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SUMMARY

In this dissertation we address the problems of time delay estimation (TDE), frequency

estimation (FE) in the presence of additive white noise. These estimation problems arise

in the study of many communications systems. For example in the hostile mobile radio

communications environment, there will be multi-paths, Doppler frequency drift, and

oscillator’s inaccuracy that will degrade system performance. Accurate estimations of

signal frequency as well as time delay between multipaths are essential to ensure good

mobile radio communications. Also since the mobile radio channels are time-varying,

adaptive signal processing is necessary.

In this dissertation, the basic adaptive technique that is exploited is gradient-based

LMS. The main purpose is to look into the currently available LMS-based TDE, FE, and

then to find new algorithms, which can be implemented in real time to explicitly obtain

TDE and FE efficiently.

We have developed a new so-called mixed modulated Lagrange explicit time delay

estimation (MMLETDE) algorithm using approximation techniques. In the proposed

algorithm we incorporated the modulated Lagrange interpolation filter into explicit time

delay estimation (ETDE) and replaced the gradients of the Lagrange interpolation filter’s

VI
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coefficients with that of the ‘sinc’function filter’s coefficients. Furthermore, we have also

proved the convergence of the algorithm and derived the variance of the delay estimate.

For the explicit adaptive frequency estimation, we first defined the cost function of

the algorithm, and then designed the explicit modulated Lagrange adaptive frequency

estimation algorithm (EMLAFE). We also proved the convergence of EMLAFE.

We have conducted extensive computer simulation to verify our TDE and FE algo-

rithms. From the simulation results we verify that the MMLETDE can give an accurate

and fast unbiased time delay estimate over a wide frequency range for single tone sig-

nal using a filter with a very low order. The algorithm is also suitable for narrow-band

signals. We have also proved that the theoretically obtained variance of MMLETDE

for single sinusoid agrees with the simulation result. However we have observed that

the MMLETDE is slightly biased when the bandwidth of the signal becomes relatively

larger. For FE, we have seen from our simulation results using time-invariant and chirp

frequency signals that our new EMLAFE algorithm can give accurate and fast frequency

estimation for stationary and non-stationary signals.

Our two new MMLETDE and EMLFE algorithms can also be jointly used to offer

an accurate and fast estimation of time delay and frequency of signal.
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Chapter 1

Introduction

1.1 Background

In wireless communications systems, the transmission path between the transmitter and

the receiver can vary from a simple line-of-sigh to one that is severely obstructed by

buildings, mountains, and foliage. The presence of these obstacles in the channel cause

reflection, diffraction, and scattering of radio signal. These effects result in multiple ver-

sions with different time delays of the transmitted radio signal to arrive at the receiving

antenna. This is called multi-path propagation. Each individual path also arrives at its

own amplitude and carrier phase, and the superposition of these multi-path components

will result in the transmitted signal to be dispersed in time. In direct sequence spread

spectrum (DSSS), code division multiple access (CDMA) system adopted in the third

generation (3G) cellular mobile radio standards, the Rake receiver requires the knowl-

edge of multi-path parameters, such as time delays among multi-paths in [1].

1



CHAPTER 1. INTRODUCTION 2

In radar, sonar, remote speed sensing and locating systems, the time delay between

the received signals at two spatially separated sensors or sensor array has to be estimated.

Least mean square time delay estimation (TDE) algorithm has been commonly used in

such cases [2], the time delay are not known a priori, and might change from time

to time due to motion of the signal source or the receiver, or due to the time-varying

characteristics of the transmission medium [3].

The relative motion between the base station and the mobile station results in Doppler

shift in frequency. A varying speed of mobile station or surrounding objects will intro-

duce a time-varying Doppler shift. In addition to Doppler shift, the frequency of the

local oscillator may also drift. These effects will introduce the frequency offset.

With the rapidly increasing market for high-speed data, image and video applica-

tions, bit rates in excess of2Mbps are required for future cellular system. In Europe,

wide-band CDMA (WCDMA) concept has been decided by the European Telecommu-

nications Standards Institute (ETSI) to be standardized for Universal Mobile Telecom-

munications System (UMTS) as air interface for paired band [4] in January 1998. In the

standard of ETSI WCDMA [5], bit rates from a few kbps to 2Mbps for packet data op-

eration can be provided with the basic chip rate of4.096Mcps. The higher the data rates,

the harder it is to maintain a lower bit error rate. In WCDMA the modulation adopted

is QPSK with coherent demodulation. Signal synchronization is critical to coherent de-

modulation, and accurate phase and frequency offset compensation is required between

the local carrier and the received signal.

Orthogonal frequency division multiplexing (OFDM) is a popular communication



CHAPTER 1. INTRODUCTION 3

scheme that has been adopted in several standards, e.g. digital audio broadcasting

(DAB), digital video broadcasting (DVB) or in broadband local area network (LAN),

like e.g. HIPERLAN [6]. Because of its inherent simplicity in equalizing the adverse

effect of frequency-selective linear time-invariant channels, OFDM has also become a

popular multi-carrier transmission scheme for transmission of data requiring high data

rates [7]. It is well known that OFDM systems are highly sensitive to time and/or fre-

quency offsets [8] [9] which cause inter-symbol interference (ISI) and inter-block inter-

ference (IBI) [10].

In this dissertation we focus on time delay estimation and frequency estimation and

we shall describe them in the following sections.

1.2 Time Delay Estimation

The Time Delay of Arrival (TDOA) estimation problem is encountered in seismology,

sonography, Global Position System, radar, sonar, geographical remote sensing, and

communications systems [11]. Modern techniques of TDOA estimation which rely on

standard covariance methods not only require a large computation time, but also their

performance prediction exhibits poor correlation with actual estimated results [11]. For

non-stationary signal, adaptive signal processing is required. One method is to use Least

Mean Square (LMS) adaptive filter to estimate the time delay (TDE) [12].

The conventional TDE is based on the generalized correlator, which requires a priori

knowledge of signal and noise spectra [13]. The time delay is estimated by calculating

the location of the peak of the correlation function between two signals that originate
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from the same source but travel through different paths. This conventional technique in

theory can achieve an arbitrarily accurate time delay estimate. However there are two

main disadvantages:

1. The cross-correlation of the two signals must be estimated. This is an averaging

and estimation process. The longer is the observation time, the more accurate

is the estimation of the cross-correlation. But a very long observation time is

impractical, because it will mean a longer computation time, and therefore the

technique is not suitable for non-stationary signal. On the other hand, with a

limited observation time, this method is in fact biased in the presence of noise.

2. In analog time domain, signal processing is vulnerable to noise. All modern tech-

niques exploit the power of digital signal processing, in which the analog signal is

converted to its discrete version. Then the power of post-digital conversion pro-

cessing can be exploited. However, the resolution of conventional TDE is limited

by the sampling intervalT .

Notwithstanding the fact that resolution is limited by the sampling intervalT for

conventional TDE, a more accurate time delay estimation where a resolution smaller

than a sampling interval is nevertheless needed in many fields. When a high resolution

and possibly time-varying TDE is required, especially for coherent demodulation, an

on-line interpolation is necessary. Let the signal of interest be

x(k) = s(k) + θ(k) (1.1a)

y(k) = s(k −D) + φ(k) (1.1b)
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where−∞ < k < ∞ is the time index,s(k) = A(k)ej ω0k is the original source signal

with center frequencyω0, D is time delay normalized by the sampling intervalT . The

θ(k) andφ(k) are the corrupting stationary zero-mean white complex Gaussian noises.

The main task is to track the delayD as fast as possible. This means that the algorithm

requires a moderate amount of computation cycles and should be implemented in real

time. Reed [12] reported in 1981 the use of an LMS filter to estimate the time delay

difference between two waveforms. The time delay estimate is obtained by interpolating

on the weights of the filter to select the point in the tapped delay line that corresponds to

the peak weight [14]. Also many researchers have done extensive work on finite impulse

response (FIR) delay filter in order to approximate the delay to a signal in discrete time

domain. If one ideal FIR discrete delay system can be constructed, one signal can be

intentionally delayed and compared with another delayed version of the signal whose

delay is to be determined. The unknown delay can be determined when the difference

between the original signal and its delayed version reaches a minimum.

1.2.1 Explicit Time Delay Estimation (ETDE)

Chan et al. [15] introduced a parameter estimation approach to time delay estimation

by modelling the delay as a FIR filter whose coefficients are samples of a sinc function.

In 1988, Ching et al. [16] made an improvement on this parameter estimation approach

by only updating the maximum coefficient of a sinc function. In 1994, So et al. [17]

proposed an explicit time delay estimation (ETDE) algorithm, in which the delay was

parameterized in the coefficients of the fractional delay filter (FDF). As we know, this
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ETDE, which uses the LMS algorithm, is attractive as the delay estimateD̂ is explicitly

parameterized in the filter coefficient in the iterative adaptation process. The time delay

estimate of this algorithm has been shown to be unbiased in [17] for wide band white-

noise-like signals under a relatively longer filter length. In [17], the signal was assumed

to be white-noise-like, the noise was also limited to be within the Nyquist bandwidth.

However the assumption that the noise is band-limited within the Nyquist bandwidth

is unacceptable in practice since the bandwidth of noise is always larger than that of

practical communication systems. Another disadvantage of the ETDE is that the filter

order is large. Furthermore it has been proved that the ETDE is in fact biased in [18]

when the filter order is finite. Despite the fact that single sinusoid and narrow-band

signals are encountered frequently in communications systems, the ETDE algorithm has

been proved only for dealing with white-noise-like signal.

Nandi showed in 1999 [13] that Lagrange interpolation technique can be incorpo-

rated into ETDE to estimate the time delay between two single tone signals. However,

the valid center frequency range of this new approach was not reported and needed fur-

ther investigations. Though the modulated ETDE(METDE) [13] depends less on signal

frequency and filter order, the delay estimate is still biased and the required filter order

is high. We observe in our simulation results to be presented in Chapter3 that the mean

delay of METDE does not converge to the actual delay. The modulated Lagrange ETDE

(MLETDE) algorithm [13] is valid for certain range of single tone signals but biased in

its estimates.

In summary, the conventional ETDE is confined to full-band white-noise signal while
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the MLETDE is proposed for single tone signal and many technical issues have yet to be

tackled, such as the convergence to the true delay. The narrow-band or bandpass signals

are often encountered in many areas such as communications, sonar, radar. One of the

purposes of this dissertation is to find an algorithm for delay estimation for a bandpass

signal that can provide an unbiased estimate with as small a filter order as possible for

easy implementation.We shall also consider delay estimation for non-stationary band-

pass signal, in which convergence rate is also important.

1.2.2 Frequency Estimation

Many problems in statistical signal processing may be ones that attempt to estimate

signals with linear as well as nonlinear parameters in additive white Gaussian noise. A

common example is the estimation of frequencies of multiple sinusoids in noise. The

popular and accurate modern methods are based on the eigen-structure of the data auto-

covariance matrix [19]. However, when the frequency in question is time varying,

adaptive realization of such methods poses heavy computation burden because the auto-

covariance matrix has to be recalculated at each iteration.

Signals with time-varying frequency are often encountered in a variety of fields.

There are many methods to estimate the instantaneous frequencies. The Short Time

Fourier Transform (STFT) and Wigner Distribution (WD) are two popular algorithms

based on time-frequency representations (TFR) [20]. These algorithms require a large

computation time. A fast adaptive algorithm is required which means that the algorithm

should be simple and easily implemented in real-time. Etter et al. [21] proposed in



CHAPTER 1. INTRODUCTION 8

1987 an adaptive frequency estimator (AFE) which is based on an FIR delay filter with

fixed coefficients. By delaying the frequency fixed or varying single tone signal and by

comparing the filtered signal or delayed signal with the source signal, an algorithm to

estimate the instantaneous frequency can be developed. The frequency can be estimated

when the error (difference) reaches a maximum value. However a disadvantage of this

AFE algorithm is that the frequency estimation is biased unlessπ
ω0

is an integer and

unlessω0 is small.

In [22] Nandi et al. introduced an adaptive Lagrange interpolation filter (LIF) , and in

this AFE technique the author modulates the LIF coefficients by multiplying a complex

exponential function [23]. However, they did not give a theoretical analysis on this

algorithm. Both the above algorithms adjusted the time delay between the source signal

and filtered signal, and compared the difference between them first, then converted this

delay to a frequency estimate when the difference reaches a maximum value.

In this thesis we attempt to develop a fast and accurate explicit frequency estima-

tion algorithm for non-stationary, frequency-varying signal. Our goal is in finding an

appropriate filter and an updating algorithm for the filter coefficients.

1.3 Contributions

In this dissertation we first investigated in detail explicit time delay estimation algorithms

which are based on fractional delay interpolation filter. Then we develop new algorithms

for time delay and frequency estimation as described below.

• Develop a new time delay estimator: mixed modulated Lagrange interpolation ex-
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plicit time delay estimation (MMLETDE) algorithm. The algorithm is proposed

for estimating fractional sample time delays that draws from and combines both

explicit time delay estimation and modulated Lagrange interpolation. This al-

gorithm can be used to estimate the delay of narrow band signal. We develop

statistical descriptions of its performance and, finally, present simulation results.

We show that MMLETDE can give accurate time delay estimate of a narrow-band

signal over a large signal center frequency range even under a very low filter order.

The benefits of low filter order are simpler and faster estimation and operation in

a non-stationary environment where convergence rate is important.

• In this dissertation, we also analyzed and developed a new explicit modulated

Lagrange interpolation adaptive frequency estimation (EMLAFE) algorithm. The

new proposed algorithm can be used to track the frequency of non-stationary single

tone signals rapidly.

• We also combine the MMLETDE and EMLAFE algorithms together to form joint

time delay-frequency estimation algorithm (JTDFE) to jointly estimate the carrier

frequency and time difference of arrival. In the case of only single carrier signal,

JTDFE can give signal frequency and phase directly so that we can simplify carrier

synchronization circuitry.
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1.4 Summary

In this dissertation we address the problems of time delay and frequency estimation with

the goal of ensuring good radio signal reception in the presence of additive white noise

and in the hostile mobile communications environment where there exist multi-paths,

Doppler frequency drift, in addition to oscillator’s inaccuracy. We have developed a new

so-called MMLETDE algorithm for time delay estimation, which is suitable for band

pass signal, and a so-called EMLAFE algorithm for frequency estimation which can be

used to track a time-varying single tone signal.



Chapter 2

Synchronization In Communications

Systems

2.1 Synchronization in Digital Communications

In digital communications, the optimum detection of transmitted data requires that both

the carrier and clock signals are available at the receiver [24]. The carrier and timing

recovery circuits are used to retrieve signal from the noisy incoming waveform. The two

fundamental synchronization problems are: timing recovery, which is an essential part

of digital communications, and carrier recovery, which is necessary only for coherent

detection.

1. Carrier Recovery in Coherent Detection: In general, coherent reception requires

knowledge of the basis functions at the receiver; synchronization must be used

to recover the basis function. In the special case of sinusoidal carrier signal, the

11
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knowledge of both the frequency and phase of a carrier is required. The basis

functions are usually recovered from the received noisy incoming signal by means

of a suppressed carrier phase-locked loop.

2. Timing Recovery: Another synchronization process in digital communications is

symbol synchronization or timing recovery. In practical systems, not only an iso-

lated single symbol, but also a sequence of symbols, has to be transmitted. To

perform demodulation, the receiver has to know exactly the time instants, at which

the start and stop times of the individual symbols are, in order to assign the deci-

sion time instants and to determine the time instants when the initial conditions of

the correlators have to be reset to zero in the receiver.

