

USING AN OBJECT EXCHANGE MODEL FOR

DISTRIBUTED SIMULATION

ZHAO NA

(B.S., Beijing Normal University, P. R. China)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using An Object Exchange Model for Distributed Simulation

Zhao Na (M.Sc. Thesis)

i

AAcckknnoowwlleeddggeemmeennttss
I sincerely appreciate people who have contributed to this thesis and to making my

time in the Computer Science graduate program a great learning experience.

Firstly I would like to thank my supervisor, Dr. Gary Tan Soon Huat. He has been

more than available throughout my research, implementation, and the writing of

research papers. His input and direction was invaluable in the creation of this thesis,

and the research it contains. Without his help, this thesis would not exist.

Appreciation also goes to Dr. Simon Taylor who gives me countless help in my

research. His guidance and constructive criticism benefited me a lot.

I am grateful to School of Computing, National University of Singapore which

offers me funding to finish my master study.

Words are never enough to express my deep love and thanks to my parents who

give me life and encourage me to face difficulties on my way of growing up.

Gratefulness and love also go to my dear sister and my friend, Chen, for their

unwavering supporting, understanding and encouragement.

Finally, I would like to thank my lab fellows in the Modeling and Simulation

Group, Hu Yu, Karthik Shenoy, Ng Wee Ngee… who create a harmonious atmosphere

around me and share a happy time with me.

Using An Object Exchange Model for Distributed Simulation

Zhao Na (M.Sc. Thesis)

ii

TTaabbllee ooff CCoonntteennttss

Acknowledgements i

Table of Contents ii

List of Figures v

List of Tables vii

Publications Arising from This Thesis viii

Abstract ix

1 Introduction 1

1.1 Distributed Simulation 2

1.2 Supply Chain Management 3

1.3 Distributed Simulation Middleware Infrastructures 5

1.4 Motivation 7

1.5 Research Objectives 8

1.6 Thesis Structure 9

2 Generic Runtime Infrastructure for Distributed Simulation (GRIDS) 11

2.1 GRIDS Basic Architecture 12

2.2 GRIDS Execution Stages 14

2.3 Comparison between GRIDS and Other Popular Middleware 15

2.3.1 High Level Architecture (HLA) 15

2.3.2 Common Object Request Broker Architecture (CORBA) 17

2.3.3 Comparing GRIDS with HLA and CORBA 19

Using An Object Exchange Model for Distributed Simulation

Zhao Na (M.Sc. Thesis)

iii

3 Object Exchange Model Template (OEMT) 22

3.1 Defining the Problem 23

3.1.1 Object-Passing in Distributed Simulation 23

3.1.2 Standardization of Objects 25

3.2 Object Exchange Model Template (OEMT) Specification (version 1.0) 25

3.2.1 OEMT Original Elements 26

3.2.2 OEMT Data Interchange Format (DIF) 27

3.2.3 Relationship of the OEMT and Object-Oriented Concepts 28

3.3 The Object Exchange Model Repository (OEMR) 29

4 Case Studies: Applications Using GRIDS and OEMT 30

4.1 Case Study One: Automobile Manufacture Supply Chain Simulation 31

4.1.1 System Conceptual Model 31

4.1.2 Exchange Object Specification 35

4.1.3 Exchange Object Implementation 39

4.1.4 Integration with GRIDS 43

4.1.5 Execution and Result Analysis 44

4.2 Case Study Two: Singapore Mass Rapid Transit (MRT) System Simulation 46

4.2.1 System Design and Function Description 47

4.2.2 Exchange Object Specification 49

4.2.3 Exchange Object Implementation 51

4.2.4 Case Study Implementation in GRIDS Environment 53

4.2.5 Execution and Experience Analysis 54

4.3 Experience Gained from Case Studies 56

4.3.1 GRIDS Federation Development Process 56

4.3.2 Benefits of GRIDS 57

4.3.3 Deficiencies of GRIDS 58

4.3.4 OEMT Evaluation 59

Using An Object Exchange Model for Distributed Simulation

Zhao Na (M.Sc. Thesis)

iv

5 OEMT Enhancements 65

5.1 OEMT Elements Evolvement (version 2.0) 65

5.1.1 Name of Model 67

5.1.2 Model Description Link 68

5.1.3 Model Description 68

5.1.4 Name of Parent Object and Names of Children Objects 68

5.1.5 Technical Details 68

5.1.6 Time Representation 73

5.1.7 Attribute Field Format Representation 74

5.1.8 General Details of each Implemented Object 74

5.2 Application Tool Kit Development 75

5.2.1 Basic Function 76

5.2.2 OEMR On-line Services 78

5.2.3 Object Exchange Model Dictionary (OEMD) 80

5.2.3.1 Motivation and Conception 80

5.2.3.2 OEMD Components 81

5.2.3.3 OEMD Services in the OEMT Application Tool Kit 83

6 Conclusion and Future Work 88

6.1 Conclusion 88

6.2 Future Work 91

References 93

Appendices: OEMT Data Interchange Format (DIF) 98

A OEMT DIF DTD Schema (version 2.0) 98

B DIF Specification for the Tyrepackage Object 100

C DIF Specification for the MRT Train Object 105

Using An Object Exchange Model for Distributed Simulation

Zhao Na (M.Sc. Thesis)

v

LLiisstt ooff FFiigguurreess

2-1 A Typical GRIDS federation 14

2-2 A Typical HLA Federation 17

2-3 The CORBA ORB Architecture 18

4-1-1 Models Interaction Relationship 32

4-1-2 Exchange Object Model (Java object class) 41

4-1-3 DOM Tree Framework of Tyrepackage Object 42

4-1-4 UML Structure of Federate Classes 43

4-1-5 Federate Makeup with GRIDS Client 44

4-1-6 Carbody Factory Execution Result 45

4-1-7 Tyre Factory Execution Result 45

4-2-1 MRT Simulation System Structure 47

4-2-2 MRT Station Object Exchange Relationship 48

4-2-3 AIF File for Train Object in MRTSim 51

4-2-4 Example DOM Tree Fragment 52

4-2-5 Method setAttrValueInt (String AttrName, Int AttrValue) 52

4-2-6 Example DOM Tree Fragment after Calling Method 52

4-2-7 MRT Federation Structure in GRIDS Environment 54

5-1 GRIDS OEMT Software User Interface---Exchange Object Information Table

 76

5-2 Exchange Object Attributes Table 77

5-3 Exchange Object Methods Table 77

Using An Object Exchange Model for Distributed Simulation

Zhao Na (M.Sc. Thesis)

vi

5-4 OEMR Server Location Information 79

5-5 OEMR User Interface 80

5-6 Standard Object Name List 84

5-7 Recommended Attributes of Carbody Object 84

5-8 Methods Database File List 85

5-9 Methods Database User Interface 86

5-10 OEMD Methods Database Update Interface 87

Using An Object Exchange Model for Distributed Simulation

Zhao Na (M.Sc. Thesis)

vii

LLiisstt ooff TTaabblleess

4-1-1 Exchange Object Information Table 35

4-1-2 Exchange Object Attributes Table 36

4-1-3 Exchange Object Methods Table 37

4-1-4 General Details of Each Implemented Object 37

4-1-5 Exchange Object Information Table 38

4-1-6 Exchange Object Attributes Table 38

4-1-7 Exchange Object Methods Table 39

4-2-1 Exchange Object Information Table 49

4-2-2 Exchange Object Attributes Table 50

4-2-3 Exchange Object Methods Table 50

4-2-4 General Details of Each Implemented Object 50

4-3-1 Exchange Object Component Table 61

4-3-2 Object Time Representation Table 61

4-3-3 Exchange Object Information Table 62

5-1 Exchange Object Information Table 67

5-2 Mandatory Object Attributes Table 70

5-3 Exchange Object Component Table 71

5-4 Mandatory Object Methods Table 73

5-5 Object Time Representation Table 73

5-6 General Details of Each Implemented Object 75

Using An Object Exchange Model for Distributed Simulation

Zhao Na (M.Sc. Thesis)

viii

PPuubblliiccaattiioonnss AArriissiinngg ffrroomm TThhiiss TThheessiiss

G. Tan, N. Zhao and S.J.E. Taylor, “An Object Exchange Model Template for

Distributed Simulation.” Proceedings of the European Simulation Interoperability

Workshop, 03E-SIW-102, 2003.

G. Tan, N. Zhao and S.J.E. Taylor, “Automobile Manufacture Supply Chain Simulation

in GRIDS Environment.” Proceedings of the Winter Simulation Conference, 2003.

Using An Object Exchange Model for Distributed Simulation

Zhao Na (M.Sc. Thesis)

ix

AAbbssttrraacctt

Being in the "Internet Age", any application technology has to consider its

innovative application in distributed environment, otherwise it will lose its vitality

soon. Distributed simulation, which refers to the execution of simulations on loosely

coupled systems (such as geographically distributed computers interconnected via the

Internet) [2], is one of the fast growing distributed applications that leave a golden era

before us.

Current research in distributed simulation is moving to connect existing simulation

models together by the exchange of information so that they can constitute a complete

simulation system. Research in distributed simulation middleware technology and

standardization of the information exchange format has gained attention as distributed

simulation becomes important.

In this thesis, we introduce the Generic Runtime Infrastructure for Distributed

Simulation (GRIDS) and the GRIDS Object Exchange Model Template (OEMT). The

main aim of this research is to investigate and evaluate the capability of the GRIDS

middleware and the OEMT in supporting Distributed Supply Chain and other various

types of distributed simulation applications through two case studies --- Automobile

Manufacture Supply Chain Simulation and Singapore Mass Rapid Transit (MRT)

System Simulation. Furthermore, from the experience gained from the case studies, we

improve the OEMT into a more robust and advanced one.

Chapter 1. Introduction

Zhao Na (M.Sc. Thesis)

1

CChhaapptteerr 11 IInnttrroodduuccttiioonn

The scientists who created ARPAnet in the 1960's never imagined that the Internet

would become so powerful after 40 years' development. At the beginning of the new

century, our society is in the transition from an industrial society to an information

society. The Internet, with its magic is the main force in driving this transition. Today,

the Internet has more than ten million domain names, hundred million connected

computers and billions of customers. Even the most conservative man cannot deny that

Internet and the World Wide Web are changing our life!

Being in the "Internet Age", any application technology has to consider its

innovative application in distributed or web-based environment, otherwise it will lose

its vitality soon. Distributed simulation is one of the fast growing distributed

applications that leave a golden era before us.

The aim of this chapter is to provide the readers with a general understanding of

the fundamental of this research. We will first review the basic background knowledge

of distributed simulation and its application in supply chain management. Then we will

give an overview of the distributed simulation middleware infrastructures. Furthermore,

this chapter introduces the research motivation, objectives and the structure of this

thesis.

Chapter 1. Introduction

Zhao Na (M.Sc. Thesis)

2

1.1 Distributed Simulation

There are two ways to analyze the behaviour of a system scientifically. One way is

to use mathematical methods (such as algebra, calculus or probability etc.) to obtain

exact information on questions of interest [2]. This is called an analytic solution.

However, most real-world systems are too complex to be evaluated analytically, and

these models must be studied by another means --- Simulation. According to Robert E.

Shannon [2], simulation is “the process of designing a model of real system and

conducting experiments with this model for the purpose either of understanding the

behavior of the system or of evaluating various strategies (within the limits imposed by

a criterion or set of criteria) for the operation of the system.” A simulation creates an

abstract representation of a system, and then gains insight into the working of the

system, or predicts the system’s future performance, or tests out the results of changing

some aspects of the system. The whole process is made on the model, without having

to manipulate or observe the actual system.

Distributed simulation is concerned with the execution of simulations on

geographically distributed computers interconnected via a local area and/or wide area

network [22, 30, 31]. The primary goal of distributed simulation is to obtain higher

performance via parallel execution, but its advantages are not restrained in high

performance. Distributed simulation system also offers benefits such as responsiveness,

resource sharing, information secrecy, reusability, fault tolerance and so an.

Due to these inherent fortes of distributed simulation, it has been a useful and

powerful tool in numerous and diverse application areas [17] such as evaluating

military weapons systems or their logistics requirements, determining hardware and

software requirements for a computer system, analyzing financial or economic systems

and so on. One significant application area of distributed simulation is designing and

Chapter 1. Introduction

Zhao Na (M.Sc. Thesis)

3

analyzing supply chain.

1.2 Supply Chain Management

A Supply Chain is the series of activities that an organization uses to deliver value,

either in the form of a product, service, or a combination of both, to its customers [9].

It also includes the flow of information and finances in addition to the material flow

[35].

In today’s competitive environment, the traditional integrated business in which a

single enterprise acts alone seems to be a thing of the past. The trends of globalization

of markets have forced even large organizations to rely on hundreds or even thousands

of external firms or suppliers to deliver value to the ultimate customers. Competitive

success of an organization is no longer a function of its own efforts, but depends on the

efficiency of the entire supply chain. Therefore, building an effective supply

chain/supply network [8] is fast becoming paramount in today’s marketplace. The

effort of managing and coordinating the activities between separate entities is often

referred to as Supply Chain Management (SCM) [28]. It can be defined as achieving

a sustainable competitive position and maximizing shareholder value by optimizing the

relationship of process, information, and physical goods among internal and external

trading partners [9]. Typically, SCM costs represent a majority of the operating

expenses of most companies. These costs can range from as low as 30% to as high as

75% [9].

A supply chain is a complex system and there are sources of large uncertainties in

the supply chain. Successful SCM requires carefully defined approaches to test and

analyze the performance of the chain [24]. It is obviously not advisable to do the

corresponding analysis on the real world system due to the high cost. What is needed is

a tool that can give visibility of the entire supply chain that allows for the testing of

Chapter 1. Introduction

Zhao Na (M.Sc. Thesis)

4

numerous "what if" scenarios such as outsourcing, consolidating vendors, collaborative

planning, or implementing e-business [9].

Simulation has been identified as one of the best means to analyze supply chains.

Commercial simulation tools for SCM have been released in recent years, such as the

IBM Supply Chain Analyzer (SCA) [13], and the integrated tools of simulation and

optimization by i2 [34]. These simulation tools are powerful in supply chain modeling

and optimization capabilities. However, these tools are limited by their lack of capacity

for parallel execution. The current emerging electronic commerce and dynamically

changing business environment requires for a next-generation supply chain modeling

and simulation environment which include scalable and efficient model execution and

support for flexible future extensibility based on an open industry standard.

The Distributed Supply Chain (DSC) Simulation [3] is such a second-generation

tool, which introduces the distributed simulation approach into Supply Chain

Management. A DSC simulation models a supply chain across multiple businesses. It

involves the organizational departments responsible for each activity and the external

suppliers and customers who are part of the integration supply chain, and simulates the

flow of materials and information through multiple stages of manufacturing,

transportation and distribution. A DSC simulation offers analysts and decision-makers

a means to replicate the behavior of complex systems as they operate over time. In

addition, the distributed characteristic of the simulation models offers great benefits

such as fast and efficient simulation execution, taking advantages of the functionality

of various vendors’ simulation products, allowing each organization hides its inner

working information, reducing the costs and time of building a new simulation model

and so on. Companies may react faster to global competition by using this approach to

investigate efficiency and effectiveness improvement in their supply chains.

Chapter 1. Introduction

Zhao Na (M.Sc. Thesis)

5

1.3 Distributed Simulation Middleware Infrastructures

Building a detailed model of the supply chain does not pose a problem when the

chain involves only a single enterprise. However, since a DSC simulation often

involves multiple companies across enterprise boundaries, each of these companies

may already have its own simulation program and they may not like to share their

models and internal data with other companies. In addition, the existing simulation

models may be implemented using different languages and packages on different

platforms which may even be located at different places. The lack of interoperation,

lack of portability to multiple languages and lack of ability to execute over the Internet

still obstruct the progress of DSC simulation.

Although there are many techniques involved in building simulation in a

distributed or web-based environment [1, 23], the most common way to solve this

problem is by the use of standard programming interfaces and protocols that provide a

uniform means and style of access to various simulations which may be based on

different platforms. Such standardized interfaces and protocols have come to be

referred to as middleware infrastructure. Research in distributed simulation

middleware technology has also gained attention as distributed simulation has become

important. These middleware are developed based on several premises or assumptions.

Firstly, no single, monolithic simulation can satisfy the needs of all the users for the

differences in users’ interests and requirements. No one can anticipate all the uses of

simulation and all the ways of simulation could be combined in a monolithic system.

And it is possible to decompose a large simulation problem into smaller parts which

are easier to define, build and verify. Secondly, simulation builders vary in their

knowledge background of domains to be simulated. This makes their products different

in detail. Finally, future technologies and tools must be incorporated and future

Chapter 1. Introduction

Zhao Na (M.Sc. Thesis)

6

requirements must be considered.

These observations led the middleware designers toward the following goals:

• It should be able to integrate the software from different sources.

• It should have the capability to insulate the components from differences in the

implementation technology so that it can hide the complexities and disparities of

different simulations.

• It is responsible for the communication between individual simulations. It should

be able to marshal the information, pass it through network to the targeted

simulations, and then de-marshal it into the format which is understandable by

the simulations.

• It should provide certain services to facilitate interoperation of simulations. E.g.

synchronization service to coordinate the time steps of cooperating simulations.

The High Level Architecture (HLA) [18, 29, 44], Generic Runtime Infrastructure

for Distributed Simulations (GRIDS) [33, 37, 39] and Common Object Request Broker

Architecture (CORBA) [6, 21, 41] are all such middleware which are developed by

different organizations with distinct characteristics, but share the property to support

the reuse and interoperation of simulations. This research concentrates on GRIDS

which is a lightweight message-oriented middleware with extensible features and

package interfaces capable of supporting the demands of distributed simulation.

Similar to HLA, it is used to research interoperability and reuse by linking simulations

together and was originally developed to support Distributed Interactive Simulation.

The main purpose of the infrastructure is to coordinate the activities of distributed

components with additional functionality via the use of a novel service distribution

model known as Thin Agents, which are used to support the simulation by providing

tasks such as optimization and assistance [32]. Thus, it is a very appropriate

Chapter 1. Introduction

Zhao Na (M.Sc. Thesis)

7

architecture to be used in Distributed Supply Chain (DSC) Simulation and other

simulation areas given the distributed nature of such simulations.

