDED IMPROVED SOIL LAYER 

 

6.1   Introduction 

In the preceding chapter, results from a series of excavation tests performed on 

the centrifuge were used to distinguish certain behaviour of excavation stabilised with 

different arrangements of improved soil layer. It was clearly shown that there were 

distinct differences on how the composite ground on the passive side had mobilised its 

resistance. Instead of relying solely on the compression of the improved soil as in the 

case of an improved soil strut, there were other important contributing factors (e.g. gap 

and berm) that could also affect the performance of the embedded improved soil layer. 

In effect, these experimental results have provided considerable amount of evidences 

that the behaviour of a stabilised excavation is much more complicated. The behaviour 

of the embedded improved soil layer during excavation has not been analysed in detail 

previously, mainly due to a dearth of quality data, both from field and model tests. As 

shown in Chapter 5, this has been partly alleviated with the series of centrifuge tests 

that had been conducted. 

As centrifuge tests are complicated and time-consuming, it is impractical in 

this study that all desired tests are to be conducted using the centrifuge technique. 

Furthermore, the instrumentation technology and data acquisition system employed 

during these centrifuge tests (as discussed in Chapter 4) could not allow enough 

measuring devices to be installed in each test and as a result, only a limited range of 

data could be captured. Also, installing too many instruments at one time will cause 

significant disturbance to the soil sample in a small-scaled model. Owing to such 

constraints, there are insufficient experimental data for providing a detailed 
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understanding of the mechanisms involved. 

Considering the limitation of centrifuge testing, one solution is to use a 

numerical method to complement the study. The numerical method is an effective 

approach as it can provide comprehensive outputs at all desired locations. However, 

the major concern of a numerical study is that the analysis is highly dependent on the 

input material parameters and selected models, which may not simulate accurately the 

real behaviour. This is where the centrifuge test results available can be used to 

complement results from the numerical analysis to ensure the right behaviour is 

correctly captured. This will facilitate the understanding of mechanisms of the 

embedded improved soil layer through detailed parametric studies. 

 

6.2   Finite Element Method (FEM) 

6.2.1   CRItical State Programme (CRISP) 

Two-dimensional numerical analysis was performed using a finite element 

(FE) program called CRISP (CRIctical State Program). This program incorporates a 

fully coupled consolidation analysis based on Biot’s formulation using a number of 

well-known constitutive models for soils, which have been widely used to study 

problems related to excavation and earth retaining structures [Powrie and Li (1991 and 

Yong et al. (1996)]. In this study, numerical analyses were carried out using the 

commercial version known as SAGE-CRISP [Woods and Rahim (1999)]. Details of 

the CRISP program will not be given here but can be found in Britto and Gunn (1987). 

In the present numerical study, the Finite Element Method (FEM) was 

preferred over classical empirical and semi-empirical approaches because the retaining 

structures analysed using these conventional methods could only address the stability 

issue without offering means to predict the ground deformation directly. It is 
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particularly crucial in this study to be able to assess the stress and strain behaviours of 

the embedded improved soil layer so as to understand in greater detail the mechanisms 

involved. These aspects can be addressed by the FEM, which basically treats the soil 

as a continuum. The FEM takes relatively longer time to execute but nowadays, it no 

longer a problem with the availability of powerful desktop computational resources. 

 

6.2.2   Selection of Input Parameters 

For an appropriate simulation of the mechanical behaviour of an excavation 

support system using the FE analysis, it is crucial to realistically model the stress-

strain behaviour of the soil. Besides using the basic linear elastic model derived from 

Hooke’s Law, constitutive soil models that are capable of simulating the plastic 

behaviour of soils have also been used. Currently, there are three main types of soil 

models that are widely used in geotechnical engineering and excavation analyses 

especially in engineering practice, namely: - 

(a) Hyperbolic stress-strain model such as those used by Clough, Duncan and their 

colleagues [Duncan and Chang (1970), Tsui and Clough (1974)] as well as other 

researchers [Balasubramaniam et al. (1976), Wong and Broms (1989), Ou and 

Chiou (1993)]. 

(b) Elastic-perfectly-plastic model of Mohr-Coulomb or Druck-Pager criteria [Brown 

and Booker (1985), Yong et al. (1989), Smith and Ho (1992)]. 

(c) Cam-Clay models including the Schofield model [Schofield and Wroth (1968)], 

Critical State model [Zienkiewicz et al (1972)], Cap model [DiMaggio and Sandler 

(1971)] and modified Cam-Clay model [Simpson (1972), Britto and Kusakabe 

(1984), Lee et al. (1989)]. 

In this study, the soil in the model ground was simulated using the modified 
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Cam-Clay model. The modified Cam-Clay is an isotropic, non-linear, elasto-plastic 

strain hardening soil model, which has originally been developed at the University of 

Cambridge in the 1960s. For the model described by Roscoe and Burland (1968), it is 

usually called the modified Cam-Clay in order to distinguish it from an earlier model 

described by Schofield and Wroth (1968), known as the original Cam-Clay model. The 

main soil properties for the modified Cam Clay soil model (λ, κ) used for the FE 

analyses were obtained from oedometer test results on remoulded soil samples (please 

refer to Chapter 4). If there was insufficient information available, reported values (M 

and Poisson’s ratio, ν) from other sources were used [e.g. Bolton et al. (1989)]. 

Typically, the variation of M and ν for similar type of clay is expected to be small and 

also less sensitive to the overall behaviour of the excavation. The input parameters 

used are summarised in Table 6.1. 

The improved soil layer was modelled using the elastic-perfectly-plastic model 

following the yield criterion of Mohr-Coulomb. The Mohr-Coulomb yield criterion is 

also widely used for soils, especially for a stiffer material. The main parameters for the 

Mohr-Coulomb used for the FE analyses, E (Young’s modulus) and C (shear strength), 

were determined from a series of unconfined compression tests (please refer to 

Chapter 3), as shown in Table 6.2. In most situations involving stabilised excavation, 

the failure state will not be reached and therefore, capturing the right E of the 

improved soil layer is more important as compared to the c value. The model retaining 

wall has also been modelled using the elastic-perfectly-plastic model of Mohr-

Coulomb and its properties are shown in Table 6.3. 

 

6.2.3 Generated Mesh, Boundary Conditions and In-situ Stress States 

Meshes used for the FE analyses are shown in Figure 6.1. Eight nodes 
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quadrilateral elements were used to model the soft ground, diaphragm wall and 

improved soil layer. The geometry of these meshes followed strictly the dimension of 

the centrifuge tests in model scale. All vertical boundaries are restrained against 

horizontal translation but are free to move vertically. The horizontal boundary at the 

bottom of mesh is restrained both horizontally and vertically while the top horizontal 

boundary, which represented the ground surface level, is free. 

