
DEVELOPMENT OF THE FINITE AND

INFINITE INTERVAL LEARNING CONTROL

THEORY

JING XU

NATIONAL UNIVERSITY OF SINGPAORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DEVELOPMENT OF THE FINITE AND

INFINITE INTERVAL LEARNING CONTROL

THEORY

BY

JING XU

(B. ENG., M. ENG.)

A DISSERTATION SUBMITTED

IN PARTICIAL FULFILMENT OF THE

REQUIREMENTS

FOR THE DEGREE OF

DOCOTOR OF PHILOSOPHY IN ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2003



Acknowledgments

I would like to express my deepest gratitude to my supervisor, Prof. Xu Jian-

Xin, for his valuable guidance, encouragement and patience during my entire PhD

study. His wealthy knowledge and accurate foresight have impressed and benefited

me very much, especially in the area of nonlinear control and learning control.

Moreover, his rigorous scientific approach and endless enthusiasm to the career have

influenced me significantly. Without his continuous guidance and help, I could not

have accomplished this thesis and all the relevant works.

Thanks are also presented to the researchers, working in the center of intelligent

control of the Electrical & Computer Engineering Department, National University

of Singapore, for their encouragement and valuable advice.

I would like to take this opportunity to thank Dr. Chen Jianping, Mr. Zhang

Hengwei, Dr. Pan Yajun, Ms. Yan Rui, Ms. Zheng Qing and all the other labmates

in the Control & Simulation Lab for their kindly assistance in both my research

work and the other personal aspects. My very special thanks go to Dr. Tan Ying

from whom I have learned a lot via frequent discussions.

Finally, I am indebted to my parents, my husband Mr. Ou Ke and my younger

sister Miss Wei Zeli, for their constant support and encouragement throughout all

my studies. It is impossible to thank them adequately. I would like to dedicate this

thesis to all my family members.

Xu Jing

June 2003

i



Contents

Acknowledgments i

Contents ii

Summary vii

List of Tables ix

List of Figures ix

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Finite Interval Learning Control (FIL) . . . . . . . . . . . . . 2

1.1.2 Infinite Interval Learning Control (IIL) . . . . . . . . . . . . . 10

1.1.3 Learning for Nonsmooth Nonlinearities . . . . . . . . . . . . . 12

1.2 Objective of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ii



Contents iii

2 FIL for Systems with Input Deadzone 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 FIL for A Pure Deadzone Component . . . . . . . . . . . . . . . . . . 25

2.4 FIL for Dynamic Systems with Input Deadzone . . . . . . . . . . . . 28

2.5 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 FIL for Systems with Input Backlash 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 FIL for A Pure Backlash Component . . . . . . . . . . . . . . . . . . 47

3.3 FIL for Dynamic Systems with Input Backlash . . . . . . . . . . . . . 51

3.4 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 FIL for Systems with Norm-bounded Uncertainties 60

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 FIL for SISO Systems with Norm-bounded Uncertainties . . . . . . . 61

4.2.1 FIL for Systems with GLC Uncertainties . . . . . . . . . . . . 62

4.2.2 FIL for Systems with NGLC Uncertainties . . . . . . . . . . . 65



Contents iv

4.3 FIL for Norm-bounded Uncertainties under Alignment Condition . . 69

4.3.1 FIL for GLC Systems under Alignment Condition . . . . . . . 69

4.3.2 FIL for NGLC Systems under Alignment Condition . . . . . . 71

4.4 Robust FIL for MIMO Systems with NGLC Uncertainties . . . . . . 73

4.5 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 FIL for Non-Uniform Tracking Tasks in the Presence of Parametric

Uncertainties 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 FIL Configuration and Convergence Analysis . . . . . . . . . . . . . . 89

5.4 FIL with Mixed Updating Laws . . . . . . . . . . . . . . . . . . . . . 95

5.5 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Fuzzy Logic Learning Control 109

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Properties of A Fuzzy PD Controller . . . . . . . . . . . . . . . . . . 113

6.4 Fuzzy Logic Learning Control . . . . . . . . . . . . . . . . . . . . . . 116



Contents v

6.5 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 IIL for Systems with Parametric Uncertainties 133

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 IIL for SISO Systems with Parametric Uncertainties . . . . . . . . . . 134

7.3 IIL for MIMO Systems with Parametric Uncertainties . . . . . . . . . 138

7.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 138

7.3.2 IIL Configuration and Convergence Analysis . . . . . . . . . . 140

7.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8 IIL for Systems with Norm-bounded Uncertainties 147

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2 IIL for SISO Systems with Norm-bounded Uncertainties . . . . . . . 148

8.2.1 IIL for Systems with GLC Uncertainties . . . . . . . . . . . . 148

8.2.2 IIL for Systems with NGLC Uncertainties . . . . . . . . . . . 152

8.3 IIL for MIMO Systems with NGLC Uncertainties . . . . . . . . . . . 155

8.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9 Observer Based IIL for Systems with Parametric Uncertainties 163



Contents vi

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.3 Observer Based IIL for GLC System . . . . . . . . . . . . . . . . . . 166

9.3.1 Observer Based IIL With Known θm And l . . . . . . . . . . . 166

9.3.2 Observer Based IIL With Unknown θm and l . . . . . . . . . . 172

9.4 IIL for NGLC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.5 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10 Conclusion 182

10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10.2 Recommendation for Future Research . . . . . . . . . . . . . . . . . . 185

Bibliography 187

A Appendix for Chapter 2 198

A.1 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.2 Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B Appendix for Chapter 4 203

B.1 Proof of Lemma 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

C Author’s Publications 205



Summary

This thesis centers on the control theories of Finite Interval Learning (FIL) and In-

finite Interval Learning (IIL) for nonlinear systems with deterministic uncertainties.

The main contributions of this thesis lie in the following three aspects:

• Contraction Mapping (CM) Based FIL for Systems with Nonsmooth

Nonlinearities

Traditional Iterative Learning Control (ILC), based on CM principle, is an

effective way for FIL and has been successfully applied to a variety of repeat-

able control problems. However, the application is limited to smooth system

dynamics. Considering the wide existence of nonsmooth nonlinearities in real

control systems, in this thesis CM-type FIL, i.e. ILC, has been extended to

nonlinear discrete-time systems with input deadzone or backlash. Based on

the scheme we proposed, only if both the control target and the dynamic sys-

tem are repeatable, the unknown deadzone or backlash can be compensated

automatically via learning and perfect tracking over the entire time interval

can be obtained iteratively. This new methodology provides a simple way to

deal with such kind of high nonlinearities.

• Composite Energy Function (CEF) Based FIL

CEF-type FIL was introduced to fully consider the impact of system dynam-

ics, based on which FIL was extended to Non-Global Lipschitz Continuous

(NGLC) systems. Benefiting from CEF, we have developed several FIL and

robust FIL schemes to deal with systems with norm-bounded uncertainties

which may be Global Lipschitz Continuous (GLC) or NGLC. Furthermore,

uniform learning convergence for all the developed algorithms can be guaran-

teed.
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Conventional FIL schemes are only applicable to uniform trajectory tracking

problems. To overcome this limitation, we have constructed a new kind of

CEF-type FIL approaches to enable the learning from non-uniform tracking

control tasks in the presence of time-varying and/or time-invariant parametric

uncertainties. Therefore, the target trajectories of any two consecutive itera-

tions can be completely different, which greatly widens the application areas

of FIL.

To further extend the implementation of FIL, a novel Fuzzy Logic Learning

Control (FLLC) scheme has been outlined in this thesis. The FLLC approach

integrates two main control strategies: Fuzzy Logic Control (FLC) as the basic

control part and FIL as the refinement part. The incorporation of FIL into

FLC ensures the capability of improving control performance through learning

iterations.

• CEF Based IIL

By taking the advantage of CEF analysis method, we further extended FIL to

IIL for both parametric and norm-bounded uncertainties, which includes the

conventional Repetitive Control (RC) as a special case.

In CEF-type FIL/IIL schemes, system states are assumed to be available. To

facilitate the practical application, this thesis provides a kind of observer-based

IIL algorithm for a class of nonlinear uncertain systems with unknown system

states. Based on the state estimation and periodic updating, the proposed

IIL scheme guarantees the asymptotical convergence of the output tracking

in the presence of system nonlinearity and periodic time-varying parametric

uncertainties. Furthermore, the observer based IIL can be applied to FIL

directly.
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Chapter 1

Introduction

1.1 Background

In a control system design, if all the information about the controlled process is

known a priori, vast majority of conventional control techniques can be used. How-

ever, in most practical instances, the systems to be controlled are unknown or in-

completely known. One general approach is to design a controller which is able to

estimate the unknown information and a control action is further added based on

the estimated information. As a result, if the estimated one converges to the true

case gradually, the controller design eventually becomes same as the case when all

the information is known a priori. Because of the capability of progressively im-

proving the control performance , such kind of control systems are called learning

control systems (Hklansky, 1966; Fu, 1970).

In this thesis, we will focus on a certain category of learning control systems where

the controlled process and/or the tracking tasks are of a repetitive or periodic nature.

Ultimately, high tracking performance, i.e. perfect tracking, is our control target.

This kind of control problems is often encountered in many industrial processes, such

1



Chapter 1. Introduction 2

as industrial robots on assembly processes, batch reactors, IC welding processes and

wafter processes. The main idea of such class of learning control is to improve the

tracking performance in an iterative manner by using the information obtained from

previous iteration or period, which is similar to the learning methodology of human

beings.

According to the time domain nature of a system, and the requirement from a

control task, we classify this kind of learning into Finite Interval Learning (FIL)

and Infinite Interval Learning (IIL).

1.1.1 Finite Interval Learning Control (FIL)

FIL refers to the learning over a fixed finite time interval [0, T ], during which both

the controlled system and the control target are repeatable. The goal of FIL control

system design is to get the control signal iteratively which ensures the system output

could follow the desired trajectory perfectly over the whole time interval even in the

presence of deterministic system uncertainties.

Lots of nonlinear control approaches, such as adaptive control and robust control,

have been proposed to cope with the tracking problems of uncertain systems, how-

ever in most cases only bounded tracking error or asymptotic convergence can be

obtained. Hence, precise tracking along entire span of trajectory is impossible.

Therefore, FIL complements the existing control methods in the sense that it tar-

gets at perfect tracking in a finite time interval.

The basic idea of FIL comes from Iterative Learning Control (ILC), which is used

to deal with repeated tracking control problems or repeatable disturbance rejection

problems over finite time interval. In the past two decades, ILC has been developed

to a typical method of FIL.
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The concept of ILC was first proposed and formulated by (Arimoto et al., 1984). So

far, all kinds of ILC control schemes have been proposed and investigated (Bien and

Chung, 1980; Hwang et al., 1991; Moore, 1993; Fang and Chow, 1998; Kurek and

Zaremba, 1993; Saab, 1995; Xu, 1997; Chien, 1998; Bien and Xu, 1998; Bien et al.,

1999; Chen and Wen, 1999; Wang, 2000; Park and Bien, 2000). Moreover, ILC has

been widely applied to mechanical systems such as robotics, electrical systems such

as servo motors, chemical systems such as batch reactors, as well as aerodynamic

systems, etc.

Briefly speaking, the strategy of ILC is to update the control inputs iteratively to

generate the required outputs. Fig. 1.1 shows the basic ILC schematic diagram. In

Figure 1.1: Basic structure of Iterative Learning Control.

addition to the standard feedback loop, memory components are used to record the

preceding control signal ui(t) and error signal ei(t) which are incorporated into the

present control ui+1(t). Here time t ∈ [0, T ] and i ∈ Z+
�
= {0, 1, · · · } denotes the

iteration number. From the control point view, the memory components are used to

realize the feedforward compensation. It can be clearly seen that, when yi = yd, the

tracking error is zero and the control feedback part is also zero. However, to track a

target trajectory and reject a persistent disturbance, a non-zero control profile will

be demanded. Therefore, due to the implementation of the memory components,
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it is possible to achieve perfect tracking over the whole time interval [0, T ]. The

necessity of incorporating feedforward loop can be justified in terms of “Internal

Model Principle” (IMP). According to the IMP (Francis and Wonham, 1975), to

achieve perfect tracking, the control signal must contain a suitably reduplicated

model of the target trajectory and deterministic disturbance.

Hitherto, lots of FIL schemes, including ILC, have been proposed. In the following,

let us review and summarize the numerous methodologies of FIL according to three

different categories – analysis methods for FIL, uncertainties addressed by FIL and

tracking tasks of FIL.

Analysis Methods for FIL

Differing from many existing intelligent control methods such as fuzzy logic control

and neural network control, the effectiveness of FIL schemes is guaranteed rigorously

with convergence analysis. There are several theories which can be employed to

analyze the convergence property of FIL.

• Analysis Methods for ILC

Basically, the analysis methods for classical ILC schemes contain Contraction

Mapping (CM) principle and two-dimensional (2-D) system theory.

CM Principle

Let S be a closed subset of a Banach space and let A be a mapping that maps

S into S. Suppose that‖A(x) − A(y)‖ ≤ α‖x − y‖, where 0 ≤ α < 1 and

x,y ∈ S, then there exists a unique point x∗ ∈ S such that A(x∗) = x∗ and x∗

can be obtained by the method of successive approximation starting from any

arbitrary initial point in S. This is the famous CM Principle (Khalil, 1990).

CM-type method is a systematic and traditional way to analyze the learning

convergence of ILC and most of the ILC works are based on it so far. However,
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the use of CM principle in learning control has two folds. On one hand, it

achieves geometric convergence speed with very little system knowledge; on

the other hand, it is hard to incorporate available system knowledge, whether

parametric or structural, into the learning controller design, hence it can only

handle limited classes of nonlinear uncertain systems, i.e. Global Lipschitz

Continuous (GLC) systems. The reason is that in the presence of Non-Global

Lipschitz Continuous (NGLC) nonlinearities, finite escape time phenomenon

may occur and CM principle is no longer applicable. Consequently, further

extension of CM-type ILC to more general class of nonlinear systems is very

difficult.

2-D System Theory

2-D systems are those systems in which the inputs, outputs and states de-

pend on two independent variables. Roesser first presented a two-dimensional

discrete state-space model in mid 70’s (Roesser, 1975).

2-D system theory has been applied to analyze ILC in both discrete-time

systems (Zheng et al., 1990; Kurek and Zaremba, 1993; Fang and Chow, 1998;

Fang et al., 2002) and continuous-time systems (Chow and Fang, 1998; Chow

and Fang, 1998). The basic idea is to set up the mathematical model for the

entire learning control system including the dynamics of the control system

and the behavior of the learning process. Although 2-D system theory provides

a useful tool to ILC design and analysis, almost all the schemes based on it

are only applicable to linear time-invariant/time-varying systems.

Note that in all the ILC algorithms, the Identical Initial Condition (I.I.C.),

i.e. ei(0) = 0, is essential. It means that the controlled process is required to

return to the same initial configuration after each learning trial. The I.I.C. is

one of the main limitations for further applications of ILC.

• EF/CEF-type FIL
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Recently, FIL under the frame of Energy Function (EF)/Composite Energy

Function (CEF) acquired much attention.

EF-based method evolves from Lyapunov function theory, which is a basic

analysis tool in nonlinear control design, and is subsequently extended to the

leaning domain of FIL. In (Ham et al., 1995; Park et al., 1996), the energy

function with respect to iterations has been set up to facilitate the leaning

design and analysis.

In CEF-type FIL schemes (Xu and Tan, 2002), a CEF which reflects the en-

ergy in both the time domain and the iteration domain is defined. Hence,

the convergency of CEF guarantees not only the finiteness of system states,

but also the convergence of tracking error along the learning axis. The main

advantages of CEF-type FIL have been summarized in (Xu and Tan, 2002):

(1) the learning convergence along the learning horizon and the system perfor-

mance along time horizon can be considered concurrently; (2) because of the

incorporation of system states information, the learning control approach can

handle both GLC and NGLC systems.

Moreover, based on CEF analysis method, if xd(0) = xd(T ), the I.I.C. may

be replaced by a less restricted initial condition - alignment condition, i.e.

xi+1(0) = xi(T ). In (Xu, 2002), the learning convergence with the alignment

condition for a certain class of systems was derived under the framework of

CEF.

All in one, EF/CEF analysis method greatly widens the application areas of

FIL.

System Uncertainties Addressed by FIL

The unknown system information addressed by FIL may be either the parameters

only or the form together with parameters which describe a deterministic function.
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Here, we classify the system uncertainties into the following two cases.

• Parametric Uncertainty

The parametric uncertainty is only time-related and can be either constant or

time-varying.

In (Xu, 2002; Xu and Tan, 2002), the parametric uncertainties have been

expressed as θ(t)ξ(x, t) ∈ C(R1×n1 , [0, T ]) where θ(t) is a set of unknown

time-varying uncertainties and ξ(x, t) ∈ Rn1 is a set of known functions of

states. Here n1 is an appropriate integer specifying the dimension. Note that

here ξ(x, t) can be GLC or NGLC. It has been clearly shown in (Xu and

Tan, 2002) that , if ξ(x, t) is NGLC, although CM-type ILC fails to work, the

CEF-type FIL still can ensure the learning convergence.

• Norm-Bounded Uncertainty

For norm-bounded uncertainty, neither its structure nor its parameters are

known. The only available information is its bounding function. Obviously,

constructing FIL algorithm for norm-bounded uncertainties is much more dif-

ficult.

The norm-bounded uncertainties can be either GLC or NGLC. For GLC case,

even without knowing its bounding function, CM-type ILC can handle it effec-

tively. However, for NGLC case, CM-type ILC can not be applied any more.

Therefore, how to handle NGLC norm-bounded uncertainties needs further

investigation.

From another point of view, the norm-bounded uncertainties can be classified

into the following two different kinds: one is that the uncertainties will vanish

as the tracking error approaches to zero; the other is that the uncertainties will

not be zero even if the tracking error approaches zero. In (Qu et al., 2001) EF-

based FIL for systems with both parametric uncertainties and norm-bounded
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vanishing uncertainties has been proposed. How to deal with norm-bounded

nonvanishing uncertainties is still an unknown area.

Tracking Tasks of FIL

Tracking control tasks over finite interval can be classified into uniform and non-

uniform cases.

• Uniform Tracking Control Problem

Hitherto, most FIL schemes, including both classical ILC and EF/CEF-type

FIL, are only valid for uniform trajectory tracking problems, i.e. the control

target must be strictly repeatable over [0, T ]. Therefore, if any change occurs

due to the variation of control objectives or task specifications, the control

system has to start learning process from the very beginning.

• Non-Uniform Tracking Control Problem

From a practical point of view, we often face non-uniform trajectory tracking

tasks, i.e. the desired tracking targets are different from iteration to iteration.

In (Saab et al., 1997), D-, PD- and PID-type ILC algorithms were presented for

tracking trajectories “slowly” varying in the iteration domain. In that work,

the difference between two consecutive iterations is assumed to be bounded by

a small constant. Due to the presence of non-parametric system uncertainties,

only a bounded tracking error is guaranteed if the target trajectory keeps

changing along the iteration axis.

To partially solve non-uniform tracking problems, Direct Learning Control

(DLC) and Recursive Direct Learning Control (RDLC) schemes were devel-

oped to make use of previously obtained control information to design the con-

trol input for a new trajectory (Xu et al., 1996; Xu, 1997; Xu and Song, 2000).

The basic idea behind these schemes is as follows. The control input of the
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Table 1.1: Brief summary for the background of FIL.

system can be partitioned into a basis function vector and a known matrix

reflecting the relations between different trajectories. Based on the knowledge

of the desired control inputs for the different trajectories, it is possible to iden-

tify the basis function vector. The batch processing nature of the DLC leads

to some implementation difficulties such as the long computation time and

singularities. Therefore, RDLC was proposed to overcome the difficulties in

DLC. Although good learning results are obtained by DLC and RDLC, they

are only limited to trajectories with different magnitude scales or different

time scales.

Recently, high-order iterative learning update laws were also suggested for

iteration-varying references or disturbances and evidenced only by simulation

results (Moore and Chen, 2002).

Obviously, how to deal with non-uniform trajectories learning is still worthy

of further study.

To clearly show the background of FIL, the main points are summarized in Table

1.1.
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1.1.2 Infinite Interval Learning Control (IIL)

IIL represents the learning over infinite time interval [0,∞). As the continuity of the

system states can be observed in most real control systems, extending the results in

FIL to IIL is very constructive.

Repetitive Control (RC) is a typical method of IIL, which was first introduced

by (Inoue et al., 1981) for SISO plants in continuous time. RC approach is the

design of a controller to track periodic reference commands and/or reject periodic

disturbance with a fixed but known periodicity T . Unlike FIL, the learning process

of RC is continuous, i.e. the initial state at the start of each period is equal to the

final state of the preceding period.

The basic structure of RC scheme can be described in Fig. 1.2.

Figure 1.2: Basic structure of Repetitive Control.

From Fig. 1.2, it can be seen that the control signal is calculated using the informa-

tion of the previous period. With consecutive iterations, it is expected that the RC

system has the potential to substantially decrease the tracking error, and perfect

tracking can be obtained eventually. The basis of RC is IMP which implies that a

generator of periodic signals and a stabilizing controller, i.e. a controller that sta-
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bilizes the resulting closed-loop system, are needed to obtain the perfect tracking.

As any periodic signal with period T can be generated by the free time-delay sys-

tem with an appropriate initial function, a delay with positive feedback around it is

used as an internal model in Fig. 1.2. Therefore, the perfect asymptotic tracking of

periodic references can be achieved, provided that the closed loop system is stable.

So far lots of works have been finished about the theories and applications of RC ap-

proach. The modified RC designs were proposed in (Hara et al., 1988; Sadegh, 1991)

to relax the requirement for zero relative degree. The tradeoff between system sta-

bility and tracking performance has been considered in (Hara et al., 1988; Srinivasan

and Shaw, 1991). RC approaches for discrete time systems were discussed in (Nakano

and Hara, 1986; Tomizuka, 1987; Middleton et al., 1989). The stability analysis was

enhanced in (Curtelin and Caron, 1993) and the robustness analysis was conducted

in (Srinivasan and Shaw, 1991; Hara et al., 1994; Liu and Tsao, 2001). Moreover, RC

schemes have been successfully applied in a number of areas, such as robot manip-

ulators (Hara et al., 1987), disk drive systems (Sacks et al., 1995), casting processes

(Manayathara et al., 1996) and satellite systems (Broberg and Molyet, 1992).

Next let us focus on the following three aspects.

• Plant Properties of IIL

In most existing RC algorithms, the system internal stability and the learning

convergence are guaranteed under the assumption of linearity or linearizability

of the dynamic systems. Works for nonlinear RC are very limited. In (Hikita et

al., 1993), sliding mode control has been used to eliminate nonlinearities, thus

the problem can be reduced to a linear one. In (Khalil, 1994), a robust control

was first applied to bring the tracking error close to zero and then depended on

the internal model servomechanism to work locally to bring the error to zero.

A feedback linearizable nonlinear system has also been considered in (Alleyne
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and Pomykalski, 2000). Obviously, how to extend RC approach to nonlinear

dynamic systems deserves further investigation.

• Analysis Methods of IIL

Traditionally, the analysis of RC schemes is based on the small gain theorem

which can be regarded as the extension of CM principle to infinite time horizon.

Hence, it can be named as CM-type IIL. Recently, Lyapunov-based techniques

have been applied to analyze the RC properties (Sadegh et al., 1988; Dixon et

al., 2002) and we call them EF-type IIL. In (Sadegh et al., 1988), by using the

passivity properties of robot manipulators, based on EF-type RC, the system

stability and the learning convergence can be obtained without requiring any

assumption about the linearity of the system. Moreover, by taking advantage

of EF-type RC, many other Lyapunov-based techniques can be easily fused

and the stability analysis is straightforward.

• Tracking Tasks of IIL

In all the developed RC schemes, it is required that the reference input signals

and/or disturbances must be periodic. Hence, IIL for non-periodic reference

signals is still an open area.

The background of IIL is summarized in Table 1.2. We can see that there is much

space for us to further investigate the theories of IIL.

1.1.3 Learning for Nonsmooth Nonlinearities

In real control systems, many physical components contain nonsmooth nonlinear-

ities, such as saturation, relay, deadzone, backlash and hysteresis. This kind of

nonlinearities is especially common in actuators used in practice, such as motors,
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Table 1.2: Brief summary for the background of IIL.

gear and hydraulic servo valves. The existence of these nonsmooth factors severely

decreases the control accuracy or causes oscillations, even leads to system instability.

As the nonsmooth nonlinearities are usually unknown and even vary with operation

conditions, conventional controllers, such as PD or PID controllers, exhibit poor

performance. Therefore, the study of methods to deal with nonsmooth nonlinearities

has been of interest to control engineers for some time. Next we will briefly review

the works on the control of systems with deadzone or backlash.

• Systems with Deadzone

The mathematical model of deadzone is a typical kind of nonsmooth non-

linearity, which is important not only in itself, but also to other nonsmooth

nonlinearities, such as hysteresis and stiction, which can be model1ed using

deadzones (Recker and Kokotović, 1991). The standard techniques to over-

come a deadzone include variable structure control (Utkin, 1978) and dithering

(Desoer and Sharuz, 1986). Motivated by the limitations in these approaches,

such as chattering in sliding mode control, several adaptive inverse approaches

were proposed (Recker and Kokotović, 1991; Tao and Kokotović, 1994; Tao
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and Kokotović, 1996; Tao and Kokotović, 1997), which employed an adaptive

inverse for canceling the effect of an unknown nonlinearity and a fixed (or adap-

tive) linear control law for a known (or unknown) linear dynamics. Recently,

soft computing such as fuzzy logic and neural network based control algo-

rithms has also been applied to handle problems relevant to deadzones. Fuzzy

logic based controllers were developed in (Kim et al., 1994; Lewis et al., 1997).

Fuzzy precompensation schemes for PD controller and PID controller were

proposed in (Kim et al., 1993) and (Kim et al., 1993) respectively. Neural net-

work schemes (Cetinkunt and Domez, 1993; Lee and Kim, 1994; Selmić and

Lewis, 2000) were also given to identify and compensate an unknown deadzone.

• Systems with Backlash

Backlash is another kind of highly practical-relevant control problem. Compar-

ing with deadzone which is memoryless, backlash has an element of memory.

Hence, overcoming backlash is more difficult.

The control of systems with backlash has been studied since 1940. Linear

controllers, such as PI, PID and observer-based controllers, were first investi-

gated. By now, many works have been finished. Approximating the inverse

of the backlash has often been suggested as an effective way. The inverse

compensation methods were proposed in (Tao and Kokotović, 1993; Dean et

al., 1995) based on online identification of backlash parameters; Switched con-

trol (Nordin and Gutman, 2000), dithered control (Desoer and Sharuz, 1986),

Taylor’s SIDF method (Taylor and Lu, 1995) and etc. have also been ap-

plied to avoid the harmful effect of backlash. Due to the capability of learn-

ing any nonlinear functions, neural networks have been used to identify and

compensate backlash. A recurrent neural network with unsupervised learn-

ing by genetic algorithm was developed in (Shibata et al., 1993). In (Seidl et

al., 1995), a neural network was proposed to handle gear backlash in precision
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position-controlled mechanisms.

In almost all the proposed learning schemes for nonsmooth nonlinearities, the algo-

rithms are quite complicated and only bounded tracking error or asymptotic con-

vergence can be guaranteed. Moreover, if the parameters of deadzone or backlash

are time-varying, the compensation based on adaptive control fails to work. On

the other hand, according to Sections 1.1.1, FIL has been widely applied due to

its simplicity and effectiveness. As a complement to the existing methods, the con-

trol target of FIL is perfect tracking over the entire finite time interval. However,

the implemented areas of FIL are only limited to smooth systems so far and the

application to unknown nonsmooth nonlinearities is absent.

1.2 Objective of This Thesis

Although both FIL and IIL schemes have been developed for quite a long period,

there are a number of problems which hinder the further applications.

• So far, the application of FIL is only limited to smooth nonlinearity. Is it

possible to extend FIL to systems with unknown nonsmooth nonlinearities?

• How to deal with norm-bounded nonvanishing uncertainties which maybe

NGLC?

• How to handle non-uniform trajectories learning is worthy of further investi-

gation.

• Can we add the FIL scheme to some existing effective control methodology

such that the original control approach also has learning ability?

• The implementation of IIL is very limited. How to further relax the limitation

and widen its application areas?
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• Many FIL and IIL approaches are under the framework of EF/CEF, in which

the system states are assumed to be available. If the system states are not

measurable, can we combine state estimation with the proposed CEF-type

learning control approaches?

In this thesis, the major efforts are to develop theories to solve the above problems.

The main contributions are summarized as follows.

• FIL for Systems with Nonsmooth Nonlinearities

Under the framework of CM principle, FIL has been extended to discrete-time

systems with unknown high nonlinearities such as input deadzone and input

backlash. Based on the simple learning law, the unknown input deadzone or

backlash can be compensated effectively and the perfect tracking can eventu-

ally be obtained iteratively.

• FIL for Systems with Norm-Bounded Uncertainties

CEF-type FIL for systems with norm-bounded uncertainties has been dis-

cussed and several schemes have been proposed. A FIL approach for SISO

dynamic systems with GLC norm-bounded uncertainties has been first out-

lined. A novel robust FIL scheme which combines robust control with CEF-

type FIL has been proposed to deal with SISO dynamic systems with NGLC

norm-bounded uncertainties. The basic idea of robust FIL is that the robust

control is employed to guarantee that all the system states belong to a compact

set, subsequently FIL is applied to improve the tracking performance gradu-

ally. Furthermore, FIL for systems with norm-bounded uncertainties under

alignment condition is also considered. Finally, based on the discussion for

SISO dynamic systems, the robust FIL approach has been extended to MIMO

dynamic systems with norm-bounded NGLC uncertainties.
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• FIL for Non-Uniform Tracking Problems

Novel FIL algorithms have been introduced for non-uniform trajectory track-

ing problems in the presence of time-varying and/or time-invariant parametric

uncertainties. The proposed approaches can learn from different motion pat-

terns and are capable of generating the control profile for any new motion

pattern, thus retaining the main advantages of DLC over ILC. On the other

hand, the new methods require no a priori control knowledge, which overcomes

the main limitation of DLC. Rigorous proofs based on CEF analysis method

have been given to validate the proposed approaches.

The proposed new FIL scheme includes the FIL approach for parametric un-

certainties as its subset when the trajectories to be learned are identical over

iterations. Obviously, the new developed approach could be applied to much

broader nonlinear control systems.

• Fuzzy Logic Learning Control (FLLC)

Although Fuzzy Logic Control (FLC) is an effective way to deal with nonlinear

system uncertainties, experts have to spend a long time on re-adjusting the

parameters when the tracking task changes. One way to partially tackle this

problem is to offer the FLC system a learning mechanism.

In this thesis a new modular approach - Fuzzy Logic Learning Control (FLLC)

has been proposed, which integrates two complementary control approaches,

FLC and FIL, and improves the tracking performance through tasks repeti-

tions. The incorporation of the learning function into fuzzy controllers ensures

exact tracking because it completely nullifies the effects of reference signal and

periodic disturbances on the tacking error.

Through rigorous proof based on EF, we show that the proposed FLLC system

achieves the following novel properties: (1) the tracking error converges uni-

formly to zero; (2) learning control sequence converges to the desired control
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profile almost everywhere.

• IIL for Systems with Parametric Uncertainties

By taking the advantage of CEF analysis method, the CEF-type FIL for sys-

tems with parametric uncertainties has been further extended to the IIL case.

It has been shown that, only if the parametric uncertainty is periodic, based on

the known periodicity T , the perfect tracking can be realized asymptotically.

Moreover, in the proposed IIL schemes, the tracking tasks can be either pe-

riodic or non-periodic which greatly widens the application of IIL. This work

can also be treated as an extension of FIL for non-uniform tracking problems.

• IIL for Systems with Norm-Bounded Uncertainties

The CEF-type FIL for systems with norm-bounded uncertainties has been ex-

tended to infinite time interval [0,∞). To clearly show the basic idea, IIL for

SISO dynamic systems with both GLC and NGLC uncertainties have been

discussed in the first place, followed by implementing IIL to MIMO dynamic

systems with NGLC uncertainties. It has been shown that, when the uncer-

tainty is periodic in time t and the tracking target has a common periodicity,

the learning convergence can be guaranteed even in the presence of norm-

bounded uncertainties.

• Observer Based IIL for Systems with Parametric Uncertainties

In all the CEF-type learning control schemes, the system states are assumed

to be available. To facilitate the practical application, the observer based IIL

algorithm, which combines the state estimation with IIL, has been proposed

for systems with parametric uncertainties. Based on the state estimation,

the perfect tracking can be assured as time proceeds. Moreover, if the I.I.C.

or alignment condition is satisfied, the algorithm can be directly applied to

CEF-type FIL for systems with parametric uncertainties.
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1.3 Thesis Organization

The thesis consists of 10 chapters, organized as follows.

Chapters 2-6 cover the theories of FIL and Chapters 7-9 focus on the theories of IIL.

In Chapter 2 and Chapter 3, the CM-type FIL is extended to nonlinear systems

with input deadzone and input backlash. Because of the singularity property of

the systems with input deadzone or backlash, in Chapter 2-3 we consider a kind of

discrete-time control system described as:

x(k + 1) = f(x(k), k) + bu(k)

u(k) = W [v(k)]

y(k + 1) = cx(k + 1),

where x ∈ Rn is the system state; y ∈ R is the measurable system output; u ∈ R
is the plan input, but not available for control; v ∈ R is the actual system input;

k ∈ K and W [∗] represents the input deadzone (W = DZ) or the input backlash

(W = BL);

From Chapter 4 to Chapter 9, different kinds of CEF-type learning control schemes

are proposed. In all these chapters, the following nonlinear systems with matched

uncertainties are considered.

ẋ(t) = f(x, t) + B(x, t)[u(t) + d(x, t)], (1.1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input vector, d(x, t) is

the system uncertainties and t either belongs to [0, T ] (Chapter 4-6) or to [0,∞)

(Chapter 7-9).

According to the different proposed schemes, several subsets of system (1.1) are

discussed in different chapters.
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Chapter 4 develops novel CEF-type FIL approaches for nonlinear systems with

norm-bounded uncertainties d(x, t) which can be GLC or NGLC. Rigorous proofs

are provided therein. The control system we discussed in Chapter 4 is:

ẋ(t) = f(x, t) + B0(t)H(x, t)[u(t) + d(x, t)], (1.2)

where B0(t) ∈ Rn×m and H(x, t) : Rn ×R+ → Rm×m. We can see that in (1.1), if

n �= m, B(x, t) = B0(t)H(x, t) is needed where H(x, t) is square.

New FIL schemes suitable for non-uniform trajectories in the presence of parametric

uncertainties are proposed in Chapter 5. The convergence analysis based on CEF is

presented and the effectiveness of the new schemes is validated by simulation results.

In Chapter 5, the following high-order MIMO system is considered.

ẋj(t) = xj=1(t) j = 1, · · · , m − 1

ẋm(t) = f(x, t) + B(x, t)[u(t) + d1(x, t)] (1.3)

where xk ∈ Rn, k = 1, · · · , m; x
�
= [xT

1 ,xT
2 , · · ·,xT

m]T ∈ Rnm; u ∈ Rn; and d1(x, t)

is the parametric uncertainty.

