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Summary

Motivated by the ideas of sub-sampling and sample splitting, we propose a weight-

ing approach to model checking that exploits the systematic differences under model

misspecification between the weighted, the complementarily weighted and the un-

weighted parameter estimates. Standard error formulae for the differences are

derived and the resulting standardised differences can be used to test the adequacy

of the postulated model. Unlike many tests in the literature that are designed to

test the goodness of fit of a particular class of models such as logistic regression,

the proposed approach is very general and can be implemented easily to test the

goodness of fit of any parametric model. Marginally specified models, often used

in the analysis of clustered or longitudinal data, can also be tested by weighting

the quasi-likelihood or the corresponding estimating equation instead of the like-

lihood. Four examples are given to demonstrate the usefulness of the weighting

approach to model checking. Simulation studies and asymptotic power calcula-

tion suggest that the proposed tests compare favourably with more sophisticated

tests proposed recently in the literature. Keywords: Estimating equation; Lack
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of fit test; Maximum likelihood estimation; Quasi likelihood; Sub-sampling with

probability proportional to size; Sample splitting; Weighting.



Chapter 1

Introduction

1.1 Review of Approaches to Model Checking

Classical tests for the lack of fit of a regression model typically assume there is

more than one observation at each covariate value. When there is no replication,

the problem becomes more complicated and one might have to resort to tests based

on near replicates (Christensen, 1989; Neill and Johnson, 1989). Alternatively, we

can test the postulated model against an extended model that contains one or

more extra parameters. A more recent approach to model checking is to compare

the parametric fit with a nonparametric fit (Azzalini, Bowman and Hardle, 1989;

Azzalini and Bowman, 1993; Firth, Glosup and Hinkley, 1991; le Cessie and van

Houwelingen, 1991; Kauermann and Tutz, 1999, 2001). An issue that needs to be

addressed when applying nonparametric lack of fit tests is the choice of smoothing

parameter. Azzalini and Bowman (1993) and Kauermann and Tutz (2001) suggest

1
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Chapter 1 : Introduction 2

trying a wide range of values for the smoothing parameter h and to plot the p-

values against h to get the so-called significance trace. Another difficulty is that

it may not be easy to derive the exact or even asymptotic distribution of test

statistics based on nonparametric regression. Thus techniques like Johnson curves

(Azzalini and Bowman, 1993) or the bootstrap (Azzalini et al., 1989; Kauermann

and Tutz, 2001) may have to be used to obtain p-value and to simulate reference

band for the estimated curve. For Gaussian data, Fan and Huang (2001) propose

to test a parametric regression function by applying the adaptive Neyman test

to the residuals but it is not clear how to extend their method to the setting of

generalized linear model and discrete data.

1.2 Objects and Questions

In this paper, we propose two alternative yet general approaches to testing the

adequacy of any parametric model. The first one is based on the concept of sub-

sampling. The basic idea is as follows. If the model is correctly specified, then

the maximum likelihood estimator,MLE β̂, based on the whole sample and the

MLE β̂s based on sub-sample, s, should be close as they are both consistent es-

timators of the true parameter β. If the model is incorrect and simple random

sampling is used to select the sub-samples, the difference between β̂s and β̂ will still

cancel out on the average due to the balanced nature of simple random sampling.

However, if s is selected in such a way that observations with certain covariate val-



Chapter 1 : Introduction 3

ues or certain combination of covariate values are more likely to be selected, then

there will be a systematic difference between β̂s and β̂ that we can exploit. To

avoid over-reliance on the choice of s, we recommend averaging over sub-samples

to get β̂π = Eπ(β̂s), where Eπ denotes expectation under the sub-sampling scheme.

Thus a large difference between Eπ(β̂s) and β̂ will imply that the model is mis-

specified. Alternatively, we can take a sample splitting approach and look at the

difference between Eπ(β̂s) and Eπ(β̂s′ ), where s
′
is the complement of s. Further

details are given in chapter 2 together with the derivation of variance formulae.

The standardized difference is used to test the adequacy of the postulated model.

The computational burden is our main issue with the sub-sampling approach. In

practice we have to compute sub-sample estimates for a large number of sub-

samples and take the average of them. Fortunately, this problem can be overcomed

by the second approach, the weighting approach. Indicator variables are used to

indicate which terms in the full sample estimating equation (2.1) should be retained

in the sub-sample estimating equation. We then bypass sub-sampling by taking

expected values of the indicator variables which are just the selection probabilities.

As a consequence, we only need to solve a weighted estimating equation once in-

stead of as many times as the numbers of sub-samples. Weighting approach enables

us to launch our power study. The power of the proposed weighting approach to

test the goodness of fit of a model compares favorably with that of the adaptive

Neyman test for the two examples considered by Fan and Huang(2001). This power
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study is done in chapter 3. The advantages of weighting approach is its simplicity

and generality, which can be applied to test the goodness of fit of any parametric

models, such as logistic regression model and Generalized Estimating Equation for

discrete data. The lack of fit test for logistic regression data is demonstrated in

chapter 4. The weighting approach also compares favorably with Kauermann and

Tutz’s(1999) varying coefficient approach in a simulation study. The suggested

approach can even be applied to over-dispersed data or for testing a model that is

specified only up to its marginal distributions by using weighted and unweighted

versions of quasi-likelihood or generalized estimating equation. Data from a mouse

teratology experiment (Williams, 1988) are used to demonstrate this in chapter 5.

In addition, some simulations are performed to verify our results in chapter3 and

chapter 4.



Chapter 2

Sub-sampling Approach

2.1 Estimating Equations and Simple Linear Re-

gression

Our basic framework is as follows. Let x be the p-dimensioned covariate vector

and y be the response variable with observed values (xi, yi) for i=1,...,n. They are

independently distributed according to the parametric density p(yi; xi, β), where β

is the unknown parameter of dimension p. A general way to obtain an estimator

β̂ of β is by solving a set of estimating equations of the form

n∑
i=1

ψ(yi; xi, β) = 0, (2.1)

where ψ = (ψ1, ψ2, · · · , ψp) and ψ1, · · · , ψp are real-valued functions of x, y and β.

The estimating equation is said to be unbiased if

Eβψ(y; x, β) = 0.

5
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Chapter 2 : Sub-sample Approach 6

In this chapter, we focus on linear regression model and least square estimation.

Let

yi = xiβ + εi i = 1, · · · , n

where xi is a 1 × p vector of covariates including the intercept and β is a p× 1

vector of regression coefficients and the errors ε are independently distributed as

N(0, σ2). The least square estimator is obtained by minimizing

n∑
1

(yi − xiβ)2

In matrix form, the least square estimator β is given by

β = (XTX)−1XTy.

To test the goodness of fit of the postulated model, we argue as that if the model is

correctly specified, then the estimator based on a sub-sample approach is also con-

sistent. However, if model is misspecified and sub-sample s is obtained by sampling

in such a way that observations with certain covariate values or certain combina-

tion of covariate values are more likely to be selected, there will be a systematic

difference between β̂s and β̂ that we can exploit. Assume that sub-sample s is

obtained by sampling without replacement with unequal selection probabilities

πi = P (i ∈ s)

We can get the sub-sample Least Square Estimator β̂s by minimizing

∑
i∈s

(yi − xiβ)2 (2.2)
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resulting in β̂s = (XT
s Xs)

−1XT
s ys, where Xs is the design matrix based on sub-

sample s. Thus a systematic difference between β̂s and β̂ is an indication that

the model is not correct. To remove the dependence on the particular sub-sample

selected and to get a more efficient estimator, we consider β̂π = Eπ(β̂s), where Eπ

denotes expectation under sub-sampling from the full sample which is considered

fixed. We can calculate β̂π exactly by

β̂π = Eπ(β̂s) =
M∑
1

π(si)β̂si

where M is the number of ways of choosing a sub-sample of size n from the original

sample of size N, and π(si) ≥ 0 is the probability of selecting the ith sub-sample

si. Alternatively, we can average β̂s over a large number of randomly drawn sub-

samples s1, · · · , sR to yield the approximation

β̂π
∼= 1

R

R∑
r=1

β̂sr .

The standardized difference between β̂π and β̂ is derived by the following procedure

under the null hypothesis that the postulated parametric model is correct. We

begin with

V = var(β̂ − β̂π)

= var(β̂) + var(β̂π) − 2cov(β̂, β̂π)

= var(β̂) +
M∑
i=1

[π(si)]
2var(β̂si

) − 2
M∑
i=1

π(si)cov(β̂, β̂si
)

+
∑
i�=j

π(si)π(sj)cov(β̂si
, β̂sj

)
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From

β̂ = (XTX)−1XTy

β̂s = (XT
s Xs)

−1XT
s ys

var(y) = σ2In

cov(Ay,Bys) = Acov(y, ys)B
T

we have

cov(β̂, β̂si
) = (XTX)−1XT cov(y, ysi

)Xsi
(XT

si
Xsi

)−1

= σ2(XTX)−1

and

cov(β̂si
, β̂sj

) = σ2(XT
si
Xsi

)−1
(
XT

(si∩sj)
X(si∩sj)

)
(XT

sj
Xsj

)−1 (2.3)

so V can be estimated by

V̂ = σ̂2(XTX)−1 + σ̂2
M∑
i=1

[π(si)]
2(XT

si
Xsi

)−1 − 2σ̂2
M∑
i=1

π(si)(X
TX)−1

+σ̂2
∑
i�=j

π(si)π(sj)(X
T
si
Xsi

)−1
(
XT

(si∩sj)
X(si∩sj)

)
(XT

sj
Xsj

)−1, (2.4)

Where σ̂2 is the estimate of σ2 under the full sample. We are now in a position

to test the goodness of fit of the postulated model by looking at the standardized

difference

β̂π − β̂√
V̂

∼ N(0, 1)
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for the scalar case. If β is a p-dimensional vector, we can apply the asymptotic nor-

mal test to the individual components of β or we can use (β̂π − β̂)T V̂ −1(β̂π − β̂) ∼ χ2
p.