1.4 Motivation

Current research in distributed simulation is moving to connect existing simulation

models (known as federates1) together by exchanging information, so that they can

constitute a complete simulation system. The motivation of this research is that

connecting existing models could be more cost effective than recoding the separate

models into a single model. One of the research issues is the standardization of the

information exchange format so that they may be understood by each model.

In a distributed simulation, information transfer is very important because federates

realize interactions though exchange data. Federates keep sending and receiving

information between one another during their lifetime. Information has various formats

such as data, message, and file or sometimes the information is an object itself. For

example, in an automobile supply chain simulation, the tyre factory must send its

products together with its quantity and quality parameter to the car assembly factory. In

this case the information takes the form of objects (representative of entities transferred

between the models). However, a problem is the specification of these objects so that

they may be described in a manner relevant to the end user community. The GRIDS

Object Exchange Model Template (OEMT) defines the format and syntax for recording

information in exchange object models. This common template provides a

standardized way of specifying models to be used as input or output, and facilitates

understanding between federates of a distributed simulation.

1 In this thesis, as within common distributed simulation terminology, a single
simulation component that participates as a part of the entire simulation is called a
federate, while the entire simulation is called a federation.

Chapter 1. Introduction

Zhao Na (M.Sc. Thesis)

8

During the past few years, the OEMT standard has been developed from theory to

real application. The template has been set up, and is under improvement. The

emphasis of the research is on using, evaluating and improving the OEMT by two case

studies --- Automobile Manufacture Supply Chain Simulation and Singapore

Mass Rapid Transit (MRT) System Simulation. Both case studies use the OEMT as

the standard to specify the objects in full scale. These case studies therefore give

practical instances of OEMT application. In addition, GRIDS will also be evaluated

through the practical experience gained from the case studies.

1.5 Research Objectives

This work makes several contributions to research areas related to distributed

simulation and middleware. The focus of this research is to investigate the

standardization of object exchange models and the GRIDS middleware in

distributed simulation to support the DSC and other various types of simulation

applications. The overall research effort has been broken down to a set of research

objectives to be achieved:

1) Investigate distributed simulation environment and existing middleware. This is

to gain knowledge that is useful in fulfilling subsequent objectives.

2) Evaluate the suitability of GRIDS as a middleware to facilitate distributed

simulation; provide useful experience on implementing simulation application

in GRIDS environment and suggest how GRIDS might be improved and

utilized in future distributed simulation applications.

3) Identify the significance of object passing in distributed simulation; specify the

problem to standardize object exchange model; evaluate the capability of the

OEMT to standardize object exchange model and offer a new version of the

OEMT based on the case study experience.

Chapter 1. Introduction

Zhao Na (M.Sc. Thesis)

9

4) Develop an OEMT application tool kit to automatize the generation of the

object exchange model. In addition, implement the Object Exchange Model

Repository (OEMR) on-line services and other assistant services in this kit.

1.6 Thesis Structure

This thesis is structured in six chapters based on the research strategy described

above. Each chapter addresses a distinct point in carrying out this research. The first

chapter sets out to present a brief account of the research background. It addresses

some key components of conceptual research which will be discussed in detail in the

following chapters. Furthermore, this chapter introduces the motivation, objectives and

scope of this research to inform the readers of the contents and structure of this thesis.

Chapter 2 concentrates on the distributed simulation middleware, GRIDS. This

chapter first presents the motivation of middleware development. Then it further goes

on into detailing the structures, functionalities and characteristics of the GRIDS

architecture. This chapter also gives a brief overview of the other two popular

middleware HLA and CORBA. Based on the in-depth understanding of these

middleware, a comparison among them is made.

Chapter 3 describes the advantages of object passing and the requirement to

standardize objects as the motivation of the GRIDS OEMT. It explicates the original

OEMT standard and the Object Exchange Model Repository (OEMR) conception in

particular.

The two case studies are given in chapter 4. They are used to illustrate how the

features of the OEMT and GRIDS contribute to distributed simulation application. The

first case study applies OEMT and GRIDS in a DSC simulation. Their application is

extended to another area in the second case study. The experience gained from the case

studies is summarized and analyzed at the end of this chapter. GRIDS and OEMT are

Chapter 1. Introduction

Zhao Na (M.Sc. Thesis)

10

evaluated. The suggestions on how they might be improved and utilized in future

distributed simulation applications are stated in this chapter.

In chapter 5 a new version of the OEMT that is more complete and more powerful

in the standardization of object models is provided. An OEMT application tool kit is

developed to facilitate the simulation builders in the creation of object models and

explains the OEMR online services provided by this kit. This chapter also introduces a

novel concept—the Object Exchange Model Dictionary (OEMD) and its functionality.

The OEMD services are also implemented in the OEMT kit.

The thesis ends with the conclusion in Chapter 6. This chapter summarizes the

work in this thesis, presenting the objectives achieved, the contributions made, and

highlights possible avenues for further research.

Chapter 2. Generic Runtime Infrastructures for distributed Simulation

Zhao Na (M.Sc. Thesis)

11

CChhaapptteerr 22 GGeenneerriicc RRuunnttiimmee IInnffrraassttrruuccttuurree

ffoorr DDiissttrriibbuutteedd SSiimmuullaattiioonn ((GGRRIIDDSS))

As we have mentioned, one of the most important problems of distributed

simulation is that the development and deployment of different types of simulation

products has far outstripped efforts to standardize all aspects of distributed computing,

from the physical layer up to the application layer. This lack of standards makes it

difficult to implement an integrated, multi-vendor, enterprise-wide distributed

simulation configuration. The middleware, which cuts across all simulations, has the

capability to hide the complexities and disparities of different simulations. It is used to

overcome incompatibilities of various simulation products and is responsible for the

communication between individual simulations.

GRIDS is such middleware for reuse and interoperation of simulations. It supports

the reuse of capabilities available in different simulations and the possibility of

distributed collaborative development of a complex simulation application.

This chapter introduces the three main middleware used in distributed systems.

Since this research is based on the DSC simulation which is a more focused field of

distributed simulation, the discussion about the middleware will cater to the needs of

this field.

Section 2.1 and 2.2 details the GRIDS structure and execution process. Section 2.3

Chapter 2. Generic Runtime Infrastructures for distributed Simulation

Zhao Na (M.Sc. Thesis)

12

introduces the other two popular middleware architectures, the High Level

Architecture (HLA) and the Common Object Request Broker Architecture (CORBA).

This section also compares GRIDS with HLA and CORBA.

2.1 GRIDS Basic Architecture

The Generic Runtime Infrastructure for Distributed Simulation (GRIDS) project

was initiated in 1997 with the goal to develop an extensible component-based runtime

infrastructure that could be used to coordinate the activities of distributed simulation

components. GRIDS is best described as an execution environment capable of

supporting a broad range of simulation types [32]. It originally catered to the needs of

DSC simulation and is rapidly growing to be widely applicable across a full range of

simulation application areas, including education and training, manufacture and

transportation.

Instead of the static and fixed functionality advocated by the HLA RTI

specification, GRIDS provides the basic simulation services (communications,

simulation interface and data services) to connect simulation models and a mechanism

to add extra functions (thin agents services) where appropriate [33]. GRIDS’s

functionality is enhanced by the use of a novel service distribution model known as

thin agents. These agents may be used to support the simulation by providing tasks

such as optimizations and assistance. The extensibility is the principal difference

between GRIDS and other approaches to distributed simulation middleware.

The middleware is composed of the following major elements:

• Boot Server: a single process used to coordinate the initialization, execution and

termination of a distributed simulation. It is responsible only in the initialization

of the federation to provide service for federates to register into a federation, then

it compiles information from all the federates and sends the relevant information

Chapter 2. Generic Runtime Infrastructures for distributed Simulation

Zhao Na (M.Sc. Thesis)

13

to each federate, before excluding itself from the federation execution. It is

regarded as the Central Runtime Component (CRC) of the middleware.

• Client: used by the federate to interact with the rest of the federation. It is

regarded as the Local Runtime Component (LRC). GRIDS client comprises four

primary services: communications, simulation interface, data services and thin

agent services.

• Thin Agent: GRIDS term for a component service. Thin agents are used to

support the federates by providing tasks such as performance optimization, Time

Management [42], Data Distribution Management [12, 36] and other special

simulation services. Their specific function is entirely dependent on the

requirements of the application and therefore can provide general services and

more specific services.

• Metadatabase: the general data structure in GRIDS used to store information.

Figure 2-1 illustrates graphically the middleware’s setup in a typical GRIDS

federation. It is composed of a single boot server and several clients. Each simulation

federate is connected to a GRIDS client via an interface. Thin agents are distributed to

participating clients and instantiated to provide the required services.

Chapter 2. Generic Runtime Infrastructures for distributed Simulation

Zhao Na (M.Sc. Thesis)

14

GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Boot Server

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

Figure 2-1: A Typical GRIDS federation

2.2 GRIDS Execution Stages

An integrated GRIDS execution session is divided into 5 stages: Initialization,

Register, Broadcast, Runtime and Terminate which are detailed as follows [32]:

• Initialization: Initialization involves the starting of a GRIDS boot server. The

server is loaded with thin agents that are to be used to support the simulation

exercise.

• Register: Registering involves individual simulation nodes making their

presence known to the GRIDS boot server and publishing the initial state

variables of that node. Additionally, the boot server builds up the namespace of

all the registered clients, and builds a central entity list of all entities in the

simulation. Once all clients are registered the server closes all incoming

connections for registration.

Chapter 2. Generic Runtime Infrastructures for distributed Simulation

Zhao Na (M.Sc. Thesis)

15

• Broadcast: Upon a simulation “Start” event, the boot server broadcasts to all

registered clients the entire entity list built up during registration. The entity list

is stored in the internal database on each GRIDS client. In addition to

broadcasting the entity list, the server broadcasts the namespace for all

participating clients to be stored internally within each GRIDS client.

• Run: Once all entity lists and namespaces are broadcast to the individual clients,

the server issues a “go” command to all the clients, signaling the start of the

simulation. At this point, the server ceases its interactions with the clients. The

clients now communicate directly as necessary in a peer to peer fashion with

other nodes in the simulation. The GRIDS client is responsible for synchronizing

entity attributes between the local and remote nodes.

• Terminate: Once the simulations have completed executing, the clients register

back with the boot server signaling that they are exiting gracefully from the

federation.

2.3 Comparison between GRIDS and Other Popular

Middleware

2.3.1 High Level Architecture (HLA)

The High Level Architecture (HLA) is a general purpose middleware architecture

for simulation reuse and interoperability. It was developed under the leadership of the

Defense Modeling and Simulation Office (DMSO) to support reuse and

interoperability across the large numbers of different types of simulations developed

and maintained by the DoD.

The HLA is defined by three concepts:

Chapter 2. Generic Runtime Infrastructures for distributed Simulation

Zhao Na (M.Sc. Thesis)

16

• Object Model Template (OMT): The HLA OMT defines the format and syntax for

recording information in HLA object models, to include objects, attributes,

interactions, and parameters. It does not define the specific data (e.g., vehicles, unit

types) that will appear in the object models, but provides a commonly understood

mechanism for specifying the exchange of data and general coordination among

members of a federation and describing the capabilities of potential federation

members [16, 29].

• HLA Rules: The HLA rules comprise a set of underlying technical principles and

conventions which must be followed to achieve HLA compliance [14]. They

describe the responsibilities of federates and federations designers.

• Runtime Infrastructure (RTI): The HLA RTI can be viewed as the special purpose

distributed operating system software that provides a set of common interface

services utilized during the runtime of an HLA federation [15]. The run-time

services of the RTI fall into six categories:

– Federation Management

– Declaration Management

– Object Management

– Ownership Management

– Time Management

– Data Distribution Management

An example of a federation in a HLA environment is shown in figure 2-2. As

shown, each federate presents to the RTI an interface called FederateAmbassador, and

the RTI offers an RTIambassador interface to each federate. The Federates and the RTI

communicate through invoking operations on the two interfaces.

Chapter 2. Generic Runtime Infrastructures for distributed Simulation

Zhao Na (M.Sc. Thesis)

17

Figure 2-2: A Typical HLA Federation

2.3.2 Common Object Request Broker Architecture (CORBA)

The Common Object Request Broker Architecture (CORBA) is an emerging open

distributed object computing infrastructure being promulgated by the Object

Management Group (OMG). It is designed based on the OMG Object Model and

supports object-oriented standardization and interoperability.

The two most important features of CORBA are language independence and

platform independence. It automates many common network programming tasks such

as object registration, location, and activation; request de-multiplexing; framing and

error-handling; parameter marshalling and de-marshalling [6]. It allows applications to

communicate with one another no matter where they are located or who has designed

them.

The following figure illustrates the primary components in the CORBA ORB

architecture [21, 41].

Chapter 2. Generic Runtime Infrastructures for distributed Simulation

Zhao Na (M.Sc. Thesis)

18

The central component of CORBA is the Object Request Broker (ORB). The ORB

is the middleware that establishes the client-server relationships between objects. It

hides the low-level details of platform-specific networking interfaces, allowing

developers to focus on solving the problems specific to their application domains

rather than having to build their own distributed computing infrastructures.

Using an ORB, a client can transparently invoke a method on a server object,

which can be on the same machine or across a network. The ORB intercepts the call

and is responsible for finding an object that can implement the request, pass it the

parameters, invoke its method, and return the results. In order to make a request the

client communicates with the ORB Core through the IDL stub or through the DII. The

ORB Core then transfers the request to the object implementation which receives the

request as an up-call through either an IDL skeleton, or a DSI. By assistance of these

components, the ORB provides interoperability between applications on different

machines in heterogeneous distributed environments and seamlessly interconnects

multiple object systems. These strong points have gained CORBA universal business

Figure 2-3: The CORBA ORB Architecture

Chapter 2. Generic Runtime Infrastructures for distributed Simulation

Zhao Na (M.Sc. Thesis)

19

notice and acceptance in distributed simulation application [4].

2.3.3 Comparing GRIDS with HLA and CORBA

W.N. Ng has provided general comparisons between HLA and GRIDS for function,

implementation and design issues [42]. This section will compare the federation

interoperation mechanisms in HLA and GRIDS. We also discuss the suitability of

GRIDS and CORBA within the DSC Simulation field.

The HLA evolved from a military simulation background and has been used in

other application areas [5, 40], whereas GRIDS originally catered to the needs of DSC

simulation. Although both of the middleware have been used in other application areas,

their different origins make them distinct in several aspects. One of the most important

differences between them is the dissimilar interoperation mechanism among federates

supported by HLA and GRIDS.

The HLA achieves federate cooperation via message-passing. In the HLA

federation, federates cooperate through object attributes update or interaction. For

example, in an HLA federate, the position (latitude and longitude) of a tank object is

always changing referring to the moving tank. These changes are presented by

updating attributes. Other federates realize the changes by subscribing to the update

messages of the tank object from its owner when the tank object still resides in its

owner federate.

GRIDS, on the contrary, supports another type of information passing in DSC

simulations: object passing as well as message passing. In other words, in GRIDS

environment, federates can cooperate through exchanging whole objects instead of

exchanging their attribute information only. The exchange objects refer to the entities

transferred in a GRIDS federation. For example, in a GRIDS DSC simulation, the

exchange objects represent the flow of materials or intermediate products in the supply

Chapter 2. Generic Runtime Infrastructures for distributed Simulation

Zhao Na (M.Sc. Thesis)

20

chain. The ability to support object-passing mechanism is a distinguishing

characteristic of GRIDS. It offers a lot of benefits to distributed simulation which we

will discuss in detail in chapter 3.

Fundamentally, CORBA is a basic application integration technology developed

for the distributed systems which is a much wider application area than distributed

simulation. Although CORBA has been employed as middleware to facilitate

distributed simulation in air traffic control, video games and entertainment, and other

needs, it still faces the problem of lack of special services for simulation. Compared

with CORBA, GRIDS is originally intended for distributed simulation. It offers

services that focus on simulation requirements such as time management, data

distribution management and so on.

Other deficiencies also restrict the application of CORBA in DSC simulation. First

of all, the current lack of the capability to pass objects by value for most CORBA

products can especially affect the design of an application [21]. Furthermore, for a

class to be understood by CORBA, its interface must be expressed in IDL. The classes

referenced or used by that class must also have their interfaces expressed in IDL

because they also need to be accessible to CORBA components. This characteristic

make converting an existing application to CORBA architecture an arduous task

indeed [21]. GRIDS supports passing objects by value, which is a necessary

mechanism in DSC simulation. And modifying an existing application to use GRIDS

middleware costs relatively less time and effort, because in GRIDS applications, each

federate has a single point of contact with the RTI. There are no requirements of

changing interface for every class.

In addition, most CORBA applications work in a mechanism of client/server

relationship, such as real-time ATM service. The status of federates in GRIDS

Chapter 2. Generic Runtime Infrastructures for distributed Simulation

Zhao Na (M.Sc. Thesis)

21

application is relatively equal as they work in a cooperation mechanism.

On the other hand, GRIDS can greatly benefit from CORBA’s language

independence and platform independence even though CORBA has the foregoing

shortcomings. Since its inception in 1991, CORBA has provided great facilities for

distributed object-oriented programming that have allowed developers to seamlessly

integrate diverse applications into heterogeneous distributed systems. Although there

exist lots of alternative technologies such as Socket programming, Remote Procedure

Call (RPC), Java Remote Method Invocation (RMI), CORBA still gains preponderance

via its language independence, platform independence and suitability for complex

applications. It brings true interoperability to today's computing environment. Actually,

GRIDS is considering combining CORBA into its architecture to benefit from the

strong integration capability it offered. Gaining more powerful simulation middleware

from the combination with CORBA might not be far away.