Note that all the approaches outlined in Chapter 5 are also valid for system (1.2)

with the assumption that d(x, t) is a kind of parametric uncertainty. Similarly, the

schemes proposed in Chapter 4 can also be applied to system (1.3) if d1(x, t) is a

kind of norm-bounded uncertainty. Therefore, we give two different kinds of control

systems to which our FIL approaches can be implemented.

Chapter 6 is devoted to a PD type FLLC approach which adds the FIL mechanism

to the existing fuzzy logic controller in an additive form. Both theoretical analysis

and simulation results are provided. According to the properties of FLC and FIL,

we only consider the following nonlinear dynamic system.

ẋ1 = x2

ẋ2 = f(x, t) + b(x1, t)u (1.4)



Chapter 1. Introduction 21

where x = [x1, x2] ∈ R2, u ∈ R and f(x, t) and b(x1, t) are nonlinear uncertain

functions. Obviously, the system (1.4) is also a subset of (1.1).

CEF-type FIL approaches for systems with parametric and norm-bounded uncer-

tainties are extended to IIL in Chapter 7 and Chapter 8 respectively. All the algo-

rithms given in Chapter 7 are suitable either to (1.2) or to (1.3) if both d(x, t) and

d1(x, t) are parametric uncertainties and t ∈ [0,∞). In this thesis only the results

for system (1.3) are given and the results for system (1.2) can be obtained directly.

While in Chapter 8, we discuss more restrictive control systems:

ẋ(t) = f(x, t) + B(t)[u(t) + d(x, t)], (1.5)

where x ∈ Rn, u ∈ Rn, B(t) ∈ Rn×n, and d(x, t) is the norm-bounded uncertainty.

It clearly shows that IIL for systems with norm-bounded uncertainties is the most

difficult control problem.

The observer based IIL for system with parametric uncertainty is presented in Chap-

ter 9. Considering the requirement of an observer design, we proposed the IIL

algorithm for the following MIMO system.

ẋ = Ax + B[u(t) + d(x, t)]

y = Cx,

where x ∈ Rn is not measurable; y ∈ Rm is the physically accessible output vector;

u ∈ Rm; d(x, t) is the parametric uncertainty and A, B and C are constant matrices

of appropriate dimensions.

Chapter 10 summarizes the fulfilled work and gives recommendation on the future

research.

Finally, to clearly show the background and the contributions of this thesis, the

main results related to the theories of FIL and IIL are summarized as Table 1.3.
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Table 1.3: Summary of the Main Results Related to FIL and IIL.



Chapter 2

FIL for Systems with Input

Deadzone

2.1 Introduction

FIL, such as ILC, has been widely applied to repeated tracking control and repeat-

able disturbance rejection in the past two decades due to its simplicity and effective-

ness. However, only the smooth nonlinearity is considered hitherto and the absent

from these results is the application of FIL to unknown nonsmooth nonlinearity.

The mathematical model of deadzone is a typical kind of nonsmooth nonlinearity.

In practice, the parameters of the model are poorly known and even vary with

operation conditions. Therefore, it is a challenge to control engineer.

The goal of this chapter is to investigate the control problem for a class of uncertain

nonlinear systems with input deadzone. A possible alternative but much simpler

approach making use of FIL is outlined to deal with a certain class of systems with

input deadzone. It will be shown that even if the width of the deadzone is completely

unknown, only by using the tacking error of previous learning cycle, the deadzone

23
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compensation can be conducted automatically. Hence, as the learning iteration

approaches to infinity, the system tracking error converges to zero. Moreover, we

assume that the system itself also has some nonlinear uncertainty which is totally

unknown but GLC.

Many systems with deadzones can be modeled in discrete time. Furthermore, for im-

plementation in digital controllers, a discrete-time deadzone compensator is needed.

Therefore, in our work, we focus on a class of discrete-time systems.

This chapter is organized as follows. In Section 2.2 FIL for the static mapping

of a deadzone is analyzed. The FIL for dynamic systems with input deadzone is

presented in Section 2.3. Section 2.4 contains an illustrative example. The proposed

scheme has been applied to a linear piezoelectric motor and the experimental results

are given in Section 2.5. Finally, conclusion is drawn in Section 2.6.

2.2 Preliminaries

Lemma 2.1. Let two sequences be {zi} ⊂ R and δi ⊂ R, with i ∈ Z+. Assume

that ∀i ∈ Z+, the inequality |zi+1 − a| ≤ γ|zi − a| + |δi| holds, where a ∈ R and

0 < γ < 1. Then lim
i→∞

zi = a can be derived if lim
i→∞

|δi| = 0.

Lemma 2.2. Separate the entire real axis R into three intervals: I1
�
= (−∞, a),

I2
�
= [a, b] and I3

�
= (b,∞), where a ≤ b. Assume ∀i ∈ Z+, the following relations

are valid:

if zi ∈ I1, γ1(zi − a) − |δi| ≤ zi+1 − a ≤ γ1(zi − a) + |δi|; (2.1)

if zi ∈ I2, zi − |δi| ≤ zi+1 ≤ zi + |δi|; (2.2)

if zi ∈ I3, γ2(zi − b) − |δi| ≤ zi+1 − b ≤ γ2(zi − b) + |δi|, (2.3)

where 0 < γ1 < 1, 0 < γ2 < 1, sup
i∈Z+

|δi| is finite and lim
i→∞

|δi| = 0. For any finite
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Figure 2.1: The deadzone nonlinearities u(k) = DZ[v(k)].

z0 ∈ R, under the mappings (2.1) – (2.3), lim
i→∞

zi ∈ I2 can be derived.

The proofs for Lemma 2.1 and Lemma 2.2 are given in Appendix A.

2.3 FIL for A Pure Deadzone Component

Consider the following static mapping of a deadzone,

u(k) = DZ[v(k)] =




mr[v(k) − ηr] v(k) ∈ IR

0 v(k) ∈ ID

ml[v(k) − ηl] v(k) ∈ IL

, (2.4)

where v(k) ∈ R is the input of the deadzone; u(k) ∈ R is the output of the deadzone;

k ∈ K �
= {0, 1, 2, · · · , N} and N is a finite integer; IR

�
= (ηr,∞), ID

�
= [ηl, ηr] and

IL
�
= (−∞, ηl); ml > 0, mr > 0, ηl ≤ 0, ηr ≥ 0 are constant parameters;

The static relationship can be described in Fig. 2.1. Note that the deadzone can be
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nonsymmetric.

The following assumption is first made for the deadzone (2.4).

Assumption 2.1. The upper bound of ml and mr is known and denoted as B1 ≥
max{ml, mr}.

The control objective is to find a sequence of appropriate control signal vi(k), such

that ui(k) converges to the target ud(k) iteratively.

The learning law is constructed as

vi(k) = vi−1(k) + βδui−1(k), (2.5)

0 < 1 − βB1 < 1,

where δui−1(k) = ud(k) − ui−1(k) and β > 0 is the learning gain. As ml, mr and

β are all positive, 0 < 1 − βB1 < 1 implies that 0 < γl
�
= 1 − βml < 1 and

0 < γr
�
= 1 − βmr < 1.

Let v−1(k) = u−1(k) = 0, based on FIL law (2.5), the following result can be

obtained.

Theorem 2.1. For the static mapping (2.4), under Assumption 2.1, the control law

(2.5) guarantees that, ∀k ∈ K, δui(k) converges to zero as i approaches to infinity.

Proof:

Given any k ∈ K, when i = 0, we have v0(k) = βud(k) from (2.5).

If ud(k) = 0, according to (2.5), it can be derived that ∀i ∈ Z+, vi(k) = 0, hence

ui(k) = ud(k) = 0 can be guaranteed for any iteration.

Now let us discuss the case when ud(k) �= 0. Here we assume ud(k) > 0. The result

for ud(k) < 0 can be derived analogously.



Chapter 2. FIL for Systems with Input Deadzone 27

According to (2.4) and (2.5), a finite iteration number pk ≥ 0 can be found such

that vpk
(k) = (pk + 1)βud(k) ∈ IR and ∀i < pk vi(k) = (i + 1)βud(k) ∈ ID. Next we

will show ∀i ≥ pk, vi(k) ∈ IR can be derived. The induction method is used here.

1. n = pk

Let i = pk, vpk
(k) = (pk + 1)βud(k) ∈ IR.

From (2.4) and considering vpk−1(k) = pkβud(k) �∈ IR, we have

δupk
(k) = ud(k) − mr[vpk

(k) − ηr]

= ud(k) − mr(pk + 1)βud(k) + mrηr

= γrud(k) + mr[ηr − pkβud(k)]

= γrud(k) + mr[ηr − vpk−1(k)] > 0.

2. ∀n ≥ pk, assume vn(k) ∈ IR and δun(k) > 0.

According to updating law (2.5) and considering the positiveness of β and δun(k),

it can be derived that

vn+1(k) = vn(k) + βδun(k) > vn(k) > ηr.

Furthermore, from (2.4) and considering γr > 0, we have

δun+1(k) = δun(k) + un(k) − un+1(k)

= δun(k) + mr[vn(k) − ηr] − mr[vn+1(k) − ηr]

= δun(k) + mr[vn(k) − vn+1(k)]

= γrδun(k) > 0. (2.6)

Hence, vn+1(k) ∈ IR and δun+1(k) > 0 can be derived.

3. Therefore, ∀i ≥ pk, vi(k) ∈ IR and δui(k) > 0 can be guaranteed. Furthermore,

(2.6) is always valid. As 0 < γr < 1, according to (2.6), ui(k) converges to ud(k) as

i approaches to infinity.
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2.4 FIL for Dynamic Systems with Input Dead-

zone

Consider the following dynamic system

x(k + 1) = f(x(k), k) + bu(k)

u(k) = DZ[v(k)]

y(k + 1) = cx(k + 1), (2.7)

where x ∈ Rn is the system state; y ∈ R is the measurable system output; u ∈ R
is the plan input, but not available for control; v ∈ R is the actual system input;

f : Rn × K → Rn, b ∈ Rn and c ∈ R1×n; k ∈ K and DZ[∗] is defined same as in

(2.4).

The following assumptions are made for the dynamic system (2.7).

Assumption 2.2. f(x(k), k) is GLC with respect to x(k), i.e. ‖f(x1(k), k) −
f(x2(k), k)‖ ≤ lf‖x1(k)− x2(k)‖, where lf is an unknown global Lipschitz constant.

Assumption 2.3. System (2.7) satisfies the I.I.C., i.e. δxi(0)
�
= xd(0) − xi(0) = 0,

hence ei(0)
�
= yd(0) − yi(0) = 0, where i ∈ Z+.

Assumption 2.4. The prior information with cb ∈ R is its sign and its bound

B2 ≥ |cb|. Without loss of generality, assume cb > 0 in this chapter.

Remark 2.1. From the practical point of view, the I.I.C. (Assumption 2.3) is difficult

to be met in practice. A possible way to solve the problem is to modify the target

trajectory at the initial stage by making an appropriate interpolation (Sun and

Wang, 2002), in the sequel guarantee ei(0) = 0.

The ultimate control target is to find the control signal vi(k) iteratively such that

yi(k) converges to the desired output yd(k) as i → ∞, where yd(k) can be described
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as

yd(k) = cxd(k) = cf(xd(k − 1), k − 1) + cbud(k − 1). (2.8)

Remark 2.2. According to (2.4), when ud(k) �= 0, the unique desired input vd(k)

exists. However, when ud(k) = 0, vd(k) is not unique any more and could be any

value belonging to ID.

The FIL law is

vi(k) = vi−1(k) + βei−1(k + 1), v0(k) = 0 (2.9)

0 < 1 − βB1B2 < 1.

Similarly, 0 < 1 − βB1B2 < 1 leads to 0 < γ′
l

�
= 1 − βcbml < 1 and 0 < γ′

r

�
=

1 − βcbmr < 1.

According to (2.7) and (2.8) and considering Assumption 2.2, ∀k ∈ K, we have

‖δxi(k)‖

≤ ‖fd(k − 1) − fi(k − 1)‖ + ‖b‖|δui(k − 1)|

≤ lf‖δxi(k − 1)‖ + ‖b‖|δui(k − 1)|, (2.10)

where fd(k−1) = f(xd(k−1), k−1), fi(k−1) = f(xi(k−1), k−1) and δui(k−1) =

ud(k − 1) − ui(k − 1). By using (2.10) repeatedly, we obtain

‖δxi(k)‖ ≤ lkf ‖δxi(0)‖ + lk−1
f ‖b‖|δui(0)| + lk−2

f ‖b‖|δui(1)|

+ · · ·+ ‖b‖|δui(k − 1)|

= ‖b‖
k−1∑
j=0

lk−1−j
f |δui(j)|. (2.11)

Moreover, from the above equation, the following can be derived straightforwardly.

‖ei(k)‖ ≤ ‖c‖‖δxi(k)‖

≤ ‖c‖‖b‖
k−1∑
j=0

lk−1−j
f |δui(j)|. (2.12)

To simplify the proof of the main result, two Lemmas are given first.
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Lemma 2.3. Assume lim
i→∞

|δui(k)| = 0 where k = 0, · · · , m and 0 ≤ m ≤ N − 1.

Under Assumptions 2.1 -2.4 and the control law (2.9), the system input vi(m+1) ∈
IR will always be guaranteed after finite iteration if ud(m + 1) > 0.

Proof:

Since ud(m + 1) > 0, two arbitrarily small constants εm and ρ can be found such

that ud(m + 1) ≥ lf‖c‖Γm

cb
+ ρ, where Γm

�
= ‖b‖

m∑
j=0

lm−j
f εm.

As ∀k ∈ {0, · · · , m}, lim
i→∞

|δui(k)| = 0, for any given εm, a finite constant p′m can be

found such that ∀i ≥ p′m, |δui(k)| ≤ εm.

According to (2.11), we have

‖δxi(m + 1)‖ ≤ ‖b‖
m∑

j=0

lm−j
f εm = Γm. (2.13)

Therefore, considering Assumption 2.2, for any i ≥ p′m,

−lf‖δxi(m + 1)‖ ≤ fd(m + 1) − fi(m + 1) ≤ lf‖δxi(m + 1)‖

−lfΓm ≤ fd(m + 1) − fi(m + 1) ≤ lfΓm. (2.14)

The rest of the proof contains two parts. Par A shows that the control law (2.9)

maps v0(m+1) into IR in finite iteration pm. In Part B, we will prove that ∀i ≥ pm,

the control law (2.9) maps vi(m + 1) from IR to IR.

Part A

Substituting (2.9) into (2.7) yields

xi(k + 1) = fi(k) + bDZ[vi−1(k) + βc(xd(k + 1) − xi−1(k + 1))].

Considering fi(k) is GLC, N is finite, v0(k) = 0 and the definition of DZ[∗], it can

be derived that for any finite iteration, the system state xi(k), the control input

vi(k) and the system output yi(k) are all bounded.
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As ud(m + 1) ≥ lf‖c‖Γm

cb
+ ρ > 0 and cb > 0, from (2.8), it can be derived that

yd(m + 2) − cfd(m + 1) = cbud(m + 1)

≥ cb(
lf‖c‖Γm

cb
+ ρ)

= lf‖c‖Γm + cbρ. (2.15)

∀i ≥ p′m, assume vi(m + 1) �∈ IR. From updating law (2.9), it can be derive that

vi+1(m + 1) = vi(m + 1) + βei(m + 2)

= vi(m + 1) + β{yd(m + 2) − cfi(m + 1) − cbDZ[vi(m + 1)]}

= vi(m + 1) + β{yd(m + 2) − cfd(m + 1) + cfd(m + 1)

−cfi(m + 1) − cbDZ[vi(m + 1)]}.

Considering (2.14) and (2.15), we can obtain that

vi+1(m + 1) ≥ vi(m + 1) + β(lf‖c‖Γm + cbρ) − βlf‖c‖Γm − βcbDZ[vi(m + 1)]

= vi(m + 1) + βcbρ − βcbDZ[vi(m + 1)].

As vi(m + 1) �∈ IR, DZ[vi(m + 1)] ≤ 0. Considering βcb > 0, we have

vi+1(m + 1) ≥ vi(m + 1) + βcbρ. (2.16)

As p′m is finite, vp′m(m) is bounded. According to (2.16), there exists a finite iteration

pm > p′m such that vpm(m + 1) ∈ IR.

Part B

From Part A, vpm(m + 1) ∈ IR. Next we will prove that ∀i ≥ pm, if vi(m + 1) ∈ IR,

vi+1(m + 1) ∈ IR can be derived. As ud(m + 1) > 0, the uniqueness of vd(m) is

ensured. Moreover, ud(m + 1) ≥ lf‖c‖Γm

cb
+ ρ leads to vd(m + 1) ≥ ηr + ρ

mr
+ lf‖c‖Γm

cbmr
.
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According to the updating law (2.9), we have

vi+1(m + 1) = vi(m + 1) + βei(m + 2)

= vi(m + 1) + β[cfd(m + 1) + cbmrvd(m + 1)

−cfi(m + 1) − cbmrvi(m + 1)]

= vi(m + 1) + βcbmrδvi(m + 1) + βc[fd(m + 1)

−fi(m + 1)]

≥ βcbmrvd(m + 1) + γ′
rvi(m + 1) − βlf‖c‖Γm

≥ βcbmrvd(m + 1) + γ′
rηr − βlf‖c‖Γm. (2.17)

where δvi(m + 1) = vd(m + 1) − vi(m + 1).

Considering vd(m + 1) ≥ ηr + ρ
mr

+ lf‖c‖Γm

cbmr
, (2.17) can be rewritten as

vi+1(m + 1) ≥ βcbmr(ηr +
ρ

mr
+

lf‖c‖Γm

cbmr
) + γ′

rηr − βlf‖c‖Γm

= ηr + βcbρ > ηr

Therefore, ∀vi(m + 1) ∈ IR (i ≥ pm), the control law (2.9) always maps it into IR.

Remark 2.3. Analogous to Lemma 2.3, under the same assumptions, the control

law (2.9) ensures that the system input vi(m + 1) ∈ IL after finite iterations if

ud(m + 1) < 0.

According to Remark 2.2, if ud(k) = 0, vd(k) is not unique. Next we will show

that in such situation, lim
i→∞

δui(m + 1) = 0 can be derived directly if lim
i→∞

δui(k) = 0

(k = 0, · · · , m) and lim
i→∞

vi(m + 1) ∈ ID.

Lemma 2.4. Assume lim
i→∞

δui(k) = 0 where k = 0, · · · , m. If ud(m + 1) = 0,

lim
i→∞

δui(m + 1) = 0 and lim
i→∞

vi(m + 1) ∈ ID can be derived.

Proof:
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Similarly to Lemma 2.3, εm and p′m can be found such that ∀i ≥ p′m, |δui(k)| ≤ εm

(k = 0, · · · , m). Moreover, (2.13) is still valid.

Let us check the system input vi+1(m + 1) (i ≥ p′m) according to the following three

cases.

Case 1: vi(m + 1) ∈ IR (i ≥ p′m)

vi+1(m + 1) − ηr

= vi(m + 1) + βc[fd(m + 1) − fi(m + 1)] + βcb[ud(m + 1) − ui(m + 1)] − ηr

= vi(m + 1) + βc[fd(m + 1) − fi(m + 1)] + βcbmr[ηr − vi(m + 1)] − ηr

= γ′
r[vi(m + 1) − ηr] + βc[fd(m + 1) − fi(m + 1)].

From (2.11), we have

γ′
r[vi(m + 1) − ηr] − ∆i(m) ≤ vi+1(m + 1) − ηr ≤ γ′

r[vi(m + 1) − ηr] + ∆i(m)(2.18)

where ∆i(m)
�
= βlf‖c‖‖b‖

m∑
j=0

lm−j
f |δui(j)|.

Case 2: vi(m + 1) ∈ IL (i ≥ p′m)

Analogous to Case 1,

vi+1(m + 1) − ηl = γ′
l[vi(m + 1) − ηl] + βc[fd(m + 1) − fi(m + 1)],

and

γ′
l[vi(m + 1) − ηl] − ∆i(m) ≤ vi+1(m + 1) − ηl ≤ γ′

l[vi(m + 1) − ηl] + ∆i(m).(2.19)

Case 3: vi(m + 1) ∈ ID (i ≥ p′m)

vi+1(m + 1) = vi(m + 1) + βc[fd(m + 1) − fi(m + 1)] + βcb[ud(m + 1) − ui(m + 1)]

= vi(m + 1) + βc[fd(m + 1) − fi(m + 1)].

Hence,

vi(m + 1) − ∆i(m) ≤ vi+1(m + 1) ≤ vi(m + 1) + ∆i(m). (2.20)
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Considering (2.18), (2.19) and (2.20), as lim
i→∞

∆i(m) = 0 and vp′m(m+1) is bounded,

according to Lemma 2.2, it can be derived that lim
i→∞

vi(m + 1) ∈ ID. Consequently,

lim
i→∞

ui(m + 1) = ud(m + 1) = 0.

Theorem 2.2. Under Assumptions 2.1-2.4, the learning law (2.9) guarantees that

yi(k) and ui(k) converge to yd(k) and ud(k) respectively for any k ∈ K. Moreover, the

system input signal vi(k) converges to vd(k) if ud(k) �= 0, otherwise vi(k) converges

to ID.

Proof:

We will prove this theorem by induction on k ∈ K. The convergence property of

ui(0) and yi(1) is first derived in Part A. Assume ui(k) and yi(k + 1) converge to

ud(k) and yd(k + 1) respectively, where k = 0, · · · , n and 1 ≤ n ≤ N − 1. Part B

shows the convergece of ui(n+1) and yi(n+2). Therefore, ∀k ∈ K, as i approaches to

infinity, ui(k) and yi(k) approach to ud(k) and yd(k) respectively can be guaranteed.

Part A

(1) ud(0) = 0

If ud(0) = 0, yd(1) = cf(xd(0), 0). Assume vi(0) = 0, from (2.9) we have

vi+1(0) = vi(0) + β[yd(1) − yi(1)]

= β{yd(1) − cfi(0) − cbDZ[vi(0)]}

= β[yd(1) − cfd(0)]

= 0. (2.21)

As v0(0) = 0, from (2.21), vi(0) = 0 can always be ensured.

Since yi(1) = cfi(0)+cbDZ[vi(0)], xi(0) = xd(0) and vi(0) = 0 lead to yi(1) = yd(1).

Hence, ∀i ∈ Z+, vi(0) = 0 ∈ ID, ui(0) = ud(0) and yi(1) = yd(1).
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(2) ud(0) �= 0

Assume ud(0) > 0 which implies vd(0) > ηr. Considering v0(0) = 0 and x0(0) =

xd(0), we have

v1(0) = v0(0) + β[yd(1) − y0(1)]

= β[cfd(0) + cbud(0) − cf0(0) − cfu0(0)]

= βcbud(0).

As ∀i ∈ Z+, xi(0) = xd(0), if vi(0) ∈ ID, vi+1(0) = vi(0) + βcbud(0) can be

derived analogously. Hence, a finite iteration number p0 can be found such that

vp0−1 = (p0 − 1)βcbud(0) ≤ ηr and vp0 = p0βcbud(0) > ηr.

Moreover, ∀i ≥ p0, if vi(0) > ηr, we have

vi+1(0) = vi(0) + β[cbmr(vd(0) − ηr) − cbmr(vi(0) − ηr)]

= γ′
rvi(0) + βcbmrvd(0)

> γ′
rηr + βcbmrηr

= ηr.

Hence, considering vp0 > ηr, for any i ≥ p0, vi(0) > ηr can be guaranteed.

According to (2.9), the following can be derived for any i ≥ p0.

δvi+1(0) = δvi(0) − βei(1)

= δvi(0) − βc[fd(0) − fi(0)] − βcbmrδvi(0)

= γ′
rδvi(0). (2.22)

As 0 < γ′
r < 1, lim

i→∞
δvi(0) = 0, hence lim

i→∞
δui(0) = 0.

Moreover, from (2.12), we have

‖ei(1)‖ ≤ ‖c‖‖b‖lf |δu(0)|.
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Hence, lim
i→∞

δui(0) = 0 leads to lim
i→∞

ei(1) = 0.

For ud(0) < 0 the same result can be derived straightforwardly.

Part B

Assume lim
i→∞

δui(k) = 0 and lim
i→∞

ei(k+1) = 0, where k = 0, · · · , n and 1 ≤ n ≤ N−1.

Let us check the convergence propery for k = n + 1.

(1) ud(n + 1) = 0

If ud(n + 1) = 0, from Lemma 2.4, it can be derived that lim
i→∞

ui(n + 1) = ud(n + 1)

and lim
i→∞

vi(n + 1) ∈ ID. Consequently, according to (2.12), lim
i→∞

ei(n + 2) = 0.

(2) ud(n + 1) �= 0

If ud(n + 1) < 0 or ud(n + 1) > 0, according to Lemma 2.3 and Remark 2.3, a

finite iteration number pn can be found such that vi(n + 1) ∈ IL or vi(n + 1) ∈ IR

respectively.

Assume ud(n + 1) > 0. According to updating law (2.9) and considering (2.11), for

any i ≥ pn, we have

δvi+1(n + 1) = δvi(n + 1) − βei(n + 2)

= δvi(n + 1) − βc[fd(n + 1) − fi(n + 1)] − βcbmrδvi(n + 1)

≤ γ′
rδvi(n + 1) + βlf‖c‖‖b‖

n∑
j=0

ln−j
f |δui(j)|.

Therefore,

|δvi+1(n + 1)| ≤ γ′
r|δvi(n + 1)| + βlf‖c‖‖b‖

n∑
j=0

ln−j
f |δui(j)|. (2.23)

According to Lemma 2.1, lim
i→∞

|δui(k)| = 0 (k = 0, · · · , n) leads to lim
i→∞

|δvi(n+1)| =

0. Consequently, lim
i→∞

|δui(n+1)| = 0 can be ensured. From (2.12), lim
i→∞

|ei(n+2)| = 0

is further derived.

For ud(n + 1) < 0, the same result can be obtained similarly.
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Next let us consider system (2.7) again, but DZ[∗] is defined as

u(k) = DZ[v(k)] =




ml(k)[v(k) − ηl(k)] v(k) ∈ IL(k)

0 v(k) ∈ ID(k)

mr(k)[v(k) − ηr(k)] v(k) ∈ IR(k)

. (2.24)

where ∀k ∈ K ml(k) > 0, mr(k) > 0, ηl(k) ≤ 0 and ηr(k) ≥ 0. Note that in

(2.24), all the parameters of the deadzone are time-varying and satisfy the following

assumption.

Assumption 2.5. The upper bound of ml(k) and mr(k) is known and denoted as

B1.

Based on the same learning law (2.9), the following corollary can be obtained.

Corollary 2.3. Under Assumption 2.2 - 2.4 and 2.5, the learning law (2.9) guar-

antees that ui(k) and yi(k) converge to ud(k) and yd(k) respectively for any k ∈ K.

Furtherfmore, the system signal vi(k) converges to vd(k) if ud(k) �= 0, otherwise

lim
i→∞

vi(k) ∈ ID.

The proof for Collorary 2.3 is exactly same as the proof of Theorem 2.2.

2.5 Illustrative Example

The following systems with input deadzone is considered.

x1(kTs + Ts) = x2(kTs)

x2(kTs + Ts) = 0.7x1(kTs) + 0.15x2(kTs) + DZ[v(kTs)]

y(kTs + Ts) = x2(kTs + Ts),

where the deadzone parameters are ηl(k) = −0.6 − 0.12sin(kTs), ηr(k) = 0.9 +

0.13sin(kTs), ml(k) = 0.8 + 0.15sin(kTs) and mr(k) = 1.2 + 0.1sin(kTs). Note that
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Figure 2.2: Learning convergence of yd − yi for system with input deadzone.

ml, mr, ηl and ηr are all time-varying. The desired output is yd(k) = 10sin3(kTs),

k = 0, 1, · · · , 6283. To satisfy Assumption 2.3, let x1,i = x2,i(0) = 0.

Assume the known bound of ml, mr and cb are B1 = 1.5 and B2 = 1.5 respectively.

Choose β = 0.2 to guarantee 0 < 1 − βB1B2 < 1. Let Ts = 0.001s.

By applying the control law (2.9), the simulation result is shown in Fig. 2.2. The

horizon is the iteration number and the vertical is |yd − yi|sup
�
= sup

k∈K
|yd(k)− yi(k)|.

Fig. 2.3 shows the control signal vi at the 100th iteration.

To demonstrate how the input deadzone is learned by FIL, next we focus on the

learning performance during k = 0, 1, · · · , 200. In Fig. 2.4, the control signals of

different iterations are given. Obviously, the system input deadzone is overcome

gradually just by iterations.

From the simulation results, it can be clearly seen that although all the parameters
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Figure 2.3: Control signal at the 100th iteration.
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Figure 2.5: Structure of the control system.

of the deadzone are time-varying, the proposed FIL scheme still works quite well.

2.6 Experimental Results

In order to verify the effectiveness of the proposed algorithm, experiments have been

carried out using a linear piezoelectric motor which has many promising applica-

tions in industries. The piezoelectric motors are characterized by low speed and

high torque, which are in contrast to the high speed and low torque properties of

the conventional electromagnetic motors. Moreover, piezoelectric motors are com-

pact, light and operates quietly. They can’t be affected by external magnetic or

radioactive fields. However, the accurate mathematical model of piezoelectric mo-

tors are unavailable and their control characteristics are highly nonlinear. Therefore,

precision control of piezoelectric motors is a challenge to control engineers.

The configuration of the whole control system is outlined in Fig. 2.5. Approximately,
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the driver and the motor can be modeled as:

ẋ1(t) = x2(t)

ẋ2(t) = −kfv

M
x2(t) +

kf

M
u(t)

y(t) = x1(t) (2.25)

where x1 is the motion position, x2 is the motion velocity, M = 1kg is the moving

mass, kfv = 144N is the velocity damping factor and Kf = 6N/V olt is the force

constant.

Choose the sampling time to be Ts = 0.004s. Substitute the system parameters and

the discretized model of (2.25) is:

x1(k + 1) = x1(k) + 0.003x2(k) + 6.662 × 10−6u(k)

x2(k + 1) = 0.5621x2(k) + 0.003u(k)

y(k + 1) = x1(k + 1). (2.26)

The dominant linear model (2.26) does not contain the nonlinear effects which are

caused by frictional forces and high-order dynamics etc. Note that here the piezo-

electric motor’s deadzone is not only non-symmetry but also affected by the motor’s

position.

Although the proposed ILC algorithm can be implemented to (2.26) directly, the

learning speed is very slow as (2.26) is an open-loop system and the tracking error at

first iteration is very large. In practice, to improve the learning speed, a P controller

may be applied first, which could be treated as a part of f(x(k), k). Then the ILC

part can be further added to the closed-loop system. Therefore, in our experiments,

a simple discrete P controller, i.e., u(k) = kpe(k), is used, where kp = 1.5 and

e(k) = yd(k) − y(k).

Let T = 6s, hence k ∈ {0, 1, · · · , 1500}. The system is repeatable over [0, T ]

with a repeatability of 0.1µm. The desired tracking trajectory is: yd(k) = [20 +
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Figure 2.6: Comparison of different tracking errors.

50 sin(0.001k)]mm, k ∈ {0, · · · , 1500}. To satisfy Assumption 2.3, the system ini-

tial condition is set to be x1(0) = 20mm and x2(0) = 0, which is realized by a PI

controller in the experiments. Choose β = 0.6. The tracking errors of the 1st and

20th iterations are given in Fig. 2.6. For comparison, the control performance of

a discrete PI controller, i.e., u(z) = (1.5 + 10 Ts

z−1
)e(z), is also shown in Fig. 2.6.

Obviously, the proposed ILC scheme can effectively compensate the system input

deadzone and greatly reduce the tracking error. The control signals for i = 1, i = 20

and the PI controller are provided in Fig. 2.7.

To demonstrate the learning process, the maximum dynamic tracking error, i.e.,

max
k∈K1

|e(k)| where K1
�
= {0, · · · , 100}, and the maximum steady tracking error, i.e.,

max
k∈K2

|e(k)| where K2
�
= {101, · · · , 1500}, of each iteration are recorded and given in

Fig. 2.8. We can see the convergence speed of the steady tracking error is much

faster than that of the dynamic tracking error. The maximum steady tracking
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Figure 2.7: Comparison of different control signals.

error is below 0.01mm after only 15 iterations. The slower convergence speed of the

dynamic tracking error implies the difficulty in the learning of a deadzone. However,

the dynamic tracking error still can be reduced to around 0.02mm after 20 iterations.

On the other hand, the dynamic tracking error is defined on [0, 0.4s] which is very

short comparing with [0, 6s]. Therefore, the learning performance is satisfying.

To clearly explain how the input deadzone is compensated by ILC, we focus on

the time interval k ∈ {0, · · · , 150}. The control signals and the tracking errors of

different iterations are given in Fig. 2.9 and Fig. 2.10 respectively. Obviously,

based on the iterative updating, the system input goes out of the input deadzone

by iterations and the tracking error is reduced accordingly.

Here we only gave the experimental results for a tracking problem. The proposed

ILC algorithm can also be applied to regulation control problems and the better

control performance can be achieved. The experimental results show that the steady
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Figure 2.10: The tracking errors of different iterations.

state error can be reduced to 1µm within 20 learning iterations for a regulation

control problem.

2.7 Conclusion

In this chapter, FIL is applied to a class of discrete-time systems with nonsmooth

nonlinearity, i.e. a input deadzone. Therefore, if the controlled system and the

control traget are repeatable, the input deadzone can be compensated by the learning

iteration. Rigorous proof for the convergence property based on CM principle is

given and the illustrative example and experimental results show the effectiveness

of the proposed approach.



Chapter 3

FIL for Systems with Input

Backlash

3.1 Introduction

In Chapter 2, FIL for systems with input deadzone has been proposed and analyzed.

As a continuity of it, FIL will be extended to the dynamic systems with input

backlash in this chapter. Backlash is another kind of highly practical-relevant control

problem. Comparing with deadzone which is memoryless, backlash has an element

of memory. Hence, overcoming backlash properly is a more difficult problem.

In this chapter, the simple FIL approach will be applied for systems with input

backlash to achieve the perfect tracking over the whole finite time interval iteratively.

Through rigorous proof based on CM principle, it is clearly shown that the FIL

algorithm can address the unknown input backlash effective by iterative learning.

The perfect tracking can be obtained as the iteration number approaches to infinity.

This chapter is organized as follows. In Section 3.2 FIL for a pure backlash com-

ponent is proposed and analyzed. Based on it the FIL for dynamic systems with

46
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input backlash is presented in Section 3.3. Section 3.4 gives an illustrative example

to show the effectiveness of the proposed FIL algorithm. Finally, conclusion is given

in Section 3.5.

3.2 FIL for A Pure Backlash Component

Consider a class of backlash described by the following equation

ui(k) = BL[vi(k)] =




ml[vi(k) − ηl] v(k) ∈ IL,i(k − 1)

ui(k − 1) v(k) ∈ ID,i(k − 1)

mr[vi(k) − ηr] v(k) ∈ IR,i(k − 1)

. (3.1)

where ml > 0, mr > 0, ηl ≤ 0, ηr ≥ 0, k ∈ K, i ∈ Z+; IL,i(k−1)
�
= (−∞, vl,i(k−1)),

ID,i(k−1)
�
= [vl,i(k−1), vr,i(k−1)] and IR,i(k−1)

�
= (vr,i(k−1),∞) with vl,i(k−1) =

ui(k−1)
ml

+ ηl and vr,i(k − 1) = ui(k−1)
mr

+ ηr.