Compared with carrier recovery, which is required by coherent receivers, timing re-

covery is a necessary process in digital communications. The decision instants at the

receiver must be synchronized with the corresponding ends of symbol intervalsT at the

transmitter. Symbol synchronization must be obtained as soon as possible after trans-

mission begins, and must be maintained throughout the transmission. Though timing

recovery is mandatory in digital communications, it belongs to the decision portion of

the data recovery process. In this dissertation we will only focus on carrier estimation

and carrier tracking.
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2.2 TDMA vs CDMA

We note that in a digital communications system, the output of demodulator must be

sampled periodically, such as once per symbol interval, in order to recover the trans-

mitted information. In virtually any form of digital communications, synchronization

in time (symbol clock recovery) is a prerequisite before communication begins. Code

Division Multiple Access (CDMA) system is also not exempt from this requirement.

However, the synchronization in a CDMA system is somewhat different from its TDMA

counterpart. In TDMA systems, one requires synchronization in frequency (and, in some

cases, phase) before a data clock can be recovered. Often, a dotting sequence101010 · · ·

is included in the preamble of a TDMA frame to provide the clock synchronization sub-

system the necessary signal to lock onto. In a CDMA scenario, since the desired signal

is spread in frequency over the entire allotted CDMA band, the acquisition of Pseudo-

Noise (PN) code clock, which for most practical systems also implies data clock acqui-

sition, must be achieved in the absence of phase and frequency synchronization. The

PN code clock and data symbol clock are derived from a common source. Hence, an

acquisition of the PN code clock leads to data symbol clock recovery. This is due to the

fact that if one chooses to achieve phase and frequency estimation in the absence of PN

code acquisition, the phase and frequency synchronizers must extract synchronization

information from a wide-band signal. This, in general, is a formidable task due to the

large bandwidth of typical CDMA signals. Hence, in a CDMA system, PN code timing

acquisition precedes any other form of synchronization. Upon the recovery of the PN

code phase the CDMA signal is de-spread and then an accurate estimate of frequency or
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phase (time delay estimate) may be obtained.

2.3 Group Delay

Unlike wired channels that are stationary and predicable, and although electromagnetic

wave propagation is fundamentally governed by Maxwell’s field equations, a radio chan-

nel is extremely random to analyze accurately.

For simplicity, let us consider the plane waves. If we recall that the magnitude of the

propagation vectork of a plane wave is given by

||k|| = nω

c
, (2.1)

then the phase velocity of a plane wave is expressed by

vp =
ω

k
=

c

n
(2.2)

wheren is medium refractive index,ω is carrier angular frequency,c is light speed in

free space [25].

We now consider transmitting a signal that contains information of carrier modu-

lation. Assume az-directed,y-polarized modulated plane wave packetEy(0, t) at the

source location propagating from some initial planez = 0 into a linear but possibly

dispersive medium. We therefore represent the modulated signalEy(0, t) at the source
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location by

Ey(0, t) = f(0, t)e−jω0t (2.3)

The signal, shown in Figure2.1, consists of a carrier at frequencyω0 modulated by

a slowly varying envelopef(0, t). Let us assume that each frequency component of
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Figure 2.1:A time-domain version of the modulated wave packet ofEy(0, t).

f(0, t) travels along a propagation directionz with an associated propagation constant

k(ω). By superposition, the received signalEy(z, t) at some arbitrary distancez from

the source will be

Ey(z, t) = f(z, t)ejk(ω0)ze−jω0t (2.4)
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Now, we can relatef(z, t) to f(0, t) by writing

Ey(z, t) =

∫ ∞

−∞
Ey(ω)ejk(ω)ze−jωtdω (2.5)

whereEy(ω) = 1
2π

∫∞
0

Ey(0, t
′)ejωt′dt′. Substituting (2.3), (2.4) into (2.5) and rear-

ranging terms , we obtain

f(z, t) =

∫ ∞

−∞
Ey(ω)e

−j(ω−ω0)
[
t− k(ω)−k(ω0)

ω−ω0
z
]
dω (2.6)

In order to analyze (2.6) further, we now express it in a Taylor series expansion as

follows

k(ω) = k(ω0) + (ω − ω0)
dk

dω

∣∣∣
ω0

+ (ω − ω0)
2 d2k

dω2

∣∣∣
ω0

+ · · · (2.7)

If we limit the accuracy to the first order, then (2.6) takes the particularly simple form

f(z, t) = f(0, t− dk

dω
z) (2.8)

It is obvious that from (2.8) we can define an envelope velocity, which is known as the

group velocity,vg, and is given by

vg =
1

dk/dω
(2.9)
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and the corresponding group delay

τg =
z

vg

. (2.10)

Clearly in the case where higher than first-order derivatives ofk are negligible, the prop-

agation is not dispersive, as we can see from (2.8) that the functional form of the wave

remains invariant under propagation.

The point here is thatvp defined in (2.2) is the velocity of the carrier oscillation

underneath the wave envelope. The group velocity represents the speed at which the

information is transferred from transmitter to receiver. The propagation delay of infor-

mation is associated with group delayτg. Throughout this dissertation, when we refer to

time delay, we shall mean the group delay.

2.4 Signal Parameter Estimation

In Section2.1we mentioned the need for synchronization in order to achieve coherent

demodulation for WCDMA system. Synchronization is a process of system identifica-

tion through which the parameters of a modulated waveform, such as carrier frequency,

carrier phase, or timing of symbol can be detected. Let us assume the signal of interest

is s(0, t) at initial place. The received signalr(z, t) at placez is the delayed version

of original signal, which is corrupted by Gaussian noisen(t). As discussed in previous
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Channel
C(t, τ)

- -m?s(0, t) r(z, t)

n(t)

Figure 2.2:Channel model

section,s(0, t) can be expressed as

s(0, t) = sc(0, t)ej2πfct (2.11)

where thesc(0, t) is the complex envelope of signals(t).

The received signal as illustrated as in Figure2.2may be expressed as

r(z, t) = s(0, t)⊗ C(t; τ) + n(t) (2.12)

whereC(t; τ) is the complex impulse response of mobile channel,⊗ is convolution

operator.

If we only consider plane waves(t) traveling through isotropic non-dispersive medium,

the received signal may be written as follows:

r(z, t) = α(t)sc(0, t− τ)ej2πfc(t−τ) + n(t) (2.13)

whereα is the complex attenuation,τ is the propagation delayd k
d ω

z = z
vg

= τg in

(2.8) (2.9) (2.10). It seems that only the propagation delayτ needs to be estimated.

However, it is not the case in practice. First of all, the oscillator that generates the carrier

signal for demodulation at the receiver is generally not synchronous in phase with that
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at the transmitter. Furthermore, the two oscillators may be drifting slowly with time,

perhaps in different directions [26, page 334]. In addition, the precision, to which one

must synchronize in time for the sake of demodulation of received signal, depends on

the symbol intervalT . The phaseφ = 2πfcτ , which is determined by the product offc

andτ , will be severely degraded by the inaccuracy of estimation of propagation delayτ

becausefc is generally large. In summary, we must consider estimating both the phase

and propagation delayτ in order to coherently detect the received signal. Therefore, we

rewrite the received signal expression as follows

r(t) = α(t)s(t; φ, τ) + n(t) (2.14)

whereφ andτ represent the signal parameters to be estimated.

2.5 The Modeling of Fractional Time Delay

Consider the existence of a time difference of arrival or time delay between two real

signals, which originate from the same source but travel via different paths. The common

approach to time delay estimation as will be explained in the next section, is to find the

peak of the correlation of these two signals. Lets(t) andsd(t) :≡ s(t + D) be the signal

and its delayed version. For discrete signal processing, the two signal sequences{s(k)}

and {sd(k)} in discrete time domain can be related by sampling theorem. Assume,

without loss of generality, that the signal spectrum is band-limited between−π andπ

the sampling time intervalT is unity. Therefore, based on sampling theorys(t) =
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∑∞
n=−∞ s(n)sinc(t − n) [27], whent = k + D, k is an integer whileD needs not be

integer, we have

sd(t) = s(k + D) =
∞∑

n=−∞
s(n)sinc(k + D − n) (2.15)

where

sinc(k + D− n) =
sin π(k + D − n)

π(k + D − n)

We now letm = k − n, thenn = k −m and (2.15) becomes

sd(k) =
∞∑

k−m=−∞
s(k −m)sinc(D + m) (2.16)

Sincek is a finite integer we can rewrite (2.15) as

sd(k) = s(k + D) =
∞∑

n=−∞
sinc(D + n)s(k − n) (2.17)

Thus (2.17) represents the generation of the delayed sequence{sd(k)} from {s(k)}

through an infinite-order filter whose coefficients are{sinc(D+n)} . This result also can

be obtained by performing inverse Fourier transform on the quantityejωD [28]. Here

we briefly describe the derivation as follows.

Let F{·}, F−1{·} be the Fourier transform and its inverse operation, respectively.
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Then

s(t + D) = F−1{ejωD} ⊗ s(t) (2.18)

In discrete time domain, we assume that the signal spectrum is band-limited within

(−π π], hence

F−1{ejωD} =
1

2π

∫ π

−π

ejωDejωtdω = sinc(D + t) (2.19)

Substitution of (2.19) into (2.18) gives

s(t + D) =

∫ ∞

−∞
sinc(D + τ)s(t− τ) dτ (2.20)

The discrete version of (2.20) is given by (2.17).

We have obtained (2.17) using two techniques. It is obvious that an infinitely long

filter is unrealizable, and in practice, it is very reasonable to limit|n| to a reasonable

numberp so that an approximation to (2.17) is

s̃d(k) =

p∑
n=−p

sinc(D + n) s(k − n) (2.21)

and the continuous time version ofs̃d(k), s̃d(t), is obtained by the sampling theory

s̃d(t) =
∞∑

k=−∞

p∑
n=−p

sinc(D + n)s(k − n)sinc(t− k) (2.22)
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We have now modeled, through (2.21), the time delay as a FIR filter with coefficients

sinc(D + n). The modeling accuracy will increase with increasingp because the trun-

cated error of (2.21) decreases.

2.6 Cross-correlation Betweeñsd(k) And s(k)

It is clear from (2.21) thats̃d(k) ands(k) are linearly correlated. Hence their coherence1

is always 1. Calculating the cross correlation betweens(t) ands̃d(t) of (2.22), we have

Rss̃d
(D + τ) = E[s(t + D + τ)s̃d(t)]

= E
[
s(t + D + τ)

∞∑

k=−∞

p∑
n=−p

sinc(D + n)s(k − n)sinc(t− k)
]

=
∞∑

k=−∞

p∑
n=−p

Rss(t + D + τ − k + n)sinc(D + n)sinc(t− k)

(2.23)

whereRab(t2−t1) = E[a(t2+t)b(t1+t)] is the definition of the cross-correlation of two

stationary random processesa(t) andb(t), andτ denotes the correlation shift. Therefore,

we can easily obtain the new formula when substituting (2.17) into (2.23)

Rss̃d
(D + τ) =

p∑
n=−p

Rss(D + n + τ)sinc(D + n)

=

p∑
−n=−p

Rss(D − n + τ)sinc(D − n)

=

p∑
n=−p

Rss(D − n + τ)sinc(n−D)

(2.24)

1By definition, coherence of̃sd(k) ands(k) is
|Sss̃d

(ejω)|√
Ss̃ds̃d

(ejω)Sss(ejω)
[29].
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In [30], the autocorrelation ofs(t) can be expressed as follows

Rss(τ) =
∞∑

n=−∞
Rss(n)sinc(τ − n) (2.25)

Using the same technique in (2.17) on (2.25) and lettingm = n−D−τ (m is an integer),

we can easily obtain a new reconstruction formula for autocorrelation as follows

Rss(τ) =
∞∑

n=−∞
Rss(n)sinc(τ − n)

=
∞∑

n=m+D+τ=−∞
Rss(m + D + τ)sinc(τ −m−D − τ)

=
∞∑

m=−∞
Rss(m + D + τ)sinc(−m−D)

=
∞∑

m=−∞
Rss(m + D + τ)sinc(m + D)

(2.26)

Substitutingm in (2.26) with n, we have

Rss(τ) =
∞∑

n=−∞
Rss(n + D + τ)sinc(n + D)

=
∞∑

−n=−∞
Rss(−n + D + τ)sinc(−n + D)

=
∞∑

n=−∞
Rss(−n + D + τ)sinc(n−D)

(2.27)
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Comparing (2.24) and (2.27), we can obtain

Rss̃d
(D + τ) =

p∑
n=−p

Rss(D − n + τ)sinc(n−D)

= Rss(τ)−
−p−1∑
n=−∞

Rss(D + τ − n)sinc(n−D)

−
∞∑

n=p+1

Rss(D + τ − n)sinc(n−D)

≈ Rss(τ)

(2.28)

In other words,Rss̃d
(D+τ) is an approximation toRss(τ) by truncating the right side of

(2.27). Whenp tends to be relatively large, the last two terms, the truncated error or the

remainder, become small compared withRss(τ) and can be dropped because (2.27) is

a process through an ideal delay system as described in Section3.2.1. (2.28) indicates

that the cross correlation ofs(k) ands̃d(k) will peak at time difference of the signal and

its delayed version.

As can be seen from (2.28), there is a remainder of the truncation error. Therefore,

usually, the peak of the cross-correlation ofs(t) and s̃d(t) does not peak at theD. As

noted in [28], s(t), s̃d(t) is not shifted exactly byD from a band-limited white noise

processs(t) as desired because the approximation in (2.21) causes theRss̃d
(D + τ) 6=

Rss(τ). This uncertain truncated error makes the explicit time delay estimate in [17]

biased.
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2.7 Frequency Estimation

The auto-correlation function is a second order statistics of a stochastic process in time

domain. Its counterpart in frequency domain is power spectral density. That means

that we can usually decompose signal into its complex sinusoidal components which

are well-defined quantities. A number of algorithms, which can be used to estimate the

frequency of a single complex sinusoid, have been introduced over the years, most of

them are based on a maximum-likelihood (ML) approach. ConsiderM samples of a

single complex sinusoid in additive white Gaussian noise (AWGN). The observed signal

is

r(k) =
√

Ese
j (2πf k Ts+θ) + n(k) (2.29)

where0 ≤ k ≤ M − 1. Es is signal power, andTs is the sampling interval. The

noise sequence of{nk} is an independent identically distributed (iiD) random complex

process with zero mean and varianceσ2
n. We can rewrite the observed signal as

r(k) = (1 + v(k))
√

Ese
j (2πf k Ts+θ) (2.30)

where

v(k) =
1√
Es

n(k)e−j (2πf k Ts+θ) (2.31)
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is a complex white noise sequence with

var v(k) =
σ2

n

Es

=
1

SNRr

(2.32)

Now letv(k) = vI(k) + j vQ(k), then

1 + v(k) = 1 + vI(k) + j vQ(k) (2.33)

For SNRr À 1, we can assume that|vI(k)| ¿ 1 and |vQ(k)| ¿ 1, therefore (2.33)

becomes

1 + v(k) ≈ 1 + j vQ(k) ≈ ej vQ(k) (2.34)

As Tretter has done in [31], we can now approximate the additive noise with Gaussian

phase noise as follows

r(k) =
√

Ese
j (2πf k Ts+θ+vQ(k)) (2.35)

Thus, the additive noise has been converted into an equivalent phase noisevQ(k) with

var vQ(k) = 0.5var v(k) =
1

2SNRr

(2.36)

Furthermore, based on Tretter’s work in [31], Kay developed in [32] an ML estima-

tor based on differential phase measurements with a delay of one sampling interval. The
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delay can be of other value, saym sampling intervals as in [33]. The new observation

vectorUmis now as follows

Um = (Um, Um+1, · · · , UM−1)

where

Uk = arg(r(k) r(k −m)∗) = 2πmf Ts + vQ(k)− vQ(k −m) (2.37)

in herem ≤ k ≤ M − 1 and1 ≤ m ≤ (M − 1)/3. We note that (2.37) is valid for

higher SNR only. Now{Uk} is a sequence of multi-variate Gaussian distribution with

mean2πm f Ts. It is clear from (2.37) that the problem now is to estimate the mean,

f , of a Gaussian noise process. This is a standard estimation problem and the method is

indicated in [32]. The ML estimator is obtained by minimizing the following quadric

form, which is in the exponent of the multivariate Gaussian density function ofUm:

Q(f) = (Um − 2πfTsI)<−1 × (Um − 2πfTsI)
T (2.38)

where< = E[UT
m Um] is the covariance matrix of the observation vectorUm, the super-

scriptT denotes the transpose operation, andI is an(M −m)-dimensional row vector

consisting of only ones. Setting the derived quadric form, with respect to the unknown

frequency, to be equal to zero, this results in a matrix equation which is easily solved.
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The resulting ML estimator off is

f̂ =
1

2πTsm

I<−1<T

I<−1IT
(2.39)

This algorithm is based on the estimated autocorrelation which requires a relatively

large sample size. The decision formula of (2.39) can be simplified by exploiting the

eigen-structure of covariance matrix. This simplification depends on signal characteris-

tic. This kind of algorithm, which requires signal to be a stationary process, of which

statistical properties are not time-varying, for accurate estimation of the covariance ma-

trix, is not suitable for non-stationary signal whose spectral characteristics (in particular

the frequency of the spectral peaks) are varying with time. In a non-stationary environ-

ment, the instantaneous covariance matrix has to be recalculated at each iteration.