In this study, the soil profile comprised two layers, namely the normally 

consolidated (NC) clay that underlay a thin layer of over-consolidated (OC) clay. The 

vertical and horizontal effective stresses were calculated from the bulk unit weight and 

the Ko values of the two soil layers. Since a single soil model was used, these two 

layers were distinguished through the initial stress condition by using different over-

consolidation ratio and Ko
 value. 

For normally consolidated clay, the coefficient of lateral earth pressure, Ko was 

determined using Jaky’s (1944) relation, 

Ko = Knc = 1 – sin φ’        (6.1) 

where φ’ is the effective friction angle 

For over-consolidated clay, Ko was determined from the empirical relationship 

proposed by Wroth (1975), 

Ko = OCR.Knc - )1(
'1

'
−

−
OCR

v
v       (6.2) 

where OCR is the over consolidation ratio, 'v  is the Poisson ratio, and Knc is obtained 

using Equation (6.1) 

 

6.2.4 Simulation of Construction Sequence 

Each stage of excavation was simulated using an increment block in the FE 
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analysis. In these FE models, the excavation was simulated by removal of elements at 

the excavated zone from the mesh. An important point to note here is that this 

simulation by removing elements en-bloc is almost identical to the scrapping of an 

entire layer of soil in the centrifuge. CRISP uses an incremental non-linear tangential 

stiffness approach and therefore, it is imperative that the load steps used are 

adequately small to avoid large cumulative errors. Each increment block simulating 

the construction sequence was divided into adequate number of sub-increments to 

resemble the incremental load application over the specified time frame. As the 

analyses were based on Biot’s fully coupled consolidation theory, the increments were 

also used to simulate the gradual dissipation of pore water pressure with time. 

 

6.2.5 Comparison of FEM and Centrifuge Test Results 

A comparison of ground displacement vectors from the FEM and centrifuge 

results for the excavation test without soil improvement (NTreat) is shown in Figure 

6.2. It can be seen that displacement vectors from the FE analysis using the soil 

parameters in Table 6.1 agree reasonably well with those obtained from the centrifuge 

test though there are some discrepancies. On the active side next to the wall, the 

predicted value is smaller than measured values while away from the wall, the 

predicted value is much bigger. Both aspects are well known. In the present numerical 

analysis, no slip element is used and thus the model cannot capture the behaviour next 

to the wall accurately. The use of Modified Cam-Clay model is unable to account for 

the non-linear elastic behaviour at small strain and this partly explains the deviation 

some distance away from the wall where the strain is expected to be very small. 

Nevertheless, the reasonable match of the overall pattern of the displacement 

especially on the passive side shows that the input parameters used are acceptable. 
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Though further fine-adjustment was clearly possible to ensure better fit to these 

results, this was not done, as the main purpose of the numerical analyses was not to 

develop precise quantitative results, but rather to capture the right trend of behaviour. 

A comparison between numerical and experimental results was also made for 

three stabilised excavation tests, namely Tests FTreat-7d, Gap-800-7d and Berm-7d. 

As shown in Figure 6.3, the surface settlements at 2m behind the wall predicted by the 

FE analyses produced results quite consistent with those from the centrifuge tests 

except for the case when an improved soil berm is used. Nevertheless, this suggests 

that the input parameters used are reasonable, providing some confidence in the 

outputs from further FE analyses. Though the current verification was only based on 

displacement results, attempts were also made to compare other types of 

measurements. These will be presented intermittently in this chapter. 

 

6.3   Resistance Mechanism of An Embedded Improved Soil Strut 

In the preceding chapter, the way resisting forces have been mobilised by an 

embedded improved soil strut was discussed entirely using results from centrifuge 

tests. It was shown that an embedded improved soil strut had mobilised its resistance 

through compression. Thus, the stiffness of an improved soil strut is an important 

parameter governing its performance during an excavation. However, as mentioned 

earlier, results from the centrifuge tests were not detailed enough to provide a full 

picture of the way various stresses were being mobilised in the improved soil strut. 

 

6.3.1 Distribution of Stresses in the Embedded Improved Soil Strut 

To better understand how the embedded improved soil strut reacts during the 

process of excavation, stresses induced in the improved soil layer were examined from 
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the numerical simulation of Test FTreat-7d. Figures 6.4 present the deviatoric stress of 

vertical sections across the embedded improved soil layer at various distances away 

from the retaining wall. Stress profiles at a distance 0.25m away from the wall for 

excavation depths of 3m and 5m [Figure 6.4 (a)] showed that stresses were 

concentrated at both corners of the improved soil layer next to the wall, while much 

lower stresses were registered towards the centre. The stresses are concentrated at both 

corners because these are sharp corners and in mechanics, a sharp corner is a stress 

concentrator. In reality, such corner is likely to yield and the over-loading is then 

reduced by stress spreading. 

A comparison of the deviatoric stresses induced in the mid-depth of the 

embedded improved soil layer was made between results from the FE analysis and the 

centrifuge test (FTreat-7d) as presented in Figure 6.4 (a). As can be seen, deviatoric 

stresses predicted by the FE analysis agree reasonably well with measured values, 

though the values for the deeper excavation of 5m did not match so well. Considering 

the fact that the soil model is a simplified critical state model and no refinement in soil 

parameters has been carried out, this level of matching is reasonable. A point to note 

here is that the vertical stress, σv used to derive the deviatoric stress from the 

experimental centrifuge test results is merely an estimation instead of the actual 

measured value. 

The stress profile of the vertical section across the embedded improved soil 

layer at a distance 3.5m away from the wall was shown in Figure 6.4 (b). Higher 

stresses were observed at the top of the improved soil layer, reducing towards the 

bottom. However, this trend reversed when vertical sections were taken at distances 

8m and 12m away from the wall [Figures 6.4 (c) and (d)]. Here, stresses at the bottom 

of the improved soil layer were higher. Stresses were also assessed at horizontal 
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sections across the embedded improved soil layer at the top, middle and bottom levels. 

As shown in Figure 6.5, again, stresses were concentrated at both corners of the 

improved soil layer next to the retaining wall. Stresses along the top of the improved 

soil layer were decreasing with distance away from the wall, but an opposite trend was 

observed when stresses along the bottom of the improved soil layer were evaluated. 

Stresses along the mid-level of the improved soil layer were rather constant. 

From these stress results, it is clear that there are two locations in the 

embedded improved soil strut where there is a concentration of high deviatoric 

stresses; these are located at the two corners adjacent to the retaining wall. These are 

the regions in the embedded improved soil layer that are likely to be subjected to 

substantial yielding. In the present numerical analysis, no interfacial elements were 

used at the interface between the wall and the improved soil strut and this could cause 

some deviation from what is observed. In addition, stresses at regions along the top 

part closer to the wall and the bottom part further away from the wall are relatively 

higher. These are indications, which reflect the way the embedded improved soil strut 

will deform during an excavation. 