The characteristic of the backlash can be described as Fig. 3.1. Obviously, unlike

deadzone which is memoryless, backlash has an element of memory and is, in a

certain sense, dynamic.

The control objective is to find a sequence of appropriate control signal vi(k) such

that ui(k) convergence to the target ud(k).

Including Assumption 2.1, the following I.I.C. is further made for the backlash (3.1).

Assumption 3.1. ∀i ∈ Z+, δui(0)
�
= ud(0) − ui(0) = 0.

The FIL law is

vi(k) = vi−1(k) + βδui−1(k), (3.2)

0 < 1 − βB1 < 1 (3.3)
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Figure 3.1: The backlash nonlinearities u(k) = BL[v(k)].

where β > 0 is the learning gain and ∀k ∈ K v−1(k) = u−1(k) = 0. From (3.3),

0 < γl = 1 − βml < 1 and 0 < γr = 1 − βmr < 1 can be ensured.

To facilitate the explanation, ∀k ∈ K and εk > 0, the following notations are defined

first.

IL,d(k)
�
= (−∞, vd,l(k)), vd,l(k) =

ud(k)

ml

+ ηl

IR,d(k)
�
= (vd,r(k),∞), vd,r(k) =

ud(k)

mr
+ ηr

ID,d(k)
�
= [vd,l(k), vd,r(k)]

I ′
L,d(k)

�
= (−∞, v′

d,l(k)), v′
d,l(k) = vd,l(k) − εk

ml

I ′
R,d(k)

�
= (v′

d,r(k),∞), v′
d,r(k) = vd,r(k) +

εk

mr

.

The main result can be summarized as the following theorem.

Theorem 3.1. For the backlash (3.1), under Assumption 2.1 and 3.1, the control

law (3.2) guarantees the convergence of ui(k) to ud(k) for any k ∈ K as i → ∞.
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Proof:

1. k = 0

From Assumption 3.1, we have ui(0) = ud(0) is valid for all iterations.

2. Assume that lim
i→∞

ui(m) = ud(m), where 0 ≤ m ≤ N . We will show lim
i→∞

ui(m +

1) = ud(m + 1) can be derived.

(A) ud(m + 1) = ud(m)

If ud(m + 1) = ud(m), as ∀k ∈ K v−1(k) = u−1(k) = 0, according to (3.1) and

(3.2), vi(m) = vi(m + 1) and ui(m) = ui(m + 1) can always be ensured. Therefore,

lim
i→∞

ui(m + 1) = ud(m + 1) can be derived directly.

(B) ud(m + 1) �= ud(m)

As ud(m + 1) �= ud(m), two arbitrarily small constants εm > 0 and ρ > 0 can be

found such that |ud(m + 1) − ud(m)| ≥ εm + ρ. Here we only consider ud(m + 1) ≥
ud(m) + εm + ρ. For ud(m + 1) ≤ ud(m) − εm − ρ, the same result can be derived

similarly.

As lim
i→∞

ui(m) = ud(m), for any given εm, a finite constant p′m can be found such

that ∀i ≥ p′m, |ud(m) − ui(m)| ≤ εm, hence, vr,i(m) ≤ v′
d,r(m).

First we will show vi(m+1) ∈ I ′
R,d(m) can be realized within finite iteration pm ≥ p′m.

∀i ≥ p′m, assume vi(m + 1) /∈ I ′
R,d(m). According to (3.2), it can be derived that

vi+1(m + 1) = vi(m + 1) + β[ud(m + 1) − ui(m + 1)]

= vi(m + 1) + β[ud(m + 1) − BL[vi(m + 1)]]. (3.4)

Next let us examine the term −BL[vi(m+1)] according to the following three cases.

Case 1: vi(m + 1) ∈ IL,i(m)
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Since vi(m + 1) ≤ vl,i(m) ≤ ud(m)+εm

ml
+ ηl, it can be derived that

−BL[vi(m + 1)] = −ml[vi(m + 1) − ηl]

≥ −ud(m) − εm. (3.5)

Case 2: vi(m + 1) ∈ ID,i(m)

−BL[vi(m + 1)] = −ui(m) ≥ −ud(m) − εm. (3.6)

Case 3: vi(m + 1) ∈ IR,i(m) − I ′
R,d(m)

−BL[vi(m + 1)] = −mr[vi(m + 1) − ηr]

≥ −mr[v
′
d,r(m) − ηr]}

= −ud(m) − εm. (3.7)

According to (3.5), (3.6) and (3.7), ∀i ≥ p′m, if vi(m) �∈ I ′
R,d(m), −BL[vi(m + 1)] ≥

−ud(m) − εm.

Considering ud(m + 1) − ud(m) ≥ ρ + εm, (3.4) can be rewritten as

vi+1(m + 1) ≥ vi(m + 1) + β[ud(m + 1) − ud(m) − εm]

≥ vi(m + 1) + βρ.

Hence, a finite iteration pm ≥ p′m can always be found such that vpm(m + 1) ≥
v′

d,r(m), i.e. vpm(m + 1) ∈ I ′
R,d(m).

Next we will show ∀i ≥ pm, vi(m + 1) ∈ I ′
R,d(m) is guaranteed.

As ud(m + 1) − ud(m) ≥ εm + ρ, the uniqueness of vd(m + 1) can be ensured and

ud(m + 1) = mr[vd(m + 1) − ηr]. Hence,

ud(m + 1) ≥ ud(m) + εm + ρ

⇒ mr[vd(m + 1) − ηr] ≥ mr[vd,r(m) − ηr] + εm + ρ

⇒ vd(m + 1) ≥ vd,r(m) +
εm

mr

+
ρ

mr

⇒ vd(m + 1) ≥ v′
d,r(m) +

ρ

mr
. (3.8)
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∀i ≥ pm, if vi(m + 1) ∈ I ′
R,d(m), according to (3.2), we have

vi+1(m + 1) = vi(m + 1) + β{mr[vd(m + 1) − ηr] − mr[vi(m + 1) − ηr]}

= vi(m + 1) + βmrδvi(m + 1)

= βmrvd(m + 1) + γrvi(m + 1) (3.9)

Substituting (3.8) into (3.9) yields

vi+1(m + 1) ≥ βmr[v
′
d,r(m) +

ρ

mr
] + γrv

′
d,r(m)

= v′
d,r(m) + βρ > v′

d,r(m).

As vpm ∈ I ′
R,d(m), ∀i ≥ pm, vi(m + 1) ∈ I ′

R,d(m) can be derived.

Furthermore, the following can be derived for any i ≥ pm.

δui+1(m + 1) = δui(m + 1) + ui(m + 1) − ui+1(m + 1)

= δud(m + 1) + mr[vi(m + 1) − vi+1(m + 1)]

= γrδui(m + 1). (3.10)

As 0 < γr < 1, from (3.10), lim
i→∞

ui(m + 1) = ud(m + 1) can be obtained.

3. According to the induction method, ∀k ∈ K, lim
i→∞

ui(k) = ud(k).

3.3 FIL for Dynamic Systems with Input Back-

lash

In this part we will discuss FIL for the dynamic systems with input backlash. Con-

sider the following dynamic system

x(k + 1) = f(x(k), k) + bu(k)

u(k) = BL[v(k)]

y(k + 1) = cx(k + 1), (3.11)
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where BL[∗] is the input backlash defined as in (3.1). It is assumed that the backlash

output u(k) is not accessible.

The same Assumptions 2.1-2.4 are made for the system (3.11) and the backlash

(3.1). The control target is to find the control signal vi(k) iteratively such that yi(k)

converges to the desired output yd(k) as i → ∞. To meet the control objective the

following learning law is used.

vi(k) = vi−1(k) + βei−1(k + 1). (3.12)

0 < 1 − βB1B2 < 1,

which is same as (2.9). Note that the proposed control law is quite simple, however,

it can deal with both the input deadzone and the input backlash. 0 < 1−βB1B2 < 1

leads to 0 < γ′
l

�
= 1 − βcbml < 1 and 0 < γ′

r

�
= 1 − βcbmr < 1.

To facilitate the analysis, two Lemmas are given first.

Lemma 3.1. Assume lim
i→∞

|δui(k)| = 0 where k = 0, · · · , m and 0 ≤ m ≤ N−1. For

system (3.11), under the learning law (3.12), the system input vi(m + 1) ∈ I ′
R,d(m)

will always be guaranteed after finite iteration if ud(m + 1) > ud(m).

Proof:

Since ud(m + 1) > ud(m), two arbitrarily small constants εm and ρ can be found

such that ud(m + 1) − ud(m) ≥ εm + ρ + lf‖c‖Γm

cb
.

Same as the proof in Lemma 2.3 of Chapter 1, there exists a finite iteration number

p′m such that ∀i ≥ p′m, |δui(k)| ≤ εm, where k = 0, · · · , m. Moreover, (2.10) - (2.14)

are also valid.

The following proof contains two parts. Part A shows that a finite iteration pm can

be found such that v0(m + 1) is mapped into I ′
R,d(m) and Part B proves that for

any i ≥ pm, the control law (3.12) always maps vi(m + 1) from I ′
R,d(m) to I ′

R,d(m).
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Part A

Analogous to the Part A of Lemma 2.3, for finite iteration, the boundedness of vi(k),

ui(k) and yi(k) can be guaranteed.

∀i ≥ p′m, assume vi(m + 1) �∈ I ′
R,d. According to (3.12), we have

vi+1(m + 1) = vi(m + 1) + βei(m + 2)

= vi(m + 1) + βc[fd(m + 1) − fi(m + 1)]

+βcbδui(m + 1). (3.13)

Considering (2.14), it can be derived that

vi+1(m + 1) ≥ vi(m + 1) − βlf‖c‖Γm + βcb{ud(m + 1) − BL[vi(m + 1)]}. (3.14)

Now let us check the term −BL[vi(m + 1)] according to the following three cases.

Case 1: vi(m + 1) ∈ IL,i(m)

From (3.1) we have

−BL[vi(m + 1)] = −ml[vi(m + 1) − ηl]

≥ −ml[vl,i(m) − ηl]

= −ui(m)

≥ −ud(m) − εm. (3.15)

Case 2: vi(m + 1) ∈ ID,i(m)

−BL[vi(m + 1)] can be expressed as

−BL[vi(m + 1)] = −ui(m) ≥ −ud(m) − εm. (3.16)

Case 3: vi(m + 1) ∈ [IR,i(m) − I ′
R,d(m)]
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From (3.13), it can be derived that

−BL[vi(m + 1)] = −mr(vi(m + 1) − ηr)

≥ −mr(v
′
d,r(m) − ηr)

= −ud(m) − εm. (3.17)

According to (3.15), (3.16) and (3.17), it can be concluded that when vi(m + 1) �∈
I ′
R,d(m), −BL[vi(m + 1)] ≥ −ud(m) − εm.

Considering ud(m + 1) − ud(m) ≥ εm + ρ + lf‖c‖Γm

cb
, (3.14) can be rewritten as

vi+1(m + 1) ≥ vi(m + 1) − βlf‖c‖Γm + βcb[ud(m + 1) − ud(m) − εm]

≥ vi(m + 1) + βcbρ > vi(m + 1).

Therefore, as vp′m(m + 1) is bounded, vi(m + 1) ∈ I ′
R,d(m) can be obtained in finite

iteration pm.

Part B

As ud(m + 1) − ud(m) ≥ εm + ρ + lf‖c‖Γm

cb
> 0, the uniqueness of vd(m + 1) can be

ensured and ud(m + 1) = mr[vd(m + 1) − ηr]. Hence,

ud(m + 1) ≥ ud(m) + εm + ρ +
lf‖c‖Γm

cb

⇒ mr[vd(m + 1) − ηr] ≥ mr[vd,r(m) − ηr] + εm + ρ +
lf‖c‖Γm

cb

⇒ vd(m + 1) ≥ vd,r(m) +
εm

mr
+

ρ

mr
+

lf‖c‖Γm

cbmr

⇒ vd(m + 1) ≥ v′
d,r(m) +

ρ

mr

+
lf‖c‖Γm

cbmr

. (3.18)

∀i ≥ pm, if vi(m + 1) ∈ I ′
R,d(m), from (3.13), we have

vi+1(m + 1) = vi(m + 1) + βc[fd(m + 1) − fi(m + 1)]

+βcbmrδvi(m + 1)

≥ vi(m + 1) − βlf‖c‖Γm + βcbmrδvi(m + 1)

= βcbmrvd(m + 1) + γ′
rvi(m + 1) − βlf‖c‖Γm

≥ βcbmrvd(m + 1) + γ′
rv

′
d,r(m) − βlf‖c‖Γm. (3.19)
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Substituting (3.18) into (3.19) yields

vi+1(m + 1) ≥ βcbmr[v
′
d,r(m) +

lf‖c‖Γm

cbmr
+

ρ

mr
] + γ′

rv
′
d,r(m) − βlf‖c‖Γm

= v′
d,r(m) + βcbρ > v′

d,r(m).

As vpm ∈ I ′
R,d(m), ∀i ≥ pm, vi(m + 1) ∈ I ′

R,d(m) can be derived.

Remark 3.1. Analogous to Lemma 3.1, under the same assumptions, updating law

(3.12) guarantees that the system input vi(m + 1) ∈ I ′
L,d(m) can be realized after

finite iteration pm ≥ p′m, if ud(m + 1) < ud(m).

According to (3.1), if ud(k + 1) = ud(k), the control signal vd(k + 1) is not unique.

Next we will show that when ud(m+1) = ud(m), lim
i→∞

δui(m+1) = 0 can be ensured

if lim
i→∞

δui(k) = 0 (k = 0, · · · , m).

Lemma 3.2. Assume lim
i→∞

δui(k) = 0 where k = 0, . . . , m. If ud(m + 1) = ud(m),

lim
i→∞

δui(m + 1) = 0 and lim
i→∞

vi(m + 1) ∈ ID,d(m) can be derived.

Proof:

Analogous to the proof of Lemma 2.4, ∀i ≥ p′m, the following relationships can be

derived:

if vi(m + 1) ∈ IR,i(m), γ′
r[vi(m + 1) − vr,i(m)] − ∆i(m)

≤ vi+1(m + 1) − vr,i(m)

≤ γ′
r[vi(m + 1) − vr,i(m)] + ∆i(m); (3.20)

if vi(m + 1) ∈ IL,i(m), γ′
l[vi(m + 1) − vl,i(m)] − ∆i(m)

≤ vi+1(m + 1) − vl,i(m)

≤ γ′
l[vi(m + 1) − vl,i(m)] + ∆i(m); (3.21)

if vi(m + 1) ∈ ID,i(m), vi(m + 1) − ∆i(m)

≤ vi+1(m + 1) ≤ vi(m + 1) + ∆i(m). (3.22)
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According to (3.20), (3.21) and (3.22) and considering lim
i→∞

∆i(m) = 0, from Lemma

2.2, we have, lim
i→∞

vi(m) ∈ lim
i→∞

ID,i(m) = ID,d(m). Hence, lim
i→∞

ui(m) = lim
i→∞

ui(m −
1) = ud(m − 1) = ud(m).

The main result for the control law (3.12) is summarized as the following theorem.

Theorem 3.2. For system (3.11), under Assumptions 2.1-2.4, ∀k ∈ K, the learning

law (3.12) guarantees that ui(k) and yi(k) converges to ud(k) and yd(k) respectively

as i approaches to infinity. The control signal vi(k) converges to vd(k) if ud(k) �=
ud(k − 1), otherwise lim

i→∞
vi(k) ∈ ID,d(k − 1).

Proof:

Analogous to Theorem 2.2, Part A shows the convergence of ui(0) and yi(1). Assume

the convergence of ui(k) and yi(k + 1), where k = 0, · · · , n and 1 ≤ n ≤ N − 1,

the convergence of ui(n + 1) and yi(n + 2) is proven in Part B. From the induction

method, it can be derived that, for all k ∈ K, ui(k) and yi(k) converge to ud(k) and

yd(k).

Part A

As xi(0) = xd(0), we assume that xi(−1) = xd(−1) and ui(−1) = ud(−1) for all

i ∈ Z+.

(1) ud(0) = ud(−1)

If ud(0) = ud(−1), Lemma 3.2 leads to δui(0) = 0 and lim
i→∞

vi(0) ∈ ID,d(0). As

xi(0) = xd(0), according to the system dynamic (3.11), lim
i→∞

ei(1) = 0 can be derived.

(2) ud(0) �= ud(−1)

If ud(0) �= ud(−1), according to Lemma 3.1 and Remark 3.1, a finite constant p−1

can be found such that ∀i ≥ p−1 vi(0) ∈ I ′
L,d(−1) or vi(0) ∈ I ′

R,d(−1).
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Assume ud(0) − ud(−1) > 0. Analogous to Theorem 2.2, (2.22) can be derived

for any i ≥ p−1 which leads to lim
i→∞

vi(0) = vd(0) and lim
i→∞

ui(0) = ud(0) . As the

relationship (2.12) is still valid, lim
i→∞

yi(1) = yd(1) can be guaranteed.

For ud(0) − ud(−1) < 0, the same result can be derived straightforwardly.

Part B

Assume lim
i→∞

δui(k) = 0 and lim
i→∞

ei(k+1) = 0, where k = 0, · · · , n and 1 ≤ n ≤ N−1.

Let us examine the property for k = n + 1.

(1) ud(n + 1) = ud(n)

From Lemma 3.2, lim
i→∞

δui(n + 1) = 0 and lim
i→∞

vi(n + 1) ∈ ID,d(n). According to

(2.12), lim
i→∞

ei(n + 2) = 0.

(2) ud(n + 1) �= ud(n)

According to Lemma 3.1 and Remark 3.1, there exists a finite constant pn such that

∀i ≥ pn, vi(n + 1) ∈ I ′
R,d(n) or vi(n + 1) ∈ I ′

L,d(n) respectively.

Assume ud(n + 1) − ud(n) > 0. Analogous to the proof Theorem 2.2, (2.23) can be

obtained for any i ≥ pn. Therefore, lim
i→∞

δvi(n + 1) = 0, lim
i→∞

δui(n + 1) = 0 and

lim
i→∞

ei(n + 2) = 0 can be ensured.

For ud(n + 1) − ud(n) < 0, same result can be obtained.
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3.4 Illustrative Example

To illustrate the effectiveness of our FIL method, the following system is considered.

x1(kTs + Ts) = x2(kTs)

x2(kTs + Ts) = 0.4sin[x1(kTs)] + 0.15x2(kTs) + BL[v(kTs)]

y(kTs + Ts) = x2(kTs + Ts),

where the backlash parameters are ηl = −1.3, ηr = 1.5, ml = 1.1 and mr = 1.0. The

desired output is yd(k) = 10sin3(kTs), k = {0, 1, · · · , 6283}. To satisfy Assumption

2.3, let x2,i(0) = yd(0) = 0 and x1,i = 0.

Assume the known bound of ml, mr and cb are B1 = 1.2 and B2 = 1.2 respectively.

Choose β = 0.6 to guarantee 0 < 1 − βB1B2 < 1. Let Ts = 0.001s.

By applying the control law (3.12), the simulation result is shown in Fig. 3.2. The

horizon is the iteration number and the vertical is |yd − yi|sup.

Fig. 3.3 shows the control signal vi at the 100th iteration.

3.5 Conclusion

In this chapter, FIL is further extended to dynamic systems with input backlash.

It has been shown that the learning convergence can be guaranteed by the simple

proposed FIL control law. The illustrative example verifies the effectiveness of the

developed FIL scheme.
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Figure 3.3: Control signal at the 100th iteration.



Chapter 4

FIL for Systems with

Norm-bounded Uncertainties

4.1 Introduction

Traditional FIL approaches are based on the CM principle and their applications are

limited to GLC systems. Recently, CEF-type FIL was proposed (Xu and Tan, 2002),

hence much broader classes of nonlinearities can be easily addressed. In terms of

CEF, we can evaluate the tracking performance along time axis by a Lyapunov

function, meanwhile evaluate the learning performance along learning axis by a L2

functional.

CEF is a general concept and can be implemented to systems with both parametric

and norm-bounded uncertainties. However, in (Xu and Tan, 2002), the research was

focused only on FIL for systems with parametric uncertainties. Therefore, there

exists in a more challenging problem: can we learn and deal with norm-bounded

uncertainties?

In this chapter, CEF-type FIL will be extended to address norm-bounded uncer-

60
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tainties. FIL algorithms for SISO systems with both GLC and NGLC uncertainties

are proposed in Section 4.2. The robust FIL is further applied to MIMO dynamics

in Section 4.3. Simulation results are given in Section 4.6 to show the effectiveness

of all the developed FIL schemes.

4.2 FIL for SISO Systems with Norm-bounded

Uncertainties

To clearly explain the basic idea, FIL for the following SISO dynamic system is

considered first.

ẋ = u + d(x, t), t ∈ [0, T ] (4.1)

where x ∈ R is the measurable system state, u ∈ R is the control input and

d(x, t) : R×R+ → R is the lumped uncertainty.

Both the system dynamics (4.1) and the tracking task xd(t) ∈ C1[0, T ] are assumed

to be repeatable over [0, T ]. Moreover, as part of the repeatability, the following

I.I.C. is made.

Assumption 4.1. ∀i ∈ Z+, xi(0) = xd(0).

The ultimate control objective is to find a suitable control profile iteratively so as

to track the following given target trajectory xd(t)

ẋd(t) = ud(t) + d(xd, t) t ∈ [0, T ], (4.2)

where ud is the desired control input.

From the system dynamics (4.1) and the control target (4.2), we have

δui = (ẋd − dd) − (ẋi − di) = ėi + di − dd (4.3)



Chapter 4. FIL for Systems with Norm-bounded Uncertainties 62

where δui = ud − ui, dd = d(xd, t), di = d(xi, t) and ei = xd − xi.

In the rest part of this section, two FIL schemes will be developed according to the

different properties of di. If di is GLC, the boundedness property of the dynamic

system over a finite time interval [0, T ] can be guaranteed. Hence, a simple FIL

control algorithm is constructed. When di is NGLC, robust control is incorporated to

ensure the finiteness of the system state, which leads to a new robust FIL approach.

4.2.1 FIL for Systems with GLC Uncertainties

The following assumption is first made for the system uncertainty d.

Assumption 4.2. The system uncertainty d(x, t) is GLC, i.e. |d(x1, t)−d(x2, t)| ≤
ld|x1 − x2|, where the Lipschitz constant ld is completely unknown.

The learning law is designed as

ui = proj[ui−1] + βei, u−1(t) = 0 (4.4)

proj[·] �
=




· | · | ≤ u∗

sign(·)u∗ | · | > u∗
,

where β > 0 is the learning gain and u∗ is a projection bound which is sufficiently

large such that u∗ ≥ sup
t∈[0,T ]

|ud(t)|. In practice, u∗ is either a physical process limita-

tion or a virtual saturation bound which can be arbitrarily large but finite.

The main result for the proposed FIL control law (4.4) is summarized as the following

theorem.

Theorem 4.1. For system (4.1), under Assumptions 4.1 and 4.2, the control law

(4.4) guarantees that the tracking error ei converges to 0 uniformly and the control

signal ui converges to ud almost everywhere as i approaches to infinity.

Proof:
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To facilitate the derivation and analysis of the learning properties, define the fol-

lowing time-weighted CEF for the ith iteration:

Ei(t) =
1

2
e−λte2

i +
1

2β

∫ t

0

e−λτδu2
i dτ, (4.5)

where λ is a finite positive constant.

The proof consists of three parts which address respectively the boundedness of the

system internal signals, the monotone decrease of the CEF along the learning axis

i, and the uniform convergence of the tracking error.

(I) Boundedness Property

Substituting the control law (4.4) into the system dynamics (4.1) yields

ẋi = di + proj[ui−1] + β(xd − xi). (4.6)

Since di − βxi is still GLC, xd(t) is bounded, and proj[ui−1] is also bounded by u∗,

considering the I.I.C., we can immediately derive the boundedness of xi for any i.

In the sequel the RHS of (4.6) is bounded, i.e. ẋi is bounded. Further from (4.4)

the boundedness of ui is straightforward.

(II) Difference of Ei(t)

The difference of Ei(t) is

∆Ei(t)
�
= Ei(t) − Ei−1(t)

=
1

2
e−λte2

i +
1

2β

∫ t

0

e−λt(δu2
i − δu2

i−1)dτ − 1

2
e−λte2

i−1. (4.7)

The first term on the RHS of (4.7), with the I.I.C., can be rewritten as

1

2
e−λte2

i = −λ

2

∫ t

0

e−λτe2
i dτ +

∫ t

0

e−λτeiėidτ. (4.8)

We can easily verify the property (a − b)2 ≥ [a − proj[b]]2, for any quantities b and

|a| ≤ a∗, where a∗ is the bound of the projector. Hence, the second term on the
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RHS of (4.7) can be expressed as

∫ t

0

e−λτ (δu2
i − δu2

i−1)dτ

≤
∫ t

0

e−λτ [δu2
i − (ud − proj[ui−1])

2]dτ

=

∫ t

0

e−λτ [−2δui(ui − proj[ui−1]) − (ui − proj[ui−1])
2]dτ. (4.9)

Substitute (4.3) and (4.4) into (4.9), we have

1

2β

∫ t

0

e−λτ (δu2
i − δu2

i−1)dτ

≤ −
∫ t

0

e−λτ ėieidτ +

∫ t

0

e−λτ |dd − di||ei|dτ − β

2

∫ t

0

e−λτe2
i dτ

≤ −
∫ t

0

e−λτ ėieidτ + (ld − β

2
)

∫ t

0

e−λτe2
i dτ. (4.10)

Substituting (4.8) and (4.10) into (4.7) yields

∆Ei(t) ≤ −(
λ

2
+

β

2
− ld)

∫ t

0

e−λτe2
i dτ − 1

2
e−λte2

i−1.

There exists a sufficiently large λ such that λ > 2ld − β to ensure that

∆Ei(t) ≤ −1

2
e−λte2

i−1(t) ≤ −1

2
e−λT e2

i−1(t) ≤ 0, (4.11)

which implies the monotonically decreasing property of Ei(t).

(III) Uniform Convergence

By using (4.11) repeatedly, we have

Ei(t) ≤ E0(t) − 1

2
e−λT

i−1∑
j=0

e2
j (t). (4.12)

According to (4.12), from the boundedness of E0(t) and the positiveness of Ei(t), we

can derive that lim
i→∞

ei(t) = 0 pointwisely. Therefore, lim
i→∞

|di − dd| ≤ lim
i→∞

ld|ei| = 0.

Using (4.3) and the boundedness of ėi we further derive

lim
i→∞

Ei(t) = lim
i→∞

1

2
e−λte2

i + lim
i→∞

1

2β

∫ t

0

e−λτδu2
i dτ

= lim
i→∞

1

2β

∫ t

0

e−λτ (ėi + di − dd)
2dτ

= lim
i→∞

1

2β

∫ ei

0

e−λτ ėidei.
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Since ėi is bounded, lim
i→∞

ei = 0 leads to lim
i→∞

Ei(t) = 0 pointwisely. Therefore we

first acquire the convergence properties: ei(t) → 0 pointwisely and ui → ud almost

everywhere as i → ∞. On the other hand, as ẋ is bounded and xd ∈ C1[0, T ], we can

derive the boundedness of ėi(t), which assures the uniform continuity of ei(t) in the

interval [0, T ]. According to Barbalat Lemma (Khalil, 1992), ei(t) → 0 uniformly as

i → ∞ can be derived.

4.2.2 FIL for Systems with NGLC Uncertainties

System (4.1) is considered again, however, a different assumption is made for the

lumped uncertainty d(x, t).

Assumption 4.3. System uncertainty d(x, t) is only local Lipschitz continuous, nev-

ertheless, it is bounded by a known smooth bounding function η(x, t), i.e. |d(x, t)| ≤
η(x, t).

We will show that even if with NGLC uncertainty, only if the system repeats, the

learning convergence can also be guaranteed.

The underlying idea is as follows. Since the system is only Local Lipschitz, robust

control is employed to ensure that the system state is bounded by a compact set.

Consequently, the dynamic system is Lipschitz continuous on the compact set. Thus,

by adding the FIL, the perfect tracking can be obtained iteratively. This leads to a

new FIL strategy – robust FIL.
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The robust FIL scheme can be described as

ui = proj[ui−1] + ur,i (4.13)

ur,i = (ρiκi + 1)ei (4.14)

ρi =
√

ẋ2
d + ε + ηi

κi =

√
e2

i + 3ε2 + 8ε

(
√

e2
i + 3ε2 + ε)2

,

where ε is a positive constant and ηi = η(xi, t). Both ρi and κi are smooth functions

of ei and t.

Remark 4.1. In the robust controller design, there is a tradeoff between the value of

ε and the control performance. The smaller the ε is, the smaller the tracking error is.

However, if the ε is too small, the control signal will become chattering which is not

practical in real control systems. Hence, the perfect tracking can not be obtained

only by Robust Control.

In our scheme, a larger ε can be chosen to guarantee the smoothness of the control

signal in the first iteration. Then based on the FIL, the tracking error can be

reduced iteratively. Eventually, the perfect tracking and a smooth control signal

can be ensured.

The main result of the proposed learning algorithm is given in the following theorem.

Theorem 4.2. For system (4.1), under Assumptions 4.1 and 4.3, the control law

(4.13) and (4.14) ensure that ei converges to 0 uniformly and the control signal ui

converges to ud almost everywhere as i → ∞.

Proof:

To analyze the convergence property of the proposed robust FIL, the following time-

weighted CEF is used.

Ei(t) = e−λte2
i +

∫ t

0

e−λτδu2
i dτ. (4.15)
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Analogous to Theorem 4.1, the proof also contains three parts.

(I) Boundedness Property

Define a Lyapunov function Vi = 1
2
e2

i . Note the following fact provided that |ei| ≥ ε,

1 − κi|ei| =
e2

i + 3ε2 + ε2 + 2ε
√

e2
i + 3ε2 − √

e2
i + 3ε2|ei| − 8ε|ei|

(
√

e2
i + 3ε2 + ε)2

≤ e2
i + 4ε2 + 2ε

√
e2

i + 3e2
i −

√
e2

i |ei| − 8ε|ei|
(
√

e2
i + 3ε2 + ε)2

≤ 4ε2 + 4ε|ei| − 8ε|ei|
(
√

e2
i + 3ε2 + ε)2

≤ 4ε(ε − |ei|)
(
√

e2
i + 3ε2 + ε)2

< 0. (4.16)

Consequently it can be derived that, if |ei| ≥ ε,

V̇i = eiėi

= ei(ẋd − di − ui)

= ei{ẋd − di − proj[ui−1] − [(
√

ẋ2
d + ε + ηi)κi + 1]ei}

≤ |ei||ẋd| + |ei|ηi + |ei|u∗ − |ẋd|κie
2
i − ηiκie

2
i − e2

i

≤ |ei|u∗ − e2
i + (1 − κi|ei|)(|ẋd| + ηi)|ei|

≤ |ei|u∗ − e2
i

= −|ei|(|ei| − u∗).

Therefore, |ei| is Globally Uniformly Bounded (GUB) by max{ε, u∗}. Hence xi ∈ X
where X is a compact set.

Since xi is bounded and di is local Lipschitz, there exists a Lipschitz constant ld′
�
=

sup
(xi,t)∈X×[0,T ]

∣∣∣∣∂di

∂xi

∣∣∣∣ < ∞, such that

|di − dd| ≤ ld′ |ei|. (4.17)

Moreover, according to the control law (4.13) and (4.14) the boundedness of xi

guarantees the finiteness of ur,i and ui. Therefore, ẋi and ėi are also finite on X .
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From the definition of κi and ρi, it can be derived that there exists a finite constant

c1
�
= sup

(xi,t)∈X×[0,T ]

ρiκi + 1 and a finite constant c2
�
= sup

(xi,t)∈X×[0,T ]

d(ρiκi)

dt
.

(II) Difference of Ei(t)

From (4.15), the difference of Ei(t) is

∆Ei = e−λte2
i +

∫ t

0

e−λt(δu2
i − δu2

i−1)dτ − e−λte2
i−1. (4.18)

Obviously, both (4.8) and (4.9) are still valid. Furthermore, (4.9) can be rewritten

as

∫ t

0

e−λτ (δu2
i − δu2

i−1)dτ ≤
∫ t

0

e−λτ [−2δuiur,i − u2
r,i]dτ. (4.19)

Substituting (4.3) and (4.14) into (4.19) and dropping the u2
r,i term, we have

∫ t

0

e−λτ (δu2
i − δu2

i−1)dτ

≤ −2

∫ t

0

e−λτ (di − dd)(ρiκi + 1)eidτ − 2

∫ t

0

e−λτ (ρiκi + 1)eiėidτ

≤ 2

∫ t

0

e−λτ ld′|xd − xi|c1|ei|dτ −
∫ t

0

e−λτρiκid(e2
i ) − 2

∫ t

0

e−λτeiėidτ

≤ 2ld′c1

∫ t

0

e−λτe2
i dτ − e−λτρiκie

2
i +

∫ t

0

e−λτe2
i d(ρiκi) − λ

∫ t

0

e−λτe2
i ρiκidτ

−2

∫ t

0

e−λτeiėidτ

≤ 2ld′c1

∫ t

0

e−λτe2
i dτ +

∫ t

0

e−λτe2
i d(ρiκi) − 2

∫ t

0

e−λτeiėidτ

≤ (2ld′c1 + c2)

∫ t

0

e−λτe2
i dτ − 2

∫ t

0

e−λτeiėidτ. (4.20)

Substituting (4.8) and (4.20) into (4.18) and considering (4.17), yield

∆Ei(t) ≤ −λ

∫ t

0

e−λτe2
i dτ + (2ld′c1 + c2)

∫ t

0

e−λτe2
i dτ − e−λte2

i−1

= −(λ − 2ld′c1 − c2)

∫ t

0

e−λτe2
i dτ − e−λte2

i−1.

There exists a sufficiently large λ such that λ > 2ld′c1 + c2 to ensure that

∆Ei(t) ≤ −e−λte2
i−1(t) ≤ −e−λT e2

i−1(t).
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(III) Uniform Convergence

Analogous to the Part (III) in Theorem 4.1, it can be proven that ei(t) converges

to 0 uniformly and ui converges to ud almost everywhere.

4.3 FIL for Norm-bounded Uncertainties under

Alignment Condition

I.I.C. is an essential requirement for FIL, however it is difficult to be satisfied in

many practical engineering systems. By taking advantage of the concept of CEF,

the I.I.C. may be relaxed to alignment condition for systems with parametric un-

certainties (Xu, 2002). The alignment condition is xi+1(0) = xi(T ), which can be

easily perceived: restart from wherever stopped at. Under the alignment condi-

tion we need not do extra work to bring the system back to a specific place after

every iteration. In this section, we will explore the possibility of replacing I.I.C. by

alignment condition in FIL for systems with norm-bounded uncertainties.

Consider (4.1) again and the following assumption is further made for xd(t).

Assumption 4.4. For the desired trajectory xd(t) ∈ C1[0, T ], xd(0) = xd(T ) is

guaranteed.

The control target is same as in Section 4.2 and we also discuss the problem according

to the property of d(x, t).

4.3.1 FIL for GLC Systems under Alignment Condition

Assume the system uncertainty d(x, t) satisfies the following assumption.
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Assumption 4.5. The system uncertainty d(x, t) is GLC and the Lipschitz constant

ld or its bound is known a priori.