Chapter 3. Object Exchange Model Template (OEMT)

Zhao Na (M.Sc. Thesis)

22

CChhaapptteerr 33 OObbjjeecctt EExxcchhaannggee MMooddeell TTeemmppllaattee

((OOEEMMTT))
Decision support of supply chain management is one important area that has been

fast gaining attention in distributed simulation. In supply chains, each company

produces materials or intermediate products that are delivered to the next company in

the chain. The products or material flow are represented by objects being exchanged

among federates in a DSC federation. This property of DSC simulation is described in

section 3.1. Section 3.1 also presents the requirement for middleware to provide for an

object-passing mechanism in addition to the traditional message-passing mechanism in

DSC and similar kind of simulations.

However, the problem in object-passing is the specification of these objects so that

they may be understood commonly by different federates in the federation. The Object

Exchange Model Template (OEMT) is a template which provides a standardized way

to specify the DSC-relevant object models. Section 3.2 will present this standard in

detail.

Section 3.3 highlights the Object Exchange Model Repository (OEMR), which is

the common well-known location of a library, where the OEMT and all the OEMT

specifications of existing objects are stored for simulation builders for reference and

reuse.

Chapter 3. Object Exchange Model Template (OEMT)

Zhao Na (M.Sc. Thesis)

23

3.1 Defining the Problem

3.1.1 Object-Passing in Distributed Simulation

 In a distributed simulation application, each federate is standalone. They might

use different simulation product (SIMUL8, WITNESS) and even run at remote

locations. Their interoperation is realized through the exchange of information.

Normally, the passing of information is built upon the message-passing paradigm. This

means information is not encapsulated in any structured way, and it is transferred by

the middleware as a message with information.

However, the message-passing is not enough to satisfy all the requirements of

distributed simulation. In some case, federates produce objects instead of messages. A

DSC simulation is such an example. As we mentioned in section 1.1.4, a DSC

simulation is a simulation that is composed of models (federates) that represent each of

the elements of the supply chain. In a DSC simulation, the interactions among

federates can be object instances that are produced, sent and received by the federates

from one another. Hence, this is the main concern in a DSC federation, i.e. the

exchange of objects among federates.

Of course, the object can be represented by a group of messages that describe this

object and contain values that are to be used by another federate. However, several

problems arise when using message-passing instead of object-passing in the DSC

simulation. Firstly, this approach suffers from loss of details. There is no standard as to

how and what type of information should be enclosed in the messages to describe the

object exactly. In addition, describing an object requires numerous messages, there

may be large overheads for the federates to establish, make agreement and process the

information to pass across.

Chapter 3. Object Exchange Model Template (OEMT)

Zhao Na (M.Sc. Thesis)

24

Secondly, there may be cases where variables are required to be used as input to

the object to produce a particular output or where the federate is interested in some

intermediate information of the object which requires passing some parameters to the

object before getting results. Message representations cannot accomplish such

requirements.

Finally, the attributes of the objects may be public, protected or private for

different secrecy requirements. Protect access modifier specifies that object attributes

are accessible only to methods in this object class and its subclasses, and private one is

more restrictive. Message representations lack the ability to satisfy the secrecy

requirements of federates.

Employing object-passing in DSC simulation solves the above problems efficiently.

It is easier to keep the details of the object and to establish a standard thereby objects

can be recognized uniquely. Object-passing also allows the provision of methods that

the receiving federates may invoke.

Many other application areas in distributed simulation will also benefit from

object-passing. The transportation system is another example. As an instance, an

underground train system simulation can consist of models that represent different

stations in a city. Trains moving among these stations also take the form of objects. A

station model takes the arrival trains as input objects and departure trains as output.

The train object class includes two kinds of members, one is attributes values (capacity,

passenger number, train type, etc.) which carry the data describing the train, and the

other is methods which provide mechanism to access attributes and other services.

This research proposes the use of an object-passing mechanism for DSC simulation

and even other fields in distributed simulation. A standardization problem of the object

will be raised and solved by giving a standard in section 3.2. By following the standard

Chapter 3. Object Exchange Model Template (OEMT)

Zhao Na (M.Sc. Thesis)

25

specification of object, the receiving federate knows what sort of methods can be

invoked and what information can be expected from the object.

3.1.2 Standardization of Objects

One important issue of distributed simulation is how to represent parameters and

results in messages or objects so that they may be understood commonly by different

federates in the federation. There will be no problem if all the federates are

programmed in identical programming languages on the same type of machines with

the same operating system. However, if there are differences in these areas, the way

that numbers and even texts are represented in different federates might be different.

The best way to solve this problem is to provide a standard format, so that the native

parameters on any machine can be converted to the form of the standard

representation. The HLA OMT is such a standard to describe the HLA object model

with individual federates or federation. It concentrates on the requirements and

capabilities for federate information exchange through message-passing and

interactions. However, the OMT does not provide appropriate definitions for the

foregoing exchange of objects. To describe the exchange model perfectly, we

introduced the Object Exchange Model Template (OEMT) for GRIDS.

3.2 Object Exchange Model Template (OEMT) Specification

(version 1.0)

The Object Exchange Model Template defines the format and syntax for recording

information in GRIDS distributed simulation object models, as well as mandatory

specific data that define each model uniquely from others [11]. The first version of the

OEMT Specification was created in 2002.

Chapter 3. Object Exchange Model Template (OEMT)

Zhao Na (M.Sc. Thesis)

26

3.2.1 OEMT Original Elements

The GRIDS Object Exchange Model Template is composed of a group of

inter-related elements specifying information about the model. Each model is identified

uniquely by the mandatory attributes and methods that must be implemented for each

implemented object of the model. The original template for the core of a GRIDS object

exchange model uses a tabular format and consists of the following elements [10, 42]:

• Name of Model: to record the product name that the model is emulating.

• Model Description Link: to record the URL link if the description of the model is

located somewhere else on the internet. “Model Description Link” cannot co-exist

with “Model Description” and “Technical Details”.

• Model Description: to record a detailed description of the purpose of this model

and the product description.

• Technical Details: to specify the mandatory object attributes and methods that

must be implemented of this model.

− For each object attribute, the attribute name, the attribute description, the

attribute accessibility, and the data type of the attribute are required.

− For each object method, the method name, the method description, the method

accessibility by the public, the method’s parameters if any (parameter name

and data type), and the method return data types are required.

• General Details of each Implemented Object: to specify for each object that has

been implemented using this model, the details of the company and the location of

the object in the form of an URL.

Actual examples of the OEMT will be given in section 5 when the exchange

objects in the case studies are specified using the OEMT standard.

Chapter 3. Object Exchange Model Template (OEMT)

Zhao Na (M.Sc. Thesis)

27

3.2.2 OEMT Data Interchange Format (DIF)

The GRIDS Object Exchange Model Template (OEMT) Data Interchange Format

(DIF) is a standard file exchange format used to store and transfer OEMT specifications

of object models between simulation builders [10]. The DIF is built upon a common

meta-model that represents the information needed to represent and manage object

models created using the GRIDS OEMT standard. The DIF uses XML as the standard

for declaring object exchange models in the OEMT. The DTD schema of the DIF is

given as follows:

<!ELEMENT objectModel (modelName, (modelLink|(description, technicalDetails)),
 implementedObjectDetails*)>

<!ELEMENT modelName (#PCDATA)>
<!ELEMENT modelLink (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT technicalDetails (objAttr+, objMethod*)>

<!ELEMENT objAttr (attrName, attrDescription, attrAccess, attrDataType)>
<!ELEMENT attrName (#PCDATA)>
<!ELEMENT attrDescription (#PCDATA)>
<!ELEMENT attrAccess (private|protected|public)>
<!ELEMENT attrDataType (#PCDATA)>

<!ELEMENT objMethod (methodName, methodDescription, methodAccess,
 methodParameters, methodReturnDataType)>

<!ELEMENT methodName (#PCDATA)>
<!ELEMENT methodDescription (#PCDATA)>
<!ELEMENT methodAccess (private|protected|public)>
<!ELEMENT methodParameters (pName,pDataType)*>

<!ELEMENT pName (#PCDATA)>
<!ELEMENT pDataType (#PCDATA)>

<!ELEMENT methodReturnDataType (#PCDATA|void)>
<!ELEMENT implementedObjectDetails (companyName, companyContactInfo,

 companyContactPerson, companyEmail, version, versionDate, referenceLink+)>
<!ELEMENT companyName (#PCDATA)>
<!ELEMENT companyContactInfo (#PCDATA)>
<!ELEMENT companyContactPerson (firstName, lastName)>

<!ELEMENT firstName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>

<!ELEMENT companyEmail (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT versionDate (day, month, year)>

<!ELEMENT day (#PCDATA)>
<!ELEMENT month (#PCDATA)>
<!ELEMENT year (#PCDATA)>

<!ELEMENT implementationPlatform (#PCDATA)>
<!ELEMENT referenceLink (#PCDATA)>

Chapter 3. Object Exchange Model Template (OEMT)

Zhao Na (M.Sc. Thesis)

28

3.2.3 Relationship of the OEMT and Object-Oriented Concepts

Although the OEMT is the standardized documentation structure for exchange

object models, it does not completely correspond to common definitions of object

models in object-oriented (OO) analysis and design (OOAD) techniques. In the OOAD

literature, an object model is described as an abstraction of a system developed for the

purpose of fully understanding the system. To achieve this understanding, most OO

techniques recommend defining several views of the system. OEMT has a much

narrower scope than OOAD. It does not intend to represent a scope of the whole

system, but focuses on providing a standardized way of specifying object models to be

used as input or output, and facilitating understanding between federates of a

distributed simulation. In addition, OO objects interact via message-passing, in which

one OO object invokes an operation provided by another OO object and gets a returned

value. OEMT objects do not directly interact. It is the federates that interact, via

exchanging OEMT specified objects. The OEMT specified objects function as the

vehicle which carries information among federates.

Although OEMT does not completely correspond to OOAD principles and

concepts, it has lots of similarities with OOAD in some sense. At the individual object

level, in the OEMT, objects are defined as information encapsulations of data and

operations (methods), which is the same with object definition in the OOAD literature.

Furthermore, like OO objects, OEMT specified objects encapsulate state locally and

associate update responsibilities with operations that are closely tied to the object's

implementation in an OO programming language. Federates access object attributes

though operations included in object class encapsulation, which also provide security

guarantee to private information in the object.

Chapter 3. Object Exchange Model Template (OEMT)

Zhao Na (M.Sc. Thesis)

29

3.3 The Object Exchange Model Repository (OEMR)

The Object Exchange Model Repository (OEMR) is the central location where all

object exchange models’ information is stored. It is a library which stores all the object

models in different areas of applications separately, for distributed simulation builders

to access and re-use object models [10]. This work will implement the main functions

of the OEMR on-line service. Putting the OEMR online facilitates reuse and allows

easy access by simulation builders all over the globe, as well as to provide new object

models.

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

30

CChhaapptteerr 44 CCaassee SSttuuddiieess:: AApppplliiccaattiioonnss UUssiinngg

GGRRIIDDSS aanndd OOEEMMTT
Although the OEMT standard has been developed, it is still in the early phase. Its

structure is not complete and how to apply it in real applications is still a great

challenge. In this chapter, two case studies are designed and implemented to

investigate and evaluate the GRIDS architecture and the OEMT standard. Section 4.1

details the design and implementation of an Automobile Manufacture Supply Chain

Simulation in GRIDS environment. The second case study is a Singapore Mass

Rapid Transit (MRT) System Simulation. This case study is presented in Section

4.2.

The rationale behind the choice of these two case studies is that, on one hand, both

of the case studies are typical distributed systems, and many objects are transferred

between distributed nodes in both systems; On the other hand, the two case studies are

different in several ways. First of all, the case studies represent distinct application

areas of distributed simulation. Case study one is a typical DSC simulation example.

Since GRIDS and the OEMT are initiated based on the requirements of DSC

simulation, case study one investigates their application in the original application field.

The MRT simulation in case study two is an instance of transportation system which is

another important commercial area that can benefit greatly from distributed simulation

technique.

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

31

Secondly, the two simulations differ in the setup of the nodes. In case study one,

the nodes are tightly coupled, but in the MRT system, the nodes (stations) are loosely

coupled with no immediate or direct feedback when an entity is passed (the differences

will be further discussed in section 4.2.5).

These characteristics of the two case studies make them ideal case studies to

investigate GRIDS and the OEMT. Through the automobile supply chain and the MRT

simulation, we can evaluate the ability of GRIDS to handle the simulation of DSC and

transportation system, and the capability of OEMT to describe manufacturing product

and vehicle as object.

In addition, the research also introduces an actual implementation tool of the

OEMT---XML Document Object Model (DOM) [7, 43]. This tool is accomplished by

using the XML parser to render the document into a structured format --- hierarchical

tree structure (DOM Tree), which allows each element of the document to be accessed

and manipulated by DOM provided APIs.

4.1 Case Study One: Automobile Manufacture Supply Chain

Simulation

4.1.1 System Conceptual Model

The distributed automobile manufacture supply chain simulation system is a model

representation of the real life process of a typical DSC. This system, which is called

AutoSim Federation, consists of one automaker, the Car Assembly Factory where the

cars are assembled, and four suppliers, the Tyre Factory, the Engine Factory, the

Carbody Factory and the Lamp Factory which supply necessary parts to the Car

Assembly Factory. The interaction relationship of the five semi-independent federates

in the system is showed in Figure 4-1-1.

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

32

Figure 4-1-1: Models Interaction Relationship

These five simulation models (federates) run separately and cooperate through the

exchange of objects (representative of product entities transferred between the models).

The suppliers provide parts to the automaker based on Just-In-Time (JIT, which means

getting the right parts to the right place at the right time) production theory [20, 27], so

that the minimum inventory can be achieved.

The JIT production theory of manufacturing supply chain (also known as lean

production or stockless manufacturing) is a management philosophy that strives to

increase value added and eliminate sources of manufacturing waste by producing the

necessary parts in necessary quantities at the necessary time. The benefits of JIT

include improved delivery, low inventory levels, reduced operating costs, greater

performance, higher quality and increased flexibility.

A key point of successful JIT is maintaining low inventory levels, which leads to

faster reaction to customer’s demands. Ideally, the supplier should produce a part just

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

33

before the part is needed by a customer. In conventional production processes,

suppliers build products according to a self-ordained and pre-defined schedule. No

consideration of customers’ requirements is made. In small-batch production (JIT),

customers encourage suppliers to deliver only what is needed by the assembly plant at

a particular time, even if this means partially filled trucks [20]. Thus, products move

rapidly through the suppliers’ plant and to their customers, and suppliers maintain

much less inventory.

The investigation of US and Japanese automakers by Jeffry K. Liker and Yen-Chun

Wu has proved the efficiency of lean manufacturing. Johnson Controls Company is a

good example. This company is famous for supplying seats for Toyota just hours

before the seats are to be installed on the assembly line [20]. Its inventory levels

dropped from 32 days2 of inventory to 4.1 days after employing JIT and supply-chain

logistics. And also, researches show that factories using JIT delivery system are not

paying more for emergency delivery than the factories that use tradition MRP

(Material Requirement Planning) system.

According to the JIT, in this case study, the Car Assembly Factory does not keep

large inventory, it sends an order to the corresponding Component Factory when a

certain kind of component is lacking and expects immediate supply. A late supply will

result in delay of car production. To avoid this harmful condition, the Component

Factory, upon receiving an order, must fulfill the order and deliver parts according to

the demand as soon as possible. But, given that it takes time to machine the parts,

buffer stock is required to keep the Car Assembly Factory from waiting. The problem

that needs to be addressed is how fast each Component Factory should produce parts

so that it can satisfy the requirement of the Car Assembly Factory and keep minimum

2 Refers to how many days the current products in the inventory can satisfy the
customer’s requirement without new products being produced.

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

34

buffer stock at the same time. In this system, the Component Factories will adjust their

production speed dynamically according to the order number and current buffer stock

size. The pseudocode of Component Factory algorithm is shown as follows:

To implement the automobile manufacture supply chain simulation within GRIDS

environment, the first step is to decide the messages and objects that are produced and

exchanged in the federation, and the object publish-subscribe relationships of the

federates should also be confirmed. Then the object exchange models are specified

using the OEMT standard so that they can be commonly understood by all the GRIDS

federates. After that, the execution requirements of the federation are considered to

determine which GRIDS thin agent services are needed to support the simulation.

Certain documents are created to assist these services. Finally, the simulation system is

developed, integrated and tested before executing the system to get the results. These

While simulation not terminated
 Waiting for next event

 When new order come from Car Factory, read the number of parts
 Required(PartsNeeded) and event time(timeMark) from order object
 If (timeMark<0)
 Terminate simulation;
 //assume negative timeMark is simulation terminate signal.
 endif
 Calculate produce capability of component factory between its
 simulation time(clock) and event time:
 produceCapability=(int)(timeMark-clock) / productionTime

 If (current produce capability is too high and products overstock:
 currentStoreSize+ produceCapability >=maxStoreSize)
 Produce parts and stop when store is full

 Adjust production speed by increase productionTime (decrease
 production speed)

 Advance simulation time to timemark
 else if (current produce capacity is appropriate:
 crntStoreSize+ produceCapability >=PartsNeeded)

 Produce parts until produceCapability is met
 Advance simulation time to timemark

 else (current produce capability is too low and order
 requirement cannot be satisfied)
 Produce parts until order requirement is met
 Advance simulation time by productionTime when every part
 is produced

 Adjust production speed by decrease productionTime
 (increase production speed)

endif
Deliver parts to Car Assembly Factory marked with current
simulation time

endwhile

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

35

processes are detailed separately in the following sections.

4.1.2 Exchange Object Specification

In this simulation system, the federates keep sending and receiving objects between

one another during their life time. The objects include the product objects (parts)

transferred from the four Component Factories to the Car Assembly Factory, and the

order object which the Car Assembly Factory sends to the Component Factories to

notify the order demand of parts. The GRIDS OEMT is employed to specify these

objects. The template has a certain set of information to be filled in. The basic methods

and variables are made known in this template, so that other federates can access

appropriately.

 The tables 4-1-1 to 4-1-7 use tyrepackage and tyreorder object as examples to

show the use of the OEMT version 1.0 in the system design. The tables 4-1-1 to 4-1-4

are the specification of the tyrepackage object. The tyrepackage object is published by

the Tyre Factory Federate and is subscribed by the Car Assembly Factory. Each

package encapsulates numbers of tyres. It can be regarded as a truck which delivers

tyres to the Car Assembly Factory. The object exchange model specifies the attributes,

methods and other information of the tyrepackage object.

