
MULTIPLE KNAPSACK PROBLEM WITH
INTER-RELATED ITEMS AND ITS APPLICATIONS

TO REAL WORLD PROBLEMS

ANG JUAY CHIN
(B.Sc (Computer and Information Sciences), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2003

Abstract

Motivated by a real world application, we study a variant of the classic

knapsack problem, which we call the Multiple Knapsack Problem with Inter-related

Items (MKPIR). We are given a set of items and a set of knapsacks of limited capacity.

For each item, a set of knapsacks that can hold that item is specified. In addition,

binary relationships may exist between the items. These relationships affect the profit

of having that item in the knapsack in consideration. In this thesis, we adopted a few

heuristics and test them on the venue assignment problem, instance of MKPIR, using

actual data and randomly generated test instances.

Keywords:

Multiple knapsack problem, Venue assignment problem

Acknowledgements

I would like to express my sincere gratitude to my supervisor A/P Andrew Lim

for his sound advice through the course of my study. I would also like to thank my co-

supervisor Dr Tan Sun Teck for his guidance.

Lastly, I would like to express my heart felt love and appreciation to my family

especially my husband Wee Kit for their support, patience and love during this period.

 i

Table of Contents

Chapter 1 Introduction .. 1

1.1 Motivation... 1

1.2 Examination Timetabling Problem... 2

1.3 Venue Assignment Problem ... 3

1.4 Thesis Outline ... 6

Chapter 2 Multiple Knapsack Problem... 8

2.1 Multiple Knapsack Problem with Inter-related Items................................. 9

2.2 Formulation of VAP as MIN_MKPIR.. 10

2.3 Related Work .. 13

Chapter 3 System User Interface .. 14

3.1 Exam Scheduler .. 14

3.2 Venue .. 16

3.3 Venue Assignment .. 17

3.4 Seat Assignment.. 18

Chapter 4 Heuristics.. 19

4.1 Greedy Method ... 20

4.2 Tabu Search .. 20

4.3 Simulated Annealing... 22

4.4 Operators... 26

 ii

4.4.1 Relocate Operator ... 26

4.4.2 Exchange Operator.. 27

4.4.3 Multi-Exchange Operator ... 29

4.5 “Squeaky Wheel” Optimization.. 30

4.6 Combining “Squeaky Wheel” Optimization and Tabu Search................. 34

Chapter 5 Experimental Results.. 36

5.1 Experimental Data .. 36

5.2 Evaluation of the Assignment Quality.. 42

5.3 Implementation Matters .. 45

5.4 Results... 46

Chapter 6 Conclusions .. 60

6.1 Project Summary... 60

6.2 Directions for Future Work... 60

Bibliography ... 63

 iii

List of Figures

Figure 1: Venue Assignment Problem as an instance of a MKPIR.............................. 12

Figure 2: Exam Scheduler... 14

Figure 3: Edit Venue Layout... 16

Figure 4: Venue Assignment .. 17

Figure 5: Seat Assignment .. 18

Figure 6: Tabu Search... 21

Figure 7: Simulated Annealing ... 25

Figure 8: Relocate Operator.. 26

Figure 9: Exchange Operator .. 28

Figure 10: The Construct/Analyze/Prioritize cycle .. 30

Figure 11: Relationship Cost for 0102_sem2 ... 50

Figure 12: Relationship Cost for 0203_sem1 ... 50

Figure 13: Relationship Cost for 0203_sem2 ... 51

Figure 14: Relationship Cost for many relationships test instances 55

Figure 15: Relationship Cost for many items, few knapsacks test instances 57

Figure 16: Relationship Cost for few items, many knapsacks test instances 57

 iv

List of Tables

Table 1: Characteristics of 0102_sem2... 37

Table 2: Characteristics of 0203_sem1... 37

Table 3: Characteristics of 0203_sem2... 37

Table 4: List of Examination Venues for 0102_sem2 .. 38

Table 5: List of Examination Venues for 0203_sem1 .. 39

Table 6: List of Examination Venues for 0203_sem2 .. 40

Table 7: Generated Problem Instances ... 42

Table 8: Results for 0102_sem2 ... 47

Table 9: Results for 0203_sem1 ... 48

Table 10: Results for 0203_sem2 ... 49

Table 11: Computational Time for 0102_sem2.. 52

Table 12: Computational Time for 0203_sem1.. 52

Table 13: Computational Time for 0203_sem2.. 52

Table 14: Results for many relationships test instances ... 53

Table 15: Results for many items, few knapsacks test instances 54

Table 16: Results for few items, many knapsacks test instances 54

Table 17: Computational Time for many relationships test instances........................ 57

Table 18: Computational Time for many items, few knapsacks test instances.......... 58

Table 19: Computational Time for few items, many knapsacks test instances.......... 58

 v

Summary

 In the Multiple Knapsack Problem, N items of different sizes have to be

packed into M knapsacks with limited volume. Each item i has an associated profit

 and weight . The problem is to select N disjoint subsets of items, such that subset

i fits into knapsack i and total profit of the selected items is maximized.

ip iw

 Motivated by a real world application, we study a variant of MKP, the

Multiple Knapsack Problem with Inter-related Items (MKPIR). In MKPIR, binary

relationships may exist between items. Consider two items, i and j, packed in

knapsacks x and y respectively. If there exists a relationship between the two items,

then the value of the relationship between i and j is ⋅ where is the distance

measure between knapsacks x and y. Accordingly, item i has profit

when considered for inclusion in knapsack . Thus, unlike most other variants of

MKP in which the profit/cost of item i is fixed, , the value of item i in MKPIR is a

variable. In addition, an assignment restriction is imposed on the items. For each item i ,

a set of knapsacks that can hold item i is specified. In a feasible assignment of items

to knapsacks, each item is assigned to at most one knapsack, assignment restrictions

are satisfied, and knapsack capacities are not exceeded, with the objective of

maximizing , where

ijr

ijr xyk xyk

∑ =
=

N

j xyijix krp
1

x

ip

∑∑
= =

M

x

N

i
ixix zp

1 1

1=ixz if item i is assigned to knapsack x and

otherwise. 0=ixz

 The Venue Assignment Problem (VAP) is a sub-problem in an exam-timetable

scheduling application. In this application, examinations for modules are assigned

exam timeslots based on the estimated enrolment figures, disregarding the actual

 vi

examination venue. Specific venues are only allocated when the actual enrolment

figures for modules are known after student registration. Each day of the examination

period is divided into a few non-overlapping exam sessions. Venues may be physically

far apart, and some candidates may be required to take more than one exam a day and

have to travel between venues. Thus, in addition to assigning examinations to venues

without violating the venue capacity constraint, we would like to minimize the

distance that candidates have to travel between their examinations each day.

 The problem of assigning exams to venues so as to minimize student

movement can be formulated as an instance of MIN_MKPIR (a minimization version

of MKPIR). The assignment of exams to each exam timeslot is restricted to only

venues available during that timeslot. The distance that needs to be traveled by

candidates of exam to his next exam on the same day will be translated into cost for

both exam i and exam j. Each exam day may be viewed as a separate VAP, since

exams scheduled on different days are independent.

i j

 Various heuristics such as Tabu Search, Simulated Annealing and “Squeaky

Wheel Optimization” are experimented on the MKPIR using actual data from the

National University of Singapore and generated test data. Preliminary results based on

our experimentations shows that Simulated Annealing and “Squeaky Wheel

Optimization” with Tabu Search post-optimization produce satisfactory results.

Although more work still need to be done on solving the MKPIR efficiently, we

believe that our heuristics will be useful for solving VAP and other real world

problems of similar characteristics.

 vii

Chapter 1

Introduction

1.1 Motivation

Our variant of the multiple knapsack problem, multiple knapsack problem with

inter-related items was motivated by a sub-problem in the timetabling problem in the

National University of Singapore (NUS). NUS conducts more than 1500 modules for

about 25 000 students every semester. In 1993, a modular course system was adopted

by NUS. Under this modular system, students progress at their own pace and choose

the modules that they wished to study, subject to timetable arrangements, in order to

complete their degree requirements. In addition, students can choose from a wide

range of modules, called cross-faculty modules, offered by different faculties. As a

result of this flexibility for students, the task of scheduling examination timetables in

NUS became much more complex.

Previously, the scheduling of examination timetable in NUS was done

manually. This was a tedious and error-prone process that typically took months to

process. Critical conflicts where a student was scheduled to take examinations at the

same time were not always detected, and correcting these mistakes was cumbersome

and expensive. A team was thus funded by NUS to develop an automated campus-

wide examination timetabling system, UTTSExam [Lim et al. 2000].

1

CHAPTER 1 INTRODUCTION

Scheduling of examinations in UTTSExam is a two steps process. Examinations

for modules are first assigned timeslots based on estimated enrolments without venues.

Specific venues are only assigned in the second phase when actual enrolment figures

are known. This created the venue assignment problem and motivates the study of the

multiple knapsack problem with inter-related items in this report.

1.2 Examination Timetabling Problem

The primary objective of an examination timetabling problem is to schedule all

examinations into available timeslots without hard constraints violation. Many

practical examination timetabling problems are however much more complex and

usually include the assignment of examinations to various venues of varying capacities

and the satisfying of various timetable constraints. These timetable constraints may be

hard or soft constraints. The satisfaction of hard constraints is considered essential to a

feasible timetable, whereas the satisfaction of soft constraints is considered desirable

but not essential. A high quality timetable is one that meets all the conditions of a

feasible timetable and minimizes the violation of these soft constraints.

It is the University’s policy to schedule all examinations before student

enrolment. The automated examination timetable scheduler hence has to schedule

examinations based on estimated enrolment figures put forward by the various

faculties. These enrolment estimates are however not accurate and are often under-

estimated or over-estimated. As such, to better utilize available resources, specific

venues are only assigned after student registration.

2

CHAPTER 1 INTRODUCTION

A hybrid of centralized and de-centralized approach is adopted for timetabling

in UTTSExam [Lim et al. 2002]. Scheduling of examination timetable is carried out in

two phases. In the first phase, before student registration, the examination’s enrolment

estimates were used to proportionally allocate a fixed number of seats for each faculty

(called their venue partition). Each faculty then scheduled their exams according to

their venue partition, disregarding the actual venues. These faculty timetables are then

merged into a campus-wide tentative timetable. The central authority will resolve any

conflicts that arise during the merging that are caused by modules offered to more than

one faculty. Specific venues are only allocated in the second phase when the actual

enrolment figures for modules are known after student registration. This approach

proved to create a much better timetable than a fully centralized approach.