 

6.3.2 Deformed Shape of the Embedded Improved Soil Strut 

To better understand the deformation of the embedded improved soil strut 

during an excavation, vertical displacement along the bottom face of the improved soil 

layer was plotted in Figure 6.6(a). The total vertical stress along the same bottom face 

of the improved soil strut was also evaluated as shown in Figure 6.6(b) so that the 

correlation of this parameter to the pattern of deformation could be observed. The 

trend of the total stresses is highly consistent with the expectation that the presence of 

an improved soil strut has an important capping effect on the heaving of the soft layer 
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below the strut. 

This series of results suggests that the deformed shape of the embedded 

improved soil layer during an excavation will look like an upward arch as proposed in 

Figure 6.7 or one-half of a beam with fixed ends subjected to net pressure acting on 

the bottom surface. With the kind of curvature from the arch shape, higher stresses will 

be expected at several locations as shown in this figure. This ties in very well with 

results put forth earlier on the way stresses are distributed in the embedded improved 

soil layer. In addition, this arching behaviour of the embedded improved soil layer was 

postulated in section 5.2.6. During the centrifuge test, it was found that the incremental 

wall movement would only develop after a certain amount of soil had been removed 

from the retaining wall, suggesting that bending of the improved soil layer was the 

main mode of movement. Tanaka (1993) also proposed a similar kind of deformed 

shape [Figure 2.9 (d)] from field-instrumented results. 

 

6.3.3 Design Consideration at Sharp Corner 

In the preceding section, it was shown that stresses were concentrated at both 

sharp corners of the improved soil layer next to the wall. Considering the fact that 

these regions have a greater potential for yielding, it is important to ensure that the 

improved soil has adequate shear strength within its yielding range to be mobilised to 

avoid any compression failure. This could be done by comparing the strains at yielded 

zone with that of the actual strain-compatible strength of the improved soil, ensuring 

that the actual strength remains higher than the mobilised strength at that level of 

strain. 

Figures 6.8 and 6.9 present the deviatoric stress and horizontal strain 

distributed at all integration points within the improved soil layer. As shown, high 
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stresses and strains were found at integration points on these sharp corners of the 

improved soil layer. This is unavoidable because these sharp corners are stress 

concentrators. Instead of stresses at a sharp corner moving towards infinity as in a case 

of a perfectly elastic material, in the present case, the material will undergo plastic 

yielding as the improved soil is assumed to behave like an elasto-plastic material as 

suggested by the typical test results shown in Figure 3.9. Though this issue seems 

academic, in reality, it has actual practical implication. 

To evaluate this, the results of design analyses on one section of the excavation 

for the construction of a major expressway in Singapore are used. In this project, the 

width and depth of the excavation are 50m and 20m respectively. Due to a deep 

deposit of marine clay (40-50m thick), the contractor of this project decided to 

terminate the sheet pile wall in the soft deposit of marine clay. A layer of 3.5m thick 

jet grout slab is to be installed prior to excavation to provide an embedded improved 

soil strut to support the retaining walls below the final excavation level. The 

construction method adopted is common, which is based on a sequence usually 

referred to as the bottom up excavation. 

At the design stage, concern was raised on the maximum stresses being 

developed in the improved soil struts, picked out in the design process. The original 

concept of design was to provide an improved soil layer with an adequate factor of 

safety against the maximum expected stress. This concern was investigated and as a 

result, it was found that these are isolated stress concentration points, located next to 

the corner adjacent to the retaining wall. To demonstrate that the high stresses were 

actually due to the presence of a sharp corner, results from similar FE analyses were 

examined. In the first run, 6-node triangular elements were used and in the second run, 

15-node triangular elements were used, which then will have integration points much 
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closer to the corner. These integration points are shown in Figures 6.10 (a) and (b) 

respectively. 

Figures 6.11 (a) and (b) show the stresses developed respectively in each case. 

As can be seen, in the first run, the maximum stress developed at the corner is 770kPa 

and in the second run, the maximum stress developed is 883kPa. This analysis shows 

that as the mesh becomes more refined, the calculated stress at the closest integration 

point to the corner increases, because this point is moving closer to the corner. In both 

cases, the maximum stress is below the failure strength of 1000kPa. However, 

originally, this was deemed unacceptable, as the factor of safety achieved was 

inadequate. 

 

6.3.4 Effect of Stiffness of Improved Soil Strut 

The preceding chapter has put forth arguments that for an embedded improved 

soil layer to function as a strut, it needs to be stiff enough to transmit lateral forces 

from the retaining wall to the other stiff end without inducing excessive compression. 

The centrifuge results have shown that the effectiveness of an improved soil strut is 

very much dependent on its stiffness. However, the results also confirm the 

expectation that when a stiffer improved soil layer is used, though it provides a higher 

resistance to the retaining wall, it also induces a much higher bending moment in the 

wall. In retrospect, this is rather obvious. However, to the author’s knowledge and 

experience from actual participation in similar design projects, this is hardly ever 

considered in design in Singapore. Clearly, engineers need to be aware of the 

implications. 

Considering the fact that the stiffness of field core samples can vary 

considerably depending on the quality of workmanship and operational conditions on 
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site, it is difficult to estimate the actual stiffness of improved soil layer in the field. 

Besides having a large variation in the stiffness of field core samples [Figures 2.5 and 

2.6], the fact that with different configurations, the improved soil columns will overlap 

differently further complicates the assessment of the true mobilised composite stiffness 

of the entire improved soil layer. At present, it is almost impossible for anyone to 

know accurately the true mobilised stiffness of the improved soil layer in the field. It is 

therefore common for geotechnical engineers to adopt a lower Young’s modulus, E, in 

design, which will account for any of these imperfections. This is usually assumed to 

be a conservative approach. However, what is being recognised in this research is that 

the choice of a lower E is conservative only as far as the estimate of ground movement 

in adjacent ground is concerned. It is not conservative as far as the bending moment 

induced in the retaining wall is to be considered. 

Nevertheless, results from material studies reported in Chapter 3 provided 

evidences that the Young’s modulus (E) of cement treated clays could be much higher 

than anticipated. Due to non-linearity behaviour of the cement treated clays as shown 

in Figure 3.10, the E value at a lower strain (0.01%) was found to be 5 to 15 times 

larger than that at a higher strain (1%). The use of conventional LVDTs to measure 

displacements had also been found to underestimate the E value by as much as 2.3 

times [Figure 3.11]. Moreover, it was shown in Figure 3.12 that the E value could 

increase further by 1.5 times if the curing time exceeded 28 days. 

