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SUMMARY

In this dissertation we address the problems of time delay estimation (TDE), frequency
estimation (FE) in the presence of additive white noise. These estimation problems arise
in the study of many communications systems. For example in the hostile mobile radio
communications environment, there will be multi-paths, Doppler frequency drift, and
oscillator’s inaccuracy that will degrade system performance. Accurate estimations of
signal frequency as well as time delay between multipaths are essential to ensure good
mobile radio communications. Also since the mobile radio channels are time-varying,
adaptive signal processing is necessary.

In this dissertation, the basic adaptive technique that is exploited is gradient-based
LMS. The main purpose is to look into the currently available LMS-based TDE, FE, and
then to find new algorithms, which can be implemented in real time to explicitly obtain
TDE and FE efficiently.

We have developed a new so-called mixed modulated Lagrange explicit time delay
estimation (MMLETDE) algorithm using approximation techniques. In the proposed
algorithm we incorporated the modulated Lagrange interpolation filter into explicit time

delay estimation (ETDE) and replaced the gradients of the Lagrange interpolation filter’s

Vi
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coefficients with that of the ‘sinc’function filter’s coefficients. Furthermore, we have also
proved the convergence of the algorithm and derived the variance of the delay estimate.

For the explicit adaptive frequency estimation, we first defined the cost function of
the algorithm, and then designed the explicit modulated Lagrange adaptive frequency
estimation algorithm (EMLAFE). We also proved the convergence of EMLAFE.

We have conducted extensive computer simulation to verify our TDE and FE algo-
rithms. From the simulation results we verify that the MMLETDE can give an accurate
and fast unbiased time delay estimate over a wide frequency range for single tone sig-
nal using a filter with a very low order. The algorithm is also suitable for narrow-band
signals. We have also proved that the theoretically obtained variance of MMLETDE
for single sinusoid agrees with the simulation result. However we have observed that
the MMLETDE is slightly biased when the bandwidth of the signal becomes relatively
larger. For FE, we have seen from our simulation results using time-invariant and chirp
frequency signals that our new EMLAFE algorithm can give accurate and fast frequency
estimation for stationary and non-stationary signals.

Our two new MMLETDE and EMLFE algorithms can also be jointly used to offer

an accurate and fast estimation of time delay and frequency of signal.
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Chapter 1

Introduction

1.1 Background

In wireless communications systems, the transmission path between the transmitter and
the receiver can vary from a simple line-of-sigh to one that is severely obstructed by
buildings, mountains, and foliage. The presence of these obstacles in the channel cause
reflection, diffraction, and scattering of radio signal. These effects result in multiple ver-
sions with different time delays of the transmitted radio signal to arrive at the receiving
antenna. This is called multi-path propagation. Each individual path also arrives at its
own amplitude and carrier phase, and the superposition of these multi-path components
will result in the transmitted signal to be dispersed in time. In direct sequence spread
spectrum (DSSS), code division multiple access (CDMA) system adopted in the third
generation (3G) cellular mobile radio standards, the Rake receiver requires the knowl-

edge of multi-path parameters, such as time delays among multi-pattjs in [
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In radar, sonar, remote speed sensing and locating systems, the time delay between
the received signals at two spatially separated sensors or sensor array has to be estimated.
Least mean square time delay estimation (TDE) algorithm has been commonly used in
such cases 2], the time delay are not known a priori, and might change from time
to time due to motion of the signal source or the receiver, or due to the time-varying
characteristics of the transmission medit8j [

The relative motion between the base station and the mobile station results in Doppler
shift in frequency. A varying speed of mobile station or surrounding objects will intro-
duce a time-varying Doppler shift. In addition to Doppler shift, the frequency of the
local oscillator may also drift. These effects will introduce the frequency offset.

With the rapidly increasing market for high-speed data, image and video applica-
tions, bit rates in excess @Mbps are required for future cellular system. In Europe,
wide-band CDMA (WCDMA) concept has been decided by the European Telecommu-
nications Standards Institute (ETSI) to be standardized for Universal Mobile Telecom-
munications System (UMTS) as air interface for paired bahdh[January 1998. In the
standard of ETSI WCDMA 9, bit rates from a few kbps to 2Mbps for packet data op-
eration can be provided with the basic chip rate.696Mcps. The higher the data rates,
the harder it is to maintain a lower bit error rate. In WCDMA the modulation adopted
is QPSK with coherent demodulation. Signal synchronization is critical to coherent de-
modulation, and accurate phase and frequency offset compensation is required between
the local carrier and the received signal.

Orthogonal frequency division multiplexing (OFDM) is a popular communication
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scheme that has been adopted in several standards, e.g. digital audio broadcasting
(DAB), digital video broadcasting (DVB) or in broadband local area network (LAN),
like e.g. HIPERLAN B]. Because of its inherent simplicity in equalizing the adverse
effect of frequency-selective linear time-invariant channels, OFDM has also become a
popular multi-carrier transmission scheme for transmission of data requiring high data
rates [7]. It is well known that OFDM systems are highly sensitive to time and/or fre-
guency offsets8] [9] which cause inter-symbol interference (I1SI) and inter-block inter-
ference (1BI) [LQ].

In this dissertation we focus on time delay estimation and frequency estimation and

we shall describe them in the following sections.

1.2 Time Delay Estimation

The Time Delay of Arrival (TDOA) estimation problem is encountered in seismology,
sonography, Global Position System, radar, sonar, geographical remote sensing, and
communications system41]. Modern techniques of TDOA estimation which rely on
standard covariance methods not only require a large computation time, but also their
performance prediction exhibits poor correlation with actual estimated redilfsHor
non-stationary signal, adaptive signal processing is required. One method is to use Least
Mean Square (LMS) adaptive filter to estimate the time delay (TRE]) [

The conventional TDE is based on the generalized correlator, which requires a priori
knowledge of signal and noise spectiB3][ The time delay is estimated by calculating

the location of the peak of the correlation function between two signals that originate
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from the same source but travel through different paths. This conventional technique in
theory can achieve an arbitrarily accurate time delay estimate. However there are two

main disadvantages:

1. The cross-correlation of the two signals must be estimated. This is an averaging
and estimation process. The longer is the observation time, the more accurate
is the estimation of the cross-correlation. But a very long observation time is
impractical, because it will mean a longer computation time, and therefore the
technique is not suitable for non-stationary signal. On the other hand, with a

limited observation time, this method is in fact biased in the presence of noise.

2. In analog time domain, signal processing is vulnerable to noise. All modern tech-
niques exploit the power of digital signal processing, in which the analog signal is
converted to its discrete version. Then the power of post-digital conversion pro-
cessing can be exploited. However, the resolution of conventional TDE is limited

by the sampling intervdl'.

Notwithstanding the fact that resolution is limited by the sampling intefvdbr
conventional TDE, a more accurate time delay estimation where a resolution smaller
than a sampling interval is nevertheless needed in many fields. When a high resolution
and possibly time-varying TDE is required, especially for coherent demodulation, an

on-line interpolation is necessary. Let the signal of interest be

(k) = s(k) + 0(k) (1.1)

y(k) = s(k = D) + ¢(k) (1.1b)



CHAPTER 1. INTRODUCTION 5

where—oo < k < oo is the time indexs(k) = A(k)e’“°* is the original source signal

with center frequencyy, D is time delay normalized by the sampling inter¢al The

0(k) and¢(k) are the corrupting stationary zero-mean white complex Gaussian noises.
The main task is to track the deldy as fast as possible. This means that the algorithm
requires a moderate amount of computation cycles and should be implemented in real
time. Reed 12 reported in 1981 the use of an LMS filter to estimate the time delay
difference between two waveforms. The time delay estimate is obtained by interpolating
on the weights of the filter to select the point in the tapped delay line that corresponds to
the peak weight14]. Also many researchers have done extensive work on finite impulse
response (FIR) delay filter in order to approximate the delay to a signal in discrete time
domain. If one ideal FIR discrete delay system can be constructed, one signal can be
intentionally delayed and compared with another delayed version of the signal whose
delay is to be determined. The unknown delay can be determined when the difference

between the original signal and its delayed version reaches a minimum.

1.2.1 Explicit Time Delay Estimation (ETDE)

Chan et al. 15] introduced a parameter estimation approach to time delay estimation
by modelling the delay as a FIR filter whose coefficients are samples of a sinc function.
In 1988, Ching et al. 16] made an improvement on this parameter estimation approach
by only updating the maximum coefficient of a sinc function. In 1994, So et al] [

proposed an explicit time delay estimation (ETDE) algorithm, in which the delay was

parameterized in the coefficients of the fractional delay filter (FDF). As we know, this
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ETDE, which uses the LMS algorithm, is attractive as the delay estimaseexplicitly
parameterized in the filter coefficient in the iterative adaptation process. The time delay
estimate of this algorithm has been shown to be unbiased7hf¢r wide band white-
noise-like signals under a relatively longer filter length. 1i|[ the signal was assumed

to be white-noise-like, the noise was also limited to be within the Nyquist bandwidth.
However the assumption that the noise is band-limited within the Nyquist bandwidth
is unacceptable in practice since the bandwidth of noise is always larger than that of
practical communication systems. Another disadvantage of the ETDE is that the filter
order is large. Furthermore it has been proved that the ETDE is in fact bias&djin [
when the filter order is finite. Despite the fact that single sinusoid and narrow-band
signals are encountered frequently in communications systems, the ETDE algorithm has
been proved only for dealing with white-noise-like signal.

Nandi showed in 1999/183] that Lagrange interpolation technique can be incorpo-
rated into ETDE to estimate the time delay between two single tone signals. However,
the valid center frequency range of this new approach was not reported and needed fur-
ther investigations. Though the modulated ETDE(METDE3] [depends less on signal
frequency and filter order, the delay estimate is still biased and the required filter order
is high. We observe in our simulation results to be presented in Ch&plteat the mean
delay of METDE does not converge to the actual delay. The modulated Lagrange ETDE
(MLETDE) algorithm [13] is valid for certain range of single tone signals but biased in
its estimates.

In summary, the conventional ETDE is confined to full-band white-noise signal while
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the MLETDE is proposed for single tone signal and many technical issues have yet to be
tackled, such as the convergence to the true delay. The narrow-band or bandpass signals
are often encountered in many areas such as communications, sonar, radar. One of the
purposes of this dissertation is to find an algorithm for delay estimation for a bandpass
signal that can provide an unbiased estimate with as small a filter order as possible for
easy implementation.We shall also consider delay estimation for non-stationary band-

pass signal, in which convergence rate is also important.

1.2.2 Frequency Estimation

Many problems in statistical signal processing may be ones that attempt to estimate
signals with linear as well as nonlinear parameters in additive white Gaussian noise. A
common example is the estimation of frequencies of multiple sinusoids in noise. The
popular and accurate modern methods are based on the eigen-structure of the data auto-
covariance matrix [19]. However, when the frequency in question is time varying,
adaptive realization of such methods poses heavy computation burden because the auto-
covariance matrix has to be recalculated at each iteration.

Signals with time-varying frequency are often encountered in a variety of fields.
There are many methods to estimate the instantaneous frequencies. The Short Time
Fourier Transform (STFT) and Wigner Distribution (WD) are two popular algorithms
based on time-frequency representations (TFHR]]. [These algorithms require a large
computation time. A fast adaptive algorithm is required which means that the algorithm

should be simple and easily implemented in real-time. Etter et @] droposed in
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1987 an adaptive frequency estimator (AFE) which is based on an FIR delay filter with
fixed coefficients. By delaying the frequency fixed or varying single tone signal and by
comparing the filtered signal or delayed signal with the source signal, an algorithm to
estimate the instantaneous frequency can be developed. The frequency can be estimated
when the error (difference) reaches a maximum value. However a disadvantage of this
AFE algorithm is that the frequency estimation is biased unf)éosifs an integer and
unlesswy is small.

In [22] Nandi et al. introduced an adaptive Lagrange interpolation filter (LIF) , and in
this AFE technique the author modulates the LIF coefficients by multiplying a complex
exponential function [23]. However, they did not give a theoretical analysis on this
algorithm. Both the above algorithms adjusted the time delay between the source signal
and filtered signal, and compared the difference between them first, then converted this
delay to a frequency estimate when the difference reaches a maximum value.

In this thesis we attempt to develop a fast and accurate explicit frequency estima-
tion algorithm for non-stationary, frequency-varying signal. Our goal is in finding an

appropriate filter and an updating algorithm for the filter coefficients.

1.3 Contributions

In this dissertation we first investigated in detail explicit time delay estimation algorithms
which are based on fractional delay interpolation filter. Then we develop new algorithms

for time delay and frequency estimation as described below.

e Develop a new time delay estimator: mixed modulated Lagrange interpolation ex-
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plicit time delay estimation (MMLETDE) algorithm. The algorithm is proposed
for estimating fractional sample time delays that draws from and combines both
explicit time delay estimation and modulated Lagrange interpolation. This al-
gorithm can be used to estimate the delay of narrow band signal. We develop
statistical descriptions of its performance and, finally, present simulation results.
We show that MMLETDE can give accurate time delay estimate of a narrow-band
signal over a large signal center frequency range even under a very low filter order.
The benefits of low filter order are simpler and faster estimation and operation in

a non-stationary environment where convergence rate is important.

¢ In this dissertation, we also analyzed and developed a new explicit modulated
Lagrange interpolation adaptive frequency estimation (EMLAFE) algorithm. The
new proposed algorithm can be used to track the frequency of non-stationary single

tone signals rapidly.

e We also combine the MMLETDE and EMLAFE algorithms together to form joint
time delay-frequency estimation algorithm (JTDFE) to jointly estimate the carrier
frequency and time difference of arrival. In the case of only single carrier signal,
JTDFE can give signal frequency and phase directly so that we can simplify carrier

synchronization circuitry.



