
TOOLS AND VERIFICATION TECHNIQUES FOR

INTEGRATED FORMAL METHODS

SUN JING

(B.Sc. Nanjing University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

I am deeply indebted to my supervisor, Dr. Jin Song DONG, for his guidance,

insight and encouragement throughout the course of my doctoral program and for

his careful reading of and constructive criticisms and suggestions on drafts of this

thesis and other works.

I would like to thank Dr. Martin Henz for his help on the better understanding

of the Oz language. I owe thanks to Wang Hai, other office-mates and friends for

their help, discussions and friendship. I would like to thank the numerous anony-

mous referees who have reviewed parts of this work prior to publication in journals

and conference proceedings and whose valuable comments have contributed to the

clarification of many of the ideas presented in this thesis. I would also like to thank

Hugh Anderson for his comments on the English language of the thesis.

This study received financial support from the National University of Singapore.

The School of Computing also provided the finance for me to present papers in

several conferences overseas. In addition, I have been encouraged by receiving the

Dean’s Graduate Award 2001, the University Graduate Fellowship 2002 and the

President’s Graduate Fellowship 2003. For all this, I am very grateful.

I sincerely thank my parents Sun Lin Ping and Shen Jin Li for their love, encour-

agement and financial support in my years of study. Finally, I wish to express my

love and thanks to my girl friend Yin Yin for her continuing love, patience, and

understanding.

Contents

1 Introduction and overview 1

1.1 Motivation and goals . 1

1.2 Thesis outline and overview . 3

1.2.1 Chapter 2 . 4

1.2.2 Chapter 3 . 4

1.2.3 Chapter 4 . 5

1.2.4 Chapter 5 . 6

1.2.5 Chapter 6 . 6

1.2.6 Chapter 7 . 7

1.2.7 Chapter 8 . 7

1.3 Publications from the thesis . 7

i

CONTENTS ii

2 Background 9

2.1 Z/Object-Z/TCSP overview . 10

2.1.1 Z . 10

2.1.2 Object-Z . 12

2.1.3 TCSP . 13

2.2 TCOZ features . 15

2.2.1 A model of time . 15

2.2.2 Interface – channels, sensors and actuators 16

2.2.3 Active objects . 17

2.2.4 Semantics of TCOZ . 18

2.2.5 Network topology . 19

3 Z family Markup Language – ZML 23

3.1 Introduction . 24

3.2 Formal design model of ZML . 24

3.3 XML and XML Schema . 28

3.4 The ZML syntax definition . 31

3.4.1 Root element definition . 31

CONTENTS iii

3.4.2 Z related syntax definitions 33

3.4.3 Object-Z related definitions 36

3.4.4 TCSP related definitions . 38

3.4.5 TCOZ specific definitions 39

3.4.6 Other definitions . 40

3.5 ZML example . 43

3.6 Conclusion . 45

4 ZML environment for Z family notations 47

4.1 Introduction . 48

4.2 Z family languages requirements . 50

4.2.1 Schema inclusion and calculus 50

4.2.2 Inheritance . 51

4.2.3 Instantiation and composition 52

4.3 Formal model of ZML environment 54

4.3.1 Web browsing environment 54

4.3.2 UML projection facilities . 60

4.4 Main implementation issues and related background 62

CONTENTS iv

4.5 Web environment for Z family languages 64

4.5.1 Syntax definition and usage 64

4.5.2 XSL transformation . 66

4.5.3 Extensive browsing facilities 69

4.5.4 Server side transformation 71

4.6 UML projection . 73

4.6.1 Translation rules . 74

4.6.2 Implementation and examples 77

4.7 Conclusion . 83

5 Animation of TCOZ specification 85

5.1 Introduction . 86

5.2 Specification validation . 87

5.3 Animation language - Oz a candidate for TCOZ 89

5.4 TCOZ – Oz translation rules . 92

5.5 Implementation and case study . 94

5.5.1 TCOZ Oz library . 94

5.5.2 TCOZ Oz projection . 95

CONTENTS v

5.5.3 Two communicating buffers example 96

5.6 Conclusion . 101

6 Proof techniques for TCOZ 103

6.1 Introduction . 104

6.2 TCOZ inference rules . 105

6.2.1 State oriented reasoning . 105

6.2.2 Event oriented reasoning . 111

6.3 Towards automated proof assistance 117

6.3.1 Timed failure and process 118

6.3.2 Language constructs . 121

6.3.3 Specification satisfaction and inference rules 122

6.4 Conclusion . 123

7 Verifying and reasoning about generic CAD system architecture -

a case study 125

7.1 Introduction . 126

7.2 CAD systems and architecture style model 129

7.2.1 Overview of CAD system family 129

CONTENTS vi

7.2.2 Components and connectors 132

7.2.3 Configuration and style . 136

7.3 A generic architecture for CAD systems 137

7.3.1 Clock . 139

7.3.2 System logs . 140

7.3.3 Emergency receiving part 141

7.3.4 Central dispatcher . 142

7.3.5 Executers . 145

7.3.6 Generic system architecture configuration 146

7.4 CAD system architecture analysis and verification 148

7.4.1 Proof of theorem P1 . 151

7.4.2 Proof of theorem P2 . 153

7.5 Architecture customization . 155

7.5.1 CAD system for police . 156

7.5.2 Teleservices and remote medical care system 157

7.6 Conclusion . 160

8 Conclusions and directions for further research 163

8.1 Thesis main contributions and influence 164

CONTENTS vii

8.2 Directions for further research . 166

8.2.1 Z Markup Language standardization 166

8.2.2 Semantic web . 167

8.2.3 UML transformation . 168

8.2.4 Animation and testing . 169

8.2.5 Automated formal verification 170

A 187

A.1 Z glossary . 187

A.2 TCOZ glossary . 209

Summary

Formal techniques have been applied to the specification of software and system

requirements. The well-defined semantics and syntax of formal specification lan-

guages make them suitable for precisely capturing and formally verifying system

requirements. Integrated Formal Methods (IFM) combine different formalisms to

capture the static and dynamic system properties in a highly structured way. Timed

Communicating Object Z (TCOZ), builds on the strengths of Object-Z in modeling

complex data and state with the strengths of Timed CSP in modeling real-time

interactions, is potentially a good candidate for specifying composite systems. One

weakness of IFM is the lack of tool support and connections to current industrial

practice. This thesis demonstrates a series of developments intended to enhance

tools and verification support for one of the IFM – TCOZ formal specification lan-

guage. First, a customized markup language for a family of Z notations - ZML

has been defined using the eXtensible Markup Language (XML) and serves as a

standard interchange format between the various TCOZ support tools. Second,

a web environment for browsing Z family specifications has been developed using

XML and eXtensible Stylesheet Language (XSL) technology. Third, an executable

semantics of TCOZ in a multi-paradigm programming language, Oz, has been de-

fined for the animation of TCOZ models. Fourth, a combination and extension

of state and event based proof systems has been established for formal reasoning

about TCOZ specifications. In addition, a framework for the shallow embedding

of TCOZ inference rules into the theorem prover Isabelle was presented to support

automatic proof assistance. The Z family web environment provides various brows-

ing facilities such as auto type referencing, static syntax checking, Z schema cal-

culus and Object-Z/TCOZ inheritance expansions. The idea for putting Z family

on the web may create a new culture for constructing formal specifications as well

as the education and resource sharing of formal methods through the Internet.

The animation of TCOZ specifications in Oz provides an effective way of validat-

ing the consistency between a formal model and its real world requirements. The

extension of Object-Z and TCSP’s proof systems in TCOZ provides a rigorous

reasoning system for TCOZ specifications. In addition, a formal reasoning of a

three-layered Computer Aided Dispatch (CAD) system properties is demonstrated

as a case study. Furthermore, the framework for a shallow embedding of TCOZ in-

ference rules in the theorem prover Isabelle illustrates an automatic proof assistant

to the TCOZ language. In summary, with the above tool support and verification

techniques, TCOZ can be a potential candidate for industrial software engineering

practice.

CONTENTS x

List of Figures

3.1 ZML top level structure . 32

3.2 Given type, abbreviation, free type, axiomatic and generic definitions 34

3.3 Schema definitions . 34

3.4 Schema expression definition . 35

3.5 Class definitions . 36

3.6 Operational expression definition 37

3.7 Process expression definition . 38

3.8 Network topology and WaitUntil definitions 39

3.9 Data type definition . 40

3.10 Predicate definitions . 41

3.11 Expression definitions . 42

3.12 XML validation process . 44

xi

LIST OF FIGURES xii

4.1 ZML overview diagram. 63

4.2 Unicode symbol mapping . 65

4.3 Queue specification on web. 68

4.4 Generated class diagram. 80

4.5 ActiveQueue statechart diagram. 82

5.1 Two communicating buffers example 97

5.2 Animation of the two communicating buffers example 100

7.1 An operational scenario in CAD system for police. 129

7.2 CAD system components. 131

7.3 CAD system style communication. 137

7.4 The overall structure of CAD system. 138

7.5 The configuration of CAD system. 147

Chapter 1

Introduction and overview

1.1 Motivation and goals

Software engineering involves the design, implementation and maintenance of large

software systems. It is unique among the engineering disciplines in that verifica-

tions are required as an essential part of professional practice. In order to show the

faultlessness of the system design the first thing is to understand the requirements

correctly. Requirement capture is a key activity in software and system engineer-

ing. A rapid increase in terms of size and complexity of software systems has

led to a rising demand for high quality in the system analysis stage, which would

reduce the cost of removing errors later in the software life cycle. Traditionally,

requirements are specified textually in natural language, or by using hand-waving

diagrammatical notations. However, requirements in this way are informal and

imprecise, and tend to cause misunderstandings among clients, software designers

1

1.1. MOTIVATION AND GOALS 2

and developers. Furthermore, such requirements may be inconsistent or incomplete

since there is no way to formally verify their consistency. As a result, mathematical

and logical approaches have been proposed to define better requirement specifica-

tions. Formal methods are well known for their preciseness and expressiveness in

specifying software and system requirements [17, 18, 24, 43, 55]. Many formal

specification languages have been proposed to accommodate various aspects and

views. For example VDM [3], Z [92], Object-Z [88], and B [4] are state-oriented

formalisms; ACT1 [28], CLEAR [11], OBJ [35], and Larch [47] are algebraic for-

malisms and CSP [44]; TCSP [82], CCS [48], and LOTOS [51] are process-oriented

formalisms. The well-defined semantics and syntax of formal specification lan-

guages make them suitable for precisely capturing and formally verifying system

requirements. In addition, there are some well developed tools to support the use

of such formal notations, such as Z/EVES [13], Alloy [75], PVS [77], SPIN [46],

FDR [60], UPPAAL [80] and so on. However, the design of complex systems re-

quires powerful mechanisms for modeling data, state, communication, and real-time

behavior; as well as for structuring and decomposing systems in order to control

local complexity. One current research focus is on combining state based and event

based formalisms, and many approaches have been reported at recent conferences

on formal methods, i.e., IFM’02 [12, 36]. Integrated formal methods (IFM) com-

bine different formalisms to capture the static and dynamic system properties in a

highly structured way. One of these approaches, Timed Communicating Object Z

(TCOZ) [67] builds on the strengths of Object-Z [25, 88] in modeling complex data

and state with the strengths of TCSP [82, 83] in modeling real-time interactions.

1.2. THESIS OUTLINE AND OVERVIEW 3

TCOZ extended the inherited CSP’s channel based communication mechanism, in

which messages represent discrete synchronization between processes, to continu-

ous function interface mechanisms inspired by process control theory: the sensor

and actuator [66]. With such mechanisms TCOZ is capable of specifying both syn-

chronous and asynchronous communication interactions of composite systems [30].

The current shortcoming of IFM on TCOZ in particular is the lack of tool and the-

oretical support and its connection to the current industrial best practice. The aim

of this thesis is to provide various tool environments and verification techniques

to the TCOZ formal specification language to enhance its practical usage. Four

main areas of work will be addressed in the thesis: the Z family Markup Language

(ZML) 1 , the ZML web environment, the Oz animation environment, and TCOZ

proof techniques and semantic embedding. These areas range from simple (light-

weight) tools, through to more structured, complex and developed (heavy-weight)

tools.

1.2 Thesis outline and overview

The structure of the thesis is as follows.

1Our ZML includes the Z/Object-Z/TCOZ languages. Recently we also participated in Ut-
ting’s paper on “ZML: XML support for standard Z”, which will appear in ZB2003.

1.2. THESIS OUTLINE AND OVERVIEW 4

1.2.1 Chapter 2

This chapter is devoted to an overview of the Z family languages, particularly

the TCOZ integrated formal methods language. Z and CSP are two well known

formal notations with their respective user groups. Recently there has been ac-

tive investigation of the integration [31, 67, 89] of formal object-oriented methods

(e.g. Object-Z [25, 88]) with process description languages (e.g. CSP [44]). One such

approach, the Timed Communicating Object Z (TCOZ) [67] combines Object-Z’s

strengths in modelling complex data and state with TCSP’s strengths in modelling

real-time concurrency. The TCOZ communication interfaces, i.e., channel, sensor

and actuator, are well suited for capturing communication between components.

The introduction of a novel network topology operator allows the communications

interfaces of complex processes to be visualized through simple network-topology

graphs. This improves decoupling of class definitions by simplifying the interfaces

between objects, thereby enhancing the modularity of system specifications. In

this chapter we give a brief overview of the various aspects of TCOZ. A detailed

introduction to TCOZ and its Timed CSP and Object-Z features may be found

elsewhere [68]. The formal semantics of TCOZ is also documented [65].

1.2.2 Chapter 3

This chapter presents an XML [101] approach to define a customized markup lan-

guage for the Z family notations (Z/Object-Z/TCOZ). For a single formal notation

there may exist many kinds of support tools for different usages, i.e., model con-

1.2. THESIS OUTLINE AND OVERVIEW 5

structing tools, animation tools, proof supporting tools, etc. Such tools demand a

standard interchangeable common format among them. EXtensible Markup Lan-

guage (XML) is a subset of the Standard Generalized Markup Language (SGML).

It was designed to describe customized document structure. It is strongly believed

that XML will become the most common tool for all data manipulation and data

transmission. Thus a customized markup language for a particular formal language

can be defined using XML technology. In this chapter, we present a Z Markup Lan-

guage (ZML) for the Z family notations using W3C XML Schema [106].

1.2.3 Chapter 4

This chapter presents the development of a web environment for ZML and their

projections to UML Diagrams. The World Wide Web (WWW) is a promising

environment for software specification and design because it allows sharing design

models and providing hyper textual links among the models [52]. Unified Modeling

Language (UML) [81] is commonly regarded as one of the dominant graphical

notations for industrial software system modeling. It is important to develop links

and tools from FM to WWW and to UML so that FM technology transfer can be

successful. In this chapter, we demonstrate the use of the eXtensible Stylesheet

Language (XSL) [102] to develop a web environment that provides various browsing

and syntax checking facilities for Z family languages; and a transformation tool for

projecting TCOZ specifications (in ZML) to UML (in XMI).

1.2. THESIS OUTLINE AND OVERVIEW 6

1.2.4 Chapter 5

This chapter presents the development of an animation environment for the TCOZ

notation. Specification animation plays an important role of validating the consis-

tency between the formal model and the real world informal requirements. Even

given the correctness of a formal specification, there may still be a gap between

the formal model and the real world informal requirements. If the formal model

does not truly reflect the real world requirements, it is useless to further verify

its correctness. The purpose of animation is to exhibit the dynamic properties

of a specification, and to bridge the gap between the real world problem and our

interpretation of the informal requirements. In this chapter, we define executable

semantics of TCOZ in a multi-paradigm programming language - Oz [39, 91, 42]

for the animation of TCOZ models.

1.2.5 Chapter 6

This chapter presents a proof system for formally reasoning about TCOZ specifi-

cations. Based on TCSP semantics [82, 83], the denotational semantics of TCOZ

has been developed [65]. However, in order to formally verify system properties,

a proof system for TCOZ is needed. TCOZ preserves a large part of both the

syntax and semantics of the base notations. Hence it can potentially benefit from

existing reasoning systems of the individual notations. In this chapter we extend

and link Smith’s proof system of Object-Z [86] and Davies/Schneider’s proof sys-

tem of TCSP [82, 83] for reasoning about TCOZ models. The new proof rules for

1.3. PUBLICATIONS FROM THE THESIS 7

the TCOZ novel constructs, i.e., sensor/actuators, active objects, network topol-

ogy, deadline and wait-until commands, etc., are developed in this chapter. Fur-

thermore, a framework for encoding the inference rules into the theorem prover

Isabelle/HOL is presented for automatic proof assistance of the TCOZ language.

1.2.6 Chapter 7

This chapter presents the formal verification process of a three-layered Computer

Aided Dispatch (CAD) System generic architecture as a case study. Critical system

properties are decomposed and proved by applying the inference rules presented

in chapter 6. In addition, it also confirms that TCOZ could be useful a poten-

tial candidate of Architecture Description Language (ADL) for the specification of

software architecture models.

1.2.7 Chapter 8

Chapter 8 concludes the thesis with a summary of the main contributions of this

thesis, and some suggestions for further research.

1.3 Publications from the thesis

Most chapters of the thesis have been accepted in international refereed journals

or conference proceedings. Chapter 3 has been presented at The Tenth Interna-

1.3. PUBLICATIONS FROM THE THESIS 8

tional World Wide Web Conference (WWW-10, May 2001) [94] and it is used as

a basis for the paper accepted by the The Third Z and B International Confer-

ence (ZB2003, June 2003) [99]. Chapter 4 has been published in the thirteenth

volume of the Annals of Software Engineering journal (ASE, June 2002) [96] and

The Fourth International Conference on Formal Engineering Methods (ICFEM’02,

October 2002) [20]. Chapter 5 was presented at Eighth Asia-Pacific Software En-

gineering Conference (APSEC’01, December 2001) [93]. Chapter 6 and 7 were

presented at the Ninth Asia-Pacific Software Engineering Conference (APSEC’02,

December 2002) [95] and The Tenth IEEE International Workshop on Software

Specification and Design (IWSSD’00, November 2000) [58]. In addition, partial

contributions have been made to the ongoing research work on Semantic Web as

noted in chapter 8, which were published at The Eleventh International Formal

Methods Europe Symposium (FME’02, July 2002) [21] and The Fourth Interna-

tional Conference on Formal Engineering Methods (ICFEM’02, October 2002) [22].

Chapter 2

Background

This chapter sets the context for the later chapters, giving notations used and brief

technical outlines of relevant Z family languages, in particular TCOZ features.

9

2.1. Z/OBJECT-Z/TCSP OVERVIEW 10

2.1 Z/Object-Z/TCSP overview

In this section, we will use a simple message queue system to give a brief introduc-

tion to the Z, Object-Z, TCSP and TCOZ notations.

2.1.1 Z

Z [92] is a formal specification language based on set theory and predicate logic.

A Z specification typically includes a number of state and operation schema defi-

nitions. A state schema encapsulates variable declarations and related predicates

(invariants). The system state is determined by values taken by variables subject

to restrictions imposed by state invariants. An operation schema defines the rela-

tionship between the ‘before’ and ‘after’ states corresponding to one or more state

schemas. Complex schema definitions can be composed from the simple ones by

schema calculus. Z has been widely adopted to specify a range of software systems

(see [40]). Various tools, i.e. editors, type/proof checkers and animators, for Z

have been developed.

Consider the Z model of a FIFO message queue. Let the given type MSG represent

a set of messages. The notation for this is:

[MSG] [messages]

The queue contains operations to add elements to, and delete elements from, the

queue. The total elements in the queue cannot be more than max (say, a number

2.1. Z/OBJECT-Z/TCSP OVERVIEW 11

larger than 100). The global constant max can be defined using the Z axiomatic

definition as:

max : N

max > 100

The state, potential state change and initial state of the queue system can be

specified in Z as:

Queue
items : seqMSG

#items ≤ max

QueueInit
Queue

items = 〈 〉

The operations to add messages to, and delete messages from, the queue can be

modelled as:

Add
∆Queue
item? : MSG

items ′ = items a 〈item?〉

Delete
∆Queue
item! : MSG

items 6= 〈 〉
items = 〈item!〉aitems ′

More complex operations can be constructed by using schema calculus, e.g., a new

message which pushes out an old message, say Penguin, can be specified by using

the sequential composition schema operator o
9 as:

Penguin =̂ Add o
9 Delete

which is an (atomic) operation with the effect of a Add followed by a Delete.

Other forms of schema calculus include schema conjunction ‘∧ ’, disjunction ‘∨ ’

implication ‘ ⇒ ’, negation ‘¬ ’ and pipe ‘ >> ’, which have been discussed in

many Z text books [92, 113].

2.1. Z/OBJECT-Z/TCSP OVERVIEW 12

2.1.2 Object-Z

Object-Z [25] is an extension of the Z formal specification language to accommo-

date object orientation. The main reason for this extension is to improve the clarity

of large specifications through enhanced structuring. Object-Z has a type checker,

but other tool support for Object-Z is limited in comparison to Z. The essential

extension to Z in Object-Z is the class construct which groups the definition of a

state schema with the definitions of its associated operations. A class is a template

for objects of that class: for each such object, its states are instances of the state

schema of the class and its individual state transitions conform to individual op-

erations of the class. An object is said to be an instance of a class and to evolve

according to the definitions of its class.

Consider the following specification of the Queue system in Object-Z.

Queue

items : seqMSG

items ≤ max

Init
items = 〈 〉

Add
∆(items)
item? : MSG

items ′ = items a 〈item?〉

Delete
∆(items)
item! : MSG

items 6= 〈 〉
items = 〈item!〉aitems ′

Operation schemas have a ∆-list of those attributes whose values may change. By

convention, no ∆-list means no attribute changes value. The standard behavioral

interpretation of Object-Z objects is as transition systems [87]. A behavior of a

2.1. Z/OBJECT-Z/TCSP OVERVIEW 13

transition system consists of a series of state transitions each effected by one of

the class operations. A Queue object starts with items empty then evolves by

successively performing either Add or Delete operations. Operations in Object-Z

are atomic, only one may occur at each transition, and there is no notion of time or

duration. It is difficult to use the standard Object-Z semantics to model a system

composed by multi-threaded component objects whose operations have duration.

Every operation schema implicitly includes the state schema in un-primed form

(the state before the operation) and primed form (the state after the operation).

Hence the class invariant holds at all times: in each possible initial state and before

and after each operation.

In this example, operation Add adds a given input item? to the existing set provided

the sequence has not already reached its maximum size (an identifier ending in ‘?’

denotes an input). Operation Delete outputs a value item! defined as one element

of items and reduces items by deleting the last one from the original queue (an

identifier ending in ‘!’ denotes an output).

2.1.3 TCSP

TCSP [82] extends the well known CSP (Communicating Sequential Processes)

notation of Hoare [44] with timing primitives. CSP is an event based notation

primarily aimed at describing the sequencing of behavior within a process and the

synchronization of behavior (or communication) between processes. TCSP extends

2.1. Z/OBJECT-Z/TCSP OVERVIEW 14

CSP by introducing a capability to quantify temporal aspects of sequencing and

synchronization. New timing constructs such as timed prefix, timeout, delay, timed

interrupt, etc., are introduced to capture the requirements related to a timed aspect.

For instance, the timeout construct passes control to an exception handler if no

event has occurred in the primary process by some deadline. The process

(a → P) .{t} Q

will try to perform (a → P), but will pass control to Q if the event a has not

occurred by time t , as measured from the invocation of the process.

A Leave process of the Queue example in TCSP can be constructed as follows.

QueueLeave(items) = out !head(items) →
((ack → Delete) .{5} QueueLeave(items))

It states that the Leave process will output the first element in the queue every 5

time units until an acknowledge message ack is received.

The language semantics of TCSP is based on considering a processes P as a set of

timed failures (T F [[P]]), which represent the records of executions. A timed failure

consists of timed traces and timed refusals. A timed trace contains the information

about events performed according to their timing aspects, while a timed refusal

contains the set of timed events which are refused by the execution. Timed failure

semantics precisely capture the observation of an process execution. For example,

one of the timed failures for the process QueueLeave(items) could be:

(〈(1, out .head(items)), (3, ack)〉, [1, 3)× {ack})

It denotes one possible execution of the process that performs the output at time

one and receives the acknowledgement at time three, while the refusal period for

2.2. TCOZ FEATURES 15

the ack event is between one and three. The T F [[QueueLeave(items)]] is a collection

of all such executions.

2.2 TCOZ features

Timed Communicating Object Z (TCOZ) [67] is essentially a blending of Object-

Z [26] with Timed CSP [82], for the most part preserving them as proper sub-

languages of the blended notation. The essence of this blending is the identification

of Object-Z operation specification schemas with terminating CSP processes. Thus

operation schemas and CSP processes occupy the same syntactic and semantic

category, operation schema expressions may appear wherever processes may appear

in CSP and CSP process definitions may appear wherever operation definitions may

appear in Object-Z. The primary specification structuring device in TCOZ is the

Object-Z class mechanism.

In this section we briefly consider various aspects of TCOZ. A detailed introduction

to TCOZ and its Timed CSP and Object-Z features may be found elsewhere [68].

The formal semantics of TCOZ is also documented [65].

2.2.1 A model of time

In TCOZ, all timing information is represented as real valued measurements in

seconds, the SI standard unit of time [49]. We believe that a mature approach to

measurement and measurement standards is essential to the application of formal

2.2. TCOZ FEATURES 16

techniques to systems engineering problems. In order to support the use of standard

units of measurement, extensions to the Z typing system suggested by Hayes and

Mahony [41] are adopted. Under this convention, time quantities are represented

by the type

T == R¯ T,

where R represents the real numbers and T is the SI symbol for dimensions of time.

Time literals consist of a real number literal annotated with a symbol representing

a unit of time. All the arithmetic operators are extended in the obvious way to

allow calculations involving units of measurement.

2.2.2 Interface – channels, sensors and actuators

CSP channels are given an independent, first class role in TCOZ. In order to sup-

port the role of CSP channels, the state schema convention is extended to allow

the declaration of communication channels. If c is to be used as a communication

channel by any of the operations of a class, then it must be declared in the state

schema to be of type chan. Channels are type heterogeneous and may carry com-

munications of any type. Contrary to the conventions adopted for internal state

attributes, channels are viewed as shared (global) rather than as encapsulated en-

tities. This is an essential consequence of their role as communications interfaces

between objects. The introduction of channels to TCOZ reduces the need to refer-

ence other classes in class definitions, thereby enhancing the modularity of system

specifications.

2.2. TCOZ FEATURES 17

As a complement to the synchronizing CSP channel mechanism, TCOZ also adopts

a non-synchronizing shared variable mechanism. A declaration of the form s :

X sensor provides a channel-like interface for using the shared variable s as an

input. A declaration of the form s : X actuator provides a local-variable-like

interface for using the shared variable s as an output. Sensors and actuators

may appear either at the system boundary (usually describing how global analog

quantities are sampled from, or generated by the digital subsystem) or else within

the system (providing a convenient mechanism for describing local communications

which do not require synchronization). The shift from closed to open systems

necessitates close attention to issues of control, an area where both Z and CSP are

weak [115]. We believe that TCOZ with the actuator and sensor can be a good

candidate for specifying open control systems. Mahony and Dong [66] presented

detailed discussion on TCOZ sensor and actuators.

2.2.3 Active objects

Active objects have their own thread of control, while passive objects are controlled

by other objects in a system. In TCOZ, an identifier Main (indicating a non-

terminating process) is used to represent the behavior of active objects of a given

class [19]. The Main operation is optional in a class definition. It only appears

in a class definition when the objects of that class are active objects. Classes for

defining passive objects will not have the Main definition, but may contain CSP

process constructors. If ob1 and ob2 are active objects of the class C , then the

2.2. TCOZ FEATURES 18

independent parallel composition behavior of the two objects can be represented

as ob1 ||| ob2, which means ob1.Main ||| ob2.Main

2.2.4 Semantics of TCOZ

A separate paper details the blended state/event process model which forms the

basis for the TCOZ semantics [65]. In brief, the semantic approach is to iden-

tify the notions of operation and process by providing a process interpretation of

the Z operation schema construct. TCOZ differs from many other approaches to

blending Object-Z with a process algebra in that it does not identify operations

with events. Instead an unspecified, fine-grained, collection of state-update events

is hypothesized. Operation schemas are modelled by the collection of those se-

quences of update events that achieve the state change described by the schema.

This means that there is no semantic difference between a Z operation schema and

a CSP process. It therefore makes sense to also identify their syntactic classes.

The process model used by TCOZ consists of sets of tuples consisting of: an initial

state; a trace (a sequence of time stamped events, including update-events), a

refusal (a record of what and when events are refused by the process), and a

divergence (a record of if and when the process diverged). The trace/refusal pair

is called a failure and the overall model the state/failures/divergences model. The

state of the process at any given time is the initial state updated by all of the

updates that have occurred up to that time. If an event trace terminates (that is if

a termination event X occurs), then the state at the time of termination is called

2.2. TCOZ FEATURES 19

the final state.

The process model of an operation schema consists of all initial states and update

traces (terminated with a X) such that the initial state and the final state satisfy

the relation described by the schema. If no legal final state exists for a given initial

state, the operation diverges immediately. An advantage of this semantics is that

it allows CSP process refinement to agree with Z operation refinement.

2.2.5 Network topology

The syntactic structure of the CSP synchronization operator is convenient only in

the case of pipe-line like communication topologies. Expressing more complex com-

munication topologies generally results in unacceptably complicated expressions.