However in practice, the non-stationary signal is not suited to decomposition into

sinusoidal waves; the notion of frequency loses its effectiveness [34]. This situation

gives rise to the idea of instantaneous frequency.

Consider a signals(t), with its corresponding analytic signalz(t) obtained by Hilbert

Transformation. The definition of instantaneous frequency ofs(t) is the derivative of the

phase ofz(t) as follows [34]:

fi =
1

2π

d

dt
[arg z(t)] (2.40)
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or in another form that will be useful for discrete-time implementation:

fi = lim
δt→0

1

4πδt
(arg z(t + δt)− arg z(t− δt)) mod 2π (2.41)

wheremod denotes modulo2π operation. Another very important concept is group

delay, which is defined below, indicating the propagation time of the frequency of an

impulse traveling through a linear system.

τg = − 1

2π

d

df
(θ(f)) (2.42)

whereθ denotes the phase spectrum of signal.

For a general complex signal, the phase spectrum,θ(f) , and hence the group delay

(GD), depends on both the phase and amplitude of the time signal; and the signal phase,

φ(t) , and hence instantaneous frequency, also depends on both phase spectrum and mag-

nitude spectrum. Group delay describes the localization of various spectral components

of the signal in the time domain [34].

Some methods to estimate instantaneous frequency calculate the partial derivative

of phase with respect to time difference like in (2.42). However the time difference of

δt cannot tend to be zero due to limited sampling interval. One possible approach is to

make use of interpolation technique. In this dissertation we address this issue from other

approach to be presented in Chapter5.
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2.8 Summary

In this chapter we have presented the basic concepts of synchronization in communica-

tions systems from group delay in wave propagation, fractional time delay in discrete

time system, frequency estimation using ML and covariance matrix approach.

For time delay estimation issue, the most obvious method is to calculate the cross-

correlation of original signal and its delayed version. The location of peak of cross-

correlation reflects the time difference between the original signal and delayed version.

The concept of frequency, which is a well defined quantity for stationary signal, is

not suitable for non-stationary signal environment. In practice, the most common defini-

tion of frequency is in fact an averaging periodic of signal for a particular time interval.

In this dissertation, we refer to frequency as instantaneous frequency. It degenerates

into ordinary meaning of frequency for stationary signal. We briefly introduced an ML

frequency estimator, such as Generalized Kay frequency estimator. The ML approach

usually requires a large sample size and its decision formula can be simplified via ex-

ploiting its covariance matrix structure.

The simplest way to estimate instantaneous frequency perhaps is to calculate the

derivative of signal phase with respect to timet in accordance with instantaneous fre-

quency definition. However the sampling interval will limit the resolution of estimated

frequency and the noise will also affect the results severely.



Chapter 3

Time Delay Estimation

As discussed in previous chapters, coherent demodulation requires carrier synchroniza-

tion. This means that the carrier phase and the frequency offset should be estimated

accurately. We note that there are many methods to track the phase and frequency; how-

ever, these techniques are based on analog Phase-locked loop (PLL) [1]. In Section

2.5and Section2.7, we note that the common approaches to time delay estimation and

frequency estimation, which are based on autocorrelation, require a large computation

time, and are not suitable for a non-stationary environment. For two sinusoidal sig-

nals with the same frequency , we can calculate the phase difference between them in

terms of time difference, however as pointed out in Section2.4 unless the frequency

can be accurately determined, otherwise we need to estimate time difference and phase

difference separately because a small estimation error in time difference will cause a

large phase error due to a relatively large carrier frequency. In this dissertation, we are

concerned with the digital techniques, and in this chapter and Chapter4, we will first de-

31
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scribe digital existing explicit time delay estimation (ETDE) algorithms, which require

only modest amount of computation time. Then in Chapter4 we will introduce a new

improved ETDE algorithm that can give accurate time delay estimate even with a low

order interpolation filter.

3.1 Introduction

Time delay estimation (TDE) plays an important role in many applications, including

synchronization in communications systems, source location by spatially separated an-

tenna, radar and sonar ranging [13]. Conventional TDE is based on the generalized

correlator [35], which requires a priori knowledge of signal and noise spectra. However,

resolution is limited by the sampling interval. When high resolution and possibly time-

varying TDE is required, especially for coherent demodulation, an on-line interpolation

is necessary. Let the signal of interest be

x(k) = s(k) + θ(k) (3.1a)

y(k) = s(k −D) + ψ(k) (3.1b)

wherek is the time index (−∞ < k < ∞), s(k) = A(k)ejω0k is original source signal

with angular frequencyω0 assumed known,D is time delay normalized by the sampling

intervalT , andA(k) is a low-pass signal. Theθ(k) andψ(k) are the corrupting stationary

zero-mean white complex Gaussian noises and they are mutually independent. The main

task is to track the delayD as fast as possible. This means the algorithm requires a
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moderate amount of computation cycles and should be implemented in real time. As

is well-known, the explicit time delay estimator (ETDE) [17], which uses the LMS

algorithm, is attractive as the delay estimateD̂(k) is explicitly parameterized in the filter

coefficients in the iterative adaptation process. The system block diagram for ETDE,

which is similar to that of the adaptive system identification algorithms, is shown in

Figure 3.1. The time delay estimate of this algorithm has been shown to be unbiased in

h(n, D̂(k)-
½¼

¾»
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£
££

£
££±

x(k)

y(k)

e(k)

− +

Figure 3.1:System block diagram of the ETDE.

[17] under condition of a broadband white noise-like signal. As mentioned in [13], for a

narrow-band signal, the ETDE is actually far from optimal and its performance heavily

depends on signal frequency and filter order. This is because the ETDE has been proved

to be a poor fractional delay filter (FDF) due to its considerable pass-band ripple [27].

Furthermore, for a wide-band signal, the ETDE has also been proved to be biased in

[18]. Whens(k) is a narrow-band signal as in our simulation to be described in a later

section, we observe that this algorithm is actually biased and its performance depends

heavily on signal frequency and filter order because the sinc fractional delay filter has

a considerable passband ripple [27]. Though the modulated ETDE (METDE) [13]

depends less on signal frequency and filter order, the delay estimate is still biased and
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the filter order is high. We observe in our simulation that the mean delay of METDE

does not converge to the actual delay.

3.2 Fractional Delay Filter

A fractional delay filter (FDF) is used for band-limited interpolation between samples.

The FDF finds applications in numerous fields of signal processing, including commu-

nications, array signal processing, speech processing, and music technology. When de-

laying a signalx(t) by tD, we gety(t) = x(t− tD). Converting them into discrete time

signal by sampling at time instantst = k T , T is sampling interval, for simplicity, letT

be unity, we can obtain

y(k) = x(k −D) (3.2)

whereD is a positive real number that can be split into an integer and a fractional part as

D = Int(D) + d = tD/T (3.3)

When D is a multiple of the adopted sample interval, the delay of the signal works

perfectly because the signal samples are simply stored in a buffer memory and we only

need to shift the time index to get the delayed signal. ForD taking on non-integer values,

a band limited interpolation should be used to approximate the delayed value, which lies

somewhere between two samplesx(k − Int(D)) andx(k − Int(D) − 1). The d in
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(3.3) is fractional delay of discrete time signal. Thefs = 1
T

is sampling frequency, and

Nyquist angular frequency isωNyquist = π
T

which is the highest signal frequency that can

be completely restored. In this chapter, all the frequencies are normalized byωNyquist.

For an ideal discrete-time delay system, the z-domain transfer function is

Hid(z) = z−D ⇔ Hid(e
jω) = e−jωD (3.4)

whereω = ωreal

ωNyquist
is the normalized angular frequency,ωreal is signal frequency and

one solution to this ideal delay system of (3.4) is a so-called ideal fractional delay filter

(FDF) whose filter coefficients are [27]

hid(n) = sinc(n−D) , −∞ < n < ∞ (3.5)

This ideal solution is well known but it is an unrealizable filter due to its infinite fil-

ter length. It is only of academic value and therefore, one has to find or develop an

approximation.

Consider the approximation of the actual overall delayD by anN th-order FIR filter

with z-domain transfer function

HD(z) =
N∑

n=0

hD(n)z−n (3.6)

and the frequency response, phase response, group delay, and phase delay of this filter
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are respectively as follows

HD(ejω) =
N∑
0

hD(n)e−jωn (3.7a)

arg HD(ejω) = ΘD(ω) (3.7b)

τD
g = −∂ΘD(ω)

∂ω
(3.7c)

τD
p (ω) = −ΘD(ω)

ω
(3.7d)

The set of filter coefficients{hD(n)} should be chosen such that the chosen norm of the

error function in frequency domain given by (3.8) is minimized

E(ejω) = HD(ejω)−Hid(e
jω). (3.8)

The norm of a mathematical object is a quantity that in some sense describes the length,

size, or extent of the object.L2 norm is defined as follows

||φ(x)||2 =
(∫ ∞

−∞
|φ(x)|2d x

)1/2

(3.9)

Now let us consider the approximation to (3.8). When choosing anL2 norm for

the cost function, it is a least square (LS) error design. Via the Parseval relation the

frequency-domain error norm can be converted into the time-domain (L2 norm [27]),



CHAPTER 3. TIME DELAY ESTIMATION 37

resulting in the following formula

El =
1

π

∫ π

0

|E(ejω)|2d ω =
1

π

∫ π

0

|HD(ejω)−Hid(e
jω)|dω

=
∞∑

n=−∞
|hD(n)− hid(n)|2

(3.10)

There are numerous approaches to approximating the actual delay [27]. In this

dissertation we only consider two techniques : the truncated sinc filter and Lagrange

interpolation filter. Before discussing particular filters, we first show that if one signal

is delayed byD, then the delayed version of the modulated signal can be expressed in

terms of the delayed signal as follows. Assume thaty is the shifted version ofx in (3.2).

The corresponding discrete sequences are{y(k)} and{x(k)}, respectively.

Now letx(k) = x′(k)ejω0k, wherex′(k) = x(k)e−jω0k. Then

x(k −D) = x′(k −D)ejω0(k−D) (3.11)

But

x′(k −D) =
∞∑

n=−∞
h(n)x′(k − n) (3.12)
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Substituting (3.12) into (3.11), we obtain

y(k) = x(k −D) =

( ∞∑
n=−∞

h(n)x′(k − n)

)
ejω0(k−D)

=
∞∑

n=−∞
h(n)ejω0(n−D)

(
x′(k − n)ejω0(k−n)

)

= ejω0(k−D)x′(k −D) = x′(k −D)ejω0(k−D) = x(k −D)

⇒ y(k) =
∞∑

n=−∞
h(n)ejω0(n−D)x(k − n)

(3.13)

In the next section we will discuss several existing algorithms: filter definitions and

the corresponding delay estimations.

3.2.1 Truncated Sinc FDF and ETDE

The ideal infinitely long FDF defined in (3.3) is unrealizable and hence, one must find

an approximation to the ideal solution. We note that the ideal impulse response is a sinc

function:

hid(n) = sinc(n−D) (3.14)

From (3.10), theL2-optimalN th-order FIR filter is easily obtained by simply truncating

the ideal impulse response toL = N + 1 terms. The optimal causal solution can be
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expressed as

hD(n) =





sinc(n−D) for M ≤ n ≤ M + N

0 otherwise

(3.15)

whereM is the integer time index of the first nonzero value of the impulse response.

The resultant approximation of error (3.10) can be rewritten in the following form by

substituting (3.6) into (3.5).

El =
M−1∑

n=−∞
|hid,D(n)|2 +

∞∑
n=M+N+1

|hid,D(n)|2 (3.16)

Here we usehid,D(n) to emphasize explicitly the delayD. We can observe from (3.16)

two important characteristics. First, the approximation error decreases as the filter order

increases. Second, the smallest error reaches the lowest when the overall delayD is

placed at the center of gravity of the ideal impulse response as explained in [27].

Let n−Round(D) = p, hencen = p + Round(D). So,

y(k) =
∞∑

p+Round(D)=−∞
hid (p + Round(D)) x(k − p−Round(n))

=
∞∑

p=−∞
hid(p + Round(D))x(k′ − p)

(3.17)
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wherek′ = k −Round(D). It is obvious that the above formula can be simplified as

y(k′ + Round(D)) =
∞∑

p=−∞
h
′
id(p)x(k′ − p) = x(k −D)

= x(k −Round(D) + Round(D)−D)

= x(k −Round(D)− D̃) = x(k′ − D̃)

(3.18)

whereh
′
id(p) ≡ hid(p+Round(D)), D̃ = D−Round(D) lies in the interval(−0.5, 0.5),

is so-called subsample or fractional delay;Round(•) denotes rounding to the nearest

integer. The corresponding coefficients of anN th-order finite impulse response filter

(FIR) which is shown in Figure3.2, are determined by the formula

hid,D(n) = sinc(n− D̃) , −M1 ≤ n ≤ M2 (3.19)

whereM1 = N/2, M2 = M1 if N is an even integer andM1 = (N − 1)/2, M2 =

(N + 1)/2 for oddN , andN ≥ 1.

z−1 z−1 z−1

@@ @@ @@ @@¡¡ ¡¡ ¡¡ ¡¡

- - . . . -

½¼

¾»

½¼

¾»

½¼

¾»? ? ?
- - . . . - -

x(k + M1)

hid,D̂(k)(M1) hid,D̂(k)(1−M1) hid,D̂(k)(2−M1) hid,D̂(k)(M2)

Figure 3.2:Finite impulse response filter.

The ideal impulse response solution to (3.5) is hid(n) = sinc(n−D), where−∞ <

n < ∞. When the delayD is an integer, only the sample atn = D contributes to the
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output; if theD is a non-integer, there are infinite samples that will contribute to the

output. In Figure 3.3, we show that the contribution from the samples, which are far

from n = D, decays rapidly. In Figure3.4, we also show the magnitude and phase

responses of a truncated sinc filter with the weightssinc(n− 5.4), 0 ≤ n ≤ 10. As can

be seen from Figure3.4, the truncated sinc filter has a well-known feature, the Gibbs

phenomenon, which causes ripple in the magnitude response. In Section3.2, we have

given the definitions regarding phase response, group delay and phase delay. All three

measures can be used as an indicator of the delay of the system. It is shown in Figure

3.5that the phase delay and the group delay of the truncated sinc filter are not identical.