CHAPTER 1. INTRODUCTION 10

1.4 Summary

In this dissertation we address the problems of time delay and frequency estimation with
the goal of ensuring good radio signal reception in the presence of additive white noise
and in the hostile mobile communications environment where there exist multi-paths,
Doppler frequency drift, in addition to oscillator’s inaccuracy. We have developed a new
so-called MMLETDE algorithm for time delay estimation, which is suitable for band

pass signal, and a so-called EMLAFE algorithm for frequency estimation which can be

used to track a time-varying single tone signal.



Chapter 2

Synchronization In Communications

Systems

2.1 Synchronization in Digital Communications

In digital communications, the optimum detection of transmitted data requires that both
the carrier and clock signals are available at the receR4ir [The carrier and timing

recovery circuits are used to retrieve signal from the noisy incoming waveform. The two
fundamental synchronization problems are: timing recovery, which is an essential part
of digital communications, and carrier recovery, which is necessary only for coherent

detection.

1. Carrier Recovery in Coherent Detection: In general, coherent reception requires
knowledge of the basis functions at the receiver; synchronization must be used

to recover the basis function. In the special case of sinusoidal carrier signal, the

11
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knowledge of both the frequency and phase of a carrier is required. The basis
functions are usually recovered from the received noisy incoming signal by means

of a suppressed carrier phase-locked loop.

2. Timing Recovery: Another synchronization process in digital communications is
symbol synchronization or timing recovery. In practical systems, not only an iso-
lated single symbol, but also a sequence of symbols, has to be transmitted. To
perform demodulation, the receiver has to know exactly the time instants, at which
the start and stop times of the individual symbols are, in order to assign the deci-
sion time instants and to determine the time instants when the initial conditions of

the correlators have to be reset to zero in the receiver.

Compared with carrier recovery, which is required by coherent receivers, timing re-
covery is a necessary process in digital communications. The decision instants at the
receiver must be synchronized with the corresponding ends of symbol intérealthe
transmitter. Symbol synchronization must be obtained as soon as possible after trans-
mission begins, and must be maintained throughout the transmission. Though timing
recovery is mandatory in digital communications, it belongs to the decision portion of
the data recovery process. In this dissertation we will only focus on carrier estimation

and carrier tracking.
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2.2 TDMA vs CDMA

We note that in a digital communications system, the output of demodulator must be
sampled periodically, such as once per symbol interval, in order to recover the trans-
mitted information. In virtually any form of digital communications, synchronization

in time (symbol clock recovery) is a prerequisite before communication begins. Code
Division Multiple Access (CDMA) system is also not exempt from this requirement.
However, the synchronization in a CDMA system is somewhat different from its TDMA
counterpart. In TDMA systems, one requires synchronization in frequency (and, in some
cases, phase) before a data clock can be recovered. Often, a dotting seguénce- -

is included in the preamble of a TDMA frame to provide the clock synchronization sub-
system the necessary signal to lock onto. In a CDMA scenario, since the desired signal
is spread in frequency over the entire allotted CDMA band, the acquisition of Pseudo-
Noise (PN) code clock, which for most practical systems also implies data clock acqui-
sition, must be achieved in the absence of phase and frequency synchronization. The
PN code clock and data symbol clock are derived from a common source. Hence, an
acquisition of the PN code clock leads to data symbol clock recovery. This is due to the
fact that if one chooses to achieve phase and frequency estimation in the absence of PN
code acquisition, the phase and frequency synchronizers must extract synchronization
information from a wide-band signal. This, in general, is a formidable task due to the
large bandwidth of typical CDMA signals. Hence, in a CDMA system, PN code timing
acquisition precedes any other form of synchronization. Upon the recovery of the PN

code phase the CDMA signal is de-spread and then an accurate estimate of frequency or
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phase (time delay estimate) may be obtained.

2.3 Group Delay

Unlike wired channels that are stationary and predicable, and although electromagnetic
wave propagation is fundamentally governed by Maxwell’s field equations, a radio chan-
nel is extremely random to analyze accurately.

For simplicity, let us consider the plane waves. If we recall that the magnitude of the

propagation vectdk of a plane wave is given by

nw

Ikl = —, (2.1)

then the phase velocity of a plane wave is expressed by

(2.2)

wheren is medium refractive indexy is carrier angular frequency,is light speed in
free space 25].

We now consider transmitting a signal that contains information of carrier modu-
lation. Assume a-directed,y-polarized modulated plane wave packgt(0, ¢) at the
source location propagating from some initial plane= 0 into a linear but possibly

dispersive medium. We therefore represent the modulated sigi@l ¢) at the source
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location by

E,(0,t) = f(0, t)e /w0t (2.3)

The signal, shown in Figur@.1, consists of a carrier at frequency, modulated by

a slowly varying envelopg (0, t). Let us assume that each frequency component of

y

Real part of E (0,t)
o

|
o
N

|
I
»

-0.6

Figure 2.1:A time-domain version of the modulated wave packebpf0, ).

f(0, t) travels along a propagation directierwith an associated propagation constant
k(w). By superposition, the received sigrig)(z, t) at some arbitrary distancefrom

the source will be

E,(z, t) = f(z, t)ejk(“"))ze_j‘”ot (2.4)
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Now, we can relatef(z,t) to f(0,t) by writing

E,(z,1) :/ B, (w)e?*@)zeiwt q, (2.5)

—00

where £, (w) = 1 fo ,(0,¢)e*! dt’. Substituting 2.3, (2.4) into (2.5) and rear-

ranging terms , we obtain

Fz,t) = / By (w)e e =] g, (2.6)

(e 9]

In order to analyze [4.€) further, we now express it in a Taylor series expansion as
follows

dk d*k

k(w) = k(wo) + (w — wO)dw + (W — wo)?—— LT (2.7)

If we limit the accuracy to the first order, thep.€) takes the particularly simple form

dk

f(z,t) = f(0,t — %z) (2.8)

It is obvious that from2.8) we can define an envelope velocity, which is known as the
group velocity,v,, and is given by

’Ug:

dl [ dw (2.9)
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and the corresponding group delay

=2 (2.10)

Clearly in the case where higher than first-order derivativdsarke negligible, the prop-
agation is not dispersive, as we can see frd@g)(that the functional form of the wave
remains invariant under propagation.

The point here is that, defined in .2) is the velocity of the carrier oscillation
underneath the wave envelope. The group velocity represents the speed at which the
information is transferred from transmitter to receiver. The propagation delay of infor-
mation is associated with group delgy Throughout this dissertation, when we refer to

time delay, we shall mean the group delay.

2.4 Signal Parameter Estimation

In Section2.1lwe mentioned the need for synchronization in order to achieve coherent
demodulation for WCDMA system. Synchronization is a process of system identifica-
tion through which the parameters of a modulated waveform, such as carrier frequency,
carrier phase, or timing of symbol can be detected. Let us assume the signal of interest
is s(0, t) at initial place. The received signa(z, t) at placez is the delayed version

of original signal, which is corrupted by Gaussian noigg). As discussed in previous
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s(0, t Channel é r(z, t)
c(t,7)

Figure 2.2:Channel model

section,s(0, ¢) can be expressed as

(0, t) = s.(0, t)e*m /et (2.112)

where thes..(0, t) is the complex envelope of signalt).

The received signal as illustrated as in FigRrémay be expressed as

r(z, t) =s(0, t) ® C(t;7) + n(t) (2.12)

whereC'(¢; 7) is the complex impulse response of mobile changelis convolution
operator.
If we only consider plane wavt) traveling through isotropic non-dispersive medium,

the received signal may be written as follows:

r(z, 1) = a(t)s(0, t — 7)e?? =T L on(t) (2.13)

where « is the complex attenuation; is the propagation dela%z = i = 7, in
(2.8 (2.9 (2.10. It seems that only the propagation detayeeds to be estimated.
However, it is not the case in practice. First of all, the oscillator that generates the carrier

signal for demodulation at the receiver is generally not synchronous in phase with that
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at the transmitter. Furthermore, the two oscillators may be drifting slowly with time,
perhaps in different direction2§, page 334]. In addition, the precision, to which one
must synchronize in time for the sake of demodulation of received signal, depends on
the symbol intervall. The phase = 27 f.7, which is determined by the product §f

andr, will be severely degraded by the inaccuracy of estimation of propagation delay
becausef. is generally large. In summary, we must consider estimating both the phase
and propagation delayin order to coherently detect the received signal. Therefore, we

rewrite the received signal expression as follows

r(t) = a(t)s(t; ¢, 7) + n(t) (2.14)

where¢ andr represent the signal parameters to be estimated.

2.5 The Modeling of Fractional Time Delay

Consider the existence of a time difference of arrival or time delay between two real

signals, which originate from the same source but travel via different paths. The common
approach to time delay estimation as will be explained in the next section, is to find the
peak of the correlation of these two signals. k@t ands,(t) := s(t + D) be the signal

and its delayed version. For discrete signal processing, the two signal seq{igitgés

and {s4(k)} in discrete time domain can be related by sampling theorem. Assume,

without loss of generality, that the signal spectrum is band-limited betweeand

the sampling time interval” is unity. Therefore, based on sampling thee(y) =
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S>> s(n)sinc(t — n) [27], whent = k + D, k is an integer whileD needs not be

n=—oo

integer, we have

sq(t) = s(k+ D) = Z s(n)sinc(k + D — n) (2.15)

n=—oo

where

sinm(k+ D —n)

sinc(k +D —n) = Tt D—n)

We now letm = k — n, thenn = &k — m and 2.15) becomes

sq(k) = Z s(k — m)sinc(D + m) (2.16)

k—m=—00
Sincek is a finite integer we can rewrite2 (15 as

sa(k) = s(k+ D) = Y sinc(D +n)s(k —n) (2.17)

n=—oo

Thus R.17) represents the generation of the delayed sequeng¢e)} from {s(k)}
through an infinite-order filter whose coefficients &ic(D-+n)} . This result also can
be obtained by performing inverse Fourier transform on the quaditity [28]. Here
we briefly describe the derivation as follows.

Let F'{-}, F~'{-} be the Fourier transform and its inverse operation, respectively.
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Then
s(t+ D) = F{e*P} ® s(t) (2.18)

In discrete time domain, we assume that the signal spectrum is band-limited within

(—m 7], hence
. T (" ..
FHewPY = By / eIP et dy = sine(D + t) (2.19)
™ —T
Substitution of 2.19) into (2.18) gives

s(t+ D) = /OO sinc(D + 7)s(t — 1) dr (2.20)

o0

The discrete version 0i2(20) is given by @.17).
We have obtained2(17) using two techniques. It is obvious that an infinitely long
filter is unrealizable, and in practice, it is very reasonable to ljmjitto a reasonable

numberp so that an approximation t2(17) is

Sq(k) = Z sinc(D +n) s(k —n) (2.21)

n=—p
and the continuous time version &f(k), 54(t), is obtained by the sampling theory

o0 p

Sq(t) = Z Z sinc(D + n)s(k — n)sinc(t — k) (2.22)

k=—o0con=—p
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We have now modeled, througB.21), the time delay as a FIR filter with coefficients
sinc(D + n). The modeling accuracy will increase with increasinigecause the trun-

cated error of [2.21) decreases.

2.6 Cross-correlation Betweers,(k) And s(k)

Itis clear from @.21) thats,(k) ands(k) are linearly correlated. Hence their coherénce

is always 1. Calculating the cross correlation betweehands,(t) of (2.22), we have

Ry, (D +7) = E[s(t + D + 7)34(t)]

= E[s(t +D+7) Z Z sinc(D + n)s(k — n)sinc(t — k)

k=—ocon=—p

© p
= Z Z Rs(t+ D+ 7 — k + n)sinc(D + n)sinc(t — k)

k=—oon=—p

(2.23)

whereR,,(to—t1) = Ela(ta+1t)b(t; +1t)] is the definition of the cross-correlation of two
stationary random processgg) andb(t), andr denotes the correlation shift. Therefore,

we can easily obtain the new formula when substituti@dL?) into (2.23)

P
Ry (D +7) = Z Rss(D + n + 1)sinc(D + n)

n=-—p

— Z Rys(D — n+ 7)sinc(D — n) (2.24)

—n=—p

= Z Rs(D —n+ 1)sinc(n — D)

n=-—p

1By definition, coherence of;(k) ands(k) is N '_S“id,_(e;;)l( = [29].
5454 (€79)Sss (eI
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In [30], the autocorrelation of(¢) can be expressed as follows

Rys(1) = Z Rys(n)sine(T — n) (2.25)

n=—oo

Using the same technique i2.07) on (2.25) and lettingn = n—D—7 (mis an integer),

we can easily obtain a new reconstruction formula for autocorrelation as follows

Ry(1) = Z Rys(n)sine(T — n)

n=—oo

= Z Rss(m + D + 7)sinc(t —m — D — 1)
nomkbETEee (2.26)
= Z Rgs(m + D + 7)sinc(—m — D)

m=—00

= Z Rss(m + D + 7)sinc(m + D)

m=—0o0

Substitutingm in (2.2€) with n, we have

o0

Rs(1) = Z Rss(n + D + 1)sinc(n + D)

n=—oo

o0

= Z Rss(—n + D + 7)sinc(—n + D) (2.27)

—NnN=—0o0

= Z Rss(—n + D + 7)sinc(n — D)

n=—oo
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Comparing 2.24 and 2.27), we can obtain

J(D+71) Z Rs(D —n+ 1)sinc(n — D)

n=—p
—p—1
= Rg(T Z Rs(D + 7 — n)sinc(n — D)
n=—00 (2.28)
— Z Rss(D + 7 — n)sinc(n — D)
n=p+1
~ Rgs(T)

In other words R, (D +7) is an approximation t&,(7) by truncating the right side of
(2.27. Whenp tends to be relatively large, the last two terms, the truncated error or the
remainder, become small compared with(7) and can be dropped becaus2.2()) is

a process through an ideal delay system as described in S&®oh (2.29 indicates

that the cross correlation efk) ands, (k) will peak at time difference of the signal and

its delayed version.