In TCOZ, a graph-based approach is adopted to represent the network topology

[64]. For example, consider that processes A and B communicate privately through

the interface ab, processes A and C communicate privately through the interface

ac, and processes B and C communicate privately through the interface bc. One

CSP expression for such a network communication system is

(A[bc ′/bc] |[ab, ac]| (B [ac′/ac] |[bc]|C [ab ′/ab]) \ ab, ac, bc)
[ab, ac, bc/ab ′, ac ′, bc′]

The hiding and renaming is necessary in order to cover cases such as C being

able to communicate on channel ab. The above expression not only suffers from

syntactic clutter, but also serves to obscure the inherently simple network topology.

This network topology of A, B and C may be described by

‖(A ab¾- B ; B bc¾- C ; C ca¾- A).

2.2. TCOZ FEATURES 20

Other forms of usage allow network connections with common nodes to be run

together, for example

‖(A ab¾- B bc¾- C ca¾- A),

and multiple channels above the arrow, for example if processes D and F commu-

nicate privately through the channel/sensor-actuator df1 and df2, then

‖(D df1,df2¾ - F).

The syntactic implication of the above approach is that the basic structure of a

TCOZ document is the same as for Object-Z. A document consists of a sequence

of definitions, including type and constant definitions in the usual Z style. TCOZ

varies from Object-Z in the structure of class definitions, which may include CSP

channel and processes definitions. For instance, an active Queue can be derived

from the previous (Object-Z) Queue model as:

ActiveQueue
Queue

tj , tl : T [durations for Join/Leave operations]
in, out : chan [channels for input and output]

Join =̂ [item : MSG | #items < max] • in?item → Add • Deadline tj
Leave =̂ [items 6= 〈 〉] • out !head(items) → Delete • Deadline tl
Main =̂ µQ • Join 2 Leave; Q

where the TCOZ Deadline command is used to constrain the Join and Leave to

be finished within their duration time.

As we can see that Object-Z and TCSP complement each other not only in their

expressive capabilities, but also in their underlying semantics. Object-Z is an ex-

cellent notation for modeling data and states, but difficult for modeling real-time

2.2. TCOZ FEATURES 21

and concurrency. TCSP is good for specifying timed process and communication,

but like CSP, cumbersome to capture the data states of a complex system. The

combination of the two, TCOZ, treats data and algorithmic aspects in the Object-Z

style and treats process control, timing, and communication aspects in the TCSP

style. In addition, the object oriented flavor of TCOZ provides an ideal founda-

tion for promoting modularity and separation of concerns in system design. With

the above modeling abilities, TCOZ is potentially a good candidate for specifying

composite systems in a highly constructed manner.

Chapter 3

Z family Markup Language –

ZML

In this chapter, we present an XML approach to define a customized markup

language for the Z family notations.

23

3.1. INTRODUCTION 24

3.1 Introduction

Standard interchange format is important for various tool environment that share

a common language. In this way tool developers can work in an open-source spirit,

with the aim both of promoting interoperability and avoiding duplicate efforts. In

this chapter we present the design and definition of an interchange format for the

Z family languages.

3.2 Formal design model of ZML

In general, the requirement for a Z family interchange format is that it should

be structured, complete and compact. The construction of such a format must

start with formalizing the related syntax definitions of the Z family languages.

The typing and dynamic semantics issues are not of concern here since our aim

at the moment is to focus on syntax checks. Therefore, the static and dynamic

semantics of Z family languages were deliberately left out in the following model.

Pure Z notation can be used as the meta notation for the formal design of such a

format. However, Object-Z is superior because it can construct a more compact

and reusable design model. The Object-Z design model can be more easily ex-

tended when a new notation is considered to be included. TCOZ is more suited for

modeling timed/concurrent interactive systems, and perhaps it is an overdo for the

3.2. FORMAL DESIGN MODEL OF ZML 25

design even though Z family languages are computationally complex, when dealing

with schema calculus and inheritance expansions.

Firstly, the character sets are defined by a Z free type definition as:

Char ::= ‘a’ | ‘b’ | ... | ‘1’ | ‘2’ | ... | ‘:’ | ‘/’ | ‘#’ | ...

The string type is defined as a sequence of characters:

String == seqChar

The URL type is defined as a string starting with “http : //” :

URL == {s : String | ∃ st : String • s = 〈‘h’, ‘t’, ‘t’, ‘p’, ‘:’, ‘/’, ‘/’〉 a st}

The given type Name contains all the valid identifiers, such as names of type,

schema, class and so on. It is assumed that only alphabets and ‘ ’ can appear in

an identifier.

Name == {s : String | ran s ⊆ {‘a’, ‘b’, ..., ‘1’, ‘2’, ..., ‘A’, ‘B’, ..., ‘ ’}}

A type declaration contains either a given type or a combination of constructors and

types such as A×B . The constructors include binary constructors i.e. ‘ → ’, ‘ 7→ ’

and unary constructors i.e. ‘P ’, ‘F ’.

TypeConst == {s : String | #s = 1 ∧
ran s ⊆ {‘P ’, ‘F ’, ‘P1 ’, ‘× ’, ‘ → ’, ‘ 7→ ’, ...}}

Syntactically, a type constructor, a type and a predicate constructor are similar,

and are defined as:

TypeConstructor

content : TypeConst

Type

name : Name

PredConstructor

content : String

3.2. FORMAL DESIGN MODEL OF ZML 26

A declaration type Dtype is a sequence of a class-union of type constructors and

defined types, A predicate is similarly defined.

Dtype == seq(TypeConstructor ∪ ↓ Type)
Predicate == seq(PredConstructor ∪ ↓ Type)

where ↓ Type denotes a union of all classes defined by inheriting Type.

The type definition Typedef is for defining user given types such as simple type,

abbreviation and free types. The axiom definition Axiomdef is used to define global

constants or functions such as liberal, generic and unique functions.

Typedef
Type

defs : Dtype

Axiomdef
Type

decpart : Name → Dtype
axpart : PPredicate

The declaration part decpart is a set of pairs, where the first element of a pair

is a variable name and the second is the variable’s type declaration. Note that

the function is used here to indicate that one variable can only have one type

declaration. The axiom part axpart consists a set of predicates, which states the

properties of a particular schema.

There are three kinds of inclusions in Z: a direct (inc) form, a ∆ (del) form and a

Ξ (xi) form.

Inclusion == {‘inc’, ‘xi’, ‘del’} 7→ PName

Z language has two types of schema definitions: schema box (1) and schema calculus

(2).

3.2. FORMAL DESIGN MODEL OF ZML 27

Schemdef =̂ Schemadef1 ∪ Schemadef2

The schema box format is defined as:

Schemadef1
Type

incl : Inclusion
decpart : Name → Dtype
axpart : PPredicate

For the second format Schemadef2, a type CalcOp is introduced to model all the

possible calculus operators, and the class CalcConstructor is for defining a single

schema calculus. A PredCalc can be either a Type or a CalcConstructor . Note

that recursive definitions are used to capture different combinations of expressions

in the schema calculus.

CalcOp == {s : String | #s = 1 ∧ ran s ⊆ {‘ ∧ ’, ‘ ∨ ’, ‘ o
9 ’, ‘ >> ’, ‘¬ ’, ...}}

PredCalc == CalcConstructor ∪ ↓ Type

CalcConstructor

op : CalcOp
items : PPredCalc

Schemadef2
Type

calc : PredCalc

Object-Z/TCOZ languages are mainly composed of class definitions. Firstly, we

define state, initial and operation schemas as follow.

Statedef

decpart : Name → Dtype
axpart : PPredicate

Initdef

axpart : PPredicate

3.3. XML AND XML SCHEMA 28

Opdef
Statedef

name : Name
delta : PName

An Object-Z/TCOZ class is defined as:

Classdef
Type

inherit : Type 7→ (Name → Name)
[inherit classes with rename list]

state : Statedef [state schema]
init : Initdef [initial schema]
ops : POpdef [operation schemas]

A ZDefinition is either a Typedef , Axiomdef , Schemadef or Classdef . Description

was also included as an Object-Z class for defining documentation in a formal

specification.

ZDefinition =̂ Typedef ∪ Axiomdef ∪ Schemsdef ∪ Classdef

3.3 XML and XML Schema

Having formally specified the Z family language requirement, the next step is re-

lated to implementation. EXtensible Markup Language (XML) [101] is a powerful

publishing and document interchange format meta description language. It is a

subset of the Standard Generalized Markup Language (SGML) and was designed

to describe customized document structures. XML has become a World Wide Web

3.3. XML AND XML SCHEMA 29

Consortium’s (W3C) recommendation in 1998. It is strongly believed that XML

will be the most common tool for all data manipulation and data transmission. A

customized markup language for a particular formal language can be constructed

using XML technology. Thus we define a Z Markup Language (ZML) for the Z

family notations using XML. The customized ZML serves as a standard interchange

format among the tools. Another benefit of using XML as an input medium is its

close connections with the World Wide Web (WWW), which will be addressed in

the next chapter.

With the formal definitions in the previous section we can encode the Z fam-

ily syntax into a customized XML document structure. The World Wide Web

Consortium (W3C) has provided two mechanisms for describing XML document

structures: Document Type Definition (DTD) and XML Schema [106]. They are

used for checking that each component of a document occurs in a valid place within

the interchanged data stream. The former (DTD) originated from the SGML rec-

ommendation and used a different syntax. The XML Schema definition language

is an XML language for describing and constraining the content of XML docu-

ments. W3C XML Schema has become a W3C Recommendation in May 2001.

It is going to play the role of the DTD in defining customized XML structure in

the future. It is consistent with XML syntax and easier to write than DTD. In

addition, the XML Schema language allows better specification of the data types

of elements than the DTD language. In addition to the built-in datatypes such as

string, integer, boolean, float, data time and so on, XML Schema provides mecha-

3.3. XML AND XML SCHEMA 30

nisms to further constrain the allowable content of an element or attribute, such as

setting a valid range of values or defining a regular expression to which the content

must conform. Furthermore, since XML schemas are themselves written in XML,

the document descriptions are far more extensible than they were in the original

DTD syntax. Declarations can have richer and more complex internal structures

than declarations in DTDs. Thus XML Schemas can be stored along with other

XML documents in XML-oriented data stores, referenced, and even styled, us-

ing techniques like XML Linking Language (XLink) [107], XML Pointer Language

(XPointer) [109], and eXtensibe Stylesheet Language (XSL) [102]. For our pur-

poses, we prefer to use XML schema notation to define the ZML structure syntax

for the Z family notations. As a result, we can obtain a tighter specification of

the structure, and can take advantage of XML tools, such as XSL Transformations

(XSLT).

The reason that we chose XML rather than MathML (Mathematical Markup Lan-

guage) [103] is due to its extensibility. Though MathML is rich in writing math-

ematical expressions, the document structure is not suitable for authoring formal

specification languages such as Z/Object-Z/TCOZ. For example, the Z schema box

is more difficult to construct in MathML. Furthermore, MathML expressions are

heavily loaded with defined tags, obscuring the content of the expression. This is

difficult for authors, whose focus is on the abstraction of the model rather than

the structure of the expressions themselves. In addition, we want to construct a

web environment as close as possible to the LATEX style files for Z/Object-Z/TCOZ

3.4. THE ZML SYNTAX DEFINITION 31

(fuzz.sty, oz.sty and coz.sty) so that a simple translation tool can be developed to

map existing Z/Object-Z/TCOZ specifications in LATEX to our web ZML format.

3.4 The ZML syntax definition

The formal model defined in the previous section acted as a precise design reference

document and provides clear guidelines to our XML implementations. The ZML

syntax structure is derived from the model and encoded into the XML Schema

definition. In this section, we go through each of the major constructs of the

Z/Object-Z/TCOZ notations, and briefly describe our proposed ZML structure.

The XML Schema was developed and validated by the XML Spy [6] tool suite.

3.4.1 Root element definition

The Z family Markup Language mainly consists of eight types of definitions, i.e.,

given type, axiomatic definition, generic definition, abbreviation, free type, schema

definition, class definition and predicate expressions. The ZML top level structure

is depicted in Figure 3.1. The diagram is auto-generated by the XML Spy tool, and

acts as a visual representation of its textual definition, assisting us in understanding

the syntax structures. The corresponding W3C XML Schema text definition is as

follows. It simply states the content and occurrence of each definition.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

3.4. THE ZML SYNTAX DEFINITION 32

Figure 3.1: ZML top level structure

...

<xsd:element name="ZML" type="ZMLType"/>

<xsd:complexType name="ZMLType">

<xsd:sequence>

<xsd:element ref="comment" minOccurs="0"/>

<xsd:element name="basicTypeDef" type="basicTypeDefType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="axiomaticDef" type="axiomaticDefType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="genericDef" type="genericDefType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="abbreviationDef" type="abbreviationDefType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="freeTypeDef" type="freeTypeDefType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="schemaDef" type="schemaDefType"

3.4. THE ZML SYNTAX DEFINITION 33

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="classDef" type="classDefType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="predicate" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="creator" type="xsd:string"/>

<xsd:attribute name="date" type="xsd:date"/>

</xsd:complexType>

...

</Schema>

The element defines the markup tags for each syntax block in the Z/Object-

Z/TCOZ notations. The content structure of each building block is defined as

a complex type in XML Schema and is referred by the type definition of the ele-

ment. The occurrence defines the possible appearance of each tag, which in this

case is zero or many. In some sense, the XML Schema definition is similar to a

BNF specification, although the former is more powerful and carries the data type

definition as well.

3.4.2 Z related syntax definitions

A Z specification typically includes a number of given type, abbreviation, free

type, axiomatic, generic and schema definitions. Their definitions are shown in

Figure 3.2. Here a given type definition consists of one or more basic types. An

axiomatic definition comprises of one or more variable declarations and optional

predicate definitions to constrain the values. A generic definition consists of an

optional formal parameter declaration, variable declarations and optional predicate

constraint definitions. An abbreviation syntax introduces a new type definition

3.4. THE ZML SYNTAX DEFINITION 34

Figure 3.2: Given type, abbreviation, free type, axiomatic and generic definitions

that is the same as the type of the expression on the right. A Free type definition

comprises one or more name labels and its branches, which denote a total injection

from right to the new type on the left.

Schema definitions

Figure 3.3: Schema definitions

3.4. THE ZML SYNTAX DEFINITION 35

The Z schema syntax consists of a name, optional generic parameters, and either

schema box definitions or schema expression definitions, which are depicted in

Figure 3.3. The schema box comprises an inclusion list, a Ξ-list, a ∆-list, some

declarations and predicates.

The schema expression mainly includes six types of expression definitions, i.e.,

quantified expressions, schema text, unary schema expressions, binary schema ex-

pressions, bracket expressions and name conventions as showed in Figure 3.4. Note

that here we use a recursive definition on the schema expression element.

Figure 3.4: Schema expression definition

3.4. THE ZML SYNTAX DEFINITION 36

3.4.3 Object-Z related definitions

Object-Z [25] is an extension of the Z formal specification language to accom-

modate object orientation. The essential extension to Z in Object-Z is the class

construct which groups the definition of a state schema and the definitions of its

associated operations. Syntactically, a class definition is a named box. In this box

the constituents of the class are defined and related.

Class definitions

Figure 3.5: Class definitions

3.4. THE ZML SYNTAX DEFINITION 37

The class construct consists of a name, generic parameters, visibility list, inheri-

tance list, local definitions, state schema definition, initial schema definition and

some operation definitions, which are depicted in Figure 3.5.

An inherited class definition comprises of a class name, an optional parameter list

and a rename list. An operation schema consists of a name, a choice between an

Figure 3.6: Operational expression definition

3.4. THE ZML SYNTAX DEFINITION 38

operation schema box or an operation expression definition, where the schema box

contains a delta list, declarations and predicates. The structure of the operation

expression is shown in figure 3.6.

3.4.4 TCSP related definitions

Figure 3.7: Process expression definition

3.4. THE ZML SYNTAX DEFINITION 39

TCSP [82, 83] is an extension of Hoare’s Communicating Sequential Process (CSP)

notation to accommodate the description of time-sensitive behaviors. The syntax

structure of a TCSP process expression in TCOZ is illustrated in Figure 3.7. It

defines simple processes as well as compound processes, e.g., prefix and binary

process expressions, recursion and so on. Note that the Deadline, WaitUntil,

Active Object and Network Topology expressions are related to the TCOZ exten-

sion syntax which will be addressed later.

3.4.5 TCOZ specific definitions

Timed Communicating Object-Z (TCOZ) [67] is an integration of Object-Z and the

TCSP languages. It relates the notions of Object-Z operations and TCSP processes

by providing a process interpretation of the Z operation schema construct. Thus

TCSP primitives (process expressions) can be introduced inside Object-Z classes

as operation definitions for modelling timing related aspects. TCOZ also extends

the TCSP primitives as follows. TCOZ Active object [72] is an object that has its

Figure 3.8: Network topology and WaitUntil definitions

3.4. THE ZML SYNTAX DEFINITION 40

own thread of control. In TCOZ, a graph-based approach is adopted to represent

the network topology [64] for communication topologies between active objects.

The Deadline and WaitUntil commands are TCOZ extensions to capture time

sensitive behaviors. Their syntax structures are illustrated in Figure 3.8.

3.4.6 Other definitions

The ZML also consists of some basic structure definitions such as data type struc-

tures, predicate definition, expression syntax and so on.

Data types

Figure 3.9: Data type definition

A variable declaration comprises a variable list and data type definition. A data

type syntax consists of a recursive definition on the type constructs as in Figure 3.9.

3.4. THE ZML SYNTAX DEFINITION 41

It defines the unary and binary type constructs as well as the type substitution

and bracket expressions. The EBNF for the data type syntax is as follows.

dataType := (dataType“binarySym”) ∗ unary
unary := “unarySym”element | element
element := type | “(”dataType“)”

Predicate definitions

A predicate definition comprises five different structures such as quantified, binary,

expression predicates. Its structure is depicted in Figure 3.10.

Figure 3.10: Predicate definitions

3.4. THE ZML SYNTAX DEFINITION 42

Expressions

The “expression” in ZML is the most complicated syntax structure. It consists

of eight different type of expression categories, i.e., prefix, infix, postfix, object

reference, name substitution, and numerical, which is illustrated in Figure 3.11.

Figure 3.11: Expression definitions

3.5. ZML EXAMPLE 43

In the outline just given, only a small portion of the ZML syntax definitions are pre-

sented. A complete syntax definition and full documentation of the XML Schema

definitions for the ZML can be found at:

http://nt-appn.comp.nus.edu.sg/fm/zml/zml.html

3.5 ZML example

In this chapter, we have defined a Z family markup language using the W3C XML

Schema. The schema can be used as a validation document for checking the syntax

correctness of the Z/Object-Z/TCOZ specifications in XML format. When author-

ing ZML files, the user simply declares the name space of the XML schema file as

follows.

<?xml version="1.0" encoding="UTF-8"?

<ZML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=

"http://nt-appn.comp.nus.edu.sg/fm/zml/zml.xsd">

...

</ZML>

With the above namespace links, the XML editing tools can check the validity of

the ZML file against the XML Schema definition. A validation process is shown in

Figure 3.12. Any unspecified structures and entity symbols would be reported as a

syntax error. The following represents part of the Queue example of chapter 2.1.2

in ZML.

<basicTypeDef>

3.5. ZML EXAMPLE 44

Figure 3.12: XML validation process

<name>MSG</name>

<name>T</name>

</basicTypeDef>

...

<schemaDef>

<name>Queue</name>

<declaration>

<variable>items</variable>

<dataType>

<unarySym>seq</unarySym>

<type>MSG</type>

</dataType>

</declaration>

<predicate>

<expression>

<prefixExpr>#</prefixExpr>

<expression>

<varName>items</varName>

</expression>

</expression>

<relationSym>leq</relationSym>

<expression>

<varName>max</varName>

3.6. CONCLUSION 45

</expression>

</predicate>

</schemaDef>

...

<schemaDef>

<name>Add</name>

<deltaList>Queue</deltaList>

...

</schemaDef>

<!-- other operation definitions -->

Note that the above example is related to Z syntax only. A more sophisticated

example including Object-Z and TCOZ specifications will be demonstrated in the

next chapter along with the ZML web browsing environment.

3.6 Conclusion

In this chapter, we have defined an XML mark-up language for the Z family no-

tations. The XML Schema syntax has been created, validated, and found to be

easy to use and practical. The ZML structure is mainly influenced by the syntax

definitions in Spivey’s Z reference manual [92], Smith’s Object-Z book [25], and

the TCOZ notation paper [67]. Some example specifications in ZML have been

validated against the schema file. Furthermore, a web browsing environment [94],

several projection tools and a Z/Object-Z/TCOZ type checker [93, 20] were built

based on this ZML definition. In summary, the ZML serves as a standard inter-

change format among the various tool environments presented in the thesis.

Chapter 4

ZML environment for Z family

notations

This chapter presents the development of a web environment for ZML and a tool

for projecting a ZML specification into UML Diagrams.

47

4.1. INTRODUCTION 48

4.1 Introduction

Most discussions related to “Web and Software Engineering” are centered around

two main issues: how web technology assists software design and development

and how software engineering techniques facilitate web applications. This chapter

tries to address both issues within a specific context “XML[101]/XSL[102] and

Formal/Graphical software modeling techniques”.

One reason for the slow adoption of Formal Methods (FM) is the lack of tool support

and connections to the current industrial practice. Recent efforts and success in

FM have been focused on building ‘heavy’ tools, such as theorem provers and

model checkers. Although those tools are essential and important in supporting

applications of formal methods, they are usually less used in practice due to the

intrinsic difficulty involved in the technology. In order to achieve wider acceptance

of formal methods, it is necessary to develop ‘light’ weight tools, such as easy-

access browsers for formal specifications and projection/transformation tools from

formal specifications to industry popular graphical notations. The World Wide

Web (WWW) is a promising environment for software specification and design

because it allows sharing design models and providing hyper textual links among

the models [52]. The Unified Modeling Language (UML) [81] is commonly regarded

as one of the dominant graphical notations for industrial software system modeling.

It is important to develop links and tools from FM to WWW and to UML so that

FM technology transfer can be successful.

4.1. INTRODUCTION 49

Object-Z [25, 88], the object-oriented extension to Z, has an active research com-

munity but lacks tool support. TCOZ [67, 66] integrates Object-Z with process

algebra Timed-CSP [82, 83]. In this chapter, we use XML and the eXtensible

Stylesheet Language (XSL) [102] to develop a web environment that provides var-

ious browsing and syntax checking facilities for Z family languages. Second, with

the emergence of XML Metadata Interchange (XMI) [38] as a standard, e.g., Ra-

tional Rose UML supports XMI input, it is possible to build a transformation link

and projection tools from Object-Z/TCOZ specifications (in XML) to UML (in

XMI) via XSLT [110] technology.

Since we believe that FM can improve software reliability for applications, Z family

languages (particularly Object-Z) are used to formally specify the essential func-

tionalities of the ZML. The Object-Z specification models are used as an initial

design document to guide the XML/XSL implementation. In a sense, the chap-

ter demonstrates a formal approach to modeling XML applications. Consequently,

“we take a dose of our own medicine”.

The remainder of the chapter is organized as follows. Section 2 gives a brief intro-

duction to the requirements of the Z family notations. Section 3 formally specifies

the functionalities of the Z family web environment and UML projection tools in

Object-Z itself. Section 4 outlines the main approach and techniques of the chap-

ter, and discusses related work. Section 5 presents the implementation issues of the

web environment and browsing facilities for Z family languages. Section 6 presents

the implementation issues of the projection tools from Object-Z (in XML) to UML

4.2. Z FAMILY LANGUAGES REQUIREMENTS 50

(in XMI). Section 7 concludes the chapter.

4.2 Z family languages requirements

In this section, we will outline some requirements for browsing Z family speci-

fications on the web. The differences among Z, Object-Z and TCOZ notations

are illustrated and Z schema calculus and Object-Z/TCOZ inheritance expansions

(which is the challenge of the ZML development) are explained. Note that the

essential requirements of building ZML are highlighted in Italic fonts.

4.2.1 Schema inclusion and calculus

Z specifications consist of schema inclusion and schema calculus, which are impor-

tant constructs for composing complex schema definitions. Consider the Z model

of a FIFO message queue in chapter 2 section 2.1.1. The expansions from 1 the

schema inclusion of the Queue and QueueInit definitions are illustrated as below

in ∆Queue and QueueInite .

∆Queue
items : seqMSG
items ′ : seqMSG

#items 6 max
#items ′ 6 max

QueueInite
items : seqMSG

#items 6 max
items = 〈 〉

The expanded form of the schema calculus in Penguin is:

1The expanded form of a definition refers to provide a complete definition for the schema that
merges all the definitions in its included, composed or inherited definitions.

4.2. Z FAMILY LANGUAGES REQUIREMENTS 51

Penguine

∆Queue
item?, item! : MSG

∃ items ′′ : seqMSG • items ′′ = items a 〈item?〉
∧ items ′′ 6= 〈 〉 ∧ items ′′ = 〈item!〉aitems ′

The schema calculus expansions such as Penguine are useful for analysis, review

and reasoning about Z specifications. ZML should support all schema inclusion and

calculus expansions automatically.

4.2.2 Inheritance

Inheritance is a mechanism for incremental specification, whereby new classes may

be derived from one or more existing classes. Active classes can be defined by

inheriting passive classes. TCOZ is a superset of Object-Z and all Object-Z classes

are treated as passive classes (without Main operation) in TCOZ. For instance,

the expanded form of the active queue example in section 2.2.5 is as follows:

ActiveQueuee

items : seqMSG
tj , tl : T; in, out : chan

items ≤ max

Init
items = 〈 〉

Add
∆(items)
item? : MSG

items ′ = items a 〈item?〉

Delete
∆(items)
item! : MSG

items 6= 〈 〉
items = 〈item!〉aitems ′

Join =̂ [item : MSG | #items < max] • in?item → Add • Deadline tj
Leave =̂ [items 6= 〈 〉] • out !head(items) → Delete • Deadline tl
Main =̂ µQ • (Join 2 Leave) o

9 Q

4.2. Z FAMILY LANGUAGES REQUIREMENTS 52

Essentially, all definitions are pooled with the following provisions. Inherited type

and constant definitions and those declared in the derived class are merged. The

state and initialization schemas of derived classes and those declared in the derived

class are conjoined. Operation schemas with the same name are also conjoined.

We believe the browsing facilities are particularly useful to Object-Z/TCOZ since

the notations support cross references and various inheritance techniques for large

specifications. It is necessary to view a full expanded version of an inheriting class

for the purpose of reasoning and reviewing the class in isolation. It is desirable for

ZML to automatically support the inheritance zoom-in/out features.

4.2.3 Instantiation and composition

Let C be the name of a class. The identifier C semantically denotes a collection

of objects of the class. Objects may have object references as attributes, i.e. con-

ceptually, an object may have constituent objects. Such references may either be

individually named or occur in aggregates. For example, the declaration c : C

declares c to be a reference to an object of the class described by C . The term

c.att denotes the value of attribute att of the object referenced by c, and c.Op

denotes the evolution of the object according to the definition of Op in the class

C . Both Object-Z and TCOZ support object composition, e.g., two queues and

two active-queues classes can be constructed based on chapter 2 section 2.2.5’s

examples in Object-Z and TCOZ respectively as:

4.2. Z FAMILY LANGUAGES REQUIREMENTS 53

TwoQueues

q1, q2 : Queue

Join =̂ q1.Add
Leave =̂ q2.Delete
Transfer =̂ q1.Delete ‖ q2.Add

TwoActiveQueues

q1 : ActiveQueue[talk/out]
q2 : ActiveQueue[talk/in]

Main =̂ q1 |[talk]| q2

The Object-Z parallel operator ‘‖’ used in the definition of Transfer (in TwoQueues)

achieves inter-object communication: the operator conjoins constraints and equates

variables with the same name and also equates and hides any input variable to one

of the components of ‖ with any output from the other component that has the

same base name (i.e. the inputs and outputs are denoted by the same identifier

apart from ? and ! decorations).

The CSP parallel operator ‘ |[talk]| ’ used in the definition of Main (in TwoAc-

tiveQueues) captures the concurrent and synchronization behavior of the two com-

municating active processes q1.Main and q2.Main.

The models of TwoQueues and TwoActiveQueues appear to have similar behavior.

However, the behavior of TwoQueues is purely sequential. For example, Join

(q1.Add) and Leave (q2.Delete) cannot concurrently operate or partially overlap

(even assuming the duration of Object-Z operations can be explicitly modelled).

This limitation is overcome in the (TCOZ) TwoActiveQueues (since two active

4.3. FORMAL MODEL OF ZML ENVIRONMENT 54

queues have their own threads of control, only synchronizing through the talk

channel).

Object-Z/TCOZ models of complex systems may involve complex composition hier-

archies, it is useful to have hyper links for all defined types (particularly the class

types) automatically created in the design document – a clear requirement for the

ZML tool.

4.3 Formal model of ZML environment

4.3.1 Web browsing environment

In the previous chapter we have provided a formal model for the Z family language

syntax. Based on that definition a Z family web browsing environment can be

modelled as follows:

WebBE

zspec : PZDefinition [a specification]
mainpage : URL [the main URL address]
currpage : URL [the current page URL address]
expandpos : Name 7→ B [all expansible positions]

Init
currpage = mainpage
dom expandpos = {c : Classdef ∩ zspec | c.inherit 6= ∅ • c.name}

∪{s1 : Schemadef1 ∩ zspec | s1.incl 6= ∅ • s1.name}
∪{s2 : Schemadef2 ∩ zspec • s2.name}

ran expandpos = {false}

4.3. FORMAL MODEL OF ZML ENVIRONMENT 55

Clicklink
∆(currpage)
l? : Name

l? ∈ {s : zspec • s .name}
currpage ′ = mainpage a 〈‘#’〉al?