Furthermore, it allows the individual faculty timetable administrators to retain a high

level of control over their personal timetables, which would not have been possible in

a fully centralized system.

1.3 Venue Assignment Problem

The venue assignment problem (VAP) is a sub-problem of the examination

timetabling problem in UTTSExam. The objective is to assign a set of examinations

with known timeslots to venues with limited capacities while minimizing travelling

required by candidates who have back-to-back examinations.

Each day of the examination period is divided into a few non-overlapping

examination sessions. Due to the limited amount of spaces suitable to hold

examinations on-campus, off-campus venues have to be included. Examination venues

3

CHAPTER 1 INTRODUCTION

thus may be physically far apart. Candidates who are required to take more than one

examination a day may thus have to travel between on-campus venues and off-campus

venues.

Starting 2002/2003 academic year, NUS decided to do away with commercial

venues for examinations. Instead, multiple small rooms located around campus are

made available to make up the deficit. Though this has resulted in a substantial

monetary savings in rental cost, candidates with back-to-back examinations are not

spared from having to travel between far apart examination venues within the campus.

As individual faculties do not have enough venue capacity to hold all examinations

conducted by their own faculties, central venues have to be used. In addition, due to

the existence of cross-faculty modules which is taken by students from different

faculties, it is inevitable that some candidates may have to travel between examination

venues.

It is the University policy that examination timetable is planned and released

before student registration so that students have a greater control over their

examination schedule. Since, student registration data is not available during timetable

scheduling, it is therefore not within the examination timetable scheduler control to

minimize the number of back-to-back examinations. The best that the examination

timetable planner can do is to update the automatic timetable scheduler with

constraints that ensure that certain examinations are placed at least a number of

sessions apart. These constraints may be based on popular module combinations taken

by past year students. The scheduler will avoid planning examinations of these

4

CHAPTER 1 INTRODUCTION

modules on back-to-back sessions. All these are however just predictions and will not

guarantee that the number of back-to-back examinations for students is minimized.

Under these circumstances, it is important that the number of candidates that

needs to travel between examination venues be kept to the minimum, otherwise traffic

control will be chaotic during the exam session interval. It is therefore one of the

objectives in VAP to minimize student movement; that is the distance that candidates

have to travel between back-to-back examinations each day.

Additionally, assignment restrictions, which we call venue constraints in VAP,

must not be violated, since some examinations must be held in a specific type of venue.

For instance, some examinations must be held in drawing rooms with big tables since

large drawing papers are involved during the examination, while other papers should

not be held in the drawing rooms.

Before, the assignment of venues to examinations was done manually in the

second phase of the examination timetable planning exercise, weeks before the start of

the examination period. The assignment of venues to examinations has to be carefully

managed manually. Student movement has to be painstakingly calculated and venue

constraints have to be satisfied. A careless assignment that results in massive group of

students having to travel between far-away venues not only causes great inconvenience

to students but will also impose a heavy burden on the school transportation system.

We see that the venue assignment problem plays an important part in the

goodness of the examination timetable in UTTSExam. Since no matter how good the

examination timetable is in the first phase of the scheduling process, a bad venue

assignment in the second phase will eventually lead to an overall poor solution. A

5

CHAPTER 1 INTRODUCTION

venue assignment that results in many candidates having to travel between far-away

venues for exams on the same day is deemed to be a poor assignment.

In the event of an emergency (for example, Severe Acute Respiratory

Syndrome (SARS) outbreak) when the University needs to re-assign examinations to

venues within a very short period of time, a venue assignment engine will be very

critical and handy. This was the situation for examinations in semester 2 2002/2003

when SARS outbreak occur just a few weeks before the examination period. As SARS

can be spread by droplet infection and close contact with SARS patients, the university

has to make re-arrangements for examinations to limit exposure and risk

(http://www.nus.edu.sg/sars/measures.htm). This includes reducing the size of groups

by de-centralizing exams to many venues and increasing the table to table distance in

venues. The increase in table to table distance caused a drop of more than 20% in the

number of seats available in the examination venues used. For example, for one of the

major exam venue, Multi-Purpose Hall 1, the number of seats available decreases from

850 to 660. The availability of a venue assignment engine could quickly perform a re-

assignment and advise if more venues are required.

We show that the problem of assigning examinations to venues can be modeled

as a multiple knapsack problem in chapter 2.

1.4 Thesis Outline

In this thesis, we study the Multiple Knapsack Problems with Inter-related

Items (MKPIR), which is a variant of MKP, in which binary relationships exist

between items and adopted a few heuristics for solving knapsack problems of this

6

CHAPTER 1 INTRODUCTION

variant. Practical applications for MKPIR include the venue assignment problem and

shelf space allocation problem (SSAP)[Yang 2001]. Chapter 2 explains the MKPIR in

details and models the VAP as an instance of MKPIR. Chapter 3 shows some

interesting user interfaces and key functionalities offered by the UTTSExam System. In

Chapter 4, various heuristics are presented. They include Tabu Search, Simulated

Annealing and “Squeaky Wheel Optimization”. We have attempted to post-optimized

the results from “Squeaky Wheel Optimization” using Tabu Search. In Chapter 5, we

demonstrate the effectiveness of our heuristics by studying its use on VAP, a

subproblem of an examination-scheduling problem, based on real data from the

National University of Singapore and generated test instances. The details of the

experiments performed using these heuristics and hybrids are given and our

experimental results are analyzed. Finally, in Chapter 6 we discuss possible future

works and present our conclusions.

7

Chapter 2

Multiple Knapsack Problem

Knapsack Problems have been intensively studied since the emergence of

Combinatorial Optimization due to their many applications in industry and financial

management. They also appear as a sub-problem in many more complex algorithms,

and these algorithms will benefit from any improvement in this field. The family of

knapsack problems all considers a set of items, each associated with a profit and

weight. The objective is to choose a subset of the given items such that the

corresponding profit sum is maximized without exceeding the capacity of the

knapsack(s). Different types of Knapsack Problems arise depending on the distribution

of items and knapsacks and the constraints involved.

In the multiple knapsack problem (MKP)[Martello and Toth, 1990; Pisinger

and Toth 1998], N items of different sizes have to be packed into M knapsacks with

limited volume. Each item j has an associated profit and weight . The problem

is to select M disjoint subsets of items, such that subset i fits into knapsack i and total

profit of the selected items is maximized.

jp jw

In this report, we study the Multiple Knapsack Problems with Inter-related

Items, a variant of MKP, in which binary relationships exist between items. The next

section shall describe the problem in detail.

8

CHAPTER 2 MULTIPLE KNAPSACK PROBLEM

2.1 Multiple Knapsack Problem with Inter-related Items

In Multiple Knapsack Problems with Inter-related Items (MKPIR), we are

given a set of items to be packed into a set U of N M knapsacks. Each item has a

positive weight , and each knapsack has a limited capacity . In addition, binary

relationships may exist between items. Consider two items, i and , packed in

knapsacks x and y respectively. If there exists a relationship between the two items,

then the value of the relationship between i and , is where is the distance

measure between knapsacks x and y. Accordingly, item has profit

when considered for possible inclusion in knapsack x . Thus, unlike

most other variants of MKP in which the profit of item i is a constant, the value of

item i in MKPIR, varies. The value of depends on the relationship of item i

with other items and the knapsack solution. In addition, an assignment restriction is

imposed on the items. For each item i , a set of knapsacks that can hold item

is specified. The objective is to

i

iw x xv

j

ijr

j xyijkr xyk

i

∑ =
=

N

j xyijix krp
1

ixp ixp

UAi ⊆ i

maximize (1) ∑∑
= =

=
M

x

N

i
ixix zpP

1 1

subject to , xix

N

i
i vzw ≤∑

=1
Mx ,...,1= . (2)

where if item is assigned to knapsack and 1=ixz i x 0=ixz otherwise

and that assignment restrictions are satisfied.

9

CHAPTER 2 MULTIPLE KNAPSACK PROBLEM

The minimization version of the problem MIN_MKPIR is obtained by defining

as the cost required to assign item to knapsack . However, to simply replace

by and state the objective of MIN_MKPIR as minimize∑∑ alone allows for

the trivial solution with 0 cost where no items are assigned to any knapsack. Hence

MIN_MKPIR is defined as

ixc i x ixp

ixc
= =

M

x

N

i
ixix zc

1 1

minimize (3) ∑∑
= =

M

x

N

i
ixix zc

1 1

subject to , xix

N

i
i vzw ≤∑

=1
Mx ,...,1= . (4)

where if item is assigned to knapsack and 1=ixz i x 0=ixz otherwise

while maximizing where ix

N

i
i zw∑

=1
Mx ,...,1= and that assignment restrictions are

satisfied. Section 5.2 will discuss in detail how we evaluated these objectives in

MKPIR.

2.2 Formulation of VAP as MIN_MKPIR

The problem of assigning examinations to venues so as to minimize travel

distance for candidates, subjected to assignment restriction, can be formulated as an

instance of the MIN_MKPIR.

Each examination day may be viewed as a separate VAP, since examinations

scheduled on different days are independent. It is not a concern if candidates have to

10

CHAPTER 2 MULTIPLE KNAPSACK PROBLEM

take an examination in venue x on one day and another examination in venue the

next day.

y

In VAP, item refer to examination and the number of candidates for

examination i , which we also refer to as size of examination i is denoted by . Due

to the nature of the problem, all candidates for each examination i must be assigned an

examination venue. The assignment of examinations to venues in each examination

timeslot is restricted to only the venues applicable during that timeslot. For each item i ,

is the set of venues applicable in the timeslot in which examination i is scheduled,

while taking its venue constraint into consideration.

iw

iA

The distance that needs to be traveled by candidates of examination i to

examination which is scheduled on consecutive timeslots on the same day is

translated into cost for both examinations i and j. The number of candidates that need

to sit for both examinations i and ,

j

j Mji ≤≤ ,1 , is represented by . If examination

 is held in venue while examination is held in venue , then is the distance

between venue and venue . Hence candidates will need to travel distance if

examination is held in venue while examination is held in venue . Cost of

holding examination in venue is thus

ijr

i x j y xyk

x y ijr xyk

i x j y

i x ∑ =
⋅=

N

j xyijix krc
1

.