As can be seen from2(28), there is a remainder of the truncation error. Therefore,
usually, the peak of the cross-correlations¢f) and s,(¢) does not peak at thB. As
noted in R8], s(¢), 54(¢) is not shifted exactly byD from a band-limited white noise
processs(t) as desired because the approximation2n21) causes the,;, (D + 7) #
R,s(7). This uncertain truncated error makes the explicit time delay estimat&7h [

biased.
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2.7 Frequency Estimation

The auto-correlation function is a second order statistics of a stochastic process in time
domain. Its counterpart in frequency domain is power spectral density. That means
that we can usually decompose signal into its complex sinusoidal components which
are well-defined quantities. A number of algorithms, which can be used to estimate the
frequency of a single complex sinusoid, have been introduced over the years, most of
them are based on a maximum-likelihood (ML) approach. Considesamples of a
single complex sinusoid in additive white Gaussian noise (AWGN). The observed signal

is

r(k) = /Eqel CTETH0) (k) (2.29)

where0) < k < M — 1. E, is signal power, and’ is the sampling interval. The
noise sequence df,.} is an independent identically distributed (iiD) random complex

process with zero mean and variamce We can rewrite the observed signal as

r(k) = (1 + v(k))/ Eyel @ kTH0) (2.30)
where
1 .
(k) = —==n(k)e I G0 (2.31)
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is a complex white noise sequence with

2
it 1
var v(k) = L.~ SNR (2.32)

Q

Now letv(k) = v (k) + jvg(k), then

1+v(k) =14vi(k) + jug(k) (2.33)

For SNR, > 1, we can assume that; (k)| < 1 and|vg(k)| < 1, therefore 2.33

becomes

1+v(k) = 14 jog(k) ~ el velk) (2.34)

As Tretter has done irB3fl], we can now approximate the additive noise with Gaussian

phase noise as follows

r(k) = [ ed (@ kTatbtvo(k) (2.35)

Thus, the additive noise has been converted into an equivalent phasegdisevith

1
~ 2SNR,

var vg(k) = 0.5var v(k) (2.36)

Furthermore, based on Tretter's work Bi], Kay developed in 32] an ML estima-

tor based on differential phase measurements with a delay of one sampling interval. The
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delay can be of other value, say sampling intervals as in3B]. The new observation

vectorU,,is now as follows

Um = (Um7 Um+17' Ty UMfl)

where

Up = arg(r(k) r(k —m)*) = 2mm fTs + vg(k) — vo(k — m) (2.37)

inherem <k < M —1andl <m < (M — 1)/3. We note that 2.37) is valid for

higher SNR only. Now{U}} is a sequence of multi-variate Gaussian distribution with
mean2rmm f Ty. Itis clear from R.37) that the problem now is to estimate the mean,

f, of a Gaussian noise process. This is a standard estimation problem and the method is
indicated in B2]. The ML estimator is obtained by minimizing the following quadric

form, which is in the exponent of the multivariate Gaussian density functidh,of

Q(f) = (U, —2rfT.HR ' x (U, — 2nfT.I)" (2.38)

where® = E[U! U,,] is the covariance matrix of the observation vedy, the super-
scriptT denotes the transpose operation, &mslan (M — m)-dimensional row vector
consisting of only ones. Setting the derived quadric form, with respect to the unknown

frequency, to be equal to zero, this results in a matrix equation which is easily solved.
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The resulting ML estimator of is

1 IRT'RT

2nTym IR-IT (2:39)

f=

This algorithm is based on the estimated autocorrelation which requires a relatively
large sample size. The decision formula #&.39 can be simplified by exploiting the
eigen-structure of covariance matrix. This simplification depends on signal characteris-
tic. This kind of algorithm, which requires signal to be a stationary process, of which
statistical properties are not time-varying, for accurate estimation of the covariance ma-
trix, is not suitable for non-stationary signal whose spectral characteristics (in particular
the frequency of the spectral peaks) are varying with time. In a non-stationary environ-
ment, the instantaneous covariance matrix has to be recalculated at each iteration.

However in practice, the non-stationary signal is not suited to decomposition into
sinusoidal waves; the notion of frequency loses its effectiven@g. [This situation
gives rise to the idea of instantaneous frequency.

Consider a signal(t), with its corresponding analytic signalt) obtained by Hilbert
Transformation. The definition of instantaneous frequeney©fis the derivative of the

phase ot:(t) as follows B4]:

fi= 5 larg (1) (2.40)
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or in another form that will be useful for discrete-time implementation:

- 5t—0 4ot

(arg z(t + 0t) — arg 2(t — dt)) mod 27 (2.41)

wheremod denotes modul@r operation. Another very important concept is group
delay, which is defined below, indicating the propagation time of the frequency of an

impulse traveling through a linear system.

1 d

Ty = —%W(m (2.42)

wheref denotes the phase spectrum of signal.

For a general complex signal, the phase spectii), , and hence the group delay
(GD), depends on both the phase and amplitude of the time signal; and the signal phase,
¢(t) , and hence instantaneous frequency, also depends on both phase spectrum and mag-
nitude spectrum. Group delay describes the localization of various spectral components
of the signal in the time domaii34].

Some methods to estimate instantaneous frequency calculate the partial derivative
of phase with respect to time difference like i@.42). However the time difference of
ot cannot tend to be zero due to limited sampling interval. One possible approach is to
make use of interpolation technique. In this dissertation we address this issue from other

approach to be presented in Chapger
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2.8 Summary

In this chapter we have presented the basic concepts of synchronization in communica-
tions systems from group delay in wave propagation, fractional time delay in discrete
time system, frequency estimation using ML and covariance matrix approach.

For time delay estimation issue, the most obvious method is to calculate the cross-
correlation of original signal and its delayed version. The location of peak of cross-
correlation reflects the time difference between the original signal and delayed version.

The concept of frequency, which is a well defined quantity for stationary signal, is
not suitable for non-stationary signal environment. In practice, the most common defini-
tion of frequency is in fact an averaging periodic of signal for a particular time interval.

In this dissertation, we refer to frequency as instantaneous frequency. It degenerates
into ordinary meaning of frequency for stationary signal. We briefly introduced an ML
frequency estimator, such as Generalized Kay frequency estimator. The ML approach
usually requires a large sample size and its decision formula can be simplified via ex-
ploiting its covariance matrix structure.

The simplest way to estimate instantaneous frequency perhaps is to calculate the
derivative of signal phase with respect to tima accordance with instantaneous fre-
guency definition. However the sampling interval will limit the resolution of estimated

frequency and the noise will also affect the results severely.



Chapter 3

Time Delay Estimation

As discussed in previous chapters, coherent demodulation requires carrier synchroniza-
tion. This means that the carrier phase and the frequency offset should be estimated
accurately. We note that there are many methods to track the phase and frequency; how-
ever, these techniques are based on analog Phase-locked loop (ELL) Section
2.5and Section2.7, we note that the common approaches to time delay estimation and
frequency estimation, which are based on autocorrelation, require a large computation
time, and are not suitable for a non-stationary environment. For two sinusoidal sig-
nals with the same frequency , we can calculate the phase difference between them in
terms of time difference, however as pointed out in Secid unless the frequency

can be accurately determined, otherwise we need to estimate time difference and phase
difference separately because a small estimation error in time difference will cause a
large phase error due to a relatively large carrier frequency. In this dissertation, we are

concerned with the digital techniques, and in this chapter and Chépterwill first de-

31
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scribe digital existing explicit time delay estimation (ETDE) algorithms, which require
only modest amount of computation time. Then in Chagdtere will introduce a new
improved ETDE algorithm that can give accurate time delay estimate even with a low

order interpolation filter.

3.1 Introduction

Time delay estimation (TDE) plays an important role in many applications, including
synchronization in communications systems, source location by spatially separated an-
tenna, radar and sonar rangind 3], Conventional TDE is based on the generalized
correlator B5], which requires a priori knowledge of signal and noise spectra. However,
resolution is limited by the sampling interval. When high resolution and possibly time-
varying TDE is required, especially for coherent demodulation, an on-line interpolation

is necessary. Let the signal of interest be

(k) = s(k) + 0(k) (3.1a)

y(k) = s(k — D)+ (k) (3.1b)

wheref is the time index {oo < k < c0), s(k) = A(k)e?“o* is original source signal

with angular frequency, assumed known) is time delay normalized by the sampling
intervalT’, andA(k) is a low-pass signal. ThE k) andw (k) are the corrupting stationary
zero-mean white complex Gaussian noises and they are mutually independent. The main

task is to track the delay as fast as possible. This means the algorithm requires a
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moderate amount of computation cycles and should be implemented in real time. As
is well-known, the explicit time delay estimator (ETDEN7], which uses the LMS
algorithm, is attractive as the delay estimﬁ;ték) is explicitly parameterized in the filter
coefficients in the iterative adaptation process. The system block diagram for ETDE,
which is similar to that of the adaptive system identification algorithms, is shown in

Figure 3.1. The time delay estimate of this algorithm has been shown to be unbiased in

y(k)

Figure 3.1:System block diagram of the ETDE.

[17] under condition of a broadband white noise-like signal. As mentioned&h for a
narrow-band signal, the ETDE is actually far from optimal and its performance heavily
depends on signal frequency and filter order. This is because the ETDE has been proved
to be a poor fractional delay filter (FDF) due to its considerable pass-band rigigle [
Furthermore, for a wide-band signal, the ETDE has also been proved to be biased in
[18]. Whens(k) is a narrow-band signal as in our simulation to be described in a later
section, we observe that this algorithm is actually biased and its performance depends
heavily on signal frequency and filter order because the sinc fractional delay filter has
a considerable passband rippl27]. Though the modulated ETDE (METDE)1J]

depends less on signal frequency and filter order, the delay estimate is still biased and
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the filter order is high. We observe in our simulation that the mean delay of METDE

does not converge to the actual delay.

3.2 Fractional Delay Filter

A fractional delay filter (FDF) is used for band-limited interpolation between samples.
The FDF finds applications in numerous fields of signal processing, including commu-
nications, array signal processing, speech processing, and music technology. When de-
laying a signal:(t) by tp, we gety(t) = z(t — tp). Converting them into discrete time
signal by sampling at time instants= £ T', T' is sampling interval, for simplicity, lel’

be unity, we can obtain

y(k) = a(k — D) (3.2)

whereD is a positive real number that can be splitinto an integer and a fractional part as

D= Int(D)+d=tp/T (3.3)

When D is a multiple of the adopted sample interval, the delay of the signal works
perfectly because the signal samples are simply stored in a buffer memory and we only
need to shift the time index to get the delayed signal./Ftaeiking on non-integer values,

a band limited interpolation should be used to approximate the delayed value, which lies

somewhere between two sampleg — Int(D)) andz(k — Int(D) — 1). Thed in
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(3.9 is fractional delay of discrete time signal. Tlie= % Is sampling frequency, and
Nyquist angular frequency isy,,.isc = 7 Which is the highest signal frequency that can
be completely restored. In this chapter, all the frequencies are normalized, by

For an ideal discrete-time delay system, the z-domain transfer function is

Hia(z) = 277 & Hig(e) = 7P (3.4)

wherew = # is the normalized angular frequenay,..; is signal frequency and
Yyquis

one solution to this ideal delay system .4) is a so-called ideal fractional delay filter

(FDF) whose filter coefficients are2T]

hia(n) = sinc(n — D), —oo < n < 00 (3.5)

This ideal solution is well known but it is an unrealizable filter due to its infinite fil-
ter length. It is only of academic value and therefore, one has to find or develop an
approximation.

Consider the approximation of the actual overall delapy an N"-order FIR filter

with z-domain transfer function

Hp(z) = hp(n)z™" (3.6)

and the frequency response, phase response, group delay, and phase delay of this filter
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are respectively as follows

N
Hp(e) = hp(n)e 7" (3.7a)
0
arg Hp(e?) = Op(w) (3.7b)
. _8@D(w)
TP = o (3.7¢)
_@D(w)

(3.7d)

The set of filter coefficient§hp(n)} should be chosen such that the chosen norm of the

error function in frequency domain given bi3.§) is minimized
E(e’*) = Hp(e’) — Hyg(e?*). (3.8)

The norm of a mathematical object is a quantity that in some sense describes the length,

size, or extent of the object., norm is defined as follows

o

o)) 39)

o)l = (/

—00

Now let us consider the approximation t@®.8). When choosing ark, norm for
the cost function, it is a least square (LS) error design. Via the Parseval relation the

frequency-domain error norm can be converted into the time-dondaim@grm [27]),
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resulting in the following formula

b = %/ |E(e™)*dw = %/ |Hp(e’) — Hig(e’)|dw
S 0 (3.10)
= Z \hp(n) = hia(n)|?

n=—oo

There are numerous approaches to approximating the actual dédy Ip this
dissertation we only consider two techniques : the truncated sinc filter and Lagrange
interpolation filter. Before discussing particular filters, we first show that if one signal
is delayed byD, then the delayed version of the modulated signal can be expressed in
terms of the delayed signal as follows. Assume thiatthe shifted version of in (3.2).

The corresponding discrete sequencesafé)} and{xz(k)}, respectively.