To get a big difference between β̂π = Eπ(β̂s) and β̂ under model misspecification,

we should use a sampling method that selects sub-samples with covariate con-

figuration systematically different from the full sample configuration with large

probability. We can then use one of the many existing sampling methods (Brewer

and Hanif, 1983) or custom-make a new method to select sub-samples with the

desired configuration with large probabilities.

2.2 Sample Splitting

A natural variation of the proposed sub-sampling test is to compute β̂s as well as

the Least Square Estimator based on s
′
, the complement of s. Instead of comparing

the sub-sample estimator with the full sample estimator, we can now compare the

sub-sample estimator with that of its complement. This leads us to consider

β̂π − β̂ ′
π = Eπ(β̂si

) −Eπ(β̂si
′ ) =

M∑
i=1

π(si)(β̂si
− β̂si

′ ) (2.5)

Similarly we can get the formulae of variance,

V
′

= var(β̂π − β̂ ′
π)

=
M∑
i=1

[{π(si)}2{var(β̂si
) + var( ˆβsi

′ )}] − 2
∑
j>i

π(si)π(sj)cov(β̂si
− β̂si

′ , β̂sj
− β̂sj

′ )

=
M∑
i=1

[{π(si)}2{var(β̂si
) + var(β̂si

′ )}] − 2
∑
j>i

π(si)π(sj){cov(β̂si
, β̂sj

) − cov(β̂si
, β̂sj

′ )

−cov(β̂si
′ , β̂sj

) + cov(β̂si
, β̂sj

′ )} (2.6)
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Same as full sample vs. sub-sample, the formula of cov(β̂s1, β̂s2) can be written

specifically. From(2.5) and (2.6) we will get

V
′

= var(β̂π − β̂ ′
π).

It can be estimated by

V̂
′

=
M∑
i=1

σ̂2{π(si)}2[(XT
si
Xsi

)−1 + (Xsi
′ TXsi

′ )−1]

−∑
i�=j

π(si)π(sj){(XT
si
Xsi

)−1(XT
si∩sj

Xsi∩sj
)(Xsj

TXsj
)−1

−(XT
si
Xsi

)−1(XT
si∩sj

′Xsi∩sj
′ )(Xsj

′ TXsj
′ )−1

−(XT
s
′
i
Xs

′
i
)−1(XT

si
′∩sj

Xsi
′∩sj

)(Xsj

TXsj
)−1

+(XT
s
′
i
Xs

′
i
)−1(XT

si
′∩sj

′Xsi
′∩sj

′ )(Xsj
′ TXsj

′ )−1}, (2.7)

The statistics
β̂π − β̂

′
π√

V̂ ′
or (β̂π − β̂

′
π)T V̂ ′−1

(β̂π − β̂
′
π) can be used to test the goodness

of fit of a model.

A more naive but closely related method is to simply partition the full sample into

two halves s and s
′
in a deterministic fashion and then calculate the standardised

difference between the parameter estimates β̂s and β̂s′ obtained from the two halves.

One drawback of this approach is that its ability to detect model misspecification

depends very much on choosing the right partition. The reason we use random

sub-sampling rather than a fixed subset is that we do not want to rest all our hope

on a particular partition of the sample since we can never be sure that it is the best

choice. It is also hoped that the act of taking expectation or averaging over sub-

samples to get β̂π = Eπ(β̂s) and β̂
′
π = Eπ(β̂s′ ) will lead to more precise estimators
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and subsequently a more powerful test.

2.3 Lack of Fit Test for Normal Regression Model

The following illustrates an example of normal regression model, the dataset is

about the mileage y (miles per galloon) and engine size x (displacement in cubic

inches) for thirty two 1976-model automobiles, this dataset first appeared in Velle-

man and Hoalin(1981, p.139). Neilland Johnson first analyzed it in 1989. Firstly

we can present a scatter plot(figure 2.1), which suggests that this dataset can’t be

fitted by a straight line regression model of y on x. But from the scatter plot we

can’t decide whether a quadratic regression is appropriate. We can estimate the

experimental error variance with 5 degrees of freedom due to the existence of the

replication of data. The classical lack of fit test of the quadratic model yields an

F-value of 3.57 with 24 and 5 degrees of freedom and is not significant at the 0.05

level. In 1989 a new method was proposed by Neill and Johnson, it makes use of

the information contained in near replicates. The resulting tests based on different

methods of defining near replicates reject the quadratic model at level 0.05. Now

we explain our method which we proposed in the previous section. First we try

a naive method which divide the sample into two halves according to the criteria

x ≤ 167.6 or x > 167.6. The regression parameter estimates based on the two half-

samples and their standardized difference are given in table 2.1.

The differences between the two half-sample estimates are not significant at level
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Figure 2.1: scatter plot for the mile-age data
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Table 2.1: SD of estimates under deterministic sample splitting

β̂ β̂s β̂
′
s

β̂ − β̂s√
V̂

β̂s − β̂
′
s√

V̂ ′

Intercept 35.83 15.17 53.05 1.21 1.85

Linear -0.105 0.0277 -0.3617 -1.36 -1.76

Quadratic 0.00126 -0.00007396 0.000975 1.48 1.26
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0.05. We have explained that it’s not a good idea that the test depends too much

on one particular partition of the sample. As mentioned before, the sub-sampling

probabilities should be unequal in order for there to be a systematic difference be-

tween β̂ and Eπ(β̂s). We consider random sub-sampling of the full sample in such a

way that observations with large x values are selected with large probability. There

are many ways to do this, please see Brewer and Hanif (1983) for a list of 50 meth-

ods of sampling with unequal probabilities. The particular method we choose is

ordered systematic sampling with probability proportional to size (Madow, 1949)

because it can be implemented easily. The size variable used to define the sub-

sampling can be the x variable itself but in this example we measure the size of

xi by its rank ri which is invariant under increasing transformation. The use of

ranks as a surrogate of size had also been advocated by Wright (1990). Another

advantage of sampling with probability proportional to ranks is that it remains

well defined even in cases when the xi can take on negative values. Thus we use

Madow’s method to select half-samples with first order inclusion probabilities

πi = P (i ∈ s) ∝ ri,

where the proportionality constant is
n∑N
i=1 i

=
2n

N(N + 1)
=

1

N + 1
for the case of

half-sampling. It is well known that there are at most N possible samples under

Madow’s systematic sampling method. Table 2.2 reports β̂π and β̂
′
π together with

their standardized difference using the estimate derived from (2.5).

It can be seen that the standardized difference between β̂π and β̂
′
π are in the same
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Table 2.2: SD of estimates under random sub-sampling

β̂ β̂π β̂
′
π

(β̂ − β̂π)√
V̂

(β̂π − β̂
′
π)√

V̂ ′

Intercept 35.83 28.56 42.43 2.87 2.01

Linear -0.105 -0.051 -0.185 -3.05 -2.62

Quadratic 0.000126 0.0000352 0.000314 3.20 3.28

direction but are more significant than the differences reported in Table 2.1 for

the case of a fixed partition. We could get a more significant result under the

sub-sampling approach than the deterministic sample splitting approach.



Chapter 3

Weighting Approach

3.1 Introduction to the Weighting Approach

3.1.1 Deriving the Estimator of Weighting Approach

Sub-sampling is a general method in model checking, but the computation is time-

consuming. Because we need to compute an estimate for every possible sub-sample

and average over them. Furthermore, the variance formulae are also tedious to

calculate, please refer to (2.6) and (2.7). In addition, power study is also not

manageable. To solve these problems, we propose a new approach, called the

weighting approach. We can get the methodology of the weighting approach from

Sub-sample approach intuitively. Equation (2.2) can be rewritten as

N∑
i=1

I(i ∈ s)(yi − βxi)
2, (3.1)

15
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where I(i ∈ s) is the indicator of whether observation i belongs to the sub-sample

s. Instead of solving (3.1) to get β̂s for every sub-sampling s and then take average,

we take expectation of (3.1) first to get

N∑
i=1

wi(yi − βxi)
2 (3.2)

where

wi = E{I(i ∈ s)} = P (i ∈ s) = πi.

The advantage of doing this is that we only need to minimize (3.2) once. The

solution to minimizing (3.2) is of course just the weighted least square estimator

β̂w = (XTWX)−1XTWy,

where W is the diagonal matrix of vector (w1, w2, ..., wN).

3.1.2 Comparing Full Sample and Weighted Estimator

We already know the full sample estimator β̂ = (XTX)−1XTy, so

β̂ − β̂w =
{
(XTX)−1XT − (XTWX)−1XTW

}
y

and

V = var(β̂ − β̂w)

=
{
(XTX)−1XT − (XTWX)−1XTW

}
σ2IN

{
(XTX)−1XT − (XTWX)−1XTW

}T
.
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V can be estimated by

V̂ =
{
(XTX)−1XT − (XTWX)−1XTW

}
σ̂2IN

{
(XTX)−1XT − (XTWX)−1XTW

}T
.

It follows naturally that we can use the component wise standardized difference

β̂w,k − β̂k√
V̂kk

∼ N(0, 1), k = 1, · · · , p,

where βw,k denotes the kth component of β̂w, to test the goodness of fit of the

assumed model. A combined test is provided by (β̂w − β̂)T V̂ −1(β̂w − β̂) ∼ χ2
p. It is

usually more informative to conduct the componentwise tests than the combined

chi-square test. The fact that some component wise tests are significant while

others are not may give us some clue on the nature of model misspecification.

