

INTELLIGENT DATA MINING VIA EVOLUTIONARY
COMPUTING

YU QI
(B. Eng, Zhejiang University)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE
2003

Acknowledgements

I would like to express my most sincere appreciation to my supervisor, Dr. K. C. Tan, for

his good guidance, support and encouragement. His stimulating advice benefits me in

overcoming obstacle on my research path.

Thanks to my laboratory-mate Heng Chun Meng, who has made contributions in various

ways to my research work.

I am also grateful to all the individuals in Centre for Intelligent Control (CIC), as well as

the technologies in the Control and Simulation Lab, Department of Electrical and

Computer Engineering, National University of Singapore, which provides the research

facilities to conduct the research work.

Finally, I wish to acknowledge National University of Singapore (NUS) for the financial

support provided throughout my research work.

 i

Table of Contents

Acknowledgements i

Table of Contents ii

List of Figures v

List of Tables vii

Summary viii

Chapter 1 Introduction

 1.1 Data mining………………………………………………………………... 1

 1.2 Evolutionary algorithm……………………………………………………. 3

 1.3 Evolutionary algorithm in data mining……………………………………. 4

 1.4 Contributions………………………………………………………………. 8

 1.5 Thesis outline……………………………………………………………… 9

Chapter 2 Evolutionary computation in rule induction

 2.1 Introduction to rule induction …………………………………………… 10

 2.2 Evolutionary Computation in rule induction…………………………….. 12

 2.3 Coevolution……………………………………………………………… 14

 2.4 Conclusion……………………………………………………………….. 16

Chapter 3 A two-phase evolutionary rule induction algorithm

 ii

 3.1 Algorithm overview……….. …………………………………………… 17

 3.2 Phase 1: The Hybrid GA-GP……………………………………………. 20

 3.2.1 Chromosome Structure and Genetic Operations………………….. 22

 3.2.2 Automatic Attribute Selection…………………………………….. 25

 3.2.3 Fitness Function…………………………………………………… 26

 3.2.4 The Covering Algorithm…………………………………………... 28

 3.3 Phase 2: The Rule Set Evolver…………………………………………... 28

 3.4 Applications on medical diagnosis………………………………………. 30

 3.4.1 The Medical Diagnosis Data Sets…………………………………. 32

 3.4.2 Simulation Settings………………………………………………... 35

 3.4.3 Simulation Results………………………………………………… 37

 3.4.4 Performance Comparisons………………………………………… 42

 3.5 Conclusion……………………………………………………………….. 46

Chapter 4 Distributed coevolution for rule induction

 4.1 Introduction……………………………………………………………… 47

 4.2 The framework of DCDM……………………………………………….. 49

 4.3 Client-side design………………………………………………………... 52

 4.4 Engine-side design………………………………………………………. 54

 4.5 Update of the local rule pools…………………………………………… 56

 4.6 Distribution of the workload…………………………………………….. 57

 4.7 Workload Balancing…………………………………………………….. 58

 iii

 4.8 Experimental studies…………………………………………………….. 59

 4.8.1 Experimental setup………………………………………………… 59

 4.8.2 The problems sets………………………………………………….. 61

 4.8.3 Experimental results……………………………………………….. 62

 4.8.4 Performance analysis………………………………………………. 69

 4.9 Comparisons with other works…………………………………………... 74

 4.9.1 Comparisons with three classical machine learning algorithms…... 74

 4.9.2 Comparisons with other rule-based classifiers……………………. 77

 4.10 Discussion and Summary………………………………………………... 82

 4.11 Conclusion..……………………………………………………………… 83

Chapter 5 Conclusions and Future Works

 5.1 Conclusions………………... …………………………………………… 85

 5.2 Future works……………………………….…………………………….. 86

References………………………………………………………………………….. 88

List of Publications………………………………………………………………. 97

 iv

List of Figures

 1.1 The Knowledge Discovery from Database Process 2

 3.1 Overview of the two-phase hybrid evolutionary classifier 18

 3.2 The program flowchart for the phase one of EvoC 21

 3.3 The chromosome structure in GA 25

 3.4 Example of chromosomes initialization in the phase two of EvoC 30

 3.5 The performance of EvoC for the HEPA problem 38

 3.6 The performance of EvoC for the WDBC problem 38

 3.7 The performance of EvoC for the WBCD problem 39

 4.1 Framework of DCDM system 51

 4.2 The client user interface 52

 4.3 The working process of a remote engine 54

 4.4 Distribution of the workload 58

 4.5 Diagrams of the classification results 63

 4.6 Evolutionary progress on the rule and rule set populations 65

 4.7 Computational time VS number of remote engines 71

 4.8 Box plots 76

 v

List of Tables

 3.1 The weather data set 23

 3.2 Summary of the HEPA data set 33

 3.3 Summary of the WDBC data set 34

 3.4 Summary of the WBCD data set 35

 3.5 The setting of parameters in EvoC 36

 3.6 Summary of the results in EvoC over the 100 independent simulation

runs 37

 3.7 The best rule set of HEPA with an accuracy of 94.34% 40

 3.8 The best rule set of WDBC with an accuracy of 96.37% 41

 3.9 The best rule set of WBCD with an accuracy of 99.13% 41

 3.10 The P-values of the paired t-tests against C4.5, PART and Naïve Bayes 43

 3.11 The comparison results for the HEPA data set 44

 3.12 The comparison results for the WDBC data set 44

 3.13 The comparison results for the WBCD data set 45

 4.1 Parameter settings used in the experiments 60

 4.2 Configurations for the remote compute engines 60

 4.3 Classification task descriptions of the datasets 61

 4.4 The characteristics of the datasets 62

 4.5 Classification results from DCDM 63

 4.6 The best classification rule set of DCDM for the Iris dataset 67

 vi

 4.7 The best classification rule set of DCDM for the Breast Cancer dataset 67

 4.8 The best classification rule set of DCDM for the Heart-C dataset 67

 4.9 The best classification rule set of DCDM for the Diabetes dataset 68

 4.10 The best classification rule set of DCDM for the Hepatitis dataset 68

 4.11 The best classification rule set of DCDM for the Credit-A dataset 69

 4.12 Average results for different number of remote engines 70

 4.13 Results from three classical algorithms 74

 4.14 The P-values of all classifiers on the datasets 77

 4.15 Comparison results 81

 vii

Summary

This work seeks to explore the evolutionary techniques for extracting comprehensible

classification rules in data mining as well as to improve its processing efficiency. For

this purpose, the thesis is organised as follow:

Chapter 2 reviews the basic concept of rule induction and provides a survey on various

evolutionary methods for extracting classification rules. Besides, a preliminary

knowledge of coevolution and how it can be used for rule induction is also studied and

discussed.

Chapter 3 presents a the two-phase approach to extract classification rules, in which a

hybrid evolutionary algorithm is utilized in the first phase to confine the search space

by evolving a pool of good candidate rules, e.g., genetic programming is applied to

evolve nominal attributes for free structured rules and genetic algorithm is used to

optimize the numeric attributes for concise classification rules without the need of

discretization. These candidate rules are then used in the second phase to optimize the

order and number of rules in the evolution for forming accurate and comprehensible

rule sets. Good simulation results on three medical datasets show that the algorithms

can be used as an assistant tool in clinical practice for better understanding and

prevention of unwanted medical events.

Chapter 4 presents a distributed coevolutionary classification system (DCDM) for rule

induction, which allows different species to be evolved cooperatively and

simultaneously, while the computational workload is shared among multiple

 viii

computers over the Internet. Through the inter-communications among different

species of rules and rule sets in a distributed computing approach, the concurrent

processing and computational speed of the coevolutionary classifier are enhanced

significantly. The advantages and performance of the proposed DCDM are extensively

validated upon various datasets obtained from UCI machine learning repository. It is

shown that the predicting accuracy of the DCDM is robust and the computational time

is substantially reduced as the number of remote engines increases. Comparison results

illustrate that the DCDM produces comprehensible and good classification rules for all

the datasets, which are very competitive as compared with existing classifiers in

literature.

Chapter 5 draws the conclusions and directions for future works.

 ix

Chapter 1

Introduction

1.1. Data mining

Advancement in the application of information technology in various fields of science,

economics and industries has generated huge amounts of raw data that are beyond the

processing capability of the human mind. These data, however, possibly present value

in the form of knowledge that can not only provide a better understanding of the

phenomenon underlying them, but also help in decision-making process.

Data mining is the automated process of discovering knowledge or information from

data sources. The main challenge of data mining is to extract knowledge that is

accurate, comprehensible and interesting, in spite of huge amounts of data involved

and possibly noisy and unfavorable data representation. Recent developments in data

mining techniques have proven its potential as a tool in the knowledge discovery

 1

process. According to Fayyad (1997), the process of data mining is just one of the

steps in the overall process of discovering knowledge from data, called Knowledge

Discovery from Database (KDD). This is shown in Figure 1.1.

D
at

ab
as

e

Selection Preprocessing Data Mining Evaluation and
Presentation

Knowledge

Figure 1.1: The Knowledge Discovery from Database Process

There are generally four phases in the KDD process. Firstly selection deals with

identifying and understanding the goals of the entire process and collecting any prior

knowledge about the data itself. The preprocessing phase cleans up the raw data,

handling missing values and dealing with any data misrepresentation. Next data

mining is used to extract the useful knowledge from the preprocessed data and finally,

the knowledge extracted from data mining is evaluated and interpreted in the post-

processing stage before it finally becomes useful knowledge. As it can be seen, data

mining is a crucial phase in KDD where the knowledge is actually churned out from

the data.

Knowledge discovered from data mining has many uses from classification,

estimation, prediction and description to clustering. One of the most useful ways of

 2

representing the discovered knowledge is in the form of rules, with every rule

representing a piece of information or knowledge. With a set of rules as knowledge

about the data, tasks such as decision-making and understanding the data can be more

easily accomplished. Rules have an added advantage over traditional forms of

knowledge representation such as trees as more rules can be added to an existing set of

rules without affecting those that are already there. Hence it can be seen that rules are a

powerful and useful form of representing knowledge.

1.2. Evolutionary algorithm

Evolutionary algorithm (EA) (Michalewicz, 1994) is generally considered to consist of

4 main branches, i.e., Evolutionary Strategies (ES), Evolutionary Programming (EP),

Genetic Algorithms (GA), and Genetic Programming (GP). They have been developed

upon the synthesis of natural evolution, which exhibits global search capabilities by

simultaneously evaluating performances at multiple points in the solution space.

Before this simulated evolution process begins, an initial population of multiple coded

chromosomes representing random candidate solutions is formed, and every such

chromosome is assigned a performance index. At each generation of search, multiple

candidates are evaluated and the search will be directed intelligently according to the

Darwin’s “survival-of-the-fittest” principle. Then useful search information and co-

ordinates are exchanged and altered for the next generation of candidate solutions. This

evolution cycle will be repeated until the final generation is reached or the solution has

been found. Obviously, the computation effort involved in such an evolutionary

process is massive due to the inherent nature of parallel search, particularly for

complex optimization problems where a sufficiently large population and generation

 3

size that incurs a high computational workload are often needed in order to find the

global optimal solutions.

1.3. Evolutionary algorithms in data mining

Among the several branches in the data mining domain, one area gaining significance

is classification (Duda et al, 2001), which is ordinarily categorized into two groups,

i.e., non-rule based and rule-based classifications. Support vector machine (Vapnik,

1995), artificial neural network (Yao and Liu, 1997), and linear genetic programming

(Brameier and Banzhaf, 2001) are some of the popular approaches in the category of

non-rule based classifiers. Although these methods often achieve good classification

accuracy, they are generally not competent classifiers in terms of comprehensibility.

However, some efforts have also been paid recently to extract explicit knowledge from

the resulting model from the above methods among which, rule extraction supported

NNs (Setiono, 1996; 2000) is a famous example. On the other hand, rule-based

classification approaches refer to methods where explicit knowledge is derived directly

from the training data and the users are able to assess the correctness and usefulness of

the discovered knowledge. Comprehensible knowledge is very important in many

applications, such as medical diagnosis and management decision support, where

human experts play an important role in solving the problems. C4.5 (Quinlan, 1993),

decision table (Kohavi, 1995), genetic algorithm-program GA-P (Howard and

D’Angelo, 1995), grammar-based genetic programming (GGP) (Wong and Leung,

2000) are some of the methods in this group of classifiers.

 4

Emulating the Darwinian-Wallace principle in natural selection and genetics,

evolutionary algorithms have emerged as a promising tool for solving knowledge

extraction problems in data mining. Except for the above mentioned algorithms for the

classification problems, in recent years, there have been many other attempts to apply

evolutionary algorithms in data mining to accomplish various tasks (Banzhaf et el.,

1998; Brameier and Banzhaf, 2001; Cattral, 1999; Polo and Hasse, 2000). Unlike

traditional gradient-guided data mining techniques, an evolutionary algorithm

intelligently searches the solution space by evaluating performances of multiple

candidate solutions simultaneously and approaches the global optimum in a non-

deterministic manner. Although EAs play an important role in rather widely areas of

data mining domain, they have achieved more popularity in the area of rule based

classification (rule induction), which might be due to the reason that sets of IF-THEN

rules can easily be represented by choosing an encoding of rules that allocates specific

substrings for each rule precondition and postcondtion (Mitchell, 1997). Wong and

Leung (2000) proposed a grammar-based GP for the construction of classification

rules. For each new problem, a domain specific grammar is defined so that the rules

thus generated are more relevant and crucial to the problem. To address the issue of

comprehensibility of classification rules, Bojarczuk et al., (2000) implemented a non-

standard tree structure GP. In this approach, the numeric attributes are discretized into

nominal boundaries a-priori in order to use the Boolean attributes. Other EA

approaches for generating classification rules in data mining include Wang et al.,

(1998), Congdon, (2000), and Fidelis et al., (2000).

However, although evolutionary algorithm is a powerful tool, the computational cost

involved in terms of time and hardware increases as the size and complexity of the

 5

problem increases since it needs to perform a large number of function evaluations in

parallel along the evolution process. Moreover, EA usually requires a large population

and generation size in order to simulate a more realistic evolutionary model with a

better approximation and resolution, which is sometimes cost prohibitive or cannot be

performed without the help of high performance computing. To reduce the complexity

of the solution space and make the good solutions easier to be found, the multi-stage

scheme is utilized by many classification systems. Marmelstein et al (1998), in their

Genetic Rule and Classifier Construction Environment (GRaCCE), introduced a multi-

stage means for extracting classification rules from data. Genetic Algorithm (GA)

based approach is to first reduce the feature set and then locate class homogeneous

regions within the data. Classification rules are subsequently generated from these

regions. So in the early stages of these approaches, feature extraction or dimension

reduction of the dataset is the major task and classifiers or rules will not be constructed

until the later stages. Kim and Han (2000), and Liu et al., (2001) applied evolutionary

algorithm (EA) at the preprocessing stage to reduce the dimension/difficulty of the

problem and to increase the learning efficiency in data mining. Hruschka and Ebecken

(2000), and Meesad and Yen (2001) used EA at the post-processing stage to extract

rules from a neural network.

Another promising approach to address the efficiency deficiency of EA in dealing with

data mining problems is to exploit the inherent parallel nature of EA by formulating

the problem into a distributed computing structure suitable for parallel processing, i.e.,

to divide a task into subtasks and to solve the subtasks simultaneously using multiple

processors. This divide-and-conquer approach has been applied to EA in different

ways and many parallel EA implementations have been reported in literature (Cantú-

Paz, 1998; Goldberg, 1989, Rivera, 2001). Among the different parallel

 6

implementations of evolutionary algorithms, Levine (1995) developed the PGAPack,

which is a parallel evolutionary algorithm library that supports global parallelization.