Object Exchange Model Template (OEMT)
Category Information

Name of Model tyrepackage
Model Description Link Nil

Model Description

The tyrepackage represent the object transferred
from the Tyre Factory to the Car Assembly
Factory. Each package encapsulates numbers of
tyres as components. We can regard it as a truck
which delivers tyres to Car Assembly Factory.

Technical Details ……
General Details of each Implemented Object ……

Table 4-1-1: Exchange Object Information Table

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

36

Mandatory Object Attributes Table
 Category Information

1 Attribute Name PackageSize
 Attribute Description Stores the maximum number of components the package

can carry.
 Attribute Accessibility private
 Data Type int

 2 Attribute Name CompType
 Attribute Description Stores the type of components in the package.
 Attribute Accessibility private
 Data Type String

 3 Attribute Name TimeMark
 Attribute Description Stores the time stamp of the package object
 Attribute Accessibility private
 Data Type Int

Table 4-1-2: Exchange Object Attributes Table

Mandatory Object Methods Table
 Category Information
1 Method Name insertCompNode

 Method Description insert a component Node into tyrepackage
 Method Accessibility public

Parameter Name CompNode Method Parameters
Parameter Data Type XML DOM Node

 Method Return Data Type void
2 Method Name getCompNode

 Method Description get a component Node from tyrepackage
 Method Accessibility public
 Method Return Data Type XML DOM Node

3 Method Name setCompNodeAttribute
 Method Description Set attribute value from a component Node
 Method Accessibility public

Parameter Name CompNode
Parameter Data Type XML DOM Node
Parameter Name attrName
Parameter Data Type String
Parameter Name attrValue

 Method Parameters

Parameter Data Type String
 Method Return Data Type void

4 Method Name getCompNodeAttribute
 Method Description extract String attribute value from a

component Node
 Method Accessibility public

Parameter Name CompNode
Parameter Data Type XML DOM Node
Parameter Name attrName

 Method Parameters

Parameter Data Type String
 Method Return Data Type String

5 Method Name setTimeMark
 Method Description set the timeMark attribute of tyrepackage
 Method Accessibility public

Parameter Name intTimeMark Method Parameters
Parameter Data Type int

 Method Return Data Type void
6 Method Name getTimeMark

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

37

 Method Description get the time mark of the tyrepackage object
 Method Accessibility public
 Method Return Data Type int

7 Method Name setPackageSize
 Method Description set the maximum capacity of the tyrepackage
 Method Accessibility public

Parameter Name intSize Method Parameters
Parameter Data Type int

 Method Return Data Type void
8 Method Name getPackageSize

 Method Description get the capacity of the tyrepackage
 Method Accessibility public
 Method Return Data Type int

9 Method Name setCompType
 Method Description set the compType attribute of tyrepackage
 Method Accessibility public

Parameter Name strType Method Parameters
Parameter Data Type String

 Method Return Data Type void
10 Method Name getCompType

 Method Description get the compType attribute of the tyrepackage
 Method Accessibility public
 Method Return Data Type String

11 Method Name len
 Method Description get the number of components in the

tyrepackage
 Method Accessibility public
 Method Return Data Type int

12 Method Name isFull
 Method Description return true if the number of components in this

tyrepackage reaches the tyrepackage’s
capacity

 Method Accessibility public
 Method Return Data Type boolean

13 Method Name cleanPackage
 Method Description delete the componens in the tyrepackage
 Method Accessibility public
 Method Return Data Type void

 Table 4-1-3: Exchange Object Methods Table

General Details of Each Implemented Object
Category Information

Company Name NUS SOC
Company Contact Info (65) 68744366

First Name Na Company Contact Person
Last Name Zhao

Company Email Address Nil
Version 1.1

Day 30
Month 12

Date of Version

Year 2002
Implementation Platform Java
Reference Link to Implemented Object Nil

Table 4-1-4: General Details of Each Implemented Object

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

38

The Car Assembly Factory also subscribes to the enginepackage, carbodypackage,

lamppackage objects from the other three Component Factories. The OEMT

specifications for these three exchange objects in this system are similar with

tyrepackage and omitted due to the limited space. The OEMT specified model of

tyreorder object is given below. The tyreorder object with the other three objects ---

engineorder, carbodyorder and lamporder are published by the Car Assembly Factory

and are subscribed respectively by the Component Factories (The table of General

Details of Each Implemented Object is omitted since it is the same with tyrepackage

above.).

Object Exchange Model Template (OEMT)
Category Information

Name of Model tyreorder
Model Description Link Nil

Model Description
This object is published by Car Assembly
Factory and is subscribed respectively by Tyre
Factory.

Technical Details ……
General Details of each Implemented Object ……

Table 4-1-5: Exchange Object Information Table

Mandatory Object Attributes Table
 Category Information

1 Attribute Name PartsNeeded
 Attribute Description Stores the number of certain parts need by Car Factory
 Attribute Accessibility private
 Data Type int

 2 Attribute Name TimeMark
 Attribute Description Stores the time stamp of the order object
 Attribute Accessibility private
 Data Type int

Table 4-1-6: Exchange Object Attributes Table

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

39

Mandatory Object Methods Table
 Category Information
1 Method Name setPartsNeeded

 Method Description set the number of parts need by Car Factory
 Method Accessibility public

Parameter Name intPartsNeeded Method Parameters
Parameter Data Type int

 Method Return Data Type void
2 Method Name getPartsNeeded

 Method Description get the number of parts need by Car Factory
 Method Accessibility public

 Method Return Data Type int
3 Method Name setTimeMark

 Method Description set the time stamp of the object
 Method Accessibility public

Parameter Name intTimeMark Method Parameters
Parameter Data Type int

 Method Return Data Type void
4 Method Name getTimeMark

 Method Description get the time stamp of the object
 Method Accessibility public
 Method Return Data Type int

Table 4-1-7: Exchange Object Methods Table

The object specifications provide the uniform meaning of each exchange object, so

that the federates can access the objects and extract required information from them

through calling the methods. However, we also find that the current OEMT standard is

not adequate to specify complex objects. So many necessary details are missed that the

information provided by the object specifications is not enough for the federates to

make an agreement based on them. We will summarize the experience in section 4.3,

and offer an improved OEMT standard in next chapter.

4.1.3 Exchange Object Implementation

The most important issue in this case study is to implement object transfer and

manipulation. We note that the OEMT is a Data Representation Model, that is, a data

model about what the “things” will be like or how to represent “things”, but not a data

model “of the things”. A mechanism is required to represent the “things” --- objects

actually exchanged in supply chain simulation environment. In this case study, the java

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

40

object class is employed to implement the exchange object, which includes data and

methods. It is the object/entity which represents the actual product.

However, another problem is how to organize the data, and how to differentiate

them from methods. An object might have multiple hierarchical attributes. In addition,

an object can carry more than one item, which has the same attribute name with

different value. For example, in this case study, the tyre factory supplies tyres to the

car assembly factory. As it is obviously inefficient to send tyre one by one, tyres are

sent in bulk. Each tyre has different Uniform Tyre Quality Grade (UTQG), Maxload

and so on which are presented as different values for certain attributes. So how to

represent the attributes is a significant problem. To solve this problem, XML and the

Document Object Model Tree (DOM Tree) are employed.

XML is a language portable over the Internet. It has opened the door to the sharing

of information in various ways. It supports a variety of applications, allowing easy

writing of programs to process XML documents based on the user-defined tags [25]. It

can store information in various types of elements and show the relationship of the

elements as classes and subclasses. This allows parallel object parts like carriages or

tyres to be described as children of a single parent. XML provides an encapsulation

mechanism for object attributes.

Using XML as the communication vehicle between disparate applications requires

a mechanism that will read and interpret the XML document into a computer-friendly

format. Application programs require a means to access the individual pieces of

information (elements) contained within each XML document. This is accomplished

by using the XML parser to render the document in a structured format --- hierarchical

tree structure (DOM Tree). The Document Object Model (DOM) is a platform- and

language-neutral interface that will allow programs and scripts to dynamically access

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

41

and update the content, structure and style of documents [7]. The DOM also offers a

group of APIs to facilitate the access of the elements within the tree at run time. By

following the tree (hierarchical) structure, the APIs allow traversing the tree freely,

moving one part of the document tree to another without destroying and re-creating the

content, and creating elements and attach them to any point in the document tree.

For these reasons above, DOM Tree is chosen in this project to specify the attribute

field of object exchange model in the case study. Many tools have been built by

different vendors for this purpose. What we used in our case study, the XML4J parser,

is such a tool provided by IBM that renders an XML document in a DOM Tree.

Figure 4-1-2 gives the structure of the exchange object model.

 Figure 4-1-2: Exchange Object Model (Java object class)

• Attribute Field of OEMT Object (AIF and DOM Tree)

The Object Exchange Model Template (OEMT) attribute information format

(AIF) is a standard file format used to store the object attributes. The OEMT

corresponds to common definitions of object models in object-oriented analysis

and design (OOAD) techniques. In the OEMT literature, objects are defined as

information encapsulations of attributes and operations (methods). This

characteristic of the OEMT object requires all the attributes used to describe the

parse
 AIF XML file

Attribute Field

 (DOM Tree)

Method Field

 (W3C DOM API)

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

42

object be placed in an entire independent structure. The AIF is such a format to

group all object attributes describing the object (e.g. attribute value). It stands for

the attribute part of the OEMT. The AIF file takes the style of eXtensible Markup

Language (XML) file.

• Method field of OEMT Object

The set of methods is developed according to the description in OEMT

Mandatory Object Methods Table. These methods can be invoked from

outside the OEMT object to perform certain functions, facilitate the access to

object’s attributes (within DOM Tree) and provide other related services, such as

providing some statistics, changing the state of the object, updating some of its

attributes or acting on outside resources to which the object access.

As application OEMT in this case study, the AIF of tyrepackage object is parsed to

the DOM Tree framework (Figure 4-1-3). The attributes described in the OEMT are

converted to the DOM Tree. The Methods are based on W3C Document Object Model

APIs that allow access to the elements within the DOM Tree. For example, when the

automaker receives the TyrePackage object, it can get the package size or a single tyre

through invoking the methods “getPackageSize” or “getCompNodeAttribute”,

which are described and acknowledged in the OEMT method table.

 Figure 4-1-3: DOM Tree Framework of TyrePackage Object

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

43

4.1.4 Integration with GRIDS

To meet the interoperation requirement of the system, GRIDS is used as the

distributed simulation middleware to integrate the federates together. It integrates

seamlessly with Java’s Object Serialization technology, enabling object-passing

between remote federates. The timely transfer of objects between the elements of the

automobile manufacture supply chain is the responsibility of GRIDS. To connect the

GRIDS Client, the federates are required to realize two interfaces: SimInterface and

SimStartInterface. A “.DDM” file is created for each federate to declare the publication

or subscription of objects. Each federate keeps certain attributes such as netPort,

federateName and a clock to record its current “time”. These publication, subscription

information and namespace will be used in the future to register to the Boot Server.

Figure 4-1-4 is a UML Class Diagram to show the structure and details of Federate

Classes.

SimInterface

recieveMessage()

(from Grids)

<<Interface>>

SimStartInterface

startSim()

(from Grids)

<<Interface>>

facsim

netPort
federateName
federationName
serverAddress
serverPort
clock
DDMFile

initSim()
startSim()
recieveMessage()

(from Common)

carfacsim

completedCars
maxProducts
assemblyTime
tyreList
engineList
bodyList
lampList

sendOrder()
sendStopInfo()
returnCompo()
prepareComponents()
processFederate()
updateSupplyOfCompos()

(from CarFactory)

tyrefacsim

generateTyre()
outputTyre()

(from TyreFactory)

enginfacsim

generateEngine()
outputEngine()

(from EngineFactory)

carbodyfacsim

generateBody()
outputBody()

(from BodyFactory)

lampfacsim

generateLamp()
outputLamp()

(from LampFactory)

compofacsim

lineCapacity
productList
maxStoreSize
produceTime
orderList
storeList

produce()
stopSim()

(from Simulation)

Figure 4-1-4: UML Structure of Federate Classes

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

44

Thin agents are employed to control the routes of objects transfer and synchronize

the federates. Figure 4-1-5 shows the makeup of an individual federate [38].

Figure 4-1-5: Federate Makeup with GRIDS Client

4.1.5 Execution and Result Analysis

Six PIII 700 MHz PCs with 256 MB RAM are used to run the whole system. One

PC is used to run the GRIDS Boot Server; the other 5 PCs each carry one federate. We

assume assembling a car needs two to three hours (random) in real life. The simulation

terminates after 500 cars were produced in simulation time of 1356 hours and 18

minutes. The average car assembly time is about 2 hours and 43 minutes per car. The

Car Assembly Factory spent 97 hours and 12 minutes on waiting for parts. Delay rate

was 7.2%. This delay can be avoided by employing a safe stock in the Car Assembly

Factory.

Figures 4-1-6 & 4-1-7 are two graphs that show the fluctuation of the stock size

and the production time in the Carbody Factory and the Tyre Factory throughout the

production process.

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

45

Figure 4-1-6: Carbody Factory Execution Result

Figure 4-1-7: Tyre Factory Execution Result

During the production process, the Carbody Factory received 141 orders from the

Car Assembly Factory when the Tyre Factory fulfilled 87 orders. This difference is due

to the different number of parts required in the order by considering the volume of

parts and capacity of delivery tools in real life. The production time is extended

(production speed increase) by a given coefficient (different for each factory according

real life experience) when the stock is close to maximum capacity and is decreased

when the order demand cannot be satisfied. As we can see in figures 4-1-6 and 4-1-7,

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

46

the ability to automatically adjust production time makes the stock size fluctuate

within a certain range. Other factors such as the random defect rate, order demand,

different inventory capacity and so on also affect the wave period and form of the

curve. Comparing the two figures above, the stock size of the Carbody Factory

fluctuates faster than the Tyre Factory. The main reason is the inventory capacity of the

Carbody Factory is much smaller than the Tyre Factory. The production time of the

Tyre Factory is also more stable. (Note: the exceptional drop of stock size in Tyre

Factory around time 300 is due to the fact that the defect rate of previous batch of tyres

is abnormally high. This conclusion is made via analysis of factory’s production

record.)

4.2 Case Study Two: Singapore Mass Rapid Transit (MRT)

System Simulation

The MRT system in Singapore is one of the most important public transport

systems in the country. It spreads all over the country and provides mass rapid transit

passenger service along major high-density travel corridors in Singapore.

The second case study investigates the ability of GRIDS and OEMT to facilitate

transportation simulation. This case study designs a distributed system to simulate the

MRT system and uses this to investigate the flow of passengers and trains on the

Singapore MRT system, specifically to investigate the relationship of the model to the

safe capacity of a MRT station.

Sections 4.2.1, 4.2.2 and 4.2.3 will discuss the design issues of the case study

including building objects based on the Object Exchange Model Template. Then the

case study implementation will be presented in section 4.2.4. Section 4.2.5 presents the

execution and experience analysis.

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

47

4.2.1 System Design and Function Description

To simplify our system, only major stations, eight stations and four garage models,

are simulated in a four line MRT system. This means the MRT federation, named

MRTSim, consists of twelve federates. The station simulation models are

object-oriented and distributed running on network computers. Train objects carrying

passengers are transferred between stations. They are based on the OEMT as the

information transfer standard and apply OEMT standard on full scale. GRIDS is used

as simulation middleware to connect the federates. This case study therefore gives

another practical instance of GRIDS and the OEMT application.

Figure 4-2-1 illustrates the federation structure graphically. The function of each

station is briefly described as follow.

Figure 4-2-1: MRT Simulation System Structure

The garages are in charge of generating empty trains (train objects with initial

attribute values) for each MRT line in a fixed interval. Each of these MRT stations has

a maximum safe capacity. Passengers reach a departure station at a given rate, which

could be changed for each station and/or for different time periods. Each passenger has

a randomly assigned destination and takes the best route (normally the shortest way to

destination). The passengers are put into a waiting queue of a particular platform

according to their destinations.

MRT_EW2 MRT_EW1

MRT_NS2 MRT_NS3

MRT_EW3 MRT_EW5 MRT_EW4

MRT_NS1

garage-northline garage-southline

 garage-eastlinegarage-westline

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

48

South line train
come from NS1

East line train
come from EW3

West line train
send to EW3

East line train
send to EW1

North line train
send to NS1

West line train
come from EW1 MRT Station EW2

(process train)

North line train
from garage_n

Figure 4-2-2: MRT Station Object Exchange Relationship

A train object carries information such as trainID, capacity, total passenger number,

number of passengers to each station and so on. This information forms the attributes

of the OEMT object, which are defined in the following specification. When a train

arrives at a station, the station model invokes the methods of train object to access the

attributes and finish the operations such as passengers getting on and off this train, and

then sends the train to the next station. If the number of passengers on a station

exceeds the safe capacity, the federation terminates by producing warning information

together with a summary of statistical data. The data are used to adjust train interval or

train capacity so that the stations could keep within the safe capacity.

Figure 4-2-2 takes station EW2 as an example to portray the exchange of train

objects in the system. As it can be seen, federate EW2 exchanges object with other 4

federates. It receives train objects from 4 federates, and sends objects to 3. For

example, a west line train comes to EW2 from EW1; EW2 processes the train (updates

train object, including update timestamp, insert or delete passengers and other statistics

work), adjusts station’s simulation time and then sends the object to the next station

(EW3). The behavior of other federates is similar to EW2.

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

49

4.2.2 Exchange Object Specification

The motivation of this case study was to show the workings of the OEMT. We

wanted to know if it is a suitable and efficient way to specify object exchange in the

transportation system. So our main concern is on the design of the object exchange

model in the MRT Simulation based on the OEMT format.