Which one should be used depends on the particular case.
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Figure 3.3:Sinc sample function.
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Figure 3.4:Magnitude and phase responses of sinc filter (sinc(n− 5.4), 0 ≤ n ≤ 10).
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0 ≤ n ≤ 10).
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Like the group velocity introduced in Chapter2, the group delay indicates the delay

of the information energy [27]. Based on this knowledge, we choose the group delay as

a measure of system delay. The group delay equals the ideal delayD in an ideal discrete-

time delay system. The fractional delay here refers toD̃, which can be negative. Hence

the total delay can be estimated by assuming

τD
g ≈ D = M1 + D̃ (3.20)

It should be noted thatτD
g (ω) = f(D̃, ω) is a function of fractional delay filter’s parame-

terD̃ and the normalized angular frequencyω. This unique mapping relationship among

τD
g (ω), D̃, ω means that the group delay caused by the fractional delay filter (FDF) is

dependent on the fractional delaỹD.

For ETDE, we replace thẽD by the D̂ estimate and substitute the filter coeffi-

cients in (3.19) by sinc(n − D̂). As shown in Figure3.1, the error is defined as

e(k) = y(k) − ∑M2

n=−M1
h(n, D̂(k))x(k − n). The ETDE ’s delay estimates{D̂(k)}

are obtained through gradient descent of the instantaneous squared error function|e(k)|2

by differentiating|e(k)|2 in order to locate the global minimum. The ETDE algorithm

can be summarized as follows [17]:

e(k) = y(k)−
M2∑

n=−M1

sinc(n− D̂(k))x(k − n) (3.21a)

D̂(k + 1) = D̂(k)− µ
∂e2(k)

∂D̂(k)
= D̂(k)− 2µe(k)

M2∑
n=−M1

f(ν)x(k − n) (3.21b)

f(ν) = −cos(πν)− sinc(ν)

ν
(3.21c)
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The functionf(ν), (ν = n− D̂(k)) in (3.21c) is the gradient of the filter coefficient

with respect to the time delay estimatêD(k). For later reference in this dissertation,

we refer tof(ν) as the coefficient adaptation factor (CAF). In the modulated ETDE

(METDE) [36], the filter coefficientssinc(n− D̂(k)) in (3.21a) are modified by multi-

plication ofejω(n−D̂(k)).

3.2.2 Lagrange Interpolation FIR and ETDE

We have discussed theL2 norm design of FIR filter in the previous Section3.2.1. In

this sub-section, we will discuss the Lagrange interpolation as a fractional delay filter.

The Lagrange interpolation is perhaps the simplest technique to design a FIR filter to

approximate the fractional delaŷD. In theory, it is equivalent to an FIR filter of which

the error function is maximally flat (MF) at a certain frequency, typically atω0 = 0.

Hence the approximation is at its best close to this frequency and not as good at a more

distant frequency. In Figure3.6, we show the magnitude and phase responses of a

Lagrange interpolation filter withD = 5.4, 0 ≤ n ≤ 10 (n is filter tap index). In Figure

3.7, we show the phase and group delay of this Lagrange interpolation fractional delay

filter. Comparing the magnitude response, phase response, group delay, phase delay with

these characteristics of sinc filter in Figure3.4 and Figure3.5, we can easily find that

the Lagrange interpolation FDF has many advantages over the truncated sinc FDF filter,

such as flat magnitude, group delay responses.
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Figure 3.6: Magnitude and phase responses of delay for Lagrange interpolation filter
(D = 5.4, 0 ≤ n ≤ 10).
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The Lagrange Interpolation filter (LIF) is equivalent to a maximally flat FDF [27]. MF

means that the derivatives up toN th-order of the frequency-domain error function at a

pointω0 are set to zero, that is,

dnE(ejω)

dωn

∣∣∣∣
ω=ω0

= 0 for n = 0, 1, 2, · · · , N (3.22)

whereE(ejω) is the complex error function (3.8) with desired responseHid(e
jω) = ejωD.

The coefficients of this LIF, which is maximally flat atω0 = 0, are obtained through the

formula below via differentiation and insertion of the valueω0 in (3.22), and the solution

can be written in an explicit form [23].

h0
D(n) =

L−1∏
i=0
i6=n

D − i

n− i
(3.23)

The superscript forh0
D̂
(n) in (3.23) is used to emphasize that the maximum flatness is at

ω0 = 0.This maximally flat region can be shifted to another frequencyω0 by applying a

complex modulation [23]. Actually it is just a process of frequency shifting [37]. We

note thatD = −M1 + D̂(k), hence the filter coefficients can be written in the following

form:

h0
D̂(k)

(n) =

M2∏
i=−M1

i 6=n

D̂(k)− i

n− i
(3.24)
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whereM1, M2 are defined before in (3.19), andD̂(k) lies in the range(−0.5, 0.5).

Therefore, the modulated coefficients are

hD̂(k)(n) = ejω0(n−D̂(k))h0
D̂(k)

(n) (3.25)

We can expand (3.24) int a polynomial inD̂ in the following form:

h0
D̂
(n) =

N∑
p=0

apD̂
p(k) (3.26)

In this dissertation, this set of expressions is obtained directly by expanding (3.24)

and furthermore we can obtain the partial derivatives ofhD̂(n) with respect toD̂(k),

n = −M1, −M1 + 1, · · · , M2 with respect toD̂(k) as follows

f(n, D̂(k)) =
N∑

p=1

papD̂
p−1(k) (3.27)

In [13], Dooley and Nandi suggested a minimum mean squared estimation error

(MMSE) criterion for selecting an optimum fractional delay filter (FDF) for ETDE but

this criterion was amenable only to a trial-and-error simulation approach. So in [13],

the authors gave the simulation results without further proofs and derivations, such as

convergence to actual delay, standard deviation of time delay estimate, the algorithm’s

valid signal frequency range, the step-size’s range, and convergence rate. Though the

signal could be band-pass filtered to obtain high SNR beforehand, the practical system

should be usually operated under an SNR range of20 to 40dB. The performance of the
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algorithm should be also tested under this condition.

In summary, the MLETDE algorithm which incorporates the modulated Lagrange

interpolation FDF filter into the ETDE [17] is summarized as follows [36]:

e(k) = y(k)−
M2∑

n=−M1

hD̂(k)(n)x(k − n) (3.28a)

D̂(k + 1) = D̂(k)− 2µRe

{
e?(k)

M2∑
n=−M1

f(n, D̂(k))x(k − n)

}
(3.28b)

f
(
n, D̂(k)

)
= ejω0(n−D̂(k))

[
f 0(n, D̂(k))− jω0h

0
D̂(k)

(n)
]

(3.28c)

f 0(n, D̂(k)) =
∂h0

D̂(k)
(n)

∂D̂(k)
(3.28d)

Thef 0(n, D̂(k)) in (3.28d) is the CAF in the Lagrange FDF.

3.3 Simulation Results

In the previous sections we have described several existing time delay estimation al-

gorithms such as ETDE, METDE, LETDE, MLETDE. In this section we will present

results of simulation tests that have been conducted to verify the performance of these

algorithms for single tone signal. Theθ(k), φ(k) are uncorrelated zero-mean, white

Gaussian processes. In the simulations, the signal powers ofx(k) andy(k) were set at

the same level, also their SNR were set to be the same.

The results of simulations are summarized as follows:
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Figure 3.8:Convergence of ETDE for single tone signal,σ2
s = 1, N = 20, µ = 0.0003,

SNR = 20dB.

3.3.1 SINC FDF ETDE and METDE

The step-size was asµ = 0.0003, the actual delay was set to be0.3, the filter order was

N = 20, the noise was set to0. In Figure3.8, we show that the convergence performance

of ETDE is far from optimal for the single sinusoid signals with the frequenciesω =

0.4π, 0.6π, and0.8π. As can be seen from the figure, the delay estimates are biased

from the actual delay even using a relative longer filter length. This is because the

sinc filter exhibits a considerable passband ripple in its magnitude response [27]. From

the simulations we also show that the convergence rate of ETDE depends on signal

frequency.

In Figure3.9, the step-size was set to beµ = 0.003, other conditions were set to be
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Figure 3.9:Convergence of METDE for single tone signals,σ2
s = 1, N = 10, µ = 0.003,

SNR = 20dB.

the same as in Figure3.8. As can be seen from Figure3.9 , METDE is also biased for

sinusoid signal due to sinc-based filter’s frequency response characteristic. In Figure3.9

we show that the convergence rate of METDE depends on signal frequency.

3.3.2 Lagrange Interpolation FDF ETDE and MLETDE

Lagrange interpolation ETDE (LETDE) is reported to be biased in [13]. In Figure 3.10,

the time delay estimate,̂D, can be seen to be biased from the actual delay of0.3. The

step-size was set asµ = 0.003 andµ = 0.0003, the filter order was set toN = 2, the

signal power wasσ2
s = 0.5, frequency wasω = 0.9π, the signal-to-noise ratio (SNR)

was set to50dB. As can be seen from the figure, the time delay estimate fluctuates when



CHAPTER 3. TIME DELAY ESTIMATION 51

the step-size becomes larger and it is also biased.
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Figure 3.10:The convergence performance of LETDE algorithm for single tone signal.

We tested the LETDE algorithm for the different single tone signals atω = 0.2π,

0.4π, 0.6π, and0.8π. The step-size was set to beµ = 0.003, signal powerσ2
s = 1, and

the filter orderN = 2. As can be seen from Figure3.11the convergence rate is related to

the signal frequency. The delay estimate,D̂ becomes much more biased from the actual

delayD = 0.3 when signal frequency increases.
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Figure 3.11:The convergence performance of LETDE algorithm for single tone signals,
σ2

s = 1, N = 2, µ = 0.003, SNR = 20dB.
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Figure 3.12:Convergence performance of MLETDE algorithm for single tone signal,
SNR = 20dB.
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The MLETDE was also tested. In Figure3.12, the signal power was set asσ2
s = 1,

the step-size were set toµ = 0.0002, 0.0006 , 0.001, the filter order was setN = 2, the

SNR was set to20dB, and the signal frequency was0.4π. From Figure3.12we see that

MLETDE is biased.
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Figure 3.13:Convergence performance of MLETDE algorithm for single tone signal,
SNR = 40dB.

We also tested the MLETDE algorithm under a higher SNR of40dB. Other condi-

tions were set as those in Figure3.12. In Figure 3.13, we show that the delay estimate

is closer to the actual delay when the SNR increases from20dB to40dB.

In Figure 3.14, we show the time delay estimate of MLETDE for noise free, single

tone signals at various frequencies . The step-sizes were set to be 0.0002, 0.0006, and

0.001. The actual delay was set to0.3. As can be seen, the MLETDE algorithm has
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Figure 3.14:Performance of MLETDE algorithm for noise-free, single tone signal, filter
orderN = 2, actual delayD = 0.3, σ2

s = 1.

a limited center signal frequency range. At some frequencies such as0.2π, 0.8π, the

simulation results indicated that the MLETDE failed.

3.4 Conclusion

The goal of this dissertation is to find an unbiased algorithm which can be implemented

on real time (lower filter order) to estimate the time delay. From these simulation stud-

ies we found that the performance of time delay estimate depended heavily on signal

frequency whether it was modulated or unmodulated algorithm for ETDE, METDE,
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LETDE, and MLETDE. It was clear that ETDE, METDE, LETDE were biased. In

general, modulated algorithms outperformed the corresponding unmodulated ones, and

Lagrange interpolation FIR filter has many more advantages over the truncated sinc FIR

filter in time delay estimate such as flat frequency response and group delay. From the

simulation results also we see that the selection of the step-sizeµ played an important

role which will be discussed in Chapter4. Finally we should point out that MLETDE

does not work when signal frequency was higher than0.8π. The accuracy of MLETDE

also depends on filter order.

After studying the existing explicit time delay estimation algorithm, we can find the

limitations of these algorithms. In Chapter4, we will develop and study the statis-

tic characteristics of a new so-called Mixed Modulated Explicit Time Delay Estimation

(MMLETDE) algorithm, which draws from both explicit time delay estimation and mod-

ulated Lagrange interpolation.



Chapter 4

Mixed Modulated Lagrange ETDE

We have examined several existing algorithms in Chapter3. The purpose of this chapter

is to find an algorithm for delay estimation that can provide an unbiased estimate with

as small a filter order as possible for easy implementation, and we will develop a new

algorithm: mixed modulated Lagrange interpolation ETDE (MMLETDE), which can

give an unbiased time delay estimation for single tone and a band-limited signal. The

convergence and learning characteristic will be discussed in detail in this chapter.

4.1 Mixed Modulated Lagrange ETDE

From our simulation, we have found that the modulated Lagrange explicit time delay es-

timation (MLETDE) of [36] has a limited range in the signal center frequency variation.

In Appendix A, we show that (3.28d) in Section 3.2.2can be replaced byf(ν) which

is defined in (3.21c). The f 0(n, D̂(k)) in (3.28d) is the CAF in the Lagrange FDF.

This f 0(n, D̂(k)) can be replaced byf(ν). We further develop it into a new formula,

56
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and now propose a so-called mixed modulated Lagrange explicit time delay estimation

(MMLETDE) algorithm, which is formulated as follows and its validity is proved in

Appendix B.

e(k) = y(k)−
M2∑

n=−M1

hD̂(k)(n)x(k − n) (4.1a)

D̂(k + 1) = D̂(k)− 2µRe

{
e∗(k)

M2∑
n=−M1

g(ν)x(k − n)

}
(4.1b)

g(ν) = ejω0ν [f(ν)− jω0sinc(ν)] (4.1c)

hD̂(k)(n) = ejω0(n−D̂(k))h0
D̂(k)

(n) (4.1d)

where

ν = n− D̂(k)

This essentially means that in the delay estimate adaptation process, the CAF of the La-

grange FDF is replaced by the CAF of the truncated sinc FDF given in (3.21c). We will

show in the simulation to be described in the following section that the new algorithm

can give an accurate time delay over a wide frequency range even the filter order is low.
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4.2 Convergence Characteristics of MMLETDE

4.2.1 Unbiased Convergence of MMLETDE

In the MMLETDE algorithm,a modulated Lagrange fractional delay filter (FDF), La-

grange interpolation filter is used to approximate the delay of one signal.The delayed

signal is compared with the source signal adaptively. The time delay is parameterized

into the filter coefficients and the adaptation algorithm for the coefficients is based on

the gradient of the truncated sinc filter coefficients with respect to the explicit time delay

estimate. The time delay estimate at each iteration is given by

D̂(k + 1) = D̂(k)− 2µRe

{
e∗

M2∑
n=−M1

g(ν)x(k − n)

}
(4.2)

where

e(k) = y(k)−
M2∑

n=M1

hD̂(k)(n)x(k − n) (4.3)

We consider a narrow-band signal with known center frequency ofω0, s(k) = A(k)ejω0k.

Substituting (3.1a), (3.1b) into (4.3), we have

e(k) = s(k −D) + ψ(k)

−
M2∑

n=−M1

hD̂(k)(n)s(k − n)−
M2∑

n=−M1

hD̂(k)(n)θ(k − n)

(4.4)
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The modulated Lagrange interpolation for a narrow-band signal given by the third term

of (4.4) can be written as,

M2∑
n=−M1

hD̂(k)(n)A(k − n)eω0(k−n)

=

M2∑
n=−M1

h0
D̂(k)

(n)ejω0(n−D̂(k))A(k − n)ejω0(k−n)

= ejω0(k−D̂(k))

M2∑
n=−M1

h0
D̂(k)

(n)A(k − n) ≈ ejω0(k−D̂(k))A(k − D̂(k))

= s(k − D̂(k))

(4.5)

In arriving at (4.5), we have made the approximation that
∑M2

n=−M1
h0

D̂(k)
(n)A(k−n) ≈

A(k − D̂(k)). This approximation is error-free whenA(k) is a constant, because the

remainder or truncation error of Lagrange interpolation, which is a function of the(N +

1)th derivative ofA(k) is equal to zero [38]. For a slowly varyingA(k) in the case of a

narrow-band signal, we assume that the approximation is almost error-free.