As the selection of E value has design implications, a parametric study was 

carried out to evaluate the effect of varying the stiffness on the performance of the 

embedded improved soil strut and its associated influence on the bending moment in 

the wall. Since centrifuge tests were very tedious and time consuming to conduct, this 

aspect was studied using the FE analyses. An expected practical range of E values 
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from 50 to 600 MPa was considered in this numerical simulation, which is based on 

Test FTreat. In the field, with other complications mentioned earlier, this variation 

could be even larger. Figure 6.12 (a) shows the impact on the bending moment in the 

wall with varying stiffness for the improved soil strut. As expected, there is an 

increase of bending moment in the wall when the stiffness of improved soil strut is 

higher. This trend is consistent with those observed from the centrifuge tests results. 

To provide a quantitative guide on the increase of bending moment in the wall, 

the maximum bending moments for different E values were normalised by that for the 

case of E = 100 MPa [Figure 6.12 (b)]. The value of 100 MPa has been chosen 

because it falls within the typical range of E values (100-150MPa), commonly used in 

local design as a “rule of thumb” number. As shown in the figure, the increase in the 

wall bending moment follows a hyperbolic trend. When the E was initially doubled 

(200MPa), the bending moment increased by about 7%. However, when the E 

approached 1000MPa, the increase became insignificant. The overall increase in the 

wall bending moment was about 15-20%. Meanwhile, in the centrifuge tests, the wall 

bending moment increased from 467kNm/m to 511kNm/m when E values of improved 

soil of 300MPa and 450MPa were used, which showed an increase in the wall bending 

moment of about 10%. Since such increase could greatly affect the reinforcement in 

the wall. Therefore, it is recommended that in the design of retaining wall, the 

maximum expected stiffness in the improved soil should be used for analysis of the 

bending moment in the retaining wall while the minimum expected stiffness be used 

when assessing ground movements in the surrounding area. 

To provide an insight on how a stiffer improved soil strut will react during 

excavation, stresses along the vertical and horizontal sections across embedded 

improved soil struts with different stiffness were examined. As shown in Figures 6.13 
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and 6.14, higher stresses were encountered when a stiffer improved soil layer was 

used. Figure 6.13 (a) illustrated again the stress concentration at both corners of the 

improved soil layer abutting the retaining wall but more importantly right here, these 

corners have attracted higher stresses with stiffer improved soil layer. Deviatoric 

stresses from centrifuge tests (FTreat-7d and FTreat-28d) have also shown a similar 

increasing trend. Since the main function of retaining wall is to resist the active earth 

pressure, more forces will be attracted into the wall with a stiffer improved soil strut. 

Having said that, it is also important to recognise that the embedded improved 

soil strut requires certain stiffness above a threshold value. Results from a parametric 

study [Figure 6.15] shows that there exists a threshold range of between 100-200MPa, 

below which the strut would be ineffective and above which the increased 

effectiveness would be marginal. 

 

6.4 Influence of Gap of Untreated Soil in between the Retaining Wall and  

Improved Soil Layer 

In the preceding chapter, it was shown that the presence of a gap of untreated 

soil in between the retaining wall and improved soil layer has a tremendous effect on 

the performance of the overall support system. Significant movement was induced at 

an early stage of excavation when the overburden close to the retaining wall above the 

gap was removed. Although the embedded improved soil layer still behaved very 

much like a strut, high compression in the untreated soil in the gap occurred and as a 

result, the composite stiffness of the improved soil layer has been reduced 

significantly. 

Owing to the small dimension of the gap in a scaled-down model (e.g. 400mm 

in prototype scale is equivalent to only 4mm in model scale), it is impossible for the 
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current instrumentation technology in centrifuge to install any miniature transducer to 

monitor the behaviour of the untreated soil in this tiny gap. Hence, the behaviour of 

gap captured during the centrifuge tests in the preceding chapter has to rely very much 

on indirect measurements, providing only an indicator to the performance of the 

excavation. It is therefore necessary to adopt a numerical approach here so that more 

detailed outputs can be studied to complement the results from the centrifuge tests. 

 

6.4.1 Behaviour of Gap of Untreated Soil 

From the centrifuge tests, results on the lateral wall movement have indirectly 

showed that the untreated soil in the gap was highly compressed when the lateral force 

from the wall was exerted onto it. To illustrate this more clearly, stress and strain 

behaviours of the untreated soil in the gap from FE analysis, simulating Test Gap-800-

7d are evaluated first. Figures 6.16 and 6.17 show the deviatoric stress and horizontal 

strain at all the integration points within the gap including those in the improved soil 

layer. In addition, FEM results from Test FTreat-7d were superimposed on the same 

plot so that a direct comparison of the stress and strain behaviours for the stabilised 

excavations with and without gap could be made together. 

As shown in Figure 6.16, there was no stress concentration in the embedded 

improved soil layer even at both corners when there was no direct contact of the stiff 

improved soil layer with the wall. This shows that the untreated soil in the gap has 

functioned to cushion the impact of the sharp corner and thus, no high stresses were 

induced. This is logical since the embedded improved soil layer is now resting on the 

untreated soil and not directly onto the stiff retaining wall. Instead, there was 

substantial yielding on the untreated soil in the gap. As shown in Figure 6.17, some of 

these integration points within the gap have exceeded a horizontal strain of 10%, 
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indicating that large yielding of soil has occurred. This is the reason for the large wall 

movement occurring even at the initial stage of excavation, which ties in well with 

what has been observed during the centrifuge testing. 

To further understand the deformation behaviour of the untreated soil in the 

gap during the process of excavation, deformed meshes from the FE analysis at 3 

different depths of excavation, namely 2m, 3m and 4m are presented. A closer 

examination of the deformed shape of the gap is shown in Figure 6.18. It was found 

that the untreated soil in the gap was laterally compressed, followed by some bulging 

of soil at the top and bottom of the gap. When the excavation was deeper, the untreated 

soil was further compressed and the shape of the soil bulging became more obvious 

especially at the top of the gap where there is less confinement. From the deformed 

shape of the gap, it is clear that the compression in the untreated soil gap and its 

interaction with the surrounding soil are important. The deformed shape suggests a 

transition from compression in a 1-D mode to one where it is closer to an unconfined 

compression mode, which is the key aspect in governing the composite stiffness of the 

improved soil system. 

To illustrate the behaviour of soil as postulated above, the total vertical and 

horizontal stresses along the passive side at distance 0.5m away from the retaining 

wall were assessed as shown in Figures 6.19. For comparison, results from FE analysis 

for the case of an excavation without soil improvement (Test NTreat) were also 

presented in the same figure. As can be seen, there was a sudden increase in the stress 

within the untreated soil region where the gap was located. It was further found that 

there were small regions of soil at the top and bottom of the gap that were 

experiencing higher stresses. These are indications showing the way the untreated soil 

in the gap reacts during excavation. 
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6.4.2 Effect of Width of Gap and Confinement 

In the preceding chapter (section 5.4), the behaviour of an improved soil layer 

with a gap in between it and the retaining wall was examined in relation with that of an 

improved soil strut. The induced lateral wall movement and surface settlement from 

centrifuge tests have shown that these movements developed gradually throughout the 

excavation depth, showing very similar trend to that of an improved soil strut. Thus, it 

is possible to consider the concept of a composite stiffness for such a configuration of 

improved soil layer (that is with a gap) to assist the engineers facing with such 

problems in the field. 