There are four train objects --- EastLineTrain, WestLineTrain, NorthLineTrain and

SouthLineTrain that represent the trains come from different lines (refer to Figure

4-2-2). In the following four tables we use EastLineTrain as an instance to provide the

specifications of exchange object in MRTSim using OEMT. The specifications include

all the attributes of the MRT train object. The methods to access attributes are also

represented. The real exchange object will be developed based on these descriptions.

Object Exchange Model Template (OEMT)
Category Information

Name of Model EastLineTrain
Model Description Link Nil

Model Description

A model to emulate a train which carries numbers
of passengers from current station to their
destination station. The important features are the
number of passenger going to each station and
the capacity of the train.

Technical Details ……
General Details of each Implemented Object ……

Table 4-2-1: Exchange Object Information Table

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

50

Mandatory Object Attributes Table
 Object Attributes Field Data
1 Attribute Name capacity

 Attribute Description Stores the max number of passenger which can
be carried by the train

 Attribute Accessibility private
 Data Type int

2 Attribute Name totalpsgnum
 Attribute Description Stores current number of passenger on the train
 Attribute Accessibility private
 Data Type int

3 Attribute Name psgnum_to_EW1
 Attribute Description Stores passenger number whose destination is

station EW1.
 Attribute Accessibility private
 Data Type int

4 Attribute Name psgnum_to_EW2
 …… ……

Table 4-2-2: Exchange Object Attributes Table

Mandatory Object Methods Table
 Object Attributes Field Data
1 Method Name setAttrValueInt

 Method Description set attribute value to each attribute in the object.
 Method Accessibility public

Parameter Name AttrName
Parameter Data Type String
Parameter Name AttrValue

 Method Parameters

Parameter Data Type int
 Method Return Data Type void

2 Method Name extractIntValue
 Method Description extract attribute value from object
 Method Accessibility public

Parameter Name AttrName Method Parameters
Parameter Data Type String

 Method Return Data Type int
3 …… ……

Table 4-2-3: Exchange Object Methods Table

General Details of Each Implemented Object
Category Information

Company Name NUS SOC
Company Contact Info (65) 68744366

First Name Na Company Contact Person
Last Name Zhao

Company Email Address Nil
Version 1.1

Day 30
Month 8

Date of Version

Year 2002
Implementation Platform Java
Reference Link to Implemented Object Nil

Table 4-2-4: General Details of Exchange Object

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

51

4.2.3 Exchange Object Implementation

In this case study, the train objects take the form of Java object classes which

included the DOM Tree as data member and multiple methods. Figure 4-2-3 is the AIF

file being used to carry attributes of the train object. It is parsed into DOM Tree and

stored in the object class in the MRTSim program.

Through using the DOM APIs in this case study, any element within the AIF XML

document can be accessed, changed, deleted, or added. The value of each attribute can

be accessed by invoking the methods of the object. Figure 4-2-5 gives an example of

the methods in the train object. Figure 4-2-4 shows the original state of part of the

attributes in the train object. The method “setAttrValueInt” functions as finding

specified element by name and setting the value passed as parameters.

Figure 4-2-3: AIF File for Train Object in MRTSim

<?xml version="1.0"?>
<objectModel>
 <modelName>EastLineTrain</modelName>
 <description>Singapore MRT simulation</description>
 <technicalDetails>
 <objAttr>
 <capacity></capacity>

 <totalpsgnum></totalpsgnum>
 <psgnum_to_EW1></psgnum_to_EW1>
 <psgnum_to_EW2></psgnum_to_EW2>
 <psgnum_to_EW3></psgnum_to_EW3>
 <psgnum_to_EW4></psgnum_to_EW4>
 <psgnum_to_EW5></psgnum_to_EW5>
 <psgnum_to_NS1></psgnum_to_NS1>
 <psgnum_to_NS2></psgnum_to_NS2>
 <psgnum_to_NS3></psgnum_to_NS3>
 </objAttr>
 </technicalDetails>
</objectModel>

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

52

Figure 4-2-4: Example DOM Tree Fragment

public void setAttrValueInt(String AttrName,int AttrValue)
 {
 String AttrV_=Integer.toString(AttrValue);
 NodeList Elements=this.doc.getElementsByTagName(AttrName);
 Node refernode=elements.item(0);
 //creat a new node with particular value, and
 append it under element node.
 Node new_node=this.doc.createTextNode(AttrV_);
 refernode.appendChild(new_node);
}

Figure 4-2-5: Method setAttrValueInt(String AttrName, Int AttrValue)

By calling the method, a user can add value to given attribute of the object. For

example:

setAttrValueInt(“capacity”,500);

setAttrValueInt(“totalpsgnum”,300);

setAttrValueInt(“psgnum_to_EW1”,50);

Figure 4-2-6 shows the result of methods invocation from outside the object.

Figure 4-2-6: Example DOM Tree Fragment after Calling Method

 <objAttr>
 <capacity></capacity>
 <totalpsgnum></totalpsgnum>
 <psgnum_to_EW1></psgnum_to_EW1>
 </objAttr>

psgnum_to_EW1

 objAttr

 capacity totalpsgnum

 <objAttr>
 <direction>1</direction>
 <capacity>500</capacity>
 <totalpsgnum>300</totalpsgnum>
 </objAttr>

 psgnum_to_EW1

 objAttr

 capacity totalpsgnum

“50” “500” “300”

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

53

As Figure 4-2-6 showed, each time the method is called, a new text node with

attribute value (parameter two) is created and appended as child node of the

corresponding element node (refer to parameter one, attribute name). Hence the

attribute field is updated.

Other methods of train object behaved similarly as the above example. The train

object with all the attributes and methods was transferred among the federation in the

MRTSim. The program detail of the train object was transparent to users. The method

name, parameters and function were listed in the OEMT specification. Users can

search the specification for the required operation. Through calling these methods, a

federate (station) can obtain useful information (e.g. passenger number in current

station) from the exchange object, update it (e.g. passengers get off or on the train),

then transfer the object to the next federate. Providing methods in the OEMT can

standardize object input, output and information transmission in simulation, thus

simplifying simulation builder’s work dramatically and promoting re-use of simulation

components.

4.2.4 Case Study Implementation in GRIDS Environment

The experimental platform of the case study is outlined below:

• GRIDS was used as the middleware in this case study.

• All the 12 federates were written in Java to take advantage of its

object-orientedness, multithreading, and also the strong object serialization

technology.

• The train object was implemented on the format of a Java object class.

• Seven PIII 700 MHz with 256 MB RAM PCs within a 7-PC cluster were used to

run the whole system. One PC was used to run the GRIDS Boot Server; the other

6 PCs each carried two federates.

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

54

The stations are discrete-event based, in which a train object is regarded as an

incoming event. The timely transfer of objects between federates was the responsibility

of this middleware. Time management, data distributed management and other basic

services are achieved by employing the corresponding GRIDS thin agents. The

makeup of an individual federate with the GRIDS client is similar with case study one

(refer to Figure 4-1-5). Figure 4-2-7 illustrates the structure of the MRT federation in

GRIDS environment.

Figure 4-2-7: MRT Federation Structure in GRIDS Environment

4.2.5 Execution and Experience Analysis

As stated in the beginning of this chapter, the setup of the nodes in the second case

study differs with the first one. In the first case study, the component factories and the

assembly factory are tightly coupled. The component factories cannot send parts to

assembly factory until they receive orders. They fall into sleep to avoid the overflow of

their stores and are awaked by the order objects. On the other hand, the assembly

factory would also sleep if the component factories could not meet its requirement.

However, in the MRT system, the stations are loosely coupled. It means that there is no

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

55

immediate or direct feedback when an object/entity is passed between the stations. A

station works in a simple internal logic according to a self-ordained and pre-defined

schedule.

Conventionally, the synchronization of systems like the MRT can be achieved by a

“spreadsheet solution”, which is simply taking the results of the first model in a

spreadsheet and then uploading it into the second model. However, while spreadsheet

solution is a rudimentary approach to time management, it is not a scalable one. To

handle logically connected models, it often requires some assumptions such as zero

idle time. We need a generic distributed simulation approach without such limitations

to handle systems with loosely coupled nodes and implement complex business logic

in them.

The second case study investigates the ability of GRIDS to be such a generic

solution. To be generic, it must be able to transfer timestamped entities from one

model to another; allow a model to correctly receive and process the timestamped

entities from one or more models; and correctly synchronize these models.

Through the MRT simulation, we find that GRIDS can meet these basic

requirements. It transferred and processed the timestamped train objects in correct

order. And it coordinated and synchronized the MRT system well. But, since GRIDS

was originally developed based on the DSC requirements, its ability to handle

transportation system is limited. The algorithm of the current GRIDS TM thin agent is

not powerful enough to meet the requirement of the transportation system simulation.

And because the task of each station is not balanced, some station may have a big

waiting queue after executing a period of time. To maintain the queue, TM thin agent

consumes large amounts of memory. For this restriction, the MRT simulation did not

run stably. We fail to give exact results in this case study. To improve the thin agent is

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

56

beyond the scope of this research work and will be left to future work. However, we

still gain experience from it.

First of all, this case study proves valuable experience to improve the structure of

the OEMT. Although the OEMT successfully describes the basic properties of the train

in the MRT simulation, its elements are not enough to specify objects effectively in

transportation system. This case study also proves that the OEMT helps the DDM thin

agent work well in this simulation.

Second, we find that object passing is efficient in transportation system. A single

train travels through several stations, therefore the ability to carry methods is

promising in enhancing the efficiency of the system.

Third, through this case study, we find the deficiency of GRIDS in handling

transportation system and indicate a direction in further improvement for GRIDS.

The above experience will be summarized in section 4.3. The goal of our future

work will be making GRIDS an efficient, convenient and all-purpose simulation

middleware.

4.3 Experience Gained from Case Studies

The case studies helped to test, analyze, and verify GRIDS infrastructure and the

OEMT. The experience gained from case studies will be summarized in this section.

Certain opinions and suggestions will be given to help the improvement of GRIDS and

the OEMT.

4.3.1 GRIDS Federation Development Process

Through the experience we got from the development of the automobile supply

chain simulation, the GRIDS federation development process can be described in six

steps as follows:

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

57

1. Define federation objectives;

2. Develop federation conceptual model;

3. Design federation (particular OEMT object specification development);

4. Develop federation;

5. Integrate and test federation;

6. Execute federation and results analysis.

This series of activities is necessary to design and build the GRIDS federation. The

six steps need not be performed in a strictly sequential manner. A spiral development

approach3 might be more effective.

4.3.2 Benefits of GRIDS

GRIDS has several advantages which make it an ideal middleware infrastructure

for DSC simulations. These advantages also make GRIDS suit other application areas

such as transportation as shown in case study two:

• It supports high extensibility in several levels from user-defined message types to

functionality extensions via the thin agents and internal data storage extensions

via the MetaDataBase (MDB) interface. Functionality extensibility via thin

agents is the key feature of GRIDS. This property allows additional services

required for a DSC or other types of simulation to be easily and rapidly

developed and dynamically added in. The environment’s functionality is also

enhanced through the extension mechanism in response to specific requirements

made by the vast distributed simulation areas.

• It reduces the time and costs for building a new simulation model, which is

derived from the GRIDS’s ability to integrate an array of existing

3 Spiral development is a family of software development processes characterized by
repeatedly iterating a set of elemental development processes and managing risk so it
is actively being reduced.

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

58

component-based simulation models. It also takes advantage of the functionality

of various vendors’ simulation products.

• It is a light-weight and portable middleware and converting an existing

application to use GRIDS is comparatively easy. The application interface within

GRIDS is in the form of two basic object-oriented interfaces that must be

implemented during the development of an application: the SimInterface

(equivalent to the federate ambassador) and the GridsInterface (equivalent to the

RTI ambassador).

• It supports peer-to-peer communication between federates. The traffic bottleneck

is avoided because there is no central server that handles communications.

• The architecture is easy to understand and hence, easy to learn and grasp.

• The fault tolerance level is high because an error in single node does not affect

the execution of other nodes.

4.3.3 Deficiencies of GRIDS

Although the advantages of GRIDS are aplenty, its deficiencies cannot be ignored.

The deficiencies of GRIDS exposed in the case studies are listed below:

• GRIDS lacks the ability for dynamically federates discovering, joining in and

withdrawing at runtime.

• Inadequate integration mechanisms are provided by GRIDS. An interface which

maps different program languages to the middleware is in need.

• Thin agent services in GRIDS are inadequate. More services are expected such as

secrecy, ownership management, execution data collection and maintenance etc.

• Current Data Distributed Management and Time Management Thin agents

provides single algorithm. This limitation seriously restricts the function of

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

59

federations. More algorithms are needed to meet simulation requirements

flexibly.

• The ability of the Time Management Thin agent to synchronize simulation

models is limited. This limitation seriously restricts the function of federations.

• Since valid federates cannot ensure a valid integrated federation, verifying and

validating GRIDS federation is hard and still need further research.

These experience and suggestions will greatly help the improvement of GRIDS.

4.3.4 OEMT Evaluation

Through the two case studies, we approve that the OEMT is suitable for specifying

object exchange models for the following reasons:

 It provides a valid template for documenting object models which emulate as

close to reality as possible, the actual entities passed between the simulation

federates. This common template provides a standardized way of specifying

models to be used as input or output, and facilitates understanding between

federates of a distributed simulation.

 It is particularly useful for implementing Data Distribution Management (DDM)

for distributed simulations in GRIDS, which reduces the network latency by

filtering the data and sending output objects only to federates that needs them. It

provides the GRIDS Boot Server a standard to distribute object information to the

DDM Thin Agents of the various federates. Based on the OEMT, the DDM Thin

Agent places the correct object on the relevant output lines, and differentiates

objects coming in from the various input lines.

 It separates the manipulation of exchange object from simulation models.

Therefore facilitate the design and reuse of common tool sets for development of

distributed simulation object models.

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

60

 It provides Mandatory Object Methods Table to describe the methods to access

the content of the object.

However, we also found the deficiencies in the practical applications of the OEMT

from the case studies. Although the template has been set up, it is still not complete. It

needs to be improved to describe the object model completely.

1. Lack of the capability to specify the components of the object model.

Sometimes an object is not atomic, it can contain more than one component of the

same type or even of more than one component type. For example, in case study one,

the tyrepackage object is not atomic. Each tyrepackage encapsulates a number of tyres.

It can be regarded as a truck which delivers tyres to the Car Assembly Factory. A tyre

is the component of tyrepackage object. It has attributes such as UTQG, Max Load and

Max Inflation Press. However, the OEMT version 1.0 has no such element to specify

the attributes of object component. The OEMT needs to be extended to describe the

special attributes of each component type.

Table 4-3-1 is an optional table introduced into the OEMT by this research. It is

used to describe component (tyre) of the object (tyrepackage).

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

61

Exchange Object Component Table
Category Information

Component Name Tyre
Component Description Tyre is the component in Tyre package.

1 Component Attribute Name CompID
 Attribute Description Index of individal tyre
 Attribute Accessibility Private
 Data Type int
2 Component Attribute Name UTQG
 Attribute Description The Uniform Tyre

Quality Grade (UTQG)
�rained�g system is a
rating for treadwear,
traction, and
temperature resistance.

 Attribute Accessibility private
 Data Type String
3 Component Attribute Name MaxLoad
 Attribute Description Maximum load
 Attribute Accessibility private
 Data Type float
4 Component Attribute Name MaxInflationPress
 Attribute Description Maximum inflation

press
 Attribute Accessibility private

Component Detail

 Data Type float
Table 4-3-1: Exchange Object Component Table

2. Lack of the capability to define timestamp and lookahead which are necessary

in GRIDS environment.

Because the Time Management thin agent of GRIDS used conservative algorithm

[2, 3] to synchronize all the federates, each federate should have its timestamp and

lookahead. However the current OEMT cannot describe the data format and scale of

timestamp and lookahead. A table like 4-3-2 is needed in both the case studies.

Object Time Representation Table

Category Datatype Scale
(time unit : simulation time)

Time stamp Integer (non-negative) 1:6minute

Lookahead Integer (non-negative) 1:6minute

Table 4-3-2: Object Time Representation Table

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

62

3. Lack of the ability to define the inheritance relationship between objects.

In the second case study, there are four types of object models that represent trains

from north line, south line, west line and east line. These objects have almost the same

attributes and methods. However, using the current OEMT, we had to specify the four

similar objects separately. This means we had to describe same attributes and methods

four times. The duplicated work can be avoided if we introduce inheritance

relationship into the OEMT.

The Exchange Object Information table can be extended with two more items as

shown in table 4-3-3 (bold and italic). They are set up to cater for the current trend of

object-oriented programming. One of the most important properties of object-oriented

program design is inheritance, by which a child object inherits and uses attributes and

methods from its parent object and all of its ancestors or it can hide the member

variables or override the methods. Introducing inheritance into the OEMT simplifies the

description of children objects by starting from the definition of existing objects.

Object Exchange Model Template (OEMT)
Category Information

Name of Model MRT Train
Model Description Link Nil

Model Description

A model to emulate a train which carries numbers
of passengers from current station to their
destination station. The important features are the
number of passenger going to each station and
the capacity of the train.

Name of Parent Object Nil
East Line Train
West Line Train
North Line Train Names of Children Objects

South Line Train
Technical Details ……

Time Representation ……
Attributes Field Data Type DOM Tree

General Details of each Implemented Object ……
Table 4-3-3: Exchange Object Information Table

As shown in the table, in case study two, the trains from four directions are all the

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

63

children of a single parent object (MRT train object). The children objects inherit all

the attributes and methods from its parent object. They can also extend new attributes

and methods for themselves with only the new attributes or methods being presented.

This new function can also be used into case study one to simplify the specification of

the package objects and the order objects.

4. Need to add Attribute Field Data Type item.

As it was mentioned in section 4.1, the OEMT implementation involves an

independent attribute field of object. This item in Table 4-3-3 (italic) is used to specify

the data type of attribute field that carries the object attribute information. It can be

array, list, file or even more complex data structure. For example in case study two, the

attribute field of train object takes the form of DOM Tree.