However we cannot make such an approximation for a wide-band noiseθ(k), there-

fore we retain the Lagrange interpolation for the delayed version ofθ(k) as in the last

term of (4.4). For simplicity, we will useω to denoteω0.

In Appendix C, we prove the convergence formula as follows

E
[
D̂(k + 1)−D

]
= E

[
D̂(k)−D

](
1 + 2µσ2

sω
2
)

(4.6)
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After k iterations it follows from (4.6) that

E
[
D̂(k)

]
= D +

(
D̂(0)−D

)(
1 + 2µσ2

sω
2
)k

(4.7)

It can be seen from (4.7) thatE[D̂(k)] will converge to the actual delayD whenk tends

to infinity, provided that0 < 1 + 2µσ2
sω

2 < 1. This implies that the step-size should

satisfy the following condition

− 1

2σ2
sω

2
< µ < 0 (4.8)

4.2.2 Learning Characteristics of MMLETDE

We consider next the variance of the time delay estimateD̂(k) by calculating the con-

vergence equation of the mean square delay error,ε(k), which is defined as

ε(k) = E
[(

D − D̂(k)
)2]

= E
[
D̂2(k)

]− 2D E
[
D̂(k)

]
+ D2 (4.9)

In Appendix D, the learning characteristics ofε(k) is shown to be

ε(k) = Ck
(
D̂(0)−D

)2
+ B

1− Ck

1− C
(4.10)

C = 1 + 4µσ2
sω

2 + 2µ2
{
2σ4

sω
4 + σ2

sσ
2
nω2π2/3

}
(4.11)

B = 2µ2

{
−σ4

nω2 +

{
σ4

n

(
π2

3
+ ω2

)
+ σ2

sσ
2
nω2

}}
(1 + E(G)) (4.12)

whereG =
[∑

p h0
D̂(k)

(p)
]2
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The sufficient condition for convergence of the algorithm can be obtained by com-

bining (4.8) and0 < C < 1 in (4.10). The new condition for convergence becomes

max

{
− 1

σ2
sω

2 + σ2
nπ2/6

, − 1

2σ2
sω

2

}
(4.13)

Moreover, the mean square error of the delay estimate in the steady state will equal the

delay variance,var(D̂), given by

var(D̂) = ε(k) =
k→∞

B

1− C
(4.14)

Substituting (4.11) and (4.12) into (4.14), normalizing the signal powerσ2
s = 1, and

assuming thatSNR = σ2
s

σ2
n

>> 1, thereby allowing the terms containingσ4
n in (4.12) to

be neglected, (because the signal frequency should not tend to be zero due to (4.7), the

middle term in (4.12) can also be dropped), we have

var(D̂) =
µσ2

nσ2
sω

2 (1 + E[G])

−2σ2
sω

2 − µ [2σ4
sω

4 + σ2
sσ

2
nω2π2/3]

(4.15)

Further,µ is a small value compared to the signal power, we thus obtain

var(D̂) ≈ µ (1 + E[G])

−2/σ2
n

≈ −µ
1 +©(1)

2 SNR
(4.16)

In (4.16), we have expressedE[G] = ©(1). This is arrived at because we know that,

whenD̂(k) = 1, since only one coefficient is equal to1 while the rest are equal to zeros
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[39]. For D̂(k) other than an integer, we do not know the exact value ofG, but we

conjecture thatG is of the order of one.

4.3 Simulation Results

Simulations have been conducted to verify the proposed MMLETDE algorithm. We

tested the single sinusoidal signal and also a band-limited signal with flat spectrum. The

θ(k), φ(k) are uncorrelated zero-mean Gaussian variables. The SNR of both inputsx(k)

andy(k) were set to be the same. The band-pass signal was generated by filtering a

discrete time white noise and down sampling the filtered signal at different time offsets.

Thus we obtained the source signal and its delayed version. The bandwidth of the band-

pass signal is variable within the range of(0 → π).

In Figure4.1, we show that the replacement of (3.28d) for MLETDE in Section

3.2.2 works. The signals were two band-limited white signals with center frequency

at ω = 0.85π, and the bandwidth was0.3π. The step-size was set to beµ = 0.0003,

andSNR = 20dB. The actual delay was set to0.3. As can be seen, MLETDE with a

replacement of (3.28d) can converge to the actual delay underSNR = 20dB.

In Figure 4.2, the solid line curve is for one observation of time delay estimate and

the dash line is ensemble average over 300 trials versus the number of iterations. The

signal frequency was set to0.99π, the step-size was equal to0.0003, the filter order was

also set to2, the SNR was set to0dB. As can be seen the ensemble average at each

iteration is closer to the actual delay0.3.

In Figure 4.3, we used a bandpass white noise signal to simulate a narrow band



CHAPTER 4. MIXED MODULATED LAGRANGE ETDE 63

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
T

im
e 

D
el

ay
 E

st
im

at
e

Iteration No.

Filter Order N=1
µ = 0.0003
SNR = 20   

Figure 4.1:Performance of (3.28d) replacement.

signal. The conditions were set as in Figure4.2, the ensemble average of time delay

estimate over 300 trials versus the number of iterations is very close to the actual delay

0.3.

In Figure 4.4(a) we show the convergence characteristics of the MMLETDE with

N = 2, computed from (4.6), together with the corresponding simulation results. The

test signal was a single tone at frequencies ofω = 0.3π, ω = 0.5π, ω = 0.7π andω =

0.9π. The SNR was set to20dB, the step-size wasµ = 0.0003. As can be seen from the

figure, the simulation results match the theory very closely, thus verifying our conver-

gence analysis. Recall from (4.6) that the signal frequency,ω, appears together with the

step size,µ, in the same term. Therefore, the convergence speed of the MMLETDE is

influenced by the signal frequency. The larger is the frequency, the faster is the conver-
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Figure 4.2:Convergence characteristics of MMLETDE for single sinusoid,µ = 0.0003,
SNR = 0dB, σ2

s = 1.

gence. This is now verified by the simulation results shown in Figure4.4(a).



CHAPTER 4. MIXED MODULATED LAGRANGE ETDE 65

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration No.

T
im

e 
D

el
ay

 E
st

im
at

e

one observation of delay estimate
averaged delay estimate of 300 trials

filter order 2,µ=0.0003
SNR=20dB, 
bandpass white noise like signal over 0.7π to π

Figure 4.3:Performance of MMLETDE algorithm, bandpass white-noise signal.



CHAPTER 4. MIXED MODULATED LAGRANGE ETDE 66

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
(a)

Iteration No.

T
im

e 
D

el
ay

 E
st

im
at

e

Experiment
Theory

ω=0.3π 

ω=0.5π 

ω=0.7π 

ω=0.9π 

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
(b)

Iteration No.

T
im

e 
D

el
ay

 E
st

im
at

e

MMLETDE, N=2
ETDE, N=20
METDE, N=5

Figure 4.4:(a) Convergence rate of MMLETDE,N = 2, SNR = 20dB, µ = 0.0003.
(b) Comparison of convergence rates of MMLETDE, ETDE and METDE,ω = 0.7π,
SNR = 20dB, µ = 0.0003.



CHAPTER 4. MIXED MODULATED LAGRANGE ETDE 67

In Figure4.4(b), we compare the convergence characteristics of MMLETDE, ETDE

and METDE algorithms for sinusoidal signal atω = 0.7π, SNR =20dB andµ = 0.0003.

The actual delay was set to0.3. As can be seen from the figure, the METDE has a much

slower convergence rate than MMLETDE and ETDE. The ETDE has about the same

rate of convergence as MMLETDE, but the algorithm converges to a biased delay value.
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Figure 4.5:Comparison of convergence performance of MMLETDE, ETDE for a band-
limited signal at center frequencyω0 = 0.85π, bandwidth of0.3π, µ = 0.0003, σ2

s = 1.

In Figure4.5, we compare the convergence characteristics of MMLETDE and ETDE

for a bandpass signal with flat spectrum at center frequencyω = 0.85, and a bandwidth

of 0.3π. The actual delay was set to0.3. The convergence curve of MMLETDE matches

the theoretical curve obtained from (4.6) closely. And even though a filter order of only

N = 1 is used, the MMLETDE algorithm converges to the actual delay value. On the
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other hand, the ETDE algorithm requires a much longer filter in order to converge to the

real delay value. Even with a filter order of as high as20, there is still a slight bias in the

delay estimate.
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Figure 4.6:Standard deviation and time delay estimate of MMLETDE for single sinu-
soid signal,µ = 0.0025, SNR = 40dB,filter orderN = 2, σ2

s = 1.

In Figure 4.6, we show the simulation results on time delay estimate and stan-

dard deviation for different single sinusoidal signals with frequency ranging fromω =

0.1π throughω = 0.9π. The actual delay was set to0.9. The step size was set to0.0025.

The time delay estimate was the average of the4000th to the 6000th iterations. For

ω = 0.1π, we averaged the delay estimate between the14000th to the16000th iterations

because with a lower frequency the algorithm converged relatively slower. From these

results we can see that the time delay estimate is accurate even under a short filter length
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of as low as2.
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Figure 4.7:Standard deviation and time delay estimate of MMLETDE for single sinu-
soid signal,µ = 0.0003, filter orderN = 2, σ2

s = 1.

In Figure4.7, we show the simulation results for a single sinusoidal test signal with

frequency of0.7π. The actual delay was set to0.319547. The SNR was set from0dB

through50dB. The time delay estimates and the standard deviations were obtained by

averaging over 20 independent simulation runs. In each run of simulation, the time

delay estimate,̂D, was obtained by averaging the instantaneous time delay estimates

between the4000th to the6000th iterations. The theoretical standard deviation was an

approximation given by (4.16) and we have let©(1) = 1. As can be seen in Figure4.7,

the standard deviation obtained from simulation agrees well with the theory.

We note the evidence of a bias in the estimator for the sinusoidal case (Figure4.7,
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top panel) for SNR< 20dB. This is because in our convergence analysis, for low SNR

and low filter order, our approximation forE[T4] as can be seen in (C.4), which makes

use of interpolation
∑M2

n=M1
h0

D̂(k)
(n)f(n− D̂(k)) ≈ f(0) = 0, is not so accurate.

In Figure4.8(a), we compare the root mean square error (RMSE) of the time de-

lay estimates of MMLETDE, LETDE, ETDE and METDE algorithms as function of

frequency. The step-size wasµ = 0.005. The actual delay was set to0.3. The SNR

was40dB. The RMSE of each independent simulation run was obtained from3000th to

5000th iteration. The final RMSE was obtained by averaging20 independent simulation

runs. As can be seen from the figure, the MMLETDE achieves the highest accuracy and

is also almost frequency independent. The other three algorithms have poorer accuracy

and are frequency dependent.

In Figure4.8(b), we compare the RMSE of the time delay estimates of MMLETDE,

METDE, LETDE and ETDE algorithms as function of SNR. The frequency was0.5π.

As can be seen from the figure, the MMLETDE achieves the highest accuracy and the

RMSE decreases as SNR increases implying expected improved accuracy with a stronger

signal power. On the other hand, the other three algorithms have higher RMSE and the

accuracy of the estimate cannot be improved by using a higher SNR. This implies that

the estimates of these three algorithms are biased.

In Figure4.8 we have compared the RMSE performance of our MMLETDE with

other algorithms using simulation results. It would be interesting if the comparison can

be realized using optimal performance bounds such as Cramer Rao bounds. We intend

to carry this out in our future works.
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4.4 Conclusion

In this chapter, we have analyzed an algorithm for estimating fractional sample time

delay for narrow-band signals, that draws from both explicit time delay estimation and

modulated Lagrange interpolation, so-called mixed modulated Lagrange explicit time

delay estimation algorithm (MMLETDE). We develop statistical descriptions of its per-

formance and present simulation results. Our proposed MMLETDE algorithm can give

accurate time delay estimates for single sinusoidal signal in a wide frequency range. The

filter order can be as low as 1, which is beneficial for non-stationary environment where

convergence rate is important. The algorithm is unbiased for a single sinusoidal signal

under a high SNR (on the order of20dB) for filter order as low as1 and2. When ap-

plied to a band-pass signal with a large bandwidth, the MMLETDE algorithm becomes

slightly biased. This we believe is due to the approximation used in the development of

the algorithm. We have conducted extensive simulation to contrast the benefits of our

proposed MMLETDE algorithm with other competing approaches.

The proposed MMLETDE algorithm was verified in the simulation to converge to

the actual delay for a band-pass signal even the filter is very short. The delay estimate of

this algorithm became slightly biased when the bandwidth of signal becomes larger. This

we believe is due to the approximation used in the development of the algorithm. We

have conducted extensive simulation to contrast the benefits of our proposed MMLETDE

algorithm with other competing approaches.



Chapter 5

Adaptive Frequency Estimation

5.1 Introduction

The estimation of the frequency of a sinusoidal signal plays an important role in signal

processing and communications systems. Popular and modern algorithms that are based

on the data auto-covariance matrix as mentioned in [22] and Chapter2, can give ac-

curate frequency estimates but are computationally burdensome. This is true especially

when the frequency to be estimated is time-varying and an adaptive realization of the

estimator is required. In [21], Etter and Hush suggested a fresh approach to frequency

estimation based on a variable delay element as shown in Figure5.1. Let the received

- ¾Delay Filter
½¼

¾»
-

¢
¢
¢

¢
¢̧

x(k) x(k)y(k)

e(k)

− +

Figure 5.1:Block diagram of adaptive frequency estimation.
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signal of interest bex(k) = s(k) + θ(k), s(k) = ej(ω(k)k+φ), whereω(k) is the instan-

taneous frequency to be estimated andφ is a constant initial phase. The noiseθ(k) is

white Gaussian with zero mean and variance ofσ2. Essentially the algorithm is to adap-

tively seek the delay value that shifts the sinusoid by180◦ or 360◦, thus maximizing or

minimizing the cost functionJ = E[e(k)e∗(k)], which is the mean squared value of the

difference,e(k), between the inputx(k) and its delayed versiony(k). The delay then

provides the information needed to determine the frequency.

Dooley and Nandi [22] later improved upon this technique by introducing a frac-

tional delay filter (FDF), so-called modulated Lagrange interpolation delay filter (MLIDF)

to take into account a fractional delay that can be used to fine-tune the frequency esti-

mation. In [21], the cost function is sinusoidal in form in terms of the delay; thereby

leading to a simple delay update computation and the determination of the frequency

estimate. The MLIDF, on the other hand, being a non-ideal finite impulse response filter

(FIR), introduces distortion to the delayed signal and thereby a cost function which is not

in a simple analytic form. In this dissertation, the cost function of an MLIDF is derived

for a single sinusoidal signal and an explicit frequency estimation algorithm based on

this cost function was developed.
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5.2 Adaptive Frequency Estimation Using MLIDF

We first consider a Lagrange interpolation delay filter (LIDF) [27]. At each adaptation

step, the LIDF coefficientsh0(n,D(k)) can be written as

h0(n,D(k)) =
N∏

i=0
i6=n

D(k)− i

n− i
=

N∑
i=0

aiD
i(k) (5.1)

whereN is the filter order, andD(k) is a variable analog delay which is used to ap-

proximate the actual delay that lies within[0, N ]. The coefficientsai in the polynomial

representation ofh0(n,D(k)) in (5.1) can be readily obtained by Matlab or Mathematica

programming. This LIDF is a finite impulse response (FIR) delay system in discrete time

domain. In AppendixE, we prove that for an FIR delay system the filter coefficients

can be modulated so that it becomes a modulated FIR delay system. In this disserta-

tion, since we adopt the MLIDF as the FIR delay filter, the modulated coefficients are as

follows

h(n,D(k)) = h0(n,D(k))ejω(n−D(k)) (5.2)

The difference between the inputx(k) and the filtered outputy(k) atkth iteration, is

e(k) = x(k)− y(k) = x(k)−
N∑

n=0

h(n,D(k))x(k − n) (5.3)
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In Appendix F, we calculate the cost function of this MLIDF as follows

J = E
[
e(k)e∗(k)

]
= (2− 2 cos(ωD(k)))

+ σ2

(
1− 2h0(0, D(k)) cos(ωD(k)) +

N∑
n=0

(h0(n,D(k)))2

) (5.4)

In (5.4), the first term is the autocorrelation function of a single sinusoidal signal, while

the last term is introduced by noise. The last term can be dropped under the condition of

high SNR, and the cost function reaches the maximum or minimum when the delayD(k)

equalspπ/ω, p is an integer. Correspondingly, the delay itself provides the information

regarding the signal frequency.