Now letz (k) = 2/(k)e/ok, wherex’ (k) = x(k)e 7ok, Then
z(k — D) = 2/(k — D)ed*o*=P) (3.11)
But

¥(k—=D)= Y h(n)a/(k—n) (3.12)

n=—0oo
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Substituting8.12) into (3.11), we obtain

y(k) = x(k — D) = ( Z h(n)z'(k — n)) eJwo(k—D)

n=—0oo

- Z h(n)e?*0n=P) ( (k—n)eij(k_”))
n=-—00 (3.13)

= I k=D)y (| — D) = o/ (k — D)e/0*=D) — g(k — D)

Z h(n)e? =Dz (k — n)

n=—oo

In the next section we will discuss several existing algorithms: filter definitions and

the corresponding delay estimations.

3.2.1 Truncated Sinc FDF and ETDE

The ideal infinitely long FDF defined in3(3) is unrealizable and hence, one must find
an approximation to the ideal solution. We note that the ideal impulse response is a sinc

function:
hia(n) = sinc(n — D) (3.14)

From 3.10), the L,-optimal N*-order FIR filter is easily obtained by simply truncating

the ideal impulse response fo= N + 1 terms. The optimal causal solution can be
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expressed as

sinc(n — D) forM <n< M+ N
hp(n) = (3.15)

0 otherwise

where M is the integer time index of the first nonzero value of the impulse response.
The resultant approximation of erro.00) can be rewritten in the following form by

substituting 8.€) into (3.5).

o0

M-1
Ei= Y |hap@P+ Y |hiapn) (3.16)

n=—oo n=M+N+1

Here we usé,;, p(n) to emphasize explicitly the delay. We can observe fron8(16)

two important characteristics. First, the approximation error decreases as the filter order
increases. Second, the smallest error reaches the lowest when the overalDdslay
placed at the center of gravity of the ideal impulse response as explain@d]in [

Letn — Round(D) = p, hencen = p + Round(D). So,

o0

y(k) = Z hia (p + Round(D)) x(k — p — Round(n))

p+Round(D)=—o00

- (3.17)
= Y hia(p + Round(D))x(k' - p)

p=—00
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wherek’ = k — Round(D). It is obvious that the above formula can be simplified as

y(K' + Round(D)) = 3 Ryy(pa(k — p) = x(k - D)

p=—00

= 2(k — Round(D) + Round(D) — D) (3.18)

— z(k — Round(D) — D) = z(K — D)

whereh, ,(p) = hiq(p+Round(D)), D = D— Round(D) lies in the interval—0.5, 0.5),
is so-called subsample or fractional deldypund(e) denotes rounding to the nearest
integer. The corresponding coefficients of Aff-order finite impulse response filter

(FIR) which is shown in Figure8.2, are determined by the formula

hia,p(n) = sinc(n — D), =M, <n < M, (3.19)

where M, = N/2, My = M, if N is an even integer andl/; = (N — 1)/2, M, =

(N +1)/2forodd N, andN > 1.

x(k + M)

Pia, By (M) | Pig poy (1 — M) hig pgy (2 — M)

~—
>
N
Y
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~—
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Figure 3.2:Finite impulse response filter.

The ideal impulse response solution @®.5] is hy(n) = sinc(n — D), where—oco <

n < oo. When the delay) is an integer, only the sample at= D contributes to the
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output; if the D is a non-integer, there are infinite samples that will contribute to the
output. In Figure 3.3 we show that the contribution from the samples, which are far
fromn = D, decays rapidly. In Figure3.4, we also show the magnitude and phase
responses of a truncated sinc filter with the weighig(n — 5.4), 0 < n < 10. As can

be seen from Figur8.4, the truncated sinc filter has a well-known feature, the Gibbs
phenomenon, which causes ripple in the magnitude response. In S&cgowe have

given the definitions regarding phase response, group delay and phase delay. All three
measures can be used as an indicator of the delay of the system. It is shown in Figure
3.5that the phase delay and the group delay of the truncated sinc filter are not identical.

Which one should be used depends on the particular case.

T T
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0 }//@\\é//?\w \\y ~_G—
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Figure 3.3:Sinc sample function.
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Like the group velocity introduced in Chaprthe group delay indicates the delay
of the information energy47]. Based on this knowledge, we choose the group delay as
a measure of system delay. The group delay equals the ideal defegn ideal discrete-
time delay system. The fractional delay here refer®tavhich can be negative. Hence

the total delay can be estimated by assuming

0 ~D=M+D (3.20)

It should be noted that” (w) = f(D, w) is a function of fractional delay filter's parame-
ter D and the normalized angular frequengyThis unique mapping relationship among
TP (w), D, w means that the group delay caused by the fractional delay filter (FDF) is
dependent on the fractional delay

For ETDE, we replace thé by the D estimate and substitute the filter coeffi-
cients in B.19 by sinc(n — D). As shown in Figure3.1, the error is defined as
e(k) = y(k) — S, h(n, D(k))z(k —n). The ETDE 's delay estimateD(k)}
are obtained through gradient descent of the instantaneous squared error flak}ién

by differentiating|e(k)|? in order to locate the global minimum. The ETDE algorithm

can be summarized as followd 7]:

e(k) =y(k)— Y sinc(n — D(k))ax(k —n) (3.21a)
D(k+1) = D(k) — “gﬁig = D(k) — 2ue(k) Z fW)z(k—n)  (3.21b)

() = _cos(mv) — sinc(v) (3.210)

14
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The functionf(v), (v = n — D(k)) in (3.219 is the gradient of the filter coefficient
with respect to the time delay estimal¥k). For later reference in this dissertation,
we refer tof(v) as the coefficient adaptation factor (CAF). In the modulated ETDE

(METDE) [3€], the filter coefficientsinc(n — D(k)) in (3.218 are modified by multi-

plication of e7«(n—D(k))

3.2.2 Lagrange Interpolation FIR and ETDE

We have discussed thig, norm design of FIR filter in the previous Sectid®2.1 In

this sub-section, we will discuss the Lagrange interpolation as a fractional delay filter.
The Lagrange interpolation is perhaps the simplest technique to design a FIR filter to
approximate the fractional deldy. In theory, it is equivalent to an FIR filter of which

the error function is maximally flat (MF) at a certain frequency, typicallwat= 0.

Hence the approximation is at its best close to this frequency and not as good at a more
distant frequency. In Figure3.6, we show the magnitude and phase responses of a
Lagrange interpolation filter witlh = 5.4, 0 < n < 10 (n is filter tap index). In Figure

3.7, we show the phase and group delay of this Lagrange interpolation fractional delay
filter. Comparing the magnitude response, phase response, group delay, phase delay with
these characteristics of sinc filter in Figu8el and Figure3.5, we can easily find that

the Lagrange interpolation FDF has many advantages over the truncated sinc FDF filter,

such as flat magnitude, group delay responses.



CHAPTER 3. TIME DELAY ESTIMATION 45

Magnitude (dB)
Lo b b oo
T T T T

|
(9]
T

-7 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (xmrad/sample)

T

-200 N

-400 .

T

-600 B

Phase (degrees)

-800 - N

-1000 L L L L L L I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (xmtrad/sample)

Figure 3.6: Magnitude and phase responses of delay for Lagrange interpolation filter
(D =54,0<n<10).

5.5 T T T T T T T T T

»
5
T

| | — Group Delay
— - Phase Delay

Delay (samples)
N

w
3
T

Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
wpi

25 I I I I

Figure 3.7:Group and phase delay as function of frequency for Lagrange interpolation
filter (D = 5.4,0 < n < 10).



CHAPTER 3. TIME DELAY ESTIMATION 46

The Lagrange Interpolation filter (LIF) is equivalent to a maximally flat FI[2H].[ MF
means that the derivatives up dah-order of the frequency-domain error function at a
pointw, are set to zero, that is,

d"E(e')

dw™

=0 forn=0,1,2,--- N (3.22)

w=wq

whereE (e/+) is the complex error functioiB() with desired responsl 4 (e’v) = e/,
The coefficients of this LIF, which is maximally flat at = 0, are obtained through the
formula below via differentiation and insertion of the valugin (3.22), and the solution

can be written in an explicit form23).

T D—i
hp(n) =[] —— (3.23)
=0

The superscript foh%(n) in (3.23 is used to emphasize that the maximum flatness is at
wo = 0.This maximally flat region can be shifted to another frequenchy applying a
complex modulation [23]. Actually it is just a process of frequency shiftin@7]. We

note thatD = — M, + D(k), hence the filter coefficients can be written in the following

form:

Mo ~

mOEN | % (3.24)

D(k
i=—M;

i£En
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where M;, M, are defined before in3(19, and D(k) lies in the rangg—0.5,0.5).

Therefore, the modulated coefficients are
hpg(n) = ej“’O("’D(k))h%(k)(n) (3.25)
We can expand3;24) int a polynomial inD in the following form:
N A
K (n) =Y a,DP(k) (3.26)
p=0

In this dissertation, this set of expressions is obtained directly by expandmi2y) (
and furthermore we can obtain the partial derivatives gn) with respect toD(k),
n=—M;, —M, +1,---, M, with respect taD (k) as follows

N

f(n, D(k)) = pa, D" (k) (3.27)

p=1

In [13], Dooley and Nandi suggested a minimum mean squared estimation error
(MMSE) criterion for selecting an optimum fractional delay filter (FDF) for ETDE but
this criterion was amenable only to a trial-and-error simulation approach. Stb3h [
the authors gave the simulation results without further proofs and derivations, such as
convergence to actual delay, standard deviation of time delay estimate, the algorithm’s
valid signal frequency range, the step-size’s range, and convergence rate. Though the
signal could be band-pass filtered to obtain high SNR beforehand, the practical system

should be usually operated under an SNR rang#)d@b 40dB. The performance of the
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algorithm should be also tested under this condition.
In summary, the MLETDE algorithm which incorporates the modulated Lagrange

interpolation FDF filter into the ETDE/L7] is summarized as follows3g]:

(B =5(k)— D hpgolm)e(k—n) (3.282)

D(k+1) = D(k) — 2uRe {e*(k) Z f(n, D(k))x(k — n)} (3.28b)

f (nv ﬁ(k)> = ejuJo(n—D(k)) |:f0(na [)(k)) - ju)()h%(k) (n):| (328C)
A Oy, (n)
0 _ _ Db®
fo(n, D(k)) = 2D(k) (3.28d)

The f°(n, D(k)) in (3.289) is the CAF in the Lagrange FDF.

3.3 Simulation Results

In the previous sections we have described several existing time delay estimation al-
gorithms such as ETDE, METDE, LETDE, MLETDE. In this section we will present
results of simulation tests that have been conducted to verify the performance of these
algorithms for single tone signal. Th&k), ¢(k) are uncorrelated zero-mean, white
Gaussian processes. In the simulations, the signal powerS:dpfandy(k) were set at

the same level, also their SNR were set to be the same.

The results of simulations are summarized as follows:
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Figure 3.8:Convergence of ETDE for single tone signaj,= 1, N = 20, u = 0.0003,
SNR = 20dB.

3.3.1 SINC FDF ETDE and METDE

The step-size was as= 0.0003, the actual delay was set to bs3, the filter order was

N = 20, the noise was set tb In Figure/3.8, we show that the convergence performance

of ETDE is far from optimal for the single sinusoid signals with the frequencies

0.47, 0.6, and0.87. As can be seen from the figure, the delay estimates are biased

from the actual delay even using a relative longer filter length. This is because the
sinc filter exhibits a considerable passband ripple in its magnitude resbfjs&fom

the simulations we also show that the convergence rate of ETDE depends on signal
frequency.

In Figure3.S, the step-size was set to pe= 0.003, other conditions were set to be
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Figure 3.9:Convergence of METDE for single tone signat$,= 1, N = 10, u = 0.003,
SNR = 20dB.

the same as in Figu/®@8 As can be seen from Figu&S, METDE is also biased for
sinusoid signal due to sinc-based filter’'s frequency response characteristic. InERBure

we show that the convergence rate of METDE depends on signal frequency.

3.3.2 Lagrange Interpolation FDF ETDE and MLETDE

Lagrange interpolation ETDE (LETDE) is reported to be biasedli#. In Figure 3.10Q
the time delay estimatd), can be seen to be biased from the actual delay»fThe
step-size was set as= 0.003 andy = 0.0003, the filter order was set t& = 2, the
signal power wag? = 0.5, frequency wasy = 0.9, the signal-to-noise ratio (SNR)

was set td0dB. As can be seen from the figure, the time delay estimate fluctuates when
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the step-size becomes larger and it is also biased.
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Figure 3.10:The convergence performance of LETDE algorithm for single tone signal.

We tested the LETDE algorithm for the different single tone signals at 0.2,

0.47, 0.6m, and0.87. The step-size was set to pe= 0.003, signal power? = 1, and

the filter orderN = 2. As can be seen from FiguBellthe convergence rate is related to

the signal frequency. The delay estimatebecomes much more biased from the actual

delay D = 0.3 when signal frequency increases.
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The MLETDE was also tested. In Figui&12 the signal power was set a$ = 1,
the step-size were set to= 0.0002, 0.0006 ,0.001, the filter order was seV = 2, the
SNR was set t@0dB, and the signal frequency wasir. From Figure3.12we see that

MLETDE is biased.
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Figure 3.13:Convergence performance of MLETDE algorithm for single tone signal,
SNR = 40dB.

We also tested the MLETDE algorithm under a higher SNRGB. Other condi-
tions were set as those in Figuel2. In Figure 3.13 we show that the delay estimate
is closer to the actual delay when the SNR increases @B to 40dB.

In Figure [3.14, we show the time delay estimate of MLETDE for noise free, single
tone signals at various frequencies . The step-sizes were set to be 0.0002, 0.0006, and

0.001. The actual delay was set@. As can be seen, the MLETDE algorithm has
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Figure 3.14:Performance of MLETDE algorithm for noise-free, single tone signal, filter

orderN = 2, actual delayD = 0.3, 02 = 1.

a limited center signal frequency range. At some frequencies sugl2as0.8r, the

simulation results indicated that the MLETDE failed.