In addition, the object class may be a large structure. Sometimes transferring the

whole object can cause a heavy load on the network. However, the object instances of

uniform object model are different only by the values of attribute members and they

have the same method members. The method members become redundant in the

transfer process. To improve the efficiency of simulation system, one consideration is

to transfer the attribute field without the method members of the object class. In this

case, after the first introduction of the object class to the subscriber, the object class

model resides in the subscriber federate. Only the attribute field is transferred between

federates instead of the whole object. An independent attribute field provides a

mechanism to extract the attribute information as a transferable entity from the object.

Based on these deficiencies we found, we update the OEMT with new elements.

The standard format of each new element above is defined in chapter 5 when we

provide a more robust and complete OEMT standard (version 2.0). The OEMT DIF

specifications for the tyrepackage and MRT train objects using the OEMT version 2.0

Chapter 4. Case Studies: Applications Using GRIDS and OEMT

Zhao Na (M.Sc. Thesis)

64

can be found in appendix B and C.

From the case studies, we also find that the resource of existing OEMT in OEMR

is far from enough for efficient reuse and development of the OEMT DIF files is truly

time-consuming. So we develop an application tool kit which facilitate the

development of DIF file and provides the OEMR on-line service in chapter 5.

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

65

CChhaapptteerr 55 OOEEMMTT EEnnhhaanncceemmeennttss

The goal of this research work was to investigate problems involved in the

development of a distributed simulation in GRIDS environment, specifically the

object-passing mechanism and the standardization of the exchange objects.

From the two case studies we can see that the basic elements of the OEMT are

definitely not sufficient to cater to even the needs of the specialized DSC Simulation

saying nothing of other fields. Hence, there was a need to upgrade the OEMT and

identify as complete as possible, the additional requirements of distributed simulation,

especially DSC simulation that have to be provided by the OEMT.

The OEMT currently includes 5 elements. This is clearly inadequate to represent

the complexity of the object involved in the various simulation applications. This

research work contributes both in extending OEMT elements and in providing a new

tool in section 5.2 to aid the building of object model.

5.1 OEMT Elements Evolvement (version 2.0)

In the original release of the OEMT in June 2001, the format definition was

entirely driven by the experiments of some simple GRIDS prototype federations,

which focused on DSC simulation area. Subsequent to this original release, the OEMT

has continued to mature and evolve, primarily based on the research on complex

simulation systems both for DSC application and other simulation types.

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

66

In this section, a fine-tuned version of the OEMT will be provided based on the

experience collected from the case studies.

The OEMT evolved elements is presented as below:

GRIDS object exchange models are composed of a group of inter-related elements

specifying information about the model. Each model is identified uniquely by the

mandatory attributes and methods that must be implemented for each implemented

object of the model. And there are also certain optional elements for users to select

according to the requirements of different simulations. The template for the core of a

GRIDS object exchange model uses a tabular format and shall consist of the following

elements. The four main elements and one sub-element supplemented by this research

project are in bold:

• Name of Model: to record the product name that the model is emulating.

• Model Description Link: to record the URL link if the description of the model is

located somewhere else on the internet.

• Model Description: to record a detailed description of the purpose of this model

and the product description.

• Name of Parent Object: to record the name of parent object of the current

model.

• Names of Children Objects: to record the names of children objects of the

current model.

• Technical Details: to specify the object attributes that must be implemented for

this model, object components and mandatory methods.

• Time Representation: to specify the timestamp and lookahead of the instances of

the object.

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

67

• Attribute Field Format Representation: to specify the data structure of object

attributes used in object model implementation.

• General Details of each Implemented Object: to specify for each object that has

been implemented using this model, the details of the company and the location of

the object in the form of an URL.

The tabular format of basic OEMT is showed as follow, from Table 5-1 to 5-6.

Detailed content of each field is also defined.

Object Exchange Model Template (OEMT)

Category Information

Name of Model

Model Description Link

Model Description

Name of Parent Object

Names of Children Objects

Technical Details

Time Representation

Attributes Field Data Type

General Details of Each Implemented Object

Table 5-1: Exchange Object Information Table

5.1.1 Name of Model

This field records the product name that the model is emulating. The name of the

model shall be clear and unique, to clearly differentiate this model from the others in the

OEMR.

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

68

5.1.2 Model Description Link

This is a URL link and shall only be used only when the Model Description and

Technical Details of the model is located away from the OEMR. “Model Description

Link” shall not co-exist with “Model Description”

and “Technical Details”. Should “Model Description Link” be used, “Model

Description” and “Technical Details” shall have an entry of “Nil” and vice versa.

5.1.3 Model Description

This field shall record the purpose for which the model was created, and the

description of the model. It may also contain a brief description of key features of this

model for easy understanding between simulation builders.

5.1.4 Name of Parent Object and Names of Children Objects

These two elements are optional. In the OEMT standard, each object can have

maximum one parent object but several children objects. The names of all children

objects are listed. Each name shall be clear and unique. The children object inherits all

the attributes and methods from its parent object. Only the new or overlaid attributes

and methods in the children object are described in its models. The inheritance ability

meets the current trend of object-oriented programming and facilitates the

development and reuse of object exchange model.

5.1.5 Technical Details

This field is used to describe the technical details of this model. It shall further be

sub-divided into three tables, the Mandatory Object Attributes Table, the Object

Components Table and the Mandatory Object Methods Table. This field shall document

all necessary attributes and methods that must be implemented for each object

implemented using this model. At least one mandatory attribute must be defined, in

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

69

accordance to making the model unique. For mandatory methods, it is optional in the

model’s declaration. And the components table is also optional. If the object is atomic

which has no components (e.g. tyre), this table shall be ignored.

For data types that are permitted, only primitive data types are currently allowed for

each attribute and for the return data type of methods in this version of the OEMT

specifications.

The following are the permitted data types for attributes and return data of methods:

 boolean

 char

 double

 float

 int

 string or char arrays

 arrays of primitive data types

Mandatory Exchange Object Attributes Table

The attributes mandatory to the object exchange model shall be recorded in a

tabular format. For each attribute, the following items must be recorded:

• Attribute Name: Name of the attribute. The data shall be clear and shall be store

in a string format and shall be able to define the attribute uniquely within this

object model.

• Attribute Description: Describes the purpose and use of this attribute. The unit of

the attribute value should also be recorded in this field if needed.

• Attribute Accessibility: Describes the accessibility (scope) of this attribute. This

field accepts only three entries – Private, Public or Protected. The meaning of

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

70

these three entries is equivalent to the usage of these entries in Object Oriented

Programming.

• Data Type: As was described above, primitive data types only are allowed

currently.

Mandatory Object Attributes Table

 Object Attributes Field Data

1 Attribute Name

 Attribute Description

 Attribute Accessibility

 Data Type

2 Attribute Name

 …

Table 5-2: Mandatory Object Attributes Table

Object Components Table

If the object exchange model has certain component-objects (e.g. in case study one,

the tyre is the component-object of tyrepackage object model), the component-objects

shall be recorded in a tabular format. For each component-object type, the following

items must be recorded:

• Component Name: Name of the component-object. The data shall be stored in a

string format, and shall be able to define the component-object uniquely within

this object model.

• Component Description: Describes the purpose of this component and includes a

brief description of its key features.

• Component Detail: Describes the attributes of the component.

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

71

− Attribute Name: Name of the attribute. The data shall be clear and shall be

store in a string format and shall be able to define the attribute uniquely

within this object model.

− Attribute Description: Describes the purpose and use of this attribute. The

unit of the attribute value should also be recorded in this field if needed.

− Attribute Accessibility: Describes the accessibility (scope) of this attribute.

This field accepts only three entries – Private, Public or Protected. The

meaning of these three entries is equivalent to the usage of these entries in

Object Oriented Programming.

− Data Type: As was described above, primitive data types only are allowed

currently.

Exchange Object Component Table

Category Information

Component Name

Component Description

 1 Component Attribute Name

 Attribute Description

 Attribute Accessibility

 Data Type

 2 Component Attribute Name

Component Detail

 …

Table 5-3: Exchange Object Component Table

Mandatory Object Methods Table

The methods mandatory to the object exchange model shall be recorded in a

tabular format. These methods are used to access attributes of both the object and its

component-object, and they also provide other services such as statistics and so on. For

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

72

each method, the following items must be recorded:

• Method Name: Name of the method. The data shall be stored in a lower-case

string format, and shall be able to define the method uniquely within this object

model.

• Method Description: Describes the purpose and use of this method.

• Method Accessibility: Describes the accessibility (scope) of this method. This

field accepts only three entries – Private, Public or Protected. The meaning of

these three entries is equivalent to the usage of these entries in Object Oriented

Programming.

• Method Parameters: Stores the information about the parameters that are required

for this method in order to execute the method. This field is optional. A method

may not require any parameters. This field is further broken down into the

following items:

− Parameter Name: Name of the parameter. The data shall be stored in a

lower-case format, and shall be able to define the method uniquely within this

method.

− Parameter Data Type: As was described at the beginning of this section,

primitive data types only are allowed currently. This data types follow the

permitted data types of attribute data types.

• Method Return Data Type: Stores the return data type that will be output as a

result of executing this method. As was described at the beginning of this section,

primitive data types only are allowed currently.

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

73

Mandatory Object Methods Table

 Object Methods Field Data

1 Method Name

 Method Description

 Method Accessibility

Parameter Name Method Parameters

Parameter Data Type

 Method Return Data Type

2 Method Name

 Method Description

 Method Accessibility

 Method Parameters

 Method Return Data Type

 3 ……

Table 5-4: Mandatory Object Methods Table

5.1.6 Time Representation

This field specifies the timestamp and lookahead of the object, which is used to

synchronize all the federates in a distributed federation. The object arrived is processed

in time order. The datatype for the timestamp and lookahead must be recorded. The

scale presenting the proportion of the time unit to the simulation time it presented shall

also be recorded.

Object Time Representation Table

Category Datatype Scale
(time unit : simulation time)

Timestamp

Lookahead

Table 5-5: Object Time Representation Table

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

74

For example, the data type may be “Integer (non-negative)” and scale being set

“1:1minute” (see example in section 4.3).

5.1.7 Attribute Field Format Representation

This item is used to specify the data type of attribute field that carries the object

attribute information. It can be array, list, file or even more complex data structure.

5.1.8 General Details of each Implemented Object

This field of the object model is optional, and multiple instances of this item can be

existent in an object exchange model. Each instance shall be a description of the details

of each known implemented object using this model. This item of the object exchange

model shall consist of the following fields:

 Company Name: Stores the name of the company that implemented this object.

 Company Contact Info: Stores the contact information of the company that

implemented this object, most probably the phone number.

 Company Contact Person: Stores the information of the person to contact from

within the company should any enquiries be made. This field is further divided into

two sub-fields:

- First Name: The first name of the contact person

- Last Name: The last name of the contact person

 Company Email Address: Stores the valid email address that any enquiries can send

to.

 Version: Stores the version number of this implemented object.

 Date of Version: Stores the date that this version of the implemented object had been

implemented. This field is further divided into three sub-fields:

- Day: Shall store the numerical value of the day.

- Month: Shall store the numerical value of the month.

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

75

- Year: Shall store the numerical value of the year.

 Implementation Platform: Stores the platform in which the object was implemented.

 Reference Link to Implemented Object: Stores the URL where the implemented

object is located.

General Details of Each Implemented Object

Category Information

Company Name

Company Contact Info

First Name Company Contact Person

Last Name

Company Email Address

Version

Day

Month

Date of Version

Year

Implementation Platform

Reference Link to Implemented Object

Table 5-6: General Details of Each Implemented Object

The new DTD schema (version 2) of the OEMT DIF can be found in appendix A.

5.2 Application Tool Kit Development

In the GRIDS environment, the exchange objects are specified using the OEMT.

However, the generation of the OEMT DIF object specification file and the object

exchange model is extremely time consuming. Therefore, the ability to automate the

process of object model development is a significant concern. In this work, an OEMT

application tool kit is developed to aid the simulation builders in the automatic creation

of the DIF file and object exchange model. This tool kit also implements the OEMR

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

76

services. In addition, in this chapter, we propose a novel concept --- Object Exchange

Model Dictionary (OEMD) which provides both the standard nomenclature that

specifies common representations of data used within an OEMT and the reusable

components to be used in object model construction.

This section describes the functions of the OEMT application tool kit in detail.

Section 5.2.1 introduces the basic function of the tool kit. Section 5.2.2 represents the

OEMR services provided by the kit. The motivation, conception and functionality of

the OEMD are introduced in section 5.2.3.

5.2.1 Basic Function

The OEMT application tool kit is developed to facilitate the generation of DIF

object specification file and the object model. It releases simulation builders from hard

work and saves time and effort in the GRIDS federation development process.

In this tool, the OEMT is given in tabular format as shown in Figure 5-1, 5-2 and

5-3 so that it is very easy for users to follow.

 Figure 5-1: GRIDS OEMT Software User
Interface---Exchange Object Information Table

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

77

There are six such tables according to the tables in the new OEMT specification in

Figure 5-2: Exchange Object Attributes Table

 Figure 5-3: Exchange Object Methods Table

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

78

section 5.1. Figure 5-1, 5-2 and 5-3 shows the first three tables --- Exchange Object

Information Table, Attributes Table and Methods Table. The other three tables are

omitted due to the limited space. By filling a certain set of object information, the

OEMT DIF object specification file is automatically created based on the tables (e.g.

Appendix B). And a framework of the object model is also created by this tool with

user defined attributes and methods. Users can start their object model development

process from this framework, thus reducing time and cost for building a new object

model.

5.2.2 OEMR On-Line Services

While some applications may choose to construct the object model entirely from

scratch, significant savings can be achieved in the object model development process

through reuse of existing models. The Object Exchange Model Repository (OEMR) is

the central location where all object exchange models’ information is stored for

distributed simulation builders to access and re-use object models. A developer may

utilize an existing object model chosen from the OEMR as a starting framework for new

object model construction, modifying the model as appropriate to address the particular

requirements of the application.

In this work, the OEMR is developed to store object models in different areas of

applications separately. The models are well classified in the library, thereby ensuring

easy searching by simulation builders for relevant object models for their federation.

New implemented object models can be uploaded to the OEMR, thus providing a

centralized area for simulation builders to exchange their models for reuse, affording

convenience to the users. The OEMR is stored in a web server, at a known URL and

known port for easy global accessibility.

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

79

Figure 5-4: OEMR Server Location Information

Figure 5-4 and 5-5 show the OEMT user interface of this OEMR tool. Upon

clicking the Update Local Samples Storage label in the OEMR menu, the system will

provide several server locations in different countries for users to select (figure 5-4),

and then the system will connect to the chosen OEMR server to get update information.

An interface like Figure 5-5 will be shown with a list of application areas in the OEMR

and the latest update date of each application area. Simulation builders can select the

application areas they are interested in, click the Update button, and all the object

models in this application area will be downloaded to the local storage of samples.

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

80

The object exchange model can be created by reusing the existing models in OEMR

with the following procedures:

• On-line search for the object model templates of relevant application areas in the

OEMR and download them to local sample storage from the server.

• Select and open the object model that the simulation builder wants to refer.

• Modify the object model according to the requirement of the simulation builder.

Additional attributes, methods or other information can also be added.

Creating new object model by this means makes the simulation builder’s work

easier and also promotes the reuse of object models.

5.2.3 Object Exchange Model Dictionary (OEMD)

5.2.3.1 Motivation and Conception

The OEMT development process for a given application represents a key GRIDS

federation design activity. GRIDS OEMT does not mandate names or attributes

Figure 5-5: OEMR User Interface

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

81

structures. For GRIDS compliance, the exchange object model is only required to be

internally consistent. However, the lack of universal consistency causes ambiguities

which obstruct the understanding and reuse of object models. For example, the name

of an object model can be varied. An “automobile” can also be called “car” or

“vehicle”. Moreover, the encoding of the name may be different as different designers

may use “AUT”, “AUTO” or even “AUTO_”. This confusion is unacceptable in the

OEMT development.

When the OEMR keeps expanding, the unambiguous description of each object

exchange model in the repository becomes necessary. In addition, if federates use the

same terminology in their OEMT object models, it will make them more readable to

each other and enhances general interoperability. The requirement is recognized and

this work brings forward an idea to create an Object Exchange Model Dictionary

(OEMD) which assists GRIDS federation developers by specifying common

representations of data used within an OEMT that will be shared with other federates.

The OEMD is inspired by the HLA OMDD [19, 26], but does not follow it. It is

intended to support both pre-runtime and runtime data exchange via GRIDS RTI.

5.2.3.2 OEMD Components

In order to support precision in representation, the initially designed OEMD will

include the following components:

• The standard code: defines the standard character which can be used in the

naming of object, attribute, method and parameter of the OEMT. It includes

ASCII alphabetic characters “a” to “Z”, numeric characters “0” to “9” and some

other symbol including “_”and “.”.

• Standard encoding rules: provides the rules to encode object name, attribute

name, method name and parameter name in the OEMT.

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

82

− The first character of object name, attribute name, method name and

parameter name must all be alphabetic characters.

− OEMT does not distinguish uppercase letter and lowercase (e.g. length and

LENGTH will be regarded as same word).

− For objects whose full name in real world is a single word, the whole word

with the first character in capital is preferred in the OEMT; for those which

are named more than one word, mnemonic abbreviation (e.g. acronyms) in

capital is recommended. Attribute and parameter naming also obey this rule.

− Method name should clearly represent its purpose and operation objective.

One verb in lowercase followed by a noun (with the first character in capital)

or an abbreviation (all characters in capital) is recommended (e.g.

setLength()).

− Abbreviation must result in a shared understanding of “What the thing is” or

“What it potentially means” to all participating applications.

• Standard object name list: This is a list of existing object standardized names

for simulation builder reference. The names are lexicographically ordered.

Locating an appropriate code typically requires a linear search.

• Standard attribute list: Each standard object name is linked to a list of standard

attributes. These attributes can but need not follow the object. They can be

extracted as components to construct other objects. The OEMD offers a “loose

couple” between attributes and their data types. Each attribute is provided a

recommended default data type but the actual used data type is decided by the

federate builders.

• Standard method database: This is the storage of standardized methods for

simulation builders’ reference and reuse. The methods are categorized into

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

83

different functionalities. The method names in each category are

lexicographically ordered and locating an appropriate code typically requires a

linear search. For each method, a general description, accessibility, parameters

and return data type are recorded. Users can change these items according to

their requirements. The method code is also provided for reference.