Consider next the partial derivatives of the cost function with respect toω(k) and

D(k), and set them to zero as follows

∂J

∂ω(k)
= 2D(k) sin[ω(k)D(k)] = 0 (5.5a)

∂J

∂D(k)
= 2ω(k) sin[ω(k)D(k)] = 0 (5.5b)

It is clear that for both (5.5a) and (5.5b) to be equal to zero, which is the condition for

J to reach extremum points, requires that

ω(k)D(k) = 2π or π (5.6)

The algorithm developed in this dissertation is to explicitly track the frequency under

the constraint of (5.6), as follows. Following the standard LMS method, we locate the
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extremum by taking the gradient of the filter coefficients with respect to the estimated

frequencyω̂(k).

ω̂(k + 1) = ω̂(k)− µ∇J(k) (5.7)

whereJ(k) denotes the instantaneous cost function,µ is step-size.

The MLIDF coefficient in (5.2) is a function of bothω(k) and D(k). We now

adopt a similar idea as in [17], on explicit time delay estimation, in that we introduce

explicit frequency estimation by replacingω(k) in the MLIDF coefficients in (5.2) by its

estimatêω(k). Furthermore, by making use of the constraint in (5.6), we replaceD(k)

in the MLIDF coefficients in (5.2) by 2π/ω̂(k). By proceeding this way we have now

proposed a new so-called explicit modulated Lagrange adaptive frequency estimation

(EMLAFE) algorithm. We now rewrite the MLIDF coefficient in (5.2) as a function of

ω̂(k) as follows,

h(n,D(k)) = he(n, ω̂(k)) = h0

(
n,

2π

ω̂(k)

)
ejω̂(k)(n−2π/ω̂(k)) (5.8)

The gradient ofJ with respect tôω(k) is

∇J(k) =
∂

∂ω̂(k)

(
e(k)e∗(k)

)
= 2 Re

{
e∗(k)

∂e(k)

∂ω̂(k)

}
(5.9)

Substituting (5.2), (5.3) and (5.9) into (5.7), we have the updating equation for the
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explicit frequency estimate as,

ω̂(k + 1) = ω̂(k)− 2µRe
{

e∗(k)
N∑

n=0

f(n, ω̂(k))x(k − n)
}

(5.10)

where

f(n, ω̂(k)) =

(
∂h0(n, 2π/ω̂(k))

∂ω̂(k)
+ jnh0

(
n,

2π

ω̂(k)

))
ejω̂(k)n (5.11)

By expressing the filter coefficientsh0(n, 2π/ω̂(k)) in (5.11) as a polynomial in̂ω(k)

as in (5.1), we can rewrite (5.11) as

f(n, ω̂(k)) =

( N∑
i=0

−i(2π)i ai

ω̂i+1(k)
+ jn

N∑
i=0

(2π)i ai

ω̂i(k)

)
ejω̂(k)n (5.12)

5.3 Convergence Analysis

Assuming the noise and signal are uncorrelated, substituting (5.11) into (5.10) and

taking expectation on both sides of (5.10), under the condition of high SNR, as proved

in AppendixG, we obtain the following formula

E[ω̂(k + 1)]− ω = E[ω̂(k)]− ω + 2µ
4π2

ω2

(
E[ω̂(k)]− ω

)
(5.13)
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Hence, given the initial guess ofω̂(0), the recursive expression of (5.13) givesω̂(k) as

follows

E[ω̂(k)] = ω + (ω̂(0)− ω)
(
1 +

8π2

ω2
µ
)k

(5.14)

Therefore, when−µ < ω2

8π2 , the mean of̂ω(k) will converge to the actual signal fre-

quency whenk tends to infinity under higher SNR.

5.4 Simulation Results

In this Section, we present simulation results for the EMLAFE algorithm that we have

developed for fine and fast frequency estimation and tracking.

5.4.1 Frequency Estimation

In Table 5.1, the test was carried out for single sinusoid with frequency from0.3π to

0.9π. The step-sizeµ was set to0.00225, the signal power was set toσ2
s = 1, and filter

order was8, the signal-to-noise ratio (SNR) was set from15dB to 50dB. The frequency

estimate,̂ω, and its standard deviation,std(ω̂), were obtained from the frequency esti-

mates from800th through1500th iterations. In Table5.1, the frequency estimate and its

standard deviation were obtained by averaging over 20 independent simulation runs. As

can be seen from the table, the frequency estimates converge to actual signal frequency

while the variances of frequency estimates are almost of the same order for different

frequency under the same SNR.
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Figure 5.2:Convergence performance of EMLAFE algorithm tracking single tone sig-
nal. Filter oderN = 8, SNR = 10dB, µ = 0.00025, ω̂ = 0.7137π, std(ω̂) = 9.1×10−4,
actual frequencyω = 0.7125π, σ2

s = 1.

In Figure 5.2, we demonstrate the convergence performance of EMLAFE algorithm.

The step-size was set toµ = 0.00025, the filter order was set asN = 8, the SNR was

set to10dB, and the actual signal frequency was set to0.7125π. As can be seen, the

convergence to the actual frequency occurs from300th iteration onward.

In Figure 5.3, we show frequency estimates of three different frequency signals,

tested to verify the frequency range that can be tracked by the EMLAFE algorithm.

From the constraint of (5.6), sinceD(k) has the range from0 to N , whereN is the filter

order, we can decide the range of frequency that can be estimated asω ≥ 2π
N

, and for

N = 8, ω ≥ 0.25π. This conclusion is verified in Figure5.3as follows. We considered
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Figure 5.3:Dynamic range of EMLAFE algorithm tracking single tone signal. Filter
oderN = 8, SNR = 17 dB, µ = 0.00025, σ2

s = 1.

two sinusoids at angular frequenciesω1 = 0.2230π, ω2 = 0.2507π. In each case, the

signal-to-noise ratio was set to17dB, and the step-size was set0.00025. As shown in

Figure 5.3, the estimation ofω = 0.2230π < 0.25π fails, in that the estimate converged

to a wrong value. However, forω = 0.2507π, we used two different initial guesses:

0.3π and0.5π. With the closer initial guess of0.3π, the frequency estimate converges to

the actual value faster than the one initially further away at0.5π. Nevertheless, since the

actual frequencyω = 0.2507π > 0.25π, the estimation was successful.

Given two single tone signals atω1 = 0.7π andω = 0.3π, the step-sizes were set

to µ1 = 0.0003 andµ2 = 5.51 × 10−5, and the SNR was set to be20dB. The values of

µ1, µ2 were determined byµ1

ω2
1

= µ2

ω2
2

according to the convergence formula of (5.14) so
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Figure 5.4: Convergence rates of EMLAFE algorithm for different single tone,µ1 =
0.0003 for signal frequency0.7π, µ2 = 5.51 × 10−5 for signal frequency0.3π, signal
powerσ2

s = 1, filter orderN = 8.

that the convergence rates of the signals atω1 andω2 should be the same. As can be seen

from Figure5.4, the convergence curves of the frequency estimates for two signals atω1

andω2, are different. This is because the step-size has absorbed the coefficientω2

ω̂2(k)
in

derivation of (5.13). As can be seen from AppendixG, in deriving the formula (G.4),

we exploit the attribute, unchanged sign, ofω2

ω̂2(k)
= ©(1). It is clear in Figure5.4, the

convergence rate of the signal atω1 = 0.7π is accelerated due toω
2
1

ω̂2
1

> 1, which means a

larger step-size; meanwhile, the convergence speed of the signal atω2 = 0.3π is reduced

due to ω2
2

ω̂2
2

< 1, which means a lower step-size. Therefore, the EMLAFE algorithm

exhibits a variable step-size characteristic due to the change ofω̂(k) with iteration index

k.
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5.4.2 Frequency Tracking
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Figure 5.5:Tracking linear chirp frequency signal. Filter oderN = 8, SNR = 0dB, µ =
0.00225, σ2

s = 1.

In Figure 5.5 we show an example in using the EMLAFE algorithm not only to

determine frequency, but also to track a slowly changing frequency. The actual time-

varying frequency is represented by the dashed line. In this example, the SNR was0dB,

the step-size was0.00225, and the filter order was8. As can be seen from Figure5.5,

the EMLAFE algorithm tracks the time varying signal frequency quickly (within about

50 iterations) under a very low SNR. Also when there is a sudden change in frequency,

the estimate, after a short departure, returns and follows the actual frequency quickly.

In conclusion, we have developed a new EMLAFE frequency estimation technique

and have shown that it is effective even in lower SNR condition. In the simulations we
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also showed that the lowest frequency that can be tracked is determined by the filter

orderN , according toω ≥ 2π
N

. It is around0.25π for a filter order of 8.



Chapter 6

Joint Explicit Frequency And Time

Delay Synchronization

6.1 Introduction

In CDMA and OFDM communication systems, carrier synchronization system is im-

portant for coherent detection. As for any multi-carrier transmission scheme, an OFDM

signal suffers from nonlinear distortion [40]. Furthermore, it is extremely sensitive to

possible uncompensated frequency offsets between the received carrier and local oscilla-

tor caused by Doppler shifts or instability of the oscillators at the transmitter and receiver.

This calls for a very strict frequency recovery process [8]. One effective way to reduce

the inaccuracy of the carrier offset’s estimation is to exploit the power of digital signal

processing, and using fractional interpolation techniques to improve the resolution of

86
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digital signal processing. Let the received carrier and the carrier of local oscillator be

x(k) = ej(ωx(k)+φx(k)) + θx(k) (6.1a)

y(k) = ej(ωy(k)+φy(k)) + θy(k) (6.1b)

respectively. Theωx(k), ωy(k) are frequencies of received signal and local oscillator re-

spectively. Moreover, theφx(k), φy(k) are phases of received signal and local oscillator

respectively. Both received signal and local oscillator’s signal are corrupted respectively

by the zero-mean white Gaussian noisesθx(k) andθy(k) with variances assumed to be

σ2
x, andσ2

y.

The goal of carrier synchronization is to estimate and track the frequencyωx(k) and

phaseφx(k) of the received carrier and to adjust the parametersωy(k) andφy(k) of the

local oscillator in the direction of the counterparts of the received signal. After the fre-

quency synchronization is carried out, the phase difference between the received and

local oscillator signals can be adjusted via the time delay or time difference of arrival

(TDOA) technique in Chapter3. As mentioned in previous chapters, for a band-limited

signal the ETDE is biased for TDOA estimation. MLETDE also exhibits a slight biased-

ness [13]. This algorithm, in fact, as mentioned in Chapter3 shows only a limited valid

signal frequency range.

In this chapter, the MMLETDE and EMLAFE, which have been presented in Chap-

ter 4 and Chapter5, are combined to estimate and track the frequency and phase of the

received carrier.
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6.2 Joint Explicit Time Difference of Arrival

And Frequency Estimation

The structure of this JTDFE algorithm is shown in Figure6.1. The output of the digital

oscillator is the duplicate of the received carrier with estimated frequency and phase:

ω̂′y(k), D(k).

EMLAFE

MMLETDE

DO
-

-

-

?

?
6

-x(k) y′(k)

ω̂x(k)

ejω̂x(k)

D̂(k)6y(k)

Figure 6.1:Block diagram of joint time delay and frequency estimation.

As shown in Figure6.1, the whole carrier synchronization process comprises three

components: EMLAFE (modulated Lagrange adaptive frequency estimator), MMLETDE

(mixed modulated Lagrange explicit time delay estimator) and DO (digital oscillator).

The frequency of the received carrier is first estimated and tracked by the EMLAFE al-

gorithm, and it is fed into the MMLETDE component to estimate the time delay between

the local carrier and received carrier. The output of DO is the synchronized carriery(k)′

with the estimated frequency and phase.

Before introducing the simulation results of the JTDFE algorithm, we will discuss

the validity of MLETDE and MLAFE algorithms.
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6.3 Simulation Result

The experiments were under conditions of additive white Gaussian noise. The powers

of both signalsx(k) andy(k) were set to unity, and SNRs were25dB. The signals were

single tone with frequencyω = 0.85π. The actual time delay betweenx(k) andy(k)

was D = 0.3. In Figure 6.2, we show the frequency estimation performance of

0 500 1000 1500 2000 2500 3000 3500 4000
0.6

0.65

0.7

0.75

0.8

0.85

Iteration No.

F
re

qu
en

cy
 E

st
im

at
e 

(ω
/π

)

µ=0.00225
SNR=25dB 

Figure 6.2:JTDFE algorithm: Frequency estimation part.

EMLAFE. The step-size of EMLAFE was set toµ = 0.00225. After reaching the region

of convergence, the statistics of one typical simulation are as follows:ω̂ = 0.8500π,

std(ω̂) = 8× 10−4.

At each iteration of JTDFE, the frequency estimateω̂(k) was fed into MMLETDE

and used as signal frequency and explicitly estimate the time delayD. In Figure 6.3,



Chapter 6. Joint Explicit Frequency And Time Delay Synchronization 90

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration No.

T
im

e 
D

el
ay

 E
st

im
at

e

µ=0.0003
SNR=25dB 

Figure 6.3:JTDFE algorithm: Time delay estimation part.

the result showed that the time delay estimateD̂ converged to the actual delay setting.

The typical statistics were: the mean of time delay estimatesD̂ = 0.3007, the standard

deviation of the time delay estimatesstd(D̂) = 0.001.

6.4 Discussion

In Figure 6.1, there is a slight difference from the previous chapters. There are three

inputs:x(k), y(k), ejω̂(k). If only x(k) exists, then we could treatejω̂(k) asy(k). Other-

wise we usey(k)- the delayed version ofx(k). Then this becomes the time difference of

arrival. After the carrier synchronization is achieved, the next issue for communications

system is to demodulate the received signal. The remaining offset of carrier synchro-
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nization will be incorporated into base band modeling: FIR channel.



Chapter 7

Conclusions And Future Work

In this dissertation, we have examined the existing algorithms on adaptive explicit time

delay and adaptive frequency estimation. In Chapter3, we tested the ETDE, METDE,

LETDE, and furthermore in Chapter4 we developed a new so-called mixed modulated

Lagrange explicit time delay estimation and described the statistics of this algorithm. In

Chapter5, we introduce and discuss a new explicit frequency estimation algorithm.

7.1 Finished work

7.1.1 Time Delay Estimation

The ETDE algorithm is developed for full-band white-noise-like signal and because the

truncated sinc FDF has a remainder when approximating a delay system, it is biased

even under a higher filter order. Also because the truncated sinc FDF is ripple in the

magnitude response, this truncated sinc based ETDE is far from optimum when using it

92
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for a narrow-band signal.

By adopting Lagrange interpolation FDF, the LETDE algorithm can use a lower

order filter but time delay estimation is still biased.

When using modulation technique, in which the filter coefficients multiply an expo-

nential function, the LETDE becomes a modulated LETDE algorithm. In simulation, we

show that the MLETDE algorithm is biased when the signal noise ratio is not very high.

The MLETDE is valid only at a limited signal center frequency.

In this dissertation, in order to avoid bias of delay estimation and to use a lower

order filter , which is important for non-stationary signal environment and fast conver-

gence, we propose a new explicit time delay estimation algorithm, MMLETDE, which

draws from both explicit time delay estimation and modulated Lagrange interpolation.