By using the same learning law (4.4), the following theorem can be obtained.

Theorem 4.3. For system (4.1), under Assumptions 4.4 - 4.5 and alignment condi-

tion, if β ≥ 2(ld+1) the learning law (4.4) ensures that the tracking error ei converges

to 0 uniformly and the control signal ui converges to ud almost everywhere.

Proof:

The following CEF is defined.

Ei(t) =
1

2
e2

i +
1

2β

∫ t

0

δu2
i (τ)dτ. (4.21)

Same as Part (I) of Theorem 4.1, the boundedness of xi, ẋi and ui can be ensured

for any i ∈ Z+. Next let us check the difference of Ei(t).

∆Ei(t) =
1

2
e2

i (t) −
1

2
e2

i−1(t) +
1

2β

∫ t

0

(δu2
i − δu2

i−1)dτ

=
1

2
e2

i (0) +

∫ t

0

eiėidτ − 1

2
e2

i−1(t) +
1

2β

∫ t

0

(δu2
i − δu2

i−1)dτ. (4.22)

According to (4.10) and letting λ = 0, the last term on the RHS of (4.22) can be

expressed as

1

2β

∫ t

0

(δu2
i − δu2

i−1)dτ

≤ −
∫ t

0

eiėidτ + (ld − β

2
)

∫ t

0

e2
i dτ. (4.23)

Substituting (4.23) into (4.22) yields

∆Ei(t) ≤ 1

2
ei(0)2 − 1

2
ei−1(t)

2 + (ld − β

2
)

∫ t

0

e2
i dτ.

From the alignment condition, it can be derived that ei(0) = ei−1(T ). Hence,

choosing t = T and considering β ≥ 2(ld + 1), we can obtain

∆Ei(T ) ≤ −
∫ T

0

e2
i dτ. (4.24)
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Analogous to the Part III of Theorem 4.1, as E0(T ) is bounded and Ei(t) is positive,

(4.24) leads to lim
i→∞

∫ T

0

e2
i dτ = 0. Furthermore, the uniform continuity of ei implies

the uniform convergence of ei, i.e. lim
i→∞

|ei|sup = 0. Hence, according to the definition

of Ei(t), ui converges to ud almost everywhere can also be derived.

4.3.2 FIL for NGLC Systems under Alignment Condition

Including Assumption 4.3, the following assumption is further made for the system

uncertainties d(x, t).

Assumption 4.6. |d(x1, t) − d(x2, t)| ≤ η′(x, t)|x1 − x2| where η′(x, t) is a known

bounding function.

Remark 4.2. Assumption 4.6 implies that the variation of the norm-bounded uncer-

tainty is within an acceptable range.

The new FIL scheme for systems with NGLC uncertainties under alignment condi-

tion is constructed as

ui(t) = wi(t) + vi(t) (4.25)

wi(t) = proj[wi−1(t)] + βei(t) (4.26)

vi(t) = (ρiκi + 1)ei(t) + η′ei(t), (4.27)

where η′ = η′(x, t) and ρi and κi are same defined as in (4.14).

The main result for control laws (4.25) - (4.27) is summarized in the following

theorem.

Theorem 4.4. For system (4.1), under Assumptions 4.3, 4.4 and 4.6 and the align-

ment condition, the control laws (4.25) - (4.27) guarantee that ei converges to 0

uniformly and ui converges to ud almost everywhere.
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Proof:

The following CEF is used in the proof.

Ei(t) =
1

2
e2

i (t) +
1

2β

∫ t

0

(ud − wi)
2dτ

(I) Boundedness Property

According to the Part I of Theorem 4.2, if |ei| ≥ ε, 1 − κi|ei| < 0. Therefore, by

defining the same Vi, we have

V̇i = ei(ẋd − di − proj[wi−1] − βei − vi)

≤ |ei|w∗ − (1 + β)e2
i + (1 − κi|ei|)(|ẋd + ηi)|ei|

≤ |ei|w∗ − (1 + β)e2
i

= −|ei|[(1 + β)|ei| − w∗], (4.28)

where w∗ is the projection bound of wi. Hence, |ei| is GUB by max{ε, w∗/(1 + β)}
and x belongs to a compact set X . Moreover, the boundedness of xi leads to the

finiteness of wi, vi, ui, ẋi and ėi.

(II) Difference of CEF

Analogous to (4.22), the difference of CEF is

∆Ei(t) =
1

2
e2

i (0) +

∫ t

0

eiėidτ − 1

2
e2

i−1(t)

+
1

2β

∫ t

0

[(ud − wi)
2 − (ud − wi−1)

2]dτ. (4.29)

The second term on the RHS of (4.29) can be rewritten as

∫ t

0

eiėidτ

=

∫ t

0

ei(dd − di + ud − wi − vi)dτ

≤
∫ t

0

η′
i|ei|2dτ +

∫ t

0

ei(ud − wi) −
∫ t

0

(ρiκi + 1)e2
i dτ −

∫ t

0

η′
ie

2
i dτ

≤
∫ t

0

ei(ud − wi)dτ −
∫ t

0

e2
i dτ. (4.30)
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From (4.9), by letting λ = 0 and ui = wi, the last term on the RHS of (4.29) can be

described as

1

2β

∫ t

0

[(ud − wi)
2 − (ud − wi−1)

2]dτ

≤ − 1

2β

∫ t

0

(ud − wi)(wi − proj[wi−1])dτ

=

∫ t

0

−(ud − wi)eidτ. (4.31)

Substituting (4.30) and (4.31) into (4.32) and considering the alignment condition,

it can be derived that

∆Ei(T ) ≤ −
∫ T

0

e2
i dτ. (4.32)

(III) Uniform Convergence

Analogous to Theorem 4.3, based on the results of Part I and Part II, it can be

derived that as i approaches to infinity, the tracking error ei converges to 0 uniformly

and the control signal ui converges to ud almost everywhere.

4.4 Robust FIL for MIMO Systems with NGLC

Uncertainties

In this section, the robust FIL will be extended to the following MIMO nonlinear

system.

ẋ = f(x, t) + B0(t)H(x, t)[u(t) + d(x, t)] (4.33)

where x ∈ Rn is the measurable state vector; u ∈ Rm is the control input vector;

f(x, t) : Rn ×R+ → Rn is known; B0(t) ∈ Rn×m and H(x, t) : Rn ×R+ → Rm×m

are known functions with full rank; d(x, t) : Rn×R+ → Rm is system uncertainties.

To facilitate the analysis of the control performance, an extended tracking error

σ(xi, t) : Rn ×R+ → Rm, which is linear to xi, is defined at the ith iteration.
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The control objective is: for a given desired trajectory xd ∈ C1[0, T ], σi
�
= σ(xi, t) →

0 and xi → xd uniformly can be obtained as the iteration number i approaches to

infinity.

Differentiating σi with respect to time t and considering system dynamics (4.33),

σ̇i = G0ẋi + hi = G0fi + hi + αi(ui + di) (4.34)

where G0
�
= G0(t) = ∂σi

∂xi
, hi

�
= h(xi, t) = ∂σi

∂t
, fi

�
= f(xi, t), αi

�
= G0B0H(xi, t) =

G0B0Hi and di
�
= d(xi, t).

The dynamic system (4.33) and the extended tracking error σi satisfy the following

assumptions.

Assumption 4.7. The known functions fi, hi and Hi are all GLC, i.e. ∀p ∈
{fi,hi, Hi}, ‖pd − pi‖ ≤ lp‖xd − xi‖. The uncertainty di is only locally Lipschitz

continuous but bounded by a known function, i.e. ‖di‖ ≤ ηi.

Assumption 4.8. Both Hi and G0B0 are invertible. Moreover, if xi belongs to

a compact set X , the boundedness of H−1
i , αi and α−1

i can be guaranteed. Q
�
=

B0(G0B0)
−1 and dQ

dt
are assumed to be finite over [0, T ].

Assumption 4.9. The dynamic system (4.33) will repeat itself under the I.I.C., i.e.

xi(0) = xd(0) and σi(0) = 0 ∀i ∈ Z+.

From (4.34), it can be derived that

ui = −α−1
i G0fi − α−1

i hi − di + α−1
i σ̇i. (4.35)

Let σ̇i = 0 and the desired control signal ud can be expressed as

ud = −α−1
d G0fd − α−1

d hd − dd. (4.36)

Substituting (4.35) and (4.36) into (4.33), we have

ẋi = fi − QG0fi − Qhi + Qσ̇i (4.37)

ẋd = fd − QG0fd − Qhd. (4.38)
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The robust FIL scheme is constructed as

ui = proj[ui−1] + ur,i (4.39)

ur,i = −(ρiκi + 1)αT
i σi (4.40)

ρi =
√

(α−1
i G0fi + α−1

i hi)T (α−1
i G0fi + α−1

i hi) + ε + ηi

�
=

√
vTv + ε + ηi

κi =

√
‖αT

i σi‖2 + 3ε2 + 8ε

(
√

‖αT
i σi‖2 + 3ε2 + ε)2

where ε > 0. Both ρi and κi are the smooth functions of t and σi.

For a given matrix A ∈ Rn×m, the operator proj[·] is defined as

proj[A] = {proj[aij]}n×m

proj[aij ] =




aij |aij| ≤a∗
ij

a∗
ij · sign(aij) |aij| > a∗

ij

,

with a∗
ij the known bound.

The following CEF is defined to analyze the convergence property of the proposed

learning scheme.

Ei(t) = e−λt‖σi‖2 +

∫ t

0

e−λτ‖δui‖2dτ (4.41)

where δui = ud − ui.

First, two lemmas will be given, which reveal the boundedness relationships among

quantities σi, xi and ui.

Lemma 4.1. For the system (4.33), under Assumptions 4.7-4.9, the control laws

(4.39) and (4.40) guarantee that σi is bounded for any i ∈ Z+.

Proof:
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Define a Lyapunov function Vi = 1
2
‖σi‖2. If ‖αT

i σi‖ ≥ ε,

1 − κi‖αT
i σi‖

=
‖αT

i σi‖2 + 4ε2 + 2ε
√
‖αT

i σi‖2 + 3ε2 − ‖αT
i σi‖

√
‖αT

i σi‖2 + 3ε2 − 8ε‖αT
i σi‖

(
√
‖αT

i σi‖2 + 3ε2 + ε)2

≤ ‖αT
i σi‖2 + 4ε2 + 2ε

√
‖αT

i σi‖2 + 3‖αT
i σi‖2 − ‖αT

i σi‖
√
‖αT

i σi‖2 − 8ε‖αT
i σi‖

(
√
‖αT

i σi‖2 + 3ε2 + ε)2

=
4ε(ε − ‖αT

i σi‖)
(
√

‖αT
i σi‖2 + 3ε2 + ε)2

≤ 0. (4.42)

Consequently, when ‖αT
i σi‖ ≥ ε,

V̇i = σT
i σ̇i

= σT
i [G0fi + hi + αi(ui + di)]

≤ ‖αT
i σi‖‖vi‖ + ‖αT

i σi‖ηi − κiρi‖αT
i σi‖2 − ‖αT

i σi‖2 + ‖αT
i σi‖u∗

≤ ‖αT
i σi‖‖vi‖ + ‖αT

i σi‖ηi − κi(‖vi‖ + ηi)‖αT
i σ)i‖2 − ‖αT

i σi‖2 + ‖αT
i σi‖u∗

= (1 − κi‖αT
i σi‖)(‖vi‖ + ηi)‖αT

i σi‖ − ‖αT
i σi‖2 + ‖αT

i σi‖u∗

≤ −‖αT
i σi‖(‖αT

i σi‖ − u∗).

‖σi‖ is globally uniformly bounded by max{ε, u∗}/
√

λmin(αiα
T
i ).

Lemma 4.2. For the system (4.33), under Assumptions 4.7-4.9, the control laws

(4.39) and (4.40) ensure that xi, ur,i, σ̇i and ẋi are all bounded for any i ∈ Z+.

Moreover, we have

‖xd − xi‖ ≤ bQ‖σi‖ + b2

∫ t

0

‖σi‖dτ (4.43)

where bQ and b2 are finite positive constants defined in Appendix B.

The proof of Lemma 4.2 can be found in Appendix B.

According to (4.35) and (4.36), we can obtain

δui = −α−1
i σ̇i − γi (4.44)
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where γi = α−1
d G0fd + α−1

d hd + dd − α−1
i G0fi − α−1

i hi − di. Under Assumptions

4.7-4.9, we have

‖γi‖ ≤ b3‖xd − xi‖, (4.45)

where b3 is a finite constant. The finiteness of bs can be derived as follows.

γ i = α−1
d G0fd + α−1

d hd + dd − α−1
i G0fi − α−1

i hi − di

= (α−1
d − α−1

i )G0fd + α−1
i G0(fd − fi) + (α−1

d − α−1
i )hd + α−1

i (hd − hi)

+dd − di

= H−1
d (Hi − Hd)H

−1
i G0fd + α−1

i G0(fd − fi) + H−1
d (Hi − Hd)H

−1
i hd

+α−1
i (hd − hi) + dd − di.

∀p ∈ {H−1, G0, α
−1, fd,hd}, define bp

�
= sup

X×[0,T ]

‖p‖. Then,

‖γi‖ ≤ b3‖xd − xi‖,

where b3 = b2
H−1bG0bfd lH + bα−1bG0bH−1lf + b2

H−1bhd
lH + bα−1lh + ld. According to

Assumptions 4.7 -4.8, the finiteness of b3 can be guaranteed.

Now the main result for the robust FIL is given in the following theorem.

Theorem 4.5. Consider the nonlinear system (4.33) satisfying Assumptions 4.7-

4.9. Under the control laws (4.39) and (4.40), σi(t) and xi(t) uniformly converge

to 0 and xd(t) respectively. Furthermore, the control signal ui(t) converges to ud(t)

almost everywhere.

Proof:

(I) Boundedness Property

Lemma 4.1 and Lemma 4.2 clearly show that the finiteness of xi, σi, ui, ẋi and σ̇i,

for any i ∈ Z+.
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(II) Difference of Ei(t)

∆Ei(t) = e−λt‖σi‖2 +

∫ t

0

e−λt(‖δui‖2 − ‖δui−1‖2)dτ − e−λt‖σi−1‖2. (4.46)

The first term on the RHS of (4.46) can be rewritten as

e−λt‖σi‖2 = −λ

∫ t

0

e−λτ‖σi‖2dτ +

∫ t

0

2e−λτσiσ̇idτ. (4.47)

The second term on the RHS of (4.46) can be expressed as

∫ t

0

e−λτ (‖δui‖2 − ‖δui−1‖2)dτ

≤
∫ t

0

e−λτ (‖δui‖2 − ‖ud − proj[ui−1]‖2)dτ

≤
∫ t

0

e−λτ (−2uT
r,iδui − ‖ur,i‖2)dτ. (4.48)

According to Lemma 4.2 and the definition of ρiκi, there exist a finite constant

b4
�
= sup

t∈[0,T ]

ρiκi + 1 and a finite constant b5
�
= sup

t∈[0,T ]

d(ρiκi)

dt
.

Substituting (4.40) and (4.44) into (4.48), we have

∫ t

0

e−λτ (‖δui‖2 − ‖δui−1‖2)dτ

≤ −2

∫ t

0

e−λτ (ρiκi + 1)σT
i σ̇idτ − 2

∫ t

0

e−λτ (ρiκi + 1)σT
i αiγidτ

≤ −2

∫ t

0

e−λτσT
i σ̇idτ − ρiκi‖σi‖2e−λt +

∫ t

0

e−λτ‖σi‖2d(ρiκi)

+2b4bαb3

∫ t

0

e−λτ‖σi‖‖xd − xi‖dτ

≤ −2

∫ t

0

e−λτσT
i σ̇idτ + b5

∫ t

0

e−λτ‖σi‖2dτ

+2b4bαb3(bQ + b2T )

∫ t

0

e−λτ‖σi‖2dτ. (4.49)

Substituting (4.47) and (4.49) into (4.46) and considering (B.3), it can be derived

that

∆Ei ≤ −(λ − b6)

∫ t

0

e−λτ‖σi‖2dτ − e−λt‖σi−1‖2 (4.50)
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where b6 = b5+2b4bαb3(bQ+b2T ). There exists a sufficiently large λ such that λ > b6

to ensure that

∆Ei(t) ≤ −e−λt‖σi−1‖2 ≤ −e−λT‖σi−1‖2. (4.51)

(III) Uniform Convergence

By using (4.51) repeatedly, the following can be obtained.

Ei(t) ≤ E0(t) − e−λT
i−1∑
j=0

‖σi‖2. (4.52)

Since both x0(t) and u0(t) are bounded, E0(t) is bounded. From the positiveness

of Ei(t) and (4.52), we can derive that lim
i→∞

‖σi‖ = 0 pointwisely. Moreover, the

boundedness of σ̇i implies the uniform continuity of σi which leads to the uniform

convergence of σi. According to Lemma 4.2, xi(t) uniformly converges to xd(t) can

also be derived.

Next from (4.45)

lim
i→∞

‖γi‖ ≤ lim
i→∞

b3‖xd − xi‖ = 0.

Thus using (4.44) and the boundedness of σ̇i we further derive

lim
i→∞

Ei(t) = lim
i→∞

e−λt‖σi‖2 + lim
i→∞

∫ t

0

e−λτ‖δui‖2dτ

= lim
i→∞

∫ t

0

e−λτ‖αi‖2σ̇T
i σ̇idτ

≤ lim
i→∞

bα

∫ t

0

e−λτ σ̇idσi

= 0.

Hence, ui converges to ud almost everywhere as i → ∞.

4.5 Illustrative Examples

Case 1. FIL for SISO Dynamic Systems
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Consider system (4.1) with the target trajectory xd = 1.5sin3t, t ∈ [0, 2π].

(1) d(x, t) = 3xsint and xi(0) = xd(0)

Obviously, d(x, t) is GLC. Choose β = 10 and u∗ = 10. Applying the control law

(4.4), the simulation result is shown in Fig. 4.1. The horizontal axis denotes the

iteration number i, and the vertical axis denotes the sup-norm |ei|sup
�
= sup

t∈[0,2π]

|ei(t)|.

0 1 2 3 4 5 6 7 8 9 10
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|e
i| su

p

Figure 4.1: Learning convergence for SISO system with GLC uncertainty t ∈ [0, T ].

(2) d(x, t) = 3x2sint + 5x2 and xi(0) = xd(0)

d(x, t) is NGLC. Assume the known bounding function η(x, t) = 10x2. Choose

ε = 0.25 and u∗ = 20. Applying the robust learning laws (4.13) and (4.14), Fig. 4.2

demonstrates the learning convergence.

Case 2. FIL Under Alignment Condition
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Figure 4.2: Learning convergence for SISO system with NGLC uncertainty t ∈ [0, T ].

The same desired trajectory xd = 1.5sin3t, t ∈ [0, 2π] is used, which obviously

satisfies Assumption 4.4.

(1) d(x, t) = 3xsint and x0(0) = 0.1 �= xd(0)

Assume the known bound of ld is 4. Choose β = 10 and u∗ = 10. Under the

alignment condition, xi+1(0) = xi(T ), the simulation result is shown in Fig. 4.3.

Comparing with Fig. 4.1, it can be clearly seen that, under the alignment con-

dition, the learning becomes more difficult, however, the convergence still can be

guaranteed.

(2) d(x, t) = 3x2sint + 5x2 and x0(0) = −0.2 �= xd(0)

Assume the know bounding functions are η(x, t) = 10x2 and η′(x, t) = 20x. Choose

ε = 0.25, β = 10 and u∗ = 20. The learning convergence of the tracking error under

the proposed FIL control laws (4.25) - (4.27) is given in Fig. 4.4.
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Figure 4.3: Learning convergence for GLC system under alignment condition t ∈
[0, T ].

Case 3. Robust FIL for MIMO Dynamic Systems

Consider the following deterministic system

ẋ1 = x2

ẋ2 = 2x1sinx2 + (t2 + 1)(1 + sin3x1)(u + 5x2
1sint + 3x2

2), (4.53)

which is repeatable over [0 2π]. In this case, f = [x2 2x1sinx2]
T , B0 = [0 t2 + 1]T

and H = 1 + sin3x1 are known functions. d = 5x2
1sint + 3x2

2 is NGLC with the

known bounding function η = (3x1 + 2x2)
2.

The desired trajectory to be followed is

x1,d = sin3t x2,d = ẋ1,d, t ∈ [0, 2π]. (4.54)

The extended tracking error is chosen as σi = (x1,d−x1,i)+3(x2,d−x2,i). Let ε = 0.3

and u∗ = 10. Apply the robust FIL laws (4.39) and (4.40). The simulation result is
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Figure 4.4: Learning convergence for NGLC system under alignment condition t ∈
[0, T ].

shown in Fig. 4.5.

4.6 Conclusion

In this chapter CEF-type FIL is extended to handle systems with norm-bounded

uncertainties which may be GLC or NGLC. The possibility of replacing I.I.C. by

alignment condition has been discussed. Rigorous proofs based on CEF for all FIL

methodologies are given. Illustrative examples clearly show the effectiveness of the

proposed FIL schemes.
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Figure 4.5: Learning convergence for MIMO system with NGLC uncertainty t ∈
[0, T ].



Chapter 5

FIL for Non-Uniform Tracking

Tasks in the Presence of

Parametric Uncertainties

5.1 Introduction

In most of the works on FIL, it is required that the target trajectory must be

invariant in all iterations. If there is a change in the target trajectory due to the

variation of control objectives or task specifications, no matter how small it might

be, the control system will have to start the learning process from the very beginning

and the previously learned control input profiles can no longer be used.

Can a control system learn consecutively from different tracking control tasks? To

answer this question, we need to make the learnability of FIL clear. A typical FIL,

in the time domain, is under a simple closed-loop or even open-loop control. The

novel learning functionality comes from the extra updating activity in the iteration

domain. Indeed, the iterative learning mechanism, whether derived from CM ap-

85
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proach or EF/CEF approach, is in essence a pointwise integration along the learning

axis. This pointwise integration imposes certain conditions on what we can learn

– learn an invariant set in the iteration domain. If we define a time axis and an

iteration axis, whatever to be learned must be a constant along the iteration axis,

as far as the pointwise integration is employed. A simple example of a pointwise

integrator that characterizes the FIL mechanism is

wi(t) = wi−1(t) + fi−1(t), t ∈ [0, T ], i ∈ Z+

where wi(t) is to learn some unknown function η(t), and fi−1(t) is a correcting term.

Clearly, for each t, wi(t) is a discrete integrator in the iteration domain with the

objective to approach η(t) which is an invariant set in the iteration domain.

Next question is, what is this invariant set η(t) that is learnable? Although there

is no definite conclusion made hitherto in this aspect, we can summarize from the

numerous publications in traditional CM-based FIL, that the target trajectory must

be invariant, i.e. repeatable, in the iteration domain. This limitation arises because

of the existence of the non-parametric uncertainties in the system nonlinear dynam-

ics. Suppose we are going to compensate or cancel a lumped nonlinear unknown

function, η(x), of the system state, x(t). In the ideal case, we wish to capture

the nonlinear uncertain function with the argument being the desired system state,

xd(t).If however the target trajectory varies in the iteration domain, i.e. xd,i(t) is i-

dependent, the unknown function will vary accordingly as η(xd,i). As a consequence,

CM-type FIL is not able to work because the function to be learned, η(xd,i), is no

longer an invariant set in the iteration domain.

When the system uncertainties can be represented as parametric types, θ(t), which

are invariant in the iteration domain, it is possible for us to conduct learning even

if the target trajectory varies from iteration to iteration. The reason is simple:

now we need only to learn unknown parameters, which can be time-varying, but



Chapter 5. FIL for Non-Uniform Tracking Tasks in the Presence of Parametric
Uncertainties 87

iteration-invariant.

In this chapter we present a novel FIL method that can fulfill the challenging objec-

tive. The new learning control law consists of a feedback term and a learning term.

The learning term is updated, by a learning mechanism, pointwisely in the time axis

and iteratively in the iteration axis. To facilitate the learning control design and

convergence analysis, a CEF is employed, which consists of a Lyapunov function to

evaluate the tracking performance in the time axis, and a functional to evaluate the

learning performance in the iteration axis.

In practice, often we know that some of the system parameters, though unknown,

are unlikely time-varying, such as the inertia of a robotic link and the stiffness of a

flexible link. In such circumstance, it would be far-fetched to treat them as time-

varying ones. If a parameter is invariant in both the time and the iteration axis,

the pointwise integration mechanism can be simplified into a conventional integrator

working consecutively in the iteration axis. However, for time-varying uncertainties,

an integrator along the time axis such as adaptive control fails to work.

This chapter is organized as follow. The dynamic system and the tracking control

task are formulated in Section 5.2. Section 5.3 presents a new FIL method for

systems with time-varying parametric uncertainties. Based on it, the FIL scheme

is extended to systems with both time-varying and time-invariant uncertainties.

Section 5.5 applies the proposed learning control approaches to a one-link robotic

arm and gives the simulation results.



Chapter 5. FIL for Non-Uniform Tracking Tasks in the Presence of Parametric
Uncertainties 88

5.2 Problem Formulation

To clearly explain the main idea, here we only consider the following simple nonlinear

dynamic system

ẋ = θo(t)ξo(x, t) + b(t)u

x(0) = x0 t ∈ [0, T ], (5.1)

where x ∈ R is the measurable system state, u ∈ R is the system control input,

b(t) ∈ C1 ([0, T ]) is the perturbed gain of the system input, θo(t) ∈ C (R1×n1 , [0, T ])

is a vector of unknown time-varying parameters, and ξo(x, t) ∈ Rn1 is a known

vector-valued function. The elements of ξo(x, t) are assumed to be local Lipschitz

continuous with respect to x. Here n1 is an appropriate integer specifying the

dimension.

The following assumption is made for the system input gain b(t).

Assumption 5.1. The prior information with regards to b(t) is that the control

direction is known and invariant, that is, b(t) is either positive or negative and

non-singular for all t ∈ [0, T ].

Without loss of generality, assume that b > 0 ∀t ∈ [0, T ].

Since the target trajectories could be different from iteration to iteration, the target

trajectory in the i-th iteration is denoted as xd,i(t) ∈ C1[0, T ].

Define the tracking error ei = xd,i − xi. The error dynamics at the i-th iteration is

ėi = ẋd,i − ẋi

= ẋd,i − θoξo
i − bui

= b(b−1ẋd,i − b−1θoξo
i − ui) (5.2)

ei(0) = xd,i(0) − xi(0),
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where θo = θo(t), ξo
i = ξo(xi, t) and b = b(t). The control objective is to track the

trajectories by determining a sequence of control input ui, such that the tracking

error converges to zero as the iteration number i approaches infinity.

As is common in FIL field, the following I.I.C. is assumed.

Assumption 5.2. ∀i ∈ Z+, ei(0) = 0 is satisfied.

5.3 FIL Configuration and Convergence Analysis

The proposed learning control law at the i-th iteration is

ui = kei + θ̂iξi, (5.3)

where k > 0 is the feedback gain, θ̂i ∈ R1×(n1+2) is to learn the time-varying

parametric uncertainty consisting of θ = [b−1, −b−1θo, b−2ḃ] ∈ R1×(n1+2) and

ξi = [ẋd,i, ξoT
i , −1

2
ei]

T ∈ R(n1+2)×1 is the known vector-valued function.

The updating law for θ̂i is

θ̂i = θ̂i−1 + βξT
i ei, θ̂−1(t) = 0 ∀t ∈ [0, T ] (5.4)

where β > 0 is the learning gain.

The convergence property of the proposed learning controller is derived in the fol-

lowing theorem.

Theorem 5.1. For system (5.1), under the Assumptions 5.1-5.2, the learning con-

trol law (5.3) and the updating law (5.4) guarantee that the tracking error converges

to zero pointwisely over [0, T ] when the iteration number i approaches to infinity.

Proof:
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To evaluate the learning property, define the CEF at the i-th iteration as

Ei(t) =
1

2
b−1e2

i +
1

2β

∫ t

0

φiφ
T
i dτ, (5.5)

where φi
�
= θ− θ̂i. Note that 1

2
b−1e2

i is a quadratic type Lyapunov function used to

evaluate the tracking performance in the time axis. The functional, the second term

on the RHS of (5.5), is essentially an L2-norm reflecting the parametric learning

error.

The proof consists of two parts. Part A derives the difference of the CEF, and Part

B proves the pointwise convergence of the tracking error.

Part A: Difference of CEF

Consider the difference of Ei(t) at the i-th iteration.

∆Ei(t) = Ei(t) − Ei−1(t)

=
1

2
b−1e2

i +
1

2β

∫ t

0

(φiφ
T
i − φi−1φ

T
i−1)dτ − 1

2
b−1e2

i−1. (5.6)

Let us examine the first term on the RHS of (5.6). According to the I.I.C. (Assump-

tion 5.2), the error dynamics (5.2) and the control law (5.3), the following can be

derived.

1

2
b−1e2

i =

∫ t

0

b−1eiėidτ − 1

2

∫ t

0

b−2ḃe2
i dτ +

1

2
b−1(0)e2

i (0)

=

∫ t

0

ei(b
−1ẋd,i − b−1θoξo

i − ui)dτ − 1

2

∫ t

0

b−2ḃe2
i dτ

=

∫ t

0

ei(θξi − ui)dτ

= −k

∫ t

0

e2
i dτ +

∫ t

0

φiξieidτ

= −k

∫ t

0

e2
i dτ +

∫ t

0

ςidτ, (5.7)

where ςi = φiξiei.
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According to the updating law (5.4), the following can be obtained.

1

2β
(φiφ

T
i − φi−1φ

T
i−1)

=
1

2β
(θ̂i − θ̂i−1)(θ̂i + θ̂i−1 − 2θ)T

= − 1

β
(θ − θ̂i)(θ̂i − θ̂i−1)

T − 1

2β
(θ̂i − θ̂i−1)(θ̂i − θ̂i−1)

T

= −φiξiei − β

2
‖ξi‖2e2

i

= −ςi − β

2
‖ξi‖2e2

i . (5.8)

Substituting (5.7) and (5.8) into (5.6) yields

∆Ei(t) = −k

∫ t

0

e2
i dτ − β

2

∫ t

0

‖ξi‖2e2
i dτ − 1

2
b−1e2

i−1

≤ −1

2
b−1e2

i−1. (5.9)

Part B: Convergence of Tracking Error

According to (5.9), it can be derived that the finiteness of Ei(t) is ensured for any

iteration provided E0(t) is finite. In the following we will show the finiteness of

E0(t). From the definition of Ei(t) in (5.5), we have

E0(t) =
1

2
b−1e2

0 +
1

2β

∫ t

0

φ0φ
T
0 dτ.

Hence, the derivative of E0(t) is

Ė0(t) = b−1e0ė0 − 1

2
b−2ḃe2

0 +
1

2β
φ0φ

T
0 .

From (5.7) it can be derived that

b−1e0ė0 − 1

2
b−2ḃe2

0 = −ke2
0 + ς0.

From (5.8) and the fact θ̂−1 = 0, we have

1

2β
φ0φ

T
0 =

1

2β
(φ0φ

T
0 − φ−1φ

T
−1) +

1

2β
φ−1φ

T
−1

= −ς0 − β

2
‖ξ0‖2e2

0 +
1

2β
θθT . (5.10)
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Consequently,

Ė0(t) = −ke2
0 −

β

2
‖ξ0‖2e2

0 +
1

2β
θθT ≤ 1

2β
θθT .

Because θ is continuous, it is bounded over the time interval [0, T ]. Therefore there

exists a constant

L = max
t∈[0,T ]

(
1

2β
θθT ) < ∞.

Considering e0(0) = 0, we have

E0(t) ≤ |E0(0)| + |
∫ t

0

Ė0(τ)dτ |

≤
∫ t

0

|Ė0(τ)|dτ

≤
∫ t

0

Ldτ ≤ LT < ∞.

The finiteness of E0(t) implies that Ei(t) is finite, hence both xi(t) and
∫ t

0
‖θ̂i‖2dτ

are bounded for all i ∈ Z+.

Using (5.9) repeatedly we have

Ei(t) ≤ E0(t) − 1

2
b−1(t)

i−1∑
j=0

e2
j (t).

lim
i→∞

Ei(t) ≤ E0(t) − 1

2
b−1(t) lim

i→∞

i−1∑
j=0

e2
j (t)

≤ E0(t) − 1

2
b−1
max lim

i→∞

i−1∑
j=0

e2
j (t),

where bmax = max
t∈[0,T ]

b(t) < ∞.

Since E0(t) is finite and Ei(t) is positive,
∞∑

j=0

e2
j (t) converges. From the convergence

theorem of the sum of series, lim
i→∞

e2
i (t) = 0, ∀t ∈ [0, T ], is guaranteed. Hence ei(t)

converges to zero pointwisely as i approaches infinity.

Since ξi is continuous with respect to xi, the boundedness of xi leads to the bound-

edness of ξi. Therefore, according to the control law (5.3) and considering the

boundedness of
∫ t

0
‖θ̂i‖2dτ , the control signal ui is bounded in L2-norm.
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Remark 5.1. By substituting the updating law (5.4) into the control law (5.3), we

can reach the following FIL law including ui−1

ui(t) = ui−1(t) + f(ei−1, θ̂i−1, ξi−1, ξi) + g(ei, ξi),

where g = kei + βξT
i ei, and f = −kei−1 − βξT

i−1ei−1 + θ̂i−1(ξi − ξi−1)
T .

It can be interpreted that the new FIL is updated consecutively between ui and

ui−1, but with a nonlinear feedback term and a general nonlinear correcting term.

On the contrary, the traditional ILC updating law ui(t) = ui−1(t)+βei−1(t), though

simple and linear, could not capture the nonlinear structure characteristics of the

system.

Remark 5.2. It is known mathematically that the pointwise convergence does not

guarantee the convergent sequence to have a fixed upperbound, for instance

ei(t) = i2te−it (5.11)

If possible, the uniform convergence should be targeted.

Note that in the above learning control design, we do not need the system knowledge

regarding the parameter bounds. Without knowing those bounds, robust control

methods cannot be applied. On the other hand, in many control problems, the

upper and lower bounds of unknown system parameters are known a priori. In such

circumstance, the updating law (5.4) can be modified as

θ̂i = proj[θ̂i−1] + βξT
i ei. (5.12)

Here the question is, by incorporating the additional system bounding information

in the learning control, can we improve the control performance? In the following

we show that the control law (5.3) and the updating law (5.12) lead to the uniform

convergence of the tracking error, instead of the pointwise convergence.



Chapter 5. FIL for Non-Uniform Tracking Tasks in the Presence of Parametric
Uncertainties 94

Corollary 5.2. For system (5.1), under the Assumptions 5.1and 5.2, the learning

control law (5.3) and the updating law (5.12) guarantee the uniform convergence of

the tracking error sequence over [0, T ], when the iteration approaches to infinity.

Proof:

Define the same CEF in (5.5), the relations (5.6) and (5.7) can be derived straight-

forward. Let us look at the relation (5.8), which may be affected by the introduction

of the projection operator. Using the updating law (5.12), and comparing with (5.8),

we have

1

2β
(φiφ

T
i − φi−1φ

T
i−1)

≤ 1

2β
{φiφ

T
i − [θ − proj[θ̂i−1]][θ − proj[θ̂i−1]]

T}

=
1

2β
(θ̂i − proj[θ̂i−1])(θ̂i + proj[θ̂i−1] − 2θ)

= −ςi − β

2
‖ξi‖2e2

i , (5.13)

which turns out to be the same as (5.8). Consequently, substituting (5.7) and (5.13)

into (5.6) yields the same result as (5.9)

∆Ei(t) ≤ −k

∫ t

0

e2
i dτ − β

2

∫ t

0

‖ξi‖2e2
i dτ − 1

2
b−1e2

i−1 ≤ 0. (5.14)

In the sequel, the pointwise convergence of ei can be obtained according to Theorem

5.1.