A good solution to the venue assignment problem is one with minimum

cost and that packed as many exams as possible without splitting across

multiple venues.

∑∑
= =

M

x

N

i
ixix zc

1 1

11

CHAPTER 2 MULTIPLE KNAPSACK PROBLEM

Figure 1: Venue Assignment Problem as an instance of a MKPIR

Figure 1 shows a venue assignment problem for an examination day. The

number of candidates that have to sit for back-to-back examinations is shown along the

dotted line. The distance between two venues is shown on the solid line. For

example, if there are 57 students who take both examination B and examination P

(), and examination B is assigned to venue 1 while examination P is assigned

to venue 2, then 57 students will have to travel from venue 1 to venue 2 for their next

examination. Cost of holding examination B in venue 1 will be since the

distance between venue 1 and venue 2,

xyk

57=BPr

2057×

2012 =k .

…

…

18 students

13 students

100 students

8km

8km

20km

20km

5km

5km

Session EV

Session PM

Venue
1

Venue
2

Venue
3

Venue
1

Venue
2

Venue
3

Venue
1

Venue
2

Venue
3

Session AM

Exam
A

Exam
B

Other
exams …

Exam
P

Exam
Q Other

exams

Exam
X

Exam
Y

Other
exams

57 students

125 students

12

CHAPTER 2 MULTIPLE KNAPSACK PROBLEM

2.3 Related Work

MKP is NP-hard in the strong sense [Martello and Toth 1990] and thus no fully

polynomial approximation scheme can be found unless NPP = [Garey and Johnson

1979]. Several exact algorithms and approximation algorithms have been presented to

solve the multiple knapsack problem.

[Hung and Fisk 1978] presented a depth-first branch and bound algorithm

where the upper bounds were derived by either Lagrangian relaxation or surrogate

relaxation. Choice of the item selected at each level of the decision then depends on

the relaxation used. In the Lagrangian case, the algorithm selects the item which had

been inserted in the most knapsacks. While in the surrogate case, among all the items

that are not assigned, the item with the lowest index is selected. The items are sorted

according to
N

N

w
p

w
p

w
p

≥≥≥ ...
2

2

1

1 and the knapsacks are sorted in non-increasing order.

Previous work on MKP and its variants [Shachnai and Tamir, 2001][Dawande

and Kalangnanam 1998] however assume that (i) items are not related and that

relationship between items has no effect on the assignment, (ii) profit/cost of items has

a fixed value, regardless of the knapsack it is being assigned to and its relationship

with other items, and (iii) items may be assigned to any knapsack as long as the

capacity of the knapsack is not exceeded. Though 21 -approximation algorithms were

presented in [Dawande et al. 2000] for a MKP with assignment restriction, profit/cost

of items is however fixed and there is no relationship between the items.

13

Chapter 3

System User Interface

This chapter shows some of the key functions and screenshots of the

UTTSExam System.

3.1 Exam Scheduler

Figure 2: Exam Scheduler

14

CHAPTER 3 SYSTEM USER INTERFACE

Figure 2 is the screen that allows examination timetable to be scheduled based

on enrolment estimates and other timetable constraints entered. The main scheduling

window is a cross-table with each row representing an examination session, and each

column representing a venue partition (e.g. big venues BIG_V and small venues SM_V).

This window has two views, Zoom Out and Zoom In view. The Zoom Out view allows

entire timetable structure to be viewed without giving too many details, and is useful

when the user just wish to have an overview of the timetable. The Zoom In view

expands the cross-table to give the number of examinations and the remaining capacity

(in terms of number of seats filled / total capacity) for each partition/session pair. The

timetable may be changed manually. All slots which are available and will not cause

any constraints violation for the selected examination will be highlighted to the user.

15

CHAPTER 3 SYSTEM USER INTERFACE

3.2 Venue

Figure 3: Edit Venue Layout

One of the tasks of an examination timetabling scheduling system is to place

examinations into the various venues in various timeslot, subjected to several

constraints and to assign each candidate a seat for each examination. As such,

particulars like capacity, layout, and available dates of the venues need to be defined.

Figure 3 shows one of the screens for editing layout of venues. In this screen,

arrangements of walls, doors and seats within a venue can be specified. In order for

venues with large number of seats to be more manageable, the facility enables seats to

be divided into different sections.

16

CHAPTER 3 SYSTEM USER INTERFACE

3.3 Venue Assignment

Figure 4: Venue Assignment

 After student registration, when actual student data is known for each module,

there will be sufficient information to perform venue assignment for each examination.

Venues are assigned to examinations such that the number of students that need to

travel between venues for consecutive examinations is minimized and that as few

examinations as possible have to be held across multiple venues. The venue

assignment generated by the engine may be manually altered using the screen shown

in Figure 4. Examinations to be held in each venue for every timeslot each day may be

viewed in this screen. For each examination, the number of seats allocated to specific

venue is also shown. As students sometimes dropped modules half way through the

17

CHAPTER 3 SYSTEM USER INTERFACE

course, the number of seats allocated may become over-allocated. Problems like this

will be highlighted to users.

3.4 Seat Assignment

Figure 5: Seat Assignment

 Only after examinations have been assigned specific venues, seat assignment

can then be performed to assign each candidate a seat for each examination. Figure 5

allows user to either manually or automatically assign seats to each candidate for each

examination. The automatic seat assignment engine allocates candidates to their seats

in ascending seat number sequence. Candidates will be sorted by either their names or

their matriculation numbers, depending on user’s selection.

18

Chapter 4

Heuristics

In this chapter, we discuss a few well-known heuristics, which we used on the

venue assignment problem. These heuristics include a greedy method (Greedy), Tabu

Search (TS) [Glover 1986, Glover and Laguna 1993], Simulated Annealing (SA)

[Kirkpatrick 1983] and “Squeaky Wheel Optimization” (SWO) [Joslin & Clements

1998] [Joslin & Clements 1999].

TS and SA are both forms of neighbourhood search. That is, they both involve

considering a single solution and then calculating the neighbourhood of that solution

and move to one of these neighbours. The method by which a solution’s

neighbourhood is calculated is implementation specific. It could consider all possible

solutions arising from moving an item to different knapsacks, or all possible

combinations of swapping two items in the assignment, or even both combined. The

two methods differ in the criteria used to select which neighbouring solution to move

to. Neighbourhood search are often thought of in terms of the underlying landscape

where better solutions have lower altitude. A move to a higher quality solution is

therefore referred to as a downhill move while a move to a lower quality solution is

referred to as an uphill move.

19

CHAPTER 4 HEURISTICS

SWO is a form of iterative variable ordering method. In every iteration, the

variables are re-ordered based on the priorities placed on the variables. These priorities

are determined by analyzing the solution generated in the previous iteration.

4.1 Greedy Method

The greedy method requires items to be sorted by weight in non-increasing

order. At each step, the next item in the list is assigned to the first available knapsack

that does not violate capacity and assignment restriction.

4.2 Tabu Search

Tabu Search is a meta-strategy for guiding local search approaches to

overcome local optimality. This meta-heuristic has been reported in the literature

during the past decade as providing successful solution approaches for a great variety

of problem areas.

Tabu Search is based on neighbourhood search with local-optima avoidance in

a deterministic way using adaptive memory. The local procedure is a search that uses

move to define the neighbourhood of a given solution. Memory is implemented by the

recording of previously chosen moves using simple but effective data structures known

as tabu list. Moves in the tabu list are forbidden for a certain number of iterations and

thus prevents cycling and at the same time promotes a more diversified search of the

solution through hill-climbing.

20

CHAPTER 4 HEURISTICS

An important aspect of Tabu Search is Tabu Operators, which are used to

explore neighbouring solutions, thereby creating a move, given a solution. Operators

that we used in solving the venue assignment problem include a relocate operator,

exchange operator and multi-exchange operator which will be discussed in detail in

section 4.4. Feasibility of the solution is ensured after the application of an operator.

In each iteration, the list of tabu operators is polled and the operator that gives

the best move is selected, even if the resultant solution quality is lower than the current

solution. If the selected move is not in the tabu list, it will be used to update the current

solution. This chosen move is then updated in the tabu list and will only be released

after a pre-determined number of iterations. At times, a taboo-ed move may be allowed

if it results in a solution that is better than the best found in preceding iterations. This is

known as the inspiration level criterion. We noted that this overriding of the tabu status

Generate a feasible solution S
Initialise tabu list

;0:_ =improvenon

repeat
for each operator, select the best move
from the set of best move, select the best non-taboo-ed move, b

update S using b

 add b to tabu list

 if is inferior to the best solution found then S
1_:_ += improvenonimprovenon ;

 else
set current solution to best solution;

0:_ =improvenon ;

until non improvenonimprove _max__ ≥ .

Figure 6: Tabu Search

21

CHAPTER 4 HEURISTICS

of a move will not lead to cycling thereby leading to an already known solution since

such an action will only be allowed if a move leads to a better solution. Otherwise, this

better solution would already have been found earlier. The Tabu Search algorithm is

described in Figure 6.

4.3 Simulated Annealing

Simulated Annealing (SA), like tabu search, is another meta-heuristic method

that has a mechanism to escape from local optimum. SA is an iterative stochastic

search method derived from the physical annealing process. The SA process starts with

a high temperature and is periodically reduced according to some cooling schedule

which is part of the algorithm’s configuration. As in Tabu Search, operators are used to

search neighouring solution. Moves that give rise to a better solution are always

accepted while deteriorating moves are only accepted with a certain probability. By

allowing moves to inferior solutions under the control of a randomized scheme, the

chance of getting stuck in a poor local optimum is reduced. Specifically, if a move

from the current solution to an inferior solution results in a change of value , this

move will be accepted if

q∆

RTq >∆−)/exp(

where T is the current temperature

 q∆ is the difference in objective value between two solutions

 is a random number]1,0[∈R

22

CHAPTER 4 HEURISTICS

When the temperature is initially high, many inferior moves are accepted. This

acceptance rate drops and inferior moves are nearly always rejected as the temperature

drops.