Conversely, with a specific type of model departure in mind, we will have some

idea on which components to look for difference and those component wise tests

are likely to be more powerful than the combined test.

3.1.3 Comparing the Weighted and the Complementarily

Weighted Estimator

We can also exploit the difference between β̂w and β̂w′ , where βw′ is the estimator

based on weights w
′
i = 1 − wi. Note that 1 − wi = 1 − P (i ∈ s) = P (i ∈ s

′
) and so

β̂w
′ is the analogue of β̂

′
π = Eπ(β̂s

′ ) just like β̂w is analogous to β̂π = Eπ(β̂s). We

have

β̂
′
w = (XTW

′
X)−1XTW

′
y,
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where W
′
is the diagonal matrix of vector (w

′
1, w

′
2, · · · , w

′
N). Then

β̂w − β̂
′
w =

{
(XTWX)−1XTW − (XTW

′
X)−1XTW

′}
y.

The standardized difference between β̂w and β̂w′ is

V
′

= var(β̂w − β̂w′ )

= σ2
{
(XTWX)−1XTW − (XTW

′
X)−1XTW

′}
{
(XTWX)−1XTW − (XTW

′
X)−1XTW

′}T
,

it can be estimated by

V̂
′

= σ̂2
{
(XTWX)−1XTW − (XTW

′
X)−1XTW

′}
{
(XTWX)−1XTW − (XTW

′
X)−1XTW

′}T
,

Thus we can consider the componentwise standardized difference test statistics

β̂w,k − β̂w
′
,k√

V̂ ′
, k = 1, · · · , p,

where βw,k and βw
′
,k denote the the kth components of β̂w and β̂w

′ respectively. Or

the combined test can be provided by (β̂w − β̂w′ )T V̂ ′−1
(β̂w − β̂w′ ) ∼ χ2

p.

Note that the sample splitting approach considered in section(2.3) can be regarded

as a special case of the weighting approach when the weights are either 0 or 1.

3.2 Quadratic Regression Examples Revisited

We have used the sub-sample approach to check the lack of fit of normal regression

model with mileage data. In this section we apply the dataset again, but this time
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we use weighting approach to check the goodness of fit with weights wi =
ri

N + 1
.

Please refer to table 3.1.

Table 3.1: SD of estimates under weighting with PPR

β̂ β̂w β̂w′
(β̂ − β̂w)√

V̂

(β̂w − β̂w′ )√
V̂ ′

Intercept 35.83 29.49 39.53 2.74 3.43

Linear -0.105 -0.0567 -0.146 -2.52 -3.40

Quadratic 0.000126 0.000044 0.000214 2.36 3.39

The results are more significant compared with those of the sub-sample approach.

This indicates that the weighting approach is at least as effective as the sub-sample

approach. Furthermore, weighting approach also avoids the cumbersome computa-

tion; it can be done in a few seconds with S-plus. We have also tried weights that

are proportional to the value of xi. The results are listed in table 3.2

Table 3.2: SD of estimates under weighting with PPS

β̂ β̂w β̂w
′

(β̂ − β̂w)√
V̂

(β̂w − β̂w′ )√
V̂ ′

Intercept 35.83 31.96 40.29 3.43494 -3.43494

Linear -0.105 -0.072 -0.158 -3.43494 3.43494

Quadratic 1.25e-4 6.6e-5 2.5e-4 3.43494 -3.43494
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An interesting observation under such weights is that the standardized differences

for the intercept, linear and quadratic components all equal in magnitude. This

is a consequences of the fact that we use wi ∝ xi. A detailed proof of this can be

found in Appendix A.

3.3 Asymptotic Power Study

3.3.1 General Theory

In addition to being less computing intensive, another advantage of the weighting

approach to model checking over the sub-sampling approach is that it is more

amenable to power calculation. We propose a linear regression model as follows,

y = Xβ + ε

where

ε ∼ N(0, σ2IN).

we have

β̂ = (XTX)−1XTy
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and

β̂w = (XTWX)−1XTWy,

where W = diag(w1, · · · , wN). We need a proposition to get our power function.

Proposition

If E(y) = µ and var(y) = Σ, then

E(yTAy) = tr(AΣ) + µTAµ

Proof:

yTAy = (y − µ+ µ)TA(y − µ+ µ)

= (y − µ)TA(y − µ) + µTA(y − µ) + (y − µ)TAµ+ µTAµ

because the expectations of the second and third item equal to 0, so

E(yTAy) = E[(y − µ)TA(y − µ)] + µTAµ,

furthermore, we have

E[(y − µ)TA(y − µ)] = E[tr{(y − µ)TA(y − µ)}] = tr(AΣ)

and

E(yTAy) = tr(AΣ) + µTAµ.¶

Now we can get the formula of the power function. Note that when the assumed
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linear model holds,

β̂ − β̂w = Dy ∼ N(0, σ2DDT ),

where D = (XTX)−1XT − (XTWX)−1XTW . To facilitate comparison with exist-

ing omnibus goodness of fit tests, we consider the chi-square statistic

Q =
1

σ̂2
(β̂ − β̂w)T (DDT )−1(β̂ − β̂w)

where

σ̂2 =
(y −Xβ)T (y −Xβ)

N − p
=
yT [IN −H ]y

N − p
.

is the usual unbiased estimator of σ2 based on the full sample andH = X(XTX)−1XT

is the hat matrix. In another word, our true model is of the form,

y = µ+ ε

ε ∼ N(0, σ2IN)

µ �= Xβ.

then β̂ − β̂w = [(XTX)−1XT − (XTWX)−1XTW ]y = Dy has mean δ = Dµ. So

β̂ − β̂w ∼ N(δ, σ2DDT ). It follows that

1

σ2
(β̂ − β̂w)T (DDT )−1(β̂ − β̂w) =

σ̂2

σ2
Q

has a non-central chi-square distribution χ2
p(λ) with non-centrality parameter

λ =
1

σ2
δT (DDT )−1δ
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From proposition

E(σ̂2) =
σ2tr[(IN −H)] + µT (IN −H)µ

N − p

= σ2 +
µT [IN −H ]µ

N − p
. (3.3)

So we get

E(σ̂2)

σ2
= 1 +

µT (IN −H)µ

σ2(N − p)
= R

It follows that Q is asymptotically distributed like R−1χ2
p(λ) and so the asymptotic

power can be calculated. The standardized differences between the kth component

of the weighted and unweighted estimate is given by

Tk =
β̂k − β̂w,k

σ̂ck

, (k = 1, · · · , p),

where σ̂ck
is the square root of the kth diagonal element of DDT . Its asymptotic

power can be obtained from a normal distribution with shifted mean multiplied by

an appropriate factor. The derivation is similar and will be omitted.

3.3.2 Simulation and Comparison

We now perform some power calculation. Consider the normal regression model

yi = µ(xi) + ei, i = 1, · · · , 64,

where the errors ei are independently distributed as N(0, 1). Suppose we are in-

terested in testing the simple linear regression model

H0 : µ(x) = β0 + β1x
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versus

H1 : µ(x) �= β0 + β1x

using the omnibus chi-square statistic Q with weights wi ∝ ri. A nominal level of

0.05 is used. We make use of the non-central chi-square distribution to calculate

the power of the test when the true mean function is µ(x) = 1 + γx2 with design

points generated from the uniform (-2, 2) distribution as in example 1 of Fan and

Huang (2001). Since xi can take on negative values, we choose the weights to be

proportional to the ranks ri so that observations at the upper end of the x-scale

are weighted more heavily. More generally, we can consider the following class of

weights

wi = rα
i .

By choosing α > 1, we will be weighting those observations with large x values

more emphatically. In passing, we note that Tamura (1963) had proposed a class

of rank tests based on rα
i as well. The power functions of the test Q based on

weights wi = rα
i with α = 1,2 and 3 are given in Figure 3.1.

It appears that the choice of α does not make a wholelot difference in this example

with the test based on α = 1 performing slightly better. Comparing with Figure

1 of Fan and Huang (2001), it can be seen that the proposed test based on the

weighting approach appears to be more powerful than Fan and Huang’s adaptive

Neyman test when the true mean function is quadratic. For example, when γ = 0.2,

the proposed test statistic Q based on α = 1 has power close to 0.4 whereas the
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Figure 3.1: Power of the quadratic form goodness of fit test for simple linear
regression based on the standardised difference between weighted and unweighted
estimates when the true mean function is quadratic and n = 64
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adaptive Neyman test only has power close to 0.2. At γ = 0.4, the proposed Q

has power 0.93 compared with 0.8 for the adaptive Neyman test. In fact, the

proposed test has power close to that of the F test for testing linear versus quadratic

regression, which is the optimal test in this setting.

When the true mean function is logistic,

µ(x) =
10

1 + γexp(−2x)
,
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with design points xi = Φ−1(
i

65
), i = 1, · · · , 64, test Q based on wi = rα

i (α = 1, 2, 3)

is able to maintain its power above 0.98 whereas the power of the adaptive Neyman

test drops to around 0.9 (Fan and Huang, 2001) when γ is near 1. To gain more

insights

into how the choice of weights affects the test, let us suppose the true mean

function is given by the above logistic function with γ = 1. The true means at the

64 design points are depicted by the dots in Figure 3.2.

