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AAbbssttrraacctt 

Being in the "Internet Age", any application technology has to consider its 

innovative application in distributed environment, otherwise it will lose its vitality 

soon. Distributed simulation, which refers to the execution of simulations on loosely 

coupled systems (such as geographically distributed computers interconnected via the 

Internet) [2], is one of the fast growing distributed applications that leave a golden era 

before us.   

Current research in distributed simulation is moving to connect existing simulation 

models together by the exchange of information so that they can constitute a complete 

simulation system. Research in distributed simulation middleware technology and 

standardization of the information exchange format has gained attention as distributed 

simulation becomes important.  

In this thesis, we introduce the Generic Runtime Infrastructure for Distributed 

Simulation (GRIDS) and the GRIDS Object Exchange Model Template (OEMT). The 

main aim of this research is to investigate and evaluate the capability of the GRIDS 

middleware and the OEMT in supporting Distributed Supply Chain and other various 

types of distributed simulation applications through two case studies --- Automobile 

Manufacture Supply Chain Simulation and Singapore Mass Rapid Transit (MRT) 

System Simulation. Furthermore, from the experience gained from the case studies, we 

improve the OEMT into a more robust and advanced one. 
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CChhaapptteerr  11  IInnttrroodduuccttiioonn  

The scientists who created ARPAnet in the 1960's never imagined that the Internet 

would become so powerful after 40 years' development. At the beginning of the new 

century, our society is in the transition from an industrial society to an information 

society. The Internet, with its magic is the main force in driving this transition. Today, 

the Internet has more than ten million domain names, hundred million connected 

computers and billions of customers. Even the most conservative man cannot deny that 

Internet and the World Wide Web are changing our life!  

Being in the "Internet Age", any application technology has to consider its 

innovative application in distributed or web-based environment, otherwise it will lose 

its vitality soon. Distributed simulation is one of the fast growing distributed 

applications that leave a golden era before us.  

The aim of this chapter is to provide the readers with a general understanding of 

the fundamental of this research. We will first review the basic background knowledge 

of distributed simulation and its application in supply chain management. Then we will 

give an overview of the distributed simulation middleware infrastructures. Furthermore, 

this chapter introduces the research motivation, objectives and the structure of this 

thesis.  
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1.1 Distributed Simulation 

There are two ways to analyze the behaviour of a system scientifically. One way is 

to use mathematical methods (such as algebra, calculus or probability etc.) to obtain 

exact information on questions of interest [2]. This is called an analytic solution. 

However, most real-world systems are too complex to be evaluated analytically, and 

these models must be studied by another means --- Simulation. According to Robert E. 

Shannon [2], simulation is “the process of designing a model of real system and 

conducting experiments with this model for the purpose either of understanding the 

behavior of the system or of evaluating various strategies (within the limits imposed by 

a criterion or set of criteria) for the operation of the system.” A simulation creates an 

abstract representation of a system, and then gains insight into the working of the 

system, or predicts the system’s future performance, or tests out the results of changing 

some aspects of the system. The whole process is made on the model, without having 

to manipulate or observe the actual system.  

Distributed simulation is concerned with the execution of simulations on 

geographically distributed computers interconnected via a local area and/or wide area 

network [22, 30, 31]. The primary goal of distributed simulation is to obtain higher 

performance via parallel execution, but its advantages are not restrained in high 

performance. Distributed simulation system also offers benefits such as responsiveness, 

resource sharing, information secrecy, reusability, fault tolerance and so an. 

Due to these inherent fortes of distributed simulation, it has been a useful and 

powerful tool in numerous and diverse application areas [17] such as evaluating 

military weapons systems or their logistics requirements, determining hardware and 

software requirements for a computer system, analyzing financial or economic systems 

and so on. One significant application area of distributed simulation is designing and 
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analyzing supply chain. 

1.2 Supply Chain Management 

A Supply Chain is the series of activities that an organization uses to deliver value, 

either in the form of a product, service, or a combination of both, to its customers [9]. 

It also includes the flow of information and finances in addition to the material flow 

[35]. 

In today’s competitive environment, the traditional integrated business in which a 

single enterprise acts alone seems to be a thing of the past. The trends of globalization 

of markets have forced even large organizations to rely on hundreds or even thousands 

of external firms or suppliers to deliver value to the ultimate customers. Competitive 

success of an organization is no longer a function of its own efforts, but depends on the 

efficiency of the entire supply chain. Therefore, building an effective supply 

chain/supply network [8] is fast becoming paramount in today’s marketplace. The 

effort of managing and coordinating the activities between separate entities is often 

referred to as Supply Chain Management (SCM) [28]. It can be defined as achieving 

a sustainable competitive position and maximizing shareholder value by optimizing the 

relationship of process, information, and physical goods among internal and external 

trading partners [9]. Typically, SCM costs represent a majority of the operating 

expenses of most companies. These costs can range from as low as 30% to as high as 

75% [9].  

A supply chain is a complex system and there are sources of large uncertainties in 

the supply chain. Successful SCM requires carefully defined approaches to test and 

analyze the performance of the chain [24]. It is obviously not advisable to do the 

corresponding analysis on the real world system due to the high cost. What is needed is 

a tool that can give visibility of the entire supply chain that allows for the testing of 
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numerous "what if" scenarios such as outsourcing, consolidating vendors, collaborative 

planning, or implementing e-business [9].  

Simulation has been identified as one of the best means to analyze supply chains. 

Commercial simulation tools for SCM have been released in recent years, such as the 

IBM Supply Chain Analyzer (SCA) [13], and the integrated tools of simulation and 

optimization by i2 [34]. These simulation tools are powerful in supply chain modeling 

and optimization capabilities. However, these tools are limited by their lack of capacity 

for parallel execution. The current emerging electronic commerce and dynamically 

changing business environment requires for a next-generation supply chain modeling 

and simulation environment which include scalable and efficient model execution and 

support for flexible future extensibility based on an open industry standard.  

The Distributed Supply Chain (DSC) Simulation [3] is such a second-generation 

tool, which introduces the distributed simulation approach into Supply Chain 

Management. A DSC simulation models a supply chain across multiple businesses. It 

involves the organizational departments responsible for each activity and the external 

suppliers and customers who are part of the integration supply chain, and simulates the 

flow of materials and information through multiple stages of manufacturing, 

transportation and distribution. A DSC simulation offers analysts and decision-makers 

a means to replicate the behavior of complex systems as they operate over time. In 

addition, the distributed characteristic of the simulation models offers great benefits 

such as fast and efficient simulation execution, taking advantages of the functionality 

of various vendors’ simulation products, allowing each organization hides its inner 

working information, reducing the costs and time of building a new simulation model 

and so on. Companies may react faster to global competition by using this approach to 

investigate efficiency and effectiveness improvement in their supply chains. 
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1.3 Distributed Simulation Middleware Infrastructures 

Building a detailed model of the supply chain does not pose a problem when the 

chain involves only a single enterprise. However, since a DSC simulation often 

involves multiple companies across enterprise boundaries, each of these companies 

may already have its own simulation program and they may not like to share their 

models and internal data with other companies. In addition, the existing simulation 

models may be implemented using different languages and packages on different 

platforms which may even be located at different places. The lack of interoperation, 

lack of portability to multiple languages and lack of ability to execute over the Internet 

still obstruct the progress of DSC simulation. 

Although there are many techniques involved in building simulation in a 

distributed or web-based environment [1, 23], the most common way to solve this 

problem is by the use of standard programming interfaces and protocols that provide a 

uniform means and style of access to various simulations which may be based on 

different platforms. Such standardized interfaces and protocols have come to be 

referred to as middleware infrastructure. Research in distributed simulation 

middleware technology has also gained attention as distributed simulation has become 

important. These middleware are developed based on several premises or assumptions. 

Firstly, no single, monolithic simulation can satisfy the needs of all the users for the 

differences in users’ interests and requirements. No one can anticipate all the uses of 

simulation and all the ways of simulation could be combined in a monolithic system. 

And it is possible to decompose a large simulation problem into smaller parts which 

are easier to define, build and verify. Secondly, simulation builders vary in their 

knowledge background of domains to be simulated. This makes their products different 

in detail. Finally, future technologies and tools must be incorporated and future 
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requirements must be considered.  

These observations led the middleware designers toward the following goals: 

• It should be able to integrate the software from different sources. 

• It should have the capability to insulate the components from differences in the 

implementation technology so that it can hide the complexities and disparities of 

different simulations.  

• It is responsible for the communication between individual simulations. It should 

be able to marshal the information, pass it through network to the targeted 

simulations, and then de-marshal it into the format which is understandable by 

the simulations.  

• It should provide certain services to facilitate interoperation of simulations. E.g. 

synchronization service to coordinate the time steps of cooperating simulations.  

The High Level Architecture (HLA) [18, 29, 44], Generic Runtime Infrastructure 

for Distributed Simulations (GRIDS) [33, 37, 39] and Common Object Request Broker 

Architecture (CORBA) [6, 21, 41] are all such middleware which are developed by 

different organizations with distinct characteristics, but share the property to support 

the reuse and interoperation of simulations. This research concentrates on GRIDS 

which is a lightweight message-oriented middleware with extensible features and 

package interfaces capable of supporting the demands of distributed simulation. 

Similar to HLA, it is used to research interoperability and reuse by linking simulations 

together and was originally developed to support Distributed Interactive Simulation. 

The main purpose of the infrastructure is to coordinate the activities of distributed 

components with additional functionality via the use of a novel service distribution 

model known as Thin Agents, which are used to support the simulation by providing 

tasks such as optimization and assistance [32]. Thus, it is a very appropriate 
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architecture to be used in Distributed Supply Chain (DSC) Simulation and other 

simulation areas given the distributed nature of such simulations. 

1.4 Motivation 

Current research in distributed simulation is moving to connect existing simulation 

models (known as federates1) together by exchanging information, so that they can 

constitute a complete simulation system. The motivation of this research is that 

connecting existing models could be more cost effective than recoding the separate 

models into a single model. One of the research issues is the standardization of the 

information exchange format so that they may be understood by each model.  

In a distributed simulation, information transfer is very important because federates 

realize interactions though exchange data. Federates keep sending and receiving 

information between one another during their lifetime. Information has various formats 

such as data, message, and file or sometimes the information is an object itself. For 

example, in an automobile supply chain simulation, the tyre factory must send its 

products together with its quantity and quality parameter to the car assembly factory. In 

this case the information takes the form of objects (representative of entities transferred 

between the models). However, a problem is the specification of these objects so that 

they may be described in a manner relevant to the end user community. The GRIDS 

Object Exchange Model Template (OEMT) defines the format and syntax for recording 

information in exchange object models. This common template provides a 

standardized way of specifying models to be used as input or output, and facilitates 

understanding between federates of a distributed simulation. 

                                                        
1  In this thesis, as within common distributed simulation terminology, a single 
simulation component that participates as a part of the entire simulation is called a 
federate, while the entire simulation is called a federation. 
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During the past few years, the OEMT standard has been developed from theory to 

real application. The template has been set up, and is under improvement. The 

emphasis of the research is on using, evaluating and improving the OEMT by two case 

studies --- Automobile Manufacture Supply Chain Simulation and Singapore 

Mass Rapid Transit (MRT) System Simulation. Both case studies use the OEMT as 

the standard to specify the objects in full scale. These case studies therefore give 

practical instances of OEMT application. In addition, GRIDS will also be evaluated 

through the practical experience gained from the case studies.  

1.5 Research Objectives  

This work makes several contributions to research areas related to distributed 

simulation and middleware. The focus of this research is to investigate the 

standardization of object exchange models and the GRIDS middleware in 

distributed simulation to support the DSC and other various types of simulation 

applications. The overall research effort has been broken down to a set of research 

objectives to be achieved:  

1) Investigate distributed simulation environment and existing middleware. This is 

to gain knowledge that is useful in fulfilling subsequent objectives.  

2) Evaluate the suitability of GRIDS as a middleware to facilitate distributed 

simulation; provide useful experience on implementing simulation application 

in GRIDS environment and suggest how GRIDS might be improved and 

utilized in future distributed simulation applications. 

3) Identify the significance of object passing in distributed simulation; specify the 

problem to standardize object exchange model; evaluate the capability of the 

OEMT to standardize object exchange model and offer a new version of the 

OEMT based on the case study experience. 
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4) Develop an OEMT application tool kit to automatize the generation of the 

object exchange model. In addition, implement the Object Exchange Model 

Repository (OEMR) on-line services and other assistant services in this kit.  

1.6 Thesis Structure 

This thesis is structured in six chapters based on the research strategy described 

above. Each chapter addresses a distinct point in carrying out this research. The first 

chapter sets out to present a brief account of the research background. It addresses 

some key components of conceptual research which will be discussed in detail in the 

following chapters. Furthermore, this chapter introduces the motivation, objectives and 

scope of this research to inform the readers of the contents and structure of this thesis. 

Chapter 2 concentrates on the distributed simulation middleware, GRIDS. This 

chapter first presents the motivation of middleware development. Then it further goes 

on into detailing the structures, functionalities and characteristics of the GRIDS 

architecture. This chapter also gives a brief overview of the other two popular 

middleware HLA and CORBA. Based on the in-depth understanding of these 

middleware, a comparison among them is made.  

Chapter 3 describes the advantages of object passing and the requirement to 

standardize objects as the motivation of the GRIDS OEMT. It explicates the original 

OEMT standard and the Object Exchange Model Repository (OEMR) conception in 

particular. 

The two case studies are given in chapter 4. They are used to illustrate how the 

features of the OEMT and GRIDS contribute to distributed simulation application. The 

first case study applies OEMT and GRIDS in a DSC simulation. Their application is 

extended to another area in the second case study. The experience gained from the case 

studies is summarized and analyzed at the end of this chapter. GRIDS and OEMT are 
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evaluated. The suggestions on how they might be improved and utilized in future 

distributed simulation applications are stated in this chapter. 

In chapter 5 a new version of the OEMT that is more complete and more powerful 

in the standardization of object models is provided. An OEMT application tool kit is 

developed to facilitate the simulation builders in the creation of object models and 

explains the OEMR online services provided by this kit. This chapter also introduces a 

novel concept—the Object Exchange Model Dictionary (OEMD) and its functionality. 

The OEMD services are also implemented in the OEMT kit. 

The thesis ends with the conclusion in Chapter 6. This chapter summarizes the 

work in this thesis, presenting the objectives achieved, the contributions made, and 

highlights possible avenues for further research. 
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CChhaapptteerr  22  GGeenneerriicc  RRuunnttiimmee  IInnffrraassttrruuccttuurree  

ffoorr  DDiissttrriibbuutteedd  SSiimmuullaattiioonn  ((GGRRIIDDSS))    

As we have mentioned, one of the most important problems of distributed 

simulation is that the development and deployment of different types of simulation 

products has far outstripped efforts to standardize all aspects of distributed computing, 

from the physical layer up to the application layer. This lack of standards makes it 

difficult to implement an integrated, multi-vendor, enterprise-wide distributed 

simulation configuration. The middleware, which cuts across all simulations, has the 

capability to hide the complexities and disparities of different simulations. It is used to 

overcome incompatibilities of various simulation products and is responsible for the 

communication between individual simulations. 

GRIDS is such middleware for reuse and interoperation of simulations. It supports 

the reuse of capabilities available in different simulations and the possibility of 

distributed collaborative development of a complex simulation application.  

This chapter introduces the three main middleware used in distributed systems. 

Since this research is based on the DSC simulation which is a more focused field of 

distributed simulation, the discussion about the middleware will cater to the needs of 

this field. 

Section 2.1 and 2.2 details the GRIDS structure and execution process. Section 2.3 
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introduces the other two popular middleware architectures, the High Level 

Architecture (HLA) and the Common Object Request Broker Architecture (CORBA). 

This section also compares GRIDS with HLA and CORBA. 

2.1 GRIDS Basic Architecture  

The Generic Runtime Infrastructure for Distributed Simulation (GRIDS) project 

was initiated in 1997 with the goal to develop an extensible component-based runtime 

infrastructure that could be used to coordinate the activities of distributed simulation 

components. GRIDS is best described as an execution environment capable of 

supporting a broad range of simulation types [32]. It originally catered to the needs of 

DSC simulation and is rapidly growing to be widely applicable across a full range of 

simulation application areas, including education and training, manufacture and 

transportation.  