3.4 Conclusion

The goal of this dissertation is to find an unbiased algorithm which can be implemented

on real time (lower filter order) to estimate the time delay. From these simulation stud-

ies we found that the performance of time delay estimate depended heavily on signal

frequency whether it was modulated or unmodulated algorithm for ETDE, METDE,
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LETDE, and MLETDE. It was clear that ETDE, METDE, LETDE were biased. In
general, modulated algorithms outperformed the corresponding unmodulated ones, and
Lagrange interpolation FIR filter has many more advantages over the truncated sinc FIR
filter in time delay estimate such as flat frequency response and group delay. From the
simulation results also we see that the selection of the step:git@yed an important
role which will be discussed in Chapt&. Finally we should point out that MLETDE
does not work when signal frequency was higher tha&n. The accuracy of MLETDE
also depends on filter order.

After studying the existing explicit time delay estimation algorithm, we can find the
limitations of these algorithms. In Chaptet, we will develop and study the statis-
tic characteristics of a new so-called Mixed Modulated Explicit Time Delay Estimation
(MMLETDE) algorithm, which draws from both explicit time delay estimation and mod-

ulated Lagrange interpolation.



Chapter 4

Mixed Modulated Lagrange ETDE

We have examined several existing algorithms in ChaBtérhe purpose of this chapter

is to find an algorithm for delay estimation that can provide an unbiased estimate with
as small a filter order as possible for easy implementation, and we will develop a new
algorithm: mixed modulated Lagrange interpolation ETDE (MMLETDE), which can
give an unbiased time delay estimation for single tone and a band-limited signal. The

convergence and learning characteristic will be discussed in detail in this chapter.

4.1 Mixed Modulated Lagrange ETDE

From our simulation, we have found that the modulated Lagrange explicit time delay es-
timation (MLETDE) of [36] has a limited range in the signal center frequency variation.
In Appendix /A, we show that3.28¢) in Section3.2.2can be replaced by(») which

is defined in 8.219. The fo(mlj(k‘)) in (3.289 is the CAF in the Lagrange FDF.

This f°(n, D(k)) can be replaced by(v). We further develop it into a new formula,

56
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and now propose a so-called mixed modulated Lagrange explicit time delay estimation

(MMLETDE) algorithm, which is formulated as follows and its validity is proved in

Appendix B.
Mo
e(k) = y(k) = > hpgy(m)a(k —n) (4.1a)
n=—M;
Mo
D(k+1) = D(k) — 2u Re {e*(k) > gw)ak - n)} (4.1b)
n=—M;
g(v) = 7% [f(v) — jwesinc(v)] (4.1c)
hipgey () = 00 =PINRY (n) (4.1d)
where
v=n—D(k)

This essentially means that in the delay estimate adaptation process, the CAF of the La-
grange FDF is replaced by the CAF of the truncated sinc FDF give®.21¢. We will
show in the simulation to be described in the following section that the new algorithm

can give an accurate time delay over a wide frequency range even the filter order is low.
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4.2 Convergence Characteristics of MMLETDE

4.2.1 Unbiased Convergence of MMLETDE

In the MMLETDE algorithm,a modulated Lagrange fractional delay filter (FDF), La-

grange interpolation filter is used to approximate the delay of one signal.The delayed
signal is compared with the source signal adaptively. The time delay is parameterized
into the filter coefficients and the adaptation algorithm for the coefficients is based on
the gradient of the truncated sinc filter coefficients with respect to the explicit time delay

estimate. The time delay estimate at each iteration is given by

D(k+1) = D(k) —2u Re{e* Z g(v)x(k — n)} (4.2)
where
e(k) = y(k) = D hpgy(n)z(k —n) (4.3)

We consider a narrow-band signal with known center frequengy,of(k) = A(k)eIwok,

Substituting8.19), (3.1L) into (4.3), we have

e(k) =s(k — D) + (k)
My Mo (44)
- Z hpay(n)s(k —n) — Z Ry (n)0(k — n)

n=—M
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The modulated Lagrange interpolation for a narrow-band signal given by the third term

of (4.4) can be written as,

M
Z Ry (R)A(k — n)e~ok=n)
n=—M;
Mo )
= D K (m)e D Ak — een )
=—M; (4.5)
) Mo . .
= J0BDED N ") () A(k = n) P 0F P AL — D(k))
n=—M

~

— s(k = D(k))

In arriving at @.5), we have made the approximation t@ffj_Ml h%(k) (n)A(k—n) ~
A(k — D(k)). This approximation is error-free whet(k) is a constant, because the
remainder or truncation error of Lagrange interpolation, which is a function afthe
1)™ derivative ofA(k) is equal to zero/38]. For a slowly varyingA(k) in the case of a
narrow-band signal, we assume that the approximation is almost error-free.
However we cannot make such an approximation for a wide-band égisethere-
fore we retain the Lagrange interpolation for the delayed versidi{/of as in the last

term of 4.4). For simplicity, we will usev to denotewy.

In Appendix |C, we prove the convergence formula as follows

E[D(k+1) — D] = E[D(k) — D] (1 + 2ucw?) (4.6)



CHAPTER 4. MIXED MODULATED LAGRANGE ETDE 60

After k iterations it follows from4.€) that
E[D(K)] = D + (D(0) — D) (1 + 2u0%w?)" 4.7)

It can be seen fromd(7) that £[D(k)] will converge to the actual delal) when/ tends
to infinity, provided tha) < 1 + 2uo?w? < 1. This implies that the step-size should

satisfy the following condition

—— < u<0 (4.8)

4.2.2 Learning Characteristics of MMLETDE

We consider next the variance of the time delay estim}(tk) by calculating the con-

vergence equation of the mean square delay ey, which is defined as
2 ~ A
e(k) = E[(D - D(k:)) ] = E[D(k)] — 2D E[D(k)] + D? (4.9)

In Appendix Dj the learning characteristics €fk) is shown to be

. 1—Ck
(k) = C*(D(0) = D)* + B _% (4.10)
C =1+ 4poiw’® +2p° {200 + olosw’n 3} (4.11)
2
B = 21? {—Jﬁwz + {Ji (% + wz) + afaiwz}} (14 E(G)) (4.12)

2
whereG = [}, h%(k) (p)]
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The sufficient condition for convergence of the algorithm can be obtained by com-

bining 4.8) and0 < C' < 1in (4.10. The new condition for convergence becomes

max {— L L } (4.13)

22 2.2/67 9.2 92
o2w? + o272/6’ 202w

Moreover, the mean square error of the delay estimate in the steady state will equal the

A

delay varianceyar (D), given by
var(D) = e(k) = —— (4.14)

Substituting 4.11) and @.12) into (4.14), normalizing the signal power?> = 1, and

assuming thab N R = Z—j >> 1, thereby allowing the terms containiag in (4.12) to
be neglected, (because the signal frequency should not tend to be zero @U@ tthé¢

middle term in 4.12) can also be dropped), we have

popoiw? (1 + EG))

D)= 4.15
var(D) —202w? — p[20%wt 4 0202w?n? /3] (4.19)
Further,.. is a small value compared to the signal power, we thus obtain
Ay o, 1L+ E[G]) 1+001)
D) ~ ~— 4.1
var(D) —2/02 HT9SNR (4.16)

In (4.16), we have expressell[G] = ()(1). This is arrived at because we know that,

Whenf)(k;) = 1, since only one coefficient is equal tavhile the rest are equal to zeros
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[39]. For D(k) other than an integer, we do not know the exact valué/pbut we

conjecture that is of the order of one.

4.3 Simulation Results

Simulations have been conducted to verify the proposed MMLETDE algorithm. We
tested the single sinusoidal signal and also a band-limited signal with flat spectrum. The
0(k), ¢(k) are uncorrelated zero-mean Gaussian variables. The SNR of both:irfputs
andy(k) were set to be the same. The band-pass signal was generated by filtering a
discrete time white noise and down sampling the filtered signal at different time offsets.
Thus we obtained the source signal and its delayed version. The bandwidth of the band-
pass signal is variable within the range(6f— ).

In Figure4.1, we show that the replacement 0B.28d for MLETDE in Section
3.2.2works. The signals were two band-limited white signals with center frequency
atw = 0.857, and the bandwidth was3w. The step-size was set to lbe= 0.0003,
andSNR = 20dB. The actual delay was set 3. As can be seen, MLETDE with a
replacement 013.28¢ can converge to the actual delay unfiaiR = 20dB.

In Figure 4.2, the solid line curve is for one observation of time delay estimate and
the dash line is ensemble average over 300 trials versus the number of iterations. The
signal frequency was set (0997, the step-size was equal@d@003, the filter order was
also set ta2, the SNR was set t6dB. As can be seen the ensemble average at each
iteration is closer to the actual delays.

In Figure 4.3, we used a bandpass white noise signal to simulate a narrow band
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Figure 4.1:Performance of'3.28d replacement.

signal. The conditions were set as in FigudeZ, the ensemble average of time delay
estimate over 300 trials versus the number of iterations is very close to the actual delay
0.3.

In Figure '4.4(a) we show the convergence characteristics of the MMLETDE with
N = 2, computed from 4.6€), together with the corresponding simulation results. The
test signal was a single tone at frequencies ef 0.37, w = 0.57, w = 0.77 andw =
0.97. The SNR was set t20dB, the step-size wags = 0.0003. As can be seen from the
figure, the simulation results match the theory very closely, thus verifying our conver-
gence analysis. Recall frord.€) that the signal frequency;,, appears together with the
step sizeyu, in the same term. Therefore, the convergence speed of the MMLETDE is

influenced by the signal frequency. The larger is the frequency, the faster is the conver-
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Figure 4.2:Convergence characteristics of MMLETDE for single sinuspie; 0.0003,
SNR = 0dB, 02 = 1.

gence. This is now verified by the simulation results shown in Figudéa).
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In Figure4.4(b), we compare the convergence characteristics of MMLETDE, ETDE
and METDE algorithms for sinusoidal signakat= 0.77, SNR =20dB andu = 0.0003.
The actual delay was set®03. As can be seen from the figure, the METDE has a much
slower convergence rate than MMLETDE and ETDE. The ETDE has about the same

rate of convergence as MMLETDE, but the algorithm converges to a biased delay value.
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Figure 4.5:Comparison of convergence performance of MMLETDE, ETDE for a band-
limited signal at center frequency, = 0.857, bandwidth of).3, u = 0.0003, 02 = 1.

In Figure4.5, we compare the convergence characteristics of MMLETDE and ETDE
for a bandpass signal with flat spectrum at center frequeney0.85, and a bandwidth
of 0.37. The actual delay was set®d3. The convergence curve of MMLETDE matches
the theoretical curve obtained frord.€) closely. And even though a filter order of only

N = 1is used, the MMLETDE algorithm converges to the actual delay value. On the
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other hand, the ETDE algorithm requires a much longer filter in order to converge to the
real delay value. Even with a filter order of as higleasthere is still a slight bias in the

delay estimate.
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Figure 4.6:Standard deviation and time delay estimate of MMLETDE for single sinu-
soid signaly = 0.0025, SNR = 40dB;filter orderN = 2, 02 = 1.

In Figure'4.6, we show the simulation results on time delay estimate and stan-
dard deviation for different single sinusoidal signals with frequency ranging drom
0.17 throughw = 0.97. The actual delay was set@®. The step size was set@d)025.
The time delay estimate was the average of4b@0'" to the 6000'" iterations. For
w = 0.17, we averaged the delay estimate between #980'" to the16000*" iterations
because with a lower frequency the algorithm converged relatively slower. From these

results we can see that the time delay estimate is accurate even under a short filter length
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Figure 4.7:Standard deviation and time delay estimate of MMLETDE for single sinu-
soid signaly = 0.0003, filter orderN = 2, 02 = 1.

In Figure4.7, we show the simulation results for a single sinusoidal test signal with
frequency of0.77. The actual delay was set €0319547. The SNR was set froridB
through50dB. The time delay estimates and the standard deviations were obtained by
averaging over 20 independent simulation runs. In each run of simulation, the time
delay estimateD, was obtained by averaging the instantaneous time delay estimates
between thet000*" to the6000'" iterations. The theoretical standard deviation was an
approximation given by4,1€) and we have lef)(1) = 1. As can be seen in Figure?,
the standard deviation obtained from simulation agrees well with the theory.

We note the evidence of a bias in the estimator for the sinusoidal case (Bigure
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top panel) for SNR< 20dB. This is because in our convergence analysis, for low SNR
and low filter order, our approximation fd¢[7};| as can be seen inC(4), which makes

A

use of interpolatiorEi‘ij1 h%(k) (n)f(n — D(k)) ~ f(0) = 0, is not so accurate.

In Figure4.8(a), we compare the root mean square error (RMSE) of the time de-
lay estimates of MMLETDE, LETDE, ETDE and METDE algorithms as function of
frequency. The step-size was= 0.005. The actual delay was set (03. The SNR
was40dB. The RMSE of each independent simulation run was obtained 3600t" to
5000*" iteration. The final RMSE was obtained by averagiigndependent simulation
runs. As can be seen from the figure, the MMLETDE achieves the highest accuracy and
is also almost frequency independent. The other three algorithms have poorer accuracy
and are frequency dependent.

In Figure4.g(b), we compare the RMSE of the time delay estimates of MMLETDE,
METDE, LETDE and ETDE algorithms as function of SNR. The frequencylvéas
As can be seen from the figure, the MMLETDE achieves the highest accuracy and the
RMSE decreases as SNR increases implying expected improved accuracy with a stronger
signal power. On the other hand, the other three algorithms have higher RMSE and the
accuracy of the estimate cannot be improved by using a higher SNR. This implies that
the estimates of these three algorithms are biased.