Figure 3.2: Power of the quadratic form goodness of fit test for simple linear
regression based on the standardised difference between weighted and unweighted
estimates when the true mean function is logistic and n = 64
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The expectation of the unweighted least squares line, E(β̂0 + β̂1x), is given by

the solid line in Figure 3.2. Also shown in Figure 3.2 are the expectations of the

weighted least squares line, E(β̂w,0 + β̂w,1x), with weights wi = rα
i and α =1,2,3,5

and 10. It can be seen that the logistic means follow more or less a straight line

in the middle section but level out at both ends. In view of this, it is not sur-

prising that as increases, so that the observations with large x values get weighted

more and more heavily, the expected weighted least squares line gets rotated in the

counter-clockwise direction and becomes increasily different from the unweighted

line on the average. The most extreme difference occurs at α = 10. However,

the big difference between β̂ and β̂w when extreme weights such as wi = r10
i are

used is offset by the large variability of β̂w and hence β̂ − β̂w so that the test

Q = (β̂ − β̂w)T V̂ −1(β̂ − β̂w) is still most powerful if the usual weights wi = ri are

used. When the true mean function is logistic, the power of Q at λ = 1 is 0.995 if

wi = ri, 0.993 if wi = r2
i , 0.984 if wi = r3

i and drops to 0.658 if wi = r10
i . Our ex-

perience indicates that our original suggestion of weighting according to the ranks

of x, i.e., wi = ri, often works well in practice and is a good default choice in the

absence of other knowledge.

Not only does the proposed weighting approach acquitted itself well in power cal-

culation, it has the additional advantage that it can be applied in principle to test

the goodness of fit of any parametric model. In comparison, it is not clear how to

extend the adaptive Neyman procedure to test, say, a logistic regression model due
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to the discrete nature of the residuals.



Chapter 4

Weighted Likelihood Approach

4.1 The Likelihood Score Equation

Let the observed data be independently distributed according to the parametric

density p(y; x, β), where xi is a covariate value and β is the unknown parame-

ter. Consistent estimator of β can be obtained by solving estimating equation

(2.1). In this section, we will concentrate on maximum likelihood estimator so that

φ(β; x, y) = l
′
(β; xi, yi) is the derivative of l(β; y, x) = logp(β; xi, yi) with respect to

the parameter, so (2.1) becomes

N∑
i=1

l
′
(β; xi, yi) = 0. (4.1)

But the theory we develop can be applied to other choices of φ, such as those used in

robust estimation or generalized estimating equations with minor modification, see

chapter 5. To test the goodness of fit of the postulated model, we argue as follows.

29
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If the model is correctly specified, then the MLE based on a random sub-sample s

of size n of the original sample is also consistent. If the model is misspecified and s

is obtained by sampling without replacement with unequal selection probabilities

πi = P (i ∈ s),

then it is well known in the survey sampling literature (Pfeffermann, 1993) that

the subsample MLE β̂s obtained by solving the equation

∑
i∈s

l
′
(β; xi, yi) = 0 (4.2)

is in general a biased estimator of the full sample MLE β̂. This has led Pfeffermann

(1993) and Binder (1992) to advocate the use of pseudo score function

∑
i∈s

l
′
(β; xi, yi)

πi
= 0,

where weights inversely proportional to the selection probabilities πi are applied.

Since we are interested in model checking rather than finite population inference,

pseudo score function is not relevant to us.

Recall (3.1) and (3.2), we can re-write (4.2) as

n∑
i=1

I(i ∈ s)l
′
(β; xi, yi) = 0. (4.3)

Same idea as chapter 3, instead of solving (4.3) to get β̂s for every sub-sampling s

and then take average, we take expectation of (4.3) first to get

n∑
i=1

wil
′
(β; xi, yi) = 0. (4.4)
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where

wi = E{I(i ∈ s)} = P (i ∈ s) = πi.

Using standard Taylor Series expansions

β̂ − β ∼= −
{

n∑
i=1

l
′′
(β; xi, yi)

}−1 { n∑
i=1

l
′
(β; xi, yi)

}
(4.5)

β̂w − β ∼= −
{

n∑
i=1

wil
′′
(β; xi, yi)

}−1 { n∑
i=1

wil
′
(β; xi, yi)

}
(4.6)

According

var(AX) = A · var(X) · AT

cov(AX,BY ) = A · cov(X, Y ) · BT ,

we can also obtain the following asymptotic variance-covariance matrices from (4.5)

and (4.6)

var(β̂) = −
{

n∑
i=1

l
′′
(β; xi, yi)

}−1

var(β̂w) = −
{

n∑
i=1

wil
′′
(xi, β)

}−1

·
{

n∑
i=1

wi
2l

′′
(β; xi, yi)

}−1

·
{

n∑
i=1

wil
′′
(β; xi, yi)

}−1

cov(β̂, β̂w) = −
{

n∑
i=1

l
′′
(β; xi, yi)

}−1

.

Here we make use of the following equation

var(l
′
(β; xi, yi)) = −Eβl

′′
(β; xi, yi) � −l′′(β; xi, yi). (4.7)

This is a standard well known result and its proof is follows. proof

Firstly from the definition of information we know

I(β) = Eβ

(
∂

∂β
logp(β; x, y)

)2

=
∫

[p
′
(β; x, y)]2

p(β; x, y)
dx. (4.8)



Chapter 4 : Weighted Likelihood Approach 32

Secondly, since − ∂2

∂β2

∫
p(β; x, y)dx = 0 we have

−Eβ
∂2

∂β2
logp(β; x, y) = −Eβ

(
(p

′′
(β; x, y)p(x, β)− [p(β; x, y)]2

p(β; x, y)2

)

= −Eβ

(
p
′′
(β; x, y)

p(β; x, y)

)
+ I(β)

= −
∫
p
′′
(β; x, y)dx+ I(β)

= − ∂2

∂β2

∫
p(β; x, y)dx+ I(β)

= I(β). (4.9)

Thirdly, from − ∂

∂β

∫
p(β; x, y)dx = 0 we can get

I(β) = Eβ

(
∂

∂β
logp(β; x, y)

)2

= Eβ

(
∂

∂β
logp(β; x, y)−Eβ

(
∂

∂β
logp(β; x, y)

))2

= var

(
∂

∂β
logp(β; x, y)

)
. (4.10)

Equation(4.7) comes naturally from(4.8), (4.9) and (4.10)¶

Now we explore the difference between β̂, β̂w. If the model is correct, they are both

consistent estimators of β and therefore the difference is asymptotically normal with

mean zero and variance-covariance matrices given by

V = var(β̂ − β̂w)

= var(β̂w) + var(β̂) − cov(β̂, β̂w) − cov(β̂w, β̂)

(4.11)

It can be estimated by

V̂ = −
{

n∑
i=1

wil
′′
(β; xi, yi)

}−1

·
{

n∑
i=1

wi
2l

′′
(β; xi, yi)

}
·
{

n∑
i=1

wil
′′
(β; xi, yi)

}−1
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+

{
n∑

i=1

l
′′
(β; xi, yi)

}−1

. (4.12)

Then we can get our componentweise test statistics
β̂k − β̂w,k

V̂
k = 1, · · · , p or

quadratic form (β̂ − β̂w)
T
V̂ −1(β̂ − β̂w) which can both be used to test the goodness

of fit of our model.

Same as chapter 3 we can compare the weighted and the complementarily weighted

estimator too. That is to say we can exploit the difference between β̂w and β̂w′ ,

where w
′
is the estimator based on weights w

′
i = 1 − wi. We also have

1 − wi = 1 − P (i ∈ s) = P (i ∈ s
′
).

Using Standard Taylor series expansion,

β̂w′ − β ∼= −
{

n∑
i=1

w
′
il

′′
(β; xi, yi)

}−1 { n∑
i=1

w
′
il

′
(β; xi, yi)

}
.

Make use of (4.7) again

var(β̂w′) = −
{

n∑
i=1

w
′
il

′′
(xi, β)

}−1

·
{

n∑
i=1

w
′
i

2
l
′′
(β; xi, yi)

}−1

·
{

n∑
i=1

w
′
il

′′
(β; xi, yi)

}−1

cov(β̂w, β̂w
′ ) = −

{
n∑

i=1

wil
′′
(xi, β)

}−1

·
{

n∑
i=1

wiw
′
il

′′
(β; xi, yi)

}−1

·
{

n∑
i=1

w
′
il

′′
(β; xi, yi)

}−1

So

V
′

= var(β̂w − β̂
′
w)

= var(β̂w) + var(β̂
′
w) − 2cov(β̂w, β̂

′
w).
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It can be estimated by

V̂
′

= −
{

n∑
i=1

wil
′′
(β; xi, yi)

}−1

·
{

n∑
i=1

wi
2l

′′
(β; xi, yi)

}
·
{

n∑
i=1

wil
′′
(β; xi, yi)

}−1

−
{

n∑
i=1

(1 − wi)l
′′
(β; xi, yi)

}−1

·
{

n∑
i=1

(1 − wi)
2l

′′
(β; xi, yi)

}
·
{

n∑
i=1

(1 − wi)l
′′
(β; xi, yi)

}−1

+2

{
n∑

i=1

wil
′′
(β; xi, yi)

}−1

·
{

n∑
i=1

wi(1 − wi)l
′′
(β; xi, yi)

}

·
{

n∑
i=1

(1 − wi)l
′′
(β; xi, yi)

}−1

.

By doing so, we get statistics
β̂w,k − β̂w′ ,k

V̂
′
kk

k = 1, · · · , p or (β̂w − β̂w′ )
T
V̂

′
kk

−1
(β̂w − β̂w′ )

which can also both be used to test the goodness of fit of our model.