Instead of the static and fixed functionality advocated by the HLA RTI 

specification, GRIDS provides the basic simulation services (communications, 

simulation interface and data services) to connect simulation models and a mechanism 

to add extra functions (thin agents services) where appropriate [33]. GRIDS’s 

functionality is enhanced by the use of a novel service distribution model known as 

thin agents. These agents may be used to support the simulation by providing tasks 

such as optimizations and assistance. The extensibility is the principal difference 

between GRIDS and other approaches to distributed simulation middleware.  

The middleware is composed of the following major elements: 

• Boot Server: a single process used to coordinate the initialization, execution and 

termination of a distributed simulation. It is responsible only in the initialization 

of the federation to provide service for federates to register into a federation, then 

it compiles information from all the federates and sends the relevant information 
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to each federate, before excluding itself from the federation execution. It is 

regarded as the Central Runtime Component (CRC) of the middleware. 

• Client: used by the federate to interact with the rest of the federation. It is 

regarded as the Local Runtime Component (LRC). GRIDS client comprises four 

primary services: communications, simulation interface, data services and thin 

agent services.  

• Thin Agent: GRIDS term for a component service. Thin agents are used to 

support the federates by providing tasks such as performance optimization, Time 

Management [42], Data Distribution Management [12, 36] and other special 

simulation services. Their specific function is entirely dependent on the 

requirements of the application and therefore can provide general services and 

more specific services.  

• Metadatabase: the general data structure in GRIDS used to store information.  

Figure 2-1 illustrates graphically the middleware’s setup in a typical GRIDS 

federation. It is composed of a single boot server and several clients. Each simulation 

federate is connected to a GRIDS client via an interface. Thin agents are distributed to 

participating clients and instantiated to provide the required services.  
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Figure 2-1: A Typical GRIDS federation 
 

2.2 GRIDS Execution Stages 

An integrated GRIDS execution session is divided into 5 stages: Initialization, 

Register, Broadcast, Runtime and Terminate which are detailed as follows [32]: 

• Initialization: Initialization involves the starting of a GRIDS boot server. The 

server is loaded with thin agents that are to be used to support the simulation 

exercise. 

• Register: Registering involves individual simulation nodes making their 

presence known to the GRIDS boot server and publishing the initial state 

variables of that node. Additionally, the boot server builds up the namespace of 

all the registered clients, and builds a central entity list of all entities in the 

simulation. Once all clients are registered the server closes all incoming 

connections for registration. 
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• Broadcast: Upon a simulation “Start” event, the boot server broadcasts to all 

registered clients the entire entity list built up during registration. The entity list 

is stored in the internal database on each GRIDS client. In addition to 

broadcasting the entity list, the server broadcasts the namespace for all 

participating clients to be stored internally within each GRIDS client. 

• Run: Once all entity lists and namespaces are broadcast to the individual clients, 

the server issues a “go” command to all the clients, signaling the start of the 

simulation. At this point, the server ceases its interactions with the clients. The 

clients now communicate directly as necessary in a peer to peer fashion with 

other nodes in the simulation. The GRIDS client is responsible for synchronizing 

entity attributes between the local and remote nodes. 

• Terminate: Once the simulations have completed executing, the clients register 

back with the boot server signaling that they are exiting gracefully from the 

federation. 

2.3 Comparison between GRIDS and Other Popular 

Middleware 

2.3.1 High Level Architecture (HLA) 

The High Level Architecture (HLA) is a general purpose middleware architecture 

for simulation reuse and interoperability. It was developed under the leadership of the 

Defense Modeling and Simulation Office (DMSO) to support reuse and 

interoperability across the large numbers of different types of simulations developed 

and maintained by the DoD.  

The HLA is defined by three concepts: 
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• Object Model Template (OMT): The HLA OMT defines the format and syntax for 

recording information in HLA object models, to include objects, attributes, 

interactions, and parameters. It does not define the specific data (e.g., vehicles, unit 

types) that will appear in the object models, but provides a commonly understood 

mechanism for specifying the exchange of data and general coordination among 

members of a federation and describing the capabilities of potential federation 

members [16, 29].  

• HLA Rules: The HLA rules comprise a set of underlying technical principles and 

conventions which must be followed to achieve HLA compliance [14]. They 

describe the responsibilities of federates and federations designers. 

• Runtime Infrastructure (RTI): The HLA RTI can be viewed as the special purpose 

distributed operating system software that provides a set of common interface 

services utilized during the runtime of an HLA federation [15]. The run-time 

services of the RTI fall into six categories: 

– Federation Management  

– Declaration Management  

– Object Management 

– Ownership Management 

– Time Management 

– Data Distribution Management 

An example of a federation in a HLA environment is shown in figure 2-2. As 

shown, each federate presents to the RTI an interface called FederateAmbassador, and 

the RTI offers an RTIambassador interface to each federate. The Federates and the RTI 

communicate through invoking operations on the two interfaces.  
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Figure 2-2: A Typical HLA Federation 

 

2.3.2 Common Object Request Broker Architecture (CORBA) 

The Common Object Request Broker Architecture (CORBA) is an emerging open 

distributed object computing infrastructure being promulgated by the Object 

Management Group (OMG). It is designed based on the OMG Object Model and 

supports object-oriented standardization and interoperability.  

The two most important features of CORBA are language independence and 

platform independence. It automates many common network programming tasks such 

as object registration, location, and activation; request de-multiplexing; framing and 

error-handling; parameter marshalling and de-marshalling [6]. It allows applications to 

communicate with one another no matter where they are located or who has designed 

them.  

The following figure illustrates the primary components in the CORBA ORB 

architecture [21, 41]. 

                    

 



Chapter 2. Generic Runtime Infrastructures for distributed Simulation 
 

 
 

Zhao Na (M.Sc. Thesis) 
                                                                                     

18

 
 

The central component of CORBA is the Object Request Broker (ORB). The ORB 

is the middleware that establishes the client-server relationships between objects. It 

hides the low-level details of platform-specific networking interfaces, allowing 

developers to focus on solving the problems specific to their application domains 

rather than having to build their own distributed computing infrastructures.  

Using an ORB, a client can transparently invoke a method on a server object, 

which can be on the same machine or across a network. The ORB intercepts the call 

and is responsible for finding an object that can implement the request, pass it the 

parameters, invoke its method, and return the results. In order to make a request the 

client communicates with the ORB Core through the IDL stub or through the DII. The 

ORB Core then transfers the request to the object implementation which receives the 

request as an up-call through either an IDL skeleton, or a DSI. By assistance of these 

components, the ORB provides interoperability between applications on different 

machines in heterogeneous distributed environments and seamlessly interconnects 

multiple object systems. These strong points have gained CORBA universal business 

Figure 2-3: The CORBA ORB Architecture 
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notice and acceptance in distributed simulation application [4]. 

2.3.3 Comparing GRIDS with HLA and CORBA 

W.N. Ng has provided general comparisons between HLA and GRIDS for function, 

implementation and design issues [42]. This section will compare the federation 

interoperation mechanisms in HLA and GRIDS. We also discuss the suitability of 

GRIDS and CORBA within the DSC Simulation field. 

The HLA evolved from a military simulation background and has been used in 

other application areas [5, 40], whereas GRIDS originally catered to the needs of DSC 

simulation. Although both of the middleware have been used in other application areas, 

their different origins make them distinct in several aspects. One of the most important 

differences between them is the dissimilar interoperation mechanism among federates 

supported by HLA and GRIDS. 

The HLA achieves federate cooperation via message-passing. In the HLA 

federation, federates cooperate through object attributes update or interaction. For 

example, in an HLA federate, the position (latitude and longitude) of a tank object is 

always changing referring to the moving tank. These changes are presented by 

updating attributes. Other federates realize the changes by subscribing to the update 

messages of the tank object from its owner when the tank object still resides in its 

owner federate.  

GRIDS, on the contrary, supports another type of information passing in DSC 

simulations: object passing as well as message passing. In other words, in GRIDS 

environment, federates can cooperate through exchanging whole objects instead of 

exchanging their attribute information only. The exchange objects refer to the entities 

transferred in a GRIDS federation. For example, in a GRIDS DSC simulation, the 

exchange objects represent the flow of materials or intermediate products in the supply 
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chain. The ability to support object-passing mechanism is a distinguishing 

characteristic of GRIDS. It offers a lot of benefits to distributed simulation which we 

will discuss in detail in chapter 3. 

Fundamentally, CORBA is a basic application integration technology developed 

for the distributed systems which is a much wider application area than distributed 

simulation. Although CORBA has been employed as middleware to facilitate 

distributed simulation in air traffic control, video games and entertainment, and other 

needs, it still faces the problem of lack of special services for simulation. Compared 

with CORBA, GRIDS is originally intended for distributed simulation. It offers 

services that focus on simulation requirements such as time management, data 

distribution management and so on.  

Other deficiencies also restrict the application of CORBA in DSC simulation. First 

of all, the current lack of the capability to pass objects by value for most CORBA 

products can especially affect the design of an application [21]. Furthermore, for a 

class to be understood by CORBA, its interface must be expressed in IDL. The classes 

referenced or used by that class must also have their interfaces expressed in IDL 

because they also need to be accessible to CORBA components. This characteristic 

make converting an existing application to CORBA architecture an arduous task 

indeed [21]. GRIDS supports passing objects by value, which is a necessary 

mechanism in DSC simulation. And modifying an existing application to use GRIDS 

middleware costs relatively less time and effort, because in GRIDS applications, each 

federate has a single point of contact with the RTI. There are no requirements of 

changing interface for every class. 

In addition, most CORBA applications work in a mechanism of client/server 

relationship, such as real-time ATM service. The status of federates in GRIDS 
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application is relatively equal as they work in a cooperation mechanism. 

On the other hand, GRIDS can greatly benefit from CORBA’s language 

independence and platform independence even though CORBA has the foregoing 

shortcomings. Since its inception in 1991, CORBA has provided great facilities for 

distributed object-oriented programming that have allowed developers to seamlessly 

integrate diverse applications into heterogeneous distributed systems. Although there 

exist lots of alternative technologies such as Socket programming, Remote Procedure 

Call (RPC), Java Remote Method Invocation (RMI), CORBA still gains preponderance 

via its language independence, platform independence and suitability for complex 

applications. It brings true interoperability to today's computing environment. Actually, 

GRIDS is considering combining CORBA into its architecture to benefit from the 

strong integration capability it offered. Gaining more powerful simulation middleware 

from the combination with CORBA might not be far away. 
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CChhaapptteerr  33  OObbjjeecctt  EExxcchhaannggee  MMooddeell  TTeemmppllaattee  

((OOEEMMTT))  
Decision support of supply chain management is one important area that has been 

fast gaining attention in distributed simulation. In supply chains, each company 

produces materials or intermediate products that are delivered to the next company in 

the chain. The products or material flow are represented by objects being exchanged 

among federates in a DSC federation. This property of DSC simulation is described in 

section 3.1. Section 3.1 also presents the requirement for middleware to provide for an 

object-passing mechanism in addition to the traditional message-passing mechanism in 

DSC and similar kind of simulations. 

However, the problem in object-passing is the specification of these objects so that 

they may be understood commonly by different federates in the federation. The Object 

Exchange Model Template (OEMT) is a template which provides a standardized way 

to specify the DSC-relevant object models. Section 3.2 will present this standard in 

detail.  

Section 3.3 highlights the Object Exchange Model Repository (OEMR), which is 

the common well-known location of a library, where the OEMT and all the OEMT 

specifications of existing objects are stored for simulation builders for reference and 

reuse. 
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3.1 Defining the Problem  

3.1.1 Object-Passing in Distributed Simulation 

 In a distributed simulation application, each federate is standalone. They might 

use different simulation product (SIMUL8, WITNESS) and even run at remote 

locations. Their interoperation is realized through the exchange of information. 

Normally, the passing of information is built upon the message-passing paradigm. This 

means information is not encapsulated in any structured way, and it is transferred by 

the middleware as a message with information.  

However, the message-passing is not enough to satisfy all the requirements of 

distributed simulation. In some case, federates produce objects instead of messages. A 

DSC simulation is such an example. As we mentioned in section 1.1.4, a DSC 

simulation is a simulation that is composed of models (federates) that represent each of 

the elements of the supply chain. In a DSC simulation, the interactions among 

federates can be object instances that are produced, sent and received by the federates 

from one another. Hence, this is the main concern in a DSC federation, i.e. the 

exchange of objects among federates. 

Of course, the object can be represented by a group of messages that describe this 

object and contain values that are to be used by another federate. However, several 

problems arise when using message-passing instead of object-passing in the DSC 

simulation. Firstly, this approach suffers from loss of details. There is no standard as to 

how and what type of information should be enclosed in the messages to describe the 

object exactly. In addition, describing an object requires numerous messages, there 

may be large overheads for the federates to establish, make agreement and process the 

information to pass across. 
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Secondly, there may be cases where variables are required to be used as input to 

the object to produce a particular output or where the federate is interested in some 

intermediate information of the object which requires passing some parameters to the 

object before getting results. Message representations cannot accomplish such 

requirements.  

Finally, the attributes of the objects may be public, protected or private for 

different secrecy requirements. Protect access modifier specifies that object attributes 

are accessible only to methods in this object class and its subclasses, and private one is 

more restrictive. Message representations lack the ability to satisfy the secrecy 

requirements of federates.  

Employing object-passing in DSC simulation solves the above problems efficiently. 

It is easier to keep the details of the object and to establish a standard thereby objects 

can be recognized uniquely. Object-passing also allows the provision of methods that 

the receiving federates may invoke.  

Many other application areas in distributed simulation will also benefit from 

object-passing. The transportation system is another example. As an instance, an 

underground train system simulation can consist of models that represent different 

stations in a city. Trains moving among these stations also take the form of objects. A 

station model takes the arrival trains as input objects and departure trains as output. 

The train object class includes two kinds of members, one is attributes values (capacity, 

passenger number, train type, etc.) which carry the data describing the train, and the 

other is methods which provide mechanism to access attributes and other services.  

This research proposes the use of an object-passing mechanism for DSC simulation 

and even other fields in distributed simulation. A standardization problem of the object 

will be raised and solved by giving a standard in section 3.2. By following the standard 
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specification of object, the receiving federate knows what sort of methods can be 

invoked and what information can be expected from the object.  

3.1.2 Standardization of Objects 

One important issue of distributed simulation is how to represent parameters and 

results in messages or objects so that they may be understood commonly by different 

federates in the federation. There will be no problem if all the federates are 

programmed in identical programming languages on the same type of machines with 

the same operating system. However, if there are differences in these areas, the way 

that numbers and even texts are represented in different federates might be different. 

The best way to solve this problem is to provide a standard format, so that the native 

parameters on any machine can be converted to the form of the standard 

representation. The HLA OMT is such a standard to describe the HLA object model 

with individual federates or federation. It concentrates on the requirements and 

capabilities for federate information exchange through message-passing and 

interactions. However, the OMT does not provide appropriate definitions for the 

foregoing exchange of objects. To describe the exchange model perfectly, we 

introduced the Object Exchange Model Template (OEMT) for GRIDS.  

3.2 Object Exchange Model Template (OEMT) Specification 

(version 1.0) 

The Object Exchange Model Template defines the format and syntax for recording 

information in GRIDS distributed simulation object models, as well as mandatory 

specific data that define each model uniquely from others [11]. The first version of the 

OEMT Specification was created in 2002.  
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3.2.1 OEMT Original Elements 

The GRIDS Object Exchange Model Template is composed of a group of 

inter-related elements specifying information about the model. Each model is identified 

uniquely by the mandatory attributes and methods that must be implemented for each 

implemented object of the model. The original template for the core of a GRIDS object 

exchange model uses a tabular format and consists of the following elements [10, 42]: 

• Name of Model: to record the product name that the model is emulating. 

• Model Description Link: to record the URL link if the description of the model is 

located somewhere else on the internet. “Model Description Link” cannot co-exist 

with “Model Description” and “Technical Details”. 

• Model Description: to record a detailed description of the purpose of this model 

and the product description. 

• Technical Details: to specify the mandatory object attributes and methods that 

must be implemented of this model. 

− For each object attribute, the attribute name, the attribute description, the 

attribute accessibility, and the data type of the attribute are required.  

− For each object method, the method name, the method description, the method 

accessibility by the public, the method’s parameters if any (parameter name 

and data type), and the method return data types are required.  