The most important factor of SA in practical application is the cooling schedule

which we represent using the following parameters:

• , the initial temperature, INITT

• , a function for lowering the temperature, f

• , the terminating temperature, TERMT

• iter , the maximum number of iterations,

• , the number of iterations for each temperature iterlocal _

There are basically two types of schedules: static and dynamic. In static cooling

schedules, the parameters are fixed and are not changed during the execution of the

algorithm. In dynamic cooling schedules, parameters are adaptively changed during

the execution of the algorithm.

In our implementation of SA, the dynamic cooling schedule used is a

modification of a commonly used static schedule known as the geometric schedule

which originates from the early works of Kirkpatrick.

INITT is set to a sufficiently high temperature such that most of the moves are

accepted in the beginning.

23

CHAPTER 4 HEURISTICS

In our implementation of , we used a simple and frequently used decrement

function given by

f

kk tt ⋅=+ α1

where k is the iteration thk

 α is a positive constant close to 1, typically in the range 0.8 to 0.99

Though in theory the SA process should continue until , the terminating

temperature zero, it is a common practice to terminate the process when the chance of

accepting an inferior move becomes negligible. is thus set at some small value

close to zero.

TERMT

TERMT

iterlocal _ is ensured of a minimum value at each temperature and increases

as the acceptance rate ar decreases. However, to avoid having to perform an

extremely large number of iterations when the acceptance rate gets low, s

bounded by a constant . The function used to determine s

given by:

iterlocal _ i

max_ iterlocal iterlocal _ i

iterlocal _ =)_(_ maxmin iterlocalariterlocal ×+

The choice of a cooling schedule radically affects the final solution quality,

with faster cooling schedule reaching a local optimum quickly. Slower schedules

performed a more thorough search, resulting in a higher quality solution generally, but

taking considerably longer to do so.

The simulated annealing algorithm as in the case of minimization is described

in Figure 7.

24

CHAPTER 4 HEURISTICS

Generate a feasible solution, s

;0:=k

;0:_ =improvenon

repeat

for l to local 1:= iter_

 Selects a neighourhood of the current solution, S

 Save the best move, b

if b arise in better solution or RTq >∆−)/exp(then

accept b

else reject b

1: += kk ;

if best move, b is accepted then

Calculate local iter_

Calculate T

if objective() < objective(bestSolution) then S
Set current solution to best solution

else 1_:_ += improvenonimprovenon

else 1_:_ += improvenonimprovenon ;

until termination criteria reached.

Figure 7: Simulated Annealing

The termination criteria is reached when either

• the number of non-improving moves reached the maximum number of

non-improving specified ;

• is reached; TERMT

• or iter is reached.

25

CHAPTER 4 HEURISTICS

4.4 Operators

In this section, we shall describe in details the three operators, namely the

relocate operator, exchange operator and multi-exchange operator that we used in

Tabu Search and Simulated Annealing.

4.4.1 Relocate Operator

The relocate operator relocates an item from a knapsack to another knapsack

while ensuring that knapsack capacity is not violated and the destination knapsack is

admissible to the item. Figure 8 illustrates an example of an item being relocated to

another knapsack.

Figure 8: Relocate Operator

26

CHAPTER 4 HEURISTICS

When an item is relocated from one knapsack to another, the cost of assigning

item to knapsack may change. In the above example, lets consider only the relationship

of item C and item D such that the value of is 12. Assumed that the distance

measure of knapsack 1 (contains item C) and knapsack 2 (contains item D), is 4.

Before the relocate operation, the cost of assigning item C is 48. However, after item

C is relocated to knapsack 2, the cost of assigning item C becomes 0. This is because

item C and D are now in the same knapsack (

CDr

12k

022 =k). As we can see, relocate

operation can potentially minimize the relationship cost. Still, the effectiveness of this

operator depends largely on the overall items relationship network as well as the

distance measure among the knapsacks. By attempting to reduce the relationship cost

of one item with another item may increase its cost with its other related items. Hence,

it is important to consider the overall effect in the cost of all related items when an

item is relocated from one knapsack to another.

Another advantage of using this operator is that it can potentially relocate an

unassigned item to a knapsack whose freed space has earlier been occupied. This

helps to achieve the second objective of minimizing the number of unassigned items.

4.4.2 Exchange Operator

In addition to the relocate operator, we have the exchange operator which

exchanges the knapsacks of two items. Similar to the relocate operator, the exchange

operator may help to minimize the overall cost of assigning the two considered items.

The exchange operator works in one of the two ways.

27

CHAPTER 4 HEURISTICS

First: the operator exchanges the knapsacks between two items that already has

a knapsack assigned.

Second: the exchange operator may also assign a previously unassigned item

to the knapsack in which an item currently resides and in turn, unassigns the latter item

from the knapsack if this change results in a better overall solution.

Figure 9 illustrates an example in which the exchange of knapsacks between

two items results in a reduction of the overall relationship cost.

Figure 9: Exchange Operator

In the above example, consider only the relationship of item B and item D such

that the value of is 6. Assume that the distance measure of and is 8 and 2

respectively. Before the exchange operation, the cost of assigning item B is 48. After

exchanging knapsacks of item B and C, the cost of assigning item B is reduced to 12.

This is due to the fact that item B is shifted to a knapsack that has a lower distance

BDr 13k 23k

28

CHAPTER 4 HEURISTICS

measure with respect to knapsack 3 (where item D is in). Again, as with the relocate

operator, the overall cost savings resulted from an exchange operation has to take into

account of all the related items of the two exchanged items.

One limitation of the relocate operator is that it is very difficult to relocate

items to knapsacks that are filled almost completely. With the exchange operator, it is

possible to exchange items between two tightly filled knapsacks, as long as the size of

the item in consideration from the first knapsack plus the remaining capacity of its

knapsack is greater than the size of the item from the second knapsack, and vice versa.

Thus, this operator gives additional flexibility to the number of possible moves the

search heuristic can make.

4.4.3 Multi-Exchange Operator

The relocate and the exchange operators bring only a small change at a time to

the solution as at most two items were involved during the operation. It may take a

long time for the solution to converge. In addition, the operators are very restrictive

due to the presence of capacity and knapsack admissibility constraints. As such, the

operators may not be effective to bring about a big change to the overall solution.

The multi-exchange operator attempts to rectify this shortcoming by allowing

more items to be involved during its operation. The operator selects two knapsacks and

unassigns all items that have been assigned to these two knapsacks. These items

together with the list of previously unassigned items will be reconsidered for

assignment to the two selected knapsacks. A greedy algorithm is then used to assign

these items to the two knapsacks.

29

CHAPTER 4 HEURISTICS

4.5 “Squeaky Wheel” Optimization

The key idea of SWO is a Construct/Analyze/Prioritize cycle, as illustrated in

Figure 10. Elements of the problem are placed in a priority queue. These elements are

ordered by their priority values based on some predefined measure. A solution is

generated by the constructor using a greedy algorithm, making decisions based on this

order. The solution is then analyzed to find the problematic elements of the solution.

Problematic elements refer to those elements that contributed to the poor solution. For

example, in VAP in which minimizing student movement is one of the objectives,

examinations that have student movement are penalized. A blame factor is assigned to

these problematic elements, increasing their priorities. Difficult elements with their

higher priority value are thus nearer to the front of the sequence and handled sooner by

the constructor on the next iteration. As elements at the front of the sequence tends to

be better handled, and results in a lower blame factor. This whole process is performed

iteratively until a termination condition occurs.

Analyzer

Figure 10: The Construct/Analyze/Prioritize cycle

Prioritizer Constructor
Priorities

Solution Blame

30

CHAPTER 4 HEURISTICS

The three main components of SWO are:

Constructor

 Given a sequence of problem elements, the constructor generates a solution

using a greedy algorithm. This sequence determines the order in which decision will be

made.

Analyzer

The analyzer is responsible for assigning a numeric “blame” factor to elements

that contribute to defects in the current solution. By analyzing the solution, difficult

elements are differentiated from the easier ones and be given the appropriate attention

in the next iteration. Though this information about the problem structure is local and

may only apply to the search space currently under examination, it is useful in

determining which direction the search should head towards next.

Prioritizer

The prioritizer uses the blame factor assigned by the analyzer to modify the

previous sequence of the problem elements. Elements that are blamed are moved

towards the front of the priority queue. The higher the blame, the further the element

will be moved.

Priority sequence of items plays an important role in SWO. Depending on the

amount of blame placed on the elements, elements get shifted up and down the priority

queue. As a difficult element move forward in the sequence, it will be handled sooner

by the constructor and tends to be handled better, its blame factor decreases as well.

Difficult to handle elements thus move rapidly up the sequence to a position they will

31

CHAPTER 4 HEURISTICS

be handled well. Once that happens, the blame factor assigned to them drops, causing

them to slowly slide down the sequence as other part of the problem that has not been

handled well are given more priority. As the algorithm iterates, elements that are

always easy to handle sink to the back of the sequence and stay there, while more

difficult elements move back and forth the priority queue trying to get into a position

they can be handled well without depriving others.

SWO was chosen as one of our heuristics because of its suitability to our

problem. In MKPIR, some elements may be more difficult to handle than others. For

example, some items can be assigned to only a few knapsacks, while others allow for

much more flexibility. Then some items have many relationships with other items

while others have none at all. Clearly, changes in the sequence of items to which items

are assigned knapsack make a difference to the overall assignment. Even a small

change to the sequence can result in great consequences for any items that are behind it,

since items with lower-priority can only be assigned to the leftover knapsack after

higher-priority items have been assigned. As the difficulty of the assignment of an item

is reflected by its priority value, these changes will be beneficial to the overall solution.

Implementation

At the constructor, items are assigned to the knapsack that will not result in any

relationship cost or one with minimum relationship cost if that is inevitable, subjected

to knapsack admissibility constraint and knapsack capacity constraint.

32

CHAPTER 4 HEURISTICS

At the analyzer, a blame factor is assigned to:

- items that are not assigned any knapsack ;

- items that results in relationship cost;

The numeric blame value assigned to an item for the different type of blame is as

follows:

Item not assigned any knapsack

A simple method will be to assign size of the unassigned item as the blame value.

However, this method will not be desirable if size of the items differs greatly. Items

which are small in size but restrictive in the knapsacks it can be assigned to, will never

make it to the front of the priority queue. On the other hand, a large item if not

assigned, may quickly jump right to the front of the queue and never move down again.