The package is written in C and communication is carried out using MPI, which is a

popular library specification for message passing. Andre and Koza, (1995) used the

transputers hardware and Tomassini and Fernandez (2000) applied the MPI as a

platform for implementing their parallel EAs. Tanev, et al., (2001) made use of

Distributed Component Object Model (DCOM), which is a protocol that enables

software components to communicate directly over a network. Meta Group

Consulting, (1998) combines Java technology (Sun, 2001) with Common Object

Request Broker Architecture (CORBA) to give good solutions in remote method

invocation and remote class loader as a pure OOP language. Chong (1997) proposed

an application of Java applet on the Internet which focuses on the massive distributed

approach, and Distributed Resources Evolutionary Algorithm Machine (DREAM) is a

project to provide the technology and software infrastructure necessary to support the

next generation of evolving infohabitants in a way that makes the infrastructure

universal, open and scalable (Paechter and Back, 2000). The availability of powerful-

networked computers presents a wealth of computing resources that can provide the

processing power required to solve those problems unsolvable in a single computer.

Large problems can be divided into many smaller subtasks mapped into the individual

computers available in the system. This potential computational power can be much

stronger than a supercomputer. However, the heterogeneous hardware and software on

the Internet, presents an insurmountable difficulties for the implementation of

distributed systems especially in the area of portability, distribution and security. The

recent emergence of Java technology, a fully object-oriented platform-neutral

 7

programming language by Sun Microsystems Inc., presents an opportunity for

implementing such a distributed system efficiently (Sun, 2001).

1.4. Contributions

In this thesis, two rule-based classification algorithms are presented in which the first

one is a two-phase evolutionary approach and the second is a distributed co-

evolutionary classifier. The classification performances and the efficiency of the

evolution process are the two major considerations of the both algorithms. In the two-

phased approach, a hybrid evolutionary algorithm is utilized in the first phase to

confine the search space by evolving a pool of good candidate rules, e.g., genetic

programming is applied to evolve nominal attributes for free structured rules and

genetic algorithm is used to optimize the numeric attributes for concise classification

rules without the need of discretization. These candidate rules are then used in the

second phase to optimize the order and number of rules in the evolution for forming

accurate and comprehensible rule sets. Good simulation results on three medical

datasets show that the algorithms can be used as an assistant tool in clinical practice for

better understanding and prevention of unwanted medical events. While in the co-

evolutionary system, by utilizing the existing Internet and hardware resources,

distributed computing is naturally incorporated into the coevolutionary algorithm to

enhance its concurrent processing and performance. Through the inter-communications

between the different species (rules and rule sets), the cooperation is conducted in a

more effective and efficient way. Rules thus generated are all crucial to the problem,

which makes it easy to find the resultant rule set with a fairly good performance. The

proposed distributed coevolutionary classifier is extensively validated upon 6 datasets

 8

obtained from UCI machine learning repository, which are representative artificial and

real-world data from various domains. Comparison results show that the algorithm

produces comprehensible and good classification rules for all the datasets, which are

very competitive or better than many classifiers widely used in literature.

1.5. Thesis outline

This thesis consists of five chapters.

Chapter 2 describes the basic concept of rule induction and then deepen the idea by

introducing how evolutionary computation can be resorted to doing rule induction.

Chapter 3 details the implementation of the two-phase evolutionary rule induction

algorithm followed by the validation on three medical datasets.

The distributed coevolutionay system is presented in chapter 4, in which the design

idea of the distributed system, the implementation detail of the algorithm and the

evaluation results are all included.

Chapter 5 concludes the whole thesis and points out the direction of future research.

 9

Chapter 2

Evolutionary computation in rule induction

2.1. Introduction to rule induction

Given a set of labeled instances, the objective of classification is to discover the hidden

relations or regulations between attributes and classes. The classification rules are

extracted in the hope that they can be used to automate classification of future instances.

In the classification task, the discovered knowledge is usually represented in the form of

decision trees or IF-THEN classification rules, which has the advantage of being a high-

level and symbolic knowledge representation that contributes to the comprehensibility of

the discovered knowledge. In this thesis, the knowledge is presented as multiple IF-THEN

rules in a decision rule list or rule set. Such rules state that the presence of one or more

items (antecedents) implies or predicts the presence of other items (consequences). A

typical rule has the form of

 10

Rule: IF X1 and X2 and … Xn THEN Y,

where Xi, ∀ i ∈ {1, 2,…, n} is the antecedent that leads to a prediction of Y, the

consequence. Each of the IF-THEN rules can be viewed as an independent piece of

knowledge. New rules can be added to an existing rule set without disturbing those

already there, and multiple rules can be combined together to form a set of decision rules.

The basic structure of the decision rule list could be built as follows,

IF antecedent1 THEN class1

ELSE IF antecedent2 THEN class2

…

ELSE classdefault

When the rule list is evaluated or used to classify a new instance, the first rule (top most)

will be considered first. If the rule does not match the instance (i.e., not able to classify the

instance), the next rule will be considered. The matching process is repeated until a

corresponding rule is found. In the case where none of the rules in the rule list matches the

new instance, the new instance will be classified as the default class, which is usually the

largest class in the data set.

The discovered decision rules can be evaluated according to several criteria, such as

classification accuracy on unlabeled instances (testing set), degree of confidence in the

 11

prediction, comprehensibility and interestingness. Among these measures, classification

accuracy is the major metric to evaluate the performance of a classifier. The

comprehensibility measures how clear and easy a rule is for human to understand and take

action on it accordingly. Generally, rules that are incomprehensible to human are often

useless in data mining or knowledge discovery because such rules are not beneficial to the

users.

2.2. Evolutionary computation in rule induction

Evolutionary algorithms for knowledge discovery in rule induction can be broadly divided

into Michigan and Pittsburgh approaches (Michalewicz, 1994) depending on how rules are

encoded in the population of individuals. In the Michigan approach, each individual

encodes a single prediction rule. Examples of EAs for classification that follow the

Michigan approach are REGAL (Giordana and Neri, 1995), GGP (Wong and Leung,

2000) and De Falco et al. (2002). In the Pittsburgh approach, each individual encodes a set

of prediction rules (Freitas, 2002). Examples of EAs for classification that follow the

Pittsburgh approach are GABIL (De Jong et al., 1993), GIL (Janikow, 1993) and BGP

(Rouwhorst and Engelbrecht, 2000). The choice between the two coding approaches

strongly depends on which kind of knowledge is targeted. For the task of classification,

the quality of rule set is usually evaluated as a whole rather than the quality of a single

rule, i.e., the interaction among the rules is important. In this case, the Pittsburgh approach

is a better choice. On the other hand, the Michigan approach is more suitable for tasks

 12

where the goal is to find a small set of high-quality prediction rules, and each rule is

evaluated independently of other rules (Noda et al., 1999).

The Pittsburgh approach directly takes into account rule interaction when computing the

fitness function of an individual. However, the individuals encoded with this approach are

syntactically longer, thus making the optimal solution difficult to be found when the

search space is large. In Pittsburgh approach, standard genetic operators may need to be

modified for coping with the relatively complex individuals to ensure feasibility of

solutions. On the other hand, the Michigan approach encoded individuals are simpler and

syntactically shorter, thus making the search of solutions easier and faster. However, this

approach has some drawbacks, e.g., each rule is encoded and evaluated separately without

taking into account interactions among different rules. Furthermore, the Michigan

approach often needs to include niching methods such as token competition (Wong and

Leung, 2000) in order to maintain the diversity of population or to converge to a set of

rules instead of a single rule.

To utilize advantages of both approaches and to compromise the drawbacks of each, the

two approaches can be applied together in a certain way. In fact, the final rule set can be

obtained through a two-phase evolution process where, in the first phase, classification

rules are learnt from the data sets via a Michigan coding approach, which produces a pool

of candidate good rules for evolving the final rule set in the second phase. Since rule sets

with different number of rules are targeted in the second phase, Pittsburgh coding

approach is used to encode the individuals. In this approach, the optimal number of rules

in a rule set can be decided automatically in the second phase. This is unlike many

 13

existing approaches such as Peña-Reyes and Sipper (1999; 2001) where the number of

rules in a rule set often needs to be determined manually and a-priori. This two-phase

evolutionary classifier also confines the usually large classification search space and

consequently requires a smaller population and generation size. In this approach, the

problem of the Pittsburgh’s approach in finding the usually very large/infinite

combination of classification rules can be reduced, i.e., the first phase searches for good

rules in a complex search space and the second phase searches for optimal combination of

rules obtained in the first phase. Good combination of rules are easier to be found in this

way since the number of rules available is limited and the rules are all essential to the

problem. For example, the population size and generation size was set as 200 and 2500,

respectively in Peña-Reyes and Sipper (1999). In the two-phase approach, the population

size is set as 100 in the first phase and 50 in the second phase, and the generation size is

set as 100 and 50 in the first and second phase, respectively.

2.3. Coevolution

Coevolution refers to the simultaneous evolution of two or more species with coupled

fitness (Liu et al., 2001). Such coupled evolution favors the discovery of complex

solutions (Paredis, 1995). Coevolution of species can either compete (e.g., to obtain

exclusivity on a limited resource) or cooperate (e.g., to gain access to some hard-to-attain

resource). In a competitive coevolutionary algorithm, the fitness of an individual is based

on direct competition with individuals of other species, which in turn evolve separately in

their own populations. Increased fitness of one of the species implies a diminution in the

fitness of the other species. This evolutionary pressure tends to produce new strategies in

 14

the populations involved to maintain their chances of survival. This “arms race” ideally

increases the capabilities of all species until they reach an optimum. For further details on

competitive coevolution, readers may refer to Rosin and Belew, (1997).

Cooperative coevolutionary algorithms involve a number of independently evolving

species, which together form a complex structure for solving difficult problems. The

fitness of an individual depends on its ability to collaborate with individuals from other

species. In this way, the evolutionary pressure stemming from the difficulty of the

problem favors the development of cooperative strategies and individuals. Single

population evolutionary algorithms often perform poorly, manifesting stagnation,

convergence to local optima and computational costliness, when they are confronted with

problems presenting one or more of the following features: (1) the sought-after solution is

complex, (2) the problem or its solution is clearly decomposable, (3) the genome encodes

different types of values, (4) strong interdependencies among the components of the

solution, and (5) components-ordering drastically affects fitness (Peña-Reyes and Sipper,

2001). Cooperative coevolution addresses these issues effectively, and consequently

widening the range of applications in evolutionary computing. Paredis (1995) applied

cooperative coevolution to problems that involved finding simultaneously the values of a

solution and their adequate order. In his approach, a population of solutions coevolves

alongside a population of permutations performed on the genotypes of the solutions.

Moriarty (1997) used a cooperative coevolutionary approach to evolve neural networks.

Each individual in one species corresponds to a single hidden neuron of a neural network

and its connections with the input and output layers. This population coevolves alongside

 15

a second one whose individuals encode sets of hidden neurons (i.e., individuals from the

first population) forming a neural network.

With coevolution on hand, the whole rule sets extraction process can be made to be an

integrated one instead of using a two-phase approach stated in the previous section. By

utilizing the coevolutionary algorithms, a rule population and several rule set populations

can be evolved concurrently, which make the generated rules more relevant and useful for

the rule set construction, so the rule sets with fairly good classification performance can be

expected. Furthermore, since the different species (rules and rule sets) evolve in a parallel

and cooperative way, the distributed technology can naturally be incorporated into the

whole system to make the work done in a more efficient and effective manner.

2.4. Conclusion

In this chapter, an overall introduction of rule induction is given in the first section, from

which one can learn what a rule set looks like and how to derive a rule set. Specifications

of how evolutionary algorithms can be applied to rule induction are introduced in the

following sections, which build a good foundation for the algorithms to be presented in

the following chapters.

 16

Chapter 3

A two-phase evolutionary rule induction algorithm

3.1 Algorithm overview

In this chapter, the classification task is formulated as a complex search optimization

problem, where hidden relationships of the attributes to class are targeted knowledge to be

discovered. The candidate solution that is in the form of a comprehensible Boolean rule

set is obtained through a two-phase evolution mechanism as shown in Figure 3.1. The first

phase searches for a pool of good candidate rules using Michigan coding approach

(Michalewicz, 1994), while the second phase finds the best Boolean rule set by evolving

and forming rule sets from the pool of rules. Since rule sets with different number of rules

are targeted in the second phase, Pittsburgh coding approach (Michalewicz, 1994) is used

to encode the individuals. In the proposed evolutionary classifier, the optimal number of

rules in a rule set is decided automatically in the second phase, which is advantageous to

 17

many approaches where the number of rules in a rule set often needs to be determined a

priori (Joshi et al, 2001, Peña-Reyes and Sniper, 1999; 2001).

The proposed two-phase evolutionary classifier also confines the usually large generation

size. In this way, the inherent problem of Pittsburgh’s coding method in finding the

usually large combination of classification rules is greatly reduced, e.g., it is relatively

easy to find good combination of rules in the second phase since the number of rules

obtained in the first phase is confined and essential to the problem. For example, the

population and generation size was set as 200 and 2500, respectively in (Peña-Reyes and

Sniper, 1999). In this approach, the population size is set as 100 in the first phase and 50

in the second phase, and the generation size is set as 100 and 50 in the first and second

phase, respectively.

Rule list evolver
(Pittsburgh coding) Best rule list.

.

.

Hybrid
GA-GP

(Michigan
coding)

Token
competitionData set Pool of rules

Phase 1 Phase 2

Figure 3.1: Overview of the two-phase hybrid evolutionary classifier

A great challenge of applying evolutionary algorithms in data mining problems is that

sometimes an algorithm should have the capacity of dealing the numeric and nominal

attributes simultaneously. To be equipped with this capability, Bojarczuk et al., (2000)

implemented a non-standard tree structure GP. In their algorithm, functions are

 18

constructed via Boolean operators, and terminal sets are chosen based on booleanized

attributes. The numeric attributes in this approach are discretized into nominal boundaries

a-priori in order to use the booleanized attributes. Nevertheless, this greatly restricts the

search capability of GP, i.e., the classification outcome depends on how well the

boundaries were defined.

One possible approach of handling both nominal and numeric attributes in data

classification is through the hybridization of GA and GP. Howard and D’Angelo (1995)

proposed a hybrid GA and GP called Genetic Algorithm-Program (GA-P) which has been

applied to evolve expressions for symbolic regression problem. In their approach, GP is

used to construct expression tree while GA is used to construct numeric constant and

coefficient of nominal attributes used in the expression. Unlike GA-P that was designed to

solve regression problems, an effective approach of fusing GA and GP for different

targeted application of mining comprehensible classification rules is proposed in this

chapter. Although both approaches utilize the concept of GA and GP hybridization, the

GA-P is designed for predictive application, which is different from the problem of data

classification addressed in this thesis. Moreover, the GA-P treated the fixed binary string

of GA and tree expression of GP as 2 inseparable entities in a chromosome. In this

approach, the string in GA and tree structure in GP is indirectly related and each can work

without another, e.g., if there is only numeric attributes in the targeted problem, only the

GA part will be fired in our approach. In addition, a two-phase evolutionary process is

adopted in this approach, i.e., the hybrid evolutionary algorithm is applied to generate

good rules in the first phase, which are then used to evolve comprehensive rule sets in the

second phase.

 19

3.2 Phase 1: The Hybrid GA-GP

The evolutionary classifier, namely EvoC, has been implemented and integrated into the

Java-based public domain data mining package ‘WEKA’ (Garner, 1995; Witten and

Frank, 1999). Figure 3.2 shows the phase one of the program flowchart of EvoC, where

the initial population is created from the training set. The attributes in the training set are

built into nominal and numeric table for GP and GA, respectively. Each individual

encodes a single rule and the population is structured such that all individuals are

associated to the same class. This structure avoids the need of encoding the class values,

i.e., the THEN part of the rules is encoded implicitly in the individuals.

 20

Start

Training
dataset

Maximum generation?