The performance of the embedded improved soil layer with a gap is influenced 

by the amount of deformation of the untreated soil in the gap. Thus, with a wider gap, 

larger movements can be expected since more lateral deformation of the untreated soil 

will occur. This is inline with the observed behaviour in the centrifuge tests where 

gaps of 400mm and 800mm were studied in the previous chapter. However, when the 

untreated soil in the gap compresses, this soil also bulges out. It is rather obvious, in 

retrospect that this tendency to bulge must be to a large extent, a function of the 

overburden remaining after excavating to a particular depth. 

To evaluate these effects, a parametric study using the FE analyses was carried 

out on different widths of gap, extending from the initial numerical simulation of the 

case with a gap of 800mm, as presented earlier. The normalised lateral wall 

displacements were evaluated at different depths of excavation. Figures 6.20 show the 

detrimental effect of increasing the width of gap of untreated soil. A detailed 

evaluation on the effect of varying the depth of excavation was also carried out in 

Figure 6.20 (b) for a range of gap encountered in practice. It was shown that instead of 

a single curve, there were a series of curves, which were differentiated by the 
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excavation depth. This means that for a particular width of gap, the depth of 

excavation also governs the performance of the improved soil layer system. As can be 

seen, the normalised lateral wall displacement was higher when the excavation was 

deeper. This is due to two likely reasons. First, with greater depth of excavation, the 

unbalance load is greater and thus, the normalised lateral wall displacement is 

expected to be higher. Second, with greater depth of excavation, the amount of 

confinement imposed on the short length of untreated soil decreases and therefore, the 

stiffness is expected to reduce. To further isolate the contribution from the changing 

unbalance loads due to different depths of excavation, all the results are now further 

normalised by that for the case without gap (a full improved strut) for each particular 

depth of excavation. This is now shown in Figure 6.20(c) and again, it shows that the 

effect of confinement on the untreated soil clearly plays an important role. 

To illustrate this effect more clearly, the curves from Figure 6.20 (b) were 

plotted together with an earlier curve [Figure 6.15], obtained from a parametric study 

by varying the stiffness of the full-improved soil strut that is without a gap [Figure 

6.21]. This figure provides a means of determining the stiffness of an equivalent fully 

improved soil strut that will produce the same normalised lateral wall displacement 

behaviour at the mid-level of the improved soil layer. This stiffness is referred to as the 

composite stiffness (Ec). Since there were a series of curves differentiated by the depth 

of excavation, the effect of confining pressure to the composite stiffness can also be 

assessed. For example, given a particular width of gap (let say 200mm) at 0.5m depth 

of excavation, the stiffness (Ec) of an equivalent full-improved soil strut would drop 

from the original stiffness (Eimp) of 300MPa to about 134MPa with the presence of the 

200mm gap. However, when the excavation goes deeper (6m), Ec of an equivalent 

strut is now reduced to 94MPa, which is showing a more severe reduction. This 
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suggests that the confining pressure affects the composite stiffness of the improved 

soil layer system. 

Figure 6.22 shows the direct impact of the overburden on the composite 

stiffness of an improved soil layer with a gap. It shows that Ec reduces with increasing 

depth of excavation, where the thickness of overburden above the gap decreases. The 

rate of reduction based on different widths of gap is also compared. It is found that the 

drop in Ec is more rapid when the gap is narrower. This shows that for a smaller gap, 

the effect of confining pressure is more critical during the early stages of excavation 

and thereafter, when a substantial amount of soil bulging has taken place, the effect of 

confining pressure becomes less significant. Figure 6.23 summarises the percentage of 

reduction in Ec due to both effects, the width of untreated soil gap and the confining 

pressure, on the overall performance of an improved soil layer with an untreated soil 

gap in between it and the retaining wall. 

The distinction between the compression and confining effect is best illustrated 

by a simple triaxial test model shown in Figure 6.24. The untreated soil in between 

two rigid ends of the retaining wall and improved soil layer can be represented by a 

soft soil sample in a triaxial test. In such an analogy, the lateral force exerted by the 

retaining wall on the untreated soil in the gap can be modelled as the axial force from 

the loading ram in a triaxial test, while the confining pressure from overburden above 

the untreated soil in the gap can be simulated as the cell pressure. With this analogy, 

the effect of confining pressure on the untreated soil in between the retaining wall and 

improved soil layer can now be idealised. It is clear that the change in the axial 

stiffness of the untreated soil is quite complex. First, there is the usual effective stress 

effect. Then, there is a need to consider the state of drainage and finally, there is also a 

need to consider the amount of confinement, which will be reducing with increasing 
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depth of excavation. An approximate means of accounting for these different effects 

can be found. 

To understand this better, a simplified dual spring system is used to describe 

the composite stiffness of the improved soil layer system as shown in Figure 6.24. The 

amount of deformation, δL that took place in the improved soil layer with the gap was 

first formulated and the sum of this deformation over the given length, L was then 

calculated: - 
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where A is the sectional area, Limp is the length of improved soil, Lgap is the length of 

untreated soil, Eimp and Egap are Young’s modulus of the improved soil and untreated 

soil in the gap respectively. The composite stiffness of the improved soil system can 

now be obtained: -  
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In Equation (6.4), all the parameters except Egap are well defined. Clearly, from 

the discussion above, Egap is a function of the actual lateral load transferred (mainly 

because compressibility of a soil is non-linear), the amount of confinement (reflecting 

a transition from nearly 1-D to an unconfined unaxial compression) and drainage 

condition (reflecting the initially near undrained condition transiting to that of a near 

drained condition if there is sufficient time). As the main aim of this section is not to 

obtain a definitive design guide, but to provide a better understanding of the effect of 

the gap, some approximations will be made to facilitate an examination of the likely 

behaviour. 

If the condition is assumed to be drained, as most of the tests were conducted 

with kaolin which has a high permeability, then the axial stiffness, is derived from the 
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e versus log σ’v relation and is given as: 

s

v
'

1D C
σ e)(1 2.303~E +       (6.5) 

Under 1-D condition, in particular, the stiffness increases with increasing 

effective axial stress and increasing compression or axial strain. On the other hand, 

under uniaxial unconfined compression, the axial stiffness is the equivalent of Young’s 

modulus, and for most soils, this also usually increases with the effective confining 

stress but more importantly, decreases with increasing deviatoric strain. Nevertheless, 

it is clear that when the overburden on the top of the untreated soil is high, the axial 

stiffness is given by Equation (6.5), whereas when the excavation is deep and the 

resulting overburden remaining is low, the axial stiffness is closer to E50 or even lower 

if the soil is near yielding. In Figure 6.23, Equation (6.5) is used for estimating the 

composite stiffness using Equation (6.4) when the excavation is 0.5m while E50 is used 

when estimating the value when the excavation is 6.0m. As can be seen, the results are 

reasonable, suggesting that the arguments presented here on what is going on in the 

gap is reasonably correct. 