According to the system dynamics (5.1), the control law (5.3) and the updating

law (5.12), the boundedness of xi ensures the finiteness of θ̂i, ui(t) and ẋi(t). The

boundedness of ẋi(t) implies the uniform continuity of xi(t), thereafter the uniform

continuity of the tracking error ei, as xd,i ∈ C1[0, T ]. Therefore

lim
i→∞

|ei(t)| = 0 ⇒ lim
i→∞

|ei|sup = 0. (5.15)
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Remark 5.3. In our work, b is related to time only. If b is a function of system states,

but factorable into b1(t)b2(x, t) where b2(x, t) is known, our approach still applies.

If b2(x, t) is unknown, the learning control problem is still open.

5.4 FIL with Mixed Updating Laws

Often we have some prior knowledge about the system parametric uncertainties, for

instance we may know that some unknown parameters are time-invariant, whereas

the rest are time-varying. This is a non-trivial case, as the more we know, the

better we should be able to improve the control performance. It would be far-

fetched if we still apply the difference updating to those constant parameters, and the

traditional integrator based adaptation is more suitable (Moore, 1989; French and

Rogers, 2000). Indeed, differential updating mechanism may generate a smoother

profile comparing with the difference type.

Instead of Assumption 5.1, the following assumption is made for system (5.1).

Assumption 5.3. θoξo can be separated into θoξo = θo
1(t)ξ

o
1(x, t) + θo

2ξ
o
2(x, t),

where θo
1(t) ∈ C (R1×n1 , [0, T ]) is an unknown time-varying parameter vector, θo

2 ∈
R1×n2 is an unknown time-invariant parameter vector and both ξo

1(x, t) ∈ Rn1 and

ξ0
2(x, t) ∈ Rn2 are known continuous vector-valued functions, and are local Lipschitz

continuous with respect to x. n1 and n2 are integers specifying dimensions. In addi-

tion, the system input gain b is an unknown constant and the only prior knowledge

is that its sign is known.

In fact, if b is time-varying, according to the definition of the vector θ in the preceding

section, all parameters to be learned are time-varying .



Chapter 5. FIL for Non-Uniform Tracking Tasks in the Presence of Parametric
Uncertainties 96

Now the error dynamics can be expressed as

ėi = b[b−1ẋd,i − b−1θo
1(t)ξ

o
1(xi, t) − b−1θo

2ξ
o
2(xi, t) − ui]

= b(θ1ξ1 + θ2ξ2 − ui) (5.16)

where θ1 = −b−1θo
1(t) ∈ R1×n1 , ξ1 = ξo

1,i(xi, t) ∈ Rn1, θ2 = [b−1, −b−1θo
2] ∈

R1×(n2+1) and ξ2,i = [ẋd,i, ξo
2(xi, t)

T ]T ∈ R(n2+1). θ1 presents all the time-varying

parametric uncertainties, while θ2 represents all the time-invariant parametric un-

certainties.

The learning control law is constructed as

ui = kei + θ̂1,iξ1,i + θ̂2,iξ2,i, (5.17)

where k > 0 is the feedback gain, θ̂1,i ∈ R1×n1 is to learn θ1, and θ̂2,i ∈ R1×(n2+1) is

to learn θ2.

For the time-varying uncertainty θ1, the preceding difference type updating law is

used

θ̂1,i = θ̂1,i−1 + β1ξ
T
1,iei, θ̂1,−1(t) = 0 ∀t ∈ [0, T ]. (5.18)

For the constant part θ2, the traditional differential type updating law is employed

˙̂
θ2,i = β2ξ

T
2,iei, θ̂2,i(0) = θ̂2,i−1(T ), θ̂2,0(0) = 0. (5.19)

Both β1 > 0 and β2 > 0 are the learning gains.

Remark 5.4. Note the difference in the initial conditions of the difference type up-

dating law (5.18) and differential type updating law (5.19). In fact, since ei(0) = 0,

θ̂1,i(0) = 0 for all iterations, namely, the difference type updating mechanism has

an resetting action along the iteration axis. On the contrary, the differential type

updating mechanism has a consecutive initial condition along the iteration axis, that

is, the end value of preceding iteration becomes the initial value of the present iter-

ation. The reason that accounts for the difference is, that a constant parameter will
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hold the same value at t = 0 and t = T , whereas a time-varying parameter may not.

If θ1(0) �= θ1(T ), it would be meaningless to apply the consecutive initial condi-

tion. The consecutive initial condition is applicable to the difference type updating

mechanism, only if we have additional knowledge that θ1(0) = θ1(T ).

The main result of the above learning control approach is summarized in the follow-

ing theorem. Here we also assume b > 0.

Theorem 5.3. For system (5.16), under the Assumptions 5.2 and 5.3, the learning

control law (5.17) and the updating laws (5.18) and (5.19) guarantee that the tracking

error converges to zero in L2-norm over [0, T ] as iteration number i approaches to

infinity.

Proof:

Define a CEF as

Ei(t) =
1

2
b−1e2

i +
1

2β1

∫ t

0

φ1,iφ
T
1,idτ +

1

2β2
φ2,iφ

T
2,i, (5.20)

where φ1,i
�
= θ1 − θ̂1,i and φ2,i

�
= θ2 − θ̂2,i.

Because of the involvement of the mixed difference-differential updating, the proof

becomes more complicated, and consists of three parts. Part A derives the difference

of the CEF; Part B proves the convergence of the tracking error; Part C examines

the boundedness property of the system state and the control signal.

Part A: Difference of CEF

The difference of Ei(t) is

∆Ei(t) =
1

2
b−1e2

i +
1

2β1

∫ t

0

(φ1,iφ
T
1,i − φ1,i−1φ

T
1,i−1)dτ

+
1

2β2

(φ2,iφ
T
2,i − φ2,i−1φ

T
2,i−1) −

1

2
b−1e2

i−1. (5.21)

Let us examine the terms on the RHS of (5.21) separately.
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According to the I.I.C., the error dynamics (5.16) and the control law (5.17), the

first term on the RHS of (5.21) can be expressed as

1

2
b−1e2

i = b−1

∫ t

0

eiėidτ +
1

2
b−1(0)e2

i (0)

=

∫ t

0

ei(θ1ξ1,i + θ2ξ2,i − ui)dτ

= −k

∫ t

0

e2
i dτ +

∫ t

0

φ1,iξ1,ieidτ +

∫ t

0

φ2,iξ2,ieidτ

= −k

∫ t

0

e2
i dτ +

∫ t

0

ς1,idτ +

∫ t

0

ς2,idτ, (5.22)

where ς1,i = φ1,iξ1,iei and ς2,i = φ2,iξ2,iei.

Analogous to the derivation of (5.8), from the updating law (5.18) the second term

on the RHS of (5.21) is

1

2β1
(φ1,iφ

T
1,i − φ1,i−1φ

T
1,i−1)

= − 1

β1

φ1,i(θ̂1,i − θ̂1,i−1)
T − 1

2β1

(θ̂1,i − θ̂1,i−1)(θ̂1,i − θ̂1,i−1)
T

= −φ1,iξ1,iei − β1

2
‖ξ1,i‖2e2

i

= −ς1,i − β1

2
‖ξ1,i‖2e2

i . (5.23)

From the updating law (5.19), the third term on RHS of (5.21) is

1

2β2

(φ2,iφ
T
2,i − φ2,i−1φ

T
2,i−1)

=
1

β2

∫ t

0

φ2,iφ̇
T

2,idτ +
1

2β2

φ2,i(0)φT
2,i(0) − 1

2β2

φ2,i−1φ
T
2,i−1

= −
∫ t

0

φ2,iξ2,ieidτ +
1

2β2
φ2,i(0)φT

2,i(0) − 1

2β2
φ2,i−1φ

T
2,i−1

= −
∫ t

0

ς2,idτ +
1

2β2
φ2,i(0)φT

2,i(0) − 1

2β2
φ2,i−1φ

T
2,i−1. (5.24)

Substituting (5.22), (5.23) and (5.24) back into (5.21) yields

∆Ei(t) = −k

∫ t

0

e2
i dτ − β1

2

∫ t

0

‖ξ1,i‖2e2
i dτ +

1

2β2
φ2,i(0)φT

2,i(0)

− 1

2β2

φ2,i−1(t)φ
T
2,i−1(t) −

1

2
b−1e2

i−1(t). (5.25)
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Considering the consecutive initial condition θ̂2,i(0) = θ̂2,i−1(T ), at the time instant

t = T , we have φ2,i(0) = φ2,i−1(T ), thus

∆Ei(T ) = −k

∫ T

0

e2
i dτ − β1

2

∫ T

0

‖ξ1,i‖2e2
i dτ − 1

2
b−1e2

i−1(T )

≤ −k

∫ T

0

e2
i dτ ≤ 0. (5.26)

Part B: Convergence of the Tracking Error

According to (5.26), it can be derived that the finiteness of Ei(T ) is ensured for any

iteration provided E0(T ) is finite. In the following we will show the finiteness of

E0(t).

E0(t) =
1

2
b−1e2

0 +
1

2β1

∫ t

0

φ1,0φ
T
1,0dτ +

1

2β2
φ2,0φ

T
2,0.

The derivative of E0(t) is

Ė0(t) = b−1e0ė0 +
1

2β1

φ1,0φ
T
1,0 +

1

β2

φ̇2,0φ
T
2,0.

From (5.22), it can be derived that

b−1e0ė0 = −ke2
0 + ς1,0 + ς2,0.

Analogous to the derivation in (5.10), from (5.23) we have

1

2β1

φ1,0φ
T
1,0 = −ς1,0 − β1

2
‖ξ1,0‖2e2

0 +
1

2β1

θ1θ
T
1 .

According to the updating law (5.19) and using θ̇2 = 0, it can be derived that

1

β2
φ̇2,0φ

T
2,0 = −φ2,0ξ2,0e0 = −ς2,0.

Therefore,

Ė0(t) = −ke2
0 −

β1

2
‖ξ1,0‖2e2

0 +
1

2β1
θ1θ

T
1 ≤ 1

2β1
θ1θ

T
1 .

Since θ1 is continuous, it is bounded over the time interval [0, T ]. There exists a

constant

L = max
t∈[0,T ]

(
1

2β1
θ1θ

T
1 ) < ∞.
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Considering e0(0) = 0, θ̂2,0(0) = 0 and the boundedness of θ2, the following can be

derived.

E0(t) ≤ |E0(0)| + |
∫ t

0

Ė0(τ)dτ |

≤ 1

2β2
θ2θ

T
2 +

∫ t

0

|Ė0(τ)|dτ

≤ 1

2β2
θ2θ

T
2 +

∫ t

0

Ldτ

≤ 1

2β2
θ2θ

T
2 + LT < ∞.

The finiteness of E0(t) implies E0(T ) is bounded, hence Ei(T ) is finite for all i ∈ Z+.

According to (5.26), we obtain

Ei(T ) ≤ E0(T ) − k

i∑
j=1

∫ T

0

e2
jdτ,

lim
i→∞

Ei(T ) ≤ E0(T ) − k lim
i→∞

i∑
j=1

∫ T

0

e2
jdτ.

The finiteness of E0(T ) and the positiveness of Ei(T ) lead to lim
i→∞

∫ T

0

e2
i dτ = 0.

Hence ei converges to zero in L2-norm.

Part C: Boundedness Property

Finally, let us check the boundedness property of the system state xi and the control

signal ui. Note that, up to now we only prove the boundedness of Ei(T ), from which

we need to further derive the boundedness of Ei(t) for any t ∈ [0, T ].

According to the definition of Ei(t) and the finiteness of Ei(T ), the boundedness of
∫ T

0
φ1,iφ

T
1,idτ and φ2,i(T )φT

2,i(T ) is guaranteed for all iterations. Therefore, ∀i ∈ Z+,

there exist finite constants M1 and M2 satisfying

∫ t

0

φ1,iφ
T
1,idτ ≤

∫ T

0

φ1,iφ
T
1,idτ ≤ M1 < ∞

φ2,i+1(0)φT
2,i+1(0) = φ2,i(T )φT

2,i(T ) ≤ M2 < ∞.
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Hence, from (5.20), we have

Ei(t) ≤ 1

2
b−1e2

i (t) + M1 +
1

2β2
φ2,i(t)φ

T
2,i(t). (5.27)

On the other hand, from (5.25), we have

∆Ei+1(t) ≤ 1

2β2

φ2,i+1(0)φT
2,i+1(0) − 1

2β2

φ2,i(t)φ
T
2,i(t) −

1

2
b−1e2

i (t)

≤ M2 − 1

2β2
φ2,i(t)φ

T
2,i(t) −

1

2
b−1e2

i (t). (5.28)

Adding (5.27) and (5.28) leads to

Ei+1(t) = Ei(t) + ∆Ei+1(t)

≤ 1

2
b−1e2

i + M1 +
1

2β2
φ2,iφ

T
2,i + M2 − 1

2β2
φ2,iφ

T
2,i −

1

2
b−1e2

i

= M1 + M2. (5.29)

As we have shown that E0(t) is bounded, hence Ei(t) is finite for all i ∈ Z+, which

implies the boundedness of xi,
∫ t

0
‖θ̂1,i‖2dτ and θ̂2,i(t). Because ξ1,i and ξ2,i are

local Lipschitz continuous with respect to xi, the boundedness of xi leads to the

boundedness of ξ1,i and ξ2,i. Hence, from learning control law (5.17), it can be

derived that ui is bounded in L2-norm.

Remark 5.5. Analogous to Corollary 5.2, if the bound of θ1,i is known a priori, the

updating law (5.18) can be modified as

θ̂1,i = proj(θ̂1,i−1) + β1ξ1,iei.

Consequently, the boundedness of θ̂1,i can be ensured, which leads to the bounded-

ness of ui and ẋi. The finiteness of ẋi implies the uniform continuity of xi. Hence,

the uniform convergence of the tracking error is guaranteed.

Remark 5.6. To clearly explain the basic idea, only a first-order system is consider

in this chapter. However, the proposed FIL approaches can be easily extended to

the following class of systems,

ẋj = xj+1, j = 1, · · · , n − 1

ẋn = θo(t)ξo(x, t) + b(t)u,
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where x = [x1, · · · , xn]T ∈ Rn.

Define the extended tracking error σ =

n∑
j=1

cjej(t) (cn = 1), where ej(t) = x
(j−1)
d (t)−

xj(t) and cj (j = 1, · · · , n) are coefficients of a Hurwitz polynomial. The derivative

of σ(t) with respect to time t is

σ̇(t) =
n−1∑
j=1

cjej+1 + ẋ
(n)
d − θoξo(x, t) − bu

= b[b−1

n−1∑
j=1

cjej+1 + b−1ẋ
(n)
d − b−1θoξo(x, t) − u],

which has a similar form as equation (5.2). Therefore, the proposed FIL algorithm

can be applied directly and the convergence of σ is guaranteed which leads to the

convergence of x(t) to xd(t).

5.5 Illustrative Examples

In this section, the following one-link robotic manipulator is considered


 ẋ1

ẋ2


 =


 0 1

0 0





 x1

x2


 +


 0

1
ml2+I


 [u − gl cos x1 + η1],

where x1 is the joint angle, x2 is the angular velocity, m is the mass, l is the length,

I is the moment of inertia, u is the joint input and η1 = 5x2
1 sin3(5t) is a disturbance.

Let x2 be the control target and the desired trajectories for the i-th iteration is xd,i.

Throughout simulations the following two functions are chosen as target trajectories:

Class 1 xd,i = κi sin
3(0.5t), i is odd,

Class 2 xd,i = κi0.05e−t(2πt3 − t4)(2π − t), i is even,

where t ∈ [0, 2π], and κi is generated randomly from the interval of [−1, 0) ∪ (0, 1]

for each iteration i. The desired trajectories for the first four iterations are shown in



Chapter 5. FIL for Non-Uniform Tracking Tasks in the Presence of Parametric
Uncertainties 103

0 1 2 3 4 5 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

D
es

ire
d 

T
ra

je
ct

or
y

 i=0

 i=1

 i=2

 i=3

Figure 5.1: Desired trajectories for the first four learning iterations.

Fig. 5.1. Obviously, there is little similarity in the target trajectories between any

two consecutive iterations, except for the fixed interval T = 2π. Define b = 1
ml2+I

and the extended tracking error σ = 3e1 + e2. Then the dynamics of the extended

tracking error at the i-th iteration is

σ̇i = 3ė1,i + ė2,i

= 3e2,i + ẋd,i − b(ui − gl cos x1,i + η1,i)

= b(3b−1e2,i + b−1ẋd,i − ui + gl cos x1,i − η1,i). (5.30)

Case 1: b is time-varying.

The system parameters are chosen as: m = (3 + 0.1sint)kg, l = 1m and I =

0.5kg·m2. b is assumed to be unknown and the only available information is that b(t)

is positive. The system initial condition is: x1,i(0) = 0 and x2,i(0) = 0. In this case,

θ = [3b−1, b−1, gl, −5 sin3(5t), b−2ḃ] and ξ = [e2,i, ẋd,i, cos x1,i, x2
1,i, −1

2
σi]

T .
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Figure 5.2: Convergence of the extended tracking error σi in Case 1.

Choose k = 5 and β = 20. Applying control law (5.3) and (5.4), the learning

convergence is shown in Fig. 5.2. The horizon is the iteration number and the

vertical is the sup-norm |σi|sup.

Case 2: b is time-invariant.

The system parameters are: m = 3kg, l = 1m and I = 0.5kg · m2. b is an unknown

positive constant. The system initial condition is the same as in Case 1.

The system uncertainty can be expressed as θ1(t)ξ1,i+θ2ξ2,i, where θ1 = [−5 sin3(5t)],

θ2 = [3b−1, b−1, gl], ξ1,i = [x2
1,i] and ξ2,i = [e2,i, ẋd,i, cos x1,i]

T . Choose

β1 = β2 = 20. Applying the control laws (5.17), (5.18) and (5.19), the learning

convergence is shown in Fig. 5.3. The tracking error reduces to 1% of |σ0|sup after

a number of iterations.

The simulation results in both Case 1 and Case 2 demonstrate clearly the ability of
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Figure 5.3: Convergence of the extended tracking error σi in Case 2.

the learnability from different motion patterns.

Case 3: Learning for identical trajectory.

For comparison purpose, here the tracking control is conducted for a fixed target

trajectory xd = sin(0.5t) t ∈ [0, 2π]. Applying the same control design as in Case

2, Fig. 5.4 gives the simulation result. Since the identical trajectory tracking task

is a special case of non-identical trajectory tracking problems, obviously it is much

easier to learn.

Case 4: Comparison with the differential-type updating.

If we are not sure whether a parametric uncertainty is time-varying or time-invariant,

the safe way is to treat it as time-varying. In the following, we show that the

differential updating law alone fails to work for time-varying uncertainties.

Again consider Case 2, but treat the term −5 sin3(5t) as time-invariant. Hence
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Figure 5.4: Convergence of the extended tracking error σi in Case 3.

only the differential updating law is applied to all parameters. Choose controller

parameters k and β2 to be same as in Case 2, the simulation result is shown in Fig.

5.5.

From Fig. 5.5 we can see that the tracking error retains at a rather high level in

comparison with the previous case, due to the lack of the learnability of a differential-

type updating mechanism to time-varying parameters.

Case 5: Comparison with the traditional ILC approach

The following traditional D-type ILC is applied,

ui = ui−1 + βσ̇i−1.

Use the same model and parameters as in Case 2 and let β = 0.1, the simulation

result is given in Fig. 5.6. It is clearly shown that if the desired trajectories are

non-uniform, the learning convergence cannot be guaranteed by the traditional ILC
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Figure 5.5: Extended tracking error σi in Case 4.
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Figure 5.6: Extended tracking error σi in Case 5.
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any more.

5.6 Conclusion

A novel FIL control method has been developed in this chapter. The new method is

able to learn from different tracking tasks, that is, possessing the learnability along

learning axis for non-identical trajectories. Through detailed discussions and rigor-

ous analysis, we show that the system learnability comes from pointwise integration

iteratively, and that the learnable part must be invariant along the iteration axis,

which in our case is the time-varying but iteration-invariant parametric uncertain-

ties. By introducing the CEF, it is convenient to derive the convergence property

of the tracking error, and boundedness property of the system signal. Simulation

results demonstrate the effectiveness of the proposed FIL method.



Chapter 6

Fuzzy Logic Learning Control

6.1 Introduction

Fuzzy Logic Control (FLC) was originally advocated by Zadeh (Zadeh, 1973) and

Mamdani (Mamdani and Assilian, 1974) as a means of collecting human knowledge

and experience to deal with uncertainties in the control process. In recent years,

Fuzzy Logic Controllers have been widely used for industrial processes owing to their

heuristic nature associated with simplicity and effectiveness especially for nonlinear

uncertain systems. When a control task is given, a FLC is customized suitable for

the task by experienced experts or skilled operators who “learn” to develop the FLC

wherever the control task repeats.

The effectiveness of a FLC is mainly because of its structured nonlinearity. Many

FLCs are essentially fuzzy PD-, fuzzy PI- or fuzzy PID-type controllers associated

with nonlinear gains (Ying et al., 1990; Ying, 1999; Lee, 1990; Malki et al., 1994;

Xu, 1998). Because of the nonlinear property of control gains, this kind of FLCs

possesses the potential to improve and achieve better system performance. For

instance, the farther the system error or change of error is off the equilibrium point,

109
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the higher the control gain is. Thus the closed-loop system will respond faster to

the set-point change and recover faster from the load disturbance comparing to the

conventional PID control.

Generally speaking, the nonlinear structure property of a heuristically designed FLC

cater well to the characteristics of the industrial process under control. However

when a new control task is given, it is always imperative to re-adjust the FLC

so as to produce reasonable responses. It will naturally take experts or operators

long time and great efforts to re-adjust the FLC suitable for the new task through

trial and error. A simple and feasible idea is to retain the well established FLC

nonlinear structure and only tune the FLC parameters such as the input-output

scaling coefficients. FLC auto-tuning methods (Xu, 1998; Xu, 2000) have been

proposed which work effectively and can satisfy the specified gain margin and phase

margin. The main limitation of FLC auto-tuning is that the auto-tuning schemes

are only applicable to simple control tasks such as set-point control or step-type

load disturbance rejection. It would be a challenging work for a FLC to perform

complicated tracking control tasks.

One way to partially address the trajectory tracking problem is to offer the FLC

system a learning mechanism. Instead of letting experts learn to adjust, it is better

to let FLC incorporate adaptive or learning functions to adjust itself to best meet

the control task, which would be much more efficient and more accurate. Applying

neural network into the FLC (Lin and Lee, 1991; Ichikawa et al., 1992; Ng and

Trivedi, 1998; Behera and Anand, 1999; Chien, 2000) is one such possible approach.

However, a neural controller tends to be over complicated due to its large number

of nodes and weights. On the other hand, a simple neural network may not achieve

sufficient tracking precision. As a kind of input-to-output mapping approaches,

most neural controllers will reconstruct the whole control system, which is neither

practical from control engineering point of view, nor advisable from the FLC point
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of view where the “good” nonlinear structure is to be retained.

In this chapter we propose a new modular approach - Fuzzy Logic Learning Control

(FLLC), which integrates two complementary control approaches, FLC and FIL,

and improves the tracking performance through tasks repetitions.

In the configuration, FLLC consists of two control modules in an additive form: a

simple fuzzy logic controller, and a learning mechanism which updates the current

control profile from the previous control sequence. Such a construction does not alter

the existing FLC which is heuristic and proved effective from expert’s experience.

From the control point of view, FLC provides feedback and the learning mechanism

realizes feedforward compensation. Now if the control environment is repeatable or

more or less repeatable over a finite duration, the proposed FLLC can provide a

simple and effective way to possess such an internal model.

In this chapter we limit our discussion to a simple PD-type FLC. The proposed

FLLC method based on the Fuzzy PD focuses on learning for the repeatable control

tasks. The nonrepeatable factors such as random disturbance are assumed to be

very small, consequently negligible. Through rigorous proof based on EF, we show

that the FLLC system achieves the following novel properties: (1) the tracking error

sequence converges uniformly to zero; (2) learning control sequence converges to the

desired control profile almost everywhere.

The chapter is organized as follows. In Section 6.2, problem formulation and con-

trol objective are introduced. The structure and properties of a PD-type FLC are

derived in Section 6.3. In Section 6.4, FLLC with learning updating is introduced

with rigorous convergence analysis. Simulation work is presented in Section 6.5 to

demonstrate the effectiveness of the proposed scheme. Finally, Section 6.6 gives the

conclusion.
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6.2 Problem Formulation

In this chapter, we consider the second order nonlinear dynamical system described

by




ẋ1 = x2

ẋ2 = f(x, t) + b(x1, t)u
(6.1)

where y(t) = x1(t), x = [x1, x2] ∈ R2 is the physically measurable state vector, and

u is the control input. f(x, t) and b(x1, t) are nonlinear uncertain functions.

For this system we make the following assumptions:

Assumption 6.1. f(x, t) is bounded by a known function fmax(x, t), and 0 <

bmin ≤ b(x1, t) ≤ bmax where bmin and bmax are known constants.

Assumption 6.2. ∀q ∈ {f, b}, q(x, t) ∈ C(R2 × [0, T ]) and q(x, t) satisfies the

Lipschitz condition, ‖q(x1, t) − q(x2, t)‖ ≤ lq‖x1 −x2‖, ∀t ∈ [0, T ] and ∀x1,x2 ∈ R2.

Here the positive constant lq < ∞.

Given a finite initial state xi(0) and a finite time interval [0, T ] where i denotes

the iteration sequence, the control objective is to design a FLC combined with FIL

approach such that, as i → ∞, the system state xi of the nonlinear uncertain system

(6.1) tracks the desired trajectory xd = [xd,1, xd,2] ∈ R2 which is generated by the

following dynamics over [0, T ]




ẋd,1 = xd,2

ẋd,2 = α(xd, t) + r(t)
(6.2)

where α(xd, t) ∈ C(R2× [0, T ]) is a known function and r(t) ∈ C([0, T ]) is a reference

input. As part of the repeatability condition, the I.I.C., i.e. xi(0) = xd(0), is

available for all trials.
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Figure 6.1: Overall structure of the FLC closed-loop system.

6.3 Properties of A Fuzzy PD Controller

For a large class of FLCs, fuzzy input variables are the error e and the change of error

ė. The fuzzy rule table is then established on the phase plane (e, ė). In essence, these

fuzzy controllers are fuzzy PD-, fuzzy PI- or fuzzy PID-type controllers associated

with nonlinear gains. Because of the nonlinear property of control gains, FLCs

possess the potential to improve and achieve better system performance. Due to the

existence of nonlinearity, it is usually difficult to conduct theoretical analysis and

find out appropriate design methods.

Consider a typical class of fuzzy PD controllers (Ying, 1993) and the control system

is shown in Fig. 6.1. The inputs of the fuzzy rule base are the normalized error (ωee)

and the normalized change of error (ωėė) where ωe and ωė are weighting factors. The

error and the change of error are defined as


e(t) = yd(t) − y(t)

ė(t) = dyd(t)
dt

− dy(t)
dt

.

The membership functions used to fuzzify the inputs are triangular in shape shown

in Fig. 6.2 and, consequently, there are four simple fuzzy control rules (Table 6.1)

used in the FLC. The reasons to choose this type of FLC are (1) theoretical analysis
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Figure 6.2: The membership functions of inputs (ωee, ωėė) and output.

Table 6.1: Fuzzy control rules. N: negative; P: positive; Z: zero.

Rule 1 If error is N and change of error is N, control action is N

Rule 2 If error is N and change of error is P, control action is Z

Rule 3 If error is P and change of error is N, control action is Z

Rule 4 If error is P and change of error is P, control action is P

is possible owing to the known structural knowledge; (2) the nonlinearity of the

simplest fuzzy PD controller is the strongest in the case of linear distributed rules

(Buckley and Ying, 1989); (3) it is highly desirable to make the FLCs as simple as

possible and leave the performance refining task to learning control, i.e. maximize

the automated learning and minimize the heuristic learning efforts in deriving FLC

rules.

The fuzzy output variables have trapezoidal shape membership functions and the

lengths of their upper and lower bases are 2A and 2H (Fig. 6.2), respectively.

Zadeh’s AND (MIN) and Lukasiewicz’s OR are used in the fuzzy inference and

the most general inference method, the Mamdamni’s minimum inference method

(Xu et al., 1998), is considered in the discussion. By using the center of gravity

(COG) defuzzification method, (Ying, 1993) has discussed the control property when
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Figure 6.3: Control surface u (left) and nonlinear control gain k (right) produced

by FLC (Unsaturated region).

A ≤ 0.5H, and the overall control output can be obtained (inside the unsaturated

region of the universe of discourse)

uf = k(e, ė)(ωee + ωėė) (6.3)

k(e, ė) =
0.5Hωu[(1 + θ) + 0.5(1 − θ)|ωee − ωėė|]

(3 + θ) − [(1 + θ)max(ωe|e|, ωė|ė|) + 0.5(1 − θ)((ωee)2 + (ωėė)2)]

where θ = A
H

and k(e, ė) is the nonlinear part of the FLC output.

Let H = 1, θ = 0.5 and ωe = ωė = ωu = 1, the control surface of the FLC and the

surface of k(e, ė) of the unsaturated region are shown in Fig. 6.3.

In most cases, we find that the two-dimensional rule table has the skew-symmetry

property (Choi et al., 1999). The unsaturated phase plane is divided into two semi-

planes by means of a switching line σ. Within the semi-planes positive and negative

control outputs are produced respectively. While outside the unsaturated region,

the output of FLCs will be partially or fully saturated. In general we can choose ωe

and ωė to ensure that the control task can be fulfilled by the FLC in the unsaturated

region. From (6.3), the PD-type FLC can be expressed as

uf = k(e, ė)σ
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where σ = ωee + ωėė is the switching line, 0 < kmin ≤ k(e, ė) ≤ kmax and |uf | is

bounded by uF .

Remark 6.1. Note that k(e, ė) is a bounded function of the arguments e and ė. Thus,

uf = 0 whenever the system is at its equilibrium e = ė = 0. However, from (6.1) we

can see that the desired control input at the equilibrium is

ud = b−1(xd,1, t)[ẋd,2 − f(xd, t)]

which may not be zero ∀t ∈ [0, T ]. This shows the essential problem of all kinds of

feedback control inclusive of FLCs due to the lack of “internal model”. Learning

control, as one of the most effective feedforward methods, complements FLCs.

6.4 Fuzzy Logic Learning Control

The proposed FLLC is given below

ui = proj[ui−1] + uf,i, u−1(t) = 0 (6.4)

uf,i = k(ei, ėi)σi (6.5)

σi = ωeei + ωėėi (6.6)

where i denotes the iteration sequence, ui is the system input and 0 < kmin <

k(ei, ėi) ≤ kmax. Moreover, it is assumed that the original FLC based on heuristic

knowledge should ensure the system stability, though may still yield a large tracking

error with respect to the tracking task specified by (6.2).

To evaluate the learning performance, the following time-weighted L2 norm of ui−ud

is used

Ji(t) =

∫ t

0

e−λτ [ui(τ) − ud(τ)]2dτ. (6.7)
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The difference of Ji(t) between two successive trials can be derived as

∆Ji(t)
�
= Ji(t) − Ji−1(t)

=

∫ t

0

e−λτ (ui − ud)
2dτ −

∫ t

0

e−λτ (ui−1 − ud)
2dτ

≤
∫ t

0

e−λτ (ui − ud)
2dτ −

∫ t

0

e−λτ (proj[ui−1] − ud)
2dτ

=

∫ t

0

e−λτ [ui − proj[ui−1]][ui + proj[ui−1] − 2ud]dτ

=

∫ t

0

e−λτ{u2
f,i + 2uf,i[proj[ui−1] − ud]}dτ. (6.8)

First we derive the expressions of proj[ui−1] − ud and ui − ud. From (6.6) we can

obtain

σi = ωeei + ωėėi = ωe(xd,1 − x1,i) + ωė(xd,2 − x2,i). (6.9)

Differentiating (6.9) with respect to t yields

σ̇i = ωe(ẋd,1 − ẋ1,i) + ωė(ẋd,2 − ẋ2,i). (6.10)

Substituting (6.1) and (6.2) into (6.10) gives

σ̇i = ωe(xd,2 − x2,i) + ωė(α(xd, t) + r(t)) − hi − liui

= gi − hi − liui

where hi
�
= ωėf(xi, t), li

�
= ωėb(x1,i, t), gi

�
= ωe(xd,2 − x2,i) + gd, gd

�
= ωėα(xd, t) +

ωėr(t).

Then

ui = −l−1
i σ̇i + l−1

i gi − l−1
i hi. (6.11)

Let σ̇i = 0, consequently σi(t) = σi(0) = 0. According to (6.11), the desired control

is

ud = l−1
d gd − l−1

d hd
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where hd
�
= ωėf(xd, t), ld

�
= ωėb(xd,1, t).

It can be derived that

ui − ud = −l−1
i σ̇i − γi (6.12)

proj[ui−1] − ud = ui − uf,i − ud = −uf,i − l−1
i σ̇i − γi (6.13)

where

γi = (l−1
d gd − l−1

i gi) − (l−1
d hd − l−1

i hi). (6.14)

Here γi is the equivalent system uncertainties. From (6.14) we know

γi = (l−1
d gd − l−1

i gi) − (l−1
d hd − l−1

i hi).

It can be derived that

|γi| ≤ |l−1
d gd − l−1

i gd + l−1
i gd − l−1

i gi| + |l−1
d hd − l−1

i hd + l−1
i hd − l−1

i hi|

≤ l−1
i l−1

d |ld − li| · |gd| + l−1
i |gd − gi| + l−1

i l−1
d |ld − li| · |hd| + l−1

i |hd − hi|.

Since gd − gi = ωe(xd,2 − xi,2), we have

|gd − gi| ≤ ωe‖xd − xi‖.

Under Assumption 6.1, b−1
i is bounded by b−1

min, so l−1
i and l−1

d are also bounded by

(ωėbmin)−1. Since hd and gd are both bounded, we denote that h̄d = sup
t∈[0, T ]

hd(t) and

ḡd = sup
t∈[0, T ]

gd(t). Using the Lipschitz condition described in Assumption 6.2 we can

obtain

|γi| ≤ c‖xd − xi‖ (6.15)

where

c = ωėb
−1
min(ωėlbωėb

−1
minḡd + ωė + ωėb

−1
minωėlbh̄d + ωėlf)

which is a finite positive constant.

To facilitate FLLC analysis, we give three propositions which reveal the bound

relationships among the quantities σi, xi, and γi.
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Proposition 6.1. For system (6.1), given the desired trajectory (6.2) and the FLLC

laws (6.4) and (6.5), the following stands

ẋd − ẋi = A (xd − xi) + pσ̇i, (6.16)

‖xd − xi‖ ≤ ω−1
ė ‖A‖

∫ t

0

|σi(τ)|e‖A‖(t−τ)dτ + ω−1
ė |σi| (6.17)

where A =


 0 1

0 −ω−1
ė ωe


 and p =

[
0 ω−1

ė

]T

.