The OEMD is an assistant tool for the OEMT standard object development. The

OEMR provides the whole GRIDS object exchange model, whereas the OEMD

provides both the standard nomenclature and the components to be used in object

model construction. The OEMD does not specify an object exchange model structure

in detail, but rather provide the “pieceparts” which may be merged together to

construct a new GRIDS object exchange model. These characteristics enhance the

reusability and also facilitate the integration of federates during federation

development.

The OEMD is currently under development. There are also lots of questions that

need to be answered urgently. For example, which statement is preferred between a

“truck” object and a generic “vehicle” object with a functional category attribute of

“truck”? Is there a standard set of attributes for a particular object? Or which attribute

is absolutely necessary? Should all “vehicles” have a “color” and “size”? Is it an error

if these values are not present in a template? Is it an error if a “car” has a “depth”?

These questions still need further research and the next step will also include

verification and validation of the OEMD.

5.2.3.3 OEMD Services in the OEMT Application Tool Kit

The OEMT application too kit includes the OEMD services as described in section

5.2.3.2. For example, by clicking the Standard Object Name List label in the OEMR

menu, system will show the list in Figure 5-6 for the simulation builders’ reference. A

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

84

user can also view the recommended attributes of each object by clicking the object

name. Figure 5-7 shows the recommended attributes of Carbody Object.

Figure 5-6: Standard Object Name List

Figure 5-7: Recommended Attributes of Carbody Object

The OEMD tool provides not only the standard code, encoding rules, standard

object name and attributes list, but also offers methods database service that can be

invoked during the creation of the object models. The methods database provides many

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

85

basic methods for simulation builders to reuse. As Figure 5-8 shows, user will be asked

to choose a method database file before opening the object methods table in a

template.

Figure 5-8: Methods Database File List

The methods in the selected file will be imported into the template and help the

user fill in the Exchange Object Methods Table (Figure 5-3). For each method, its

name, general description, accessibility, parameters and return data type are

recommended. The method code is also provided which is used to create object model

framework. Simulation builders can either create new method by themselves or reuse

suitable existing methods provided by the system (Figure 5-9).

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

86

Figure 5-9: Methods Database User Interface

The tool also provides on-line update service for the local OEMD method storage.

The method files are categorized under different functionalities and stored in the Web

server as XML files. As the interface shows in figure 5-10, a user can connect to the

server to get the up-to-date information of the reusable methods.

Chapter 5. OEMT Enhancements

Zhao Na (M.Sc. Thesis)

87

Figure 5-10: OEMD Methods Database Update Interface

Chapter 6. Conclusion and Future Work

Zhao Na (M.Sc. Thesis)

88

CChhaapptteerr 66 CCoonncclluussiioonn aanndd FFuuttuurree WWoorrkk

With the globalization of the commercial markets and the great development of

World Wide Web, distributed simulation is becoming more and more important in

investigating issues. Researches related to distributed simulation such as middleware,

standard information format also gain great attention. The aim of the research

described in this thesis was to investigate the standardization of object exchange

models and the GRIDS middleware in component-based distributed simulation to

support DSC and other various types of simulation applications. This thesis presented

the series of research effort for achieving this aim.

Section 6.1 gives the conclusions of the research. The contributions achieved

through this work are highlighted. Section 6.2 discusses some potential future

directions of this research.

6.1 Conclusion

The following gives the conclusions and contributions of the research work

described in this thesis.

1. Make a thorough literature survey on past work and documentations to set

up a solid background that is useful in fulfilling subsequent research.

 This includes understanding distributed simulation environment, especially the

DSC simulation; understanding the requirements and challenges faced by all

Chapter 6. Conclusion and Future Work

Zhao Na (M.Sc. Thesis)

89

distributed simulation which are the foundation stone of supporting middleware

development; investigating popular middleware including HLA, GRIDS and

CORBA and determining the advantages and disadvantages inherent in these

middleware and make a fair comparison.

2. Evaluate the capability of the GRIDS as a middleware to facilitate

distributed simulation.

GRIDS represents an early adopter of the component RTI philosophy [33]. It

provides an extensibility mechanism to add additional service components in the

form of thin agents and package interfaces capable of supporting the demands of

distributed simulation. It is a suitable infrastructure for implementing various types

of simulations due to its lightweight and ease of extensibility. However, GRIDS is

still a preliminary infrastructure. There is still a long way to go before GRIDS can

be used in industry.

This thesis gave an objective comparison of GRIDS with two other middleware

architectures. The suitability of GRIDS in distributed simulation was examined and

investigated by two case studies. GRIDS was verified and validated as a valid

middleware to facilitate DSC simulation applications. However, it was also shown

that the architecture of GRIDS was still incomplete. The thesis summarized the

advantages and disadvantages of GRIDS and provided proposals of future

improvement and utility of the architecture.

The case studies also offered practical distributed simulation instances to test

the DDM and TM thin agents. Through the practical implementation, numerous

suggestions are given to improve the TM thin agent.

3. Investigate and evaluate the capability of the OEMT to standardize object

exchange model; provide proposal for the improvement of the OEMT.

Chapter 6. Conclusion and Future Work

Zhao Na (M.Sc. Thesis)

90

Most current simulation products use message-passing mechanism to cooperate

in a federation. However, the requirement of object-passing mechanism cannot be

ignored. This work further convinced the current simulation community of the

usefulness of object-passing within distributed simulation environment, which

requires simulation packages to incorporate the use of actual objects and specified

the problem to standardize object exchange model.

The OEMT has been proposed and implemented to aid object-passing in

distributed simulation environment. The OEMT establishes an open standard for

interchanging information between federates. The establishment of this open

framework directly supports the promoting of an interoperable set of simulation

models. From the original release of the OEMT in 2001, the format definition has

continued to mature and evolve. In chapter 5, two case studies were designed and

implemented to examine and evaluate the capability of OEMT. Since this was the

first attempt to implement the OEMT in complex simulation systems, a number of

problems arised and the solutions were given through great effort. During the

process, new demands were detected and valuable experience and lessons were

gained. This thesis offered a new version of the OEMT with some important

fine-tuning based on the in-depth research.

4. Develop an OEMT application tool kit; implement the OEMR on-line

services; and introduce a new tool---OEMD to facilitate the creation and reuse

of object models.

Since the generation of the OEMT DIF object specification files and object

models is time and effort consuming, the ability to automate the process of object

model development is significant. The other important contribution of this research

work is an application tool kit implemented specially for simulation builders to

Chapter 6. Conclusion and Future Work

Zhao Na (M.Sc. Thesis)

91

create object models easily. This kit aided the simulation builders in the automatic

generation of DIF object specification files and the object exchange models. It

provided OEMR on-line services which allow easy access by simulation builders

all over the globe.

Furthermore, the ability of the OEMT was enhanced by adding the new tool,

OEMD. As a common template, the OEMT does not restrict the names, lexicon, or

data type definition for the contents of the GRIDS object exchange model.

However, tremendous benefits can be obtained by using standard nomenclature in

GRIDS object exchange model development and maintenance. An additional tool

is required to satisfy the foregoing requirements. Another important contribution of

this research work is that it proposed the Object Exchange Model Dictionary and

implemented the original framework. The OEMD provides a solid basis for the

OEMT by providing a rigorous, extensible, universally consistent and increasingly

complete data dictionary from which to select object parts or attributes for use in

simulation. It addresses an extensible manner capable of meeting the needs of both

pre-simulation and run-time data representation. The understanding and reusability

of the object model were enhanced because of the commonality of names and

lexicons that the OEMD facilitates.

6.2 Future Work

There is no end for all research, and the research presented in the thesis is no

exception. The next researcher is recommended to do further work as follows:

• OEMT and OEMD work to be accomplished

Although this work did significant improvement on the OEMT, it still can be

further expanded.

The development of the OEMD is currently in the developmental stage. The

Chapter 6. Conclusion and Future Work

Zhao Na (M.Sc. Thesis)

92

review from outside the OEMD development team is needed. There are also lots

of problems to be solved urgently, such as how to define a standard set of

attributes for a particular object, how to determine which attribute is absolutely

necessary. These questions still need deep research and the next step will also

include verification and validation of the OEMD.

• Make OEMT an International Standard

One consideration is merging OEMT into HLA OMT; this possibility needs

future investigation.

• Further work on perfecting GRIDS architecture

− Current GRIDS is based on Java. Future work will realize interface to

mapping other programming languages, so that it can fit more simulation

models from different organizations.

− Future studies can be done for dynamical federate discovering, joining in and

withdrawing at runtime.

− Future work is expected on an object handling interface between the

simulation package and the GRIDS architecture. This would thus remove the

need to amend the simulation packages, and the applications need only

inform this interface of the information it needs, and the interface sends the

information to the application.

− Thin agent services in GRIDS need to be improved. More services are

expected such as secrecy, ownership management, execution data collection

and maintenance etc. and more algorithms are expected for existing thin

agent.

References

Zhao Na (M.Sc. Thesis)

93

RReeffeerreenncceess

[1] A. Chan and T. Spracklen, “Web-Based Distributed Object Simulation

Framework”, Proceedings of the Summer Computer Simulation Conference,

1999.

[2] A.M. Law and W.D. Kelton, Simulation Modeling and Analysis, McGraw-Hill,

third edition, 2000.

[3] B.P. Gan, L. Liu, S. Jain, S.J. Turner, W. Cai, and W.J. Hsu, “Distributed

Supply Chain Simulation Across Enterprise Boundaries”, Proceedings of the

Winter Simulation Conference, pp 1245-1251, 2000.

[4] B.P. Zergler, D. Kim, S.J. Buckley, “Distributed Supply Chain Simulation IN A

DEVS/CORBA Execution Environment”, Proceedings of the Winter Simulation

Conference, pp 1333-1340, 1999.

[5] C. Mclean and F. Riddick, “The IMS Mission Architecture for Distributed

Manufacturing Simulation”, Proceedings of the Winter Simulation Conference,

pp 1539-1548, 2000.

[6] D. C. Schmidt, Overview of CORBA, 2003.

URL: http://www.cs.wustl.edu/~schmidt/corba-overview.html

[7] Document Object Model (DOM) Level 3 Core Specification, Version 1.0, W3C

Working Draft 22, 2002. URL: http://www.w3.org/DOM

[8] E. Christiaanse and K. Kumar, “ICT-enabled coordination of dynamic supply

webs”, International Journal of Physical Distribution and Logistics

Management, Vol. 30, No. 3/4, pp.268-285, 2000.

[9] G. Archibald, N. Karabakal and P. Karlsson, “Supply Chain vs. Supply Chain:

Using Simulation to Compete Beyond the Four Walls”, Proceedings of the

References

Zhao Na (M.Sc. Thesis)

94

Winter Simulation Conference, pp.1207-1214, 1999.

[10] G. Tan, W.N. Ng and S.J.E. Taylor, Generic Runtime Infrastructure for

Distributed Simulations (GRIDS) Distributed Supply Chain (DSC) Object

Exchange Model Template (OEMT) Specifications Version 1.0, Modeling and

Simulation Group, National University of Singapore, 2001.

[11] G. Tan, W.N. Ng and S.J.E. Taylor, “Developing An Object Exchange Model

Template (OEMT) for GRIDS Distributed Supply Chain (DSC) Simulations”,

Proceedings of the 35th Annual Simulation Symposium, pp 259–266, 2002.

[12] G. Tan, W.N. Ng and S.J.E. Taylor, “Developing Data Distribution

Management (DDM) Thin Agent (TA) and Services for GRIDS Distributed

Supply Chain (DSC) Simulation”, Proceedings of the European Simulation

Interoperability Workshop, 02-ESIW-41, 2002

[13] H.B. Chen, O. Bimber, C. Chhatre, E. Poole, and S. J. Buckley. “eSCA, A

Thin-Client/Server/Web-enabled System for Distributed Supply Chain

Simulation”, Proceedings of the Winter Simulation Conference, pp.1371-1377,

1999.

[14] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture

(HLA) – framework and rules, Institute of Electronic and Electrical Engineers,

IEEE Standard 1516, 2000.

[15] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture

(HLA) – federate interface specification, Institute of Electronic and Electrical

Engineers, IEEE Standard 1516.1, 2000.

[16] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture

(HLA) – object model template (OMT) specifications, Institute of Electronic

and Electrical Engineers, IEEE Standard 1516.2, 2000.

References

Zhao Na (M.Sc. Thesis)

95

[17] J. Banks, J.S. Carson and B.L. Nelson, Discrete-Event System Simulation,

Prentice Hall, 2nd edition, 1996.

[18] J. Dahmann, F. Kuhl and R. Weatherly, “Standards for Simulation: As Simple

as Possible But Not Simpler-The High Level Architecture for Simulation”,

Simulation, Vol. 71, No. 6, pp 378-387, 1998.

[19] J. Hammond, M. Dey, R. Scrudder and F. Merkin, “Populating the HLA Object

Model Data Dictionary-A Bottom-Up Approach”, Proceedings of the Spring

Simulation Interoperability Workshop, 98S-SIW-075, 1998.

[20] J.K. Liker and Y.C. Wu, “Japanese Automakers, U.S. Suppliers and

Supply-Chain Superiority”, Sloan Management Review, pp. 81-93, 2000.

[21] J.L. Rosenberger, Teach Yourself CORBA in 14 Days, SAMS Publishing, 1998.

[22] J. Misra, Distributed Discrete-Event Simulation, ACM Computer Survey 18,

Vol. 1, March 1986, pp 39-65, 1986.

[23] J. Ulriksson, F. Moradi and O. Svensson, “A web-based Environment for

building Distributed Simulations”, Proceedings of the European Simulation

Interoperability Workshop, 02E-SIW-036, 2002.

[24] K. Kumar, “Technology for Supporting Supply Chain Management”,

Communications of the ACM, Vol. 44, No. 6, pp. 58-61, 2001.

[25] L.W. Lacy and M.T.D. Dugone, “Developing International Standards for

Interchanging Simulation Data”, Proceedings of the European Simulation

Interoperability Workshop, 01E-SIW-048, 2001.

[26] P.A. Birkel, “SEDRIS Data Coding Standard (SDCS) ”, Proceedings of the

Spring Simulation Interoperability Workshop, 99S-SIW-001, 1999.

[27] P. Davidsson and F. Wernstedt, “Characterization and Evaluation of

Just-In-Time Production and Distribution”, Proceedings of the AAMAS

References

Zhao Na (M.Sc. Thesis)

96

workshop on MAS Problem Spaces and Their Implications to Achieving

Globally Coherent Behavior, 2002.

[28] P.G. Goh, IT and Supply Chain Management, Course Notes, School of

Computing, National University of Singapore, 2001.

[29] R. Lutz, R. Scrudder and J. Graffagnini, “High Level Architecture Object

Model Development and Supporting Tools”, Simulation, Vol. 71, No. 6, pp

401-409, 1998.

[30] R.M. Fujimoto, “Parallel and Distributed Simulation”, Proceedings of the

Winter Simulation Conference, pp. 122-130, 1999.

[31] R.M. Fujimoto, “Parallel and Distributed Simulation Systems”, Proceedings of

the Winter Simulation Conference, pp. 147-157, 2001.

[32] R. Sudra, S.J.E. Taylor and T. Janahan, “Distributed Supply Chain Simulation

in GRID”, Proceedings of the Winter Simulation Conference, pp. 356-361,

2000.

[33] R. Sudra, S.J.E. Taylor, “Extensibility: Modular HLA RTI Services”,

Proceedings of the European Simulation Interoperability Workshop,

02E-SIW-049, 2002.

[34] S. Jain, C.C. Lim, B.P. Gan, and Y.H. Low, “Criticality of Detailed Modeling in

Semiconductor Supply Chain Simulation”, Proceedings of the Winter

Simulation Conference, pp 888-896, 1999.

[35] S. Jain, R.W. Workman, L.M. Collins, E.C. Ervin and A.P. Lathrop,

“Development of a High-Level Supply Chain Simulation Model”, Proceedings

of the Winter Simulation Conference, pp.1129-1137, 2001.

[36] S.J.E. Taylor, G. Tan, and J. Ladbrook, “Data Distribution Management for

Distributed Supply Chain Simulation”, Proceedings of the Fifth UK Simulation

References

Zhao Na (M.Sc. Thesis)

97

Society Conference, pp.35-41, 2001.

[37] S.J.E. Taylor, R. Sudra, T. Janahan, G. Tan, and J. Ladbrook, “Towards COTS

Distributed Simulation Using GRIDS”, Proceedings of the Winter Simulation

Conference, pp 1372-1379, 2001.

[38] S.J.E. Taylor, R. Sudra, G. Tan and J. Ladbrook, “Issues in Developing a

Distributed Supply Chain Simulation for the Automotive Industry”, Proceedings

of the European Simulation Interoperability Workshop, pp. 629-637, 2001.

[39] S.J.E. Taylor, R. Sudra, T. Janahan, G. Tan and J. Ladbrook, “GRIDS-SCF: An

Infrastructure for Distributed Supply Chain Simulation”, Simulation, Vol. 78,

No.5, pp. 312-320, 2002.

[40] S.J. Turner, W. Cai and B.P. Gan, “Adapting a Supply-Chain Simulation for

HLA”, Proceedings of the Distributed Simulation and Real Time Applications,

pp 71-78, 2000.

[41] The Common Object Request Broker: Architecture and Specification, Version

3.0, 2002.

URL: http://www.omg.org/technology/documents/spec_catalog.htm

[42] W.N. Ng, Adapting A Middleware for Distributed Supply Chain Simulation

M.Sc. Thesis, Department of Computer Science, National University of

Singapore, 2002.

[43] XML DOM Tutorial, 2003.

URL: http://www.w3schools.com/dom/default.asp

[44] Y. Lois, J. Steinman and G. Blank, “Adapting Your Simulation for HLA”,

Simulation, Vol. 71, No. 6, pp 410-420, 1998.