We mentioned earlier that once an item is handled well, its blame factor will decrease

and it will slowly slide down the queue when the blame factor of other mishandled

items increase. However, if size of the item is used as the blame value, it will take

many iterations before the blame factor of a small and difficult item surpassed that of

the large item.

Therefore, to prevent large item from domineering the front of the queue, a

function is required so that small items get their fair chance of climbing up the priority

queue.

33

CHAPTER 4 HEURISTICS

In our implementation, the penalty value inflicted on items that are not assigned

to any knapsack is computed as follows:

 ItemSize×10
1 if 1000≥ItemSize

 ItemSize×5
1 if 1000500 <≤ ItemSize

penalty value = ItemSize×4
1 if 500300 <≤ ItemSize

 ItemSize×2
1 if 300100 <≤ ItemSize

 if ItemSize 10050 <≤ ItemSize

 if ItemSize×10 50<ItemSize

where is the size of the item. ItemSize

Item that results in relationship cost

The penalty value assigned to items that result in relationship cost is the total

cost of its relationship with other related items.

4.6 Combining “Squeaky Wheel” Optimization and Tabu Search

In SWO, moves in the solution space are made indirectly, via the re-

prioritization of elements that result from analyzing the previous solution. In each

iteration, a solution is created from scratch based on this prioritization of the elements.

A small change in the sequence of the elements may thus correspond to a large change

34

CHAPTER 4 HEURISTICS

in the corresponding solution generated by the constructor, compared to the solution

from the previous iteration. Though the ability of SWO to make a single large move in

the solution space is a strength of the approach, it is also a weakness. SWO is poor at

making small “tuning” moves in the solution space. As suggested by [Joslin &

Clements 1999], SWO could be combined with local search to look for improvements

in the vicinity of good solution. Incorporating an effective local search in the

constructor may however considerably slow down the speed of SWO. Therefore, we

have attempted to apply Tabu Search to the resultant solution of SWO only after SWO

terminates.

35

Chapter 5

Experimental Results

5.1 Experimental Data

 In order to evaluate the effectiveness of our proposed heuristics, sets of real

enrolment data together with the examination timetable schedule produced by the

examination timetable scheduler in UTTSExam was used for testing. In addition,

problem instances with different characteristics were randomly generated. We would

like to see how these different parameterizations affect the performance of the

heuristics.

5.1.1 Actual Data

We obtained student registration data from the NUS Computer Centre for

semester 2 of the academic year 2001/2002 (0102_sem2), semester 1(0203_sem1) and

semester 2 (0203_sem2) for academic year 2002/2003, venue constraints for each

examinations and the examination timetable schedule without actual venues from

UTTSExam. The data consisted of a set of text files containing the list of student-

examination tuples and the examination timeslot assigned to each examination. Table 1

to Table 3 shows the characteristics on the set of data for each of the semesters.

Examinations are held over a period of 12 days. Number of oversize examinations

refers to the number of examination whose number of candidates is more than the

capacity of any of the available venues. It is therefore not possible to assign a venue to

36

CHAPTER 5 EXPERIMENTAL RESULTS

Day Number of
Examinations

 Number of Over
Size Examinations

Number of
Relations

Average Relation
Size

1 111 1 96 6
2 80 0 108 7
3 100 0 102 3
4 80 0 108 3
5 84 0 79 2
6 114 0 166 1
7 105 0 160 2
8 88 0 124 2
9 90 0 87 3
10 77 0 57 3
11 61 0 29 2
12 59 0 18 5

Table 1: Characteristics of 0102_sem2

Day Number of

Examinations
 Number of Over

Size Examinations
Number of
Relations

Average Relation
Size

1 48 1 78 8
2 41 1 52 8
3 44 0 85 2
4 48 0 113 6
5 36 1 29 5
6 36 0 18 8
7 48 0 79 6
8 48 0 124 3
9 46 0 108 3
10 42 0 101 3
11 27 1 9 1
12 31 0 16 4

Table 2: Characteristics of 0203_sem1

Day Number of

Examinations
 Number of Over

Size Examinations
Number of
Relations

Average Relation
Size

1 89 2 89 8
2 95 0 137 2
3 93 3 172 3
4 112 0 165 2
5 83 1 64 3
6 69 1 70 2
7 108 0 162 2
8 105 0 142 2
9 95 0 139 2
10 73 0 63 2
11 69 1 57 1
12 76 1 58 2

Table 3: Characteristics of 0203_sem2

37

CHAPTER 5 EXPERIMENTAL RESULTS

examination of this nature unless the examination is held in multiple venues. Number

of relations refers to the number of back-to-back examinations.

Table 4 gives the list of examination venues that are used for scheduling

examinations for academic year 2001/2002, semester 2. The Suntec City Exhibition

Hall is an off-campus venue rented by NUS for examination purpose, while the rest of

the venues are on-campus venues. On-campus venues are relatively closer to each

other. We have assigned a value of one unit to denote the distance between Suntec City

Exhibition Hall and the rest of the on-campus venue. A unit of zero is assigned to

denote the distance between the on-campus venues. For most of the examinations, all

the venues available in that session are admissible except the two drawing rooms.

Usage of the two drawing rooms is restricted to examinations which require large

drawing papers.

Venue Capacity
Suntec City Exhibition Hall 1600
Gymnasium 312
Multi-Purpose Sports Hall 1 750
Multi-Purpose Sports Hall 2 850
Competition Hall 396
Eusoff Hall 175
Lecture Theatre 8 117
Lecture Theatre 11 125
Lecture Theatre 13 81
Lecture Theatre 17 112
Drawing Room 1 62
Drawing Room 2 54

Table 4: List of Examination Venues for 0102_sem2

From academic year 2002/2003, off-campus commercial venues are no longer

rented to hold examinations. Big and small venues suitable for holding examinations

from all over the campus are used instead. We have assigned a value of one unit to

38

CHAPTER 5 EXPERIMENTAL RESULTS

denote the distance between venues that are not within walking distance and a unit of

zero to others that are within a five minutes walk. As most of the smaller venues are

owned and managed by the faculties, these venues are restricted to only examinations

conducted by the faculty. Table 5 and Table 6 shows the examination venues that can

be used for academic year 2002/2003 semester 1 and semester 2 respectively.

Venue Capacity Allowed Users
Multi-Purpose Sports Hall 1 800 All
Multi-Purpose Sports Hall 2 900 All
Multi-Purpose Sports Hall 4 90 All
Gymnasium 312 All
Competition Hall 420 All
Eusoff Hall Function Room 175 All
Temasek Hall Multi-Purpose Room 111 All
Pgp Residences Multi-Purpose Hall 220 All
Engrg Blk 1, #06-02/03 72 Engineering
Engrg Blk 1, #06-05/06 65 Engineering
Engrg Blk 1, #06-07/08 65 Engineering
Engrg Blk 1, #06-09/10 70 Engineering
Engrg Blk 3, #06-06/07 65 Engineering
Engrg Blk 3, #06-08/09 65 Engineering
Engrg Blk 3, #06-10/11 70 Engineering
Engrg Blk 3, #06-02/03 72 Engineering
Engrg Blk 5, #03-04/05 75 Engineering
Engrg Blk 5, #03-06/07 72 Engineering
Faculty of Arts & Social Sciences Blk 1, #02-01/04 120 Arts & Social Sci
Faculty of Arts & Social Sciences Blk 1, #03-01/04 130 Arts & Social Sci
Faculty of Arts & Social Sciences Blk 3, #02-12/15 90 Arts & Social Sci
Faculty of Arts & Social Sciences Blk 6, #02-12/15 160 Arts & Social Sci
Lecture Theatre 8 117 Arts & Social Sci
Lecture Theatre 9 74 Arts & Social Sci
Lecture Theatre 11 125 Arts & Social Sci
Lecture Theatre 13 81 Arts & Social Sci
Tutorial Wing, Level 3, S4A Building 150 Science
Science Blk 13, Level 5 110 Science
Tutorial Wing, Room 30 To 41, Level 4, S16 Building 110 Sch. Of Computing

Table 5: List of Examination Venues for 0203_sem1

For each venue, the faculties that may conduct examinations in that venue is

shown. Noticed that although the venues available in semester 2 2002/2003 may be

39

CHAPTER 5 EXPERIMENTAL RESULTS

Venue Capacity Allowed Users
Multi-Purpose Sports Hall 1 572 All
Multi-Purpose Sports Hall 2 660 All
Multi-Purpose Sports Hall 4 60 All
Gymnasium 230 All
Competition Hall 348 All
Eusoff Hall Function Room 136 All
PGP Residences Multi-Purpose Hall 168 All
Engrg Blk 1, #06-02/03 72 Engineering
Engrg Blk 1, #06-05/06 65 Engineering
Engrg Blk 1, #06-07/08 65 Engineering
Engrg Blk 1, #06-09/10 70 Engineering
Engrg Blk 3, #06-06/07 65 Engineering
Engrg Blk 3, #06-08/09 65 Engineering
Engrg Blk 3, #06-10/11 70 Engineering
Engrg Blk 3, #06-02/03 72 Engineering
Engrg Blk 5, #03-04/05 75 Engineering
Engrg Blk 5, #03-06/07 72 Engineering
Lecture Theatre 7A 100 Engineering
Engineering Auditorium 100 Engineering
Faculty of Arts & Social Sciences Blk 1, #02-01/04 81 Arts & Social Sci
Faculty of Arts & Social Sciences Blk 1, #03-01/04 75 Arts & Social Sci
Faculty of Arts & Social Sciences Blk 3, #02-12/15 55 Arts & Social Sci
Faculty of Arts & Social Sciences Blk 6, #02-09/14 102 Arts & Social Sci
Lecture Theatre 8 117 Arts & Social Sci
Lecture Theatre 9 74 Arts & Social Sci
Lecture Theatre 11 125 Arts & Social Sci
Lecture Theatre 13 81 Arts & Social Sci
Tutorial Wing, Level 3, S4A Building 79 Science
Science Blk 13, Level 5 110 Science
Science 1A, #02-12 40 Science
Science Blk 4A, Level 1 & 2 88 Science
S4A, Level 3 Tutorial Wing Rooms 6 To 10 56 Science
Science Library 350 Science
Tutorial Wing, Room 30 To 41, Level 4, S16 Building 110 Sch. of Computing
S16, Level 3 Seminar Room 1 65 Sch. of Computing
Lecture Theatre 27 150 Sch. of Computing
SDE2 #03-15/16, Executive Classrooms 4 & 5 60 SDE
SDE2 #03-12/13, E Studio 60 SDE
Lecture Theatre 16 95 Sch. of Business
Lecture Theatre 17 100 Sch. of Business
Hon Sui Sen Auditorium 50 Sch. of Business
Moot Court, Faculty Of Law 64 Law
Faculty Conference Rm, Faculty Of Law 45 Law
Blk Admin Level 7 Conf Rom 64 USP
Blk Admin, Level 7 Tr3 64 USP
Blk Admin, Level 7 Tr5 64 USP
Blk Admin, Level 5 Sr4 64 USP
Blk Admin, Level 5 Sr5 64 USP
USP Blk Adm 70 USP

Table 6: List of Examination Venues for 0203_sem2

40

CHAPTER 5 EXPERIMENTAL RESULTS

similar to that that is available in semester 1 2002/2003, the capacity available for each

venue is about 20% to 30% less than the previous semester. This reduction was due to

the measures taken by the University’s during the Severe Acute Respiratory Syndrome

outbreak. To reduce close contact between candidates, candidates are seated at least

one metre apart in the examination halls.