Clickexpand
∆(zspec)
e? : Name

e? ∈ dom expandpos
∃1 def : (Classdef ∪ Schemadef) • def .name = e? ∧

¬ expandpos(e?) ⇒ zspec ′ = zspec − {def } ∪ {expand(def)})
expandpos(e?) ⇒ zspec′ = zspec − {def } ∪ {expand−1(def)})

expandpos ′ = expandpos ⊕ {(e?,¬ expandpos(e?))}

Note that we introduced an attribute expandpos which stores the names of inherited

classes and schemas defined by inclusion or schema-calculus for the purpose of

expansion. There are two major operations for clicking on either type links or on

the expansible positions. The Clicklink operation changes the current context to

its corresponding type declaration context. The operation Clickexpand changes the

status of the expansion mode and the content of the specification definitions.

The expand function is defined to handle all the class inheritance, schema inclusion

and schema calculus expansions.

expand : (Classdef ∪ Schemadef) ½ (Classdef ∪ Schemadef)

∀ def : (Classdef ∪ Schemadef) •
def ∈ Classdef ⇒ expand(def) = expandc(def)
def ∈ Schemadef1 ⇒ expand(def) = expandz1(def)
def ∈ Schemadef2 ⇒ expand(def) = expandz2(def)

4.3. FORMAL MODEL OF ZML ENVIRONMENT 56

where expandc, expandz1, expandz2 and other auxiliary functions are defined as

follows. The following auxiliary functions captures the semantics of schema calculus

and class inheritance expansions.

The expandc function expands a class definition according to its inheritance list,

and outputs the expanded version.

expandc : Classdef ½ Classdef

∀ c : Classdef •
c.inherit = ∅⇒ expandc(c) = c
c.inherit 6= ∅⇒

expandc(c).name = c.name
expandc(c).inherit = ∅
expandc(c).state.decpart =∪{c0 : classdef , t : Type |

c0.name = t .name ∧ t ∈ dom c.inherit • expandc(
rename(c0, c.inherit(t))).state.decpart} ∪ c.state.decpart

expandc(c).state.axpart =∪{c0 : classdef , t : Type |
c0.name = t .name ∧ t ∈ dom c.inherit • expandc(
rename(c0, c.inherit(t))).state.axpart} ∪ c.state.axpart

expandc(c).init .axpart =∪{c0 : classdef , t : Type |
c0.name = t .name ∧ t ∈ dom c.inherit • expandc(
rename(c0, c.inherit(t))).init .axpart} ∪ c.init .axpart

expandc(c).ops = {opers : classify(∪{c0 : classdef , t : Type |
c0.name = t .name ∧ t ∈ dom c.inherit • expandc(
rename(c0, c.inherit(t))).ops} ∪ c.ops) • merge(opers)}

The function rename captures the class renaming facilities. Given a class and a

renaming list, the function returns the renamed class.

4.3. FORMAL MODEL OF ZML ENVIRONMENT 57

rename : (Classdef × (Name → Name)) → Classdef

∀ c : Classdef ; l : Name → Name •
dom l ∈ (dom c.state.decpart ∪ {op : c.ops • op.name}) ⇒

l = ∅⇒ rename(c, l) = c
l 6= ∅⇒

rename(c, l).name = c.name
rename(c, l).inherit = {i : c.inherit •

(fst(i), {(a, b) : snd(i) • (a,match1(b, l))})}
rename(c, l).state.decpart = {(na, dt) : c.state.decpart •

(match1(na, l), dt)}
rename(c, l).state.axpart = {p : c.state.axpart •

{(n, pred) : p • (n,match2(pred , l))}}
rename(c, l).init .axpart = {p : c.init .axpart •

{(n, pred) : p • (n,match2(pred , l))}}
rename(c, l).ops = {op2 : Opdef | op1 : c.ops •

op2.name = match1(op1.name, l)
op2.detla = {d : op1.delta • match1(d , l)}
op2.axpart = {p : op1.axpart • {(n, pred) : p •
(n,match2(pred , l))}}

The match1,match2 function is used to find the corresponding item in an item list.

Note that if an item is not in the given list it returns itself.

match1 : (Name × (Name → Name)) → Name

∀ old : Name; l : Name → Name •
old ∈ dom l ⇒ match1(old , l) = l(old)
old 6∈ dom l ⇒ match1(old , l) = old

match2 : ((PredConstructor ∪ ↓ Type)× (Name → Name)) →
(PredConstructor ∪ ↓ Type)

∀ old : (PredConstructor ∪ ↓ Type); l : Name → Name •
old ∈ PredConstructor ⇒

old .content ∈ dom l ⇒ match2(old , l).content = l(old .content)
old .content 6∈ dom l ⇒ match2(old , l).content = old .content

old ∈ ↓ Type ⇒
match2(old , l) = old

Function classify takes in a set of operation definitions and divides them into

subsets, in which the name of the operation is the same.

4.3. FORMAL MODEL OF ZML ENVIRONMENT 58

classify : POpdef → P(POpdef)

∀(s , ss) : classify • s =∪ ss ∧
∀ ops : ss • ∀ op1, op2 : ops • op1.name = op2.name

The function merge merges a set of same named operations into a single operation

definition.

merge : POpdef → Opdef

∀ ops : POpdef •
merge(ops).name ∈ {op : ops • op.name}
merge(ops).delta =∪{op : ops • op.delta}
merge(ops).decpart =∪{op : ops • op.decpart}
merge(ops).axpart =∪{op : ops • op.axpart}

The expandz1 function expands a schema box definition according to the inclusion

of other schemas, and outputs the expanded schema.

expandz1 : Schemadef1 ½ Schemadef1

∀ s : Schemadef •
s .incl = ∅⇒ expand(s) = s
s .incl 6= ∅⇒

expandz1(s).name = s .name
expandz1(s).incl = ∅
expandz1(s).decpart =∪{namei : s .incl(‘inc’); s1 : Schemadef1 |

s1.name = namei • s1.decpart} ∪∪{namexd : (s .incl(‘xi’)∪
s .incl(‘del’)); s1 : Schemadef1 | s1.name = namexd • s1.decpart

∪{(na, dt) : s1.decpart • (na a 〈‘′’〉, dt)}} ∪ s .decpart

expandz1(s).axpart =∪{namei : s .incl(‘inc’); s1 : Schemadef1 |
s1.name = namei • s1.axpart} ∪∪{namex : s .incl(‘xi’); s1 :

Schemadef1 | s1.name = namex • s1.axpart ∪ {p : s1.axpart •
{(n, pred) : p • (n,match2(pred))}} ∪ predxi(findlist(s1))}∪
∪{named : s .incl(‘del’); s1 : Schemadef1 | s1.name = named

• s1.axpart ∪ {p : s1.axpart • {(n, pred) : p •
(n,match2(pred))}}} ∪ s .axpart

The findlist function is used to find the pre-state and post-state for a schema box

definition.

4.3. FORMAL MODEL OF ZML ENVIRONMENT 59

findlist : Schemadef1 → (Name → Name)

∀ s : Schemadef1 • findlist(s) = {decl : s .decpart • (fst(decl), fst(decl) a 〈‘′’〉)}

The predxi function is used to get the implicit predicates for xi schema, that is,

those with the post-state unchanged.

predxi : (Name → Name) → (PPred)

∀ l : dom predxi • (∃ post , pre, eq : PredConstructor • post .content = snd(l) ∧
eq .content = 〈‘=’〉∧ pre.content = fst(l) ∧ predxi(l) = post a eq a pre)

The expandz2 function expands a schema calculus definition, and outputs the defi-

nition with schema box format.

expandz2 : Schemadef2 ½ Schemadef1

∀ s : Schemadef2 •
expand2(s).name = s .name [Name]
expand2(s).incl = formIncl(s .calc) [Incl]
expand2(s).decpart = formDecpart(s .calc) [Decpart]
expand2(s).axpart = {formAxpart(s .calc)} [Axpart]

Some auxiliary functions for the expansion of schema calculus are defined as follows.

The formIncl , formDepart , formAxpart functions will generate the inclusion, type

declaration and predicate part of the schema box correspondingly.

formIncl : PredCalc → Inclusion

∀ p : PredCalc •
(p ∈ ↓ Type)⇒

formIncl(p) = {∃1 s1 : Schemadef1 | s1.name = p.name • s1.incl}
(p ∈ CalcConstructor)⇒

formIncl(p) =∪{pi : p.items • formIncl(pi)}

4.3. FORMAL MODEL OF ZML ENVIRONMENT 60

formDecpart : PredCalc → Decpart

∀ p : PredCalc •
(p ∈ ↓ Type)⇒

formDecpart(p) = {∃1 s1 : Schemadef1 |
s1.name = p.name • s1.decpart}

(p ∈ CalcConstructor)⇒
formDecpart(p) =∪{pi : p.items • formDecpart(pi)}

formAxpart : PredCalc → Pred

∀ p : PredCalc •
(p ∈ ↓ Type ⇒

∃1 s1 : Schemadef1 • s1.name = p.name ∧
formAxpart(p) = tail(a/{prd : s1.axpart ;

op : PredConstructor | op.content = 〈‘ ∧ ’〉• op a prd}))
(p ∈ CalcConstructor ⇒

formAxpart(p) = tail(a/{pi : p.items ; op, op1, op2 :
PredConstructor | op.content = p.op ∧ op1.content = 〈‘(’〉
∧ op2.content = 〈‘)’〉• op a op1

a formAxpart(pi) a op2}))

4.3.2 UML projection facilities

For the projections from Object-Z/TCOZ models into UML diagrams, we first give

simplified models of UML class and diagrams. A UML class consists of a class

name, a set of attributes and a set of operation names.

UMLClass

name : String
attris : String → Dtype
ops : P String

A UML diagram UMLDiagram is a collection of UML classes, together with their

relationships to each other such as inheritance and aggregation.

4.3. FORMAL MODEL OF ZML ENVIRONMENT 61

UMLDiagram

classes : PUMLClass
inh, agg : UMLClass ↔ UMLClass

dom(inh ∪ agg) ∪ ran(inh ∪ agg) ⊆ classes
∀ h : classes • (h, h) 6∈ inh+

A function project models the transformation from an Object-Z/TCOZ specifica-

tion to a UML class diagram, and is defined as follows:

project : PClassdef → UMLDiagram

∀(oz , uml) : project •
{c : oz • c.name} = {c : uml .classes • c.name} •
∀ c1, c2 : oz •

∃1 c ′ : uml .classes •
c′.name = c1.name
c′.attris = {cls : oz • cls .name} −C c1.state.decpart
c′.ops = {o : Opdef | o ∈ c1.ops • o.name}

c2.name ∈ {t : ran c1.state.decpart • t .name} ⇒
∃1(c

′
1, c

′
2) : uml .agg • c ′1.name = c1.name

∧ c ′2.name = c2.name
c2.name ∈ {inh : dom c1.inherit • inh.name} ⇒

∃1(c
′
1, c

′
2) : uml .inh • c ′1.name = c1.name

∧ c ′2.name = c2.name

Note that our projection function is focused on the transformation from Object-

Z/TCOZ specifications to UML class diagrams in this section. The projection

to UML behavior diagrams such as statecharts may not be uniquely determined

from an Object-Z/TCOZ specification. We will discuss the projection to statechart

diagrams further in Section 4.6.

4.4. MAIN IMPLEMENTATION ISSUES AND RELATED BACKGROUND 62

4.4 Main implementation issues and related back-

ground

Formal methods like the CafeOBJ system [32] have included an environment sup-

porting formal specification over networks. Schemas using pure Z notation on the

web based on HTML and Java Applet have also been investigated by Bowen and

Chippington [8] and Ciancarini, Mascolo and Vitali [15]. HTML has been successful

in presenting information on the Internet, however the lack of content information

and the overburdened use of tags have made the efficient retrieval and exchange of

information content more difficult to achieve.

Our work uses the latest technology of XML and XSL for displaying and trans-

forming Z family notations on the web. The users only need to follow the defined

syntax in writing the XML document, the layout part is user transparent. Our

XML format is inspired by the work of Ciancarini et al [15] however we use differ-

ent technology – XML/XSL. The developed XML/XSL web environment covers not

only the pure Z notation but also Object-Z and TCOZ with various type referencing

and expansion facilities. Furthermore, the projection tools from Object-Z/TCOZ

to UML are built into our system. The conceptual projection techniques are de-

rived from our research on linking UML with Object-Z [56, 57], which are similar

to the translation rules developed by Kim and Carrington [53]. The difference is

that we are working on the projection from Object-Z/TCOZ to UML whereas Kim

and Carrington focus on translating UML to a partial Object-Z specification. We

4.4. MAIN IMPLEMENTATION ISSUES AND RELATED BACKGROUND 63

share the goal of visualizing Object-Z with the work of Wafula [111]. Other work

(e.g. [29]) on linking Z and UML mainly concentrates on using Z to define the

semantics for UML class diagrams.

XMI Document

XSL Stylesheet

HTML Document

Original
 XML Document

XML entity
Definition (DTD) XML Schema

Internet Explorer 5

 Parsed XML

 XML Parser XSL Processor

Parsed XSL
 Commands

XT

 Parsed XML

 DOM/SAX Parser XSLT Processor

 Parsed XSL
 Commands

XSL Stylesheet

UML Diagram

 Rational
Rose2000

Figure 4.1: ZML overview diagram.

The main process and techniques for ZML are depicted in Figure 4.1. First, the

formal specification model in ZML is validated against the Schema and DTD syntax

definitions, then transformed into corresponding HTML or XMI format according

to their style sheets. Finally, it is displayed in a web browser or in the Rational

Rose UML suite. In the following sections, we use the Queue example to facilitate

the detailed discussion of our implementation approaches.

The formal model defined in Section 3.2 and Section 4.3 acts as a precise design

reference document and provides clear guidelines for our XML/XSL implementa-

4.5. WEB ENVIRONMENT FOR Z FAMILY LANGUAGES 64

tions. For example, the ZML syntax structure is derived from the model; the XSL

codes for implementing inheritance and schema calculus expansions in Section 4.5

is based on the expand function defined in Section 4.3.1; the XSLT codes for pro-

jecting Object-Z/TCOZ to UML in Section 4.6 is based on the project function

defined in Section 4.3.2.

4.5 Web environment for Z family languages

4.5.1 Syntax definition and usage

In the previous chapter, a customized XML document syntax for the Z family lan-

guage is defined according to the formal syntax definitions. Z family languages

contain a rich set of mathematical symbols. Those symbols can be presented di-

rectly in Unicode [16] that is supported by XML. We have defined all entities in the

DTD so that users do not have to memorize all the Unicode numbers when author-

ing their ZML documents. Some entity declaration DTD and symbol mappings (in

Figure 4.2) are illustrated as follows:

<?xml version="1.0" encoding="UTF-8"?>

...

<!ENTITY emptyset "∅">

<!ENTITY mem "∈">

<!ENTITY pset "ℙ">

<!ENTITY nem "∉">

<!ENTITY uni "∪">

...

4.5. WEB ENVIRONMENT FOR Z FAMILY LANGUAGES 65

Figure 4.2: Unicode symbol mapping

It states the mapping information of Z related symbols to their corresponding Uni-

code, e.g., the empty set symbol in Z can be represented in Unicode number ‘x2205’.

As most existing Z specifications were constructed in LATEX, translating them to

our format can be a trivial task as each entity may be given a Z LATEX compatible

name. DTD is chosen to define our entity declaration because XML Schema do

not support entity declaration at the moment. The following is part of the ZML

syntax for the ActiveQueue class.

<classDef>

<name>ActiveQueue</name>

<inheritedClass>

<name>Queue</name>

</inheritedClass>

<state>

<declaration>

<variable>Tj Tl</variable>

<dataType>

<type>T</type>

4.5. WEB ENVIRONMENT FOR Z FAMILY LANGUAGES 66

</dataType>

</declaration>

...

</state>

<operation>

<name>Join</name>

<processExpr>...<processExpr>

</operation>

...

</classdef>

4.5.2 XSL transformation

With a valid XML file in hand, the next step is to transform the XML file into

HTML format and display it on the web. XSL is a stylesheet language to describe

rules for matching and transforming XML documents. An XSL file is an XML

document itself and it can perform the transformation from XML to HTML, XML

to XML, XSL to XSL and so on. This kind of transformation can be done on the

server side or the client side. Since common web browsers such as Internet Explorer

5 (IE5 or above) already support XSL technology, the current ZML environment is

based on client side (browser) transformation. Server side transformation will be

discussed later. A partial XSL stylesheet segment for displaying operation schema

and class definitions is illustrated below.

<xsl:template match="operation">

<html>

<tr>

...

<td height="24" valign="middle" align="left" nowrap="true">

<i><xsl:value-of select="name"/></i>

...

</td>

4.5. WEB ENVIRONMENT FOR Z FAMILY LANGUAGES 67

...

</tr>

<xsl:for-each select="delta | declaration">

<xsl:apply-templates select="."/>

</xsl:for-each>

<xsl:apply-templates select="st"/>

<xsl:for-each select="predicate">

<xsl:apply-templates select="."/>

</xsl:for-each>

...

</html>

</xsl:template>

<xsl:template match="classdef[@layout=’simpl’] |

classdef[@layout=’gen’]">

<html>

...

<a><xsl:attribute name="name"><xsl:value-of select="name"/>

</xsl:attribute>

...

<xsl:apply-templates select="state"/>

<xsl:apply-templates select="init"/>

<xsl:apply-templates select="op"/>

...

</html>

</xsl:template>

The XSL stylesheet defines match methods for each tag in the XML structure and

describes the corresponding HTML codes. From the example above, in matching

the ‘operation’ tag, the XSL will display the operation name, ∆-list, declaration

and predicates accordingly; in matching the ‘classdef’ tag the XSL will first convert

the class name into an HTML bookmark for the type reference usage and then

apply the templates of drawing state schema, initiation schema, operations and

so on. To apply a template in XSL is similar to making a function call in other

programming languages, and each template will perform its own transformation.

When authoring Z family specifications in the ZML format, the users only need to

4.5. WEB ENVIRONMENT FOR Z FAMILY LANGUAGES 68

construct their ZML files and add a URL to the defined XSL stylesheet location

as follows.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl"

href="http://nt-appn.comp.nus.edu.sg/fm/zml/objectzed.xsl"?>

Figure 4.3: Queue specification on web.

With this link, the browser will automatically transform a ZML document into

the desired HTML output via the built-in XML parser. This process is totally

user transparent and much faster than the Java applet approaches [8, 15]. For

example, the Queue and ActiveQueue classes in ZML format specified previously

is transformed into HTML as in Figure 4.3.

Note that by clicking the ‘plus’ button the expanded version of class “ActiveQueue”

will be displayed. A full demonstration of the Queue specification example is

available at

http://nt-appn.comp.nus.edu.sg/fm/zml/xml-web/queue.xml.

4.5. WEB ENVIRONMENT FOR Z FAMILY LANGUAGES 69

4.5.3 Extensive browsing facilities

In the previous section we introduced how the Z family notations can be elegantly

and statically presented on the web. To make the environment more powerful and

user friendly, some advance functionalities are developed. This section discusses

the extensive browsing facilities for type reference, class inheritance expansion and

schema calculus expansion.

Type referencing

When building a large formal model, which could include many type definitions

and references, users often want to recall the definition of a particular type. Type

referencing allows the user to browse back to the actual type definition and quickly

access the corresponding type declarations. In a predicate or declaration, by click-

ing the name of the type, the user will be brought to the location where the type

was declared. This is very useful for specification understanding.

This functionality is achieved in two steps. Firstly when a type definition node

in XML is transferred to HTML, its name is converted into an HTML bookmark.

Secondly, when the user needs to reference a type in a declaration or predicate, a

hyper-link that points to the defined bookmark is created. The XSL template for

the latter (type node) is shown as follows.

<xsl:template match="type">

<xsl:choose>

<xsl:when test="//classdef[any name=context(-1)] |

//basicTypeDef[any name=context(-1)] |

4.5. WEB ENVIRONMENT FOR Z FAMILY LANGUAGES 70

//schemadef[any name=context(-1)]">

<a>

<xsl:attribute name="href">#<xsl:value-of/>

</xsl:attribute><xsl:value-of/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

It searches whether any name of class definition, basic type definition or schema

definition is equivalent to the current type name. If such a name exists, a type

hyper-link is established.

Class inheritance and schema calculus expansions

Inheritance is a mechanism for incremental specification, whereby new classes may

be derived from one or more existing classes. The aim of the class inheritance

expansion is to allow a user to view the full definition of a derived class. In the

ActiveQueue class case (in the right hand side of the Figure 4.3), when a user clicks

the button ‘+’, the full definition of the class of ActiveQueue will be shown. This

implementation is based on the inheritance expansion rules defined in the expandc

function. Clicking button ‘−’ is for going back to the un-expanded version.

The core part of the expansion techniques uses the XML Path Language (XPath) [108]

facilities provided by XSL to match the corresponding definitions in the parent class

and merge them into the derived class. Part of the XSL for merging the declarations

in the state schema of a class is as follows.

4.5. WEB ENVIRONMENT FOR Z FAMILY LANGUAGES 71

<xsl:for-each select="//classdef[name=context(-1)

/inheritedClass/name]/state/declaration">

...

</xsl:for-each>

<xsl:for-each select="state/declaration">

...

</xsl:for-each>

...

As we can see from the above, the select constraint will restrict a search through

the entire ZML document for a match of the same named class definition corre-

sponding to the name in its inheritedClass list. Following this, the state decla-

ration of super class is merged with the current class. Thus the whole definition

of state declarations in the derived class is completed. In addition, DHTML and

JavaScript are used to control the visibility of the two versions of class definitions.

Schema inclusion and schema calculus expansions are similar to class inheritance

expansion and can be constructed using the same mechanism.

4.5.4 Server side transformation

As mentioned in Section 4.5.2 the current ZML web environment is based on client

(browser) side transformation. It is not compatible for browsers that do not sup-

port XSL technology presently such as Netscape. To make the ZML environment

available to all kinds of browsers, we can perform the transform on the server side

and send back pure HTML to the browsers. XSL transformation on the server is

bound to be a major part of the Internet Information Server (IIS) work tasks in

the future, as we will see a growth in the specialized browser market (for example

4.5. WEB ENVIRONMENT FOR Z FAMILY LANGUAGES 72

the use of Braille, Speaking Web, Web Printers, Handheld PCs, Mobile Phones

... [84]). The following Active Server Pages (ASP) code for transforming the XML

file to HTML on the server side can achieve this.

<%

’Load the XML

set xml = Server.CreateObject("Microsoft.XMLDOM")

xml.async = false

xml.validateOnParse = true

xml.load(Server.MapPath("queue.xml"))

’Load the XSL

set xsl = Server.CreateObject("Microsoft.XMLDOM")

xsl.async = false

xsl.load(Server.MapPath("objectzednewnt.xsl"))

’Transform the file

Response.Write(xml.transformNode(xsl))

%>

The first block of code creates an instance of the Microsoft XML parser, and

validates and loads the XML file into memory. The Microsoft XML parser is a COM

component that implements the W3C XML Document Object Model (DOM) [100].

As a W3C specification, the objective for the XML DOM has been to provide a

standard programming interface to a wide variety of applications for accessing

and manipulating XML documents. The second block of code creates another

instance of the parser and loads the XSL document into memory. The last line of

code transforms the ZML document via the XSL style sheet, and then returns the

resultant HTML to the browser.

The next section is focused on projecting Object-Z/TCOZ models (in XML) to

UML diagrams (in XMI).

4.6. UML PROJECTION 73

4.6 UML projection

As requirement specifications of software systems, formal models can be precise and

elegant but difficult to read and interpret by software engineers without relevant

mathematical background. In comparison, the most popular graphical notation

UML is much easier to understand and widely accepted by the industry, but it lacks

precise semantics. It is important to develop a transformation link/tool from the

formal model to various UML diagrams. The key technique ideas in our approach

are:

• Syntactically, UML (OCL) is extended with a TCOZ communication interface

type – chan. As a result, TCOZ sub-expressions can be used (with the same

role as OCL) in the statechart diagrams and collaboration diagrams.

• Semantically, UML class diagrams are identified with the signatures of the

Object-Z/TCOZ classes. The states of the UML statechart diagram are iden-

tified with the TCOZ processes amd operations and the state transition links

are identified with TCOZ events and guards. The classifier roles and commu-

nications are identified with TCOZ classes and their interactions respectively.

• Effectively, UML diagrams can be seen as visual projections from a unified

formal Object-Z/TCOZ model.

4.6. UML PROJECTION 74

4.6.1 Translation rules

An Object-Z/TCOZ model and a UML model are translated to each other from

three views: static view, interaction view and behavior view, which are represented

by class, collaboration and statechart diagrams respectively.

Static view

UML class diagrams are used to illustrate the static structure of a TCOZ model.

Some guidelines are defined as:

• Class Each class in Object-Z/TCOZ is translated to a class in UML class

diagrams and vice versa. In Object-Z/TCOZ, attributes and operations are

encapsulated and private to classes. Therefore they are set to be private in

UML class diagrams.

• Active class In UML, an active class is a class whose instances are active

objects, and have their own thread of control. Classes for defining active

objects in TCOZ will have the Main operation.

• Inheritance The inheritance relationship between two classes in Object-

Z/TCOZ is directly translated into the inheritance relationship in UML.

• Aggregation If in a class there are one or more objects of another class as at-

tributes, the relationship of the two classes projected to UML is aggregation,

which means the second class is a constituent part of the first one.

4.6. UML PROJECTION 75

Interaction view

In a composite system, objects of different classes interact with each other. The

general arrangement of these interactions is captured with a network topology in

TCOZ. In UML, collaboration diagrams are used to illustrate the system from

this interaction view. A collaboration has a static part and a dynamic part. Ob-

jects/Classes in TCOZ are exactly the counterpart of static part–classifier roles in

UML collaboration diagrams as the instantiation of the collaboration. They inter-

act through a communication interface (chan for synchronized communications).

The dynamic interactions of classifier roles in UML are illustrated as messages

between them, and their properties can be set as synchronized communications,

which happen to match well with the network topology in TCOZ. Based on such

analysis, the rules are given as:

• Classes in TCOZ are projected to classifier roles in UML collaboration di-

agrams while their communications depicted by the network topology are

projected to the messages between associated classifiers. The communica-

tions are indicated by the associated arrow’s direction (indicating the data

flow direction).

• If two classes in a TCOZ model communicate through a synchronous interface

chan, the corresponding data flow direction is set according to the event

definitions (from ! to ?).

4.6. UML PROJECTION 76

Behavior view

In TCOZ, operations of a class specify its computation behaviors and interaction

behaviors. The guidelines for the projection from TCOZ model to UML statechart

diagram are:

• Consider each operation in TCOZ model as a state or substate, which may

have its own actions or fix some values for a certain time span. Nested op-

erations are translated into substates of the state representing the operation

which calls them.

• Events and guards in a TCOZ model are viewed as triggers which cause

transition of states in the statechart. They match the definition of triggers

and guards in UML statechart diagrams.

• Main in TCOZ is modeled as the state in UML statechart diagrams that

the startstate leads to, that is, the first state that the object lies in after the

transition starts.

• In the case that an operation calls other operations, the called operations

serve as the substates of the calling one, and they together compose a com-

posite state in the statechart.

• Interleaving operations in TCOZ are translated into concurrent states in a

composite state.

4.6. UML PROJECTION 77

4.6.2 Implementation and examples

XML Metadata Interchange (XMI) [38] is an industry standard for storing and

sharing object programming and design information. Unisys Corporation has im-

plemented the XMI for the UML tool Rational Rose 2000. Rose can generate

UML diagrams from imported XMI documents, and export XMI documents for

any existing UML diagrams. Our implementation is based on the definition of

ZML syntax for TCOZ; then via XSL [102] Transformations (XSLT) technology,

define an XSL style sheet to capture all translation rules from TCOZ (in ZML) to

UML (in XMI). XT is chosen as the XSLT processor and Rational Rose is used as

the UML tool.

The XML file for formal specifications and the XMI file for UML diagrams have

similar structures (an observation from their formal models defined in Section 4.3).

Consistency has been considered when XSL and XML schema files were defined for

Object-Z/TCOZ. An XMI file has a structure as follows:

<XMI xmi.version="1.0">

<XMI.header>

<XMI.content>

<XMI.extensions>

</XMI>

The syntax definition of XMI for UML is specified as XMI 1.1 RTF UML DTD.

This DTD file defines all entities and XMI syntax signatures for UML. The XMI file

for UML diagrams consists of three parts: the header, content and extension. The

XMI.header section includes some optional information about the UML model.

4.6. UML PROJECTION 78

Elements in UML diagrams, such as classes in class diagrams and states in the

statecharts, are specified in the XMI.content section, while their layout, colors

and other displaying properties are specified in the XMI.extensions section.

The XSL file used in this section is the implementation of the transformation rules

(abstractly defined in formal models, the project function, in Section 4.3.2) and

the file is consistent with UML.DTD . The template technology plays a key role in

implementing the translation rules. Considering the implementation issues and the

translation rules based on the formal model, the following guidelines are formed:

• Each class in an Object-Z/TCOZ XML model corresponds to a class in the

UML XMI model. They have the same name, attributes and operations.

• If a type value in the InheritedClass part of a class matches the name of any

other class in the current ZML file, we regard that the former class inherits

the second one and illustrate the inheritance relationship between these two

classes in the UML class diagram. In the case of spelling mistakes or a missing

reference of the Inherit type, we ignore the relationship.

• If a type value in the decl part, that is, the type of an attribute, matches the

name of any class in the current ZML file, this is regarded as an aggregation

relationship between these two classes. The cardinality of the aggregation

will be calculated and classified into UML aggregation ranges.

Simplified XSL code for capturing the aggregation relationship is shown below. The

inheritance relationship can be treated in a similar way.

4.6. UML PROJECTION 79

<xsl:variable name="AggregationNo" select=’position()’/>

<xsl:choose>

<xsl:when test="//classdef[$classNo]/name=./type">

<![CDATA[<Foundation.Core.AssociationEnd xmi.idref=’]]>

<xsl:value-of select="concat(’G.’,1+$AggregationNo*3)"

/><![CDATA[’/>]]>

</xsl:when>

...