Proof:

Combining (6.1) and (6.2) yields

ẋd,1 − ẋ1,i = xd,2 − x2,i. (6.18)

Rearranging (6.10) gives

ẋd,2 − ẋ2,i = −ω−1
ė ωe(xd,2 − x2,i) + ω−1

ė σ̇i. (6.19)

Combining (6.18) and (6.19) gives (6.16). Integrating both sides of (6.16) and notic-

ing σi(0) = 0 and xi(0) = xd(0) obtain

xd − xi = A

∫ t

0

(xd − xi) dτ + pσi.

Taking the norm of the above and since ‖p‖ = ω−1
ė , the following stands

‖xd − xi‖ ≤ ‖A‖
∫ t

0

‖xd − xi‖dτ + ω−1
ė |σi|.

Applying Bellman-Gronwell Lemma I (Ioannou and Sun, 1996), we can obtain

(6.17).

Proposition 6.2. For system (6.1), given the desired trajectory (6.2) and the FLLC

laws (6.4) and (6.5), the following stands

∫ t

0

e−λτ |σi(τ)| · |γi(τ)|dτ ≤ (
cω−1

ė + cω−1
ė ‖A‖Te‖A‖T ) ∫ t

0

e−λτσ2
i (τ)dτ. (6.20)
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Proof:

It can be obtained from (6.15) and (6.17) that

|γi| ≤ cω−1
ė ‖A‖

∫ t

0

|σi(τ)|e‖A‖(t−τ)dτ + cω−1
ė |σi(t)|. (6.21)

Since 0 ≤ ν ≤ τ ≤ t ≤ T , then 0 ≤ τ − ν ≤ τ ≤ T and −λ
2
τ ≤ −λ

2
ν. Using Hölder

inequality (Ioannou and Sun, 1996), it can be obtained from (6.21) that
∫ t

0

e−λτ |σi(τ)| · |γi(τ)|dτ

≤
∫ t

0

[∫ τ

0

cω−1
ė ‖A‖e‖A‖(τ−ν)e−λτ |σi(τ)| · |σi(ν)|dν

]
dτ +

∫ t

0

cω−1
ė e−λτσ2

i (τ)dτ

≤ cω−1
ė ‖A‖e‖A‖T

∫ t

0

[∫ τ

0

e−λτ |σi(τ)| · |σi(ν)|dν

]
dτ +

∫ t

0

cω−1
ė e−λτσ2

i (τ)dτ

= cω−1
ė ‖A‖e‖A‖T

∫ t

0

e−
λ
2
τ |σi(τ)|

[∫ t

0

e−
λ
2
τ |σi(ν)|dν

]
dτ +

∫ t

0

cω−1
ė e−λτσ2

i (τ)dτ

≤ cω−1
ė ‖A‖e‖A‖T

∫ t

0

e−
λ
2
τ |σi(τ)|

[∫ t

0

e−
λ
2
ν |σi(ν)|dν

]
dτ +

∫ t

0

cω−1
ė e−λτσ2

i (τ)dτ

= cω−1
ė ‖A‖e‖A‖T

[∫ t

0

e−
λ
2
τ |σi(τ)|dτ

]2

+

∫ t

0

cω−1
ė e−λτσ2

i (τ)dτ

≤ cω−1
ė ‖A‖e‖A‖T

[∫ t

0

e−λτσ2
i (τ)dτ

] [∫ t

0

12dτ

]
+

∫ t

0

cω−1
ė e−λτσ2

i (τ)dτ

≤ (
cω−1

ė + cω−1
ė ‖A‖Te‖A‖T ) ∫ t

0

e−λτσ2
i (τ)dτ.

Proposition 6.3. For system (6.1), given the desired trajectory (6.2) and under

the control laws (6.4) and (6.5), the following stands

‖xi − xd‖ ≤ bmaxe
lT T

1
2 J

1
2
i (T ), (6.22)

|σi| ≤ bmax(ω
2
e + ω2

ė)
1
2 elT T

1
2 J

1
2
i (T ). (6.23)

where l
�
= max(λ, ‖A‖ + bmaxc).

Proof:

From (6.12), it can be obtained that

σ̇i = liud − liui − liγi.
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Substituting the above into (6.16) yields

ẋd − ẋi = A(xd − xi) + p(liud − liui − liγi)

Since xi(0) = xd(0), ‖p‖ = ω−1
ė and from Assumption 6.1 li ≤ ωėbmax, it can be

obtained from the above that

‖xd − xi‖ ≤ ‖A‖
∫ t

0

‖xd − xi‖dτ + bmax

∫ t

0

|ui − ud|dτ

+bmax

∫ t

0

|γi|dτ (6.24)

Substituting (6.15) into (6.24) yields

‖xd − xi‖ ≤ (‖A‖ + bmaxc)

∫ t

0

‖xd − xi‖dτ + bmax

∫ t

0

|ul,i − ud|dτ.

It can be obtained by the Hölder inequality and Bellman-Gronwall Lemma II (Ioannou

and Sun, 1996) that

‖xd − xi‖ ≤ l1

∫ t

0

‖xd − xi‖dτ + bmax

∫ t

0

|ul,i − ud|dτ

≤
∫ t

0

bmaxe
l(t−τ)|ul,i − ud|dτ

≤ bmaxe
lT

∫ T

0

e−lτ |ul,i − ud|dτ

≤ bmaxe
lT

[∫ T

0

e−2lτ (ul,i − ud)
2dτ

] 1
2
[∫ T

0

12dτ

] 1
2

≤ bmaxe
lT T

1
2

[∫ T

0

e−λτ (ul,i − ud)
2dτ

] 1
2

= bmaxe
lT T

1
2 J

1
2
i (T ) (6.25)

where l1 = ‖A‖ + bmaxc and l
�
= max(λ, l1). From (6.5) we have

σi =

[
ωe ωė

]T

(xd − xi) (6.26)

|σi| ≤ (ω2
e + ω2

ė)
1
2‖xd − xi‖ (6.27)

Hence from (6.25) and the above, we can obtain (6.23) which completes the proof.
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In the following, we first give the convergence property of the proposed FLLC when

the FLC part works within the unsaturated region.

Theorem 6.1. Consider the nonlinear system (6.1) satisfying assumptions Assump-

tion 6.1 and Assumption 6.2, together with the desired trajectory xd defined in (6.2).

Under the control laws (6.4) and (6.5), as i → ∞, ui converges to ud almost every-

where, σi converges uniformly to 0 and xi converges uniformly to xd.

Proof:

Substituting (6.13) into (6.8) gives

∆Ji(t) ≤
∫ t

0

e−λτ (−u2
f,i − 2uf,il

−1
i σ̇i − 2uf,iγi)dτ.

Then

∆Ji(t) ≤
∫ t

0

e−λτ (−2kil
−1
i σiσ̇i − 2kiσiγi)dτ

= −
∫ t

0

2e−λτkil
−1
i σiσ̇idτ −

∫ t

0

2e−λτkiσiγidτ.

Since b(x1, t) is bounded, li ∈ [ωėbmin, ωėbmax],

∆Ji(t) ≤ −kmin(ωėbmax)
−1

∫ σ2
i (t)

0

e−λtdσ2
i + 2kmax

∫ t

0

e−λτ |σi||γi|dτ

≤ −kmin(ωėbmax)
−1e−λtσ2

i − λkmin(ωėbmax)
−1

∫ t

0

e−λτσ2
i dτ

+2kmax

∫ t

0

e−λτ |σi||γi|dτ.

Using Proposition 6.2, we can derive

∆Ji(t) ≤ −kmin(ωėbmax)
−1e−λtσ2

i − λkmin(ωėbmax)
−1

∫ t

0

e−λτσ2
i dτ

+2kmax(cω
−1
ė + cω−1

ė ‖A‖Tfe
‖A‖T )

∫ t

0

e−λτσ2
i (τ)dτ

= −kmin(ωėbmax)
−1e−λtσ2

i

−kmin(ωėbmax)
−1

∫ t

0

[λ − 2kmaxk
−1
minbmax(c + c‖A‖Te‖A‖T )]e−λτσ2

i (τ)dτ.
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Since 2kmaxk
−1
minbmax(c + c‖A‖Te‖A‖T ) is a finite positive constant, there exists a

sufficiently large λ such that λ ≥ 2kmaxk
−1
minbmax(c + c‖A‖Te‖A‖T )+ k−1

min(ωėbmax) to

ensure

∆Ji(t) ≤ −kmin(ωėbmax)
−1e−λtσ2

i −
∫ t

0

e−λτσ2
i dτ. (6.28)

According to (6.7), Ji(t) ≥ 0, then from (6.28) we have

0 ≤ Ji(t) ≤ Ji−1(t) ≤ · · · ≤ J1(t).

From (6.28), taking the summation over j = 1 to i obtains

Ji(t) − J1(t) ≤ −kmin(ωėbmax)−1e−λt
i∑

j=1

σ2
j (t)

As Ji ≥ 0, we have from the above that

lim
i→∞

i∑
j=1

σ2
j (t) ≤ kmin

−1(ωėbmax)e
λtJ1(t)

which concludes that

lim
i→∞

σi(t) = 0, ∀t ∈ [0, T ].

As lim
i→∞

σi(t) = 0, from (6.5) and (6.17), lim
i→∞

uf,i = 0 and lim
i→∞

xi = xd. According to

(6.15), lim
i→∞

γi = 0.

From (6.12) and (6.7), it can be obtained

lim
i→∞

Ji(t) = lim
i→∞

∫ t

0

e−λτ [ui(τ) − ud(τ)]2dτ

= lim
i→∞

∫ t

0

e−λτ (ωėbi)
−2σ̇2

i dτ

= lim
i→∞

∫ σ(t)

0

e−λτ (ωėbi)
−2σ̇idσi. (6.29)

From (6.5) we can obtain

σ̇i = ωeėi + ωėëi

= ωe(ẋd,1 − ẋ1,i) + ωė(ẋd,2 − ẋ2,i)

= ωe(xd,2 − x2,i) + ωė(ẋd,2 − fi − bui). (6.30)
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As ui is bounded, considering Proposition 6.3, σ̇i is bounded. Since e−λτ (ωėbi)
−2σ̇i

is bounded and lim
i→∞

σi(t) = 0, we can obtain

lim
i→∞

Ji(t) = 0, ∀t ∈ [0, T ] (6.31)

and ui converges to ud almost everywhere.

From Proposition 6.3 and (6.31), both xi and σi are bounded. We have

lim
i→∞

sup
t∈[0, T ]

|σi| = 0, lim
i→∞

sup
t∈[0, T ]

‖xd − xi‖ = 0,

σi and xi are uniformly convergent.

From (6.5) and ei(0) = 0, by solving the differential equation (6.1) with the FLLC,

we can reach that ei and ėi uniformly converge to zero as i → ∞.

Now let us consider the circumstances where FLC may enter its saturated or semi-

saturated regions. Note that k(e, ė) is undefined or is zero where (ωee > 1)∩ (ωėė <

−1) or (ωee < −1) ∩ (ωėė > 1) because of the null control action in these two

regions. Nevertheless, we can still prove that the FLC part will re-enter and remain

in the unsaturated region after finite iterations. Consequently, FLLC will converge

uniformly as i → ∞.

Theorem 6.2. In the presence of FLC saturation, consider the nonlinear system

(6.1) satisfying Assumption 6.1 and Assumption 6.2, together with the desired tra-

jectory xd defined in (6.2). Under the control laws (6.4) and (6.5), as i → ∞, ui

converges to ud almost everywhere, σi converges uniformly to 0 and xi converges

uniformly to xd.

Proof:

Rewrite the system (6.1) as

ẋ = f(x, t) + b(x, t)u
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where f(x, t) = [x2 f(x, t)]T and b(x, t) = [0 b(x1, t)]
T . The desired system is

ẋd = f(xd, t) + b(xd, t)ud.

Then

ė(t) = ẋd − ẋ

= f(xd, t) − f(x, t) + b(xd, t)ud − b(x, t)u

where e = [e, ė]T
�
= [e1, e2]

T .

From Proposition 6.3 we can obtain

‖e‖ = ‖xd − x‖

≤ bmaxe
lT T

1
2 J

1
2
i (T )

where J
1
2
i (T ) is bounded according to (6.4) and (6.7).

From (6.1), it can be derived

ė1 = e2

ė2 = f(xd, t) − f(x, t) + b(xd,1, t)ud − b(x1, t)u.

Then

|ė1| = |e2|

≤ ‖e(t)‖

≤ bmaxe
lT T

1
2 J

1
2
i (T ) (6.32)

|ė2| ≤ Lf‖e(t)‖ + 2bmaxumax

≤ 2Lfbmaxe
lT T

1
2 J

1
2
i (T ) + 2bmaxumax (6.33)

where umax = uM + uF is the bound of the system input and Lf is the Lipschitz

constant of f(x, t). The relations (6.32) and (6.33) show that both e1 and e2, in the

worst case, have finite divergent speed.
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As the initial state ei(0) = 0 is available for all the trials and its divergent speed

is limited, at least one non-infinitesimal time interval [0, T1] exists such that FLC

works in the unsaturated region (|ωee1| < 1) ∩ (|ωėe2| < 1), i.e.

T1 = Min(t1, τ1)

where

t1 =
1 − 0

ωe|ė1|max

τ1 =
1 − 0

ωė|ė2|max
.

According to Theorem 6.1, ∀t ∈ [0, T1], e1,i(t) and e2,i(t) uniformly converge to zero

as i → ∞. It means there always exists a non-infinitesimal quantity ε1 and a finite

integer N1, such that |ωee1,i(t)| < ε1 << 1 and |ωėe2,i(t)| < ε1 << 1 (∀t ∈ [0, T1])

when iteration number i > N1.

Analogously, there exits another time interval [T1, T2] such that FLC works in the

unsaturated region for any iteration i > N1.

T2 = T1 + Min(t2, τ2)

where

t2 =
1 − ε1

ωe|ė1|max

τ2 =
1 − ε1

ωė|ė2|max
.

Applying Theorem 6.1 again, we can obtain ∀t ∈ [0, T2], e1,i(t) and e2,i(t) uniformly

converge to zero as i → ∞. In other words, there always exists a non-infinitesimal

quantity ε2 and a finite integer N2, such that |ωee1,i(t)| < ε2 << 1 and |ωėe2,i(t)| <

ε2 << 1 (∀t ∈ [0, T2]) when iteration time i > N2.

Since [0, T ] is a finite interval, by repeating the above procedure for finite times K,

a time interval [TK−1, TK ] (TK ≥ T ) can be found in which the FLC works in the
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unsaturated region.

TK = TK−1 + Min(tK , τK)

where

tK =
1 − εK−1

ωe|ė1|max

τK =
1 − εK−1

ωė|ė2|max

.

Eventually the FLC will work in the unsaturated region over the whole cycle [0, T ],

because each interval [Tj, Tj+1] (j = 1, · · ·, K) is a non-infinitesimal interval. Ac-

cording to Theorem 6.1, ∀t ∈ [0, T ], e1,i(t) and e2,i(t) uniformally converge to zero

as i → ∞.

From the above derivation, it can be clearly seen that even if FLC works in the

saturated region during some iterations, the FLC part will re-enter the unsaturated

region and remain in it. As i → ∞, we can still derive that ui converges to ud almost

everywhere, σi converges uniformly to 0 and xi converges uniformly to xd.

6.5 Illustrative Examples

In this section, the FLLC will be applied to a simple nonlinear mass-spring-damper

mechanical system (Wang et al., 1996) as shown in Fig. 6.4. The behavior of this

system can be described by

Mẍ + g(x, ẋ) + f(x) = φ(ẋ)u (6.34)

g(x, ẋ) = D(c1x + c2ẋ + c3ẋ
3)

f(x) = c4x + c5x
3

φ(ẋ) = 1 + c6ẋ + c7ẋ
3 + c8sinẋ

where M is the mass and u is the force. f(x), g(x, ẋ) and φ(ẋ) describe the spring,

the damper and the input nonlinearity and uncertainty respectively. The control
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Figure 6.4: Mass-spring-damper system.

task is to track the desired trajectory

xd = 1.728 × sin3(0.7t) t ∈ [0, 9].

Case 1

The system parameters are set to be: M = 1.0, D = 1.0, c1 = 0.01, c2 = 0.1, c3 = 0,

c4 = 0.01, c5 = 0, c6 = 0.01, c7 = 0, c8 = −0.01. The plant (6.34) can be rewritten

as

ẍ = −0.1ẋ − 0.02x + (1 − 0.01sinẋ + 0.01ẋ)u. (6.35)

Consider the FLC described in Section 4.3. Since there is no systematic way to fine

tune the three FLC parameters (ωe, ωė, ωu), for demonstration purpose six sets of

parameters are randomly chosen within the range of [4, 8]. The FIL is further added

to the FLC to improve the tracking performance. To demonstrate the effectiveness of

the proposed FLLC, the maximum tracking error of each iteration (emax) is recorded

and shown in Table 6.2. We can see that the incorporation of FIL can dramatically

reduce the tracking error even if only one iteration is performed. After a number of

learning iterations, the maximum tracking error can be reduced to less than 0.001

regardless of the FLC parameters settings.

Case 2
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Table 6.2: Comparison of FLLC with different FLC parameters (Case 1).

ωe ωė ωu FLC Error emax(i = 1) emax(i = 2) emax (i = 3) emax (i = 4) i (emax < 10−3)

5 5 4 0.1678 0.0423 0.0161 0.0073 0.0038 12

6 6 5 0.1035 0.0175 0.0041 0.0019 0.0010 5

7 7 6 0.0791 0.0097 0.0017 0.0007 0.0006 3

8 8 7 0.0624 0.0057 0.0008 0.0003 0.0002 2

4 4 8 0.1152 0.0186 0.0040 0.0017 0.0008 4

8 8 4 0.1028 0.0174 0.0054 0.0022 0.0011 5

The system parameters are chosen to be: M = 1.0, D = 1.0, c1 = 0.01, c2 = 0.1,

c3 = 0.15, c4 = 0.01, c5 = 0.1, c6 = 0.01, c7 = 0, c8 = −0.6. The plant (6.34) can be

rewritten as

ẍ = −0.1ẋ − 0.02x − 0.15ẋ3 − 0.1x3 + (1 − 0.6sinẋ + 0.01ẋ)u.

Applying FLLC with the same parameters as in Case 1, the tracking control results

are summarized in Table 6.3.

The FLLC can work equally well in the presence of stronger nonlinearities.

Case 3

From Table 6.2 and Table 6.3, we can observe that the larger the (ωe, ωė, ωu), the

smaller the FLC tracking error. However, it is not advisable to reduce the tracking

error only through increasing the FLC gains. Due to the discrete-time control nature,

the FLC gains are limited by the system sampling period. Again consider the plant

given in Case 1, but with a larger sampling period of 10ms. Choosing ωe = 7,

ωė = 7, ωu = 5 and applying FLLC, Fig. 6.5 shows the control signal and the

tracking error after six iterations.
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Table 6.3: Comparison of FLLC with different FLC parameters (Case 2).

ωe ωė ωu FLC Error emax(i = 1) emax(i = 2) emax (i = 3) emax (i = 4) i (emax < 10−3)

5 5 4 0.2061 0.0700 0.0395 0.0241 0.0145 33

6 6 5 0.1400 0.0429 0.0208 0.0106 0.0054 12

7 7 6 0.1077 0.0251 0.0109 0.0048 0.0024 8

8 8 7 0.0854 0.0139 0.0062 0.0023 0.0014 6

4 4 8 0.1528 0.0305 0.0215 0.0111 0.0067 16

8 8 4 0.1399 0.0418 0.0178 0.0080 0.0046 11
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Figure 6.5: Control signal and output error of FLLC with low gain.
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Figure 6.6: Control signal and output error of FLC with high gain.

For comparison purpose, choosing higher FLC gains ωe = 15, ωė = 15, ωu = 20 and

only applying FLC, Fig. 6.6 shows the control signal and the tracking error.

Due to large (ωe, ωė, ωu), control chattering phenomenon occurs (Fig. 6.6), yet the

tracking error is about 100 times larger than that of FLLC. Obviously, in practice it

is difficult for such a simple FLC to obtain accurate tracking performance. FLLC, on

the other hand, can obtain much better tracking performance and much smoother

control profiles with only a few iterations.

6.6 Conclusion

In this chapter, a novel control scheme - Fuzzy Logic Learning Control (FLLC) is

proposed for repeatable tracking control tasks. The new FLLC is constructed in an

add-on fashion: FIL mechanism is added to the existing FLC without changing the

FLC structure and settings. Both theoretical analysis and simulations show that the

FLLC method possesses the capability of improving control performance through

learning iterations. Through rigorous proof, we reach the conclusion that, by means
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of the proposed FLLC, the tracking error uniformly converges to zero, the system

states converge to the desired trajectory and the learning control profile converges

to the desired one almost everywhere.



Chapter 7

IIL for Systems with Parametric

Uncertainties

7.1 Introduction

In Chapters 2– 6, theories of FIL have been discussed and several FIL schemes have

been proposed. From this chapter, the learning over finite time interval [0, T ] is

extended to [0,∞).

Adaptive control is a systematical design method for nonlinear systems with time-

invariant parametric uncertainties. Based on a parametric adaptation mechanism,

the asymptotic tracking convergence can be guaranteed in the presence of constant

parametric uncertainties. However, it is difficult to extend the traditional adaptive

control into nonlinear systems with time-varying parametric uncertainties. RC is an

effective way to handle systems with periodic time-varying uncertainties. However,

most of the RC schemes are only applicable to linear/linearizable systems and the

requirement for the periodicity of the control target is essential.

If the parametric uncertainties are periodic, can we find a novel learning algorithm

133
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by taking the advantage of the repeatability property?

Based on the concept of CEF, a new IIL approach is developed in this chapter for

systems with time-varying but periodic parametric uncertainties. Through rigorous

proof, it will be shown that, only if the periodicity of the time-varying parametric

uncertainty is known a priori, the learning convergence can be obtained, even if the

desired tracking trajectory is non-periodic.

Comparing with CM-type IIL, i.e. RC, the new IIL can be applied to systems with

NGLC nonlinearities and the control target can be periodic or non-periodic. Hence,

the developed IIL scheme greatly widens the application area of learning control.

This chapter is organized as follows. In Section 7.2, a CEF-type IIL scheme for

a class of SISO system with parametric uncertainty is first analyzed. Based on

it, the IIL approach is further extended to high-order MIMO systems in Section

7.3. Illustrative examples are given in Section 7.4. Finally, Section 7.5 draws the

conclusion.

7.2 IIL for SISO Systems with Parametric Uncer-

tainties

Consider the following simple dynamic system:

ẋ = u(t) + θ(t)ξ(x, t), x(0) = x0 (7.1)

where θ(t) ∈ C0(R, [0,∞)) is an unknown time-varying parametric uncertainty and

ξ(x, t) : R×R+ → R is a known function which may be GLC or NGLC.

It is assumed that the system uncertainty θ(t) satisfies the following assumption.

Assumption 7.1. The system uncertainty θ(t) is periodic with a known period of
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T , i.e. θ(t) = θ(t − T ).

The ultimate control objective is to find an appropriate control signal u(t), such

that the system state x converges to the desired trajectory xd ∈ C1(R, [0,∞)) in L2
T

norm, where the L2
T norm of a function h(t), t ∈ [t−T, t), is defined as

∫ t

t−T
|h(τ)|2dτ .

Note that the desired trajectory xd can be non-periodic.

The CEF-type IIL is constructed as follows.

u = ke + ẋd − θ̂(t)ξ (7.2)

θ̂(t) =




−γ0(t)ξe(t) t ∈ [0, T )

θ̂(t − T ) − γξe(t) t ∈ [T,∞)
, (7.3)

where ξ = ξ(x, t), γ > 0 is a constant learning gain for t ≥ T and γ0(t) is a

continuous and strictly increasing function satisfying γ0(0) = 0 and γ0(T ) = γ.

The special design for the learning gain of the first period, γ0(t), is to ensure the

continuity of θ̂(t) in the neighborhoods centered around t = iT where i ∈ Z+.

Substituting the control law (7.2) into the dynamics (7.1) yields the error dynamics

ė = ẋd − θξ − u

= −ke − φξ (7.4)

e(0) = xd(0) − x0,

where φ = θ − θ̂.

The main result for the proposed IIL approach is summarized in the following the-

orem.

Theorem 7.1. For system (7.1), under Assumption 7.1, the control laws (7.2) and

(7.3) ensure that the tracking error e(t) converges to 0 in the sense of L2
T norm.

Proof:
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The following CEF will be adopted to analyze the learning convergence:

E(t) =
1

2
e2(t) +

1

2γ

∫ t

t−T

φ2(τ)dτ. (7.5)

The proof contains three parts to address the difference of the defined CEF, the

learning convergence and the boundedness property of the controlled system respec-

tively.

(I) Difference of CEF

Let us first derive the difference of the CEF over one period for any t ≥ T .

∆E(t)
�
= E(t) − E(t − T )

=
1

2
e2(t) − 1

2
e2(t − T ) +

1

2γ

∫ t

t−T

[φ2(τ) − φ2(τ − T )]dτ. (7.6)

Looking into the first two term on the RHS of the ∆E and using the error dynamics

(7.4), we have

1

2
e2(t) − 1

2
e2(t − T ) =

∫ t

t−T

eėdτ

=

∫ t

t−T

(−ke2 − φξe)dτ. (7.7)

Using the algebraic relationship (a − b)2 − (a − c)2 = (c − b)[2(a − b) + (b− c)] and

the periodicity θ(t) = θ(t − T ), by substituting the parameter updating law (7.3),

the third term on the RHS of (7.6) can be expressed as

1

2γ

∫ t

t−T

[φ2(τ) − φ2(τ − T )]dτ

=
1

2γ

∫ t

t−T

[θ̂(τ − T ) − θ̂(τ)]{2[θ(τ) − θ̂(τ)] + θ̂(τ) − θ̂(τ − T )}dτ

=

∫ t

t−T

[φ(τ)ξ(τ)e(τ) − γ

2
ξ2(τ)e2(τ)]dτ. (7.8)

Substituting (7.7) and (7.8) into (7.6) yields

∆E(t) = −k

∫ t

t−T

e2dτ − γ

2

∫ t

t−T

ξ2e2dτ ≤ −k

∫ t

t−T

e2dτ ≤ 0. (7.9)
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(II) Convergence Property

Applying (7.9) repeatedly for any t ∈ [nT, (n + 1)T ], and denoting t0 = t − nT , we

have

E(t) = E(t0) +

n−1∑
i=0

∆E(t − iT )

and

lim
t→∞

E(t) < E(t0) − lim
n→∞

k

n−1∑
i=0

∫ t−iT

t−(i+1)T

e2dτ. (7.10)

Considering the positiveness of E(t), if E(t0) is bounded, the tracking error e(t)

converges to zero asymptotically in L2
T norm, i.e.

lim
t→∞

∫ t

t−T

e2dτ = 0.

(III) Boundedness Property

Now we will prove the finiteness of E(t0). The finiteness property is necessary, as

ξ(x, t) may be a local Lipschitz continuous function and finite escape time phenom-

enon may occur.

From the system dynamics (7.1) and the proposed control laws (7.2) and (7.3), it

can be derived that the RHS of (7.1) is continuous with respect to all the arguments.

According to the existence theorem of differential equation (Yoshizawa, 1996), there

exists a solution in an interval [0, T1) ⊂ [0, T ), where T1 is not infinitesimal. There-

fore, the boundedness of E(t) over [0, T1] can be guaranteed and we need only focus

on the interval (T1, T ).

For any t ∈ [T1, T ), the derivative of E(t) is

Ė = eė +
1

2γ
φ2 = −ke2 − φξe +

1

2γ
φ2. (7.11)

Since γ0(t) is strictly increasing in [0, T ), 1
γ
≤ 1

γ0(t)
is ensured in the time interval
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[T1, T ). Therefore, by substituting the learning law (7.3), we have

1

2γ
φ2 ≤ 1

2γ0(t)
φ2

=
1

2γ0(t)
θ2 − 1

γ0(t)
θ̂φ − 1

2γ0(t)
θ̂2

≤ 1

2γ0(t)
θ2 − φξe. (7.12)

Substituting (7.12) into (7.11) yields

Ė ≤ −ke2 +
1

2γ0(t)
θ2. (7.13)

The boundedness of θ leads to the boundedness of Ė. As E(T1) is finite, ∀t ∈ (T1, T )

the boundedness of E(t) is obvious.

From (7.10), as E(t0) is bounded, E(t) is finite for any t ∈ [0,∞), which implies

the boundedness of e(t) and the L2
T boundedness of θ̂(t). Hence, the boundedness

of x(t) and the L2
T boundedness of the control input u(t) can be derived.

7.3 IIL for MIMO Systems with Parametric Un-

certainties

7.3.1 Problem Formulation

Consider a high-order MIMO nonlinear dynamic system described by

ẋj = xj+1, j = 1, · · ·, m − 1

ẋm = f(x, t) + B(x, t)[u(t) + d1(x, t)] (7.14)

where xj ∈ Rn, j = 1, · · ·, m; x
�
= [xT

1 ,xT
2 , · · ·,xT

m]T ∈ Rnm is the physically

measurable state vector of the system; u ∈ Rn is the control input vector of the

system; B(x, t) : Rnm × R+ → Rn×n is a known function with full rank; f(x, t) :
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Rn ×R+ → Rn is a known mapping; and d1(x, t) : Rnm ×R+ → Rn is the system

uncertainties.

The desired trajectory for x1 is denoted as x1d which is defined on the [0,∞). x1d is

differential with respect to t up to the mth order and all its higher-order derivatives

x
(j)
1d

�
= x(j+1)d, j = 0, · · ·, m

are available over t ∈ [0,∞).

For the mth order dynamic system (7.14), an extended tracking error is defined as

σ(t) =

m∑
j=1

cjej(t), cm = 1

where ej(t)
�
= xjd(t) − xj(t) and cj (j = 1, · · ·, m) are coefficients of a Hurwitz

polynomial.

Taking derivative of σ(t) with respect to time t yields

σ̇(t) =

m∑
j=1

cjẋ(j+1)d −
m−1∑
j=1

cjxj+1 − f − B(u + d1) (7.15)

where f = f(x, t), B = B(x, t), u = u(t) and d1 = d1(x, t).

The following assumption is made first.

Assumption 7.2. There exist a C1 Lyapunov function V : Rn → R+ and functions

γ1, γ2 and γ3, where γ1, γ2 belong to class-KR and γ3 belongs to class-K, such that

for a vector ζ ∈ Rn

0 ≤ γ1(||ζ||) ≤ V (ζ(t)) ≤ γ2(||ζ||)
∂V T

∂ζ
g(ζ, t) ≤ −γ3(‖ζ‖). (7.16)

According to Assumption 7.2, the extended error dynamics (7.15) can be rewritten

as

σ̇(t) = g(σ, t) − B[u + d + B−1g(σ, t)] (7.17)
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where d
�
= d1 + B−1[f −

m∑
j=1

cjẋ(j+1)d +
m−1∑
j=1

cjxj+1] are the system uncertainties

satisfying following assumption.

Assumption 7.3. The system uncertainties d can be represented as

d = Θ(t)ξ(x,xd, t), Θ ∈ Rn×n1 ξ ∈ Rn1

where n1 is an appropriate number of dimension. Θ(t) is an unknown continuous

time-varying parameter matrix with a known period T , i.e. Θ(t− T ) = Θ(t), and ξ

is a known vector function.

Remark 7.1. Although the second term in d, B−1[f −
m∑

j=1

cjẋ(j+1)d +

m−1∑
j=1

cjxj+1], is

known, it is treated by learning control. In this way the learning capability can be

maximized.

The control objective is to track the desired trajectories by determining the control

input u ∈ Rn, such that the tracking error converges to zero in L2
T norm as time t

approaches to infinitely.

7.3.2 IIL Configuration and Convergence Analysis

The proposed CEF-type IIL algorithm is

u(t) = −Θ̂(t)ξ − B−1g(σ, t), (7.18)

where ξ = ξ(x,xd, t). Here Θ̂ is to learn Θ and updated pointwisely as

Θ̂(t) =




−γ0(t)α(x, t)ξT t ∈ [0, T )

Θ̂(t − T ) − γα(x, t)ξT t ∈ [T,∞)

αT (x, t)
�
=

∂V T

∂σ
B, (7.19)

where γ0(t) and γ are defined same as in (7.3). The convergence of the proposed

control scheme is given by the following theorem.
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Theorem 7.2. For system (7.14), under the Assumptions 7.2 and 7.3, the learning

control law (7.18) and the updating law (7.19) guarantee the convergence of the

tracking error in L2
T norm.

Proof:

Define a non-negative CEF as:

E(t) = V (σ(t)) +
1

2γ

∫ t

t−T

trace[ΦT (τ)Φ(τ)]dτ

where V (σ(t)) is a Lyapunov function which satisfies Assumption 7.2 and Φ(t) =

Θ(t) − Θ̂(t).

The proof consists of three parts. Part I derives the difference of the CEF, Part II

eximines the boundedness property of the controlled system and Part III proves the

convergence of the tracking error.

(I) Difference of the CEF

∀t ≥ T , the difference of E(t) over one period is

∆E(t) = V (σ(t)) +
1

2γ

∫ t

t−T

{trace[ΦT (τ)Φ(τ)] − trace[ΦT (τ − T )Φ(τ − T )]}dτ

−V (σ(t − T )). (7.20)

According to Assumption 7.2, control law (7.18) and updating law (7.19), the fol-

lowing can be derived.

V (σ(t)) − V (σ(t − T )) =

∫ t

t−T

∂V T

∂σ
σ̇dτ

=

∫ t

t−T

∂V T

∂σ
g(σ, τ)dτ −

∫ t

t−T

∂V T

∂σ
B(x, τ)Φ(τ)ξdτ

≤ −
∫ t

t−T

γ3(‖σ‖)dτ −
∫ t

t−T

αT (x, τ)Φ(τ)ξdτ

�
= −

∫ t

t−T

γ3(‖σ‖) −
∫ t

t−T

ς(τ)dτ. (7.21)

Similarly, the following relationship is valid.