• General Details of each Implemented Object: to specify for each object that has 

been implemented using this model, the details of the company and the location of 

the object in the form of an URL.  

Actual examples of the OEMT will be given in section 5 when the exchange 

objects in the case studies are specified using the OEMT standard. 
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3.2.2 OEMT Data Interchange Format (DIF) 

The GRIDS Object Exchange Model Template (OEMT) Data Interchange Format 

(DIF) is a standard file exchange format used to store and transfer OEMT specifications 

of object models between simulation builders [10]. The DIF is built upon a common 

meta-model that represents the information needed to represent and manage object 

models created using the GRIDS OEMT standard. The DIF uses XML as the standard 

for declaring object exchange models in the OEMT. The DTD schema of the DIF is 

given as follows: 

<!ELEMENT objectModel (modelName, (modelLink|(description, technicalDetails)), 
                       implementedObjectDetails*)> 

<!ELEMENT modelName (#PCDATA)> 
<!ELEMENT modelLink (#PCDATA)> 
<!ELEMENT description (#PCDATA)> 
<!ELEMENT technicalDetails (objAttr+, objMethod*)> 

<!ELEMENT objAttr (attrName, attrDescription, attrAccess, attrDataType)> 
<!ELEMENT attrName (#PCDATA)> 
<!ELEMENT attrDescription (#PCDATA)> 
<!ELEMENT attrAccess (private|protected|public)> 
<!ELEMENT attrDataType (#PCDATA)> 

<!ELEMENT objMethod (methodName, methodDescription, methodAccess,  
                      methodParameters, methodReturnDataType)> 

<!ELEMENT methodName (#PCDATA)> 
<!ELEMENT methodDescription (#PCDATA)> 
<!ELEMENT methodAccess (private|protected|public)> 
<!ELEMENT methodParameters (pName,pDataType)*> 

<!ELEMENT pName (#PCDATA)> 
<!ELEMENT pDataType (#PCDATA)> 

<!ELEMENT methodReturnDataType (#PCDATA|void)> 
<!ELEMENT implementedObjectDetails (companyName, companyContactInfo,  

     companyContactPerson, companyEmail, version, versionDate, referenceLink+)>    
<!ELEMENT companyName (#PCDATA)> 
<!ELEMENT companyContactInfo (#PCDATA)> 
<!ELEMENT companyContactPerson (firstName, lastName)> 

<!ELEMENT firstName (#PCDATA)> 
<!ELEMENT lastName (#PCDATA)> 

<!ELEMENT companyEmail (#PCDATA)> 
<!ELEMENT version (#PCDATA)> 
<!ELEMENT versionDate (day, month, year)> 

<!ELEMENT day (#PCDATA)> 
<!ELEMENT month (#PCDATA)> 
<!ELEMENT year (#PCDATA)> 

<!ELEMENT implementationPlatform (#PCDATA)> 
<!ELEMENT referenceLink (#PCDATA)> 
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3.2.3 Relationship of the OEMT and Object-Oriented Concepts  

Although the OEMT is the standardized documentation structure for exchange 

object models, it does not completely correspond to common definitions of object 

models in object-oriented (OO) analysis and design (OOAD) techniques. In the OOAD 

literature, an object model is described as an abstraction of a system developed for the 

purpose of fully understanding the system. To achieve this understanding, most OO 

techniques recommend defining several views of the system. OEMT has a much 

narrower scope than OOAD. It does not intend to represent a scope of the whole 

system, but focuses on providing a standardized way of specifying object models to be 

used as input or output, and facilitating understanding between federates of a 

distributed simulation. In addition, OO objects interact via message-passing, in which 

one OO object invokes an operation provided by another OO object and gets a returned 

value. OEMT objects do not directly interact. It is the federates that interact, via 

exchanging OEMT specified objects. The OEMT specified objects function as the 

vehicle which carries information among federates.  

Although OEMT does not completely correspond to OOAD principles and 

concepts, it has lots of similarities with OOAD in some sense. At the individual object 

level, in the OEMT, objects are defined as information encapsulations of data and 

operations (methods), which is the same with object definition in the OOAD literature. 

Furthermore, like OO objects, OEMT specified objects encapsulate state locally and 

associate update responsibilities with operations that are closely tied to the object's 

implementation in an OO programming language. Federates access object attributes 

though operations included in object class encapsulation, which also provide security 

guarantee to private information in the object.  
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3.3 The Object Exchange Model Repository (OEMR) 

The Object Exchange Model Repository (OEMR) is the central location where all 

object exchange models’ information is stored. It is a library which stores all the object 

models in different areas of applications separately, for distributed simulation builders 

to access and re-use object models [10]. This work will implement the main functions 

of the OEMR on-line service. Putting the OEMR online facilitates reuse and allows 

easy access by simulation builders all over the globe, as well as to provide new object 

models.  
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CChhaapptteerr  44  CCaassee  SSttuuddiieess::  AApppplliiccaattiioonnss  UUssiinngg  

GGRRIIDDSS  aanndd  OOEEMMTT  
Although the OEMT standard has been developed, it is still in the early phase. Its 

structure is not complete and how to apply it in real applications is still a great 

challenge. In this chapter, two case studies are designed and implemented to 

investigate and evaluate the GRIDS architecture and the OEMT standard. Section 4.1 

details the design and implementation of an Automobile Manufacture Supply Chain 

Simulation in GRIDS environment. The second case study is a Singapore Mass 

Rapid Transit (MRT) System Simulation. This case study is presented in Section 

4.2.  

The rationale behind the choice of these two case studies is that, on one hand, both 

of the case studies are typical distributed systems, and many objects are transferred 

between distributed nodes in both systems; On the other hand, the two case studies are 

different in several ways. First of all, the case studies represent distinct application 

areas of distributed simulation. Case study one is a typical DSC simulation example. 

Since GRIDS and the OEMT are initiated based on the requirements of DSC 

simulation, case study one investigates their application in the original application field. 

The MRT simulation in case study two is an instance of transportation system which is 

another important commercial area that can benefit greatly from distributed simulation 

technique. 
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Secondly, the two simulations differ in the setup of the nodes. In case study one, 

the nodes are tightly coupled, but in the MRT system, the nodes (stations) are loosely 

coupled with no immediate or direct feedback when an entity is passed (the differences 

will be further discussed in section 4.2.5).  

These characteristics of the two case studies make them ideal case studies to 

investigate GRIDS and the OEMT. Through the automobile supply chain and the MRT 

simulation, we can evaluate the ability of GRIDS to handle the simulation of DSC and 

transportation system, and the capability of OEMT to describe manufacturing product 

and vehicle as object.   

In addition, the research also introduces an actual implementation tool of the 

OEMT---XML Document Object Model (DOM) [7, 43]. This tool is accomplished by 

using the XML parser to render the document into a structured format --- hierarchical 

tree structure (DOM Tree), which allows each element of the document to be accessed 

and manipulated by DOM provided APIs.  

4.1 Case Study One: Automobile Manufacture Supply Chain 

Simulation 

4.1.1 System Conceptual Model  

The distributed automobile manufacture supply chain simulation system is a model 

representation of the real life process of a typical DSC. This system, which is called 

AutoSim Federation, consists of one automaker, the Car Assembly Factory where the 

cars are assembled, and four suppliers, the Tyre Factory, the Engine Factory, the 

Carbody Factory and the Lamp Factory which supply necessary parts to the Car 

Assembly Factory. The interaction relationship of the five semi-independent federates 

in the system is showed in Figure 4-1-1.  
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Figure 4-1-1: Models Interaction Relationship 

 

These five simulation models (federates) run separately and cooperate through the 

exchange of objects (representative of product entities transferred between the models). 

The suppliers provide parts to the automaker based on Just-In-Time (JIT, which means 

getting the right parts to the right place at the right time) production theory [20, 27], so 

that the minimum inventory can be achieved. 

The JIT production theory of manufacturing supply chain (also known as lean 

production or stockless manufacturing) is a management philosophy that strives to 

increase value added and eliminate sources of manufacturing waste by producing the 

necessary parts in necessary quantities at the necessary time. The benefits of JIT 

include improved delivery, low inventory levels, reduced operating costs, greater 

performance, higher quality and increased flexibility.  

A key point of successful JIT is maintaining low inventory levels, which leads to 

faster reaction to customer’s demands. Ideally, the supplier should produce a part just 
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before the part is needed by a customer. In conventional production processes, 

suppliers build products according to a self-ordained and pre-defined schedule. No 

consideration of customers’ requirements is made. In small-batch production (JIT), 

customers encourage suppliers to deliver only what is needed by the assembly plant at 

a particular time, even if this means partially filled trucks [20]. Thus, products move 

rapidly through the suppliers’ plant and to their customers, and suppliers maintain 

much less inventory.  

The investigation of US and Japanese automakers by Jeffry K. Liker and Yen-Chun 

Wu has proved the efficiency of lean manufacturing. Johnson Controls Company is a 

good example. This company is famous for supplying seats for Toyota just hours 

before the seats are to be installed on the assembly line [20]. Its inventory levels 

dropped from 32 days2 of inventory to 4.1 days after employing JIT and supply-chain 

logistics. And also, researches show that factories using JIT delivery system are not 

paying more for emergency delivery than the factories that use tradition MRP 

(Material Requirement Planning) system. 

According to the JIT, in this case study, the Car Assembly Factory does not keep 

large inventory, it sends an order to the corresponding Component Factory when a 

certain kind of component is lacking and expects immediate supply. A late supply will 

result in delay of car production. To avoid this harmful condition, the Component 

Factory, upon receiving an order, must fulfill the order and deliver parts according to 

the demand as soon as possible. But, given that it takes time to machine the parts, 

buffer stock is required to keep the Car Assembly Factory from waiting. The problem 

that needs to be addressed is how fast each Component Factory should produce parts 

so that it can satisfy the requirement of the Car Assembly Factory and keep minimum 
                                                        
2 Refers to how many days the current products in the inventory can satisfy the 
customer’s requirement without new products being produced. 
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buffer stock at the same time. In this system, the Component Factories will adjust their 

production speed dynamically according to the order number and current buffer stock 

size. The pseudocode of Component Factory algorithm is shown as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To implement the automobile manufacture supply chain simulation within GRIDS 

environment, the first step is to decide the messages and objects that are produced and 

exchanged in the federation, and the object publish-subscribe relationships of the 

federates should also be confirmed. Then the object exchange models are specified 

using the OEMT standard so that they can be commonly understood by all the GRIDS 

federates. After that, the execution requirements of the federation are considered to 

determine which GRIDS thin agent services are needed to support the simulation. 

Certain documents are created to assist these services. Finally, the simulation system is 

developed, integrated and tested before executing the system to get the results. These 

While simulation not terminated 
 Waiting for next event 

     When new order come from Car Factory, read the number of parts  
     Required(PartsNeeded) and event time(timeMark) from order object 
   If (timeMark<0) 
        Terminate simulation;  
        //assume negative timeMark is simulation terminate signal.  
   endif    
   Calculate produce capability of component factory between its 
   simulation time(clock) and event time:  
 produceCapability=(int)(timeMark-clock) / productionTime 

   If (current produce capability is too high and products overstock:    
       currentStoreSize+ produceCapability >=maxStoreSize) 
       Produce parts and stop when store is full 

    Adjust production speed by increase productionTime (decrease  
    production speed) 

         Advance simulation time to timemark 
     else if (current produce capacity is appropriate: 
              crntStoreSize+ produceCapability >=PartsNeeded) 

       Produce parts until produceCapability is met 
             Advance simulation time to timemark 

     else (current produce capability is too low and order  
          requirement cannot be satisfied)  
         Produce parts until order requirement is met 
         Advance simulation time by productionTime when every part  
         is produced  

              Adjust production speed by decrease productionTime  
              (increase production speed) 

endif 
Deliver parts to Car Assembly Factory marked with current  
simulation time 

endwhile 
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processes are detailed separately in the following sections.  

4.1.2 Exchange Object Specification 

In this simulation system, the federates keep sending and receiving objects between 

one another during their life time. The objects include the product objects (parts) 

transferred from the four Component Factories to the Car Assembly Factory, and the 

order object which the Car Assembly Factory sends to the Component Factories to 

notify the order demand of parts. The GRIDS OEMT is employed to specify these 

objects. The template has a certain set of information to be filled in. The basic methods 

and variables are made known in this template, so that other federates can access 

appropriately.  

 The tables 4-1-1 to 4-1-7 use tyrepackage and tyreorder object as examples to 

show the use of the OEMT version 1.0 in the system design. The tables 4-1-1 to 4-1-4 

are the specification of the tyrepackage object. The tyrepackage object is published by 

the Tyre Factory Federate and is subscribed by the Car Assembly Factory. Each 

package encapsulates numbers of tyres. It can be regarded as a truck which delivers 

tyres to the Car Assembly Factory. The object exchange model specifies the attributes, 

methods and other information of the tyrepackage object.  

Object Exchange Model Template (OEMT) 
Category Information 

Name of Model tyrepackage 
Model Description Link Nil 

Model Description 

The tyrepackage represent the object transferred 
from the Tyre Factory to the Car Assembly 
Factory. Each package encapsulates numbers of 
tyres as components. We can regard it as a truck 
which delivers tyres to Car Assembly Factory. 

Technical Details …… 
General Details of each Implemented Object …… 

Table 4-1-1: Exchange Object Information Table  
 
 
 
 



Chapter 4. Case Studies: Applications Using GRIDS and OEMT 
 

 
 

Zhao Na (M.Sc. Thesis) 
                                                                                     

36

Mandatory Object Attributes Table 
 Category  Information 

1 Attribute Name PackageSize 
 Attribute Description Stores the maximum number of components the package 

can carry. 
 Attribute Accessibility private 
 Data Type int 

  2 Attribute Name CompType 
 Attribute Description Stores the type of components in the package. 
 Attribute Accessibility private 
 Data Type String 

  3 Attribute Name TimeMark 
 Attribute Description Stores the time stamp of the package object 
 Attribute Accessibility private 
 Data Type Int  

Table 4-1-2: Exchange Object Attributes Table 
 

Mandatory Object Methods Table 
 Category Information 
1 Method Name insertCompNode 

 Method Description insert a component Node into tyrepackage 
 Method Accessibility public 

Parameter Name CompNode  Method Parameters  
Parameter Data Type XML DOM Node 

 Method Return Data Type void 
2 Method Name getCompNode 

 Method Description get a component Node from tyrepackage 
 Method Accessibility public 
 Method Return Data Type XML DOM Node 

3 Method Name setCompNodeAttribute 
 Method Description Set attribute value from a component Node 
 Method Accessibility public 

Parameter Name CompNode 
Parameter Data Type XML DOM Node 
Parameter Name attrName 
Parameter Data Type String 
Parameter Name attrValue 

 Method Parameters  

Parameter Data Type String 
 Method Return Data Type void 

4 Method Name getCompNodeAttribute 
 Method Description extract String attribute value from a 

component Node 
 Method Accessibility public 

Parameter Name CompNode 
Parameter Data Type XML DOM Node 
Parameter Name attrName 

 Method Parameters  

Parameter Data Type String 
 Method Return Data Type String 

5 Method Name setTimeMark 
 Method Description set the timeMark attribute of tyrepackage 
 Method Accessibility public 

Parameter Name intTimeMark  Method Parameters  
Parameter Data Type int 

 Method Return Data Type void 
6 Method Name getTimeMark 
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 Method Description get the time mark of the tyrepackage object 
 Method Accessibility public 
 Method Return Data Type int 

7 Method Name setPackageSize 
 Method Description set the maximum capacity of the tyrepackage 
 Method Accessibility public 

Parameter Name intSize  Method Parameters  
Parameter Data Type int 

 Method Return Data Type void 
8 Method Name getPackageSize 

 Method Description get the capacity of the tyrepackage 
 Method Accessibility public 
 Method Return Data Type int 

9 Method Name setCompType 
 Method Description set the compType attribute of tyrepackage 
 Method Accessibility public 

Parameter Name strType  Method Parameters  
Parameter Data Type String 

 Method Return Data Type void 
10 Method Name getCompType 

 Method Description get the compType attribute of the tyrepackage 
 Method Accessibility public 
 Method Return Data Type String 

11 Method Name len 
 Method Description get the number of components in the 

tyrepackage 
 Method Accessibility public 
 Method Return Data Type int 

12 Method Name isFull 
 Method Description return true if the number of components in this 

tyrepackage reaches the tyrepackage’s
capacity 

 Method Accessibility public 
 Method Return Data Type boolean 

13 Method Name cleanPackage 
 Method Description delete the componens in the tyrepackage 
 Method Accessibility public 
 Method Return Data Type void 

 Table 4-1-3: Exchange Object Methods Table  

General Details of Each Implemented Object 
Category Information 

Company Name NUS SOC 
Company Contact Info (65) 68744366 

First Name Na Company Contact Person  
Last Name  Zhao 

Company Email Address Nil 
Version 1.1 

Day 30 
Month 12 

Date of Version 

Year 2002 
Implementation Platform Java 
Reference Link to Implemented Object Nil 

Table 4-1-4: General Details of Each Implemented Object 
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The Car Assembly Factory also subscribes to the enginepackage, carbodypackage, 

lamppackage objects from the other three Component Factories. The OEMT 

specifications for these three exchange objects in this system are similar with 

tyrepackage and omitted due to the limited space. The OEMT specified model of 

tyreorder object is given below. The tyreorder object with the other three objects --- 

engineorder, carbodyorder and lamporder are published by the Car Assembly Factory 

and are subscribed respectively by the Component Factories (The table of General 

Details of Each Implemented Object is omitted since it is the same with tyrepackage 

above.).   