In Figure 4.8 we have compared the RMSE performance of our MMLETDE with
other algorithms using simulation results. It would be interesting if the comparison can

be realized using optimal performance bounds such as Cramer Rao bounds. We intend

to carry this out in our future works.
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4.4 Conclusion

In this chapter, we have analyzed an algorithm for estimating fractional sample time
delay for narrow-band signals, that draws from both explicit time delay estimation and
modulated Lagrange interpolation, so-called mixed modulated Lagrange explicit time
delay estimation algorithm (MMLETDE). We develop statistical descriptions of its per-
formance and present simulation results. Our proposed MMLETDE algorithm can give
accurate time delay estimates for single sinusoidal signal in a wide frequency range. The
filter order can be as low as 1, which is beneficial for non-stationary environment where
convergence rate is important. The algorithm is unbiased for a single sinusoidal signal
under a high SNR (on the order 29dB) for filter order as low ag and2. When ap-

plied to a band-pass signal with a large bandwidth, the MMLETDE algorithm becomes
slightly biased. This we believe is due to the approximation used in the development of
the algorithm. We have conducted extensive simulation to contrast the benefits of our
proposed MMLETDE algorithm with other competing approaches.

The proposed MMLETDE algorithm was verified in the simulation to converge to
the actual delay for a band-pass signal even the filter is very short. The delay estimate of
this algorithm became slightly biased when the bandwidth of signal becomes larger. This
we believe is due to the approximation used in the development of the algorithm. We
have conducted extensive simulation to contrast the benefits of our proposed MMLETDE

algorithm with other competing approaches.



Chapter 5

Adaptive Frequency Estimation

5.1 Introduction

The estimation of the frequency of a sinusoidal signal plays an important role in signal
processing and communications systems. Popular and modern algorithms that are based
on the data auto-covariance matrix as mentioned28] &nd Chapte2, can give ac-

curate frequency estimates but are computationally burdensome. This is true especially
when the frequency to be estimated is time-varying and an adaptive realization of the
estimator is required. In2fl], Etter and Hush suggested a fresh approach to frequency

estimation based on a variable delay element as shown in Figurel et the received

/
a(k) Delay Filter y(k) _<>1Lx(k)

Figure 5.1:Block diagram of adaptive frequency estimation.

73
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signal of interest be: (k) = s(k) + 0(k), s(k) = /@R ) wherew(k) is the instan-
taneous frequency to be estimated anid a constant initial phase. The noiég) is
white Gaussian with zero mean and varianceofEssentially the algorithm is to adap-
tively seek the delay value that shifts the sinusoidlBy° or 360°, thus maximizing or
minimizing the cost functio/ = Ele(k)e*(k)], which is the mean squared value of the
difference,e(k), between the input(k) and its delayed versiog(k). The delay then
provides the information needed to determine the frequency.

Dooley and Nandi 22] later improved upon this technique by introducing a frac-
tional delay filter (FDF), so-called modulated Lagrange interpolation delay filter (MLIDF)
to take into account a fractional delay that can be used to fine-tune the frequency esti-
mation. In R1], the cost function is sinusoidal in form in terms of the delay; thereby
leading to a simple delay update computation and the determination of the frequency
estimate. The MLIDF, on the other hand, being a non-ideal finite impulse response filter
(FIR), introduces distortion to the delayed signal and thereby a cost function which is not
in a simple analytic form. In this dissertation, the cost function of an MLIDF is derived
for a single sinusoidal signal and an explicit frequency estimation algorithm based on

this cost function was developed.
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5.2 Adaptive Frequency Estimation Using MLIDF

We first consider a Lagrange interpolation delay filter (LIDR)/][ At each adaptation

step, the LIDF coefficients®(n, D(k)) can be written as
N . N
D(k) —1 ,
%n.D = Sk Dt A
W, D(k)) = [[ === = D aiD'(h) (5.1)

where N is the filter order, and)(k) is a variable analog delay which is used to ap-
proximate the actual delay that lies withjin N]. The coefficients,; in the polynomial
representation df’(n, D(k)) in (5.1) can be readily obtained by Matlab or Mathematica
programming. This LIDF is a finite impulse response (FIR) delay system in discrete time
domain. In AppendixE, we prove that for an FIR delay system the filter coefficients
can be modulated so that it becomes a modulated FIR delay system. In this disserta-
tion, since we adopt the MLIDF as the FIR delay filter, the modulated coefficients are as

follows
h(n, D(k)) = h®(n, D(k))e’ "~ P(*) (5.2)
The difference between the inputk) and the filtered outpuj(k) at kth iteration, is

e(k) = z(k) — y(k) = 2(k) = > _ h(n, D(k))z(k —n) (5.3)



CHAPTER 5. ADAPTIVE FREQUENCY ESTIMATION 76

In Appendix [F, we calculate the cost function of this MLIDF as follows

J = Ele(k)e’(k)] = (2 — 2 cos(wD(k)))
N (5.4)
s <1 — 2h°(0, D(k)) cos(wD(k)) + > _(h°(n, D(k>))2)

n=0

In (5.4), the first term is the autocorrelation function of a single sinusoidal signal, while
the last term is introduced by noise. The last term can be dropped under the condition of
high SNR, and the cost function reaches the maximum or minimum when theldetay
equalspr/w, p is an integer. Correspondingly, the delay itself provides the information
regarding the signal frequency.

Consider next the partial derivatives of the cost function with respeet(t9 and

D(k), and set them to zero as follows

o 2D (k) sinfw(k)D (k)] = 0 (5.52)
aJ .
D0k = 2w(k) sinjw(k)D(k)] =0 (5.5b)

It is clear that for both 5.5¢) and 6.5b) to be equal to zero, which is the condition for

J to reach extremum points, requires that

w(k)D(k) =2morm (5.6)

The algorithm developed in this dissertation is to explicitly track the frequency under

the constraint of §.6), as follows. Following the standard LMS method, we locate the
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extremum by taking the gradient of the filter coefficients with respect to the estimated

frequencyw(k).

Ok +1) = &(k) — pVJ(k) (5.7)

whereJ (k) denotes the instantaneous cost functjois step-size.

The MLIDF coefficient in 6.2) is a function of bothu(k) and D(k). We now
adopt a similar idea as inl1Jf], on explicit time delay estimation, in that we introduce
explicit frequency estimation by replacingk) in the MLIDF coefficients in 5.2) by its
estimatev (k). Furthermore, by making use of the constraint B1€), we replaceD (k)
in the MLIDF coefficients in %.2) by 27 /w(k). By proceeding this way we have now
proposed a new so-called explicit modulated Lagrange adaptive frequency estimation
(EMLAFE) algorithm. We now rewrite the MLIDF coefficient irb{2) as a function of

w(k) as follows,

B, D)) = h(n, (k) = 1O (n I )ef'“kﬂ“ﬂ/m” (5.8)

VJ(k) = (e(k)er (k) =2 Re{e*(k) De(k) } (5.9)

Substituting 5.2), (5.3 and 6.9 into (5.7), we have the updating equation for the
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explicit frequency estimate as,

N

Sk +1) = ok) — QMRe{e*(k) 3" fln,o(k))a(k n)} (5.10)
where
Fln, (k) = (ah (gjzrk/)@(k)) + jnk® <n %))em’f)” (5.11)

By expressing the filter coefficients (n, 27 /& (k)) in (5.11) as a polynomial inv(k)

asin 6.1), we can rewrite $.11) as

fln,o(k)) = (Z —z<27r)imf—j(k) + jn Z(zw)i@f{']{) ) Wl (5.12)

5.3 Convergence Analysis

Assuming the noise and signal are uncorrelated, substitutk@l)(into (5.10 and
taking expectation on both sides db.10), under the condition of high SNR, as proved

in AppendixG, we obtain the following formula

Blo(k+1)] - w = B

£
=
|
S
+
DO
]
=
3%
=
|
E

(5.13)
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Hence, given the initial guess 6f0), the recursive expression 0b.03 givesw(k) as
follows

Elo(k)] = w + (@(0) — w) (1 + S—ﬂu)k (5.14)

w2

Therefore, when-p < £, the mean ofu(k) will converge to the actual signal fre-

82

guency wherk tends to infinity under higher SNR.

5.4 Simulation Results

In this Section, we present simulation results for the EMLAFE algorithm that we have

developed for fine and fast frequency estimation and tracking.

5.4.1 Frequency Estimation

In Table 5.1, the test was carried out for single sinusoid with frequency ftobm to

0.97. The step-sizex was set td).00225, the signal power was set &g = 1, and filter

order wasg, the signal-to-noise ratio (SNR) was set frafudB to 50dB. The frequency
estimatew, and its standard deviatiostd(w), were obtained from the frequency esti-
mates fron800*" through1500*" iterations. In Tableb.1, the frequency estimate and its
standard deviation were obtained by averaging over 20 independent simulation runs. As
can be seen from the table, the frequency estimates converge to actual signal frequency
while the variances of frequency estimates are almost of the same order for different

frequency under the same SNR.
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Figure 5.2:Convergence performance of EMLAFE algorithm tracking single tone sig-
nal. Filter oderN = 8, SNR = 10dB, p = 0.00025, » = 0.71377, std(w) = 9.1x 1074,
actual frequency = 0.71257, 02 = 1.

In Figure 5.2, we demonstrate the convergence performance of EMLAFE algorithm.
The step-size was set o= 0.00025, the filter order was set a§ = 8, the SNR was
set to10dB, and the actual signal frequency was seb.t 25x. As can be seen, the
convergence to the actual frequency occurs fBooi" iteration onward.

In Figure 5.3, we show frequency estimates of three different frequency signals,
tested to verify the frequency range that can be tracked by the EMLAFE algorithm.
From the constraint of5€), sinceD(k) has the range fromito V, whereN is the filter
order, we can decide the range of frequency that can be estimamed_>a§§—r, and for

N =8, w > 0.257. This conclusion is verified in Figur®.3 as follows. We considered
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Figure 5.3: Dynamic range of EMLAFE algorithm tracking single tone signal. Filter
oderN = 8,SNR = 17dB, pu = 0.00025, 02 = 1.

two sinusoids at angular frequencies = 0.22307, w, = 0.25077. In each case, the
signal-to-noise ratio was set {@dB, and the step-size was $e00025. As shown in
Figure 5.3 the estimation oy = 0.22307 < 0.257 falls, in that the estimate converged
to a wrong value. However, fav = 0.25077, we used two different initial guesses:
0.37 and0.57. With the closer initial guess @k 37, the frequency estimate converges to
the actual value faster than the one initially further away>at Nevertheless, since the
actual frequency = 0.25077 > 0.257, the estimation was successful.

Given two single tone signals at = 0.77 andw = 0.37, the step-sizes were set
to ;11 = 0.0003 andyu, = 5.51 x 107°, and the SNR was set to B6dB. The values of

p1, po Were determined by = £3 according to the convergence formula &.14) so
1 2
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Figure 5.4: Convergence rates of EMLAFE algorithm for different single tong,=
0.0003 for signal frequency.7, s = 5.51 x 107> for signal frequency.3x, signal
powerc? = 1, filter orderN = 8.

that the convergence rates of the signals,aandw, should be the same. As can be seen
from Figure5.4, the convergence curves of the frequency estimates for two signajs at
andw,, are different. This is because the step-size has absorbed the coeg%%'ggrirn
derivation of 6.13. As can be seen from Append, in deriving the formula |G.4),

we exploit the attribute, unchanged sign,% = (O(1). ltis clear in Figureb.4, the
convergence rate of the signalat= 0.7x is accelerated due t;&j > 1, which means a
larger step-size; meanwhile, the convergence speed of the signaka.37 is reduced
due to‘g—g < 1, which means a lower step-size. Therefore, the EMLAFE algorithm
exhibits a variable step-size characteristic due to the changg:pfwith iteration index

k.
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5.4.2 Frequency Tracking
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Figure 5.5:Tracking linear chirp frequency signal. Filter odér= 8, SNR = 0dB, u =
0.00225, 02 = 1.

In Figure 5.5 we show an example in using the EMLAFE algorithm not only to
determine frequency, but also to track a slowly changing frequency. The actual time-
varying frequency is represented by the dashed line. In this example, the SNRIBjas
the step-size wag.00225, and the filter order wa8. As can be seen from Figurg.5,
the EMLAFE algorithm tracks the time varying signal frequency quickly (within about
50 iterations) under a very low SNR. Also when there is a sudden change in frequency,
the estimate, after a short departure, returns and follows the actual frequency quickly.

In conclusion, we have developed a new EMLAFE frequency estimation technique

and have shown that it is effective even in lower SNR condition. In the simulations we
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also showed that the lowest frequency that can be tracked is determined by the filter

order N, according tav > %’r It is around0.257 for a filter order of 8.



Chapter 6

Joint Explicit Frequency And Time

Delay Synchronization

6.1 Introduction

In CDMA and OFDM communication systems, carrier synchronization system is im-
portant for coherent detection. As for any multi-carrier transmission scheme, an OFDM
signal suffers from nonlinear distortiord(]. Furthermore, it is extremely sensitive to
possible uncompensated frequency offsets between the received carrier and local oscilla-
tor caused by Doppler shifts or instability of the oscillators at the transmitter and receiver.
This calls for a very strict frequency recovery proce8k Pne effective way to reduce

the inaccuracy of the carrier offset’s estimation is to exploit the power of digital signal

processing, and using fractional interpolation techniques to improve the resolution of
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digital signal processing. Let the received carrier and the carrier of local oscillator be

2(k) = d@eW+oe() 4 g (k) (6.1a)

y(k) = SE®+OE) g (1) (6.1b)

respectively. Thev,(k), w, (k) are frequencies of received signal and local oscillator re-
spectively. Moreover, the, (k), ¢, (k) are phases of received signal and local oscillator
respectively. Both received signal and local oscillator’s signal are corrupted respectively
by the zero-mean white Gaussian noiggs:) andd, (k) with variances assumed to be
o2, andaj.