5.1.2 Generated Problem Instances

In addition to the actual data we have obtained from NUS Computer Centre,

three types of randomly generated problem instances are also considered. For each

type, admissibility density of knapsacks ranging from 0.1 to 1.0 is tested. The

problem instances are created such that for the first problem type, the number of

relationship between items is high. The other two types are designed such that the

iA

M
N ratio is large. For the second problem type, several items are to be fitted into a

few knapsacks, while the last type has many knapsacks and a few items.

For the many relationships instances, is randomly distributed in the

interval [, v is randomly distributed in the interval

iw

]100,10 y []200,10 and the number of

 for each item is randomly distributed in the intervalijr []40,10 .

For the many items and few knapsacks instances, is randomly distributed

in the interval

iw

[]150,1 , is randomly distributed in the interval and the

number of for each item is randomly distributed in the interval .

yv []5000,1000

ijr []10,0

41

CHAPTER 5 EXPERIMENTAL RESULTS

For the few items and many knapsacks instances, is randomly distributed

in the interval

iw

[]300,50 , is randomly distributed in the interval [and the

number of for each item is randomly distributed in the interval .

yv]300,50

ijr []10,0

For all instances, the value of is randomly generated such thatijr jiji wrw ≤≤ .

Table 7 shows the characteristics of each of the problem instances generated

based on the above parameter settings.

Table 7: Generated Problem Instances

Problem Instance Many Relationship
Instance

Many Items, Few Sacks
Instance

Few Items, Many Sacks
Instance

Number of Items 60 1000 60
Number of Sacks 10 10 40
Total Item Size 1223 23646 4772

Total Sack Capacity 1499 30208 6800
Total Number of Relations 853 3851 228

Average Number of Relations 14 3 3
Average Size of a Relation 6 4 30

5.2 Evaluation of the Assignment Quality

Though we have made the assumption that the total size of all items is less

than or equals the total capacity of the

N

M knapsacks in MKPIR, not all items may be

assigned a knapsack even in the optimal solution. Due to assignment restrictions, not

all knapsacks are admissible to an item. As a result, it is not always possible to assign

all items a knapsack even if . ∑∑
==

≤
M

y
yv

N

i
iw

11

2

Consider a problem instance which consists of four

items, , ,401 =w 302 =w 03 =w , with assignment restriction { }11 vA = , 104 =w

42

CHAPTER 5 EXPERIMENTAL RESULTS

{ }212 ,vvA = , ,{ }323 ,vvA = { }34 vA = and three knapsacks, 501 =v , ,402 =v 23 0=v .

Total size of the items to pack is 100 and the packing potential of the knapsacks is 110.

An optimal solution would be to assign to , to , to while is left

unassigned. Clearly, there exists no solution that is able to assign all items a knapsack

for the problem instance stated.

1w 1v 2w 2v 3w 3v 4w

In the venue assignment problem that motivated our study of the MKPIR

problem, the objective is to minimize total relationship cost incurred while maximizing

assigned weight. With the two objectives, the choice of the knapsack to which an item

is assigned becomes more critical. A solution that minimizes cost relationship incurred

does not necessarily maximize assigned weight.

One popular method of assessing the quality of solution to optimization

problems with multiple objectives is the weighted sum strategy. The weighted sum

strategy converts the multi-objective problem into a single-objective problem by

constructing a weighted sum of all the objectives. A weighting coefficient has to be

attached to each of the objectives.

() ()∑
=

⋅=
k

i
ii xfdxF

1
, where∑

=

=
k

i
id

1
1

The problem is, for the weights to reflect closely the importance of the

objectives; all functions have to be expressed in units of approximately the same

numerical values. Normalization of the functions is thus required since the measures

used for relationship cost and weights can be very different. In addition, by analyzing

one single value, it is difficult to tell which objective is doing better. For example,

given a 2-objective function 21)2,1(21 ObjdObjdObjObjF ×+×= where and 1d 2d

43

CHAPTER 5 EXPERIMENTAL RESULTS

are weight constants and 121 =+ dd . Assuming 8.01 =d and , if one solution

returns and another solution returns, both of them will have the same

objective value of 7.2. In this case, both solutions will be considered equal, which

makes it difficult to distinguish the goodness of one over the other. Furthermore, by

varying the weights, we can arrive at different best solution for the same problem

using the same heuristic. This makes the setting of weights’ value crucial and

ambiguous.

2.02 =d

)4,8(F)8,7(F

After considering the above, we adopt a prioritized objective function which

places the priority of one objective over the others. For the venue assignment problem,

the priority of our three objectives is ranked as follows:

1. minimize total size of unassigned examinations

2. minimize total number of unassigned examinations

3. minimize student movement, ∑∑
= =

M

x

N

i
ixix zc

1 1

One advantage of this measure is that the comparison of goodness of two

solutions becomes unambiguous. As in the earlier example, if Obj1 has a higher

priority over Obj2, then the solution having is clearly better than the

solution . This measure of solution quality is commonly adopted in other multi-

objective optimization problems such as the vehicle routing problem where the

objective “number of vehicles used” is normally deemed to have a higher priority over

the objective “total distance traveled by all vehicles”

)4,8(F

)8,7(F

44

CHAPTER 5 EXPERIMENTAL RESULTS

5.3 Implementation Matters

In chapter 4, we presented a few algorithms, namely a greedy algorithm, the

Tabu Search Algorithm, the Simulated Annealing Algorithm and the Squeaky Wheel

Optimization Algorithm. These algorithms were coded in JDK1.2 using IBM

VisualAgeTM for Java. All experiments are performed on a Pentium IV 2.4GHz PC

with 512MB RAM and computational times are rounded to the nearest second.

In the Tabu Search Algorithm, size of the tabu list is set to 20. The algorithm

terminates if it cannot find a move that improves the best found solution after 1000

consecutive iterations.

In the Simulated Annealing algorithm, the initial and terminating temperature

is set to 400 and 0.001 respectively. Cooling rate for the annealing process is set to

0.988. For each problem instance, SA runs a maximum of 100000 iterations. SA

terminates if it is not able to find a move that improves the global best solution after

1000 consecutive iterations. At each temperature, the minimum number of local

iterations is set to be 20 and the maximum number of local iterations allowed is 250.

In SWO, the algorithm is allowed to run for 10000 iterations before it is

terminated.

In our hybrid approach, in which we applied Tabu Search on the solution

obtained from SWO, SWO is also allowed to run for 10000 iterations before it is

terminated. Size of the tabu list for Tabu Search is set to be 20 while the maximum

number of non-improving moves is set to be 500.

45

CHAPTER 5 EXPERIMENTAL RESULTS

All the heuristics are set with the primary task of assigning all items a knapsack

given the available capacity and the secondary task of minimizing the relationship cost

between the assigned items.

5.4 Results

The breakdown of results is given as the size of items not assigned, number of items

not assigned and the relationship cost incurred. Relationship cost is calculated only for

items that have been assigned knapsacks. Items that are not assigned knapsacks do not

incur relationship cost since the relationship cost of an item largely depends on the

knapsack it is assigned to.

Table 8 to Table 10 show the results achieved for the actual data using the

heuristics. The results achieved are also shown graphically in Figure 11 to Figure 13.

46

CHAPTER 5 EXPERIMENTAL RESULTS

47

Greedy Tabu Search SA SWO SWO + Tabu Search
Day Size not

assign
#not

assign
Relation

cost
Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

1 1634 1 143 1634 1 96 1634 1 45 1634 1 36 1634 1 25
2 328 2 370 328 2 313 328 2 307 328 2 229 290 2 135
3 0 0 141 0 0 63 0 0 61 0 0 38 0 0 30
4 0 0 133 0 0 47 0 0 64 0 0 30 0 1 30
5 0 0 72 0 0 62 0 0 45 0 0 36 0 0 31
6 0 0 161 0 0 49 0 0 48 0 0 37 0 0 36
7 0 0 248 0 0 174 0 0 110 0 0 65 0 0 58
8 0 0 177 0 0 103 0 0 133 0 0 27 0 0 19
9 0 0 106 0 0 69 0 0 34 0 0 28 0 0 26

10 0 0 142 0 0 46 0 0 44 0 0 39 0 0 26
11 0 0 54 0 0 23 0 0 23 0 0 31 0 0 7
12 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0

Table 8: Results for 0102_sem2

On the 0102_sem2 problem, due to the availability of a huge venue with capacity 1600, all the heuristics are able to assign a venue to

each of the examinations on most of the days. The best result is obtained by using the hybrid approach which gives the lowest relationship cost

for all of the days. Generally, SWO outperforms Tabu Search and SA, while the results for Tabu Search and SA are comparable. Similarly for the

0203_sem1 problem, the best result is found using the hybrid approach for consistently all the days. On the 0203_sem2 problem, hybrid

approach generally did better than the rest of the heuristics except on the second and the third day when SA did better. For both the 0203 data sets,

the overall results found by Tabu Search, SA and SWO are comparable. The difference in results in terms of the size and number of examinations