Tournament selection

No

Fitness evaluation

Output pool of rules

yes

End

Fitness evaluation

Token competition

Add winners to pool

Nominal table Numeric table

GP intialization GA intialization

GP crossover GA crossover

GP mutation GA mutation

Initialize population

Crossover

Mutation

Figure 3.2: The program flowchart for the phase one of EvoC

The tournament selection scheme (Banzhaf, 1998) with a tournament size of 2 is

implemented in EvoC. When a new population is formed, the token competition (Wong

and Leung, 2000) is applied as a covering algorithm to penalize redundant individuals as

well as to retain individuals that cover the problem space well (Hu, 1998). The winners in

the token competition will be added to a pool of candidate rules and the pool is maintained

 21

such that no redundant rules may exist and the previously encountered good rules are kept

for subsequent competitions. All individuals in the pool including the current population

are participated in the token competition in order to ensure that no redundant rules exist in

the pool.

The evolutionary process in phase one is run for every class of data set. For an n class

problem, there will be n evolutionary iterations. The pool of rules for every class is

combined into a global pool, which will be presented as the input to the second phase.

Each individual in the first phase contains two different chromosome structures, which are

treated separately in the evolution and assigned to handle the nominal and numeric

attributes. The chromosome structure, genetic operations and handling techniques of EvoC

in phase one are described in the following subsections.

3.2.1 Chromosome Structure and Genetic Operations

The weather data set shown in Table 3.1 is used as an example to show how the proposed

hybrid GA-GP works on different types of attributes. The objective of the data set is to

learn whether a specific game can be played on a given weather. Each of the columns in

Table 3.1 represents an attribute. The last column is the class attribute to be learned. Each

of the rows represents an instance, and the collection of instances forms the data set. For

the weather data set, the “Outlook” and “Windy” are nominal attributes, while the

“Temperature” and “Humidity” are numeric attributes.

 22

The genetic programming tree-based chromosome representation has been used to encode

nominal attributes that are Booleanized, and many logical operators have been applied to

evolve highly flexible solutions in classification problems (Bojarczuk et al, 2000; Tan et

al, 2002a). However, the difficulty of integrating general arithmetic operators with

Booleanized attributes in GP limits the flexibility of handling real-world data that often

consists of both the nominal and numeric attributes (Hu, 1998). One passive approach is to

discretize the numeric attributes into boundaries at the expense of lower classification

accuracy for the rules found. To address this problem, the approach of having independent

chromosomes to handle numeric attributes in data classification is adopted in this paper.

Since the representation of fixed-length chromosome with numeric genes in genetic

algorithms is well suited for numerical optimization (Goldberg, 1989) it is used in EvoC

to deal with the numeric attributes in the classification.

Table 3.1 The weather data set
Outlook Temperature Humidity Windy Play
Sunny 85 85 FALSE No
Sunny 80 90 TRUE No

Overcast 83 86 FALSE Yes
Rainy 70 96 FALSE Yes
Rainy 68 80 FALSE Yes
Rainy 65 70 TRUE No

Overcast 64 65 TRUE Yes
Sunny 72 95 FALSE No
Sunny 69 70 FALSE Yes
Rainy 75 80 FALSE Yes
Sunny 75 70 TRUE Yes

Overcast 72 90 TRUE Yes
Overcast 81 75 FALSE Yes

Rainy 71 91 TRUE No

A. GP chromosome structure: The selection of functions and terminals is the preparatory

step in genetic programming (Koza, 1992). In EvoC, two Boolean operators are adopted

 23

as functions, i.e., ‘AND’ and ‘NOT’. These two functions are sufficient to build a basic

classification rule in the form of “IF antecedent1 AND (NOT antecedent2) AND … THEN

consequence”. The classification rules that are built of ‘AND’ and ‘NOT’ can then be

combined to form the decision rule set (the ‘OR’ effect). The terminal set contains all

possible attribute-value pairs for a given data set. For example, the possible attribute-

value pairs could be outlook-overcast, outlook-sunny, outlook-rainy, windy-TRUE or

windy-FALSE for the weather data set. To avoid redundant or conflicting nodes exist in

the same tree, these terminals are built into a table and only one attribute-value pair can be

selected from each attribute entry for a tree structure. The initial population in GP is

created with the approach of ‘ramped-half-and-half’ (Koza, 1992).

B. GA chromosome structure: The fixed-length real-coding chromosome structure is

adopted in GA (Goldberg, 1989). The range of each numeric attribute is represented by

two real-coded genes: one encodes the upper bound and the other the lower bound. As

depicted in Figure 3.3, the Mth (M N≤) and (M + N)th genes encode the range of the Mth

numeric attribute. In the initial population, the lower and upper bound of each attribute is

initialized as the corresponding minimum and maximum, respectively. For example, in the

weather problem, the minimum and maximum of the two numeric attributes

“Temperature” and “Humidity” is (64, 85) and (70, 96), respectively. Therefore the

initialization of chromosomes is given as (64, 70, 85, 96). Obviously, such an approach

starts the evolution with generality and subsequently searches for specificity. Since

nominal attributes consist of a finite number of values, their hidden relationships are often

easier to be discovered. Based on this assumption, the above initialization is adopted to

give nominal attributes a higher priority. As the evolution process, the range of certain

 24

numeric attributes will shrink and the corresponding nominal parts will improve

accordingly to produce better classification accuracy.

Upper bound of
attribute 1

Lower bound of
attribute 2

Upper bound of
attribute 3 ... Lower bound of

attribute 1
Upper bound of

attribute 2
Lower bound of

attribute 3 ...

Number of the numeric attributes (N)

Figure 3.3: The chromosome structure in GA

C. Mutation and crossover: Since the GP in EvoC only deals with nominal attributes,

standard tree-based crossover and mutation operators are employed in the GP (Koza,

1992). However, a specialized mutation operator is used in GA in order to avoid

annoyance rules such as age ≤ 45.23. The values of every numeric attributes of the data set

to be learned are stored in a table, and the mutation is performed by fetching a random

corresponding value from the table and replaces the value of the attribute in the

chromosome. Standard single-point crossover where two parents exchange their genes

from a random position to reproduce the offspring is adopted in GA (Goldberg, 1989). It

should be noted that these genetic operators utilized data in the available data sets for the

lower and upper bounds of the attributes, which not only makes the best use of

information in the data sets, but also guarantees the meaningfulness of the final rules

produced by EvoC.

3.2.2 Automatic Attribute Selection

Although a data set often contains many attributes, it is common that only a fraction of the

attributes will appear in a single rule. For example, a rule for the weather data set may be

 25

in the form of “IF outlook = sunny and humidity ≥ 83, THEN play = no”, where only two

out of the five attributes are considered in this rule. This characteristic of rules seems to be

counterintuitive to the fixed-length chromosome structure of GA, where all numeric

attributes are considered in the evolution. If chromosomes in the GA are converted to rules

directly, all the numeric attributes will be included in the rules, which may result in the

redundant rules. Such contradiction, however, could be overcome by studying the

characteristic of chromosomes in GA for succinct presentation of rules.

Suppose a candidate individual in the solution produces a rule in the form of “IF outlook

= sunny and 64 85≤≤ etemperatur and 9683 ≤≤ humidity , THEN play = no”. Since

‘64’ and ‘85’ are the lower and upper limits of the temperature, it casts no restrictions on

all data samples and thus the temperature condition will be discarded from the rule. This

observation is also applicable to the humidity attribute. Since ‘96’ is the upper limit of

humidity, all the instances whose humidity are higher than ‘83’ will satisfy this condition.

Hence, ‘96’ is unnecessary and will also be excluded from the rule. After these operations,

the final concise rule becomes “IF outlook = sunny and humidity ≥ 83, THEN play = no”.

3.2.3 Fitness Function

When a rule or individual is used to classify a given training instance, one of the four

possible concepts can be observed: true positive (tp), false positive (fp), true negative (tn)

and false negative (fn). The true positive and true negative are correct classifications,

while false positive and false negative are incorrect classifications. For a 2-class case, with

 26

class ‘yes’ and ‘no’, the four concepts can be easily understood with the following

descriptions,

• True positive: the rule predicts that the class is ‘yes’ (positive) and the class of the

given instance is indeed ‘yes’ (true);

• False positive: the rule predicts that the class is ‘yes’ (positive) but the class of the

given instance is in fact ‘no’ (false);

• True negative: the rule predicts that the class is ‘no’ (negative) and the class of the

given instance is indeed ‘no’ (false);

• False negative: the rule predicts that the class is ‘no’ (negative) but the class of the

given instance is in fact ‘yes’ (true).

Using these concepts, the fitness function used in the first phase of EvoC is defined as,

 1
() ()

tp tnfitness w
tp fn tn fp

= × × ++ +

 (1)

 with Nw
N fp

=
+

 (2)

where N is the total number of instances in the training set and w is a penalty factor. The

value of the fitness function is in the range of 0 to 2. The fitness value is 2 (the fittest)

when all instances are correctly classified by the rule, i.e., when fp and fn are 0. A penalty

factor w that tends to minimize fp is included in the fitness function to evaluate the quality

of the combined individuals in the rule set. This is because Boolean sequential rule list

 27

(where rules are considered one after another) is very sensitive and tends to have a large

number of false positives (fp) due to the virtual ‘OR’ connections among the rules, e.g.,

when a rule with large fp is considered first in a rule list, many of the instances will be

classified incorrectly.

3.2.4 The Covering Algorithm

The covering algorithm employs the token competition (Wong and Leung, 2000) to

promote the diversity and to evolve multiple rules in the first phase of EvoC. Multiple

rules that cover the same instances in the training set often increase the tendency of

premature convergence in the evolution. In most cases, only a few of these multiple rules

are useful and cover most of the instances while others are redundant. To achieve the

optimal performance for the rule list evolver in the second phase, all rules that are able to

cover at least one instance in phase one will be retained in the pool of candidate rules,

which are maintained by the covering algorithm.

3.3 Phase 2: The Rule Set Evolver

In the phase one of EvoC, the hybrid GA-GP approach is applied to find good

classification rules in a usually complex search space. The approach is a Michigan-style

algorithm where classification performance of the rule set is not needed for fitness

evaluations. Although the token competition can serve as a rule selection mechanism, e.g.,

rules that fail to seize any token (a token represents an example in the dataset) will be

 28

eliminated, a Pittsburgh-like approach is required in the second phase in order to find the

optimal order and number of rules in a rule set from the pool of candidate rules evolved in

phase one. To determine the optimal number of rules in a rule set, the population in phase

two is divided into several sub-populations, where each sub-population is dedicated to

optimize the order of rules with a given rule number. For example, if the number of rules

in the candidate pool is n, then there will be n sub-populations and the ith sub-population

will be evolved to optimize the rule set containing i rules.

After the initialization, each sub-population will be evolved independently and there is no

interaction among the sub-populations. At the end of the evolution, each sub-population

outputs its ‘best’ candidate rule set, which will compete (based on the classification

accuracy) with the ‘best’ rule sets generated by other sub-populations to obtain the final

optimal rule set. In this approach, the order and number of rules in the rule sets can be

optimized and determined simultaneously. To retain concise rule sets in the classification,

a shorter rule set is preferable to a longer one even if both achieved the same classification

accuracy. All rules obtained in the first phase of EvoC are given an index and these rules

will be selected randomly to build up the rule sets. Figure 3.4 depicts the initialization of

two chromosomes having 3-rules set and 6-rules set respectively. Similar to the GA in

phase one of EvoC, standard single-point crossover and tournament selection schemes are

adopted in phase two. The mutation operation is performed by randomly selecting a rule

from the pool of candidate rules to replace the rule for mutation. In phase two, the fitness

function considers the classification accuracy on the training set as given by,

 29

tp tnfitness
N
+

= (3)

where N is the total number of instances in the training set.

.

.

.

Rule 1

Rule 2

Rule 3

Rule 4

Rule n

1

2

3

4

n

Index

15 n 82 10 Sub-population 6

95 2
Sub-population 3

Pool of candidate rules

3-rules chromosome

6-rules chromosome

Figure 3.4: Example of chromosomes initialization in the phase two of EvoC

3.4 Applications on medical diagnosis

Clinical medicine is facing a challenge of knowledge discovery from the growing volume

of data. Nowadays enormous amounts of information are collected continuously by

monitoring physiological parameters of patients. The growing amounts of data has made

manual analysis by medical experts a tedious task and sometimes impossible. Many

hidden and potentially useful relationships may not be recognized by the doctors or

physicians. The explosive growth of data requires an automated way to extract useful

knowledge. One of the possible approaches to this problem is by means of data mining or

knowledge discovery from database (KDD) (Brameier and Banzhaf, 2001). Through data

 30

mining, interesting knowledge and regularities can be extracted and the discovered

knowledge can be applied in the corresponding field to increase the working efficiency

and to improve the quality of decision making.

Classification rules are typically useful for medical problems and have been massively

applied particularly in medical diagnosis. Such rules can be verified by the experts and

may provide better understanding of the problem in-hand. Numerous techniques have

been applied to data mining applications over the past few decades, such as expert

systems, artificial neural networks, linear programming, database systems, and

evolutionary algorithms (Chang et al., 1999; Kupinski and Anastasio, 1999; Setiono,

1996; Witten and Frank, 1999; Wong et al., 2000). Among these approaches, evolutionary

algorithms (EAs) have been emerged as a promising technique in dealing with the

increasing challenge and problems in medical domain. Recently, EAs has been utilized at

different stages of knowledge discovery process in medical data mining applications. Kim

and Han (2000), and Liu et al., (2001) applied genetic algorithm at the preprocessing stage

to reduce the dimension/difficulty of the problem and to increase the learning efficiency in

data mining. Hruschka and Ebecken (2000), and Meesad and Yen (2001) used genetic

algorithm at the post-processing stage to extract rules from a neural network. Other EAs

approaches for generating classification rules in data mining include Wang et al., (1998),

Congdon, (2000), and Fidelis et al., (2000). In the following sections, the proposed EvoC

is applied to three real world medical datasets, which justifies EvoC as a useful tool to aid

the prognosis and diagnosis of diseases.

 31

3.4.1 The Medical Diagnosis Data Sets

The medical diagnosis data sets used in this study are the hepatitis data set and breast-

cancer diagnosis databases obtained from University of California, Irvine (UCI) machine-

learning repository at http://www.ics.uci.edu/~mlearn/MLRepository.html. The Hepatitis

data set was collected at Carnegie-Mellon University (Cestnik, et al, 1987) and donated to

UCI ML repository in 1988. The two breast-cancer diagnosis data sets, i.e., Wisconsin

Breast Cancer Database (WBCD) and Wisconsin Diagnostic Breast Cancer (WDBC),

were collected at different periods of time with different attributes recorded (Street et al,

1993). The former was donated to UCI ML repository in 1991, while the latter was in

1995 for public access. For both breast cancer data sets, the classification task is to

determine case of benign or malignant from the physical attributes of cell given in the data

sets. The characteristics of these data sets are briefly described as follows:

A. The Hepatitis Data Set (HEPA): The Hepatitis data set is summarized in Table 3.2,

which consists of 155 instances. Each instance consists of 19 attributes, namely age, sex,

steroid, antivirals, fatigue, malaise, anorexia, liver big, liver firm, spleen palpable, spiders,

ascites, varices, bilirubin, alk phosphate, SGOT, albumin, protime and histology. This

problem includes both nominal and numeric attributes, which is particularly suitable for

verifying the performance of EvoC. The HEPA is a complex and noisy data set since it

contains a large number of missing data. The class is distributed with 32 (20.65%) DIE

samples and 123 (79.35%) LIVE samples. The classification task is to predict whether a

patient with hepatitis will live or die.