Object Exchange Model Template (OEMT) 
Category Information 

Name of Model tyreorder 
Model Description Link Nil 

Model Description 
This object is published by Car Assembly 
Factory and is subscribed respectively by Tyre 
Factory. 

Technical Details …… 
General Details of each Implemented Object …… 

Table 4-1-5: Exchange Object Information Table 
 

Mandatory Object Attributes Table 
 Category  Information 

1 Attribute Name PartsNeeded 
 Attribute Description Stores the number of certain parts need by Car Factory 
 Attribute Accessibility private 
 Data Type int 

  2 Attribute Name TimeMark 
 Attribute Description Stores the time stamp of the order object 
 Attribute Accessibility private 
 Data Type int  

Table 4-1-6: Exchange Object Attributes Table 
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Mandatory Object Methods Table 
 Category Information 
1 Method Name setPartsNeeded 

 Method Description set the number of parts need by Car Factory 
 Method Accessibility public 

Parameter Name intPartsNeeded  Method Parameters  
Parameter Data Type int 

 Method Return Data Type void 
2 Method Name getPartsNeeded 

 Method Description get the number of parts need by Car Factory 
 Method Accessibility public 

 Method Return Data Type int 
3 Method Name setTimeMark 

 Method Description set the time stamp of the object 
 Method Accessibility public 

Parameter Name intTimeMark  Method Parameters  
Parameter Data Type int 

 Method Return Data Type void 
4 Method Name getTimeMark 

 Method Description get the time stamp of the object 
 Method Accessibility public 
 Method Return Data Type int 

Table 4-1-7: Exchange Object Methods Table 
 

The object specifications provide the uniform meaning of each exchange object, so 

that the federates can access the objects and extract required information from them 

through calling the methods. However, we also find that the current OEMT standard is 

not adequate to specify complex objects. So many necessary details are missed that the 

information provided by the object specifications is not enough for the federates to 

make an agreement based on them. We will summarize the experience in section 4.3, 

and offer an improved OEMT standard in next chapter. 

4.1.3 Exchange Object Implementation 

The most important issue in this case study is to implement object transfer and 

manipulation. We note that the OEMT is a Data Representation Model, that is, a data 

model about what the “things” will be like or how to represent “things”, but not a data 

model “of the things”. A mechanism is required to represent the “things” --- objects 

actually exchanged in supply chain simulation environment. In this case study, the java 
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object class is employed to implement the exchange object, which includes data and 

methods. It is the object/entity which represents the actual product.  

However, another problem is how to organize the data, and how to differentiate 

them from methods. An object might have multiple hierarchical attributes. In addition, 

an object can carry more than one item, which has the same attribute name with 

different value. For example, in this case study, the tyre factory supplies tyres to the 

car assembly factory. As it is obviously inefficient to send tyre one by one, tyres are 

sent in bulk. Each tyre has different Uniform Tyre Quality Grade (UTQG), Maxload 

and so on which are presented as different values for certain attributes. So how to 

represent the attributes is a significant problem. To solve this problem, XML and the 

Document Object Model Tree (DOM Tree) are employed.  

XML is a language portable over the Internet. It has opened the door to the sharing 

of information in various ways. It supports a variety of applications, allowing easy 

writing of programs to process XML documents based on the user-defined tags [25]. It 

can store information in various types of elements and show the relationship of the 

elements as classes and subclasses. This allows parallel object parts like carriages or 

tyres to be described as children of a single parent. XML provides an encapsulation 

mechanism for object attributes. 

Using XML as the communication vehicle between disparate applications requires 

a mechanism that will read and interpret the XML document into a computer-friendly 

format. Application programs require a means to access the individual pieces of 

information (elements) contained within each XML document. This is accomplished 

by using the XML parser to render the document in a structured format --- hierarchical 

tree structure (DOM Tree). The Document Object Model (DOM) is a platform- and 

language-neutral interface that will allow programs and scripts to dynamically access 
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and update the content, structure and style of documents [7]. The DOM also offers a 

group of APIs to facilitate the access of the elements within the tree at run time. By 

following the tree (hierarchical) structure, the APIs allow traversing the tree freely, 

moving one part of the document tree to another without destroying and re-creating the 

content, and creating elements and attach them to any point in the document tree. 

For these reasons above, DOM Tree is chosen in this project to specify the attribute 

field of object exchange model in the case study. Many tools have been built by 

different vendors for this purpose. What we used in our case study, the XML4J parser, 

is such a tool provided by IBM that renders an XML document in a DOM Tree.  

Figure 4-1-2 gives the structure of the exchange object model.  

 
              Figure 4-1-2: Exchange Object Model (Java object class) 
 

 
• Attribute Field of OEMT Object (AIF and DOM Tree) 

The Object Exchange Model Template (OEMT) attribute information format 

(AIF) is a standard file format used to store the object attributes. The OEMT 

corresponds to common definitions of object models in object-oriented analysis 

and design (OOAD) techniques. In the OEMT literature, objects are defined as 

information encapsulations of attributes and operations (methods). This 

characteristic of the OEMT object requires all the attributes used to describe the 

parse 
 AIF XML file 

 

Attribute Field 
 
    (DOM Tree) 

Method Field 
 
 (W3C DOM API) 
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object be placed in an entire independent structure. The AIF is such a format to 

group all object attributes describing the object (e.g. attribute value). It stands for 

the attribute part of the OEMT. The AIF file takes the style of eXtensible Markup 

Language (XML) file.  

• Method field of OEMT Object 

The set of methods is developed according to the description in OEMT 

Mandatory Object Methods Table. These methods can be invoked from 

outside the OEMT object to perform certain functions, facilitate the access to 

object’s attributes (within DOM Tree) and provide other related services, such as 

providing some statistics, changing the state of the object, updating some of its 

attributes or acting on outside resources to which the object access.  

As application OEMT in this case study, the AIF of tyrepackage object is parsed to 

the DOM Tree framework (Figure 4-1-3). The attributes described in the OEMT are 

converted to the DOM Tree. The Methods are based on W3C Document Object Model 

APIs that allow access to the elements within the DOM Tree. For example, when the 

automaker receives the TyrePackage object, it can get the package size or a single tyre 

through invoking the methods “getPackageSize” or “getCompNodeAttribute”, 

which are described and acknowledged in the OEMT method table. 

 

 

 

 

 

 Figure 4-1-3: DOM Tree Framework of TyrePackage Object 



Chapter 4. Case Studies: Applications Using GRIDS and OEMT 
 

 
 

Zhao Na (M.Sc. Thesis) 
                                                                                     

43

4.1.4 Integration with GRIDS 

To meet the interoperation requirement of the system, GRIDS is used as the 

distributed simulation middleware to integrate the federates together. It integrates 

seamlessly with Java’s Object Serialization technology, enabling object-passing 

between remote federates. The timely transfer of objects between the elements of the 

automobile manufacture supply chain is the responsibility of GRIDS. To connect the 

GRIDS Client, the federates are required to realize two interfaces: SimInterface and 

SimStartInterface. A “.DDM” file is created for each federate to declare the publication 

or subscription of objects. Each federate keeps certain attributes such as netPort, 

federateName and a clock to record its current “time”. These publication, subscription 

information and namespace will be used in the future to register to the Boot Server. 

Figure 4-1-4 is a UML Class Diagram to show the structure and details of Federate 

Classes.  

SimInterface

recieveMessage()

(from Grids)

<<Interface>>

SimStartInterface

startSim()

(from Grids)

<<Interface>>

facsim

netPort
federateName
federationName
serverAddress
serverPort
clock
DDMFile

initSim()
startSim()
recieveMessage()

(from Common)

carfacsim

completedCars
maxProducts
assemblyTime
tyreList
engineList
bodyList
lampList

sendOrder()
sendStopInfo()
returnCompo()
prepareComponents()
processFederate()
updateSupplyOfCompos()

(from CarFactory)

tyrefacsim

generateTyre()
outputTyre()

(from TyreFactory)

enginfacsim

generateEngine()
outputEngine()

(from EngineFactory)

carbodyfacsim

generateBody()
outputBody()

(from BodyFactory)

lampfacsim

generateLamp()
outputLamp()

(from LampFactory)

compofacsim

lineCapacity
productList
maxStoreSize
produceTime
orderList
storeList

produce()
stopSim()

(from Simulation)

 

Figure 4-1-4: UML Structure of Federate Classes 
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Thin agents are employed to control the routes of objects transfer and synchronize 

the federates. Figure 4-1-5 shows the makeup of an individual federate [38].  

 

Figure 4-1-5: Federate Makeup with GRIDS Client 
 

4.1.5 Execution and Result Analysis 

Six PIII 700 MHz PCs with 256 MB RAM are used to run the whole system. One 

PC is used to run the GRIDS Boot Server; the other 5 PCs each carry one federate. We 

assume assembling a car needs two to three hours (random) in real life. The simulation 

terminates after 500 cars were produced in simulation time of 1356 hours and 18 

minutes. The average car assembly time is about 2 hours and 43 minutes per car. The 

Car Assembly Factory spent 97 hours and 12 minutes on waiting for parts. Delay rate 

was 7.2%. This delay can be avoided by employing a safe stock in the Car Assembly 

Factory.  

Figures 4-1-6 & 4-1-7 are two graphs that show the fluctuation of the stock size 

and the production time in the Carbody Factory and the Tyre Factory throughout the 

production process.     
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Figure 4-1-6: Carbody Factory Execution Result 

 
Figure 4-1-7: Tyre Factory Execution Result 

 

During the production process, the Carbody Factory received 141 orders from the 

Car Assembly Factory when the Tyre Factory fulfilled 87 orders. This difference is due 

to the different number of parts required in the order by considering the volume of 

parts and capacity of delivery tools in real life. The production time is extended 

(production speed increase) by a given coefficient (different for each factory according 

real life experience) when the stock is close to maximum capacity and is decreased 

when the order demand cannot be satisfied. As we can see in figures 4-1-6 and 4-1-7, 
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the ability to automatically adjust production time makes the stock size fluctuate 

within a certain range. Other factors such as the random defect rate, order demand, 

different inventory capacity and so on also affect the wave period and form of the 

curve. Comparing the two figures above, the stock size of the Carbody Factory 

fluctuates faster than the Tyre Factory. The main reason is the inventory capacity of the 

Carbody Factory is much smaller than the Tyre Factory. The production time of the 

Tyre Factory is also more stable. (Note: the exceptional drop of stock size in Tyre 

Factory around time 300 is due to the fact that the defect rate of previous batch of tyres 

is abnormally high. This conclusion is made via analysis of factory’s production 

record.) 

4.2 Case Study Two: Singapore Mass Rapid Transit (MRT) 

System Simulation  

The MRT system in Singapore is one of the most important public transport 

systems in the country. It spreads all over the country and provides mass rapid transit 

passenger service along major high-density travel corridors in Singapore. 

The second case study investigates the ability of GRIDS and OEMT to facilitate 

transportation simulation. This case study designs a distributed system to simulate the 

MRT system and uses this to investigate the flow of passengers and trains on the 

Singapore MRT system, specifically to investigate the relationship of the model to the 

safe capacity of a MRT station.  

Sections 4.2.1, 4.2.2 and 4.2.3 will discuss the design issues of the case study 

including building objects based on the Object Exchange Model Template. Then the 

case study implementation will be presented in section 4.2.4. Section 4.2.5 presents the 

execution and experience analysis. 
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4.2.1 System Design and Function Description 

To simplify our system, only major stations, eight stations and four garage models, 

are simulated in a four line MRT system. This means the MRT federation, named 

MRTSim, consists of twelve federates. The station simulation models are 

object-oriented and distributed running on network computers. Train objects carrying 

passengers are transferred between stations. They are based on the OEMT as the 

information transfer standard and apply OEMT standard on full scale. GRIDS is used 

as simulation middleware to connect the federates. This case study therefore gives 

another practical instance of GRIDS and the OEMT application. 

Figure 4-2-1 illustrates the federation structure graphically. The function of each 

station is briefly described as follow. 

 
Figure 4-2-1: MRT Simulation System Structure 

 

The garages are in charge of generating empty trains (train objects with initial 

attribute values) for each MRT line in a fixed interval. Each of these MRT stations has 

a maximum safe capacity. Passengers reach a departure station at a given rate, which 

could be changed for each station and/or for different time periods. Each passenger has 

a randomly assigned destination and takes the best route (normally the shortest way to 

destination). The passengers are put into a waiting queue of a particular platform 

according to their destinations.  

MRT_EW2 MRT_EW1 

MRT_NS2 MRT_NS3 

MRT_EW3 MRT_EW5 MRT_EW4 

MRT_NS1 

garage-northline garage-southline

  garage-eastlinegarage-westline 
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South line train 
come from NS1

East line train
come from EW3 

West line train
send to EW3 

East line train 
send to EW1 

North line train
send to NS1 

West line train 
come from EW1 MRT Station EW2 

(process train) 

North line train
from garage_n 

Figure 4-2-2: MRT Station Object Exchange Relationship 

A train object carries information such as trainID, capacity, total passenger number, 

number of passengers to each station and so on. This information forms the attributes 

of the OEMT object, which are defined in the following specification. When a train 

arrives at a station, the station model invokes the methods of train object to access the 

attributes and finish the operations such as passengers getting on and off this train, and 

then sends the train to the next station. If the number of passengers on a station 

exceeds the safe capacity, the federation terminates by producing warning information 

together with a summary of statistical data. The data are used to adjust train interval or 

train capacity so that the stations could keep within the safe capacity. 

Figure 4-2-2 takes station EW2 as an example to portray the exchange of train 

objects in the system. As it can be seen, federate EW2 exchanges object with other 4 

federates. It receives train objects from 4 federates, and sends objects to 3. For 

example, a west line train comes to EW2 from EW1; EW2 processes the train (updates 

train object, including update timestamp, insert or delete passengers and other statistics 

work), adjusts station’s simulation time and then sends the object to the next station 

(EW3). The behavior of other federates is similar to EW2. 

 

 

 

 

 

 

 

 

 

 



Chapter 4. Case Studies: Applications Using GRIDS and OEMT 
 

 
 

Zhao Na (M.Sc. Thesis) 
                                                                                     

49

4.2.2 Exchange Object Specification 

The motivation of this case study was to show the workings of the OEMT. We 

wanted to know if it is a suitable and efficient way to specify object exchange in the 

transportation system. So our main concern is on the design of the object exchange 

model in the MRT Simulation based on the OEMT format.  

There are four train objects --- EastLineTrain, WestLineTrain, NorthLineTrain and 

SouthLineTrain that represent the trains come from different lines (refer to Figure 

4-2-2). In the following four tables we use EastLineTrain as an instance to provide the 

specifications of exchange object in MRTSim using OEMT. The specifications include 

all the attributes of the MRT train object. The methods to access attributes are also 

represented. The real exchange object will be developed based on these descriptions. 

Object Exchange Model Template (OEMT) 
Category Information 

Name of Model EastLineTrain 
Model Description Link Nil 

Model Description 

A model to emulate a train which carries numbers 
of passengers from current station to their 
destination station. The important features are the 
number of passenger going to each station and 
the capacity of the train. 