Appendix A

Zhao Na (M.Sc. Thesis)

98

Appendix A: OEMT DIF DTD Schema (version 2.0)

<!ELEMENT OEMT_Library (Application_Area)*>

 <!ELEMENT Application_Area (areaName,objectModel*)>

 <!ELEMENT areaName (#PCDATA)>

<!ELEMENT objectModel (modelName, parentObjName?, childrenObjName*, attrFieldDataType?,

 modelLink|(description, technicalDetails), time?, implementedObjectDetails*)>

 <!ELEMENT modelName (#PCDATA)>

 <!ELEMENT parentObjName (#PCDATA)>

 <!ELEMENT childrenObjName (#PCDATA)>

 <!ELEMENT attrFieldDataType (#PCDATA)>

 <!ELEMENT modelLink (#PCDATA)>

 <!ELEMENT description (#PCDATA)>

 <!ELEMENT technicalDetails (objAttr+, objectComponent* ,objMethod*)>

 <!ELEMENT objAttr (attrName, attrDescription, attrAccess, attrDataType)>

 <!ELEMENT attrName (#PCDATA)>

 <!ELEMENT attrDescription (#PCDATA)>

 <!ELEMENT attrAccess (private|protected|public)>

 <!ELEMENT attrDataType (#PCDATA)>

 <!ELEMENT objectComponent (ComponentName, CompDescription, CompDetail)>

 <!ELEMENT ComponentName (#PCDATA)>

 <!ELEMENT CompDescription(#PCDATA)>

 <!ELEMENT CompDetail (CompAttr+)>

 <!ELEMENT CompAttr (attrName, attrDescription, attrAccess, attrDataType)>

 <!ELEMENT attrName (#PCDATA)>

 <!ELEMENT attrDescription (#PCDATA)>

 <!ELEMENT attrAccess (private|protected|public)>

 <!ELEMENT attrDataType (#PCDATA)>

 <!ELEMENT objMethod (methodName, methodDescription, methodAccess, methodParameters,

 methodReturnDataType)>

 <!ELEMENT methodName (#PCDATA)>

 <!ELEMENT methodDescription (#PCDATA)>

 <!ELEMENT methodAccess (private|protected|public)>

 <!ELEMENT methodParameters (pName,pDataType)*>

 <!ELEMENT pName (#PCDATA)>

 <!ELEMENT pDataType (#PCDATA)>

 <!ELEMENT methodReturnDataType (#PCDATA|void)>

 <!ELEMENT time (timeStamp?, lookahead?)>

 <!ELEMENT timeStamp (dataType, scale)>

 <!ELEMENT dataType (#PCDATA)>

 <!ELEMENT scale (#PCDATA)>

 <!ELEMENT lookahead (dataType, scale)>

Appendix A

Zhao Na (M.Sc. Thesis)

99

 <!ELEMENT dataType (#PCDATA)>

 <!ELEMENT scale (#PCDATA)>

 <!ELEMENT implementedObjectDetails (companyName, companyContactInfo, companyContactPerson,

 companyEmail, version, versionDate, referenceLink+)>

 <!ELEMENT companyName (#PCDATA)>

 <!ELEMENT companyContactInfo (#PCDATA)>

 <!ELEMENT companyContactPerson (firstName, lastName)>

 <!ELEMENT firstName (#PCDATA)>

 <!ELEMENT lastName (#PCDATA)>

 <!ELEMENT companyEmail (#PCDATA)>

 <!ELEMENT version (#PCDATA)>

 <!ELEMENT versionDate (day, month, year)>

 <!ELEMENT day (#PCDATA)>

 <!ELEMENT month (#PCDATA)>

 <!ELEMENT year (#PCDATA)>

 <!ELEMENT implementationPlatform (#PCDATA)>

 <!ELEMENT referenceLink (#PCDATA)>

Appendix B

Zhao Na (M.Sc. Thesis)

100

Appendix B: DIF Specification for the TyrePackage Object

<?xml version="1.0"?>

 <objectModel>

 <modelName>TyrePackage</modelName>

 <description>

 The TyrePackage represent the object transferred from Tyre Factory to Car Assembly Factory. Each

package encapsulates numbers of tyres as components. We can regard it as a truck which delivery tyres

to Car Assembly Factory.

 </description>
 <descriptionLink>nil</descriptionLink>

 <parentObj>nil</parentObj>

 <childObj>nil</childObj>

 <attrFieldDataType> XML Document Object Model Tree </attrFieldDataType>

 <technicalDetails>

 <objAttr>

 <attrName>PackageSize</attrName>

 <attrDescription>Stores the maximum number of components the package can carry</attrDescription>

 <attrAccess>private</attrAccess>

 <attrDataType>int</attrDataType>

</objAttr>

 <objAttr>

 <attrName>CompType</attrName>

 <attrDescription>Stores the type of components in the package</attrDescription>

 <attrAccess>private</attrAccess>

 <attrDataType>String</attrDataType>

</objAttr>

 <objAttr>

 <attrName>TimeMark</attrName>
 <attrDescription>Stores the time stamp of the object</attrDescription>

 <attrAccess>private</attrAccess>

 <attrDataType>int</attrDataType>

</objAttr>

 <objectComponent>

 <ComponentName>tyre</ComponentName>

 <ComponentDescription> Tyre is the component in Tyre package </ ComponentDescription >

 <ComponentDetail>

 <CompAttr>

 <attrName>CompID</attrName>

 <attrDescription>Stores the index of individual tyre</attrDescription>

 <attrAccess>private</attrAccess>

Appendix B

Zhao Na (M.Sc. Thesis)

101

 <attrDataType>int</attrDataType>

 </ CompAttr >

 <CompAttr>

 <attrName>UTQG </attrName>

 <attrDescription>

 The Department of Transportation requires each manufacturer to grade its tyres under the

 Uniform Tyre Quality Grade (UTQG) labeling system and establish ratings for treadwear,

 traction, and temperature resistance.

 </attrDescription>

 <attrAccess>private</attrAccess>

 <attrDataType>String</attrDataType>

 </ CompAttr >

 < CompAttr >

 <attrName>MaxLoad</attrName>

 <attrDescription> Stores the maximum load of the tyre </attrDescription>

 <attrAccess>private</attrAccess>

 <attrDataType>float</attrDataType>

 </ CompAttr >

 < CompAttr >

 <attrName> MaxInflationPress </attrName>

 <attrDescription>Stores the maximum inflation press of the tyre </attrDescription>

 <attrAccess>private</attrAccess>

 <attrDataType>float</attrDataType>

 </ CompAttr >

 <ComponentDetail>

 </objectComponent>

 <objMethod>

 <methodName>insertCompNode</methodName>

 <methodDescription> insert a component Node into tyrepackage </methodDescription>

 <methodAccess>public</methodAccess>

 <methodParameters>

 <pName>CompNode</pName>

 <pDataType>XML DOM Node</pDataType>

 </methodParameters>

 <methodReturnDataType>void</methodReturnDataType>

 </objMethod>

 <objMethod>

 <methodName>getCompNode</methodName>

 <methodDescription>get a component Node from tyrepackage </methodDescription>

 <methodAccess>public</methodAccess>

 <methodReturnDataType>XML DOM Node </methodReturnDataType>

 </objMethod>

 <objMethod>

Appendix B

Zhao Na (M.Sc. Thesis)

102

 <methodName>setCompNodeAttribute</methodName>

 <methodDescription>set attribute value to a attribute of the component Node </methodDescription>

 <methodAccess>public</methodAccess>

 <methodParameters>

 <pName>compNode</pName>

 <pDataType>XML DOM Node</pDataType>

 <pName>attrName</pName>

 <pDataType>String</pDataType>

 <pName>attrValue</pName>

 <pDataType>String</pDataType>

 </methodParameters>

 <methodReturnDataType>void </methodReturnDataType>

 </objMethod>

 <objMethod>

 <methodName>getCompNodeAttribute</methodName>

 <methodDescription> extract String attribute value from a component Node </methodDescription>

 <methodAccess>public</methodAccess>

 <methodParameters>

 <pName>compNode</pName>

 <pDataType>XML DOM Node</pDataType>

 <pName>attrName</pName>

 <pDataType>String</pDataType>

 </methodParameters>

 <methodReturnDataType>String </methodReturnDataType>

 </objMethod>

 <objMethod>

 <methodName>setTimeMark</methodName>

 <methodDescription>set the timeMark attribute of tyrepackage</methodDescription>

 <methodAccess>public</methodAccess>

 <methodParameters>

 <pName>intTimeMark</pName>

 <pDataType>int</pDataType>

 </methodParameters>

 <methodReturnDataType>void</methodReturnDataType>

 </objMethod>

 <objMethod>

 <methodName>getTimeMark</methodName>

 <methodDescription>get the timeMark attribute value from tyrepackage</methodDescription>

 <methodAccess>public</methodAccess>

 <methodReturnDataType>int </methodReturnDataType>

 </objMethod>

 <objMethod>

 <methodName>setPackageSize</methodName>

Appendix B

Zhao Na (M.Sc. Thesis)

103

 <methodDescription>set the maximum capacity of the tyrepackage</methodDescription>

 <methodAccess>public</methodAccess>

 <methodParameters>

 <pName>intSize</pName>

 <pDataType>int</pDataType>

 </methodParameters>

 <methodReturnDataType>void</methodReturnDataType>

 </objMethod>

 <objMethod>

 <methodName>getPackageSize</methodName>

 <methodDescription>get the capacity of the tyrepackage</methodDescription>

 <methodAccess>public</methodAccess>

 <methodReturnDataType>int </methodReturnDataType>

 </objMethod>

 <objMethod>

 <methodName>setCompType</methodName>

 <methodDescription>set the compType attribute of tyrepackage</methodDescription>

 <methodAccess>public</methodAccess>

 <methodParameters>

 <pName>strType</pName>

 <pDataType>String</pDataType>

 </methodParameters>

 <methodReturnDataType>void</methodReturnDataType>

 </objMethod>

 <objMethod>

 <methodName>getCompType</methodName>

 <methodDescription>get the compType attribute of the tyrepackage</methodDescription>

 <methodAccess>public</methodAccess>

 <methodReturnDataType>String</methodReturnDataType>

 </objMethod>

 <objMethod>

 <methodName>isFull</methodName>

 <methodDescription>

 return true if the number of components in this tyrepackage reaches the tyrepackage's

 capacity.

 </methodDescription>

 <methodAccess>public</methodAccess>

 <methodReturnDataType>boolean</methodReturnDataType>

 </objMethod>

 <objMethod>

 <methodName>cleanPackage</methodName>

 <methodDescription>delete the componens in the tyrepackage</methodDescription>

 <methodAccess>public</methodAccess>

Appendix B

Zhao Na (M.Sc. Thesis)

104

 <methodReturnDataType>void</methodReturnDataType>

 </objMethod>

 <objMethod>

 <methodName>len</methodName>

 <methodDescription>get the number of components in the tyrepackage</methodDescription>

 <methodAccess>public</methodAccess>

 <methodReturnDataType>int</methodReturnDataType>

 </objMethod>

 </technicalDetails>

 <time>

<timeStamp>

<dataType> Integer (non-negative)</dataType>

<scale>1:6min</scale>

</timeStamp>

<lookahead>

<dataType> Integer (non-negative)</dataType>

<scale>1:6min</scale>

</lookahead>

 </time>

 <implementedObjectDetails>

 <companyName>NUS</companyName>

 <companyContactInfo>(65)68744366</companyContactInfo>

 <companyContactPerson>

 <firstName>na</firstName>

 <lastName>zhao</lastName>

 </companyContactPerson>

 <companyEmail>zhaona@comp.nus.edu.sg</companyEmail>

 <version>1.1</version>

 <versionDate>

 <day>25</day>

 <month>12</month>

 <year>2002</year>

 </versionDate>

 <implementationPlatform>Java</implementationPlatform>

 <referenceLink>nil</referenceLink>

 </implementedObjectDetails>

</objectModel>

Appendix C

Zhao Na (M.Sc. Thesis)

105

Appendix C: DIF Specification for the MRT Train Object

<?xml version="1.0" ?>

<objectModel>

<modelName>MRT Train</modelName>

<descriptionLink>nil</descriptionLink>

<description>A model to emulate a train which carries numbers of passengers from current station to

 their destination station. The important features are the number of passenger going to each station and

 the capacity of the train.

</description>

<parentObj>nil</parentObj>

<childObj>East Line Train</childObj>

<childObj>West Line Train</childObj>

<childObj>North Line Train</childObj>

<childObj>South Line Train</childObj>

<attrFieldDataType>XML DOM Tree</attrFieldDataType>

<technicalDetails>

<objAttr>

<attrName>direction</attrName>

<attrDescription>Stores the direction of the train. This is used to distinguish the train from 4 lines.

</attrDescription>

<attrAccess>Private</attrAccess>

<attrDataType>String</attrDataType>

</objAttr>

<objAttr>

<attrName>capacity</attrName>

<attrDescription>Stores the max number of passenger which can be carried by the train.

</attrDescription>

<attrAccess>Private</attrAccess>

<attrDataType>Int</attrDataType>

</objAttr>

<objAttr>

<attrName>totalpsgnum</attrName>

<attrDescription>Stores current number of passenger on the train.</attrDescription>

<attrAccess>Private</attrAccess>

<attrDataType>Int</attrDataType>

</objAttr>

<objAttr>

<attrName>psgnum_to_EW1</attrName>

<attrDescription>Stores passenger number whose destination is station EW1.</attrDescription>

<attrAccess>Private</attrAccess>

<attrDataType>Int</attrDataType>

Appendix C

Zhao Na (M.Sc. Thesis)

106

</objAttr>

<objAttr>

<attrName>psgnum_to_EW2</attrName>

<attrDescription>Stores passenger number whose destination is station EW2.</attrDescription>

<attrAccess>Private</attrAccess>

<attrDataType>Int</attrDataType>

 </objAttr>

<objAttr>

<attrName>psgnum_to_EW3</attrName>

<attrDescription>Stores passenger number whose destination is station EW3.</attrDescription>

<attrAccess>Private</attrAccess>

<attrDataType>Int</attrDataType>

</objAttr>

<objAttr>

<attrName>psgnum_to_EW4</attrName>

<attrDescription>Stores passenger number whose destination is station EW4.</attrDescription>

<attrAccess>Private</attrAccess>

<attrDataType>Int</attrDataType>

</objAttr>

<objAttr>

<attrName>psgnum_to_EW5</attrName>

<attrDescription>Stores passenger number whose destination is station EW5.</attrDescription>

<attrAccess>Private</attrAccess>

<attrDataType>Int</attrDataType>

</objAttr>

<objAttr>

<attrName>psgnum_to_NS1</attrName>

<attrDescription>Stores passenger number whose destination is station NS1.</attrDescription>

<attrAccess>Private</attrAccess>

<attrDataType>Int</attrDataType>

</objAttr>

<objAttr>

<attrName>psgnum_to_NS2</attrName>

<attrDescription>Stores passenger number whose destination is station NS2.</attrDescription>

<attrAccess>Private</attrAccess>

<attrDataType>Int</attrDataType>

</objAttr>

<objAttr>

<attrName>psgnum_to_NS3</attrName>

<attrDescription>Stores passenger number whose destination is station NS3.</attrDescription>

<attrAccess>Private</attrAccess>

<attrDataType>Int</attrDataType>

 </objAttr>

Appendix C

Zhao Na (M.Sc. Thesis)

107

<objMethod>

<methodName>setAttrValueInt</methodName>

<methodDescription>set int value to attribute in DOM Tree</methodDescription>

<methodAccess>Public</methodAccess>

<methodReturnDataType>void</methodReturnDataType>

<methodParameters>

<pName>AttrName</pName>

<pDataType>String</pDataType>

<pName>AttrValue</pName>

<pDataType>int</pDataType>

</methodParameters>

</objMethod>

<objMethod>

<methodName>setAttrValueString</methodName>

<methodDescription>set String value to attribute in DOM Tree</methodDescription>

<methodAccess>Public</methodAccess>

<methodReturnDataType>void</methodReturnDataType>

<methodParameters>

<pName>AttrName</pName>

<pDataType>String</pDataType>

<pName>AttrValue</pName>

<pDataType>int</pDataType>

</methodParameters>

</objMethod>

<objMethod>

<methodName>extractIntValue</methodName>

<methodDescription>extract attribue value as int from the DOM Tree</methodDescription>

<methodAccess>Public</methodAccess>

<methodReturnDataType>void</methodReturnDataType>

<methodParameters>

<pName>AttrName</pName>

<pDataType>String</pDataType>

</methodParameters>

</objMethod>

<objMethod>

<methodName>extractStringValue</methodName>

<methodDescription>extract attribute value as string from the DOM Tree</methodDescription>

<methodAccess>Public</methodAccess>

<methodReturnDataType>void</methodReturnDataType>

<methodParameters>

<pName>AttrName</pName>

<pDataType>String</pDataType>

</methodParameters>

Appendix C

Zhao Na (M.Sc. Thesis)

108

</objMethod>

<objMethod>

<methodName>updateobj</methodName>

<methodDescription>extract attribute value as string from the DOM Tree</methodDescription>

<methodAccess>Public</methodAccess>

<methodReturnDataType>void</methodReturnDataType>

<methodParameters>

<pName>AttrName</pName>

<pDataType>String</pDataType>

<pName>num</pName>

<pDataType>int</pDataType>

</methodParameters>

</objMethod>

</technicalDetails>

<time>

<timeStamp>

<dataType> Integer (non-negative)</dataType>

<scale>1:1min</scale>

</timeStamp>

<lookahead>

<dataType> Integer (non-negative)</dataType>

<scale>1:1min</scale>

</lookahead>

</time>

<implementedObjectDetails>

<companyName>NUS SOC</companyName>

<companyContactInfo>(65) 68744366</companyContactInfo>

<companyContactPerson>

<firstName>Na</firstName>

<lastName>Zhao</lastName>

</companyContactPerson>

<companyEmail>nil</companyEmail>

<version>1.1</version>

<versionDate>

<day>30</day>

<month>8</month>

<year>2002</year>

</versionDate>

<implementationPlatform>Java</implementationPlatform>

<referenceLink>nil</referenceLink>

</implementedObjectDetails>

</objectModel>