 32

Table 3.2 Summary of the HEPA data set
Attribute Possible values

Age Integer 1 – 80
Sex Male, Female

Steroid No, Yes
Antivirals No, Yes

Fatigue No, Yes
Malaise No, Yes

Anorexia No, Yes
Liver BIG No, Yes
Liver firm No, Yes

Spleen palpable No, Yes
Spiders No, Yes
Ascites No, Yes
Varices No, Yes

Bilirubin 0.39, 0.80, 1.20, 2.00, 3.00, 4.00
Alk phosphate 33, 80, 120, 160, 200, 250

SGOT 13, 100, 200, 300, 400, 500
Albumin 2.1, 3.0, 3.8, 4.5, 5.0, 6.0
Protime 10, 20, 30, 40, 50, 60, 70, 80, 90

Histology No, Yes
Class Die (20.65%), Live (79.35%)

B. The Wisconsin Diagnostic Breast Cancer (WDBC): The WDBC data set is

summarized in Table 3.3 and consists of 569 instances. Each instance consists of 10 real-

valued attributes of the nuclear for the cancer cell, namely radius, texture, perimeter, area,

smoothness, compactness, concavity, concave points, symmetry and fractal dimension.

These attributes are modeled such that higher values are typically associated with

malignancy. The mean, worst (mean of the three largest values), and standard error of

each attribute were computed for the original data set, resulting in a total of thirty

attributes. In this study, however, only the mean values were considered in the rule

extraction process. Detailed description of these 10 attributes is available from (Street et

al, 1993). All the instances have been properly recorded and there is no missing value in

 33

this data set. The diagnosis class is distributed with 357 (62.7%) benign samples and 212

(37.3%) malignant samples.

Table 3.3 Summary of the WDBC data set
Attribute Possible values Description

Radius Real Mean of distances from center to points on perimeter
Texture Real Standard deviation of gray-scale values

Perimeter Real -
Area Real -

Smoothness Real Local variation in radius lengths
Compactness Real Perimeter2 / area - 1.0

Concavity Real Severity of concave portions of the contour
Concave points Real Number of concave portions of the contour

Symmetry Real -
Fractal dimension Real "Coastline approximation" – 1

Diagnosis Benign (62.7%),
Malignant (37.3%)

C. The Wisconsin Breast Cancer Database (WBCD): The WBCD data set is summarized

in Table 3.4 and consists of 699 instances taken from fine needle aspirates (FNA) of

human breast tissue. Each instance consists of nine measurements (without considering

the sample’s code number), namely clump thickness, uniformity of cell size, uniformity of

cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,

normal nucleoli, and mitoses. The measurements are assigned an integer value between 1

and 10, with 1 being the closest to benign and 10 the most anaplastic. Associated with

each sample is its class label, which is either benign or malignant. This data set contains

16 instances with missing attributes’ values. Since many classification algorithms have

discarded these data samples, for the ease of comparison, the same way is followed and

the remaining 683 samples are taken for use. Therefore the class is distributed with 444

(65.0%) benign samples and 239 (35.0%) malignant samples.

 34

Table 3.4 Summary of the WBCD data set
Attribute Possible values

Clump thickness Integer 1 – 10
Uniformity of cell size Integer 1 – 10

Uniformity of cell shape Integer 1 – 10
Marginal adhesion Integer 1 – 10

Single epithelial cell size Integer 1 – 10
Bare nuclei Integer 1 – 10

Bland chromatin Integer 1 – 10
Normal nucleoli Integer 1 – 10

Mitoses Integer 1 – 10
Class Benign (65.5%), Malignant (34.5%)

3.4.2 Simulation Settings

The EvoC was implemented in Java programming based on the Java Developers Kit (JDK

1.3.1) from Sun Microsystems. The simulations were performed using an Intel Pentium III

933 MHz processor with 512 MB SDRAM. To ensure the validity and replicability of the

results, all experiments were designed carefully and all data sets used by the EvoC were

partitioned into two sets: a training set and a testing set (or validation set). As indicated by

Prechelt (1995), the fuzzy specification of the partitioning of training versus testing data is

a big obstacle to reproduce or compare published machine-learning results. It is

insufficient to only indicate the number of examples for each set in the partition since the

experimental results may vary significantly for different partitions even if the numbers in

each set are the same (Yao and Liu, 1997). In this work, a total of 100 simulation runs

were performed for each of the three medical data sets, and a random seed1 that is similar

to the number of runs (i.e., the 50th simulation run uses a random seed of 50) was used to

1 The random number generator used in the experiments is provided by Sun’s JDK 1.3.1 and the data set
randomizer used is provided by WEKA. Different partitioning of data sets might be resulted under different
programming environments.

 35

randomize the orders of data in the data sets. Each randomized data set was then

partitioned into 66% of training data and 34% of testing data as follows:

• For the hepatitis data set, the first 102 examples are used for the training set and

the remaining 53 examples for the testing set;

• For the WDBC data set, the first 376 examples are used for the training set and the

remaining 193 examples for the testing set;

• For the WBCD data set, the first 451 examples are used for the training set and the

remaining 232 examples for the testing set.

Table 3.5 lists the parameter settings of EvoC used in the simulations. The maximum

initial depth and maximum crossover depth are GP specified control parameters, which are

used to control the complexity of GP trees during the evolution. The parameter settings in

Table 3.5 were applied to all experiments in this work, which should not be taken as the

optimal set of parameters for each problem, but rather a generalized one for which the

EvoC performs well over a number of different data sets.

Table 3.5 The setting of parameters in EvoC
Parameters Parameter description Phase 1 Phase 2

MaxInitDepth The permitted depth of GP tree in initialization 6 -
MaxCrossoverDepth The permitted depth of GP tree after crossover 17 -

ReproductionProb The probability of an individual that will be copied to the next
generation without changes 0.1 -

MutationProb The probability of mutation 0.5 0.1
CrossoverProb The probability of crossover 0.9 0.8
MaxGeneration The generation number for the evolution 100 50
PopulationSize The population size for the evolution 100 50

 36

3.4.3 Simulation Results

Table 3.6 summarizes the classification results produced by EvoC over the 100

independent simulation runs for both the training and testing data sets. To obtain a better

understanding of the classification performances for the different simulations, the

histograms that summarize the experiment results of the three data sets are shown in

Figure 3.5-3.7. For all the histograms, the classification performance axis indicates the

classification accuracy achieved by the different number of rule sets obtained over the 100

independent simulation runs.

Table 3.6 Summary of the results in EvoC over the 100 independent simulation runs
Classification accuracy HEPA WDBC WBCD

Training
Max 90.20% 96.28% 99.33%
Min 79.41% 91.22% 96.23%

Mean 85.04% 94.36% 97.80%
StdDev 1.76% 0.91% 0.51%

Testing
Max 94.34% 96.37% 99.13%
Min 75.47% 88.60% 95.26%

Mean 83.92% 93.04% 97.57%
StdDev 4.03% 1.47% 0.85%

Avg # rules 2.93 9.74 5.99

 37

Classification performance

N
um

be
r o

f r
ul

e
se

ts

(a)

Classification performance

N
um

be
r o

f r
ul

e
se

ts

(b)

Figure 3.5: The performance of EvoC for the HEPA problem (a) training (b) testing

Classification performance

N
um

be
r o

f r
ul

e
se

ts

(a)

Classification performance

N
um

be
r o

f r
ul

e
se

ts

(b)

Figure 3.6: The performance of EvoC for the WDBC problem (a) training (b) testing

 38

Classification performance

N
um

be
r o

f r
ul

e
se

ts

(a)

Classification performance

N
um

be
r o

f r
ul

e
se

ts

(b)

Figure 3.7: The performance of EvoC for the WBCD problem (a) training (b) testing

Tables 3.7-3.9 list the classification rules having the highest predictive accuracy (i.e., the

classification accuracy on the testing data set) for the three medical data sets. Besides the

fitness value, support factor and confidence factor are also provided to measure the

performance of each rule. The support factor measures the coverage of a rule, which is the

ratio of the number of instances covered by the rule to the total number of instances. The

confidence factor measures the accuracy of a rule. For a rule “IF X THEN Y” and a

training set of N instances, the support factor and confidence factor are given as,

 number of instances with both and support X Y
N

= (4)

 number of instances with both and confidence =
number of instances with

X Y
X

 (5)

A careful examination of the relationship between the predictive accuracy of a rule set and

its number of rules reveals an interesting finding. The rule sets with a large number of

 39

rules will not necessarily lead to high predictive accuracy, although they generally provide

good performances on the training sets. It can also be observed that the first few rules in a

rule set often cover a large portion of the samples and left relatively few samples for the

remaining rules. Therefore when the data set is not noise-free, a large number of rules may

cause over-fitting and leads to poor generalization. For example, in the WBCD problem,

all of the best 6 rule sets that achieve a predictive accuracy of above 99% only contain an

average of 4 rules. However, the 4 largest rule sets (all of which contain more than 15

rules) only produce an average accuracy of 97.75% on the testing samples.

Table 3.7 The best rule set of HEPA with an accuracy of 94.34%
 Rule Fitness Support factor Confidence factor

1 IF FATIGUE = yes
 AND AGE >= 30.0
 AND ALK_PHOSPHATE <= 280.0
 AND ALBUMIN <= 4.3
 AND PROTIME <= 46.0
 THEN Class = DIE

1.2338 0.1961 0.5128

2 IF ANOREXIA = no
 AND BILIRUBIN <= 1.8
 AND SGOT <= 420.0
 THEN Class = LIVE

1.0912 0.5588 0.8636

3 IF SPIDERS = yes
 AND AGE >= 30.0
 AND 62.0 <= ALK_PHOSPHATE <= 175.0
 AND ALBUMIN <=4.3
 AND PROTIME <=85.0
 THEN Class = DIE

1.2989 0.1765 0.6667

4 ELSE Class = LIVE

 40

Table 3.8 The best rule set of WDBC with an accuracy of 96.37%
 Rule Fitness Support factor Confidence factor

1 IF Radius <= 14.95
 AND Perimeter <= 116.1
 AND Concavity <= 0.313
 AND Concave_points <= 0.04908
 THEN Diagnosis = benign

1.6774 0.5479 0.9763

2 IF Radius >= 13.0
 AND Texture >= 15.76
 AND Perimeter >= 74.72
 AND Area >= 572.6
 AND Concavity >= 0.03885
 AND Concave_points >= 0.02402
 THEN Diagnosis = malignant

1.5315 0.3032 0.8769

 IF Radius <= 17.01
 AND Perimeter <= 116.1
 AND Concavity <= 0.1122
 AND Concave_points <= 0.1265
 THEN Diagnosis = benign

1.5876 0.5931 0.8956

3 ELSE Diagnosis = malignant

Table 3.9 The best rule set of WBCD with an accuracy of 99.13%
 Rule Fitness Support factor Confidence factor

1 IF Clump_Thickness <= 8.0
 AND Cell_Shape_Uniformity <= 8.0
 AND Marginal_Adhesion <= 3.0
 AND Bare_Nuclei <= 5.0
 AND Bland_Chromatin <= 7.0
 AND Normal_Nucleoli <= 8.0
 THEN Class = benign

1.8702 0.6186 0.9789

2 IF Cell_Shape_Uniformity >= 3.0
 AND Single_Epi_Cell_Size >= 2.0
 AND Bland_Chromatin >= 2.0
 THEN Class = malignant

1.739 0.3459 0.8571

3 IF Clump_Thickness <= 8.0
 AND Cell_Size_Uniformity <= 4.0
 AND Bland_Chromatin <= 3.0
 AND Normal_Nucleoli <= 9.0
 AND Mitoses<=1.0
 THEN Class = benign

1.783 0.5898 0.9779

6 ELSE Class = malignant

 41

3.4.3 Performance Comparisons

This section compares the performance of EvoC with three popular machine-learning

algorithms, i.e., C4.5, PART and Naïve Bayes. . The first two algorithms are chosen due to

their rule-based characteristics as offered in EvoC. Comparisons between these two

algorithms and EvoC include the performance of classification accuracy and rule set size

(i.e., the number of rules in a rule set), since a good rule set should be both accurate and

succinct. The method of Naïve Bayes is included here since it is a well-known statistical

classifier that often gives high classification accuracy and provides good comparison to

EvoC in terms of classification ability. Besides the comparisons of average results and

standard deviations over the 100 simulation runs, a paired t-test (Montgomery et al, 2001)

has also been performed between EvoC and the three algorithms respectively. The P-

values are computed for testing the null hypothesis that the means of the paired

observations on the accuracy rate are equal. These algorithms are briefly described below,

• The C4.5 proposed by Quinlan (1993) is a landmark decision tree program that

has been widely used in practice;

• The PART is a rule-learning scheme capable of generating classification rules

(Frank and Witten, 1998);

• The Naïve Bayes utilizes the Bayesian techniques, which has been studied by

many machine-learning researchers (John and Langley, 1995).

 42

In addition, the best results for the three data sets available in the literature2 according to

the author’s best knowledge are also provided in the comparisons. Table 3.10 lists the P-

values of the paired t-tests against the algorithms of C4.5, PART and Naïve Bayes for the

three data sets. As can be seen, the P-values are rather small showing that the EvoC has

outperformed the approaches of C4.5, PART and Naïve Bayes with a great confidence.

Table 3.10 The P-values of the paired t-tests against C4.5, PART and Naïve Bayes
 HEPA WDBC WBCD

C4.5 (Quinlan, 1993) 1.362×10-12 3.545×10-02 1.607×10-32
PART (Frank and Witten, 1998) 5.565×10-10 2.364×10-03 2.990×10-30

NaïveBayes (John and Langley, 1995) 0.313 2.644×10-09 1.302×10-17

A. Comparison Results for the HEPA Data Set

Wang et al. (2000) proposed an evolutionary rule-learning algorithm, called GA-based

Fuzzy Knowledge Integration Framework (GA-based FKIF), which utilized genetic

algorithms to generate an optimal or near-optimal set of fuzzy rules and membership

functions from the initial population of knowledge. As shown in Table 3.11, only the best

result produced by this algorithm is compared with EvoC since the average performance

of GA-based FKIF was not provided in (Wang et al, 2000). The P-values of the paired t-

tests on HEPA data set as listed in Table 3.10 (EvoC vs C4.5: ; EvoC vs

PART: ; EvoC vs Naïve Bayes:

-121.36 10P = ×

-105.56 10P = × 0.31P =) show that the EvoC outperforms

C4.5 and PART, and is comparable to Naïve Bayes based on the average results over the

100 simulation runs when the level of significance α is set as 0.005.

2 Recently, the WBCD data set is widely adopted by many machine-learning algorithms in the medical
domain. Therefore comparisons between different algorithms based on this data set are relatively more
comprehensive than the other two data sets studied in this paper.

 43

Table 3.11 The comparison results for the HEPA data set

Algorithm # Rules

Time (s)
Average
accuracy

Best
accuracy

Standard
deviation

EvoC 2.93 4.84x105 83.92 94.34% 4.03%
C4.5 (Quinlan, 1993) 5.85 < 1 78.94 90.57% 4.84%

PART (Frank and Witten, 1998) 6.64 <1 80.02 94.34% 4.98%
Naïve Bayes (John and Langley, 1995) - < 1 83.62 94.34% 4.90%

GA-based FKIF (Wang et al, 2000) - - - 92.9% -

B. Comparison Results for the WDBC Data Set

Table 3.12 compares the results from EvoC, C4.5, PART, and Naïve Bayes for the WDBC

data set. It can be seen that the EvoC produces competitive classification accuracies,

besides giving the smallest standard deviation among all methods. In addition, the P-

values of the paired t-tests on WDBC data set as listed in Table 3.10 (EvoC vs

C4.5: ; EvoC vs PART: ; EvoC vs Naïve

Bayes:) show that the EvoC outperforms the algorithms of C4.5, PART and

Naïve Bayes based on the average results over the 100 simulation runs when the level of

significance

-2 3.54 10P = ×

-92.64 10P = ×

-32.36 10P = ×

α is set as 0.05.