</xsl:choose>

Due to the space limitation (XMI files for UML models are normally very large

and complex with all details about property specifications), only the sketch of a

simplified XMI unit – class Queue, is given as an example here.

<Foundation.Core.Class xmi.id = ’ S.10001 ’>

<name> Queue </name>

<namespace>

<xmi.idref = ’G.1’/>

</namespace>

<GeneralizableElement.specialization>

<xmi.idref = ’ G.13 ’/>

<!-- { ActiveQueue -> Queue }-->

</GeneralizableElement.specialization>

<Classifier.feature>

<Attribute xmi.id = ’ S.10002 ’>

<name> items </name>

<multiplicity>1..1</multiplicity>

<DataType xmi.idref = ’ G.11 ’/>

<!-- seq MSG -->

</Attribute>

<Operation xmi.id = ’ S.10003 ’>

<name>Init</name>

</Operation>

<Operation xmi.id = ’ S.10004 ’>

<name> Add </name>

</Operation>

<Operation xmi.id = ’ S.10005 ’>

<name> Delete </name>

</Operation>

</Classifier.feature>

</Foundation.Core.Class>

4.6. UML PROJECTION 80

Queue

items : M SG

Init()
Add()
Delete()

TwoQueue

Jo in()
Leave()
Trans fer()

1 ..*

1 ..1

1..*

1 ..1

Ac tiveQueue

in, out : chan

Join()
Leave()
M AIN()

TwoA ctiveQueue

M AIN()

1..*

1..1

1..*

1 ..1

Figure 4.4: Generated class diagram.

The projection rules for translating a formal model to UML class diagrams are

trivial. As in Figure 4.4, the UML class diagram depicts the static view of the

four graph classes constructed from the previous sections. Note that this diagram

was generated automatically from the XML model via the XSL transformation.

All attributes and operations match their definitions in the formal model. Now

we demonstrate how the relationships between classes are captured during the

transformation.

The relationship between ActiveQueue and Queue is Inheritence. This relationship

in the XMI segment is as follows.

<Foundation.Core.Generalization xmi.id = ’ G.13 ’>

<name/>

<Generalization.subtype>

<Class xmi.idref = ’ S.10006 ’/>

<!-- ActiveQueue -->

</Generalization.subtype>

<Generalization.supertype>

<Class xmi.idref = ’ S.10001 ’/>

<!-- Queue -->

4.6. UML PROJECTION 81

</Generalization.supertype>

</Foundation.Core.Generalization>

The relationship between TwoQueues and Queue is Aggregation. The aggregation

relationship is illustrated in the following simplified XMI segment:

<Association xmi.id=’G.2’>

<name />

<connection>

<AssociationEnd xmi.id=’G.3’>

<name />

<multiplicity>1</multiplicity>

<type>

<xmi.idref=’S.10011’/>

<!-- TwoQueues -->

</type>

</AssociationEnd>

<AssociationEnd xmi.id="G.4">

<name />

<multiplicity>1..*</multiplicity>

<type>

<xmi.idref="S.10001" />

<!-- Queue -->

</type>

</AssociationEnd>

</connection>

</Association>

Currently we are investigating the dynamic view transformation. Based on seman-

tic links defined in Section 4.6.1, a statechart diagram for the class ActiveQueue

can be constructed as in Figure 4.5.

Brief structures of a SimpleState Join and a transition (from Main to Join) in

the statechart in XMI are:

<State_Machines.SimpleState xmi.id="G.21">

<name>Join</name>

4.6. UML PROJECTION 82

MAIN

Join

do/ Add
do/ Deadline Ti

Leave

do/ Delete
do/ Deadline Tj

in?item[#items < max]

out ! head(items)[item neq <>]

Figure 4.5: ActiveQueue statechart diagram.

</State_Machines.SimpleState>

<State_Machines.Transition xmi.id="G.24">

<name />

<source>

<SimpleState xmi.idref="G.22" />

<!-- Main -->

</source>

<target>

<SimpleState xmi.idref="G.23" />

<!-- Join -->

</target>

<trigger>

<SignalEvent xmi.idref="G.28" />

<!-- in?item -->

</trigger>

<guard>

<Guard xmi.id = ’G.30’ />

<expression>

#items < max

</expression>

</guard>

</State_Machines.Transition>

The documentation about Object-Z/TCOZ to UML transformation and download-

able codes are available at:

http://nt-appn.comp.nus.edu.sg/fm/zml/xmi-uml/xmi.htm

4.7. CONCLUSION 83

4.7 Conclusion

The first contribution of this chapter is the demonstration of the XML/XSL ap-

proach to the development of a web environment for Z family languages. The ZML

web environment includes the auto type referencing and browsing facilities such as

the Z schema calculus and Object-Z/TCOZ inheritance expansions. Our ideas for

putting Z family on the Web can be easily adopted by other formal specification

notations, such as VDM and VDM++. In fact, since TCOZ includes most Timed

CSP constructs, its web environment can be used for process algebra (CSP/Timed-

CSP) specifications. Perhaps this may create a new culture for constructing formal

specifications on the web in XML rather than in LATEX. We hope it can be the

starting point for developing a standard XML environment for all formal notations

(including integrated formal notations, i.e., RAISE [71], SOFL [59] and so on): a

Formal specification Markup Language (FML). This may also make an impact on

formal methods education through the web.

The second contribution of this work is the investigation of the semantic links and

web transformation environment (XSLT) between Object-Z/TCOZ (in XML) with

UML diagrams (in XMI). In our approach, UML diagrams are visual projections

from a formal Object-Z/TCOZ model, and they are consistent with the formal

model. Recently, this work have been extended to support the auto-generation of

UML statechart diagrams from Object-Z/TCOZ specifications using a Java XML

parser [20]. Although we have some ideas on Object-Z/TCOZ behavior projections

to statecharts, the development of the Web environment for systematic transfor-

4.7. CONCLUSION 84

mation from Object-Z/TCOZ to statechart/collaboration diagrams remains a chal-

lenge. The engineering work for developing further techniques and putting these

techniques into commercial case tools perhaps requires involvement from industry

partners.

The third contribution of this chapter is the demonstration of a formal design

approach to modeling web applications. Object-Z has been used to specify and

design the essential functionalities of the ZML environment. We have found that

the formal model acts as a precise design document and has also provided clear

guidelines for the XML/XSL implementations.

Since we have constructed a web XSL environment as close as possible to the

LATEX style files for Z/Object-Z (fuzz.sty and oz.sty), a LATEX ZML translation

tool was developed to map the existing Z/Object-Z specifications in LATEX to their

ZML format [74]. And a reverse process was also necessary as long as LATEX is not

totally replaced by XML technology.

Chapter 5

Animation of TCOZ specification

This chapter presents the development of an animation environment for the TCOZ

specifications.

85

5.1. INTRODUCTION 86

5.1 Introduction

Requirements capture is a key activity in software and system engineering. The

challenge for the requirement specification of complex systems is how to precisely

capture static and dynamic system properties in a highly structured way. The

current research focus of combining integrated formal methods has led to a need for

developing various support tools. TCOZ builds on the strengths of Object-Z [14, 88]

in modeling complex data and state with the strengths of Timed CSP [82, 83] in

modeling real-time concurrency. In addition to the investigation of the integrated

formal methods, it is also important to develop transformation tools (from the

integrated formal models) to animation tools for validating the formal models.

Validation denotes the process of determining that the requirements are the right

requirements and that they are complete. Animation is a means of performing such

validation. Many approaches have been explored in animating Z using logic and

functional programming languages, i.e., Prolog [112], Haskell [98] and so on. For

integrated formal notations, i.e., TCOZ, the best candidates for such animation

might be multi-paradigm programming languages, such as Oz [39].

In this chapter, we demonstrate the approach of animating TCOZ specifications

in a multi-paradigm programming language Oz. The Oz programming system has

been developed mainly by researchers from DFKI (the German Research Center

for Artificial Intelligence). It is based on a concurrent constraint model and merges

several paradigms of programming languages, such as object-orientation, constraint

and logic programming, functional programming and concurrent programming into

5.2. SPECIFICATION VALIDATION 87

a single coherent design. Integrated formal notations such as TCOZ could find

a majority of its corresponding features in Oz. In addition, XSLT is used as a

transformation tool for the code generation from TCOZ (in XML) to Oz.

The remainder of the chapter is organized as follows. Section 2 and 3 present some

general concepts about specification validation and animation languages. Section 4

presents the translation rules from TCOZ to Oz. Section 5 presents the implemen-

tation and a case study. Section 6 concludes the chapter.

5.2 Specification validation

Specification validation denotes the process of determining that the requirements

are the right requirements and that they are complete. Animation of the specifica-

tion is a means of performing such validation. Animation plays an important role

in validating the consistency between the formal model and the real world informal

requirements. System analysts or clients may wonder whether their specification

correctly captures the real world problem that they want to solve. If the formal

model does not truly reflect the real world requirements it is useless to further

verify its correctness. One of the such validation techniques, namely specification

animation, is to provide an executable version of the specification and validate the

logic relationships inside formal model. The process of verifying the consistency

between the formal model and real world model is difficult to formalize. Anima-

tion is an engineering process that brings us one step closer to this goal. It allows

5.2. SPECIFICATION VALIDATION 88

the system analysts to explore the behavior of the formal model and thus helps to

clarify their interpretation and track down the misunderstandings with the clients

since requirements at this stage may have not been fully developed and clearly

understood. The purpose of animation is to exhibit the dynamic properties of a

specification, and to bridge the gap between the real world problem and our in-

terpretation of the informal requirements. Animation is a vital part in the early

stages of formal modelling.

Programs are collections of detailed instructions to a computer. Implementation

is the process of transforming a specification to produce a program (through re-

finement techniques). The product is a realistic computer system that meets the

desired requirements. Prototyping is a rough and cheap version of implementa-

tion itself, perhaps with the non-functional requirement eased. Animation is a

mapped and executable version of the specification that is concerned with an ab-

straction of the required system. It is not a real computer system that provides

the detailed functionalities, but rather a system that focuses on the exploring of

logical relationships within the specification. Some differences between animation

and implementation lies in the following aspects. First, as type information defines

a membership relation between the variable and its type set, data types inside

an animation need not be actual data sets that are the same as those within an

implementation. Because the primary purpose of an animation is to explore the

consequences of a specification, rather than to produce a final implementation of

the system or even a full scale prototype that is capable of handling realistically-

5.3. ANIMATION LANGUAGE - OZ A CANDIDATE FOR TCOZ 89

sized data sets. It could be a virtual data set or even a subset as long as the type

information could be demonstrated. In this way the focus is on the logical relation-

ships and the behaviors of the specification. Second, animation should ensure that

each animated operation is logically equivalent to its corresponding specification

since specification is at a higher level of abstraction. Animation should not be a

refinement from the formal specification. The underlying strategy of refinement is

via weakening the precondition and strengthening the postcondition of a particular

specification. These refinement steps would certainly make acceptable changes to

the input and output domains of the system, which is appropriate to the implemen-

tation process but not adoptable in the animation stage. If the logical equivalence

is not preserved it will not only have negative effects on the validation process of the

formal model but also mislead the refinement process throughout the implementa-

tion stages. Thus the animation should be kept as close as possible to its original

specification. The runnable code need not be highly efficient, as in the final imple-

mentation, since our focus here is to demonstrate the logical relationships and to

maintain the logical preciseness. In summary, specification animation differs from

implementation in data, level of abstraction, algorithm, efficiency, performance and

so on.

5.3 Animation language - Oz a candidate for TCOZ

Generally speaking, any programming language could be used for animation. No

matter what programming language the actual system is written in, the require-

5.3. ANIMATION LANGUAGE - OZ A CANDIDATE FOR TCOZ 90

ments stay the same, as does the specification. However, each programming lan-

guage has its own specialized features which are most suitable for coding particular

types of problems. For example, Java is good at web programming, Prolog is good

at AI programming, PowerBuilder is good at database applications and so on. Cod-

ing in a language according to its desired features is much easier than that of the

others. That is why so many different types of programming languages coexist: to

meet all kinds of needs. An animation language has its own set of metrics as well.

An animation system consists of a translator that translates original specifications

into an animation language, and an evaluator that validates the corresponding ex-

ecutable specifications in the animation language. Thus the logic abstract level

and degree of similarity in syntax and semantic with the formal notation should

be a criteria of selection, e.g., animating Z using Prolog [112]. If the animation

language were the formal notation itself then the translator would be unnecessary.

Since most animation languages are different from formal specification notations,

one solution is to provide an equivalent library that handles the specification con-

structs. The completeness of an exiting library compared to the formal notation

could be another measure for selection. Once the specification has been turned

into the format of the animation language it is time for validation. Running prop-

erties of the evaluator, such as efficiency, termination and so on, would be another

criterion for choosing an animation language. Thus we select a programming lan-

guage that has a high logic abstraction level, contains most of the features of the

specification notation, along with properly designed library functions.

5.3. ANIMATION LANGUAGE - OZ A CANDIDATE FOR TCOZ 91

The programming language Oz [39, 91, 42] is a multi-paradigm language based on

the concurrent constraint model. It is a high-level programming language that is

designed for modern advanced, concurrent, intelligent, networked, soft real-time,

parallel, interactive and pro-active applications. Oz provides the programmers

and system developers with a wide range of programming abstractions to enable

them to develop complex applications quickly and without the confinements of the

underlying paradigm. It merges several paradigms of programming languages such

as object orientation, constraint and logic programming, functional programming

and concurrent programming into a single coherent design.

• Object-oriented programming – provides state, abstract data types, classes,

objects, and inheritance.

• Functional programming – provides compositional syntax, first-class proce-

dures, and lexical scoping.

• Logic & constraint programming – provides logic variables, disjunctive con-

structs, and programmable search strategies.

• Concurrent programming – provides thread invocation and interaction.

• Distributed programming – provides network-transparent distribution of Oz

computations and language security; sharing variables, objects, classes, and

procedures.

With the above features, Object orientation in Object-Z, concurrency in TCSP and

the mixture of the two in TCOZ all find corresponding features in Oz. With the

5.4. TCOZ – OZ TRANSLATION RULES 92

help of proper library functions and logic programming features, integrated formal

notations such as TCOZ can be well animated in Oz.

5.4 TCOZ – Oz translation rules

We provide a translation guideline from TCOZ to Oz. This translation gives a

runnable semantics for TCOZ in Oz. Some rules are defined as follows.

• Data types are translated into given sets in Oz. Because Oz is a dynamic

typed language, each data type represents a set of possible values that the

variable could have. For the purpose of animation, these data type contain

only a small set of finite possible terms.

• Sequence is translated to the ‘List’ data type in Oz; set and its corresponding

functions are translated to the appropriate library functions.

• TCOZ class is given the same signature as an Oz class with its inheritance

section expanded. Because TCOZ class construct has different inheritance

rules from that of Oz class 1 .

• Type and function definitions local to a class are translated to local declara-

tions for an Oz class.

• The type declaration of the state schema in TCOZ class is translated to

1In TCOZ inheritance, the declarations and predicates of the same name operations in the
super-class and sub-class are merged together instead of the case of overloading in Oz.

5.4. TCOZ – OZ TRANSLATION RULES 93

membership relations adding to the precondition of the state invariant or

methods in Oz.

• Object reference in a class definition is regarded as a feature type in Oz,

which later can be linked to a concrete class object. If the object reference

is common to all the instances of the class, declaration in the feature via an

anonymous variable ‘ ’ indicates that all instances of the class will share the

same variable, in our case the common referred object.

• Operations that are not in the visibility list of the TCOZ class are translated

to methods labelled by variables instead of literals in an Oz class, and are

private to the class.

• Generic class definition is translated to function definition with type infor-

mation as its parameter. It returns an Oz class declaration.

• Channel is treated as features of the cell type in an Oz class, which later can

be assigned in the system specification according to the network topology.

• Active object class is translated to an Oz class that inherits the Oz ‘Time.repeat’

class, which is capable of setting up an action method (main) for continuous

running as a non-terminating object.

5.5. IMPLEMENTATION AND CASE STUDY 94

5.5 Implementation and case study

5.5.1 TCOZ Oz library

As discussed earlier, an equivalent library for handling specification constructs can

greatly benefit the translation process from FM specifications into the animation

language. Part of the Oz library to manipulate TCOZ constructs, e.g., set opera-

tions and channel declarations, are defined as follows.

% set

fun {PowerSet A}

case A

of nil then [nil]

[] H|T then

{Union {PowerSet T} {Map {PowerSet T}

fun {$ X} {Append [H] X} end}}

end

end

...

%Channel

class Channel from BaseObject

attr buffer signal

meth init

buffer <- {New OzChannel init}

signal <- {New OzEvent init}

end

meth put(I)

{@signal wait}

{@buffer put(I)}

end

meth get(?I)

{@signal notify}

{@buffer get(I)}

end

end

5.5. IMPLEMENTATION AND CASE STUDY 95

Firstly, a number of set functions such as subset, power set, union, intersection

and so on are defined for matching the TCOZ set constructs. Secondly, TCOZ

communication constructs such as channel are implemented using the concurrent

programming aspects in Oz. The last example shows a TCOZ channel, which

is shared among an arbitrary number of threads. Note that these functions are

implemented using the logic programming aspects in Oz, which preserve the same

abstraction level as the specification notation. We have completed the entire TCOZ

set operations in Oz, and only a few are demonstrated in this chapter due to space

limitations.

In the previous example, we programmed a signaling mechanism using a typical

producers and consumers situation. This program relies on the use of logical vari-

ables to achieve the desired synchronization. A consuming thread has to wait until

information exists in the channel. The get method notifies one producer at a time

by setting the empty flag and signalling one producer. This is done as an atomic

step. Any producing thread may put information in the channel synchronously.

The put method does the reciprocal action. Most execution is done in an exclusive

region. Multiple consuming threads will reserve their place in the channel, thereby

achieving fairness.

5.5.2 TCOZ Oz projection

To animate TCOZ specifications in Oz, we first use XSL Transformation to project

the TCOZ model into its Oz code frames, together with test cases and an auxiliary

5.5. IMPLEMENTATION AND CASE STUDY 96

library to perform the validation. Customization of the code segments are needed

during the process. The following is part of the XSL stylesheet for Oz projection.

<xsl:output method="text"/>

<xsl:template match="/">

<xsl:apply-templates select="//classdef"/>

</xsl:template>

<xsl:template match="classdef">

<xsl:text>class </xsl:text>

<xsl:value-of select="name"/>

<xsl:text> from </xsl:text>

<xsl:apply-templates select="inherit"/>

<xsl:if test="op/name[.=’MAIN’]">

<xsl:text> Time.repeat </xsl:text>

</xsl:if> ...

<xsl:apply-templates select="state"/>

<xsl:apply-templates select="init"/>

<xsl:apply-templates select="op"/>

...

</xsl:template>

The above states that a projection will be made on each defined TCOZ class in

XML to construct corresponding Oz classes, i.e., the inheritance relationships are

captured through the inherit tags, the active objects are identified by their MAIN

operations and so on.

5.5.3 Two communicating buffers example

Consider the TCOZ model of the Buffer and TwoBuffers below. Let the given

type [MSG] represent a set of messages.

Buffer

items : seqMSG
left , right : chan

Init
items = 〈 〉

5.5. IMPLEMENTATION AND CASE STUDY 97

Add
∆(items)
i? : MSG

items ′ = 〈i?〉aitems

Remove
∆(items)

items = items ′ a 〈last(items)〉

Join =̂ [i : MSG | #items < max] • left?i → Add
Leave =̂ [items 6= 〈 〉] • right !last(items) → Remove
Main =̂ µB • Join 2 Leave; B

Two communicating buffers can be composed in TCOZ respectively as:

TwoBuffers

l : Buffer [middle/right]
r : Buffer [middle/left]

Main =̂ ‖(l middle¾ - r)

Note that the two buffers are communicating through the middle channel, which

is depicted by the TCOZ network topology seen in Figure 5.1.

middle left right

l

r

Buffer Buffer

Figure 5.1: Two communicating buffers example

The translated specifications in Oz are as follows.

%Buffer

class Buffer from Time.repeat

feat

left

right

5.5. IMPLEMENTATION AND CASE STUDY 98

attr

items

meth Invariants($)

{All @items fun {$ X} {Member X MSG} end}

end

meth init

items <- nil

end

meth Add(I)

cond

({Member I MSG} andthen

{self Invariants($)}) = true

then

items <- {Append @items [I]}

else

{Browse ’Pre-condition not satisfied.’}

end

end

...

end

Note that the preconditions in the TCOZ schema are treated as the logical con-

ditional statements cond in Oz. The ‘else’ statement is introduced for execution

purposes only. Without the statement, the process will hang when the precondi-

tions are not satisfied. An Oz cond statement has the following semantics. Assume

a thread is executing the statement in space SP 2 and has the following form.

cond X1 ... XN in S0 then S1 else S2 end

where Xi are newly introduced variables, and Si are statements. X1 ... XN in S0

then S1 is the clause of the conditional, and S2 is the alternative.

• The thread is blocked.

2SP denotes an Oz computation space, which consists of a computation store and a set of
executing threads.

5.5. IMPLEMENTATION AND CASE STUDY 99

• A space SP1 is created, with a single thread executing the guard cond X 1 ...

XN in S0.

• Execution of the parent thread remains blocked until SP1 is either entailed

or disentailed. Notice that these conditions may never occur, e.g. when some

thread is suspended or running forever in SP1.

• If SP1 is disentailed, the parent thread continues with statement S2.

• If SP1 is entailed, assume it has been reduced to the store θ and the set of

local variables SX . In this case, the space is merged with the parent space.

θ and SX added to the parent store, and the parent thread continues with

the execution of S1.

The TwoBuffers example depicted by the TCOZ network topology can be trans-

lated into the following Oz segment.

%network topology

L = {New Buffer init}

R = {New Buffer init}

Left = {New Channel init}

Middle = {New Channel init}

Right = {New Channel init}

L.left = {NewCell Left}

L.right = {NewCell Middle}

R.left = {NewCell Middle}

R.right = {NewCell Right}

%active objects

{L setRepAll(action: main)}

{R setRepAll(action: main)}

From the translation rules defined in the previous section, we first create the in-

stances of the left , middle and right channels; then associate these channels to its

5.5. IMPLEMENTATION AND CASE STUDY 100

Figure 5.2: Animation of the two communicating buffers example

corresponding feature variables in the Buffer definition according to the network

topology of the TCOZ specification. The function setRepAll is to set up an action

for the TCOZ active objects.

After the translation from TCOZ specification into Oz, it is time to build up test

cases and carry out the validating process. As seen from Figure 5.2, we firstly

invoked the two active objects and let them run concurrently in their own threads.

Then, five inputs along the left channel of the TwoBuffers were put into the system.

Note that one of them, msg12, is outside of the MSG type range. When obtaining

three outputs through the right channel the results are msg1, msg2 and msg3. Note

that msg12 was checked by the state invariants and ignored. Furthermore, the

desired output is the consequence of the TwoBuffers communicating through its

internal middle channel performed by two active Buffers, which match perfectly

with the corresponding TCOZ specification as well as the user requirements.

5.6. CONCLUSION 101

5.6 Conclusion

The contribution of this chapter is the demonstration of an approach to animate

TCOZ specifications in a multi-paradigm language - Oz. With the availability

of all kinds of programming concepts in Oz, e.g., OO, logic and concurrency, we

defined a TCOZ constructs library so that animating TCOZ model in Oz can be

easily and effectively achieved. We also constructed an XSLT stylesheet for the au-

tomatic transformation from TCOZ specifications into Oz code frames. However,

our translating and validating processes still need human interaction for compli-

cated predicate expressions at the moment. A more sophisticated translation tool

can be built based on the TCOZ XML format to Oz syntax. This will be part of

our future work.

Chapter 6

Proof techniques for TCOZ

This chapter presents a proof system for the TCOZ specification language and a

framework of logical embedding of inference rules into the theorem prover Isabelle.

103

6.1. INTRODUCTION 104

6.1 Introduction

Formally reasoning about properties of a system specification involves showing that

the properties can be derived from the specification using the rules of a mathemat-

ically sound logic. This logic is given by a formal system which defines a set of

axioms and a set of inference rules. The approach is to provide a complete logic

and a set of inference rules for the particular specification language. The work

done by Graeme Smith, Jim Davis and Steve Schneider takes this approach. Smith

extended the W logic of Z to Object Z with class features [86]. He presented a

set of inference rules for reasoning about classes including inheritance, parallelism,

class membership and so on. Davis/Schneider extended the proof system of Hoare’s

Communicating Sequential Process (CSP) to accommodate reasoning about com-

plex timing constraints for TCSP [82, 83]. Thus, in order to formally verify system

properties, a proof system for TCOZ is needed. TCOZ preserves a large part of

both the syntax and semantics of the base notations and hence can potentially ben-

efit from existing reasoning systems of the individual notations. In this chapter we

extend and link Smith’s proof system of Object-Z 1 and Davies/Schneider’s proof

system of TCSP for reasoning about TCOZ models. The new proof rules for the

TCOZ novel constructs, i.e., active objects, sensor/actuators, network topology,

deadline and wait-until commands, etc, are developed. Furthermore, a framework

for the embedding of TCOZ event reasoning rules into the generic theorem prover

Isabelle/HOL is demonstrated.

1The proof system of Object-Z [86] extends the W logic [114] of Z.

6.2. TCOZ INFERENCE RULES 105

The remainder of the chapter is organized as follows. In section 2, we briefly

introduce the TCOZ inference rules. Section 3 presents the encoding of TCOZ

event reasoning rules in Isabelle/HOL. Section 4 concludes the chapter.

6.2 TCOZ inference rules

Timed Communicating Object-Z (TCOZ) [67], an integration of object oriented Z

and TCSP, introduces CSP primitives inside Object-Z class definitions for mod-

elling timing related aspects. The proof systems of Object-Z and TCSP can be

adopted and extended to facilitate reasoning about both state and event oriented

properties of a TCOZ specification.

6.2.1 State oriented reasoning

Adopted Object-Z rules

The essential extension to Z in Object-Z is the class construct which groups the

definition of a state schema and the definitions of its associated operations. From

a system point of view, it also enables modular verification. Smith extends the W

logic of Z to Object-Z [86] for reasoning about object models and type systems [78].

The fundamental logic in Object-Z is presented in the sequent form, defined as

follows:

A :: d | Ψ ` Φ

where A is the name of a class, d is a list of declarations and Ψ and Φ are lists of

predicates in the local content of class A. Inference rules are also restricted in the

6.2. TCOZ INFERENCE RULES 106

local environment of a class context.

A :: d1 | Ψ1 ` Φ1
[A :: p]

A :: d2 | Ψ2 ` Φ2

The upper part is called a premise which contains zero or more sequents; the middle

part is called a proviso which is a predicate that makes the rule applicable; and the

lower part is called the conclusion, which is a single sequent which must be valid

when the proviso and the premise are true.

Some of the inference rules adopted from Object-Z are listed as follows. Detailed

information of Object-Z inference rules can be found in Smith’s logic for Object-

Z [86].

• State definition – For a state definition of class A[X1, ...,Xn], the state schema

inference rule is defined as follows:

d1

∆
d2

p

A[t1, ..., tn] :: STATE = [↑ STATE ; b ¯ d1; b ¯ d2; | b ¯ p] `
[q]

A[t1, ..., tn] :: `

STATE refers to the state definition of a class, ↑ STATE stands for the

inherited state definitions from its super classes, and the proviso q is in the

form of

q ≡ b = (| X1 ; t1, ...,Xn ; tn |)

6.2. TCOZ INFERENCE RULES 107

where ti is the actual parameter substituted to Xi through substitution op-

erator ¯.

• Initialization definition – For a generic initial schema definition Op of class

A[X1, ...,Xn], the initial schema inference rule is defined as follows:

INIT
p

A[t1, ..., tn] :: INIT =↑ INIT ∧ [STATE | b ¯ p] `
[q]

A[t1, ..., tn] :: `

INIT refers to the initial definition of a class, ↑ INIT stands for the inherited

initial definitions from its super classes, and the proviso q is in the form of

q ≡ b = (| X1 ; t1, ...,Xn ; tn |).

• Operation definition – For a generic operation schema of class A[X1, ...,Xn],

the inference rule for operation is defined as follows:

Op =̂ OP

A[t1, ..., tn] :: Op = ∆STATE • (↑ Op ∧ b ¯OP) `
[q]

A[t1, ..., tn] :: `

The Op refers to an operation definition in a class, ↑ Op stands for the

inherited operation definitions from its super classes, and the proviso q is in

the form of

q ≡ b = (| X1 ; t1, ...,Xn ; tn |)

• Inheritance related rules

A1 :: ` STATE = S1

...
An :: ` STATE = Sn

[p]
B :: ` ↑ STATE = S1 ∧ ... ∧ Sn

6.2. TCOZ INFERENCE RULES 108

A1 :: ` INIT = S1

...
An :: ` INIT = Sn

[p]
B :: ` ↑ INIT = S1 ∧ ... ∧ Sn

A1 :: ` Op = S1

...
An :: ` Op = Sn

[p]
B :: ` ↑ Op = S1 ∧ ... ∧ Sn

↑ STATE , ↑ INIT and ↑ Op stand for the inherited state, initial and oper-

ation definitions respectively. The proviso p is in the form of p ≡ ι(B) =

{A1, ...,An}, where the meta function ι returns the set of inherited classes of

B .