4.2 Logistic Regression with Menarche Data

Next we consider a well known data set first reported by Milicer and Szczotka(1966)

which is about the age of menarche in a sample of 3918 Warsaw girls who are

grouped into N = 25 age groups. Let mi, i = 1, ..., 25, denote the group size, yi

denote the number of girls in group i who have reached menarche and xi is the

mid-point of the class interval for age. It is assumed that yi ∼ Binomial(mi, pi)

independently and we would like to test the goodness of fit of the liner logistic

model

log

(
pi

1 − pi

)
= β0 + β1xi (4.13)

The usual Pearson’s chi-square test for this model has a statistic value of 26.7 with

23 degree of freedom and a p value of around 0.25. However, an examination of
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the residuals shows that the fit could be improved at the lower tail. Stukel(1988)

reports the results of 13 score tests of the logistic family and 5 of those tests are

significant at level 0.05. More recently, Fygenson(1997) fit a decreasing odds ratio

model to this data.

To see whether the same logistic model holds for different age groups, we divide

the 25 binomial observations into two subsamples s(x ≥ 13.33) and s
′
(x < 13.33).

The results of fitting logistic regression to the two sub-samples are given in table

4.1.

Table 4.1: SD of estimates of logistic regression under sample splitting

β̂ β̂s β̂s′
β̂ − β̂s√

V̂

β̂s − β̂s
′√

V̂ ′

Intercept -21.23 -19.73 -23.62 -0.86 -1.56

Linear 1.632 1.522 1.828 0.90 1.63

From the table we can see the differences between the two sets of parameter esti-

mates are not significant at level 0.05.

Instead of using a fixed partition of the data set, we consider the weighting ap-

proach with weights wi proportional to age ordering and requires Σwi = 12 like

in half samping. The unweighted MLE β̂ as well as the weighted β̂w and β̂w′ are

given in the table 4.2. The variance estimates can be obtained from (4.12) with
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observation information −l′′(β̂; xi, yi) with the expected information

mip̂i(1 − p̂i)

⎛
⎜⎜⎜⎝

1 xi

xi x2
i

⎞
⎟⎟⎟⎠ .

where

p̂i =
eβ̂0+β̂1xi

1 + eβ̂0+β̂1xi
.

in the variance formulae. It can be seen that component-wise standardized differ-

ences between β̂ and β̂w, as well as between β̂w and β̂w′ are statistically significant

at level 0.05. Therefore the departure away from the logistic model is detected by

the weighting approach.

Table 4.2: SD of estimates of logistic regression under weighting

β̂ β̂w β̂w′
β̂ − β̂w√

V

β̂w − β̂w′√
V ′

Intercept -21.23 -20.31 -22.08 -2.06 2.19

Linear 1.632 1.563 1.700 2.07 -2.20

4.3 Simulation Results

Our first set of simulations is about logistic regression models. The same mi and

xi as in the menarche data set are adopted. Firstly, we simulate 1000 datasets

according to the linear logistic model (4.13) with parameters set to the MLE com-

puted from the menarche data (i.e., β0 = −21.23, β1 = 1.632). The actual levels of
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Table 4.3: Simulation result under logistic model

Componense-wise difference
β̂ − β̂w√

V

β̂w − β̂w′√
V ′

Intercept 0.065 0.064

Linear 0.059 0.063

the tests are slightly above 0.05. Please refer to table 4.3.

Secondly we simulate 1000 data sets yi ∼ Binomial(mi, pi), where pi is the raw

proportion from age group i in the menarche data set. We call this the separate

proportion model. It appears that all powers exceed 0.7 when data are simulated

from the separate proportion model. Please refer to table 4.4.

Table 4.4: Simulation result under separate proportion model

Componense-wise difference
β̂ − β̂w√

V

β̂w − β̂w′√
V ′

Intercept 0.727 0.729

Linear 0.763 0.765

Kauermann and Tutz (1999) motivated the use of varying coefficient models for di-

agnostics in regression models with continuous and factorial covariates. We adopt

their method to simulate our binary observations from the following logistic model

η = log
p

1 − p
= 0.5 − 4(µ− 0.5)2 + x(1.5µ− 0.5),

where x is the factorial regressor in {0, 1} and µ is continuous, uniformly distributed

on 20 equidistant design points from [0, 1]. At each design point, four observations



Chapter 4 : Weighted Likelihood Approach 38

are simulated, two with x = 0 and two with x = 1. Therefore there is a total of

80 observations in each simulated sample. The same as the previous example we

simulate 1000 samples. Following Kauermann and Tutz (1999), we are interested

in testing the goodness of fit of the following three models,

M0 : η = β0 + βµµ+ βµµµ
2 + βxx+ βµxµx

M1 : η = β0 + βµµ+ βxx+ βµxµx

M2 : η = β0 + βµµ+ βxx.

Recall that we simulate our sample from the full model, which includes both the

quadratic term and the interaction term. So M0 is the true model. We get model

M1 by subtracting the quadratic term from M0. Similarly, M2 is derived by taking

the interaction term away from M1. Detailed simulation results are shown in table

4.5.

The good performance of the βµ component test is to be expected because the erro-

neous omission of a quadratic term during fitting will obviously lead to a systematic

difference in the estimates of the linear term depending on whether we weight the

small µ
′
s or the large µ

′
s heavily. Tests based on the standardized differences in

the β0 component also do fairly well and reject M1 and M2 around 19% and 15%

of the times respectively. The interaction term µx is omitted from M2 only but not

from M1, this explains why the tests based on the standardized differences in the

βx component reject M2 (19.5%) more often than M1 (7.5%). The above results

illustrate the comment we made towards the end of section 3.1 that with a specific
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Table 4.5: Simulation result of varing coefficient model

Model Componense-wise difference β0 βµ βx βµx βµµ

M0
β̂ − β̂w√

V
0.028 0.032 0.040 0.038 0.028

M0
β̂w − β̂w′√

V ′ 0.028 0.031 0.050 0.033 0.031

M1
β̂ − β̂w√

V
0.191 0.188 0.075 0.073

M1
β̂w − β̂

′
w√

V ′ 0.185 0.184 0.074 0.076

M2
β̂ − β̂w√

V
0.168 0.250 0.195

M2
β̂w − β̂w′√

V ′ 0.136 0.263 0.194

type of model departure in mind, we will have some idea on which components

to look for difference. Conversely, results of the componentwise tests can give us

some clue on the nature of model misspecification. Similar remarks were made by

Kauermann and Tutz (1999) for their class of tests.



Chapter 5

Generalized Estimating Equation

5.1 Extension to GEE

Generally, the MLE method should only be used if the complete distribution is

correctly specified. If this is not the case, misspecification may yield inconsistent

estimators of the parameters. The over-dispersion often occurs due to the posi-

tive correlation within clusters in Longitudinal data and Clustered data. There is

a scarcity of models for correlated discrete data. It is also deemed desirable not

to make too many assumptions about higher order moments as they are hard to

verify. A popular approach is to model only the marginal mean of the response

together with a working specification of the variance function or correlation struc-

ture and then make use of quasi-likelihood or generalized estimating equations to

estimate model parameters. These methods can be made robust to misspecification

of the correlation structure in the sense that the marginal parameters can still be
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estimated consistently with valid sandwich type variance estimates. Our approach

to testing goodness of fit can be applied equally well to this setting. All that is

required is to come up with a weighted version of the estimating equation and to

derive the standard error of the difference between the weighted and the unweighted

estimates. The extension will be discussed concretely. We analyze data collected

from teratology experiments which are typically recorded asmi, yi, xi, i = 1, ..., N ,

where mi is the size of litter, yi is the number of dead or malformed foetuses within

litter i and xi is a covariate vector consisting of dose level and possibly litter size

as well. In a typical generalized linear model(GLM), one may assume

g(pi) = xT
i β,

where pi is the marginal probability that a foetus in litter i is dead or malformed

so that µi = E(yi) = mipi, g(.) is the link function, and xi, β are covariate and

parameter vectors of matching dimension respectively. A working specification of

the variance function could be

var(yi) = φmipi(1 − pi) = Vi,

where φ is a multiplicative over-dispersion factor. The parameter β can be esti-

mated by solving the quasi-score equation (Wedderburn, 1974)

U(β, φ) =
N∑

i=1

(
∂µ

∂β

)′

V −1
i (µi;φ)(yi − µi(β)) = 0. (5.1)

Here φ is estimated through methods of moments,

φ̂ =
1

N − p

N∑
i=1

(yi − µi)
2

µi(mi − µi)/mi

.
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Another variance function given by (Liang and Henfelt,1994),

Vi = µi(mi − µi)(1 + (mi − 1)φ)/mi,

can also be used for our estimation.

Given a initial estimate of β, we can estimate φ by solving the moment equation

N∑
1

[(yi − µi)
2/{µi(mi − µi)(1 + (mi − 1)φ)/mi}] − (N − p) = 0. (5.2)

After getting φ̂, solve (5.1) to get our new β. We then iterate between (5.1) and

(5.2) until the estimation converge.

Two variance estimates for β are available, respectively Σ1
−1 or Σ1

−1Σ2Σ1
−1, where

Σ1 =
N∑

i=1

(
∂µi

∂β

)′

V −1
i

(
∂µi

∂β

)

Σ2 =
N∑

i=1

(
∂µi

∂β

)′

V −1
i (yi − µi)

2V −1
i

(
∂µi

∂β

)
,

where Σ1
−1Σ2Σ1

−1 is called the robust variance estimate for β̂ (Liang and Helflt,

1994). We make use of it in our weighted estimating equation. Now we explore

our weighted estimator βw. It can be solved from the weighed estimating equation

Uw(β, φ) =
N∑

i=1

wi

(
∂µi

∂β

)
V −1

i (yi − µi) = 0.