 

6.5   Resistance Mechanism of An Embedded Improved Soil Berm 

 In the preceding chapter (section 5.5), the mobilisation of resistance by an 

embedded improved soil berm during an excavation has been investigated in some 

details during the centrifuge testing. It was shown that the improved soil berm 

mobilised its resistance mainly through interfacial shear resistance and end bearing, 

similar like a horizontal floating pile. It was also found that the stiffness of berm does 

not have a significant effect on its performance during an excavation. Since the way 

various forces were mobilised in the shear resistance and end bearing are very 
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complicated, another doctoral student has been employed to carry out further 

investigation [Thanadol (2003)]. Here, only one numerical analysis has been carried 

out to simulate Test Berm-7d so as to confirm that observed behaviours in the 

centrifuge test can be simulated in the FE analysis. 

Figures 6.25 show the shear strain contours of improved soil berm on the 

excavated side during 3 stages of excavation, namely 2m, 4m and 6m. As can be seen, 

two high shear strain zones as a result of localised yielding was found on the top and 

underside surfaces of the improved soil berm. As excavation proceeds, this shearing 

zone spreads inward as shown in Figures 6.25 (b) and (c). This has clearly 

demonstrated that there is interfacial shear resistance being mobilised along both 

surfaces of the improved soil berm. 

Figures 6.26 show the deviatoric strain contours of improved soil berm on 3 

similar stages of excavation. A closer examination of this contour showed that there 

was a gradual development of localised yield zone behind the improved soil berm, a 

sign of the mobilisation of end bearing resistance. However, complementary numerical 

analyses carried out by Thanadol [2003] have shown that there is a threshold value for 

the stiffness [E ~ 200MPa] of the improved soil to effectively mobilise the interfacial 

shear resistance and end bearing. The way the interfacial shear resistance and the end 

bearing are developed will not be given here but can also be found in Thanadol [2003]. 
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     Table 6.1   Soil parameters used in CRISP FEM analysis 

Soil Type Kaolin clay 
Soil Model Modified Cam-Clay 

λ  0.244 
κ (isotropic) 0.079 

M 0.9 
ecs 2.221 
υ 0.33 

γbulk (kN/ms) 16.39 
kx (m/s) 2.0 x 10-8 
ky (m/s) 2.0 x 10-8 

Derivation  λ   = Cc / 2.303 
κ   = Cs / 2.303 

κ (isotropic) = 1.5 x κ (anisotropic) [Bolton (1991)] 
 
 

   Table 6.2   Improved soil parameters used in CRISP FEM analysis 

Improved Soil Type Cement treated clay 
Soil Model Original Mohr-Coulomb 

Elastic Perfectly Plastic 
Eo (kPa) 3.0 x 105 
c (kPa) 500 

υ 0.33 
φ (deg) 32 

γbulk (kN/ms) 16.4 
kx (m/s) 2.0 x 10-9 

ky (m/s) 2.0 x 10-9 

 
 
 
 

  Table 6.3   Retaining wall parameters used in CRISP FEM analysis 

Retaining Wall Type Aluminum Alloy 
Soil Model Original Mohr-Coulomb 

Elastic Perfectly Plastic 
Eo (kPa) 7.2 x 107 
c (kPa) 2.75 x 105 

υ 0.33 
φ (deg) 0 

γbulk (kN/ms) 28 
kx (m/s) 1.0 x 10-15 

ky (m/s) 1.0 x 10-15 
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(a) Mesh to simulate Test ‘FTreat’ 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Mesh to simulate Test ‘Gap’ 

 
 
 
 
 

 
 
 
 
 
 
 

 
 

(c) Mesh to simulate Test ‘Berm’ 
 

Figure 6.1   Typical finite element meshes adopted in current study 
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Figure 6.2   Comparison of ground displacement vectors from experimental  

  and numerical (FEM) results for Test NTreat 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3   Comparison of surface settlement at 2m behind wall from  
  experimental and numerical results for Tests FTreat-7d,  

     Gap-800-7d and Berm-7d 
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(a) Section at 0.25m from wall     (b) Section at 3.5m from wall 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
(c) Section at 8m from wall      (d) Section at 12m from wall 

 
Figure 6.4   Deviatoric stress (σh-σv) at vertical section across the improved  

 soil strut (simulation of Test FTreat-7d) 
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Figure 6.5   Deviatoric stress (σh-σv) at horizontal section (top, center, bottom 
  levels) across the improved soil strut (simulation of Test FTreat-7d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Vertical Displacement       b) Total Vertical Stress 
 

Figure 6.6   Vertical displacement and total vertical stress below the improved  
  soil strut (simulation of Test FTreat-7d) 
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Figure 6.7   Predicted deformed shape of embedded improved soil strut 
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Figure 6.8   Deviatoric stress (σh-σv) distributed at all integration points in  
 the entire improved soil strut (simulation of Test FTreat-7d) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9   Horizontal strain distributed at all integration points in the  
 entire improved soil strut (simulation of Test FTreat-7d) 
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(a)   6-node triangular elements at corner of improved soil layer 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)   15-node triangular elements at corner of improved soil layer 
 
 

Figure 6.10   Mesh generation at corner of improved soil strut 
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(a)   Deviatoric stress [(σh-σv)/2] of improved soil layer from 6-node mesh 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)   Deviatoric stress [(σh-σv)/2] of improved soil layer from 15-node mesh 
 

 
Figure 6.11   Deviatoric stresses at corner of improved soil strut 
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a) Profile of wall bending moment       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Increase of wall bending moment 
 
 

Figure 6.12   Wall bending moment with different stiffness of improved 
    soil strut (simulation of Test FTreat) 
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(a) Section at 0.25m from wall      (b) Section at 8m from wall 
 

Figure 6.13   Deviatoric stress (σh-σv) at vertical section across the improved soil strut  
   with different stiffness of improved soil (simulation of Test FTreat) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Section at top surface       (b) Section at bottom surface 
 

Figure 6.14   Deviatoric stress (σh-σv) at horizontal section across the improved  
   soil strut with different stiffness of improved soil (simulation of Test FTreat) 
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Figure 6.15   Normalised lateral wall displacement with different stiffness of  

       improved soil strut (simulation of Test FTreat) 
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Figure 6.16   Deviatoric stress (σh-σv) distributed at all integration points at the level where the 
   improved soil layer is located, from simulation of Tests FTreat-7d and Gap-800-7d 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.17   Horizontal strain distributed at all integration points at the level where the improved 
   soil layer is located, from simulation of Tests FTreat-7d and Gap-800-7d 
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              (a) Overall           
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

   (i)  2m Exc.        (ii)  3m Exc.       (iii)  4m Exc. 
 
