QUALITATIVE AND QUANTITATIVE STUDIES ON DETECTION OF

MICROMETASTASES IN COLORECTAL CANCER

KONG SAY LI

(B.Sc. (Hons),UPM)

A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF PATHOLOGY

NATIONAL UNIVERSITY OF SINGAPORE

2003

Acknowledgement

I have learnt a lot and gained valuable experiences during the course of this study, which is crucial for me to advance in my study and personal improvement. I specially wish to express my sincere gratitude to the following:

- My dedicated supervisor, A/Professor Evelyn Koay Siew Chuan (Associate Professor from the Department of Pathology, National University of Singapore, and Director of the Molecular Diagnosis Centre, Department of Laboratory Medicine, National University of Hospital). I am grateful to her for giving me the opportunity to be her student and providing me the excellent learning or working environment. I wish to thank Prof for her supervision, guidance, patience and support throughout the course of my study.
- My co-supervisor, Assistant Professor Manuel Salto-Tellez (Assistant Professor from the Department of Pathology, National University of Singapore, and Clinical Director of the Molecular Diagnosis Centre, Department of Laboratory Medicine, National University of Hospital). I would like to thank him for his contribution in the dissection and retrieval of study subjects; support and advice in the completion of my thesis and manuscripts.
- Prof Lee Yoke Sun from Department of Pathology, National University of Hospital, for his approval in obtaining the study subjects for my project. Dr Adrian P.K. Leong from the Department of Surgery, National University of Hospital, for his co-operation in providing the study subjects. Dr Y.H. Chan and Ms ShenLiang from the Clinical Trial and Epidemiology Research Unit, Singapore for their advice in the statistical analysis of our data.
- Lily Chiu, Khoo Mui Joo, Elaine Do, Huan Pei Tee, Leow Gek Har and Nu Nu Swe from the Molecular Diagnosis Centre, National University of Hospital; Dr Zhang DaoHai, Ng Wooi Loon, Chang Ti Ling and Lee Chi Kuen from Department of Pathology, National University of Singapore, for their technical support, advice, discussion and invaluable friendship.
- The staffs from Department of Pathology, for their help, patience and support, especially in dealing with all the administrative work.
- I wish to thank a group of my best friends, not to mention their names, for the joyous and laughter they brought into my life, and for their advice, care and support.

I wish to dedicate this thesis to my family and my beloved comrade. I appreciate their love, understanding, encouragement and endless support in helping me to stand undefeated by the obstacles encountered in my life and willing to share my happiness and distress throughout these days.

Special thanks dedicated to National University of Singapore for providing me the Research Scholarship throughout my candidature as a full time postgraduate student.

This work was supported by research grants from the National Medical Research Council, Singapore (NMRC/0383/1999) and the Singapore Cancer Society (SCS-R-179-000-014-593) to A/Prof Evelyn SC Koay and Dr Manuel Salto-Tellez.

Publication Generated From This Thesis

Papers:

- 1. Kong SL, Manuel ST, Adrian PKL and Koay ESC. Parallel quantitative detection of putative markers for nodal micrometastases in colorectal cancer: Heterogeneity of gene expression and discordance in patient re-staging . Paper submitted to *Int J Cancer* (in the process of reviewing).
- Manuel ST, Kong SL, Adrian PKL and Koay ESC. Intrinsic variability in the detection of micrometastases in lymph nodes for re-staging of colorectal cancer: Effect of individual markers and tissue sample. *Eur J Cancer* 2003; 39(9): 1234-1241.

Abstracts:

- 1. Kong SL, Manuel ST, Adrian PKL and Koay ESC. Quantitative studies on detection of micrometastases in colorectal cancer. *Abstract Book*, 7th NUS-NUH Annual Scientific Meeting, 2nd-3rd, October 2003 Singapore, in press.
- Kong SL, Manuel ST, Adrian PKL and Koay ESC. Detection of nodal micrometastases in colorectal cancer using rapid quantitative real-time polymerase chain reaction. *Molecular Target For Cancer Therapy: Second Biennial Meeting*, 11-15th, October 2002, USA, p18.
- 3. Kong SL, Manuel ST, Adrian PKL and Koay ESC. Intrinsic variability in the detection of micrometastases in lymph nodes for re-staging of colorectal cancer: Effect of individual markers and tissue sample. Abstract Book, 1st National Health Group Scientific Congress, 17-18th, August 2002, Singapore, p214.
- Kong SL, Manuel ST, Adrian PKL and Koay ESC. Molecular detection of micrometastases in fresh frozen and paraffin-embedded lymph nodes for restaging of colorectal cancer using CEA, CK-20 and GCC as biomarkers. *Abstract Book, 6th NUS-NUH Annual Scientific Meeting, 16-17th, August* 2002, Singapore, p89.