V̇ (σ(t)) ≤ −γ3(‖σ‖) − ς(t). (7.22)
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According to updating law (7.19) and considering Θ(t−T ) = Θ(t), it can be derived

that

1

2γ
{trace[ΦT (τ)Φ(τ)] − trace[ΦT (τ − T )Φ(τ − T )]}

=
1

γ
trace{[Θ̂(t − T ) − Θ̂(t)]T Φ(t)}

−trace{[Θ̂(t − T ) − Θ̂(t)]T [Θ̂(t − T ) − Θ̂(t)]}

= αT Φξ − γ

2
‖α(x, t)‖2‖ξ‖2

= ς(t) − β

2
‖α(x, t)‖2‖ξ‖2. (7.23)

The following properties of trace have been used in the above derivations. For

A1, A2, A4, W ∈ Rn×n1, w1 ∈ Rn1 , and w2 ∈ Rn,

P1◦ : trace[(A1 − A2)
T (A1 − A2)] − trace[(A1 − A4)

T (A1 − A4)]

= 2trace[(A4 − A2)
T 2(A1 − A2)] − trace[(A4 − A2)T (A4 − A2)]

P2◦ : trace(w1w
T
2 W ) = wT

2 Ww1.

Substituting (7.21) and (7.23) into (7.20) yields

∆E(t) ≤ −
∫ t

t−T

γ3(‖σ‖)dτ −
∫ t

t−T

γ

2
‖α(x, τ)‖2‖ξ‖2dτ

≤ 0. (7.24)

(II) Boundedness Property

From (7.24), it can be derived that the finiteness of E(t) is ensured for any learning

iteration provided that E(t) is finite over [0, T ). Analogous to the Part III of Theo-

rem 7.1, a non-infinitesimal interval [0, T1] can be found such that E(t) is bounded

and ∀t ∈ [T1, T ), the derivative of CEF E(t) is

Ė(t) =
∂V T

∂σ
σ̇ +

1

2γ
trace[ΦT (t)Φ(t)]

≤ ∂V T

∂σ
σ̇ +

1

2γ0(t)
trace[ΦT (t)Φ(t)]. (7.25)
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The second term on the RHS of (7.25) can be rewritten as

1

2γ0(t)
trace[ΦT (t)Φ(t)]

=
1

2γ0(t)
trace(ΘT Θ) − 1

γ0(t)
trace(Θ̂Φ) − 1

2γ0(t)
trace(Θ̂T Θ̂)

≤ 1

2γ0(t)
trace(ΘT Θ) + ς(t). (7.26)

Substituting (7.22) and (7.26) into (7.25), for any t ∈ [T1, T ), we have,

Ė(t) ≤ −γ3(‖σ‖) +
1

2γ0(t)
trace(ΘT Θ)

≤ 1

2γ0(t)
trace(ΘT Θ). (7.27)

Therefore, the boundedness of Θ(t) leads to the boundedness of Ė(t) over [T1, T ).

Considering the finiteness of E(T1), for any t ∈ [0, T ), the boundedness of E(t) can

be guaranteed.

Moreover, the boundedness of E(t) implies that xj (j = 1, · · ·, m) is bounded and

θ̂ is L2
T bounded over [0,∞). Hence, the L2

T boundedness of the control signal u(t)

can be ensured.

(III) Convergence Property

Simiarly to the Part II of Theorem 7.1, from (7.24), for any t ∈ [nT, (n + 1)T ], we

have

lim
t→∞

E(t) ≤ E(t0) − lim
n→∞

n−1∑
i=0

∫ t−iT

t−(i+1)T

γ3(‖σ‖)dτ. (7.28)

Since E(t) is positive and E(t0) is finite, lim
t→∞

∫ t

t−T

γ3(‖σ‖)dτ = 0 which leads to

lim
t→∞

∫ t

t−T

‖σ‖dτ = 0 and lim
t→∞

∫ t

t−T

‖ej‖dτ = 0.

Remark 7.2. If the bound for each element of Θ is known a priori, ∀t ≥ T , the

learning law (7.19) can be modifed as

Θ̂(t) = proj[Θ̂(t − T )] − γα(x, t)ξT .
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According to control laws (7.18)-(7.19) and system dynamics (7.14), the bounded-

ness of x ensures the finiteness of Θ̂(t), u(t) and ẋ(t). Consequently, the boundedness

of ẋ(t) implies the uniform continuity of x(t).

Since xj(t) is uniformly continuous,

lim
t→∞

‖ej(t)‖ = 0 ⇒ lim
t→∞

‖ej(t)‖sup = 0. (7.29)

Therefore, as t approaches infinity, xj uniformly converges to xjd and the tracking

error ej uniformly converges to 0.

7.4 Illustrative Examples

Case 1: IIL for SISO Dynamic System

Consider the following system

ẋ = θ(t)x2 + u x(0) = 0.2 (7.30)

where θ = |2 sin(1
3
πt)|. Obviously, the learning period is T = 3. The desired tracking

trajectory is xd = 2 sin 2t which has no common period with θ(t). Choose k = 1,

γ = 1 and γ0(t) = γt
T

and apply the proposed IIL laws (7.2) and (7.3). We use |e|sup

to record the maximum absolute tracking error during the i-th period and Fig. 7.1

shows the maximum tracking error over each period. The effectiveness can be seen

clearly.

Case 2: IIL for MIMO Dynamic System

The following high-order MIMO dynamic system is considered

ẋ1 = x2

ẋ2 = f + b(u + d1)

x1(0) = 0.2; x2(0) = 0.3, (7.31)
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Figure 7.1: Learning convergence for SISO Dynamic System t ∈ [0,∞).

where b = esinx1 and f = 9(1 − cost) are known functions. System uncertainties

d1 = 4sin3tcosx1 is unknown.

The desired tracking trajectory is x1d = sin3(π
4
t).

Define the extended tracking error as

σ = x2d − x2 + 5(x1d − x1).

Then

σ̇ = ẋ2d − ẋ2 + 5(ẋ1d − ẋ1)

= g − b[u + d + b−1g]

where the system unknown part d = d1 + b−1(f +5x2 −5x2d − ẋ2d) can be factorized

as Θξ. Here Θ = [4sin3t 9(1 − cost) 5] and ξ = [cosx1 e−sinx1 (x2 − x2d −
˙x2d/5)e−sinx1]T . Hence the learning period is T = 2π.
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Figure 7.2: Learning convergence for MIMO dynamic system t ∈ [0,∞).

Construct g as g = −6σ and choose V to be V = 5σ2. Let γ = 8 and γ0(t) = γt
T

.

The maximum extended tracking error σ is recorded for each period and Fig. 7.2

shows the convergence property.

7.5 Conclusion

In this chapter, a new CEF-type IIL control approach is developed to deal with time-

varying parametric uncertainties. The novel scheme is applicable to the unknown

parameters which maybe time-varying and the only prior knowledge needed is the

periodicity. Validity of the proposed approach is confirmed through theoretical

analysis and numerical simulations.



Chapter 8

IIL for Systems with

Norm-bounded Uncertainties

8.1 Introduction

FIL for systems with parametric uncertainties has been extended to IIL case in Chap-

ter 7. Can we further extended FIL for systems with norm-bounded uncertainties

to IIL? It is a challenge problem, as norm-bounded uncertainties are state-related

and much more complicated than parametric uncertainties.

In this chapter, we will focus on IIL for systems with norm-bounded uncertainties.

Analogous to Chapter 4, the system nonlinearities under consideration are classified

into two categories: GLC and NGLC. For both GLC and NGLC systems, when

unknown, a CEF, which consists of a quadratic term of the tracking error and a

L2
T term of the learning error, can be found to unify the theoretical analysis and

controller design.

The chapter is organized as follows. In order to clearly demonstrate the underlying

idea of the new nonlinear IIL, the simplest system dynamics – first-order and SISO

147



Chapter 8. IIL for Systems with Norm-bounded Uncertainties 148

system is discussed in Section 8.2. Based on it, IIL for MIMO dynamic systems with

NGLC norm-bounded uncertainties are described in Section 8.3. Simulation results

are given in Section 8.4.

8.2 IIL for SISO Systems with Norm-bounded Un-

certainties

Consider the following dynamic system

ẋ = u + d(x, t), t ∈ [0,∞) (8.1)

which is similarly to the SISO dynamic system (4.1) in Chapter 4 except that the

finite time interval [0, T ] is extended to [0,∞). Hence, the following assumption is

further needed.

Assumption 8.1. The system uncertainty d(x, t) and the tracking target xd are

both periodic with respect to t. A common periodicity T can be found such that

d(x, t − T ) = d(x, t) and xd(t − T ) = xd(t).

Note that according to (8.1), Assumption 8.1 implies that ud(t − T ) = ud(t).

The control target is to find an appropriate control signal u(t), such that the system

state x uniformly converges to the periodic tracking task xd ∈ C1[0,∞)

ẋd(t) = ud(t) + d(xd, t). (8.2)

8.2.1 IIL for Systems with GLC Uncertainties

First the system uncertainty d(x, t) is supposed to satisfy the following assumption.
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Assumption 8.2. The system uncertainty d(x, t) is GLC, i.e. |d(x1, t)−d(x2, t)| ≤
ld|x1 − x2|. The Lipschitz constant ld or its bound is known.

The proposed IIL law is

u(t) =




γ0(t)e(t) t ∈ [0, T )

proj[u(t − T )] + γe(t) t ∈ [T,∞)
, (8.3)

where e(t) = xd(t) − x(t), γ > 0 is the learning gain for t ∈ [T,∞) and γ0(t) is the

learning gain for the first period [0, T ). Note that γ0(t) is chosen to be same as in

(7.3) which can guarantee the continuity of the control signal u(t) at t = iT where

i ∈ Z+.

From (8.1) and (8.2), we have

δu(t) = ė(t) + d − dd, (8.4)

where δu = ud − u, d = d(x, t) and dd = d(xd, t).

The following theorem gives a sufficient condition for the learning convergence over

[0,∞).

Theorem 8.1. For system (8.1), under Assumptions 8.1 and 8.2, the control law

(8.3) ensures that the tracking error e(t) converges to 0 uniformly over [0,∞) if

γ ≥ 2(ld + 1).

Proof:

CEF for IIL is defined as

E(t) =
1

2
e2(t) +

1

2γ

∫ t

t−T

δu2(τ)dτ. (8.5)

Note that the time-weighted CEF (4.5) is not suitable for infinite horizon problems.

The proof contains three parts. The system boundedness property is analyzed in

Part I; Part II derives the difference of the CEF; and the uniform convergence of

the tracking error is shown in Part III.
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(I) Boundedness Property

For the first period t ∈ [0, T ), according to (8.3), we have

ẋ(t) = d + γ0(t)[xd(t) − x(t)]. (8.6)

As both γ0(t) and xd(t) are bounded and d is GLC, the boundedness of x, u and ẋ

over [0, T ) can be derived straightforwardly.

∀t ≥ T , the closed-loop system can be written as

ẋ(t) = d + proj[u(t− T )] + γe(t). (8.7)

Choose a Lyapunov function V (t) = 1
2
e2(t), we have

V̇ = e[ẋd − d − proj[u(t− T )] − γe]

= e[ẋd − dd + (dd − d) − proj[u(t − T )] − γe].

Since xd ∈ C1[0,∞) and d is GLC with respect to the argument x, ẋd−dd is globally

uniformly bounded (GUB) and |dd − d| ≤ ld|e|.

Therefore, considering γ ≥ 2(ld + 1), we can obtain

V̇ = e[ẋd − dd + (dd − d) − proj[u(t − T )] − γe]

≤ |e(ẋd − dd)| + lde
2 + |e|u∗ − 2(ld + 1)e2

= [|ẋd − dd| + u∗ − (ld + 2)|e|]|e|. (8.8)

Hence, e(t) is GUB by (|ẋd − dd| + u∗)/(ld + 2). Consequently x(t) and d(x, t) are

GUB, which implies that ẋ is bounded. The boundedness of ẋ warrants the uniform

continuity of the differentiable state variable x(t).

(II) Difference of E(t)
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For any t ≥ T , the difference of E(t) is

∆E(t)
�
= E(t) − E(t − T )

=
1

2
e2(t) +

1

2γ

∫ t

t−T

[δu2(τ) − δu2(τ − T )]dτ − 1

2
e2(t − T )

=

∫ t

t−T

e(τ)ė(τ)dτ +
1

2γ

∫ t

t−T

[δu2(τ) − δu2(τ − T )]dτ. (8.9)

Considering ud(t − T ) = ud(t), similarly to (4.9), we have

∫ t

t−T

[δu2(τ) − δu2(τ − T )]dτ

≤
∫ t

t−T

{δu2(τ) − [ud(τ − T ) − proj[u(τ − T )]]2}dτ

=

∫ t

t−T

{−2δu(τ)[u(τ) − proj[u(τ − T )]]

−[u(τ) − proj[u(τ − T )]]2}dτ. (8.10)

Substitute (8.3) and (8.4) into (8.10) yields

∫ t

t−T

[δu2(τ) − δu2(τ − T )]dτ

≤ −2γ

∫ t

t−T

e(τ)ė(τ)dτ + 2γld

∫ t

t−T

e2(τ)dτ − γ2

∫ t

t−T

e2(τ)dτ

= −2γ

∫ t

t−T

e(τ)ė(τ)dτ − (γ2 − 2γld)

∫ t

0

e2(τ)dτ. (8.11)

Substituting (8.11) into (8.9) and considering γ ≥ 2(ld + 1), we can obtain

∆E(t) ≤ −(
γ

2
− ld)

∫ t

t−T

e2(τ)dτ ≤ −
∫ t

t−T

e2(τ)dτ ≤ 0. (8.12)

(III) Uniform Convergence

Applying (8.12) repeatedly for any t ∈ [nT, (n + 1)T ], and denoting t0 = t− nT we

have

E(t) = E(t0) +

n−1∑
i=0

∆E(t − iT )

≤ E(t0) −
n−1∑
i=0

∫ t−iT

t−(i+1)T

e2(τ)dτ. (8.13)
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Let n → ∞ which is equivalent to t → ∞, we obtain

lim
t→∞

E(t) ≤ E(t0) − lim
n→∞

n−1∑
i=0

∫ t−iT

t−(i+1)T

e2(τ)dτ. (8.14)

Since E(t) is positive and E(t0) is finite, lim
t→∞

∫ t

t−T

e2(τ)dτ = 0. Analogous to the

Part III of Theorem 4.1, as ė(t) is bounded, e(t) converges to 0 uniformly and u(t)

converges to ud(t) almost everywhere when t approaches to infinity.

8.2.2 IIL for Systems with NGLC Uncertainties

Similar to the FIL for GLC uncertainties, the robust FIL for NGLC systems can also

be extended to the periodic tasks defined in the infinite interval [0,∞). Including

Assumption 8.1, the following assumptions are further made for d(x, t).

Assumption 8.3. The system uncertainty d(x, t) is NGLC with a known smooth

bounding function η1(x, t).

Assumption 8.4. d(x1, t)−d(x2, t) = ∂d(ξ)
∂x

(x1−x2), where ξ = x2 + τ(x1 −x2) and

τ ∈ [0, 1]. We assume |∂d(ξ)
∂x

| ≤ η2(x, t) and η2(x, t) is a known bounding function.

Remark 8.1. Assumption 8.4 implies that the variation of the non-parametric un-

certainty is within an acceptable range.

To deal with the NGLC uncertainties, the robust control is incorporated to ensure

the system boundedness. Hence, the robust IIL scheme is constructed as

u(t) = w(t) + v(t) (8.15)

w(t) =




γ0(t)e(t) t ∈ [0, T )

proj[w(t− T )] + γe(t) t ∈ [T,∞)
(8.16)

v(x, t) = (ρκ + 1)e(t) + η2e(t) (8.17)

ρ =
√

ẋ2
d + ε + η1

κ =

√
e2(t) + 3ε2 + 8ε

(
√

e2(t) + 3ε2 + ε)2
,
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where η1 = η1(x, t), η2 = η2(x, t) and ε > 0 is a constant. The main result is

summarized in the following theorem.

Theorem 8.2. For system (8.1) under Assumption 8.1 and Assumptions 8.3 - 8.4,

the learning control laws (8.15), (8.16) and (8.17) guarantee the tracking error e(t)

converges to 0 uniformly as t approaches to infinity.

Proof:

The CEF is defined as

E(t) =
1

2
e2(t) +

1

2γ

∫ t

t−T

[ud(τ) − w(τ)]2dτ.

(I) Boundedness Property

Define a Lyapunov function V = 1
2
e2. Analogous to (4.16), when |e| ≥ ε, 1−κ|e| < 0

can be derived. Consequently ∀t ≥ T , we have

V̇ = eė

= e(ẋd − d − u)

= e[ẋd − d − proj[w(t − T )] − γe − v]

≤ |e|w∗ − (1 + γ)e2 + (1 − κ|e|)(|ẋd| + η1)|e|

≤ |e|w∗ − (1 + γ)e2 = −|e|[(1 + γ)|e| − w∗].

|e| is uniformly bounded by max{ε, w∗/(1 + γ)} and x ∈ X .

For the first period, |e| is uniformly bounded by ε and x ∈ X can be derived

analogously.

According to the control laws (8.15), (8.16) and (8.17), the boundedness of x leads

to the finiteness of w, v and u. Therefore, ẋ and ė are also finite on X . Moreover,

the boundedness of ẋ leads to the uniform continuity of the system states x(t).
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(II) Difference of CEF

For any t ≥ T , the difference of E(t) is

∆E(t) =

∫ t

t−T

e(τ)ė(τ)dτ +
1

2γ

∫ t

t−T

{[ud(τ) − w(τ)]2

−[ud(τ − T ) − w(τ − T )]2}dτ. (8.18)

The first term on the RHS of (8.18) is

∫ t

t−T

e(τ)ė(τ)dτ

=

∫ t

t−T

e(τ)(dd − d + ud − u)dτ

≤
∫ t

t−T

|e||dd − d|dτ +

∫ t

t−T

e(ud − w − v)dτ

≤
∫ t

t−T

η2e
2dτ +

∫ t

t−T

e(ud − w)dτ −
∫ t

t−T

(ρκ + 1)e2dτ −
∫ t

t−T

η2e
2dτ

=

∫ t

t−T

e(ud − w)dτ −
∫ t

t−T

(ρκ + 1)e2dτ. (8.19)

According to (8.10) and (8.16) and letting u(t) = w(t), we obtain

1

2γ

∫ t

t−T

[(ud(τ) − w(τ))2 − (ud(τ − T ) − w(τ − T ))2]dτ

≤
∫ t

t−T

−[ud(τ) − w(τ)]e(τ)dτ. (8.20)

Substituting (8.19) and (8.20) into (8.18) yields

∆E(t) ≤ −
∫ t

t−T

e2(τ)dτ ≤ 0. (8.21)

(III) Convergence Property

Similarly to Theorem 8.1, lim
t→∞

∫ t

t−T

e2(τ)dτ = 0 can be guaranteed. Considering

the boundedness of ė(t), we can derive that e(t) converges to 0 uniformly and u(t)

converges to ud(t) almost everywhere as t approaches infinity.
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8.3 IIL for MIMO Systems with NGLC Uncer-

tainties

In this section, the robust IIL for NGLC systems will be extended to the following

MIMO dynamic systems.

ẋ = f(x, t) + B(t)[u(t) + d(x, t)], (8.22)

where x ∈ Rn is the measurable system state vector, u ∈ Rn is the system control

input, B(t) ∈ Rn×n, and d(x, t) : Rn ×R+ → Rn is the system uncertainty.

The following assumptions are made for the system dynamic (8.22).

Assumption 8.5. f(x, t) is GLC and the Lipschitz constant lf or its bound is known.

B(t) is invertible and bounded, i.e. b̄B
�
= sup

t∈R+

‖B‖ < ∞ and b
¯B

�
= min

t∈R+

‖B‖ �= 0.

The system uncertainty d(x, t) is NGLC with the known bounding function η1(x, t),

i.e. ‖d(x, t)‖ ≤ η1(x, t) . Moreover, it is assumed that ‖d(x1, t) − d(x2, t)‖ ≤
η2(x, t)‖BT (t)(x1 − x2)‖, where η2(x, t) is known.

Assumption 8.6. f(x, t), B(t), d(x, t) and xd(t) are all periodic in time t with a

known common periodicity T .

The control objective is to track the periodic desired trajectory xd:

ẋd = f(xd, t) + B(t)[ud(t) + d(xd, t)], (8.23)

by determining the control input u(t), such that the tracking error converges to zero

uniformly.
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The IIL control law is described as

u(t) = w(t) + v(t) (8.24)

w(t) =




γ0(t)B
Te(t) t ∈ [0, T )

proj[w(t− T )] + γBTe(t) t ∈ [T,∞)
(8.25)

v(t) = [ρ(x, t)κ(x, t) + 1]BTe(t) + η2(x, t)BTe(t) (8.26)

ρ(x, t) =
√

(B−1ẋd)T (B−1ẋd) + ε + η1(x, t)

κ(x, t) =

√‖Be(t)‖2 + 3ε2 + 8ε

(
√‖Be(t)‖2 + 3ε2 + ε)2

.

Theorem 8.3. For system (8.22), under Assumptions 8.5 and 8.6, the control laws

(8.24), (8.25) and (8.26) guarantee the system states x(t) converges to the desired

states xd(t) uniformly, if γ ≥ 2lf

b
¯

2

B

.

Proof:

The CEF is defined as

E(t) =
1

2
‖e(t)‖2 +

1

2γ

∫ t

t−T

‖ud(τ) − w(τ)‖2dτ.

(I) Boundedness Property

∀t ∈ [T,∞), define a Lyapunov function V (t) = 1
2
eTe. Similarly to (4.42), when
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‖B(t)e(t)‖ ≥ ε, 1 − κ‖Be‖ ≤ 0. Therefore, we have

V̇ = eT ė

= eT [ẋd − f(x, t) − Bw − Bv − Bd]

= eT [ẋd − f(xd, t) + f(xd, t) − f(x, t) − Bproj[w(t − T )] − γBBTe

−ρκBBT e − BBTe − η2BBTe − Bd]

≤ eT ẋd − eT f(xd, t) + lf‖e‖2 + ‖BTe‖w∗ − (γ + 1)‖BTe‖2

−ρκ‖BT e‖2 − eT Bd

≤ ‖BTe‖‖B−1ẋd‖ − eT f(xd, t) + lf‖e‖2 + ‖BTe‖w∗ − (γ + 1)‖BTe‖2

−(‖B−1ẋd‖ + η1)κ‖BTe‖2 + ‖BTe‖η1

= −eT f(xd, t) + lf‖e‖2 + ‖BTe‖w∗ − (γ + 1)‖BTe‖2

+(1 − κ‖BTe‖)(‖B−1ẋd‖ + η1)‖BTe‖

≤ ‖e‖[‖f(xd, t)‖ + Lf‖e‖ + B̄w∗ − (γ + 1)b
¯

2
B‖e‖]

= ‖e‖{‖f(xd, t) + b̄Bw∗ − [(γ + 1)b
¯

2
B − lf ]‖e‖}

≤ ‖e‖[‖f(xd, t) + b̄Bw∗ − (b
¯

2
B + lf )‖e‖].

Therefore, ‖e‖ is GUB by max{ε/b
¯B, [f(xd, t) + b̄Bw∗]/(b

¯
2
B + lf)} which leads to the

boundedness of x(t) and d(t). Moreover, ẋ is also finite, hence x(t) is uniformly

continuous.

For t ∈ [0, T ], the boundedness of e and w can also be derived analogously, which

leads to the finiteness of E(t) (t ∈ [0, T ]).

(II) Difference of E(t)

∀t ≥ T , the difference of E(t) over one period is

∆E(t) =

∫ t

t−T

eT ėdτ +

∫ t

t−T

[‖ud(τ) − w(τ)‖2

−‖ud(τ − T ) − w(τ − T )‖2]dτ. (8.27)
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The first term on the RHS of (8.27) is

∫ t

t−T

eT ėdτ

=

∫ t

t−T

eT [f(xd, τ) − f(x, τ) + B(ud − u) + B(dd − d)]dτ

≤
∫ t

t−T

lf‖e‖2dτ +

∫ t

t−T

eT B(ud − w)dτ

−
∫ t

t−T

eT B(ρκ + 1)BTedτ −
∫ t

t−T

η2‖BTe‖2dτ +

∫ t

t−T

η2‖BTe‖2dτ

≤
∫ t

t−T

lf‖e‖2dτ +

∫ t

t−T

eT B(ud − w)dτ −
∫ t

t−T

b
¯

2
B‖e‖2dτ.

The second term on the RHS of (8.27) is

1

2γ

∫ t

t−T

[‖ud(τ) − w(τ)‖2 − ‖ud(τ − T ) − w(τ − T )‖2]dτ

≤ 1

2γ

∫ t

t−T

{−2[w(τ) − proj[w(τ − T )]]T [ud(τ) −w(τ)]

−‖w(τ) − proj[w(τ − T )]‖2}dτ

=

∫ t

t−T

−eT B[ud(τ) − w(τ)]dτ − γ

2

∫ t

t−T

‖BTe‖2dτ

≤
∫ t

t−T

−eT B[ud(τ) −w(τ)]dτ − γb
¯

2
B

2

∫ t

t−T

‖e‖2dτ.

Therefore,

∆E(t) ≤
∫ t

t−T

(lf − b
¯

2
B − γb

¯
2
B

2
)‖e‖2dτ.

Considering γ ≥ 2lf

b
¯

2

B

, we have

∆E(t) ≤ −b
¯

2
B

∫ t

t−T

‖e‖2dτ ≤ 0. (8.28)

(III) Convergence Property

Similarly to the Part III of Theorem 8.1, according to (8.28) and considering the

system boundedness property, it can be derived that e(t) converges to 0 uniformly

and u(t) converges to ud(t) almost everywhere as t approaches to infinity.
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8.4 Illustrative Examples

Case 1. IIL for SISO Dynamic Systems

Consider system (8.1) with the target trajectory xd = 1.5sin3t where t ∈ [0,∞).

(a) d(x, t) = 3xsin(2t) and x(0) = 0.6 �= xd(0).

The learning period should be T = 2π. Suppose the known bound of ld is 4. Choose

u∗ = 10, γ = 10 and γ0 =




6γt/T t ∈ [0, T/6]

γ t ∈ [T/6, T )
. Applying control law (8.3), the

maximum error for each period is recorded in Fig. 8.1. The effectiveness is obvious.
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0

0.1

0.2

0.3

0.4
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0.6

Period Number

|e
| su

p

Figure 8.1: Learning convergence for SISO system with GLC uncertainty t ∈ [0,∞).

(b) d(x, t) = 3x2sint + 5x2, t ∈ [0,∞) and x(0) = 0.3 �= xd(0).

d(x, t) is NGLC with the known bounding functions η1 = 10x2 and η2 = 18x. The
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learning period is T = 2π. Choose ε = 0.3 and w∗ = 20. γ and γ0(t) are same as

in Part (a). Applying control law (8.15), (8.16) and (8.17), the maximum error for

each learning period is shown in Fig. 8.2.
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Figure 8.2: Learning convergence for SISO system with NGLC uncertainty t ∈
[0,∞).

Case2. IIL for MIMO Dynamic Systems

Consider system (8.22) and let f = [x2 2x1sinx2]
T , B(t) = [1 0; 0 1 + 0.5sint] and

d = [x2
1 + cost x2

1sint + 2x2
2]. Assume lf = 3, b

¯B = 1 and the known bounding

functions are: η1 = 2(x2
1 + x2

2) and η2 = 4
√

x2
1 + x2

2.

The desired trajectory to be followed is

x1,d = sin3t x2,d = ẋ1,d t ∈ [0,∞). (8.29)

The learning updating period is 2π.

Let ε = 0.3 and w∗ = 10. γ and γ0(t) are same as in Case 1 which guarantees that
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Figure 8.3: Convergence of e1 for MIMO system with NGLC uncertainties t ∈ [0,∞).

γ = 2lf

b
¯

2

B

. By applying the control laws (8.24) - (8.26), the convergence properties

of e1 = x1,d − x1 and e2 = x2,d − x2 are clearly shown in Fig. 8.3 and Fig. 8.4

respectively.

8.5 Conclusion

In this chapter IIL schemes are extended to address systems with norm-bounded

uncertainties. It is clearly shown that the proposed IIL approaches work effective

no matter the uncertainties are GLC or NGLC. Rigorous proofs based on CEF are

given and simulation examples demonstrate the validity.
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Figure 8.4: Convergence of e2 for MIMO system with NGLC uncertainties t ∈ [0,∞).



Chapter 9

Observer Based IIL for Systems

with Parametric Uncertainties

9.1 Introduction

CEF suggests a new avenue, which shortens the gap between FIL and IIL, removes

the limitations such as I.I.C., GLC and zero relative degree, and enables both FIL

and IIL for GLC and NGLC systems with parametric or non-parametric uncertain-

ties. Note that In all the CEF based learning schemes, the system states are assumed

to be available. Hence we will consider a new challenging problem: can FIL and IIL

deal with output tracking tasks where the system state information is not available?

In this chapter, we combine the state estimation with IIL control to address pe-

riodic parametric uncertainties. The difficulty in this kind of problems lies in the

presence of the product terms in the system dynamics, which consist of the unknown

time-varying parameters and the state functions which are also unknown due to the

lack of the state information. In such circumstance, the product of unknown para-

meters and state-dependent functions cannot be treated simply as parametric type

163
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uncertainties. Many otherwise effective observers, such as the Luenberger observer,

adaptive observer, robust observer (sliding mode observer), are difficult to apply. In

our work IIL is combined with a specific observer (Yang and Wilde, 1988; Darouach

et al., 1994), which is able to nullify the influence from input disturbances without

any extra robust feedback, provided that the system linear nominal part is observ-

able. In addition to the time-varying parametric uncertainties, we will consider

two classes of nonlinearities: the GLC function of state variables, and the NGLC

function of output variables.

Comparing with the RC which also uses only output information, the observer based

IIL control applies to more general nonlinear uncertain systems, and to more general

control tasks such as tracking non-periodic target trajectories.

The chapter is organized as follow. Section 9.2 focuses on the observer based IIL

control for systems with state-dependent GLC nonlinearities. The observer based

IIL control for system with output-dependent NGLC nonlinearities is discussed in

Section 9.3. Illustrative examples are given in Section 9.4.

9.2 Problem Formulation

Considering the following uncertain nonlinear system

ẋ = Ax + B[u(t) + Θ(t)ξ(z, t)]

y = Cx, (9.1)

where x ∈ Rn is the system state vector; y ∈ Rm is the physically accessible output

vector; u ∈ Rm is the system input vector; Θ(t) ∈ C0(Rm×n1 , [0,∞)) represents the

time-varying parametric uncertainty; and ξ(z, t) ∈ Rn1 is a known vector-valued

function with z being either the state x or output y. A, B and C are known

constant matrices of appropriate dimensions.
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The system (9.1) satisfies the following assumptions.

Assumption 9.1. For system (9.1), (A, C) is observable and rank(CB) = m. The

invariant zeros of (A, B, C) lie in the left-half complex plane.

Assumption 9.2. Θ(t) is periodic with a known period of T , i.e. Θ(t) = Θ(t− T ).

Clearly, from Assumption 9.2, ‖Θ(t)‖ is bounded over [0,∞): θm
�
= ‖Θ(t)‖sup < ∞.

Regarding the system nonlinearities, we have

Assumption 9.3. When z = x, ξ(x, t) is GLC, i.e. ∀x1,x2 ∈ Rn, ‖ξ(x1, t) −
ξ(x2, t)‖ ≤ l‖x1 − x2‖. When z = y, ξ(y, t) is only local Lipschitz continuous.

The ultimate control objective is to find an appropriate control signal u(t), such

that the system output y converges to the target yd ∈ C1{Rm, [0,∞)} in L2
T norm

as t approaches to infinity. Note that the desired trajectory yd can be non-periodic.

The following observer is used to obtain the estimated system states x̂ (Fang and

Wilde, 1988; Darouach et al., 1994).

x̂ = v − Dy

v̇ = (FA − LC)v + [L(Im + CD) − FAD]y, (9.2)

where v ∈ Rn, D = −B(CB)−1 ∈ Rn×m and F = In + DC ∈ Rn×n. Here we can

arbitrarily choose v(0) = 0. By defining the estimation error δx = x − x̂, it can be

easily derived

δẋ = (FA − LC)δx, (9.3)

i.e. the observer is independent of the input uncertainty. Under Assumption 9.1,

according to the Theorem 2 in (Darouach et al., 1994), (FA, C) is detectable. Hence,

there exists a matrix L ∈ Rn×m such that FA−LC is asymptotically stable. Given
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a positive definite matrix Q ∈ Rn×n, there exists a unique positive definite matrix

P ∈ Rn×n satisfying the following Lyapunov equation

(FA − LC)T P + P (FA − LC) = −Q. (9.4)

Therefore, −wT Qw ≤ −λ‖w‖2 holds for any w ∈ Rn, where λ is the minimum

eigenvalue of the matrix Q.

9.3 Observer Based IIL for GLC System

9.3.1 Observer Based IIL With Known θm And l

First, we assume that the bound of the time-varying uncertainty θm, and the Lip-

schitz constant l are known a priori.

Define e = yd − y, the observer based IIL control scheme is constructed as

u = −Θ̂ξ̂ + (CB)−1(ẏd − CAx̂ + Ke), (9.5)

Θ̂(t) =




−Γ0(t)(CB)Teξ̂
T

t ∈ [0, T )

Θ̂(t − T ) − Γ(CB)Teξ̂
T

t ∈ [T,∞)
, (9.6)

where ξ̂ = ξ(x̂, t); K ∈ Rm×m is a positive definite matrix with the minimum

eigenvalue γ; Γ ∈ Rm×m is a diagonal, positive learning gain matrix for t ≥ T ;

Γ0(t) ∈ C{Rm×m, [0, T )} is a diagonal, positive learning gain matrix for the first

period [0, T ) satisfying Γ0(0) = 0, Γ0(T ) = Γ, and each element of Γ0(t) is chosen

to be strictly increasing. The purpose of choosing such a Γ0(t) is to ensure the

continuity of Θ̂(t) at the instants t = jT j ∈ Z+, when the algebraic updating law

(9.6) is used.

The error feedback gain K is chosen to satisfy that γ ≥ (‖CA‖+‖CB‖θml)2

λ
+ 1.
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According to (9.1) and (9.5), the output tracking error dynamics is

ė = ẏd − Cẋ

= ẏd − CAx − CB[u + Θξ]

= −Ke − CAδx − CB[Θξ − Θ̂ξ̂]

�
= −Ke + g − CBΦξ̂, (9.7)

where ξ
�
= ξ(x, t), Φ = Θ − Θ̂ and g = −CAδx − CBΘ(ξ − ξ̂).

It should be noted that the controller (9.5) and the observer (9.2) work concurrently,

and the observer (9.2) will not be able to work if the input uncertainties in (9.1)

grow unbounded. Further, although the original system (9.1) is GLC, the closed-

loop system with state estimation is no longer GLC, a finite escape time may exist.

Consequently the separation principle does not hold, even if the estimation error

dynamics (9.3) appears to be independent of the input uncertainties. The following

theorem exhibits the convergence and boundedness of the closed-loop control system

with state estimation.

Theorem 9.1. The system (9.1), under the learning laws (9.5) and (9.6), achieves

the convergence of e and δx in the sense of L2
T norm.

Proof:

To evaluate the convergence property, we define the following CEF

E(t) = δxT Pδx +
1

2
‖e‖2 +

1

2

∫ t

t−T

trace[ΦT (τ)Γ−1Φ(τ)]dτ. (9.8)

The proof consists of three parts. Part I derives the difference of the CEF; Part II

proves the convergence of the tracking error; and Part III examines the boundedness

property of the system.