        (b) Enlarged – Detail A 
 

Figure 6.18   Deformed mesh of excavation test with 0.8m gap showing the high compression 
   of untreated soil portion in between the retaining wall and improved soil layer 
   (simulation of Test Gap-800-7d) 

Detail A 
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(a) Total Vertical Stress 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Total Horizontal Stress 

 
Figure 6.19   Total vertical and horizontal stresses along the excavated side at 0.5m distance 

    away from the retaining wall (simulation of Tests NTreat and Gap-800-7d) 
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      (a) Overall            (b) Enlarged 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

   (c) Further normalisation 
 
 

Figure 6.20   Effect of gap width and confinement on the lateral normalised  
   wall displacement 

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Width of Gap (m)

0.00

0.02

0.04

0.06

0.08

0.10

La
te

ra
l W

al
l D

is
pl

ac
em

en
t

at
 M

id
-L

ev
el

 o
f I

m
pr

ov
ed

 S
oi

l L
ay

er

Average

D
ep

th
 o

f E
xc

av
at

io
n

0 200 400 600 800 1000
Width of Gap (mm)

0.00

0.01

0.02

0.03

0.04

La
te

ra
l W

al
l D

is
pl

ac
em

en
t

at
 M

id
-L

ev
el

 o
f I

m
pr

ov
ed

 S
oi

l L
ay

er

1.0m

2.0m

3.0m

4.0m

5.0m

6.0m

6m Exc.

0.5m Exc.

Average

D
ep

th
 o

f E
xc

av
at

io
n

0 200 400 600 800 1000
Width of Gap (mm)

0

2

4

6

8

10

N
or

m
al

is
ed

 L
at

er
al

 W
al

l D
is

pl
ac

em
en

t
at

 d
iff

er
en

t w
id

th
 o

f g
ap

1.0m

2.0m

3.0m

4.0m

5.0m

6.0m

6m Exc.

0.5m Exc.

N
or

m
al

is
ed

 L
at

er
al

 W
al

l D
is

pl
ac

em
en

t
Fo

r F
ul

l-I
m

pr
ov

ed
 S

oi
l S

tru
t (

N
o 

G
ap

)



 196

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                
 

 
 
 
 

Figure 6.21   Effect of gap width on the composite stiffness of improved soil layer 
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     Figure 6.22   Effect of confinement on the composite stiffness of  

    improved soil layer with gap 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6.23   Reduction of composite stiffness of improved soil layer  
   obtained from FE analysis and calculated from basic formula 
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Figure 6.24   Model of untreated soil gap with compression and confining  

   pressure 
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             (a) At 2m Excavation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             (b) At 4m Excavation 
 

 
 
 
 
 
 
 
 
 

 
 

 
         
             (c) At 6m Excavation 

Figure 6.25   Shear strain contours of improved soil berm on excavated side  
    during the excavation process (simulation of Test Berm-7d) 
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             (a) At 2m Excavation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             (b) At 4m Excavation 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
         
             (c) At 6m Excavation 

Figure 6.26   Deviator strain contours of improved soil berm on excavated  
   side during the excavation process (simulation of Test Berm-7d) 



 201

Chapter 7 

CONCLUSIONS 

 

The research presented in preceding chapters is aimed at providing a clearer 

understanding of the behaviour of an embedded improved soil layer in an excavation in 

soft ground. In such poor ground condition, the maximum wall deflection usually occurs 

below the final excavation level where it is impossible to install conventional steel 

struts. To restrain the wall deflection at the base of excavation, one effective solution is 

to improve a layer of soft soil around this location. A typical approach is to improve the 

entire layer within the excavation zone so as to provide full contact between retaining 

walls. However, in the case of a wide excavation, improvement of a limited region 

adjacent to the wall has to be considered given the fact that improving the entire area 

may not be economically viable. In this thesis, when an entire soil layer is improved, the 

term embedded improved soil strut is used. When only a limited area adjacent to the wall 

is improved, the term is embedded improved soil berm. The term “embedded” is used to 

underscore the fact that the improvement is below the final excavation level, as 

suggested by Dr. David Hight in a discussion. Carrying out improvement works 

especially close to the retaining wall is difficult and this can lead to a small region of 

untreated soil between the retaining wall and improved soil layer. Sometimes, this is not 

detected, while at other times, it may be ignored. 

This study investigated these three different scenarios of soil improvement and 

has provided an insight on the mechanisms involved in mobilising the different 

configurations of improved grounds to restrain the retaining wall. The investigation has 

provided substantial evidences that the behaviour of a stabilised excavation is much 

more complicated and cannot be treated to behave just like a strut all the time with a 
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composite stiffness assigned to an equivalent strut. Other contributing factors such as 

the effect of confining pressure, existence of gap of untreated soil, interfacial shear 

resistance and end bearing of berm have considerable effects on the performance of the 

embedded improved soil layer. Through an understanding of these resistance 

mechanisms for different configurations of embedded improved soil layer, the 

performance of the excavation is established. 

 

7.1   Concluding Remarks 

The behaviour of an embedded improved soil layer in an excavation was studied 

by means of both physical and numerical modelling. Prior to the excavation tests in the 

centrifuge, material studies were carried out using laboratory mixed samples to 

determine the strength and stiffness properties of the cement treated clays, which forms 

part of the present study to understand the behaviour of the monolithic improved soil 

layer [Tan et al. (2002)]. Subsequently, excavation tests with different configurations of 

soil improvement were conducted in the centrifuge using the newly developed in-flight 

excavator. This was then complemented by numerical analyses. From the research 

works carried out, the following conclusions are drawn: - 

a) The strength and stiffness properties of Singapore marine clays improved by 

cement mixing have been established based on results from a series of unconfined 

compression tests carried out on laboratory mixed samples. It was found that 

marine clays from different parts of Singapore yielded different degrees of 

improvement. A normalisation approach can be used to unify the behaviour of these 

different improved clays as summarized below: - 
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q

)t.w.A(q
q

)t.w.A(q
q
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b) The Young’s modulus (E) of cement treated clays was found to be much higher than 

anticipated. Due to the non-linear stress-strain behaviour of this material, the E 

value at a small strain (0.01%) was found to be 5 to 15 times higher than that at a 

larger strain (1%). The use of a local strain measurement technique such as Hall’s 

effect transducer during the test had produced this higher E as compared to that 

determined using conventional external LVDTs. Correlation between stiffness 

(Esec50) and unconfined compression strength (qu) has been obtained for local 

reference, which is very dependent on how the strain is measured. Using the 

conventional LVDT method, the Esec50 falls within a range of 150 to 400qu 

[consistent with those reported by Asano et al. (1996) and Futaki et al. (1996)] but a 

higher correlation of 300 to 800qu can be achieved using the Hall’s effect transducer 

[consistent with those reported by Kawasaki et al. (1984) and Tatsuoka et al. 