TCOZ extension rules

TCOZ [67] extends Object-Z class definitions in two aspects. Firstly, the state

schema convention is extended to allow the declaration of object communication

interfaces, i.e., channels, sensors and actuators. If c is to be used as a communica-

tion interface by any of the operations of a class, then it must be explicitly declared

in the state schema. Channels are type heterogeneous and may carry communica-

tions of any type, while sensors/actuators are type specific. These communication

interfaces are connected by the network topologies in TCOZ. The second extension

is that in addition to operations (terminating processes), non-terminating processes

named MAIN are introduced to represent the behavior of active classes. The in-

heritance mechanism of active classes differs from the normal passive classes as

6.2. TCOZ INFERENCE RULES 109

the MAIN operation must always be redefined explicitly. For a complete TCOZ

semantics refer to paper [65].

Based on the Object-Z logics just outlined, new extension rules in TCOZ are defined

below:

• Non-terminating process (MAIN) – For a generic MAIN definition of class

A[X1, ...,Xn], the inference rule is defined as follows:

MAIN =̂ OP

A[t1, ..., tn] :: MAIN = ∆STATE • (b ¯OP) `
[q]

A[t1, ..., tn] :: `

MAIN refers to the non-terminating process definition in an active class.

Note that there is no need to consider the inherited MAIN definitions from

its super-classes since the process MAIN must always be redefined in the

subclasses if it appears. The proviso q is in the form of q ≡ b = (| X1 ;

t1, ...,Xn ; tn |).

• Synchronous communication (Channel) – For a generic network topology def-

inition of classes A, B and AB , the channel inference rule is defined as follows:

A

c : chan
...

MAIN =̂ ...c!x ...

B

c : chan
...

MAIN =̂ ...c?x ...

AB

a : A
b : B
...

MAIN =̂ ...a c¾- b...

6.2. TCOZ INFERENCE RULES 110

A[t1, ..., tn] :: STATE ` c ∈ chan ∧ MAIN ` c!x ∈ X
B [t1, ..., tn] :: STATE ` c ∈ chan
AB [t1, ..., tn] :: STATE ` a ∈ A ∧ b ∈ B ∧ MAIN ` a c¾- b

[q]
B [t1, ..., tn] :: MAIN ` c?x ∈ X

The above states that if classes A and B are communicating through channel

c, synchronization will be enforced on the input and outputs, i.e., outputs

from A through c will lead to inputs to B .

• Asynchronous communication (Sensor and Actuator) – For a generic network

topology definition of classes A, B and AB , the sensor/actuator inference rule

is defined as follows:

A

s : X actuator
...

...

B

s : X sensor
...

MAIN =̂ ...s?x ...

AB

a : A
b : B
...

MAIN =̂ ...a s¾- b...

A[t1, ..., tn] :: STATE ` s ∈ X actuator
B [t1, ..., tn] :: STATE ` s ∈ X sensor
AB [t1, ..., tn] :: STATE ` a ∈ A ∧ b ∈ B ∧ MAIN ` a s¾- b

[q]
B [t1, ..., tn] :: MAIN ` s .x ∈ X

The rule states that if classes A and B are communicating through the sensor

and actuator mechanism s , synchronization will be enforced on the input and

outputs, i.e., implicit continuous outputs from A through s will lead to inputs

to B when needed.

6.2. TCOZ INFERENCE RULES 111

6.2.2 Event oriented reasoning

TCSP [82] is an extension of Hoare’s Communicating Sequential Process (CSP) to

accommodate the description of time-sensitive behaviors. A requirements specifi-

cation S (s ,ℵ) of TCSP processes in TCOZ is the possible observations that can

be made for their executions. These are described in terms of the timed failure

model (s ,ℵ), which consists of timed traces and timed refusals. Timed trace s is

the sequence of events occurring during the execution according to their timing

aspects, while the timed refusal set ℵ is the timed events which are refused by the

execution. A process Q meets a specification S (s ,ℵ) if S holds for every timed

failure associated with Q .

Q sat S (s ,ℵ)⇔ ∀(s ,ℵ) ∈ T F [[Q]] • S (s ,ℵ)

TCSP rules in TCOZ

The approach taken in the TCOZ notation is to identify operations as terminating

CSP processes and to model active objects as non-terminating CSP processes. With

operations given the same semantics as processes, TCSP primitives are adopted in

the class constructs with satisfaction of the timed failure model restricted to the

class constructs. Furthermore, the combination of simple operations with CSP

operators makes it possible to represent true multi-threaded computation at the

operation level. Therefore the satisfaction properties in a TCOZ specification with

respect to TCSP aspects are extended to be restricted inside the local environment

of a class context as follows:

A :: Q sat S (s ,ℵ)⇔ A :: ∀(s ,ℵ) ∈ T F [[Q]] • S (s ,ℵ)

6.2. TCOZ INFERENCE RULES 112

Some of the TCSP inference rules adopted in the TCOZ context are listed be-

low. For a detailed view of TCSP inference rules, please refer to the TCSP proof

system [82].

• Conjunction – If a process satisfies two different specifications they also satisfy

its conjunction.

A :: Q sat S (s ,ℵ)
A :: Q sat T (s ,ℵ)

A :: Q sat (S (s ,ℵ) ∧ T (s ,ℵ))

• Weaken – If a specification S logically implies another specification T , then

every process that satisfies S also satisfies the weaker specification T .

A :: Q sat S (s ,ℵ)
A :: S (s ,ℵ)⇒ T (s ,ℵ)

A :: Q sat T (s ,ℵ)

• Sequential composition – The behavior of the process can be divided into

two aspects. If control has not been transferred from Q1 to Q2, then the

trace of the composition is the trace of Q1 during which the termination X

is not performed and would be refused if offered. Otherwise, the trace is a

concatenation of s1 and s2 performed by S1 and S2 respectively.

A :: Q1 sat S1(s ,ℵ)
A :: Q2 sat S2(s ,ℵ)

A :: Q1
o
9 Q2 sat X 6∈ σ(s) ∧ S1(s ,ℵ ∪ [0,∞)× {X})

∨ ∃ s1, s2, t • s = s1
a s2 ∧ X 6∈ σ(s1)

∧ S1(s1
a 〈(t ,X)〉,ℵ ¹ t ∪ [0, t)× {X})

∧ S2((s2,ℵ)− t)

6.2. TCOZ INFERENCE RULES 113

• External choice – The combination behavior of the term is either Q1 or Q2.

Any event refused before the first observable event occurs must be refused by

both processes.

A :: Q1 sat S1(s ,ℵ)
A :: Q2 sat S2(s ,ℵ)

A :: Q1 2 Q2 sat (S1(s ,ℵ) ∨ S2(s ,ℵ))
∧ S1(〈 〉,ℵ ¹ begin(s)) ∧ S2(〈 〉,ℵ ¹ begin(s))

• Recursion – To prove that a recursive process Y = F (Y) satisfies a require-

ment specification S (s ,ℵ), it is sufficient to show that under the hypothesis

that Y satisfies S (s ,ℵ) and its definition F (Y) also satisfies S (s ,ℵ).

A :: ∀Y • (Y sat S (s ,ℵ)⇒ F (Y) sat S (s ,ℵ))
[q]

A :: Y = F (Y) sat S (s ,ℵ)

where q = ∃Q0 • Q0 sat S (s ,ℵ), S (s ,ℵ) is admissible.

TCOZ extension rules

In this section, we develop the proof rules for the new TCOZ constructs, i.e.,

Deadline, WaitUntil commands and Network Topology. In presenting the in-

ference rules, we first use the timed labelled transition system notation to provide

operational semantics for each language constructs. Based on their operational

semantics, timed failure models of the language constructs can be calculated. Fi-

nally, inference rules are derived from their corresponding timed failure semantic

(denotational). In doing so, the soundness property of the inference rules can be

preserved directly from the denotational semantics of each language constructs.

6.2. TCOZ INFERENCE RULES 114

Deadline command

The Deadline operator (Q • Deadline d) allows the successful termination of

process Q to be restricted within the d units of time starting from the beginning

of first occurrence in Q . The operational semantics for this operator are given as

follows:

Q
a→ Q ′

[a 6= X]
Q • Deadline d

a→ Q ′ • Deadline d

Q
X→ Q ′

Q • Deadline d
X→ Q ′

Q • Deadline 0
τ→ Stop

Q
d ′Ã Q ′

[d ′ 6 d]

Q • Deadline d
d ′Ã Q ′ • Deadline(d − d ′)

where ‘→’ refers to an event transition and ‘Ã’ refers to an evolution transition.

The above states that the process has the same effect as Q , but is constrained to

terminate no later than d . If it fails to terminate by time d , it deadlocks. According

the above operational semantics, its timed failure computation is as follows:

T F [[Q • Deadline d]] = {(s ,ℵ) | end(s) 6 d ∧ X ∈ σ(s) ∧ (s ,ℵ) ∈ T F [[Q]]}
∪ {(s ,ℵ) | end(s) > d ∧ X 6∈ σ(s) ∧ (s ,ℵ) ∈ T F [[Stop]]}

The inference rule for the Deadline constructor can be derived from the timed

failure semantics as follows:

A :: Q sat S (s ,ℵ)

A :: Q • Deadline d sat (end(s) 6 d ∧ X ∈ σ(s) ∧ S (s ,ℵ ¹ d))

∨ (end(s) > d ∧ S (〈〉, (d ,∞)× ΣX))

6.2. TCOZ INFERENCE RULES 115

WaitUntil command

The WaitUntil operator (Q • WaitUntil d) allows the period of execution of

the process Q to be extended to d units of time starting from the first occurrence in

Q , if the process terminates before d . The operational semantics for this operator

are given as follows:

Q
a→ Q ′

[a 6= X]

Q • WaitUntil d
µ→ Q ′ • WaitUntil d

Q
X→ Q ′

Q • WaitUntil d
X→ Q ′ o

9 Wait d

Q • WaitUntil 0
τ→ Q

Q
d ′Ã Q ′

[d ′ 6 d]

Q • WaitUntil d
d ′Ã Q ′ • WaitUntil(d − d ′)

The above states that the process has the same effect as Q , but it will not terminate

until at least time d . According the above operational semantics, its timed failure

semantics can be defined as follows:

T F [[Q • WaitUntil d]] = {(s1
a s2,ℵ) | end(s1) < d

∧ (s1,ℵ ¹ end(s1)) ∈ T F [[Q]] ∧
((s2,ℵ)− end(s1)) ∈ T F [[Wait(d − end(s1))]])}
∪ {(s ,ℵ) | end(s) > d ∧ (s ,ℵ) ∈ T F [[Q]]}

The inference rule for the WaitUntil constructor can be derived from its timed

failure semantics (denotational) as follows:

A :: Q sat S (s ,ℵ)

A :: Q • WaitUntil d sat (end(s) > d ∧ S (s ,ℵ))

∨ (end(s) 6 d ∧ S (s a 〈d ,X〉,ℵ ∪ [end(s), d)× ΣX))

6.2. TCOZ INFERENCE RULES 116

Network topology

The TCOZ network topology construct is a graphically-based representation of

the TCSP parallel operator, where communications are made through common

interfaces such as channels and sensor/actuators. Two types of communication

mechanisms are introduced in the network topology structure: synchronous and

asynchronous. In the case of synchronous communication, an output and input

relationship needs to be explicitly specified along the common channel. For asyn-

chronous communication, an actuator acts as continuously outputting its value to

the environment, and the sensor acquires the value when needed. The operational

semantics for the network topology operator are developed as follows:

Q1
a→ Q ′

1 [a ∈ Σ− {c.v}]
Q1

c¾- Q2
a→ Q ′

1
c¾- Q2

Q2
a→ Q ′

2 [a ∈ Σ− {c.v}]
Q1

c¾- Q2
a→ Q1

c¾- Q ′
2

Q1
c.v→ Q ′

1 Q2
c.v→ Q ′

2 [c.v ∈ Σ]
Q1

c¾- Q2
c.v→ Q ′

1
c¾- Q ′

2

Q1
dÃ Q ′

1 Q2
dÃ Q ′

2

Q1
c¾- Q2

dÃ Q ′
1

c¾- Q ′
2

Note that c.v is a compound common event indicating that the value v being

communicated along synchronous channel or a pair of asynchronous sensor and

actuator labelled c. The above is represented in terms of the timed failure model

as follows:

6.3. TOWARDS AUTOMATED PROOF ASSISTANCE 117

T F [[Q1
c¾- Q2]] = {(s ,ℵ) | ∃ ℵ1,ℵ2 • ℵ = ℵ1 ∪ ℵ2

∧ (s ¹ σ(Q1),ℵ1) ∈ T F [[Q1]] ∧ (s ¹ σ(Q2),ℵ2) ∈ T F [[Q2]]}

where σ(Q) denotes the alphabet of the process Q . Note that both Q1 and Q2 must

agree on the communication event c.v . If either of them refuses the event then

the communication will be refused. The inference rule for the network topology

constructor is presented as follows:

A :: Q1 sat S1(s ,ℵ)
B :: Q2 sat S2(s ,ℵ)

AB :: Q1
c¾- Q2 sat ∃ℵ1,ℵ2 • S1(s ¹ σ(Q1),ℵ1)

∧ S2(s ¹ σ(Q2),ℵ2) ∧ ℵ = ℵ1 ∪ ℵ2

6.3 Towards automated proof assistance

In the above section we presented a combination and extension of state (Object-Z)

and event based (TCSP) proof systems for formal reasoning about TCOZ speci-

fications. As the proof process is manual, one immediate work is to investigate

the encoding of TCOZ proof rules into theorem provers such as Isabelle/HOL [73]

to support automatic proof assistance. There are previous research works done in

embedding Z and CSP into theorem provers, such as HOL-Z [54], HOL-CSP [97].

Both approaches are based on the shallow embedding of the language semantics

into the generic prover Isabelle. HOL-Z is a structure preserving encoding of Z into

the higher-order logic, which allows the deduction to be performed at the schema

level. HOL-CSP presented a machine verified failure divergence model for the CSP

language in Isabelle/HOL. There are also previous attempts to embed CSP into

the PVS prover [10, 27].

6.3. TOWARDS AUTOMATED PROOF ASSISTANCE 118

Isabelle is a generic system for implementing a logical formalism. It consists of

many logics, such as First Order Logic (FOL), High Order Logic (HOL), Zermelo

Frankel set theory (ZF), Constructive Type Theory (CTT), the Logic of Com-

putable Functions (LCF), and so on. The Isabelle system is implemented in the

functional language ML. It provides powerful mechanisms to define hierarchical

theories (object logics). New object logics can be built from Isabelle metalogic, by

means of constructing and proving new theories. Its fundamental inference tech-

niques are based on higher order unification and term rewriting. Isabelle/HOL is

the specialization of Isabelle for high order logic.

TCOZ is essentially a blending of Object-Z with TCSP. Therefore the encoding of

TCOZ language to the theorem prover can be divided into two stages: first, the en-

coding of state (Object-Z) and event based (TCSP) semantics into Isabelle/HOL,

then the extending and developing of proof rules to accommodate the TCOZ lan-

guage. Recently, attempts have been made to encode Object-Z into Isabelle [90].

In this section we present some tentative approaches for the encoding of the TCOZ

event reasoning rules into Isabelle/HOL.

6.3.1 Timed failure and process

TCSP’s timed failure semantic is used as a basis for the logic embedding. A timed

failure is a pair that consist of a timed trace and a timed refusal as mentioned in

section 6.2.2. The corresponding representations in Isabelle/HOL are as follows:

datatype ’a event = ev ’a | tick

typedef (time)

6.3. TOWARDS AUTOMATED PROOF ASSISTANCE 119

time = "{t. t : nat & 0 < t}"

by (auto)

types

’a t_event = "(’t time * ’a event)"

consts

is_ttrace :: "(’a t_event) list => bool"

typedef (t_trace)

’a t_trace = "{tt. is_ttrace tt}"

by (auto)

types

’a t_refusal = "(’a t_event) set"

’a t_failure = "’a t_trace * ’a t_refusal"

consts

is_process :: "’a t_failure set => bool"

typedef (process)

’a process = "{p. is_process p}"

by (auto)

The above defines the fundamental concepts of the timed failure semantic, i.e.,

trace, refusal, failure and process. Note that the timed trace and process were

defined as sets of timed event and timed failures that satisfy desired properties.

Before we move on to the definition of process and rules, let us look at some

auxiliary functions for such definitions.

s |¹ t [timed trace that strictly before t → befs]
s ¹ t [timed trace that before and at t → befeqs]
ℵ |¹ t [timed refusal that strictly before t → befx]
ℵ ¹ t [timed refusal that before and at t → befeqx]
σ(s) [alphabet of events in a timed trace s → sigmas]
σ(ℵ) [alphabet of events in a timed refusal ℵ → sigmax]

Some of their corresponding Isabelle representations are as follows.

constdefs

befs :: "[’tt t_trace, ’t time] => ’tt t_trace"

"befs tt t == "{tt’::t_trace. tt’ <= tt &

! t’::time a::event. (t’, a) : tt & t’ < t

--> (t’, a) : tt’}"

6.3. TOWARDS AUTOMATED PROOF ASSISTANCE 120

...

sigmax :: "’a t_refusal => ’a event set"

"sigmax tr == "{a::event. (t,a) : tr}"

...

It states that the ‘befs s t’ function maps the original timed trace s onto the

time interval [0, t). Other functions can be encoded similarly. The constraints

on the timed trace and process are defined as follows.

defs

is_ttrace_def : "is_ttrace TT == ! t1 t2 a1 a2 .

[(t1::time, a1::event), (t2, a2)] <= TT

--> (t1 <= t2 & a1 ~= tick)"

is_process_def : "is_process P == ([],{}) : P &

(! s t X Y. (t, Y) : P & (s X) <= (t, Y) --> (s, X) : P) &

(! s X. (s, X) : P & ? X’. X <= X’ & (s, X’) : P &

! t::time a::event . (t, a) ~: X’ -->

((befs s t)@[(t,a)], (befx X’ t)) : P)"

For the timed trace, it is a sequence of timed events in which times are non-

decreasing. A well-timed CSP process is a set of timed failures that represents the

execution records. These timed failures should meet certain properties. First, it

must contain the empty observation which denotes no event occurring. Second, it

must be downwards closed, which means that any prefix order of a timed failure

should be included in its timed failure set. A prefix order of a timed failure 4 is

defined as follows:

(s ′,ℵ′) 4 (s ,ℵ) ⇔ ∃ s ′′ • s = s ′ a s ′′ ∧ ℵ′ ⊆ ℵ |¹ begin(s ′′)

where begin(s) denotes the first (earliest) time value in a timed trace s . Third,

the timed event should be either possible or refusable, which means that if a timed

6.3. TOWARDS AUTOMATED PROOF ASSISTANCE 121

event (t , a) does not appear in the refusal set it must be included in the timed

execution trace. All these properties are encoded in the function is process def

as shown.

6.3.2 Language constructs

With the above concepts, TCSP language constructs can be defined such as:

constdefs

STOP :: "’a process"

"STOP == Abs_process {(s, X). s = []}"

SKIP :: "’a process"

"SKIP == Abs_process ({(s, X). s = [] & tick ~: (sigmax X)}

Un {(s,X). s = [(t, tick)] & tick ~: (sigmax (befx X t))})"

Seq :: "[’a process,’a process] => ’a process"

"Seq P Q == Abs_process ({(s, X). tick ~: (sigmas s) &

(s, X Un (refAll infty {tick})) : Rep_process P}

Un {(s, X). ? s1 s2. s = s1@s2 & tick ~: (sigmas s) &

(s1@[(t,tick)], (befx X t) Un

(refAll t {tick})) : Rep_process P &

((s2, X) - t) : Rep_process Q})"

...

The above illustrates the encoding of the ‘Stop’, ‘Skip’, and the composition ‘o9’

constructs. They are all strictly based on the timed failure semantics presented in

Section 6.2.2. Other TCSP primitives can be defined similarly. In addition, having

the language constructs in Isabelle/HOL, we can machine verify the correctness of

the TCSP semantics by deriving lemmas and applying tactics.

6.3. TOWARDS AUTOMATED PROOF ASSISTANCE 122

6.3.3 Specification satisfaction and inference rules

With the TCSP language constructs embedded in Isabelle/HOL, the satisfaction

of a process to its specification can be defined as follows.

constdefs

Sat :: "[’p process, ’a => bool] => bool"

"Sat P S == ! s X. (s, X) : (Rep_process P) & S (s, X)"

It states that a process P meets a specification S, if and only if, for every timed

failure associated to P, S is true. Thus the inference rules can be represented as

lemmas or theorems in Isabelle/HOL, such as:

lemma sequential : " [| Sat Q1 S1 ; Sat Q2 S2 |] ==>

Sat (Seq Q1 Q2) ((tick ~: (sigmas s) &

S1 (s, X Un (refAll infty {tick})))

| (? s1 s2. s = s1@s2 & tick ~: (sigmas s) &

S1 (s1@[(t,tick)], (befx X t) Un (refAll t {tick})) &

S2 ((s2, X) - t)))"

...

The above is the inference rule for sequential composition as introduced in the

early section. By applying appropriate tactics, we can prove these inference rules

automatically and use them for future reasoning. Alternatively, we could assert

these rules as axioms into the theory and apply them directly. However, it is

recommended to take the definitional approach rather than the axiomatic approach,

for the latter may put forward arbitrary and inconsistent axioms. Finally, the

TCOZ theory file can be an extension of both Object-Z and TCSP theory files

with new language constructs and theorems.

6.4. CONCLUSION 123

Theory TCOZ = ObjectZ + TCSP:

consts

Deadline :: "[’a process, ’t time] => ’a process"

WaitUntil :: "[’a process, ’t time] => ’a process"

Network :: "[’a process, ’a event set, ’a process] => ’a process"

defs

WaitUntil_def : "WaitUntil P t == Abs_process ({(s, X). ? s1 s2.

s = s1@s2 & (end s1) < t & (s1, (befx X (end s1))) : Rep_process P

& ((s2, X) - (end s1)) : Rep_process (Wait (t - (end s1)))}

Un {(s, X). (end s1) >= t & (s, X) : Rep_process P}"

...

lemma waituntil : " [| Sat Q S |] ==> Sat (WaitUntil Q d) (...)"

Note that ‘Wait (t - (end s1))’ denotes the delay construct and the ‘end s1’

computes the finish time of the timed trace s1. New theorems of TCOZ inference

rules can be constructed accordingly. In summary, by such framework of encoding,

TCOZ proof system can be verified and applied automatically for future reasoning

tasks using Isabelle/HOL.

6.4 Conclusion

In this chapter, we combined and extended both state-based Object-Z and event-

based TCSP proof systems for formally reasoning about TCOZ specifications. New

inference rules for TCOZ novel constructs are introduced based on their underlying

language semantics. A case study of applying these rules for the verification of a

generic Computer Aided Dispatch System architecture will be demonstrated in the

next chapter. Furthermore, in this chapter we also presented an initial framework

for encoding the TCOZ language into the theorem prover Isabelle/HOL for auto-

mated proof support. The amount of work of constructing the theory files, verifying

6.4. CONCLUSION 124

the proof rules and deduce new theorems from the theory files could be large. In

addition, a parsing program can be written to take in the standard ZML format of a

TCOZ specification and produce the corresponding Isabelle theory representations

for formal verification.

Chapter 7

Verifying and reasoning about

generic CAD system architecture

- a case study

This chapter presents the formal modeling and verification of a generic Computer

Aided Dispatch (CAD) System architecture.

125

7.1. INTRODUCTION 126

7.1 Introduction

Software architecture is an important level of description for software systems [79].

It involves the definition of system elements, the interaction among the elements,

patterns of the compositions, and the constraints on the patterns [85]. The current

practice of software architecture mainly relies on diagrams and textural explana-

tions. Several Architectural Description Languages (ADL) have been proposed,

such as Darwin [63] and Rapide [61]. These ADLs offer approaches to describe

software architectures explicitly as hierarchical structures. Formal modeling tech-

niques have been applied to the software architecture descriptions. The well-defined

semantics and syntax make them suitable for precisely specifying and formally ver-

ifying architecture designs. Many researchers [2, 85] have used Z to formalize the

computational data/state aspects of software architectures. Allen and Garlan [5]

have also applied a CSP-like notation called Wright to formalize the interactive

communication aspects of software architectures. Both approaches are beneficial

and provide some formal foundations to a software architecture description. How-

ever, the formal link and consistency issues between the models represented in

different formalisms remain as a challenge. In general, Z is a state-based formal-

ism which may not be suitable for specifying interactions; Wright is designed only

for architecture communication definitions. From a system designer point of view,

he/she might prefer to use a single and coherent language that can capture both

static and dynamic properties of the system architecture. Thus the consistency

issues between the models represented in different formalisms can be resolved. Re-

7.1. INTRODUCTION 127

cent advances in formal specification techniques and integrated formal methods

[12, 36] may provide some promising solutions to the problem. In this chapter, we

also show that integrated formal notations, i.e., Timed Communicating Object Z

(TCOZ) [67] could be a good candidate for such architecture description through

the design and verification of a generic Computer Aided Dispatch (CAD) system.

The class construct in TCOZ is an ideal encapsulation mechanism for composing

and extending architecture models. The synchronous and asynchronous communi-

cation interfaces in TCOZ are well suited for capturing various interactions between

the components. The network topology of TCOZ is a good mechanism for depicting

the architectural configurations.

Computer Aided Dispatch (CAD) System is a generic family system that pro-

vides automatic dispatching of the requested tasks within their critical timing

requirements. In our current project, “Software Reuse Framework for Reliable

Mission-Critical Systems” 1 , one goal is to develop the reuse-based design and

development methods of reliable Computer Aided Dispatch (CAD) systems. We

have found that high level reuse can be best achieved through software architecture

models. An effective approach to reuse requires a generic CAD architecture that

defines the overall structure and a common base of customizable software assets

to be reused across CAD systems. In this chapter, we apply TCOZ to represent

an incremental three layered architecture model of the CAD systems [34]. These

three layers include the following:

1The project, “Software Reuse Framework for Reliable Mission-Critical Systems”, is supported
by Singapore-Ontario Joint Research Programme.

7.1. INTRODUCTION 128

• Style – an architectural style for CAD systems.

• Generalization – a CAD system generic architecture based on the style model.

Critical system properties of the generic layer can be formulated and decom-

posed into state-based and event/time-based properties. The proofs of those

properties are presented.

• Customization – the specific system architecture models are derived from the

generic model.

The main benefits of having a three layered approach are reusability, simplicity

and reliability. The upper layers represent common paradigms among the family

systems, i.e., generic patterns of components and connectors, so that high level

relationships in the system can be understood. The lower layers characterize the

specific requirements within the new domain, i.e., specific topology of components

and connectors, so that new systems can be built as variations and extensions on

old systems. This allows us to describe a system architecture as an open-ended

collection of reusable architectural elements. Formal specifications of architecture

models permit us to reason about important properties at each desired level. Good

understanding and precise representation of architecture models lead to reliable

system implementations based on the architectures.

The remainder of the chapter is organized as follows. Section 2 presents CAD sys-

tem architecture style model. In section 3, we develop a CAD system generic archi-

tecture model by extending the style model. Section 4 presents the verification of

7.2. CAD SYSTEMS AND ARCHITECTURE STYLE MODEL 129

incident
!

Operator
Dispatcher
r

Police

assigns task to

phone call
incident info

handles incident

Situation
display internet

data base

Figure 7.1: An operational scenario in CAD system for police.

critical properties in the CAD system. In section 5 we illustrate the customizations

of the generic architecture model to various specific systems architecture models.

Section 6 concludes the chapter.

7.2 CAD systems and architecture style model

7.2.1 Overview of CAD system family

Computer Aided Dispatch (CAD) Systems are used by the police, fire & rescue,

health service and in many other contexts. Figure 7.1 depicts a basic operational

scenario as well as the roles and elements of a CAD system for the Police. An

Operator receives information about an incident and informs a Dispatcher about

the incident. The Dispatcher examines the “Situation Display” that shows a map

of the area where the incident happened. Then, the Dispatcher assigns a task of

7.2. CAD SYSTEMS AND ARCHITECTURE STYLE MODEL 130

handling the incident to the Police Unit , i.e., a Police Car that is closest to the

place of the incident. The Police Unit approaches the place of the incident and

handles the problem. The information about current and past incidents is stored

in the database. At the basic operational level, CAD systems for Fire & Rescue or

Health Services are similar to CAD for Police. These systems support the dispatch

of units to incidents. However, there are also differences across CAD systems. The

specific context of the operation (such as Police or Fire & Rescue) results in many

variations on the basic operational scheme. For example, CAD systems differ in

specifics of how resources are assigned to tasks, monitoring, reporting and timing

requirements, information to be stored in a database, system component deploy-

ment strategies, reliability and availability requirements, and so on. If we ignore

commonalities, each CAD system must be developed from scratch and maintained

as a separate product - an expensive and inefficient solution. The reuse-based ap-

proach may radically cut development and maintenance cost. An effective approach

to reuse requires a generic CAD architecture that defines the overall structure and

a common base of customizable software assets to be reused across CAD systems.

The CAD systems mentioned above form an important product line developed by

our industrial partner Singapore Engineering Software Pte Ltd. However, we can

further extend the domain analysis [62] and view CAD systems as instances of a

general task-resource allocation problem. Then we can observe a similar pattern in

the CAD systems mentioned above and the Teleservice and Remote Medical Care

System (TRMCS) [50] that supports transition patients from hospital care to home

care. In fact, in our examples illustrating CAD architecture specifications, we shall

7.2. CAD SYSTEMS AND ARCHITECTURE STYLE MODEL 131

Report Unit Control Unit Execute Unit Aux iliary Unit

CAD System S ty le

Figure 7.2: CAD system components.

show how CAD for Police and CAD for TRMCS can be derived from a common

generic model of CAD architecture.

In architectural descriptions, the three basic elements are components, connectors

and configuration of the system [2]. An architectural style defines the properties

that are shared by a family of systems. A style concentrates on the commonalities of

communication interfaces, interaction mechanisms and architectural configurations

of a family of systems but ignores the details of component functionalities and

communications.