CONTENTS

Acknowledgement	ii
Publications Generated From This Thesis	iv
Contents	v
List of Figures	viii
List of Tables	x
List of Abbreviations	xi
Summary	xiii

Chapter 1. An Overview

1.1 Prevalence of colorectal cancer	1
1.2 Molecular biology of colorectal cancer	1
1.3 Gene defects in colorectal cancer tumourigenesis	2
1.4 Concepts of micrometastasis	6
1.5 Staging systems in colorectal cancer	10
1.6 Prognostic determinants in colorectal cancer	18
1.7 Overview of treatment and its recurrence in colorectal cancer	23
1.8 Development of a molecular genetic approach as a prognostic factor in CRC	26
1.9 Use of tumour markers in determinants of micrometastatic colorectal cancer	29
1.10 Carcinoembryonic antigen (CEA)	32
1.11 Cytokeratin 20 (CK20)	35
1.12 Guanylyl cyclase C (GCC)	38
1.13 Qualitative PCR	40

1.14 Quantitative PCR	41
1.15 Real-time PCR (R-PCR)	42
1.16 The advantages of quantitative real-time PCR	44
1.17 Absolute quantification analysis	55
1.18 Aims and objectives of the studies	61

Chapter 2. Qualitative Studies on Detection of Micrometastases in Colorectal Cancer

2.1	Study subjects	64
	2.1.1 Patients and tissues	64
2.2	2 Materials	65
2.3	Methods	65
	2.3.1 Growth and culture of colorectal cancer cell line	65
	2.3.2 RNA extraction	69
	2.3.3 DNase I digestion	73
	2.3.4 RNA quantitation	74
	2.3.5 Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)	75
	2.3.6 Conventional PCR amplification of <i>abl</i> (internal control) gene	75
	2.3.7 Conventional (qualitative) PCR amplification of CEA, CK20 and GCC	76
	2.3.8 Gel electrophoresis	78
	2.3.9 Gel extraction and purification of PCR products	78
	2.3.10 PCR for cycle sequencing reaction	79
	2.3.11 Purification of extended products for DNA sequencing	80
	2.3.12 Gel-slab DNA sequencing	81

	2.3.13 BLAST analysis for amplicon identity	82
	2.3.14 Statistical analysis	82
2.4	Results	82
2.5	Discussion	90
2.6	5 Conclusion	97

Chapter 3. Quantitative Studies on Detection of Micrometastases in Colorectal Cancer

3.1 Study subjects	99
3.2 Materials	99
3.3 Methods	99
3.3.1 Real-time PCR	99
3.3.2 Data analysis	104
3.3.3 Serial dilution for sensitivity test	105
3.4 Results	105
3.5 Discussion	117
3.6 Conclusion	
Chapter 4. Conclusion	123
References	125
Appendix A	169

List of Figures

Figure	I	Page
1.1	A genetic model of colorectal cancer	5
1.2	The pathogenesis of cancer metastasis	8
1.3	Schematic of bowel wall and nodal location	12
1.4	The Dukes' staging system for colorectal cancer	13
1.5	Examples of "T" stages of mural penetration	17
1.6	Equilibrium and kinetic paradigms of PCR	46
1.7	Shows that significant variations in the amount of starting material cannot be differentiated by signals measured in the plateau phase	47
1.8	A typical PCR amplification curves	48
1.9	Monitoring of PCR reaction	51
1.10	Quantification with external standards	56
2.1	Flow chart of experimental design for the qualitative studies on detection of micrometastases in colorectal cancer	63
2.2	The representative results for the electrophoretic separation of amplified PCR products	86
2.3	Shown here is the electropherogram of the nucleotide sequences for the CEA amplicon	91
2.4	Shown here is the electropherogram of the nucleotide sequences for the CK20 amplicon	92
2.5	Shown here is the electropherogram of the nucleotide sequences for the GCC amplicon	93
3.1	Flow chart of experimental design for the quantitative studies on detection of micrometastases in CRC	98
3.2	Melting curve analysis of amplified (a) CEA, (b) CK20 and (c) GCC R-PCR products with a melting peak at 87.5°C, 84°C and 87.5°C respectively	111

3.3	Sensitivity of the R-PCR assays	112
3.4	Standard curves for CEA, CK20 and GCC mRNA estimation, constructed by plotting the crossing point against the log copy number of DLD-1	113
3.5	The relative expression levels of the (a) CEA-positive, (b) CK20-positive, and (c) GCC-positive expression in LNs from Dukes' B and Dukes' C patients with CRC	114

List of Tables

Table		Page
1.1	The American Joint Committee on Cancer/ Union Internationale Contre le Cancer for TNM classification	15
1.2	The comparison between Stage group, TNM features and Dukes classification	16
1.3	Advantages of real-time versus conventional PCR detection methods	54
1.4	General recommendations for preparation of standard curve	58
2.1	Oligonucleotide sequences and PCR conditions used for synthesis of amplicons	77
2.2	Detection of micrometastases in lymph nodes of colorectal cancer: comparison of different tumour markers	85
2.3	Cross-tabulation of stage and different micrometastases	87
2.4	The discordance in the positive rate for different tumour markers examined in different tissue types for Dukes' B and Dukes' C CRC cases	87 S
3.1	Guidelines for optimization of R-PCR conditions	100
3.2	Guidelines for optimization of the cycle parameters	100
3.3	The values for pre-incubation and denaturation of the template DNA were set	101
3.4	The values for amplifying the target gene were set	101
3.5	The values for the melting curve analysis were set	102
3.6	The values for cooling the rotor and thermal chamber at the end of the protocol were set	102
3.7	Summary for the absolute expression level of CEA, CK20 and GCC mRNA detected in Dukes' B and Dukes' C CRC patients by R-PCR, and the translation of these results for presence (+) or absence (-) of expression above defined cut-off values	109