The goal of carrier synchronization is to estimate and track the frequeriéy and
phasep, (k) of the received carrier and to adjust the parametg(s) and¢, (k) of the
local oscillator in the direction of the counterparts of the received signal. After the fre-
guency synchronization is carried out, the phase difference between the received and
local oscillator signals can be adjusted via the time delay or time difference of arrival
(TDOA) technique in Chaptéd. As mentioned in previous chapters, for a band-limited
signal the ETDE is biased for TDOA estimation. MLETDE also exhibits a slight biased-
ness [L3]. This algorithm, in fact, as mentioned in Chap@&shows only a limited valid
signal frequency range.

In this chapter, the MMLETDE and EMLAFE, which have been presented in Chap-
ter4 and ChapteB, are combined to estimate and track the frequency and phase of the

received carrier.
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6.2 Joint Explicit Time Difference of Arrival

And Frequency Estimation

The structure of this JTDFE algorithm is shown in Figiedl. The output of the digital

oscillator is the duplicate of the received carrier with estimated frequency and phase:

w; (k), D(k)
EMLAFE | @z(k)
z(k eI@a (k) y' (k
k), DO
MMLETDE
y(k) P D(k)

Figure 6.1:Block diagram of joint time delay and frequency estimation.

As shown in Figurés.], the whole carrier synchronization process comprises three
components: EMLAFE (modulated Lagrange adaptive frequency estimator), MMLETDE
(mixed modulated Lagrange explicit time delay estimator) and DO (digital oscillator).
The frequency of the received carrier is first estimated and tracked by the EMLAFE al-
gorithm, and it is fed into the MMLETDE component to estimate the time delay between
the local carrier and received carrier. The output of DO is the synchronized cgtjér
with the estimated frequency and phase.

Before introducing the simulation results of the JTDFE algorithm, we will discuss

the validity of MLETDE and MLAFE algorithms.
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6.3 Simulation Result

The experiments were under conditions of additive white Gaussian noise. The powers
of both signals:(k) andy (k) were set to unity, and SNRs we2gdB. The signals were
single tone with frequency = 0.857. The actual time delay betweerik) andy(k)

wasD = 0.3. In Figure 6.2, we show the frequency estimation performance of

0,85 [~ sy bescbtest bt
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0 500 1000 1500 2000 2500 3000 3500 4000
Iteration No.

Figure 6.2:JTDFE algorithm: Frequency estimation part.

EMLAFE. The step-size of EMLAFE was set to= 0.00225. After reaching the region
of convergence, the statistics of one typical simulation are as follaws: 0.8500,
std(w) =8 x 1074,

At each iteration of JTDFE, the frequency estimaté) was fed into MMLETDE

and used as signal frequency and explicitly estimate the time delay Figure 6.3,
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Figure 6.3:JTDFE algorithm: Time delay estimation part.

the result showed that the time delay estimateonverged to the actual delay setting.
The typical statistics were: the mean of time delay estimates 0.3007, the standard

deviation of the time delay estimatesl(D) = 0.001.

6.4 Discussion

In Figure 6.1, there is a slight difference from the previous chapters. There are three
inputs:z(k), y(k), e’*®), If only z(k) exists, then we could treat“*) asy(k). Other-

wise we usey(k)- the delayed version af(k). Then this becomes the time difference of
arrival. After the carrier synchronization is achieved, the next issue for communications

system is to demodulate the received signal. The remaining offset of carrier synchro-
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nization will be incorporated into base band modeling: FIR channel.



Chapter 7

Conclusions And Future Work

In this dissertation, we have examined the existing algorithms on adaptive explicit time
delay and adaptive frequency estimation. In Chajiewe tested the ETDE, METDE,
LETDE, and furthermore in Chaptdrwe developed a new so-called mixed modulated
Lagrange explicit time delay estimation and described the statistics of this algorithm. In

Chaptei5, we introduce and discuss a new explicit frequency estimation algorithm.

7.1 Finished work

7.1.1 Time Delay Estimation

The ETDE algorithm is developed for full-band white-noise-like signal and because the
truncated sinc FDF has a remainder when approximating a delay system, it is biased
even under a higher filter order. Also because the truncated sinc FDF is ripple in the

magnitude response, this truncated sinc based ETDE is far from optimum when using it
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for a narrow-band signal.

By adopting Lagrange interpolation FDF, the LETDE algorithm can use a lower
order filter but time delay estimation is still biased.

When using modulation technique, in which the filter coefficients multiply an expo-
nential function, the LETDE becomes a modulated LETDE algorithm. In simulation, we
show that the MLETDE algorithm is biased when the signal noise ratio is not very high.
The MLETDE is valid only at a limited signal center frequency.

In this dissertation, in order to avoid bias of delay estimation and to use a lower
order filter , which is important for non-stationary signal environment and fast conver-
gence, we propose a new explicit time delay estimation algorithm, MMLETDE, which
draws from both explicit time delay estimation and modulated Lagrange interpolation.
We developed and proved the statistic characteristics of the MMLETDE algorithm and
verified via computer simulation. We have also made an extensive comparison among
several existing algorithms.

In summary, the truncated sinc based ETDE requires a relatively longer filter and is
biased for wide-band white-noise like signal and narrow-band signal while our mixed
modulated Lagrange ETDE (MMLETDE) can be used to estimate a narrow-band signal

without bias with a lower filter order.

7.1.2 Frequency Estimation

In this dissertation, we derived the cost function of a modulated Lagrange interpolation

FIR delay system, and develop a new explicit frequency estimation algorithm under the
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constraint ofw D = mx (m is an integer). We also derive the convergence charac-
teristic of this explicit modulated Lagrange adaptive frequency estimation (EMLAFE)
algorithm. The EMLAFE algorithm can converge fast and estimate the instantaneous

signal frequency in a non-stationary signal environment.

7.1.3 Joint Frequency And Time Delay Estimation

We combine the MMLETDE and EMLAFE algorithms together in Chaptefhe esti-
mated frequency is fed into MMLETDE component and we can use MMLETDE com-

ponent to estimate the time delay between received carrier and local oscillator carrier.

7.2 Future Works

As discussed in Chaptdr the MMLETDE algorithm is unbiased for single tone signal.
However time delay estimate will become slightly biased when the signal bandwidth
increases. We next should consider the quantitative relationship between signal spectrum
and time delay estimate and furthermore find a unbiased explicit time delay estimation
algorithm for wide band signal and this algorithm should be able to work under a very
low filter order.

The explicit modulated Lagrange adaptive frequency estimation (EMLAFE) algo-
rithm is biased when the signal-noise-ratio is relatively low due to the approximation.
In next stage some measures may be considered to compensate the bias. The statistical
characteristics of EMLAFE algorithm has not been investigated and may be an area for

further research.
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Finally, it will be worthwhile to consider how to implement these algorithms practi-

cally.
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Appendix A

Proof of (3.28d)’s Replacement

We note that in an ideal discrete delay system,

y(k) =2(k = D)= Y hia(n)x(k —n) (A1)

Now letz (k) = 2/(k)e’ok, or 2/ (k) = z(k)e~7*°. Then

z(k — D) = 2/ (k — D)e/*o*k=D) (A.2)
But
?(k—D) =Y (n)a/(k —n) (A.3)
hiq
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Substituting '/A.3) into (A.2), we have

2(k — D) (Z hia(n )>ey‘w0<k—D>

. e (A.4)
= Z hig(n)z' (k — n)el=o=D)
Therefore,
Z hia(n)e? =Pz (k — n) (A.5)

Following the same reasoning as in Chap&of the main text, we place the overall

delay D at the center of gravity of;;. Therefore we can write
thd )edom=D) gk — p) (A.6)
Now the errofe(k) in the Lagrange FDF is
e(k) = y(k) — Z B gy ()0~ P g (f — ) (A.7)

Substituting |/A.6) into (A.7), we have

Mo .
e(k) = > [hy(n) — b (n, D(k))]ed=em=L®) gk — p)
n=—M;
—M;—1
+ Z h/d(n)e]“’O(” D(k) g, Z h 63“0" D(k )x(k;—n)
n=—oo n=DM>

(A.8)
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The last two terms in4.8) can be dropped becaukg(n) takes on small values in the

range ofn outside of—A; < n < M,. Next, with ETDE, we substituténc(n — D) by

~

sinc(n — D(k)). Hence, we obtain

e(k) ~ Z (sinc(n — D(k)) — h%(k)(n))ejw()("_ﬁ(k))x(k —n) (A.9)

n=—M;

Letv = n — D(k) and we expressinc(v) andh, . (n) in the polynomial ofD(k).

Taking Taylor expansion oginc(v), we obtain

sinc(v) = sin(mv)
TV
(mv)? _y ()P
=1- L () .
TR S g 37 (A.10)
(mv)?™ 2m + 1
2m+ 1) sin (57r(y) + 5 7T>
where0) < § < 1, —oo < ¥ < 0. ForVe > 0, there is an integer, satisfying
2m 2 1
‘% sin (57r1/ + mt 7T> <e€ (A.11)

Hence, we retaim — 1 terms in A.6), sinc(v) can be expressed as a polynomiaf](k)

as follow
2m—2 .
sinc(v) = Y a;D(k)’ (A.12)
=0

Of course the coefficientss; } in (A.12) can be evaluated . But in our development of

the proof here, we have no need for the exact expressian df can be shown in the
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main text that the Lagrange coefﬁcie‘r%(k)(n) defined inB.24 of the main text can be

written as a polynomial iD (k) of orderN = M; + M,

(A.13)

Again, as will be obvious in our development of the proof here, we do not need the exact
expression fob; in (A.13). We assume tha¥V < 2m — 2 and use Landau symba(s

ando to express(k)°(n) as of the order ofin(v)

N
sinc(v) = Z Z—:’bllj(k)’ + Z a;D(k)’
(A.14)

Next, we have

sinc(v) — h%(k)(n) = O(h%(k)(n)) — O(h%(k)(n)) = O(hq (k)(n)) (A.15)

: sinc(v) 8hD(k)
Con5|deraaﬁ(k) and 730,

sinc(v)  cos(mv)  sin(mv)
dD (k) v 2

(2m—+1)! (A16)
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We can write it as polynomial i) (k) as follow

sinc(v) W DR — = ; ;
0 —; iD(k) —;O( iD(k)')
while
ohY, . (n) XL .
D(k) . ; p—1
b ; b;D(k)
ply (i + 1)b;yq i,

” a;D(k)' = Z O(a;D(k))

)

Finally, it is very easy to obtain

Jsinc(v) _hb(k)(n) B 00 PR _N 1 .
obth) Dy~ 2 WPE) ~ 2 OlaD(ky)
— S A Osinc(v)
- O(; ZD(k)) - O( oD (k)

106

(A.17)

(A.18)

(A.19)

(A.20)
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Substitute /A.9) and (A.18) into (A.20), we obtain

A A

D(k+1) = D(k)

— QMRe{e*(k) Z eleor (O (f(V)) - Q(—jwoh%(k)(n))x(k - n)}

_ Dk

- uef (1) iM e () + Ol =ittt =)}
= D) - 2uke e () i e O () = ity () = )}
~ Dk

(A.21)

Simplify the above formula, and we can use a newo replace2,,() symbol, then we

obtain 3.28d.



Appendix B

Proof of MMLETDE algorithm

As proved in AppendiA, we can express

2m—2

b;a; ~ 4
sinc(v) D(k Z a;D(k Z ~ —D(k)
=0 v
—ZQaD ZQ@D (B.1)

- Z O(a; D(k)") = O(sinc(v))

Hence, we obtain a new formula fefk) as

(B.2)
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The delay estimate updating equation is

D(k+1) = D(k) — Q,MRG{G* a;g) } (B.3)

SubstitutingB.2) into (B.3), we have

D(k+1) = D(k) — 2uRe{e*(k;) O ( > gw)ak - n)) }
n=—th B.4
=50 - 200 (ref % etk -} ) o
where
g(v) = e**"(f(v) — jwosinc(v)) (B.5)

Using a newu to substitute+2,() in (B.4)), we have 4.1k) in the Chapter3.



Appendix C

Convergence Analysis of MMLETDE

Using 4.3 and @.2) in the main text, we have

A A

where

Mo

Ty = [s'(k— D) —s"(k = D)) Y sk —ng(n — D(k))

n=—M;

Ty = [s*(k— D) = s"(k = D(k))] > 6(k—n)g(n— D(k))

Ta= |00~ 3 My 8k = )| S stk wigln — DB
1= (670 = Y Wy (8= m)| D 60k = mhgtn - Db

110

(C.1)

(C.2a)

(C.2Db)

(C.20)

(C.2d)
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Taking the expected value of both sides/Gfl) gives
E[D(k+1)] = E[D(k)] — 2uRe {E[T} + Ty + T + T}]} (C.3)

Because{s(k)}, {#(k)}, and{¢(k)} are mutually uncorrelated, sBe{ E[T3]} = 0,

Re{E[T5]} = 0, and consider nexke{ E[1},]} as follows
E[Ty] = 6> Elg(D(k) — D(k))] = 02E[g(0)] = 02[f(0) — jwosine(0)]  (C.4)

Taking the real part of@.4), we haveRe{ E[T,]} = o2 f(0) = 0.