Table 3.12 The comparison results for the WDBC data set
Algorithm

Rules

Time (s)
Average
accuracy

Best
accuracy

Standard
deviation

EvoC 9.74 4.50x105 93.04% 96.37% 1.47%
C4.5 (Quinlan, 1993) 10.06 < 1 92.61% 97.93% 1.98%

PART (Frank and Witten, 1998) 6.23 < 1 92.35% 97.41% 1.65%
Naïve Bayes (John and Langley, 1995) - < 1 91.56% 95.37% 2.01%

C. Comparison Results for the WBCD Data Set

Peña-Reyes and Sipper (1999) proposed a fuzzy-genetic approach by combining fuzzy

logic and evolutionary algorithms to form a diagnostic system. In the total of 120

evolutionary runs (Peña-Reyes and Sipper, 1999), 78 runs led to fuzzy systems with

 44

accuracies exceed 96.5% and 8 runs with accuracies exceed 97.5%. As shown in Table

3.13, only the three best performances of fuzzy-genetic approach are comparable to the

average results of 97.57% by EvoC. Moreover, the average performance of fuzzy-genetic

approach over the 120 runs is 96.02%, which is only slightly better than the worst rule sets

(with a predictive accuracy of 95.26%) generated by EvoC. If only the best results are

considered, a four-rule fuzzy system achieves the predictive accuracy of 98.24%, which is

lower than the best predictive accuracy of 99.13% by EvoC.

The EvoC has also been compared with the NeuralRule approach proposed by Setiono

(2000), which is capable of extracting classification rules from trained neural networks.

Setiono (2000) trained 200 neural networks in total and after pruning the network to 95%

and 98% accuracies on the training set, an accuracy of 95.44% and 96.66% was achieved

on the testing set respectively. In terms of the best results produced by the pruned

networks, NeuralRule achieves an accuracy of 98.25% on the testing set, which is lower

than the best predictive accuracy of 99.13% by EvoC.

Table 3.13 The comparison results for the WBCD data set

Algorithm # Rules

Time (s)
Average

 accuracy
Best

accuracy
Standard
deviation

EvoC 5.99 3.35x105 97.57% 99.13% 0.51%
C4.5 (Quinlan, 1993) 8.99 < 1 95.09% 97.84% 1.16%

PART (Frank and Witten, 1998) 9.03 <1 95.33% 98.28% 1.16%
NaïveBayes (John and Langley, 1995) - < 1 96.37% 98.28% 0.89%

NeuroRule-rule 3 (Setiono, 2000) 5 - - 98.24% -
Fuzzy-GA4 (Peña-Reyes and Sipper, 1999) 4 - 96.02% 98.24% -

Although the EvoC is capable of evolving comprehensible classification rules with good

generalization performance, it often requires extensive computational effort as compared

 45

to existing approaches. The EvoC is generally developed for off-line data classification,

which could be useful for many applications where the training time is less important than

the generalization in classification. To reduce the computational effort significantly, the

EvoC can be integrated into the ‘Paladin-DEC’ distributed evolutionary computing

framework (Tan et al, 2002b), where multiple inter-communicating subpopulations will be

implemented to share and distribute the classification workload among multiple computers

over the Internet.

3.5 Conclusion

A two-phase hybrid evolutionary classifier capable of extracting comprehensible

classification rules with good accuracy in medical diagnosis has been proposed in this

chapter. In the first phase, genetic programming has been applied to evolve nominal

attributes for free structured rules while genetic algorithms have been used to optimize the

numeric attributes for concise classification rules without the need of discretization. The

second phase then formulates accurate rule sets by optimizing the order and number of

rules in the evolution based upon the pool of confined candidate rules obtained in the

phase 1. The proposed evolutionary classifier has been validated upon one hepatitis and

two breast cancer datasets, which are representative real-world data collected to aid the

prognosis and diagnosis of disease. Simulation results show that the EvoC produces

comprehensible and good classification rules for the three medical datasets. Results

obtained from the t-tests further justify its robustness and invariance to random partition

of datasets.

 46

Chapter 4

Distributed coevolution for rule induction

4.1 Introduction

Although evolutionary algorithms have been applied to various applications in data

mining, the computation cost involved in terms of time and hardware resources often

increases as the size or complexity of the problem becomes larger. One promising

approach to overcome this limitation is to exploit the inherent parallelism of evolutionary

algorithms by creating an infrastructure necessary to support distributed evolutionary

computing using existing Internet and hardware resources. This chapter presents a

distributed coevolutionary data mining system (DCDM) for extracting comprehensible

rules in data mining, which allows different species to be evolved cooperatively and

simultaneously, while the computational workload is shared among multiple computers

over the Internet. Through the inter-communications among different species of rules and

rule sets in a distributed computing approach, the concurrent processing and

computational speed of the coevolutionary classifier are enhanced significantly. The

 47

advantages and performance of the proposed DCDM are extensively validated upon

various datasets obtained from UCI machine learning repository. It is shown that the

predicting accuracy of the DCDM is robust and the computational time is substantially

reduced as the number of remote engines increases. Comparison results illustrate that the

DCDM produces comprehensible and good classification rules for all the datasets, which

are very competitive as compared with existing classifiers in literature.

In fact, exploiting the intrinsic parallelism of EAs, various parallel evolutionary

algorithms have already been proposed to reduce the computational effort needed in

solving complex optimization problems (Cantú-Paz, 1998; Cristea and Godza, 2000; Nang

and Matsuo, 1994; Tan et al., 2002a). Instead of evolving the entire population in a single

processor, the parallel evolutionary algorithms applied the concept of multiple inter-

communicating subpopulations (Cristea and Godza, 2000) in analogy with the natural

evolution of spatially distributed populations. Such inter-communication allows

individuals to migrate among the subpopulations based upon some patterns to induce

diversity of elite individuals periodically, in a way that simulates the species evolved in

natural environment. These parallel evolutionary algorithms have been applied to solve

many sophisticated problems in various fields, such as image processing (Chen et al.,

1996), VLSI (Yoshida and Yasuoka, 1999), network design (Sleem et al., 2000), and drug

scheduling (Tan et al., 2002a).

In DCDM, two species namely rules (fundamental elements) and rule sets (complex

elements) are evolving simultaneously and cooperatively. Rule population and a number

of rule set populations are distributed among multiple computers over Internet. These

 48

coevolving populations are coupled cooperatively on fitness as the quality of rule sets

greatly depends on the quality of rules forming the rule sets. Hence, through the inter-

communications between the rule population and the rule set populations, rules thus

generated are all crucial to the problem and useful for rule set construction, which makes

it easy to find the resultant rule set with a fairly good performance

4.2 The framework of DCDM

The framework of the DCDM is presented in Figure 4.1 to give an overall impression of

the entire system. The system is built upon the foundation of Java technology offered by

Sun Microsystems and is equipped with application programming interfaces (APIs) and

technologies from J2SE. The infrastructure of the distributed framework is the Java™

Remote Method Invocation (RMI) system, which allows an object running in one Java

Virtual Machine (VM) to invoke methods on an object running in another Java VM. RMI

provides for remote communication between programs written in the Java programming

language. RMI applications are often comprised of two separate programs: a server and a

client. A typical server application creates some remote objects, makes references to them

accessible, and waits for clients to invoke methods on these remote objects. A typical

client application gets a remote reference to one or more remote objects in the server

(remote compute engine) and then invokes methods on them. RMI provides the

mechanism by which the remote compute engine and the client communicate and pass

information back and forth.

The overall system is made up of a client and a number of remote compute engines. The

 49

client represents a data-mining task, which is in charge of identifying the remote compute

engine, dispatching the workload and collecting the final result. Besides these, in DCDM,

client is also a major computational component because the rule population is also

evolved on it. Ordinarily, all the datasets are garnered in a central database, which can be

accessed by the client and all the remote compute engines. When the client starts, it first

collects the information of the available compute engines from an HTTP server and then

broadcasts to its selected engines on which dataset they should work. The engine

information is uploaded by itself when the engine registers in the sever registry from

which the client can locate all the engines. After the engine registers itself successfully, it

begins to wait the client to assign the task. Once a task is assigned, the engine will read the

information from the client and extract class name and path before loading the class

remotely from the server. If the class loaded is consistent with the specification of the

system, the computation procedure will be initiated. In Figure 4.1, the left part illustrates

the situation of client while the right part depicts the remote engines. Communications

between the above two parts are resorted to the Java™ Remote Method Invocation (RMI)

bridge. The design and implementation details of DCDM are given in the following

subsections.

 50

Rule population
1st Generation

Main pool of rules

2nd Generation

3rd Generation

ith Generation

Token
Competetion

1st Rule set
Population

Evolving

(Remote Engine 1)

2nd Rule set
Population

(Remote Engine 2)

Local rule pool

Local rule pool

nth Rule set
Population

(Remote Engine n)

Local rule pool

Resultant
rule set

The best rule set

Update local rule pools periodically
Update local rule pools periodically

RMI Bridge

RMI Bridge

RMI Bridge
RM

IB
rid

ge

RMI Bridge

Stop !

If all the remote engines have
sent the resultant rule sets

All the resultant rule sets

(Central database)

Figure 4.1: Framework of DCDM system

 51

4.3 Client-side design

As shown in the client user interface in Figure 4.2, working dataset is first selected and

broadcasted to all the registered remote engines. Before starting evolving the rule

population, users can freely choose among the available remote engines to dispatch their

workloads. In addition, to evaluate the average performance of the evolutionary algorithm,

the running times may also be specified in the client panel. The rule evolving process is

launched in the client after all the necessary preparation. As shown in Figure 4.1, the rule

evolving would be carried out generation by generation and not stopped until all the

resultant rule sets are sent back by the remote compute engines. During the course of rule

evolution, a main rule pool is set up in the client and then maintained by being fed with

the rules from the rule population. The following sections detail the process of rule

evolution.

Figure 4.2: The client user interface

 52

In the rule population, chromosomes are encoded using Michigan approach where each

chromosome represents a single rule. These chromosomes are variable in length, and all

the initial chromosomes are evaluated against the training dataset for their fitness before

starting the iteration looping. The fitness function is the same as the one applied in EvoC

of Chapter 3. The mating pool is first formed by selecting parents from the rule population

using tournament selection. The genetic operators such as crossover and mutation are then

applied upon the mating pool to reproduce the offspring. The offspring are assigned as the

new main population and passed into the token competition that works as a covering

algorithm. The token competition effectively maintains a pool of good rules, i.e., rules that

covers the solution space well. As classification problems generally contain not only one

but many useful knowledge or regulations, it is crucial for the coevolutionary algorithm to

maintain a population with high diversity. To achieve this, a regenerate operator is used,

which replaces chromosomes that are below average fitness in the main population with

randomly generated chromosomes at some user specified probability. After the

regeneration, all chromosomes in the pool resulting from the token competition are used to

form the main rule pool, which serves as the resource to build the local rule pool for every

rule set population. The evolution of the rule population will not be stopped until all the

rule set populations have finish their evolutions.

 53

4.4 Engine-side design

Begin

Register

Assigned Job?

Read class name and path
from client

Load class remotely

Compute

Finished?

Need to update
local rule pool?

Update

Submit result

Waiting

Yes

No

Yes

No

No

Yes

Figure 4.3: The working process of a remote engine

 54

As stated in the previous section, rule evolution is conducted in the client side, while in

the remote engine side, the final result namely the rule set is evolved. The working

process of a remote engine is shown in Figure 4.3. The DCDM algorithm applies a group

of rule set populations to evolve rule sets with different number of rules. The

chromosomes in these populations are encoded with Pittsburgh approach where each

chromosome is encoded with a rule set. The basic element that builds up these

chromosomes is the rules from their respective local rule pools, as shown in Figure 4.1.

The number of rules in a chromosome depends on which rule set population the

chromosome is attached to. For example, the fourth rule set population will only contain

chromosomes with 4 rules. Note that the default class is also encoded in the chromosome,

which provides greater flexibility on constructing the rule sets. The number of rule set

populations is determined by the maximum number of rules allowed in a rule set. For

example, if a rule set is allowed to have up to 15 rules, then there will be 15 such

populations.

The quality of these rule sets is greatly affected by the rules used. To evaluate the

chromosomes, the classification accuracy on the training set is used. Here, only mutation

operator is applied to evolve the chromosomes in order to avoid the reproduction of

redundant rule sets. At the end of the evolution, each rule set population outputs its ‘best’

candidate rule set, which will be gathered together with the best rule sets from other

populations. Competition will then be performed between these rule sets to obtain the final

optimal one. To retain concise rule sets in the classification, a shorter rule set is preferable

to a longer one even if both achieved the same classification accuracy. In this way, the

 55

order and number of rules in the rule sets can be optimized and determined

simultaneously.

4.5 Update of the local rule pools

In the client side, after the rule evolution finishes its first generation, the main rule pool is

built up from the rule population with the assistance of token competition. While in the

remote engine side, the rule set populations can still not be initialized until their respective

local rule pools are set up. So a user specified portion of rules will be chosen randomly

from the main rule pool to initialize the local rule pools on the remote engines and

afterwards these local rule pools will be updated periodically by the new rules from the

main rule pool. The updates of local rule pools on different remote engines are not carried

out simultaneously because communications between client and remote engines are

conducted individually. These local rule pools are served like the factory of raw materials

for the rule set evolution. After the initialization of their respective local rule pools, the

remote engines launch the rule set evolution. Since the local rule pools on different remote

engines are not identical, rules from different rule set populations are also different, which

might carry more information due to variety. The evolution of the rule sets will not be

stopped until reaching a predefined generation number. In the end, the rule set with the

best training accuracy will be sent back to a central database. After colleting all the

resultant rule sets from all of the remote engines, the client is in charge of making a

selection among them based on their competition results.

 56

4.6 Distribution of the workload

A task queue is resorted to distribute the rule set populations to the available remote

compute engines. Figure 4.4 illustrates how this task queue can help this work done.

Suppose there are 15 rule set populations and 4 remote compute engines available. Each of

the 15 rule set populations will be assigned with a task ID, for instance, the first rule set

population will be regarded as TASK1, so on and so far. At the very beginning, the 15

tasks all enter the queue and the first 4 of them will be assigned to the 4 remote compute

engines. Together with the task IDs, a portion of the rules from the main rule pools also

migrate to the compute engines to form the local rule pools. So the task ID tells what kind

of rule sets the compute engine should build up. After the evolution is finished, the best

rule set is sent to and stored in a central database. At the same time, the compute engine,

which finishes the task, sends a message indicating that it is free and the task ID on the top

of the queue will be assigned to it once the message has been caught. If problems

happened on the remote engine’s side, which make the tasks cannot be finished

successfully, an exception is invoked to inform the failure of the tasks. In this case, the

failed task ID reenters the task queue and will be assigned to available compute engine at

its turn.

 57

TASK 1

TASK 4

TASK 3

TASK 2

TASK 5

TASK 8

TASK 7

TASK 6

Compute Engine
1

 Compute Engine
4

 Compute Engine
3

 Compute Engine
2

 Compute Engine
k

TA SK N
...

TASK QUEUE

...

Failed tasks

Figure 4.4: Distribution of the workload

4.7 Workload Balancing

Since the processing power and specification for various computers in a network might be

different, the feature of work balancing that ensures the remote engines are processed in a

similar pace is needed in a distributed evolutionary system. This is important because the

total computational time is decided by the remote engine, which finished its work last and

if the remote compute engine with the least computational capacity is assigned the most

heavy workload, not only would longer time be required but the resources would be

 58

greatly wasted. Intuitively, work balancing for a distributed evolutionary system could be

difficult due to the fact that the working environment in a network is often complex and

uncertain. DCDM resorts to a simple work balancing strategy by assigning the workload

to the remote compute engines according to their respective computational capacities.

Recalling the content of section 4.2, one could remember that when a remote engine is

first launched, it uploads its configuration information to a HTTP server, which can be

accessed by the client. The hardware configuration of the remote engine is recorded in the

information file such as the CPU speed, RAM size, etc. Reading the information file from

the HTTP server, the client carries out a simple task scheduling and assigns different tasks

to respective remote engines mainly according to their computational capacities.

4.8 Experimental studies

.8.1 Experimental setup

able 4.1 lists the parameter settings in DCDM that are applied to all the testing problems.