We developed and proved the statistic characteristics of the MMLETDE algorithm and

verified via computer simulation. We have also made an extensive comparison among

several existing algorithms.

In summary, the truncated sinc based ETDE requires a relatively longer filter and is

biased for wide-band white-noise like signal and narrow-band signal while our mixed

modulated Lagrange ETDE (MMLETDE) can be used to estimate a narrow-band signal

without bias with a lower filter order.

7.1.2 Frequency Estimation

In this dissertation, we derived the cost function of a modulated Lagrange interpolation

FIR delay system, and develop a new explicit frequency estimation algorithm under the
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constraint ofω D = mπ (m is an integer). We also derive the convergence charac-

teristic of this explicit modulated Lagrange adaptive frequency estimation (EMLAFE)

algorithm. The EMLAFE algorithm can converge fast and estimate the instantaneous

signal frequency in a non-stationary signal environment.

7.1.3 Joint Frequency And Time Delay Estimation

We combine the MMLETDE and EMLAFE algorithms together in Chapter6. The esti-

mated frequency is fed into MMLETDE component and we can use MMLETDE com-

ponent to estimate the time delay between received carrier and local oscillator carrier.

7.2 Future Works

As discussed in Chapter4, the MMLETDE algorithm is unbiased for single tone signal.

However time delay estimate will become slightly biased when the signal bandwidth

increases. We next should consider the quantitative relationship between signal spectrum

and time delay estimate and furthermore find a unbiased explicit time delay estimation

algorithm for wide band signal and this algorithm should be able to work under a very

low filter order.

The explicit modulated Lagrange adaptive frequency estimation (EMLAFE) algo-

rithm is biased when the signal-noise-ratio is relatively low due to the approximation.

In next stage some measures may be considered to compensate the bias. The statistical

characteristics of EMLAFE algorithm has not been investigated and may be an area for

further research.
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Finally, it will be worthwhile to consider how to implement these algorithms practi-

cally.
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Appendix A

Proof of (3.28d)’s Replacement

We note that in an ideal discrete delay system,

y(k) = x(k −D) =
∞∑

n=−∞
hid(n)x(k − n) (A.1)

Now letx(k) = x′(k)ejω0k, or x′(k) = x(k)e−jω0. Then

x(k −D) = x′(k −D)ejω0(k−D) (A.2)

But

x′(k −D) =
∑

hid

(n)x′(k − n) (A.3)
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Substituting (A.3) into (A.2), we have

x(k −D) = y(k) =
( ∞∑

n=−∞
hid(n)x′(k − n)

)
ejω0(k−D)

=
∞∑

n=−∞
hid(n)x′(k − n)ejω0(n−D)

(A.4)

Therefore,

y(k) =
∞∑

n=−∞
hid(n)ejω0(n−D)x(k − n) (A.5)

Following the same reasoning as in Chapter3 of the main text, we place the overall

delayD at the center of gravity ofhid. Therefore we can write

y(t) =
∞∑
−∞

h
′
id(n)ejω0(n−D)x(k − n) (A.6)

Now the errore(k) in the Lagrange FDF is

e(k) = y(k)−
M2∑

n=−M1

h0
D̂(K)

(n)ejω0(n−D̂(k))x(k − n) (A.7)

Substituting (A.6) into (A.7), we have

e(k) =

M2∑
n=−M1

[
h
′
id(n)− h0

D̂(k)

(
n, D̂(k)

)]
ejω0(n−D̂(k))x(k − n)

+

−M1−1∑
n=−∞

h
′
id(n)ejω0(n−D̂(k))x(k − n) +

∞∑
n=M2

h
′
id(n)ejω0(n−D̂(k))x(k − n)

(A.8)
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The last two terms in (A.8) can be dropped becauseh
′
id(n) takes on small values in the

range ofn outside of−M1 ≤ n ≤ M2. Next, with ETDE, we substitutesinc(n− D̃) by

sinc(n− D̂(k)). Hence, we obtain

e(k) ≈
M2∑

n=−M1

(
sinc(n− D̂(k))− h0

D̂(k)
(n)

)
ejω0(n−D̂(k))x(k − n) (A.9)

Let ν = n− D̂(k) and we expresssinc(ν) andh0
D̂(k)

(n) in the polynomial ofD̂(k).

Taking Taylor expansion onsinc(ν), we obtain

sinc(ν) =
sin(πν)

πν

= 1− (πν)2

3!
+ · · ·+ (−1)m−1 (πν)2m−2

(2m− 1)!

+
(πν)2m

(2m + 1)!
sin

(
δπ(ν) +

2m + 1

2
π
)

(A.10)

where0 < δ < 1,−∞ < ν < ∞. For∀ ε > 0, there is an integerm, satisfying

∣∣∣∣
(πν)2m

(2m + 1)!
sin

(
δπν +

2m + 1

2
π
)∣∣∣∣ < ε (A.11)

Hence, we retainm−1 terms in (A.6), sinc(ν) can be expressed as a polynomial inD̂(k)

as follow

sinc(ν) =
2m−2∑
i=0

aiD̂(k)i (A.12)

Of course the coefficients{ai} in (A.12) can be evaluated . But in our development of

the proof here, we have no need for the exact expression ofai. It can be shown in the
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main text that the Lagrange coefficienth0
D̂(k)

(n) defined in (3.24) of the main text can be

written as a polynomial in̂D(k) of orderN = M1 + M2

D̂(k)0(n) =
N∑

i=0

biD̂(k)i (A.13)

Again, as will be obvious in our development of the proof here, we do not need the exact

expression forbi in (A.13). We assume thatN < 2m − 2 and use Landau symbols©

and◦ to expresŝD(k)0(n) as of the order ofsin(ν)

sinc(ν) =
N∑

i=0

ai

bi

biD̂(k)i +
m∑

i=N+1

aiD̂(k)i

=
N∑

i=0

©(
biD̂(k)i

)
+ ◦(D̂(k)N

)
= ©

( N∑
i=0

biD̂(k)i

) (A.14)

Next, we have

sinc(ν)− h0
D̂(k)

(n) = ©(
h0

D̂(k)
(n)

)−©(
h0

D̂(k)
(n)

)
= ©(

h0
D̂(k)

(n)
)

(A.15)

Consider∂sinc(ν)

∂D̂(k)
and

∂hD̂(k)

∂D̂(k)
,

sinc(ν)

∂D̂(k)
=

cos(πν)

ν
− sin(πν)

πν2

=
1 + · · ·+ (−1)m−1 (πν)2m

(2m)!

ν
−

πν + · · ·+ (−1)m−1 (πν)2m+1

(2m+1)!

πν

=

∑∞
m=1(−1)m−1 (πν)2m

(2m−1)!

ν
=

∞∑
m=1

(−1)m−1 π2mν2m−1

(2m− 1)!

(A.16)
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We can write it as polynomial in̂D(k) as follow

sinc(ν)

∂D̂(k)
=

∞∑
i=0

aiD̂(k)i =
∞∑
i=0

©(
aiD̂(k)i

)
(A.17)

while

∂h0
D̂(k)

(n)

∂D̂(k)
=

N∑
i=1

ibiD̂(k)p−1

=
N−1∑
i=0

(i + 1)bi+1

ai

aiD̂(k)i =
N−1∑
i=0

©(
aiD̂(k)i

)
(A.18)

Finally, it is very easy to obtain

∂sinc(ν)

∂D̂(k)
− hD̂(k)(n)

D̂(k)
=

∞∑
i=0

(
aiD̂(k)i

)−
N−1∑
i=0

©(
aiD̂(k)i

)

= ©
( ∞∑

i=0

aiD̂(k)i

)
= ©

(
∂sinc(ν)

∂D̂(k)

) (A.19)

Now, the delay estimate updating equation is

D̂(k + 1) = D̂(k)− 2µRe
{

e∗(k)
∂e(k)

∂D̂(k)

}
(A.20)
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Substitute (A.9) and (A.18) into (A.20), we obtain

D̂(k + 1) = D̂(k)

− 2µRe

{
e∗(k)

M2∑
n=−M1

ejω0ν
(©(

f(ν
))−©(−jω0h

0
D̂(k)

(n))x(k − n)

}

= D̂(k)

− 2µRe

{
e∗(k)

M2∑
n=−M1

ejω0ν
(©(f(ν)) +©(−jω0h

0
D̂(k)

)
)
x(k − n)

}

= D̂(k)− 2µRe

{
e∗(k)

M2∑
n=−M1

ejω0ν © (f(ν)− jω0h
0
D̂(k)

(n))x(k − n)

}

= D̂(k)

− 2µ©
(

Re

{
e∗(k)

M2∑
n=−M1

ejω0ν(f(ν)− jω0h
0
D̂(k)

(n))x(k − n)

})

(A.21)

Simplify the above formula, and we can use a newµ to replace2µ© symbol, then we

obtain (3.28d).



Appendix B

Proof of MMLETDE algorithm

As proved in AppendixA, we can express

sinc(ν)− h0
D̂(k)

(n) =
2m−2∑
i=0

aiD̂(k)i −
N∑

i=0

biai

ai

D̂(k)i

=
2m−2∑
i=0

©(aiD̂(k)i)−
N∑

i=0

©(aiD̂(k)i)

=
2m−2∑
i=0

©(aiD̂(k)i) = ©(sinc(ν))

(B.1)

Hence, we obtain a new formula fore(k) as

e(k) =

M2∑
n=−M1

©(sinc(ν))ejω0νx(k − n)

= ©
( M2∑

n=−M1

sinc(ν)ejω0νx(k − n)

) (B.2)
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The delay estimate updating equation is

D̂(k + 1) = D̂(k)− 2µRe
{

e∗
∂e(k)

∂D̂

}
(B.3)

Substituting (B.2) into (B.3), we have

D̂(k + 1) = D̂(k)− 2µRe

{
e∗(k)©

( M2∑
n=−M1

g(ν)x(k − n)

)}

= D̂(k)− 2µ©
(

Re

{
e∗(k)

M2∑
n=−M1

g(ν)x(k − n)

}) (B.4)

where

g(ν) = eω0ν(f(ν)− jω0sinc(ν)) (B.5)

Using a newµ to substitute+2µ© in (B.4)), we have (4.1b) in the Chapter3.



Appendix C

Convergence Analysis of MMLETDE

Using (4.3) and (4.2) in the main text, we have

D̂(k + 1) = D̂(k)− 2µRe{T1 + T2 + T3 + T4} (C.1)

where

T1 =
[
s∗(k −D)− s∗(k − D̂(k))

] M2∑
n=−M1

s(k − n)g(n− D̂(k)) (C.2a)

T2 =
[
s∗(k −D)− s∗(k − D̂(k))

] M2∑
n=−M1

θ(k − n)g(n− D̂(k)) (C.2b)

T3 =

[
φ∗(k)−

M2∑
n=−M1

h∗
D̂(k)

(n)θ∗(k − n)

] M2∑
n=−M1

s(k − n)g(n− D̂(k)) (C.2c)

T4 =

[
φ∗(k)−

M2∑
n=−M1

h∗
D̂(k)

(n)θ∗(k − n)

] M2∑
n=−M1

θ(k − n)g(n− D̂(k)) (C.2d)
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Taking the expected value of both sides of (C.1) gives

E[D̂(k + 1)] = E[D̂(k)]− 2µRe {E[T1 + T2 + T3 + T4]} (C.3)

Because{s(k)}, {θ(k)}, and{φ(k)} are mutually uncorrelated, soRe{E[T3]} = 0,

Re{E[T2]} = 0, and consider nextRe{E[T4]} as follows

E[T4] ≈ σ2
nE[g(D̂(k)− D̂(k))] = σ2

nE[g(0)] = σ2
n[f(0)− jω0sinc(0)] (C.4)

Taking the real part of (C.4), we haveRe{E[T4]} = σ2
nf(0) = 0.

To evaluateRe{E[T1]}, we rewriteg(n − D̂(k)) in (C.2a) as ∂sinc(ν)ejω0ν

∂D̂(k)
, and then

exchanging differentiation and summation operation, we have

T1 =
(
s∗(k −D)− s∗(k − D̂(k))

) ∂

∂D̂(k)

[ M2∑
n=−M1

s(k − n)sinc(ν)ejων

]
(C.5)

The summation term in the square bracket in (C.5) can be approximated as

M2∑
n=−M1

sinc(n− D̂(k))ejω(n−D̂(k)) ≈ s(k − D̂(k))

Taking the expectation of (C.5), we have

E[T1] = E
[(

s∗(k −D)− s∗(k − D̂(k))
∂

∂D̂(k)
s(k − D̂(k))

)]
(C.6)

Substitution ofs(k) = A(k)eω0k in (C.6), and then making the assumption that for a



APPENDIX C. CONVERGENCE ANALYSIS OF MMLETDE 112

narrow-band signal, the envelopeA(k) varies slowly, such that

∂

∂D̂(k)
≈ (−jω0)A(k − D̂(k))ejω0(k−D̂(k)) (C.7)

Now we have

E[T1] = σ2
sjω0(1− ejω0(D−D̂(k))) (C.8)

whereσ2
s = E[s(k)s∗(k)] = E[(A(k))2] is the signal power. Therefore, we obtain

Re{E[T1]} = σ2
sω0 sin

(
ω0(D − D̂(k)

)
(C.9)

For smallD − D̂(k), we can usesin(ω0(D − D̂(k))) ≈ ω0(D − D̂(k)) in (C.9).

Substituting (C.9), Re{E[T2]} = 0, Re{E[T3]} = 0, Re{E[T4]} = 0 into (C.3), we

easily obtain (4.6) in the main text.



Appendix D

Learning Characteristics of Mean

Square Delay Error

Squaring and then taking expectation on both sides of (C.1), we can obtain

E[D̂2(k + 1)] = E[D̂2(k)]− 4µRe{E[D̂(k)T ]}+ 2µ2Re
{
E[T T ∗ + T 2]

}
(D.1)

whereT = T1 + T2 + T3 + T4. In arriving at (D.1), we have made use of the identity,

{Re(T )}2 = 1
2
Re{T T ∗ + T 2}. First we evaluateE[D̂(k)T2] for the second term of

(D.1).