CHAPTER 5 EXPERIMENTAL RESULTS

Greedy Tabu Search SA SWO SWO + Tabu Search
Day Size not

assign
#not

assign
Relation

cost
Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

1 1208 3 28 1208 3 2 1208 3 7 1208 3 3 1208 3 2
2 1286 1 12 1286 1 8 1286 1 5 1286 1 1 1286 1 1
3 0 0 41 0 0 2 0 0 1 0 0 1 0 0 1
4 115 1 150 115 1 90 115 1 92 115 1 106 115 1 67
5 961 1 18 961 1 0 961 1 0 961 1 0 961 1 0
6 715 4 38 715 4 38 715 4 38 715 4 31 638 3 37
7 0 0 40 0 0 13 0 0 9 0 0 11 0 0 8
8 0 0 124 0 0 49 0 0 14 0 0 2 0 0 2
9 141 1 52 0 0 2 0 0 3 0 0 2 0 0 2

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 1549 1 0 1549 1 0 1549 1 0 1549 1 0 1549 1 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9: Results for 0203_sem1

48

CHAPTER 5 EXPERIMENTAL RESULTS

Greedy Tabu Search SA SWO SWO + Tabu Search
Day Size not

assign
#not

assign
Relation

cost
Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

1 2022 3 77 2022 3 66 2022 3 53 2022 3 49 2022 3 49
2 390 4 202 282 3 152 390 4 163 390 4 143 250 2 142
3 2681 4 121 2681 4 101 2681 4 79 2681 4 113 2681 4 93
4 0 0 173 0 0 117 0 0 118 0 0 150 0 0 122
5 1469 1 39 1469 1 34 1469 1 29 1469 1 24 1469 1 22
6 1191 4 77 1191 4 61 887 2 67 1191 4 62 887 2 60
7 237 3 219 154 2 171 125 1 157 237 3 215 125 1 164
8 0 0 102 0 0 48 0 0 44 0 0 23 0 0 21
9 0 0 87 0 0 72 0 0 68 0 0 68 0 0 61

10 102 1 65 102 1 59 102 1 63 102 1 48 0 0 49
11 1532 1 18 1532 1 7 1532 1 0 1532 1 2 1532 1 1
12 729 1 0 729 1 0 729 1 0 729 1 0 729 1 0

Table 10: Results for 0203_sem2

49

CHAPTER 5 EXPERIMENTAL RESULTS

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12

Day

R
el

at
io

ns
hi

p
C

os
t

Greedy
Tabu Search
SA
SWO
SWO+Tabu Search

Figure 11: Relationship Cost for 0102_sem2

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12

Day

R
el

at
io

ns
hi

p
C

os
t

Greedy
Tabu Search
SA
SWO
SWO+Tabu Search

Figure 12: Relationship Cost for 0203_sem1

50

CHAPTER 5 EXPERIMENTAL RESULTS

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12

Day

R
el

at
io

ns
hi

p
C

os
t

Greedy
Tabu Search
SA
SWO
SWO+Tabu Search

Figure 13: Relationship Cost for 0203_sem2

that could be held in one single venue is not great for all three actual data sets. As the

ratio between the capacity made available and capacity required is rather high, this

makes it relatively easy for the heuristics to fit in most of the average size

examinations. An examination whose size is greater than the largest available venues

remains unassigned since these examinations are only assigned to multiple venues after

the termination of our heuristics and is not reflected in the results.

Computational time taken by the various heuristics for each of the actual data

sets is reflected in Table 11 to Table 13. For all three data sets, though the greedy

method requires the least amount of time, it clearly performs badly when its results is

compared with that that is found by the other heuristics.

51

CHAPTER 5 EXPERIMENTAL RESULTS

Day Greedy Tabu Search SA SWO SWO + Tabu Search
1 1 51 61 13 23
2 1 34 29 10 19
3 1 38 37 14 22
4 1 36 29 12 20
5 1 31 27 10 17
6 1 55 39 20 31
7 1 52 43 17 27
8 1 45 47 14 22
9 1 33 32 11 19

10 1 25 19 8 17
11 1 17 19 4 10
12 1 15 15 4 9

Table 11: Computational Time for 0102_sem2

Day Greedy Tabu Search SA SWO SWO + Tabu Search

1 1 141 74 6 24
2 1 68 29 4 16
3 1 97 40 7 18
4 1 281 92 7 23
5 1 21 14 3 8
6 1 24 6 2 9
7 1 91 40 7 19
8 1 122 82 10 22
9 1 112 48 10 27
10 1 104 18 10 22
11 1 15 4 2 7
12 1 17 5 3 7

Table 12: Computational Time for 0203_sem1

Day Greedy Tabu Search SA SWO SWO + Tabu Search

1 1 336 104 11 74
2 1 549 134 12 70
3 1 484 196 15 76
4 1 808 163 19 72
5 1 121 57 8 30
6 1 141 64 7 31
7 1 607 274 15 69
8 1 490 232 16 82
9 1 510 232 15 58
10 1 148 50 8 28
11 1 129 45 10 30
12 1 291 27 11 54

Table 13: Computational Time for 0203_sem2

52

CHAPTER 5 EXPERIMENTAL RESULTS

Greedy Tabu Search SA SWO SWO + Tabu Search
Density #not

assign
Size not
assign

Relation
cost

#not
assign

Size not
assign

Relation
cost

#not
assign

Size not
assign

Relation
cost

#not
assign

Size not
assign

Relation
cost

#not
assign

Size not
assign

Relation
cost

0.1 224 14 13566 198 12 15005 198 12 15005 220 14 12043 84 2 20346
0.2 62 5 20978 26 2 22217 10 1 23060 50 4 16661 0 0 19890
0.3 70 6 20599 16 1 19584 70 6 20599 11 1 22976 0 0 19281
0.4 55 5 19903 0 0 18624 0 0 17598 0 0 23046 0 0 18930
0.5 32 3 19034 0 0 16920 0 0 16561 13 1 18736 0 0 16218
0.6 32 3 18553 0 0 16907 0 0 14564 0 0 17112 0 0 16443
0.7 11 1 20615 0 0 15160 0 0 13298 0 0 20438 0 0 16866
0.8 0 0 19722 0 0 15287 0 0 14445 0 0 17806 0 0 14925
0.9 0 0 18998 0 0 12965 0 0 12369 0 0 18245 0 0 13479
1.0 0 0 19097 0 0 12128 0 0 12491 0 0 18843 0 0 12046

Table 14: Results for many relationships test instances

Table 14 to Table 16 show the results achieved for the generated problem instances using the heuristics. The relationship cost incurred by

the various heuristics is shown graphically in Figure 14 to Figure 16.

First we observe how the difference in admissibility density of knapsacks affects the performance of the various heuristics. We see that

when the admissibility density of knapsacks is low, the number of items not assigned is high. This is reasonable since each item is only allowed

to go into few choices of knapsacks, and thus there will be a higher number of unassigned items. Generally, as the admissibility density increases,

53

CHAPTER 5 EXPERIMENTAL RESULTS

Greedy Tabu Search SA SWO SWO + Tabu Search
Density Size not

assign
#not

assign
Relation

cost
Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

0.1 1679 176 58723 157 33 63045 0 0 64671 1043 106 56074 0 0 61989
0.2 1142 169 61157 0 0 52913 0 0 52347 388 37 56577 0 0 52874
0.3 777 114 61137 0 0 44524 0 0 43880 103 24 53008 9 4 47070
0.4 389 61 63295 0 0 40365 0 0 39033 30 9 50725 0 0 38526
0.5 238 50 65716 0 0 34290 0 0 34606 0 0 45610 0 0 36878
0.6 159 31 66366 0 0 30795 0 0 30650 0 0 41086 0 0 33249
0.7 51 9 64731 0 0 29730 0 0 28521 0 0 38608 0 0 32409
0.8 40 7 62563 0 0 26438 0 0 26677 0 0 34750 0 0 28642
0.9 0 0 60705 0 0 25488 0 0 25862 0 0 32773 0 0 27304
1.0 0 0 60861 0 0 23513 0 0 22128 0 0 32190 0 0 24741

Table 15: Results for many items, few knapsacks test instances

Greedy Tabu Search SA SWO SWO + Tabu Search

Density Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

Size not
assign

#not
assign

Relation
cost

0.1 548 5 30067 494 4 29633 494 4 29088 470 2 27065 293 1 27566
0.2 347 2 33927 293 1 29362 293 1 25754 293 1 22910 293 1 22608
0.3 293 1 38778 293 1 27552 293 1 22068 293 1 21066 293 1 20744
0.4 293 1 37111 293 1 24277 293 1 22207 293 1 19986 293 1 19495
0.5 0 0 37130 0 0 24451 0 0 20468 0 0 20330 0 0 19520
0.6 0 0 36690 0 0 24701 0 0 18900 0 0 19827 0 0 19136
0.7 0 0 39192 0 0 21211 0 0 18983 0 0 19068 0 0 18798
0.8 0 0 37714 0 0 21106 0 0 18342 0 0 17357 0 0 17204
0.9 0 0 35953 0 0 20674 0 0 16647 0 0 18945 0 0 18468
1.0 0 0 36109 0 0 19589 0 0 17096 0 0 17824 0 0 16370

Table 16: Results for few items, many knapsacks test instances

54

CHAPTER 5 EXPERIMENTAL RESULTS

10000

12000

14000

16000

18000

20000

22000

24000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Admissibility Density of Knapsacks

Re
la

tio
ns

hi
p

C
os

t

Greedy
Tabu Search
SA
SWO
SWO+Tabu Search

Figure 14: Relationship Cost for many relationships test instances

most, if not all, items are able to pack into the available knapsacks. Hence, the

heuristics mainly focus on reducing the relationship cost as the admissibility density

gets higher. We also see the general trend that as the admissibility density figure gets

higher; the relationship cost tends to be lower. Though in some cases, the relationship

cost do appear to be quite low when the admissibility density of knapsacks is very low.