4

T

These parameters have been chosen after some preliminary experiments and then applied

upon all the experiments. Therefore the settings should not be regarded as an optimal set

of parameter values but rather a generalized one with which the DCDM can perform well

over a wide range of datasets. The DCDM was programmed using the Java Developers

Kit (JDK 1.4.1) from Sun Microsystems. The rule population is evolving on an Intel

Pentium IV 1.3 GHz computer with 128 MB SDRAM. Four computers serve as the

remote compute engines and their configurations are listed in Table 4.2.

 59

Table 4.1 Parameter settings used in the experiments
Parameter Value

Population size 100

Co ze -population si 50

mber of generations 100

mber of co-populatio 15

Probability of crossover 0.9

Probability of mutation 0.3

robability of regeneration 0.5

Nu

Nu ns

P

Table 4.2 Configurations for the remote compute engines
Engine number Configuration (CPU (MHz)/RAM (MB))

1 PIII 800/ 512

2 PIII 933/512

3 PIV 1300/ 128

4 PIII 933/ 256

he proposed DCDM is validated based on 6 datasets, which are made up of the iris T

dataset, 4 medical datasets and a credit card assessment dataset. Each of these datasets is

partitioned into two sets: a training set and a testing set (also called validation set). The

training set is used to train DCDM, through which its learning capability can be justified.

However, a classifier that learns well does not necessarily guarantee it is also good in

generalization. In order to evaluate the generalization capability, the rule sets obtained by

DCDM are applied to testing set after the training. In order to ensure the replicability and

clarity of the validation results, all experiments have been designed carefully in this study.

 60

In the total of 100 evolutionary runs on each of the 6 datasets, a random seed3, which is

the same as the number of runs (i.e. the 50th run uses random seed 50), is first used to

randomize the orders of data in the datasets. The randomized data is then partitioned with

the first 66% as the training data and the remaining 34% as the test data.

4.8.2 The problems sets

The datasets used to validate the performance of DCDM are obtained from UCI Machine

Learning Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html). All these

datasets are careful chosen with many considerations such as the number and type of the

attributes (nominal, numeric or both), containing the missing attribute values or not,

number of data samples, number of classes and the ratio of majority class to minority class

etc. Table 4.3 describes the domains of the data together with the classification tasks,

while in Table 4.4 the characteristics of each dataset are given in detail.

Table 4.3 Classification task descriptions of the datasets
Dataset Domain Classification task

Iris Botany Classify 3 species of iris flower based on their physical characteristic.

Breast cancer Medicine Determine the patients for whom the cancer will re-occur.

Heart-c Medicine Determine the risk of heart disease given certain medical conditions in patients.

Diabetes Medicine
Determine whether a patient shows signs of diabetes according to World Health

Organization criteria.

Hepatitis Medicine
Determine whether a hepatitis patient will live or die according to given

medical conditions.

Credit-a Finance
Determine a certain aspect of credit card applications given other

specifications.

3 The random number generator used in the experiments is provided with Sun’s JDK 1.4.1 and the data set
randomizer used is provided with WEKA (Witten and Frank, 1999). Different partitioning of data sets might
have resulted under different programming environments.

 61

Table 4.4 The characteristics of the datasets
Attribute characteristics

Dataset
Number of

attributes

Number of

classes

Number of

instances

Percentage of

major class Numeric Nominal Missing

Iris 4 3 150 33 Yes No No

Breast cancer 9 2 286 66 No Yes Yes

Heart-c 13 5 303 55 Yes Yes Yes

Diabetes 8 2 768 65 Yes No No

Hepatitis 19 2 155 79 Yes Yes Yes

Credit-a 15 2 690 56 Yes Yes Yes

4.8.3 Experimental results

Table 4.5 summarizes the classification results produced by DCDM over the 100

independent runs for all the testing problems. The statistics in the table could firstly give a

general impression that DCDM generates classification rule sets with a fairly high

predictive accuracy, a stable performance (reflected by the small standard deviation) and a

small number of rules. The histograms in Figure 4.5 illustrate the detailed results of

DCDM over 100 runs, which generally show a normally distributed performance. The best

rule sets of all the 6 datasets are presented in the Table 4.6 ~4.11, from which one can see

what the resultant rule sets look like.

 62

Table 4.5 Classification results from DCDM
DCDM Iris Breast cancer Heart-c Diabetes Hepatitis Credit-a

Training

Max 100% 80.32% 84.42% 79.05% 93.14% 88.35%

Mean 96.53% 76.30% 79.72% 75.79% 75.99% 86.00%

StdDev* 1.80% 1.79% 2.70% 1.27% 2.54% 1.03%

Testing

Max 100% 84.39% 86.54% 79.77% 92.45% 90.21%

Mean 96.73% 76.16% 80.01% 75.31% 84.38% 86.28%

StdDev 2.40% 3.11% 3.19% 2.31% 3.81% 1.79%

Length* 4 5 8 6 5 4

Training time (s) 56.77 63.81 98.32 124.44 63.66 153.22
 *StdDev represents the standard deviation and length represents the number of
rules in a rule set.

Iris (train)

Iris (test)

Breast-cancer (train)

Breast cancer (train)

 63

Heart-c (train)

Heart-c (test)

Diabetes (train)

Diabetes (test)

Hepatitis (train)

Hepatitis (test)

Credit-a (train)

Credit-a (test)

Figure 4.5: Diagrams of the classification results

 64

Figure 4.6 shows the convergence performance of DCDM for all the datasets. The figures

on the left side are the average fitness of the rule population while the right-side ones are

average as well as the best accuracy (also fitness) over all the rule set populations. As can

be seen, although the rule population evolves in a very stochastic way (mainly due to the

regenerating operator), it provides a ground for the rule set populations to progress in a

positive direction and resulted in a good exponentially increased convergence trace. This

shows how the populations are coevolved cooperatively to produce the good solutions.

The stochastic nature of the rule population plays an important role in the proposed

coevolutionary model to maintain the diversity of the individual pool.

Iris (rule population)

Iris (rule set populations)

Breast cancer (rule population)

Breast cancer (rule set populations)

 65

Heart-c (rule population)

Heart-c (rule set populations)

Diabetes (rule population)

Diabetes (rule set populations)

Hepatitis (rule population)

Hepatitis (rule set populations)

Credit-a (rule population)

Credit-a (rule set populations)

 66

Figure 4.6: Evolutionary progress on the rule and rule set populations

Table 4.6 The best classification rule set of DCDM for the Iris dataset
 Rule Fitness Support factor Confidence factor

1 IF petallength < 2.5419,
THEN class = Iris-setosa 2.0 0.3232 1.0

2 IF petalwidth <> [0.1, 1.6807],
THEN class = Iris-virginica 1.8735 0.3333 0.9429

3
IF petallength < 4.9878
AND petalwidth > 0.8904,
THEN class = Iris-versicolor

1.6909 0.3131 0.8378

4 IF petallength >= 4.6518,
THEN class = Iris-virginica 1.6562 0.3333 0.7857

5 ELSE class = Iris-setosa
Accuracy = 100%

Table 4.7 The best classification rule set of DCDM for the Breast Cancer dataset
 Rule Fitness Support factor Confidence factor

1
IF menopause != lt40 ,
AND deg-malig != 3 ,
THEN class = no-recurrence-events

1.0441 0.5372 0.7594

2 IF node-caps = yes ,
THEN class = no-recurrence-events 0.9478 0.5691 0.7181

3 IF inv-nodes = 0-2,
THEN class = no-recurrence-events 0.9924 0.5426 0.7391

4
IF inv-nodes != 24-26,
AND node-caps!= yes ,
THEN class = no-recurrence-events+

0.6985 0.3351 0.3663

5 ELSE class = recurrence-events
Accuracy = 84.69%

Table 4.8 The best classification rule set of DCDM for the Heart-C dataset
 Rule Fitness Support factor Confidence factor

1
IF exang = no
AND ca < 0.5106,
THEN num = <50

1.2361 0.3769 0.8152

2
IF cp = asympt ,
AND chol >= 156.3957,
THEN num = >50_1

1.109 0.3467 0.734

3 IF thal = normal ,
THEN num = <50 1.1414 0.3819 0.7451

4 ELSE num = >50_1
Accuracy = 86.54%

 67

Table 4.9 The best classification rule set of DCDM for the Diabetes dataset
 Rule Fitness Support factor Confidence factor

1
IF plas >< [0, 126.267],
AND pres <> [0, 42.5834],
THEN class = tested_negative

1.0551 0.4644 0.7807

2
IF plas > 93.0716,
AND mass > 29.7921,
THEN class = tested_positive

1.0394 0.2826 0.5500

3

IF preg >< [0, 14.4087],
AND plas >< [0, 148.2526],
AND insu <= 817.285,
THEN class = tested_negative

1.0497 0.5929 0.7264

4
IF plas >< [0, 152.2424],
ANDmass <> [0, 16.3087],
THEN class = tested_negative

1.0230 0.5909 0.7188

5 IF age > 28.4661,
THEN class = tested_negative 0.9684 0.2905 0.5034

6 IF mass >= 25.6667,
THEN class = tested_positive 0.8278 0.3458 0.4258

7 ELSE class = tested_negative
Accuracy = 79.77%

Table 4.10 The best classification rule set of DCDM for the Hepatitis dataset
 Rule Fitness Support factor Confidence factor

1
IF SPLEEN_PALPABLE != yes ,
AND ASCITES != yes ,
THEN class = LIVE

1.3256 0.6471 0.9041

2
IF FATIGUE = yes ,
AND ALBUMIN >< [2.1, 3.669],
THEN class = DIE

1.0784 0.1471 0.5556

3

IF LIVER_FIRM != no,
AND ASCITES = no ,
AND BILIRUBIN <= 3.1185,
THEN class = LIVE

1.2911 0.6765 0.8846

4 IF ALBUMIN > 3.3452,
THEN class = LIVE 1.2855 0.6275 0.9014

5 IF ALBUMIN >= 3.0876,
THEN class = LIVE 1.2799 0.6471 0.8919

6
IF ANTIVIRALS = no ,
AND HISTOLOGY != no ,
THEN class = DIE

1.0582 0.1765 0.4186

7
IF ASCITES = no ,
AND ALBUMIN <= 5.9173,
THEN class = LIVE

1.2350 0.6471 0.8800

8 IF SPIDERS != yes ,
THEN class = LIVE 1.1636 0.5882 0.8824

9 ELSE class = DIE
Accuracy = 92.45%

 68

Table 4.11 The best classification rule set of DCDM for the Credit-A dataset

 Rule Fitness Support factor Confidence factor

1 IF A9 = f,
THEN class = - 1.4177 0.4176 0.9268

2 IF A10 != f ,
THEN class = + 1.0370 0.2967 0.7031

3

IF A5 = g,
AND A8 >< [0, 18.7653],
AND A10 = f,
THEN class = +

0.9413 0.2571 0.7178

4

IF A1 = b,
AND A2 <= 54.192,
AND A5 != p,
AND A11 >< [0, 33.6464],
AND A13 = g ,
AND A15 >< [0, 74832.9761],
THEN class = +

0.6423 0.2132 0.5132

5

IF A1 != a ,
AND A2 >< [13.75, 55.9752],
AND A8 >< [0,28.2914],
AND A11 >< [0, 39.451],
THEN class = -

0.7059 0.3670 0.5604

6 ELSE class = +
Accuracy = 90.21%

4.8.4 Performance analysis

To make a more thorough study of the efficacy of the distributed techniques on both the

computational time and the classification accuracy, DCDM is applied to all the testing

problems for different number of remote engines ranging from 1 to 10 with a uniform

 69

parameter setting as described in Table 4.1. 30 evolution runs are carried out in each case

and the average results are summarized in Table 4.12 and Figure 4.7.

Table 4.12 Average results for different number of remote engines
Engine number Iris Breast cancer Heart-c Diabetes Hepatitis Credit-a

Computational time (s)

1 153.2 156.82 333.39 323.75 155.73 375.89
2 96.62 102.59 171.81 202.33 96.52 254.79
3 67.88 78.5 131.25 146.33 76.67 188.69
4 55.61 64.79 96.49 122.11 64.74 154.6
5 57.34 59.5 80.40 103.91 55.66 131.8
6 50.32 56.16 68.25 101.82 50.83 124.39
7 41.28 44.29 59.33 99.41 44.19 100.64
8 40.99 42.27 53.09 74.99 42.28 99.96
9 39 41.53 51.85 73.6 39.24 94.45

10 36.73 39.64 50.14 70.65 37.64 88.07
Accuracy (%)

1 96.99 76.53 82.21 75.79 83.9 86.1
2 96.34 76.19 81.09 75.93 84.28 86.07
3 96.8 77.11 80.96 75.75 83.96 86.01
4 97.19 76.84 79.04 75.99 83.96 86.04
5 97.32 76.7 79.52 75.7 83.84 86.16
6 96.27 76.73 80.1 75.17 83.77 86.16
7 96.8 76.9 79.26 75.39 83.52 86.07
8 97.12 76.22 79.78 75.44 84.09 86.07
9 96.99 76.05 79.17 75.41 84.15 86.14

10 96.73 76.5 80.1 75.28 83.3 85.89

 70

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Iris)

C
om

pu
ta

tio
na

l t
im

e(
s)

94
94.5

95
95.5

96
96.5

97
97.5

98
98.5

99

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Iris)

A
cc

ur
ac

y(
%

)

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Breast cancer)

C
om

pu
ta

tio
na

l t
im

e
(s

)

74

74.5

75

75.5
76

76.5

77

77.5

78

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Breast cancer)

A
cc

ur
ac

y
(%

)

0

50

100

150
200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Heart-c)

C
om

pu
ta

tio
na

l t
im

e(
s)

77
77.5

78
78.5

79
79.5

80
80.5

81
81.5

82
82.5

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Heart-c)

A
cc

ur
ac

y(
%

)

 71

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Diabetes)

C
om

pu
ta

tio
na

l t
im

e(
s)

73

73.5

74

74.5

75

75.5

76

76.5

77

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Diabetes)

A
cc

ur
ac

y(
%

)

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Hepatitis)

C
om

pu
ta

tio
na

l t
im

e(
s)

81

81.5

82

82.5

83

83.5

84

84.5

85

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Hepatitis)

A
cc

ur
ac

y(
%

)

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Credit-a)

C
om

pu
ta

tio
na

l t
im

e(
s

84

84.5

85

85.5
86

86.5

87

87.5

88

1 2 3 4 5 6 7 8 9 10

Number of remote engines (Credit-a)

A
cc

ur
ac

y(
%

)

Figure 4.7: Computational time VS number of remote engines

As shown in Table 4.12 and Figure 4.7, with different number of remote engines, the

computational time for each testing problem varies significantly whereas the changes of

 72

the classification accuracy are not that obvious and most of them only fluctuate within

1%. Although the communication status and speed of the Internet often vary from time to

time, which may cause minor fluctuation in terms of computational time for a distributed

system occasionally, the introduction of the distributed technology into the coevolutionary

algorithm has generally greatly improved the efficiency of the overall system. DCDM

with ten remote compute engines is on average 5 times faster than the system with only

one remote engine. Another observation of Figure 4.7 is that the speed of reduction on

computational time decreases with the increment of the number of remote engines, which

means that the efficiency improvement will be not obvious when more and more remote

engines are added into the system. Four remote engines are chosen in the previous section

to present the result is due the reason that when more than 4 remote engines are added into

the system the time reduction speed becomes significantly slower, so in the 4-engine

situation the Internet resources are most efficiently utilized. While on the other side,

because the parameter settings are kept unchanged in DCDM with different remote

engines, the results in terms of classification accuracy are also expected not to change

much, which can be justified by most of the results of the testing problems. One exception

is the Heart-c problem, where there is a 2% fluctuation in accuracy. This can be explained

that when the evolution of the rule set is much faster than evolution of the rules, rules that

are used to assemble the rule sets are still not good enough, which might impair the

performance of the rule set as a whole. While for the other testing problems, the

fluctuation is not that much because good rules have already been generated before the

rule set evolution is finished, but this situation might also change if more and more remote

engines are added into the system.