We have encountered many CAD Systems in our project, “Software Reuse Frame-

work for Reliable Mission-Critical Systems”. From a high-level architectural view,

the core components and communication of these CAD Systems are depicted in

Figure 7.2 and listed as follows:

• Report Unit – A group of reporting units serve as information collectors for

the central controller.

7.2. CAD SYSTEMS AND ARCHITECTURE STYLE MODEL 132

• Control Unit – A central control unit manages and dispatches the tasks of

the system. This unit makes crucial decisions and assigns tasks to executable

resources for engagement against the emergencies. The central controller

communicates with all other main units of the system.

• Execute Unit – A group of executing units execute the tasks assigned by the

dispatcher. All of them communicate directly with the central dispatcher

while working independently from each other.

• Auxiliary Unit – A group of auxiliary units assist the central dispatcher or

other main units by taking some less important tasks such as collecting and

storing auxiliary information.

• CAD System Style – A system level configuration acts as a collection of

related units which perform the desired functionalities. Note that critical

timing requirements are important in the units’ computation behavior and

their interactive communication.

7.2.2 Components and connectors

As pointed out by Garlan and Perry [33], components are the primary elements

for computation in a system. Each component has an interface specification that

define its properties, which include the signature and functionality of its resources

together with global relation, performance properties and so on [85]. TCOZ views

components in terms of internal computations and interactions with the rest of the

7.2. CAD SYSTEMS AND ARCHITECTURE STYLE MODEL 133

system. The internal computations are context-independent, encapsulated behav-

iors of the components, while the context-setting interaction patterns are accom-

plished by the communication interfaces. In our approach, we use both implicit

and explicit connectors to depict the communication patterns between the system

components. TCOZ provides a fixed set of connector types for component inter-

actions, i.e., chans handle synchronous communication and sensor / actuators

handle asynchronous communication. At the component level, interactions pat-

terns are captured using implicit connectors such as chans and sensor / actuators

together with its component definitions. At the configuration level, system compo-

nents are defined using the TCOZ Network Topology construct, and act as explicit

connectors to establish the overall system configuration. Note that in some cir-

cumstances the use of explicit connectors can bring a number of benefits [5] such

as reuse. With TCOZ, it is easy to model a new connector type by creating a new

type of component, which is similar to the approach of Rapide [61].

There are four types of software components in our CAD system architecture, i.e.,

the report unit, the control unit, the execute unit and the auxiliary unit. Their

formal definition are presented as follows.

[ReportInfo] [Emergency report type]
[AuxInfo] [Auxiliary information type]
[Task] [Task type]

The four components (units) are modeled as:

7.2. CAD SYSTEMS AND ARCHITECTURE STYLE MODEL 134

ReportUnit [X]

listenport : chan
reportport : chan
synauxport : chan
asynauxport : X sensor

Main =̂ µR • [r : ReportInfo; a : AuxInfo, t : Task] •
listenport?(self , r) → (synauxport?(self , a) → Skip 2

asynauxport?(self , a) → Skip); reportport !t → Skip; R

Note that in the architecture style level the focus is on the identification of the com-

monalities of components and their communication interfaces. As from the above,

the interaction behavior of the ReportUnit is captured by the non-terminating pro-

cess Main in the active object. The ReportUnit collects the device information

from the synchronous input channel listenport (e.g., phones, monitors, alarms, etc.

for reporting the incidents) and some additional information from both auxiliary

synchronous input channel synauxport and asynchronous input sensor asynauxport

(e.g., locations, time, etc. determined from the reports); generates reporting infor-

mation and pass through the synchronous output channel reportport to the Control

Unit for the purpose of dispatch.

ControlUnit

reportport : chan
dispatchport : chan

Main =̂ µC • (([t : Task] • reportport?t → Skip) 2 ([t :
tasks , e : ExecuteUnit] • dispatchport !(e, t) → Skip)); C

The ControlUnit receives the reporting information from the synchronous input

channel reportport ; generates proper tasks and dispatches them through the syn-

7.2. CAD SYSTEMS AND ARCHITECTURE STYLE MODEL 135

chronous output channel dispatchport to the Execute Unit for the purpose of exe-

cution.

ExecuteUnit

dispachport : chan

Main =̂ µE • [t : Task] • dispatchport?(self , t) → Skip; E

The ExecuteUnit receives the dispatched task information from the synchronous

input channel dipatchport and performs the actual task execution.

AuxiliaryUnit [X]

synauxport : chan
asynauxport : X actuator

Main =̂ µA • [a : AuxInfo, r : ReportUnit] • ((synauxport !(r , a)
→ Skip) 2 (asynauxport !(r , a) → Skip)); A

The AuxiliaryUnit provides the addition information to other components through

the synchronous output channel synauxport and asynchronous output actuator

asynauxport . Note that the communications in the AuxUnit may be synchronous

or asynchronous, so we give two options in the style.

Each component has its own interfaces for communication with the rest of the

system. The details of encapsulated behaviors of the components are deliberately

suppressed here in the architectural style since each component of the same type

may have different computation behaviors. In the Main operation of each compo-

nent, we defines the communication patterns.

7.2. CAD SYSTEMS AND ARCHITECTURE STYLE MODEL 136

7.2.3 Configuration and style

A configuration is a collection of interacting component instances and their connec-

tors in a system. The instances of components are distinguished from component

types. An architectural style defines the common properties of a family of systems

that are shared by any configuration in the style. In the TCOZ approach, configu-

rations are specified by the Network Topology construct in the system component

and act as an explicit connector.

CADStyle[X]

c :↓ ControlUnit
rs : F1 ↓ ReportUnit [X]
es : F1 ↓ ExecuteUnit
as : F ↓ AuxiliaryUnit [X]

Main =̂ ‖
(a,r ,e):as×rs×es

(a synauxport ,asynauxport¾ - r ;

r reportport¾ - c dispatchport¾ - e)

In the example above, all components comprise a CAD System style. The Net-

work Topology construct in the Main operation clearly identifies the interaction

between the components in the system, where the lines connecting components

depict the interactive communication relationships and the labels on the lines cor-

respond to the implicit connectors (communication interfaces). For example, the

auxiliary units communicate with the report units through the synauxport channel

and asynauxport sensor/actuator ; the report units communicate with the control

unit through the reportport channel; the control unit communicate with the exe-

cution unit through the dispatchport channel. The objects interaction through the

7.3. A GENERIC ARCHITECTURE FOR CAD SYSTEMS 137

communication interfaces can also be visualized as in the UML diagram Figure 7.3.

 : Auxiliary Unit

 : Execute Unit : Control Unit

 : Report Unit

1: synauxport

2: asynauxport

3: reportport

4: dispatchport

Figure 7.3: CAD system style communication.

7.3 A generic architecture for CAD systems

In this section, we will present a CAD System generic architecture specified in

TCOZ. We inherit, extend and instantiate the architectural style presented in the

previous section. Unlike the style, a generic model defines crucial computation and

communication details of the components in CAD Systems.

Based on the ReportUnit , ControlUnit and ExecuteUnit in the architectural style,

we further decompose a generic CAD System into three main types of components

(not including auxiliary components):

• The emergency report receivers – obtain emergency information, create de-

7.3. A GENERIC ARCHITECTURE FOR CAD SYSTEMS 138

Receiver Dispat cher Executer

Log Clock

CA D Sy s tem

Auxil iary
Components

M ain
Components

Figure 7.4: The overall structure of CAD system.

tailed tasks and send the tasks to the central dispatcher.

• The central dispatcher – stores the tasks, updates the tasks and dispatches

tasks to related task executers according to the business logic.

• The task executers – execute the tasks that dispatched to them. The role of

executers may vary in different CAD Systems, such as police offices in police

system, hospitals in medical system, etc.

The hierarchical structure is illustrated in Figure 7.4. The Clock and Log are two

auxiliary components extended from the AuxiliaryUnit in the style model. They

offer time information and logging of important system actions respectively. The

subscriber’s role also vary in different systems, from patients in the medical system

7.3. A GENERIC ARCHITECTURE FOR CAD SYSTEMS 139

to case locations in the police system. Since most CAD Systems are time-critical,

we make the timing requirement an important feature in our generic model. Fur-

thermore, some type variants and common functions were introduced for the pur-

pose of easy customization into specific CAD Systems. The computation behaviors

of components are self-encapsulated while implicit connectors are also specified in-

side relative components. As mentioned previously, a system can be viewed as any

one of its components interacting with the rest of the system through the Network

Topolgy . Therefore, it is natural for us to study the overall system by analyzing

the components individually first.

7.3.1 Clock

In order to record the system information at each particular time, a calendar clock

is constructed as follows.

Calendar time type is defined as:

CalT == N yr×Nmn×N dy×N hr×Nmin×N s

The clock stores the total elapsed seconds since some reference date, and the func-

tion

cal : N s ½ CalT

... [detail of function omitted]

is used to convert the elapsed seconds to a calendar-time.

Clock
AuxiliaryUnit [CalT][time/asynauxport]

total : N s

7.3. A GENERIC ARCHITECTURE FOR CAD SYSTEMS 140

Inc
∆(total , time)

total ′ = total + 1 s ∧ time = cal(total)

Main =̂ µC • (Inc • Deadline 50 ms) • WaitUntil 1 s; C

The Clock component inherits the AuxiliaryUnit in the CAD style, where its asyn-

chronous actuator asynauxport is renamed to time and generic type X is substi-

tuted by the calendar time type CalT . Note that the time value increases every

second and the display screen updates in less than 50 milliseconds.

7.3.2 System logs

Most CAD Systems require strict persistent repository of data and history log. A

generic active object of Log [X] is defined as follows, where X is the data structure

type of the records in the log.

Log [X]
AuxiliaryUnit [X][record/synauxport]

log : seqX

Add
∆(log)
x? : X

log ′ = log a 〈x?〉
Main =̂ µL • [x : X] • record?x → Add ; L

The Log component inherits the AuxiliaryUnit in the CAD style, where its syn-

chronous channel synauxport is renamed to record . The system logs consist of two

7.3. A GENERIC ARCHITECTURE FOR CAD SYSTEMS 141

types of logs. One is for the logined reports; and the other is for the dispatched

tasks. These can also be customized according to various requirements respectively.

The content in the log file is modelled as a variant of type X , which varies according

to each particular system.

7.3.3 Emergency receiving part

The system receives emergency reports from its environment. Components in this

part inherit ReportUnit in the style. When the receiving part of the system receives

an emergency report, it generates a Task from the reported information ReportInfo

by the function GenTask and sends the task to the central dispatcher.

GenTask : ReportInfo → Task

Receiver
ReportUnit [CalT][listen/listenport , record/synauxport ,

time/asynauxport , login/reportport]

WriteLog =̂ [t : CalT ; ri : ReportInfo] • time?t →
record !(t ,GenTask(ri)) → Skip

Main =̂ µR • [ri : ReportInfo] • listen?ri →
(login!(GenTask(ri)) → WriteLog); R

The Receiver component inherits the ReportUnit in the CAD style, where its syn-

chronous channel listenport is renamed to listen, synchronous channel synauxport

is renamed to record , asynchronous sensor asynauxport is renamed to time, syn-

chronous channel reportport is renamed to login, and generic type X is substituted

by the calendar time type CalT . The behavior of the Receiver is to collect the

emergency information from the synchronous input channel listen (e.g., phones,

7.3. A GENERIC ARCHITECTURE FOR CAD SYSTEMS 142

monitors, alarms, etc. for reporting the incidents); generate task information and

pass it through the synchronous output channel login to the Dispatcher for the

dispatch purpose, and at the same it records the login information into the system

log by the WriteLog operation. While recording to log file, it gets the time infor-

mation from the asynchronous input sensor time and passes the log information

through the synchronous output channel record for the repository purpose.

7.3.4 Central dispatcher

All tasks will be stored and assigned through the Dispatcher . It is the central and

crucial part of the system, actively communicating with other parts. Component

in this part inherits ControlUnit in the style.

Each task has its own severe level, which means it has its own critical timing

requirement. In a generic way, we define a function TaskT to denote the latest

time before passing it to an executer.

TaskT : Task → T

A generic function pt is defined to purge the time out items from the original set

into the second set corresponding to the time elapsed and update the time stamps

accordingly:

[X]
pt : (T× F(X × T)) → (F(X × T)× FX)

∀ t : T; s : F(X × T) • pt(t , s) =
({(e, to) : s | to > t • (e, to − t)}, {(e, to) : s | to 6 t • e})

7.3. A GENERIC ARCHITECTURE FOR CAD SYSTEMS 143

e.g.

pt(2 s, {(a, 1 s), (b, 3 s), (c, 7 s)}) = ({(b, 1 s), (c, 5 s)}, {a})

which means that after the elapsing of 2 seconds the time stamp of b and c would

become 1 and 5, and the time out item a is purged into the second set.

The most critical system component is the Dispatcher class:

Dispatcher
ControlUnit [login/reportport , dispatch/dispatchport]

ex : F1 Executer
tasks : F(Task × T)
∆
t : T
timeup : FTask

tasks 6= ∅⇒ 0 6 t 6 min ran tasks

Init
tasks = ∅

Add
∆(tasks)
task? : Task
ti? : T

task ′ = fst(pt(ti?, tasks)) ∪ (task?,TaskT (task?))
timeup ′ = snd(pt(ti?, tasks))

Purge
∆(tasks)

pt(t , tasks) = (tasks ′, timeup ′)

AddTask =̂ [task : (Task − dom tasks); ti : T] •
login?task@ti → Add

Dispatch =̂ [f : timeup → ex] •
|||(task ,e):f dispatch!(e, task) → Skip

Main =̂ µD • ([tasks = ∅] • AddTask 2 [tasks 6= ∅] •
(AddTask .{t} (Purge; Dispatch))); D

The Dispatcher component inherits the ControlUnit in the CAD style, where

7.3. A GENERIC ARCHITECTURE FOR CAD SYSTEMS 144

its synchronous channel reportport is renamed to lgoin and synchronous channel

dispatchport is renamed to dispatch. The behavior of the Dispatcher is to receive

the task login information from the synchronous input channel login and dispatch

the tasks according to their critical timing requirements through the synchronous

output channel dispatch to the execute units for the purpose of execution.

Note the secondary attribute t records the time value which is less than or equal to

the minimum time stamp in the task set. This constraint is captured by the class

invariant, which must be preserved by all operations. Attribute timeup stores all

the time-out tasks after each purge operation. The behavior of the Main process

of the dispatcher is basically either adding or dispatching tasks. If the task set is

empty, only adding is performed; while for the non-empty task set, both adding

and dispatching are enabled. A Purge process is placed when element(s) of task is

timed out. A Dispatch operation is defined (in a flexible way, i.e. any function f)

to assign every time-out task to an execution unit in parallel.

Note that the TCSP expression in the form a@t → P(t) is a process primitive,

where a denotes the event initially enabled by the process and t denotes the timing

relative to the occurrence of event a. The expression (a → P) .{t} Q describes the

timed interrupt primitive, where the process will try to perform a → P and would

pass control to Q if the event a has not occurred by time t . According to this

semantic, when tasks 6= ∅, if the operation AddTask (when ti < t) is performed,

right after the operation, timeup = ∅ must hold because of the definition of the

function pt and class invariant 0 6 t 6 min ran tasks (simplified when tasks 6= ∅).

7.3. A GENERIC ARCHITECTURE FOR CAD SYSTEMS 145

This is the reason for designing Main with Dispatch operation only after Purge,

which means that the dispatch will happen exactly at the corresponding timing

requirement of each task.

It is reasonable to assume that the time durations ta , td , tp and tb of the operations

AddTask and Purge are far less than t or ti (as ta , td , tp , tb ¿ t , ti). For instance,

t could be in the scale of seconds and ta might be in microseconds. On the other

hand, if the time durations such as ta are considered, the AddTask schema can be

modified.

7.3.5 Executers

Tasks are dispatched to the executers for execution via the central dispatcher. A

dispatch log file keep the records of all dispatched tasks. Components in this part

inherit ExecuteUnit in the style.

Executer
ExecuteUnit [dispatch/dispatchport]

time : CalT sensor
record : chan

WriteLog =̂ [t : CalT ; task : Task] •
time?t → record !(t , task , self) → Skip

Driven =̂ [task : Task] • dispatch?(self , task) → WriteLog
Main =̂ µE • Driven; E

The Executer component inherits the ExecuteUnit in the CAD style, where its

synchronous channel dispatchport is renamed to dispatch. The behavior of the

Executeer is to receive the dispatched task from the synchronous input channel

7.3. A GENERIC ARCHITECTURE FOR CAD SYSTEMS 146

dispatch; execute it and record the dispatched information into the system log by

the WriteLog operation. While recording to log file, it gets the time information

from the asynchronous input sensor time and passes the log information through

the synchronous output channel record for the repository purpose.

7.3.6 Generic system architecture configuration

The overall system is a composition of all components that communicate with each

other. We organize the interactive relationships through TCOZ network topolo-

gies. This system component CADSystem plays the role of explicit connector in

establishing the configuration of the system.

CADSystem
CADStyle[CalT][d/c]

clock : Clock
inlog : Log [CalT × Task]
dispatchlog : Log [CalT × Task × Executer]

d ∈ Dispatcher ∧ d .ex = es
∀ r : rs • r ∈ Receiver
∀ e : es • e ∈ Executer
{clock , inlog , dispatchlog} ⊆ as

Main =̂ ‖
(r ,e):rs×es

(r login¾ - d dispatch¾ - e;

inlog record¾ - r time¾ - clock time¾ - e record¾ - dispatchlog)

The CADSystem component inherits the CADStyle connector in the CAD style,

where its ControlUnit object c is renamed to the Dispatcher object d and generic

type X is substituted by the calendar time type CalT . New instances of auxil-

iary components such as clock , inlog and dispatchlog are introduced to the system

7.3. A GENERIC ARCHITECTURE FOR CAD SYSTEMS 147

in log : Log

e : Executerr : R ece iver d : D is patcher

c lock : Clock d is patch log : Log

1: tim e

2: record

3: login 4: d is patch

5: tim e

6: record

Figure 7.5: The configuration of CAD system.

together with the constraints upon them. From a communication point of view,

the CADSystem connector specifies that the receiver communicates with the dis-

patcher through the login channel; the dispatcher communicates with the executer

through the dispatch channel; the receiver communicates with the clock through the

time sensor/actuator; the receiver communicates with the input log file through

the record channel; the executer communicates with the clock through the time

sensor/actuator; the executer communicates with the dispatch log file through the

record channel.

The UML collaboration diagram in Figure 7.5 also visualizes the configuration of

the system defined in the formal model.

7.4. CAD SYSTEM ARCHITECTURE ANALYSIS AND VERIFICATION 148

7.4 CAD system architecture analysis and veri-

fication

From a safety critical perspective, the key point of the CAD system architecture

is to provide guaranteed time critical service to all the valid tasks. This critical

property can be formally interpreted from the formal model as:

Theorem: CADSystem :: ∀ tasko : Task ; ct1 : CalT •
(ct1, tasko) ∈ ran inlog .log ⇒ ∃ ct2 : CalT ; e : es ; •

(ct2, tasko , e) ∈ ran dispatchlog .log [P]
∧ (cal∼(ct2)− cal∼(ct1)) = TaskT (tasko)

The above simply states that any task which logged into the system will be dis-

patched at its critical time requirement. In order to prove the validity of the

theorem P , the first thing is to show that the Clock component in the system

correctly models the behavior of a physical timing device – the global clock. This

property can be interpreted into the following timed failure specification as below.

Lemma: L0(s ,ℵ) = Clock :: ∀ total : N s; t0, t1 : T •
time!cal(total) live [t0, t1)⇒ (t1 − t0 = 1 s)

Note that the live expression is a specification macro for the TCOZ actuator con-

struct defined as follows:

a live [t1, t2) = ∀ t ∈ [t1, t2) • a at t ∧ ∀ ti : T •
(ti < t1 ⇒¬(a at ti) ∧ ti ≥ t2 ⇒¬(a at ti))

This macro simply expresses that the event a is continuously recorded in the trace

as having occurred at every point on a maximal interval I , where I is in the form

of [t1, t2).

7.4. CAD SYSTEM ARCHITECTURE ANALYSIS AND VERIFICATION 149

Proof:

Base case: The specification is trivially satisfied by STOP .

Assuming the C sat L0(s ,ℵ), it is sufficient to show that

(Inc • Deadline 50 ms) • WaitUntil 1 s o
9C sat L0(s ,ℵ).

Let:

L1(s ,ℵ) = Clock :: ∀ total : N s; t0, t1 : T •
time!cal(total) live [t0, t1)⇒ (t1 − t0 ∈ [0,∞))

L2(s ,ℵ) = Clock :: ∀ total : N s; t0, t1 : T •
time!cal(total) live [t0, t1)⇒ (t1 − t0 ∈ [0, 50 ms))

The proof of [L0] can be constructed as follows:

Clock :: Inc sat L1(s ,ℵ)
[Deadline]

Clock :: Inc • Deadline 50 ms sat (end(s) 6 50 ms ∧
X ∈ σ(s) ∧ L1(s ,ℵ ¹ 50 ms)) ∨ (end(s)

> 50 ms ∧ L1(〈〉, (50 ms,∞)× ΣX))
[Weaken]

Clock :: Inc • Deadline 50 ms sat L2(s ,ℵ)
[WaitUntil]

Clock :: (Inc • Deadline 50 ms) • WaitUntil 1 s
sat ((end(s) > 1 s ∧ L2(s ,ℵ)) ∨ (end(s) 6 1 s

∧ L2(s a 〈1 s,X〉,ℵ ∪ [end(s), 1 s)× ΣX)))
[Weaken]

Clock :: (Inc • Deadline 50 ms) • WaitUntil 1 s
sat L0(s ,ℵ)

Clock :: C sat L0(s ,ℵ)
[Sequential]

Clock :: ((Inc • Deadline 50 ms) • WaitUntil 1 s) o
9 C

sat X 6∈ σ(s) ∧ L0(s ,ℵ ∪ [0,∞)× {X})
∨ ∃ s1, s2, t • s = s1

a s2 ∧ X 6∈ σ(s1)

∧ L0(s1
a 〈(t ,X)〉,ℵ ¹ t ∪ [0, t)× {X})

∧ L0((s2,ℵ)− t)
[Weaken]

Clock :: ((Inc • Deadline 50 ms) • WaitUntil 1 s) o
9 C

sat L0(s ,ℵ)

According to the recursion induction rule, the behavior specification L0(s ,ℵ) is

satisfied, therefore Lemma L0 has been proved.

7.4. CAD SYSTEM ARCHITECTURE ANALYSIS AND VERIFICATION 150

After showing that the Clock component is consistent with the global clock, we

are now ready to prove the correctness of theorem P . First, theorem P can be

rewritten into state-based and event/time-based properties as follows:

• No message lost – This property claims that no tasks will be lost once they

are in the system. It can be translated into the statement that any task in

the login log would be eventually in the dispatched log:

Theorem 1: CADSystem :: ∀ task : Task • [P1]
task ∈ ran ran inlog .log ⇒ task ∈ ran ran dispatchlog .log

• Dispatching at critical time range – This property claims that all tasks in the

system will be dispatched to an execution unit at their required critical time

range. It can be translated into the statement that the duration from login

to the system to its dispatch of each task should be exactly equal to its time

requirement TaskT (task):

Theorem 2: CADSystem :: ∀ task : Task ; t0 : T; e : es •
login?task at t0 ⇒ dispatch!(e, task)at (t0 + TaskT (task))

[P2]

As from above, theorem P can be formally translated into a data (state-based)

property P1 and a timing (event-based) property P2, which later can be proved by

the TCOZ inference rules.

7.4. CAD SYSTEM ARCHITECTURE ANALYSIS AND VERIFICATION 151

7.4.1 Proof of theorem P1

First, we use structural induction to prove the following property holds by the

Dispatcher class.

Lemma : Dispatcher :: ∀ task : Task • (task ,TaskT (task)) ∈ tasks
⇒ dispatch.(e, task) ∈ (Executer × Task) [P1.1]

Proof:

Initially: Dispatcher :: INIT ` tasks = ∅, therefore predicate [P1.1] holds (trivial).

Assume the pre-state of the operations in class Dispatcher is true, which is [∀ task :

Task • (task ,TaskT (task)) ∈ tasks ⇒ dispatch.(e, task) ∈ (Executer × Task)].

The post-state of Dispatcher is depicted by two kinds of behaviors, AddTask and

(Purge o
9 Dispatch), which are associated with the timeout constraint as follows:

• If no new task is added after the minimum time stamp of all tasks – t , the

(Purge o
9 Dispatch) operation will perform, which will reduce the number of

tasks in the tasks set. According to the assumption, [P1.1] holds for the

post-state.

• If a new task is added to the tasks set before t , by the definition of the pt

function, the time stamp of this particular task will decrease in a monotonic

manner as either the AddTask or (Purge o
9Dispatch) operation would perform.

Thus the task will eventually be purged from the tasks set and dispatched to

the Executors. Therefore, [P1.1] holds for the post-state.

According to the structural induction, Lemma P1.1 is proved.

7.4. CAD SYSTEM ARCHITECTURE ANALYSIS AND VERIFICATION 152

The proof of [P1] can be constructed via state reasoning rules as follows:

CADSystem :: STATE ` d ∈ Dispatcher ∧ rs ∈ F1 Receiver
∧ inlog ∈ Log [CalT × Task]

Receiver :: STATE ` listen, login, record ∈ chan ∧
MAIN ` listen.task ∈ Task ⇒ login.task ∈ Task

∧ record .(t , task) ∈ (CalT × Task)
Dispatcher :: STATE ` login ∈ chan
Log [CalT × Task] :: STATE ` record ∈ chan

CADSystem :: MAIN ` r ∈ rs ∧ d login¾ - r record¾ - inlog
[Channel]

Dispatcher :: MAIN ` login.task ∈ Task ⇒
(task ,TaskT (task)) ∈ tasks ∧

Log [CalT × Task] :: MAIN ` record .(t , task) ∈
(CalT × Task)⇒ (t , task) ∈ ran log [P1.2]

CADSystem :: STATE ` d ∈ Dispatcher ∧ es ∈ F1 Executer
∧ dipatchlog ∈ Log [CalT × Task × Executor]

Dispatcher :: MAIN ` login.task ∈ Task ⇒
(task ,TaskT (task)) ∈ tasks

Dispatcher :: STATE ` dispatch ∈ chan
Dispatcher :: ` (task ,TaskT (task)) ∈ tasks ⇒

dispatch.(e, task) ∈ (Executer × Task) [P1.1]
Executer :: STATE ` dispatch ∈ chan

CADSysyem :: MAIN ` e ∈ es ∧ d dispatch¾ - e
[Channel]

Executer :: MAIN ` dispatch.(e, task) ∈ (Executer × Task)
Executer :: STATE ` record ∈ chan ∧

MAIN ` dispatch.(e, task) ∈ (Executer × Task)⇒
record .(t , task , self) ∈ (CalT × Task × Executer)

Log [CalT × Task × Executer] :: STATE ` record ∈ chan

CADSysyem :: MAIN ` e ∈ es ∧ e record¾ - dispatchlog
[Sensor]

Log [CalT × Task × Executer] :: MAIN `
record .(t , task , e) ∈ (CalT × Task × Executer)

⇒ (t , task , e) ∈ ran log [P1.3]

Thus P1 can be clearly derived from P1.2 and P1.3 above as follows:

CADSystem :: STATE ` inlog ∈ Log [CalT × Task] ∧
dipatchlog ∈ Log [CalT × Task × Executor]

Log [CalT × Task] :: MAIN ` record .(t , task) ∈ (CalT × Task)
⇒ (t , task) ∈ ran log

Log [CalT × Task × Executer] :: MAIN ` record .(t , task , e) ∈
(CalT × Task × Executer)⇒ (t , task , e) ∈ ran log

CADSystem :: ` ∀ task : Task • task ∈ ran ran inlog .log
⇒ task ∈ ran ran dispatchlog .log

7.4. CAD SYSTEM ARCHITECTURE ANALYSIS AND VERIFICATION 153

7.4.2 Proof of theorem P2

P2 can be interpreted as the following timed specification in terms of the timed

failure model.

P2(s ,ℵ) = Dispatcher :: ∀ task : Task ; t0 : T; e : es •
login?task at t0 ⇒ dispatch!(e, task) at (t0 + TaskT (task))

Proof:

Base case: The specification is trivially satisfied by STOP .