(1996)]. In addition, the stiffness of cement treated clays is expected to increase 

with curing age. Some empirical relationships were determined to relate the 

strength at different curing ages with that of 28 days. Considering the fact that the 

entire process of excavation on site normally takes a longer period than 28 days, the 

E value of the cement treated clays can be 25-50% larger than that at 28 days. 

c) In the centrifuge test, it was shown that to control excessive wall deflection and 

ground movements, the use of an embedded improved soil strut is highly effective. 

The centrifuge results showed that the effectiveness of an improved soil strut was 

very much dependent on its stiffness. The results confirmed that when a stiffer 

improved soil layer was used, though it provided a higher resistance to the retaining 

wall, it also induced a much higher bending moment in the wall. Results from a 

parametric study using the FE analyses clearly demonstrate that there is a 

considerable increase in the wall bending moment (15-20%) but when the E value 
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approaches 1000MPa, the increase becomes nominal. In addition, it was shown that 

there was a threshold value for the stiffness of improved soil in order for an 

improved soil strut to be effective. In this study, the minimum required stiffness of a 

monolithic improved soil layer should not fall below 100MPa. 

d) In the centrifuge tests, it was clearly difficult to compare the overall behaviours 

using cumulative parameters such as total wall deflection and surface settlement. 

Instead, a controlled test using the centrifuge allows the examination of change of 

more useful parameters, the incremental change of a parameter for the removal of 

0.5m of soil at a particular depth. This facilitates the detailed examination of how 

the system reacts as the layer is slowly excavated. Just as importantly, it also 

facilitates the examination of the composite stiffness for different configurations of 

improved soil layer at the same depth. 

e) In the case of an embedded improved soil strut at each depth of excavation, only 

negligible wall movement occurred during the early stage of scrapping where the 

soil next to the retaining wall is removed. However, after some length of soil has 

been removed, a more noticeable wall movement was observed. This trend of 

incremental wall movement strongly suggests that the improved soil layer is 

behaving like a strut, whereby only after a certain amount of soil has been removed 

from the retaining wall, the strut will then be allowed to arch and induce a 

movement. 

f) In the design of a retaining wall, the minimum expected stiffness in the improved 

soil should be used for assessing ground movements in the surrounding area. 

However, it is recommended in this study that the maximum expected stiffness be 

used for analysis of the bending moment in the retaining wall. 

g) In the numerical study, it was shown that stresses in the improved soil strut were 
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concentrated at both sharp corners abutting the retaining wall. This was proven by 

using a more refined mesh where the stresses at the integration points increases as 

the point moved closer to the corner, a clear indication that the numerical analysis is 

trying to capture the fact that the corner is a stress concentrator. 

h) In the case when the soil improvement has a gap of untreated soil in between the 

retaining wall and improved soil layer, the overall composite stiffness drops 

significantly. In the centrifuge study, it was found that significant wall movement 

was induced even at the early stage of soil scrapping and continued to increase 

throughout the entire operation. As the gap of untreated soil is located next to the 

retaining wall, the impact of soil removal will be felt directly once the overburden 

stress above the untreated soil portion is reduced. From the numerical simulation, it 

was also found that the untreated soil in the gap was laterally compressed, followed 

by some bulging of soil at top of the gap. Clearly, the changing boundary conditions 

on this untreated soil region will have a significant effect. 

i) In the centrifuge study, it was shown that the performance of the improved soil 

layer with a gap of untreated soil was governed by the width of gap and affected 

directly by the removal of overburden above the gap. The numerical analyses also 

demonstrate both effects influencing the composite stiffness of the improved soil 

layer system. Besides demonstrating that a larger gap will lead to a lower composite 

stiffness (Ec), the results also show the effect of reducing confining pressure due to 

deeper excavation. The effect of increasing imbalance between the active and 

passive side is removed by normalising the results with those from an improved soil 

strut at the same depth of excavation. 

j) A simple formula was derived to understand the composite stiffness, based on the 

idea of two elastic regions joined axially in a series configuration. The formula is: 
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For an improved soil layer with a region of untreated soil next to the wall, this 

means that the width of gap, Lgap, has a significant role to play; the bigger is Lgap, the 

smaller the composite stiffness, which is expected. What is more important is the 

recognition that for a given width of gap of untreated soil, the changes in Egap as 

excavation proceeds will play an important role. Initially, with the thick overburden 

acting as confining pressure, the behaviour is close to a 1-D consolidation. Towards 

the end of excavation when only a small overburden is left, the untreated soil will be 

subjected to unconfined axial compression, and should be considerably softer with 

the shearing already induced. The change in Egap from that of a constrained modulus 

under 1-D condition to that of a tangent stiffness for an unconfined axial 

compression test will dictate the change in composite stiffness. The effect of this 

transition was shown in Chapter 6. 

k) For a cost-effective design, an embedded improved soil berm is sometimes used in 

excavations, especially when the excavation area is large. The berm was found to be 

almost as effective as a strut during the early stages of excavation. Nevertheless, the 

way the berm transfers the lateral force from the retaining wall to the surrounding 

soil, which is by a combination of skin friction and end bearing, is different from the 

behaviour of a strut. The resistance is provided mainly through the contact area of 

the shear resistance and end bearing, not through compression on the wall at the 

other end as in the case of an improved soil strut. What is also shown in this case is 

that the stiffness of the berm does not have a significant effect on the performance 

during excavation. It is noted that the failure behaviour of a berm is very sudden and 

therefore, adequate provision in design shall be allowed to avoid such a catastrophic 
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failure. 

 

7.2   Recommendations for Future Studies 

This research has studied several fundamental behaviours of an excavation 

stabilised by an embedded improved soil layer. However, the present study is limited by 

the fact that the experimental procedure is highly complex and thus, only few tests can 

be conducted within the time available for this study. From the insight derived from this 

study, the following topics are recommended for future study: - 

The study has just shown the importance of stiffness of an improved soil layer to 

the overall behaviour and performance of the excavation. However, these alone are still 

not enough for establishing guidelines for determining the actual mobilised stiffness, E, 

to be used for design. In the current centrifuge and numerical studies, the improved layer 

is assumed to be monolithic but in actual fact, this is not the case in the field. As 

mentioned earlier, in the field, the soil is improved in the form of short columns 

vertically, whereas when the improved soil layer is called upon, the compression is 

applied horizontally. The horizontal stiffness mobilised due to a large number of 

overlapping vertical columns is not the same as that of a cored element and this needs to 

be analysed for present studies to be applied directly in design. 
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