Technical Details …… 
General Details of each Implemented Object …… 

Table 4-2-1: Exchange Object Information Table 
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Mandatory Object Attributes Table 
 Object Attributes Field Data 
1 Attribute Name capacity 

 Attribute Description Stores the max number of passenger which can 
be carried by the train 

 Attribute Accessibility private 
 Data Type int 

2 Attribute Name totalpsgnum 
 Attribute Description Stores current number of passenger on the train 
 Attribute Accessibility private 
 Data Type int 

3 Attribute Name psgnum_to_EW1 
 Attribute Description Stores passenger number whose destination is 

station EW1. 
 Attribute Accessibility private 
 Data Type int 

4 Attribute Name psgnum_to_EW2 
 …… …… 

Table 4-2-2: Exchange Object Attributes Table 

Mandatory Object Methods Table 
 Object Attributes Field Data 
1 Method Name setAttrValueInt 

 Method Description set attribute value to each attribute in the object. 
 Method Accessibility public 

Parameter Name AttrName 
Parameter Data Type String 
Parameter Name AttrValue 

 Method Parameters  

Parameter Data Type int 
 Method Return Data Type void 

2 Method Name extractIntValue 
 Method Description extract attribute value from object 
 Method Accessibility public 

Parameter Name AttrName  Method Parameters  
Parameter Data Type String 

 Method Return Data Type int 
3 …… …… 

Table 4-2-3: Exchange Object Methods Table 

General Details of Each Implemented Object 
Category Information 

Company Name NUS SOC 
Company Contact Info (65) 68744366 

First Name Na Company Contact Person  
Last Name  Zhao 

Company Email Address Nil 
Version 1.1 

Day 30 
Month 8 

Date of Version 

Year 2002 
Implementation Platform Java 
Reference Link to Implemented Object Nil 

Table 4-2-4: General Details of Exchange Object 
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4.2.3 Exchange Object Implementation 

In this case study, the train objects take the form of Java object classes which 

included the DOM Tree as data member and multiple methods. Figure 4-2-3 is the AIF 

file being used to carry attributes of the train object. It is parsed into DOM Tree and 

stored in the object class in the MRTSim program. 

 

 

 

 

 

 

 

 

 

 

 

Through using the DOM APIs in this case study, any element within the AIF XML 

document can be accessed, changed, deleted, or added. The value of each attribute can 

be accessed by invoking the methods of the object. Figure 4-2-5 gives an example of 

the methods in the train object. Figure 4-2-4 shows the original state of part of the 

attributes in the train object. The method “setAttrValueInt” functions as finding 

specified element by name and setting the value passed as parameters. 

Figure 4-2-3: AIF File for Train Object in MRTSim 

<?xml version="1.0"?> 
<objectModel> 
  <modelName>EastLineTrain</modelName> 
  <description>Singapore MRT simulation</description> 
  <technicalDetails>  
    <objAttr> 
    <capacity></capacity> 

     <totalpsgnum></totalpsgnum> 
     <psgnum_to_EW1></psgnum_to_EW1> 
     <psgnum_to_EW2></psgnum_to_EW2> 
     <psgnum_to_EW3></psgnum_to_EW3> 
     <psgnum_to_EW4></psgnum_to_EW4> 
     <psgnum_to_EW5></psgnum_to_EW5> 
     <psgnum_to_NS1></psgnum_to_NS1> 
     <psgnum_to_NS2></psgnum_to_NS2> 
     <psgnum_to_NS3></psgnum_to_NS3> 
   </objAttr> 
  </technicalDetails> 
</objectModel> 
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Figure 4-2-4: Example DOM Tree Fragment 

 
public void setAttrValueInt(String AttrName,int AttrValue) 
 { 
   String AttrV_=Integer.toString(AttrValue); 
   NodeList Elements=this.doc.getElementsByTagName(AttrName); 
   Node refernode=elements.item(0); 
   //creat a new node with particular value, and  
    append it under element node. 
   Node new_node=this.doc.createTextNode(AttrV_); 
   refernode.appendChild(new_node); 
} 

Figure 4-2-5: Method setAttrValueInt(String AttrName, Int AttrValue)  

 

By calling the method, a user can add value to given attribute of the object. For 

example: 

setAttrValueInt(“capacity”,500); 

setAttrValueInt(“totalpsgnum”,300); 

setAttrValueInt(“psgnum_to_EW1”,50); 

Figure 4-2-6 shows the result of methods invocation from outside the object.  

 

 

 
 
 
 
 
 
 
 
 
 
Figure 4-2-6: Example DOM Tree Fragment after Calling Method 

  <objAttr> 
   <capacity></capacity> 
  <totalpsgnum></totalpsgnum> 
    <psgnum_to_EW1></psgnum_to_EW1> 
  </objAttr> 

psgnum_to_EW1

  objAttr 

 capacity  totalpsgnum 

  <objAttr> 
   <direction>1</direction> 
  <capacity>500</capacity> 
  <totalpsgnum>300</totalpsgnum> 
  </objAttr> 

 psgnum_to_EW1 

 objAttr 

 capacity  totalpsgnum 

“50” “500” “300” 
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As Figure 4-2-6 showed, each time the method is called, a new text node with 

attribute value (parameter two) is created and appended as child node of the 

corresponding element node (refer to parameter one, attribute name). Hence the 

attribute field is updated.  

Other methods of train object behaved similarly as the above example. The train 

object with all the attributes and methods was transferred among the federation in the 

MRTSim. The program detail of the train object was transparent to users. The method 

name, parameters and function were listed in the OEMT specification. Users can 

search the specification for the required operation. Through calling these methods, a 

federate (station) can obtain useful information (e.g. passenger number in current 

station) from the exchange object, update it (e.g. passengers get off or on the train), 

then transfer the object to the next federate. Providing methods in the OEMT can 

standardize object input, output and information transmission in simulation, thus 

simplifying simulation builder’s work dramatically and promoting re-use of simulation 

components. 

4.2.4 Case Study Implementation in GRIDS Environment 

The experimental platform of the case study is outlined below: 

• GRIDS was used as the middleware in this case study.  

• All the 12 federates were written in Java to take advantage of its 

object-orientedness, multithreading, and also the strong object serialization 

technology.  

• The train object was implemented on the format of a Java object class. 

• Seven PIII 700 MHz with 256 MB RAM PCs within a 7-PC cluster were used to 

run the whole system. One PC was used to run the GRIDS Boot Server; the other 

6 PCs each carried two federates. 
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The stations are discrete-event based, in which a train object is regarded as an 

incoming event. The timely transfer of objects between federates was the responsibility 

of this middleware. Time management, data distributed management and other basic 

services are achieved by employing the corresponding GRIDS thin agents. The 

makeup of an individual federate with the GRIDS client is similar with case study one 

(refer to Figure 4-1-5). Figure 4-2-7 illustrates the structure of the MRT federation in 

GRIDS environment.  

 

Figure 4-2-7: MRT Federation Structure in GRIDS Environment 

 
4.2.5 Execution and Experience Analysis 

As stated in the beginning of this chapter, the setup of the nodes in the second case 

study differs with the first one. In the first case study, the component factories and the 

assembly factory are tightly coupled. The component factories cannot send parts to 

assembly factory until they receive orders. They fall into sleep to avoid the overflow of 

their stores and are awaked by the order objects. On the other hand, the assembly 

factory would also sleep if the component factories could not meet its requirement. 

However, in the MRT system, the stations are loosely coupled. It means that there is no 
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immediate or direct feedback when an object/entity is passed between the stations. A 

station works in a simple internal logic according to a self-ordained and pre-defined 

schedule.  

Conventionally, the synchronization of systems like the MRT can be achieved by a 

“spreadsheet solution”, which is simply taking the results of the first model in a 

spreadsheet and then uploading it into the second model. However, while spreadsheet 

solution is a rudimentary approach to time management, it is not a scalable one. To 

handle logically connected models, it often requires some assumptions such as zero 

idle time. We need a generic distributed simulation approach without such limitations 

to handle systems with loosely coupled nodes and implement complex business logic 

in them.  

The second case study investigates the ability of GRIDS to be such a generic 

solution. To be generic, it must be able to transfer timestamped entities from one 

model to another; allow a model to correctly receive and process the timestamped 

entities from one or more models; and correctly synchronize these models. 

Through the MRT simulation, we find that GRIDS can meet these basic 

requirements. It transferred and processed the timestamped train objects in correct 

order. And it coordinated and synchronized the MRT system well. But, since GRIDS 

was originally developed based on the DSC requirements, its ability to handle 

transportation system is limited. The algorithm of the current GRIDS TM thin agent is 

not powerful enough to meet the requirement of the transportation system simulation. 

And because the task of each station is not balanced, some station may have a big 

waiting queue after executing a period of time. To maintain the queue, TM thin agent 

consumes large amounts of memory. For this restriction, the MRT simulation did not 

run stably. We fail to give exact results in this case study. To improve the thin agent is 
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beyond the scope of this research work and will be left to future work. However, we 

still gain experience from it.  

First of all, this case study proves valuable experience to improve the structure of 

the OEMT. Although the OEMT successfully describes the basic properties of the train 

in the MRT simulation, its elements are not enough to specify objects effectively in 

transportation system. This case study also proves that the OEMT helps the DDM thin 

agent work well in this simulation.  

Second, we find that object passing is efficient in transportation system. A single 

train travels through several stations, therefore the ability to carry methods is 

promising in enhancing the efficiency of the system.  

Third, through this case study, we find the deficiency of GRIDS in handling 

transportation system and indicate a direction in further improvement for GRIDS.  

The above experience will be summarized in section 4.3. The goal of our future 

work will be making GRIDS an efficient, convenient and all-purpose simulation 

middleware. 

4.3  Experience Gained from Case Studies  

The case studies helped to test, analyze, and verify GRIDS infrastructure and the 

OEMT. The experience gained from case studies will be summarized in this section. 

Certain opinions and suggestions will be given to help the improvement of GRIDS and 

the OEMT. 

4.3.1 GRIDS Federation Development Process  

Through the experience we got from the development of the automobile supply 

chain simulation, the GRIDS federation development process can be described in six 

steps as follows: 
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1. Define federation objectives; 

2. Develop federation conceptual model;  

3. Design federation (particular OEMT object specification development);  

4. Develop federation;  

5. Integrate and test federation;  

6. Execute federation and results analysis.  

This series of activities is necessary to design and build the GRIDS federation. The 

six steps need not be performed in a strictly sequential manner. A spiral development 

approach3 might be more effective.  

4.3.2 Benefits of GRIDS 

GRIDS has several advantages which make it an ideal middleware infrastructure 

for DSC simulations. These advantages also make GRIDS suit other application areas 

such as transportation as shown in case study two: 

• It supports high extensibility in several levels from user-defined message types to 

functionality extensions via the thin agents and internal data storage extensions 

via the MetaDataBase (MDB) interface. Functionality extensibility via thin 

agents is the key feature of GRIDS. This property allows additional services 

required for a DSC or other types of simulation to be easily and rapidly 

developed and dynamically added in. The environment’s functionality is also 

enhanced through the extension mechanism in response to specific requirements 

made by the vast distributed simulation areas.  

• It reduces the time and costs for building a new simulation model, which is 

derived from the GRIDS’s ability to integrate an array of existing 

                                                        
3 Spiral development is a family of software development processes characterized by 
repeatedly iterating a set of elemental development processes and managing risk so it 
is actively being reduced. 
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component-based simulation models. It also takes advantage of the functionality 

of various vendors’ simulation products. 

• It is a light-weight and portable middleware and converting an existing 

application to use GRIDS is comparatively easy. The application interface within 

GRIDS is in the form of two basic object-oriented interfaces that must be 

implemented during the development of an application: the SimInterface 

(equivalent to the federate ambassador) and the GridsInterface (equivalent to the 

RTI ambassador). 

• It supports peer-to-peer communication between federates. The traffic bottleneck 

is avoided because there is no central server that handles communications. 

• The architecture is easy to understand and hence, easy to learn and grasp.  

• The fault tolerance level is high because an error in single node does not affect 

the execution of other nodes. 

4.3.3 Deficiencies of GRIDS 

Although the advantages of GRIDS are aplenty, its deficiencies cannot be ignored. 

The deficiencies of GRIDS exposed in the case studies are listed below:  

• GRIDS lacks the ability for dynamically federates discovering, joining in and 

withdrawing at runtime. 

• Inadequate integration mechanisms are provided by GRIDS. An interface which 

maps different program languages to the middleware is in need.  

• Thin agent services in GRIDS are inadequate. More services are expected such as 

secrecy, ownership management, execution data collection and maintenance etc.  

• Current Data Distributed Management and Time Management Thin agents 

provides single algorithm. This limitation seriously restricts the function of 
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federations. More algorithms are needed to meet simulation requirements 

flexibly. 

• The ability of the Time Management Thin agent to synchronize simulation 

models is limited. This limitation seriously restricts the function of federations.  

• Since valid federates cannot ensure a valid integrated federation, verifying and 

validating GRIDS federation is hard and still need further research.  

These experience and suggestions will greatly help the improvement of GRIDS. 

4.3.4 OEMT Evaluation 

Through the two case studies, we approve that the OEMT is suitable for specifying 

object exchange models for the following reasons:  

 It provides a valid template for documenting object models which emulate as 

close to reality as possible, the actual entities passed between the simulation 

federates. This common template provides a standardized way of specifying 

models to be used as input or output, and facilitates understanding between 

federates of a distributed simulation. 

 It is particularly useful for implementing Data Distribution Management (DDM) 

for distributed simulations in GRIDS, which reduces the network latency by 

filtering the data and sending output objects only to federates that needs them. It 

provides the GRIDS Boot Server a standard to distribute object information to the 

DDM Thin Agents of the various federates. Based on the OEMT, the DDM Thin 

Agent places the correct object on the relevant output lines, and differentiates 

objects coming in from the various input lines. 

 It separates the manipulation of exchange object from simulation models. 

Therefore facilitate the design and reuse of common tool sets for development of 

distributed simulation object models. 
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 It provides Mandatory Object Methods Table to describe the methods to access 

the content of the object. 

However, we also found the deficiencies in the practical applications of the OEMT 

from the case studies. Although the template has been set up, it is still not complete. It 

needs to be improved to describe the object model completely.  

1. Lack of the capability to specify the components of the object model. 

Sometimes an object is not atomic, it can contain more than one component of the 

same type or even of more than one component type. For example, in case study one, 

the tyrepackage object is not atomic. Each tyrepackage encapsulates a number of tyres. 

It can be regarded as a truck which delivers tyres to the Car Assembly Factory. A tyre 

is the component of tyrepackage object. It has attributes such as UTQG, Max Load and 

Max Inflation Press. However, the OEMT version 1.0 has no such element to specify 

the attributes of object component. The OEMT needs to be extended to describe the 

special attributes of each component type. 

Table 4-3-1 is an optional table introduced into the OEMT by this research. It is 

used to describe component (tyre) of the object (tyrepackage).  
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Exchange Object Component Table 
Category Information 

Component Name Tyre 
Component Description Tyre is the component in Tyre package. 

1 Component Attribute Name CompID 
 Attribute Description Index of individal tyre 
 Attribute Accessibility Private 
 Data Type int 
2 Component Attribute Name UTQG 
 Attribute Description The Uniform Tyre 

Quality Grade (UTQG) 
�rained�g system is a 
rating for treadwear, 
traction, and 
temperature resistance. 

 Attribute Accessibility private 
 Data Type String 
3 Component Attribute Name MaxLoad 
 Attribute Description Maximum load  
 Attribute Accessibility private 
 Data Type float 
4 Component Attribute Name MaxInflationPress 
 Attribute Description Maximum inflation 

press 
 Attribute Accessibility private 

Component Detail 

 Data Type float 
Table 4-3-1: Exchange Object Component Table 

 

2. Lack of the capability to define timestamp and lookahead which are necessary 

in GRIDS environment. 

Because the Time Management thin agent of GRIDS used conservative algorithm 

[2, 3] to synchronize all the federates, each federate should have its timestamp and 

lookahead. However the current OEMT cannot describe the data format and scale of 

timestamp and lookahead. A table like 4-3-2 is needed in both the case studies. 