Assuming the D sat P2(s ,ℵ), it is sufficient to show that ([tasks = ∅] • AddTask 2

[tasks 6= ∅] • AddTask .{t} (Purge o
9 Dispatch)) o

9 D sat P2(s ,ℵ).

Let P2.1,P2.2 be two time failure expressions represented as follows:

P2.1(s ,ℵ) = Dispatcher :: ∀ task : Task ; t0 : T; e : es •
login?task at t0 ⇒ t0 < t ∧ timeup = ∅ ∧

¬ (dispatch!(e, task) at t0)
P2.2(s ,ℵ) = Dispatcher :: ∀ task : Task ; t0 : T; e : es •

(dispatch!(e, task) at t0 ⇒ t0 = t ∧ timeup 6= ∅ ∧
∃ ts ⊆ tasks • ∀(task1, t1), (task2, t2) ∈ ts • t1 = t2 = t

∧ TaskT (task1) = TaskT (task2))

In our model, the behavior of adding and assigning valid tasks is determined by

function pt , Add and Purge operations in the nonterminating process MAIN of the

class Dispatcher . Considering each non-recursive transaction trace of the MAIN

process as one cycle, the possible actions of the Dispatcher within the cycle are as

follows:

A1 : AddTask when tasks = ∅
A2 : AddTask when tasks 6= ∅ ∧ ti < t
A3 : Purge o

9 Dispatch when tasks 6= ∅ ∧ ti = t

7.4. CAD SYSTEM ARCHITECTURE ANALYSIS AND VERIFICATION 154

Therefore it is trivial to show that P2.1 and P2.2 are satisfied by AddTask and

(Purge o
9 Dispatch) respectively. The proof of [P2] can be constructed via event

reasoning rules as follows:

Dispatcher :: ([tasks 6= ∅] • AddTask) sat P2.1(s ,ℵ)
Dispatcher :: ([tasks 6= ∅] • (Purge o

9 Dispatch)) sat P2.2(s ,ℵ)
[Timeout]

Dispatcher :: ([tasks 6= ∅] • AddTask .{t} (Purge o
9 Dispatch))

sat (begin(s) 6 t ∧ P2.1(s ,ℵ))
∨ (begin(s) > t ∧ P2.1(〈 〉,ℵ ¹ t) ∧ P2.2((s ,ℵ)− t))

[Weaken]
Dispatcher :: ([tasks 6= ∅] • AddTask .{t} (Purge o

9 Dispatch))
sat P2(s ,ℵ)

Dispatcher :: ([tasks = ∅] • AddTask) sat P2(s ,ℵ)
[External]

Dispatcher :: ([tasks = ∅] • AddTask 2 [tasks 6= ∅] • AddTask
.{t} (Purge o

9 Dispatch)) sat P2(s ,ℵ) ∧ P2(〈 〉,ℵ ¹ begin(s))
[Weaken]

Dispatcher :: ([tasks = ∅] • AddTask 2 [tasks 6= ∅] •
AddTask .{t} (Purge o

9 Dispatch)) sat P2(s ,ℵ)
Dispatcher :: D sat P2(s ,ℵ)

[Sequential]
Dispatcher :: ([tasks = ∅] • AddTask 2 [tasks 6= ∅] •

AddTask .{t} (Purge o
9 Dispatch)) o

9 D sat X 6∈ σ(s)
∧ P2(s ,ℵ ∪ [0,∞)× {X})

∨ ∃ s1, s2, ti • s = s1
a s2 ∧ X 6∈ σ(s1) ∧ P2(s1

a 〈(ti ,X)〉,
ℵ ¹ ti ∪ [0, ti)× {X}) ∧ P2((s2,ℵ)− ti)

[Weaken]
Dispatcher :: ([tasks = ∅] • AddTask 2 [tasks 6= ∅] •

AddTask .{t} (Purge o
9 Dispatch)) o

9 D sat P2(s ,ℵ)

According to the recursion induction rule, the behavior specification P2(s ,ℵ) is

satisfied, therefore Theorem P2 has been proved. Thus from the proofs of P1

and P2 we can see that the critical timing requirement of the generic CAD system

architecture TheoremP is formally verified.

7.5. ARCHITECTURE CUSTOMIZATION 155

7.5 Architecture customization

A generic system architecture must be easily customizable to meet the requirements

of specific systems. The customization includes customizing computation behaviors

of components and customizing architectural configuration in terms of connectors.

There are two common approaches in achieving the customization. One is to model

the generic architecture in as compact a manner as possible, which includes only

the intersection parts among all system family members. In this way, specific

system architectures can be derived from the generic model through inheriting

and expanding the components. The other approach is to cover most common

functionalities of the system family in the generic model, and then model specific

system architectures through cutting down and modifying relevant components.

The first approach is suitable for system families in which most systems share not

only the main structure but also many component behavior and communication

details. The second one, in a sense, is better for the system family in which among

systems there are only minor differences in architectural configuration while the

component inner behaviors are not very interactive. Real world systems are usually

complex and cannot be simply classified into any one of the above two approaches.

Therefore, the customization approach might be a blend of the two approaches

above. Most CAD Systems share common architecture features on a large scale.

However the types and functionalities differ from system to system and need to

be specifically redefined in particular systems. We demonstrate the customization

of the generic architecture into specific systems through a police system and a

7.5. ARCHITECTURE CUSTOMIZATION 156

Teleservices and Remote Medical Care System [50] case studies.

7.5.1 CAD system for police

Generic types and functions are defined abstractly in the generic model. During the

customization, we need to specify the types and functions to meet the requirements

of the particular system since these requirements are meant to be different within

each system. So the first step of customization is to redefine the types and functions.

• ReportInfo – In the police system, the ReportInfo describes the disaster status

and other helpful information.

ReportInfo == Situation × Location

• GenTask – The function generates tasks according to the incident report

information. This is performed by the professional staff with the receiver

operators.

• Convert – The function converts an automatically detected case into an in-

cident report. This is performed by the auto-alarm devices.

• TaskT – This function generates timing requirements according to emergency

severity levels. In the police system, all accidents reported must be handled

immediately, so that we define the TaskT to set the latest time before passing

each task to be 0, which means that each task will be forced into Executers

– policemen, right after its storage in the task queue.

7.5. ARCHITECTURE CUSTOMIZATION 157

TaskT : Task → T

∀ t : Task • TaskT (t) = 0

Secondly, as most police systems provide auto-alarm services such as bank alarm

bells, shop alarms and high security building alarm signals for their customers for

emergency case reporting, the receiving units of the police system should include

auto-alarm equipment. These devices continuously read their environment and

will raise the alarm immediately if any violations are detected. The alarm device

is modeled as follows:

Alarm
Receiver [sensor/listen]

Main =̂ µA • [c : CASE] • sensor?c →
(login!(GenTask(convert(c))) → WriteLog)) o

9 A

The Alarm inherits the Executer component from the generic CAD architecture.

The system reporting device is a collection of the Alarms and Receivers. Since the

police system is very similar to the generalized CAD system, our customization

here is mainly focused on substituting type variants and redefining functions. We

will demonstrate a more complicated customization procedure of a Teleservices and

Remote Medical Care System in the CAD System family.

7.5.2 Teleservices and remote medical care system

The Teleservice and Remote Medical Care System (TRMCS) provides services for

the transition of patients from hospital care to home care. In the TRMC system,

7.5. ARCHITECTURE CUSTOMIZATION 158

the ReportInfo includes the patient’s symptoms and the place of the incident.

ReportInfo == Symptom × Location

Secondly, the TRMCS system consists of a number of help centers for performing

the emergency job execution. For the sake of urgency, a task might be put up for

open bid, and the help centers compete to answer it. At the same time, the system

must guarantee that at least one help center responds. Therefore, we offer two

mechanisms for help centers to be assigned tasks. First, the executers are aware

of what tasks are available at the current time and they can actively select tasks

from the dispatcher. Second, tasks are passively dispatched to the executers for

execution in the case that some tasks are not selected by any help center within

a certain deadline. Thus the HelpCenter and DispatcherTRMCS components that

inherit the Executer and Dispatcher components from the generic CAD architecture

are modelled as follows:

HelpCenter
Executer

d : DispatcherTRMCS

select , choose : chan

Select =̂ [task : dom d .tasks] • select?task → choose!task
→ dispatch?(self , task) → WriteLog

Main =̂ µH • (Select 2 Driven) o
9 H

DispatcherTRMCS

Dispatcher

choose : chan

7.5. ARCHITECTURE CUSTOMIZATION 159

Delete
∆(tasks)
task? : Task
ti? : T

tasks 6= ∅
pt(ti?, task?−C tasks) = (tasks ′, timeup ′)

Assign =̂ [task : tasks ; e : ex ; ti : T] • choose?(e, task)@ti
→ dispatch!(e, task) → Delete

Main =̂ µD • ([tasks = ∅] • AddTask 2 [tasks 6= ∅] •
((AddTask 2 Assign) .{t} (Purge o

9 Dispatch))) o
9 D

By customizing a task selection property into the system, the TRMCS configuration

is modelled with additional components as follows:

TRMCSystem
CADSystem

d ∈ DispatcherTRMCS

∀ h : es • h ∈ HelpCenter ∧ h.d = d

Main =̂ ‖
(r ,h):rs×es

(r login¾ - d choose,dispatch¾ - h;

inlog record¾ - r time¾ - clock time¾ - h record¾ - dispatchlog)

Note that the DispatcherTRMCS and HelpCenter components are also communicat-

ing through the synchronous channel choose. From the above system architecture,

by means of active selection and passive assignment the tasks are dispatched within

their critical timing requirement. Thus the Theorem P is modified as follows:

Theorem: 3 TRMCSystem :: ∀ tasko : Task ; ct1 : CalT •
(ct1, tasko) ∈ ran inlog .log ⇒ ∃ ct2 : CalT ; e : es ; •

(ct2, tasko , e) ∈ ran dispatchlog .log ∧
(cal∼(ct2)− cal∼(ct1)) 6 TaskT (tasko) [P ′]

The above states that the dispatching of a task should be performed within its

timing requirement TaskT (task) due to the active selections, while in the general-

7.6. CONCLUSION 160

ized CAD system this should perform exactly at TaskT (task). Note that theorem

P ′ can also be proved similarly as illustrated in Section 7.4. Hence, the TRMCS

is customized from the general architecture of CAD system to its own special re-

quirements.

7.6 Conclusion

In this chapter, we demonstrated the verification of an incremental three layer ar-

chitecture model for the CAD system family, i.e., the style, the generalization and

the customization, by applying TCOZ proof rules. The CAD style captures the

most common patterns among the CAD systems. The generalization layer models

the essential functionalities of the CAD systems. The customization characterizes

the additional specific requirements within each particular system. Thus new sys-

tems are built as variations and customizations of the upper-level designs, and the

whole family architecture is depicted as an open-ended design for reuse. In this

chapter, we also found that TCOZ could be a potential candidate for an Archi-

tecture Description Language for the formal specifications of software architecture

models. The class constructs in TCOZ are well suited for component declaration.

The communication interfaces, i.e., channel, sensor and actuator, act as implicit

connecters for modeling the communications between components. The network

topology is used as explicit connectors for defining the overall configuration of

the system. All these features may provide a more consistent and flexible way of

specifying software architectures. Furthermore, in this chapter we have demon-

7.6. CONCLUSION 161

strated the verification of architecture properties via formal reasoning. We applied

both state and event based inference rules defined in the previous chapter for the

verification of TCOZ architecture specifications. Complex system properties are

decomposed into state and event related properties and proved respectively. In

summary, this chapter demonstrates that integrated formal modeling techniques

(i.e. TCOZ) can be a good candidate for modeling and formal reasoning about

complex software systems – in this case the software architecture descriptions.

7.6. CONCLUSION 162

Chapter 8

Conclusions and directions for

further research

This chapter summarizes the main contributions of the thesis and discusses possible

directions for further research.

163

8.1. THESIS MAIN CONTRIBUTIONS AND INFLUENCE 164

8.1 Thesis main contributions and influence

The content of the thesis addresses a spectrum of tools and verification techniques

for the integrated formal notation – TCOZ. The spectrum ranges from the light-

weight through middle-weight to heavy-weight tool support.

• This thesis successfully applied the XML technology to define a customized

markup language for the Z family notations (Z/Object-Z/TCOZ). The ZML

serves as a standard interchange format between various tool environments.

The schema also acts as a syntax checker for validating the content of the

specifications written in XML.

• This thesis developed a web environment for the Z family languages based on

XML/XSL transformation. The ZML web environment provides a feasible

means of constructing, displaying and resource sharing formal specification

models on the web. It includes the auto type referencing, static syntax check-

ing and browsing facilities such as the Z schema calculus and Object-Z/TCOZ

inheritance expansions. This will also make an impact on formal methods ed-

ucation through the internet.

• This thesis demonstrated the investigation of the semantic links between

Object-Z/TCOZ specifications and UML diagrams via XSL transformation.

UML is commonly regard as one of the dominant graphical notations for in-

dustrial software system modeling. In our approach, UML diagrams are visual

projections from a formal Object-Z/TCOZ model, therefore they are more

8.1. THESIS MAIN CONTRIBUTIONS AND INFLUENCE 165

consistent and precise. Thus our projection environment provides a means of

visualization for the formal specification models through XML/XSLT.

• This thesis developed a specification animation environment for the TCOZ

specifications in a multi-paradigm language - Oz. Oz provides various pro-

gramming constructs such as object orientation, constraint and logic pro-

gramming, functional programming, concurrent programming and so on. By

presenting an executable semantic of TCOZ in Oz, with a well defined TCOZ

construct library, animation of TCOZ models can be easily and effectively

achieved. Furthermore, an XSLT stylesheet for the automatic transforma-

tion from TCOZ specification into Oz code frames is constructed. This pro-

vides an effective way of validating the consistency between the TCOZ formal

model and its real world requirements.

• This thesis presented an approach of combining and extending the state-

based (Object-Z) and event based (TCSP) proof systems for formally veri-

fying TCOZ specifications. Complex system properties can be decomposed

into state and event related properties and proved respectively. In general,

it provides a rigorous means of reasoning for the integrated formal notations

such as TCOZ. In addition, a framework for the shallow embedding of TCOZ

inference rules into the theorem prover Isabelle/HOL was illustrated to sup-

port automatic proof assistance.

• This thesis also demonstrated the formal design approaches to the modelling

of various applications as well as system architectures, such as ZML web en-

8.2. DIRECTIONS FOR FURTHER RESEARCH 166

vironment, UML projections and CAD system family architectures. These

formal models act as precise design documentation and provide clear guide-

lines to the implementations.

In summary, with the above tool support and verification techniques, TCOZ is a

viable potential candidate for industrial software modelling.

8.2 Directions for further research

The following topics, arising out of this thesis, seem worthy of further research.

8.2.1 Z Markup Language standardization

In chapter 3, a customized Markup Language for the Z family notations is pre-

sented. Recently it is common for tools to interact using XML. The ZML is to

serve as a standard interchange format among the TCOZ tool environments. This

idea can be easily adopted by other formal specification notations. Thus defining

standard markups for each formal language is essential. By doing so, different tools

for the same language can share a common interchangeable input/output. We are

currently involved in the definition of a standard markup language [99] for the ISO

Z standard [1], contributed to the Community Z Tools (CZT) initiative [69]. Hope-

fully it will become part of the ISO Z standard in the future. By providing XSL

style sheets for each formal notation, we can create a new culture for constructing

8.2. DIRECTIONS FOR FURTHER RESEARCH 167

formal specifications on the web in XML rather than in LATEX. Furthermore, with

the help of XSLT, transformations between different formal notations can be made

possible. Thus projections and translations of specification models among various

formal languages can be easily achieved. We hope the above can be a starting

point for developing a standard XML environment for all formal notations – For-

mal specification Markup Language (FML). It will certainly make an impact on

formal methods education through the internet.

8.2.2 Semantic web

The XML web environment presented in chapter 4 is mainly based on structured

syntax. Recently the W3C proposed a new mechanism for presenting informa-

tion on the web – Semantic Web (SW) [105]. It is commonly regarded as the

next generation of the web, and is an emerging technology between the Knowl-

edge Representation and the XML Communities. SW proposed the idea of having

data on the web defined and linked in such a way that it can be used for au-

tomation, extension and integration. The success of the Semantic Web may have

profound impact on the web environment for formal specifications. The DARPA

Agent Markup Language (DAML) [37] is a semantic markup language based on

RDF/RDF-Schema [104] and XML for web resources. The diversity of various for-

mal specification techniques and the need for their effective combinations requires

an extensible and integrated supporting environment. Various formal notations can

be used in an effective combination if the semantic links between those notations

8.2. DIRECTIONS FOR FURTHER RESEARCH 168

can be clearly established. By using the RDF/DAML, a semantic web environment

can be constructed for supporting, extending and integrating different formalisms

based on their language semantics. Some recent initial works have been presented

in the papers [21, 22]. Such a meta integrator may bring together the strengths of

various formal methods communities in a flexible and widely accessible fashion. A

SW environment for the Standard Z and transformations to/from ZML could be

one of our future works.

8.2.3 UML transformation

In chapter 4, we have defined an XSLT stylesheet for automatically transforming

the Object-Z/TCOZ models in XML into UML class diagrams [94]. The XSLT

encodes the projection rules from the formal notations into their corresponding

UML counterparts. Recently this work has been extended to support the auto-

generation of UML statechart diagrams from Object-Z/TCOZ specifications using

a Java XML parser [20]. Both implementations take the ZML format as a standard

input and perform XML transformation into XMI (XML Metadata Interchange)

format for visualization in the Rational Rose tool suite. Further investigations can

be made between the projection of TCOZ models into other UML diagrams such

as sequence, collaboration, activity diagrams and so on. In addition, by using the

Rational script, it is possible to integrate these projections into the Rose interface

as part of the plug-in menu and run together with the Rational UML tool suite.

In addition, the idea of projecting TCOZ models into UML diagrams can be easily

8.2. DIRECTIONS FOR FURTHER RESEARCH 169

adapted into other modeling languages, such as Timed Automata [23, 76], Spin

model checker and so on, for the verification of corresponding system properties.

8.2.4 Animation and testing

In chapter 5 we presented an approach of animating TCOZ specifications in the

Oz language. Based on the ZML representation of TCOZ models, corresponding

Oz code frames can be generated via XSLT. However, our translating and validat-

ing processes still need human interaction at the moment. A more sophisticated

translation tool can be built based on the TCOZ XML format to Oz syntax. Fur-

thermore, specification animation plays a role in validating the consistency between

the user’s informal requirements and the formal specification. Validation denotes

the process of determining that the requirements are the right requirements and

that they are complete. Thus software testing strategies can be introduced into

the specification animation process. Recently there has been much research fo-

cused on combining software testing and formal specification [45, 70]. The process

of generating test cases from a formal specification is a form of analysis that helps

to validate the specification, because the tests are concrete instantiations of the

specification. We believe that the combination of animation and formal testing

approaches can provide a more rigorous process for specification validation. In

addition, with the help of the ZML structured format, automation can be more

easily achieved.

8.2. DIRECTIONS FOR FURTHER RESEARCH 170

8.2.5 Automated formal verification

In chapter 6, we presented a sketched framework for the embedding of the TCOZ

language into the generic theorem prover Isabelle/HOL. By doing so, we could

support automated proof assistance for the verification of TCOZ specifications.

One immediate work is to complete the theory files and machine verify the TCSP’s

timed failure semantics. Based on the correct semantic model, we can further verify

inference rules and deduce new theorems from the system. Finally, one other goal

is to combine and extend the embedding of Object-Z and TCSP to accommodate

the automated reasoning for TCOZ language. Furthermore, a parsing program can

be built to translate ZML format of TCOZ specifications into its corresponding

Isabelle/HOL representations for automated formal verifications.

Finally, our ultimate goal is to provide an integrated tool support for the TCOZ

formal specification language, which includes all the topics presented in this thesis

such as model constructing, syntax and type checking, web publishing, UML vi-

sualization, animating and formal verification functions in a coherent environment

to fulfill its potential industry usage.

Bibliography

[1] ISO/IEC 13568:2002. Information technology—Z formal specification

notation—syntax, type system and semantics. International Standard.

[2] G. D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand

descriptions of software architecture. ACM Transactions on Software Engi-

neering and Methodology, 4(4):319–364, 1995.

[3] J. Abrial. The B tool (abstract). In R. Bloomfield, L. Marshall, and R. Jones,

editors, VDM’88: VDM – The Way Ahead, volume 328 of Lect. Notes in

Comput. Sci., pages 86–85. Springer-Verlag, 1988.

[4] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge

University Press, 1996.

[5] R. Allen and D. Garlan. A formal basis for architectural connection. ACM

Trans. on Software Engineering and Methodology, 1997.

[6] Inc. Altova. XML SPY. http://www.xmlspy.com/.

171

BIBLIOGRAPHY 172

[7] K. Araki, A. Galloway, and K. Taguchi, editors. IFM’99: Integrated Formal

Methods, York, UK. Springer-Verlag, June 1999.

[8] J. P. Bowen and D. Chippington. Z on the Web using Java. In Bowen et al.

[9], pages 66–80.

[9] J. P. Bowen, A. Fett, and M. G. Hinchey, editors. ZUM’98: The Z For-

mal Specification Notation, 11th International Conference of Z Users, Berlin,

Germany, 24–26 September 1998, volume 1493 of Lect. Notes in Comput. Sci.

Springer-Verlag, 1998.

[10] P. Brooke. A Timed Semantics for a Hierarchical Design Notation. PhD

thesis, University of York, 1999.

[11] R. M. Burstall and J. A. Goguen. The semantics of CLEAR, a specification

language. Lecture Notes in Computer Science, 86:293–329, 1980.

[12] M. Butler, L. Petre, and K. Sere, editors. IFM’02: Integrated Formal Meth-

ods, Turku, Finland, Lect. Notes in Comput. Sci. Springer-Verlag, May 2002.

[13] ORA Canada. Z/EVES. http://www.ora.on.ca/z-eves/, 2002.

[14] D. Carrington, D. Duke, R. Duke, P. King, G. Rose, and G. Smith. Object-Z:

An object-oriented extension to Z. In S. Vuong, editor, Formal Description

Techniques, II (FORTE’89), pages 281–296. North-Holland, 1990.

[15] P. Ciancarini, C. Mascolo, and F. Vitali. Visualizing Z notation in HTML

documents. In Bowen et al. [9], pages 81–95.

BIBLIOGRAPHY 173

[16] The Unicode Consortium. Unicode Home Page. http://www.unicode.org/.

[17] J. Crow and B. D. Vito. Formalizing space shuttle software requirements: four

case studies. ACM Trans. Software Engineering and Methodology, 7(3):296–

332, July 1998.

[18] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements

acquisition. Science of Computer Programming, 20:3–50, 1993.

[19] J. S. Dong and B. Mahony. Active Objects in TCOZ. In J. Staples,

M. Hinchey, and S. Liu, editors, the 2nd IEEE International Conference

on Formal Engineering Methods (ICFEM’98), pages 16–25. IEEE Computer

Society Press, December 1998.

[20] J. S. Dong, Y. F. Li, J. Sun, J. Sun, and H. Wang. XML-based static

type checking and dynamic visualization for TCOZ. In 4th International

Conference on Formal Engineering Methods, pages 311–322. Springer-Verlag,

October 2002.

[21] J. S. Dong, H. Wang, and J. Sun. Semantic Web for Extending and Linking

Formalisms. In Formal Methods Europe (FME’02 - FLoC), pages 587–606.

Springer-Verlag, July 2002.

[22] J. S. Dong, H. Wang, and J. Sun. Z Approach to Semantic Web. In The 4th

International Conference on Formal Engineering Methods, pages 156–167.

Springer-Verlag, October 2002.

BIBLIOGRAPHY 174

[23] J. S. Dong, P. Hao, S. C. Qin, J. Sun, and Y. Wang. TCOZ to Timed

Automata. Technical report, School of Computing, National University of

Singapore, 2003. http://nt-appn.comp.nus.edu.sg/fm/tcoz2ta/tr.pdf.

[24] E. Dubois, E. Yu, and M. Petit. From Early to Late Formal Requirements:

a Process-Control Case Study. In The 9th IEEE International Workshop on

Software Specification and Design (IWSSD’98), pages 34–42. IEEE Computer

Society Press, 1998.

[25] R. Duke and G. Rose. Formal Object Oriented Specification Using Object-Z.

Cornerstones of Computing. Macmillan, March 2000.

[26] R. Duke, G. Rose, and G. Smith. Object-Z: a Specification Language Advo-

cated for the Description of Standards. Computer Standards and Interfaces,

17:511–533, 1995.

[27] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify

authentication protocols. In Theorem Proving in Higher Order Logics, pages

121–136, 1997.

[28] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations

and Initial Semantics. EATCS Monographs on Theoretical Computer Science,

6, 1985.

[29] A. S. Evans and A. N. Clark. Foundations of the unified modeling language.

In D. J. Duke and A. S. Evans, editors, BCS-FACS Northern Formal Methods

Workshop, Electronic Workshops in Computing. Springer Verlag, 1998.

BIBLIOGRAPHY 175

[30] M. Feather. Language Support for the Specification and Development of

Composite Systems. ACM Trans. Prog. Lang. and Syst., 9(2):198–234, 1987.

[31] C. Fischer and H. Wehrheim. Model-Checking CSP-OZ Specifications with

FDR. In Araki et al. [7].

[32] K. Futatsugi and A. Nakagawa. An Overview of CAFE Specification Environ-

ment. In M. Hinchey and S. Liu, editors, the IEEE International Conference

on Formal Engineering Methods (ICFEM’97), Hiroshima, Japan, November

1997. IEEE Computer Society Press.

[33] D. Garlan and D. Perry. Software architecture: Practice, potential and pit-

falls. In Proc. of the 16th Int. Conf. on Software Engineering, May 1994.

[34] D. Garlan and N. Delisle. Formal specification of an architecture for a family

of instrumentation systems. In M. Hinchey and J. Bowen, editors, Applica-

tions of formal methods, pages 55–72. Prentice-Hall, 1995.

[35] J. Goguen and J. Tardo. An introduction to OBJ: A language for writing

and testing software specifications. In N. Gehani and A. McGettrick, editors,

Software Specification Techniques, pages 391–420. Addison-Wesley, 1985.

[36] W. Grieskamp, T. Santen, and B. Stoddart, editors. IFM’00: Integrated

Formal Methods, Dagstuhl Castle, Germany, Lect. Notes in Comput. Sci.

Springer-Verlag, October 2000.

[37] DAML Research Group. The DARPA Agent Markup Language Homepage.

http://www.daml.org/.

BIBLIOGRAPHY 176

[38] Object Management Group. XML Metadata Interchange (XMI) Specifica-

tion, May 2003.

[39] Mozart Research Groups. The Mozart Programming System, 2002.

http://www.mozart-oz.org/.

[40] I. Hayes, editor. Specification Case Studies. International Series in Computer

Science. Prentice-Hall, 2nd edition, 1993.

[41] I. J. Hayes and B. P. Mahony. Using units of measurement in formal specifi-

cations. Formal Aspects of Computing, 7(3), 1995.

[42] M. Henz. Objects in Oz. PhD thesis, Universitat des Saarlandes, Fachbereich

Informatik, Saarbrucken, Germany, June 1997.

[43] J. Hesketh, D. Robertson, N. Fuchs, and A. Bundy. Lightweight formalisation

in support of requirements engineering. Automated Software Engineering,

5:183–210, 1998.

[44] C.A.R. Hoare. Communicating Sequential Processes. International Series in

Computer Science. Prentice-Hall, 1985.

[45] H.-M. Hoercher and J. Peleska. Using formal specification to support software

testing. Software Quality Journal, 4(4):309–327, 1995.

[46] G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engi-

neering, 23(5):279–295, 1997.

BIBLIOGRAPHY 177

[47] J. Horning. Combining algebraic and predicative specifications in Larch. In

H. Ehrig, C. Floyd, M. Nivat, and J. Thatcher, editors, TAPSOFT’85 (part

II): Formal Methods and Software Development, volume 186 of Lect. Notes

in Comput. Sci., pages 12–26. Springer-Verlag, 1985.

[48] C. Hung. CCS used as a proof-assistant tool. In M. Diaz, editor, Protocol

Specification, Testing, and Verification, V, pages 387–398. North-Holland,

1986.

[49] International Organization for Standardization, Geneva. Units of measure-

ment: handbook on international standards for units of measurement, 1979.

[50] P. Inverardi, H. Muccini, D. Richardson, and S. Ficks. The Teleservices and

Remote Medical Care System (TRMCS), 2000.

[51] ISO 8807. LOTOS – A formal description technique based on the temporal

ordering of observational behaviour, 1989.

[52] G. Kaiser, S. Dossick, W. Jiang, and J. Yang. An Architecture for WWW-

based Hypercode Environments. In R. Adrion, A. Fuggetta, and R. Tay-

lor, editors, The 19th International Conference on Software Engineering

(ICSE’97), pages 3–13, Boston, USA, 1997. IEEE Press.

[53] S. K. Kim and D. Carrington. An Integrated Framework with UML and

Object-Z for Developing a Precise Specification. In The 7th Asia-Pacific

Software Engineering Conference (APSEC’00), pages 240–248. IEEE Press,

2000.

BIBLIOGRAPHY 178

[54] Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z

in Isabelle/HOL. In J. von Wright, J. Grundy, and J. Harrison, editors,

Theorem Proving in Higher Order Logics — 9th International Conference,

LNCS 1125, pages 283–298. Springer Verlag, 1996.

[55] N. Leveson, M. Heimdahl, H. Hildreth, and J. Reese. Requirements specifica-

tion for process-control systems. IEEE Trans. Software Eng., 20(9), Septem-

ber 1994.

[56] J. Liu, J. S. Dong, B. Mahony, and K. Shi. Linking UML with integrated

formal techniques. In K. Siau and T. Halpin, editors, Unified Modeling Lan-

guage: Systems Analysis, Design, and Development Issues, pages 210–223.

Idea Group Publishing, 2001.

[57] J. Liu. Linking Integrated Formal Methods with UML. Master’s thesis,

National University of Singapore, 2001.

[58] J. Liu, J. S. Dong, and J. Sun. TRMCS in TCOZ. In Proceedings of the Tenth

International Workshop on Software Specification and Design (IWSSD’00),

pages 63–72, San Diego, USA, November 2000. IEEE Press.

[59] S. Liu, A. J. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba. SOFL: A Formal

Engineering Methodology for Industrial Applications. IEEE Transactions on

Software Engineering, 24(1), January 1998.

[60] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User

Manual. http://www.formal.demon.co.uk/FDR2.html, May 2000.

BIBLIOGRAPHY 179

[61] D. Luckham and J. Vera. An event based architecture definition language.

IEEE Transactions on Software Engineering, 21(9), September,1995.

[62] C. Lung and J. Urban. An approach to the classification of domain models

in support of analogical reuse. In Proc. ACM SIGSOFT 1995 Symposium on

Software Reusability, pages 169–178. ACM Press, 1995.

[63] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed

software architectures. In Proceedings of 5th European Software Engineering

Conference, 1994.

[64] B. Mahony and J. S. Dong. Network Topology and a Case Study in TCOZ.