To evaluateRe{ E[T}]}, we rewriteg(n — D(k)) in (C.29 as%, and then

exchanging differentiation and summation operation, we have

Mo

Ty = (s*(k — D) — s*(k — D(k))) g ff( 5 [ > s(k —n)sinc(v)e™” | (C.5)

The summation term in the square bracket@.5f can be approximated as

Mo .
Y sine(n — D(k))e " PW) ~ s(k — D(k))

n=—M

Taking the expectation ofd.5), we have

E[Tl]:E[<s*(k:—D)—s*(k:—D(k:)) 0 s(k:—f)(k:)))] (C.6)

Substitution ofs(k) = A(k)e“°* in (C.6), and then making the assumption that for a
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narrow-band signal, the envelopérk) varies slowly, such that

2~ (—jwo) Ak — D(k))ei=ok=Dk) (C.7)

Now we have

E[T] = Ufjwo(l — eij(D_D(k))) (C.8)

wheres? = E[s(k)s*(k)] = E[(A(k))?] is the signal power. Therefore, we obtain

A

Re{E[T1]} = o2wysin(wo(D — D(k)) (C.9)

A

For smallD — D(k), we can usein(wy(D — D(k))) ~ we(D — D(k)) in (C.9.
Substituting [C.9), Re{E[T»]} = 0, Re{E[T3]} = 0, Re{E[I4]} = 0into (C.3), we

easily obtain 4.6€) in the main text.



Appendix D

Learning Characteristics of Mean

Square Delay Error

Squaring and then taking expectation on both side€dl)( we can obtain
E[D*(k +1)] = E[D*(k)] — 4uRe{E[D(k)T]} + 2u*Re { E[T T* + T?]} (D.1)

whereT = T, + 15 + T3 + Ty. In arriving at D.1), we have made use of the identity,
{Re(T)}? = 1Re{T'T* + T?}. First we evaluatdZ[D(k)T] for the second term of

-2

(D.1).

A ~ A A

E[D(k)] = E[D(k)Ty] + E[D(k)T5] + E[D(k)Ts] + E[D(k)Ty] (D.2)
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Sinces(k),0(k), ¢(k) and D(k) are mutually uncorrelated;[D(k)Ty), E[D(k)T5] are

both zeros. next, by referring t€(4), we have

Re{ E[D(k)T4]} = Re{o2E[D(k)g(0)] } = 0 (D.3)

And by referring to/C.9), we have

~

Re{E[D(k]} = 0?w2{D x E[D(k)] — E[D*(k)]} (D.4)

Now,

Re{E[T T*|} = Re{ E[IWT} + TrT; + TsT5 + T,T;] }
+ 2Re{ E[INT; + ThT5 + ThT; + ToT5 + ToT; + T5T;]}

(D.5)

Re{E[T?]} = Re{E[T? + T? + T2 + T2]}
(D.6)

+ QRG{E[TlTQ + T1T3 + T1T4 + T2T3 + T2T4 + T3T4]}
It can be shown thaT[Tl TQ], E[Tl Tz*], E[Tl Tg], E[Tl T;], E[TQ T?;k], E[T3 Tz], E[TQ T4],

E[T, Ty, E[T3 Ty), E[T§], E|T%] are all equal to zero. The other terms are evaluated one

by one as follows:

Re{E[T'T))} = —20%02w? sin’ M =~ —2020.w' (D — D(k))
2 (D.7)

= —Re{T\T}} = Re{T>T3}
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By referring to (C.8), we have

Re{ B[17]} = Re{ B[o2j (1 — jo e (-P0))7]}
— B| w0l (4sin® (w(D — D(k)) /2) ) = 2sin*w (D — D(k))]
= B|w'o}(D - D(k))’]
(D.8)

E[I'T{] =E

Elwto!(D - D(k))*] = E[T?]

E[LT;]| =E :202 (1 — cos(w(D — ﬁ(k))))ai Z g(u)g*(y)}

n=—M;

— 40%02E {sinz(w(D . D(k:))/Q)( f [f*(v) +w251nc2(y)]>}

n=—M;

Using 302 sinc?(v) = 3500 =1land} 22 | f2(v) = £ = = [41], we

have
E[LT;] = 0?02(%2 +W?)E[(D — D(k))?] (D.10)
Mo
BILT;] = Elo2(1+ Y |hpg)[*)o??]
= 2021+ EG)), G= > (k) (D.11)
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We now evaluate? [T,7;].

Mo

EB[T,\T}] = Z Z —n)0*(k —m)]

— M1 m=—M;

x Elg(n— D(k))g*(m — D(1))]

Mo Mo Mo

N Z Sy Z [0°(k — p)O(k — DOk — n)6* (k — m)]

—My l=—M; n=—M; m=—M

A A

x E[h%, (0)g(l = D(R))hpg (n)g"(m — D(k))]
(D.12)

The first tern on the right hand side (RHS) d.12) can be shown to be equal to

ot 3 |g(n - D(k))|* ~ ot (5 +w?) (D.13)

Now before we evaluate the second term of RHDo1¢), for convenience we introduce
some notations. Let the zero mean complex white noise be expressed in terms of its in-
phase and quadrature componerit§t — q) = a(q) + jb(q). The indexq takes on

anyone of the indices, [, n, andm. Thea(q)’s are independent from tl4ég)’s. They
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have the same variance @f = 2 /2. We have

0" (k — p)0(k — Ok — n)0" (k — m)

= a(p)a(l)a(n)a(m) — j a(p)a(l)a(n)b(m) + j a(p)a(l)b(n)a(m)
+ a(p)a(l)b(n)b(m) + j a(p)b(l)a(n)a(m) + a(p)b(1)b(n)a(m)
— a(p)b(l)b(n)a(m) + j a(p)b(1)b(n)b(m) — jb(p)a(l)a(n)a(m) (D.14)
— b(p)a(l)a(n)b(m) + b(p)a(l)b(n)a(m) — j b(p)a(l)b(n)b(m)
+b(p)b(H)a(n)a(m) — j b(p)b(l)a(n)b(m) + j b(p)b(1)b(n)a(m)

+0(p)b(1)b(n)b(m)

The expressions of all the imaginary componentsih14) are zero. This is because
there is always either a signalq) or a singleb(q) in the four-fold product. Thus we
need to consider only the real terms [B.14).

It has been shown in4P] if x;, x, x3, x4 are samples of four different stationary

Gaussian random processes, we may write

Elr1297374] = Elz125] El2374] + El7123] E[1274] + El2124] ElT973]  (D.15)

Consider now the contribution of the teratp)a(l)a(n)a(m) to E[T,T;] in (D.12).
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Using (D.15) we have

2. 2.2 > Elap)aa(ma(m)E [ (m)g(l = D(k)hpg(n)g"(m = D(k))]
=Y > > > {Elap)a)Ela(n)a(m)] + Ela(p)a(n)] Ela(l)a(m)]

+ Ela(p)a(m)]Ela(Da(n)]} x E[h}, (9)g(l = D(k)hpgy(n)g* (m — d(k))]

=S"NN S Elaw)a) E[a(n)a(m)] + Ela(p)a(n)] E[a(l)a(m)]

+ Bla(pa(m)] E[aa(m)] } x B[Fs (P9l — D) (m)g*(n — D(k))]

= 201B[S" 3 b (D)gp — D) Ry (m)g” (n = D(R))]
+olE [Z Z Wi (P)9(p = DR (p)g (1 = D(R))|

=20,E[g(0)g*(0)] + 0, E [Z Z D(k (v) + wzsinc2(y))}

2
——l—w2)G

(D.16)

The condition from the term(p)b(1)b(n)b(m) in (D.14) to E[T,T;] in (D.12) is the
same as that given byD(15). The contributions t&[7,77;] in (D.12), from the other
real terms in D.14), namely.a(p)a(l)b(n)b(m), a(p)b(l)a(n)b(m), —a(p)b(l)b(n)a(m),
b(p)a(D)b(n)a(m), —b(p)a(l)a(n)b(m), b(p)b(l)a(n)a(m), can be worked out similarly,

resulting respectively, intw?, o(T + w?)G, —olw?, —okw?, ot (T + w?)G, olw?.
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Thus substituting all these contributions 1D.12), we have

E[T,T]] = olw® + af;(%Q +w?) {1+ E[G]} (D.17)
Similarly, we obtain

Re{E[T}]} = —20,w* (D.18)

Therefore D.1) can be simplified as

E[D*(k+1)] = E[D*(k)](1 + 4uc’w?) — 4uo’w?D E[D(k)]
(D.19)

+2p*{a x e(k) + B}
where
e(k) = E[(D — D*(k))] = E[D*(k)] —2D E[D(k)] + D* (D.20)

a =20t + oo n? /3 (D.21)

B=—opw*+ {o)(7°/3+ w?) + oioiw’ } (1 + E[G)) (D.22)
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From [D.20) we have

e(k+1) = E[D*(k+1)] — 2D E[D(k + 1)] + D?
= e(k) (1 + 4po?® + 24 ) + 2423 + (1 + 4po?w?)2 D E[D(k)]
(D.23)
— D*(1 + 4pow?) — 4pow®D E[D(k)}

— 2D E[D(k +1)] + D?

Substituting 4.€) into (D.23), we can show that the last five terms dD.23) sum to

zero, hence we obtain

e(k+1)=¢€k)C+B (D.24)

whereC' = 1 + 4puc?w? + 2ua, B = 2u*.

From ([D.24), itis easy for us to get4(10 in Chapter4.



Appendix E

Modulated Finite Impulse Response

(MFIR) Delay Filter

We consider a practical discrete delay system for délag the form of a finite impulse

response filter with coefficients,(n) expressed as
y(k) = 2(k — D) = 3" hp(n)e(k — n) (E.1)
Now letz (k) = 2/(k)e/“*, then

z(k — D) = 2/ (k — D)e/*h=P) (E.2)
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But

¥(k = D)= hp(n)a'(k —n)
Substituting E.J) into (E.2), we have

z(k — D) =y(k) = (i hp(n)z'(k — n)> giw(k=D)

n=0
N
=" hpa!(k — n)eie ) i)
n=0
Therefore,
N
y(k) - Z hD(n)ejw("_D)x(k . n)
n=0

Equation E.5) represents an MFIR delay filter.
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Appendix F

Cost Function of MLIDF

Define the cost function as
J = E|le(k)[’] = Ele*(k)e(k)] (F.1)

From (5.3 in the main text, we have

N
e(k) = z(k) = > _h(n, D(k))e™*"PWy(k —n), 0<n <N (F.2)

n=0

Substituting [E.2) into (F.1) we get

N N

J=1+Y h'n,D(k))> h'(n— D(k)) - 2cos(wD(k))

n=0 n=0

h°(n, D(k))

] =

3
Il
=)

+ o2 (1 — 20°(0, D(k)) cos(wD(k)) + > (h°(n, D(k)))

n=0

(F.3)
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Let us introduce &N + 1) x (N + 1) Vandermonde matrixy, and a column vectox;,

as follows,
11 1 1
01 2 N
V=091 22 ... N2 (F.4)
0 1 22 NN
) i T
Now solve the equation
Vh=v (F.6)

As shown by Oetken43], the solution of [F.6), h, is equal to the Lagrange interpolation

formulator, that is to say,

h = [1°0, D(k)) R°(1,D(k)) ---BO(N, D(k))]" (F.7)

Therefore, it is obvious that

> h(n,D(k)) =1 (F.8)

Substituting [F.8) into (F.3), we obtain 6.4) in the main text.



Appendix G

Convergence of EMLAFE

We approximate the delayed version of sigsndl) as follows

Taking expectation on5(10 in the main text, we have

N

E@%+1ﬂ:E@%ﬂ—%ﬂ%{EKﬂ@y—Zyﬂm@@»ﬂw—n0
9 ﬁfw(k))x(k -]}

= E[0(k)] — 2u Re{E[Ty + Ty + T + T4]}

(G.1)
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where
Ty = (s"(k) — s"(k = 27 /0 (k) Y f(n,@(k))s(k — n) (G.2a)
Ty = («9*(k) =Y hi(n, w(k))0" (k — n)) > f(n o(k))s(k —n) (G.2b)
Ty = (s"(k) — s"(k — 27 /&(k))) Y f(n, &(k))0(k —n) (G.2c)
T, = (9*(k) = " hi(n, w(k))6" (k — n)) > F(n,&(k))0(k — n) (G.2d)

Since the signal and noise are uncorrelatéd),] = E[T;] = 0. We now evaluate the

other terms individually. To evaluat®e{ E[11]}, we rewrite f(n,w(k)) in (G.28 as

Ohe(n,w(k))

o and then exchanging differentiation and summation operation, we have

Re{E[TI]}:El%;sin( 2 )] (G.3)

We note that after a sufficient number of iteration$k) approaches), thereforer =

%’“) ~ 1. Now using% = 1_(}_@ ~ 1+ (1 —z)andsina ~ « for smallq, in (G.3),
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we have

Re{E[T\]} = E 5; sin( 7= (21”_ x>)} ~E % sin(2r(1 — x))]
-2 (53| -5 S (e - ) (G4
~ B| (e — (k)| ~ T (Bl - a(b)

In the above formula, becauge(% = (O(1) and more important attribute of this term
is that the sign remains unchanged. Hence, for simplicity, we substitute itlwh
treating it as a variable step-size issue. When the convergence is regﬁ%)ed/,ill be
very close tal.

Now since the noise is white, we have

Therefore, under a higher SNR condition, that is to sdys small, E[T}] ~ 0. Finally,

substituting G.4) into (G.1), we get 6.13) in the main text.



Mathematical Symbols

arg z

Constant or variable
Lignt speed
Function oft
Landau Operator
Landau Operator
Matrix or vector
Step-size
Variance
Expectation ofr
Series production
Propagation delay
Group velocity
Angular frequency
Frequency

Group delay

Phase ot
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MATHEMATICAL SYMBOLS
o], L, Norm

Tp Phase delay
> Summation
Vv Gradient

& Convolution
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