That’s because the restrictive choice of knapsacks that an item may be assigned to has

caused the number of items that could not be assigned a knapsack to be high. These

items that are not assigned a knapsack do not incur relationship cost. As the choices of

knapsacks that are made available to the items increases, the chance of being assigned

to a knapsack increases. These items when assigned to a knapsack may result in a

55

CHAPTER 5 EXPERIMENTAL RESULTS

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Admissibility Density of Knapsacks

Re
la

tio
ns

hi
p

Co
st Greedy

Tabu Search
SA
SWO
SWO+Tabu Search

Figure 15 : Relationship Cost for many items, few knapsacks test instances

relationship cost if it is assigned to a different knapsack from those items it has a

relationship with. This leads to an increase in the overall relationship cost. When there

are more choices for the items to be assigned to, each item can basically be assigned to

any knapsack as long as it is within the capacity limit. As a result, the chance of

matching an item to a less costly knapsack gets higher, causing the overall relationship

cost to be lowered. However because of this added flexibility, the solution search space

of the problem increases. This in turn increases the computational time required by the

search heuristics during their search process as can be seen in Table 17 to Table 19.

56

CHAPTER 5 EXPERIMENTAL RESULTS

15000

20000

25000

30000

35000

40000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Admissibility Density of Knapsacks

Re
la

tio
ns

hi
p

C
os

t

Greedy
Tabu Search
SA
SWO
SWO+Tabu Search

Figure 16: Relationship Cost for few items, many knapsacks test instances

Admissibility Density Greedy Tabu Search SA SWO SWO + Tabu Search
0.1 1 14 45 23 28
0.2 1 17 22 25 31
0.3 1 19 14 28 35
0.4 1 20 76 31 38
0.5 1 24 64 35 43
0.6 1 21 146 42 49
0.7 1 21 85 43 52
0.8 1 23 74 47 54
0.9 1 25 73 51 60
1.0 1 25 60 50 58

Table 17: Computational Time for many relationships test instances

57

CHAPTER 5 EXPERIMENTAL RESULTS

Admissibility Density Greedy Tabu Search SA SWO SWO + Tabu Search
0.1 1 1091 599 145 694
0.2 1 1232 617 173 749
0.3 1 1358 618 201 737
0.4 1 1368 588 225 1009
0.5 1 1353 1086 245 990
0.6 1 1354 881 250 943
0.7 1 1564 680 266 1091
0.8 1 1554 1096 286 1217
0.9 1 1423 1370 302 1066
1.0 1 1577 915 311 1276

Table 18: Computational Time for many items, few knapsacks test instances

Table 19: Computational Time for few items, many knapsacks test instances

Admissibility Density Greedy Tabu Search SA SWO SWO + Tabu Search
0.1 1 47 76 8 15
0.2 1 56 68 11 18
0.3 1 52 63 15 22
0.4 1 48 64 17 24
0.5 1 58 72 21 28
0.6 1 56 79 24 31
0.7 1 53 94 29 36
0.8 1 56 71 32 38
0.9 1 51 84 34 42
1.0 1 68 57 38 45

For the many items, few knapsacks test instance, we noticed that Tabu Search

actually requires substantially more computational time than the rest of the heuristics.

This is mainly due to our implementation of Tabu Search in which the tabu operators

will find all possible moves before selecting the best move to be applied in every

iteration. Hence, in this test instance where there are many items, the large number of

possible moves that need to be computed slows down the search process of Tabu

Search considerably. Similarly, the computational time required by the hybrid

approach also increases for this test instance since Tabu Search is being used as a post-

optimization process.

58

CHAPTER 5 EXPERIMENTAL RESULTS

Taking all the results into account, it appears that the hybrid approach performs

relatively well in the sense that it is able to efficiently reduce the number and size of

items not assigned when the admissibility density of knapsack is low. However as the

admissibility density increase, SA appears to perform better although Tabu Search and

the hybrid approach appear not to perform too badly either. This may suggest that SA

may be good in reducing the relationship cost. One problem with Tabu Search when

applied on MKPIR is that it may take a long time when the number of items is huge.

59

Chapter 6

Conclusions

6.1 Project Summary

In this thesis, we have introduced the multiple knapsack problem with inter-

related items, a variant of the multiple knapsack problem that allows assignment

restriction and where relationship which exists between items affects the profit of an

item in a knapsack. We have also formulated the Venue Assignment Problem, a sub-

problem of the examination timetabling problem in NUS as an instance of MKPIR. We

have performed a few heuristics on the MKPIR using both actual data from the

National University of Singapore and generated test instances and presented our results.

Our experimentation shows that the combination of SWO with TS produces promising

results in solving MKPIR. To the best of our knowledge, no similar experiment has

been conducted on MKPIR or VAP. As can be seen from the example of the venue

assignment problem, MKPIR models allocation and packing problems with inter-

related items, which is highly relevant in real world applications. We believe that an

algorithm that provides an efficient assignment to VAP and the MKPIR will bring

great benefits to many other real world problems with similar characteristics.

6.2 Directions for Future Work

In MKP, often, even if the total available size of the knapsacks is greater than

the total size of items, it may not be possible to pack all items into the knapsacks. Due

60

to the nature of the venue assignment problem, when an examination could not be

wholly assigned to a venue, it should be allowed to be assigned to multiple venues.

This makes the problem to be similar to fractional multiple knapsack problem.

However in the VAP, practically the number of examinations that need to be held in

multiple venues should be minimal. In addition, the number of venues in which an

examination is being split to should be kept to the minimum. Besides causing an

increase in manpower, an examination being conducted in multiple venues often leads

to confusion for candidates. Candidates may turn up at the wrong exam venue. This

differentiates our problem from the classical fractional knapsack problem where the

number of splits is not a concern.

For all of our heuristics, we however do not attempt to minimize the number of

items that need to be held in multiple knapsacks nor the number of knapsack that the

item is being split to within the algorithm. Instead, these items are split to knapsacks

that are nearby and that have available capacity after the algorithm terminates. This

however does not guarantee that splits are minimized. Allowing an item to be assigned

to multiple knapsacks together with the mentioned considerations would add another

dimension of difficulty to MKPIR. Which items should be split? How many parts

should the item be split into? How big should each part be?

Future efforts could possibly take into consideration the minimizing of splitting

an item to multiple knapsacks within the heuristics. One possible approach is dynamic

programming.

Our implementation of SWO uses a relatively simple blaming system based on

the objectives we seek. When the results of SWO is post-optimized using Tabu Search,

61

CHAPTER 6 CONCLUSIONS

the final results obtained is encouraging. In future works, a more complex blaming

system could possibly be employed. Combining the action of SWO with various

heuristics that complements the pitfall of each other would be interesting.

62

Bibliography

Dawande M., P. Keskinocak, R. Ravi and F.S. Salman, Approximation Algorithms for

the Multiple Knapsack Problem with Assignment Restrictions, Journal of

Combinatorial Optimization, Vol. 4, 2000, pg. 171-186

Dawande M. and J. Kalagnanam, The Multiple Knapsack Problem with Color

Constraints, IBM Research Report, 1998

Garey M. R. and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, Freeman, San Francisco, 1979

Glover F., Future Paths for Integer Programming and Links to Artificial Intelligence,

Computer & Operational Research, Vol. 5, 1986, pg. 533-549

Glover F. and M. Laguna, Tabu Search, In Reeves (Reeves 1993), chapter 3, 1993

Hung M. S. and J. C. Fisk, An Algorithm for 0-1 Multiple Knapsack Problems, Naval

Research Logistics Quarterly, Vol. 24, pg. 571-579, 1978

Joslin D. and D. Clement, “Squeaky Wheel” Optimization, In Proceedings of AAAI

1998, pg 340-346

Joslin D. and D. Clement, “Squeaky Wheel” Optimization, Journal of Artificial

Intelligence Research, Vol. 10, 1999, pg. 353-373

Kirkpatrick S., C.D. Gelatt and M.P. Vechhi, Optimization by Simulated Annealing,

Science, Vol 220 1983, pg 671-680

63

Lim A., J.C. Ang, W.K. Ho and W.C. Oon, A Campus-Wide University Examination

Timetabling Application, Innovative Applications in Artificial Intelligence

(AAAI/IAAI) 2000, pg. 1020-1025

Lim A., J.C. Ang, W.K. Ho and W.C. Oon, UTTSExam: A Campus-Wide University

Examination Timetabling System, Innovative Applications in Artificial

Intelligence (AAAI/IAAI) 2002, pg. 838-844

Martello S. and P. Toth, Knapsack Problems: Algorithms and Computer

Implementations, 1990, Wiley, Chichester, England

Pisinger D. and P. Toth, Handbook of Combinatorial Optimization – Knapsack

Problems, Vol. 1, pg 299 – 428, 1998, Kluwer Academic Publishers

Rayward-Smith V. J., I.H. Osman, C.R. Reeves and G.G. Smith, Modern Heuristic

Search Methods, Wiley, New York, 1996

Reeves C.R., Modern Heuristic Techniques for Combinatorial Problems, Blackwell

Scientific Publications, Oxford, 1993

Shachnai H. and T. Tamir, On Two Class-Constrained Versions of the Multiple

Knapsack Problem, Algorithmica, Vol 29, 2001, pg. 442-467

Yang M., An Efficient Algorithm to Allocate Shelf Space, European Journal of

Operational Research, Vol. 131, 2001, pg. 107-118

64

	Abstract
	Keywords:
	Acknowledgements
	T
	List of Figures
	List of Tables
	Summary
	Chapter 1
	Introduction
	1.1 Motivation
	1.2 Examination Timetabling Problem
	1.3 Venue Assignment Problem
	1.4 Thesis Outline

	Chapter 2
	Multiple Knapsack Problem
	2.1 Multiple Knapsack Problem with Inter-related Items
	2.2 Formulation of VAP as MIN_MKPIR
	2.3 Related Work

	Chapter 3
	System User Interface
	3.1 Exam Scheduler
	3.2 Venue
	3.3 Venue Assignment
	3.4 Seat Assignment

	Chapter 4
	Heuristics
	4.1 Greedy Method
	4.2 Tabu Search
	4.3 Simulated Annealing
	4.4 Operators
	4.4.1 Relocate Operator
	4.4.2 Exchange Operator
	4.4.3 Multi-Exchange Operator
	4.5 “Squeaky Wheel” Optimization
	4.6 Combining “Squeaky Wheel” Optimization and Tabu Search

	Chapter 5
	Experimental Results
	5.1 Experimental Data
	5.2 Evaluation of the Assignment Quality
	5.3 Implementation Matters
	Results

	Chapter 6
	Conclusions
	Project Summary
	Directions for Future Work

	Bibliography