 73

4.9 Comparisons with other works

4.9.1 Comparisons with three classical machine learning algorithms

It can be seen from the previous section that the proposed DCDM is capable of generating

comprehensible rule sets with good classification accuracy. For comparisons, the three

machine-learning algorithms, i.e., C4.5, PART and Naïve Bayes described in Chapter 3

have also been applied to the 6 datasets.

Results from the three algorithms are all summarized in Table 4.13. A preliminary

comparison can be made by just examining the results from both Table 4.5 and Table

4.13. Generally, DCDM generates concise rule sets with higher classification accuracy

and lower standard deviation. To make the comparison a more convincing one, box plot

and paired t-test are also conducted in the following parts.

Table 4.13 Results from three classical algorithms
C4.5 PART Naïve Bayes

Dataset
Accuracy Length StdDev Accuracy Length StdDev Accuracy StdDev

Iris 93.67% 4 3.92% 93.39% 4 3.93% 96.72% 2.93%

Breast cancer 71.81% 14 3.55% 69.32% 14 4.33% 72.34% 3.29%

Heart-c 76.61% 15 4.60% 77.97% 18 4.65% 82.96% 3.37%

Diabetes 73.13% 19 2.55% 72.78% 8 2.59% 75.08% 2.53%

Hepatitis 78.94% 6 4.84% 80.02% 7 4.98% 83.62% 4.90%

Credit-a 85.14% 19 2.06% 83.59% 27 6.98% 77.45% 2.57%

Box plots: As shown in Figure 4.8, the simulation results for all the 6 datasets are

represented in the format of box plots (Chambers et al., 1983) to visualize the distribution

 74

of results in term of classification accuracy over the 100 independent runs. Each box plot

represents the distribution of a sample population where a thick horizontal line within the

box encodes the median, while the upper and lower ends of the box are the upper and

lower quartiles. Dashed appendages illustrate the spread and shape of the distribution, and

the ‘+’ represents the outside values. In each graph, the sequence of box plots from left to

right is based upon the indexes provide before. As one can see that if the comparison

objectives are restricted to the rule-based classifiers, the classification capability of

DCDM averaged over 100 runs outperforms the other two in all the datasets. What’s

more, in 4 of them, DCDM also gives the highest classification accuracy. If Naïve Bayes

is also included in the comparisons, it outweighs DCDM in average classification

accuracy in one dataset. It is believed that under the circumstance that the real distribution

of the data sets cooperate with the supposed distribution of the bayes classifier, it will give

the minimum classification error. So, in these cases, this classifier might get some benefit

from the distribution of the datasets. It is also worth to point out that for the credit-a

dataset, the performances of Naïve Bayes are far worse than those of all other classifiers.

 75

Iris

Breast-cancer

Heart-c

Diabetes

Hepatitis

Credit-a

Figure 4.8: Box plots

T-Test: Apart from the box plots, to justify the performance of DCDM statistically,

a paired t-test (Montgomery et al, 2001) has been performed and the results are given in

Table 4.14. For all of the paired t-tests, DCDM was used as the control group and other

classifiers as the treatment groups. The alpha level has been chosen as 0.05. Similar to the

results shown in the box plots, by observing the P-values obtained from the t-tests,

 76

conclusion can be drawn that the classification performance of DCDM is better than those

of the other two rule-based classifiers on each of the dataset. For Naïve Bayes, the

classification performance of DCDM is significantly worse than those of it on heart-c;

however, on the datasets of breast-cancer, and credit-a, it is outperformed by DCDM

greatly.

Table 4.14 The P-values of all classifiers on the datasets
Dataset C 4.5 PART Naïve Bayes

Iris 1.22×10-12 8.17×10-15 1.48×10-6

Breast-Cancer 1.02×10-22 2.55×10-26 1.21×10-24

Heart-c 3.74×10-12 2.11×10-5 (-) 1.02×10-8
*

Diabetes 1.47×10-12 4.05×10-15 0.15

Hepatitis 5.63×10-20 2.20×10-14 0.05

Credit-a 1.17×10-8 2.73×10-21 5.08×10-51

* The minus denotes that the sample mean of results from DCDM is less than that of the
classifier under comparison.

4.9.2 Comparisons with other rule-based classifiers

To study the performance of DCDM more thoroughly, the best and the latest results

achieved by the rule-based classifiers in literature (including traditional and evolutionary

approaches) according to our best knowledge are also included in the comparisons.

Although such comparisons are not meant to be exhaustive, it provides a good basis to

assess the reliability and robustness of DCDM. Due to the fact that these classifiers use

different datasets to evaluate their performances respectively, comparisons are categorized

by datasets. All these results are summarized in Table 4.15.

 77

Iris: The co-evolutionary system (GP-Co) proposed by Mendes et al., (2001)

aimed to discover fuzzy classification rules, in which a GP evolving population and an EA

evolving population are co-evolved to generate well-adapted fuzzy rule sets and

membership function definitions. Ten-fold cross-validation was used to test this system on

the iris data set. The GGP, proposed by Wong (2001), is a flexible knowledge discovery

system that applied genetic programming (GP) and logic grammars to learn knowledge in

various knowledge representation formalisms. The GBML was proposed by Ishibuchi et

al., (2001), which is a fuzzy genetic-based machine-learning algorithm that hybrids the

Michigan and Pittsburgh approaches. The GBML was tested on several data sets, but only

the training accuracy was provided for the iris data. The GPCE, proposed by Kishore et

al., (2000), is a GP-based technique dedicated to solve multi-category pattern recognition

problems. In this algorithm, the n-class problem was modeled as n two-class problems and

GPCE was trained to recognize samples belonging to its own class and reject samples

belonging to other classes. The 50 to 50 split percent method was adopted as the

validation scheme, and the average results on the validation set over several simulation

runs are shown in Table 4.15.

Breast cancer: Fidelis et al, (2000) proposed a classification algorithm based on

genetic algorithm that discovers comprehensible rules. A fixed encoding scheme is

applied to the chromosomes and the mutation operator of GA is under specific design. The

breast-cancer dataset is utilized to test the performance of the algorithm by two thirds

acting as training set and one third as testing set. GPc, proposed by Tan et al (2002b),

extends the tree representation of GP to evolve multiple comprehensible classification

rules. By utilizing a covering algorithm that employs an artificial immune system-like

memory vector, this algorithm produces useful rules and at the same time removes the

 78

redundant ones. The validation on the breast-cancer data set used the same partition as

Fidelis’s work.

The Heart-c dataset: Setiono and Liu (1997) proposed the algorithm of

NeuralLinear, which is a system for extracting oblique decision rules from neural

networks that have been trained for classification of patterns. The algorithm has been

tested on the Heart Disease dataset through ten repetitions of ten-fold cross validation.

The Diabetes dataset: The classification results for Diabetes dataset from several

rule-based (Itrule and CN2) and tree-based (CART, AC² and Cal5) algorithms (Michie et

al, 1994) are listed in Table 4.15 for comparisons. Note that these results were obtained by

12-fold cross validation. The GGP (Wong, 2001) was also applied to this dataset and the

results are given in Table 4.15. As can be seen from the P-values, DCDM achieves a

higher accuracy than GGP generally. However, as GGP is a flexible algorithm, significant

performance improvement may be achieved if experts in the relevant domain can

incorporate the non-trivial hidden knowledge into its predefined grammars.

Hepatitis: Wang et al., (2000) proposed an evolutionary rule-learning algorithm,

called GA-based Fuzzy Knowledge Integration Framework (GA-based FKIF), which

utilized genetic algorithms to generate an optimal or near optimal set of fuzzy rules and

membership functions from the initial knowledge population. Since the average

performance of GA-based FKIF was not provided, only the best result of this algorithm is

compared with DCDM.

 Credit-a: The classification results for credit-a data set from Itrule, CN2, CART,

AC² and NeuralLinear are all listed in table X for comparisons.

 79

As shown in Table 4.15, through the extensive comparisons with the best and the latest

results achieved by the rule-based classifiers in literature, one can tell that the performance

of DCDM is fairly competitive. For the breast-cancer dataset, DCDM outperforms GPc in

both classification accuracy and the length of the rule sets. Though Fidelis’s algorithm

presents rule sets with less number of rules, its classification accuracy falls far below

(nearly 20%) of that from DCDM. For the datasets of hepatitis, the results of DCDM are

the best no matter in terms of classification accuracy or number of rules in the rule sets.

The average classification accuracy on the credit-a of DCDM is slightly worse than that of

Itrule and NeuralLinear, but DCDM generates more succinct rule sets than NeuralLinear.

For the iris dataset, result from DCDM is also the best among all the classifiers.

Discussions about the comparison results will be given in the next section.

 80

Table 4.15 Comparison results
Accuracy (%)

Dataset Classifier
Best Average

Number of rules

DCDM 100 96.73 4

GP-Co - 95.3 -

GGP 100 91.04 4

GPCE 96 - -

Iris

GBML 98.5 - -

DCDM 84.69 76.16 5

Fidelis et al., (2000) 67 - 2 Breast cancer

GPc 73.47 70.65 12

DCDM 86.54 80.01 8
Heart-c

NeuralLinear 78.15 6

DCDM 79.77 75.31 6

Itrule - 75.5 -

CN2 - 71.1 -

CART - 74.5 -

AC² - 72.4 -

Cal5 - 75.0 -

Diabetes

GGP 77.95 72.60 14

DCDM 92.45 84.37 5
Hepatitis

GA-based FKIF 92.9 - -

DCDM 90.21 86.28 4

Itrule - 86.3 -

CN2 - 79.6 -

CART - 85.5 -

AC² - 81.9 -

Credit-a

NeuralLinear - 86.9 6.6

 81

4.10 Discussion and Summary

The proposed DCDM has been examined on 6 datasets obtained from UCI machine

learning repository and has produced very good classification results as compared to many

existing classifiers. Most of the comparisons were performed statistically using measures

such as t-tests and box plots to show the robustness of the proposed classifier. Extensive

simulation results show that DCDM has outperformed another two rule-based classifiers

(C4.5 rule and PART) on all the testing problems and is very competitive as compared to

statistical based techniques, such as Naïve Bayes, in terms of classification accuracy.

Furthermore, the box plots results show that DCDM has relatively lesser number of

outliers, which indicates that DCDM is relatively more robust and less affected by the

random partition of learning and testing sets. It can also be observed from the experiment

results that the average number of rules of the rule set produced by DCDM is relatively

small as compared to other algorithms. This is an important advantage of DCDM since the

comprehensibility of the classification results is directly reflected by its number of rules

generally. The performance comparisons to other evolutionary based classifiers (GP-Co,

GGP, GBML, GPCE and GA-based FKIF) are mainly restricted by the availability of

data, e.g., not all the datasets used in our experiments were tested in other publications.

Since there are so many classifiers proposed in literature over the years, it is very difficult,

if not impossible, to include every one of them in the comparisons. Therefore the

comparisons are not meant to be exhaustive, but to assess the reliability and robustness of

DCDM by comparing it with some established methods widely used in literature.

 82

Just as many other rule induction algorithms (Michalski, 1983; Michalski, et al, 1986;

Clark & Niblett, 1989; Rivest, 1987), DCDM employs the “separate and conquer” scheme

to induction. One shortcoming of this strategy is that it causes a dwindling number of

examples to be available as induction progresses, both within each rule and for successive

rules. Also, the fact that only single-attribute tests used in rules means that all decision

boundaries are parallel to the coordinate axes. With a limited number of examples

available, the error of approximation to non-axis-parallel boundaries will be very large.

What’s more, taking the form of the decision lists, each rule body in DCDM is implicitly

conjoined with the negations of all those that precede it (Domingos, 1996). All of these

factors will impair the performance of DCDM on the problems with large number of

classes. Apart from this, by incorporating the distributed technology, the efficiency of the

coevolutionary algorithm has been significantly enhanced in DCDM, however, to make

the search thoroughly, additional computational time is still required as faced by most

evolutionary algorithms.

4.11 Conclusion

This chapter has proposed a distributed coevolutionary data mining (DCDM) system for

rule discovery. On a distributed platform, the rule population and several rule set

populations coevolve in a cooperative manner. By incorporating the coevolutionary

algorithm with the distributed technology, not only good classification results can be

achieved, but also the efficiency of the evolutionary algorithms can be greatly enhanced.

The proposed DCDM has been extensively validated upon 6 datasets obtained from UCI

 83

Machine Learning Repository, and the results have been analyzed both qualitatively and

statistically. Comparison results show that the proposed DCDM produces comprehensible

and good classification rules for all the datasets, which are very competitive or better than

many classifiers widely used in literature.

 84

Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, two rule-based classification algorithms are presented in which the first one is

a two-phased evolutionary approach and the second is a distributed co-evolutionary

classifier. The classification performances and the efficiency of the evolution process are

the two major considerations of the both algorithms.

In the two-phased approach, a hybrid evolutionary algorithm is utilized in the first phase to

confine the search space by evolving a pool of good candidate rules, e.g., genetic

programming is applied to evolve nominal attributes for free structured rules and genetic

algorithm is used to optimize the numeric attributes for concise classification rules without

the need of discretization. These candidate rules are then used in the second phase to

optimize the order and number of rules in the evolution for forming accurate and

comprehensible rule sets. Good simulation results on three medical datasets show that the

 85

algorithms can be used as an assistant tool in clinical practice for better understanding and

prevention of unwanted medical events.

In the co-evolutionary system, by utilizing the existing Internet and hardware resources,

distributed computing is naturally incorporated into the coevolutionary algorithm to

enhance its concurrent processing and performance. Through the inter-communications

between the different species (rules and rule sets), the cooperation is conducted in a more

effective and efficient way. Rules thus generated are all crucial to the problem, which

makes it easy to find the resultant rule set with a fairly good performance. The proposed

distributed coevolutionary classifier is extensively validated upon 6 datasets obtained from

UCI machine learning repository, which are representative artificial and real-world data

from various domains. Comparison results show that the algorithm produces

comprehensible and good classification rules for all the datasets, which are very

competitive or better than many classifiers widely used in literature.

5.2 Future works

Based on the work in this thesis, there are some possibilities for future research and

investigation. On-going work can include the development of peer-to-peer (p2p) computing

using JXTA (Juxtapose) technology to improve the performance of the both algorithms.

The use of advanced application server such as BEA Weblogic could also enhance the

performance and scalability, and features of the server such as cluster and integrated Java

 86

message service could be explored to further enhance the efficiency of the evolutionary

computation.

 87

References

Andre, D., and Koza, J. R., “Parallel Genetic Programming on a Network of Transputers”,

Workshop on Genetic Programming: From Theory to RealWorld Applications,

University of Rochester, National Resource Laboratory for the Study of Brain and

Behavior, Technical Report, vol. 95-2, pp.111-120, 1995.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D., Genetic Programming: An

Introduction on the Automatic Evolution of Computer Programs and its Applications.

San Francisco, CA: Morgan Kaufmann, 1998.

Bojarczuk, C. C, Lopes, H. S., and Freitas, A. A. ‘Genetic programming for knowledge

discovery in chest-pain diagnosis’, IEEE Engineering in Medicine and Biology

Magazine, vol. 4, no. 19, pp. 38-44, 2000.

Brameier, M., and Banzhaf, W., ‘A comparison of linear genetic programming neural

networks in medical data mining’, IEEE Transactions on Evolutionary Computation,

vol. 5, no. 1, pp. 17-26, 2001.

Cattral, R., Oppacher, F. and Deugo, D., ‘Rule acquisition with a genetic algorithm’, IEEE

Congress on Evolutionary Computation, vol. 1, pp. 125-129, 1999.

Cantú-Paz, E., ‘A survey of parallel Genetic Algorithms’, Calculateurs paralleles,

reseaux et systems repartis, Paris: Hermes, vol. 10, no. 2, pp. 141-171, 1998.