Object Time Representation Table 

Category Datatype Scale 
(time unit : simulation time) 

Time stamp Integer (non-negative) 1:6minute 

Lookahead Integer (non-negative) 1:6minute 

Table 4-3-2: Object Time Representation Table  
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3. Lack of the ability to define the inheritance relationship between objects. 

In the second case study, there are four types of object models that represent trains 

from north line, south line, west line and east line. These objects have almost the same 

attributes and methods. However, using the current OEMT, we had to specify the four 

similar objects separately. This means we had to describe same attributes and methods 

four times. The duplicated work can be avoided if we introduce inheritance 

relationship into the OEMT.  

The Exchange Object Information table can be extended with two more items as 

shown in table 4-3-3 (bold and italic). They are set up to cater for the current trend of 

object-oriented programming. One of the most important properties of object-oriented 

program design is inheritance, by which a child object inherits and uses attributes and 

methods from its parent object and all of its ancestors or it can hide the member 

variables or override the methods. Introducing inheritance into the OEMT simplifies the 

description of children objects by starting from the definition of existing objects. 

Object Exchange Model Template (OEMT) 
Category Information 

Name of Model MRT Train 
Model Description Link Nil 

Model Description 

A model to emulate a train which carries numbers 
of passengers from current station to their 
destination station. The important features are the 
number of passenger going to each station and 
the capacity of the train. 

Name of Parent Object  Nil 
East Line Train 
West Line Train 
North Line Train Names of Children Objects 

South Line Train 
Technical Details …… 

Time Representation …… 
Attributes Field Data Type DOM Tree 

General Details of each Implemented Object …… 
Table 4-3-3: Exchange Object Information Table 

 

As shown in the table, in case study two, the trains from four directions are all the 
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children of a single parent object (MRT train object). The children objects inherit all 

the attributes and methods from its parent object. They can also extend new attributes 

and methods for themselves with only the new attributes or methods being presented. 

This new function can also be used into case study one to simplify the specification of 

the package objects and the order objects. 

4. Need to add Attribute Field Data Type item. 

As it was mentioned in section 4.1, the OEMT implementation involves an 

independent attribute field of object. This item in Table 4-3-3 (italic) is used to specify 

the data type of attribute field that carries the object attribute information. It can be 

array, list, file or even more complex data structure. For example in case study two, the 

attribute field of train object takes the form of DOM Tree.  

In addition, the object class may be a large structure. Sometimes transferring the 

whole object can cause a heavy load on the network. However, the object instances of 

uniform object model are different only by the values of attribute members and they 

have the same method members. The method members become redundant in the 

transfer process. To improve the efficiency of simulation system, one consideration is 

to transfer the attribute field without the method members of the object class. In this 

case, after the first introduction of the object class to the subscriber, the object class 

model resides in the subscriber federate. Only the attribute field is transferred between 

federates instead of the whole object. An independent attribute field provides a 

mechanism to extract the attribute information as a transferable entity from the object. 

Based on these deficiencies we found, we update the OEMT with new elements. 

The standard format of each new element above is defined in chapter 5 when we 

provide a more robust and complete OEMT standard (version 2.0). The OEMT DIF 

specifications for the tyrepackage and MRT train objects using the OEMT version 2.0 
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can be found in appendix B and C. 

From the case studies, we also find that the resource of existing OEMT in OEMR 

is far from enough for efficient reuse and development of the OEMT DIF files is truly 

time-consuming. So we develop an application tool kit which facilitate the 

development of DIF file and provides the OEMR on-line service in chapter 5.  
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CChhaapptteerr  55  OOEEMMTT  EEnnhhaanncceemmeennttss      

The goal of this research work was to investigate problems involved in the 

development of a distributed simulation in GRIDS environment, specifically the 

object-passing mechanism and the standardization of the exchange objects.  

From the two case studies we can see that the basic elements of the OEMT are 

definitely not sufficient to cater to even the needs of the specialized DSC Simulation 

saying nothing of other fields. Hence, there was a need to upgrade the OEMT and 

identify as complete as possible, the additional requirements of distributed simulation, 

especially DSC simulation that have to be provided by the OEMT. 

The OEMT currently includes 5 elements. This is clearly inadequate to represent 

the complexity of the object involved in the various simulation applications. This 

research work contributes both in extending OEMT elements and in providing a new 

tool in section 5.2 to aid the building of object model. 

5.1 OEMT Elements Evolvement (version 2.0)  

In the original release of the OEMT in June 2001, the format definition was 

entirely driven by the experiments of some simple GRIDS prototype federations, 

which focused on DSC simulation area. Subsequent to this original release, the OEMT 

has continued to mature and evolve, primarily based on the research on complex 

simulation systems both for DSC application and other simulation types.   



Chapter 5. OEMT Enhancements 
 

 
 

Zhao Na (M.Sc. Thesis) 
                                                                                     

66

In this section, a fine-tuned version of the OEMT will be provided based on the 

experience collected from the case studies. 

The OEMT evolved elements is presented as below: 

GRIDS object exchange models are composed of a group of inter-related elements 

specifying information about the model. Each model is identified uniquely by the 

mandatory attributes and methods that must be implemented for each implemented 

object of the model. And there are also certain optional elements for users to select 

according to the requirements of different simulations. The template for the core of a 

GRIDS object exchange model uses a tabular format and shall consist of the following 

elements. The four main elements and one sub-element supplemented by this research 

project are in bold: 

• Name of Model: to record the product name that the model is emulating. 

• Model Description Link: to record the URL link if the description of the model is 

located somewhere else on the internet.  

• Model Description: to record a detailed description of the purpose of this model 

and the product description. 

• Name of Parent Object: to record the name of parent object of the current 

model. 

• Names of Children Objects: to record the names of children objects of the 

current model. 

• Technical Details: to specify the object attributes that must be implemented for 

this model, object components and mandatory methods. 

• Time Representation: to specify the timestamp and lookahead of the instances of 

the object.  
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• Attribute Field Format Representation: to specify the data structure of object 

attributes used in object model implementation.  

• General Details of each Implemented Object: to specify for each object that has 

been implemented using this model, the details of the company and the location of 

the object in the form of an URL. 

The tabular format of basic OEMT is showed as follow, from Table 5-1 to 5-6. 

Detailed content of each field is also defined. 

Object Exchange Model Template (OEMT) 

Category Information 

Name of Model  

Model Description Link  

Model Description  

Name of Parent Object   

Names of Children Objects  

Technical Details  

Time Representation  

Attributes Field Data Type  

General Details of Each Implemented Object  

Table 5-1: Exchange Object Information Table 
 

5.1.1 Name of Model 

This field records the product name that the model is emulating. The name of the 

model shall be clear and unique, to clearly differentiate this model from the others in the 

OEMR.  
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5.1.2 Model Description Link 

This is a URL link and shall only be used only when the Model Description and 

Technical Details of the model is located away from the OEMR. “Model Description 

Link” shall not co-exist with “Model Description” 

and “Technical Details”. Should “Model Description Link” be used, “Model 

Description” and “Technical Details” shall have an entry of “Nil” and vice versa. 

5.1.3 Model Description 

This field shall record the purpose for which the model was created, and the 

description of the model. It may also contain a brief description of key features of this 

model for easy understanding between simulation builders. 

5.1.4 Name of Parent Object and Names of Children Objects 

These two elements are optional. In the OEMT standard, each object can have 

maximum one parent object but several children objects. The names of all children 

objects are listed. Each name shall be clear and unique. The children object inherits all 

the attributes and methods from its parent object. Only the new or overlaid attributes 

and methods in the children object are described in its models. The inheritance ability 

meets the current trend of object-oriented programming and facilitates the 

development and reuse of object exchange model.  

5.1.5 Technical Details 

This field is used to describe the technical details of this model. It shall further be 

sub-divided into three tables, the Mandatory Object Attributes Table, the Object 

Components Table and the Mandatory Object Methods Table. This field shall document 

all necessary attributes and methods that must be implemented for each object 

implemented using this model. At least one mandatory attribute must be defined, in 
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accordance to making the model unique. For mandatory methods, it is optional in the 

model’s declaration. And the components table is also optional. If the object is atomic 

which has no components (e.g. tyre), this table shall be ignored. 

For data types that are permitted, only primitive data types are currently allowed for 

each attribute and for the return data type of methods in this version of the OEMT 

specifications.  

The following are the permitted data types for attributes and return data of methods: 

 boolean 

 char 

 double 

 float 

 int 

 string or char arrays 

 arrays of primitive data types 

Mandatory Exchange Object Attributes Table 

The attributes mandatory to the object exchange model shall be recorded in a 

tabular format. For each attribute, the following items must be recorded: 

• Attribute Name: Name of the attribute. The data shall be clear and shall be store 

in a string format and shall be able to define the attribute uniquely within this 

object model. 

• Attribute Description: Describes the purpose and use of this attribute. The unit of 

the attribute value should also be recorded in this field if needed. 

• Attribute Accessibility: Describes the accessibility (scope) of this attribute. This 

field accepts only three entries – Private, Public or Protected. The meaning of 
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these three entries is equivalent to the usage of these entries in Object Oriented 

Programming. 

• Data Type: As was described above, primitive data types only are allowed 

currently. 

Mandatory Object Attributes Table 

 Object Attributes Field Data 

1 Attribute Name  

 Attribute Description  

 Attribute Accessibility  

 Data Type  

2 Attribute Name  

 …  

Table 5-2: Mandatory Object Attributes Table  

 
Object Components Table 

If the object exchange model has certain component-objects (e.g. in case study one, 

the tyre is the component-object of tyrepackage object model), the component-objects 

shall be recorded in a tabular format. For each component-object type, the following 

items must be recorded:  

• Component Name: Name of the component-object. The data shall be stored in a 

string format, and shall be able to define the component-object uniquely within 

this object model. 

• Component Description: Describes the purpose of this component and includes a 

brief description of its key features. 

• Component Detail: Describes the attributes of the component. 
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− Attribute Name: Name of the attribute. The data shall be clear and shall be 

store in a string format and shall be able to define the attribute uniquely 

within this object model. 

− Attribute Description: Describes the purpose and use of this attribute. The 

unit of the attribute value should also be recorded in this field if needed.  

− Attribute Accessibility: Describes the accessibility (scope) of this attribute. 

This field accepts only three entries – Private, Public or Protected. The 

meaning of these three entries is equivalent to the usage of these entries in 

Object Oriented Programming. 

− Data Type: As was described above, primitive data types only are allowed 

currently. 

Exchange Object Component Table 

Category Information 

Component Name  

Component Description  

 1 Component Attribute Name  

 Attribute Description  

 Attribute Accessibility  

 Data Type  

 2 Component Attribute Name  

Component Detail 

 …  

Table 5-3: Exchange Object Component Table 
 

Mandatory Object Methods Table 

The methods mandatory to the object exchange model shall be recorded in a 

tabular format. These methods are used to access attributes of both the object and its 

component-object, and they also provide other services such as statistics and so on. For 
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each method, the following items must be recorded: 

• Method Name: Name of the method. The data shall be stored in a lower-case 

string format, and shall be able to define the method uniquely within this object 

model. 

• Method Description: Describes the purpose and use of this method. 

• Method Accessibility: Describes the accessibility (scope) of this method. This 

field accepts only three entries – Private, Public or Protected. The meaning of 

these three entries is equivalent to the usage of these entries in Object Oriented 

Programming. 

• Method Parameters: Stores the information about the parameters that are required 

for this method in order to execute the method. This field is optional. A method 

may not require any parameters. This field is further broken down into the 

following items: 

− Parameter Name: Name of the parameter. The data shall be stored in a 

lower-case format, and shall be able to define the method uniquely within this 

method. 

− Parameter Data Type: As was described at the beginning of this section, 

primitive data types only are allowed currently. This data types follow the 

permitted data types of attribute data types. 

• Method Return Data Type: Stores the return data type that will be output as a 

result of executing this method. As was described at the beginning of this section, 

primitive data types only are allowed currently.  
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Mandatory Object Methods Table 

 Object Methods Field Data 

1 Method  Name  

 Method Description  

 Method Accessibility  

Parameter Name   Method Parameters  

Parameter Data Type  

 Method Return Data Type  

2 Method  Name  

 Method Description  

 Method Accessibility  

 Method Parameters   

 Method Return Data Type  

 3 ……  

Table 5-4: Mandatory Object Methods Table 

 
5.1.6 Time Representation 

This field specifies the timestamp and lookahead of the object, which is used to 

synchronize all the federates in a distributed federation. The object arrived is processed 

in time order. The datatype for the timestamp and lookahead must be recorded. The 

scale presenting the proportion of the time unit to the simulation time it presented shall 

also be recorded. 

Object Time Representation Table 

Category Datatype Scale 
(time unit : simulation time) 

Timestamp   

Lookahead   

Table 5-5: Object Time Representation Table 
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For example, the data type may be “Integer (non-negative)” and scale being set 

“1:1minute” (see example in section 4.3). 

5.1.7 Attribute Field Format Representation 

This item is used to specify the data type of attribute field that carries the object 

attribute information. It can be array, list, file or even more complex data structure.  

5.1.8 General Details of each Implemented Object 

This field of the object model is optional, and multiple instances of this item can be 

existent in an object exchange model. Each instance shall be a description of the details 

of each known implemented object using this model. This item of the object exchange 

model shall consist of the following fields: 

 Company Name: Stores the name of the company that implemented this object. 

 Company Contact Info: Stores the contact information of the company that 

implemented this object, most probably the phone number. 

 Company Contact Person: Stores the information of the person to contact from 

within the company should any enquiries be made. This field is further divided into 

two sub-fields: 

- First Name: The first name of the contact person 

- Last Name: The last name of the contact person 

 Company Email Address: Stores the valid email address that any enquiries can send 

to. 

 Version: Stores the version number of this implemented object. 

 Date of Version: Stores the date that this version of the implemented object had been 

implemented. This field is further divided into three sub-fields: 

- Day: Shall store the numerical value of the day. 

- Month: Shall store the numerical value of the month. 
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- Year: Shall store the numerical value of the year. 

 Implementation Platform: Stores the platform in which the object was implemented. 

 Reference Link to Implemented Object: Stores the URL where the implemented 

object is located.  

General Details of Each Implemented Object 

Category Information 

Company Name  

Company Contact Info  

First Name  Company Contact Person  

Last Name   

Company Email Address  

Version  

Day  

Month  

Date of Version 

Year  

Implementation Platform  

Reference Link to Implemented Object  

Table 5-6: General Details of Each Implemented Object 

 

The new DTD schema (version 2) of the OEMT DIF can be found in appendix A. 

5.2 Application Tool Kit Development 

In the GRIDS environment, the exchange objects are specified using the OEMT. 

However, the generation of the OEMT DIF object specification file and the object 

exchange model is extremely time consuming. Therefore, the ability to automate the 

process of object model development is a significant concern. In this work, an OEMT 

application tool kit is developed to aid the simulation builders in the automatic creation 

of the DIF file and object exchange model. This tool kit also implements the OEMR 
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services. In addition, in this chapter, we propose a novel concept --- Object Exchange 

Model Dictionary (OEMD) which provides both the standard nomenclature that 

specifies common representations of data used within an OEMT and the reusable 

components to be used in object model construction.  

This section describes the functions of the OEMT application tool kit in detail. 

Section 5.2.1 introduces the basic function of the tool kit. Section 5.2.2 represents the 

OEMR services provided by the kit. The motivation, conception and functionality of 

the OEMD are introduced in section 5.2.3.  

5.2.1 Basic Function 

The OEMT application tool kit is developed to facilitate the generation of DIF 

object specification file and the object model. It releases simulation builders from hard 

work and saves time and effort in the GRIDS federation development process. 

In this tool, the OEMT is given in tabular format as shown in Figure 5-1, 5-2 and 

5-3 so that it is very easy for users to follow.  

 Figure 5-1: GRIDS OEMT Software User
Interface---Exchange Object Information Table
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There are six such tables according to the tables in the new OEMT specification in 

Figure 5-2: Exchange Object Attributes Table 

      Figure 5-3: Exchange Object Methods Table  
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section 5.1. Figure 5-1, 5-2 and 5-3 shows the first three tables --- Exchange Object 

Information Table, Attributes Table and Methods Table. The other three tables are 

omitted due to the limited space. By filling a certain set of object information, the 

OEMT DIF object specification file is automatically created based on the tables (e.g. 

Appendix B). And a framework of the object model is also created by this tool with 

user defined attributes and methods. Users can start their object model development 

process from this framework, thus reducing time and cost for building a new object 

model. 