Using the standard Taylor Series expansions,

β̂w − β =

{
N∑

I=1

wi(
∂µi

∂β
)
′
V −1

i

∂µi

∂β

}−1 { N∑
i=1

wi
∂µi

∂β
V −1

i (yi − µi)

}

β̂w′ − β =

{
N∑

I=1

w
′
i(
∂µi

∂β
)
′
V −1

i

∂µi

∂β

}−1 { N∑
i=1

w
′
i

∂µi

∂β
V −1

i (yi − µi)

}
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We can obtain the following estimate of var(β̂w − β̂).

V̂ = Σ1
−1Σ2Σ1

−1 + Σw,1
−1Σww,2Σw,1

−1 − Σw,1
−1Σw,2Σ1

−1 − Σ1
−1Σw,2Σw,1

−1,

where

Σw,1 =
N∑

i=1

wi

(
∂µi

∂β

)′

V −1
i

(
∂µi

∂β

)
,

Σw,2 =
N∑

i=1

wi

(
∂µi

∂β

)′

V −1
i (yi − µi)

2V −1
i

(
∂µi

∂β

)
,

and

Σww,2 =
N∑

i=1

wi
2

(
∂µi

∂β

)′

V −1
i (yi − µi)

2V −1
i

(
∂µi

∂β

)
.

We also can get the following estimate of var(β̂w − β̂w′ ),

V̂
′

= Σw,1
−1Σww′ ,2Σw,1

−1 + Σw′ ,1
−1Σw′w′ ,2Σw,1

−1

−Σw,1
−1Σww′ ,2Σw′ ,1

−1 − Σw′ ,1
−1Σww′ ,2Σw,1

−1

where

Σw′ ,1 =
N∑

i=1

wi
′
(
∂µi

∂β

)′

V −1
i

(
∂µi

∂β

)
,

Σww′ ,2 =
N∑

i=1

wiwi
′
(
∂µi

∂β

)′

V −1
i (yi − µi)

2V −1
i

(
∂µi

∂β

)
,

and

Σw′w′ ,2 =
N∑

i=1

w
′
i

2
(
∂µi

∂β

)′

V −1
i (yi − µi)

2V −1
i

(
∂µi

∂β

)
.
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And all the matrices are evaluated at β̂. If the form of the marginal probability is

misspecified, then β̂, β̂w and β̂w′ may not be estimating the same thing and we can

use the standardized difference between β̂ and β̂w′ or the standardized difference

between β̂w and β̂w
′ to test the correctness of the link function.

5.2 Example

As an illustration, we consider the data given in Table 6.17 of Morgan (1992). The

data were first presented by Williams (1988) and consist of the numbers of deaths

per litter from a mouse teratology experiment with 4 dose groups. Williams (1982)

fitted the model

log(
p

1 − p
) = βd1I1 + βd2I2 + βd3I3 + βd4I4 + βm1m+ βm2m

2.

m is the size of the litter, p is the probability of death given litter and dose and

I1, I2, I3, I4 are indicators for the 4 dose groups. In this example we use weights

proportional to litter sizes. To test the appropriateness of this quadratic model

we compare the weighted against unweighted estimates of β. In addition, we also

compare the weighted against the complementarily weighted estimators of β. The

results are given in the table 5.1.

It is shown that none of the componentwise standardized differences are significant

at level 0.05, which seem to support Williams’s model.
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Table 5.1:

β̂ β̂w β̂w′ V̂ V̂
′ β̂ − β̂w√

V

β̂w − β̂w′√
V ′

βd1 6.6016 5.429 6.402 0.561 0.948 1.047 -1.026

βd2 5.917 5.377 6.261 0.563 0.970 0.96 0.911

βd3 6.154 5.537 6.562 0.576 0.973 1.071 -1.053

βd4 6.78 6.207 7.154 0.556 0.947 1.03 -1.00

βm1 -1.288 -1.195 -1.355 0.088 0.158 -1.044 1.012

βm2 0.049 0.0459 0.0523 0.033 0.0063 1.058 -1.02

If we drop the quadratic term and re-fit the model, then the model becomes

log(
p

1 − p
) = βd1I1 + βd2I2 + βd3I3 + βd2I2 + βm1m,

And there are significant differences between the weighted and unweighted esti-

mates for every component. It appears that the proposed weighting scheme has

good power in detecting the omission of the quadratic term.

The results are listed in table 5.2

There are significant differences between the weighted and unweighted estimates

for every component. It appears that the proposed weighting scheme has good

power in detecting the omission of the quadratic term.
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Table 5.2:

β̂ β̂w β̂w′ V̂ V̂
′ β̂ − β̂w√

V

β̂w − β̂w′√
V ′

βd1 -0.9999 -2.181 -0.185 0.461 0.802 2.56 -2.49

βd2 -1.0121 -2.11 -0.294 0.426 0.728 2.58 -2.49

βd3 -1.7661 -2.05 0.1223 0.493 0.856 2.61 -2.54

βd4 -3485 -1.44 0.4176 0.420 0.730 2.61 -2.55

βm1 -0821 0.0048 -0.1475 0.034 0.060 -2.57 -2.53



Chapter 6

Conclusion

The main appeal of the proposed weighting approach to model checking lies in

its generality and simplicity. In principle, the method can be applied to test the

goodness of fit of any parametric model and its implementation requires only minor

modifications to the existing codes for finding MLE and its standard error. The

method can even be applied in situations where the models are only marginally

specified that necessitate the use of quasi-likelihood or generalised estimating equa-

tions. Unlike goodness of fit tests based on nonparametric regression, there is no

smoothing parameter to be selected and there is no need to perform bootstrap to

simulate the null distribution of the test statistic. The usefulness of the proposed

approach is demonstrated in three examples involving normal regression, logistic

regression and marginal regression model for litter data. Simulation studies and

asymptotic power calculation suggest that our simple tests compare favourably

with more sophisticated tests proposed recently by Fan and Huang (2001) and
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Kauermann and Tutz (1999).
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Appendix

Appendix A: Proof for the fact that the compo-

nentwise standardized differences
β̂w,k − β̂k√

V̂
. have

equal magnitude when the weights wi are propor-

tional to xi

Recall

β̂w = (XTWX)−1XTWy

β̂ = (XTX)
−1
XTy,

where

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 x1
2

1 x2 x2
2

...
...

...

1 xn xn
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 0
x2

. . .

0
xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we let

A = [(XTWX)−1XTW − (XTX)−1XT ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

aT
1

aT
2

aT
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

then, we have

(β̂w − β̂)2 = AyyTAT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

aT
1 yy

Ta1 aT
1 yy

Ta2 aT
1 yy

Ta3

aT
2 yy

Ta1 aT
2 yy

Ta2 aT
2 yy

Ta3

aT
3 yy

Ta1 aT
3 yy

Ta2 aT
3 yy

Ta3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

V = σ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

aT
1 a1 aT

1 a2 aT
1 a3

aT
2 a1 aT

2 a2 aT
2 a3

aT
3 a1 aT

3 a2 aT
3 a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

So our issue becomes to prove

aT
1 yy

Ta1

aT
1 a1

=
aT

2 yy
Ta2

aT
2 a2

=
aT

3 yy
Ta3

aT
3 a3

for all y. By letting y take on (1, 0, · · · , 0)T , (0, 1, 0, · · · , 0),· · ·,0, · · · , 0, 1, we obtain

the necessary condition.

a2
1i

‖ a1 ‖ =
a2

2i

‖ a2 ‖ =
a2

3i

‖ a3 ‖ ,
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for i = 1, · · · , n. This means that our task becomes that of proving

a1 ∝ a2 ∝ a3,

Which of course is also a sufficient condition for (A.1) to hold. We can get

XTWX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
Xi

∑
X2

i

∑
X3

i

∑
X2

i

∑
X3

i

∑
X4

i

∑
X3

i

∑
X4

i

∑
X5

i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let
∑

Xi = a,
∑

X2
i = b,

∑
X3

i = c,
∑

X4
i = d and

∑
X5

i = e,

we have

(XTWX)−1XTW =
1

F1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(ce− d2) + x2
1(cd− be) + x3

1(bd − c2), · · ·

x1(cd− be) + x2
1(ae− c2) + x3

1(bc− ad), · · ·

x1(bd− c2) + x2
1(bc− ad) + x3

1(ac− b2), · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

(XTX)−1XT =
1

F2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(bd− c2) + x1(bc− ad) + x2
1(ac− b2), · · ·

(bc− ad) + x1(nd− b2) + x2
1(ab− nc), · · ·

(ac− b2) + x1(ad− nc) + x2
1(nb− a2), · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

F1 = −c3 + 2bcd− ad2 − b2e+ ace,

and

F2 = −b3 + 2abe− nc2 − a2d+ nbd.
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They are the determinants of XTWX snf XTX respectively.

So A = (XTWX)−1XTW − (XTX)−1XT has the following form.

1

F1F2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−F1(bd− c2) + {F2(ce− d2) − F1(bc− ad)}x1 + {F2(cd− be)

−F1(ac− b2)}x2
1 + F2(bd − c2)x3

1 · · ·

−F1(bc− ad) + {F2(cd− be) − F1(nd− b2)}x1 + {F2(ae− c2)

−F1(ab− nc)}x2
1 + F2(bc− ad)x3

1 · · ·

−F1(ac− b2) + {F2(bd− c2) − F1(ab− nc)}x1 + {F2(bc− ad)

−F1(nb− a2)}x2
1 + F2(ac− b2)x3

1 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We want to prove that the row vectors of (A.2) are proportional to one another.