(I) Difference of CEF
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For any t ≥ T , the difference of the CEF over one period is

∆E(t)
�
= E(t) − E(t − T )

= δxT (t)Pδx(t) − δxT (t − T )Pδx(t− T ) +
1

2
‖e(t)‖2 − 1

2
‖e(t − T )‖2

+
1

2

∫ t

t−T

{trace[ΦT (τ)Γ−1Φ(τ)]

−trace[ΦT (τ − T )Γ−1Φ(τ − T )]}dτ. (9.9)

The first two terms on the RHS of (9.9) can be rewritten as

δxT (t)Pδx(t) − δxT (t − T )Pδx(t− T )

=

∫ t

t−T

[δẋT (τ)Pδx(τ) + δxT (τ)Pδẋ(τ)]dτ. (9.10)

From (9.3), we have

δẋT (t)Pδx(t) + δxT (t)Pδẋ(t)

= δxT (t)[(FA − LC)T P + P (FA − LC)]δx(t)

≤ −λ‖δx‖2. (9.11)

Therefore

δxT (t)PδxT (t) − δxT (t − T )Pδx(t− T ) ≤ −λ

∫ t

t−T

‖δx‖2dτ. (9.12)

Similarly, the third and the fourth terms on the RHS of (9.9) can be rewritten as

1

2
‖e(t)‖2 − 1

2
‖e(t − T )‖2 =

∫ t

t−T

eT (τ)ė(τ)dτ. (9.13)

According to (9.7), it can be derived that

eT (t)ė(t)

= −eT (t)Ke(t) + eTg − eT CBΦξ̂

≤ −γ‖e‖2 + ‖e‖‖g‖ − eT CBΦξ̂. (9.14)

Let us evaluate the bound of ‖e‖‖g‖. According to Assumptions 9.2 and 9.3,

‖e‖‖g‖ ≤ ‖e‖[‖CAδx‖ + ‖CBΘ‖‖ξ − ξ̂‖]

≤ (‖CA‖ + ‖CB‖θml)‖e‖‖δx‖.
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Let us further seek the upper-bound of the cross term ‖e‖‖δx‖ in quadratic form

using Young’s inequality ab ≤ ca2 + 1
4c

b2 with c > 0. Set c =
1

λ
, a = (‖CA‖ +

‖CB‖θml)‖e‖, and b = ‖δx‖, it is straightforward to derive

‖e‖‖g‖ ≤ (‖CA‖ + ‖CB‖θml)2

λ
‖e‖2 +

λ

4
‖δx‖2 (9.15)

≤ (γ − 1)‖e‖2 +
λ

4
‖δx‖2. (9.16)

In the sequel

eT (t)ė(t) ≤ −‖e‖2 +
λ

4
‖δx‖2 − eT CBΦξ̂, (9.17)

and

1

2
[‖e(t)‖2 − ‖e(t − T )‖2]

≤ −
∫ t

t−T

‖e‖2dτ +
λ

4

∫ t

t−T

‖δx‖2dτ −
∫ t

t−T

eT CBΦξ̂dτ. (9.18)

Regarding the last term on the RHS of (9.9), using the learning law (9.6) we first

derive

trace{[ΦT (t)Γ−1Φ(t)] − trace[ΦT (t − T )Γ−1Φ(t − T )]}

= trace{[Θ̂(t − T ) − Θ̂(t)]T Γ−1[2Φ(t) − (Θ̂(t − T ) − Θ̂(t))]}

≤ trace{2ξ̂[(CB)Te]T Φ}

= 2eT CBΦξ̂. (9.19)

Since the relation (9.19) holds for any t, integrating both sides leads to

1

2

∫ t

t−T

trace{[ΦT (τ)Γ−1Φ(τ)] − trace[ΦT (τ − T )Γ−1Φ(τ − T )]}dτ

≤
∫ t

t−T

eT CBΦξ̂dτ. (9.20)

Substituting (9.12), (9.18) and (9.20) into (9.9) yields

∆E(t) ≤ −
∫ t

t−T

‖e‖2dτ − 3λ

4

∫ t

t−T

‖δx‖2dτ. (9.21)
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(II) Convergence Analysis

For t ∈ [iT, (i+1)T ), denote t = iT +t0 where t0 ∈ [0, T ) and i = 1, 2, · · · . Obviously,

when t → ∞, i → ∞. Applying (9.21) repeatedly, we have

E(t) = E(t0) +

i∑
j=1

∆E(jT + t0)

≤ E(t0) −
i∑

j=1

∫ jT+t0

(j−1)T+t0

‖e‖2dτ − 3λ

4

i∑
j=1

∫ jT+t0

(j−1)T+t0

‖δx‖2dτ. (9.22)

The above relationship holds for any t, thus

lim
t→∞

E(t) ≤ E(t0) − lim
i→∞

i∑
j=1

∫ jT+t0

(j−1)T+t0

‖e‖2dτ

− lim
i→∞

3λ

4

i∑
j=1

∫ jT+t0

(j−1)T+t0

‖δx‖2dτ. (9.23)

As E(t) is positive, if E(t0) is finite, it can be derived both lim
i→∞

i∑
j=1

∫ jT+t0

(j−1)T+t0

‖e‖2dτ

and lim
i→∞

i∑
j=1

∫ jT+t0

(j−1)T+t0

‖δx‖2dτ converge. According to the convergence theorem of

the sum of series, lim
t→∞

∫ t

t−T

‖e‖2dτ = 0 and lim
t→∞

∫ t

t−T

‖δx‖2dτ = 0. Therefore, as t

approaches infinity, x̂ converges to x and y converges to yd asymptotically in L2
T

norm.

Now let us check the finiteness property of E(t) for the first period t ∈ [0, T ). From

the system dynamics (9.1) and the proposed control law (9.5) and (9.6), it can

be derived that the RHS of (9.1) is continuous with respect to all the arguments.

According to the existence theorem of differential equation, there exists a solution in

an interval [0, T1) ⊂ [0, T ), where T1 is not infinitesimal. Therefore, the boundedness

of E(t) over [0, T1) can be guaranteed and we need only focus on the interval [T1, T ).

For any t ∈ [T1, T ), the derivative of E(t) is

Ė(t) = (δẋT Pδx + δxT Pδẋ) + eT ė +
1

2
trace(ΦT Γ−1Φ). (9.24)



Chapter 9. Observer Based IIL for Systems with Parametric Uncertainties 171

Note that in above equation, the first and second terms on the RHS have been

derived and given in (9.11) and (9.17) respectively. Let us concentrate on the third

term on the RHS of (9.24). Since Γ0(t) is diagonal and each diagonal element is

strictly increasing in [0, T ), trace(Γ−1) ≤ trace(Γ−1
0 ) is ensured in the time interval

[T1, T ). Therefore, by substituting the learning law (9.6),

1

2
trace(ΦT Γ−1Φ)

≤ 1

2
trace(ΦT Γ−1

0 Φ)

=
1

2
trace(ΘT Γ−1

0 Θ) − trace(Θ̂T Γ−1
0 Φ) − 1

2
trace(Θ̂T Γ−1

0 Θ̂)

≤ 1

2
trace(ΘT Γ−1

0 Θ) + eT CBΦξ̂. (9.25)

Substituting (9.11), (9.17) and (9.25) into (9.24) yields

Ė ≤ −‖e‖2 − 3λ

4
‖δx‖2 +

1

2
trace(ΘT Γ−1

0 Θ) ≤ 1

2
trace(ΘT Γ−1

0 Θ). (9.26)

The boundedness of Θ leads to the boundedness of Ė(t). As E(T1) is bounded,

∀t ∈ [T1, T ) the finiteness of E(t) is obvious.

(III) Boundedness Property

According to preceding derivations, E(t) is bounded for any t ∈ [0,∞), which leads

to the boundedness of y(t) and δx(t). According to the structure of the observer

(9.2), a stable FA−LC and bounded y ensures the boundedness of v, in the sequel

the finiteness of x̂. As both δx and x̂ are finite, the system states x are bounded.

On the other hand, the boundedness of E(t) implies the L2
T boundedness of Θ̂.

Therefore, according to the control law (9.5), u is bounded in the L2
T norm.
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9.3.2 Observer Based IIL With Unknown θm and l

In this section, θm and l are supposed to be finite but completely unknown. The

proposed IIL control law is

u = −Θ̂(t)ξ̂ + (CB)−1(ẏd − CAx̂ + Ke + ŝe) (9.27)

Θ̂(t) =




−Γ0(t)(CB)Teξ̂
T

t ∈ [0, T )

Θ̂(t − T ) − Γ(CB)Teξ̂
T

t ∈ [T,∞)
(9.28)

˙̂s = ‖e‖2 ŝ(0) = 0, (9.29)

where Θ̂ is to approximate Θ and ŝ is to estimate a constant s =
(‖CA‖ + ‖CB‖θml)2

λ

where θml is unknown.

Similarly to (9.7), according to the control law (9.27), (9.28) and (9.29), the output

tracking error dynamics is

ė = −Ke + g − CBΦξ̂ − ŝe. (9.30)

Theorem 9.2. The control law (9.27), the algebraic learning law (9.28) and the

adaptation law (9.29) ensure the convergence of the state estimation and the output

tracking in L2
T norm.

Proof:

The following CEF is used to evaluate the convergence property.

E(t) = δxT Pδx +
1

2
‖e‖2 +

1

2

∫ t

t−T

trace[ΦT (τ)Γ−1Φ(τ)]dτ +
1

2
s̃2, (9.31)

where s̃(t) = s − ŝ(t).
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For any t ≥ T , the difference of the CEF over one period is

∆E(t)
�
= E(t) − E(t − T )

= [δxT (t)Pδx(t) − δxT (t − T )Pδx(t− T )] +
1

2
[‖e(t)‖2 − ‖e(t − T )‖2]

+
1

2

∫ t

t−T

{trace[ΦT (τ)Γ−1Φ(τ)] − trace[ΦT (τ − T )Γ−1Φ(τ − T )]}dτ

+
1

2
[s̃2(t) − s̃2(t − T )]. (9.32)

There are four terms on the RHS of (9.32): the first is concerned with the state

estimation error; the second is concerned with the output tracking error; and the

third and fourth are concerned with the parametric estimation errors respectively.

For the first term, (9.11) and (9.12) are still valid. For the second term, (9.13) can

be derived. Therefore, from (9.30), we can obtain

eT (t)ė(t)

= −eT (t)Ke(t) + eT g − eT CBΦξ̂ − ŝ‖e‖2

≤ −γ‖e‖2 + ‖e‖‖g‖ − eT CBΦξ̂ − ŝ‖e‖2.

On the other hand, (9.16) can be rewritten as

‖e‖‖g‖ ≤ (‖CA‖ + ‖CB‖θml)2

λ
‖e‖2 +

λ

4
‖δx‖2

= s‖e‖2 +
λ

4
‖δx‖2.

Hence,

eT (t)ė(t) ≤ −γ‖e‖2 +
λ

4
‖δx‖2 − eT CBΘ̃ξ̂ + s̃‖e‖2, (9.33)

and

1

2
[‖e(t)‖2 − ‖e(t − T )‖2]

≤ −γ

∫ t

t−T

‖e‖2dτ +
λ

4

∫ t

t−T

‖δx‖2dτ −
∫ t

t−T

eT CBΘ̃ξ̂dτ

+

∫ t

t−T

s̃‖e‖2dτ. (9.34)
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Regarding the third term on the RHS of (9.32), (9.19) and (9.20) are valid.

Now let us check the last term on the RHS of (9.32). First, it can be rewritten as

1

2
[s̃2(t) − s̃2(t − T )] =

∫ t

t−T

s̃(τ) ˙̃s(τ)dτ. (9.35)

Since s is a constant, according to the adaptation law (9.29), we have

s̃ ˙̃s = −s̃ ˙̂s = −s̃‖e‖2. (9.36)

Therefore, from (9.35) and (9.36), it can be obtained that

1

2
[s̃2(t) − s̃2(t − T )] = −

∫ t

t−T

s̃‖e‖2dτ. (9.37)

Substitution of (9.12), (9.20), (9.34) and (9.37) into (9.32), ∀t ≥ T , yields a negative

difference of CEF

∆E(t) ≤ −γ

∫ t

t−T

‖e‖2dτ − 3λ

4

∫ t

t−T

‖δx‖2dτ. (9.38)

Analogous to the Part II and Part III in the Theorem 9.1, the convergence and the

boundedness properties can be guaranteed.

9.4 IIL for NGLC Systems

Now let us consider z = y and ξ(y, t) is local Lipschitz continuous. The same

observer (9.2) is used for state estimation, and the IIL control law is constructed as

u = −Θ̂ξ + (CB)−1(ẏd − CAx̂ + Ke + ŝe) (9.39)

Θ̂(t) =




−Γ0(t)(CB)TeξT t ∈ [0, T )

Θ̂(t − T ) − Γ(CB)TeξT t ∈ [T,∞)
(9.40)

˙̂s = ‖e‖2 ŝ(0) = 0, (9.41)
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where ξ = ξ(y, t). The proposed IIL scheme is analogous to the preceding learning

control laws (9.27), (9.28) and (9.29), except for the replacement of the nonlinear

term ξ(x̂, t) by ξ(y, t). As a consequence, the error dynamics is

ė = −Ke + g′ − CBΦξ − ŝe. (9.42)

where g′ = −CAδx.

The convergence of the proposed control scheme is summarized in the following

theorem.

Theorem 9.3. The control laws (9.39), (9.40) and (9.41) ensure that both the state

estimation and the output tracking, i.e. δx and e, converge in L2
T norm.

Proof:

The proof is much the same as Theorem 9.2, the only difference lies in between the

two functions g and g′. In Theorem 9.2, g is expressed as −CAδx−CBΘ[ξ(x, t)−
ξ(x̂, t)] and is upper bounded by

‖g‖ ≤ (‖CA‖ + ‖CBθml‖)‖δx‖,

which leads to s =
(‖CA‖ + ‖CB‖θml)2

λ
. On the other hand, in (9.42), g′ =

−CAδx, which is upper bounded by

‖g′‖ ≤ ‖CA‖‖δx‖.

Therefore, simply let s =
‖CA‖2

λ
in the CEF (9.31), all the derivations and conclu-

sions in Theorem 9.2 hold with regards to the learning convergence property and

boundedness property.

Remark 9.1. If the bound for each element of Θ is known a priori, ∀t ≥ T , the

learning laws (9.6), (9.28) and (9.40) can be modified as

Θ̂(t) = proj[Θ̂(t − T )] − Γ(CB)Teξ̂
T
,
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and

Θ̂(t) = proj[Θ̂(t − T )] − Γ(CB)TeξT .

Consequently, the boundedness of Θ̂ can be ensured, which lead to the boundedness

of u, ẋ, ẏ and ˙̂x. The finiteness of ẏ and δẋ implies the uniform continuity of y and

δx. Hence, the uniform convergence of the tracking error e and the state estimation

error δx is guaranteed.

9.5 Illustrative Examples

Consider the circuit model (Fig. 9.1). The system parameters are: resistors R1 = 1Ω

and R2 = 1Ω, inductors L1 = 0.36H and L2 = 0.5H , and the mutual inductor

M = 0.15H . i1 and i2 are the loop currents, u is an input voltage, and η represents

the input perturbation. Defining x1 = i1 and x2 = i2, the circuit can be formulated

as 
 ẋ1

ẋ2


 =


 − R1L2

L1L2−M2
R2M

L1L2−M2

R1M
L1L2−M2 − R2L1

L1L2−M2





 x1

x2


 +




L2−M
L1L2−M2

L1−M
L1L2−M2


 [u(t) + η].

The physically measurable output is y = x1. The target trajectory is yd = sin3(πt).

Case 1: η is GLC and θm and l are known.

The input perturbation η(x, t) = x2 sin3 t+0.8 sin2 t sin x1 is state-related and GLC.

It can be factorized as θξ where θ = [sin3 t 0.8 sin2 t] and ξ = [x2 sin x1]
T . Note

that the period of θ is T = 2π which has no common period with yd(t). The initial

conditions are set as: x1(0) = 0.3, x2(0) = 0.2, z1(0) = 0 and z2(0) = 0.

Let L = [3.5 4]T , the eigenvalues of FA − LC are −3.50 and −2.86 respectively.

Assume the known bound θm = 1.5 and l = 1. Choose K = 5. The learning gains

are chosen to be Γ = 50 and Γ0 = 50t/T .
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Figure 9.1: The circuit network.

Applying the learning control law (9.5) and (9.6), the simulation results are shown

in Fig. 9.2 and Fig. 9.3. The horizon is the number of periods and the vertical

quantities are |yd − y|sup and |xk − x̂k|sup (k = 1, 2) respectively. It can be seen,

that observer converges very quickly. The rapid learning convergence can also been

observed.

Case 2. η is GLC and θm is unknown.

Choose the same L, Γ0(t) and Γ. Let K = 1. Based on the control law (9.27), (9.28)

and (9.29), Fig. 9.4 and Fig. 9.5 show the achieved results. From the simulation

results, it can be seen that both the estimated state error and the output tracking

error have been reduced greatly after a number of periods.

Case 3: η is NGLC.

Assume η = 0.2y sin3 t + 0.1y2 sin t, which is output-dependent and NGLC. Here

θ = [0.2 sin3 t 0.1sint] and ξ = [y y2]T . The learning control design is the same as

Case 2. Based on learning control law (9.39), (9.40) and (9.41), Fig. 9.6 and Fig.

9.7 show the achieved results. From the simulation results, it can be seen that

although the system nonlinearities are NGLC, the learning convergence of both the

estimated state error and the output tracking error still can be guaranteed.
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Figure 9.4: Convergence profile of yd − y (Case 2).
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Figure 9.7: Convergence profile of x − x̂ (Case 3).
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9.6 Conclusion

This chapter has developed a new IIL methodology for systems with time-varying

parametric uncertainties, global and non-global Lipschitzian nonlinearities. Based

on the state estimation and periodic updating, the proposed IIL scheme guarantees

the asymptotical convergence of the output tracking in L2
T norm and the bounded-

ness of the system states. Simulation results clearly demonstrate the effectiveness

of the observer based IIL approach.



Chapter 10

Conclusion

10.1 Conclusion

This thesis was centered on the control theories of FIL and IIL for nonlinear systems

with deterministic uncertainties.

• Theories of FIL

– CM-type FIL

In Chapter 2, CM-type FIL was extended to discrete-time systems with

input deadzone which is a typical kind of non-smooth nonlinearities. It

has been shown that although the parameters of the input deadzone are

completely unknown, only if the control environment and the tracking

target are repeatable, the proposed simple FIL can automatically com-

pensate the input deadzone by iteration. It is assumed that, including

the unknown input deadzone, the dynamic system may also have some

unknown but GLC uncertainties. Moreover, the parameters of the input

deadzone can be constant or time-varying. Via rigorous proof based on

182
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CM principle, it is clearly shown that, in the presence of all the uncer-

tainties, the perfect tracking can be obtained as the iteration approaches

to infinity.

Chapter 3 was a continuity of Chapter 2. In this chapter, CM-type FIL

was further applied to handle discrete-time systems with input backlash

which is also a class of practice-relevant high nonlinearity. However, back-

lash is much more complicated due to its property of memory. Analogous

to Chapter 2, based on CM principle, it has been proved that, in the pres-

ence of unknown backlash and unknown but GLC system dynamics, the

developed FIL can cancel the harmful effect of all the uncertainties and

guarantee the perfect tracking iteratively.

– CEF-type FIL

In Chapter 4, CEF-type FIL schemes were presented for continuous-time

systems with norm-bounded uncertainties. It has been shown that, for

GLC norm-bounded uncertainties, which may be handled by CM-type

FIL, CEF-type FIL can also work effectively. On the other hand, for

NGLC norm-bounded uncertainties, which can not be addressed by CM-

type FIL, the proposed robust FIL, combining robust control with CEF-

type FIL, still can guarantee the learning convergence. Moreover, bene-

fiting from the concept of CEF, the I.I.C. for systems with norm-bounded

uncertainties may be replaced by the alignment condition.

In Chapter 5, we explored the possibility for FIL to learn from nonuni-

form tracking trajectories for continuous-time systems with time-varying

parametric uncertainties. Based on CEF, two novel FIL approaches were

introduced for tracking non-uniform trajectories in the presence of time-

varying and both time-varying and time-invariant parametric uncertain-

ties respectively. In the proposed algorithms, the time-varying parametric
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uncertainties are handled by CEF-type FIL, while the known system dy-

namics related to the different tracking targets are canceled by the control

signal. It has been proven that the tracking error uniformly converges to

zero as the iteration time approaches infinity.

A new FIL control approach - FLLC was outlined for repeatable tracking

control tasks in Chapter 6. FLLC integrates two main control strategies:

FLC as the basic control part and FIL as the refinement part. The new

FLLC is constructed by simply adding a FIL mechanism to a PD-type

fuzzy logic controller in additive form. Through rigorous proof based on

EF, it has been shown that the tracking error of the proposed FLLC

system converges uniformly to zero iteratively.

• Theories of IIL

By taking the advantage of the concept and the analysis method of CEF, most

of the theories of FIL can be extended to IIL.

In Chapter 7, FIL for systems with time-varying parametric uncertainties (Xu

and Tan, 2002) was first extended to IIL case. Only if the parametric un-

certainties are periodic, the proposed IIL scheme can guarantee the perfect

tracking as time approach infinity, no matter the tracking trajectory is peri-

odic or not. Therefore, this chapter can also be treated as an extension of

Chapter 5. Moreover, both the GLC requirement in CM-type FIL and the

I.I.C. in almost all FIL can be removed, which greatly widens the application

of learning control.

As a counterpart of Chapter 3, IIL for systems with norm-bounded uncer-

tainties was discussed in Chapter 8. Only if the norm-bounded uncertainties

are periodic in time and the desired trajectory has a common period, FIL for

systems with norm-bounded uncertainties can be extended to IIL case. It has

been shown that, even with norm-bounded uncertainties, no matter they are
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GLC or NGLC, the perfect tracking can be realized asymptotically

To facilitate the implementation of CEF-type learning approaches, observer

based IIL for systems with time-varying parametric uncertainties was proposed

in Chapter 9. Based on the state estimation, the learning convergence still can

be guaranteed even if the system states are not available. Moreover, if the I.I.C.

is satisfied, observer based IIL can be applied to FIL directly.

10.2 Recommendation for Future Research

Based on the prior research, the following points deserve further investigation.

• CM-type FIL has been extended to deal with systems with GLC uncertainties

and input deadzone or input backlash. Is it possible to further apply it to

the other non-smooth nonlinearities, such as hysteresis? As we have seen, in

Chapter 2 and Chapter 3, the I.I.C. and GLC are essential as the proposed

FIL schemes are based on CM principle. If the CEF based design and analysis

method can be applied, the GLC can be removed accordingly. Moreover,

based on CEF, the FIL for non-smooth nonlinearities may be extended to IIL

case. How to apply CEF concept to systems with non-smooth nonlinearities

is worthy of further study.

• FIL/IIL for systems with either parametric uncertainties or norm-bounded

uncertainties have been discussed. If both parametric and norm-bounded un-

certainties exist, we need to find an appropriate way to integrate the methods

proposed in this thesis.

• In Chapter 5, FIL from different tracking targets for systems with parametric

uncertainties was discussed. Extending it to systems with norm-bounded un-

certainties is a quite interesting future work. Similarly, how to apply observer-
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based FIL/IIL proposed in Chapter 9 to systems with norm-bounded uncer-

tainties could also be a future study.

• In the IIL, the learning updating is based on the known common period T .

If T is unknown or not accurately known, what will the effect be and how

to eliminate the harmful effect? If all the uncertainties are periodic, how-

ever, a common period T can not be found, how to construct the learning

approaches?

• In this thesis, several CEF-type FIL/IIL have been proposed for continuous-

time systems. How to implement CEF based learning to discrete-time uncer-

tain systems will be the future work.

• Through rigorous proof, it has been clearly shown that the learning conver-

gence can be guaranteed in all the proposed FIL/IIL schemes. However, it

is only a steady state property. In classical control many indices are used

to specify transient performance such as setting time, overshoot and oscilla-

tory response. Is it possible for us to quantify similar performance indices to

describe the transient properties along learning axis? How to conduct quanti-

tative evaluation and design in learning domain is a meaningful work.

• Including CM principle, 2-D theory and CEF theory, is it possible to find some

other analysis method which could extend FIL/IIL to more general systems?

Lyapunov functional is a good candidate. Lots of future studies needed to

answer this question.

All in one, there are still many open problems in FIL/IIL for further investigation

and study.
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Appendix A

Appendix for Chapter 2

A.1 Proof of Lemma 2.1

Proof:

Define a new sequence δ̄
�
= {δ̄0, δ̄1, · · · , δ̄i}, where δ̄n = sup{|δn|, |δn+1|, · · · , |δi|}.

Obviously, δ̄n ≥ δ̄n+1 ≥ 0 and δ̄n ≥ |δn|. As lim
i→∞

|δi| = 0, lim
i→∞

δ̄i = 0 can be derived.

By using |zi+1| ≤ γ|zi| + |δi| repeatedly, the following equation can be derived.

|zi| ≤ γi|z0| + γi−1|δ0| + γi−2|δ1| + · · ·+ γ|δi−2| + |δi−1|

≤ γi|z0| + γi−1δ̄0 + γi−2δ̄1 + · · · + γδ̄i−2 + δ̄i−1. (A.1)

If i is even, (A.1) can be rewritten as

|zi| ≤ γi|z0| + γi−1δ̄0 + · · ·+ γ
i
2 δ̄ i

2
−1 + γ

i
2
−1δ̄ i

2
+ · · ·+ γδ̄i−2 + δ̄i−1

≤ γ
i
2 (|z0| + δ̄0 + · · · + δ̄ i

2
−1) + δ̄ i

2
(γ

i
2
−1 + · · · + γ + 1)

≤ γ
i
2 (|z0| + i

2
δ̄0) + δ̄ i

2

1 − γ
i
2

1 − γ
.

Therefore,

lim
i→∞

|zi| ≤ lim
i→∞

γ
i
2 (|z0| + i

2
δ̄0) + lim

i→∞
δ̄ i

2

1 − γ
i
2

1 − γ
= 0.
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Similarly, when i is odd, (A.1) can be expressed as

|zi| ≤ γi|z0| + γi−1δ̄0 + · · ·+ γ
i+1
2 δ̄ i−1

2
−1 + γ

i−1
2 δ̄ i−1

2
+ · · ·+ γδ̄i−2 + δ̄i−1

≤ γ
i+1
2 (|z0| + δ̄0 + · · ·+ δ̄ i−1

2
−1) + δ̄ i−1

2
(γ

i−1
2 + · · ·+ γ + 1)

≤ γ
i+1
2 (|z0| + i − 1

2
δ̄0) + δ̄ i−1

2

1 − γ
i+1
2

1 − γ
.

Therefore,

lim
i→∞

|zi| ≤ lim
i→∞

γ
i+1
2 (|z0| + i − 1

2
δ̄0) + lim

i→∞
δ̄ i−1

2

1 − γ
i+1
2

1 − γ
= 0.

A.2 Proof of Lemma 2.2

Proof:

Define the same sequence δ̄ as in the proof of Lemma 2.1. The mapping (2.3) can

be rewritten as

if zi ∈ I1, γ1(zi − a) − δ̄i ≤ (zi+1 − a) ≤ γ1(zi − a) + δ̄i; (A.2)

if zi ∈ I2, zi − δ̄i ≤ zi+1 ≤ zi + δ̄i; (A.3)

if zi ∈ I3, γ2(zi − b) − δ̄i ≤ (zi+1 − b) ≤ γ2(zi − b) + δ̄i. (A.4)

For any finite n ∈ Z+, if δ̄n = 0, ∀i ≥ n, δ̄i = 0 can be derived. Hence, ∀i ≥ n, the

relations (A.2)- (A.4) can be rewritten as

if zi ∈ I1, γ1(zi − a) ≤ (zi+1 − a) ≤ γ1(zi − a); (A.5)

if zi ∈ I2, zi+1 = zi; (A.6)

if zi ∈ I3, γ2(zi − b) ≤ (zi+1 − b) ≤ γ2(zi − b). (A.7)

Obviously, as i → ∞, zi ∈ I2.
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Next let us check the convergence property if for any finite i, δ̄i > 0. The proof

contains three parts. Part A shows ∀n ∈ Z+, if zn is bounded, a finite constant

qn can be found such that zn+qn ∈ I ′
n

�
= [a′

n, b′n] where a′
n = a − δ̄n

min{γ1,1−γ1} , b′n =

b + δ̄n

min{γ2,1−γ2} . Part B proves that zi ∈ I ′
n is guaranteed for any i ≥ n + qn. The

convergence property of zi is given in Part C.

Part A

For any finite n ∈ Z+, assume zn �∈ I ′
n which implies zn > b′n or zn < a′

n.

Suppose zn > b′n. According to Lemma 2.1 and (A.4), as zn is bounded, δ̄n > 0 and

lim
i→∞

δ̄i = 0, a finite iteration number qn can be found such that zn+qn−1 > b′n and

zn+qn ≤ b′n.

On the other hand, as zn+qn−1 > b′n, zn+qn−1 ≥ b + δ̄n

γ2
can be derived. Therefore,

from (A.4), we have

zn+qn − b ≥ γ2(zn+qn−1 − b) − δ̄n+qn−1

≥ γ2
δ̄n

γ2
− δ̄n

= 0.

Hence, zn+qn ∈ [b, b′n] ⊂ I ′
n.

Similarly, for zn < a′
n, a finite constant qn can also be found such that zn+qn ∈

[a′
n, a] ⊂ I ′

n.

Hence, there exists a finite qn such that zn+qn ∈ I ′
n can be realized.

Part B

As zn+qn ∈ I ′
n, the property of zn+qn+1 can be analyzed in the following three cases.

Case 1. zn+qn ∈ I2

According to (A.3) and considering 0 < γ1 < 1 and 0 < γ2 < 1, it can be derived
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that

a′
n < a − δ̄n ≤ a − δ̄n+qn ≤ zn+qn+1 ≤ b + δ̄n+qn ≤ b + δ̄n < b′n. (A.8)

Obviously, zn+qn+1 ∈ I ′
n.

Similarly, for any i ≥ n + qn, if zi ∈ I2, zi+1 ∈ I ′
n can be derived.

Case 2. zn+qn ∈ (b, b′n]

0 < zn+qn − b ≤ δ̄n

min{γ2,1−γ2} can be derived directly. Therefore, from (A.4), we have

−δ̄n+qn ≤ zn+qn+1 − b ≤ γ2
δ̄n

min{γ2, 1 − γ2} + δ̄n+qn

⇒ b − δ̄n ≤ zn+qn+1 ≤ b + γ2
δ̄n

min{γ2, 1 − γ2} + δ̄n

⇒ a′
n ≤ zn+qn+1 ≤ b + γ2

δ̄n

min{γ2, 1 − γ2} + δ̄n. (A.9)

If 0 < γ2 ≤ 0.5, min{γ2, 1−γ2} = γ2 and 1
γ2

≥ 2, which leads to b′n = b+ δ̄n

γ2
≥ b+2δ̄n.

Hence, (A.9) can be rewritten as

a′
n ≤ zn+qn+1 ≤ b + γ2

δ̄n

γ2
+ δ̄n = b + 2δ̄n ≤ b′n. (A.10)

If 0.5 < γ2 < 1, min{γ2, 1 − γ2} = 1−γ2, which implies that b′n = b+ δ̄n

1−γ2
. Therefore,

(A.9) can be expressed as

a′
n ≤ zn+qn+1 ≤ b + γ2

δ̄n

1 − γ2
+ δ̄n = b +

δ̄n

1 − γ2
= b′n. (A.11)

According to (A.10) and (A.11), zn+qn+1 ∈ I ′
n is guaranteed.

∀i ≥ n + qn, only if zi ∈ (b, b′n], the above proof is still valid, hence, zi+1 ∈ I ′
n can be

derived.

Case 3. zn+qn ∈ [a′
n, a)

Analogous to the proof in Case 2, it can be derived that, ∀i ≥ n + qn, if zi ∈ [a′
n, a),

zi+1 ∈ I ′
n.
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According to the results of Case 1, Case 2 and Case 3, we can conclude that zi ∈ I ′
n

can always be ensured for any i ≥ n + qn.

Part C

Considering the finiteness of z0 and δ̄0, from the results of Part A and Part B, it can

be derived that, a finite q0 can be found such that, ∀i ≥ q0, zi ∈ I ′
0. Consequently,

∀i ∈ Z+, the boundedness zi can be guaranteed.

For every ε > 0, as lim
i→∞

δ̄i = 0, there exists a finite N ′ such that for any i ≥ N ′,

δ̄i ≤ γε where γ = min{min{γ1, 1− γ1}, min{γ2, 1− γ2}}. According to Part A and

Part B, a finite N = N ′+qN ′ can be found such that ∀i ≥ N , the following equation

is valid.

a − δ̄N

min{γ1, 1 − γ1} ≤ zi ≤ b +
δ̄N

min{γ2, 1 − γ2} .

Considering δ̄i ≤ γε, we have

a − ε ≤ a − γε

min{γ1, 1 − γ1} ≤ zi ≤ b +
γε

min{γ2, 1 − γ2} ≤ b + ε.

Hence, for every ε > 0, a finite N can be found such that ∀i ≥ N , zi ∈ [a− ε, b + ε].

According to the definition of limitation, lim
i→∞

zi ∈ I2 can be derived.
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Appendix for Chapter 4

B.1 Proof of Lemma 4.2

Proof:

From (4.37) and (4.38), it can be obtained

ẋd − ẋi = φi − Qσ̇i (B.1)

where

φi = fd − fi − Q(fd − fi) − Q(hd − hi)

≤ lf‖xd − xi‖ + bQlf‖xd − xi‖ + bQlh‖xd − xi‖

= b1‖xd − xi‖ (B.2)

where bQ = sup
t∈[0,T ]

|Q(t)| and c1 = lf + bQlf + bQlh. As xi(0) = xd(0) and σi(0) = 0,

integrating both sides of equation (B.1), we can obtain that

‖xd − xi‖ ≤
∫ t

0

‖φi‖dτ −
∫ t

0

Qdσi

≤ b1

∫ t

0

‖xd − xi‖dτ + ‖Qσi‖ +

∫ t

0

‖σi‖‖dQ

dτ
‖dτ

≤ b1

∫ t

0

‖xd − xi‖dτ + bQ‖σi‖ + bdQ
dt

∫ t

0

‖σi‖dτ,

203



Appendix B. Appendix for Chapter 4 204

where bdQ
dt

= sup
t∈[0,T ]

|dQ

dt
|.

Applying Gronwall-Bellman Lemma we have

‖xd − xi‖

≤ bQ‖σi‖ + bdQ
dt

∫ t

0

‖σi‖dτ + b1bQ

∫ t

0

‖σi‖ec1(t−τ)dτ

+b1bdQ
dt

∫ t

0

(

∫ τ

0

‖σi‖ds)eb1(t−τ)dτ

≤ bQ‖σi‖ + (bdQ
dt

+ b1bQeb1T )

∫ t

0

‖σi‖dτ + b1bdQ
dt

∫ t

0

eb1(t−τ)dτ

∫ t

0

‖σi‖dτ

≤ bQ‖σi‖ + (bdQ
dt

+ b1bQeb1T )

∫ t

0

‖σi‖dτ + b1bdQ
dt

Teb1T

∫ t

0

‖σi‖dτ

= bQ‖σi‖ + b2

∫ t

0

‖σi‖dτ

where b2 = bdQ
dt

+ b1bQeb1T + b1bdQ
dt

Teb1T . Therefore, the boundedness of σi leads to

the finiteness of xi since xd is bounded, i.e., xi ∈ X .

Since xi is bounded and di is local Lipschitz, there exists a Lipschitz constant

ld
�
= sup

(xi,t)∈X×[0,T ]

∂di

∂xi
| < ∞ ∀i ∈ Z+

such that

‖di − dd‖ ≤ ld‖xi − xd‖. (B.3)

Moreover, from the control law, the boundedness of xi guarantees the finiteness of

ur,i and ui. Consequently, ẋi and σ̇i are also finite.
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