5.2.2 OEMR On-Line Services 

While some applications may choose to construct the object model entirely from 

scratch, significant savings can be achieved in the object model development process 

through reuse of existing models. The Object Exchange Model Repository (OEMR) is 

the central location where all object exchange models’ information is stored for 

distributed simulation builders to access and re-use object models. A developer may 

utilize an existing object model chosen from the OEMR as a starting framework for new 

object model construction, modifying the model as appropriate to address the particular 

requirements of the application.  

In this work, the OEMR is developed to store object models in different areas of 

applications separately. The models are well classified in the library, thereby ensuring 

easy searching by simulation builders for relevant object models for their federation. 

New implemented object models can be uploaded to the OEMR, thus providing a 

centralized area for simulation builders to exchange their models for reuse, affording 

convenience to the users. The OEMR is stored in a web server, at a known URL and 

known port for easy global accessibility.  
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Figure 5-4: OEMR Server Location Information 

Figure 5-4 and 5-5 show the OEMT user interface of this OEMR tool. Upon 

clicking the Update Local Samples Storage label in the OEMR menu, the system will 

provide several server locations in different countries for users to select (figure 5-4), 

and then the system will connect to the chosen OEMR server to get update information. 

An interface like Figure 5-5 will be shown with a list of application areas in the OEMR 

and the latest update date of each application area. Simulation builders can select the 

application areas they are interested in, click the Update button, and all the object 

models in this application area will be downloaded to the local storage of samples. 
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The object exchange model can be created by reusing the existing models in OEMR 

with the following procedures: 

• On-line search for the object model templates of relevant application areas in the 

OEMR and download them to local sample storage from the server. 

• Select and open the object model that the simulation builder wants to refer.  

• Modify the object model according to the requirement of the simulation builder. 

Additional attributes, methods or other information can also be added.  

Creating new object model by this means makes the simulation builder’s work 

easier and also promotes the reuse of object models. 

5.2.3 Object Exchange Model Dictionary (OEMD) 

5.2.3.1 Motivation and Conception  

The OEMT development process for a given application represents a key GRIDS 

federation design activity. GRIDS OEMT does not mandate names or attributes 

Figure 5-5: OEMR User Interface 
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structures. For GRIDS compliance, the exchange object model is only required to be 

internally consistent. However, the lack of universal consistency causes ambiguities 

which obstruct the understanding and reuse of object models. For example, the name 

of an object model can be varied. An “automobile” can also be called “car” or 

“vehicle”. Moreover, the encoding of the name may be different as different designers 

may use “AUT”, “AUTO” or even “AUTO_”. This confusion is unacceptable in the 

OEMT development.  

When the OEMR keeps expanding, the unambiguous description of each object 

exchange model in the repository becomes necessary. In addition, if federates use the 

same terminology in their OEMT object models, it will make them more readable to 

each other and enhances general interoperability. The requirement is recognized and 

this work brings forward an idea to create an Object Exchange Model Dictionary 

(OEMD) which assists GRIDS federation developers by specifying common 

representations of data used within an OEMT that will be shared with other federates. 

The OEMD is inspired by the HLA OMDD [19, 26], but does not follow it. It is 

intended to support both pre-runtime and runtime data exchange via GRIDS RTI.   

5.2.3.2 OEMD Components 

In order to support precision in representation, the initially designed OEMD will 

include the following components: 

• The standard code: defines the standard character which can be used in the 

naming of object, attribute, method and parameter of the OEMT. It includes 

ASCII alphabetic characters “a” to “Z”, numeric characters “0” to “9” and some 

other symbol including “_”and “.”.  

• Standard encoding rules: provides the rules to encode object name, attribute 

name, method name and parameter name in the OEMT.  
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− The first character of object name, attribute name, method name and 

parameter name must all be alphabetic characters. 

− OEMT does not distinguish uppercase letter and lowercase (e.g. length and 

LENGTH will be regarded as same word).  

− For objects whose full name in real world is a single word, the whole word 

with the first character in capital is preferred in the OEMT; for those which 

are named more than one word, mnemonic abbreviation (e.g. acronyms) in 

capital is recommended. Attribute and parameter naming also obey this rule.  

− Method name should clearly represent its purpose and operation objective. 

One verb in lowercase followed by a noun (with the first character in capital) 

or an abbreviation (all characters in capital) is recommended (e.g. 

setLength()). 

− Abbreviation must result in a shared understanding of “What the thing is” or 

“What it potentially means” to all participating applications. 

• Standard object name list: This is a list of existing object standardized names 

for simulation builder reference. The names are lexicographically ordered. 

Locating an appropriate code typically requires a linear search. 

• Standard attribute list: Each standard object name is linked to a list of standard 

attributes. These attributes can but need not follow the object. They can be 

extracted as components to construct other objects. The OEMD offers a “loose 

couple” between attributes and their data types. Each attribute is provided a 

recommended default data type but the actual used data type is decided by the 

federate builders.  

• Standard method database: This is the storage of standardized methods for 

simulation builders’ reference and reuse. The methods are categorized into 
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different functionalities. The method names in each category are 

lexicographically ordered and locating an appropriate code typically requires a 

linear search. For each method, a general description, accessibility, parameters 

and return data type are recorded. Users can change these items according to 

their requirements. The method code is also provided for reference.  

The OEMD is an assistant tool for the OEMT standard object development. The 

OEMR provides the whole GRIDS object exchange model, whereas the OEMD 

provides both the standard nomenclature and the components to be used in object 

model construction. The OEMD does not specify an object exchange model structure 

in detail, but rather provide the “pieceparts” which may be merged together to 

construct a new GRIDS object exchange model. These characteristics enhance the 

reusability and also facilitate the integration of federates during federation 

development.  

The OEMD is currently under development. There are also lots of questions that 

need to be answered urgently. For example, which statement is preferred between a 

“truck” object and a generic “vehicle” object with a functional category attribute of 

“truck”? Is there a standard set of attributes for a particular object? Or which attribute 

is absolutely necessary? Should all “vehicles” have a “color” and “size”? Is it an error 

if these values are not present in a template? Is it an error if a “car” has a “depth”? 

These questions still need further research and the next step will also include 

verification and validation of the OEMD. 

5.2.3.3 OEMD Services in the OEMT Application Tool Kit 

The OEMT application too kit includes the OEMD services as described in section 

5.2.3.2. For example, by clicking the Standard Object Name List label in the OEMR 

menu, system will show the list in Figure 5-6 for the simulation builders’ reference. A 
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user can also view the recommended attributes of each object by clicking the object 

name. Figure 5-7 shows the recommended attributes of Carbody Object. 

 

Figure 5-6: Standard Object Name List 

 

Figure 5-7: Recommended Attributes of Carbody Object 
 

The OEMD tool provides not only the standard code, encoding rules, standard 

object name and attributes list, but also offers methods database service that can be 

invoked during the creation of the object models. The methods database provides many 
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basic methods for simulation builders to reuse. As Figure 5-8 shows, user will be asked 

to choose a method database file before opening the object methods table in a 

template.  

 

Figure 5-8: Methods Database File List 
 

The methods in the selected file will be imported into the template and help the 

user fill in the Exchange Object Methods Table (Figure 5-3). For each method, its 

name, general description, accessibility, parameters and return data type are 

recommended. The method code is also provided which is used to create object model 

framework. Simulation builders can either create new method by themselves or reuse 

suitable existing methods provided by the system (Figure 5-9).  
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Figure 5-9: Methods Database User Interface 

 

The tool also provides on-line update service for the local OEMD method storage. 

The method files are categorized under different functionalities and stored in the Web 

server as XML files. As the interface shows in figure 5-10, a user can connect to the 

server to get the up-to-date information of the reusable methods.  
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Figure 5-10: OEMD Methods Database Update Interface 



Chapter 6. Conclusion and Future Work 
 

 
 

Zhao Na (M.Sc. Thesis) 
                                                                                     

88

CChhaapptteerr  66  CCoonncclluussiioonn  aanndd  FFuuttuurree  WWoorrkk  

With the globalization of the commercial markets and the great development of 

World Wide Web, distributed simulation is becoming more and more important in 

investigating issues. Researches related to distributed simulation such as middleware, 

standard information format also gain great attention. The aim of the research 

described in this thesis was to investigate the standardization of object exchange 

models and the GRIDS middleware in component-based distributed simulation to 

support DSC and other various types of simulation applications. This thesis presented 

the series of research effort for achieving this aim.  

Section 6.1 gives the conclusions of the research. The contributions achieved 

through this work are highlighted. Section 6.2 discusses some potential future 

directions of this research.  

6.1 Conclusion  

The following gives the conclusions and contributions of the research work 

described in this thesis. 

1. Make a thorough literature survey on past work and documentations to set 

up a solid background that is useful in fulfilling subsequent research. 

  This includes understanding distributed simulation environment, especially the 

DSC simulation; understanding the requirements and challenges faced by all 
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distributed simulation which are the foundation stone of supporting middleware 

development; investigating popular middleware including HLA, GRIDS and 

CORBA and determining the advantages and disadvantages inherent in these 

middleware and make a fair comparison. 

2. Evaluate the capability of the GRIDS as a middleware to facilitate 

distributed simulation.  

GRIDS represents an early adopter of the component RTI philosophy [33]. It 

provides an extensibility mechanism to add additional service components in the 

form of thin agents and package interfaces capable of supporting the demands of 

distributed simulation. It is a suitable infrastructure for implementing various types 

of simulations due to its lightweight and ease of extensibility. However, GRIDS is 

still a preliminary infrastructure. There is still a long way to go before GRIDS can 

be used in industry.  

This thesis gave an objective comparison of GRIDS with two other middleware 

architectures. The suitability of GRIDS in distributed simulation was examined and 

investigated by two case studies. GRIDS was verified and validated as a valid 

middleware to facilitate DSC simulation applications. However, it was also shown 

that the architecture of GRIDS was still incomplete. The thesis summarized the 

advantages and disadvantages of GRIDS and provided proposals of future 

improvement and utility of the architecture.  

The case studies also offered practical distributed simulation instances to test 

the DDM and TM thin agents. Through the practical implementation, numerous 

suggestions are given to improve the TM thin agent.  

3. Investigate and evaluate the capability of the OEMT to standardize object 

exchange model; provide proposal for the improvement of the OEMT. 
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Most current simulation products use message-passing mechanism to cooperate 

in a federation. However, the requirement of object-passing mechanism cannot be 

ignored. This work further convinced the current simulation community of the 

usefulness of object-passing within distributed simulation environment, which 

requires simulation packages to incorporate the use of actual objects and specified 

the problem to standardize object exchange model. 

The OEMT has been proposed and implemented to aid object-passing in 

distributed simulation environment. The OEMT establishes an open standard for 

interchanging information between federates. The establishment of this open 

framework directly supports the promoting of an interoperable set of simulation 

models. From the original release of the OEMT in 2001, the format definition has 

continued to mature and evolve. In chapter 5, two case studies were designed and 

implemented to examine and evaluate the capability of OEMT. Since this was the 

first attempt to implement the OEMT in complex simulation systems, a number of 

problems arised and the solutions were given through great effort. During the 

process, new demands were detected and valuable experience and lessons were 

gained. This thesis offered a new version of the OEMT with some important 

fine-tuning based on the in-depth research.  

4. Develop an OEMT application tool kit; implement the OEMR on-line 

services; and introduce a new tool---OEMD to facilitate the creation and reuse 

of object models. 

Since the generation of the OEMT DIF object specification files and object 

models is time and effort consuming, the ability to automate the process of object 

model development is significant. The other important contribution of this research 

work is an application tool kit implemented specially for simulation builders to 
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create object models easily. This kit aided the simulation builders in the automatic 

generation of DIF object specification files and the object exchange models. It 

provided OEMR on-line services which allow easy access by simulation builders 

all over the globe.  

Furthermore, the ability of the OEMT was enhanced by adding the new tool, 

OEMD. As a common template, the OEMT does not restrict the names, lexicon, or 

data type definition for the contents of the GRIDS object exchange model. 

However, tremendous benefits can be obtained by using standard nomenclature in 

GRIDS object exchange model development and maintenance. An additional tool 

is required to satisfy the foregoing requirements. Another important contribution of 

this research work is that it proposed the Object Exchange Model Dictionary and 

implemented the original framework. The OEMD provides a solid basis for the 

OEMT by providing a rigorous, extensible, universally consistent and increasingly 

complete data dictionary from which to select object parts or attributes for use in 

simulation. It addresses an extensible manner capable of meeting the needs of both 

pre-simulation and run-time data representation. The understanding and reusability 

of the object model were enhanced because of the commonality of names and 

lexicons that the OEMD facilitates.  

6.2 Future Work 

There is no end for all research, and the research presented in the thesis is no 

exception. The next researcher is recommended to do further work as follows:  

• OEMT and OEMD work to be accomplished 

Although this work did significant improvement on the OEMT, it still can be 

further expanded.  

The development of the OEMD is currently in the developmental stage. The 
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review from outside the OEMD development team is needed. There are also lots 

of problems to be solved urgently, such as how to define a standard set of 

attributes for a particular object, how to determine which attribute is absolutely 

necessary. These questions still need deep research and the next step will also 

include verification and validation of the OEMD.  

• Make OEMT an International Standard  

One consideration is merging OEMT into HLA OMT; this possibility needs 

future investigation. 

• Further work on perfecting GRIDS architecture 

− Current GRIDS is based on Java. Future work will realize interface to 

mapping other programming languages, so that it can fit more simulation 

models from different organizations.   

− Future studies can be done for dynamical federate discovering, joining in and 

withdrawing at runtime. 

− Future work is expected on an object handling interface between the 

simulation package and the GRIDS architecture. This would thus remove the 

need to amend the simulation packages, and the applications need only 

inform this interface of the information it needs, and the interface sends the 

information to the application.  

− Thin agent services in GRIDS need to be improved. More services are 

expected such as secrecy, ownership management, execution data collection 

and maintenance etc. and more algorithms are expected for existing thin 

agent.  
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Appendix A: OEMT DIF DTD Schema (version 2.0) 
 

<!ELEMENT OEMT_Library (Application_Area)*> 

  <!ELEMENT Application_Area (areaName,objectModel*)> 

    <!ELEMENT areaName (#PCDATA)> 

<!ELEMENT objectModel (modelName, parentObjName?, childrenObjName*, attrFieldDataType?, 

                       modelLink|(description, technicalDetails), time?, implementedObjectDetails*)> 

        <!ELEMENT modelName (#PCDATA)> 

        <!ELEMENT parentObjName (#PCDATA)> 

        <!ELEMENT childrenObjName (#PCDATA)> 

        <!ELEMENT attrFieldDataType (#PCDATA)> 

        <!ELEMENT modelLink (#PCDATA)> 

        <!ELEMENT description (#PCDATA)> 

        <!ELEMENT technicalDetails (objAttr+, objectComponent* ,objMethod*)> 

          <!ELEMENT objAttr (attrName, attrDescription, attrAccess, attrDataType)> 

               <!ELEMENT attrName (#PCDATA)> 

              <!ELEMENT attrDescription (#PCDATA)> 

              <!ELEMENT attrAccess (private|protected|public)> 

              <!ELEMENT attrDataType (#PCDATA)> 

          <!ELEMENT objectComponent (ComponentName, CompDescription, CompDetail)> 

               <!ELEMENT ComponentName (#PCDATA)> 

              <!ELEMENT CompDescription(#PCDATA)> 

              <!ELEMENT CompDetail (CompAttr+)> 

                  <!ELEMENT CompAttr (attrName, attrDescription, attrAccess, attrDataType)> 

                    <!ELEMENT attrName (#PCDATA)> 

                   <!ELEMENT attrDescription (#PCDATA)> 

                   <!ELEMENT attrAccess (private|protected|public)> 

                   <!ELEMENT attrDataType (#PCDATA)> 

         <!ELEMENT objMethod (methodName, methodDescription, methodAccess, methodParameters, 

                               methodReturnDataType)> 

              <!ELEMENT methodName (#PCDATA)> 

              <!ELEMENT methodDescription (#PCDATA)> 

              <!ELEMENT methodAccess (private|protected|public)> 

              <!ELEMENT methodParameters (pName,pDataType)*> 

                   <!ELEMENT pName (#PCDATA)> 

                   <!ELEMENT pDataType (#PCDATA)> 

              <!ELEMENT methodReturnDataType (#PCDATA|void)> 

       <!ELEMENT time (timeStamp?, lookahead?)> 

          <!ELEMENT timeStamp (dataType, scale)> 

              <!ELEMENT dataType (#PCDATA)> 

              <!ELEMENT scale (#PCDATA)> 

          <!ELEMENT lookahead (dataType, scale)> 
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              <!ELEMENT dataType (#PCDATA)> 

              <!ELEMENT scale (#PCDATA)> 

      <!ELEMENT implementedObjectDetails (companyName, companyContactInfo, companyContactPerson,  

                                        companyEmail, version, versionDate, referenceLink+)> 

          <!ELEMENT companyName (#PCDATA)> 

          <!ELEMENT companyContactInfo (#PCDATA)> 

          <!ELEMENT companyContactPerson (firstName, lastName)> 

             <!ELEMENT firstName (#PCDATA)> 

             <!ELEMENT lastName (#PCDATA)> 

          <!ELEMENT companyEmail (#PCDATA)> 

          <!ELEMENT version (#PCDATA)> 

          <!ELEMENT versionDate (day, month, year)> 

             <!ELEMENT day (#PCDATA)> 

             <!ELEMENT month (#PCDATA)> 

             <!ELEMENT year (#PCDATA)> 

          <!ELEMENT implementationPlatform (#PCDATA)> 

          <!ELEMENT referenceLink (#PCDATA)> 
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Appendix B: DIF Specification for the TyrePackage Object 
 

<?xml version="1.0"?> 

 <objectModel> 

   <modelName>TyrePackage</modelName> 

   <description> 

    The TyrePackage represent the object transferred from Tyre Factory to Car Assembly Factory. Each  

package encapsulates numbers of tyres as components. We can regard it as a truck which delivery tyres   

to Car Assembly Factory. 