Abbreviations

Most of the abbreviations used are standard. However, attention is drawn to the followings:

Original terminology	Abbreviation
Ammonium persulphate	APS
and associates	et. al.
Base pair	bp
Carbon Dioxide	CO_2
Centrifugal force	g
Complementary Deoxyribonucleic Acid	cDNA
Crossing Point	Ct
Dalton	Da
Degree Centigrade	°C
Diethyl Pyrocarbonate	DEPC
Deoxyribonucleic Acid	DNA
Deoxyribonucleoside Triphosphates	dNTPs
Ethidium bromide	EtBr
Ethylenediaminetetraacetic acid	EDTA
Forward	F
Hanks balanced salt solution	HBSS
High Performance Liquid Chromatography	HPLC
Hour	h
Kilo	k
Magnesium Chloride	$MgCl_2$
Mean Square Error	MSE
Messenger Ribonucleic Acid	mRNA
Microgram	μg
Micromole	µmol
Micromole/litre	μM
Millilitre	mL
Minute	min
Not Available	NA
N, N, N', N'- Tetramethylethylenediamine	TEMED
N-(2-Hydroxylethyl) piperazine-N'-(2-ethanesulfonic acid)	HEPES
Nanogram	ng
Optical density	OD
Peripheral Mononuclear	PBMN
Polymerase Chain Reaction	PCR
Probability	p D DCD
Real-time Polymerase Chain Reaction	R-PCR
Regression	r

Reverse Reverse Transcriptase-Polymerase Chain Reaction	R RT-PCR
Room Temperature	RT-FCK
Second	s
Standard deviation	SD
Standard error	SE
Steriled	sd
Tris-Borate-EDTA	TBE
Ultraviolet	UV
Unit	U
Versus	VS
Volt	V

Summary

Purpose: The tumor spread and the radicality of surgical resection based on the histopathological evaluation are the most important facts in a patient's prognosis. Due to the early dissemination of tumor, many Dukes' B patients die from recurrence despite of curative tumor resection. We thus aim to develop a molecular approach to accurately assess the spread of submicroscopic nodal metastases in colorectal cancer (CRC). We investigated (a) the overexpression of carcinoembryonic antigen (CEA), cytokeratin 20 (CK20) and guanylyl cyclase c (GCC) in CRC, (b) the comparison between the results by qualitative and quantitative studies using conventional polymerase chain reaction (PCR) and real-time PCR (R-PCR) respectively, and (c) the effects of these analyses in the final restaging of Dukes' B CRC.

Experimental Design: A total of 175 frozen lymph nodes (FT) and 158 formalinfixed, paraffin-embedded lymph nodes (PET) from 28 CRC cases were studied. mRNA extractions from FT, PET and cell line followed by cDNA synthesis with RT-PCR were performed. CEA, CK20 and GCC-specific qualitative conventional PCR and quantitative R-PCR were carried out on the mRNA transcripts, using the gel-based electrophoresis and LightCycler[®] (LC) technology with SYBR Green I chemistry respectively. A separate PCR run for housekeeping gene is carried out and lymph nodes (LN) with no amplification were excluded from the data base, to eliminate false negative results. **Results:** Our study demonstrated successful RNA extraction from 94.3% of FT and 70.7% of PET. The qualitative conventional PCR results indicated 90.9% morphologic Dukes' B CRC cases had detectable CEA or CK20 while 54.5% Dukes' B had detectable GCC. Higher sensitivity achieved in R-PCR methods allowed detection of low expression level of CEA and CK20 in our Dukes' A CRC cases and we arbitrarily considered positive any value above the quantification of the highest Dukes' A LN to distinguish between baseline constitutional expression and cancerspecific expression to prevent false positive results. Our quantitative R-PCR results indicated 63.6% morphologic Dukes' B cases had detectable CEA while 45.6% Dukes' B had detectable CK20 or GCC marker. In general, the differences of restaged cases when comparing FT and PET sample with different tumor markers were marked.

Conclusions: Our results indicated a high incidence (>45%) of detecting micrometastases in histologically negative LN at the molecular level. There is discordance in the positivity of tumor markers in different tissue types (FT versus PET) and different methodology (gel-based qualitative studies versus LC-based quantitative studies). There is a considerable possibility that micrometastases may exist in histologically negative lymph nodes. However, their detection by RT-PCR coupled to gel electrophoresis was limited by the lack of reproducibility. We suggest LC-based quantitative studies is a better technology, which allows rapid and highly sensitive detection of micrometastases with minimum risk of contamination. Sensitivity of a single tumor marker in one tissue type (either in FT or PET) applied

by other investigators for the detection of micrometastases may be inadequate due to the heterogeneous composition of tumors. Multiple tumor markers are required to precisely predict the metastatic potential of Dukes' B CRC cases.