In J. Bowen, A. Fett, and M. Hinchey, editors, The 11th International Con-

ference of Z Users, volume 1493 of Lecture Notes in Computer Science, pages

308–327, Berlin, Germany, September 1998. Springer-Verlag.

[65] B. Mahony and J. S. Dong. Overview of the semantics of TCOZ. In Araki

et al. [7], pages 66–85.

[66] B. Mahony and J. S. Dong. Sensors and Actuators in TCOZ. In J. Wing,

J. Woodcock, and J. Davies, editors, FM’99: World Congress on Formal

Methods, Lect. Notes in Comput. Sci., pages 1166–1185, Toulouse, France,

September 1999. Springer-Verlag.

[67] B. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Trans-

actions on Software Engineering, 26(2):150–177, February 2000.

BIBLIOGRAPHY 180

[68] B. P. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: An

introduction to TCOZ. In K. Futatsugi, R. Kemmerer, and K. Torii, editors,

The 20th International Conference on Software Engineering (ICSE’98), pages

95–104, Kyoto, Japan, April 1998. IEEE Press.

[69] A. P. Martin. Community Z Tools Initiative, 2001. http://web.comlab.ox.

ac.uk/oucl/work/andrew.martin/CZT/.

[70] T. Miller and P. Strooper. Combining the Animation and Testing of Abstract

Data Types. In The Second Asia-Pacific Conference on Quality Software

(APAQS’01), pages 249–259. IEEE Press, December 2001.

[71] M. Nielsen, K. Havelund, R. Wagner, and C. George. The RAISE language,

method and tools. Formal Aspects of Computing, 1:85–114, 1989.

[72] O. Nierstrasz. Active objects in hybrid. In Proc. 2nd ACM Conf. on

Object-Oriented Programming: Systems, Languages and Applications (OOP-

SLA’87), 1987.

[73] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant

for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[74] Formal Specification Research (NUS). Z notation in LaTeX to/from XML

translator, April 2003. http://www-appn.comp.nus.edu.sg/ rpfm/LTFZ/.

[75] MIT Lab of Computer Science. The Alloy Analyzer, 2002. http://sdg.lcs.mit.

edu/alloy/.

BIBLIOGRAPHY 181

[76] J. Ouaknine and J. Worrell. Timed CSP = Closed Timed Safety Automata.

In Uwe Nestmann and Prakash Panangaden, editors, Electronic Notes in

Theoretical Computer Science, volume 68. Elsevier Science Publishers, 2002.

[77] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS

System Guide. Computer Science Laboratory, SRI International, Menlo Park,

CA, September 1999.

[78] J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Systems. John

Wiley & Sons, 1994.

[79] D. Perry and A. Wolf. Foundations for the study of software architecture,

1992. ACM SIGSOFT Software Engineering Notes, 17:40–52, October 1992.

[80] P. Pettersson and K. G. Larsen. Uppaal2k. Bulletin of the European Asso-

ciation for Theoretical Computer Science, 70:40–44, February 2000.

[81] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Languauge

Reference Manual. Addison-Wesley, 1999.

[82] S. Schneider and J. Davies. A brief history of Timed CSP. Theoretical

Computer Science, 138, 1995.

[83] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W.

Roscoe. Timed CSP: Theory and practice. In J. W. de Bakker, C. Huizing,

W. P. de Roever, and G. Rozenberg, editors, Real-Time: Theory in Practice,

volume 600 of Lect. Notes in Comput. Sci., pages 640–675. Springer-Verlag,

1992.

BIBLIOGRAPHY 182

[84] W3C Schools. XSL - On the Server. http://www.w3schools.com/xsl/xsl

server.asp.

[85] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging

Discipline. Prentice-Hall, 1996.

[86] G. Smith. Extending W for Object-Z. In J. P. Bowen and M. G. Hinchey, edi-

tors, Proceedings of the 9th Annual Z-User Meeting, pages 276–295. Springer-

Verlag, September 1995.

[87] G. Smith. A fully abstract semantics of classes for Object-Z. Formal Aspects

of Computing, 7(3):289–313, 1995.

[88] G. Smith. The Object-Z Specification Language. Advances in Formal Meth-

ods. Kluwer Academic Publishers, 2000.

[89] G. Smith and J. Derrick. Specification, refinement and verification of con-

current systems - an integration of Object-Z and CSP. Formal Methods in

System Design, 18:249–284, 2001.

[90] G. Smith, F. Kammller, and T. Santen. Encoding Object-Z in Isabelle/HOL.

In 2nd International Conference of Z and B Users (ZB’02), LNCS. Springer,

2002.

[91] G. Smolka, M. Henz, and J. Würtz. Object-oriented concurrent constraint

programming in Oz. In P. van Hentenryck and V. Saraswat, editors, Prin-

ciples and Practice of Constraint Programming, chapter 2, pages 29–48. The

MIT Press, 1995.

BIBLIOGRAPHY 183

[92] J. M. Spivey. The Z Notation: A Reference Manual. International Series in

Computer Science. Prentice-Hall, 1989.

[93] J. Sun, J. S. Dong, J. Liu, and H. Wang. An XML/XSL Approach to Vi-

sualize and Animate TCOZ. In The 8th Asia-Pacific Software Engineering

Conference (APSEC’01), pages 453–460. IEEE Press, 2001.

[94] J. Sun, J. S. Dong, J. Liu, and H. Wang. Object-Z Web Environment and

Projections to UML. In WWW-10: 10th International World Wide Web

Conference, pages 725–734. ACM Press, May 2001.

[95] J. Sun and J. S. Dong. Specifying and Reasoning about Generic Architecture

in TCOZ. In P. Strooper and P. Muenchaisri, editors, The 9th Asia-Pacific

Software Engineering Conference (APSEC’02), pages 405–414. IEEE Press,

December 2002.

[96] J. Sun, J. S. Dong, J. Liu, and H. Wang. A Formal Object Approach to the

Design of ZML. Annals of Software Engineering, 13(1-4):329–356, June 2002.

[97] H. Tej and B. Wolff. A corrected failure-divergence model for CSP in Is-

abelle/HOL. In J. Fitzgerald, C.B. Jones, and P. Lucas, editors, Proceedings

of the FME ’97 — Industrial Applications and Strengthened Foundations of

Formal Methods, LNCS 1313, pages 318–337. Springer Verlag, 1997.

[98] M. Utting. Animating Z: interactivity, transparency and equivalence. In

Proc. Asia Pacific Software Engineering Conference ’95 (APSEC’95), pages

294 –303. IEEE Computer Society Press, April 1995.

BIBLIOGRAPHY 184

[99] M. Utting, I. Toyn, J. Sun, A. Martin, J. S. Dong, N. Daley, and D. Currie.

Zml: XML support for standard Z. In 3nd International Conference of Z and

B Users (ZB’03), LNCS. Springer, June 2003.

[100] World Wide Web Consortium (W3C). Document Object Model (DOM).

http://www.w3.org/DOM/.

[101] World Wide Web Consortium (W3C). Extensible Markup Language (XML).

http://www.w3.org/XML.

[102] World Wide Web Consortium (W3C). Extensible Stylesheet Language (XSL).

http://www.w3.org/Style/XSL.

[103] World Wide Web Consortium (W3C). Mathematical Markup Language

(MathML). http://www.w3.org/TR/2002/WD-MathML2-20021219/.

[104] World Wide Web Consortium (W3C). Resource Description Framework

(RDF). http://www.w3.org/RDF/.

[105] World Wide Web Consortium (W3C). Semantic Web. http://www.w3.org

/2001/sw/.

[106] World Wide Web Consortium (W3C). W3C XML Schema. http://www.w3.

org/XML/Schema.

[107] World Wide Web Consortium (W3C). XML Linking Language (XLink).

http://www.w3.org/TR/xlink/.

BIBLIOGRAPHY 185

[108] World Wide Web Consortium (W3C). XML Path Language (XPath).

http://www.w3.org/TR/xpath/.

[109] World Wide Web Consortium (W3C). XML Pointer Language (XPointer).

http://www.w3.org/TR/xptr/.

[110] World Wide Web Consortium (W3C). XSL Transformations (XSLT) Version

1.0. http://www.w3.org/TR/xslt, 1999.

[111] E. N. Wafula and P. A. Swatman. FOOM: A Diagrammatic Illustration of

Inter-Object Communication in Object-Z Specifications. In The 1995 Asia-

Pacific Software Engineering Conference (APSEC’95). IEEE Computer So-

ciety Press, December 1995.

[112] M. M. West and B. M. Eaglestone. Software development: two approaches

to animation of Z specifications using Prolog. Software Engineering Journal,

7(4):264 – 276, July 1992.

[113] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.

Prentice-Hall International, 1996.

[114] J. C. P. Woodcock and S. M. Brien. W: A logic for Z. In J. E. Nicholls, editor,

the Sixth Annual Z User Meeting, York, UK., Workshops in Computing,

pages 77–96. Springer-Verlag, 1992.

[115] P. Zave and M. Jackson. Four dark corners of requirements engineering. ACM

Trans. Software Engineering and Methodology, 6(1):1–30, January 1997.

BIBLIOGRAPHY 186

Appendix A

A.1 Z glossary

Definitions and declarations

Let x , xk be identifiers and let T ,Tk be non-empty, set-valued expressions.

LHS == RHS Definition of LHS as syntactically equivalent to RHS .

LHS [X1,X2, . . . ,Xn] == RHS

Generic definition of LHS , where X1,X2, . . . ,Xn are vari-

ables denoting formal parameter sets.

x : T A declaration, x : T , introduces a new variable x of type T.

x1 : T1; x2 : T2; . . . ; xn : Tn

List of declarations.

x1, x2, . . . , xn : T == x1 : T ; x2 : T ; . . . ; xn : T

[X1,X2, . . . ,Xn] Introduction of free types named X1,X2, . . . ,Xn .

187

A.1. Z GLOSSARY 188

Logic

Let P ,Q be predicates and let D be a declaration or a list of declarations.

true, false Logical constants.

¬ P Negation: “not P”.

P ∧ Q Conjunction: “P and Q”.

P ∨ Q Disjunction: “P or Q or both”.

P ⇒ Q == (¬ P) ∨ Q

Implication: “P implies Q” or “if P then Q”.

P ⇔ Q == (P ⇒ Q) ∧ (Q ⇒ P)

Equivalence: “P is logically equivalent to Q”.

∀ x : T • P Universal quantification: “for all x of type T , P holds”.

∃ x : T • P Existential quantification: “there exists an x of type T such

that P holds”.

∃1 x : T • P Unique existence: “there exists a unique x of type T such

that P holds”.

∀ x1 : T1; x2 : T2; . . . ; xn : Tn • P

“For all x1 of type T1, x2 of type T2, . . . , and xn of type Tn ,

P holds.”

A.1. Z GLOSSARY 189

∃ x1 : T1; x2 : T2; . . . ; xn : Tn • P

Similar to ∀.

∃1 x1 : T1; x2 : T2; . . . ; xn : Tn • P

Similar to ∀.

∀D | P • Q ⇔ ∀D • P ⇒ Q

∃D | P • Q ⇔ ∃D • P ∧ Q

t1 = t2 Equality between terms.

t1 6= t2 ⇔ ¬ (t1 = t2)

Sets

Let X be a set; S and T be subsets of X ; t , tk terms; P a predicate; and D

declarations.

t ∈ S Set membership: “t is a member of S”.

t 6∈ S ⇔ ¬ (t ∈ S)

S ⊆ T ⇔ (∀ x : S • x ∈ T)

Set inclusion.

S ⊂ T ⇔ S ⊆ T ∧ S 6= T

Strict set inclusion.

A.1. Z GLOSSARY 190

∅ The empty set.

{t1, t2, . . . , tn} The set containing the values of terms t1, t2, . . . , tn .

{x : T | P} The set containing exactly those x of type T for which P

holds.

(t1, t2, . . . , tn) Ordered n-tuple of t1, t2, . . . , tn .

T1 × T2 × . . .× Tn

Cartesian product: the set of all n-tuples such that the kth

component is of type Tk .

first(t1, t2, . . . , tn)

== t1

Similarly, second(t1, t2, . . . , tn) == t2, etc.

{x1 : T1; x2 : T2; . . . ; xn : Tn | P}

The set of all n-tuples (x1, x2, . . . , xn) with each xk of type

Tk such that P holds.

{D | P • t} The set of values of the term t for the variables declared in

D ranging over all values for which P holds.

{D • t} == {D | true • t}

P S Powerset: the set of all subsets of S .

A.1. Z GLOSSARY 191

P1 S == P S \ {∅}

The set of all non-empty subsets of S .

F S == {T : P S | T is finite }

Set of finite subsets of S .

F1 S == F S \ {∅}

Set of finite non-empty subsets of S .

S ∩ T == {x : X | x ∈ S ∧ x ∈ T}

Set intersection.

S ∪ T == {x : X | x ∈ S ∨ x ∈ T}

Set union.

S \ T == {x : X | x ∈ S ∧ x 6∈ T}

Set difference.

⋂
SS == {x : X | (∀ S : SS • x ∈ S)}

Intersection of a set of sets; SS is a set containing as its

members subsets of X , i.e. SS : P(PX).

⋃
SS == {x : X | (∃ S : SS • x ∈ S)}

Union of a set of sets; SS : P(PX).

#S Size (number of distinct members) of a finite set.

A.1. Z GLOSSARY 192

Numbers

R The set of real numbers.

Z The set of integers (positive, zero and negative).

N == {n : Z | n ≥ 0}

The set of natural numbers (non-negative integers).

N1 == N \ {0}

The set of strictly positive natural numbers.

m . . n == {k : Z | m ≤ k ∧ k ≤ n}

The set of integers between m and n inclusive.

min S Minimum of a set; for S : P1 Z,

min S ∈ S ∧ (∀ x : S • x ≥ min S).

max S Maximum of a set; for S : P1 Z,

max S ∈ S ∧ (∀ x : S • x ≤ max S).

Relations

A binary relation is modelled by a set of ordered pairs hence operators defined for

sets can be used on relations. Let X , Y , and Z be sets; x : X ; y : Y ; S be a subset

of X ; T be a subset of Y ; and R a relation between X and Y .

X ↔ Y == P(X × Y)

The set of relations between X and Y .

A.1. Z GLOSSARY 193

x R y == (x , y) ∈ R

x is related by R to y .

x 7→ y == (x , y)

{x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn}

== {(x1, y1), (x2, y2), . . . , (xn , yn)}

The relation relating x1 to y1, x2 to y2, . . . , and xn to yn .

domR == {x : X | (∃ y : Y • x R y)}

The domain of a relation: the set of x components that are

related to some y.

ranR == {y : Y | (∃ x : X • x R y)}

The range of a relation: the set of y components that some

x is related to.

R1
o
9 R2 == {x : X ; z : Z | (∃ y : Y • x R1 y ∧ y R2 z)}

Forward relational composition; R1 : X ↔ Y ; R2 : Y ↔ Z .

R1 ◦ R2 == R2
o
9 R1

Relational composition. This form is primarily used when

R1 and R2 are functions.

R∼ == {y : Y ; x : X | x R y}

Transpose of a relation R.

A.1. Z GLOSSARY 194

id S == {x : S • x 7→ x}

Identity function on the set S .

Rk The homogeneous relation R composed with itself k times:

given R : X ↔ X ,

R0 = idX and Rk+1 = Rk o
9 R.

R+ ==
⋃{n : N1 • Rn}

=
⋂{Q : X ↔ X | R ⊆ Q ∧ Q o

9 Q ⊆ Q}

Transitive closure.

R∗ ==
⋃{n : N • Rn}

=
⋂{Q : X ↔ X | idX ⊆ Q ∧ R ⊆ Q ∧ Q o

9 Q ⊆ Q}

Reflexive transitive closure.

R(| S |) == {y : Y | (∃ x : S • x R y)}

Image of the set S through the relation R.

S C R == {x : X ; y : Y | x ∈ S ∧ x R y}

Domain restriction: the relation R with its domain restricted

to the set S .

S −C R == (X \ S) C R

Domain subtraction: the relation R with the elements of S

removed from its domain.

R B T == {x : X ; y : Y | x R y ∧ y ∈ T}

Range restriction to T .

A.1. Z GLOSSARY 195

R −B T == R B (Y \ T)

Range subtraction of T .

R1 ⊕ R2 == (domR2 −C R1) ∪ R2

Overriding; R1,R2 : X ↔ Y .

Functions

A function is a relation with the property that each member of its domain is

associated with a unique member of its range. As functions are relations, all the

operators defined above for relations also apply to functions. Let X and Y be sets,

and T be a subset of X (i.e. T : PX).

f t The function f applied to t .

X 7→ Y == {f : X ↔ Y | (∀ x : dom f • (∃1 y : Y • x f y))}

The set of partial functions from X to Y .

X → Y == {f : X 7→ Y | dom f = X }

The set of total functions from X to Y .

X 7½ Y == {f : X 7→ Y | (∀ y : ran f • (∃1 x : X • x f y))}

The set of partial one-to-one functions (partial injections)

from X to Y .

X ½ Y == {f : X 7½ Y | dom f = X }

The set of total one-to-one functions (total injections) from

X to Y .

A.1. Z GLOSSARY 196

X 7→→ Y == {f : X 7→ Y | ran f = Y }

The set of partial onto functions (partial surjections) from

X to Y .

X →→ Y == (X 7→→ Y) ∩ (X → Y)

The set of total onto functions (total surjections) from X to

Y .

X ½→ Y == (X →→ Y) ∩ (X ½ Y)

The set of total one-to-one onto functions (total bijections)

from X to Y .

X 7 7→ Y == {f : X 7→ Y | f ∈ F(X × Y)}

The set of finite partial functions from X to Y .

X 7 7½ Y == {f : X ½ Y | f ∈ F(X × Y)}

The set of finite partial one-to-one functions from X to Y .

(λ x : X | P • t) == {x : X | P • x 7→ t}

Lambda-abstraction: the function that, given an argument

x of type X such that P holds, gives a result which is the

value of the term t .

(λ x1 : T1; . . . ; xn : Tn | P • t)

== {x1 : T1; . . . ; xn : Tn | P • (x1, . . . , xn) 7→ t}

disjoint[I ,X] == {S : I 7→ PX | ∀ i , j : dom S • i 6= j ⇒ S (i) ∩ S (j) =

∅}

A.1. Z GLOSSARY 197

Pairwise disjoint; where I is a set and S an indexed family

of subsets of X (i.e. S : I 7→ PX).

S partitions T == S ∈ disjoint ∧ ⋃
ran S = T

Sequences

Let X be a set; A and B be sequences with elements taken from X ; and a1, . . . , an

terms of type X .

seqX == {A : N1 7→ X | (∃ n : N • domA = 1..n)}

The set of finite sequences whose elements are drawn from

X .

seq∞X == {A : N1 7→ X | A ∈ seqX ∨ domA = N1}

The set of finite and infinite sequences whose elements are

drawn from X .

#A The length of a finite sequence A. (This is just ‘#’ on the

set representing the sequence.)

〈〉 == {}

The empty sequence.

seq1 X == {s : seqX | s 6= 〈〉}

The set of non-empty finite sequences.

〈a1, . . . , an〉 = {1 7→ a1, . . . , n 7→ an}

A.1. Z GLOSSARY 198

〈a1, . . . , an〉a 〈b1, . . . , bm〉

= 〈a1, . . . , an , b1, . . . , bm〉

Concatenation.

〈〉a A = A a 〈〉 = A.

head A The first element of a non-empty sequence:

A 6= 〈〉 ⇒ head A = A(1).

tail A All but the head of a non-empty sequence:

tail (〈x 〉a A) = A.

last A The final element of a non-empty finite sequence:

A 6= 〈〉 ⇒ last A = A(#A).

front A All but the last of a non-empty finite sequence:

front (A a 〈x 〉) = A.

rev 〈a1, a2, . . . , an〉

= 〈an , . . . , a2, a1〉

Reverse of a finite sequence; rev 〈〉 = 〈〉.

a/AA = AA(1) a . . . a AA(#AA)

Distributed concatenation; where AA : seq(seq(X)). a/〈〉 =

〈〉.

A ⊆ B ⇔ ∃C : seq∞X • A a C = B

A is a prefix of B . (This is just ‘⊆’ on the sets representing

the sequences.)

A.1. Z GLOSSARY 199

squash f Convert a finite function, f : N 7 7→ X , into a sequence by

squashing its domain. That is, squash{} = 〈〉, and if f 6=

{} then squash f = 〈f (i)〉 a squash({i} −C f), where i =

min(dom f). For example, squash{2 7→ A, 27 7→ C , 4 7→

B} = 〈A,B ,C 〉.

A ¹ T == squash(A B T)

Restrict the range of the sequence A to the set T .

Bags

bag X == X 7→ N1

The set of bags whose elements are drawn from X . A bag

is represented by a function that maps each element in the

bag onto its frequency of occurrence in the bag.

[[]] The empty bag ∅.

[[x1, x2, . . . , xn]] The bag containing x1, x2, . . . , xn , each with the frequency

that it occurs in the list.

items s == {x : ran s • x 7→ #{i : dom s | s(i) = x}}

The bag of items contained in the sequence s .

Axiomatic definitions

Let D be a list of declarations and P a predicate.

A.1. Z GLOSSARY 200

The following axiomatic definition introduces the variables in D with the types

as declared in D. These variables must satisfy the predicate P. The scope of the

variables is the whole specification.

D

P

Generic definitions

Let D be a list of declarations, P a predicate and X1,X2, . . .Xn variables.

The following generic definition is similar to an axiomatic definition, except that

the variables introduced are generic over the sets X1,X2, . . .Xn .

[X1,X2, . . .Xn]
D

P

The declared variables must be uniquely defined by the predicate P .

Schema definition

A schema groups together a set of declarations of variables and a predicate relating

the variables. If the predicate is omitted it is taken to be true, i.e. the variables

are not further restricted. There are two ways of writing schemas: vertically, for

example,

S
x : N
y : seqN

x ≤ #y

A.1. Z GLOSSARY 201

and horizontally, for the same example,

S == [x : N; y : seqN | x ≤ #y]

Schemas can be used in signatures after ∀, λ, {...}, etc.:

(∀ S • y 6= 〈〉) ⇔ (∀ x : N; y : seqN | x ≤ #y • y 6= 〈〉)

{S} Stands for the set of objects described by schema S . In

declarations w : S is usually written as an abbreviation for

w : {S}.

Schema operators

Let S be defined as above and w : S .

w .x == (λ S • x)(w)

Projection functions: the component names of a schema

may be used as projection (or selector) functions, e.g. w .x

is w ’s x component and w .y is its y component; of course,

the predicate ‘w .x ≤ #w .y ’ holds.

θS The (unordered) tuple formed from a schema’s variables,

e.g. θS contains the named components x and y .

Compatibility Two schemas are compatible if the declared sets of each vari-

able common to the declaration parts of the two schemas are

equal. In addition, any global variables referenced in pred-

icate part of one of the schemas must not have the same

A.1. Z GLOSSARY 202

name as a variable declared in the other schema; this re-

striction is to avoid global variables being captured by the

declarations.

Inclusion A schema S may be included within the declarations of a

schema T , in which case the declarations of S are merged

with the other declarations of T (variables declared in both

S and T must have the same declared sets) and the predi-

cates of S and T are conjoined. For example,

T
S
z : N

z < x

is equivalent to

T
x , z : N
y : seqN

x ≤ #y ∧ z < x

The included schema (S) may not refer to global variables

that have the same name as one of the declared variables of

the including schema (T).

Decoration Decoration with subscript, superscript, prime, etc: system-

atic renaming of the variables declared in the schema. For

example, S ′ is

[x ′ : N; y ′ : seqN | x ′ ≤ #y ′].

A.1. Z GLOSSARY 203

¬ S The schema S with its predicate part negated. For example,

¬ S is [x : N; y : seqN | ¬ (x ≤ #y)].

S ∧ T The schema formed from schemas S and T by merging their

declarations and conjoining (and-ing) their predicates. The

two schemas must be compatible (see above).

Given T == [x : N; z : PN | x ∈ z], S ∧ T is

S ∧ T
x : N
y : seqN
z : PN

x ≤ #y ∧ x ∈ z

S ∨ T The schema formed from schemas S and T by merging their

declarations and disjoining (or-ing) their predicates. The

two schemas must be compatible (see above). For example,

S ∨ T is

S ∨ T
x : N
y : seqN
z : PN

x ≤ #y ∨ x ∈ z

S ⇒ T The schema formed from schemas S and T by merging their

declarations and taking ‘pred S ⇒ predT ’ as the predicate.

The two schemas must be compatible (see above). For ex-

ample, S ⇒ T is

A.1. Z GLOSSARY 204

S ⇒ T
x : N
y : seqN
z : PN

x ≤ #y ⇒ x ∈ z

S ⇔ T The schema formed from schemas S and T by merging their

declarations and taking ‘pred S ⇔ predT ’ as the predicate.

The two schemas must be compatible (see above). For ex-

ample, S ⇔ T is

S ⇔ T
x : N
y : seqN
z : PN

x ≤ #y ⇔ x ∈ z

S \ (v1, v2, . . . , vn)

Hiding: the schema S with variables v1, v2, . . . , vn hidden –

the variables listed are removed from the declarations and

are existentially quantified in the predicate. The paranthe-

ses may be omitted when only one variable is hidden.

S ¹ (v1, v2, . . . , vn)

Projection: The schema S with any variables that do not

occur in the list v1, v2, . . . , vn hidden – the variables are re-

moved from the declarations and are existentially qualified

in the predicate. For example, (S ∧ T) ¹ (x , y) is

A.1. Z GLOSSARY 205

(S ∧ T) ¹ (x , y)
x : N
y : seqN

(∃ z : PN •
x ≤ #y ∧ x ∈ z)

The list of variables may be replaced by a schema; the vari-

ables declared in the schema are used for projection.

∃D • S Existential quantification of a schema.

The variables declared in the schema S that also appear in

the declarations D are removed from the declarations of S.

The predicate of S is existentially quantified over D. For

example, ∃ x : N • S is the following schema.

∃ x : N • S
y : seqN

∃ x : N •
x ≤ #y

The declarations may include schemas. For example,

∃ S • T
z : N

∃ S •
x ≤ #y ∧ z < x

∀D • S Universal quantification of a schema.

The variables declared in the schema S that also appear

in the declarations D are removed from the declarations of

S. The predicate of S is universally quantified over D. For

example, ∀ x : N • S is the following schema.

A.1. Z GLOSSARY 206

∀ x : N • S
y : seqN

∀ x : N •
x ≤ #y

The declarations may include schemas. For example,

∀ S • T
z : N

∀ S •
x ≤ #y ∧ z < x

Operation schemas

The following conventions are used for variable names in those schemas which

represent operations, that is, which are written as descriptions of operations on

some state,

undashed state before the operation,

dashed state after the operation,

ending in “?” inputs to (arguments for) the operation, and

ending in “!” outputs from (results of) the operation.

The basename of a name is the name with all decorations removed.

∆S =̂ S ∧ S ′

Change of state schema: this is a default definition for ∆S .

A.1. Z GLOSSARY 207

In some specifications it is useful to have additional con-

straints on the change of state schema. In these cases ∆S

can be explicitly defined.

ΞS =̂ [∆S | θS ′ = θS]

No change of state schema.

Operation schema operators

pre S Precondition: the after-state components (dashed) and the

outputs (ending in “!”) are hidden, e.g. given,

S
x?, s , s ′, y ! : N

s ′ = s − x? ∧ y ! = s ′

pre S is,

pre S
x?, s : N

∃ s ′, y ! : N •
s ′ = s − x? ∧ y ! = s ′

S ; T Schema composition: if we consider an intermediate state

that is both the final state of the operation S and the initial

state of the operation T then the composition of S and

T is the operation which relates the initial state of S to

the final state of T through the intermediate state. To

form the composition of S and T we take the pairs of after-

state components of S and before-state components of T

A.1. Z GLOSSARY 208

that have the same basename, rename each pair to a new

variable, take the conjunction of the resulting schemas, and

hide the new variables. For example, S ; T is,

S ; T
x?, s , s ′, y ! : N

(∃ ss : N •
ss = s − x? ∧ y ! = ss
∧ ss ≤ x? ∧ s ′ = ss + x?)

A.2. TCOZ GLOSSARY 209

A.2 TCOZ glossary

Notation Explanation

c : chan declare c to be a channel

a : actuator declare a to be a actuator

s : sensor declare s to be a sensor

⊥ divergent process

Stop deadlocked process

Skip terminate immediately

Wait t delay termination by t

a → P communicate a then do P

a@t → P communicate a at time t

then do P

[t : T] • a@t → P record time of a event in

variable t

c.a communicate a on channel c

c?a input a on channel c

c!a output a from channel c

[b] • P enable P only if b

continued on next page

A.2. TCOZ GLOSSARY 210

Notation Explanation

P ; Q perform P until termina-

tion, then perform Q

P 2 Q perform the first enabled of

P and Q

[i : I] • P perform P with first enabled

value of i (indexed external

choice)

P u Q perform either of P and Q

[i ! : I]; P perform P with any value of

i (indexed internal choice)

v := e syntactic sugar for [∆v |

v ′ = e]

P \ A hide the events A from the

environment of P

P |[A]|Q synchronise P and Q on

events from A

continued on next page

A.2. TCOZ GLOSSARY 211

Notation Explanation

(‖ p1, . . . , pn • . . . ; pi
A¾- pj ; . . .) network topology

abstraction with parameters

p1, . . . , pn and network con-

nections including pi com-

municating with pj on pri-

vate channels from A

P ||| Q P and Q running without

sychronisations

P .{t} Q if P does not begin by time

t , perform Q instead

P ↙{t} Q perform P until time t , then

transfer control to Q

P O e → Q perform P until exception e,

then transfer control to Q

P • Deadline t behaviours of P which ter-

minate before time t

P • WaitUntil t after P idle until time t