  </description>  
  <descriptionLink>nil</descriptionLink>    

  <parentObj>nil</parentObj> 

  <childObj>nil</childObj> 

  <attrFieldDataType> XML Document Object Model Tree </attrFieldDataType> 

  <technicalDetails> 

    <objAttr> 

      <attrName>PackageSize</attrName> 

      <attrDescription>Stores the maximum number of components the package can carry</attrDescription> 

      <attrAccess>private</attrAccess> 

       <attrDataType>int</attrDataType> 

</objAttr> 

      <objAttr>  

      <attrName>CompType</attrName> 

      <attrDescription>Stores the type of components in the package</attrDescription> 

      <attrAccess>private</attrAccess> 

       <attrDataType>String</attrDataType> 

</objAttr> 

    <objAttr> 

      <attrName>TimeMark</attrName>   
      <attrDescription>Stores the time stamp of the object</attrDescription> 

      <attrAccess>private</attrAccess> 

       <attrDataType>int</attrDataType> 

</objAttr> 

    <objectComponent> 

      <ComponentName>tyre</ComponentName> 

      <ComponentDescription> Tyre is the component in Tyre package </ ComponentDescription > 

      <ComponentDetail> 

        <CompAttr>  

           <attrName>CompID</attrName> 

           <attrDescription>Stores the index of individual tyre</attrDescription> 

           <attrAccess>private</attrAccess> 
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           <attrDataType>int</attrDataType> 

        </ CompAttr > 

        <CompAttr> 

           <attrName>UTQG </attrName> 

           <attrDescription> 

           The Department of Transportation requires each manufacturer to grade its tyres under the  

           Uniform Tyre Quality Grade (UTQG) labeling system and establish ratings for treadwear,  

           traction, and temperature resistance. 

           </attrDescription> 

           <attrAccess>private</attrAccess> 

           <attrDataType>String</attrDataType> 

        </ CompAttr > 

        < CompAttr >  

           <attrName>MaxLoad</attrName> 

           <attrDescription> Stores the maximum load of the tyre </attrDescription> 

           <attrAccess>private</attrAccess> 

           <attrDataType>float</attrDataType> 

        </ CompAttr >  

        < CompAttr > 

           <attrName> MaxInflationPress </attrName> 

           <attrDescription>Stores the maximum inflation press of the tyre </attrDescription> 

           <attrAccess>private</attrAccess> 

           <attrDataType>float</attrDataType> 

        </ CompAttr > 

     <ComponentDetail> 

   </objectComponent> 

   <objMethod> 

      <methodName>insertCompNode</methodName> 

      <methodDescription> insert a component Node into tyrepackage </methodDescription> 

      <methodAccess>public</methodAccess> 

      <methodParameters> 

     <pName>CompNode</pName> 

     <pDataType>XML DOM Node</pDataType> 

      </methodParameters> 

        <methodReturnDataType>void</methodReturnDataType> 

    </objMethod> 

    <objMethod> 

    <methodName>getCompNode</methodName> 

    <methodDescription>get a component Node from tyrepackage </methodDescription> 

    <methodAccess>public</methodAccess> 

    <methodReturnDataType>XML DOM Node </methodReturnDataType> 

    </objMethod> 

    <objMethod> 
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    <methodName>setCompNodeAttribute</methodName> 

    <methodDescription>set attribute value to a attribute of the component Node </methodDescription> 

    <methodAccess>public</methodAccess> 

    <methodParameters> 

    <pName>compNode</pName> 

    <pDataType>XML DOM Node</pDataType> 

    <pName>attrName</pName> 

    <pDataType>String</pDataType> 

    <pName>attrValue</pName> 

    <pDataType>String</pDataType> 

    </methodParameters> 

    <methodReturnDataType>void </methodReturnDataType> 

    </objMethod> 

    <objMethod> 

    <methodName>getCompNodeAttribute</methodName> 

    <methodDescription> extract String attribute value from a component Node </methodDescription> 

    <methodAccess>public</methodAccess> 

    <methodParameters> 

    <pName>compNode</pName> 

    <pDataType>XML DOM Node</pDataType> 

    <pName>attrName</pName> 

    <pDataType>String</pDataType> 

    </methodParameters> 

    <methodReturnDataType>String </methodReturnDataType> 

    </objMethod> 

    <objMethod> 

    <methodName>setTimeMark</methodName> 

    <methodDescription>set the timeMark attribute of tyrepackage</methodDescription> 

    <methodAccess>public</methodAccess> 

    <methodParameters> 

    <pName>intTimeMark</pName> 

    <pDataType>int</pDataType> 

    </methodParameters> 

    <methodReturnDataType>void</methodReturnDataType> 

 </objMethod> 

  <objMethod> 

  <methodName>getTimeMark</methodName> 

  <methodDescription>get the timeMark attribute value from tyrepackage</methodDescription> 

  <methodAccess>public</methodAccess> 

  <methodReturnDataType>int </methodReturnDataType> 

 </objMethod> 

 <objMethod> 

  <methodName>setPackageSize</methodName> 
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  <methodDescription>set the maximum capacity of the tyrepackage</methodDescription> 

  <methodAccess>public</methodAccess> 

  <methodParameters> 

   <pName>intSize</pName> 

   <pDataType>int</pDataType> 

  </methodParameters> 

  <methodReturnDataType>void</methodReturnDataType> 

 </objMethod> 

 <objMethod> 

  <methodName>getPackageSize</methodName> 

  <methodDescription>get the capacity of the tyrepackage</methodDescription> 

  <methodAccess>public</methodAccess> 

  <methodReturnDataType>int </methodReturnDataType> 

 </objMethod> 

 <objMethod> 

  <methodName>setCompType</methodName> 

  <methodDescription>set the compType attribute of tyrepackage</methodDescription> 

  <methodAccess>public</methodAccess> 

  <methodParameters> 

   <pName>strType</pName> 

   <pDataType>String</pDataType> 

  </methodParameters> 

  <methodReturnDataType>void</methodReturnDataType> 

 </objMethod> 

 <objMethod> 

  <methodName>getCompType</methodName> 

  <methodDescription>get the compType attribute of the tyrepackage</methodDescription> 

  <methodAccess>public</methodAccess> 

  <methodReturnDataType>String</methodReturnDataType> 

 </objMethod> 

 <objMethod> 

  <methodName>isFull</methodName> 

  <methodDescription> 

          return true if the number of components in this tyrepackage reaches the tyrepackage's  

          capacity. 

         </methodDescription> 

  <methodAccess>public</methodAccess> 

  <methodReturnDataType>boolean</methodReturnDataType> 

 </objMethod> 

 <objMethod> 

  <methodName>cleanPackage</methodName> 

  <methodDescription>delete the componens in the tyrepackage</methodDescription> 

  <methodAccess>public</methodAccess> 
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  <methodReturnDataType>void</methodReturnDataType> 

 </objMethod> 

 <objMethod> 

  <methodName>len</methodName> 

  <methodDescription>get the number of components in the tyrepackage</methodDescription> 

  <methodAccess>public</methodAccess> 

  <methodReturnDataType>int</methodReturnDataType> 

 </objMethod> 

 </technicalDetails> 

 <time> 

<timeStamp> 

<dataType> Integer (non-negative)</dataType>  

<scale>1:6min</scale>  

</timeStamp> 

<lookahead> 

<dataType> Integer (non-negative)</dataType>  

<scale>1:6min</scale>  

</lookahead> 

 </time> 

 <implementedObjectDetails> 

    <companyName>NUS</companyName> 

    <companyContactInfo>(65)68744366</companyContactInfo> 

    <companyContactPerson> 

       <firstName>na</firstName> 

       <lastName>zhao</lastName> 

    </companyContactPerson> 

    <companyEmail>zhaona@comp.nus.edu.sg</companyEmail> 

    <version>1.1</version> 

    <versionDate> 

       <day>25</day> 

       <month>12</month> 

       <year>2002</year> 

    </versionDate> 

    <implementationPlatform>Java</implementationPlatform> 

    <referenceLink>nil</referenceLink> 

  </implementedObjectDetails> 

</objectModel> 
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Appendix C: DIF Specification for the MRT Train Object 
 

<?xml version="1.0" ?>  

<objectModel> 

<modelName>MRT Train</modelName>  

<descriptionLink>nil</descriptionLink>  

<description>A model to emulate a train which carries numbers of passengers from current station to  

   their destination station. The important features are the number of passenger going to each station and  

   the capacity of the train. 

</description>  

<parentObj>nil</parentObj>  

<childObj>East Line Train</childObj>  

<childObj>West Line Train</childObj>  

<childObj>North Line Train</childObj>  

<childObj>South Line Train</childObj>  

<attrFieldDataType>XML DOM Tree</attrFieldDataType>  

<technicalDetails> 

<objAttr> 

<attrName>direction</attrName>  

<attrDescription>Stores the direction of the train. This is used to distinguish the train from 4 lines. 

</attrDescription>  

<attrAccess>Private</attrAccess>  

<attrDataType>String</attrDataType>  

</objAttr> 

<objAttr> 

<attrName>capacity</attrName>  

<attrDescription>Stores the max number of passenger which can be carried by the train. 

</attrDescription>  

<attrAccess>Private</attrAccess>  

<attrDataType>Int</attrDataType>  

</objAttr> 

<objAttr> 

<attrName>totalpsgnum</attrName>  

<attrDescription>Stores current number of passenger on the train.</attrDescription>  

<attrAccess>Private</attrAccess>  

<attrDataType>Int</attrDataType>  

</objAttr> 

<objAttr> 

<attrName>psgnum_to_EW1</attrName>  

<attrDescription>Stores passenger number whose destination is station EW1.</attrDescription>  

<attrAccess>Private</attrAccess>  

<attrDataType>Int</attrDataType>  
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</objAttr> 

<objAttr> 

<attrName>psgnum_to_EW2</attrName>  

<attrDescription>Stores passenger number whose destination is station EW2.</attrDescription>  

<attrAccess>Private</attrAccess>  

<attrDataType>Int</attrDataType>  

 </objAttr> 

<objAttr> 

<attrName>psgnum_to_EW3</attrName>  

<attrDescription>Stores passenger number whose destination is station EW3.</attrDescription>  

<attrAccess>Private</attrAccess>  

<attrDataType>Int</attrDataType>  

</objAttr> 

<objAttr> 

<attrName>psgnum_to_EW4</attrName>  

<attrDescription>Stores passenger number whose destination is station EW4.</attrDescription>  

<attrAccess>Private</attrAccess>  

<attrDataType>Int</attrDataType>  

</objAttr> 

<objAttr> 

<attrName>psgnum_to_EW5</attrName>  

<attrDescription>Stores passenger number whose destination is station EW5.</attrDescription>  

<attrAccess>Private</attrAccess>  

<attrDataType>Int</attrDataType>  

</objAttr> 

<objAttr> 

<attrName>psgnum_to_NS1</attrName>  

<attrDescription>Stores passenger number whose destination is station NS1.</attrDescription>  

<attrAccess>Private</attrAccess>  

<attrDataType>Int</attrDataType>  

</objAttr> 

<objAttr> 

<attrName>psgnum_to_NS2</attrName>  

<attrDescription>Stores passenger number whose destination is station NS2.</attrDescription>  

<attrAccess>Private</attrAccess>  

<attrDataType>Int</attrDataType>  

</objAttr> 

<objAttr> 

<attrName>psgnum_to_NS3</attrName>  

<attrDescription>Stores passenger number whose destination is station NS3.</attrDescription>  

<attrAccess>Private</attrAccess>  

<attrDataType>Int</attrDataType>  

 </objAttr> 
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<objMethod> 

<methodName>setAttrValueInt</methodName>  

<methodDescription>set int value to attribute in DOM Tree</methodDescription>  

<methodAccess>Public</methodAccess>  

<methodReturnDataType>void</methodReturnDataType>  

<methodParameters> 

<pName>AttrName</pName>  

<pDataType>String</pDataType>  

<pName>AttrValue</pName>  

<pDataType>int</pDataType>  

</methodParameters> 

</objMethod> 

<objMethod> 

<methodName>setAttrValueString</methodName>  

<methodDescription>set String value to attribute in DOM Tree</methodDescription>  

<methodAccess>Public</methodAccess>  

<methodReturnDataType>void</methodReturnDataType>  

<methodParameters> 

<pName>AttrName</pName>  

<pDataType>String</pDataType>  

<pName>AttrValue</pName>  

<pDataType>int</pDataType>  

</methodParameters> 

</objMethod> 

<objMethod> 

<methodName>extractIntValue</methodName>  

<methodDescription>extract attribue value as int from the DOM Tree</methodDescription>  

<methodAccess>Public</methodAccess>  

<methodReturnDataType>void</methodReturnDataType>  

<methodParameters> 

<pName>AttrName</pName>  

<pDataType>String</pDataType>  

</methodParameters> 

</objMethod> 

<objMethod> 

<methodName>extractStringValue</methodName>  

<methodDescription>extract attribute value as string from the DOM Tree</methodDescription>  

<methodAccess>Public</methodAccess>  

<methodReturnDataType>void</methodReturnDataType>  

<methodParameters> 

<pName>AttrName</pName>  

<pDataType>String</pDataType>  

</methodParameters> 
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</objMethod> 

<objMethod> 

<methodName>updateobj</methodName>  

<methodDescription>extract attribute value as string from the DOM Tree</methodDescription>  

<methodAccess>Public</methodAccess>  

<methodReturnDataType>void</methodReturnDataType>  

<methodParameters> 

<pName>AttrName</pName>  

<pDataType>String</pDataType>  

<pName>num</pName>  

<pDataType>int</pDataType>  

</methodParameters> 

</objMethod> 

</technicalDetails> 

<time> 

<timeStamp> 

<dataType> Integer (non-negative)</dataType>  

<scale>1:1min</scale>  

</timeStamp> 

<lookahead> 

<dataType> Integer (non-negative)</dataType>  

<scale>1:1min</scale>  

</lookahead> 

</time> 

<implementedObjectDetails> 

<companyName>NUS SOC</companyName>  

<companyContactInfo>(65) 68744366</companyContactInfo>  

<companyContactPerson> 

<firstName>Na</firstName>  

<lastName>Zhao</lastName>  

</companyContactPerson> 

<companyEmail>nil</companyEmail>  

<version>1.1</version>  

<versionDate> 

<day>30</day>  

<month>8</month>  

<year>2002</year>  

</versionDate> 

<implementationPlatform>Java</implementationPlatform>  

<referenceLink>nil</referenceLink>  

</implementedObjectDetails> 

</objectModel> 

 