E[D̂(k)] = E[D̂(k)T1] + E[D̂(k)T2] + E[D̂(k)T3] + E[D̂(k)T4] (D.2)
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Sinces(k),θ(k), φ(k) andD̂(k) are mutually uncorrelated,E[D̂(k)T2], E[D̂(k)T2] are

both zeros. next, by referring to (C.4), we have

Re
{
E

[
D̂(k)T4

]}
= Re

{
σ2

nE
[
D̂(k)g(0)

]}
= 0 (D.3)

And by referring to (C.9), we have

Re
{
E

[
D̂(k

]}
= σ2

sω
2
0

{
D × E

[
D̂(k)

]− E
[
D̂2(k)

]}
(D.4)

Now,

Re
{
E[T T ∗]

}
= Re

{
E

[
T1T

∗
1 + T2T

∗
2 + T3T

∗
3 + T4T

∗
4

]}

+ 2Re
{
E[T1T

∗
2 + T1T

∗
3 + T1T

∗
4 + T2T

∗
3 + T2T

∗
4 + T3T

∗
4 ]

}

(D.5)

Re
{
E[T 2]

}
= Re

{
E[T 2

1 + T 2
2 + T 2

3 + T 2
4 ]

}

+ 2Re
{
E[T1T2 + T1T3 + T1T4 + T2T3 + T2T4 + T3T4]

} (D.6)

It can be shown thatE[T1 T2], E[T1 T ∗
2 ], E[T1 T3], E[T1 T ∗

3 ], E[T2 T ∗
3 ], E[T3 T ∗

4 ], E[T2 T4],

E[T2 T ∗
4 ], E[T3 T4], E[T 2

2 ], E[T 2
3 ] are all equal to zero. The other terms are evaluated one

by one as follows:

Re{E[T1T4]} = −2σ2
sσ

2
nω

2 sin2 ω
(
D − D̂(k)

)

2
=≈ −2σ2

sσ
2
nω

4
(
D − D̂(k)

)2

= −Re
{
T1T

∗
4

}
= Re {T2T3}

(D.7)
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By referring to (C.8), we have

Re
{
E

[
T 2

1

]}
= Re

{
E

[
σ2

sj ω
(
1− j ω ej ω

(
D−D̂(k)

))2
]}

= E
[
−ω2σ4

s

(
4 sin2

(
ω
(
D − D̂(k)

)
/2

))− 2 sin2 ω
(
D − D̂(k)

)]

= E
[
ω4σ4

s

(
D − D̂(k)

)2
]

(D.8)

E
[
T1T

∗
1

]
= E

[∣∣∣σ2
sj ω

(
1− ejω(D−D̂(k)))∣∣∣

2
]

= E
[
ω4σ4

s

(
D − D̂(k)

)2
]

= E
[
T 2

1

]
(D.9)

E
[
T2T

∗
2

]
= E

[
2σ2

s

(
1− cos

(
ω
(
D − D̂(k)

)))
σ2

n

M2∑
n=−M1

g(ν)g∗(ν)

]

= 4σ2
sσ

2
nE

[
sin2(ω(D − D̂(k))/2)

( M2∑
n=−M1

[
f 2(ν) + ω2sinc2(ν)

])]

Using
∑M2

n=−M1
sinc2(ν) ≈ ∑∞

n=−∞ = 1 and
∑M2

n=−M1
f 2(ν) ≈ ∑∞

−∞ = π2

3
[41], we

have

E
[
T2T

∗
2

]
= σ2

sσ
2
n

(π2

3
+ ω2

)
E

[
(D − D̂(k))2

]
(D.10)

E
[
T3T

∗
3

]
= E

[
σ2

n

(
1 +

M2∑
n=−M1

∣∣hD̂(k)(n)
∣∣2

)
σ2

sω
2
]

= σ2
nσ2

sω
2(1 + E[G]), G =

M2∑
n=−M1

(
h0

D̂(k)

)2
(D.11)
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We now evaluateE
[
T4T

∗
4

]
.

E
[
T4T

∗
4

]
= E

[
φ∗(k)φ(k)

] M2∑
n=−M1

M2∑
m=−M1

E
[
θ(k − n)θ∗(k −m)

]

× E
[
g(n− D̂(k))g∗(m− D̂(k))

]

+

M2∑
p=−M1

M2∑

l=−M1

M2∑
n=−M1

M2∑
m=−M1

E
[
θ∗(k − p)θ(k − l)θ(k − n)θ∗(k −m)

]

× E
[
h∗

D̂(k)
(p)g(l − D̂(k))hD̂(k)(n)g∗(m− D̂(k))

]

(D.12)

The first tern on the right hand side (RHS) of (D.12) can be shown to be equal to

σ4
n

∑
n

∣∣g(n− D̂(k))
∣∣2 ≈ σ4

n

(π2

3
+ ω2

)
(D.13)

Now before we evaluate the second term of RHS of (D.12), for convenience we introduce

some notations. Let the zero mean complex white noise be expressed in terms of its in-

phase and quadrature components:θ(k − q) = a(q) + j b(q). The indexq takes on

anyone of the indicesp, l, n, andm. Thea(q)′s are independent from theb(q)′s. They
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have the same variance ofσ2
a = σ2

n/2. We have

θ∗(k − p)θ(k − l)θ(k − n)θ∗(k −m)

= a(p)a(l)a(n)a(m)− j a(p)a(l)a(n)b(m) + j a(p)a(l)b(n)a(m)

+ a(p)a(l)b(n)b(m) + j a(p)b(l)a(n)a(m) + a(p)b(l)b(n)a(m)

− a(p)b(l)b(n)a(m) + j a(p)b(l)b(n)b(m)− j b(p)a(l)a(n)a(m)

− b(p)a(l)a(n)b(m) + b(p)a(l)b(n)a(m)− j b(p)a(l)b(n)b(m)

+ b(p)b(l)a(n)a(m)− j b(p)b(l)a(n)b(m) + j b(p)b(l)b(n)a(m)

+ b(p)b(l)b(n)b(m)

(D.14)

The expressions of all the imaginary components in (D.14) are zero. This is because

there is always either a signala(q) or a singleb(q) in the four-fold product. Thus we

need to consider only the real terms in (D.14).

It has been shown in [42] if x1, x2, x3, x4 are samples of four different stationary

Gaussian random processes, we may write

E[x1x2x3x4] = E[x1x2]E[x3x4] + E[x1x3]E[x2x4] + E[x1x4]E[x2x3] (D.15)

Consider now the contribution of the terma(p)a(l)a(n)a(m) to E
[
T4T

∗
4

]
in (D.12).
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Using (D.15) we have

∑
p

∑

l

∑
n

∑
n

E[a(p)a(l)a(n)a(m)]E
[
h∗

D̂(k)
(n)g(l − D̂(k))hD̂(k)(n)g∗(m− D̂(k))

]

=
∑

p

∑

l

∑
n

∑
m

{
E[a(p)a(l)]E[a(n)a(m)] + E[a(p)a(n)]E[a(l)a(m)]

+ E[a(p)a(m)]E[a(l)a(n)]
}× E

[
h∗

D̂(k)
(p)g(l − D̂(k))hD̂(k)(n)g∗(m− d̂(k))

]

=
∑

p

∑

l

∑
n

∑
m

{
E

[
a(p)a(l)

]
E

[
a(n)a(m)

]
+ E

[
a(p)a(n)

]
E

[
a(l)a(m)

]

+ E
[
a(p)a(m)

]
E

[
a(l)a(n)

]}× E
[
h∗

D̂(k)
(p)g(l − D̂(k))hD̂(k)(n)g∗(n− D̂(k))

]

= 2σ4
aE

[∑
p

∑
n

hD̂(k)(p)g(p− D̂(k))hD̂(k)(n)g∗(n− D̂(k))
]

+ σ4
aE

[∑
p

∑

l

h∗
D̂(k)

(p)g(p− D̂(k))hD̂(k)(p)g∗(l − D̂(k))
]

= 2σ4
aE

[
g(0)g∗(0)

]
+ σ4

aE
[∑

p

∑

l

(
h0

D̂(k)
(p)

)2(
f 2(ν) + ω2sinc2(ν)

)]

= 2σ4
aω

2 + σ4
a

(π2

3
+ ω2

)
G

(D.16)

The condition from the termb(p)b(l)b(n)b(m) in (D.14) to E
[
T4T

∗
4

]
in (D.12) is the

same as that given by (D.15). The contributions toE
[
T4T

∗
4

]
in (D.12), from the other

real terms in (D.14), namely,a(p)a(l)b(n)b(m), a(p)b(l)a(n)b(m),−a(p)b(l)b(n)a(m),

b(p)a(l)b(n)a(m),−b(p)a(l)a(n)b(m), b(p)b(l)a(n)a(m), can be worked out similarly,

resulting respectively, inσ4
aω

2, σ4
a

(
π2

3
+ ω2

)
G, −σ4

aω
2, −σ4

aω
2, σ4

a

(
π2

3
+ ω2

)
G, σ4

aω
2.
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Thus substituting all these contributions to (D.12), we have

E
[
T4T

∗
4

]
= σ4

nω2 + σ4
n

(π2

3
+ ω2

){
1 + E[G]

}
(D.17)

Similarly, we obtain

Re
{
E

[
T 2

4

]}
= −2σ4

nω
2 (D.18)

Therefore (D.1) can be simplified as

E
[
D̂2(k + 1)

]
= E

[
D̂2(k)

]
(1 + 4µσ2

sω
2)− 4µσ2

sω
2D E

[
D̂(k)

]

+ 2µ2{α× ε(k) + β}
(D.19)

where

ε(k) = E
[
(D − D̂2(k))

]
= E

[
D̂2(k)

]− 2 D E
[
D̂(k)

]
+ D2 (D.20)

α = 2σ4
sω

4 + σ2
sσ

2
nω

2π2/3 (D.21)

β = −σ4
nω2 +

{
σ4

n

(
π2/3 + ω2

)
+ σ2

nσ
2
sω

2
}(

1 + E[G]
)

(D.22)
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From (D.20) we have

ε(k + 1) = E
[
D̂2(k + 1)

]− 2D E
[
D̂(k + 1)

]
+ D2

= ε(k)
(
1 + 4µσ2

sω
2 + 2µ2α

)
+ 2µ2β +

(
1 + 4µσ2

sω
2
)
2 D E

[
D̂(k)

]

−D2
(
1 + 4µσ2

sω
2
)− 4µσ2

sω
2D E

[
D̂(k)

]

− 2D E
[
D̂(k + 1)

]
+ D2

(D.23)

Substituting (4.6) into (D.23), we can show that the last five terms of (D.23) sum to

zero, hence we obtain

ε(k + 1) = ε(k) C + B (D.24)

whereC = 1 + 4µσ2
sω

2 + 2µ2α, B = 2µ2β.

From (D.24), it is easy for us to get (4.10) in Chapter4.



Appendix E

Modulated Finite Impulse Response

(MFIR) Delay Filter

We consider a practical discrete delay system for delayD in the form of a finite impulse

response filter with coefficientshD(n) expressed as

y(k) = x(k −D) =
N∑

n=0

hD(n)x(k − n) (E.1)

Now letx(k) = x′(k)ejωk, then

x(k −D) = x′(k −D)ejω(k−D) (E.2)
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But

x′(k −D) =
N∑

n=0

hD(n)x′(k − n) (E.3)

Substituting (E.3) into (E.2), we have

x(k −D) = y(k) =

( N∑
n=0

hD(n)x′(k − n)

)
ejω(k−D)

=
N∑

n=0

hDx′(k − n)ejω(k−n)ejω(n−D)

(E.4)

Therefore,

y(k) =
N∑

n=0

hD(n)ejω(n−D)x(k − n) (E.5)

Equation (E.5) represents an MFIR delay filter.



Appendix F

Cost Function of MLIDF

Define the cost function as

J = E
[|e(k)|2] = E[e∗(k)e(k)] (F.1)

From (5.3) in the main text, we have

e(k) = x(k)−
N∑

n=0

h0(n,D(k))ejω(n−D(k))x(k − n), 0 ≤ n ≤ N (F.2)

Substituting (F.2) into (F.1) we get

J = 1 +
N∑

n=0

h0(n,D(k))
N∑

n=0

h0(n−D(k))− 2 cos(ωD(k))
N∑

n=0

h0(n,D(k))

+ σ2

(
1− 2h0(0, D(k)) cos(ωD(k)) +

N∑
n=0

(
h0(n,D(k))

)2
)

(F.3)
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Let us introduce a(N + 1)× (N + 1) Vandermonde matrix,V, and a column vector,v,

as follows,

V =




1 1 1 · · · 1

0 1 2 · · · N

0 1 22 · · · N2

...
...

... · · · ...

0 1 22 · · · NN




(F.4)

v =

[
1 D D2 · · · DN

]T

(F.5)

Now solve the equation

Vh = v (F.6)

As shown by Oetken [43], the solution of (F.6), h, is equal to the Lagrange interpolation

formulator, that is to say,

h =
[
h0(0, D(k)) h0(1, D(k)) · · ·h0(N,D(k))

]T
(F.7)

Therefore, it is obvious that

N∑
n=0

h0(n, D(k)) = 1 (F.8)

Substituting (F.8) into (F.3), we obtain (5.4) in the main text.



Appendix G

Convergence of EMLAFE

We approximate the delayed version of signals(k) as follows

s

(
k − 2π

ω̂(k)

)
≈

N∑
n=0

he(n, ω̂(k))s(k − n)

Taking expectation on (5.10) in the main text, we have

E[ω̂(k + 1)] = E[ω̂(k)]− 2µRe

{
E

[(
x∗(k)−

N∑
n=0

h∗e(n, ω̂(k))x∗(k − n)
)

×
N∑

n=0

f(n, ω̂(k))x(k − n)

]}

= E[ω̂(k)]− 2µRe{E[T1 + T2 + T3 + T4]}

(G.1)
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where

T1 = (s∗(k)− s∗(k − 2π/ω̂(k)))
N∑

n=0

f(n, ω̂(k))s(k − n) (G.2a)

T2 =

(
θ∗(k)−

N∑
n=0

h∗e(n, ω̂(k))θ∗(k − n)

) N∑
n=0

f(n, ω̂(k))s(k − n) (G.2b)

T3 = (s∗(k)− s∗(k − 2π/ω̂(k)))
N∑

n=0

f(n, ω̂(k))θ(k − n) (G.2c)

T4 =

(
θ∗(k)−

N∑
n=0

h∗e(n, ω̂(k))θ∗(k − n)

) N∑
n=0

f(n, ω̂(k))θ(k − n) (G.2d)

Since the signal and noise are uncorrelated,E[T2] = E[T3] = 0. We now evaluate the

other terms individually. To evaluateRe{E[T1]}, we rewritef(n, ω̂(k)) in (G.2a) as

∂he(n,ω̂(k))
∂ω̂(k)

, and then exchanging differentiation and summation operation, we have

T1 = (s∗(k)− s∗(k − 2π/ω̂(k)))
∂

∂ω̂(k)

N∑
n=0

he(n, ω̂(k))s(k − n)

=

(
s∗(k)− s∗

(
k − 2π

ω̂(k)

))
∂

∂ω̂(k)
s
(
k − 2π

ω̂(k)

)

=

(
1− exp

(
j

2πω

ω̂(k)

))
∂

∂ω̂(k)
exp

(
−j

2πω

ω̂(k)

)

Therefore,

Re{E[T1]} = E

[
2π

ω

1

(ω̂(k)/ω)2
sin

( 2π

ω̂(k)/ω

)]
(G.3)

We note that after a sufficient number of iterations,ω̂(k) approachesω, thereforex =

ω̂(k)
ω
∼ 1 . Now using1

x
= 1

1−(1−x)
≈ 1 + (1 − x) andsin α ≈ α for smallα, in (G.3),
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we have

Re{E[T1]} = E

[
2π

ωx2
sin

( 2π

1− (1− x)

)]
≈ E

[
2π

ωx2
sin(2π(1− x))

]

= E

[
4π2

ω

( 1

x2
− 1

x

)]
= E

[
4π2

ω

( ω2

ω̂2(k)
− ω

ω̂(k)

)]

= E

[
4π2ω2

ω̂2(k)ω2
(ω − ω̂(k))

]
≈ 4π2

ω2

(
E[ω − ω̂(k)]

)

(G.4)

In the above formula, becauseω
2

ω̂2(k)
= ©(1) and more important attribute of this term

is that the sign remains unchanged. Hence, for simplicity, we substitute it with1 by

treating it as a variable step-size issue. When the convergence is reached,ω2

ω̂2(k)
will be

very close to1.

Now since the noise is white, we have

E[T4] = σ2
[
f(0, ω̂(k))−

N∑
n=0

h∗e(n, ω̂(k))f(n, ω̂(k))
]

Therefore, under a higher SNR condition, that is to say,σ2 is small,E[T4] ≈ 0. Finally,

substituting (G.4) into (G.1), we get (5.13) in the main text.



Mathematical Symbols

a Constant or variable

c Lignt speed

s(t) Function oft

© Landau Operator

◦ Landau Operator

k Matrix or vector

µ Step-size

σ2 Variance

E[x] Expectation ofx

∏
Series production

τ Propagation delay

vg Group velocity

ω Angular frequency

f Frequency

τg Group delay

arg z Phase ofz
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|| • ||p Lp Norm

τp Phase delay

∑
Summation

5 Gradient

⊗ Convolution
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