Cestnik, G., Konenenko, I., Bratko, I., ‘Assistant-86: a knowledge-elicitation tool for

sophisticated users’ in Bratko, Lavrac (Eds.), Marchine Learning, Wilmslow: Sigma

Press, pp. 31-45, 1987.

 88

Chambers, J. M., Cleveland, W. S., Kleiner, B., and Turkey, P. A. Graphical Methods for

Data Analysis, Wadsworth & Brooks/Cole, Pacific CA, 1983.

Chen, Y. W., Nakao, Z., and Xue F., ‘A parallel genetic algorithm based on the island

model for image restoration’, The 13th International Conference on Pattern

Recognition, vol. 3, pp. 694-698, 1996.

Chong, F. S., A Java based distributed genetic programming on the Internet, Master

Thesis, School of Computer Science, University of Birmingham, 1997.

Clark, P., and Niblett, T., ‘The CN2 induction algorithm’, Machine Learning, vol. 3, pp.

261-283, 1989.

Congdon, C. B. ‘Classification of epidemiological data: a comparison of genetic algorithm

and decision tree approaches’, Proceedings of the IEEE Congress on Evolutionary

Computation, vol. 1, pp. 442-449, 2000.

Cristea, V., and Godza, G., ‘Genetic algorithms and intrinsic parallel characteristics’,

IEEE Congress on Evolutionary Computation, vol. 1, pp. 431-436, 2000.

De Falco, I., Della Cioppa, A., and Tarantino, E., ‘Discovering interesting classification

rules with genetic programming’, Applied Soft Computing, vol. 23, pp. 1-13, 2002.

De Jong K. A., Spears, W. M. and Gordon, D. F., ‘Using genetic algorithms for concept

learning’, Machine Learning, vol. 13, pp. 161-188, 1993.

Domingos, P., ‘Unifying instance-based and rule-based induction’, Machine Learning,

vol. 24, pp. 141-168, 1996.

Duda, Richard O., Hart, Peter E. and Stork, David G.. Pattern Classification, John Wiley

and Sons, 2nd edition, 2001

 89

http://www.cs.washington.edu/homes/pedrod/papers/mlj96.pdf

Fayyad, U., “Data Mining and Knowledge Discovery in Databases: Implications for

Scientific Databases”, In Proceedings of the ninth International Conference on

Scientific and Statistical Database Management, pp. 2-11, 1997

Fidelis, M. V., Lopes, H. S., and Freitas, A. ‘Discovering comprehensible classification

rules with a genetic algorithm’, IEEE Congress on Evolutionary Computation, vol. 1,

pp. 805-810, 2000.

Frank, E. and Witten, I. H., ‘Generating accurate rule sets without global optimization’,

Proceedings of the Fifteenth International Conference Machine Learning (ICML'98),

pp. 144-151, 1998.

Freitas, A. A., ‘A survey of evolutionary algorithms for data mining and knowledge

discovery’, A. Ghosh and S. Tsutsui. (Eds.), Advances in Evolutionary Computation.

Springer-Verlag, 2002.

Garner, S. R. ‘WEKA: The Waikato environment for knowledge analysis’, Proceeding of

the New Zealand Computer Science Research Students Conference, pp. 57-64, 1995.

Giordana, A. and Neri, F., ‘Search-intensive concept induction’, Evolutionary

Computation, vol. 3, no. 4, pp. 375-416, 1995.

Goldberg, D. E., “Sizing populations for serial and parallel genetic algorithms”, In

Schaffer, J. D. (Editor), The Third International Conference on Genetic Algorithms.

San Mateo, CA: Morgan Kaufmann Publishers Inc., pp. 70-79, 1989.

Howard, L. M., and D’Angelo, D. J. ‘The GA-P: a genetic algorithm and genetic

programming hybrid’, IEEE Expert, pp. 11-15, June 1995.

Hruschka, E. R., and Ebecken, N. F. F., ‘A clustering genetic algorithm for extracting

rules from supervised neural network models in data mining tasks’, International

Journal of Computers, Systems and Signals, vol. 1, issue 1, pp. 17-29, 2000.

 90

Hu, Y. J. ‘Constructive induction covering attributes spectrum’, In H. Liu and H. Motoda

(Eds.), Feature Extraction Construction and Selection: A Data Mining Perspective,

Norwell, MA: Kluwer Academic Publishers, pp. 257-269, 1998.

Ishibuchi, H., Nakashima T. and Murata, T., ‘Three-objective genetic-based machine

learning for linguistic rule extraction’, Information Sciences, vol. 136, pp.109-133,

2001.

Janikow, C. Z., ‘A knowledge-intensive genetic algorithm for supervised learning’,

Machine Learning, vol. 13, pp. 189-228. 1993.

John, G.H. and Langley, P., ‘Estimating continuous distributions in Bayesian classifiers’,

Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp.

338-345, Morgan Kaufmann, San Mateo, 1995.

Kim, K. J., and Han, I. ‘Genetic algorithms approach to feature discretization in artificial

neural networks for the prediction of stock price index’, Expert Systems with

Applications, vol. 19, issue 2, pp. 125-132, 2000.

Kishore, J.K., Patnaik, L.M., Mani, V. and Agrawal, V.K., ‘Application of genetic

programming for multicategory pattern classification’, IEEE Transactions on

Evolutionary Computation, vol. 4, issue 3, pp. 242-258, 2000.

Kohavi, R. ‘The power of decision tables’, In Lavrae, N. and Wrobel, S. (Eds), Machine

Learning; ECML-95: 8th European Proceedings European Conference on Machine

Learning, Heraclion, Crete, Greece, 1995.

Koza, J. R. Genetic Programming: on the Programming of Computers by Means of

Natural Selection, Cambridge, MA: MIT Press, 1992.

Levine, D. (1995). Users Guide to the PGAPack Parallel Genetic Algorithm Library,

ANL-95-18. Available at (http://www.mcs.anl.gov/pgapack.html).

 91

Liu, Y., Yao, X., Zhao, Q.F. and Higuchi, T., ‘Scaling up fast evolutionary programming

with cooperative coevolution’, IEEE Congress on Evolutionary Computation, IEEE

Press, Piscataway, NJ, USA, pp. 1101-1108, May 2001.

Marmelstein, R. E., Lamont, G. B., GRACCE: A Genetic Environment for Data Mining,

Artificial Neural Networks in Engineering Conference, 1998.

Meesad, P., and Yen, G. G. ‘A hybrid intelligent system for medical diagnosis’,

Proceedings of International Joint Conference on Neural Networks, vol. 4, pp. 2558-

2563, 2001.

Mendes, R. R. F., Voznika, F. B., Freitas A. A. and Nievola, J. C., ‘Discovering fuzzy

classification rules with genetic programming and co-evolution’, Principles of Data

Mining and Knowledge Discovery (Proc. 5th European Conf., PKDD 2001) - Lecture

Notes in Artificial Intelligence 2168, pp. 314-325. Springer-Verlag, 2001.

Meta Group Consulting, CORBA VS DCOM: Solutions for Enterprise, 1998.

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, London:

Kluwer Academic Publishers, 1994.

Michalski, R. S., ‘A theory and methodology of inductive learning’, Artificial Intelligence,

vol. 20, pp. 111-161, 1983.

Michalski, R. S., Mozetic, I., Hong, J. and Lavrac, N., ‘The multi-purpose incremental

learning system AQ15 and its testing application to three medical domains’,

Proceedings of the Fifth International Conference on Artificial Intelligence, pp. 1041-

1045, Philadelphia, PA: AAAI Press, 1986.

Michie, D., Spiegelhalter, D.J., and Taylor, C.C., Machine Learning, Neural and

Statistical Classification, London: Ellis Horwood, 1994.

Mitchell, T. M., Machine Learning. McGraw Hill, 1997.

 92

Montgomery, D. C., Runger G. C., Hubele, N. F., Engineering Statistics, New York:

Wiley, John & Sons, 2nd Edition, 2001.

Moriarty, D. E. Symbiotic Evolution of Neural Networks in Sequential Decision Tasks,

The University of Texas at Austin, Jan. 1997.

Nang, J. and Matsuo K., ‘A survey on the parallel genetic algorithms’, Journal of the

Society of Instrument and Control Engineers, vol. 33, no. 6, pp. 186-191, 1994.

Noda, E., Freitas, A. A., and Lopes, H. S., ‘Discovering interesting prediction rules with a

genetic algorithm’, IEEE Congress on Evolutionary Computation, pp. 1322-1329,

Washington D.C., USA, July, 1999.

Paechter, B. and Back, T., “A Distributed Resources Evolutionary Algorithm Machine

(DREAM)”, IEEE Congress on Evolutionary Computation, vol. 2, pp. 951-958, 2000.

Paredis, J., ‘Coevolutionary computation’, Artificial Life, vol. 2, pp. 355-375, 1995.

Peña-Reyes, C. A., and Sipper, M. ‘A fuzzy-genetic approach to breast cancer diagnosis’,

Artificial Intelligence in Medicine, vol. 17, issue 2, pp. 131-155, 1999.

Peña-Reyes, C. A., and Sipper, M., ‘Fuzzy CoCo: A Cooperative-Coevolutionary

approach to fuzzy modeling’, IEEE Transactions on Fuzzy System, vol. 9, no. 5,

October 2001.

Polo, A. R. and Hasse, M., ‘A genetic classifier tool’, Proceedings of the 20th

International Conference of the Chilean Computer Science Society, pp. 14-23, 2000.

Quinlan, J.R., C4.5: Programs for Machine Learning, San Mateo, CA: Morgan

Kaufmann, 1993.

Prechelt, L. ‘Some notes on neural learning algorithm benchmarking’, NeuralComputing,

vol.9, no.3, pp. 343-347, 1995.

 93

Rivera, W., “Scalable Parallel Genetic Algorithms”, Artificial Intelligence Review, vol.

16, pp. 153-168, 2001.

Rivest, R. L., ‘Learning decision lists’, Machine Learning, vol. 2, pp. 229-246, 1987.

Rosin, C. D. and Belew, R. K. ‘New methods for competitive coevolution’, Evolutionary

Computation, vol. 5, no. 1, pp. 1-29, 1997.

Rouwhorst, S. E., and Engelbrecht, A. P. ‘Searching the forest: using decision trees as

building blocks for evolutionary search in classification databases’, IEEE Congress on

Evolutionary Computation, vol. 1, pp. 633-638, 2000.

Setiono, R. and Liu, H. ‘NeuroLinear: From neural networks to oblique decision rules’,

Neurocomputing, vol. 17, pp. 1-24, 1997.

Setiono, R. ‘Generating concise and accurate classification rules for breast cancer

diagnosis’, Artificial Intelligence in Medicine, vol. 18, no. 3, pp. 205-219, 2000.

Sleem, A., Ahmed, M., Kumar, A., and Kamel, K., ‘Comparative study of parallel vs

distributed genetic algorithm implementation of ATM network environment’, The

Fifth IEEE Symposium on Computers and Communications, pp. 152-157, 2000.

Street, W. N., Wolberg, W. H., and Mangasarian, O. L. ‘Nuclear Feature Extraction For

Breast Tumor Diagnosis’, In IS&T/SPIE 1993 International Symposium on

Electronic Imaging: Science and Technology, San Jose, CA, vol. 1905, pp. 861-870,

1993.

Sun Microsystems Inc. J2EE tutorial, 2001.

Tanev, I., Uozumi, T., and Ono, K., “Parallel Genetic programming: Component Object-

based Distributed collaborative approach”, The 15th International Conference on

Information Networking, pp. 129-136, 2001.

 94

Tan, K. C, Tay, A., Lee, T. H. and Heng, C. M. ‘Mining multiple comprehensible

classification rules using genetic programming’, IEEE Congress on Evolutionary

Computation, Honolulu, Hawaii, pp. 1302-1307, 2002a.

Tan, K. C., Khor, E. F., Cai, J., Heng, C. M. and Lee, T. H., ‘Automating the drug

scheduling of cancer chemotherapy via evolutionary computation’, Artificial

Intelligence in Medicine, vol. 25, issue 2, pp. 169-185, 2002b.

Tan, K. C, Yu, Q., Heng, C. M. and Lee, T. H., ‘Evolutionary computing for knowledge

discovery in medical diagnosis’, Artificial Intelligence in Medicine, vol. 27, issue 2,

pp. 129-154, 2003.

Tomassini, M. and Fernandez, F., “An MPI-based tool for distributed genetic

programming”, IEEE International Conference on Cluster Computing, pp. 209-216,

2000.

Vapnik, V. The Nature of Statistical Learning Theory. Springer, N.Y., 1995.

Wang, C. H., Hong, T. P., and Tseng, S. S., ‘Integrating membership functions and fuzzy

rule sets from multiple knowledge sources’, Fuzzy Sets and Systems, vol. 112, Issue 1,

pp. 141-154, 2000.

Witten, I. H., and Frank, E., Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations, CA: Morgan Kaufmann Publishers, 1999.

Wong, M. L., and Leung, K. S., Data Mining Using Grammar Based Genetic

Programming and Applications, London: Kluwer Academic Publishers, 2000.

Wong, M. L., ‘A flexible knowledge discovery system using genetic programming and

logic grammars’, Decision Support Systems, vol. 31, pp. 405-428, 2001.

Yao, X. and Liu, Y. ‘A new evolutionary system for evolving artificial neural networks’,

IEEE Transactions on Neural Networks, vol. 8, no. 3, May 1997.

 95

Yoshida, N. and Yasuoka, T., ‘Multi-GAP: Parallel and distributed genetic algorithms in

VLSI’, IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp.

571-576, 1999.

 96

List of Publications

K.C. Tan, Q. Yu, C.M. Heng, T. H. Lee. “Evolutionary computing for knowledge

discovery in medical diagnosis.” Artificial Intelligence in Medicine, vol.27, issue 2,

pp.129-154, 2003.

Yu, Q., Tan, K. C. and Lee, T. H., “An evolutionary algorithm for rules discovery in data

mining”, Evolutionary Computing in Data Mining, A. Ghosh and L. C. Jain (Eds.),

Physica-Verlag, Germany, 2004.

 97

	A THESIS SUBMITTED
	Acknowledgements.pdf
	List of Publications
	Table of Contents
	Chapter 1 Introduction
	Chapter 4 Distributed coevolution for rule induction
	References
	List of Figures
	List of Tables

	Summary.pdf
	Chapter 2 reviews the basic concept of rule induction and provides a survey on various evolutionary methods for extracting classification rules. Besides, a preliminary knowledge of coevolution and how it can be used for rule induction is also studied and

	Chapter 1.pdf
	Chapter 1

	Chapter 2.pdf
	Chapter 2
	Evolutionary computation in rule induction

	Chapter 3.pdf
	Chapter 3
	Possible values
	Class
	
	
	StdDev
	AND Normal_Nucleoli <= 9.0

	GA-based FKIF (Wang et al, 2000)
	Average

	Chapter 4.pdf
	Chapter 4
	Dataset
	Domain
	Dataset

	DCDM
	Iris

	Diabetes
	Credit-a
	
	Training
	Testing
	
	
	
	StdDev
	3.19%

	Accuracy = 84.69%
	Accuracy = 86.54%
	Accuracy = 92.45%
	Accuracy = 90.21%
	Engine number
	Iris

	Diabetes
	Credit-a
	
	Computational time (s)
	Accuracy (%)
	
	
	
	3

	Itrule
	CN2
	Conclusion

	Chapter 5.pdf
	Chapter 5
	Conclusions and Future Works

	Acknowledgements.pdf
	Table of Contents
	Chapter 1 Introduction
	Chapter 4 Distributed coevolution for rule induction
	References¡¡¡¡¡¡¡¡¡¡¡¡�

	List of Publications¡¡¡¡¡¡¡¡¡�
	
	List of Figures
	List of Tables

	Summary.pdf
	Chapter 2 reviews the basic concept of rule induction and provides a survey on various evolutionary methods for extracting classification rules. Besides, a preliminary knowledge of coevolution and how it can be used for rule induction is also studied and

	List of Publications.pdf
	List of Publications