In the first row, the coefficient of x1 is

1

F1 · F2
[(−b3 + 2abc− nc2 − a2d+ nbd)(ce− d2)

−(−c3 + 2bcd− ad2 − b2e+ ace)(bc− ad)]

=
1

F1 · F2

(bd− c2)(b2d+ nce− nd2 − bc2 + acd− abc).

In the second row the coefficient of x1 is

1

F1 · F2

[(−b3 + 2abc− nc2 − a2d+ nbd)(cd− bc)

−(−c3 + 2bcd− ad2 − b2e+ ace)(nd− b2)]

=
1

F1 · F2
(bc− ad)(b2d+ nce− nd2 − bc62 + acd− abc).

The coefficient of x2
1 in the first row is

1

F1 · F2
[(−b3 + 2abc− nc2 − a2d+ nbd)(cd − be)
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−(−c3 + 2bcd− ad2 − b2e+ ace)(ac− b2)]

=
1

F1 · F2

(bd− c2)(b2c+ a2e+ ncd− nbe− abd − ac2).

The coefficient of x2
1 in the second row is

1

F1 · F2

[(−b3 + 2abc− nc2 − a2d+ nbd)(ae− c2)

−(−c3 + 2bcd− ad2 − b2e+ ace)(ab− nc)]

=
1

F1 · F2
(bc− ad)(b2c+ a2encd− nbe − abd − ac2).

Similarly we can get the coefficients of the constant items and the cubic items. We

can observe that the two vectors aT
1 , aT

2 of A only differ in the multipliers, which

are bd − c2 for row 1 and ac− b2 for row 2. From the above discussion we conclude

that

aT
1

bc− ad
=

aT
2

bd− c2

or

aT
2 =

bd − c2

bc− ad
aT

1

Similiarly, we can show that the multipier for the third row is ac− b2. So

aT
3

=

bc− ad

ac− b2
bc− adaT

2

Appendix B: Selective Code in S-Plus2000

Mile Age Example

##################################################################
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## First we input tmpsize and mile from dataset or other files ###
######## The dataset’s name is mileagedata #############
##################################################################
attach(mileagedata)
qfit <- lm(formula = mile ~ size + size^2,na.action = na.exclude)
qfit.sigma <- summary(qfit)$sigma
qfit.coef <- summary(qfit)$coef
w1 <- 15*size/sum(size)
w2 <- 1-w1
x<- cbind(1,size,size^2)
WXTX1 <- t(x)%*%diag(w)%*%x
w <- w1^2
WXTX2 <- t(x)%*%diag(w)%*%x
w <- w2
WXTX3 <- t(x)%*%diag(w)%*%x
w <- w2^2
WXTX4 <- t(x)%*%diag(w)%*%x
w <- w1*w2
WXTX5 <- t(x)%*%diag(w2)%*%diag(w1)%*%x
var1 <- solve(WXTX1)%*%WXTX2%*%solve(WXTX1)
var2 <- solve(WXTX3)%*%WXTX4%*%solve(WXTX3)
var3 <- solve(WXTX1)%*%WXTX5%*%solve(WXTX3)
qfit1 <- lm(formula = mile ~size+size^2,data = mileagedata, weight = w1)
qfit1.coef1 <- summary(qfit1)$coef

qfit2 <- lm(formula = mile ~ size + size^2,data = mileagedata, weight=w_2)
qfit2.coef2 <- summary(qfit2)$coef
var <- t(x)%*%x
var <- solve(var)

final <- qfit.sigma^2*(var1+var2-var3-t(var3))
a <- qfit1.coef1[,1]
b <- qfit2.coef2[,1]
(b-a)/sqrt(diag(final))

Marnache Example

Mens.girl <- c(0,0,0,2,2,5,10,17,16,29,39,51,47,67,81,88,79,90,113,95,117,107,92,112,1049)
All.girl <- c(376,200,93,120,90,88,105,111,100,93,100,108,99,106,105,117,98,97,120,102,

122,111,94,114,1049)
age <- c(9.21,10.21,10.58,10.83,11.08,11.33,11.58,11.83,12.08,12.33,12.58,12.83,13.08,13.33,
13.58,13.83,14.08,14.33,14.58,14.83,15.08,15.33,15.58,15.83,17.58)

Com.Mens.girl <- All.girl - Mens.girl
SF <- cbind(Mens.girl,Com.Mens.girl)
options(contrats=c("contr.treatment","contr.poly"))
qfit <- glm(SF~age,family=binomial)
Beta <- summary(qfit)$coef[,1]
w1 <- 12*(c(1:25))/sum(c(1:25))
qfit1 <- glm(SF~age,family=binomial,w=w1)
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w2 <- 1-w1
qfit2 <- glm(SF~age,family=binomial,w=w2)

temp <- exp(Beta[1]+Beta[2]*age)
x <- rbind(1,age)
P <- temp/(1+temp)

var1 <- 0
var1 <- var1 + x%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var.pop <- solve(var1)

v<- summary(qfit)$cov.unscale
var1 <- 0
var2 <- 0
var1 <- var1 + x%*%diag(w1)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var2 <- var2 + x%*%diag(w1)%*%diag(w1)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var.pop1 <- solve(var1)%*%var2%*%solve(var1)

var1 <- 0
var2 <- 0
var1 <- var1 + x%*%diag(w2)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var2 <- var2 + x%*%diag(w2)%*%diag(w2)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var.pop2 <- solve(var1)%*%var2%*%solve(var1)

var1 <- 0
var2 <- 0
var3 <- 0
var1 <- var1 + x%*%diag(w1)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var2 <- var2 + x%*%diag(w2)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var3 <- var3 + x%*%diag(w1)%*%diag(w2)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var.pop3 <- solve(var1)%*%var3%*%solve(var2)

var <- var.pop1 + var.pop2 - var.pop3 - t(var.pop3)
var <- var.pop1-var.pop
expect <- summary(qfit)$coef
expect1 <- summary(qfit1)$coef
(expect[, 1] - expect1[, 1])/diag(sqrt(var))

GEE Example

all.num <- c(10,11,12,4,10,11,9,11,10,10,12,10,8,11,6,9,
14,12,11,13,14,10,12,13,10,14,13,4,8,13,12,10,3,13,12,14,9,
13,16,11,4,1,12,8,11,14,14,11,3,13,9,17,15,2,14,8,6,17)

r.num <- c(1,4,9,4,10,9,9,11,10,7,12,9,8,9,4,7,14,7,9,8,5,10,10,8,10,
3,13,3,8,5,12,1,1,1,0,4,2,2,1,0,0,0,0,0,1,0,1,0,0,0,2,2,0,0,1,0,0,0)
hb <- c(4.1,3.2,4.7,3.5,3.2,5.9,4.7,4.7,3.5,4.8,4.3,4.1,3.2,6.3,4.3,

3.1,3.6,4.1,4.8,4.7,4.8,6.7,5.2,4.3,3.9,6.3,4.4,5.2,3.9,7.7,
5.0,8.6,11.1,7.2,8.8,9.3,9.3,8.5,9.4,6.9,8.9,11.1,9.0,11.2,11.5,
12.6,9.5,9.8,16.6,14.5,15.4,14.5,14.6,16.5,14.8,13.6,14.5,12.4)

sf <- cbind(r.num,all.num-r.num)
qfit <- glm(sf~hb,family=binomial)
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##################
fai <- 0
stopsign <- 10
beta <- c(0,0)
beta1 <- c(0,0)
while(stopsign > 1e-5){

beta1 <- beta
qfit <- glm(sf~hb,family=binomial,weight=(1+(all.num-1)*fai))
beta <- qfit$coef
temp <- exp(beta[1]+beta[2]*hb)
pi<-temp/(1+temp)

cubic <- function(z,pi,m,y){
a <- (y-m*pi)^2
b <- m*pi*(1-pi)*((1+(m-1)*z))
c <- 56
sum(a/b)-c

}
cubic(0,pi,all.num,r.num)
tmp<- uniroot(cubic,lower=0, upper=10,pi=pi,m=all.num,y=r.num)
fai <- tmp$root
stopsign <- sum(abs(beta1-beta))

}

w1 <- 29*(hb)/sum(hb)
c <- ifelse(w1 >1,1,w1)
w1 <- c
w2 <- 1 - w1

qfit1 <- glm(sf~hb,family=binomial,weight=w1*(1+(all.num-1)*fai))
qfit2 <- glm(sf~hb,family=binomial,weight=w2*(1+(all.num-1)*fai))
beta <- qfit$coef
beta1 <- qfit1$coef
beta2 <- qfit2$coef

temp <- exp(beta[1]+beta[2]*hb)
pi<-temp/(1+temp)

beta
fai

######### variance #########
var1 <- rbind(1,hb)%*%diag(all.num*pi*(1-pi)/(1+(all.num-1)*fai))%*%cbind(1,hb)
var2 <- rbind(1,hb)%*%diag(((r.num-all.num*pi)/(1+(all.num-1)*fai))^2)%*%cbind(1,hb)
var.beta <- solve(var1)%*%var2%*%solve(var1)

var1 <- rbind(1,hb)%*%diag(w1)%*%diag(all.num*pi*(1-pi))%*%cbind(1,hb)
var2 <- rbind(1,hb)%*%diag(w1^2)%*%diag(((r.num-all.num*pi))^2)%*%cbind(1,hb)
var.beta1 <- solve(var1)%*%var2%*%solve(var1)
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var1 <- rbind(1,hb)%*%diag(w2)%*%diag(all.num*pi*(1-pi))%*%cbind(1,hb)
var2 <- rbind(1,hb)%*%diag(w2^2)%*%diag(((r.num-all.num*pi))^2)%*%cbind(1,hb)
var.beta2 <- solve(var1)%*%var2%*%solve(var1)

var1 <- rbind(1,hb)%*%diag(w1)%*%diag(all.num*pi*(1-pi))%*%cbind(1,hb)
var2 <- rbind(1,hb)%*%diag(w1*w2)%*%diag(((r.num-all.num*pi))^2)%*%cbind(1,hb)
var3 <- rbind(1,hb)%*%diag(w2)%*%diag(all.num*pi*(1-pi))%*%cbind(1,hb)

var.inter.12 <- solve(var1)%*%var2%*%solve(var3)

var1 <- rbind(1,hb)%*%diag(w1)%*%diag(all.num*pi*(1-pi))%*%cbind(1,hb)
var2 <- rbind(1,hb)%*%diag(w1)%*%diag(((r.num-all.num*pi))^2)%*%cbind(1,hb)
var3 <- rbind(1,hb)%*%diag(all.num*pi*(1-pi))%*%cbind(1,hb)
var.inter.1.all <- solve(var1)%*%var2%*%solve(var3)

var1 <- rbind(1,hb)%*%diag(w2)%*%diag(all.num*pi*(1-pi))%*%cbind(1,hb)
var2 <- rbind(1,hb)%*%diag(w2)%*%diag(((r.num-all.num*pi))^2)%*%cbind(1,hb)
var3 <- rbind(1,hb)%*%diag(all.num*pi*(1-pi))%*%cbind(1,hb)
var.inter.2.all <- solve(var1)%*%var2%*%solve(var3)

ret1 <-(beta1-beta2)/diag(sqrt(var.beta1+var.beta2-var.inter.12-t(var.inter.12)))
ret2 <-(beta-beta1)/diag(sqrt(var.beta1+var.beta-var.inter.1.all-t(var.inter.1.all)))
ret3 <-(beta-beta2)/diag(sqrt(var.beta1+var.beta-var.inter.2.all-t(var.inter.2.all)))

Simulation about Menarche girl data

orig.Mens.girl <- c(0,0,0,2,2,5,10,17,16,29,39,51,47,67,81,88,79,90,113,95,117,
107,92,112,1049)

All.girl <- c(376,200,93,120,90,88,105,111,100,93,100,108,99,106,105,117,98,97,
120,102,122,111,94,114,1049)

age <- c(9.21,10.21,10.58,10.83,11.08,11.33,11.58,11.83,12.08,12.33,12.58,12.83,
13.08,13.33,13.58,13.83,14.08,14.33,14.58,14.83,15.08,15.33,15.58,15.83,17.58)
orig.Com.Mens.girl <- All.girl - orig.Mens.girl
SF <- cbind(orig.Mens.girl,orig.Com.Mens.girl)
options(contrats=c("contr.treatment","contr.poly"))
qfit <- glm(SF~age,family=binomial)
summary(qfit)
Beta <- summary(qfit)$coef[,1]

main <-function(Mens.girl){
Com.Mens.girl <- All.girl - Mens.girl
SF <- cbind(Mens.girl,Com.Mens.girl)
options(contrats=c("contr.treatment","contr.poly"))
qfit <- glm(SF~age,family=binomial)
summary(qfit)
Beta <- summary(qfit)$coef[,1]
w1 <- 11*(age-9.21)/sum((age-9.21))
w1 <- 5*(c(25:1)^4)/sum(c(25:1)^4)
w1 <- 12*(c(1:25))/sum(c(1:25))
qfit1 <- glm(SF~age,family=binomial,w=w1)
w2 <- 1-w1
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qfit2 <- glm(SF~age,family=binomial,w=w2)
temp <- exp(Beta[1]+Beta[2]*age)
x <- rbind(1,age)
P <- temp/(1+temp)

var1 <- 0
var1 <- x%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var.pop <- solve(var1)

var1 <- 0
var2 <- 0
var1 <- x%*%diag(w1)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var2 <- x%*%diag(w1)%*%diag(w1)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var.pop1 <- solve(var1)%*%var2%*%solve(var1)
var1 <- 0
var2 <- 0
var1 <- x%*%diag(w2)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var2 <- x%*%diag(w2)%*%diag(w2)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var.pop2 <- solve(var1)%*%var2%*%solve(var1)
var1 <- 0
var2 <- 0
var3 <- 0
var1 <- x%*%diag(w1)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var2 <- x%*%diag(w2)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var3 <- x%*%diag(w1)%*%diag(w2)%*%diag(All.girl)%*%diag(P)%*%diag(1-P)%*%(t(x))
var.pop3 <- solve(var1)%*%var3%*%solve(var2)
#var <- var.pop2 - var.pop
var <- var.pop1 + var.pop2 - var.pop3 - t(var.pop3)
expect1 <- summary(qfit1)$coef
expect2 <- summary(qfit2)$coef
ret.value <- (expect1[, 1] - expect2[, 1])/diag(sqrt(var))

}

Pi.vec <- exp(Beta%*%rbind(1,age))/(1+exp(Beta%*%rbind(1,age)))

j <- 0
k <- 0
set.seed(1)
for (i in 1:500){

ret.value <- main(rbinom(rep(1,25),All.girl,Pi.vec) )
print(ret.value)
if(abs(ret.value[1]) > 5.991) j<-j+1
if(abs(ret.value[1]) > 1.96) j<-j+1
if(abs(ret.value[2]) > 1.96) k<-k+1

}
j
k

Simulation about varying coefficient data

equi.point <- rep(seq(1:20)/20,rep(4,20))
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factor <- rep(c(0,0,1,1),20)
temp <- exp(0.5 - 4*(equi.point-0.5)^2 + factor*(-0.5+1.5*equi.point))
Pi.vec <- temp/(1+temp)
k <- rep(0,5)
l <- rep(0,5)
m <- rep(0,5)
random.num <- rep(0,80)
for(i in 1:100){

random.num <- rbinom(rep(1,80),rep(1,80),Pi.vec)
fit <- glm(random.num ~ equi.point+equi.point^2+factor+factor*equi.point,family=binomial)
fit.coef <-summary(fit)$coef
expect <- fit.coef
Beta <- fit.coef[,1]
w1 <- rep(10*seq(1:20)/sum(c(1:20)),rep(4,20))
w2 <- 1-w1

fit1 <- glm(random.num ~ equi.point+equi.point^2+factor+factor*equi.point,
family=binomial,weight=w1)
fit1.coef <-summary(fit1)$coef
expect1 <- fit1.coef

fit2 <- glm(random.num ~ equi.point+equi.point^2+factor+factor*equi.point,
family=binomial,weight=w2)
fit2.coef <-summary(fit2)$coef
expect2 <- fit2.coef

temp <- exp(Beta[1]+Beta[2]*equi.point+Beta[3]*equi.point^2+Beta[4]*factor+Beta[5]
*factor*equi.point)

x <- rbind(1,equi.point,equi.point^2,factor,factor*equi.point)

P <- temp/(1+temp)
var1 <- x%*%diag(P)%*%diag(1-P)%*%(t(x))
var.pop <- solve(var1)
var1 <- 0
var2 <- 0
var1 <- var1 + x%*%diag(w1)%*%diag(P)%*%diag(1-P)%*%(t(x))
var2 <- var2 + x%*%diag(w1)%*%diag(w1)%*%diag(P)%*%diag(1-P)%*%t(x)
var.pop1 <- solve(var1)%*%var2%*%solve(var1)

var1 <- 0
var2 <- 0
var1 <- var1 + x%*%diag(w2)%*%diag(P)%*%diag(1-P)%*%(t(x))
var2 <- var2 + x%*%diag(w2)%*%diag(w2)%*%diag(P)%*%diag(1-P)%*%t(x)
var.pop2 <- solve(var1)%*%var2%*%solve(var1)
var1 <- 0
var2 <- 0
var3 <- 0
var1 <- var1 + x%*%diag(w1)%*%diag(P)%*%diag(1-P)%*%(t(x))
var2 <- var2 + x%*%diag(w2)%*%diag(P)%*%diag(1-P)%*%(t(x))
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var3 <- var3 + x%*%diag(w1)%*%diag(w2)%*%diag(P)%*%diag(1-P)%*%(t(x))
var.pop3 <- solve(var1)%*%var3%*%solve(var2)
var <- var.pop1 + var.pop2 - var.pop3 - t(var.pop3)
ret.value <- (expect1[, 1] - expect2 [, 1])/diag(sqrt(var))
if(ret.value[1]>1.96) k[1]<-k[1]+1
if(ret.value[2]>1.96) k[2]<-k[2]+1
if(ret.value[3]>1.96) k[3]<-k[3]+1
if(ret.value[4]>1.96) k[4]<-k[4]+1
if(ret.value[5]>1.96) k[5]<-k[5]+1
var <- var.pop1 - var.pop
ret.value <- (expect1[, 1] - expect[, 1])/diag(sqrt(var))

if(ret.value[1]>1.96) l[1]<-l[1]+1
if(ret.value[2]>1.96) l[2]<-l[2]+1
if(ret.value[3]>1.96) l[3]<-l[3]+1
if(ret.value[4]>1.96) l[4]<-l[4]+1
if(ret.value[5]>1.96) l[5]<-l[5]+1

var <- var.pop2 - var.pop
ret.value <- (expect2[, 1] - expect[, 1])/diag(sqrt(var))

if(ret.value[1]>1.96) m[1]<-m[1]+1
if(ret.value[2]>1.96) m[2]<-m[2]+1
if(ret.value[3]>1.96) m[3]<-m[3]+1
if(ret.value[4]>1.96) m[4]<-m[4]+1
if(ret.value[5]>1.96) m[5]<-m[5]+1

}




